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Résumé

Actuellement, les Modèles Numériques de Surface (MNS) sont nécessaires pour de nom-
breuses applications, telles que la gestion des ressources en eau, le suivi de la biomasse,
l’évaluation des dommages causés par les catastrophes naturelles ou la planification ur-
baine. Les MNS peuvent principalement être produits par interférométrie Radar, pho-
togrammétrie ou en utilisant des instruments LiDAR. Dans ce contexte, le CNES et Airbus
préparent le lancement de la constellation de satellites CO3D afin d’assurer la production
massive de MNS à haute résolution par photogrammétrie. Fournie avec le MNS, une
carte de performance permettra de caractériser les erreurs liées aux incertitudes dans les
données d’entrée ainsi qu’aux incertitudes des méthodes utilisées.

L’objectif de cette thèse et de caractériser l’incertitude associée à la production de
MNS par photogrammétrie. Nous utilisons des modèles d’incertitude spécifiques, à savoir
des probabilités imprécises, et plus particulièrement des distributions de possibilité, afin de
caractériser l’incertitude résultant du traitement des images stéréo. Ces modèles définis-
sent des “ensembles crédaux”, qui sont des ensembles convexes de distributions de prob-
abilité. L’intérêt de ces ensembles crédaux est d’être mieux adaptés pour représenter
l’incertitude résultant de connaissances incomplètes ou imparfaites, par rapport aux sim-
ples distributions de probabilité. En présence de plusieurs sources d’incertitudes, il est
également nécessaire de considérer leurs relations de dépendance. Pour cela, il est courant
d’utiliser des copules, qui sont des modèles représentant la dépendance entre plusieurs
variables aléatoires. Dans cette thèse, trois méthodes distinctes sont introduites afin de
joindre des ensembles crédaux marginaux en des ensembles crédaux multivariés à l’aide
de copules. Les relations entre ces méthodes sont ensuite étudiées pour des copules spéci-
fiques ainsi que pour différents modèles de probabilités imprécises. Une application de ces
ensembles crédaux multivariés est ensuite proposée, afin de propager l’incertitude d’images
stéréo dans un problème d’appariement. Différentes optimisations et façons de faciliter la
propagation de l’incertitude sont présentées. La propagation correcte de l’incertitude est
enfin validée à l’aide de méthodes de Monte-Carlo.

Une seconde contribution de cette thèse concerne la modélisation de l’incertitude
intrinsèque de l’algorithme d’appariement en utilisant des distributions de possibilité.



Une méthode est proposée pour générer des intervalles de confiance associés aux résultats
de l’étape d’appariement, et ces intervalles sont propagés jusqu’à la fin du pipeline stéréo,
produisant ainsi des intervalles de confiance d’élévation pour les MNS. La taille et la
précision de ces intervalles est évaluée en utilisant des images satellites réelles et des MNS
pour lesquels une vérité terrain est disponible. Les intervalles ainsi créés contiennent
correctement la vérité terrain au moins 90 % du temps.



Abstract

Currently, Digital Surface Models (DSMs) are required in many applications, such as for
managing water resources, monitoring biomass, evaluating damages caused by natural
catastrophes, or for urban planning. DSMs can mainly be produced by Radar interfer-
ometry, photogrammetry or LiDAR scanning. In this context, CNES and Airbus are
planning the launch of the CO3D constellation of satellites to massively provide highly
accurate DSMs using photogrammetry. A performance map will also be provided along-
side the DSM to characterize potential errors resulting from the uncertainty on input data
or on its processing.

The objective of this thesis is to characterize the uncertainty associated with the pro-
duction of DSMs using photogrammetry. To do so, special uncertainty models, namely
imprecise probabilities, and more specifically possibility distributions, are employed to
characterize the uncertainty arising from stereo images processing. Those models define
credal sets, which are convex sets of probability distributions. Credal sets are well-suited
to represent uncertainty resulting from incomplete or imperfect knowledge, which can
be a limitation for a single probability distribution. In the presence of multiple sources
of uncertainty, their dependency must also be considered. For this purpose, it is pos-
sible to consider copulas, which are models used to represent the dependency between
multiple random variables. In this thesis, three different methods are introduced to join
marginal credal sets into multivariate credal sets using copulas. The relationships between
those methods are then investigated, for specific copulas and different models of impre-
cise probabilities. An application of those multivariate credal sets is then proposed, for
propagating the uncertainty of stereo images in a dense stereo-matching problem. Differ-
ent optimizations and ways to facilitate the uncertainty propagation are presented. The
correct uncertainty propagation is validated using Monte Carlo sampling.

A second contribution of this thesis concerns the uncertainty modeling of the dense-
matching algorithm itself using possibility distributions. A method is presented for gen-
erating confidence intervals associated with the results of the dense-matching step. Those
intervals are then propagated to the end of the stereo pipeline, therefore producing el-
evation confidence intervals for the DSMs. The size and accuracy of intervals are then



evaluated, using real satellites images and DSMs for which a ground truth is available.
Elevation intervals correctly contain the ground truth at least 90% of the time.



Foreword

Before delving into the subject of this manuscript, we would like to give some advice on
how to efficiently navigate through it. When writing this thesis, we made extensive use
of the hyperref package, so that reading it on a PDF viewer was made easier. You can
thus click on citations, figure numbers, equation numbers, chapters and sections numbers,
acronyms etc. to directly jump to the concerned part. When following a reference to
a citation, a previous chapter, equations or figures located in a different part of the
manuscript, it can be a arduous process to go back to the section you were reading.
Depending on the OS of your computer and the app used to read the PDF document,
there usually exist shortcuts to jump back to the previous view. This allows to quickly
switch back and forth between chapters and sections.

For instance, imagine that you are in Chapter 5 and we make a reference to an
equation from Chapter 2. If you do not recall the equation, and quickly want to see what
it is about, simply click on the hyperlink to directly go to the relevant equation from
Chapter 2. Then use your system’s shortcut to go back to where you were in Chapter 5.

• Using Acrobat Reader: the shortcut Alt + (left arrow key) on Windows or Linux
brings you to the previous view after clicking on a hyperlink. Afterwards, you can
alternate views with Alt + and Alt + . On macOS, the Alt key is replaced by
the key.

• Using Preview on macOS, you can add the Page History button to the toolbar, by
right-clicking on the toolbar and selecting Customize Toolbar

• Using Okular on Linux, Alt + + (left arrow key) brings you to the previous
view after clicking on a hyperlink. Afterward, you can alternate views with Alt +

+ and Alt + +

Hopefully, this makes the reading of this thesis a more pleasant experience.



You never talk of likelihoods on Arrakis.
You speak only of possibilities.

Frank Herbert, Dune



Introduction

Knowing the Earth’s topography is crucial for modern geosciences. Depending on the
level of detail needed, different models can be used: the Earth ellipsoid, its geoid (gravity
equipotential surface), topographic maps (i.e. contour lines of hiking maps) etc. One of
those models is the Digital Surface Model (DSM), which is a representation of a surface’s
elevation on a regular grid. This type of model appears as a natural solution in many
Geographic Information Systems (GIS). Indeed, they can easily be handled and provide
georeferenced information regarding the topography of an area. Figure 3 presents an
example of a DSM.

DSMs find usage in various contexts and for a wide range of applications. In Earth
Observation (EO) for instance, DSMs are used to monitor changes in vegetation [Sadeghi
et al., 2016], melting rates of glaciers [Berthier et al., 2014] or water resources [Yamazaki
et al., 2019]. DSMs can also be employed for catastrophe management, for instance
to predict the potential damage caused by earthquakes or floods [Jenkins et al., 2023].
DSMs are also crucial for ortho-rectifying images, i.e. geometrically correcting the effects
of distortion due to the sensor’s angle of view and the terrain’s topography. Finally, high
resolution DSM can help drone navigation in urban settings, for Defense applications, or
more broadly for urban planning [Velazco, 2012].

There are multiple ways of creating a DSM from remote sensors such as planes, drones,
or satellites. The first way is to use Radar interferometry, as done by Sentinel-1 satellites
[Geudtner et al., 2014], the Shuttle Radar Topography Mission (SRTM) [Farr et al., 2007]
or TanDEM-X ([Krieger et al., 2007]). Typical planimetric resolutions obtained are in
the range of a dozen meters (10 m for TanDEM-X or 30 m for the SRTM). Another
method is to construct DSM by means of stereophotogrammetry [Tao and Hu, 2001], i.e.
the science of recovering 3D information from optical images. For this method, images of
a scene are acquired from different points of view. Depth information is recovered from
the parallax effect between images, i.e. the fact that objects closer to the sensors present
a greater shift between images than objects in the background. This effect is also what
enables depth perception in human vision. Figure 4 illustrates the parallax effect, where
the top of Eiffel Tower has a greater position shift in both images than its basis. As

1



Introduction

(a) Pléiades image ©CNES 2017, Distribution
AIRBUS DS

(b) Digital Surface Model from LiDAR HD
(unit: m)

Figure 3: Satellite image over Val-de-Grâce, Paris at 0.5 m of resolution, and a DSM over
the same area.

current optical satellites have a sub-meter resolution, it is possible to massively produce
DSM covering the globe using photogrammetry at a relatively low cost. The altimetric
resolution is typically around one meter, although it depends on the different acquisition
angles of the satellites. The final method for producing DSM is to use Light Detection And
Ranging (LiDAR) [Khosravipour et al., 2016]. Using LiDAR allows obtaining very good
accuracy. For instance, the Institut National de l’Information Géographique et Forestière
(IGN) is using LiDAR to cover the French territory, with a planimetric accuracy of 25
centimeters, and an altimetric resolution of 5 centimeters allowing to observe very small
objects. Acquisition campaigns such as this one are carried out using airborne vehicles,
and are thus costly and take a lot of time. Therefore, photogrammetry DSMs are currently
the best solution to produce DSMs covering the globe with a sub-meter resolution for
relatively low costs. This thesis will therefore mainly consider DSMs produced using
stereophotogrammetry.

In this context, CNES - the French Space Agency - is planning to launch 4 low-cost
optical satellites with Airbus Defense and Space, in order to massively produce DSM
using stereophotogrammetry. This mission, named CO3D (for Constellation Optique 3D,
[Melet et al., 2020]), was conceived jointly with IGN to provide high resolution DSM over
the globe, at a 50 cm resolution.

For this purpose, CNES developed a pipeline dedicated to process all images provided
by the CO3D satellites automatically and at a very large scale. This pipeline is called
Chaîne Automatique de Restitution Stéréoscopique (CARS), and is composed of many
image processing steps. These steps will be detailed in the first chapter, but can be
summarized as follows:
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(a) Left Image (Red channel) (b) Right Image (Blue and
Green channel)

(c) Anaglyph

Figure 4: Example of the parallax effect: the top of the Eiffel Tower has a greater shift
in-between images than its basis. The anaglyph contains the red band of the left image
and the green and blue bands of the right image. (Pléiades © CNES 2023, Distribution
AIRBUS DS)

• Resampling of images in a convenient geometry for matching pixels

• Dense matching of every pixel between stereo images

• Triangulation of matched pixels into 3D points

• Rasterization, i.e. projection of the 3D points onto a regular grid, therefore yielding
the final DSM

The hardest and most crucial part of this pipeline is the dense matching of pixels. It
is also a famous problem in computer vision, which finds applications in robotics and
autonomous cars, for instance [Geiger et al., 2013]. Alongside the DSM computation, one
of the requirements of the CO3D mission is to produce a performance map indicating the
estimated quality of each cell of the DSM. This has motivated CNES to lead research
in order to estimate the uncertainty amongst the CARS pipeline. The main objective
of this thesis is therefore to characterize and propagate the uncertainty throughout this
photogrammetry pipeline. Considering the complexity of the CARS pipeline, as well as
the time constraint resulting from the future launch of the CO3D satellites, we mainly
focus on characterizing the uncertainty of the dense matching step. After quantifying this
uncertainty, we propagate it to the end of the pipeline to the final DSM.

Characterizing and quantifying uncertainty has many benefits, although it can some-
times be computationally expensive to deal with. It indeed provides additional infor-
mation for better decision-making and risk management. It can also allow for a better
understanding of the underlying processes at stake regarding the value of interest. In
many cases, uncertainty estimation is treated as a secondary objective in applications.
Jointly estimating a value and its uncertainty, however, can lead to new strategies to
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reduce uncertainty or even improve performance of the main applications [Qin et al.,
2022, Chen et al., 2023, Jiang et al., 2024b].

Before delving into uncertainty estimation and its propagation, we first need to spec-
ify what we mean by uncertainty. Uncertainty is a situation where a measure or value of
interest is not known, or not known with precision. It is subject to change, as additional
information, measures or a different acquisition protocol may reduce how uncertain a value
is. It can also be subjective. For instance, someone may be uncertain about the launch
date of CO3D satellites, while someone else working at the launch pad might have the
answer. This highlights the fact that while everyone has an understanding of what uncer-
tainty is, it encompasses very different concepts in nature. It is common to differentiate
the various types of uncertainty by dividing it into two categories: stochastic uncertainty
(also called random uncertainty) and epistemic uncertainty [Hora, 1996, Frank, 1999].

Stochastic uncertainty refers to every situation of purely aleatoric nature. For in-
stance, the result of a coin throw, random noise on a CDD captor or the Brownian
movement of a particle. An operator typically encounters this kind of uncertainty in a
situation where they have access to many measures or observations of the same value of
interest. It is usually modeled mathematically with a frequentist approach, using proba-
bility measures such as the uniform distribution, Gaussian distribution or the Student’s t
distribution.

On the other hand, epistemic uncertainty refers to a situation where the value of
interest is not known or ill-known due to a lack of knowledge. Think of the previous
example with the launch date of satellites, or if someone was asked to guess Io’s mass, one
of the moons of Jupiter. There is no random process at stake here, and there is usually no
point of acquiring multiple samples of the measure if we have a reliable and precise sensor.
Once the value of interest is known, the uncertainty disappears. It has been proposed to
model this kind of uncertainty using a Bayesian approach for probability, by opposition
with the frequentist approach. Probabilities here represent a state of knowledge, or degree
of belief, one has over the value of interest. It can be updated with additional knowl-
edge, thus leading to the notion of prior and posterior probabilities. We will see during
this thesis that other models can be used to characterize this uncertainty, for instance
Imprecise Probabilities (IP) and more specifically possibility distributions. In satellite
imagery, those models have been used to detect land changes [Lesniewska-Choquet, 2020]
for instance.

During this thesis, we contributed both to the field of photogrammetry and to the
field of IP. Here is a quick overview of the contents that can be found in the following
chapters:
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• Chapter 1 introduces the different stereophotogrammetry concepts considered in
this thesis. It focuses on the stereo pipeline developed by CNES and its sources of
uncertainty, which will be considered in our applications.

• Chapter 2 will introduce the different uncertainty models considered in this thesis,
mainly possibility distributions and copulas.

• In Chapter 3, we propose different methods for creating specific multivariate un-
certainty models based on the models introduced in Chapter 2. We also study the
relationships between the methods we introduced.

• Chapter 4 uses the concepts of Chapter 2 and the results of Chapter 3 to propagate
uncertainties modeled by possibility distributions in a part of the dense matching
step of the stereo pipeline.

• Chapter 5 also uses possibility distributions, but this time to characterize the un-
certainty of the dense matching step itself. Using this method, we are able to obtain
confidence intervals at the end of the dense matching step.

• Chapter 6 propagates the disparity intervals to the end of the pipeline, in the form
of elevation intervals on the final DSM.

As our contributions concern two distinct fields of research, multivariate uncertainty
and photogrammetry, readers with a level of expertise in one field might be less interested
in the second field. We tried, as much as possible, to write each chapter so it can be read
and followed by everyone, although some details might need additional knowledge in a
field of expertise. To help readers navigate through chapters according to their areas of
interest, here is an attempt to classify each chapter into its field of research.

• Chapter 1 focuses on stereophotogrammetry.

• Chapters 2 and 3 focuses on the modeling of uncertainty, with Chapter 3 delving
into more advanced concepts.

• Chapter 4 joins both fields, but leans a bit more towards uncertainty propagation
than towards photogrammetry.

• Chapters 5 and 6 also attempts to join both fields of research, but focuses almost
completely on photogrammetry.

The rest of this section lists the contributions and research events that occurred during
this thesis.
National conferences:
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• LFA 2022: “Copules, probabilités inférieures et ensembles aléatoires : comment et
quand les appliquer ?” [Malinowski and Destercke, 2022b]

International conferences:

• SMPS 2022: “Copulas, Lower Probabilities and Random Sets: How and When to
Apply Them?” - [Malinowski and Destercke, 2022a]

• ISIPTA 2023 (Special jury recognition Award): “Uncertainty Propagation using
Copulas in a 3D Stereo Matching Pipeline” - [Malinowski et al., 2023]

• IGARSS 2024: “Robust Confidence Intervals For Digital Surface Models Using
Satellite Photogrammetry” - [Malinowski et al., 2024b]

International journals:

• International Journal of Approximate Reasoning: “Uncertainty propagation in stereo
matching using copulas” - [Malinowski et al., 2024a]

Not yet published pre-print:

• Available on ArXiv: “Robust Confidence Intervals in Stereo Matching using Possi-
bility Theory” - [Malinowski et al., 2024c]

Workshops, poster sessions:

• Belief 2022 conference: Poster presentation "Using Copulas with Random Sets"

• Workshop Imagin “journée imprécision et incertitude en analyse et traitement d’images”:
Funding of the event and communication, and oral presentation “Uncertainty Prop-
agation in Dense Matching”

• SFPT “Pléiades Neo: de nouveaux satellites pour de nouveaux usages”. Oral pre-
sentation: “Confidence Intervals for Digital Surface Models”

• GdR IASIS “Télédétection et Climat”. Oral presentation “Estimation d’Incertitudes
dans la Création de Modèles Numériques de Surface issus d’Imagerie Spatiale”
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Chapter 1

Principles of Stereophotogrammetry
using Satellite Imagery

This section will present important concepts regarding photogrammetry that will be rele-
vant throughout this thesis. Section 1.1 will present the main 3D product we will consider,
i.e. DSM, while Section 1.2 will introduce the different sensors and satellites employed.
Section 1.3 presents in details the different processing steps for creating DSMs from stereo
images. Finally, Section 1.4 addresses the modeling of uncertainty in photogrammetry.

1.1 Digital Surface Models

Topographical information is crucial for many applications in Earth Observation (EO), or
more generally when manipulating georeferenced data. A popular and simple model con-
taining such topographical data named Digital Elevation Models, and represents elevation
data using a regular grid as in Figure 3(b). In the literature, a distinction is usually made
between two types of DEM: Digital Surface Model and Digital Terrain Model. DTMs
only represent the ground surface, without man-made structures (buildings, houses) or
rapidly evolving volumes such as vegetation or seasonal snow. Those finer details are
instead included in DSMs. Figure 1.1 illustrates the difference between the two.

DTMs are used for hydrology applications, such as for estimating water reservoirs
[Yamazaki et al., 2019], river flow [Miguez-Macho et al., 2007], global snow resources
[Gascoin et al., 2019] or modeling potential flood [Yamazaki et al., 2014]. On the other
hand, the high level of details of DSMs are used to monitor changes in vegetation [Sadeghi
et al., 2016], melting rates of glaciers [Berthier et al., 2014, Rieg et al., 2018], changes
in volcanoes [Ganci et al., 2022] or to precisely map snow depth on mountainous ter-
rain [Marti et al., 2016]. In urban environments, DSMs allow predicting the potential
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Figure 1.1: Difference between Digital Terrain Model and Digital Surface Model

Figure 1.2: Incidence angle of a satellite, and nadir direction

damage caused by floods [Jenkins et al., 2023] or to do urban planning [Velazco, 2012].
For instance, possessing DSMs on the same city but for different acquisition dates allow
measuring the growth rate of the city [Warth et al., 2019], or damages caused by an
earthquake [Erdogan and Yilmaz, 2019] in-between acquisitions. DSMs are also crucial
for ortho-rectifying images, i.e. geometrically correcting the effects of distortions between
the sensor and the terrain [Toutin et al., 2012]. When capturing an optical image, the
satellite is not necessarily right above its target, as illustrated in Figure 1.2. However, if
the image must be used as a background for a map, it is usually required that the image
must be captured vertically, referred to as nadir, in order to be free of any perspective
effect. DSMs allow to reproject images as if they were taken at nadir. This rectification
is used for many satellite products [Hagolle et al., 2017].

Many applications depend on the resolution of DSMs: evaluating water reservoirs in
mountainous regions does not necessarily require the same accuracy as 3D urban modeling,
for instance. The accuracy of a DSM is defined by its planimetric resolution, i.e. the size
of a cell, and its altimetric resolution, i.e. the smallest elevation variation it can detect.
The altimetric resolution is itself characterized by two notions: the absolute and relative
accuracy. Absolute accuracy is the precision of a DSM at a pixel level, i.e. how close
the predicted elevation is to the true elevation at the geographic coordinates of a given
cell. Relative accuracy characterizes the quality of the 3D reconstruction of a scene. For
instance, a DSM precisely reproducing the shape of a house and its chimney will have
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a high relative accuracy. However, if the house is not properly georeferenced then the
DSM will have a poor absolute accuracy. Relative accuracy is therefore always greater
than the absolute accuracy. In this thesis, we will mainly consider relative accuracy when
evaluating the quality of DSMs, as our sources possess different georeferencing systems
which naturally induces small planimetric errors.

There are multiple ways of creating a DSM from airborne sensors such as planes,
drones, or satellites. The first way is to use Radar interferometry, as done by Sentinel-1
satellites [Geudtner et al., 2014] for instance. This method presents the advantage of being
able to acquire data by day and night, even in the presence of clouds. Radar sensors, such
as those present in the Shuttle Radar Topography Mission (SRTM) [Farr et al., 2007] or
TanDEM-X [Krieger et al., 2007], possess a large swath of around 30 km, which was used
to produce DSMs covering the majority (or totality for TanDEM-X) of emerged land. The
planimetric accuracy is in the range of a dozen meters (10 m for TanDEM-X or 30 m for the
SRTM), and relative altimetric resolution is typically of a few meters (2 m for TanDEM-X
and 8 m for the SRTM). This is not sufficient to distinguish objects such as buildings or
trees, but rather global terrain topography. Figure 1.3(a) presents a TanDEM-X DSM.
SRTM and TanDEM-X DSMs are not meant to be produced on a regular basis, and
thus do not allow for temporal analysis as such. Another method for constructing DSMs
is to use stereophotogrammetry [Tao and Hu, 2001]. Photogrammetry is the science of
recovering 3D information from optical images. For this method, images of a scene are ac-
quired from different points of view, and depth information is recovered from the parallax
effect between images, already presented in Figure 4. Photogrammetry is not restricted
to the production of DSMs, as it has many usages in robotics, for instance on Martian
rovers [Goldberg et al., 2002] or autonomous driving [Geiger et al., 2013]. Current optical
satellites have a sub-meter resolution and a large swath (20 km for Pléiades for instance
[Coeurdevey and Gabriel-Robez, 2012]), allowing to massively produce high-resolution
DSMs covering the globe for a relatively low cost using photogrammetry. The altimetric
resolution is typically around one meter, although it depends on the different acquisition
angles of the satellites. With this resolution, buildings, trees, and even cars can be de-
tected on the DSM. Another method for producing DSMs is to use LiDAR (laser sensors)
[Khosravipour et al., 2016]. Space-borne LiDARs are mostly used for atmospheric or dis-
crete measurements [Fouladinejad et al., 2019]. For instance, NASA’s ICESat-2 [Jasinski
et al., 2020] measures elevation of seas and glaciers using 6 lasers taking measurements
along track, which is not adapted for reconstructing high-accuracy DSM. On the other
hand, planes or drones equipped with LiDAR sensors usually have very good accuracy,
allowing to model tower cranes, lamp post or small details on buildings. In particular,
IGN uses LiDAR to create point clouds with a planimetric accuracy of 25 centimeters
and an altimetric resolution of 5 centimeters, and then produce DSMs out of it [Monnet,
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(a) Radar DSM (b) LiDAR DSM (c) Photogrammetry DSM

Figure 1.3: DSMs over Arc de Triomphe, Paris, obtained with different sensors.

2023, IGN, 2024]. This is part of a 5-year campaign named LiDAR HD that started in
2021, where planes equipped with LiDAR sensors will cover the whole French territory
(except French Guiana). Those types of campaign are long and costly, and can hardly be
reproduced at a global scale. Therefore, photogrammetry DSMs are currently the best
solution to produce DSMs covering the globe, with a sub-meter resolution for relatively
low costs. Figure 1.3 presents examples of DSMs produced by Radar, photogrammetry
and LiDAR.

In this thesis, we use LiDAR DSMs as our reference DSMs due to their high qual-
ity. They will be used to evaluate the errors or uncertainties in DSMs produced using
stereophotogrammetry. The next section details which stereo images we will be using to
produce those DSMs.

1.2 Satellite Photogrammetry

This section presents the different sensors, satellites, and geolocation models that will be
used to acquire and process stereo images.

1.2.1 Different sensors

Different types of sensors can be used to acquire optical satellite images. We detail in
this section a (non-exhaustive) list of sensors of interest [CNES et al., 2008].

Push-broom sensor

For each observed wavelength, push-broom sensor are composed of a single cell row,
acquiring simultaneously radiometric information alongside a line perpendicular to the
direction of the satellite. We use the satellite movement along track to acquire the different
rows of the image, as seen in Figure 1.4. As only one line of cells is needed, push-broom
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(a) Push-broom sensor (b) CDD sensor

Figure 1.4: Schematic representation CDD and push-broom sensors

sensors are simple systems which can capture images continuously, while guaranteeing
good geometrical quality along the rows of the images. A variation of those sensors are
TDI sensors (Time Delay Integration). Those sensors function as a push-broom except
that each row has the ability to transfer its photon charges to the next row. This allows
to capture signals over a longer period of time, thus improving the signal-to-noise ratio.
Harder to produce, TDI sensors also require a precise control of the satellite so that
observed objects stay within a column of the TDI sensor.

CCD sensors

Charge Coupled Device (CDD) are classical sensors, used in current digital cameras, for
instance. They consist of a grid of cells sensitive to a given wavelength, often configured
in a checkerboard pattern. A specific type of CDD sensors are Bayer matrices, where
the sensor only possesses a single type of photo-sensitive cell and the different colors
are captured by applying a color filter on the sensor. CDD sensors possess multiple
advantages, such as good geometrical quality as all pixels are acquired simultaneously, or
the possibility to perform many acquisitions with various angles possible. CDD sensors
are relatively recent in spatial imagery, as they are technologically difficult to build.
Augmenting the number of pixels complicates the shutter function and occupies more
space compared to push-broom sensors. More radiometric calibration is required since
each pixel results from a different photo-sensitive cell. Acquire long segments of an image
is not natural, as it is the case for push-broom sensors.

Those different sensors are used in most Very High Resolution (VHR) optical satellites,
as we will see in the next section.
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1.2.2 VHR satellites

In this section, we present different VHR optical satellites which can be used to acquire
stereo images.

Across the years, different constellations of VHR satellites have been launched, either
for civilian (SPOT 1-7), defense (CSO) or commercial use (Ikonos, QuickBird, Worldview
1-3). Most of them are agile satellites, using push-broom sensors that can now reach
resolutions near 30 cm [CNES et al., 2008, Coffer et al., 2022]. One constellation of interest
that we will consider in this thesis is the Pléiades constellation. Developed by Airbus, this
constellation is composed of two identical satellites, 1A and 1B. Satellites were launched
in 2011 and 2012 in a heliosynchronous orbit at 690 km, for both civilian and defense
usages. They provide panchromatic images with a resolution of 70 cm (resampled to 50
cm), and RGB-NIR images at a resolution of 2 m, with a 20 km swath (https://dinamis.
data-terra.org/pleiades/) using a push-broom TDI sensor. Their high agility and
revisit rate allow them to capture stereo and tri-stereo images for any location on the globe,
ideal to produce DSMs with high accuracy. Figure 1.5 provide an example of a Pléiades
stereo acquisition. A “video” mode is even available, where dozens of images of the same
scene can be acquired in the span of a few minutes [Lebègue et al., 2015]. However, stereo
acquisitions are not the only objective of this mission, even though the demand for those
products is increasing [Berthier et al., 2014, Poli et al., 2015, Rieg et al., 2018, Loghin
et al., 2020]. The acquisition of stereo images is thus provided on command, which can
conflict with other usages of the satellite, and can become costly when trying to cover large
areas. Pléiades is also a satellite for both defense and civilian usages, military acquisitions
having the priority over civilian one. Pléiades acquisitions can also be requested using
the “Disaster Chart” (https://disasterscharter.org/fr/web/guest/home) in order
to evaluate damages caused by floods, landslide or earthquakes for instance, and to better
plan and provide emergency relief to victims of those disasters.

In order to produce a worldwide DSM with 1 m resolution by 2025, the Centre Na-
tional d’Etudes Spatiales (CNES) and Airbus are launching the Constellation Optique 3D
(CO3D) mission [Melet et al., 2020]. It will be composed of two pairs of low-cost satellites
(Figure 1.6) equipped with VHR optical sensors. The mission will produce images in the
RGB and NIR spectrum at 0.5 m of resolution [Lebègue et al., 2020] using a CDD sensor
cell, and more specifically a Bayer matrix. The pairing of satellites and CDD sensor used
allow for almost simultaneous stereo image acquisition, cutting short the transient object
problem (i.e. objects moving/disappearing between stereo images). To be able to process
the amount of data provided by the CO3D mission (40 000 images a day, at 50 cm reso-
lution and covering a footprint of 7 km × 5 km [Melet et al., 2020, Lebègue et al., 2020]),
every step of the pipeline has been developed to be highly scalable. Different acquisition
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(a) Left image (b) Right image

Figure 1.5: Pansharpened Pléiades stereo images over Paris at 0.5 m of resolution. The
change of point of view can be easily observed by looking at the Eiffel Tower. Pléiades
©CNES 2023, Distribution AIRBUS DS

Figure 1.6: Pairing of satellites for the CO3D mission. (Credit: CNES)

schemes can also be used, such as the video mode, or even the ‘diamond’ geometry ac-
quisition, which acquires a quadri-stereo over a couple of days. In parallel with image
quality specifications, the CO3D products need to abide to an elevation relative accuracy
of 1 m on low slopes. In addition, the CO3D mission plans to produce a performance
map supporting the output DSM. Therefore, investigating uncertainty inside a 3D stereo
pipeline is essential for the implementation of this performance map.

Remark: When an image is acquired both in panchromatic and RGB mode, it is
possible to leverage the high resolution of the panchromatic image to improve that of
the color image. This fusion technique is called pansharpening [Loncan et al., 2015].
We use this technique for clarity in figures and other illustrations of this thesis (for
instance Figures 3(a) and 1.5). It is important to remember that the processed images
are the panchromatic images, and not the pansharpened ones which are only used for
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the final visualization. The CO3D satellites are not concerned with pansharpening,
as the used Bayer matrix directly provides RGB images at 50 cm resolution without
a panchromatic band.

Although this thesis contributes to the ground segment of the CO3D mission, we used
Pléiades stereo images in the absence of CO3D images (at the time this thesis is written,
the CO3D mission has not yet been launched).

1.2.3 Geolocation Models

A crucial part of satellite imagery is the ability to perform georeferencing, or georegis-
tratation, of every pixel, i.e., locate their coordinates in an Earth system of coordinates.

Different systems of coordinate exist, for instance the Geodetic Coordinates use lati-
tude and longitude to represent the relative position of a point with regard to a reference
ellipsoid, i.e. a smooth and regular mathematical approximation of the Earth’s shape.
Another widely used reference system is the Universal Transverse Mercator (UTM) co-
ordinate system, which divides the globe into sixty north-south areas. Each area is 6° of
longitude wide, and is approximated by a plane. The coordinates of a point in each area
are Cartesian coordinates, with the origin being the intersection of the equator and the
meridian of the area. UTM coordinates are employed in GPS systems, for instance. In
Geodetic Coordinates or UTM, the elevation of a point is defined using the ellipsoid as
reference. It is also possible to use the geoid, i.e. the gravity equipotential surface, which
is less smooth than the ellipsoid but is closer to the actual irregular shape of the Earth.

Physical models possess high geolocation accuracy, but are sensor-specific and are
computationally complex. For stereo reconstruction, generalized sensor models are pre-
ferred. We will focus on Rational Polynomial Models (RPC), provided alongside images
of many satellites [Grodecki, 2001, Devika et al., 2006], and specifically for the CO3D
and Pléiades satellites. Sometimes called Polynomial Mapping Functions [Baltsavias and
Stallmann, 1992] or Rational Function Models [Tao and Hu, 2001], RPC are functions
allowing to transform a pixel’s ground location in Geodetic Coordinates, i.e. its longitude,
latitude and geodetic height (X, Y, Z), into its coordinates (row, col) in the image space.
RPC encode lines of sight of the satellite, i.e. the line joining the center of the sensor’s cell
to the ground and going through the optical center of the sensor. To improve numerical
stability and minimize computation errors, the image coordinates and ground coordinates
are normalized between −1 and 1, using their scale factors SF and mean values:

SFX = max(Xmax −X, X −Xmin)

X̃ = X −X

SFX
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Figure 1.7: Schematic representation of RPC models.

The same process is applied to Y, Z, row and col. To avoid cumbersome notation in this
section, we will refer to every normalized coordinate using their non-normalized symbol.

Formally, RPC are defined as rational fractions of polynomials:

RPC : R3 → R2

(X, Y, Z) 7→
(
Numrow(X, Y, Z)
Denrow(X, Y, Z) ,

Numcol(X, Y, Z)
Dencol(X, Y, Z)

)
7→ (row, col) (1.1)

where Numrow, Denrow, Numcol and Dencol are the numerators and denominators for
rows and columns respectively, expressed as polynomials with a maximum order of 3:

Numrow(X, Y, Z) =
3∑

i=0

3−i∑
j=0

3−i−j∑
k=0

aijkX
iY jZk

= a000 + a100X + a010Y + a001Z + a110XY + a101XZ

+a011Y Z + a200X
2 + a020Y

2 + a002Z
2 + a111XY Z

+a210X
2Y + a201X

2Z + a120XY
2 + a102XZ

2

+a021Y
2Z + a012Y Z

2 + a300X
3 + a030Y

3 + a003Z
3

Denrow, Numcol and Dencol respectively possess different coefficients aijk. The order or
indexing of aijk may differ in the literature. For instance, they can be numbered from 0
to 19 or 1 to 20, and do not refer to the same indeterminate. Numerical values of RPC
coefficient are computed using a set of reference ground control points.

It has been shown in [Baltsavias and Stallmann, 1992] that RPC are well suited to
be used for ortho-rectification and stereophotogrammetry, as they possess good accuracy
and are computationally fast. For stereophotogrammetry, it is often required to use the
inverse RPC model. As RPC encode a line of sight given an image coordinate, the use of
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(a) (b)

Figure 1.8: Principle of photogrammetry. The same object is captured by two different
cameras in (a). The position of the object in both images spaces as shown in (b) is
characterized by its displacement, called disparity.

an additional elevation coordinate is required to move from the image space to the object
space (i.e. to go from a 2D space to a 3D space). It can be a geoid modeling the Earth’s
surface, or a DSM with higher resolution. Knowing the true elevation Z of a pixel, we
define the inverse model as:

RPC−1 : R3 → R3

(row, col, Z) 7→ (X, Y, Z) (1.2)

An illustration on how RPC can be used to go from the image space (row, col) to the
object space (X, Y, Z) is presented in Figure 1.7. Knowing the position of pixels in the
object space using RPC allows triangulating the position of an object using multiple
images of the same scene. This is how photogrammetry pipelines processing satellite
images are computing the elevation of the different cells of a DSM. The next section will
explain the inner workings of those pipelines.

1.3 Structure of the Stereophotogrammetry Pipeline

This section delves deeper into details of the inner workings of stereophotogrammetry,
and presents the stereo pipeline mainly considered in this thesis. Photogrammetry is the
science of deducing information from photographic images [Kasser and Egels, 2001]. A
subdomain of photogrammetry is stereophotogrammetry, which specifically consists of de-
ducing 3D information from multiple photographic images. Although multiple stereopho-
togrammetry setups can be achieved, for instance using structured light [Scharstein and
Szeliski, 2003] or different wavelengths [Geng, 1996], we focus here on the pipelines de-
signed for processing satellite images, which are used and studied in this thesis.

The main idea of stereophotogrammetry is to identify the parallax of objects between
multiple images, and to deduce the distance between the object and the sensors from this
displacement. Figure 1.8 illustrates how the position of an object can be triangulated from
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multiple images of a scene. The two lines of sight used to triangulate the position of an
object are determined by finding the location of the object in both image spaces. Given
the coordinates of an object in a reference image space (for instance the left image in
Figure 1.8), the corresponding line of sight in the second image is completely determined
by the position of the object in the reference image space, and its displacement between
the two images spaces. When expressed in pixels, this displacement is called disparity,
as presented in Figure 1.8(b). Determining the disparity of every pixel of a reference
image is called dense-matching, and is done by a dense-matching algorithm, also called
correlator (as it computes the best correlation between pixels of stereo images). It allows
creating pairs of pixels representing the same object in their respective image space. Using
the geometrical model of the camera, or the geolocation model of sensors in the case of
satellite imagery, the 3D coordinates of the corresponding object of a pair of matched
pixels can then be determined by intersecting lines of sight (or best approximation if they
do not strictly intersect). This results in a point cloud that encodes the 3D position of
every visible object in both images. In satellite photogrammetry, the point cloud can
be projected onto a regular grid to obtain a DSM. The following section delves deeper
into details of satellite photogrammetry pipelines, and specifically on the CARS stereo
pipeline.

1.3.1 Different Stereophotogrammetry Pipelines

Several stereo pipelines processing satellite images exist in the literature. We can think
of NASA’s ASP [Shean et al., 2016], Centre Borelli’s s2p [Franchis et al., 2014], DLR’s
CATENA [Krauß et al., 2013], Ohio State University’s RSP and SETSM [Qin, 2016, Noh
and Howat, 2017], IGN’s MicMac [Rupnik et al., 2017]. Concerning MicMac, we only
consider the methods for satellite photogrammetry, as many other photogrammetry ap-
plications and methods are available in this software. For a comparison of the performance
of those pipelines, we refer to [Haala, 2014, Bosch et al., 2017, Qin et al., 2021].

These pipelines roughly share the same structure, which will be presented in detail in
the following sections. They can be briefly summarized as follows:

• Pre-processing. All those pipelines undergo a bundle adjustment step to refine
images geometries and correct sensors’ misalignment. The pre-processing steps can
sometimes be found in a module separated from the main pipeline.

• Images resampling in a convenient geometry for pixel matching. Most
pipelines propose multiple geometries for the resampling of images: the matching
can directly be done in the object space, or the secondary image is resampled in the
geometry of the reference images, or both images are resampled into an epipolar
geometry, i.e. a geometry where objects move horizontally in both image spaces.
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Figure 1.9: Different steps of the CARS pipeline

• Dense matching. RSP and S2P restrict the choice of the geometry to the epipolar
geometry and therefore only propose to do 1D (row-wise) dense matching. Other
pipelines allow for a 2D matching.

• Triangulation of matches to get 3D point cloud.

• Rasterization to project elevation on a regular grid. When working with
more than two images, pipelines all offer the possibility to fuse the obtained pair-
wise DSMs to obtain a global DSM.

It is also noteworthy that when working with more than two images, only MicMac and
ASP allow considering all images at once, while other pipelines use multiple pairings of im-
ages. The way those pipelines handle uncertainty will be detailed in section Section 1.4.1.

We will focus on the CARS pipeline used in this thesis, developed by CNES [Michel
et al., 2020]. A schematic of the different steps of the pipeline are presented in Figure 1.9.

The next sections will look specifically at the CARS stereo pipeline that will be used
throughout this thesis.

1.3.2 Resampling in Epipolar Geometry

The CARS pipeline takes as inputs single channel images in sensor geometry alongside
their geometric model (RPC in our case). As the dense matching step compares a single
channel in both images, the input images are single channel images. When working with
Pléiades images, we use the panchromatic channel as it has the best resolution. For CO3D
images, the green channel will be used as the Bayer matrix contains more green pixels.

In many stereo setups, cameras are aligned in such a way that objects only move
horizontally between images [Geiger et al., 2012, Scharstein et al., 2014, Keselman et al.,
2017]. This allows to restrict the search space for pixel matches to a single row instead
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of the whole image. Most people’s eyes also present this alignment. Due to the satellites’
orbit and their push-broom acquisition mode, it is not possible to maintain the alignment
of sensors for satellite photogrammetry as it would be the case for classical stereo setups.

The first step of the CARS pipeline is to resample the stereo acquisitions into a
convenient geometry to carry out the dense matching (Section 1.3.3). This geometry
is the epipolar geometry [CNES et al., 2008], which is constructed so that each line of
an image follow the movement of the satellite, i.e. the objects move only horizontally
between the reference and secondary stereo images. This greatly facilitates the matching
step, as the search space for a match is limited to a one-dimensional space instead of a
two-dimensional space.

Sensors using a pinhole camera model have a perfectly defined epipolar geometry,
modeled by an affine transform [Hartley and Zisserman, 2004]. This is not true for
push-broom sensors [Morgan et al., 2004] such as those used in Pléiades satellites. In
the case where no analytical model exist, approximations of the epipolar geometry must
be computed [Oh et al., 2010, Koh and Yang, 2016, Michel et al., 2020]. The epipolar
geometry is computed using the respective geolocation models of both images RPC1 and
RPC2. Indeed, given the altitude Z of the object represented by a pixel (row1, col1) in
the reference image space, we can deduce its ground location (X, Y, Z) using RPC−1

1 .
The position in the secondary image space (row2, col2) can then be retrieved using RPC2:

(row2, col2) = RPC2 ◦ RPC−1
1 (row1, col1, Z) (1.3)

The function RPC2 ◦ RPC−1
1 is called the co-location function f1→2 and allows switching

from the reference image space to the secondary image space given an elevation Z. By
varying the elevation in the range of considered elevations [Zmin, Zmax], f1→2 provides a
characterization of the parallax between images. The lines described by f1→2 are thus the
epipolar curves in the secondary image. Similarly, f2→1 = RPC1 ◦ RPC−1

2 provides the
epipolar curves in the reference image. The range of considered elevations [Zmin, Zmax]
can be determined using any elevation model. The geoid of the Earth can be used, and
there also exists open elevation data such as the NASA’s SRTM [Farr et al., 2007] (30 m
and 90 m of resolution between −56° and 60° of latitude), or ESA’s Copernicus DEM (30
m and 90 m of resolution worldwide).

In practice, determining the epipolar grids using f1→2 for every pixel is computa-
tionally heavy. Instead, f1→2 can be used to compute local affine approximation of the
epipolar geometry (similar to what is used with pinhole cameras) as in [De Franchis et al.,
2014]. When working with large images, tiling effects appear at the border between local
approximations. To solve this issue, the CARS pipeline computes a deformation grid

19



Chapter 1

Figure 1.10: Computation of an epipolar line for a pixel using small elevation variations

approximating the epipolar geometry, as epipolar lines fluctuate slowly inside an image.
The sampling rate of the grid is chosen as to be large enough to facilitate the computation
while ensuring to grasp variations of the epipolar geometry.

In order to determine the deformation grid, Equation (1.3) is evaluated with an eleva-
tion Zcoarse extracted from the low resolution elevation model, and for small variations of
altitude Zcoarse ± δ. These three points allow computing the direction of epipolar lines for
every pixel of both images, as in Figure 1.10. This method generates the deformation grid
ge1 joining every epipolar coordinate (rowe, cole) to its position in the reference image
(row1, col1):

ge1(rowe, cole) = (row1, col1) (1.4)

A similar grid ge2 is determined for the secondary image, which is computed jointly
with ge1. For more details on the way epipolar grids are computed, we refer to [Michel
et al., 2020]. Using those grids, it is possible to resample the reference and secondary
images in their respective epipolar geometry.

Remark: With this method, an object whose elevation equals that of the reference
elevation model Zcoarse (i.e. the geoid, or a low resolution DSM such as the Copernicus
DEM) has a disparity of 0 between epipolar images. After the dense matching step, a
disparity of 0 would mean that the object has the same altitude as the low resolution
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elevation model.

Because the geolocation models have a limited accuracy, there might be a misalign-
ment left in the epipolar grids. To correct this error, a set of Scale-Invariant Feature
Transform (SIFT) points [Lowe, 2004] is computed between the reference and secondary
epipolar images. For every match, the difference between their rows is computed. The
secondary epipolar grid is then corrected so that row differences are null on average. Once
aligned epipolar grids have been obtained, stereo images can be resampled in a epipolar
geometry, which minimizes the errors between SIFT points.

Alongside epipolar grids, the disparity to altitude ratio ralt can be computed, which
corresponds to the altimetric shift resulting from a shift of 1 in disparity. In other words,
if a pixel has a disparity of 0, then its altitude will be Zcoarse, and if it has a disparity of 1,
then its altitude will be Zcoarse + ralt. ralt is also called the altimetric ratio, and provides
an estimation of the altimetric resolution of the final DSM. The altimetric ratio varies
along an image, but its variations are small enough so that we can safely approximate
it by a constant. We will make extensive use of the altimetric ratio ralt in Chapter 6 to
compare the uncertainty of DSMs with different altimetric resolutions.

Once the input images in sensor geometry have been resampled into epipolar geometry,
the disparity of every pixel can be computed using dense matching algorithms.

1.3.3 Stereo Matching

Dense matching refers to the pairing of every pixel between two images. It differs from
sparse matching, where only a restricted set of pixels must be matched in both images.
Sparse matching is used for registering the different channels of an image if they have
been acquired separately, for instance, using push-broom sensors. For constructing high-
resolution DSM, dense matching is necessary, as we are interested in estimating the dis-
parity at a pixel scale.

As stereo matching is an important problem in computer vision, multiple algorithms
have been proposed to compute a dense disparity map D mapping each pixel (row, col) to
its disparity d. Dense matching algorithms can be broadly classified into two categories:
classical approaches following the steps outlined by Scharstein et al. [Scharstein et al.,
2001], and deep-learning based methods [Laga et al., 2022].

Remark: In the domain of stereo matching, the reference image is often referred to
as the left image, and the secondary image is the right image.
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Recently, deep-learning methods have greatly improved the results of stereo matching
algorithms for both remote sensing applications [Chebbi et al., 2023] and more general
applications [Tosi et al., 2024] such as robotics, autonomous cars or augmented reality.
Best results on famous benchmarks have been obtained using 2D an 3D convolutional
neural networks and end-to-end deep-learning approaches [Guo et al., 2024, Liu et al.,
2024]. Those models usually undergo a supervised training, with many datasets being
available for stereo processing, especially for autonomous cars [Geiger et al., 2012, Geiger
et al., 2013].

There are fewer open satellite datasets due to the costs and copyrights of satellite im-
ages, even though more datasets tends to be released [Bosch et al., 2018, Le Saux et al.,
2019, Huang et al., 2022]. Obtaining ground truth data for satellite imagery is also chal-
lenging: as classical approaches, such as structured light, cannot be used for producing
ground truth disparity. Instead, costly airborne campaigns are carried-out, and the ac-
quired elevation data must be converted into disparity maps, which is a complex process
[Cournet et al., 2020]. Additionally, large models often face generalization challenges, par-
ticularly when applied to images that differ from their training datasets. It is especially
true in the case of satellite imagery [Marí et al., 2022, Jiang et al., 2024a], as there is a
large variety of landscapes, sensors, and acquisitions angles to consider. Furthermore, the
radiometry can change depending on the time of the day when the acquisition occurred,
and landscapes change can also vary greatly between two seasons. All those factors make
the training of a performing and generalizable network for satellite imagery quite chal-
lenging. Non-supervised algorithms could avoid some of those drawbacks, but they do
not present the same performances as supervised networks.

Even though deep stereo algorithms produce exciting results, we will not focus on
deep end-to-end algorithms in this thesis; instead, we will restrict ourselves to so-called
classical methods used in satellite stereo pipelines. Those methods have the advantage
of relying on an extensive literature on the subject. More importantly, those methods
are explainable as they do not have a “black-box” structure similar to that of end-to-
end networks. Their interpretability is crucial when modeling and propagating their
uncertainty, which is particularly relevant in the context of this thesis.

Classical approaches usually encompass the following steps[Scharstein et al., 2001]:

• matching cost computation

• cost aggregation

• disparity optimization and computation

• disparity refinement
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Figure 1.11: The different steps of classical dense stereo matching algorithms.

Figure 1.11 illustrates those different steps. We will detail each step into more details
in the following sections. We consider the case of the Pandora correlator developed at
CNES (https://github.com/CNES/Pandora), which is used by the CARS pipeline for
the dense matching step.

Matching Cost Computation

To determine pairs of matching pixels, we first start by measuring the cost of matching
two pixels together. Pixels with similar values and similar surroundings will have a low
matching cost, while dissimilar pixels will have a high matching cost. Each matching cost
value is evaluated using a cost function, which is a mapping f from subsets of the left and
right images to R. A cost function f measures the dissimilarity between the two subsets
of the left and right images. Example 1 provides different instances of cost functions.

Example 1: Simple instances of cost functions include the Sum of Absolute Differ-
ences (SAD), the Zero Normalized Crossed Correlation (ZNCC) [Hannah, 1994], the
CENSUS transform [Zabih and Woodfill, 1994], and MC-CNN [Žbontar and LeCun,
2016], which will be detailed in the following paragraphs.

Given two windows WL and WR from the left and right images, the SAD cost
function is defined as follows:

fSAD(WL,WR) =
∑

i

∑
j

|WL(i, j) −WR(i, j)| (1.5)

Low fSAD values indicate that the windows are similar, while high values indicate no-
ticeable differences. A fSAD value of 0 indicates that the windows are identical. This
is one of the simplest cost functions, and will be used in Chapter 4 to didactically illus-
trate how uncertainty models can be propagated throughout a cost function. However,
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this cost function is not usually employed in practice as it is based on intensity differ-
ences, and is thus very sensitive to radiometric changes. It can however be a fast and
easy way to have a first estimate of similarities between multiple patches. The SAD
can also be used for motion estimation and image/video compression [Richardson,
2006].

The ZNCC cost function is defined as the correlation coefficient between both
images:

fZNCC(WL,WR) =
∑

i

∑
j

(WL(i, j) − W̃L)(WR(i, j) − W̃R)
σLσR

(1.6)

where W̃ refers to the mean value of a window, and σ its standard deviation. Nega-
tively correlated windows would present a ZNCC value of −1 and positively correlated
windows present a ZNCC value of 1. Contrary to the SAD cost function, matching
windows will be indicated by a high value of the ZNCC. It is thus not strictly a cost
function but rather a similarity function. It is not a problem, as multiplying fZNCC

by −1 will transform it into a cost function. Another formulation could be to say
that the ZNCC is a maxitive cost function, in the sense where potential matches are
found by searching for its maximum. Conversely, the SAD is a minitive cost function
in the sense where potential matches are indicated by a minimal cost. The ZNCC
cost function performs well in homogeneous areas when computed over large windows.
However, in an urban setting, it struggles to correctly estimate buildings boundaries.

The CENSUS cost function needs to be a bit more detailed. For a squared window
W with a side of 2n+ 1 pixels, we first compare the value of each pixel of the window
with the center pixel. This gives a binary string where 1 indicates that the value of
the pixel is superior to that of the center pixel. For instance, if we consider the two
3 × 3 following windows WL,WR:

155 133 97
80 110 132
100 102 120



175 153 133
100 130 152
120 135 125


Then comparing each of their pixels to the center of the windows will yield the fol-
lowing binary strings (expressed here as matrices):


1 1 0
0 1
0 0 1



1 1 1
0 1
0 1 0


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The cost function fCENSUS is finally obtained by taking the Hamming distance (i.e.
the number of different bits between those two strings):

fCENSUS(WL,WR) = 3

The CENSUS cost function compares relative intensity variations, it is thus less
sensitive to variations of intensities between images, such as a change of exposure for
instance. Similarly to the SAD, two similar patches will tend to have a low value.

The MC-CNN cost function [Žbontar and LeCun, 2016] is using a convolutional
neural network architecture to measure the similarity between patches. It was trained
on 11 × 11 patches from stereo images from the Kitti [Geiger et al., 2013, Menze
and Geiger, 2015] and Middlebury [Scharstein et al., 2001, Scharstein and Szeliski,
2003, Hirschmuller and Scharstein, 2007, Scharstein and Pal, 2007, Scharstein et al.,
2014] datasets. They first trained a siamese neural network to compute a vector of
features for each patch, and then compute the dot product between both vectors to
obtain a similarity measure. MC-CNN is thus a maxitive cost function. Figure 1.12
details the architecture of the network. Although it has been trained on stereo images
of autonomous cars (Kitti) and stereo images of toys (Middlebury), it generalizes well
to satellite images [Defonte et al., 2021].

Figure 1.12: MC-CNN architecture

Matching costs are evaluated for every potential pairs of pixels whose corresponding
disparity lies in a given disparity range. Matching cost values are stored in an array of
data, called cost volume (Figure 1.13). The term volume is used as a matching cost value
is determined by three coordinates in the cost volume: the row and column (row, col) of
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Figure 1.13: Matching cost volume and one of its cost curve

the left pixel as well as the considered disparity d:

CV (row, col, d) = f(WL(row, col),WR(row, col + d)) (1.7)

where WL(row, col) is a window centered on the pixel at coordinates (row, col) in the
left image, and WR(row, col+d) is a window centered on the pixel at (row, col+d) in the
right image. Some padding is usually added to the images to avoid problems near borders
where the column col+d would not be defined. Given a pixel in the left image (row, col),
matching cost values for every considered disparity form what is called a cost curve. In
theory, the correct disparity for a match is determined by finding the minimum of the
cost curve (for minitive cost functions such as SAD or CENSUS). Figure 1.13 represents
a cost volume, and one of its cost curves where potential matches have been highlighted.
In the rest of this thesis, we will consider that a cost function is always minitive unless
specified otherwise. In practice, directly estimating the disparities from the cost volume
is not efficient, as we only consider local information. The resulting disparity map is often
very noisy, as can be seen in Figure 1.14(a). In order to reduce this noise, one solution is
to aggregate the costs of neighboring pixels in the cost volume.

Cost Aggregation

The usage of windows in the calculation of the cost function allows taking into con-
sideration the surrounding of pixels to better measure their similarity. However, window
based approaches, which are mostly square-shaped, also present the disadvantage of strug-
gling to correctly identify matches near object borders [Hirschmüller et al., 2002]. This
phenomenon is referred to as the adherence effect, as represented in Figure 1.15. In Fig-
ure 1.15(b), we can see that the considered pixel is at the border of an object, with the
left window WL spanning over both part of the border. In Figure 1.15(d), we can see that
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(a) Disparity with local cost only (b) Disparity with SGM regularization

Figure 1.14: Disparity map without and with SGM regularization.

the minimum of the cost curve (around disparity -40) is not exactly located at the true
disparity. This is in part due to the fact that WL contains pixels from two objects with
different disparities, which influences the matching cost values. A low matching cost thus
does not necessarily mean that the center pixels constitute a match. The term “adher-
ence” is used as the matching windows tend to falsely estimate the shift in disparity near
objects’ border, as if it adhered to the object. Other work have been proposing to use a
spatial weighting [Kuk-Jin Yoon and In-So Kweon, 2005], segmentation [Tombari et al.,
2007], windows with different shapes [Ke Zhang et al., 2009, Buades and Facciolo, 2015]
to solve this problem.

After computing the matching cost, information from neighboring pixels can be in-
corporated in the cost volume. A first approach is to aggregate different parts of the
cost volume. Usually, costs of pixels belonging to the same objects are aggregated using
different methods for segmentation [Ke Zhang et al., 2009, Ji et al., 2021]. This step is not
always included in algorithms, as we can also consider global information directly when
determining the disparity map.

Disparity Optimization and Computation

Computing the disparity map from the cost volume can be done in several ways. So-
called local methods apply a direct winner-takes-all strategy, where the arg min of every
cost curve is kept as the selected disparity. On the other hand, global methods use the
information contained in the cost volume to solve an optimization problem, where the
objective is to compute the disparity map D minimizing an energy function expressed as
follows:

E(D) = Edata(D) + λEsmooth(D) (1.8)
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(a) Left image with WL in orange (b) Zoom over WL, in orange

(c) Right image. Considered windows in orange, and WR for the true disparity in blue

(d) Corresponding minitive cost curve “−fZNCC”

Figure 1.15: Example of the adherence effect. (a) and (b) present the left window WL

at the border of an object. (c) presents all the windows from the right image in the
considered disparity range, that will be compared to WL. The window corresponding to
the true disparity appears in blue. (d) details the corresponding cost curve, where the
true disparity does not correspond to the minimum of the cost curve.
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Figure 1.16: SGM regularization with 8 directions

where λ is a scalar for tuning the importance of the regularization term Esmooth. Usually,
the data term is directly computed from the cost volume as:

Edata(D) =
∑

row, col

CV (row, col, D(row, col)) (1.9)

The regularization term Esmooth can take numerous forms, usually measuring if the neigh-
boring disparities possess similar values [Scharstein et al., 2001]. Then a local minimum
for this energy is found using various methods, such as Markov Random Fields [Boykov
et al., 1998, Sun et al., 2003], graph cuts [Kolmogorov and Zabih, 2001] or minimum
spanning trees [Zureiki et al., 2008, Qingxiong Yang, 2012]. Those algorithms improve
performance in comparison to local methods, but can be computationally expensive.

One of the most popular methods is called Semi-Global Matching (SGM) [Hirschmüller,
2005]: it aims at incorporating regularization constraints to the cost volume similarly to
global methods, while being processed with relative low computational cost like local
methods. It is, in a way, in-between local and global methods. This is the method used in
the CARS pipeline for experiments in this thesis. In a few words, for each pixel, the SGM
algorithm computes a regularized cost volume, which is based on the regular cost volume
(the Edata term), and adds cost penalties to the disparities differing from those of their
neighboring pixels (the Esmooth term). Although the formulation of the SGM algorithm
can be expressed in a few equations, understanding its inner workings is more complex.
We will first present its mathematical formulation in Equations (1.10) and (1.11), and use
Figure 1.18 to illustrate its effect on (a portion of) a cost curve. Figure 1.17 presents the
effect of SGM regularization on different cost curves and Figure 1.14 presents the effect of
SGM regularization on the final disparity map. Formally, for every pixel p = (row, col),
the cost volume is explored in multiple directions, as in Figure 1.16.
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The cost volume is regularized for each direction r to take into account the best
disparity d along that direction. A direction can be, for instance, r = (0, 1), meaning
that we will look at the same row and travel to the right of the image when browsing
direction r. Given two positive scalars P1 < P2, the regularized cost Lr along direction r

and at disparity d is expressed with the following recursive formulation:

Lr(p, d) = CV (p, d) + min
δ

(Lr(p− r, δ) +R(d, δ)) (1.10)

where δ is a dummy variable to explore the disparity range, and where R(d, δ) equals:

R(d, δ) =P1 · 1(|d− δ| = 1) + P2 · 1(|d− δ| ⩾ 2) − min
k
Lr(p− r, k) (1.11)

Here, 1 is the indicator function. The first term of Equation (1.10) is the cost volume,
which can be compared to Edata in Equation (1.9). The second term is similar to the
regularization term Esmooth. This term can be seen as the regularized cost Lr(p − r, d)
from the previous pixel in direction r, but shifted of P1 for neighboring disparities d±1, and
of P2 for further disparities. The term mink(Lr(p− r, k)) prevents Lr(p, ·) from diverging
to very high values by ensuring that the minimum of Lr(p − r, δ) − mink(Lr(p − r, k))
always equals 0. Figure 1.18 presents Lr(p− r, δ) +R(d, δ) for two different disparities d
and d+1 in the blue frame. The minimum of each curve Lr(p−r, δ)+R(d, δ) (blue arrows
in the figure) is then added to the matching cost CV (p, d) to obtain the final regularized
cost Lr(p, d). Note that in Figure 1.18, the minimum of Lr(p− r, δ) +R(d+ 1, δ) equals
0, thus CV is unchanged for this disparity. This is because d + 1 is the minimum of
Lr(p − r, ·). In a way, the regularized matching cost will be a mixture between CV (p, ·)
and Lr(p − r, ·). Indeed, the regularized cost Lr(p − r, ·) indicates that disparity d + 1
seems likely, while disparity d is unlikely. On the other hand, the matching cost CV (p, ·)
indicates that both disparities d and d+1 are likely. The final regularized cost Lr(p−r, ·)
takes into account that both CV (p, ·) and Lr(p − r, ·) agree that d + 1 is likely, but that
there is a disagreement on d, and thus slightly increases the regularized cost Lr(p, d).
Disparities that appear unlikely to both CV (p, ·) and Lr(p−r, ·) result in a larger increase
in the regularized cost Lr(p, ·).

Remark: For the sake of the argument, let’s assume that P1 = P2 for now. The value
added to CV (p, d) in (1.10) will be lower than P2 only if (Lr(p− r, d) − mink Lr(p−
r, k)) is less than P2. This means that we will always add a penalty of P2 to the cost
CV , except if Lr(p− r, d) is less than P2 away from its minimum. P2 thus represents
the penalty that must be overcome in Lr(p− r, d) in order to not penalize CV (p, d),
or slightly penalize CV (p, d).

If P1 < P2, then we can draw similar conclusions, except that we also accept to
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(a) Cost curve without SGM (b) Cost curve without SGM

(c) Cost curve from (a) with SGM (d) Cost curve from (b) with SGM

Figure 1.17: Different cost curves, with and without SGM regularization

reduce the penalty to CV (p, d) if a neighboring disparity, i.e. d ± 1 is less than P1

away from the minimum.

Formulation of Equation (1.10) is recursive, and thus must be initialized. The regu-
larization curves thus begin at the borders of the image and their value is, by convention,
0 when undefined. For instance, with r = (0, 1):

Lr((row, 0), d) = CV (row, 0, d)

When all regularized cost curves Lr have been computed, they are summed to obtain
the regularized cost volume CSGM

V :

CSGM
V (p, d) =

∑
r

Lr(p, d) (1.12)

The cost volume CSGM
V contains the regularized cost for every considered direction. The

number of direction used in our experiments is 8 as in Figure 1.16, but more directions
can be considered in order to consider a more global coverage. Since the original paper
[Hirschmüller, 2005], different variations of the SGM algorithm have been proposed. For
instance, using different regularization paths [Facciolo et al., 2015] or a different strategy
for the aggregation of costs [Poggi and Mattoccia, 2016].

In order to ensure smooth surfaces, SGM penalties P1 and P2 must be high enough.
This however leads to a reluctance to detect discontinuities in the disparity map. In-
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Figure 1.18: Schematic explanation of the SGM algorithm in a single direction r. Top:
regularized cost Lr at p− r. In the blue frame Lr(p− r, δ) +R(d, δ) for two consecutive
disparities d and d+1 (Lr −mink Lr appears in dotted line for clarity). Penalty P1 appears
in yellow, penalty P2 appears in red, the minimum of each curve is denoted by a blue
arrow. Bottom left: cost volume CV at p. Bottom right: regularized cost Lr at p where
the minima of all Lr(p− r, δ) +R(d, δ) have been added
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deed, SGM penalizes disparity changes, therefore strong variations of disparity are badly
reconstructed. For instance near the border of a building, the term Esmooth tends to
be predominant, leading to rounded borders and soft edges of buildings, instead of the
expected sharp disparity variations. This is even reinforced with the window adherence
problem presented in 1.15. Figure 1.19 presents a comparison of two DSM: one obtained
directly from LiDAR HD data [Monnet, 2023], and the other using the CARS pipeline
with the CENSUS cost function over a 5 × 5 window and with SGM regularization. We
can see on this figure that the border of the buildings obtained using SGM regularization
are not as sharp and precise as the ground truth provided by the LiDAR DSM. To pro-
vide a solution to this problem, one might limit the SGM regularization to pixels from
the same object by using a segmentation [Dumas et al., 2022]. This method relies on the
quality of the segmentation method used, and can become quite costly when segmenting
large images. It has not been considered in the context of this thesis.

Once the regularized cost volume CSGM
V has been computed, the classical approach in

the literature is to apply a winner-takes-all strategy to determine the disparity map D:

D(row, col) = arg min
d

CSGM
V (row, col, d) (1.13)

Disparity Refinement

Once the disparity map has been computed, it is usually post-processed to remove artifacts
and improve disparity resolution. It is common to add a sub-pixel refinement step, where
a non-integer disparity is interpolated around the selected disparity. The main idea is to
interpolate a model through the selected disparity d = arg minδ CV (row, col, δ) and its
two direct neighbors. The refined disparity dinterp is then defined as the arg min of this
interpolation model. Figure 1.20 presents examples of interpolated disparities from [Haller
et al., 2010], mainly a “V”-like shape as in 1.20(a) and a parabola as in 1.20(b). Carrying
out sub-pixel refinement suggests we assume the algorithm can attain a significant level of
accuracy, which is debatable (see Section 1.4.2), and that the cost function is sufficiently
sampled to be correctly interpolated.

The disparity map can also be filtered in order to remove local outliers. Classical
strategies include the use of a mean or median filter, for instance. There are more advanced
filtering methods, such as bilateral filtering [Tomasi and Manduchi, 1998] which performs
a weighted average, where weights depend on the proximity to other pixels both in the
spatial and spectral domains.

There exist strategies allowing to detect dubious matches. For instance, cross-checking
[Fua, 1991] verifies if the disparity selected would stay consistent with the one computed
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(a) DSM from LiDAR HD data,
Place du Capitole

(b) CARS DSM from Pléiades images,
Place du Capitole

(c) DSM from LiDAR HD data,
Ernest Wallon stadium

(d) CARS DSM from Pléiades images,
Ernest Wallon stadium

Figure 1.19: Different DSMs over Toulouse, France. DSMs were obtained by rasterizing
LiDAR HD data or by processing Pléiades stereo images with the CARS pipeline. The
CARS pipeline uses a 5 × 5 CENSUS cost function and SGM regularization for stereo
reconstruction. ©CNES 2017, Distribution AIRBUS DS

(a) V-fit sub-pixel refinement (b) Parabola sub-pixel refinement

Figure 1.20: Different methods for refining the disparity d = arg minδ CV (row, col, δ)
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by reversing the roles of the images: the reference image becomes the secondary image. We
first start by computing a secondary cost volume C ′

V by reversing the role of the images.
We then obtain two disparity maps D and D′, and check that they are consistent, as
in theory we would that D = −D′. A pixel (row, col) is considered consistent across
disparity maps if it verifies:

|D(row, col) + D′(row, col + D(row, col))| ⩽ τ (1.14)

where τ is a consistency threshold usually set to 1. For errors that do not satisfy this
consistency check, it has been proposed in [Hirschmuller, 2008] to differentiate between
mismatched pixels and occluded pixels. Mismatch pixels are pixels for which there exists a
correct match, whereas occluded pixels are pixels that are visible in an image but masked
by an object in the other. The difference is determined as follows: if there is a disparity
d ∈ D such that D′(row, col + d) = −d then it is considered a mismatch. Otherwise, the
pixel (row, col) is occluded. Occluded regions of an image can be filled by interpolation
with the closest valid disparities, or left as nodata.

Remark: Equation (1.14) requires the computation of a second cost volume, which
effectively doubles the processing time. As dense stereo matching is also the longest
part of a photogrammetry pipeline, one might be reluctant to carry out a cross-
checking step. However, we can make the following observation: the cost volume
contains the dissimilarity between every considered pair of pixels in the disparity
range, so the cost of every considered match in the first cost volume is also present in
the second cost volume. In theory, for every pixel (row, col) and for every disparity
d in the (reference) disparity range, it holds [Ernst and Hirschmüller, 2008]:

CV (row, col, d) = C ′
V (row, col + d,−d) (1.15)

Equation (1.15) holds only for cost volumes obtained after the matching cost step.
However, when SGM regularization or another aggregation cost method modifies cost
volumes, then there can be differences between CV (row, col, d) and C ′

V (row, col +
d,−d). In the case of SGM regularization, series of tests show that the differences
between cost volumes are small and marginally modify the disparity maps. Using
(1.15) then allow obtaining both cost volumes by only computing one and re-indexing
it to obtain the other.

Once every step of the dense matching algorithm have been carried out, the disparity
map obtained is used to create pairs of lines of sight to triangulate 3D point clouds.
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1.3.4 Triangulation

The disparity maps allow deducing elevation information contained in the shift of objects
in both image spaces. This information is computed during the triangulation step of the
stereo pipeline.

The type of optical sensor used determines the resolution of the disparity map, and,
therefore, the density of the resulting point cloud. It will therefore influence the planimet-
ric resolution of the final DSM. We usually consider that the planimetric resolution of the
DSM can be similar to the resolution of the sensors. On the other hand, the altimetric
resolution of the DSM is determined by the altitude and positions of the satellites [Qin,
2019]. This position can be characterized by the Base-to-Height ratio (B/H) ratio, as in
Figure 1.21. This ratio is computed by dividing the distance separating the stereo acqui-
sitions by the altitude of the satellite. It indicates the angle formed between the lines of
sight originating from the satellites towards an object of the scene. A high B/H allows
for high elevation accuracy, but possesses more occluded regions (for instance a narrow
street between two high buildings), and conversely for a low B/H [Delon and Rougé,
2007]. In natural landscapes, stereo acquisitions present high B/H ratio in order to have
a high altimetric accuracy, while the B/H ratio is smaller in urban landscapes to limit
the occlusions. In our experiments, the B/H ratio for stereo acquisitions varies between
0.1 and 0.4. The CO3D mission will use B/H ration between 0.2 and 0.3. The B/H also
partly determines the value of the altimetric ratio ralt presented in Section 1.3.2.

The quality of the final DSM is also influenced by the solar angles [Qin, 2019], with
the zenith angle being as small as possible to limit the projected shadows over the scene.
Sun-synchronous satellites, such as Pléiades or CO3D, benefit from advantageous sun
angles in order to favor good images acquisitions and good stereo reconstruction.

The computed disparity map allows determining the position of 3D points. When
working with pinhole camera models, the depth z of a pixel is computed using the following
formula:

z = Bf

d
(1.16)

where B is the baseline between cameras, f is the focal length of the camera, and d is
the disparity of a pixel. This formula can be found using optical geometry [Bolles et al.,
1987], and illustrates the fact that pixels closer to the camera present a bigger position
shift in between images. As mentioned previously, the pinhole camera model is not valid
in the case of satellite imagery, and we instead use other sensor models (see Section 1.2.3).
Equation (1.16) thus cannot be used as such to provide accurate results.

Instead, the disparity is used to determine pairs of lines of sight pointing to the same
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Figure 1.21: Triangulation of the position of a point using RPC models. The distance B
between satellites as well as the global elevation H can be used to determine the angle
between satellites.

object. Using RPC models, we can compute the 3D coordinates of every intersection of
pairs of lines of sight. To do so, we first consider the RPC models RPC1, RPC2 of two
stereo images defined in Section 1.2.3. We consider as well their epipolar grids ge1, ge2

from Equation (1.4). For every pixel (rowe, cole) from the reference epipolar image, whose
disparity is d, the 3D point (X, Y, Z) represented by (rowe, cole) is the point verifying
the following equations:

(X, Y, Z) = RPC−1
1 (ge1(rowe, cole), Z) (1.17)

(X, Y, Z) = RPC−1
2 (ge2(rowe, cole + d), Z) (1.18)

If the lines of sight intersect, then Z is found by solving the following equation:

RPC−1
1 (ge1(rowe, cole), Z) = RPC−1

2 (ge2(rowe, cole + d), Z) (1.19)

Knowing Z and ge1(rowe, cole), Equation (1.17) provides the X and Y coordinates as
well.

A known problem is that lines of sight rarely intersect, even if we consider the right
disparity, because the bundle adjustment is not perfect. By approximating lines of sight
by a starting point P and a direction vector −→

V , we can instead define the coordinates
(X, Y, Z) as the point minimizing its distance to both lines. Approximating RPCs by
segments is valid on the limited range of considered altitudes. The exact formula for
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computing (X, Y, Z) is provided in [Delvit et al., 2006]:

(X, Y, Z) =
[
Id− V1V

T
1 + Id− V2V

T
2

]−1 [
(Id− V1V

T
1 )P1 + (Id− V2V

T
2 )P2

]
(1.20)

where Id is the identity matrix, and V T is the transposed vector V . The error due to
enforcing RPCs intersection is however small (a few centimeters) in comparison to the
errors occurring in the disparity map. In this thesis, we mainly focus on processing the
disparity errors and do not consider the approximation made during the lines of sight
intersection.

Triangulating every point using the disparity map leads to a 3D point cloud. Because
we know from which pixel each 3D point originates from, we can associate to every 3D
point additional information such as:

• The color of the reference pixel (if provided). The point cloud is thus a colored
point cloud.

• Confidence measures computed during the dense matching step, that will be pre-
sented in Section 1.4.3

The 3D points can be filtered to remove obvious errors. Advanced filtering methods
can be implemented, such as bilateral filtering [Digne and De Franchis, 2017], and filtering
using color information or confidence measures from the disparity map (see Section 1.4.3)
[Youssefi et al., 2024]. In the CARS pipeline, two different filtering steps are carried out:
one for removing statistical outliers, and one for removing so-called “small-components”.

Statistical outliers filtering

Statistical outliers are determined by considering the positions of their neighbors. For each
point P , we compute the mean distance µP to its N neighbors. Then we can compute for
each point P the mean distance µ and standard deviation σ of its N neighbors as:

µ = 1
N

N∑
i=1

µi (1.21)

σ =

√√√√ 1
N − 1

N∑
i=1

(µi − µ)2 (1.22)

A point P is considered to be a statistical outlier if the difference between its mean
distance µP and the mean distance µ of the whole neighboring is too large:

µP > µ+ kσ (1.23)
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Figure 1.22: Example of statistical outliers and small components filtering of a 3D point
cloud.

Where k is a constant, usually set to 5 by the user. We also consider N = 50.

Small-components filtering

The other filtering method, named small-components filtering, attempts to remove small
isolated clusters of points. For each point, we count the number of neighbors N present
within a distance Dmax. If this number is inferior to a given threshold Nmin, then we
consider the point belongs to a small component and is removed. Formally, a point P is
removed if:

#{ Points Q |
√

(P −Q)(P −Q)T ⩽ Dmax } ⩽ Nmin (1.24)

where # is the cardinal of a set. We usually set Dmax to 3 m and Nmin to 50.

Figure 1.22 illustrates the two filtering methods presented.

Filtering the point cloud results in a 3D product that can already be provided as such
to users. However, point clouds, while containing more 3D information than DSMs, can
be hard to manipulate in conjunction with other GIS data. Projecting the point cloud on
a regular grid to produce a DSM is thus often preferred, which constitutes the final step
of the stereo pipeline.

1.3.5 Rasterization

Rasterization consists in projecting the 3D points onto a regular grid over the (X, Y )
plane to produce the final DSM. One of the challenges faced when projecting the point
cloud is that of the low density of the point cloud relative to the DSM grid. Indeed, if the
density of the point cloud is high enough, multiple 3D points can be projected to the same
cell, which raises the question on how to merge their 3D information. On the other hand,
if the density is not high enough, there may be some cells where no points are projected.
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Figure 1.23: Rasterization of the point clouds on a regular grid. Red points are nearer to
the center (X, Y ) of the considered cell, while yellow points are further away.

The CARS stereo pipeline uses a Gaussian interpolation to fuse the information of
point clouds. Given a cell with coordinates (X, Y ) of the DSM, we consider every point
Pi = (Xi, Yi, Zi) in a given radius r of (X, Y ), and note PCXY the point cloud containing
those points. The final value of the DSM is then computed as the following mean with
Gaussian weights:

DSM(X, Y ) =
∑

Pi∈P CXY
Zi · e− (Xi−X)2+(Yi−Y )2

2σ2∑
Pi∈P CXY

e− (Xi−X)2+(Yi−Y )2

2σ2

(1.25)

with σ usually set to 0.3 m and the radius r being 3 m. Figure 1.23 illustrates the
rasterization process.

Rasterizing with this method provides the advantage of smoothing the potential ele-
vation variations still present in the 3D point cloud, while allocating more weight to points
that are near the cell center. This method can also be found in other stereo pipelines
[Shean et al., 2016], while other pipelines use different weighting methods, such as Inverse
Distance Weightings (IDW) [Rupnik et al., 2017], producing similar results.

Remark: If no points are projected in a given cell (or its direct neighbors), then the
cell can be filled with nodata values. Different methods can be considered to fill holes,
such as directly using the values of nearest valid neighboring cells, or interpolating
their values. More advanced methods consists in simulating a cloth-like surface to fill
the holes as in [Lallement et al., 2022].
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As we have seen in the previous sections, a photogrammetry pipeline consists of
multiple processing steps with intermediary products. For each step of the pipeline,
different methods (e.g. matching, filtering etc.), parameterization and post-processes are
available. This broad range of solutions allows adapting our processes to the type of images
and terrain observed, but it sometimes makes it difficult to determine the configuration
producing the best quality DSM, or to single out a general good-working configuration.
The values of the different step parameters presented previously, and that we will be using
throughout this thesis, result from testing and sensitivity analyses. In this thesis, we will
therefore not discuss their value and instead focus on quantifying and propagating the
uncertainty of the CARS stereo pipeline.

1.4 Uncertainty in Stereophotogrammetry

Producing high resolution DSMs is a complex task, where many uncertainties arise. Those
uncertainties can be associated with input data (noise on images, sensor model location
uncertainty) or be caused by the processing of those data (resampling errors, disparity
computation, rasterization method).

1.4.1 Related Work

We will first look at attempts to characterize the uncertainty associated with DSMs. The
quality of DSM can greatly vary depending on the quality/resolution of the data used,
the accuracy of the geolocation, the performances of the processing algorithm etc.

For instance, in products like TanDEM-X, quality masks can be provided alongside
the DEM, usually based on the sensor or method used for producing the DEM. TanDEM-
X produces an elevation error map [Wessel, 2018], representing for each DEM pixel the
standard deviation corresponding to the elevation error. The value is derived from the
interferometric coherence, and is considered to be a stochastic error. It does not include
any contributions of epistemic errors, such as erroneous orbital parameters. The altimet-
ric and planimetric accuracy of IGN’s LiDAR HD 3D points have been measured using
ground control points (25 cm of planimetric relative accuracy, 5 cm of altimetric rela-
tive accuracy). Other intrinsic quality parameters of the IGN’s LiDAR HD numerical
models have not been measured [IGN, 2024]. Another IGN’s DTM product, the RGE
ALTI®, possesses a mask indicating the quality of the data provided. This quality mask
is composed of the data source used (LiDAR, stereo photogrammetry, Radar) for which
the mean squared altimetric error has been determined for each source [IGN, 2013]. In
particular, the photogrammetry altimetric accuracy is estimated between 1.5 and 2.5 m
according to [IGN, 1994].
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Other works try to estimate the uncertainty associated with a DSM based not on
the method or sensor used, but on the values of the DSM itself. [Mesa-Mingorance and
Ariza-López, 2020] reviews those different methods for assessing the accuracy of DSMs.
Previous work mostly produces confidence intervals associated with a DSM [Oksanen,
2006, Panagiotakis et al., 2018, Deschamps-Berger, 2021]. In [Wang et al., 2015], robust
estimators are used to evaluate the mean, median, and variance of a DSM altitude distri-
bution. In [Hugonnet et al., 2022], advanced statistical methods such as variograms are
used to measure the spatial correlation of errors, depending on the values of the slope
of the terrain. All those methods produce a confidence interval that globally describes
the uncertainty associated with a given DSM (or a single interval per slope category in
[Hugonnet et al., 2022]). They also estimate the uncertainty a posteriori, meaning that
they do not consider the means by which the DSM was created. The uncertainty is es-
timated using a set of reference points, either extracted from a better resolution DSM,
or from GPS ground control points. In [Wang et al., 2015], a confidence interval is com-
puted based on the residuals between the DSM and a bilinear interpolation of samples
from the same DSM, assuming that the quality of a DSM can be evaluated without using
an external reference.

Photogrammetry pipelines presented in Section 1.3.1 also have different methods of es-
timating the uncertainty of the produced DSMs. For instance, the NASA’s ASP pipeline
can take as inputs camera planimetric standard deviation of position uncertainty (ex-
pressed in meters), and propagate it during the triangulation and rasterization steps.
The documentation [NASA, 2020] details the method used for propagating the covari-
ance matrix. It explicitly states that the propagated uncertainty does not represent the
error between the predicted elevation and a hypothetical ground truth, even though they
are expressed in the same unit of measure. It is rather the propagated covariance from
the camera position projected in the horizontal and vertical directions, regardless of the
matching errors or triangulation errors. We did not find clear documentation on how the
S2P pipeline handles uncertainties, but the available code of the algorithm suggests that
a confidence measure can be computed during the dense matching step of the algorithm
(presented later in Section 1.4.3) and provided alongside the final DSM as a quality mask.
The confidence measure used is a measure of the consensus between the different regu-
larized directions during the SGM regularization. It is thus a dimensionless parameter,
indicating if the predicted elevation is confident or not. IGN’s MicMac software computes
different errors such as the residual errors from Bundle Adjustment step [IGN, 2022], and
provides a correlation map alongside the DSM. SETSM also computes matching scores
[Noh and Howat, 2017], but it does not seem to be propagated until the final DSM. DLR’s
CATENA code is not available, and no documentation indicates the existence of a quality
map. In any case, it seems as most pipelines compute a confidence measure (usually
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during the dense matching step) and propagate it to create a quality mask alongside the
final DSM. Different methods for producing such a quality mask have also been inves-
tigated in [de Joinville, 2001, Boudet, 2007], where different confidence scores from the
dense-matching step are compared. This quality mask produced indicates the amount of
confidence associated with each DSM cell value but does not reflect its potential altimetric
error.

To the best of our knowledge, there is currently no method for producing elevation
confidence intervals at a pixel level, by opposition to the global or almost global inter-
vals in [Oksanen, 2006, Wang et al., 2015, Hugonnet et al., 2022]. Furthermore, the
uncertainty arising from the different photogrammetry algorithms is not considered when
producing those intervals. The main contribution of this thesis is the production of pixel-
wise confidence intervals for DSMs produced by photogrammetry. Those intervals are
first computed during the dense matching step, and then propagated in the rest of the
pipeline, resulting in elevation confidence intervals. In the following section, we present
different sources of uncertainty present in the CARS pipeline.

1.4.2 Uncertainty in the CARS pipeline

In this thesis, we focused on quantifying the uncertainty alongside the creation process of
DSM. We thus differ in this regard from previous work, which produce a single confidence
intervals from the final produced DSM. Multiple sources of uncertainty influence the
production of a DSM, which we will now detail.

A first source of uncertainty comes from the input data, i.e. the radiometric un-
certainty associated with stereo images and the geometric uncertainty associated with
sensor models. The radiometric uncertainty is mainly due to noise from the sensor and
from atmospheric effects appearing on the acquisitions. Those radiometric errors can be
estimated and are relatively moderate [Jacobsen et al., 2014]. Regarding the uncertainty
associated with the sensor models, satellite movements not captured by models can have a
big impact on the final images, especially for push-broom sensors. For instance, vibration
of the satellite can lead to biases on the geolocation of the different rows of the image.
Those biases will themselves be propagated to the final DSM, leading to errors of a few
meters [Loghin et al., 2019]. Additionally, RPC models attempt to represent real lines of
sight with polynomial coefficient, which is not exact and possess its own accuracy. The
method used for coefficient calibration and the frequency of calibration also bring their
share of uncertainty.

Another source of uncertainty arises from the different processing steps of the stereo
pipeline. First, different resamplings occur in order to convert stereo images from sensor
geometry to epipolar geometry one. Those resamplings are based on SIFT matches,
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presented in Section 1.3.2. SIFT matches are used to refine the epipolar grid depend
on the performance of the SIFT algorithm used to obtain them. In homogeneous and
texture-less area, e.g. glaciers, false matches can arise. This leads to wrong epipolar lines,
which can prevent accurate results in the dense matching step and result in a faulty
3D reconstruction. We assume in this thesis that the refinement of epipolar grids using
SIFT points, which minimizes the mean error, provides accurate epipolar resampling grids
with an epipolar error of around a tenth of a pixel [Franchis et al., 2014]. However, the
resampling in epipolar geometry introduce errors if the input and target resolutions do
not respect Shannon criteria [Delon and Rougé, 2007]. In the case of Pléiades images,
the acquisition resolution is usually high enough to ensure correct resampling [Jacobsen
et al., 2014].

The resampled images in epipolar geometry are then used as inputs for the dense
matching step. Dense stereo matching is a complex task, for which many algorithms
exist, each potentially presenting different performances. When compared to epipolar
errors, that typically are less than a pixel [Franchis et al., 2014], dense matching errors
can potentially reach higher magnitudes, depending on the size of the considered disparity
range (sometimes reaching hundreds of pixels). Considering those orders of magnitude,
estimating and quantifying the uncertainty of the stereo matching process is therefore
crucial to control the uncertainty on the output DSM. Some sources of those errors are
now presented. Because the correlator usually compares windows (in our case 5 × 5
windows using the CENSUS cost function or 11 × 11 windows using MC-CNN) and not
single pixels, this can create an adherence effect near building borders, as in Figure 1.15.
Note that in [Okutomi and Kanade, 1994], authors have been trying to adapt the window
shape to reduce the uncertainty of stereo matching, but this method requires to iteratively
compute costs on different windows, which can become quite expensive. Using a window-
based correlator with SGM regularization, if correctly parameterized, usually presents
good performance in areas without elevation discontinuities. This can become a problem
in urban areas, where the presence of high buildings represents an additional challenge for
the correlator. As SGM regularization also penalizes disparity changes, tops of buildings
tend to be extended beyond their true footprint. Other processes, such as filtering or
sub-pixel refinement, improve the quality of the disparity map but require special care in
handling their induced uncertainty. Section 1.4.3 delves deeper into details regarding the
different methods that have been developed to quantify the uncertainty of dense stereo
matching.

Once the disparity has been estimated, 3D points can be triangulated by intersecting
RPC lines from each matched pixel. However, we saw previously that there is no guarantee
that the 3D lines do intersect. If they indeed do not intersect, the 3D point is defined
as the point minimizing its squared distances to both lines of sight. An alternative is to
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modify the geolocation line from the secondary image so that it intersects the line from
the reference image. In both cases, the localization of the 3D point is not exact. This
uncertainty stems from the fact that RPC have their own limited resolution, and that
stereo images (resampled or not) do not necessarily point to the exact same location in
the object space.

The final part of the stereo pipeline is to rasterize the point cloud onto a regular
grid, thus yielding the DSM. When characterizing the uncertainty in the final result, we
must first agree on what the DSM is assumed to represent. It is common to consider
that each pixel’s value should represent the average elevation over the cell. However,
providing the maximum or minimal elevation might be more adapted to some scenarios:
for instance if the DSM is used to prepare very low altitude flights (for drones etc.), the
maximum elevation is more relevant as one would want to avoid any foliage or power line.
Those elements could disappear in the final DSM if it represented the mean or median
elevation. In this thesis, we will consider that the DSM represents the (weighted) average
elevation. Depending on the resolution of input images and the desired output resolution
of the DSM, the density of points per DSM cell will vary. In our applications, the input
and output resolutions are identical, as we typically desire to produce a DSM at 50 cm
resolution from 50 cm panchromatic images. This means that, in average, there is one
3D point per DSM cell. For occluded regions, or when we discarded stereo matches that
seemed incorrect, there might be no point directly in the output cell. In this case, the
value of the DSM cell will be determined entirely by the values of points in neighboring
cells, even if they are far away and have small averaging weights. Interpreting the final
DSM as the average elevation on each cell is thus debatable, as the average is computed
on a limited number of points, and sometimes not even belonging to the considered cell.
Note that if there are no points around in a given radius, the cell will be left empty.

Different sources of uncertainty occurring throughout the stereo pipeline were pre-
sented in the previous paragraphs. Characterizing, modeling and propagating all of those
uncertainties could not be considered in the span of this thesis. We thus focus mostly
on the uncertainty arising from the dense stereo matching step, as it is the source of the
biggest errors in the pipeline. Chapter 4 investigates how uncertainty from the input
epipolar images can be propagated in the stereo matching step, and Chapter 5 attempts
to model the processing uncertainty of the stereo algorithm itself. We also propagate this
uncertainty all the way to the output DSM and show that it can correctly estimate the
errors made during the DSM production.
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1.4.3 Uncertainty Quantification in Dense Stereo Matching

As stereo matching is a popular problem in computer vision, many methods for quantifying
its uncertainty have been proposed in the literature. Without being exhaustive, this
section presents a quick overview of the main approaches as well as the solutions currently
implemented in the dense stereo correlator Pandora used in the CARS pipeline.

The way uncertainty is quantified in stereo matching is mainly done by producing
confidence maps, i.e. a mapping for each pixel (row, col) to a real confidence value,
usually between 0 and 1. By convention, a value of 0 means that we are not confident
in the disparity value associated with (row, col). Conversely, a confidence value of 1
indicates that we are very confidence in the predicted disparity.

There are multiple sources of information that can be used to compute a confidence
measure. Left and right input images and the predicted disparity map being those avail-
able to every method, but cost-based approaches can also make use of the cost volume, as
it contains a quantity of useful information. Most confidence measures are handcrafted
using those different information sources. For reviews on those methods, we refer to
[Egnal et al., 2004, Hu and Mordohai, 2012, Poggi et al., 2017]. With the rising use of
deep-learning in stereo, many networks have also been developed to estimate the uncer-
tainty. A review of methods using regression forests can be found in [Min-Gyu Park and
Yoon, 2015], and a more general review, including the use of 2D and 3D CNNs on the
cost volume, can be found in [Poggi et al., 2021].

Remark: Quantifying the uncertainty in stereo matching is a popular field of re-
search. Recently, people have even been trying to evaluate the uncertainty of the
confidence estimation itself, called meta-confidence [Kim et al., 2022].

In Example 2, we present some examples of confidence measures that use different
sources of information.

Example 2: Regarding confidence measure based on the disparity map, we already
presented a type of binary confidence measure in Section 1.3.3 with the cross-checking
test from Equation (1.14). Other methods compute for instance the local variance of
the disparity map, where a low variance suggests confident regions.

For methods using the cost volume, a simple method for measuring the cost would
be using the value of the matching score measure (MSM, [Egnal et al., 2004]) for a
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(a) (b)

Figure 1.24: Cost curves with different levels of ambiguity (a) and risk (b)

given disparity at coordinates (row, col):

MSM(row, col) = −CV (row, col,D(row, col)) (1.26)

This measure can be normalized between 0 and 1 using the global minimum and
maximum of the cost volume. The idea behind this measure is the following: a high
matching cost for a selected disparity indicates that the two matched pixels are not
that similar, and thus the match is not confident. Other measures using the matching
cost compare the value of the first and second minimum of a cost curve, or measure
the curvature of the cost curves. More advances measures make use of 3D CNNs on
the entirety of the cost volume to learn an efficient confidence measure [Mehltretter
and Heipke, 2019].

Measures based on the input images usually measure the gradient [Haeusler et al.,
2013] or variance [Park and Yoon, 2019] of input images. High gradient or high
variances indicate highly-textured regions, which are often easier to match. The
confidence is therefore higher for those pixels.

Deep-learning approaches can combine multiple sources of information (input im-
ages, cost volume, disparity map) to learn a confidence measure [Tosi et al., 2018, Kim
et al., 2020].

In this thesis, we will also consider another confidence measure that can already be
computed with the Pandora correlator. This measure will help us to quantify the uncer-
tainty in the photogrammetry pipeline. This measure is referred to as confidence from
ambiguity [Sarrazin et al., 2021]. This method is based on the cost volume and quantifies
how easy or hard it is to single out the correct disparity in a cost curve. Figure 1.24(a)
presents two cost curves, one which is not ambiguous as there is a single well-defined
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minimum, and an ambiguous cost curve which presents multiple values that are close to
the minimum. To compute it, we first start by constructing what is called an ambiguity
curve. We do that by counting how many disparities have a cost close within a threshold
η to the minimal cost, for increasing values of η. Formally, we need to define for a pixel
(row, col) the set of all disparities whose cost is within a range η of the minimal cost,
and then define the ambiguity curve as the cardinal of this set:

Dη = {d | CV (row, col, d) ⩽ min
δ
CV (row, col, δ) + η} (1.27)

amb(row, col, η) = #Dη (1.28)

where # is the cardinal of a set. Evaluating amb for different η gives the ambiguity curve.
Figure 1.25(a) presents a cost curve with different values of η. Figure 1.25(b) presents the
resulting ambiguity curve. On those two figures we can see for instance that for η3 there
are 6 disparities whose cost is lower than minδ CV (row, col, δ) + η3. For non-ambiguous
cost curves, amb will increase only for high values of η. On the contrary, for ambiguous
curves, amb will be high for small values of η. To obtain a scalar value from amb, we
compute the area under its curve, normalized by the range of η:

AUCamb(row, col) = 1
max η − min η

∫
η
amb(row, col, η)dη (1.29)

It results on low values for confident (non-ambiguous) cost curves, and high values for less
confident (ambiguous) curves. Because confidence measures actually present high values
for confident pixels, AUCamb is normalized and inverted in order to obtain the confidence
from ambiguity camb:

camb(row, col) = max AUCamb − AUCamb(row, col)
max AUCamb − min AUCamb

(1.30)

This way, values of camb near 0 indicate that we are not confident in the predicted disparity.
Reversely, values of camb near 1 indicate that we are confident in the predicted disparity.

Remark: A similar notion of ambiguity can be traced back in [de Joinville, 2001],
where the difference in disparity between the first and second minima is measured.
In the following, we will not consider this notion when referring to the ambiguity, but
rather the one introduced in equation (1.30).

The confidence from ambiguity, like other confidence measures, is designed to indicate
potentially wrong matches. It however does not measure the extent of the potential error.
After all, it is possible that we predict a wrong disparity, while the correct disparity is
right next to our prediction. The impact of this error on the final result will be smaller
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(a) Cost curve with different values of η. Horizon-
tal dotted lines indicates the range of costs between
minδ CV (row, col, δ) and minδ CV (row, col, δ) + η3

(b) Associated ambiguity curve in full
line. Ambiguous curve in gray dotted
line

Figure 1.25: Illustration of the computation of the ambiguity curve.

than if the true disparity is at the other side of the disparity range. There is a distinction
to be made between the value of a confidence measures and the magnitude of a potential
error, even if they can be correlated in some cases.

In Chapters 5 and 6, we introduce a method for computing confidence intervals, which
aims to serve as a complement to confidence measures as it estimates the magnitude of the
potential error. This method is motivated by discussions with different users and experts
in 3D modeling from the AI4GEO consortium (https://www.ai4geo.eu/). Indeed, a
common point emerging from those discussions is the desire to produce confidence intervals
alongside photogrammetry DSMs. This also converges with the quality map requirement
of the CO3D mission. We therefore develop our method with the objective of answering
to this user need.
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This chapter presented the principles of stereophotogrammetry using satellite imagery.
We presented different satellites relevant in the context of this thesis (i.e. the CO3D and
Pléiades constellations) focusing on their sensors and their geometry. We also detailed
the global architecture of a stereo pipeline, and the specificities of the pipeline CARS
that we will be considering in this thesis. We finally presented the different sources
of uncertainty associated with this pipeline, and some measures that can be used to
estimate the uncertainty in the dense matching step of the pipeline. Chapters 2 and 3
will present relevant uncertainty models and concepts for this thesis, while Chapters 4
to 6 will present a method for estimating the uncertainty at different steps of the
photogrammetry pipeline.

Conclusion
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Mathematical Representations of
Uncertainty

2.1 Introduction

This chapter takes some distance from the stereo vision problem presented previously,
and instead describes more formally different representations of uncertainty and the tools
that can be used to manipulate them. In this thesis, we consider classical probabilities
(Section 2.3.1), possibility distributions (Section 2.3.4) and p-boxes (Section 2.3.5) to
model uncertainty. We also consider the case where we have uncertainty on multiple
variables simultaneously. In this setting, the dependency between the different sources
must be taken into account. We thus present a dependency model called copulas in
Section 2.4, and some of its properties. The thorough presentation of those concepts will
then be put into relations in Chapter 3.

2.2 Notations

We introduce here a few notations that will be used in this chapter.

• s.t. means “such that”

• We will often present theorems or results with n different variables, spaces, or Carte-
sian products of n elements. Notations therefore quickly become quite heavy. For
that reason, we often use the notation “. . .” to imply that we are enumerating all
variables. For instance, if we apply a function f to four variables x1, x2, x3, x4, we
will write f(x1, . . . , x4).

• When working with n variables, the index i will usually be used to refer to the i-th
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variable (or one of its attribute), and will be appended as a subscript when possible,
otherwise as a superscript. For instance, if x ∈ Rn, then xi will refer to the i-th
component of x. If m× ∈ Rn, then mi

× will refer to i-th component of m×.

• [[·, ·]] refers to an interval of integers. For instance [[1, 4]] = {1, 2, 3, 4}.

• The power set of a set X is noted 2X . It corresponds to the set of all sets included
in X . In the discrete case, if the cardinal of X is n, then the cardinal of the power
set is 2n, thus the notation.

2.3 Different Models to Represent Uncertainty

Assessing the reliability of an engineering system requires quantifying the uncertainty of
the input parameters or of the system itself, using models of uncertainty. Modeling the
uncertainty can be done in various ways, depending on the type of uncertainty considered
and the available measures or a priori regarding the uncertain sources. Most common
models are probability distributions, which have been studied extensively. When using
those models, we know —or assume— that the information we try to estimate is of
stochastic (or random) nature, and that we are able to precisely describe its structure
using a probability distribution. However, there are many cases where such assumptions
cannot be made: for instance when data is insufficient to determine the correct probability
distribution, or when the uncertainty is not random, but epistemic. In those cases, we
can use other models, such as:

• fuzzy sets [Zadeh, 1999] when trying to estimate the degree of truth of a statement
such as “This person is tall”

• intervals [Jaulin et al., 2001], where no preferences are given inside a specific range
of possible values

• Imprecise Probabilities (IP) which tries to extend the concept of probabilities in
order to model epistemic uncertainty [Augustin et al., 2014]

This list is not exhaustive. Additionally, those different models can sometimes be equiv-
alent. Choosing to use one or another depends on the nature of the problem and of the
available data. In this chapter, we will mainly consider probability distributions (Sec-
tion 2.3.1) and IP (Section 2.3.2). Two specific cases of IP will be detailed, namely
possibility distributions in Section 2.3.4 and p-boxes in Section 2.3.5.

Remark: Distinguishing between stochastic and epistemic uncertainty is a model
accepted by many to distinguish between different situations of uncertainty. One
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could argue that stochastic uncertainty is, to some extent, equivalent to epistemic
uncertainty. Indeed, if we had enough knowledge on initial conditions of a die throw
for instance (force and torque applied on the dice, its exact shape and mass distri-
bution etc.), as well as the exact physics model, one could predict with certainty
on which side it would land. There would therefore be no aleatoric process at stake
here. The question whether or not we should make the distinction between aleatoric
and epistemic uncertainty is of interest regarding theoretical aspects of the nature
of uncertainty. For real-life applications, however, differentiating between the two
seems reasonable, as we cannot know every parameter and the exact model involved
for every quantity of interest.

At the end of the day, choosing one model over another is not always straightforward.
It requires being aware of the type of uncertainty faced, of the strengths and limitations
of each model, of the tools available to manipulate the models etc. When it comes to
less common models cited above, it fundamentally requires being aware of the existence
of such models, which is not always the case for non-specialists. During this thesis, we
tried to promote less common models, especially possibility distributions. We did so by
presenting real life cases where they could be used while improving uncertainty modeling
in the field of stereophotogrammetry (see Chapters 4 and 5).

2.3.1 Probabilities

Probability measures are a classical framework to represent uncertainty. There are multi-
ple ways of interpreting them, mainly with a frequentist approach, or a Bayesian approach.
From a frequentist point of view, probabilities are well-fitted to represent stochastic un-
certainty, i.e. uncertainty regarding events that can get a different result each time we
run an experiment or acquire a measure (typically, noise on a sensor). From a Bayesian
point of view, probabilities represent a state of knowledge or degree of belief, and can be
updated with additional information [Williamson, 2009]. This leads to the notion of prior
and posterior probability that will not be considered in this thesis.

We remind here basic definitions regarding probability distributions.

We call a probability space (X , A, P ) a tuple where:

• X is the set of possible outcomes (for instance, head or tails for a toss coin)

• A is the set of all subsets of X for which a probability can be measured (for
instance {∅, {heads}, {tails}, {heads, tails}})

Definition 1: Probability Space
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• P is the probability measure assigning a probability to each of the sets of A.
For instance, for a fair coin, P (∅) = 0, P ({heads}) = P ({tails}) = 0.5 and
P (X ) = 1.

Note that A must be a σ-algebra, meaning that it is closed under complement,
countable unions and countable intersections. P is a probability measure if it verifies
all the Kolmogorov axioms:

• ∀A ∈ A, P (A) ∈ [0, 1]

• P (X ) = 1

• for any countable disjoint family of sets Ai ∈ A, P (∪iAi) = ∑
i P (Ai)

A random variable X is a measurable function from X to a measurable space (which
is R or a subset of R). We can then measure the probability that X takes its values
in a measurable set E ⊆ R:

P (E) = P ({x ∈ X | X(x) ∈ E})

Definition 2: Random Variable

Using a random variable allows considering the probability measure on different
spaces. We then call P the probability distribution of the considered random variable
X.

Other useful concepts regarding probability distributions are Probability Density
Function (PDF) and Cumulative Distribution Function (CDF):

A Cumulative Distribution Function (CDF) FX of a random variable X with real
values is the probability that X will be less or equal to a number x. Formally, we
define FX : X → [0, 1]:

∀x ∈ X , FX(x) = P (X ⩽ x)

Definition 3: Cumulative Distribution Function

54



Chapter 2

A random variable X is said to possess a Probability Density Function (PDF) if there
exists a positive integrable function f over R s.t. ∀(x1, x2) ∈ R2:

P (x1 ⩽ X ⩽ x2) =
∫ x2

x1
f(x)dx

In the continuous case, the PDF f is also the derivative of the CDF of X. In the
discrete case, the PDF is also called probability mass function, and is defined as:

f(x1) = P (X = x1)

Definition 4: Density Function

In the rest of the chapter, we consider random variables X on discrete spaces X . If
X = {x1, . . . , xn}, we call {xi} an atom of X , and the probability distribution P of
X on X is completely determined by its PDF, which is the value of P on atoms. For
simplicity of notation, we will not always use braces around atoms when computing their
probability. So we will sometimes write P (x1) instead of P (X = {x1}).

As stated previously, probability measures are fitted to represent stochastic uncer-
tainty. The following example illustrates why probability measures are not adapted to
represent epistemic uncertainty:

Example 3: Let consider a card facing down, with a number written on its hidden
side. The person who wrote the number tells you that they chose to write either 1, 2
or 3 on it. We should note that because they chose to write a number, the uncertainty
on its value is not random. They then ask you to evaluate your chances of guessing the
correct number and its parity, i.e. if it is odd or even. We first consider the random
variable X taking values in {1, 2, 3}. Because you have no further information and
thus no preferences on the values of X, a common (yet arguably inadequate) decision
is to associate the uniform distribution P to X:

P (X = 1) = P (X = 2) = P (X = 3) = 1
3

Concerning the parity of the number, we may consider the random variable Y defined
such that Y = 0 if “X = 1 or X = 3” and Y = 1 if “X = 2”. Because we have no
information on the number written on the card, we also do not have any preferences
on the values of Y . Following the same reasoning as before, one might be tempted to
associate a uniform distribution to it. However, deducing the PDF of Y from that of
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X yields:

P (Y = 0) = P (X = 1) + P (X = 3) = 2
3 , P (Y = 1) = P (X = 2) = 1

3

which is clearly not the PDF of a uniform distribution. By assuming we have no
preferences on the values of a variable, we actually deduced preferences on the values
of another variable.

This example shows that one should use a uniform distribution only when they
are certain that all values are equiprobable. This is due to the fact that uniform
distributions are well suited for representing statements like “all values have the same
likelihood” but not for statements like “I have no information over the values, and
thus no preference”. Indeed, a probability distribution actually contains a lot of
information about a (random) variable, which is not suited to represent epistemic
uncertainty.

Remark: From a Bayesian point of view, a probability can also represent a
degree of belief, allowing them to represent epistemic uncertainty and not only
stochastic uncertainty, in theory. However, it does not solve the expressiveness
problem raised by this example. Bayesians are still reasoning with probabilities,
which make no difference between “I have no preference between these events”
and “these events are equiprobable”. Even though they can update their prior
with additional information, this would not fix the problem presented here. In
the absence of additional information, basing a decision on the prior would lead
to debatable conclusions.

2.3.2 Imprecise Probabilities

As highlighted in Example 3, uncertainty cannot always be correctly modeled by proba-
bilities, especially in a context where data is sparse. To overcome this problem, a gener-
alization of probabilities has been introduced, called Imprecise Probabilities (IP), which
provides a general framework for working with both aleatoric and epistemic uncertainty.
It uses the concept of lower and upper probabilities, which are quite generic and flex-
ible, and can be derived in more specific models. Here is a brief scope of the relevant
tools it encompasses: the special case of belief functions, themselves containing specific
sub-categories such as possibility distributions (Section 2.3.4) and probability boxes (Sec-
tion 2.3.5). It also contains probabilities presented in Section 2.3.1, which we will call
precise probabilities in contrast to imprecise probabilities. Figure 2.1 is a non-exhaustive
overview of relationships and specificities of each imprecise model.
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Remark: On a more generic level, IP can be described by sets of acceptable gambles
and by lower and upper expectations [Walley, 1991, Augustin et al., 2014]. Although
very interesting, we did not use them in our applications and thus do not consider
them in this thesis.

Figure 2.1: Diagram representing the relationship between different IP models presented
throughout Section 2.3.

As stated previously, a core concept of IP is the concept of lower and upper probabil-
ities. Similarly to precise probabilities, a lower probability P and an upper probability P
are mappings from a σ-algebra A to [0, 1]. However, while a probability P gives a single
measure of uncertainty for every event, lower and upper probabilities provide two bounds
for every event, allowing them to express more complex uncertainty structures.

Remark: Formally, a lower probability P needs to be super-additive, i.e. to satisfy:

∀A,B ∈ A, if A ∩B ̸= ∅, P (A ∪B) ⩾ P (A) + P (B) (2.1)

Conversely, an upper probability is sub-additive, meaning that it verifies the same
property as Equation (2.1) but with the inequality reversed.

Those properties are less constraining than their equivalent for precise proba-
bilities in Definition 1, so lower and upper probabilities are generally not precise
probabilities. The only case where they are precise probabilities is when P = P ,
because P is then additive as it is both super and sub-additive. In this case, IP are
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actually a single precise probability. This illustrates the fact that precise probabilities
are special cases of IP.

Precise probabilities define a measure of uncertainty towards a random variable X
taking numerical values. IP however, can model the uncertainty towards a random vari-
able taking set values instead of numerical one. We then say that X is a random set
instead of a random variable. That being said, IP can also represent the uncertainty of
random variables for which we assume a precise probability exists, but we are not able to
determine it precisely. Indeed, lower and upper probabilities form the bounds of a family
of precise probabilities called credal set.

Given a lower probability P and an upper probability P , a credal set M is the set of
all probabilities P that are greater that P and lower that P :

M(P , P ) = {P | ∀A ∈ A, P (A) ⩽ P (A) ⩽ P (A)} (2.2)

Definition 5: Credal set

We refer to M(P , P ) as M when no confusion is possible. Credal sets allow considering
multiple probabilities at once, which improves on the limited expressiveness of a single
probability measure. The gap between the two bounds of a credal set reflects how impre-
cise is the model, in terms of epistemic uncertainty.

Conversely, we can define lower and upper bounds from a set of probabilities M as:

∀A ∈ A, P (A) = inf
P ∈M

P (A)

∀A ∈ A, P (A) = sup
P ∈M

P (A)

Note that M, contrary to M(P , P ), is not necessarily defined by P , P . Therefore, even
though M and M(P , P ) have the same bounds on events, they are not necessarily equal
and only M ⊆ M(P , P ) holds.

Although it is not required, we usually assume that credal sets verify additional prop-
erties expressed as follows:

A credal set M is said to avoid sure loss if it contains at least one probability measure,

Definition 6: Coherence and Avoiding sure loss
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i.e. if

M ̸= ∅ (2.3)

In this thesis, we consider that a credal set M induces coherent lower and upper
probabilities if its lower and upper bounds on all events are attained by a probability
measure, i.e. if:

∀A ∈ A,∃P, P ′ ∈ M s.t. P (A) = P (A) and P (A) = P ′(A) (2.4)

The bounds P , P of a coherent credal set verify the following property:

∀A ∈ A, P (A) = 1 − P (Ac) (2.5)

which is a generalization of the classical property for computing the complement of an
event with precise probabilities. This allows us to only specify the lower bound P of
a credal set to completely describe it, as its upper bound is determined by P through
complementation. Defining a credal set requires specifying much more constraints on the
probability space than in the case of probability distributions. Indeed, a lower probability
must be defined on every possible event, while a precise probability can be defined by its
PDF on possible values only (instead of possible events). In the case of a discrete space
with n elements, a probability is completely determined by its values on the n atoms,
while a lower bound is completely determined by its values on the 2n considered events.

Remark: Sampling from a credal set is not straightforward. Multiple methods exist,
the most intuitive consisting in sampling distributions from the credal set extreme
points.

Remark: With the way we defined a credal set M, it is closed and convex. This is
a common way of constructing credal sets, but is not the only way. We could for in-
stance impose that all probabilities in M belong to a family of Gaussian probabilities,
which would prevent M from being convex.

When constructing credal sets, it is common to possess a non-convex set of probabil-
ities S. In that case, we can define the convex hull of a set of probabilities S:
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The convex hull (CH) of a set of probabilities S is the smallest (convex) credal set
containing S.

Definition 7: Convex Hull

Remark: The convex hull is computationally heavy to evaluate. Determining the
infimum and supremum of a set of probability is not trivial, as it might be required
to iterate through every element of S. It is however very useful, especially in the case
where we do not know the set bounds on every event. In that case, computing the
convex hull also allows us to determine the bounds on those events.

Example 4: Let us consider the scenario presented in Example 3 and model the
uncertainty with a credal set instead of a single probability distribution. Because we
have no information on the value written on the card except that it is in {1, 2, 3}, we
characterize the uncertainty by lower and upper probability P , P defined as follows:

P (X = 1) = P (X = 2) = P (X = 3) = 0

P (X = 1) = P (X = 2) = P (X = 3) = 1

P (X ∈ {1, 2, 3}) = P (X ∈ {1, 2, 3}) = 1

We can use Equation (2.5) for computing the bounds of remaining events.

Here, the credal set is the largest credal set possible, as its bounds are always 0
and 1 for events that are not ∅ or {1, 2, 3}. We say that it is the vacuous credal set, as
it does not encode any information. It however solves the problem of a contradicting
probability when evaluating the value of the card and its parity presented in Example 3

2.3.3 Belief Functions

A special case of IP are belief functions, which we will detail in this section. First, we
will introduce a key concept that goes along belief functions: mass distribution functions.
We will then derive belief functions from it.

Let X be a set of possible outcomes, and 2X its power set. A mass distribution
function (or basic probability assignment [Shafer, 1976]) is a function m : 2X → [0, 1]

Definition 8: Mass distribution function
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s.t.:

m(∅) =0 (2.6)∑
a⊆X

m(a) =1 (2.7)

There are multiple ways of interpreting m(a), presented as follows:

• If we consider a random set X, then m(a) encodes the probability mass that X
takes a as its set value.

• If X is a random variable, then m(a) encodes the available evidence that the nu-
merical value of X is exactly in a, without any preferences for the values within a.
This means there could also be other evidence that X is in a′ ⊂ a, encoded with
m(a′), and which could be either more or less than m(a) depending on the amount
of evidence available. Example 5 illustrates this with a toy scenario.

• m(a) can also be linked to precise probability masses defined in Definition 4. If
we assume there exists an unknown underlying probability measure P for X, m(a)
measures the probability mass that is assigned to a, but that can move freely to
every point of a without any preference. In other words, with more information, we
could distribute m(a) to every element of a, and doing this for all a would lead to
a precise probability mass distribution.

Remark: Equation (2.6) translates the fact that there is no evidence that the un-
certain variable belongs to the empty set, i.e. that it is not defined. Relaxing this
constraint allows accepting a certain amount of contradiction in our model. Equa-
tion (2.7) is a convention, which states that the total amount of evidence equals 1.
It is similar to probabilities, which cannot be more than 1.

Let X be a set of possible outcomes, 2X its power set, and m : 2X → [0, 1] a mass
distribution function. A set a ⊆ X is called a focal set of m if and only if:

m(a) > 0 (2.8)

Definition 9: Focal set

Focal sets thus represent sets of the set of possible outcomes for which we have evidence.
The set of all focal sets is sometimes referred to as the core of m.
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Let X be the set of possible outcomes, 2X its power set, and m : 2X → [0, 1] a mass
distribution function.

We define the belief function associated with m as the function Bel : 2X → [0, 1]
who associates to all events A in 2X :

Bel(A) =
∑
a⊆A

m(a)

We define the plausibility function associated with m as the function Pl : 2X →
[0, 1] who associates to all events A in 2X :

Pl(A) =
∑

a
a∩A ̸=∅

m(a)

Bel and Pl are special cases of lower and upper probabilities, and thus induce a credal
set M(Bel,Pl) defined as:

M(Bel,Pl) = {P | ∀A ⊆ X ,Bel(A) ≤ P (A) ≤ Pl(A)}

Definition 10: Belief function, Plausibility function

We can interpret Bel(A) as the amount of evidence that fully support A, and Pl(A) as
the amount of evidence that is consistent (or does not contradict) with A.

Bel and Pl are special cases of lower and upper probabilities, and verify (2.5) as for
all events A it holds:

Bel(A) =
∑
a⊆A

m(a)

=
∑
a∈X

m(a) −
∑
a̸⊆A

m(a)

= 1 −
∑

a
a∩Ac ̸=∅

m(a)

= 1 − Pl(Ac)

Because Pl is completely determined by Bel through complementation, we will refer to
M(Bel,Pl) simply as M(Bel).

Belief functions possess interesting properties, making the credal set they induce both
coherent and avoiding sure loss, motivating their extensive usage.
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Example 5: Defining mass and belief functions

Let us imagine an experiment where you try to estimate the pressure of the tires
of your bike, but your bicycle pump only have graduation every 1 bar. You are able
to do three measurements:

• The first measure, the needle seems to be between 4 and 5 bar.

• The second measure, the needle seems to be between 4.5 and 6 bar.

• The third measure, the needle seems to be between 4.5 and 5.5 bar.

Let us say that you trust your last measurement the most, because you got used to
the movement of the needle. It is now possible to model the uncertainty of your tire
pressure using available evidence, encoded in m:

m([4, 5]) = 0.3 m([4.5, 6]) = 0.3 m([4.5, 5.5]) = 0.4

Based on this, we are now able to express our degree of belief and of plausibility for
all events. For instance:

• Our degree of belief that the pressure lies in [4, 5] is Bel([4, 5]) = 0.3, that it lies
in [4, 5.5] is Bel([4, 5.5]) = 0.7 and that it lies in [4, 6] is Bel([4, 6]) = 1

• The degree of plausibility that the pressure equals 5 is Pl(5) = 1 (totally plau-
sible), that it equals 5.5 is Pl(5.5) = 0.7 and that it equals 4 is Pl(4) = 0.3.

2.3.4 Possibility Distributions

Other convenient models of uncertainty are possibility distributions, which are a specific
case of imprecise probabilities, as presented in Figure 2.1. We will see that they induce a
particular type of belief functions, and will be used in our applications.

Let X be the set of possible outcomes. A possibility distribution is a function π :
X → [0, 1] satisfying:

∃x ∈ X , π(x) = 1 (2.9)

The value π(x) represents the degree of possibility of x, with π(x) = 1 indicating full
possibility, and π(x) = 0 indicating impossibility.

Definition 11: Possibility distribution
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Another notion closely related to possibility distributions is that of α-cuts:

Let π : X → [0, 1] be a possibility distribution. Given any α ∈ [0, 1], we define the
α-cut of π as:

απ = {x | π(x) ⩾ α} (2.10)

An α-cut is thus the set of all elements of X whose possibility level is more than α.

Definition 12: α-cut

It has been proven in [Dubois and Prade, 1992] that a possibility distribution defines
a specific type of plausibility functions called possibility function and noted Π. It
also defines a specific belief function by duality called necessity function and noted
Nec, as well as a credal set M(π). They are defined as:

Π(A) = sup
x∈A

π(x) (2.11)

Nec(A) = 1 − sup
x∈Ac

π(x) (2.12)

M(π) = {P | ∀A, P (A) ⩽ sup
x∈A

π(x)} (2.13)

= {P | ∀A, P (A) ⩽ Π(A)} (2.14)

= {P | ∀A, P (A) ⩾ Nec(A)} (2.15)

Definition 13: Necessity and Possibility measures

Example 6: Defining a possibility distribution

Let us imagine the same setting as Example 5, where we try to estimate the
pressure of the tires of our bike, but our bicycle pump only has graduations every 1
bar. We are able to do the following measurements:

• During the first measurement, the needle seems to be around 4 bar.

• During the second measurement, the needle seems to be around 5 bar.

• During the third measurement, the needle seems to be around 4.5 bar.

Let us say that we trust our measurement with a precision of ±0.5 bars. For simplicity,
we also only consider pressure values that are integers or half integers. Taking into
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considerations all the measurements, we can define a possibility distribution π as:

• The value of 4.5 being the most possible, π(4.5) = 1.

• Values between 4 and 5 bar being highly possible, we can for instance fix π(4) =
π(5) = 0.8

• Values 3.5 and 5.5 are unlikely but not impossible, we can say that π(3.5) =
π(5.5) = 0.3

• Other values are impossible, thus they have a possibility of 0.

The possibility distribution π is represented in Figure 2.2. Based on this, we are now
able to express the degree of necessity and possibility for all events. For instance:

• The degree of necessity that the pressure lies between 4 and 5 bar is Nec([4, 5]) =
1 − supρ ̸∈[4,5] π(ρ) = 0.7

• The degree of necessity that the pressure lies between 3.5 and 5.5 bar is:

Nec([3.5, 5.5]) = 1 − sup
ρ ̸∈[3.5,5.5]

π(ρ) = 1

meaning that the pressure is necessarily in this range.

• The degree of possibility that the pressure is either 3.5 or 5 is Π({3.5, 5}) =
supρ∈{3.5, 5} π(ρ) = 0.9 (mostly possible).

• etc. for every possible event.
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Figure 2.2: Possibility distribution of Example 6 and one of its α-cut in blue
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Remark: If you are familiar with fuzzy sets, you may have noticed that possibility
distributions are similar to membership functions of a fuzzy set. Links between fuzzy
sets and possibility measures have been explored in [Zadeh, 1999].

Focal sets of necessity functions can be determined directly from the possibility distri-
bution by looking at their α-cuts. It has been proven that the core C (the set containing
all focal sets) of a necessity function is ([Couso et al., 2001]):

C ={απ | α ∈ [0, 1]}

={ {x ∈ X | π(x) ⩾ α} | α ∈ [0, 1] }

With the way focal sets are defined, they form a nested family of sets with regard to
inclusion. Indeed, if an element of X belongs to an α-cut, then its possibility is greater
than α and therefore belongs to any other α′-cut with a lower α′. For simplicity, we will
assume that the focal sets a1, . . . , an are already numbered using the inclusion order,
i.e. a1 ⊂ . . . ⊂ an. In this case, we will refer to the inclusion order as the “natural” order
for possibility distributions.

Remark: The fact that focal sets form a nested family of sets in the case of possibility
distributions also implies that if X is finite and contains n elements, then there can
be at most n focal sets. For comparison, belief functions can have a maximum of
2n − 1 focal sets (as the empty set cannot be a focal set). This means that necessity
functions have fewer degrees of freedom than (some) belief functions, and thus can
express fewer uncertainty structures. This drawback comes with the advantage of
being more straightforward to construct, as we only need to specify the mass of n
focal sets (or the possibility of the n elements of X ) instead of 2n − 1. Indeed, when
we think of a random variable like the outcome of a die, it can seem more natural for
someone to specify degrees of possibility for each side separately than it is to specify
degrees of plausibility for different sets of outcomes.

As such, possibility distribution have been used to model experts’ opinion in do-
main such as water contamination [Bárdossy et al., 1995], soil contamination and
radioactive risk assessment [Baudrit and Dubois, 2005, Baudrit, 2005, Baudrit et al.,
2007] or weather forecasting [Le Carrer and Ferson, 2021]. Following the same phi-
losophy, we will use possibility distributions in Chapter 5 to model the uncertainty
of a measure of similarity between two image patches.

Specifying a probability distribution often comes down to specifying the probabil-
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ity mass function over all atoms of the set of possible outcomes. In a way, possibility
distributions are constructed the same way, as we specify the possibility (or the upper
bounds) of every atom. One important difference is that the condition “the sum of all
masses must be equal to 1” is relaxed into a less constraining condition “the possibility
distribution must be equal to 1 at least once”. In that respect, it is easier to construct
a well-defined possibility distribution than it is to construct a well-defined probability
distribution. However, the comparison stops there, as the two models does not represent
the same type of uncertainty.

Remark: Any probability distribution P is a belief function Bel, for which focal
sets are only composed of singletons (atoms) and the mass distribution function of
Bel equals the probability mass function of P on atoms. However, a possibility
distribution cannot model a probability distribution. Indeed, this would impose that
its necessity Nec and plausibility Π functions verify:

∀A, Nec(A) = Π(A)

⇔ 1 − sup
x∈Ac

π(x) = sup
x∈A

π(x)

⇔ sup
x∈A

π(x) + sup
x∈Ac

π(x) = 1

Consider this equation for any x′ verifying π(x′) = 1. This leads to the conclusion
that any x ̸= x′ has a possibility of 0, implying that it is impossible for a random set
or random variable to take any other value than x′, rendering it not-random.

2.3.5 P-boxes

Another special type of belief function that is commonly used is that of probability boxes,
more commonly called p-boxes. Formally, a p-box is a pair of precise cumulative distri-
bution functions [F , F ] defining lower and upper bounds on all cumulative events:

Let X be the set of possible outcomes. A p-box is a pair of CDFs [F , F ] from X to
[0, 1] such that:

∀x ∈ X , F (x) ⩽ F (x) (2.16)

If X is not a subset of R, then there must exist a total order on X to define a
generalized p-box [Destercke et al., 2008].

Definition 14: P-box
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Remark: A probability distribution can be both determined by specifying its values
on every atom or by specifying its values on cumulative events. We saw in Sec-
tion 2.3.4 that possibility distributions are defined by bounds on atoms. Because
p-boxes are defined by bounds on cumulative events, we could say that a p-box is the
“imprecise way” of defining a probability using cumulative events, and a possibility
distribution is the “imprecise way” of defining a probability using atoms.

The credal set M induced by a p-box [F , F ] is:

M([F , F ]) = { F | ∀x ∈ X , F (x) ⩽ F (x) ⩽ F (x) } (2.17)

P-boxes are special cases of belief functions. It has been proven in [Destercke et al.,
2008] that focal sets of p-boxes have a specific form. Although focal sets shapes are
reminiscent of possibilities’ α-cuts (see Figure 2.3), they are a bit more complex to
express formally. If X = {x1, . . . , xn} with x1 ⩽ . . . ⩽ xn, then focal sets α[F , F ] of
[F , F ] are given for every α ∈ [0, 1] by the following expression:

α[F , F ] = [[F−1(α), F−1(α)]] (2.18)

where [[·, ·]] are intervals of integers, and F−1, F−1 are the respective pseudo-inverse
of F and F defined for every α ∈ [0, 1] by:

F
−1(α) = min{xi s.t. F (xi) ⩾ α}

F−1(α) = min{xi s.t. F (xi) ⩾ α}

Still in [Destercke et al., 2008]), it has been shown that the mass of each focal
set [[xi, xj]] equals to :

m([[xi, xj]]) = min(F (xi), F (xj)) − max(F (xi−1), F (xj−1)) (2.19)

With the convention that max(F (xi−1), F (xj−1)) = 0 if xi is the first element and
thus xi−1 is ill-defined.

Definition 15: Focal sets of p-boxes

Because of their shape, focal sets of p-boxes can be totally ordered through the so-
called lattice ordering on X . It can be easily observed by looking at Figure 2.3. If a and
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b are two focal sets of the same p-box [F , F ], then they are ordered as follows:

a ⩽ b ⇔ min(a) ⩽ min(b) and max(a) ⩽ max(b) (2.20)

As F ⩽ F , we are assured that there cannot be any case where min(a) < min(b) and
max(a) > max(b). We can also define the order of focal sets using the definition of
Equation (2.18) for every α, β ∈ [0, 1]2:

[[F−1(α), F−1(α)]] ⩽ [[F−1(β), F−1(β)]] ⇔ α ⩽ β

Given the shape of focal sets, there can be at most 2n − 1 of them in the set of n
possible outcomes. This is more degree of freedom than possibility distributions, but less
than general belief functions.

Remark: Contrary to possibility distributions that cannot equal to a single proba-
bility distribution, if a p-box [F , F ] verifies F = F , then its credal set is composed
of a single probability distribution whose CDF F equals F and F . P-boxes are thus
generalizations of precise probability distributions.
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Figure 2.3: A p-box [F , F ], a precise CDF F in its credal set, and one of its focal elements
α[F , F ] in blue

2.4 Dependency Models: Copulas

During previous sections, we presented different models of uncertainty that will be con-
sidered throughout this thesis. When we will be aggregating and propagating uncertainty
over multiple variables in Chapters 3 and 4, we will need to take into account the de-
pendencies between our uncertain variables. In this section, we will present dependency
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models known as copulas, which are mathematical tools used to represent the dependency
between multiple random variables. Copulas can represent many types of dependency,
ranging from complete monotonicity to complete counter-monotonicity, including inde-
pendence between variables. Section 2.4.1 will present the mathematical definition of a
copula, as well as practical families of copulas and how they can model different depen-
dencies. Finally, we present how to generate multivariate samples from a copula, which
will be used in Section 4.3.2.

2.4.1 Core Definitions and Examples

In the following, let n ∈ N∗ be the number of uncertainty variables considered (either
represented by random variables or random sets). We first introduce copulas, which
are mapping from [0, 1]n → [0, 1] verifying a number of properties, and that can model
dependencies when considering Sklar’s Theorem, which will be presented in this section.

A copula is a multivariate cumulative distribution function C : [0, 1]n → [0, 1] whose
marginals follow uniform distributions on [0, 1]. It can be interpreted as a joint
cumulative distribution of n random variables. For all i ∈ [[1, n]], we will refer to
ui ∈ [0, 1] as its i-th variable (or marginal). A copula satisfies a number of properties:

if ∃j ∈ [[1, n]] s.t. uj = 0, then C(u1, . . . , uj, . . . , un) = 0 (2.21)

∀i ∈ [[1, n]], C(1, 1, . . . , 1, ui, 1, . . . , 1) = ui (2.22)

∀(v1, . . . , vn) ∈ [0, 1]n s.t. ∀i ∈ [[1, n]], vi ⩾ ui∑
(w1, ..., wn)∈

∏n

i=1{ui,vi}

(−1)|{i | wi=ui}|C(w1, . . . , wn) ⩾ 0 (2.23)

where ∏n
i=1 is the Cartesian product of n elements, meaning that (w1, . . . , wn) ∈∏n

i=1{ui, vi} is a tuple of n elements, where each element is either ui or vi. Addition-
ally, |{i | wi = ui}| refers to the cardinal of the set {i | wi = ui}. An interpretation
of the value of Equation (2.23) is presented in the next remark.

Definition 16

The first term in Equation (2.23) is also called H-volume or hyper-volume. It is used to
compute joint probability mass assignments in the precise case (and also in the imprecise
case, see Section 3.1.2). We will now use the following notation to refer to the H-volume:

∀i ∈ [[1, n]], ∀ 0 ⩽ ui ⩽ vi ⩽ 1,

Hv1, ..., vn
u1, ..., un

=
∑

(w1, ..., wn)∈
∏n

i=1{ui,vi}

(−1)|{i | wi=ui}|C(w1, . . . , wn) (2.24)

70



Chapter 2

Remark: The formula of the H-volume actually represents the probability that n-
uniform random variables are in the hyper rectangle [u1, v1] × · · · × [un, vn]. However,
it is difficult to see this interpretation in the general case just by looking at the
formula. For simplicity, consider the two-dimensional case. Using the interpretation
of a copula C as a CDF, we can image two random uniform variables U1 and U2 on
[0, 1] for which C is their CDFs. We thus have for all (u1, u2) ∈ [0, 1]2:

P (U1 ⩽ u1, U2 ⩽ u2) = C(u1, u2)

Let (u1, u2) ∈ [0, 1]2 and (v1, v2) ∈ [0, 1]2 s.t. u1 ⩽ v1 and u2 ⩽ v2. Computing the
H-volume of C between (v1, v2) and (u1, u2) yields:

Hv1,v2
u1,u2 = C(v1, v2) − C(v1, u2) − C(u1, v2) + C(u1, u2)

= P (U1 ⩽ v1, U2 ⩽ v2) − P (U1 ⩽ v1, U2 ⩽ u2)

− P (U1 ⩽ u1, U2 ⩽ v2) + P (U1 ⩽ u1, U2 ⩽ u2)

= P (U1 ⩽ v1, u2 < U2 ⩽ v2) − P (U1 ⩽ u1, u2 < U2 ⩽ v2)

= P (u1 < U1 ⩽ v1, u2 < U2 ⩽ v2) (2.25)
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Figure 2.4: Schematic representation of the H-volume

Equation (2.25) means that the H-volume represent the probability of the event

u1 < U1 ⩽ v1, u2 < U2 ⩽ v2

or in other words, the probability that (U1, U2) is in the hyper rectangle [u1, v1] ×
[u2, v2] (the intervals can be open or closed in the continuous case, the probability
remains the same). Verifying this result for the n-dimensional case can be done
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similarly. Example 7 illustrates how the H-volume can be used to compute the discrete
joint mass distribution function in the two-dimensional case.

A central theorem regarding copulas is Sklar’s Theorem [Sklar, 1959]:

Let F : X1 × · · · × Xn → [0, 1] be a multivariate cumulative distribution function,
where Xi ⊆ R. The marginals Fi of F are defined as ∀i ∈ [[1, n]],∀x ∈ Xi, Fi(x) =
F (+∞, . . . , +∞, x,+∞, . . . , +∞) where x is the i-th component of F . If all Fi

are continuous, then a unique copula C exists:

∀(x1, . . . , xn) ∈ Rn
, F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) (2.26)

If some Fi are not continuous, then C is unique on the product of the ranges of all
Fi.

The reverse is also true: any copula applied to univariate cumulative distribution
functions yields a multivariate cumulative distribution function whose marginals are
the univariate CDFs.

Theorem 1: Sklar’s Theorem

Sklar’s Theorem thus allow to express any multivariate CDF by means of its marginal
CDFs. Conversely, we can join multiple CDFs with a copula to create a multivariate CDF.
A copula thus expresses the dependency between a multivariate CDF and its marginals.

Remark: For marginals Fi that are not continuous, then there can exist multiple
copula C verifying Equation (2.26). However, if we note Fi(Xi) the image of Xi

through Fi, then there exists a unique copula C on the ranges of images F1(X1) ×
· · · × Fn(Xn). The restriction of a copula to a subset of In containing 0 and 1 is
called a sub-copula. Because we work in discrete spaces, we will mostly work with
sub-copulas, but the difference will be mostly transparent.

Copulas are very useful to represent the dependencies between multiple uncertain
variables. As such, they can play a key role in uncertainty propagation problems, explored
in Chapter 4.

Example 7: Usefulness of the H-Volume

This example will illustrate how the H-volume of a copula is used to compute the
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probability mass function of a multivariate probability. Let us imagine a game where
a dealer throws two coins, and we are interested in the joint result of the throws. We
consider the two random variables X1 and X2 indicating the results of each throw:

X1 = 0 if the first coin is heads, otherwise X1 = 1

X2 = 0 if the second coin is heads, otherwise X2 = 1

Let P1 and P2 be the probability distributions of X1 and X2 respectively, and assume
that both heads and tails are possible outcomes for both coins. We now consider the
joint probability distribution P associated with the random variable (X1, X2), and
we want to compute the probability mass distribution of P . We denote F1, F2 and
F the respective CDFs of P1, P2 and P . With this definition, F1 and F2 are the
marginals of F , and Sklar’s theorem states that there exists a copula C such that
F = C(F1, F2).

The probability mass distribution of P can be computed by using the H-volume.
For instance, let us start by computing P (1, 1). By noticing the fact that:

{x ∈ X | X1(x) = 1} = {x ∈ X | F1(X1(x)) = F1(1)}

we can write that:

P (X1 = 1, X2 = 1) = P (F1(X1) = 1, F2(X2) = 1)

= P (F1(0) < F1(X1) ⩽ F1(1), F2(0) < F2(X2) ⩽ F2(1))

A common result in statistics states that random variables of the form U1 = F1(X1)
and U2 = F2(X2) are uniform on [0, 1]. We can thus apply the result from Equa-
tion (2.25), which yields

P (X1 = 1, X2 = 1) = P (F1(0) < U1 ⩽ F1(1), F2(0) < U2 ⩽ F2(1))

= H
F1(1), F2(1)
F1(0), F2(0)

The probability of the atom (1, 1) is therefore equal to the H-volume computed be-
tween CDFs (F1, F2) at (1, 1) and at (0, 0). Following a similar reasoning, we can
compute the probability of every atom and express them as H-volumes:

P (X1 = 0, X2 = 1) = H
F1(0),F2(1)
0,F2(0)

P (X1 = 1, X2 = 0) = H
F1(1),F2(0)
F1(0),0

P (X1 = 0, X2 = 0) = H
F1(0),F2(0)
0,0
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It is possible to generalize our observation: the probability of an atom (x1, . . . , xn)
is the H-volume computed between marginals CDFs (F1, . . . , Fn) at (x1, . . . , xn)
and at the marginal atoms that precedes them. If x1 is the smallest number, then the
marginal CDF F1 before it equals 0, etc. Example 8 presents numerical applications
of this example with different copulas.

It follows from (2.23) that a copula is a component-wise increasing mapping. All
copulas are actually dominating and dominated by two bounds (called lower and upper
Fréchet–Hoeffding bounds):

∀ui ∈ [0, 1]n,

max(0, 1 − n+
n∑

i=1
ui) ⩽ C(u1, . . . , un) ⩽ min(u1, . . . , un) (2.27)

The upper bound is a copula, usually called the Minimum copula CM . It is used to model
co-monotonic variables, i.e. variables for which high values occur at the same time (or
similarly, where low values tend to occur simultaneously). Co-monotonicity implies a
maximal covariance between variables.

The lower bound is a copula only in the case n = 2, called the Łukasiewicz copula
CL(u1, u2) = max(0, u1 + u2 − 1). It is used to model counter-monotonic variables, i.e.
variables with a perfect negative dependence between them. This explains why the lower
bound is not a copula in dimensions higher than 2. Indeed, if X has a perfect negative
dependence with Y and Z, then Y and Z cannot share a perfect negative dependence.
However, for every u1, . . . , un, there always exists a copula C attaining the lower bound
(which can differ for different u1, . . . , un):

∀(u1, . . . , un) ∈ [0, 1]n, ∃C s.t. C(u1, . . . , un) = max(0, 1 − n+
n∑

i=1
ui)

Independence between variables is modeled by the product copula CΠ:

CΠ(u1, . . . , un) =
n∏

i=1
ui = u1 · . . . · un

where “·” refers to the product between two scalars, as the symbol × is already used for
the Cartesian product. The product copula will be used later in Section 3.2.1. Graphical
representations of the Łukasiewicz, product and Min copulas are displayed in Figure 2.5.
Example 8 presents a setting where the Product, Minimum and Łukasiewicz copulas are
used to model dependency between random variables.
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Example 8: Different copulas for different dependencies

Let us try to illustrate how different copulas can represent different dependencies.
Consider the same setting as Example 7 with two coins being thrown. For the purpose
of the example, assume that the dealer throws the coins in a separate room, and comes
back to tell the result. We thus never see if he is cheating or not. He only provides
us this piece of information: coins seems fair when looked at separately. We therefore
have the following marginals:P1(heads) = P1(0) = 0.5

P1(tails) = P1(1) = 0.5
and

P2(heads) = P2(0) = 0.5

P2(tails) = P2(1) = 0.5

• Assume that the dealer is not cheating and that the two coin throws are in-
dependent. In that case, the product copula CΠ(u, v) = u · v must be used to
represent the independence between variables. Using results from the previous
example, it holds that:

P (1, 1) =HF1(0),F2(0)
F1(1),F2(1) = 1 · 1 − 0.5 · 1 − 1 · 0.5 + 0.5 · 0.5

=0.25

P (1, 0) =HF1(1),F2(0)
F1(0),0 = 0.25

P (0, 1) =HF1(0),F2(1)
0,F2(0) = 0.25

P (0, 0) =HF1(0),F2(0)
0,0 = 0.25

Remark that we indeed find the same results as if we directly multiplied the
marginal probability mass distributions: P (1, 1) = P1(1) · P2(1), etc. We thus
observe the famous result: if P1 and P2 are independent, then P = P1 · P2.

• Imagine now that the dealer is not being fair, and actually forces the second
throw to land on the same side as the first one (the coins will still seem fair when
looked at separately). This kind of dependency is modeled by the Minimum
copula CM(u, v) = min(u, v). In this case, the joint probability is computed as
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follows:

P (1, 1) =HF1(0),F2(0)
F1(1),F2(1) = min(1, 1) − min(0.5, 1) − min(1, 0.5) + min(0.5, 0.5)

=0.5

P (1, 0) =HF1(1),F2(0)
F1(0),0 = min(1, 0.5) − min(1, 0) − min(0.5, 0.5) + min(0, 0.5)

=0

P (0, 1) =HF1(0),F2(1)
0,F2(0) = 0

P (0, 0) =HF1(0),F2(0)
0,0 = min(0.5, 0.5) = 0.5

The values taken by the joint probability are now completely different from the
independence case. We see that values (0, 1) and (1, 0) are indeed impossible to
obtain, while (1, 1) and (0, 0) are equiprobable.

• Imagine now that the dealer is still not being fair, but this time forces the
second coin to land on the first coin’s opposite side. In other words, if the
first coin lands on heads, then the dealer puts the second coin on tails, and
inversely. Looking at marginal distributions separately will still suggest that
the coins are fair. However, they appear fully counter-monotone when looked
at jointly. In this case, the dependency is modeled by the Łukasiewicz copula
CL(u, v) = max(0, u+ v − 1), and the joint probability equals:

P (1, 1) =HF1(0),F2(0)
F1(1),F2(1) = max(0, 1 + 1 − 1) − max(0, 0.5 + 1 − 1)

− max(0, 1 + 0.5 − 1) + max(0, 0.5 + 0.5 − 1)

=0

P (1, 0) =HF1(1),F2(0)
F1(0),0 = max(0, 1 + 0.5 − 1) − max(0, 1 + 0 − 1)

− max(0, 0.5 + 0.5 − 1) + max(0, 0 + 0.5 − 1)

=0.5

P (0, 1) =HF1(0),F2(1)
0,F2(0) = 0.5

P (0, 0) =HF1(0),F2(0)
0,0 = max(0, 0.5 + 0.5 − 1) = 0

The values taken by the joint probability is now completely different than in
the other cases. We see that values (1, 1) and (0, 0) are indeed impossible to
obtain, while (0, 1) and (1, 0) are equiprobable.

Those three cases indicate how copulas can represent very different dependency struc-
tures from the same marginals. It also makes it intuitive that the Łukasiewicz copula
only allows values that are “opposite”, whereas the Minimum copula only allows val-
ues that are similar. In those examples, the dependency is so important that knowing
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the result of one coin throw determines the result of the second, which is therefore
modeled by extreme copulas, i.e. the upper and lower Fréchet-Hoeffding bounds. We
will see in the following that there are other families of copula that allow less “ex-
treme” dependencies.

To complete this overview of copulas, let us present other copulas that can be gener-
ated using a single parameter θ in the case n = 2. Some famous families of copulas are
presented in Table 2.1. Those families are quite common in the literature, but this list is
not exhaustive.

Another important family of copulas is the family of Gaussian copulas. Each Gaussian
copula is generated with a correlation matrix R ∈ [−1, 1](n,n):

CR(u1, . . . , un) = ΦR(Φ−1(u1), . . . , Φ−1(un)) (2.28)

where ΦR is the joint multivariate cumulative distribution function of a Gaussian variable
with correlation matrix R, and Φ−1 is the inverse cumulative distribution function of a
univariate Gaussian variable. We do not know an exact form for ΦR, but we can compute
it by integrating its associated Gaussian PDF:

ΦR(Φ−1(u1), . . . , Φ−1(un)) =

∫ Φ−1(u1)

−∞
. . .
∫ Φ−1(un)

−∞

1√
(2π)n|R|

exp

−1
2
[
x1 . . . xn

]
R−1


x1

. . .

xn


 dx1 . . . dxn

(2.29)

Where |R| is the determinant of R. This family of copulas will be used in Section 4.1
to model the dependency between the random intensities of pixels of stereo images, for
instance.

Remark: The product copula is actually a Gaussian copula with the identity matrix
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Figure 2.5: Bird view of the Łukasiewicz, product and Min copulas for n = 2. Dashed
gray lines represent isolines of the copulas.

In as its covariance matrix:

ΦR(Φ−1(u1), . . . , Φ−1(un)) =

∫ Φ−1(u1)

−∞
. . .
∫ Φ−1(un)

−∞

1√
(2π)n|In|

exp

−1
2
[
x1 . . . xn

]
I−1

n


x1

. . .

xn


 dx1 . . . dxn

=
∫ Φ−1(u1)

−∞
. . .
∫ Φ−1(un)

−∞

1√
(2π)n

exp(−1
2

n∑
i=1

x2
i )dx1 . . . dxn

=
∫ Φ−1(u1)

−∞

1√
(2π)

exp(−1
2x

2
1)dx1 . . .

∫ Φ−1(un)

−∞

1√
(2π)

exp(−1
2x

2
n)dxn

=
∫ Φ−1(u1)

−∞
Φ′(x1)dx1 . . .

∫ Φ−1(un)

−∞
Φ′(xn)dxn

= u1 . . . un

Family C(u1, u2) θ ∈ D-convex D-concave

Ali-Mikhail-Haq u1u2
1−θ(1−u1)(1−u2) [−1, 1) θ ⩽ 0 θ ⩾ 0

Clayton
[
max(u−θ

1 + u−θ
2 − 1, 0)

]−1/θ
[−1,∞)\{0} θ < 0 θ > 0

Frank −1
θ

ln(1 + (e−θu1 −1)(e−θu2 −1)
e−θ−1 ) R\{0} θ < 0 θ > 0

Gumbel u1u2 exp(−θ ln u1 ln u2) (0, 1] θ ∈ (0, 1] Never

Table 2.1: Examples of families of copulas in the case n = 2 which can be generated using
a parameter θ. D-convexity/concavity is detailed in the Annex Section 7.1

Remark: As a copula is also a multivariate CDF, one can imagine an “imprecise”
copula [Montes et al., 2015] similarly to what can be done with univariate probability
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distribution (see Section 2.3.2). Imprecise copulas allow modeling partially known
dependencies, but can be hard to manipulate at times, as for instance the lower and
upper bounds of an imprecise copula are not necessarily copulas themselves. In this
thesis, we will not consider imprecise copulas.

2.4.2 Sampling from a Copula

As a copula represents the CDF of a multivariate random variable, it is possible to sample
from it. This section details a method for sampling from copulas in general, and a special
method for sampling from Gaussian copulas. Chapter 4 will use those methods for Monte
Carlo sampling. For simplicity, let us first present a method for sampling in the case
n = 2. Given a copula C, and two CDFs FX and FY , a method to generate a pair of
observations (x, y) from a joint CDF C(FX , FY ) is the following:

• Sample two independent samples u1, u2 from a uniform distribution on [0,1]

• Set v = ∂C−1(u2) where ∂C−1 is the quasi-inverse of the partial derivative of C
with respect to its first variable (which exists almost everywhere and is invertible).

• We now have a sample (u1, v) from a multivariate random variable. Its marginals
follow a uniform distribution on [0, 1], and its associated copula is C.

• The desired pair is (x, y) = (F−1
X (u1), F−1

Y (v)), with F−1
X , F−1

Y being the quasi-
inverses of the marginals CDFs.

We do not present the n-dimensional general case here as it is a bit more complex, but
it can be found in [Cherubini et al., 2004]. However, drawing samples from a Gaussian
n-copula with a correlation matrix R are simpler to obtain:

• Compute the Cholesky decomposition A of the correlation matrix R

• Draw n independent random samples u = (u1, . . . , un)′ from N (0, 1), where N is
the normal distribution.

• Set v = Au

• Set wk = Φ(vk) where Φ is the univariate normal cumulative distribution function

• The desired draw is (x1, . . . , xn) = (F−1
1 (w1), . . . , F−1

n (wn)) with F−1
i , being the

quasi-inverse of the i-th marginal CDF.
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In this chapter, we presented different uncertainty models, whose usage depends on the
type of uncertainty and evidence available. Choosing between the different models is
often a trade-off between expressivity, compatibility and “realism” of the hypotheses of
the considered problem. We also presented a way to combine probabilities by taking
into account the dependency between random variables, using copulas. Copulas are
well suited for probabilities, but their usage with IP is more complex. Chapter 3 will
investigate how IP models can be combined using a copula, and Chapter 4 will use
copulas and imprecise models in a stereo matching problem.

Conclusion
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Using Copulas to Join Credal Sets

In the presence of multiple uncertain variables, the question of how to join them arises.
Using probability distributions, the usual method for joining probability distributions is
to use copulas (Section 2.4). Indeed, Sklar’s Theorem provides a well-defined way of
uniquely joining multiple continuous CDF with a copula. However, this is no longer
true when adding imprecision to the models, as there are multiple ways of specifying
the dependency between imprecise models using a copula. Sections 3.1.1 to 3.1.3 present
three different ways of joining credal sets using a copula. Those three methods are not
equivalent. We thus explore their similarities and differences in Section 3.2. Methods will
be used to join possibility distributions to propagate the uncertainty in Chapter 4.

3.1 Methods for Joining Credal Sets with Copulas

This section will use copulas, introduced in Section 2.4, to join imprecise models in three
different ways. The way we prove the existence of copulas and their usage with Sklar’s
Theorem was based on CDFs [Nelsen, 2006]. However, the IP model closest to CDFs, p-
boxes from Section 2.3.5, does not allow representing every credal set as seen in Figure 2.1.
When working with marginals modeled by Imprecise Probabilities, we will thus define
different methods for using IP with copulas. The first approach in Section 3.1.1 maintains
the classical interpretation of a copula found in Sklar’s Theorem. The multivariate credal
set obtained with this method is however hard to handle computationally. A similar
approach using only the product copula can be already be found in [Couso et al., 2000].
The second approach in Section 3.1.2 takes some distances with the classical interpretation
of a copula, but is easier to handle computationally. It is based on previous work detailed
in [Ferson et al., 2004]. Finally, we introduce a third approach in Section 3.1.3, which
completely abandons Sklar’s Theorem interpretation, but is very easy to handle. Inclusion
relationships between those three approaches are explored in Section 3.2, in order to
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determine which is an approximation of the other.

We consider here n ∈ N∗ uncertain variables (Xi)1⩽i⩽n taking values respectively in a
totally ordered finite space Xi. The index i will usually refer to the i-th random variable
(or random set). We denote Mi as the credal set representing the uncertainty of Xi,
and C a n-copula. We also suppose that Mi the lower bound of Mi is defined by a
belief function. Focal sets of belief functions will be noted ai

k, where k refers to the k-th
focal set, if they are numbered. We also note ⊔ the union of disjoint elements. Finally,
we must introduce the concept of cylindrical sets, used to specify definition domains of
various mappings.

Let X1, . . . , Xn be n sets and let X = X1 × · · · × Xn be the Cartesian product of
X1, . . . , Xn. We call a cylindrical (or cylinder) set X of X a set which can be written
as a Cartesian product of elements of X1, . . . , Xn, i.e.:

X ⊆ X is cylindrical ⇔ ∃(X1, . . . , Xn), s.t. X = X1 × · · · ×Xn (3.1)

Definition 17: Cylindrical sets

3.1.1 Point-wise Aggregation

A first way of creating a joint credal set is to first consider every precise marginal within
each marginal credal sets Mi. We then use Sklar’s Theorem with the copula C to create
a precise multivariate CDF. The set of all resulting CDFs is as follows:

S(C, Mi) =

{F | ∀xi ∈ Xi, Fi ∈ Mi, F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))} (3.2)

This set is not guaranteed to be convex [Schmelzer, 2023]. We thus define the joint
credal set as the convex hull Mrobust of S

We define the robust credal set obtained by joining n marginal credal sets Mi and a
copula C as:

Mrobust(C,Mi) = CH({C(F1, . . . , Fn), Fi ∈ Mi}) (3.3)

where CH is the convex hull presented in Definition 7.

Definition 18: Robust Credal Set
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We refer to this joint credal set as Mrobust(C,Mi) as it contains every element of the
marginal credal sets with copula C as their dependency model. We will omit “(C,Mi)”
when there is no confusion possible to avoid using heavy notations. As we take the
convex hull of S, it is interesting to notice that it can contain additional multivariate
CDFs that do not possess the copula C as their dependency model, as seen in Example 9.
This credal set is usually hard to compute for events that are not Cartesian products of
marginal cumulative events. Indeed, copula being non-linear operators, there is no reason
that their point-wise application would preserve convexity.

Example 9: Consider two coins, with their associated random variable X1 and X2

taking values in X1 = X2 = {heads, tails}. The uncertainty of each random variable
is represented by the following mass distribution function m1 and m2:

m1(heads) = 0.4

m1(tails) = 0.4

m1(X1) = 0.2

m2(heads) = 0.4

m2(tails) = 0.5

m2(X2) = 0.1

The credal sets M1 and M2 associated with X1 and X2 are therefore composed of all
the probabilities P1 ∈ M1 and P2 ∈ M2 verifying:

0.4 ⩽ P1(heads) ⩽ 0.6

0.4 ⩽ P1(tails) ⩽ 0.6

0.4 ⩽ P2(heads) ⩽ 0.5

0.5 ⩽ P2(tails) ⩽ 0.6

If we assume we throw the two coins independently, then their dependency can be
modeled by the product copula CΠ(u, v) = u · v.

The robust credal set Mrobust obtained by joining M1 and M2 with CΠ will there-
fore be the convex hull of the set:

{P | ∀P1 ∈ M1, P2 ∈ M2, ∀(x1, x2) ∈ X1 × X2,

P (x1, x2) = P1(x1) · P2(x2) }

In this specific case the bounds of P ∈ Mrobust on cylindrical sets are quite straight-
forward because we consider binary random variables and the product copula:

0.16 ⩽ P (heads, heads) ⩽ 0.3

0.2 ⩽ P (heads, tails) ⩽ 0.36

0.2 ⩽ P (tails, tails) ⩽ 0.36

0.16 ⩽ P (tails, heads) ⩽ 0.3

Now, let us exhibit a probability from Mrobust that does not have CΠ as its dependency
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model. Consider the following marginal probabilities P1, P
′
1 ∈ M1 and P2, P

′
2 ∈ M2:

P1(heads) = 0.4

P ′
1(heads) = 0.6

P2(heads) = 0.4

P ′
2(heads) = 0.5

Then P = P1 · P2 and P ′ = P ′
1 · P ′

2 both belong in Mrobust, and the convex mixture
P0.5 = 0.5·P+0.5·P ′ is also in Mrobust. We will compute the value of P0.5(heads, heads)
and show that it does not equal to the product of its marginals:

P0.5(heads, heads) = 0.5 · P (heads, heads) + 0.5 · P ′(heads, heads)

= 0.5 · P1(heads) · P2(heads) + 0.5 · P ′
1(heads) · P ′

2(heads)

= 0.5 · 0.4 · 0.4 + 0.5 · 0.6 · 0.5

= 0.08 + 0.15 = 0.23

P0.5(heads,X2) = 0.5 · P1(heads) · P2(X2) + 0.5 · P ′
1(heads) · P ′

2(X2)

= 0.5 · 0.4 + 0.5 · 0.6

= 0.2 + 0.3 = 0.5

P0.5(X1, heads) = 0.5 · P1(X1) · P2(heads) + 0.5 · P ′
1(X1) · P ′

2(heads)

= 0.5 · 0.4 + 0.5 · 0.5

= 0.2 + 0.25 = 0.45

The product of the marginals on heads is therefore equal to

P0.5(heads,X2) · P0.5(X1, heads) = 0.5 · 0.45

= 0.225

̸= 0.23 = P0.5(heads, heads)

therefore P0.5 belongs to Mrobust but does not have CΠ as its copula.

Remark: Due to the convex hull, we can both consider Mrobust as only containing
probabilities on the set X = X1 × · · · × Xn and containing probabilities on 2X . This
applies to the other credal sets as well. We will consider the latter, though the former
has been considered in the literature (for instance [Schmelzer, 2012, Schmelzer, 2023]).
To insist on which marginal events we consider, we will sometimes write P (a1, a2)
instead of P (a1 × a2), even though this notation suggests that P is defined on X and
not 2X .
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Figure 3.1 represents a schematic of Mrobust is obtained. First, two samples F1 and F2

(represented by “+” signs) are sampled from the marginals credal sets M1 and M2. They
are then joined using the copula C to create a multivariate CDF represented by a “x”
sign. This process is then reproduced for every combination of samples in the marginal
credal sets and Mrobust is the convex hull of the set of samples.

M1

M2

+
F1

+

+

+

+

+F2

+

+

+

+ x C(F1, F2)

C

x x

x

x
x

Mrobust

Figure 3.1: Schematic representation of Mrobust

3.1.2 Copula Applied to Cumulative Mass Functions

In this section, we will present another way of creating a joint credal set from multiple
marginal ones. Consider the same copula C as before and the same marginal credal sets
Mi. Each credal set Mi is fully determined by a mass distribution function mi, which is
strictly positive over its Ni focal sets ai

1, . . . , a
i
Ni

. As described in [Ferson et al., 2004], it
is possible to use the cumulative mass distribution functions as marginals of the copula to
create a joint mass distribution function, granted that there is a complete ordering defined
on the focal sets. Links between copulas and belief functions have been investigated in
the continuous case in [Schmelzer, 2015a, Schmelzer, 2019], the special case of necessity
functions in [Schmelzer, 2015b] and of p-boxes in [Schmelzer, 2023].

Let us assume, without loss of generality, that the marginal focal sets are numbered
according to the ordering ⪯i: ai

1 ⪯i a
i
2 ⪯i . . . ⪯i a

i
Ni

. The idea behind this method is to
replace the precise marginal CDFs by cumulative masses, to keep the philosophy behind
Sklar’s Theorem. We thus first define the joint mass mC on the product space of focal
sets as follows:

Let m1, . . . , mn be mass distribution functions over their respective power sets of
X1, . . . , Xn. Assume that focal sets in each Xi are ordered and that ai

ki
is the ki-th

focal set of mi according to the chosen order. We define mC as the H-volume of

Definition 19: Joint Mass
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copula C computed over the cumulative marginal masses:

mC(a1
k1 × · · · × an

kn
) = H

∑k1
k=0 m1(a1

k), ...,
∑kn

k=0 mn(an
k )∑k1−1

k=0 m1(a1
k

), ...,
∑kn−1

k=0 mn(an
k

)
(3.4)

with the convention that ∀i, ai
0 = ∅. It is not strictly a focal set but allows dealing

with the case ki = 1 as mi(ai
0) = 0. For sets that are not of the form a1

k1 × · · · × an
kn

,
the mass mC is null.

Proposition 1: The function mC defined in Definition 19 is a correctly defined mass
distribution function over X .

Proof: To be a mass distribution function over X , mC must verify the 3 properties
of Definition 8.

By construction, it holds that mC(∅) = 0, and the properties of the H-volume
impose that mC ∈ [0, 1].

There are multiple ways of proving that ∑A⊆X mC(A) = 1. A direct proof can be
done in the case n = 2, but the notations become quite heavy for any n > 2. Instead,
let us use the interpretation of a copula as a multivariate CDF. This method will also
be used in future proofs.

For all i ∈ [[0, n]] let Fi be a CDF over [0, Ni], with Fi(j) = ∑j
k=0 mi(ai

k). By
Sklar’s Theorem, F = C(F1, . . . , Fn) is a multivariate CDF over [0, N1]×· · ·×[0, Nn],
and P its PDF. Thus, it holds that P ([0, N1] × · · · × [0, Nn]) = F (N1, . . . , Nn) = 1
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and:

P ([0, N1] × · · · × [0, Nn]) = P ([0, . . . , 0]) +

P

N1−1⊔
k1=0

. . .
Nn−1⊔
kn=0

(]k1, k1 + 1] × · · · ×]kn, kn + 1])


= 0 +
N1−1∑
k1=0

. . .
Nn−1∑
kn=0

P (]k1, k1 + 1] × · · · ×]kn, kn + 1])

(CDF of a union of disjoint elements, as in Figure 3.2)

=
N1−1∑
k1=0

. . .
Nn−1∑
kn=0

H
F1(k1+1), ..., Fn(kn+1)
F1(k1), ..., Fn(kn)

=
N1∑

k1=1
. . .

Nn∑
kn=1

H
∑k1

k=0 m1(a1
k), ...,

∑kn
k=0 mn(an

k )∑k1−1
k=0 m1(a1

k
), ...,

∑kn
k=0 mn(an

k
)

=
∑

(a1
k1

×···×an
kn

)⊆X
mC(a1

k1 × · · · × an
kn

)

Therefore it holds that:
∑

A⊆X
mC(A) =

∑
(a1

k1
×···×an

kn
)⊆X

mC(a1
k1 × · · · × an

kn
) = 1 (3.5)

which proves that mC is a mass distribution function.

Figure 3.2: Splitting a CDF into a sum of disjoint events in dimension 1

Having defined a mass distribution function on the product space X , we thus define
the joint credal set Mmass and its belief function BelC as:

Let mC be the mass distribution function from Definition 19. We note BelC its joint

Definition 20: Joint Belief Function and its Credal Set
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Figure 3.3: Schematic representation of Mmass

belief function over the power set of X = X1 × · · · × Xn, i.e.:

∀A ⊆ X ,BelC(A) =
∑
a⊆A

mC(a) (3.6)

Because BelC is a belief function, it defines a credal set Mmass:

Mmass(C,Mi) = { P : 2X → [0, 1] | ∀A ⊆ X , P (A) ⩾ BelC(A) } (3.7)

We only specify the lower bound BelC in the expression of the credal set as

BelC(Ac) ⩽ P (Ac)

⇔ 1 − Pl(A) ⩽ 1 − P (A)

Pl(A) ⩾ P (A)

Figure 3.3 presents a schematic of BelC similarly to what was presented with Mrobust

in Figure 3.1: BelC is computed from Bel1 and Bel2. The gray “+” and “X” signs have
the same position as in Figure 3.1, which shows that Mrobust and Mmass are not the same,
as the copula is applied to the cumulative masses instead of being applied point-wise to
every CDF from marginal sets.

With this way of defining the multivariate mass, the choice of arbitrary orderings ⪯i

can have a significant impact on the value of the multivariate mass function, as we will
see in example Example 10. Those orderings will specifically be “natural” orderings in
Sections 3.2.2 to 3.2.4, in the sense that there exists an intuitive total ordering (inspired
by the ordering of reals). When no natural ordering exists, the arbitrary choice of the
ordering can greatly impact the output mass or belief functions, as illustrated by the
following example.
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Example 10: Let us consider the same setting as Example 9 with two coins, and
their mass defined this time as:

m1(heads) = 0.4

m1(X1) = 0.6

m2(tails) = 0.7

m2(X2) = 0.3

We consider the minimum copula C(u, v) = min(u, v) If there is no natural ordering
on the focal sets of m1, we have to choose an arbitrary one:

• If "{heads} ⪯1 X1" and "{tails} ⪯2 X2" are the arbitrary orderings, then

BelC(heads, tails) = mC(heads, tails)

= C (m1(heads), m2(tails))

= min(0.4, 0.7)

= 0.4

• If "X1 ⪯1 {heads}" is the arbitrary order, then

BelC(heads, tails) = mC(heads, tails)

= C (1, m2(tails)) − C (m1(X1), m2(tails))

= m2(tails) − min(0.6, 0.7)

= 0.1

This illustrates that different orderings lead to different masses and thus to different
credal sets.

Remark: One reason why Mrobust is usually different from Mmass is mainly because
the ordering on focal sets can greatly differ from the ordering on reals. Consider for
instance the minimum copula already presented in Example 8:

• In the precise setting, the minimum copula associates the highest probabilities
to events with similar values (high-high or low-low), and the lowest probabilities
to events with opposite values (low-high).

• In the imprecise setting, the concept of high or low values for focal sets does not
usually exist. We thus replace it by an ordering ⪯ on focal sets, determining
which set is considered “low” and which is “high” (regardless of the real values
actually contained in the set). The minimum copula then associates the highest
mass to joint focal sets with similar “values” in the sense of the ordering ⪯, and
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the lowest mass to sets with opposite values in the sense of the ordering ⪯. For
instance, in the bivariate case, with marginal focal sets a1

1 ⪯1 a
1
2 and a2

1 ⪯2 a
2
2,

using the minimum copula will assign high masses to a1
1 × a2

1 and a1
2 × a2

2 and
low masses to a1

1 × a2
2 and a1

2 × a2
1.

Assigning a high mass to sets containing both low and high values at the same time
is something that would not occur in the precise case, but is possible in the imprecise
case. This explains a source of the difference between credal sets Mmass and Mrobust.

We saw that Mrobust and Mmass can be different credal sets. However, because Mrobust

is difficult to compute, it would be interesting to still use Mmass to approximate it,
i.e. to verify that Mrobust ⊆ Mmass (outer approximation) or Mmass ⊆ Mrobust (inner
approximation). In Example 11, we show that there is in general no reason for such a
relation to exist. Furthermore, if we found an ordering allowing this relationship, then
this ordering is copula dependent, as changing the copula might break the inclusion.

Example 11: Consider the following setting:

• We consider two spaces X1 = X2 = {1, 2, 3}

• We consider two (identical) mass distribution functions m1, m2, each respec-
tively possessing two focal sets {2} and {1, 3}.

• m1({2}) = m1({1, 3}) = m2({2}) = m2({1, 3}) = 0.5

• We want to join the credal sets induced by the mass functions using the mini-
mum copula.

We will compute the bounds of Mmass and Mrobust to compare them. The marginals
masses being identical and the copula being symmetrical, many results can be ob-
tained by symmetry.

Let us first compute the bounds of Mrobust. Marginal masses m1 and m2 imposes
that each marginal probability P1 ∈ M1 will verify:

Bel1({2}) ⩽P1({2}) ⩽ Pl1({2})

0.5 =
∑

a⊆{2}
m1(a) ⩽P1({2}) ⩽

∑
a∩{2}≠∅

m1(a) = 0.5
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The same result holds for {1, 3}. We therefore have:

P1(2) = 0.5

P1(1) + P1(3) = 0.5

0 ⩽ P1(1) ⩽ 0.5

0 ⩽ P1(3) ⩽ 0.5

And we can compute the same for m2. Looking at those equations, we can deduce that
every P ∈ Mrobust with marginals P1, P2 verifies for events {1}×{1} and {1, 2}×{1, 2}:

P ({1}, {1}) = min(P1(1), P2(1))

=⇒ 0 = min(0, 0) ⩽ P ({1}, {1}) ⩽ min(0.5, 0.5) = 0.5

P ({1, 2}, {1, 2}) = min(P1({1, 2}), P2({1, 2}))

=⇒ 0.5 = min(0 + 0.5, 0.5 + 0) ⩽ P ({1, 2}, {1, 2}) ⩽ min(0.5 + 0.5, 0.5 + 0.5) = 1

Let us now compute the bounds of Mmass. Choosing an ordering between {1, 3}
and {2} is not intuitive. Assume that there is a reason which encourages us to choose
different orderings for the focal sets of m1 and for those of m2, so that {1, 3} ⪯1 {2}
and {2} ⪯2 {1, 3}. In this case, using Definition 19 it holds that:

mC({1, 3}, {2}) = min(0.5, 0.5)

= 0.5

mC({2}, {1, 3}) = min(1, 1) − min(0.5, 1)

− min(1, 0.5) + min(0.5, 0.5)

= 0.5

mC({2}, {2}) = 0

mC({1, 3}, {1, 3}) = 0

Thus every probability P ∈ Mmass will verify:

BelC({1}, {1}) ⩽ P ({1}, {1}) ⩽ Pl({1}, {1})

⇔
∑

a⊆({1}×{1})
mC(a) ⩽ P ({1}, {1}) ⩽

∑
a∩({1}×{1})̸=∅

mC(a)

⇔ 0 ⩽ P ({1}, {1}) ⩽ 0
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and

BelC({1, 2}, {1, 2}) ⩽ P ({1, 2}, {1, 2}) ⩽ Pl({1, 2}, {1, 2})

⇔
∑

a⊆({1, 2}, {1, 2})
mC(a) ⩽ P ({1, 2}, {1, 2}) ⩽

∑
a∩({1, 2}, {1, 2})̸=∅

mC(a)

⇔ 0 ⩽ P ({1, 2}, {1, 2}) ⩽ 1

Looking at the bounds of Mmass and Mrobust on cumulative event {1} × {1},
we can see that P robust({1}, {1}) > Pl({1}, {1})) and thus Mrobust ̸⊆ Mmass. Look-
ing at the bounds on {1, 2} × {1, 2}, we can see that P robust({1, 2}, {1, 2}) >

BelC({1, 2}, {1, 2}) and thus Mmass ̸⊆ Mrobust.

Remark: The bounds of Mmass depend both on the ordering and the copula
used. Therefore, if an ordering exists such that Mrobust ⊆ Mmass or Mmass ⊆
Mrobust, then this ordering is not guaranteed to keep the inclusion relationship
using a different copula.

We considered until now that an ordering has to be chosen arbitrarily. However,
special cases of belief functions exhibit a natural ordering on their focal sets, for instance
p-boxes and possibilities. Those special cases will be explored in Section 3.2.

3.1.3 Copulas Applied to Belief Functions

Another way of joining credal sets with a copula is by directly applying the copula to
their lower envelope P i for every event:

Given a copula C and nmarginal credal sets whose lower probabilities are P 1, . . . , P n,
we define the credal set Magg over the power set of X = X1 × · · · ×Xn as:

Magg = CH({P | ∀Ai ⊆ Xi, P (A1, . . . , An) ⩾ C(P 1(A1), . . . , P n(An))})

(3.8)

where CH is the convex hull from Definition 7.

Definition 21: Aggregated Credal Set

Contrary to Mmass or Mrobust, constraints on this set only occur on Cartesian products
in X . We thus take the convex hull for extending its definition to every event in 2X .
We denote this credal set as Magg because it uses the copula solely as an aggregation
operator, without conserving the meaning associated with copulas by Sklar’s Theorem.
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In this regard, Magg has less meaning than Mrobust or Mmass, but presents the advantage
of being easier to compute on cylindrical sets. Figure 3.4 sums up the performances of
the different methods in terms of computation cost and meaningfulness.

Easy to compute

Meaningful

MaggMmassMrobust

Figure 3.4: Comparing different methods of joining credal sets with a copula.

In general, applying the copula directly to the lower probabilities as in (3.8) does not
produce a coherent lower probability inducing a non-empty credal set (see Definition 6).
For instance, let us consider X1 = X2 = {1, 2}, two lower previsions P 1 and P 2 such that
P 1({1}) = P 1({2}) = P 2({1}) = P 2({2}) = 0.5. Joining those two lower probabilities
using the minimum copula C(u, v) = min(u, v) gives a mapping P which induces an
empty credal set, as presented in Table 3.1. Indeed, no probabilities can satisfy all these
constraints at once.

P {1} {2}
{1} 0.5 0.5
{2} 0.5 0.5

Table 3.1: P = min(P 1, P 2)

Proposition 2: In the special case of the product copula CΠ, the credal set Magg

induced by (3.8) is not empty. It follows that for all copulas C dominated by the
product copula (i.e. CΠ ⩾ C), and for every non-empty marginal credal set Mi,
Magg(C,Mi) is also non-empty credal set.

Proof: For i ∈ {1, . . . , n}, let P i be a lower probability avoiding sure loss, i.e.
whose credal set Mi contains at least one probability distribution Pi. Let us define a
multivariate probability P on every (A1 × · · · × An) ⊆ X as:

P (A1 × · · · × An) = P1(A1) × · · · × Pn(An)

Defining P on (A1 × · · · × An) ⊆ X is sufficient as those sets contain every atom of
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X . Because ∀i, Pi ∈ Mi, Pi ⩾ P i, then:

P (A1 × · · · × An) ⩾ P 1(A1) × · · · × P n(An) = CΠ(P 1(A1), . . . , P n(An))

= PCΠ(A1 × · · · × An)

which means P ∈ Magg(CΠ,Mi). Therefore, Magg(CΠ,Mi) ̸= ∅ if every Mi ̸= ∅.

Let C be a copula dominated by CΠ (i.e. CΠ ⩾ C), and PC the lower probability
associated with Magg(C,Mi). Then it holds that for all (A1 × · · · × An) ⊆ X :

PCΠ(A1 × · · · × An) = CΠ(P 1(A1), . . . , P n(An))

⩾ C(P 1(A1), . . . , P n(An)) = PC(A1 × · · · × An)

which implies that Magg(CΠ,Mi) ⊆ Magg(C,Mi). Therefore, if every Mi is a non-
empty credal set, then Magg(C,Mi) is also non-empty.

Proposition 3: Conversely, no lower probability PC obtained using (3.8) with a
copula C strictly superior to the product copula is guaranteed to induce a non-empty
credal set Magg. It all depends on the marginal credal sets P i.

Proof: Let C be a copula strictly superior to the product. Then there exists
(u1, . . . , un) ∈ [0, 1]2 such that:

C(u1, . . . , un) >
n∏

i=1
ui

Let Mi be marginals credal sets such that P i are precise probabilities, and that:

∀i, ∃Ai ∈ Xi, P i(Ai) = ui

We will prove the proposition by contradiction. Assume that Magg(C,Mi) avoids
sure loss, i.e. there is a probability P such that P ⩾ PC . Let S be a collection of
disjoint cylindrical sets of X (defined in Equation (3.1)) covering the complementary
event (A1×· · ·×An)c of (A1×· · ·×An). S is defined so that (A1×· · ·×An)c = ⊔

s∈S s.
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Then,

P (X ) = P
(
(A1 × · · · × An)

⊔
(A1 × · · · × An)c

)
= P (A1 × · · · × An) + P ((A1 × · · · × An)c)

= P (A1 × · · · × An) +
∑

(s1×···×sn)∈S

P (s1 × · · · × sn)

⩾ PC (A1 × · · · × An) +
∑

(s1×···×sn)∈S

PC(s1 × · · · × sn)

> PCΠ (A1 × · · · × An) +
∑

(s1×···×sn)∈S

PCΠ(s1 × · · · × sn)

Because we chose P i so that they are precise probabilities, their product is also a
precise probability. Using the fact that summing probabilities of disjoint events is
equal to the probability of their union:

PCΠ (A1 × · · · × An) +
∑

(s1×···×sn)∈S

PCΠ(s1 × · · · × sn) = PCΠ (A1 × · · · × An) +

PCΠ ((A1 × · · · × An)c)

= 1

This means that P (X ) > 1 which is impossible. Thus, Magg(C,Mi) = ∅ and
Magg(C,Mi) does not avoid sure loss.

We have now presented three methods for joining imprecise models using a copula.
The following sections will explore special cases where some interesting relationships be-
tween those copulas exist.

3.2 Inclusions Between Joint Credal Sets

Section 3.1 presented three methods for joining marginal credal sets using a copula. In
general, there is no reason for the three methods to lead to the same multivariate credal
sets. However, for some specific cases on the copulas or on the marginal credal sets, it is
possible to find inclusion relationships between the methods. This section explores some
of these specific cases. Because each method has a different computational complexity,
knowing those relationships allows us to use a simpler method to approximate another.
For instance, if we know that Mrobust ⊆ Mmass, then we can determine conservative
bounds on Mrobust by computing those of Mmass, which are simpler to determine. This
will specifically be used in Chapter 4.
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3.2.1 Using the Product Copula

In this section, we will consider the case of the product copula CΠ, representing indepen-
dence between variables. Using this copula in the robust approach defined by Definition 18
is referred to as the strong product in [de Cooman et al., 2010]. Let us denote P robust

the infimum of Mrobust(CΠ,Mi) and S the set from which Mrobust is computed (Equa-
tion (3.2)). For cylindrical sets (A1, . . . , An) of X , it holds that:

P robust(A1 × · · · × An) = inf{P (A1 × · · · × An) | P ∈ S}

= inf{P1(A1) . . . Pn(An) | Pi ∈ Mi}

= inf{P1(A1) | P1 ∈ M1} . . . inf{Pn(An) | Pn ∈ Mn}

= P 1(A1) . . . P n(An)

We can split the infimum of a product as a product of infima because we consider mappings
with positive values. As this is equivalent to applying the copula directly to the marginals,
Mrobust and Magg have the same bounds on cylindrical events. On other events, the lower
probabilities are defined as the infimum of the credal sets, thus all bounds are the same.
Mrobust is defined as the convex hull of the set of probabilities whose marginals are in Mi,
which is a constraint that Magg do not have. Therefore, the sets are not necessarily the
same, although they share the same bounds. The way Magg, is defined, it is the largest
set with those bounds. On the other hand, as Mrobust is the convex hull of the set S from
Equation (3.2) now defined specifically as:

S = { F | ∀(x1, . . . , xn) ∈ X , ∀Fi ∈ Mi,

F (x1, . . . , xn) = F1(x1) · . . . · Fn(xn) }

This means that Mrobust is the convex hull of a set of specific probabilities verifying those
bounds; it is therefore a smaller set than Magg. It results that:

Mrobust(CΠ,Mi) ⊆ Magg(CΠ,Mi) (3.9)

This result can also be found in [Couso et al., 2000].

Let us now consider a property on the mass mC from Definition 19, which will later
allow us to prove an inclusion with BelC .

Proposition 4: In the case of the product copula CΠ, the arbitrary orderings on
marginal focal sets have no impact on the value of the joint mass mC defined in (3.4).
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Indeed, if a1
k1 , . . . , a

n
kn

is a focal set of m1, . . . , mn, then mC is given by:

mC(a1
k1 × · · · × an

kn
) = m1(a1

k1) . . .mn(an
kn

) (3.10)

Proof: For simplicity and coherence with the notations of Section 2.4.1, we will note
for all i ∈ [0, n], uki

= ∑ki−1
l=0 mi(ai

l), vki
= ∑ki−1

l=0 mi(ai
l).

∏n
i=1{uki

, vki
} will refer to

the Cartesian product {uk1 , vk1}×{uk2 , vk2}×· · ·×{ukn , vkn} and we will note CΠ and
H as the product copula and its H-volume regardless of their number of marginals.
Those notations established, it holds that:

mC(a1
k1 × · · · × an

kn
) = H

vk1 , ..., vkn
uk1 , ..., ukn

=
∑

(wk1 , ..., wkn )∈∏n

i=1{uki
,vki

}

(−1)|{k | wki
=uki

}|CΠ(wk1 , . . . , wkn)

=
∑

(wk1 , ..., wkn )∈∏n

i=1{uki
,vki

}

(−1)|{k | wki
=uki

}|(wk1 · . . . · wkn)

and by explicitly writing the terms for wkn = vkn and wkn = ukn :

mC(a1
k1 × · · · × an

kn
) =

∑
(wk1 , ..., wkn−1 )∈∏n−1

i=1 {uki
,vki

}

(−1)|{k | wki
=uki

}|(wk1 · . . . · wkn−1 · vkn)

+
∑

(wk1 , ..., wkn−1 )∈∏n−1
i=1 {uki

,vki
}

(−1)|{k | wki
=uki

}|+1(wk1 · . . . · wkn−1 · ukn)

= vknH
vk1 , ..., vkn−1
uk1 , ..., ukn−1 − uknH

vk1 , ..., vkn−1
uk1 , ..., ukn−1

= mn(an
kn

)Hvk1 , ..., vkn−1
uk1 , ..., ukn−1

Doing the same procedure for every variable leads to:

mC(a1
k1 × · · · × an

kn
) = m1(a1

k1) . . .mn(an
kn

)

which concludes the proof.

The mass mC corresponds to the notion of random set independence presented in
[Dempster, 1967, Couso et al., 2000]. Let BelC be the belief function associated with
mC , and ∀i ∈ [1, n],Beli the mass function associated with mi. Then for cylindrical sets
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(A1, . . . , An) of X , it holds that:

BelC(A1 × · · · × An) =
∑

(a1×···×an)⊆(A1, ..., An)
mC(a1 × · · · × an)

=
∑

(a1×···×an)⊆(A1, ..., An)
m1(a1) · . . . ·mn(an)

= (
∑

a1⊆A1

m1(a1)) · . . . · (
∑

an⊆An

mn(an))

= Bel1(A1) . . .Beln(An) (3.11)

This means that in the case of the product copula CΠ with marginals being belief
functions, Mrobust, Mmass and Magg all coincide on cylindrical sets. Because Magg has no
specific constraints on other sets, it is the largest credal set with these bounds. Because
mmass is defined on other bounds, Mmass also has constraints on other bounds. It is
therefore a smaller set than Magg and:

Mmass ⊆ Magg

Finally, it is straightforward to verify that Mmass contains every probability from the set
S

S = { F | ∀(x1, . . . , xn) ∈ X , ∀Fi ∈ Mi,

F (x1, . . . , xn) = F1(x1) · . . . · Fn(xn) }

of which Mrobust is the convex hull. As Mmass is defined by a belief function, it is therefore
also convex, therefore:

Mrobust ⊆ Mmass

In the case of the product copula, the following inclusion ordering holds:

Mrobust ⊆ Mmass ⊆ Magg (3.12)

Regardless of the marginal belief functions used. This means that computing the bounds
of Magg, which is straightforward, allow us to obtain a set containing Mrobust. We also
have seen in this section that on Cartesian products, the multivariate belief function could
simply be evaluated without computing its joint mass. The next sections will investigate
the relationship between Mrobust, Mmass and Magg for other copulas, but with specific
types of marginal imprecise models.
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3.2.2 Using the Natural Ordering of Necessity Functions

We will now investigate the specific case where we use any copula C to join multiple
marginal necessity functions. This setting will be considered in Chapter 4. We saw in
Section 2.3.4 that focal sets (a1, . . . , an) of necessity functions are included into one
another as follows:

a1 ⊂ a2 ⊂ . . . ⊂ an

Here, we used a specific ordering for focal sets (the natural order) but any other ordering
could have been used. A family of events verifying this inclusion property is called an
increasing family of events in the following.

In [Schmelzer, 2015a], the author showed that in order to describe the relation between
a multivariate belief function and its marginals in the bivariate case, it is necessary to
consider a family of sub-copulas: one copula for each tuple of increasing family of events.
We remind that a sub-copula is a restriction of a copula to a subset of the unit hyper-cube
[0, 1] as presented in Section 2.4.1.

Let Bel : 2X1 × 2X2 → [0, 1] be a bivariate belief function and let Bel1 and Bel2
denote its marginals over 2X1 and 2X2 respectively. Furthermore, let I1 and I2 denote
increasing families of subsets of X1 and X2. Then there exists a unique sub-copula
CI1,I2 on Bel1(I1) × Bel2(I2) such that:

Bel(L1, L2) = CI1,I2(Bel1(L1),Bel2(L2)) (3.13)

for all L1 ∈ I1, L2 ∈ I2.

Theorem 2: Sklar’s Theorem for Belief Functions [Schmelzer, 2015a]

For the reverse to be true, it is necessary that X1 ∈ I1,X2 ∈ I2. Example 1 of [Schmelzer,
2015a] illustrate the need of a copula for each increasing family of events.

Remark: In [Lesniewska-Choquet, 2020], it has been proposed to directly apply the
copula to the marginal possibility distributions πi, i.e. π(x, y) = C(π1(x), π2(y)). It is
however shown that this method does not work in general with copulas; however, the
author presents more specific aggregation models (called t-conorms) as a solution.
This work is very interesting, and is also used on satellite images (although for a
different application as ours, i.e. for detecting land changes). Although it may seem
very similar to our subject, we sadly cannot compare our results to it as the consid-
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ered settings differ too much. The objective of their thesis can be briefly summed
as follows: given a multivariate probability P , how to obtain a multivariate possi-
bility distribution π consistent with P , i.e. such that P ∈ M(π). They also restrict
the marginals of P to single probability distributions (and not credal sets), which
must be either Gaussian, Cauchy or Student probability distributions. They show
that determining such a multivariate possibility is possible for the upper and lower
Fréchet–Hoeffding bounds, but can only determine bounds on the possibility for the
product copula, for instance. Other copulas are not considered. Linking our work to
theirs seemed a big stretch and has thus not be considered.

Necessity functions are completely determined by their focal sets, which form an
increasing family of events. Thus, by applying Sklar’s Theorem for Belief Functions, it
holds that joining two necessity functions with a copula C as in (3.8) yields a bivariate
belief function (which is not necessarily a necessity function):

Bel = C(Nec1,Nec2) (3.14)

where Nec1 and Nec2 are the marginal necessity functions. The proof of those results were
shown in [Schmelzer, 2015a, Schmelzer, 2015b]. This way of applying the copula directly
on necessities is the same approach as in Magg. In the following, we will consider that the
focal sets ai of a necessity functions Neci are already ranked using the natural ordering
⪯i, which is convenient when manipulating those representations:

∀(k, j) ∈ [1, Ni]2, k ⩽ j ⇔ ai
k ⪯i a

i
j ⇔ ai

k ⊆ ai
j (3.15)

The method for joining necessity functions from Sklar’s Theorem is similar to the
one for creating a multivariate belief function as in (3.6), as presented in the following
proposition.

Proposition 5: Joining two marginal necessity functions Nec1,Nec2 with a copula C
as in (3.14) or using the bivariate mass function as in (3.4) with the natural inclusion
ordering yields the same bivariate belief function.

Proof: If we denote by BelC the belief function defined in (3.4) where the ordering
is the inclusion ordering ⪯i for i ∈ [1, 2]. For convenience and with respect to the
notations of Section 2.4.1, we note: ui

k = ∑k
j=0 mi(ai

j) and consider that ai
0 = ∅. For
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all focal elements a1
k of Nec1 and a2

j of Nec2, it holds that:

BelC(a1
k, a

2
j) =

∑
a1

p⊆a1
k

∑
a2

q⊆a2
j

mC(a1
p, a

2
q) =

k∑
p=1

j∑
q=1

mC(a1
p, a

2
q)

=
k∑

p=1

j∑
q=1

( C(u1
p, u

2
q) + C(u1

p−1, u
2
q−1)

−C(u1
p−1, u

2
q) − C(u1

p, u
2
q−1) )

=
k∑

p=1

j∑
q=1

C(u1
p, u

2
q) +

k−1∑
p=0

j−1∑
q=0

C(u1
p, u

2
q)

−
k−1∑
p=0

j∑
q=1

C(u1
p, u

2
q) −

k∑
p=1

j−1∑
q=0

C(u1
p, u

2
q)

= C(u1
k, u

2
j) = C

(
Nec1(a1

k),Nec2(a2
j)
)

This proof only works in the special case of necessity functions because:

∑
a1

p⊆a1
k

∑
a2

q⊆a2
j

mC(a1
p, a

2
q) =

k∑
p=1

j∑
q=1

mC(a1
p, a

2
q)

is only true for marginal necessity functions.

Proposition 5 considers two marginals. However, we will see in the next proposition
that it still holds for n marginals, not covered in [Schmelzer, 2015b].

Proposition 6: Joining n marginal necessity functions Nec1, . . . , Necn with a n-
copula C as in (3.14) or using the multivariate variate mass function as in (3.4) with
the natural inclusion ordering yields the same multivariate belief function. In other
words, for every cylindrical set (A1, . . . , An) ⊆ X , it holds that:

BelC(A1 × · · · × An) = C (Nec1(A1), . . . , Necn(An)) (3.16)

In other words, Mmass and Magg have the same bounds on cylindrical sets when
marginals are necessity functions.

Proof: The proof is similar to the one of Definition 19, but this time computing the
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mass of (a1
k1 × · · · × an

kn
) using F ([0, k1] × · · · × [0, kn]) and noticing that

∑
(a1

p1 ×···×an
pn )⊆(a1

k1
×···×an

kn
)
mC(a1

p1 × · · · × an
pn

) =
k1∑

p1=1
. . .

kn∑
pn=1

mC(a1
p1 × · · · × an

pn
)

because all marginals are necessity functions, and the natural inclusion ordered is
used for ranking their focal sets.

As Mmass is defined by a mass distribution function on 2X , it also possesses constraints
on events that are not cylindrical sets. On the other hand, Magg is the largest credal set
with bounds specified by (3.16) on cylindrical sets. For marginal sets Mi defined by
necessity functions, it therefore holds that:

Mmass(C,Mi) ⊆ Magg(C,Mi) (3.17)

regardless of the copula C used.

When considering BelC whose marginals necessity functions equipped with the natural
ordering for their focal sets, it is straightforward that mC verifies:

∑
a1

p⊆a1
k

∑
a2

q⊆a2
j

mC(a1
p, a

2
q) =

k∑
p=1

j∑
q=1

mC(a1
p, a

2
q)

We can wonder if this equality is only verified by marginals that are necessity functions
or not. The following proposition shows that this equality is a sufficient and necessary
condition to characterize multivariate belief functions whose marginals are necessities.

Proposition 7: Let mC be a joint mass obtained using (3.4). mC verifies

∑
a1

p⊆a1
k

∑
a2

q⊆a2
j

mC(a1
p, a

2
q) =

k∑
p=1

j∑
q=1

mC(a1
p, a

2
q)

for all marginal focal sets (a1
k) ,(a2

j) if and only if its marginals masses correspond to
necessity functions, equipped with the natural ordering.

Proof:

⇐= By using the natural inclusion ordering on marginal focal set, it is immediate
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that

∑
a1

p⊆a1
k

∑
a2

q⊆a2
j

mC(a1
p, a

2
q) =

k∑
p=1

j∑
q=1

mC(a1
p, a

2
q)

=⇒ Let mC be a joint mass obtained using (3.4), with marginal focal sets (a1
k)1⩽k⩽N1 ,

(a2
j)1⩽j⩽N2 and marginal masses m1,m2. Let BelC be its associated belief function

verifying:

BelC(a1
k, a

2
j) =

∑
a1

p⊆a1
k

∑
a2

q⊆a2
j

mC(a1
p, a

2
q) =

k∑
p=1

j∑
q=1

mC(a1
p, a

2
q)

for all marginal focal sets a1
k, a

2
j . By summing the H-volume over a complete partition

of [0, 1], it is easy to check that:

m1(a1
p) =

∑
a2

q⊆X2

mC(a1
p, a

2
q) =

N2∑
q=1

mC(a1
p, a

2
q)

Thus it holds that:

k∑
p=1

m1(a1
p) = BelC(a1

k,X2) =
∑

a1
p⊆a1

k

m1(a1
p)

This result is not sufficient to prove the inclusion of focal sets (there could be a set
a1

p ⊆ a1
k, p > k with the same mass value than another set a1

p′ ̸⊆ a1
k, p

′ < k). Let us
show by induction that for all (k, p) ∈ [[1, N1]]2, a1

1 ⊂ . . . ⊂ a1
k and a1

p ̸⊆ a1
k if p > k.

For the case k = 1, it holds that:

1∑
p=1

m1(a1
p) =

∑
a1

p⊆a1

m1(a1
p)

⇔ m1(a1
1) = m1(a1

1) +
∑

a1
p⊂a1

1

m1(a1
p)

⇔ 0 =
∑

ap⊂a1

m1(a1
p)

which means that no focal set is a strict subset of a1
1 = a1

k, so if p > k, a1
p ̸⊆ a1

k.

For the induction step, suppose that k ∈ [[1, N1]], a1 ⊂ . . . ⊂ ak and ∀p > k, ap ̸⊆
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ak. In particular, ak+1 ̸⊆ ak. It holds that:

k+1∑
p=1

m1(a1
p) =

∑
a1

p⊆a1
k+1

m1(a1
p)

⇔ m1(a1
k+1) +

k∑
p=1

m1(a1
p) =

∑
a1

p⊆a1
k+1

m1(a1
p)

⇔ m1(a1
k+1) +

∑
a1

p⊆a1
k

m1(a1
p) =

∑
a1

p⊆a1
k+1

m1(a1
p)

=⇒ m1(a1
k+1) =

∑
a1

p⊆a1
k+1

a1
p ̸⊆a1

k

m1(a1
p)

=⇒ m1(a1
k+1) = m1(a1

k+1) +
∑

a1
p⊂a1

k+1
a1

p ̸⊆a1
k

m1(a1
p)

⇔ 0 =
∑

a1
p⊂a1

k+1
a1

p ̸⊆a1
k

m1(a1
p)

Which means that either there is no focal set that is a strict subset of a1
k+1, or that

they are all included in a1
k. The first case is discarded as:

∑
a1

p⊆a1
k+1

m1(a1
p) =

k+1∑
p=1

m1(a1
p)

⇔
∑

a1
p⊂a1

k+1

m1(a1
p) =

k∑
p=1

m1(a1
p) > 0

thus a1 ⊂ . . . ⊂ ak+1. Finally, it also follows that:

∑
a1

p⊆a1
k+1

m1(a1
p) =

k+1∑
p=1

m1(a1
p)

=⇒
∑

a1
p⊆a1

k+1
p>k+1

m1(a1
p) +

∑
a1

p⊆a1
k+1

p⩽k+1

m1(a1
p) =

k+1∑
p=1

m1(a1
p)

⇔
∑

a1
p⊆a1

k+1
p>k+1

m1(a1
p) = 0

meaning that for all p > k + 1, a1
p ̸⊆ a1

k+1, ending the proof by induction. Because
all focal sets form a nested family of sets, Bel1 is a necessity function. The proof for
Bel2 is identical.
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Without further assumptions, there is no inclusion relations between Mrobust and
Magg or Mmass. The following examples present cases where inf Mrobust < inf Magg or
inf Mmass < inf Mrobust, proving that it is not always possible to get an (inner ⊆ or outer
⊇) approximation of Mrobust using Mmass or Magg.

Example 12: Let n = 2. Consider X1 = {x1
1, x

1
2} and X2 = {x2

1, x
2
2}. Let us define

two possibility distribution π1 and π2 over X1 and X2 respectively, such that:

π1(x1
1) = 0.1

π1(x1
2) = 1

and

π2(x2
1) = 1

π2(x2
2) = 0.1

For i ∈ {1, 2}, πi generates a necessity measure Neci, a possibility measure Πi

and a credal set Mi. Let P1 and P2 be two probabilities respectively included in M1

and M2, whose values are indicated in Table 3.2.

X1 x1
1 x1

2

Nec1 0 0.9
P1 0.1 0.9
Π1 0.1 1

X2 x2
1 x2

2

Nec2 0.9 0
P2 0.9 0.1
Π2 1 0.1

Table 3.2: Probability distributions over X1 and X2

We first consider the Minimum copula CM(u, v) = min(u, v). We construct a
joint probability P ∈ Mrobust by joining P1 and P2 with CM . Let us compare its value
with the value of the bivariate necessity function CM(Nec1,Nec2) on the same event
{x1

2} × {x2
1}:

BelC({x1
2} × {x2

1}) = CM

(
Nec1(x1

2),Nec2(x2
1)
)

= min(0.9, 0.9) = 0.9

P ({x1
2} × {x2

1}) = F (x1
2, x

2
1) − F (x1

2, x
2
1)

= CM

(
P1(X1), P2(x2

1)
)

− CM

(
P1(x1

1), P2(x2
1)
)

= min(1, 0.9) − min(0.1, 0.9) = 0.8

Here P < BelC on {x1
2} × {x2

1}. Therefore P ̸∈ Mmass. Because P ∈ Mrobust, this
proves that Mrobust ̸⊆ Mmass.

Let us now compare the lower bound P of Mrobust with that of Magg (or Mmass as
they coincide on cylindrical sets). This time, we will be using the Łukasiewicz copula
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CL(u, v) = max(u+ v − 1, 0) as our dependency model. It holds that:

BelC({x1
2} × {x2

1}) = CL(Nec1(x1
2),Nec2(x2

1))

= max(0, 0.9 + 0.9 − 1) = 0.8

P ({x1
2} × {x2

1}) = inf
P ∈Mrobust

P ({x1
2} × {x2

1})

= inf
P ∈Mrobust

(
F (x1

2, x
2
1) − F (x1

1, x
2
1)
)

= inf
P1∈M1,P2∈M2

(
CL

(
P1(X1), P2(x2

1)
)

− CL

(
P1(x1

1), P2(x2
1)
))

= inf
P1∈M1,P2∈M2

(
P2(x2

1) − max(0, P1(x1
1) + P2(x2

1) − 1)
)

= inf
P1∈M1,P2∈M2

max
(
P2(x2

1), P2(x2
1) − P1(x1

1) − P2(x2
1) + 1

)
⩾ min

(
inf

P2∈M2
P2(x2

1), inf
P1∈M1

(
1 − P1(x1

1)
))

= 0.9

On this event P > BelC , therefore Magg ̸⊆ Mrobust and Mmass ̸⊆ Mrobust.

We investigated the relationships between Mrobust, Mmass and Magg in the case of
marginals modeled by necessity functions. Those results will notably be used in Chapter 4.
The next sections will consider other models: p-boxes.

3.2.3 Using the Natural Ordering of P-boxes

We first start this section by reminding some properties of p-boxes. P-boxes are special
cases of belief functions that resemble the most well-known CDFs. They are defined
with two CDFs F , F such that F ⩽ F . Their focal sets aα are of the form aα =
[F−1(α), F−1(α)] with α ∈ [0, 1] [Destercke et al., 2008], where F−1 is the inverse of a
CDF (or pseudo-inverse if not properly defined). It is thus possible to define a natural
ordering on the focal sets. Let aα and aβ be two focal sets of a p-box [F , F ], with
(α, β) ∈ [0, 1]2. The natural ordering ⪯ on focal sets is defined as follows:

aα ⪯ aβ ⇔ F
−1(α) ⩽ F

−1(β) and F−1(α) ⩽ F−1(β) ⇔ α ⩽ β (3.18)

We will consider this ordering when investigating the relationships between Mmass

and the other multivariate credal sets.

As stated previously in Section 2.3.5, p-boxes are very closely related to CDFs which
can motivate one to apply Sklar’s Theorem to the lower CDF and upper CDF respectively.
Given n p-boxes [F 1, F 1], . . . , [F n, F n] defined over X1, . . . , Xn and a copula C, we
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can define the lower and upper bounds of a n variate CDF as:

F× = C(F 1, . . . , F n)

F× = C(F 1, . . . , F n)

Sklar’s Theorem states that F× and F× are both CDFs, which means that [F×, F×] is a
multivariate p-box [Pelessoni et al., 2016, Montes et al., 2015] over cylindrical sets, defining
a credal set M. Clearly, the bounds of Mrobust on cumulative events are the same as those
of the credal set M induced by the multivariate p-box [C(F 1, . . . , F n), C(F 1, . . . , F n)].
The bounds of Mrobust on cumulative events are therefore easy to compute, contrary to
the case where the marginals are not p-boxes.

There is no clear relationship between Mrobust and Mmass or Magg. As it is the case
for necessity functions, it is possible to find cases where the sets Mrobust ̸⊆ Mmass or
Magg ̸⊆ Mrobust, as shown in the following example.

Example 13: Consider the following p-boxes:

X1 x1
1 x1

2

F 1 0 1
F 1 0.1 1

X2 x2
1 x2

2

F 2 0.9 1
F 2 1 1

Table 3.3: P-boxes over X1 and X2

The p-boxes from Table 3.3 lead to the same belief functions as in Example 12.
Therefore, the same conclusions as in Example 12 hold, i.e. there are cases where
Mrobust ̸⊆ Mmass, Mmass ̸⊆ Mrobust and Magg ̸⊆ Mrobust.

The relationships between Mmass and Magg cannot be expressed using inclusions, as
in Section 3.2.2 where marginals are necessity functions. Instead, we must consider an
additional property on copulas called directional-convexity (D-convexity) and directional-
concavity (D-concavity). A copula is called D-convex if it behaves like a convex function
when considering each variable separately. The formal definition of D-convexity and D-
concavity can be found Annex, Section 7.1. In this thesis, we also prove some relevant
properties concerning D-convexity. However, their proof requires some lengthy and de-
tailed explanations. As those results will only serve us for the following property, we chose
to only present them in the Section 7.1 of the Annex, as Chapter 2 and Chapter 3 are
already hard to follow for non experts.

The relationships between Mmass and Magg can be detailed as follows:
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Proposition 8: When joining marginals represented by p-boxes using the natural
ordering from (3.18) with a copula C, it holds that:

• if C is D-convex, then Mmass ⊆ Magg.

• if C is D-concave, then Magg ⊆ Mmass

The proof of this property is demonstrated in Section 7.2 of the Annex.

We saw that using the natural ordering on p-box, it is not possible to establish an
inclusion relationship between Mrobust and Mmass or Magg without further assumptions.
It is possible to find relationships between Mmass and Magg by supposing an additional
property on the copula, i.e. D-convexity or D-concavity.

3.2.4 Joining Different Types of Models

In previous sections, we considered cases where every marginal has the same uncertainty
model. In this section, we will consider multivariate uncertainty models for which some
marginals are modeled by possibilities and other marginals are modeled by p-boxes. In
this setting, it is possible to derive results similar to those of Sections 3.2.2 and 3.2.3,
when considering natural orderings on marginal focal sets.

Consider Mi marginal credal sets, either defined by possibility distributions or by p-
boxes. If all Mi are modeled by possibilities, then we are in the setting of Section 3.2.2, and
if they are all modeled by p-boxes, then we are in the setting of Section 3.2.3. Therefore,
we assume here that there is at least one credal set defined by a possibility distribution
and one credal set defined by a p-box.

When considering Mrobust, we can draw the same conclusions as before, i.e. there
is no clear relationship between Mrobust and Mmass or Magg. This is straightforward as
Example 12 and Example 13 also apply in the current setting.

We will now consider the relationships between Mmass and Magg. When marginals
are all possibilities, we saw that Mmass ⊆ Magg (Section 3.2.2). When marginals are
p-boxes, the inclusion holds for D-convex copula, but the reverse is true for D-concave
copulas (i.e. Mmass ⊇ Magg). Therefore, it may not seem obvious at first if obtaining a
similar inclusion is possible when mixing uncertainty models for the marginals. The next
proposition shows that it is still possible to find an inclusion, depending on the properties
of the considered copula.
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Proposition 9: When joining marginal credal sets induced by possibility distribu-
tions and p-boxes, using a copula C, the following inclusion holds:

• if C is D-convex, then Mmass ⊆ Magg.

• if C is D-concave then Magg ⊆ Mmass

Proof: We first provide an intuitive idea as to why this proposition holds. When
marginals are possibility distributions, bounds of Magg and Mmass are equal on cylin-
drical sets. However, when marginals are p-boxes, the bounds on cylindrical sets of
Magg are less than those of Mmass if the copula is D-convex, and are greater than
those of Mmass if the copula is D-concave. Bounds for p-boxes are thus more con-
straining than those for possibility distributions, which explains why this property is
similar to Proposition 8.

The exact proof is similar to the proof of Proposition 8 using the fact that for
every focal set ai

p of a possibility distribution, we can still define p
i

and pi as p
i

= 1
and pi = p. The rest of the proof is identical.

In this section, we presented results similar to those of Sections 3.2.2 and 3.2.3, when
considering natural orderings on marginal focal sets. The next section will consider other
ordering than the natural orderings consider until now.

3.2.5 Joining Belief Functions Using Other orderings

When considering belief functions that are neither possibilities nor p-boxes, a natural or-
dering on the focal sets might not always exist. For instance, consider a mass distribution
function with the following focal sets {1, 3}, {2, 4} and {1, 4}. Defining an ordering be-
tween {1, 3}, {2, 4} and {1, 4} is not trivial as it was for possibilities or p-boxes. We can
even consider other orderings than the natural ordering on possibilities or p-boxes. For
instance, consider a necessity function whose focal sets are: {1, 2, 3}, {2, 3} and {3}. The
natural ordering on focal sets would be: {3} ⪯ {2, 3} ⪯ {1, 2, 3}, while another ordering
more similar to the order on reels could be {1, 2, 3} ⪯ {2, 3} ⪯ {3}. Those examples
illustrate the fact that the natural ordering does not always exist, or is not necessarily
the obvious choice.

One could therefore consider an arbitrary ordering between focal sets when defining
Mmass as in (3.4). In this setting, a few questions arise: is there always an arbitrary
ordering allowing Mrobust ⊆ Mmass? If such an ordering exists, is it possible to explicit
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it in advance without computing lower bounds of credal sets? It appears that there may
not always exist an ordering that allows for Mrobust ⊆ Mmass. To prove it, let us present
an example where no ordering allows for either inclusion.

Example 14: Consider the Clayton copula for θ = 2 and n = 2. The expression of
the copula given in Table 2.1 can be simplified as follows:

∀(u1, u2) ∈ R2\(0, 0), C(u1, u2) = u1u2√
u12 + u22 − u22u22

and C(0, 0) = 0 by continuity. Let us consider X1 = X2 = {1, 2, 3}, and two possi-
bility distributions π1, π2 over X1 and X2 respectively:

π1(1) = π2(1) = 0.2 π1(2) = π2(2) = 1 π1(3) = π2(3) = 0.7

and the marginal credal sets M(π1), M(π2) they induce. Because both possibilities
have the same focal sets, we will note them as a1 = {2}, a2 = {2, 3}, a3 = {1, 2, 3}.
We will first compute the lower bounds of Mrobust on specific events, and then compare
it to the different values of the lower bounds of Mmass depending on the orderings
used on focal sets.

By joining M(π1) and M(π2) using C, we can obtain the lower probability P of
Mrobust using Definition 18. If we consider the two events E1 = {2} × {2, 3} and
E2 = {2, 3} × {2}, it is possible to show that:

P (E1) = P (E2) ≈ 0.131

which can be obtained for:

P1(1) = 0

P2(1) = 0.2

P1(2) = 0.3

P2(2) = 0.3

P1(3) = 0.7

P2(3) = 0.5

for E1, and the same holds with P1 and P2 reversed for E2. Those values were
estimated by running simulations, but their exact value can be computed by solving
an optimization problem as C is differentiable (although it is a bit tedious to compute).

Depending on the orderings ⪯1,⪯2 used to join the marginal masses, we can
create a total of 6 belief functions Bel⪯1,⪯2

C using Definition 19. For instance, if ⪯1

and ⪯2 are such that:

• a3 ⪯1 a1 ⪯1 a2
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• a1 ⪯2 a2 ⪯2 a3

then the bivariate mass mC would be defined as follows:

mC(a3, a1) = C(m1(a3), m2(a1))

mC(a1, a1) = C(m1(a3) +m1(a1), m2(a1)) − C(m1(a3), m2(a1))

mC(a3, a2) = C(m1(a3), m2(a1) +m2(a2)) − C(m2(a3), m2(a1))

etc.

We can compute values of Bel⪯1,⪯2
C on E1 and E2 for all orderings ⪯1, ⪯2 on the focal

sets of π1 and π2. The results are presented in Table 3.4. Base on those values, we
can deduce that for all combinations of orderings ⪯1 and ⪯2, it holds that: Bel⪯1,⪯2

C (E1) ⩽P (E1)
Bel⪯1,⪯2

C (E2) >P (E2)
or

 Bel⪯1,⪯2
C (E1) >P (E1)

Bel⪯1,⪯2
C (E2) ⩽P (E2)

This proves that it is not always possible to find orderings ⪯1 and ⪯2 allowing
Mmass ⊆ Magg or Mmass ⊇ Magg.

Bel⪯1,⪯2
C (E1) a2

3 ⪯2 a
2
2 ⪯2 a

2
1 a2

3 ⪯2 a
2
1 ⪯2 a

2
2 a2

2 ⪯2 a
2
3 ⪯2 a

2
1

a1
3 ⪯1 a

1
2 ⪯1 a

1
1 0.296 0.296 0.224

a1
3 ⪯1 a

1
1 ⪯1 a

1
2 0.254 0.254 0.240

a1
2 ⪯1 a

1
3 ⪯1 a

1
1 0.296 0.296 0.224

a1
1 ⪯1 a

1
3 ⪯1 a

1
2 0.131 0.131 0.279

a1
2 ⪯1 a

1
1 ⪯1 a

1
3 0.291 0.291 0.216

a1
1 ⪯1 a

1
2 ⪯1 a

1
3 0.131 0.131 0.279

Bel⪯1,⪯2
C (E1) a2

1 ⪯2 a
2
3 ⪯2 a

2
2 a2

2 ⪯2 a
2
1 ⪯2 a

2
3 a2

1 ⪯2 a
2
2 ⪯2 a

2
3

a1
3 ⪯1 a

1
2 ⪯1 a

1
1 0.259 0.180 0.180

a1
3 ⪯1 a

1
1 ⪯1 a

1
2 0.208 0.270 0.270

a1
2 ⪯1 a

1
3 ⪯1 a

1
1 0.259 0.180 0.180

a1
1 ⪯1 a

1
3 ⪯1 a

1
2 0.251 0.293 0.293

a1
2 ⪯1 a

1
1 ⪯1 a

1
3 0.236 0.218 0.218

a1
1 ⪯1 a

1
2 ⪯1 a

1
3 0.251 0.293 0.293
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Bel⪯1,⪯2
C (E2) a2

3 ⪯2 a
2
2 ⪯2 a

2
1 a2

3 ⪯2 a
2
1 ⪯2 a

2
2 a2

2 ⪯2 a
2
3 ⪯2 a

2
1

a1
3 ⪯2 a

1
2 ⪯2 a

1
1 0.296 0.254 0.296

a1
3 ⪯1 a

1
1 ⪯1 a

1
2 0.296 0.254 0.296

a1
2 ⪯1 a

1
3 ⪯1 a

1
1 0.224 0.240 0.224

a1
1 ⪯1 a

1
3 ⪯1 a

1
2 0.259 0.208 0.259

a1
2 ⪯1 a

1
1 ⪯1 a

1
3 0.180 0.270 0.180

a1
1 ⪯1 a

1
2 ⪯1 a

1
3 0.180 0.270 0.180

Bel⪯1,⪯2
C (E2) a2

1 ⪯2 a
2
3 ⪯2 a

2
2 a2

2 ⪯2 a
2
1 ⪯2 a

2
3 a2

1 ⪯2 a
2
2 ⪯2 a

2
3

a1
3 ⪯2 a

1
2 ⪯2 a

1
1 0.131 0.291 0.131

a1
3 ⪯1 a

1
1 ⪯1 a

1
2 0.131 0.291 0.131

a1
2 ⪯1 a

1
3 ⪯1 a

1
1 0.279 0.216 0.279

a1
1 ⪯1 a

1
3 ⪯1 a

1
2 0.251 0.236 0.251

a1
2 ⪯1 a

1
1 ⪯1 a

1
3 0.293 0.218 0.293

a1
1 ⪯1 a

1
2 ⪯1 a

1
3 0.293 0.218 0.293

Table 3.4: Rounded value of Bel⪯1,⪯2
C for E1 and E2 depending on the arbitrary

orderings ⪯1, ⪯2. Values in bald font represent the minimal value attained by the
different belief functions, where Bel⪯1,⪯2

C (E) = P (E).

Example 14 illustrates that it is not always possible to find orderings allowing to find an
inclusion relationship between Mmass and Magg. In the case where such orderings exist,
answering the question “if an ordering allowing Mrobust ⊆ Mmass exists, is it possible to
explicit it in advance?” is not as trivial as the orderings will be dependent of the copula.
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In this chapter, we presented three methods for joining marginal credal sets with a
copula, which we named Mrobust, Mmass and Magg. Our contributions consisted notably
in the different propositions investigating inclusion relationships between those sets. In
particular, we considered the special case of the product copula, and the special cases
where marginal credal sets are defined by possibility distributions and p-boxes. The
multivariate uncertainty models presented in this chapter are crucial in uncertainty
propagation problems. In the following chapter, we will consider such a propagation
problem in the context of stereo matching. The multivariate credal sets defined in this
chapter will be used to model and propagate the uncertainty, and some results proved
here will be used to simplify the problem.

Conclusion
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Propagating the Uncertainty from
Stereo Images to the Cost Volume

In the previous chapter, different methods for joining credal sets using a copula have
been presented. In this chapter, we present a first methodological attempt to apply these
results to an uncertainty propagation problem in a stereo matching context. Usage of im-
precise models for various engineering problems different from stereo matching have been
investigated in related work [Oberkampf et al., 2001, Beer et al., 2013, Patelli et al., 2014].
We here specifically use possibility distributions from Chapter 2 as uncertainty models on
the intensity values of epipolar images used in stereo matching. We will then propagate
the uncertainty from those images to the cost volume using results from Section 3.2.2.
We will also show that propagating the uncertainty has the potential to improve the dis-
parity map derived from the cost volume. This chapter takes up work and data already
published in [Malinowski and Destercke, 2022a, Malinowski et al., 2023].

It is important to note that in this disparity estimation problem, we only take into
account the uncertainty in our input image intensities, without considering the uncertainty
of the cost function’s ability to correctly identify the true disparity as its minimum. In
other words, we do not consider the uncertainty arising from the difference between “two
patches are very similar” and “the pixels at the center of the patches are homologous”.
We refer to Figure 1.15 and more broadly to the different discussions in Section 1.3.3
for more details. This chapter focuses on the propagation of uncertainty. We will thus
consider a stereo matching pipeline with a simple cost function and no SGM regularization.
Indeed, propagating the uncertainty through a cost volume optimization is too complex
and computationally expensive to be solved with this chapter’s method, even though it is
an interesting problem to consider. We will consider the different problem of uncertainty
modeling with SGM regularization in Chapter 5.
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Remark: It is interesting to see that in [Quinio and Matsuyama, 1991, Quinio,
1992], the author considered using closed random sets (a concept related to Imprecise
Probabilities (IP) and belief functions studied in Chapter 2) to model the uncertainty
of a stereoscopic setup. They mainly consider the uncertainty arising from the limited
resolution of digital images (as we do in this chapter), and from the precision of the
calibration setup: focal length of cameras, baseline distance, orientation, and vergence
angle of the cameras etc. They consider that the uncertainty from dense matching
is not of epistemic nature, but of aleatoric nature, and thus do not model it by
imprecise models as we do in Chapter 5. This hypothesis is justified because they
achieve the stereo matching step using a window based ZNCC cost function (without
SGM, as it was not published at the time), which, by nature, possesses strong links
with probabilistic models.

4.1 Context and Hypotheses for Uncertainty Propa-
gation

4.1.1 Considered Stereo Matching Pipeline

We consider the Sum of Absolute Differences (SAD) as our cost function, introduced in
Section 1.3.3, and reminded here. Given patches WL ⊂ IL and WR ⊂ IR of the same
shape with n pixels (usually squares):

SAD(WL,WR) =
∑

(pi,qi)∈(WL,WR)
|IL(pi) − IR(qi)| (4.1)

where pi and qi are pixels at the same position i in their patch. For convenience purposes,
we will refer to the Absolute Difference between two pixels as AD (when there is no
sum involved). An illustration of windows from stereo images to compare is displayed in
Figure 4.1, and an illustration of the AD between pixels and SAD cost function can be
found in Figure 4.2. The simplicity of the formulation of the SAD cost function allows
for a more didactic presentation of the uncertainty propagation problem. For the same
reason, we do not consider the SGM regularization here. The modeling of uncertainty for
more advanced cost functions and SGM methods will be considered in Chapter 5.

Remark: Although the SAD is not the best performing cost function for dense
matching, it is both fast and easily parallelizable. It is often used for comparison in
cost-based stereo algorithms [Hirschmuller and Scharstein, 2007, Žbontar and LeCun,
2016], or in other applications. The limitations of the SAD cost function are well-

116



Chapter 4

Figure 4.1: Homologous pixels in a pair of images. From [Malinowski et al., 2024a]

known, i.e. mostly a lack of robustness to gain and offset between patches. In the
case of Middlebury images, illumination conditions and calibration of cameras are
controlled, which are conditions well-suited for the SAD cost function. Considering
a simple cost function such as SAD is relevant for different reasons:

• Simple stereo matching algorithms are often used as a quick and easy method
for estimating the disparity.

• Simple cost functions (such as SAD, ZNCC, etc.) considered here are still used
in other problems, such as video compression, for instance [Richardson, 2006].

In our experiments, we considered the “Cones” images from the 2003 Middlebury
stereo dataset (https://vision.middlebury.edu/stereo/data/scenes2003/), as dis-
played in Figure 4.4(a). The two images have a of size 375 × 450, and the range of
considered disparities is [−60, 0].

4.1.2 Uncertainty Model for Epipolar Images Intensities

To maintain simplicity in this section, we will not consider panchromatic images, such as
Pléiades products, encoding the reflectance values as positive integer, usually contained
in [0, 5000]. Instead, we consider grayscale images that have intensity levels quantified
within the range [0, 255], which will represent our measurable space X .
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Figure 4.2: Diagram representing the SAD cost function between two 3×3 patches. From
[Malinowski et al., 2024a]

Remark: This hypothesis is not constraining, as we can easily normalize reflectances
in order to encode them using 8-bit integers value, although doing so reduces the
precision of the initial images. Moreover, this normalization step is often required to
fit a given format, for instance if the images must be processed by a CNN trained on
8-bit integers.

We postulate that a pixel’s intensity value can deviate around its observed value with
a range of ±iσ, with the observed value being the most likely. This specific hypothe-
sis remains simple and relatively plausible with regard to the processing leading to the
epipolar images. We then assume that the uncertainty from the noise of the sensor cap-
turing the image, from pre-processing steps such radiometric and geometric correction, or
epipolar resampling (see Section 1.4.2) or from the quantification of observed radiomet-
ric values into 8-bit integers, are not exactly known, but can be model by a possibility
distribution introduced in Section 2.3.4. Consequently, we model the uncertainty of each
pixel p ∈ IL, IR intensity with a possibility distribution π, centered around the observed
intensity ip ∈ [0, 255]:

π(ip) = 1, π(ip ± iσ) = α , (4.2)
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with α ∈ [0, 1]. To remain simple, we chose iσ = 1 in the following, which is relatively
narrow but allows simplification without impacting our reasoning. Similarly, we do not
consider multiple α values in order to limit the number of focal sets considered. Choosing

ip − iσ ip ip + iσ

α

1 ×

× ×

π
(i

)

Figure 4.3: Possibility distribution for the intensity i of a pixel p

thus simple possibility distribution is convenient, but results obtained in this chapter can
easily be extended to more complex possibility distributions. In our simulation, α = 0.3
for pixels in the left image and α = 0.4 for pixels in the right image. We use different
values of α for the left and right images because the uncertainty model may vary between
images due to differences in exposure, noise levels, or camera calibration. The values on
themselves are chosen arbitrarily for the purpose of this example. From the credal set
point of view of Definition 5, this model effectively states that we accept any probability
distribution supported within [ip − 1, ip + 1] where the probability measure P satisfies
{P (A) ≤ supi∈A π(i)} as an acceptable model for our uncertainty, as in Definition 13. The
mass distribution function mp from Definition 8 associated with this credal set possesses
two focal sets ap (Definition 9):

mp(ap
1 = [[ip, ip]]) = 1 − α

mp(ap
2 = [[ip − 1, ip + 1]]) = α (4.3)

with [[·, ·]] referring to integer intervals. In particular, [[ip, ip]] corresponds to the singleton
{ip}.

Remark: The hypothesis of modeling the uncertainty on image intensities by pos-
sibility distributions does not consider uncertainty from potentially bigger sources of
errors, such as satellite vibrations during the acquisition, or errors in the computa-
tions of epipolar lines. Those type of errors have been encountered on some Pléiades
acquisitions, and lead to significant biases and errors on the final DSM, that our
simple model does not account for. We here suppose that the geometric models of
each sensor as well as the epipolar geometry are perfectly known.
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4.1.3 Dependency Model between Epipolar Images

We described the uncertainty models for pixels in both images, but we also need to
define the dependency model between every pixel of both images. Indeed, as some pixels
between images represent the light reflected by the same object, it seems natural that their
(uncertain) values are correlated. In our case, we propose to model their dependency
with the product copula if the pixels are not from the same physical object, meaning
that the value of their intensities are independent. For pixels belonging to the same
object, we model their dependency using a Gaussian copula with a covariance matrix R.
Those copulas were introduced in Equation (4.4) from Chapter 2. We remind here the
formulation of a Gaussian n-copula CR:

CR(u1, . . . , un) = ΦR(Φ−1(u1), . . . , Φ−1(un)) (4.4)

where ΦR is the joint multivariate Cumulative Distribution Function (CDF) of a Gaussian
variable with correlation matrix R, and Φ−1 is the inverse CDF of a univariate Gaussian
variable. Gaussian copulas are popular and simple copulas used to represent dependencies
between more than 2 variables. By comparison, the different 2-copulas presented in
Section 2.4 cannot always be defined in more than 2 dimensions or possess a quite complex
formulation. Another method for modeling the dependency for more than 2 variables is
to express a n-copula as a combination of 2-copulas, which is called a vine copula ([Czado
and Nagler, 2022]). However, this is a complex subject that is not adapted to our type of
dependency, and is therefore not explored in this thesis.

In our experiments, the correlation values inside the covariance matrix are based on
a segmentation S : (IL ∪ IR) → [[1, K]], K ∈ N, of the images. This segmentation is the
result of a k-means clustering performed on the ground truth disparity map. An example
of such a clustering is presented in Figure 4.4, with K = 8. In real life scenarios, the
correlation matrix must be estimated by other means, as the ground truth disparity is
not available. We can for instance use a semantic segmentation algorithm [Hariharan
et al., 2014, Ronneberger et al., 2015], or use other statistical estimators [Touloumis,
2015]. We suppose here that the correlation between pixels’ intensities is well-known,
as we also supposed we know the type of copula modeling their dependency. Given the
segmentation S and two pixels (p, q) ∈ (IL ∪ IR)2, their covariance is here determined by:

σ(p, q) =


1 if p = q,

ρk, if p ̸= q and S(p) = S(q) ,

0 otherwise .

(4.5)
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(a) Colored left image (b) Proposed clustering of the image (k-means
with K = 8)

Figure 4.4: Middlebury 2003 Cones left image, and a clustering computed from the dis-
parity ground truth.

where 0 < ρk < 1 is the correlation of pixels belonging to segment k ∈ [[1, N ]]. During our
simulations, the segmentation contains K = 8 different clusters. For every k in [[1, K]],
ρk is assigned a value between 0.9 and 1 in order to really emphasize their correlation.
Given a set of pixels {p1, . . . , pn} ⊆ (IL ∪ IR)2, their covariance matrix R is therefore:

R =



1 σ(p1, p2) . . . σ(p1, pn−1) σ(p1, pn)
σ(p2, p1) 1 . . . σ(p2, pn−1) σ(p2, pn)
. . . . . . . . . . . . . . .

σ(pn−1, p1) σ(pn−1, p2) . . . 1 σ(pn−1, pn)
σ(pn, p1) σ(pn, p2) . . . σ(pn, pn−1) 1


(4.6)

In practice, we will only compute the correlation matrix between the two windows
from the reference and secondary images that are compared. Both windows have a 3 × 3
shape, we thus consider Gaussian 18−copulas to model the dependency between pixels.
This copula will be used for joining marginal masses in the uncertainty propagation step,
as in Definitions 19 and 20 to compute the credal set Mmass. It will also be used in
Section 4.3.2 to draw Monte Carlo samples, in order to estimate the credal set Mrobust

from Definition 18.

Remark: The segmentation is based on the ground truth disparity map. This means
that two objects with similar disparities located at opposite sides of the image will
be considered as belonging to the same object and thus correlated. In practice,
those pixels are never compared, as we only measure the dissimilarity between small
windows in a restricted disparity range. The clustering is thus only used at a local
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scale.

Secondly, the segmentation allows computing the Gaussian copula, which will be
used to propagate the uncertainty models. We will validate the uncertainty propa-
gation in Section 4.3.2 with Monte Carlo samples using the same copula. As long as
the copulas used are the same between the propagation and validation, it does not
really matter which correlation matrix is used. We still tried to create a realistic but
simple dependency model for the sake of the example, but it is not required from a
theoretical point of view.

4.2 Propagating the Uncertainty with Belief Func-
tions and a Copula

Having defined both marginal models for pixel intensities using possibility distributions
and dependency models using copulas, we can now join them all to construct a multivariate
uncertainty model, as seen in Section 3.1. We will see in this section how the multivariate
models can then be used to compute the uncertainty regarding the cost curve.

4.2.1 From Multivariate Uncertainty Models to the Propagated
Model

We first detail how multivariate models are used to propagate uncertainty in the precise
case. We will then do the same in the imprecise setting by analogy.

Consider a mapping f : X1×X2 → Z from a product space X1×X2 to a space Z, which
propagates multiple random variables X1, X2 to a new random variable Z = f(X1, X2).
In our case, f will be the SAD cost function propagating the intensities to the matching
cost. When considering precise probabilities, the probability of Z on atoms z is obtained
by summing the probabilities of all events X1 = x1, X2 = x2 whose image by f is z:

∀z ∈ Z, PZ(z) =
∑

x1,x2
z=f(x1,x2)

P (x1, x2). (4.7)

where P (x1, x2) is the joint probability, which is linked to its marginals by a copula C.
PZ is completely determined by evaluating every combination of atoms of X1 and X2.

Example 15: Consider the same setting as Example 8, where a dealer throws two
coins in a separate room. The coins seem fair when looked at independently. In
this example, a coin landing on heads rewards you with 1€ (or any currency of your
choice), and a coin landing on tails rewards you with 0€. So you earn 2€ if both coins
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land on heads, 1€ if only one coin land on heads, and 0€ if both coins land on tails.
We are interested in the uncertainty regarding your earnings, noted Z.

In Example 8, we consider 3 different cases, each leading to a different copula C
modeling the dependency between the probability P1 of the first coin and P2 of the
second coin. For each copula, we then computed the joint probability P .

In the first case, where coin throws were independent, we saw that the joint prob-
ability P was:

P (heads, heads) = 0.25

P (heads, tails) = 0.25

P (tails, tails) = 0.25

P (tails, heads) = 0.25

In that case, it holds that the probability PZ of our earnings is:

PZ(Z = 2) = P (heads, heads) = 0.25

PZ(Z = 1) = P (heads, tails) + P (tails, heads) = 0.5

PZ(Z = 0) = P (tails, tails) = 0.25

In the second case, where coin throws were rigged to land on the same side, we
saw that the joint probability P was:

P (heads, heads) = 0.5

P (heads, tails) = 0

P (tails, tails) = 0.5

P (tails, heads) = 0

Following the same methodology, we have:

PZ(Z = 2) = 0.5 PZ(Z = 1) = 0 PZ(Z = 0) = 0.5

In the third case, where coin throws were rigged to land on opposite sides, we saw
that the joint probability P was:

P (heads, heads) = 0

P (heads, tails) = 0.5

P (tails, tails) = 0

P (tails, heads) = 0.5

Therefore:

PZ(Z = 2) = 0 PZ(Z = 1) = 1 PZ(Z = 0) = 0

Determining every (x1, x2), whose image by f equals z, is not always trivial. This
becomes even more complex when considering n > 2 marginal variables. Similarly, the
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joint probability P (x1, x2) is computed using a H-volume, which is the sum of 2n terms,
thus also increasing exponentially with the dimension.

There are multiple ways of extending Equation (4.7) to the imprecise setting, as there
are multiple ways of aggregating imprecise models using a copula. We described in Chap-
ter 3 three methods for joining marginal credal sets, creating three different multivariate
credal sets Mrobust, Mmass and Magg.

The robust approach of extending Equation (4.7) is based on the robust approach
from Section 3.1.1. Given n marginal credal sets Mi, we can join them into a credal set
Mrobust using a copula C, as in (3.3). The propagated uncertain model MZ

robust is then
defined as:

MZ
robust = {PZ | ∀z ∈ Z, PZ(z) =

∑
x1, ..., xn

z=f(x1, ..., xn)

P (x1, . . . , xn), P ∈ Mrobust} (4.8)

Practically, this set is computed by sampling every probability Pi from each marginal
credal set Mi and joining them using Sklar’s Theorem into a multivariate probability P .
Then for each z = P (x1, . . . , xn), we can compute PZ from P using (4.7). In a few
words, each sample (P1, . . . , Pn) leads to a new P , itself leading to a new PZ . Sampling
through every (P1, . . . , Pn) thus leads to the estimation of the uncertain model of Z.
This method is complicated to compute, but correctly propagates the uncertainty. In the
case of the SAD cost function, the robust credal set is defined as:

MSAD
robust = {PSAD | ∀z ∈ SAD, PSAD(z) =

∑
p1, ..., p18

z=SAD(p1, ..., p18)

P (p1, . . . , p18), P ∈ Mrobust}

(4.9)

We saw that it was easier to compute Mmass than Mrobust. Thus, another way of
approximating the uncertainty model of Z is to compute it using Mmass. This is done
by replacing the probability on atoms from Equation (4.7) with the joint mass mC from
Definition 19 [Gray et al., 2021]. Consider n uncertain variables Xi, each modeled by
a mass distribution function whose j-th focal set is noted ai

j. Given their multivariate
mass mC , it is possible to compute the mass distribution function mZ of a random set
Z = f(X1, . . . , Xn) as:

∀aZ ⊆ Z,mZ(aZ) =
∑

a1
i , ..., an

j

aZ=f(a1
i , ..., an

j )

mC(a1
i , . . . , a

n
j ) (4.10)
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leading to a credal set MZ
mass:

MZ
mass = { PZ | ∀A ⊆ Z, PZ(A) ⩾

∑
aZ⊆A

mZ(aZ)} (4.11)

= { PZ | ∀A ⊆ Z, PZ(A) ⩾
∑

a1, ..., an

f(a1, ..., an)⊆A

mC(a1, . . . , an) } (4.12)

In order to compute the propagated mass mZ (and its associated belief function) from
Equation (4.10), two difficulties arise. The first one is to determine what the focal sets
aZ of mZ will be, which corresponds to the subscript aZ = f(an

1 , . . . , a
n
j ) of the previous

sum. Computing the image of f for every combination of focal sets (a1
i , . . . , a

n
j ) is even

more difficult than in the precise case, as we are computing images of sets instead of real
numbers. The second difficulty is to compute the joint mass mC , as in the case of the SAD
it requires computing the H-volume of a 18-copula. Those difficulties will be addressed in
Sections 4.2.2 and 4.2.3

We saw in Chapter 3 that in the situation where marginals are possibility distributions,
Mmass and Magg have the same bounds on Cartesian products of events (see Section 3.2.2).
We will thus only compute the lower bounds BelC of Mmass as it also provides the bounds
of Magg on those events.

4.2.2 Determining the Bounds of the Propagated Focal Sets

In this section, we will detail how we compute the bounds of the SAD from marginal focal
sets. Computing the image of sets should be approached with caution in the general case.
However in our case, because we chose marginal focal sets with a simple expression, and
because we are using a relatively regular cost function, computing the image is significantly
easier.

Given a pixel p, we consider the mass distribution mp of Section 4.1.2 and its two
focal sets ap

1 and ap
2 from Section 4.1.2. For every pair of pixels p ∈ IL, q ∈ IR, we note

ADpq = |ip − iq|, where i refers to a pixel’s intensity. Given mp, there exist 3 focal sets
related to the absolute difference:

• aAD
1 is the image of the AD of ap

1 and aq
1

• aAD
2 is the image of the AD of ap

2 and aq
1 or ap

1 and aq
2

• aAD
3 is the image of the AD of ap

2 and aq
2

The non-monotonicity of the absolute value around 0 needs to be taken into account to
compute their exact image through the AD. Indeed, if a value x is in [−1, 1], then its
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absolute value will be in [0, 1]. Applying this remark to the AD yields the following focal
sets:

aAD
1 = [[ADpq, ADpq]] ,

aAD
2 = [[max(0,ADpq − 1), ADpq + 1]] ,

aAD
3 = [[max(0,ADpq − 2), ADpq + 2]] ,

Example 16 provides numerical examples of the value of AD focal sets.

Example 16: Let us compute the focal sets of the absolute difference between two
pixels. Let p and q be pixels of the left and right image, respectively.

• First, suppose that ip = 100 and iq = 150. Focal sets of ip and iq are then:

ap
1 = [[ip, ip]] = {100}

ap
2 = [[ip − 1, ip + 1]]

= {99, 100, 101}

aq
1 = [[iq, iq]] = {150}

aq
2 = [[iq − 1, iq + 1]]

= {149, 150, 151}

Focal sets of the absolute difference between p and q will therefore be:

aAD
1 = {|ap

1 − aq
1|} = {50}

aAD
2 = {|ap

2 − aq
1|} = {|ap

1 − aq
2|} = [[49, 51]]

= [[50 − 1, 50 + 1]]

aAD
3 = {|ap

2 − aq
2|} = [[48, 52]]

= [[50 − 2, 50 + 2]]

• Suppose now that ip = 100 and iq = 100. Focal sets of ip and iq are then the
same:

ap
1 = aq

1 = [[ip, ip]] = {100}

ap
2 = aq

2 = [[ip − 1, ip + 1]]

= {99, 100, 101}

Focal sets of the absolute difference between p and q will therefore be:

aAD
1 = {|ap

1 − aq
1|} = {0}

aAD
2 = {|ap

2 − aq
1|} = {|ap

1 − aq
2|} = [[0, 1]]

aAD
3 = {|ap

2 − aq
2|} = [[0, 2]]
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Focal sets of the final SAD are then computed by simply summing the bounds of focal
sets of the 9 AD (as in Figure 4.2), for every combination (aAD1

k1 , . . . , aAD9
k9 )ki∈[[1,3]] of those

focal sets:

aSAD =
9∑

i=1
aADi

ki
(4.13)

In many cases, different combinations of AD focal sets will lead to the same SAD focal
set. Actually, if every AD is greater than 2 so that each aAD

i is symmetric with regard to
its AD, as in the first bullet point of Example 16, there will only be 19 focal sets aSAD for
the SAD. They are of the following form:

aSAD = [[SAD − t, SAD + t]], with t ∈ [[0, 18]] (4.14)

In comparison, there are 39 = 19 683 different combinations of AD focal sets.

When every AD is greater than 2, it holds that:

aSAD = [[SAD − t, SAD + t]], with t ∈ [[0, 18]]

This can easily be seen by considering AD that are similar to the first point of Example 16.
This equation translates the fact that focal sets of the SAD form a nested family of sets,
i.e. there is an inclusion relationship linking them all. This also means that BelSAD

is actually a necessity function introduced in Definition 13. We can thus compute a
possibility distribution πSAD to represent the uncertainty of the SAD. This can be useful to
graphically represent the uncertainty of the SAD, if we later need to build joint uncertainty
models using the SAD, or if we want to propagate the SAD uncertainty even further.

We proved in [Malinowski et al., 2024a] that in order to propagate marginal possibility
distributions πi into a possibility distribution πZ using a copula and a propagating function
f , a sufficient condition is that f and πi verify:

• f is a monotone function applied to a linear combination α1X1 + . . .+αnXn + β of
marginal variables Xi

• Each πi is symmetrical and uni-modal (meaning that all values xi such that πi(xi) =
1 are adjacent). For instance, all triangular possibility distributions verify this
condition

Figure 4.5 displays an example of a uni-modal symmetrical possibility distribution.
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Figure 4.5: A uni-modal possibility distribution π

4.2.3 Computing the Mass of Propagated Focal Sets

Now that the bounds of the SAD have been computed, we need to compute the associated
mass. Computing the joint mass over two 3 × 3 windows is significantly more complex.
For each combination of marginal focal sets, the joint mass mC is computed using the
H-volume of a 18-copula, involving a sum of 218 terms. Given that the uncertainty of
each of the 18 pixels is represented by 2 focal sets, we need to evaluate 218 combinations
of these marginal masses in total. This computation can thus become quite costly in
memory and computation time, especially when computing it over a whole image.

In the case of the family of Gaussian copulas, their expression given by Equation (4.4)
show that we need to compute the multivariate CDF. A 18-variate Gaussian CDF does
not possess a known analytic formula; it is thus computed by integrating its Probability
Density Function (PDF) (so integrating a 18-variate function), as expressed below:

F (x1, . . . , x18) =

∫ x1

−∞
. . .
∫ x18

−∞

1√
(2π)18|R|

exp(−1
2
[
x1 . . . x18

]
R−1


x1

. . .

x18

)dx1 . . . dx18 (4.15)

Where |R| is the determinant of R. Computing this CDF can quickly become time-
consuming (40ms on average1). For each pixel and each disparity, we need to compute
the joint mass of 218 focal sets in total, necessitating 218 evaluations of its copula each
time. Because there are around 170 000 pixels and 60 disparities to be evaluated, the
processing time is too large to be computed as such. We will instead see that we can
leverage specificities of our problem to drastically reduce the computation time.

The first idea is to notice that if we can divide our variables into multiple mutually
independent sets of variables, then the evaluation of the 18-copula can be separated into
the evaluation of multiple lower dimension copulas. To verify this statement, consider

1With an AMD EPYC7713 64-Core Processor at 2GHz, using Python and the SciPy library
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the following independent sets of variables {X1, . . . , Xk} and {Xk+1, . . . , Xn} with
k ∈ [[1, n − 1]]. Let F1, . . . , Fn be their marginals CDFs. And let F(1, ..., n) be the joint
CDF of all variables, F(1, ..., k) the joint CDF of the first set of variables and F(k+1, ..., n)

the joint CDF of the second set. The independence between the two sets means that for
all (x1, . . . , xn) ∈ X1 × · · · × Xn it holds that:

F(1, ..., n)(x1, . . . , xn) = F(1, ..., k)(x1, . . . , xk) · F(k+1, ..., n)(xk+1, . . . , xn)

Using Sklar’s theorem, there exist a n-copula C, a k-copula C ′ and a n − k-copula C ′′

respectively linking F(1, ..., n), F(1, ..., k), and F(k+1, ..., n) to their marginals:

C(F1(x1), . . . , Fn(xn)) =

C ′(F1(x1), . . . , Fk(xk)) · C ′′(Fk+1(xk+1), . . . , Fn(xn)) (4.16)

Remark: We stated earlier that we did not consider vine copulas [Czado and Na-
gler, 2022], which are a way of constructing multivariate copulas by composition of
bivariate (conditional) copulas. The decomposition C into C ′ and C ′′ actually fol-
lows the same idea of decomposing a copula into smaller copulas. Similarly, this
decomposition also reminds the concept of hierarchical copulas [Joe, 1997]. So even
though we are not using vine or hierarchical copulas, we use a similar philosophy in
our computations.

Establishing Equation (4.16) becomes interesting once we put it in relation with the
following property:

Proposition 10: H-Volume factorizing

Let 1 < k < n. If a n-copula C can be expressed as the product of a k-copula C ′

and a (n− k)-copula C ′′, then the H-volume of C is the product of the H-volume H ′

of C ′ and the H-volume H ′′ of C ′′. This means that for all (u1, . . . , un) ∈ [0, 1]n and
for all (v1, . . . , vn) ∈ [0, 1]n such that ui ⩽ vi, it holds that:

Hv1, ..., vn
u1, ..., un

= H ′v1, ..., vk

u1, ..., uk
·H ′′vk+1, ..., vn

uk+1, ..., un
(4.17)

Proof: Let 1 < k < n, C a n-copula, C ′ a k-copula and C ′′ a n − k copula. H, H ′,
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H ′′ are the respective H-volume of C, C ′, C ′′. Then:

H ′v1, . . . , vk

u1, . . . , uk

·H ′′vk+1, . . . , vn

uk+1, . . . , un

=

 ∑
wi∈
∏k

i=1{ui,vi}

(−1)|{wi | wi=ui}|C ′(w1, . . . , wk)



×

 ∑
wj∈
∏n

j=k+1{uj ,vj}

(−1)|{wj | wj=uj}|C ′′(wk+1, . . . , wn)


=

∑
wi∈
∏k

i=1{ui,vi}

×
∑

wj∈
∏n

j=k+1{uj ,vj}

(−1)|{wi | wi=ui, i⩽k}|

× (−1)|{wj | wj=uj , j>k}|C ′(w1, . . . , wk)C ′′(wk+1, . . . , wn)

=
∑

wi∈
∏n

i=1{ui,vi}

(−1)|{wi | wi=ui}|C ′(w1, . . . , wk)

× C ′′(wk+1, . . . , wn)

=H
v1, . . . , vn

u1, . . . , un

Using the result of Proposition 10, we can now compute the joint mass as a product of
two lower dimension copulas. It is easier to compute as we only integrate a k-dimensional
function and a n− k-dimensional function, instead of a n-dimensional one. Similarly, the
H volume is not the sum of 218 terms anymore, but the sum of 2k and 2n−k terms.

For comparison, consider that we can split the aforementioned Gaussian 18-copula
into two Gaussian 9-copulas. Computing the value of a single mass naively takes around
10 500s, but now takes around 6s, so around 1 700 times faster. This demonstrates the
substantial time savings achieved by decomposing the problem into smaller, independent
parts. These improvements apply directly to our application. Indeed, Equation (4.5)
yields the following correlation between two pixels p, q given the segmentation S:

σ(p, q) =


1 if p = q,

ρk, if p ̸= q and S(p) = S(q) ,

0 otherwise .

From this, we can split the set {p1, . . . , p18} of pixels in at most K = 8 mutually
independent sets Sk = {pi | S(pi) = k}, each set containing pixels from the same cluster.
We can thus compute the H-volume of each cluster independently.

Another additional way of reducing the computation time is to avoid computing the
same H-volume multiple times. Consider a set Sk with kL pixels from the left image and
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kR pixels from the right image. The correlation matrix Rk for this cluster is:

Rk =



1 ρk . . . ρk

...
ρk 1 ρk

...
ρk . . . ρk 1


(4.18)

which implies that the Gaussian (kL + kR)-copula for this set is symmetrical. The joint
mass mSk

C of this set is then also symmetrical. Pixels from the left image will share the
same mass mL for their two focal sets and pixel from the right image will also share the
same mass mR, therefore computing mSk

C on every possible combination of cumulative
masses is redundant.

Example 17: Let us imagine a set Sk with kL = 2 pixels p1, p2 from the left image
and kR = 2 pixels p3, p4 from the right image. Each pixel pi has two focal sets ai

1 and
ai

2. We defined the mass distribution functions in Section 4.1.2 such that:

mL(a1
1) = mL(a2

1)

mR(a3
1) = mR(a4

1)

mL(a1
2) = mL(a2

2)

mR(a3
2) = mR(a4

2)

Because of the symmetry of the Gaussian 4-copula of the set Sk, the joint mass mSk
C

computed as the H-volume on cumulative masses (Definition 19) verifies:

mSk
C (a1

1, a
2
2, a

3
1, a

4
2) = H

mL(a1
1), mL(a1

1) +mL(a2
2), mR(a3

1), mR(a4
1) +mR(a4

2)
0, mL(a2

1), 0, mR(a4
1)

= H
mL(a1

1) +mL(a1
2), mL(a2

1), mR(a3
1) +mR(a3

2), mR(a4
1)

mL(a1
1), 0, mR(a3

1), 0

(by symmetry of the copula)

= mSk
C (a1

2, a
2
1, a

3
2, a

4
1)

We can see that we do not need to compute mSk
C on every possible combination of

focal sets as many combinations have the same joint mass mSk
C .

For each set Sk, we only have to compute (kL + 1) · (kR + 1) values of mSk
C rather than

2kL+kR .

We saw earlier that it was complex to compute the joint mass of the SAD in general.
However, by taking advantage of the potential factorization of the copula into smaller
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copulas, and by leveraging some symmetries of the problem, we can greatly reduce the
time and number of computations required.

4.3 Results and Discussions

In the previous section, we described how we can use Mrobust and Mmass to propagate the
uncertainty from the input images into the uncertainty of the SAD. Evaluating this un-
certainty for every pixel and every considered disparity, results in the uncertainty models
of every value of the cost volume (see Equation (1.7) from Section 1.3.3 for more details
on the cost volume). We saw in Section 3.2.2 that Mmass and Mrobust are different credal
sets, and that neither set is guaranteed to be included in the other. This section will then
compare the various models and see if MZ

mass can be used to approximate MZ
robust. Sec-

tion 4.3.1 will present visualizations of MZ
mass using plausibility envelopes. Section 4.3.2

will present visualizations of MZ
robust using Monte Carlo samples and compare them to

the plausibility envelopes. Finally, Section 4.3.3 will estimate the potential improvements
unlocked by estimating the uncertainty.

4.3.1 Envelopes Defined by Plausibility Levels

Having defined efficient ways of computing the SAD focal sets in Section 4.2.3 and the
joint mass in Section 4.2.2, we can determine the belief function BelSAD associated with
every estimation of the SAD between two 3 × 3 windows. BelSAD is deducted from the
mass mSAD

C computed in Equation (4.10).

For each pixel pL = (row, col) in the left image and for each disparity d, we calculated
the SAD cost between the window centered on pL in the left image and the window
centered on pR = (row, col + d) in the right image. We are usually interested in going
through each considered disparity d to obtain the cost curve for pixel pL. From this cost
curve, a winner-takes-all strategy is applied to find the correct disparity. Because of its
significance, we aim to visualize the uncertainty of the entire cost curve, not just a single
value.

It can be hard to graphically represent focal sets, or similarly belief functions, es-
pecially when there are many sets to consider. We are usually more keen to represent
uncertainty on singletons, as we do with probability densities, possibility distributions
or, to a certain extent, p-boxes (although in that case singletons represent cumulative
events). Following that logic, we will consider the plausibility of singletons as a way of
representing the uncertainty graphically.
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Remark: Considering the belief on singletons instead of the plausibility does not
make much sense as the belief of singletons is very often null. The only exception is
the precise SAD value, because it is the only singleton that is also a focal set.

We will first explain how we graphically represent the uncertainty in the special case of
possibility distributions, and then extend this representation to all SAD belief functions.

As shown in Section 4.2.2, focal sets representing the SAD uncertainty are defined
as intervals containing the “precise” SAD value. We saw in a remark from Section 4.2.2
that the uncertainty of the SAD can be represented by a possibility distribution πSAD

in the special case where all AD leading to the SAD are greater than 2. In this case,
we can easily plot this possibility distribution, at least for a few degrees of possibility.
Given a degree of possibility γ, we plot the bounds of the largest interval Iγ = [Iγ, Iγ]
whose possibility is greater than γ. It is the “γ-cut” defined in Definition 12, which we
then called “α-cut”. The possibility measure is computed as ΠSAD(A) = supz∈A πSAD(z)
or ΠSAD(A) = ∑

a∩A ̸=∅ m
SAD
C (a) using Equation (2.12). This way, given γ ∈ [0, 1], the

bounds Iγ, Iγ to plot are:

Iγ = arg min
z

{πSAD(z) ⩾ γ}, Iγ = arg max
z

{πSAD(z) ⩾ γ} (4.19)

Because focal sets of πSAD are increasing intervals, then every SAD value between Iγ and
Iγ will have a possibility superior to γ. The bounds define the envelope of values with
a degree of possibility greater than γ. Plotting envelopes for different values of γ allows
visualizing a representation of the SAD uncertainty. We will define the envelopes in the
following, but readers can already have a broad idea of what those envelopes look like by
looking at Figure 4.6.

In Equation (4.19), Iγ and Iγ are the upper and lower bounds of the same focal set.
If we relax this constraint, then we can extend this definition of Iγ, Iγ to any type of SAD
plausibility (or equivalently belief) function PlSAD. For all focal sets a = [a, a] of the SAD
plausibility function, the bounds Iγ, Iγ are defined as:

Iγ = min{a | PlSAD([a, a]) ⩾ γ}, Iγ = max{a | PlSAD([a, a]) ⩾ γ} (4.20)

Remark: Equation (4.20) details how we chose to represent a plausibility function
(or equivalently a credal set) by some envelopes. One can wonder if we can reconstruct
the plausibility function from the envelopes. It is straightforward to see that it is the
case if and only if the plausibility function is a possibility measure, because it is then
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fully determined by its values on singletons.

However, if the plausibility is not a possibility measure, then the possibility dis-
tribution π′ defined by envelopes induces a credal set M(π′) containing M(PlSAD). In
that regard, we chose to represent a plausibility by an outer approximating possibility.

Now that we decided on how to plot our uncertainty models, we can present some results.
We arbitrarily considered different values for plausibility levels γ:

• The first value is γ = 1. It corresponds to the SAD value with the highest degree
of possibility. This value is unique in our case, and corresponds to the SAD value
that would have been computed without considering the uncertainty.

• We then consider values γ = 0.9 and γ = 0.85. They allow giving an estimation of
the dispersion of envelopes with high plausibility. With them, we can estimate if
highly plausible values are near the SAD values or not.

• γ = 0.5 gives a moderate plausibility estimation. From a credal set point of view,
the probability that the SAD value lies in this set is at least 0.5.

• The last value is γ = 0. For this value, the inequalities in Equation (4.20) are
actually strict (otherwise the inequality is verified by all imaginable values). These
bounds represent the support of the plausibility function, or in other words, the
range of values covered by focal sets.

A visualization of different plausibility levels of the SAD cost curve are displayed
in Figure 4.6, computed with the product copula CΠ and a Gaussian copula CR. The
position of the considered pixel in the left image is displayed in Figure 4.7. Both copulas
have the same support Pl > 0, and the same value for Pl = 1. Envelopes of the other
plausibility levels are however different. Figure 4.6(b) and Figure 4.6(d) display the fact
that the values covered by the plausibility levels vary with the copula used. Plausibility
levels 0.85 and 0.5 are more concentrated around plausibility level 1 in the case of the
product copula than in the case of the Gaussian copula. Conversely, plausibility level
0.9 is closer to plausibility level 1 in the case of the Gaussian copula. This is due to the
fact that the Gaussian copula CR is more co-monotone than the product copula given the
correlation matrix R described in Equation (4.6).

Remark: Both the Gaussian and the product copula have the same support. This is
because when computing the joint mass of marginal focal sets, the copula is regular
enough to assign a non-null mass to every focal set. This would not have been the
case if we took a copula close to the lower or upper Fréchet-Hoeffding bound (the
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(a) SAD envelopes using the product Copula (b) Detailed view of the rectangular section of
(a)

(c) SAD envelopes using the Gaussian Copula (d) Detailed view of the rectangular section of
(c)

Figure 4.6: Plausibility levels of a cost curve for the product copula CΠ and the Gaussian
copula CR, for a pixel at coordinates (100, 120). The green vertical line represents the
true disparity. Rectangular sections from the left figures are detailed on the right. From
[Malinowski et al., 2024a].
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lower bound is not a copula for n > 2). Indeed, those copulas are less regular, and can
assign a null mass to joint events, as we saw in the case of probabilities in Example 8
and in Example 15.

4.3.2 Estimating Propagated Credal Sets Using Monte Carlo
Sampling

In Chapter 3, we defined 3 methods for creating multivariate credal sets: Mrobust, Mmass

and Magg. In the case where marginals were possibility distributions, we saw that the
bounds of Magg and Mmass were the same on Cartesian products, so we only considered
Mmass in our application. In the previous sections, we propagated the uncertainty by
using the approach from Mmass. In this section, we will aim to estimate the propagated
uncertainty using Mrobust, and compare it to previous results to evaluate whether we can
use Mmass to outer/inner approximate Mrobust.

We remind here some definitions and results regarding Mrobust. Mrobust is the convex
hull CH of the set of every CDF from n marginal credal sets Mi (in our case n = 18, one
per pixel involved in the SAD computation) joined with a copula C (Definition 18):

Mrobust = CH({F = C(F1, . . . , Fn), Fi ∈ Mi})

We can estimate Mrobust using Monte Carlo samplings: we first generate marginal proba-
bility distributions F1, . . . , Fn belonging in their respective marginal credal sets [Troffaes,
2017], then sample from the joint CDF F . More specifically, we sample a marginal CDF
Fi belonging to the credal set defined in Equation (4.2), for each of the 18 considered
pixels. Sampling from credal sets is not random: we generate probability distributions
in such a way that for each marginal event A, the probability range [Nec(A),Π(A)] is
sampled uniformly. With this method, we get a coverage of each marginal credal set. We
are also ensuring that lower and upper bounds on events are reached at least once, in
order to include “extreme” distributions in our simulations. Once we have a CDF Fi from
each marginal credal set, we can sample from the joint CDF using the method detailed in
Section 2.4.2. This yields a noised version of both left and right images, where the noised
dependency is modeled by the provided copula, and its distribution is coherent with the
possibility distributions from Equation (4.2). We can then compute a noised version of
the cost volume from those images. For each cost curve, this provides a Monte Carlo
samples of the SAD cost curves.

We compute 10 000 samples CDFs from each marginal credal set to construct the
multivariate CDF. Each multivariate CDF is then itself sampled 10 000 times. The Central
Limit Theorem states that N Monte Carlo samples provide an approximation which has
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Figure 4.7: Position of the two 3×3 windows of Figures 4.8 and 4.9. Top right is (100, 120)
and bottom right is (200, 150).

a precision of around 1√
n

(it also depends on the standard deviation of the PDF you are

estimating, but it is a good approximation), so N = 10 000 provides a satisfying precision
for our application.

In practice, we do not simulate a full noised pair of images at once, as it would be
required to sample from a copula of very large dimension (the number of pixels in both
images). This is not realistically feasible, even though it would ensure that each time
a pixel is considered in the cost volume, the same noise samples are used. We instead
generate noise samples for each row separately: noised values of pixels will not change
during the evaluation of a cost curve for different disparities, or between the cost curves of
pixels of the same row. However, their values might change between cost curves of pixels
belonging to different rows. For instance, let’s consider a pixel p = (row, col) ∈ IL for
which we computed a noised intensity ip. We will use the same noised value ip of intensity
when computing the SAD of every pixel q = (row, col′) ∈ IL. But when computing the
SAD of every pixel q = (row − 1, col′) ∈ IL, we will use a different Monte Carlo draw i′p

for its intensity, which will remain the same for every pixel of row row − 1. Because we
draw 108 Monte Carlo draws for each row, proceeding as such should not be noticeable.

Remark: As we construct the correlation matrices R based on the segmentation of
the left and right images, the cost curves displayed in Figures 4.8 and 4.9 mostly
use a different copula for each disparity. Providing the values of those matrices
would necessitate to represent around 60 18×18 correlation matrices, and is thus not
provided here.

Monte Carlo draws using the Gaussian copula and marginals credal sets of Equa-
tion (4.2) are plotted in Figures 4.8 and 4.9. They respectively correspond to the cost
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(a) Plausibility levels and Monte Carlo sampling using a Gaussian copula

(b) Zoom over the first rectangle (c) Zoom over the second rectangle

Figure 4.8: Plausibility levels and Monte Carlo sampling for a pixel at coordinates
(100, 120) in the left image. From [Malinowski et al., 2024a].
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(a) Plausibility levels and Monte Carlo sampling using a Gaussian copula

(b) Zoom over the first rectangle (c) Zoom over the second rectangle

Figure 4.9: Plausibility levels and Monte Carlo sampling for a pixel at coordinates
(200, 150) in the left image. From [Malinowski et al., 2024a].
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curves of pixel located at positions (100, 120) and (200, 150) on the left image, as dis-
played in Figure 4.7. Plausibility levels computed using Equation (4.20) (displayed in
Figure 4.6) also appear for comparison. The support envelopes from plausibility levels
Pl > 0 correctly contain all Monte Carlo samplings for all considered copulas. We can
observe in Figure 4.9(c) that plausibility levels sometimes fail to correctly grasp the fluc-
tuations of the dispersion of the samples, even though they correctly contain Monte Carlo
samples. More specifically, Monte Carlo draws are first dense around disparity −37, then
seem to spread around −35, and finally regather around disparity −32. The plausibility
envelopes are more regular in this disparity range. This illustrates the fact that the “true”
point-wise credal Mrobust set described in Section 3.1.1 is different from the joint credal
set Mmass from Section 3.1.2.

Although some differences persist between those sets, Figures 4.8(c) and 4.9(c) sug-
gest that the point-wise credal set Mrobust can be outer approximated by Mmass in our
applications. To quantify this observation, we can compute the proportion of Monte Carlo
samples contained inside the plausibility envelopes for different plausibility levels γ:

coverageγ =
#{ Monte Carlo samples ∈ [Iγ, Iγ]}

#{ Monte Carlo samples }
(4.21)

The coverage for the considered values of γ is presented in Table 4.1, where the first two
rows represent the coverage of Figures 4.8 and 4.9. The global coverage over the whole
left image is presented in the last row of the table. The coverage is always 100% for γ = 0,
which shows that every sample is contained inside the support envelopes, and that Mrobust

seems to be a subset of Mmass. On the other hand, plausibility level γ = 0.5 contain
most Monte Carlo samples, which means that the bounds could be significantly reduced
while still being a good estimation of Mrobust. Finally, the variation of the coverage for
plausibility levels 0.85 and 0.9 translates the previous observation that Mmass does not
capture the variations of Mrobust bounds and that those two set can substantially differ.
After estimating the uncertainty of the cost volume, we will see in the following section
how we can leverage the upper and lower bounds for different plausibility levels to improve
the disparity map derived from the cost volume.

p = (row, col) γ = 0.9 γ = 0.85 γ = 0.5 γ = 0
(100, 120) 64, 5% 94, 5% 99, 0% 100%
(200, 150) 30, 0% 82, 6% 95, 2% 100%

Global 41, 1% 87, 6% 96, 8% 100%

Table 4.1: Average coverage for various plausibility levels γ and for different pixels p of
the left image.
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4.3.3 Leveraging Confidence Envelopes for Potential Improve-
ments

Knowing the uncertainty, represented as confidence envelopes in our case, can provide
valuable insights into potential matches. This section outlines different observations sug-
gesting that incorporating this information can enhance the performance of stereo match-
ing algorithms.

From the cost volume CV , we usually apply a winner-takes-all strategy to compute a
disparity prediction. Given a pixel (row, col), the predicted disparity d̃ is defined as:

d̃(row, col) = arg min
d

CV (row, col, d) (4.22)

A common metric for evaluating stereo algorithm performance is the proportion of pix-
els for which the absolute difference between the true disparity dtrue and the predicted
disparity d̃ is less than one pixel. The score s is defined as:

s = #{(row, col) such that |dtrue(row, col) − d̃(row, col)| < 1}
#{(row, col)} . (4.23)

The ground truth disparity can be any real number in the disparity range, but as we only
consider integer disparities, we consider a disparity to be “correct” if it is less than one
pixel away from the true disparity.

Having computed envelopes Iγ, Iγ on the cost volume for different plausibility levels
γ, the cost curve is not unique anymore, and we can instead consider all cost curves CIγ ,Iγ

V

contained within the plausibility envelopes. Instead of a single predicted disparity, we can
now compute the set of all potential disparities, defined as the set of predicted disparities
derived from every cost curve within the plausibility envelopes. Given a pixel (row, col),
a confidence level γ ∈ [0, 1], and plausibility envelopes Iγ(row, col, d), Iγ(row, col, d),
the set of potential disparities Drow, col

γ is defined as:

Drow, col
γ = {d | d = arg min

δ
C

Iγ ,Iγ

V (row, col, δ), (4.24)

∀ C
Iγ ,Iγ

V (row, col, δ) ∈ [Iγ(row, col, δ), Iγ(row, col, δ)]}

There is actually a simpler way of defining and computing Dγ, which is to notice that a
disparity can be the minimum of a cost curve CIγ ,Iγ

V if and only if the lower bound Iγ for
this disparity is less than the minimal value of the upper envelope Iγ :

Drow, col
γ = {d | Iγ(row, col, d) ≤ min

δ
Iγ(row, col, δ)} (4.25)
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Figure 4.10 provides a schematic example of Dγ(row, col).

Figure 4.10: Example of a set of potential disparities Dγ. The minimum of the upper
envelope min Iγ in dashed gray line. The vertical green line represents the true disparity.

When the cost volume is considered without its uncertainty, many disparities are not
correctly estimated by Equation (4.22). We thus want to quantify the potential score
improvements contained in the set of potential disparities Dγ. To do so, we consider that
Dγ is a potential improvement if it contains the true disparity dtrue. From this we can
compute the proportion of potential improvements sopt

γ over the whole image which is
computed as follows:

sopt
γ =

#{(row, col) | mind∈Drow, col
γ

|dtrue(row, col) − d| < 1}
#{(row, col)} (4.26)

In Figure 4.10, we can see that the predicted disparity d̃ is far away from the true disparity
dtrue, but the set of possible disparity Dγ does indeed contain, the true disparity. This
would have been counted as a potential improvement.

Remark: Equation (4.26) defines the optimal score that could have been obtained
if we used an ideal cost volume contained in the envelopes. We do not provide a
method for determining this ideal cost volume. In reality, even with a good strategy
to leverage uncertainty information to obtain a better disparity map, the new score
s from Equation (4.23) would be lower than sopt

γ .
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The optimal score sopt
γ can then be compared to the score s computed without un-

certainty from Equation (4.23). We therefore define the potential gain as ∆sγ = sopt
γ − s.

∆sγ measures the proportion of pixel that benefit from the method, i.e. pixels (row, col)
verifying:

|dtrue(row, col) − d̃(row, col)| ≥ 1 and min
d∈Drow, col

γ

|dtrue(row, col) − d| < 1 (4.27)

Instances of computed optimal scores and potential gains for various γ values are
provided in Table 4.2. We can see that while the potential gain for γ = 0.9 is low, it
increases significantly for lower values of γ. The base score is around 53%, which is a
relatively low score for dense matching, but that was expected as we are using the SAD
without SGM regularization or additional post-processing. With γ = 0.85, we could reach
an optimal score of 67%, and using γ = 0.5 or γ = 0, the score could at best lie between
74% and 82%. This is a quite significant improvement for a cost volume computed with the
SAD cost function. For comparison, a SAD cost volume regularized with SGM algorithm
would have a score s of 68%.

Figure 4.11 displays the spatial distribution of pixels that can benefit from this
method. Pixels in occluded regions, i.e. pixels present in one of the two images, are
highlighted in orange. As occluded pixels cannot be improved as no true disparity ex-
ists, we do not consider them when computing the different statistics introduced in this
section. Pixels where potential improvement can occur appear in blue.

We can see that pixels with potential improvements are not randomly distributed.
These pixels are typically found in homogeneous areas where multiple disparities have
low matching costs, similarly to the one represented in Figure 4.9(a).

s = 52.87% γ = 0.9 γ = 0.85 γ = 0.5 γ = 0
sopt

γ 56.92% 66.99% 74.28% 81.75%
∆sγ 4.05% 16.11% 21.41% 28.87%

Table 4.2: Optimal score and potential gain for different plausibility γ. The potential
gain is computed with regard to the usual score s = 52, 87%.
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(a) γ = 0.9, ∆sγ = 4.05% (b) γ = 0.85, ∆sγ = 16.11%

(c) γ = 0.5, ∆sγ = 21.41% (d) γ = 0, ∆sγ = 28.87%

Figure 4.11: Spatial disposition of potential improvements for different values of γ. Pixels
with potential improvements appear in blue. Occluded pixels, for which a correct disparity
does not exist, appear in orange. Grayscale left image is displayed on the background.
From [Malinowski et al., 2024a].

In this Chapter, we modeled the uncertainty on stereo images and propagated it until
the cost volume. We compared different methods from Chapter 3 for propagating the
uncertainty, and evaluated the potential improvements unlocked by this uncertainty es-
timation. However, the stereo algorithm considered for computing the cost volume was
intentionally simple to reduce the complexity of the problem. For the CO3D mission,
different cost functions (CENSUS, MC-CNN) and SGM regularization would instead
be used. Furthermore, although the uncertainty of input images have an influence on
the final uncertainty, the major part of the disparity map uncertainty comes from the
processing uncertainty of the stereo algorithm itself. Quantifying and propagating this
processing uncertainty will thus be the subject of Chapter 5.

Conclusion
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Computing Disparity Confidence
Intervals

The previous chapter detailed the propagation of uncertainty in a stereo matching prob-
lem, using the SAD function to compute the cost volume. However, real cases of stereo
matching usually do not use such simple cost functions, but rather more complex ones. In
particular, the CARS pipeline that will process the CO3D data will use the CENSUS and
MC-CNN cost functions [Zabih and Woodfill, 1994, Žbontar and LeCun, 2016] to compute
the cost volume, followed by a SGM regularization. Those methods produce far better
results and are thus favored for stereo pipelines [Hirschmuller and Scharstein, 2009]. Un-
fortunately, propagating the uncertainty to those cost functions and their regularization
as we did in the previous chapter would currently be too complex and computationally
heavy for a practical use. The same observation can be made for any deep learning
method [Laga et al., 2022] as the data is processed through many consecutive layers.
Furthermore, the previous chapter was restricted to the propagation of the uncertainty
from input images to the cost volume, but did not attempt to quantify the uncertainty
of the stereo matching process itself, i.e. the algorithm’s ability to identify the correct
disparity. A bad performing stereo matching algorithm can produce errors of great mag-
nitude regardless of the uncertainty on input images, while a more advanced algorithm
may perform well despite noisy input images. Using the semantics of this thesis, we will
refer to the uncertainty of the stereo algorithm itself as its epistemic uncertainty. Indeed,
it does not result from any aleatoric process, but rather a lack of knowledge on how to
automatically identify the correct disparity.

This epistemic uncertainty in stereo matching has been the subject of many studies
in the literature [Hu and Mordohai, 2012, Poggi et al., 2021, Wang et al., 2022], designed
for so-called “classical methods” using cost volumes obtained from cost functions, or for

145



Chapter 5

learning-based methods. This uncertainty is quantified using “confidence measures”, asso-
ciating a value between 0 and 1 to each predicted disparity; 0 meaning that the prediction
should be questioned, and 1 meaning that the prediction is most certainly correct. We
refer to Section 1.4.3 for more details on confidence measures in stereo matching pipelines.
In this chapter, we will study how possibility distributions are able to model the epis-
temic uncertainty associated with a cost volume, and then deduce disparity confidence
intervals from the possibility distribution. This approach is complementary to classical
confidence estimations, as it is not meant to indicate whether we trust a prediction, but
rather to provide information on where the correct disparity is likely to be. We then
propagate those disparity confidence intervals in the rest of the stereo pipeline to obtain
elevation confidence intervals, and evaluate their performance. Following discussions with
users and experts working at CNES, IGN and more generally in the AI4GEO consortium
(https://www.ai4geo.eu/), we decided to aim for an objective of 90% of correct con-
fidence intervals. This chapter takes up work and data published in [Malinowski et al.,
2024c].

5.1 Producing Confidence Intervals

This section will detail the method developed to create disparity confidence intervals in
the stereo matching step of the pipeline. We will use possibility distributions to model
the uncertainty associated with the available information and deduce confidence intervals
from it.

It is important to keep in mind that we want intervals as accurate as possible, while
staying relatively small. Indeed, it would be easy to reach a 100% accuracy by simply
extending the intervals to the whole range of considered disparities. However, the inter-
vals would not contain any relevant information. We therefore must maintain a trade-off
between the accuracy of the intervals and their size. As stated previously, we fixed our-
selves a 90% accuracy objective. As for the criteria of maintaining small intervals, we will
introduce in Section 5.2.1 different metrics to quantify their size for further evaluation.
Different parameters will be introduced in our method, and we chose their values ac-
cordingly with the accuracy/size trade-off mentioned above. We will also study different
configurations of those parameters in the Annex.

5.1.1 Possibility Distributions as Uncertain Models for Cost
Curves

In this section, we will detail how possibility distributions can be used to model the
epistemic uncertainty associated with cost curves. We first present a quick reminder
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of concepts and notations regarding cost volumes presented in Section 1.3.3, as we will
base our model on them. Cost volume based approaches, considered here, compare every
pixel from the left image IL to pixels from the same row in the right image IR, in a
given disparity range. The comparison is done using a cost function f , measuring the
dissimilarity between two windows centered around pixels p and q. All evaluations using
this cost function are stored in a cost volume CV :

CV (row, col, d) = f(IL(row, col), IR(row, col + d)) (5.1)

where d is the considered disparity. In this chapter, we consider that the cost volume
undergoes a SGM regularization step, which modifies its values to take into account more
global information as presented in Section 1.3.3. Based on the observation that the dis-
parity map is usually piece-wise regular in a scene, SGM regularization has been designed
to increase the cost of disparities for which no consensus exists among neighboring pix-
els. This way, only disparities that seem plausible and relatively regular compared to
neighboring disparities are favored in the cost volume.

For every pixel (row, col) from the left image, we refer to its cost curve as the cost
volume at coordinates (row, col) for every considered disparity d, i.e. the cost volume for
which we fixed the first two variables. Cost curves are of great importance, as we estimate
the disparity of a pixel solely based on its cost curve. Indeed, we define the predicted
disparity d̃ of a pixel (row, col) as:

d̃ = arg min
d

CV (row, col, d) (5.2)

In the next figures, we use the same configuration for computing the cost volume, i.e.
CENSUS cost function with SGM regularization. Figure 5.1 presents a cost curve and its
true disparity. We can see that the true disparity can be correctly estimated by looking
at the minimum of the cost curve.

In the following, we propose to consider possibility distributions to model the un-
certainty associated with the choice of the predicted disparity from a cost curve. The
values taken by possibility distributions will be based on the available information, i.e.
the values of the cost volume. Before getting into details, let us justify this model. Pos-
sibility distributions are relatively simple models to use in comparison with Imprecise
Probabilities or belief functions for instance, as we only need to specify a constraint on
atoms, and not on every event. As such, they have been used to model the uncertainty
associated with an expert’s opinion in applications such as groundwater contamination
[Bárdossy et al., 1995], soil contamination and radioactive risk assessment [Baudrit and
Dubois, 2005, Baudrit, 2005, Baudrit et al., 2007] or weather forecasting [Le Carrer and
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(a)

(b)

(c) Cost curve

Figure 5.1: (c): cost curve obtained from comparing a patch of the left image from (a)
to patches of the right image from (b). The matching patch and its corresponding true
disparity are indicated using dashed green lines.

Ferson, 2021]. Since cost curves result in both:

• dissimilarity measures between patches

• a semi-global fusion of the information contained in the cost volume due to SGM
regularization

it does not seem far-stretched to consider them equivalent to an expert stating his opinion
on how likely two pixels should be matched. For this reason, possibility distributions are
appropriate to model the epistemic uncertainty of the cost volume.

In order to use possibility distributions, we first need to transform the available infor-
mation, in our case the values contained in the cost curves, into degrees of possibility. The
definition of possibility distribution, Definition 11, imposes that the values must lie be-
tween 0 and 1, and that the value 1 must be attained at least once. We therefore propose
to normalize each cost curve so that its minimal dissimilarity value equals a possibility
degree of 1, and that greater dissimilarity values are closer to 0 in possibility. However,
simply normalizing the values of each cost curve between 0 and 1 would artificially stretch
the cost curve as seen in Figure 5.2(b). It is especially blatant in the case of the orange
dashed curve from Figure 5.2(a) as the range of its values is quite narrow compared to
the blue curve, but they are both stretched to [0, 1] in Figure 5.2(b). In order to avoid
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(a) Two cost curves (b) Normalized cost curves with local ex-
trema

(c) Normalized cost curves Cnorm
V with global

extrema
(d) Possibility distributions resulting from
the cost curves

Figure 5.2: Transformation of cost curves (CENSUS + SGM on Middlebury Cones) into
possibility distributions. (a) represents two cost curves that are normalized differently in
(b) and (c). (d) uses the normalization of (c) to create possibility distributions.

this effect, we instead normalize every cost curve using the global minimum and global
maximum of the cost volume, as:

Cnorm
V (row, col, d) = CV (row, col, d) − maxr,c,δ CV (r, c, δ)

minr,c,δ CV (r, c, δ) − maxr,c,δ CV (r, c, δ) (5.3)

Minima of the cost curve become maxima with this normalization. One problem remains,
it is that unless the global maximum of the cost volume is attained in a cost curve, the
normalized cost curve will never reach 1. Therefore, it will not be a possibility distribution.
This problem can be observed in Figure 5.2(c). We thus add a constant to the normalized
cost curve to obtain a possibility distribution πrow, col(d):

πrow, col(d) = Cnorm
V (row, col, d) + 1 − max

δ
Cnorm

V (row, col, δ) (5.4)

Figure 5.2(d) displays the possibility distributions obtained from the cost curves of Fig-
ure 5.2(a).

As stated previously, global extrema in Equation (5.3) are employed to minimize the
stretching effect when converting cost curves into possibility distributions. Alternatively,
we also could have used the theoretical extrema of a cost curve instead. For instance,
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the CENSUS cost function on a 5 × 5 window provides values between 0 and Cmax = 24.
Adding SGM regularization with penalty P2 on 8 directions yields cost volumes values
between 0 and 8 × (Cmax +P2) [Hirschmüller, 2005]. However, this maximal cost is rarely
attained in real case scenarios. Therefore, using theoretical extrema of the cost volume
is too pessimistic and tends to over-compress the normalized cost curves. It is instead
preferred to use global extrema of the cost volume for the normalization, as we assume
the best and worst match should have similar cost values across different scenes. This
hypothesis is not restrictive for the images we consider in our stereo matching problem,
as the size and diversity inside each scene lead to similar extrema. When processing
very large images, the CARS stereo pipeline divides the image into small tiles that are
processed in parallel. There is no guarantee that the cost volume extrema of each tile
would be the same. In practice, cost volume extrema are similar for large images. We
therefore assume differences in extrema are negligible.

5.1.2 From Possibilities to Disparity Confidence Intervals

With the possibility distributions defined, our next objective is to establish a set of most
possible disparities. As presented previously, we decided to aim for sets containing the true
disparity 90% of the time. To define this set of most possible disparities, we compute the
α-cut from Definition 12, or, in other words, the set of all disparities Dα whose possibility
is greater than α:

Dα = { d | πrow, col(d) ⩾ α} (5.5)

By looking at possibility distributions obtained from different cost curves for which we
know the true disparity, we first fixed the value α at 0.9. In depth study of this parameter
will be conducted in Annex, in order to see if it depends on the cost function, the type of
scene considered, and to provide general guidelines on its optimal value. In the following,
when the value of α is not specified, it will always be set at 0.9. Figures 5.3(a) and 5.3(b)
graphically represent Dα for the cost curves of Figure 5.2.

Remark: The fact that its value is the same as the 90% confidence objective is a
coincidence, and one should not assume that α and the confidence objective should
be the same. Indeed, raising the α value would decrease the size of the set Dα and
therefore decrease the proportion of sets containing the true disparity, i.e. the global
confidence rate of intervals.

Remark: We are modeling the epistemic uncertainty of the cost curves using possi-
bility distributions. In the rest of this chapter, we use a possibility distribution for
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each cost curve because we think it is a correct model in itself for the uncertainty we
encounter. It is however possible to have a probabilistic interpretation of possibilities.

We saw in Equation (2.14) from Chapter 2 that one way of interpreting πrow, col

is that it defines a set of probability distributions, i.e. a credal set M. We can also
define Dα using this set M, as:

Dα = { d | ∃P ∈ M s.t. P (d) ⩾ α} (5.6)

or in plain words, Dα is the set of all disparities d for which there exists a probability
in M whose value is greater than α for d. We will not rely on this interpretation in
the rest of this chapter, and instead only reason in terms of possibilities.

Equation (5.5) defines a set of disparities Dα that is not necessarily convex. We
will rather consider disparity confidence intervals Iα deduced from Dα in the rest of this
chapter:

Iα = [Iα, Iα] = [minDα, maxDα] (5.7)

Figures 5.3(c) and 5.3(d) graphically represent how Iα is determined for the two possibility
distributions of the cost curves in Figure 5.2. In the rest of this section, we will not
make any distinction between disparity confidence intervals, disparity intervals, confidence
intervals or simply intervals. A disparity interval is the convex envelope of its disparity
set Dα, which is a conservative approach as observed in Figures 5.3(b) and 5.3(d).

Considering intervals thus presents the advantage of working with convex sets and only
requiring two scalars to describe the set. Users of DSMs produced by stereophotogramme-
try are familiar with confidence intervals [Oksanen, 2006, Wang et al., 2015, Panagiotakis
et al., 2018, Deschamps-Berger, 2021, Hugonnet et al., 2022]. It will also facilitate further
processing in the rest of the stereo pipeline, as we only need to take into account 2 bounds
to characterize possible disparities, instead of sets of arbitrary shape.

To qualitatively evaluate the behavior of disparity confidence intervals Iα, we will look
at their values for consecutive pixels of the same row. Rows selected for this analysis are
presented in Figure 5.4: the upper row (80) is smaller than the others, so more details can
be observed, while other rows allows for a broader view of the intervals. We selected rows
containing different disparity configurations in different part of the image, as adjacent
rows tend to look relatively similar.

By construction, Iα will always contain the predicted disparity d̃ as the maximum of
each possibility curve will also be selected as the predicted disparity by winner-takes-all
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(a) Dα for the blue possibility of Figure 5.2(d) (b) Dα for the orange possibility of Fig-
ure 5.2(d)

(c) Iα for the blue possibility of Figure 5.2(d) (d) Iα for the orange possibility of Fig-
ure 5.2(d)

Figure 5.3: Set of possible disparities Dα and disparity intervals Iα with the same cost
curves as in Figure 5.2, with α = 0.9. (a) and (b) represent the set of possible disparities
Dα from Equation (5.5) in gray. (c) and (d) represent disparity intervals Iα from Equa-
tion (5.7) in gray. There is no difference between Dα and Iα for the blue curve, contrary
to the orange dashed curve.

Figure 5.4: Left stereo image from Middlebury Cones. Disparity intervals Iα along orange
lines are detailed in Figures 5.5, 5.6 and 5.11 to 5.14
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(a) Iα along row 80

(b) Iα along row 180

Figure 5.5: Iα for the two top rows highlighted in Figure 5.4
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(a) Iα along row 240

(b) Iα along row 290

Figure 5.6: Iα for the two bottom rows highlighted in Figure 5.4.
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strategy. However, we are interested to see if intervals can contain the true disparity
dtrue even when the predicted disparity is far from it. Figures 5.5 and 5.6 represent the
disparity intervals Iα, predicted disparity d̃ and true disparity dtrue for the different rows.
A first observation is that intervals correctly contain the true disparity in regions where
there are no strong variations of disparities. In Figure 5.5(b), intervals in columns 50
to 75 and around 175 are much larger than in the rest of the figure. In those areas,
the predicted disparity is also far from the ground truth. This translates the fact that
the method for creating intervals is able to detect the difficulties encountered by the
correlator when predicting a disparity, and to adapt the size of intervals consequently.
On the downside, we can see that near strong variations of the disparity, intervals tend
to “miss” the discontinuities. Indeed, they do not contain the true disparity around
those areas, as observed near columns 215 and 250 of Figure 5.5(a), columns 95, 125 of
Figure 5.5(b), columns 100, 115, 150, 200, 250 of Figure 5.6(a) and finally columns 90,
200 and 220 of Figure 5.6(b).

The method presented in this section seems to offer a good estimation of the error in
the disparity estimation step. Some errors remain near disparity discontinuities, which
we will try to rectify in Section 5.1.4.

5.1.3 Ensuring Coherence Between the Predicted Disparity and
Confidence Intervals

We propose a method for creating confidence intervals that should include the true dis-
parity at least 90% of the time. It should, however, always include the predicted disparity
d̃. Indeed, it would not make much sense to provide a confidence interval and a prediction
that is not included in the interval. As d̃ is the maximum of each possibility curve, it will
also be selected as the predicted disparity by the winner-takes-all strategy and will thus
belong to the confidence interval. However, the disparity map d̃ is often post-processed
to improve its quality, mainly using a filtering and a refinement step. Those steps modify
the disparity map, and we must ensure we modify the confidence intervals accordingly so
that they remain coherent with the predicted disparity.

As detailed in Section 1.3.3, a filtering step is usually carried out on the disparity map
in order to remove potential outliers. The filter applied in our experiments and in many
other pipelines is a median filter [Scharstein et al., 2001]. Applying the filter only to the
disparity map without processing the intervals accordingly can result in inconsistencies,
as illustrated in Figure 5.7. Fortunately, separately applying the same median filter to the
lower bounds and upper bounds of the intervals is sufficient to ensure coherence. Indeed,
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(a) Without filtering (b) Filtering only d̃ (c) Filtering d̃ and Iα

Figure 5.7: Effect of a median filter on the predicted disparity d̃ and confidence intervals
Iα. For the sake of the example, we only filter the middle point by looking at its neighbors.
(a) contains the unfiltered curves. (b) contains unfiltered intervals, and filtered d̃. (c)
filtered intervals and filtered d̃.

because for all pixels p1, . . . , pn considered in the filtering, it holds:

Iα(pi) ⩽ d̃(pi) ⩽ Iα(pi) (5.8)

then it is possible to prove that

median
p1, ..., pn

Iα(pi) ⩽ median
p1, ..., pn

d̃(pi) ⩽ median
p1, ..., pn

Iα(pi) (5.9)

The proof of this result can be found in the Annex, using Proposition 14.

Another processing applied to the disparity map is the sub-pixel refinement of its
values, presented in Section 1.3.3 and Figure 1.20. The idea is to slightly modify the
value of the disparity by interpolation of the cost curve, in order to obtain sub-integers
disparity values. The modification cannot change a disparity more than a pixel away from
its original value. If the predicted disparity d̃ equals one of the bounds of its confidence
interval Iα, the sub-pixel refinement step can shift the predicted disparity to a value
slightly outside the confidence intervals. In this case, we simply extend the interval by
one pixel. For instance, if d̃ = Iα, then the new confidence interval I ′

α equals:

I ′
α = [Iα − 1, Iα] (5.10)

This stretching is simple, and also presents the advantage of working with any type of
sub-pixel refinement that do not modify the predicted disparity value from more than 1
pixel (i.e. V-fit, parabola etc.).

5.1.4 Regularization of Intervals in Low Confidence Areas

Disparity intervals estimation has the potential to perform well even when the predicted
disparity is far away from the ground truth. This model however encounters some per-
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formance issues near depth discontinuities, and does not currently satisfy the aimed 90%
accuracy objective (see Annex). This can be explained as follows: as the SGM regu-
larization attempts to impose continuity on disparities, it results in cost curves that do
not favor the correct disparity in the region where the continuity hypothesis is not valid.
Considering that cost curves are equivalent to experts’ opinions in those areas can be
over-optimistic, and the resulting intervals thus cannot be completely trusted. We will
now present how we can adapt the model in those regions, in order to correct those flaws.

The first challenge to tackle is to determine if we are able to detect regions where
discontinuities occur, in order to process intervals differently in those regions. Using the
predicted disparity map might be a lead, but we saw in Figures 5.11 to 5.14 that there
is usually a shift between predicted disparity discontinuities and true disparity disconti-
nuities. Instead, we could consider to use confidence measures computed alongside the
disparity map, which are usually good candidates to detect discontinuities. In particular,
we chose the confidence from ambiguity measure camb presented in Equation (1.30) from
Chapter 1. As a reminder, the confidence from ambiguity of a cost curve is computed as
follows: given a value η > 0, we compute the number of disparities whose cost is within η
to the minimum of the cost curve, then we compute the integral for all η and normalize it
between 0 and 1. It is formally transcribed by the following equations from Section 1.4.3:

amb(row, col, η) = #{d | CV (row, col, d) ⩽ min
δ
CV (row, col, δ) + η}

AUCamb(row, col) = 1
max η − min η

∫
η
amb(row, col, η)dη

camb(row, col) = max AUCamb − AUCamb(row, col)
max AUCamb − min AUCamb

Note that other confidence measures could be considered instead of the ambiguity, but
this confidence measure has the advantage of performing well, being explainable (which
is not always the case for confidence measures based on deep learning) and being already
implemented in the stereo pipeline we use. Figure 5.8 shows that pixels with wrong
intervals Iα usually present a low confidence from ambiguity as well, meaning that we can
use this confidence measure to process confidence intervals differently.

The method developed for detecting low confidence areas is to apply a simple threshold
τamb on the confidence from ambiguity camb. However, camb is computed pixel-wise, which
can lead to high-frequency spatial variations of the confidence. To smooth the ambiguity
curve, a minitive kernel of size (1, 2 × kamb + 1) is applied. A pixel (row, col) is thus
considered to be in a low confidence area if it verifies:

min
−kamb ⩽ k ⩽ kamb

camb(row, col + k) ⩽ τamb (5.11)
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(a) Left stereo image. Pixels
where dtrue ̸∈ Iα appear in
orange.

(b) Confidence from ambigu-
ity camb. Dark pixels have a
low confidence, bright pixels
have a high confidence.

(c) Binary mask, low confi-
dence areas are indicated by
black pixels.

Figure 5.8: Position of wrong intervals in the left image, the corresponding confidence
map and the low confidence area mask obtained using Equation (5.11)

Figure 5.9: Confidence from ambiguity camb and smoothed confidence min camb from Equa-
tion (5.11) for row 110 of the Middlebury Cones image. Low confidence areas, where
min camb is less than τamb are highlighted in gray.

We used kamb = 2 and τamb = 0.6 in our experiments. For simplicity, we will refer to
min camb instead of min−kamb ⩽ k ⩽ kamb

camb in the following. Additional investigations
on those parameters are presented in the Annex. Figure 5.9 illustrates the impact of
smoothing the confidence from ambiguity, and displays the threshold used to detect low
confidence areas. We can see around columns 185 and 320 that the kernel smooths isolated
confidence values that would not be detected by the threshold otherwise. Figure 5.8(c)
presents the position of pixels in low confidence areas over the whole left image. As a
quick indicator of this method performance, 83% of intervals that do not contain the
ground truth (orange pixels in Figure 5.8(a)) are also contained in low confidence areas.
Once again, it is possible to use any other confidence measure to detect areas where
intervals perform badly. The choice of this method in particular is motivated by its good
performance while remaining simple in comprehension and implementation.

Having computed regions of low confidence, we can now process the intervals differ-
ently in those areas. The main idea here is that information contained in low confidence
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cost curves should be handled with care. The hypothesis that a cost curve can be inter-
preted as an expert stating his opinion on which disparities are most probable is ques-
tionable in those areas. We also cannot infer the confidence intervals from intervals in
neighboring high confidence areas, as there is no guarantee the disparities are the same
as their high confident neighbors. We instead chose to proceed in two steps. First, we
compute a neighboring set of intervals for each low confidence pixel. Then, we use the
information from this set to determine a new disparity interval by consensus. We modify
the value of the considered pixel from this consensual interval.

We first detail how the set of neighboring pixels is determined. Let (row, col) be a low
confidence pixel. We define a segment S(row, col) as the set containing (row, col) and all
adjacent low confidence pixels from the same row. An example of S(row, col) is presented
in Figure 5.10 as an orange rectangle. Two segments S(row, col) and S(row + 1, col′)
are considered adjacent if two of their pixels are directly on top of one another. The
low confidence neighboring N(row, col) is defined as the set of low confidence pixels in
segment S(row, col) or in adjacent segments within nN rows. In practice, we use nN = 2.
S(row, col) is formally defined as:

S(row, col) = { (row, col′) s.t. ∀c ∈ [[col, col′]], min camb(row, c+ k) ⩽ τamb }
(5.12)

where [[col, col′]] assumes that col ⩽ col′, and is replaced by [[col′, col]] if not. The formal
definition of the set of pixels N(row, col) is then:

N(row, col) = {p ∈
⋃

−nN⩽k⩽nN

S(row + k, colk)

s.t. S(row + (k + 1), colk+1) is adjacent to S(row + k, colk)}
(5.13)

with col0 = col, and nN the number of consecutive rows considered. Figure 5.10 displays a
graphical example of S(row, col) and N(row, col) from the Middlebury Cones left image.

The value of the regularized interval Ireg
α of (row, col) is obtained by consensus be-

tween the confidence intervals of N(row, col). Its upper and lower bounds are respectively
the qth quantile of upper bounds of N(row, col) and the (1−q)th quantile of lower bounds
of N(row, col):

Ireg
α = [Q1−q({Iα(r, c) | (r, c) ∈ N(row, col)}),

Qq({Iα(r, c) | (r, c) ∈ N(row, col)})] (5.14)

where Qq refers to the qth quantile of a set. In practice, we use q = 90%. This way, the
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(a) Low confidence pixel (row, col) (b) Segment S(row, col)

(c) with S(row ± 1, col±1) (d) with S(row ± 2, col±2)

(e) with S(row ± 3, col±3) (f) Resulting neighboring N(row, col)

Figure 5.10: Segments S(row, col) and neighboring N(row, col). The image is an extract
of the binary mask from Figure 5.8(c), where low confidence pixels appear in black and
high confidence pixels appear in white. (a): low confidence pixel row, col. From (b)
to (e): segment S(row, col) and adjacent segments over 3 rows above and below. (f):
resulting neighboring N(row, col).
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lower bound of Ireg
α is lower than 90% of lower bounds of intervals in N(row, col), and its

upper bound is larger than 90% of upper bounds of intervals in N(row, col). Figures 5.13
and 5.14 present confidence intervals without and with regularization, for the same rows
as in Figures 5.5 and 5.6.

Remark: It does not necessarily mean that Ireg
α includes 90% of intervals of N(row, col).

Indeed, there can be intervals whose lower bound is greater than the (1−q)th quantile
of lower bounds while also being greater than the qth quantile of upper bounds. The
intervals will then overlap while not being included in one another.

We can notice that it is possible, although unlikely, that the qth quantile of the upper
bounds of N(row, col) is lesser than the predicted disparity d̃(row, col) (or similarly,
the (1 − q)th quantile of lower bounds can be greater than d̃(row, col)). In that case, in
order to ensure the coherence of the predicted disparity with the confidence intervals, the
bounds of the intervals are extended until they include d̃.

Two pixels (row, col) and (row, col′) of S(row, col) will have the same neighboring
N(row, col). Therefore, they will also share the same value for their regularized interval
Ireg

α . This can be observed in Figures 5.11(b), 5.12(b), 5.13(b) and 5.14(b), where positions
of low confidence pixels that are regularized are indicated using gray areas.

In the following, we always regularize intervals in low confidence areas. We will thus
refer to them simply as Iα instead of Ireg

α , to simplify notations.

In theory, it is possible to perform the regularization of intervals before the filtering
and refinement steps, but we chose to always regularize the intervals after those steps.
This prevents outliers removed by the filtering step from influencing values of regularized
intervals. Figures 5.11 to 5.14 allow visualizing the impact of the regularization of intervals
after the filtering and refinement steps. In Figure 5.11(b) near column 215, we can see that
the regularization allows to create correct confidence intervals. In Figure 5.12, columns 70
and 175 also create correct intervals, in regions where the predicted disparity d̃ is far away
from the ground truth. We can say that the intervals are (almost) as small as possible
so as to both contain d̃ and the true disparity dtrue, as they are necessarily constant in
low confidence areas (gray areas in the figure). Column 175 of Figure 5.12 also shows
that filtering and regularization methods are able to discard outliers: bounds of non-
regularized intervals reach values between −60 and 0 near column 175, while the bounds
of regularized intervals stay between −42 and −15. However, this method is not perfect,
as it sometimes overestimates the size of intervals as in Figure 5.14(b) near column 110,
or do not predict correct intervals at all, as observed around column 450.
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(a) Iα without regularization in low confidence areas

(b) Iα with regularization in low confidence areas

Figure 5.11: Iα with and without regularization in low confidence area, for row 80 of the
image of Figure 5.4. The gray areas indicate low confidence areas.
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(a) Iα without regularization in low confidence areas

(b) Iα with regularization in low confidence areas

Figure 5.12: Iα with and without regularization in low confidence area, for row 180 of the
image of Figure 5.4. The gray areas indicate low confidence areas.
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(a) Iα without regularization in low confidence areas

(b) Iα with regularization in low confidence areas

Figure 5.13: Iα with and without regularization in low confidence area, for row 240 of the
image of Figure 5.4. The gray areas indicate low confidence areas.
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(a) Iα without regularization in low confidence areas

(b) Iα with regularization in low confidence areas

Figure 5.14: Iα with and without regularization in low confidence area, for row 290 of the
image of Figure 5.4. The gray areas indicate low confidence areas.
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(a) Without regularization, filtering and refine-
ment

(b) With regularization, filtering and refine-
ment

Figure 5.15: Left image from Middlebury cones. Confidence intervals that do not contain
the ground truth appear in orange.

Figure 5.15 allows visualizing the position of wrong intervals in the left stereo image.
We can see clear improvements between the method with and without regularization. This
can especially be observed in the bottom right corner of images near the sticks inside the
cup, or in general near cones borders. Quantitatively, wrong intervals represent around
5% of pixels without regularization, and 1.6% with regularization. Those numbers are
presented for information purposes only, as further scores will be computed on different
scenes, allowing for more in-depth analysis.

This concludes the method for computing disparity confidence intervals in the dense
stereo matching part of the photogrammetry pipeline. We will see next how those intervals
can be propagated into confidence intervals for the DSMs.

5.2 Evaluation of Disparity Intervals

5.2.1 Metrics for Evaluating the Accuracy and Size

In order to evaluate the performance of the disparity confidence intervals, we will now
introduce some metrics. To the best of our knowledge, there is no current method for
producing disparity confidence intervals to use for comparison. The objective of this
section is to propose a range of tools able to quantify the trade-off between accuracy and
size of intervals. For each metric, we do not consider pixels without ground truth, pixels
at the border of images that cannot fully explore their disparity range, or pixels discarded
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by the cross-checking test (Equation (1.14)). Pixels at the border of an image for which
the disparity range cannot be fully explored were also discarded, as the ground truth
exists but is often unreachable.

Accuracy

The first and most obvious metric is the proportion of correct intervals, i.e. intervals
containing the true disparity, which we call accuracy acc:

acc = #{Iα | s.t. dtrue ∈ Iα}
#{Iα}

(5.15)

We want to maximize the accuracy, and fixed ourselves a minimal objective of 90% accu-
racy for our method.

Residual Error

It is also interesting to measure the magnitude of the error. We thus introduce another
metric called residual error ε, computed for intervals that do not contain the ground truth
and defined as:

ε = median
(

min(|dtrue − Iα|, |dtrue − Iα|)
dmax − dmin

)
(5.16)

where [dmin, dmax] is the considered disparity range. Normalization by the disparity range
yields a metric that can be compared across datasets with different disparity ranges. For
instance, in the 2003 Middlebury “Cones” dataset, the disparity range is [−60, 0], while
in the 2014 Middlebury “Shopvac-perfect” dataset, the disparity range is [−1100, 0].

Residual error and other metrics are defined using the median of a set, instead of
the mean, so as to be less sensitive to outliers. We will still present the distributions
of the metrics without the median operator in Section 5.2.3. The residual error allows
quantifying how “wrong” were the intervals. A residual error near 0 translate the fact that
the confidence intervals were really close to capture the ground truth, while a residual
error near 1 indicate that the intervals were far off the ground truth. Figure 5.17 helps
to visualize ε.

Because half of pixels have a relative error less than ε, extending each bound of the
intervals by ε · (dmax − dmin) effectively divides the global error by two. The accuracy

would therefore be acc′ = acc+ (1 − acc)
2 . ε thus provides a quick and easy estimation of

the length missing to the intervals in order to divide the missing accuracy by two.
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Relative Size

We now introduce a metric to measure the size of intervals. This metric evaluates the
relative size of intervals, with regard to the size of the considered disparity range:

srel = median
(

Iα − Iα

dmax − dmin

)
(5.17)

where [dmin, dmax] is the considered disparity range. We use the same normalization as
for the residual error ε We want to minimize srel to ensure our intervals are not too large.

Relative Over-Estimation

During the regularization of confidence intervals, we purposefully extended the bounds
of the intervals in low confidence areas. The relative size of intervals srel in those areas
will, by design, be very large. We therefore propose to evaluate the relative size only on
high confidence areas, and to introduce a specific measure for low confidence areas, called
relative over-estimation. Defined when intervals correctly contain the true disparity, it is
computed as follows:

orel = median
(

1 − ∆|dtrue − d̃|
Iα − Iα

)
(5.18)

where ∆|dtrue − d̃| is defined as:

∆|dtrue − d̃| = max({|dtrue(row′, col′) − d̃(row′′, col′′)|, with

(row′, col′) ∈ N(row, col), (row′′, col′′) ∈ §(row, col)})
(5.19)

In other words, ∆|dtrue − d̃| is the maximal difference between the true disparity and the
predicted disparity over the same low confidence segment. We consider S(row, col) and
not the whole neighboring N(row, col) as the intervals have the same value only in a
segment S (see Section 5.1.4 for more details). Note that the true disparity and predicted
disparity can belong to two different pixels in the computation of ∆|dtrue − d̃|. ∆|dtrue − d̃|
is the size of the optimal interval, i.e. the smallest interval containing both dtrue and d̃ in

the low confidence area. 1 − ∆|dtrue − d̃|
Iα − Iα

therefore represent the superfluous proportion

of intervals, or in other words, the proportion of Iα − Iα that is over-estimating the error
∆|dtrue − d̃|. Figure 5.16 illustrates the meaning of ∆|dtrue − d̃| and Iα for the computation
of the relative over-estimation inside a low confidence area.

Because we want to obtain the smallest possible correct intervals, it only makes sense
to compute orel for confidence intervals that do contain the true disparity. Indeed, consid-
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Figure 5.16: ∆|dtrue − d̃| and Iα for computing the relative estimation (Equation (5.18))
over a low confidence area in gray.

ering wrong intervals could reduce the over-estimation and induce bias in our conclusions.
Doing so also insure orel is always contained between 0 and 1, and can be expressed as a
percentage.

We want the relative over-estimation to be as close to 0 as possible, as orel = 0
means that Iα is the optimal interval for at least half of the low confidence pixels. 1 −
∆|dtrue − d̃|
Iα − Iα

= 0.1 means that the superfluous part of the interval represents a tenth of

its total length. Similarly, 1 − ∆|dtrue − d̃|
Iα − Iα

= 0.5 means that the superfluous part of the
interval represents half of their total length.

Reaching a relative over-estimation of 0 is not realistic, as it would be equivalent
to say that we exactly know the position of the true disparity for each pixel. This is
irrational, as it would mean we have the perfect stereo matching algorithm, but somehow
still predicted a wrong disparity. A more realistic objective is to be around 50%, even
though less is better.

Remark: The relative over-estimation could theoretically reach a value of 1 regard-
less of the size of intervals if ∆|dtrue − d̃ = 0. This is the case if and only if the
predicted disparity and the true disparity are equal and constant for all pixels in the
considered low confidence area. This is however very unlikely, as low confidence areas
are usually areas with strong variations of disparity, and where the stereo algorithm
struggles to predict a correct disparity.

Because we evaluate the size of intervals using two different metrics depending on if
intervals are in low confidence areas or not, it is interesting to measure the proportion of
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Figure 5.17: Different values of min(|dtrue − Iα|, |dtrue − Iα|) for computing the residual
error of Equation (5.16)

low confidence areas in the scene pamb:

pamb = #{Iα | Iα ∈ low confidence area}
#{Iα}

(5.20)

A proportion pamb of intervals size will be evaluated using orel, and a proportion 1 −
pamb using srel. A high pamb thus indicates many regularizations and consequently larger
intervals in general.

Before measuring the accuracy of intervals using acc, to quantify their errors using ε
or measuring their relative size with srel and orel, we will present the different considered
datasets used for our evaluation.

5.2.2 Stereo Matching Dataset

We evaluate the disparity confidence intervals on 76 scenes from the Middlebury datasets.
Those datasets are composed of two stereo images of indoor scenes, for which the true dis-
parity is exactly known. It is divided in different years: 2003, 2005, 2006, 2014, and 2021
[Scharstein and Szeliski, 2003, Scharstein and Pal, 2007, Hirschmuller and Scharstein,
2007, Scharstein et al., 2014], and the complexity of scenes increases with years. Fig-
ure 5.18 present some scenes from each dataset. Each dataset is available in different
resolutions. We use quarter-size and third-size versions of the data for 2003, 2005 and
2006 datasets and full resolution for 2014 and 2021 datasets in order to include a diversity
of resolutions in our experiments. As a result, ranges of considered disparities also vary
greatly. For instance, disparity ranges of the 2014 dataset are very large (more than a
thousand disparity wide), which presents a significant challenge for the stereo matching
algorithm, as many disparities need to be explored. On those scenes, our stereo matching
algorithm performs far less well than on the 2003 dataset. This allows evaluating whether
the disparity confidence intervals can perform well even when the main disparity predic-
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(a) 2003 Cones (b) 2005 Art (c) 2006 Aloe

(d) 2014 Jadeplant Perfect (e) 2021 Artroom1 (f) 2021 Octogons1

Figure 5.18: Example of left images from different Middlebury datasets

tions do not. Each dataset does not contain the same number of images, and shapes of
images can vary across datasets and inside each dataset. For indication purposes, datasets
from 2003, 2005, 2006, 2014, and 2021 respectively contain 2, 6, 21, 23 and 25 scenes.

The Middlebury dataset contains generic indoor scenes with a high variety of 3D
structures, which highlights the potential of our method for any stereo algorithm. Our
objective is however to process satellite images, so we also evaluate our method on satellite
data, which can greatly differ from indoor scenes. For this purpose, we use 80 pairs
of 1845 × 1845 satellite images in epipolar geometry, with a typical disparity range of
[−20, 10] (it slightly varies between images). Those images are all part of the same pair
of Pléiades images over the city of Montpellier (France), which is large enough to contain
both urban and rural areas, as presented in Figure 5.19. The ground truth of those
images was obtained using the method described in [Cournet et al., 2020]. In a few
words, this method first processes stereo images to obtain images in epipolar geometry.
Then it considers the ground truth DSM of the scene, for instance a rasterized LiDAR
HD data, and project it into the same geometry as one of the sensors. Then, using the
disparity to altitude ratio computed alongside epipolar images, it converts the altitude
of the re-projected ground truth DSM into disparities. Using the same epipolar grids,
this true disparity map can be projected into epipolar geometry. We now have two stereo
images and their associated “ground truth” disparity map in epipolar geometry, ready
to be processed. This method has a few known drawbacks. First, the ground truth is
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resampled in two different geometries, which relies on the quality of the epipolar grid, the
planimetric accuracy of the ground truth data, and satellite images. Secondly, the images
and ground truth were acquired a few years apart, which results in some new buildings
being built or destroyed between stereo images and ground truth. The vegetation also
changed, so the ground truth is not always 100% correct. The dataset initially contained
327 pairs of images, but we detected major differences between the ground truth and the
epipolar images, as illustrated in Figure 5.20, so we restricted our selection to 80 pairs
that did not exhibit major differences. The evaluation metrics on this dataset must thus
be taken with care.

(a) Left epipolar image (b) Left epipolar image

(c) Ground truth disparity (d) Ground truth disparity

Figure 5.19: One rural and one urban scene from the Montpellier dataset.

In the next section, we will use the Middlebury datasets to evaluate our method on
general indoor scenes, and images of Montpellier (abbreviated as MTP) to determine if
we can generalize our results to satellite imagery. We will also consider two cost functions:
the CENSUS cost function and MC-CNN cost function, both detailed in Section 1.3.3.
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(a) Left epipolar image (b) Wrong intervals (red)

(c) Predicted disparity (d) Ground truth disparity

Figure 5.20: Important differences between the ground truth and epipolar images. We
can see that the road appearing in the left image from Figure 5.20(a) does not appear
in the ground truth in Figure 5.20(d), which results in false negative on the intervals
from Figure 5.20(b). The road must have been constructed in between the ground truth
acquisition and image acquisition. Images with such differences were removed from the
Montpellier dataset.

We also remind here the configuration of the stereo matching algorithm used. The
CENSUS cost function uses a 5 × 5 window, and SGM penalties P1 = 8, P2 = 32. The
MC-CNN cost function uses a 11 × 11 window, and SGM penalties P1 = 2.3, P2 = 42.3.
The disparity refinement step uses V-fit interpolation. We also a 3 × 3 median filter on
the disparity map.

5.2.3 Results

This section will evaluate each metric on the different datasets, and for the two considered
cost functions, CENSUS and MC-CNN. Because there are a few metrics and many scenes,
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we first give global results, and gradually go into more details across tables and figures.
We first consider global results on Middlebury datasets, as they possess a ground truth of
better quality. Each metric is evaluated and averaged over the whole dataset in Table 5.1
to get an overall estimation of its performance. To have a more detailed estimation of
scores distribution across scenes, we then plot histograms of each metric across all datasets
in Figures 5.21 to 5.24. Finally, we will also discuss the metrics by looking at some details
of particular scenes in Figures 5.26 to 5.28. Figure 5.25 also presents the distribution
from which some metrics are computed over the Middlebury Cones stereo images.

Year 2003 2005 2006 2014 2021

CENSUS 97.6% 96.4% 99.1% 94.8% 91.6%
acc ↑

MC-CNN 97.0% 97.5% 99.3% 98.5% 99.1%

CENSUS 2.5% 3.1% 5.3% 0.2% 0.9%
ε ↓

MC-CNN 4.0% 5.6% 10.0% 3.8% 8.3%

CENSUS 3.3% 2.6% 2.6% 0.6% 1.2%
srel ↓

MC-CNN 3.3% 2.6% 3.0% 1.5% 3.3%

CENSUS 55.8% 66.9% 73.9% 70.9% 67.5%
orel ↓

MC-CNN 58.5% 71.3% 80.4% 86.3% 78.0%

CENSUS 20.8% 29.1% 27.1% 47.1% 59.2%
pamb

MC-CNN 15.3% 41.1% 39.9% 43.2% 69.1%

CENSUS 93.4% 88.9% 91.8% 73.7% 58.2%
d1

MC-CNN 92.8% 89.1% 93.3% 75.5% 62.6%

Table 5.1: Average metrics over the different Middlebury datasets, depending on the cost
function. Up arrows indicate that the optimal score is 100%, and 0% for down arrows.
pamb is the proportion of low confidence area, computed with the ambiguity. d1 is an
indicator of the predicted disparity performance defined in Equation (5.21).

In Table 5.1, each metric is evaluated and averaged over each Middlebury dataset:
2003 to 2021. We also indicate the proportion of low confidence area computed with the
ambiguity pamb, as well as the proportion of accurate predicted disparity d1 defined as:

d1 = #{d̃ s.t. |d̃− dtrue| < 1}
#{d̃}

(5.21)

d1 serves as an indicator of whether the stereo algorithm predicted a good disparity,
regardless of confidence intervals. The conclusions drawn for this table are quite general,
as we are looking at averages across multiple datasets. We will delve into more details
later in this section. Here are some of the key takeaways from this table:
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• Accuracy acc: the first observation is that the accuracy is greater than the 90% ob-
jective on each dataset, and for both considered cost functions. In fact, the average
is always higher than 91.6%, and reaches 99.3% accuracy on some datasets (2006
with MC-CNN). Except for the 2003 dataset, it seems that intervals computed using
MC-CNN are more accurate than those with CENSUS. Comparing the accuracy of
intervals with the performance d1 of the predicted disparity, we can observe that
confidence intervals are accurate even when the predicted disparity struggles to cor-
rectly estimate the true disparity. It is especially apparent for the 2021 dataset,
where d1 is around 60% for both cost functions, while acc is above 90%. This high
accuracy must however be considered alongside the size of the intervals with srel

and orel.

• Residual error ε: residual errors values are between 0.2% and 10% for all datasets,
which is relatively low. The residual error is always lower for CENSUS intervals
than for MC-CNN ones. In particular, the residual error using CENSUS is almost
ten times smaller than that using MC-CNN for the 2021 dataset. This means that it
is easier to improve the accuracy of CENSUS than MC-CNN intervals, as they miss
the true disparity by a smaller fraction of the disparity range. With the conclusions
drawn from the accuracy results, it seems that the last few missing accuracy percent
are the hardest to recover.

• Relative size srel: The relative size of intervals in high confidence areas is relatively
low. Across datasets, it is on average between 0.6% and 3.3%. This broadly means
that half of intervals sizes in high confidence areas are less than 5% of the considered
disparity range. This is a very reasonable size for confidence intervals. For datasets
2003 to 2006, both cost functions lead to similar relative sizes. For datasets 2014
and 2021, the MC-CNN cost function leads to intervals around 3 times bigger than
CENSUS intervals. This is coherent with the higher accuracy of MC-CNN intervals
on those datasets.

• Relative over-estimation orel: The range of relative over-estimation of intervals
across datasets is more widely spread. It ranges between 46.8% and 72.6%. Ex-
cept for the 2003 dataset, the MC-CNN cost function clearly leads to intervals with
higher over-estimation than those obtained using CENSUS. CENSUS intervals typ-
ically over-estimate intervals in low confidence areas by around 50%, while it is
around 60% or 70% for MC-CNN intervals. This means that, when using CENSUS,
half of low confidence pixels have 50% or less of their size that is superfluous. For
MC-CNN, the proportion of superfluous size reaches 60% to 70%. For CENSUS,
this score is around what we deem to be a good performing intervals. For MC-CNN,
it seems to be a bit large. We must however take into consideration the complexity
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(a) Middlebury (b) Montpellier

Figure 5.21: Accuracy acc histograms over the different datasets depending on the cost
function. Each histogram counts the number of scenes. The vertical dotted line represent
the 90% objective.

of datasets 2014 and 2021. Indeed, we will see in some examples that the correlator
has a hard time producing a good quality disparity map for some scenes, and that
over-estimating the intervals is necessary to produce accurate intervals (for instance,
in Figure 5.28).

• Proportion of low confidence area pamb: Table 5.1 also indicates the proportion of
low confidence areas. This provides indicative insights on the proportion of intervals
that have been evaluated using orel, the rest being evaluated using srel. It is unclear
if one cost function consistently results in more low confidence areas than the other.
The proportion of low confidence areas do not seem to be correlated to the accuracy
or to the residual error.

We have a good first estimation of the performance of the method for creating disparity
confidence intervals. We can now delve into more details by looking at the distribution of
score across all scenes, for the Middlebury datasets and the Montpellier images separately.
The results are presented in Figures 5.21 to 5.24. Figure 5.21(a) presents the accuracy
distribution across all Middlebury scenes. Regarding the Middlebury datasets, those
figures support observations made in Table 5.1, as the distribution of most metrics are
concentrated on the same values. The residual error varies between 0% and 10% for
CENSUS intervals, while MC-CNN intervals present larger values. The relative size of
intervals is for the most part less than 3%, with MC-CNN intervals presenting slightly
larger relative size than CENSUS ones. For the CENSUS cost function, there are in
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(a) Middlebury (b) Montpellier

Figure 5.22: Residual error ε histograms over the different datasets depending on the cost
function. Each histogram counts the number of scenes.

total 9 scenes across the 76 Middlebury images that do not verify the 90% accuracy
threshold, 4 of which have an accuracy between 89% and 90%. Those scenes are all taken
from the 2014 and 2021 datasets, which are complex scenes with very large disparity
intervals, typically not found in the stereo satellite images we consider for building a
DSM. Intervals computed using the MC-CNN cost function all verify the 90% accuracy
threshold. Another noteworthy remark concerns the relative over-estimation: CENSUS
intervals values are concentrated around 50% but spread almost across the entire range,
while MC-CNN intervals are more uniformly distributed along values in [0.4, 0.9]. This
does not change the observation that using the MC-CNN cost function leads to a greater
over-estimation of intervals than using the CENSUS cost function.

The differences between CENSUS intervals and MC-CNN intervals are also observed
on the Montpellier dataset. The 90% accuracy objective is respected, and MC-CNN
intervals are more accurate in general. Their residual error, relative size and relative
over-estimation are all larger than those of CENSUS intervals. In general, the residual
error, relative size and relative over-estimation on the Montpellier dataset are greater
than on the Middlebury datasets, while still remaining relatively low. This is due to the
smaller disparity range for those images (typically [−20, 10]) in compared to Middlebury
ranges.

Remark: MC-CNN cost function generates larger intervals than the CENSUS cost
function, but they are more accurate in consequence. Tuning different parameters
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(a) Middlebury (b) Montpellier

Figure 5.23: Relative size srel histograms over the different datasets depending on the
cost function. Each histogram counts the number of scenes.

in our method, such as the value of α = 0.9, the ambiguity threshold τamb or the
size of the ambiguity kernel kamb, could lead to the same performance of the two
cost functions. This was not explored, as our primary objective is to propagate the
disparity intervals to the rest of the photogrammetry pipeline.

We evaluated the metrics quantitatively across datasets and scenes in Table 5.1 and
Figures 5.21 to 5.24. Those analyses gave us a global overview of the performance of
the confidence intervals. However, providing a quantitative analysis on local performance
is more complex and tedious. Figure 5.25 displays histograms (in number of pixels) of
distributions from which ε, srel and orel are the medians, in the case of the Middlebury
Cones stereo images. It provides a better estimation of the behavior of each metric.
We can see in Figures 5.25(a) and 5.25(c) that the span of relative sizes and residual
errors are close to their median ε and srel. In contrast, the relative over-estimation is
spread over the range [0, 1]. There are also more intervals with an over-estimation near
1, which is due to ∆|dtrue − d̃| being small for a number of pixels. We also present a
qualitative analysis of confidence intervals in Figures 5.26 and 5.27. The accuracy can
be observed on Figures 5.26(b) and 5.27(b), as the proportion of red pixels (indicating
wrong intervals) is relatively low. The size of intervals in high confidence areas can be
estimated by looking at pixels from columns 900 to 950 of Figure 5.26(c) or columns
700 to 800 of Figure 5.27(b). They seem to be around 2 disparities wide, which is quite
small. In low confidence areas, for instance near column 850 of Figure 5.26(c) and column
830 of Figure 5.27(c), intervals do not over-estimate too much the maximum potential
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(a) Middlebury (b) Montpellier

Figure 5.24: Relative over-estimation orel histograms over the different datasets, depend-
ing on the cost function. Each histogram counts the number of scenes.

error between the predicted disparity and the true disparity. Figure 5.28 illustrates a case
where the stereo matching algorithm has very poor performance of when it comes to the
disparity prediction. Most areas are low confidence areas, and the predicted disparity is
sometimes hundred of pixels apart from the true disparity. However, the intervals are still
correct, although they are necessarily very large.

The evaluation of those different metrics indicates that our method seems to perform
well for estimating disparity confidence intervals. An ablation study on the influence of
parameters is conducted in the Annex.

We will use the method presented in this chapter for creating elevation intervals
in Chapter 6. However, it is worth noting that this method is not set in stone, and
that other approaches could build upon it to improve its accuracy and size performance.
For instance, we regularized intervals in low confidence areas using a quantile approach.
Another solution could have been to use a different cost function in those areas, one that
performs better near depth discontinuities and is less sensitive to the adherence effect. We
also computed intervals after SGM regularization, but using the information contained in
the cost volume both before and after SGM regularization could lead to more accurate
intervals. Those leads were not considered in the context of this thesis, but are considered
for future work.
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(a) Distribution of the relative error of inter-
vals used to compute ε in Equation (5.16).

(b) Distribution of the relative size of inter-
vals used to compute srel in Equation (5.17).

(c) Distribution of the relative over-estimation of intervals used to compute orel in Equa-
tion (5.18).

Figure 5.25: Distribution (in number of pixels) of the relative error (a), relative size (b)
and relative over-estimation (c) of intervals for the Middlebury Cones dataset. ε from
Equation (5.16) is the median of the distribution in (a). srel from Equation (5.17) is
the median of the distribution of (b). orel from Equation (5.18) is the median of the
distribution of (c).
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(a) Left Image (b) Wrong intervals (red)

(c) True disparity, predicted disparity and intervals along the blue line of (b). Gray areas
represent low confidence areas.

Figure 5.26: “Piano” scene from Middlebury 2014 dataset.
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(a) Left Image (b) Wrong intervals (red)

(c) True disparity, predicted disparity and intervals along the blue line of (b). Gray areas
represent low confidence areas.

Figure 5.27: Scene from the Montpellier dataset.
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(a) Left Image (b) Wrong intervals (red)

(c) True disparity, predicted disparity and intervals along the blue line of (b). Gray areas
represent low confidence areas.

Figure 5.28: “Sword2” scene from Middlebury 2014 dataset. This scene is an example of
bad disparity prediction but correct (although large) confidence intervals.
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In this chapter, we developed a method for computing disparity confidence intervals
in a dense stereo matching problem. Confidence intervals are correct even when the
predicted disparity is far from the ground truth. This method can be applied to any
cost-volume based stereo algorithm, but will produce different intervals depending on
the cost function used. As our main objective in this thesis is to produce elevation con-
fidence intervals on DSMs, we will therefore propagate disparity intervals into elevation
confidence intervals in the next chapter. We will also evaluate whether the intervals
preserve their accuracy and size performances when transformed into elevation inter-
vals.

Conclusion
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Producing Elevation Confidence
Intervals

In Chapter 5, we presented a method for computing disparity confidence intervals along-
side each predicted disparity d̃. In the photogrammetry pipeline, the predicted disparity is
triangulated, filtered (Section 1.3.4) and then rasterized (Section 1.3.5) to obtain the final
DSM. We will see in this chapter how we can apply those steps to disparity confidence
intervals in order to propagate them into elevation confidence intervals, associated with
the DSM values. This chapter takes up work and data published in [Malinowski et al.,
2024b].

In Section 1.4.1 of Chapter 1, we presented related work where confidence inter-
vals were computed based on a DSM, mainly in [Oksanen, 2006, Panagiotakis et al.,
2018, Deschamps-Berger, 2021]. In those studies, a single global confidence interval asso-
ciated with a DSM is computed a posteriori, i.e. based solely on the DSM (and reference
points), regardless of the method used to obtain it (i.e., photogrammetry, LiDAR, Radar).
The methodology presented in this chapter estimates the uncertainty independently for
each pixel, leading to small confidence intervals in confident areas, and bigger confidence
intervals where the algorithms may have performed badly. We differ in this regard to
previous work, and it does not seem relevant to compare our intervals to theirs, as their
most similar characteristics is their name “interval”, but neither share the same form
(single vs. multiple intervals), nor are based on the same data.
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Figure 6.1: Triangulation of the three pairs of lines of sight. The angle between lines of
sight is exaggerated for the purpose of this illustration.

6.1 From Disparity Intervals to Elevation Intervals

6.1.1 Triangulation of Disparity Intervals

As indicated by their name, disparity confidence intervals are expressed in pixel of dispar-
ities. Disparities are used to determine pairs of intersecting lines of sight from different
sensors, which are then triangulated to obtain a 3D point. With disparity confidence
intervals, we now have 3 pairs of line of sight for each pixel instead of just one:

• The pair composed using the predicted disparity d̃

• The two pairs composed using the upper and lower disparities from Iα = [Iα, Iα].

Intersecting each pair of line of sight yields 3 3D points, as presented in Figure 6.1. We
deduce the first point (x, y, z) from predicted disparity d̃, and the two other points
(x, y, z), (x, y, z) are deduced from Iα and Iα respectively.

Depending on the disposition of satellites, as well as which image is selected as the
reference image, it is both possible that z ⩽ z ⩽ z or z ⩽ z ⩽ z. In the following, and
for simplicity, we will consider that z ⩽ z ⩽ z. This is not constraining, as we can just
change the notations to unsure this inequality holds. We therefore have a 3D confidence
“interval”, defined as every point from the reference line of sight between (x, y, z) and
(x, y, z). For instance in Figure 6.1, the reference line of sight is the one originating
from the left satellite, and the confidence “interval” is the portion of this line of sight
between the two orange crosses. It is not an interval per se, as RPC are polynomials and
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not straight lines, but they are approximated by straight lines in the computations, so
the distinction is superfluous.

The point cloud obtained from the triangulation of the disparity map is then filtered,
as detailed in Section 1.3.4. If a 3D point is filtered, then we naturally also filter its
corresponding interval with it.

6.1.2 Rasterization of 3D “Intervals”

The final step of the pipeline is the rasterization, as our objective is to produce elevation
confidence intervals associated with every value contained in the DSM. However, raster-
izing intervals along lines of sight as it stands raises an issue: we are not guaranteed
that the rasterized intervals will remain coherent with the final DSM when projected
on the regular grid. A solution to circumvent this issue is to consider that the plani-
metric shift ∆XY =

√
(x− x)2 + (y − y)2 is small in comparison to the altimetric shift

∆Z =
√

(z − z)2 and that we can therefore neglect it. This hypothesis depends only

on the incidence angle β of the reference image. Indeed, it holds that ∆Z
∆XY = 1

tan(β) ,
where β is the incidence angle as depicted in Figure 6.2. Ideally, if the reference image has
no incidence angle, then the ∆XY shift is null. Table 6.2 details the different incidence
angles encountered in our experiments. The incidence angles are typically around 10°,
i.e. ∆Z is around 5.6 times bigger than ∆XY . For the scene in Paris where the incidence
reaches 6.1°, the ratio is around 10, while the only scene with 21.3°, near Peyto Lake,
Canada, has a ratio around 2.6. For this last acquisition, the hypothesis that ∆XY is
small compared to ∆Z is debatable, but we will still neglect ∆XY in the rasterization
in order to stay consistent across our experiments. This will also allow verifying if this
hypothesis can impact the performance of our method.

The lower and upper bounds can thus be aligned directly above and below the pre-
dicted 3D point (x, y, z), and they thus become:

(x, y, z) → (x, y, z) (6.1)

(x, y, z) → (x, y, z) (6.2)

Figure 6.3 illustrates this modification, where the orange points along the line of sight are
shifted in the (X, Y ) plane to be vertically aligned with (x, y, z).

We remind here the general formulation of the rasterization step. Let (x, y) be a cell
of the DSM, and PC be the point cloud considered in the rasterization. The value of the
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Figure 6.2: Acquisition angles of satellites

Figure 6.3: Aligning the confidence interval bounds along a line of sight
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DSM is computed using a weighted mean of PC:

DSM(x, y) =

∑
(xi,yi,zi)∈P C

zi · w(xi, yi)∑
(xi,yi,zi)∈P C

w(xi, yi)
(6.3)

where weights w(xi, yi) are positive scalars. In CARS, the weights are computed using
a Gaussian distribution, but other pipelines also use Inverse Distance Weightings which
works similarly. In practice, only the points within a given distance of the center (x, y) of
the cell are considered in the mean.

Because it holds that for any point: z ⩽ z ⩽ z, then computing the DSMs indepen-
dently using (x, y, z), (x, y, z) and (x, y, z) will ensure the consistency of the resulting
DSMs: ∑

(xi,yi,zi)∈P C
zi · w(xi, yi)∑

(xi,yi,zi)∈P C
w(xi, yi)

⩽

∑
(xi,yi,zi)∈P C

zi · w(xi, yi)∑
(xi,yi,zi)∈P C

w(xi, yi)
⩽

∑
(xi,yi,zi)∈P C

zi · w(xi, yi)∑
(xi,yi,zi)∈P C

w(xi, yi)

DSM(x, y) ⩽ DSM(x, y) ⩽ DSM(x, y) (6.4)

where DSM(x, y) is the DSM computed using points (x, y, z), and DSM(x, y) is the
DSM computed using points (x, y, z). For each cell DSM(x, y) we have now computed
an elevation interval [DSM(x, y), DSM(x, y)].

As rasterization is the final step of the stereo pipeline, we now have propagated the
confidence intervals all the way to the end of the pipeline while ensuring their coherency
with the predicted DSM. Additionally, The production of elevation confidence intervals did
not influence the values of the final DSM. We now need to evaluate the elevation confidence
intervals on real data to verify if the potential errors occurring during the transformation
of disparity intervals into elevation intervals do not question their accuracy.

6.2 Acquiring and Processing Data for Evaluation

6.2.1 Satellite and DSM datasets

This section will present the different images and ground truth DSMs used to evaluate
elevation intervals. We will use ground truth DSMs that can be categorized into two
categories.

The first category is composed of DSMs acquired over mountainous regions containing
glaciers. They have been kindly provided by Etienne Berthier from LEGOS, Liss Marie
Andreassen from the Norwegian Water Resources and Energy Directorate (NVE) and
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Brian Menounos from the Natural Sciences and Engineering Research Council of Canada
and the Tula Foundation (Hakai Institute). The data were acquired in the following
regions:

• Two different DSMs in the mountainous region of Jotunheinem, Norway. We will
refer to the two DSMs as Hellmem (Figure 6.7) and Graasubreen (Figure 6.6).

• Langfjordjøkelen glacier, Norway (Figure 6.8).

• Mountains near Peyto lake, in the Alberta province of Canada. (Figure 6.12)

The ground truth were acquired using a LiDAR sensor, rasterized at 50 cm resolution.
We did not apply the rasterization ourselves and only had access to the rasterized DSMs.

The second category of ground truth data comes from the LiDAR HD program ([Mon-
net, 2023], https://geoservices.ign.fr/lidarhd) which intends to cover the entirety
of the French territory (except for French Guiana) by the end of 2026. It is a very im-
portant source of information, with around 10 measured points per m2 and a relative
planimetric accuracy of 50 cm. As of the time we write this thesis, data over the French
territory are not fully (publicly) available. From the data available at the time of this
work, we selected different regions of interest in order to have a variety of landscapes
(rural, urban, seaside etc.). Those landscapes all presented strong elevation variations
in order to present a challenge for the stereo pipeline. We also want to determine if our
method behaves differently depending on the nature of the scene. Here is the list of the
considered regions:

• The city of Bordeaux (Figure 6.4)

• The city of Montpellier (Figure 6.10)

• The city of Paris (Figure 6.11)

• The city of Toulouse (Figure 6.14)

• Valleys and mountains near Grenoble, in the French Alps (Figure 6.5)

• Mediterranean coastline with the city of Monaco (Figure 6.9)

• Valleys and mountains at Pic du Midi, french Pyrenees (Figure 6.13)

LiDAR point clouds were then rasterized at 50 cm resolution with the same Gaussian
rasterization method as in the stereo pipeline. Table 6.1 presents the different acquisition
dates and shape of the ground truth DSMs.

We used Pléiades images for producing both DSMs and intervals that will be compared
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to the ground truth. We did not directly order the Pléiades acquisitions, as it is costly
and hard to synchronize with the acquisition date of the ground truth. From our available
catalog, we selected stereo pairs that were acquired as close as possible from the acquisition
date of the ground truth, or if multiple months separated the two acquisitions, we rather
selected a similar period of the previous/next year to minimize seasonal changes. Table 6.1
allows comparing dates of acquisition of the LiDAR and Pléiades images.

We saw in Section 6.1 that the planimetric and altimetric accuracy depend on the
incidence and convergence angles of the lines of sights of the satellites. Table 6.2 presents
those angles for the different Pléiades images.

Area Date for LiDAR Date of Pléiades GT Size (0.5m)
Bordeaux 2023-09-15 2022-08-04 6001 × 6001
Grenoble 2021-09-05 2020-09-17 10001 × 10001

Hellmem 1 2019-08-27 2019-08-27 7127 × 7298
Graasubreen 2 2019-08-27 2019-08-27 3912 × 2880

Langfjordjøkelen 2018-09-01 2018-09-01 5841 × 3689
Monaco 2021-05-13 2020-08-30 10001 × 10001

Montpellier 2021-05-28 2021-10-17 8001 × 8001
Paris 2023-03-03 2023-05-31 10001 × 10001
Peyto 2016-09-13 2016-09-13 13240 × 17874

Pic du Midi 2021-10-02 2021-10-16 10001 × 12001
Toulouse 2022-05-29 2022-06-28 12001 × 8001

Table 6.1: Acquisition date of Pléiades stereo or tri-stereo images, and the LiDAR ground
truth

Area Convergence angle Left incidence angle Right incidence angle
Bordeaux 23.1° 9.7° 14.2°
Grenoble 28.3° 12.4° 16.1°

Jotunheinem 22.5° 10.6° 14.5°
Langfjordjøkelen 21.4° 10.2° 13.8°

Monaco 29.2° 12.8° 18.1°
Montpellier 7.7° 11.5° 15°

Paris 4.9° 6.1° 7.9°
Peyto 17.2° 21.3° 21.6°

Pic du Midi 29.0° 13.7° 15.3°
Toulouse 11.4° 12.5° 18.7°

Table 6.2: Relevant angles of stereo pairs of Pléiades images. See Figure 6.2 for a schematic
representation of those angles.

6.2.2 Water Masks

Both LiDAR data and stereo correlation present poor results on water surfaces. For the
LiDAR data, wavelengths are often absorbed by still water and do not provide the sen-
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(a) RGB image of Bordeaux (Pléiades © CNES
2022, Distribution AIRBUS DS)

(b) LiDAR HD DSM

Figure 6.4: RGB image of Bordeaux and its associated ground truth DSM.

(a) RGB image of a region near Grenoble
(Pléiades © CNES 2020, Distribution AIRBUS
DS)

(b) LiDAR HD DSM

Figure 6.5: RGB image of Grenoble and its associated ground truth DSM.
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(a) RGB image of Graasubreen (Pléiades ©
CNES 2019, Distribution AIRBUS DS)

(b) LiDAR DSM

Figure 6.6: RGB image of Graasubreen and its associated ground truth DSM.

(a) RGB image of Hellmem (Pléiades © CNES
2019, Distribution AIRBUS DS)

(b) LiDAR DSM

Figure 6.7: RGB image of Hellmem and its associated ground truth DSM.
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(a) RGB image of Langfjordjøkelen (Pléiades
© CNES 2018, Distribution AIRBUS DS)

(b) LiDAR DSM

Figure 6.8: RGB image of Langfjordjøkelen and its associated ground truth DSM.

(a) RGB image of Monaco (Pléiades © CNES
2020, Distribution AIRBUS DS)

(b) LiDAR HD DSM

Figure 6.9: RGB image of Monaco and its associated ground truth DSM.
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(a) RGB image of Montpellier (Pléiades ©
CNES 2020, Distribution AIRBUS DS)

(b) LiDAR HD DSM

Figure 6.10: RGB image of Montpellier and its associated ground truth DSM.

(a) RGB image of Paris (Pléiades © CNES
2023, Distribution AIRBUS DS)

(b) LiDAR HD DSM

Figure 6.11: RGB image of and its associated ground truth DSM.
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(a) RGB image of Peyto (Pléiades © CNES
2016, Distribution AIRBUS DS)

(b) LiDAR HD DSM

Figure 6.12: RGB image of Peyto and its associated ground truth DSM.

(a) RGB image of Pic du Midi (Pléiades ©
CNES 2021, Distribution AIRBUS DS)

(b) LiDAR HD DSM

Figure 6.13: RGB image of Pic du Midi and its associated ground truth DSM.
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(a) RGB image of Toulouse (Pléiades © CNES
2022, Distribution AIRBUS DS)

(b) LiDAR HD DSM

Figure 6.14: RGB image of Toulouse and its associated ground truth DSM.

sor with any feedback (although turbid water can usually send back some signal). For
moving waters, the provided signal is often noisy and needs post-processing to remove
artifacts. Stereophotogrammetry has usually even poorer results, because open waters
are texture-less or uniform surfaces on which the correlation does not perform well. Fur-
thermore, for Pléiades acquisitions, the water may have moved between images, which
prevents water pixels from being correctly triangulated. For those reasons, we chose to
add a water mask on images of cities crossed by a river (Bordeaux, Monaco, Montpellier,
Paris, and Toulouse) or near the seaside (Monaco). The water mask was obtained using
an algorithm developed by CNES, which uses a random forest trained on existing high
resolution mapping of surface waters [Pekel et al., 2016] and the Normalized Difference
Water Index [Gao, 1996]. Figure 6.15(b) presents a water mask produced on the image
of Paris.

6.2.3 Co-registration

The DSMs obtained from LiDAR data and from stereophotogrammetry are not necessarily
in the same projection reference system, and do not use the same altitude reference.
Moreover, due to the limited accuracy of RPC models and GPS measures of the LiDAR,
some planimetric and elevation biases may exist between the two DSMs. Those biases
do not allow their comparison as such. We therefore reproject the ground truth data in
the same reference system as their corresponding DSM produced by the CARS pipeline.
We then rectify the planimetric and altimetric biases by applying the method presented
in [Nuth and Kääb, 2011]. This process is called co-registration. We quickly present
the method for estimating the altimetric and planimetric biases, and refer to the original
publication for additional details.

It is possible to observe that the measured differences between two shifted DSMs vary
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(a) RGB image of Paris (Pléiades © CNES
2023, Distribution AIRBUS DS)

(b) Water mask

Figure 6.15: RGB image of Paris and its associated water mask. Water is indicated by
blue pixels

with the slope angle and the orientation of the slope. The different parameters influencing
the measured variations of elevation, presented in Figure 6.16, are the following:

• We note sl the angle of a slope. sl = 0° corresponds to a flat slope and sl = 90° to
a vertical slope.

• We note ψ the azimuth of the slope. If the slope faces north, then ψ = 0°. If it
faces west, ψ = 90° etc.

• The direction of the planimetric shift between DSMs is given by an angle β, with
the same conventions as the azimuth. The magnitude of the shift is B.

• dh refers to measured local variations of elevation, and d̃h is the global elevation
shift between DSMs.

The relation linking all those parameters is the following [Nuth and Kääb, 2011]:

dh = B cos(ψ − β) tan(sl) + d̃h (6.5)

The three unknowns are B, β and d̃h, as the slope parameters can be computed by
any GIS software from the DSMs. For instance, the slope of DSMtrue is computed as:

sl(x, y) = 1
8

√√√√(DSMtrue ∗ kx(x, y)
rx

)2

+
(

DSMtrue ∗ ky(x, y)
ry

)2

(6.6)
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Figure 6.16: Planimetric shift of magnitude B and altimetric shift d̃h between two DSMs.
We can see that local variations d̃h vary depending on the slope sl. This diagram is
in 2D, the angle of the planimetric shift and the azimuth of the slope are therefore not
represented.

where ∗ denotes a convolution with two kernels kx =


−1 0 1
−2 0 2
−1 0 1

, ky =


−1 −2 −1
0 0 0
1 2 1

,

and rx, ry are the resolution in x and y. We will use the slope in the evaluation of the
different metrics.

The unknowns B, β and d̃h are determined by a least square optimization problem.
Because the DSM is not expressed analytically, the optimization is not guaranteed to
be exact. Multiple iterations of the planimetric and altimetric shift estimation lead to a
better final result. An illustration of the co-registration process is presented in Figure 6.17.

The problem we encounter is that the DSM obtained from photogrammetry already
possess some errors. In the least squared minimization problem, the residuals computed
from the difference between the ground truth DSM and the photogrammetry DSM there-
fore also contain those errors. This deteriorates the quality of the co-registration. How-
ever, it remains the best solution for co-registering DSMs. We apply this co-registration
to our data, before computing any metric. The different metrics we consider will be
presented in Section 6.3, while the following sections details the parameters used in our
stereo pipeline.

6.2.4 Configuration of the Photogrammetry Pipeline

This section provides technical information about the configuration of the CARS pipeline
used to process the satellite images.

We used the Copernicus DEM with a 30m resolution as the reference altitude, as the
SRTM elevation models were not available for high latitudes, such as Norway for instance.
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(a) Ground Truth DSM (b) CARS DSM

(c) Elevation along a row of the DSM

Figure 6.17: Planimetric shift and altimetric shift from the co-registration step over the
city of Toulouse. In (a) and (b), reference points in orange are located at the same row
and columns in the two DSMs. The planimetric shift is indicated with blue arrows. (c)
presents the altimetric shift between the two DSMs.
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We used the same range of considered disparity for every image: [-50pix, 50pix]. This
range is quite high, especially for acquisition with a high altitude ratio ralt, but ensures
we are not limited to a restrictive range of possible elevations.

Although we developed a method for creating disparity intervals which works for both
the CENSUS and MC-CNN cost functions, we will only present results using the CENSUS
cost function. Two reasons motivate this choice. First, due to the quantity of scenes and
the variety of analyses completed, it would quickly become quite overwhelming to present
each result for both cost functions, especially when there is no major difference between
the two. Secondly, we observed in the previous chapter that disparity intervals obtained
using CENSUS were less accurate than those using MC-CNN. As we favor accuracy
above interval size, we chose to use the CENSUS cost function throughout our results,
as validating the accuracy requirements for CENSUS ensures that they are also validated
using MC-CNN. We verified that there was no unexpected behavior for MC-CNN intervals
across scenes, and since nothing notable appeared, we did not delve into so many details
as we did for the CENSUS intervals.

We detail here the list of the parameters used in the pipeline. The CENSUS cost
function was computed using a 5×5 window. The SGM penalties used for regularizing
the CENSUS cost volume were P1 = 8 and P2 = 32. Disparity intervals were produced
using a possibility threshold of 0.9. Intervals were regularized in low confidence areas for
which the confidence from ambiguity was below 0.6, after being minimized by a minitive
kernel of shape (1, 2 ·kamb +1) = (1, 5). For each regularized pixel, we took the 90th upper
and 10th lower quantiles over a low confidence area that extended nN = 3 rows above and
below. A V-fit refinement step was used to get sub-pixel disparities, and a median filter
of shape (3 × 3) was applied to the resulting disparity map. Pixels that did not validate
the cross-checking criterion from Equation (1.14) were not considered for triangulation.
Triangulated 3D points were filtered using Equation (1.23) with k = 5 and N = 50, and
Equation (1.24) with Dmax = 3 m and Nmin = 50. The rasterization from Equation (1.25)
used σ = 0.3 m and r = 3 m.

6.3 Metrics for Evaluating Elevation Intervals

We introduce here the metrics used to evaluate the performance of elevation intervals.
In order to stay consistent with Section 5.2.1, we consider the metrics introduced for
disparity intervals and adapt them to elevation intervals.

We will refer to the true elevation as DSMtrue, the predicted elevation as DSM and
the elevation intervals as [DSM, DSM].
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Figure 6.18: Schematic representation of Zacc

Elevation Accuracy Metric

Similarly to Section 5.2.1, the first metric is the proportion of correct intervals, i.e. the
proportion of intervals containing the ground truth. We call this metric the elevation
accuracy Zacc:

Zacc = #{DSMtrue | s.t. DSMtrue ∈ [DSM, DSM]}
#{DSMtrue}

(6.7)

Figure 6.18 illustrates what this metric represents. Zacc is similar to acc defined in Equa-
tion (5.15) from Section 5.2.1, we thus want to maximize Zacc. We also keep the objective
of 90% accuracy for our method, which was validated for the disparity intervals.

Residual Elevation Error Metric

We are also interested in evaluating the magnitude of the errors. We thus define the
residual elevation error Zε for all intervals that do not contain the ground truth as:

Zε = 1
ralt

· median
(
min(|DSMtrue − DSM, |DSMtrue − DSM|)

)
(6.8)

where ralt is the disparity to altitude ratio (or altimetric ratio), i.e. the elevation dif-
ference resulting from a shift of one disparity. Figure 6.19 illustrates what this metric
represents. We want Zε error to be as close to 0 as possible. ralt has been computed
alongside the epipolar grids (Section 1.3.2). Dividing by the ratio ralt effectively converts
min(|DSMtrue − DSM|, |DSMtrue − DSM|) from meters to pixels. As an error of one dis-
parity pixel in the dense matching step can result in an elevation error of 1m in a scene,
and 2m in another, we divide by ralt in order to be able to compare stereo pairs with
different convergence angles. Table 6.3 contains the different altimetric ratios for the data
we consider. Zε is similar to ε defined in Equation (5.16) from Section 5.2.1.
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Figure 6.19: Schematic diagram of the quantity represented by Zε

Figure 6.20: Schematic diagram of the quantity represented by Zsize

Relative Elevation Size Metric

Those two previous metrics allow measuring the accuracy and errors of elevation intervals.
To evaluate the size of intervals, we use the relative elevation size Zsize defined as :

Zsize = 1
ralt

median
(
DSM − DSM

)
(6.9)

We divide by the altimetric ratio for the same reasons as in Zε, i.e. to compare stereo pairs
with different convergence angles. Figure 6.20 illustrates what this metric represents. We
want the relative elevation size to be as close to zero as possible. Zsize is similar to srel

defined in Equation (5.17) from Section 5.2.1.

Remark: In the rasterization process, 3D points from low confidence area are mixed
with points from high confidence areas. We therefore are unable to define interval
regularization areas in the final DSM. The relative over-estimation orel has therefore
no equivalent for elevation intervals.
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Scene Zacc Zε (pix) Zsize (pix) ralt (m/pix) invalid
Bordeaux 89.3% 0.56 4.18 1.24 21.5%

Graasubreen 99.7% 0.12 1.96 1.32 27.5%
Hellmem 98.8% 2.76 2.02 1.32 34.7%
Grenoble 93.1% 0.87 3.99 1.06 6.4%

Langfjordjøkelen 99.4% 0.30 2.16 1.35 13.9%
Monaco 90.3% 0.57 3.76 0.99 41.9%

Montpellier 89.1% 0.28 2.05 3.64 1.9%
Paris 84.6% 0.46 2.01 5.78 3.0%
Peyto 98.9% 0.18 2.08 1.66 18.3%

Pic du midi 98.1% 0.20 2.41 1.01 7.5%
Toulouse 92.0% 0.38 2.04 2.43 6.9%

Table 6.3: Elevation metrics for the different stereo pairs. The last column indicates the
proportion of invalid pixels in the considered DSMs.

(a) Photogrammetry DSM. Orange area is detailed
in Figure 6.22

(b) DSM with wrong intervals in red.

Figure 6.21: DSM without and with wrong intervals over Graasubreen scene

6.4 Elevation Intervals Results

The different metrics have been evaluated between the photogrammetry DSM and the
associated ground truth DSM. Results are presented in Table 6.3, and are commented
in the following sections. We also displayed for informational purposes the proportion
of invalid pixels of each scene, in the last column of the table. A pixel is invalid if the
ground truth DSM or predicted DSM does not contain any data for this pixel, or if it
was masked by a water mask. Invalid pixels are therefore pixels that were not considered
when computing the metrics.

Figures 6.21 to 6.27 allow to qualitatively evaluate the performance of the elevation
intervals in different scenes. We can see that intervals seem to have a better accuracy
performance in rural scenes such as glaciers than in urban scenes. For instance, we can
clearly see wrong intervals of the Toulouse scene in Figure 6.23(b). They are harder to
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(a) Photogrammetry DSM. Orange line is de-
tailed in (c)

(b) DSM with wrong intervals in red.

(c) DSM, ground truth and elevation intervals along the orange line of (a)

Figure 6.22: Details of the Graasubreen DSM. This area corresponds to the orange square
from Figure 6.21(a).
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(a) Photogrammetry DSM. Orange area is detailed
in Figure 6.24

(b) DSM with wrong intervals in red.

Figure 6.23: DSM without and with wrong intervals over Toulouse scene

distinguish in the Graasubreen scene in Figures 6.21(b) and 6.22(b). Another notable
observation is that elevation intervals of the Graasubreen glacier in Figure 6.22(c) are
very small and do not present large size fluctuations along the considered cross-section.
This is not the case for the Toulouse scene (Figure 6.24(c)), where intervals present large
variations in size. They are relatively small from columns 7000 to 7100, but their size
increase from column 7400 to 7500. We can see on the right of Figure 6.24(c), near column
7450, that their size allow to correctly contain the ground truth despite the difference
between DSM and DSMtrue. However, there are some very large intervals, sometimes
reaching 80 m in size, near columns 7150, or 7300. Those intervals can occur because the
range of considered disparities in the dense matching step is [−50, 50], for every scene.
Converted into altitude, elevations intervals have a maximal size of [−50 · ralt, 50 · ralt],
centered around the reference altitude (which can vary across the scene). This means
that we can have a maximal elevation interval of size 243m in the case of Toulouse, where
ralt = 2.43. The previously observed intervals of size 80m in Figure 6.24(c) thus originates
from a disparity interval of 33 pixels in size, i.e. a third of the disparity intervals. Other
examples of large intervals include the Monaco scene where ralt = 0.99 and for which the
largest interval has a size of 99 m, or the Paris scene where ralt = 5.78 and the largest
interval has a size of 578m. We will see in section 6.8 that we can modify our method
to filter out points leading to those intervals. For now, we will evaluate the method as it
stands. The following sections are dedicated to discussing each metric individually.

6.4.1 Elevation Accuracy

The elevation accuracy Zacc, defined in Equation (6.7), measures the proportions of inter-
vals which contains the ground truth elevation, which we want to be as high as possible.
The first observation is that the 90% accuracy objective is validated on 8 of the 11 scenes
we considered. In particular, the different glaciers as well as the Pic du Midi elevation
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(a) Photogrammetry DSM. Orange line is de-
tailed in Figure 6.24(c)

(b) DSM with wrong intervals in red.

(c) DSM, ground truth and elevation intervals along the orange line of Figure 6.24(a)

Figure 6.24: Detailed DSM over Wilson square, Toulouse. This area corresponds to the
orange square from Figure 6.23(a).
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(a) Photogrammetry DSM.
Orange square is detailed in
(a)

(b) Photogrammetry DSM
zoom. Orange line is de-
tailed in (d)

(c) DSM with wrong inter-
vals in red.

(d) DSM, ground truth and elevation intervals along the orange line of Figure 6.25(b)

Figure 6.25: Detailed DSM over the mountainous region near Grenoble.
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(a) Photogrammetry DSM.
Orange square is detailed in
(a)

(b) Photogrammetry DSM
zoom. Orange line is de-
tailed in (d)

(c) DSM with wrong inter-
vals in red.

(d) DSM, ground truth and elevation intervals along the orange line of (b)

Figure 6.26: Detailed DSM over the city of Monaco.
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(a) Photogrammetry DSM.
Orange square is detailed in
(b)

(b) Photogrammetry DSM
zoom. Orange line is de-
tailed in (d)

(c) DSM with wrong inter-
vals in red.

(d) DSM, ground truth and elevation intervals along the orange line of (b)

Figure 6.27: Detailed DSM over the Langfjordjøkelen glacier.
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intervals present a great accuracy, between 98.1% and 99.7%. Scenes that do not verify
the 90% objective are the urban stereo pairs over Bordeaux, Montpellier, and Paris. In
general, it seems that urban DSMs have a lower accuracy than rural ones, which was to
be expected as there are more steep variations of elevation in cities due to the presence of
buildings. The Montpellier DSM and Bordeaux DSM are close to the 90% objective, but
intervals over Paris present an elevation accuracy of only 84.6% . We will see in Section 6.7
that some other sources of errors can explain why Zacc < 90% on those scenes, such as
vibration of the satellite during images acquisition or ground truth non-synchronicity is-
sues. Provided that those errors are not present, we can claim that elevation intervals are
accurate enough. They correctly estimate the error committed during the dense matching
step, and the propagation of disparity intervals to elevation intervals is properly carried
out.

6.4.2 Residual Elevation Error

The residual elevation error Zε, defined in Equation (6.8), estimates the gap between
intervals and the ground truth, when intervals do not contain the ground truth. We
want it to be as small as possible. Zε is less than, or almost equal to, half a pixel for
the majority of scenes, which is also around 0.5% of the disparity range. This is really
low, especially when compared to disparity intervals of Table 5.1 where ε was typically
around 3% of the disparity range. Because Zε is the median of error, it means that half
of wrong intervals are less than Zε pixels away from one of the bounds of the elevation
intervals. Consequently, extending intervals by Zε would divide by two the number of
wrong intervals. For instance, on the Monaco scene, Zε = 0.57pix, ralt = 0.99 m/pix and
Zacc = 90.3%. Defining the extended intervals as:

[DSM − Zε · ralt,DSM + Zε · ralt] ≈ [DSM − 0.56,DSM + 0.56]

As the accuracy is 90.3%, it means that 9.7% of pixels are not accurate. Using [DSM −
0.56,DSM + 0.56] would lead to a new accuracy of 90.3 + 9.7

2 = 95.15%. For every scene,
validating the 90% accuracy, Zε provides an easy extension for obtaining intervals with
95% accuracy.

Figure 6.28 displays histograms of the distribution of errors, from which Zε is the
median. For both urban and rural scenes, errors are mostly of a few pixels. The shape
of distributions on other scenes are similar to the Toulouse or Pic du Midi scenes. There
is one Zε value that stands out, for the Hellmem scene, where it equals 2.76 pixels.
Figure 6.28(c) displays the distribution of errors on the Hellmem scene, where the majority
of the distribution is still located on the first peak of the distribution. There is however
the presence of a tail on the distributions, that was not present on other scenes. We have
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(a) Toulouse (b) Pic du Midi

(c) Hellmem

Figure 6.28: Histograms of the residual error over the Toulouse, Pic du Midi and Hellmem
scenes. Zε is defined as the median of those distributions.

to keep in mind that the accuracy for this scene is 98.8%, so that Zε is only computed on
1.2% of valid intervals. Zε = 2.76 is therefore not necessarily a concerning observation, as
it concerns very few pixels. It is more surprising that it equals 0.12 for the Graasubreen
DSM which already has the best accuracy (99.7%) out of all scenes. This translates the
great accuracy performance of the elevation intervals estimation on this area.

6.4.3 Relative Elevation Size

The relative elevation size Zsize, defined in Equation (6.9), estimates the size of intervals,
both correct and incorrect. Zsize is usually around 2 pixels wide. The Bordeaux, Grenoble
and Monaco datasets are the only exceptions, where Zsize is closer to 4 pixels in size.
It does not seem to be correlated neither to the accuracy, nor to the altimetric ratio
or acquisition angles of the satellites. In any case, 4 pixels is not ideal, but it is not
excessively large either, especially as the considered disparity range is [−50, 50] in pixels.
We can deduce from those values of Zsize that the predicted DSM is close to the true
elevation.
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(a) Toulouse (b) Pic Du Midi

Figure 6.29: Histograms of the relative size over the Toulouse and Pic du Midi scenes.
Zsize is defined as the median of those distributions.

Figure 6.29 presents the distributions of relative sizes over the Toulouse and Hellmem
scenes. It provides a more complete overview of the distribution of sizes than simply the
indicator Zsize which is defined as the median of those distributions. The distributions
on other scenes have a similar shape.

6.4.4 Altimetric Ratio and Invalid Pixels

Looking at Table 6.3, it seems that high values of the altimetric ratio ralt are correlated to
“low” values of accuracy. This correlation does not imply a causal relationship. Indeed,
scenes with low accuracy are urban scenes, on which the 3D reconstruction is harder
due to the strong variations of elevation. In order to limit the number of occlusions in
urban scenes, we often reduce the convergence angle of satellites. A low convergence angle
results in a high altimetric ratio, as seen in Figure 6.2. This explains why we observe a
high altimetric ratio for scenes with low accuracy.

The proportion of invalid pixels that are not considered in the metrics can sometimes
be quite high, as it is the case for Monaco (41%) or Hellmem (34.7%). This is due to the
presence of water in large part of the image (Figure 6.9(a)) or simply the absence of data
from the provided ground truth (Figure 6.7(b))

6.5 Comparison with “Naive” Intervals

The fact that most intervals have a relative size Zsize of around 2 pixels may raise the
following question: would “naive” intervals be accurate ? We define naive intervals
[DSMnaive, DSMnaive], as intervals centered on the predicted DSM with a size of 2 times

213



Chapter 6

the altimetric ratio ralt:

[DSMnaive, DSMnaive] = [DSM − ralt,DSM + ralt] (6.10)

Table 6.4 allows comparing the accuracy of the naive intervals with that of our interval
method. The table also contains the mean and median errors of the DSM defined as:

εmean = mean |DSM − DSMtrue| εmedian = median |DSM − DSMtrue| (6.11)

Scene Zacc (pix) “Naive” Zacc (pix) εmedian (m) εmean (m)
Bordeaux 89.3% 62.9% 0.86 1.93

Graasubreen 99.7% 98.8% 0.19 0.28
Hellmem 98.8% 96.4% 0.22 0.75
Grenoble 93.1% 65.7% 0.61 2.08

Langfjordjøkelen 99.4% 88.1% 0.26 1.31
Monaco 90.3% 61.2% 0.69 1.75

Montpellier 89.1% 79.4% 1.81 2.52
Paris 84.6% 82.4% 2.35 3.59
Peyto 98.9% 95.6% 0.32 0.56

Pic du midi 98.1% 86.1% 0.31 1.08
Toulouse 92.0% 83.2% 0.92 1.79

Table 6.4: Comparison of “naive” intervals accuracy with our method for elevation inter-
vals. The median and mean error of the predicted DSM are also indicated for reference.

Table 6.4 indicates that all “naive” intervals have a lower accuracy than intervals
defined using our method. The difference is sometimes quite substantial, as for the Bor-
deaux, Grenoble, or Monaco scenes where the accuracy drops from around 30% between
the two methods. It also corresponds to scenes with a relative elevation size Zsize which
is higher than on the others scenes. This confirms that our method correctly adapts the
size of elevation intervals to each scene individually. It also proves that our method can
provide good accuracy performance even when the predicted DSM is far from the ground
truth (indicated by high values of εmedian and εmean).

6.6 Influence of Slope on the Metrics

Using Equation (6.6), it is possible to compute the slope of the scene from the ground
truth DSM. It would be interesting to take a deeper look at the behavior of elevation
metrics depending on the slope. To do so, we compute the slope sl for each pixel and
divided the ranges of slopes in different sections. Those sections are delimited by the
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(a) Accuracy Zacc (b) Relative size Zsize

Figure 6.30: Accuracy Zacc and relative size Zsize values depending on the slope (in
degree). Each curve corresponds to a different scene.

(a) Residual error Zε (b) Residual error Zε without Hellmem yellow
curve

Figure 6.31: Residual error Zε values depending on the slope (in degree). Each curve
corresponds to a different scene. In (b), we removed the Hellmem yellow curve from (a)
for more visibility.

following values, from [Hugonnet et al., 2022]:

[0°, 2.5°, 5°, 10°, 15°, 20°, 30°, 40°, 50°, 70°, 90°]

We then evaluated the metrics on each slope range separately. Results are presented in
Figures 6.30(b) and 6.31. Figures 6.31(a) and 6.31(b) are the same, except we removed
one scene, Hellmem, in the right figure. As mentioned earlier, this scene has very few
pixels in error, and the median is thus not a robust indicator on this scene. Those figures
illustrate the fact that elevation intervals have better accuracy and smaller size on flat
slopes than on steep slopes.

Regarding the accuracy of intervals, it tends to drop with steeper slopes. This can
be explained due to the fact that the dense matching algorithm has better accuracy
performances on smooth surfaces, provided that they are not textureless. This is in part
due to the SGM regularization which penalizes changes in disparity, and therefore in
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Figure 6.32: Influence of slope and planimetric error on the accuracy of intervals. The
planimetric error increases the residual error on steeper slope

elevation.

The size of intervals is greater on steep slopes. This is due to the fact that we
purposefully extended the disparity intervals near disparity fluctuations, which correspond
to steeper slopes. Because disparity changes indicate a variation in elevation, elevation
intervals obtained from disparity intervals are consequently larger on steeper slopes.

Finally, the residual error also increases with steeper slope when a planimetric error
is present between the ground truth and the predicted DSM. This can also be understood
using Figure 6.32, as a steeper slope on the right interval leads to a greater residual error.

The next section will investigate sources of errors independent of our method, that
can affect the evaluation of metrics.

6.7 Other Sources of Error

We saw in Section 6.4 that elevation confidence intervals present high accuracy and low
relative size. There were however three scenes that did not meet the accuracy objective of
90%: Bordeaux, Montpellier and Paris. We will see in this section that there are different
factors which can explain why the accuracy objective was not verified on those scenes.
Those reasons are:

• Asynchronicity of the ground truth and satellite acquisitions

• Rasterization of LiDAR data over vegetation

• Vibrations of the satellite during the images acquisition
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(a) Error DSM − DSMtrue (b) Position of wrong intervals, in red.

Figure 6.33: Errors and position of wrong intervals on the Monaco scene

6.7.1 Asynchronicity of Sources

The dates of acquisition of LiDAR data and Pléiades images were presented in Table 6.1.
In some scenes, large periods of time separate the LiDAR data from the satellite image,
partly because we also tried to minimize seasonality changes. Specifically, the time be-
tween acquisitions for Bordeaux, Grenoble, Monaco, and Montpellier ranges between 5
and 13 months. This can lead to major changes of elevation in those scenes. A remarkable
example of this can be found in the Monaco scene. If we take a look at the errors on this
scene in Figure 6.33, we can see that there is a strong concentration of errors in the top
left corner of the image.

Figure 6.34 is a zoom on this area. By looking at the differences between the ground
truth DSM in Figure 6.34(a) and the RGB image in Figure 6.34(b), we can see that there
are some differences between the ground truth DSM and the satellite image. Most notably,
the bottom left of the quarry levels are more constricted on the ground truth than on
the RGB image. We can confidently state that the quarry was excavated between the
images’ acquisition and the LiDAR acquisition that occurred a year later. This explains
why so many intervals are wrong in the area, in comparison with the rest of the scene.
This can also be observed on a cross-section of the DSMs presented in Figure 6.34(d).
Those intervals are thus false negatives, and lower the global accuracy of the scene, as
they approximately represent around 1.5% of the valid data on this scene.

This type of false negative can be found on a smaller scale in most urban scenes due
to asynchronicity between satellite and LiDAR acquisitions. We did not manually detect
and correct every building that was destroyed or built in-between acquisitions, as it was
too time-consuming. The accuracy results could therefore be further improved in urban
scenes. It is possible, although very unlikely, that asynchronicity causes false positives
during the accuracy computation.

217



Chapter 6

(a) Ground truth DSM. Orange
line is detailed in (d)

(b) RGB image (c) Position of wrong intervals,
in red.

(d) DSM, ground truth and elevation intervals along the orange line of (a).

Figure 6.34: Detail over the La Turbie quarry, in the top left corner of the Monaco scene.
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6.7.2 LiDAR Data Over Vegetation

Intervals computed over the Paris scene have an accuracy of 84.6%, which is the lowest of
all scenes. When trying to understand why intervals did not seem to perform correctly,
we noticed that many pixels in error were representing vegetation. This can be observed
in Figure 6.35, where many intervals are wrong near trees. By looking at the intervals in
Figures 6.35 and 6.36, we can see that the photogrammetry DSM over-estimates the height
of the canopy: columns 4150 to 4170 and 4345 to 4450 of the Paris scene in Figure 6.35(d),
and columns 3400 to 3800 of the Bordeaux scene in Figure 6.36(d). Other buildings, or the
ground, do not present such error. One probable hypothesis is that because the LiDAR
HD over Paris was acquired in early March, and the satellite images in the last day of May,
tree foliage had major differences. Firstly, trees seem bigger on the RGB image than on
the LiDAR DSM, which is probably due to the increase of foliage in-between acquisitions.
Also, the LiDAR probably acquired points both on the top of trees and on the ground,
through the sparse foliage. When rasterizing the LiDAR point cloud using a Gaussian
mean, we averaged both points on top of the trees and on the ground, resulting in a mix
between the two elevations. Due to its resolution, the photogrammetry DSM does not
create multiple points at both the top and the base of the same tree. It therefore only
predicts the elevation of the tree canopy, resulting in the observed error when comparing
with the LiDAR DSM. We tried to mask the vegetation pixels, using a mask computed
from the Normalized Difference Vegetation Index [Gao, 1996], but the quality of the masks
were not sufficiently accurate, and tend to mask many pixels that were not vegetation.
We therefore decided not to use them. Also, this effect was particularly present on the
Paris scene, which is probably because the LiDAR was acquired in early March, while
the LiDAR on other scenes was acquired from June to September, when the vegetation
is denser. However, we will see in the next section that there is a greater source of error
occurring on that scene, which can also be the source of errors leading to a low accuracy.

6.7.3 Vibration of the Satellite

The previous sources of errors concerned the quality of the ground truth DSM. However,
there is one source of errors that we did not take into consideration in our methods: the
satellite vibration during acquisition. During the acquisition of images, push-broom cap-
tors may experience vibrations which are not modeled in the RPC model. The vibrations
occur on the pitch angle, whose axis is perpendicular to the direction of flight of the
satellite, as depicted in Figure 6.37. This translates into low frequency along-track biases
on the DSM, sometimes called undulations [Hugonnet et al., 2022]. This can be detected
by looking at the difference between the photogrammetry and the ground truth DSMs:

DSM(row, col) − DSMtrue(row, col) (6.12)
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(a) Ground truth DSM. Orange line is detailed in (d)

(b) RGB image

(c) Position of wrong intervals, in red.

(d) DSM, ground truth and elevation intervals along the orange line of (a)

Figure 6.35: Zoom near Saint-Augustin, in the Paris scene
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(a) Ground truth DSM. Orange
line is detailed in (d)

(b) RGB image (c) Position of wrong intervals,
in red.

(d) DSM, ground truth and elevation intervals along the orange line of (a).

Figure 6.36: Detail over the Quinconces square, in the Monaco scene.
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Figure 6.37: Angles of a satellite. Vibrations of the satellite occur on the pitch axis.

Without biases, this difference (or residual error), should not be correlated with the
position row, col in the image. Figure 6.38 presents all scenes for which we detected a
bias. The bias is small on Figure 6.38(a) but is hard to miss on Figures 6.38(b) to 6.38(d).
Figure 6.39 indicates that those biases can reach 2.5m of amplitude.

When computing elevation confidence intervals, we did not consider potential errors
of this magnitude for the RPC models. Our method principally aimed to model and
propagate the errors stemming from the dense matching step, which we considered to be
the part of the pipeline where the largest errors could occur. Biases observed in Figure 6.38
indicate that only considering the dense matching errors is not sufficient when producing
DSMs with Pléiades images. The CO3D satellites will not use a push-broom sensor, but
rather a CCD Bayer matrix, which can potentially reduce vibration issues. However, the
satellite will still need to stabilize itself during acquisition, therefore some vibrations can
still be expected.

In the scope of this thesis, we did not try to model the uncertainty associated with
potential vibrations of the satellite. It would however be interesting to determine if
Montpellier and Paris scenes could validate the 90% accuracy objective without the effect
of vibrations. We therefore propose a simple correction of the vibration effect, which is
not meant to perfectly solve the issue, but rather to sufficiently reduce it for a better
evaluation of the elevation interval metrics. In order to do so, we computed the residual
error (DSM − DSMtrue), and attempted to model the observed bias using a least square
approach. We assume that the bias depends only on the row of the image and propose to
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(a) Hellmem (b) Montpellier

(c) Paris (d) Toulouse

Figure 6.38: Difference (DSM − DSMtrue) for different scenes. A bias along rows (along-
track) appears, suggesting vibrations during the image acquisition. Biases on the Hellmem
DSM are smaller that for the other three scenes.
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(a) Montpellier scene

(b) Paris scene

Figure 6.39: Scatter plot where gray points are the residual error (DSM − DSMtrue) of a
pixel. The x-axis represents the row of each pixel. As an indicator, we also computed the
median residual error for each row, appearing in orange. The blue line is the optimized
model from Equation (6.13).

simply model it by a cosine function carried by a linear function of the row:

bias(row) = A1 cos(A2 · row + A3) + A4 · row + A5 (6.13)

where (A1, . . . , A5) are the parameters of our model. Figure 6.39 shows scatter plots
of the residual error (DSM − DSMtrue) where the x-axis indicates image rows. We also
computed the median of the residual error for each row as an indicator of the distribution
of errors, and the optimized model from Equation (6.13).

Having estimated the bias, we can subtract it from the DSM and its confidence inter-
vals. This will not change the relative size of the intervals, as we apply the same elevation
shift to both bounds. The accuracy and residual error are however impacted by this bias
rectification. Here are the improvements:

• For the Montpellier scene, the accuracy Zacc increases 89.1% to 92.6%. The residual
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(a) Residual error with bias (b) Residual error without bias

Figure 6.40: Residual error (DSM − DSMtrue) with and without the bias estimated in
Figure 6.39 for the Montpellier scene.

(a) Residual error with bias (b) Residual error without bias

Figure 6.41: Residual error (DSM − DSMtrue) with and without the bias estimated in
Figure 6.39, for the Paris scene.

225



Chapter 6

error Zε also increases from 0.28 pixels to 0.32 pixels.

• For the Paris scene, the accuracy Zacc increases from 84.6% to 88.1%. The residual
error Zε changes from 0.46 pixels to 0.43 pixels.

The fact that the residual error slightly varies is due to the fact that as the accuracy
increases, the set on which Zε is computed changes, thus changing its median.

Remark: In this section, we used the ground truth to correct the bias from the
vibrations of the satellite. We used the ground truth because our objective was
to verify if the biases were indeed the source of the missing accuracy of elevation
intervals, so that we could safely assume our method was efficient, granted that no
vibrations occurred during the acquisition.

Our aim was not to propose a general method for modeling or correcting the
errors due to vibrations, in which case we could not have used the ground truth, as it
is not available everywhere. However, if such were our intents, using a low resolution
DSM such as the Copernicus DSM at 30m resolution could suffice to detect the
presence of vibrations. This DSM was already used in the CARS pipeline as our
initial elevation. By plotting the differences between the low resolution DSM and the
predicted photogrammetry DSM, we can indeed observe the presence of vibrations,
as seen in the following figure:

Figure 6.42: Difference DSM − DSMlow between the photogrammetry model DSM
and the low resolution model DSMlow over the Montpellier scene.

The Paris scene still does not reach the 90% accuracy objective, while being very
close to it. Looking at Figure 6.41(b), there still seems to be a bias, horizontally this
time, as residuals are positive on the left side of the image and negative on the right side
of the image. We can also distinguish that streets seem to have more positive residuals,
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which is once again probably due to the vegetation issue discussed in Section 6.7.2. As
the accuracy is very close to the 90% objective, and we have good reasons to think there
are false negative in our test, we consider that this scene confirms the aimed accuracy
performance of our method for creating elevation confidence intervals.

6.8 Unexplored Leads

In the previous sections, we evaluated the accuracy and size performance of elevation
intervals. Those intervals were obtained by triangulation of disparity intervals, yielding
an interval along a line of sight, which was then rasterized. As they stand, intervals are
a reflection of the potential error committed during the dense matching step. During our
investigations, we came up with other interesting ideas that we did not have time to get
to the bottom of. In order to conclude this chapter, we will quickly go over them.

We saw in Figures 6.24(c), 6.34(d) and 6.36(d) that elevation intervals could sometimes
reach very high values, like 80 m in the case of Toulouse. The presence of those intervals
reflect the fact that bounds of corresponding disparity intervals have a high possibility
degree, and that the difference between choosing one bound or the other is not obvious.
It could be wise to filter out the 3D points leading to such large intervals. After all, a
large elevation interval suggests that we are not certain about the position of the point, so
removing it seems natural. Additionally, we ignored the planimetric error ∆XY during
the rasterization as presented in Figure 6.3, but the hypothesis that ∆XY is small is
probably not valid for large intervals. For acquisitions with incidence angles, around
11°, an elevation interval of 50m would mean that the planimetric uncertainty is around
50 tan(11°) ≈ 20 m. For the Peyto scene, where the incidence is 21.3°, this uncertainty
reaches 46 m. Not only are we unsure about the elevation of the point, but there is much
uncertainty regarding which cell it falls into during the rasterization process. We can either
filter those points directly after the dense matching step, based on the size of the intervals,
or after they have been triangulated, based on the resulting planimetric/altimetric shift.
The latter takes into account the acquisition angles of images, and is not limited to the
information contained in the disparity map.

When triangulating the disparity, we consider line of sights to be 3D lines. However,
they represent the position of a pixel, which is not a point but a surface (determined by
the resolution of images). Lines of sights are therefore not exactly lines, but rather a cone
or a cylinder. We could even go further with this model, by taking into consideration the
accuracy of lines of sights into the definition of those cylinders. Intersecting “cylinders”
of sights would then yield a 3D volume. We would then have to processed differently the
obtained volumes during the rasterization step.
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The rasterization step uses a Gaussian mean based on the distance of 3D points to
the center of a cell. We could additionally use the size of intervals to adapt the weights
in the rasterization steps. Doing so, we would favor points with small intervals, i.e. for
which we are confident about their position, to improve the final DSM. If we reason with
3D volumes, we could compute a density on each volume and project those densities on
the final raster.

The uncertainty information contained in the different intervals (disparity or eleva-
tion) could also be used to improve the final DSM. As it stands, the computation of
intervals does not modify the final DSM.

In this final chapter, we propagated the uncertainty associated with the disparity from
Chapter 5 into elevation intervals at the end of the photogrammetry pipeline. Eleva-
tion intervals are a result of the uncertainty due to the dense matching step, which
is the most complex part of the pipeline, and therefore the most important source of
uncertainty. Intervals have an accuracy of 90%, and their size is proportionate to the
potential errors between the predicted DSM and the true elevation. Intervals have
a better performance in terms of accuracy and size in natural landscape than in ur-
ban ones, as those scenes contain more elevation differences and steeper slopes. The
methodology developed for computing elevation confidence intervals aims to satisfy re-
quirements expressed by DSM users. They can also provide a solution for the future
CO3D mission requirements, as a performance map will need to be provided alongside
the DSM.

Conclusion
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Context

Usage of elevation data for environmental applications, urban planning, risk assessment,
etc. requires the massive production of Digital Surface Model (DSM)s. DSMs at a global
scale can be produced using satellites orbiting the Earth, and using different techniques
such as LiDAR measures, radar interferometry or optical photogrammetry. In particular,
optical sensors, which have become relatively low-cost, allow producing dense DSMs with
sub-meter resolution. In this context, CNES and Airbus are preparing the launch of
the CO3D mission, consisting in two pairs of low-cost optical satellites dedicated to the
production of high-resolution DSMs across the globe using stereophotogrammetry.

Photogrammetry is a complex task, consisting in multiple successive algorithms to
process images and extract the elevation information contained through the parallax effect.
It can be divided into the following main steps:

• Resampling of stereo images into a convenient geometry.

• Dense matching of pixels between images.

• Triangulation of a 3D point for each match.

• Rasterization of the point cloud on a regular grid.

Along these steps, many uncertainties arise, which can lead to errors of varying magnitude.
The objective of this thesis was to quantify and propagate the uncertainty alongside a
photogrammetry pipeline, in preparation of the CO3D mission. In particular, we focused
on the CARS pipeline which will be used to process the CO3D data. Furthermore, one
of the requirements of the CO3D mission is to produce a performance map alongside
DSMs. Many DSM users also seek to know the quality of the predicted DSM, usually
characterized by confidence intervals. The main contribution of this thesis is precisely the
development of a method for computing confidence intervals, which can also be used as a
performance map for the CO3D mission.
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Contributions

In this thesis, we used other uncertainty models than well-known probability distributions.
We considered imprecise probabilities and more specifically possibility distributions, more
adapted to model epistemic uncertainty, i.e. arising from a lack of knowledge, by opposi-
tion to the uncertainty due to a purely random process. Those models define credal sets,
i.e. convex sets of probability distributions.

When propagating multiple sources of uncertainty, it is required to compute a multi-
variate model of uncertainty accounting for the different dependencies between uncertain
sources. We proposed to use dependency models known as copulas to construct multivari-
ate credal sets. We introduced three methods for aggregating marginal credal sets into
multivariate credal sets using copulas, namely Mrobust, Mmass and Magg. Those models
are not equivalent, and their computation presents varying degrees of complexity. We in-
vestigated the relations between those sets depending on the copula used to join them, as
well as the specific models used to define marginal credal sets, such as the aforementioned
possibility distributions.

We used the previous results concerning multivariate credal sets to propagate the
uncertainty in a specific part of the photogrammetry pipeline: the dense matching step.
More specifically, we consider the computation of the matching cost between every pixel
of the stereo images. We showed that the models could correctly estimate the propagated
uncertainty regarding the matching cost on a real pair of stereo images.

The cost volume is used to compute the disparity map, encoding the pairing of pixels
to be triangulated. Computing a cost volume allowing to correctly estimate the disparity
is the hardest part of the stereo pipeline. Correctly estimating the uncertainty on the pre-
dicted disparity is therefore crucial for the rest of the pipeline. However, only considering
the propagated uncertainty on the cost volume, as we previously did, is not sufficient for
the correct uncertainty estimation of the disparity map. We therefore proposed to use
possibility distributions to model the epistemic uncertainty regarding the choice of each
disparity. For each considered pixel, we used those possibility distributions to determine a
disparity confidence interval. We evaluated the accuracy of the intervals using real stereo
images, and observed that intervals contain the true disparity at least 90% of the time.
This method for creating intervals can be applied to a wide range of stereo algorithms
and is not restricted to satellite photogrammetry. To the best of our knowledge, it is also
the first time such disparity confidence intervals are computed.

We then propagated those disparity confidence intervals all the way to the end of the
pipeline, where they take the form of elevation confidence intervals associated with the
predicted DSM. We evaluated the performance of elevation intervals on real satellite im-
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ages, for which we possess a reference high quality DSM. Intervals are once again accurate
90% of the time, validating the performances of our new method. We also implemented
this method for estimating disparity and elevation confidence intervals into the CARS
(https://github.com/CNES/cars) and Pandora (https://github.com/CNES/Pandora)
software, developed by CNES. They are already publicly available, and can be used to
produce elevation confidence intervals for DSMs.

Limitations and Perspectives

We demonstrated that possibility distributions and copulas could be used to propagate
uncertainty in a problem such as the evaluation of a cost volume. Implementing this
propagation remains a difficult challenge. It requires using simple cost functions and
other simplifying assumptions. It also requires large processing capacities to be carried out
efficiently, as we joined the uncertainty of thousands of different pixels in our experiments.

We evaluated our method for producing elevation intervals using high resolution DSMs
obtained from LiDAR data. However, we only had access to DSMs provided by glaciol-
ogists, or high resolution point clouds from the LiDAR HD program. This means that
we only observed landscapes which either contained glaciers, or were located in France.
Extending the evaluation of intervals to a broader diversity of locations would be valuable,
such as deserts or American cities.

Another limitation of our method is that it does not take into consideration the
potential errors occurring before the dense matching step. Those errors could occur when
defining the epipolar geometry for instance, or on the localization model itself, for instance
caused by vibration of the satellite as seen at the end of Chapter 6. Combining uncertainty
models of the sensor itself or on its geolocation model could lead to a better estimation
of the overall uncertainty of the DSM.

Different future perspective regarding our work can be considered. The method we
developed for computing confidence intervals is carried out alongside the processing of the
main DSM, without influencing the values it contains. However, we could imagine using
the information contained in the confidence intervals to facilitate or improve the different
disparity or elevation predictions. Here are a few interesting leads that could be explored:

• Disparity intervals could be computed a first time before any SGM regularization.
Then, during the SGM regularization, disparities that are not contained inside dis-
parity intervals are ignored, which could greatly reduce the amount of computation
necessary.

• Another approach would be to use matching cost possibilities to apply a different
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strategy when computing the disparity map. Currently, disparities are determined
using a winner-takes-all strategy, meaning that for each pixel, the selected disparity
is the one minimizing its cost curve. We then do the same for the cost volume of
the right image, and remove matches that do not verify the cross-checking test of
Equation (1.14). However, we could see the choice of a disparity map as a stable
marriage problem [Irving, 1998], where possibilities are interpreted as degrees of
preferences. This could improve the quality of the disparity map, as the choice of
each disparity would consider more information than a single cost curve. It would
also provide an alternative to the winner takes all strategy, which accounts for the
vast majority of strategies used in dense matching.

• We currently extend intervals in low confidence areas using quantiles computed over
a set of neighboring intervals. We could consider using instead other cost functions
which present better performances near depth discontinuities, or using values of
the cost volume before SGM regularization to better process intervals in those low
confidence areas.

• When triangulating disparity intervals, we could take into consideration the limited
resolution of line of sights. We could for instance reason with uncertain 3D volumes
when computing their intersection, which would be a more realistic model than the
precise lines of sight currently considered.

• Before the rasterization step, we could discard points for which the interval size is
too large, as the potential error committed by considering this point is too high.

• During rasterization, we could use information from intervals to modify the weights
of each point in the final value of the DSM. Points with small elevation intervals
would be granted more importance in the final product than those with large inter-
vals.

Ideas developed in this thesis for 1D matching could be extended to 2D matching, for
instance in the Pandora2D tool (https://github.com/CNES/Pandora2D). Apart from
photogrammetry, ideas developed in this thesis could be used to improve confidence cri-
teria of the alignment of image bands for multi-spectral images, for instance in the TR-
ISHNA mission [Lagouarde et al., 2019], or alignment of multi-temporal images, such
as Sentinel-2 [Yan et al., 2018]. Taking a step back from imagery, we showed in this
thesis that using other models of uncertainty than well-known probabilities can lead to
new methods for estimating and characterizing potential errors. Many methods using
incomplete or imperfect data for diverse applications, such as clustering, classification or
decision-making, can also benefit from using imprecise probabilities.
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7. Annex

This annex contains results and experiments that we consider secondary in relation to
the main content. Sections 7.1 and 7.2 presents additional results concerning copulas
presented in Section 2.4 and used in Section 3.2.3. Section 7.3 presents results on the
median filter used in Section 5.1.3. Section 7.4 contains ablation studies of the method
presented in Chapter 5.

7.1 Directional Convexity/Concavity for Copulas

This section will investigate a property shared by some copulas called directional con-
vexity/concavity. This is a theoretical contribution, as we do not exploit them in the
applications to stereophotogrammetry in Chapters 4 and 5. However, we will see that
those properties are shared by many common families of copulas. The main result of
this section is proposition 12, which was used to prove a specific relationship between
multivariate uncertainty models in Sections 3.2.3 and 3.2.4.

A copula C is called directionally convex (D-convex) [Alvoni et al., 2007] if for every
(u1, . . . , un) ∈ [0, 1]n, (v1, . . . , vn) ∈ [0, 1]n, i ∈ [[1, n]] and t ∈ [0, 1] it verifies:

C(u1, . . . , tui + (1 − t)vi, . . . , un) ⩽ t · C(u1, . . . , ui, . . . , un)

+ (1 − t) · C(u1, . . . , vi, . . . , un)
(7.1)

In other words, the copula is convex when fixing all but one of its variables. A copula
is called directionally concave (D-concave) if the inequality is reversed.

Definition 22: D-convexity, D-concavity

D-convexity/D-concavity is quite common in known families of copulas. The following
paragraphs detail this property for copulas presented in Table 2.1, in the case n = 2. As
the copulas presented are symmetric regarding their variables, D-convexity/D-concavity is
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only detailed for u1. We assume that θ always belong to the domain of definition detailed
in Table 2.1, and that u1, u2 are in [0, 1]. Regarding the Clayton and Gumbel families,
the copula is defined by continuous extension in cases u1 = 0 and u2 = 0. Finally, if the
restriction of a copula C to one of its variable ui is twice differentiable, then proving its
D-convexity for this variable can be done by proving that ∂

2C

∂ui
2 ⩾ 0.

Ali-Mikhail-Haq copula This copula is twice differentiable, and its second order partial
derivative is

∂2C

∂u12 = u2(1 − θ(1 − u2))
−2θ(1 − u2)

(1 − θ(1 − u1)(1 − u2))3

Thus the Ali-Mikhail-Haq copula is D-convex for θ ∈ [−1, 0] and D-concave for
θ ∈ [0, 1).

Clayton copula This copula is not always differentiable on all of its domain, depending
on which value is retained by the maximum function. It is however continuous as it
is the maximum of two continuous function. For convenience, we work with (u1, u2)
in I2, where I is the open unit interval (the closed unit interval is then covered by
continuity). Let u2 ∈ I. We split the possible range I of u1 in two:

• the first domain Dθ,u2
1 is where u−θ

1 + u−θ
2 − 1 ⩽ 0, and thus C(u1, u2) = 0.

Here, ∂2C
∂u12 = 0 and the copula is both D-convex and D-concave.

• the second domain Dθ,u2
2 is where u−θ

1 + u−θ
2 − 1 > 0 and thus C(u1, u2) ⩾ 0.

Here it holds that

∂2C

∂u12 = (1 + θ)(1 − u−θ
2 )u−2−θ

1 (u−θ
1 + u−θ

2 − 1)−2− 1
θ

Because of the definition of Dθ,u2
2 , the sign of ∂2C

∂u12 on Dθ,u2
2 is that of 1 − u−θ

2 .

If θ > 0, then Dθ
2 = I and ∂2C

∂u12 ⩽ 0 which means that the copula is D-concave on
all of its domain.

The case where θ < 0 is less straightforward. In that case, ∂2C
∂u12 ⩾ 0 on Dθ,u2

2 . The
restrictions of the copula to Dθ,u2

1 and Dθ,u2
2 are both D-convex, but we need to prove

that it is still true on their union. Let u1 ∈ Dθ,u2
1 , v1 ∈ Dθ,u2

2 and t ∈ [0, 1]. We note
w1 = (1 − u−θ

2 )− 1
θ , such that Dθ,u2

1 =]0, w1] and Dθ,u2
2 =]w1, 1[. By continuity, C is
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D-convex on Dθ,u2
2

⋃{w1}. Because u1, w1 ∈ Dθ,u2
1 , it holds that:

tC(u1, u2) + (1 − t)C(v1, u2) = tC(w1, u2) + (1 − t)C(v1, u2)

⩾ C(tw1 + (1 − t)v1, u2)

by convexity of C on Dθ,u2
2

⋃
{w1}

⩾ C(tu1 + (1 − t)v1, u2)

because C is component-wise increasing

which, by definition 22, proves that C is D-convex on Dθ,u2
1

⋃Dθ,u2
2 . By continuity,

C is D-convex on all of its domain.

Frank copula This copula is twice differentiable, and its second order partial derivative
is

∂2C

∂u12 = (e−θu2 − 1)e−θu1θ(e−θu2 − e−θ)
(e−θ − 1 + (e−θu1 − 1)(e−θu2 − 1))2

If θ ⩾ 0 then ∂2C
∂u12 ⩽ 0 and C is D-concave. If θ ⩽ 0 then ∂2C

∂u12 ⩾ 0 and C is
D-convex.

Gumbel copula This copula is twice differentiable on ]0, 1]2, and its second order partial
derivative is

∂2C

∂u12 = −θu2

u1
ln(u2)(1 − θ ln(u2))e−θ ln(u1) ln(u2)

It holds that for all θ ∈ (0, 1], ∂2C
∂u12 ⩾ 0. By continuity, C is always D-convex.

As there is no explicit formula for the family of multivariate Gaussian copulas, it is
difficult to prove its D-concavity or D-convexity. However, numerical approximations in
the case n = 2 seem to indicate that a Gaussian copula would be D-convex if its marginals
are positively correlated, and D-concave if they are negatively correlated. Figure 7.1
present those observations, with solid lines representing positive correlation, and dashed
lines representing negative correlations. In the case n > 2, the copula can be neither
D-convex nor D-concave, depending on the value of the correlation matrix. An example
of this statement is provided in Figure 7.2.

The rest of this section will present different results regarding D-convex and D-concave
copulas, leading to the main result of this section presented in proposition 12.

Remark: All D-convex copulas C are dominated by the product copula. Similarly,
all D-concave copulas dominate the product copula.
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Figure 7.1: Gaussian 2-copulas in the direction u1 for different u2. Each figure present
different plots for correlations r between u1 and u2 ranging in [−1, 1]. Solid lines represent
negative correlation, while dashed lines represent positive correlations.

236



Annex

Figure 7.2: Directional cut of a Gaussian 3-copula with in the direction u1, with R = 1 −0.4 0.7
−0.4 1 0.3
0.7 0.3 1

, u2 = 0.4 and u3 = 0.6. The copula is neither D-convex nor D-

concave

Consider a D-convex copula C, and let (u1, . . . , un) ∈ [0, 1]n.

C(u1, . . . , un) = C((1 − u1) · 0 + u1 · 1, u2, . . . , un)

⩽ (1 − u1)C(0, u2, . . . , un) + u1C(1, u2, . . . , un)

⩽ u1C(1, u2, . . . , un)

Repeating this for u2, . . . , un yields:

C(u1, . . . , un) ⩽ u1 . . . unC(1, . . . , 1) = u1 . . . un = CΠ(u1, . . . , un)

The proof for D-convexity is similar.

Proposition 11: If C is a D-convex copula, then it verifies for all (u1, . . . , un) ∈
[0, 1]n, (v1, . . . , vn) ∈ [0, 1]n s.t. ∀i ∈ [[1, n]], ui + vi ⩽ 1:

C(u1, . . . , ui + vi, . . . , un) ⩾ C(u1, . . . , ui, . . . , un)

+ C(u1, . . . , vi, . . . , un) (7.2)
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Similarly, if ∀i ∈ [[1, n]], ui − vi ⩾ 0, it verifies:

C(u1, . . . , ui − vi, . . . , un) ⩽ C(u1, . . . , ui, . . . , un)

− C(u1, . . . , vi, . . . , un) (7.3)

The inequalities are reversed for D-concave copulas.

Proof: Let (u1, . . . , un) ∈ [0, 1]n, (v1, . . . , vn) ∈ [0, 1]n s.t. ∀i ∈ [[1, n]], ui + vi ⩽ 1.
Let i ∈ [[1, n]]. Applying the definition of convexity (7.1) with vi = 0 yields:

∀t ∈ [0, 1], C(u1, . . . , tui, . . . , un) ⩽ tC(u1, . . . , un)

Let wi = ui + vi ∈]0, 1] (the case where ui = 0 or vi = 0 is trivial). It is possible
to write ui = twi and vi = (1 − t)wi, with t = ui

wi
∈ [0, 1]. Then it holds that:

C(u1, . . . , ui, . . . , un) = C(u1, . . . , t · wi, . . . , un)

⩽ t · C(u1, . . . , wi, . . . , un)

C(u1, . . . , vi, . . . , un) = C(u1, . . . , (1 − t) · wi, . . . , un)

⩽ (1 − t) · C(u1, . . . , wi, . . . , un)

Summing the above equations yields:

C(u1, . . . , ui, . . . , un) + C(u1, . . . , vi, . . . , un) ⩽ C(u1, . . . , wi, . . . , un)

⩽ C(u1, . . . , ui + vi, . . . , un)

which proves (7.2).

Let wi = ui − vi ∈ [0, 1], clearly wi + vi ⩽ 1. Using proposition 11, it holds that:

C(u1, . . . , wi, . . . , un)+

C(u1, . . . , vi, . . . , un) ⩽ C(u1, . . . , wi + vi, . . . , un)

⇔ C(u1, . . . , wi, . . . , un) ⩽ C(u1, . . . , wi + vi, . . . , un)

− C(u1, . . . , vi, . . . , un)

⇔ C(u1, . . . , ui − vi, . . . , un) ⩽ C(u1, . . . , ui, . . . , un)

− C(u1, . . . , vi, . . . , un)

which proves (7.3).
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Proposition 12: If C is a D-convex copula, then it verifies for all (u1, . . . , un) ∈
[0, 1]n, (v1, . . . , vn) ∈ [0, 1]n s.t. ∀i ∈ [[1, n]], ui − vi ⩾ 0:

C(u1 − v1, . . . , ui − vi, . . . , un − vn) ⩽ Hu1, ..., ui, ..., un
v1, ..., vi, ..., vn

(7.4)

where H is the H-volume of C. The inequality is reversed for D-concave copulas.

Proof: The result is straightforward by induction using proposition 11.

7.2 Joining P-boxes Using D-Convex/Concave Cop-
ulas

This section contains the proof of Proposition 8 from Chapter 3. We remind here the
proposition:

Proposition 13: When joining marginals represented by p-boxes using the natural
ordering from (3.18) with a copula C, it holds that:

• if C is D-convex, then Mmass ⊆ Magg.

• if C is D-concave, then Magg ⊆ Mmass.

Proof: Consider n p-boxes [F 1, F 1], . . . , [F n, F n], a D-convex copula C and the
natural order on focal sets (ai

k)1⩽k⩽Ni
of each marginal p-box [F i, F i]. We will denote

mC the joint mass functions obtained using Definition 19 and BelC its associated belief
function. We will also refer to P as the lower probability associated with Magg from
Definition 21.

When considering the natural order on focal sets of a p-box (3.18), it holds that
for every focal set ai

p, the set {k | ai
k ⊆ ai

p} is composed of consecutive integers. In
the following, we denote by p and p the lowest and highest indices of the focal sets
included in ai

p. This means that {ai
p, . . . , a

i
p} is the set of all focal sets included in

ai
p.

Let a1
p1 , . . . , a

n
pn

be focal sets of m1, . . . , mn. We note ui
p = ∑p

k=1 mi(ai
k). It
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then holds that:

BelC(a1
p1 , . . . , a

n
pn

) =
∑

a1
k1

⊆a1
p1

. . .
∑

an
kn

⊆an
pn

mC(a1
k1 , . . . , a

n
kn

)

=
p1∑

k1=p1

. . .
pn∑

kn=p
n

mC(a1
k1 , . . . , a

n
kn

)

=
p1∑

k1=p1

. . .
pn∑

kn=p
n

H
u1

k1
, ..., un

kn

u1
k1−1, ..., un

kn−1

As the H-volume is computed over a partitioning of [u1
p1−1, u

1
p1

] × · · · × [un
p

n
−1, u

n
pn

], it
is possible to greatly simplify the sums. The proof is the same as the proof of (3.4)
except that the CDF is computed over [u1

p1−1, u
1
p1

] × · · · × [un
p

n
−1, u

n
pn

] and not [0, 1]n.
This yields:

BelC(a1
p1 , . . . , a

n
pn

) = H
u1

p1
, ..., un

pn

u1
p1−1, ..., un

p
n

−1

On the other hand, it holds that:

P (a1
p1 , . . . , a

n
pn

) = C(Bel1(a1
p1), . . . , Beln(an

pn
))

= C(
p1∑

k1=p1

m1(a1
k1), . . . ,

pn∑
kn=p

n

m1(an
kn

))

= C(u1
p1

− u1
p1−1, . . . , u

n
pn

− un
p

n
−1)

Using proposition 12 yields:

BelC(a1
p1 , . . . , a

n
pn

) ⩾ P (a1
p1 , . . . , a

n
pn

)

The inequality is reversed if C is D-concave, which concludes the proof.

Figure 7.3 illustrates the difference between BelC and P in the case n = 2.

7.3 Consistency of the Median Filtering

This section demonstrates a result used in Section 5.1.3. We define the median of a set
of n sorted values X = {x1, . . . , xn} is defined as

if n = 2l + 1, medianX = xl+1 (7.5)

if n = 2l, medianX = xl + xl+1

2 (7.6)
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Figure 7.3: Bird’s-eye view of the Łukaciewicz 2-copula CL, where the gray lines are the
isolines of the copula. BelC and P are represented in the case where the marginals are
p-boxes. The thick rectangles represent the bounds on which to compute the H-volume.
Numbers ui

k use the notation of the proof of Proposition 8.

where l is an integer.

Proposition 14: Let n ∈ N∗. Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be
two sets of integers such that for all i in [[1, n]], xi ⩽ yi. Then:

medianX ⩽ median Y (7.7)

Proof: Let σX : [[1, n]] → [[1, n]] be a bijection sorting X, i.e.:

xσX(1) ⩽ · · · ⩽ xσX(i) ⩽ · · · ⩽ xσX(n) (7.8)

We define σY : [[1, n]] → [[1, n]] similarly, this time sorting Y . Notice that it does not
necessarily holds that xσX(i) ⩽ yσY (i), but only that xσY (i) ⩽ yσY (i)

Suppose that n = 2l + 1 where l is an integer. Then the median of X equals
xσX(l+1) and the median of Y equals yσY (l+1) It holds that for all i ∈ [[1, l + 1]]:

yσY (l+1) ⩾ yσY (i) ⩾ xσY (i) (7.9)

The median of Y is thus greater than at least l + 1 elements of X. Because the
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(l+1)th smallest element of X is the median of X, then the median of Y is necessarily
greater than the median of X.

The case n = 2l, is somehow similar. With the same arguments, we can say that
yσY (l+1) is greater than l+1 elements of X, thus it is greater than its (l+1)th smallest
element xσX(l+1). Similarly, yσY (l) is greater than l elements of X, thus it is greater
than its lth smallest element xσX(l). Therefore, it holds that:

yσY (l) + yσY (l+1)

2 ⩾
xσX(l) + xσX(l+1)

2 (7.10)

Which also means that the median of Y is necessarily greater than the median of
X.

7.4 Ablation Studies for Disparity Confidence Inter-
vals

This section will present ablation studies regarding the different parameters used to create
disparity confidence intervals in Chapter 5. When not specified, the values of the different
parameters are fixed to the same values used in our experiments, i.e.:

α = 0.9

τamb = 0.6

nN = 2

q = 0.9

kamb = 2

Those values were determined by evaluating different metrics on specific scenes of the Mid-
dlebury dataset. We present some results on the Middlebury Cones stereo images. In our
experiments, we used the same values of parameters for every scene and for the two con-
sidered cost functions: CENSUS and MC-CNN. More in-depth analyses could lead to
sets of parameter values specialized for each cost function. This is left as future work,
considering that only the CENSUS cost function is used in Chapter 6.

7.4.1 Possibility Threshold

In Equation (5.5), we considered a parameter α used as a possibility threshold to compute
a set of most possible disparities. We recall here the equations used in this section to
compute confidence intervals:

Dα = { d | πrow, col(d) ⩾ α}

Iα = [Iα, Iα] = [minDα, maxDα]
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Higher values of α will lead to smaller disparity sets, and thus to smaller intervals.
In Chapters 5 and 6, we chose to use α = 0.9, but other values could be considered.
Figures 7.4 and 7.5 presents the evolution of metrics for different values of α. As expected,
the accuracy decreases with higher values of α, as displayed in Figure 7.4(a).

Figure 7.4(b) displays the influence of α over the residual error ε. Variations of ε
have a magnitude of around 2%, which indicates that α has very little influence over
this metric. ε is not monotone with regard to α. This can be explained as follows: as
α increases, the size of intervals decreases. There are thus more intervals that do not
contain the ground truth, effectively modifying the set for which ε is the median. There
is therefore no guarantee that ϵ is monotone with regard to α.

Figure 7.5(a) displays the influence of α over the relative size srel of intervals in high
confidence areas. α does not have an influence over srel for the CENSUS cost function,
and small influence for the MC-CNN cost function (fluctuations of 3% only).

In Figure 7.5(b), we can observe that the relative over-estimation also decreases with
higher values of α. For the CENSUS cost function, the relative over-estimation orel

decreases less rapidly for values α ⩾ 0.9. α = 0.9 ensures that the relative over-estimation
is less than 50% for both cost functions, which we consider a satisfying size for intervals
in low confidence areas.

7.4.2 Low Confidence Areas

In Chapter 5, we noticed that intervals that did not contain the ground truth were usually
located in low confidence areas. We thus proposed to detect low confidence areas in order
to process the intervals differently there. We recall Equations (5.11) and (5.13) used to
define low confidence areas. A pixel (row, col) is considered to be in a low confidence
area if it verifies:

min camb(row, col + k) = min
−kamb ⩽ k ⩽ kamb

camb(row, col + k) ⩽ τamb

This equation translates the fact that we use a minitive kernel to filter the confidence
from ambiguity map, of size (1, 2 × kamb + 1). High values of kamb lead to lower values of
the confidence from ambiguity, and consequently to more low confidence pixels. Similarly,
higher values of the threshold τamb lead to more low confidence pixels. In Section 5.1.4, we
also considered low confidence neighboring N(row, col) of a low confidence pixel, defined
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(a) Accuracy acc for different values of the parameter α for con-
structing intervals.

(b) Residual error ε for different values of the parameter α for
constructing intervals.

Figure 7.4: Influence of the parameter α used for constructing intervals in Equation (5.5)
for Middlebury Cones stereo images. Intervals were regularized in low confidence areas.
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(a) Relative size srel for different values of the parameter α for
constructing intervals.

(b) Relative over-estimation orel for different values of the param-
eter α for constructing intervals.

Figure 7.5: Influence of the parameter α used for constructing intervals in Equation (5.5)
for Middlebury Cones stereo images. Intervals were regularized in low confidence areas.
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as:

N(row, col) = {p ∈
⋃

−nN⩽k⩽nN

S(row + k, colk)

s.t. S(row + (k + 1), colk+1) is adjacent to S(row + k, colk)}

where S is defined as:

S(row, col) = { (row, col′) s.t. ∀c ∈ [[col, col′]], min camb(row, c+ k) ⩽ τamb }

Given a low confidence pixel (row, col), the parameter nN defines the number of rows
above and below a pixel that will be explored when defining its neighboring. High values
of nN will lead to neighboring with more low confidence pixels, but does not influence the
total amount of low confidence pixels present in an image.

In Chapters 5 and 6, we chose to use τamb = 0.6, kamb = 2 and nN = 2. We detail
here the influence of those parameters.

We want low confidence areas to include as many wrong intervals as possible, but they
should not be covering the entire image either. We also want to consider true intervals in
the low confidence areas so that our quantile regularization is based on a sufficient pool
of correct intervals. For this reason, computing the F1-score is not relevant. We therefore
consider two metrics separately: the coverage and the proportion of low confidence pixels.
The coverage is the proportion of wrong intervals that are also low confidence pixels:

Coverage = #{(row, col) s.t. dtrue ̸∈ Iα and min camb(row, col + k) ⩽ τamb}
#{row, col) s.t. dtrue ̸∈ Iα}

The proportion of low confidence pixels is simply the proportion of low confidence pixels
in the entire left image. Figures 7.6(a) and 7.6(b) respectively display the evolution of
the coverage and of the proportion of low confidence pixels for different values of τamb.
Figures 7.7(a) and 7.7(b) display the same metrics, but for different values of kamb. We
can see that the value τamb = 0.6 guarantees a coverage superior to 60% while maintaining
a proportion of low confidence pixels smaller than 20% in the case of Middlebury Cones,
for both considered cost functions. Similarly, kamb = 2 guarantees a coverage superior to
60% while maintaining a proportion of low confidence pixels smaller than 20% in the case
of Middlebury Cones, for both considered cost functions. In general, the coverage and
proportion of low confidence pixels are more sensitive to a variation of 0.1 of τamb than a
variation of 1 of the kernel size parameter kamb.

Figure 7.8 displays the influence of nN over the accuracy, and over the number of
pixels in low confidence neighboring nN. Figure 7.8(a) shows that nN increases the global
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(a) Coverage for different values of the parameter τamb for detecting
wrong intervals in low confidence areas.

(b) Proportion of pixels detected as low confidence pixels depending
on the value τamb

Figure 7.6: Influence of the parameter τamb used for interval regularization in Equa-
tion (5.11) for Middlebury Cones stereo images.
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(a) Coverage for different values of the parameter kamb for detecting
wrong intervals in low confidence areas.

(b) Proportion of pixels detected as low confidence pixels depending
on the value kamb

Figure 7.7: Influence of the parameter kamb used for interval regularization in Equa-
tion (5.11) for Middlebury Cones stereo images.
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accuracy, but it is less sensitive to variations of nN than it is to variation of α from
Figure 7.4(a). Figures 7.8(b) and 7.8(c) shows that nN ⩾ 2 strongly reduces the number of
low confidence neighboring with less than 50 pixels. However, high values of nN increases
the computation complexity for a small gain of accuracy. We therefore choose nN = 2 as
a trade-off.

7.4.3 Quantile Regularization

Once the neighboring N of a low confidence pixel has been computed, we update the value
of its confidence interval based on the distributions of intervals of its neighbors. We recall
here Equation (5.14) used for the regularization of intervals:

Ireg
α = [Q1−q({Iα(r, c) | (r, c) ∈ N(row, col)}),

Qq({Iα(r, c) | (r, c) ∈ N(row, col)})]

where Qq refers to the qth quantile of a set. In our experiments, we used q = 0.9.

Figure 7.9 displays the influence of the parameter q over the accuracy and relative
over-estimation for the Middlebury Cones stereo images. As expected, both the accuracy
and relative over-estimation increase with the value of q.

Figure 7.10 displays the accuracy with and without regularization for scenes of the
Middlebury dataset. Without the regularization, many scenes do not reach an accuracy
of 90%. This is especially true for the CENSUS cost function. This justifies the use of
the regularization step from Section 5.1.4.
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(a) Accuracy acc for different values of nN

(b) Histograms of the number of pixels in low confidence areas
N(row, col) for nN ∈ {1, 2, 3}.

(c) Histograms of the number of pixels in low confidence areas
N(row, col) for nN ∈ {4, 5, 6}.

Figure 7.8: Influence of the parameter nN used for interval regularization in Equa-
tion (5.13) using the CENSUS cost function on Middlebury cones.
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(a) Accuracy acc with regularization for different quantiles q

(b) Relative over-estimation orel with regularization for different
quantiles q

Figure 7.9: Influence of the parameter q used for interval regularization in Equation (5.14)
for Middlebury Cones stereo images.

251



Annex

(a) CENSUS cost function (b) MC-CNN cost function

Figure 7.10: Accuracy with and without regularization of intervals in low confidence areas
for different scenes of the Middlebury dataset.
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