
HAL Id: tel-04915978
https://theses.hal.science/tel-04915978v1

Submitted on 28 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advancing Non-Gaussian states and measurements - an
experimental test bed for heterogeneous quantum

networks
Beate Elisabeth Asenbeck

To cite this version:
Beate Elisabeth Asenbeck. Advancing Non-Gaussian states and measurements - an experimental test
bed for heterogeneous quantum networks. Quantum Physics [quant-ph]. Sorbonne Université, 2024.
English. �NNT : 2024SORUS167�. �tel-04915978�

https://theses.hal.science/tel-04915978v1
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE
SORBONNE UNiVERSiTÉ

pour l’obtention du grade de
Docteur de Sorbonne Université

sur le sujet:

ADVANCiNG NON-GAUSSiAN STATES AND
MEASUREMENTS

AN EXPERiMENTAL TEST BED
FOR HETEROGENEOUS QUANTUM NETWORKS

présentée par

Beate Elisabeth Asenbeck

le 28 juin 2024

Membres du jury :

Prof. Yvonne Gao Rapporteuse
Prof. Christoph Marquardt Rapporteur
Dr. Nadia Belabas Examinatrice
Prof. Gwendal Feve Président du jury
Dr. Damian Markham Invité/ Co-encadrant
Prof. Julien Laurat Directeur de thèse



ACKNOWLEDGEMENTS

Reflecting on my PhD years, I’m truly thankful for all the people who guided and enriched
my academic experience.
First and foremost, I would like to express my sincere gratitude to my supervisors, Professor
Julien Laurat and Dr. Damian Markham, for their unwavering support, invaluable guid-
ance, and constant encouragement throughout this research. Julien, I deeply appreciate the
trust you placed in me, as well as the freedom you gave me to explore different paths in both
experiment and theory. Second, I want to thank my PhD jury, Professor Gwendal Feve,
Professor Christoph Marquardt, Professor Yvonne Gao, and Dr. Nadia Belabas. Thank you
so much for giving me the opportunity to discuss my work with you. I know that reading
a manuscript, especially if it is a bit long, can be a tiresome task in your busy lives, and I
am deeply thankful that you shared your knowledge with me.
Of course, research is always a team effort, and I am fortunate to have had such exceptional
colleagues by my side. Tom, thank you for teaching me everything about our experiment
and making me feel welcome from day one. I also appreciate your introduction to non-
Bavarian beer, which you have somewhat converted me to. Alban, your solutions and ideas
have been invaluable; I don’t think this PhD would have been possible without you, and
I admire you greatly. Tridib, thank you for always being there when I needed you; your
skills, knowledge, and readiness to tackle any problem are deeply inspiring. Félix, Jeremy
and Thomas thank you for your kindness and incredible ideas. Hadriel, thank you for your
ongoing support and our deep discussions. Adrien, thank you for your enthusiasm in helping
others. Ambroise, thank you for all the fun we had both in and out of the lab; I am happy
to see you continuing the experiment and feel lucky to have worked with you. Lukáš and
Priyanka, thank you for our exchanges about life, locking and Non-Gaussianity. Ioanna,
thank you for being such a ray of sunshine in the lab. Anaïs, thank you for your advocacy
for minorities and your DJ skills. Félix and Jean-Gabriel, thank you for guiding me on
the next journey of discovering atoms. Huazhuo, David, Mingxin, Sukanya, Albane, Idriss,
and Lucas, thank you for adding so much value to my experience in our team. I also want
to thank the whole support team of the LKB, especially David and Stéphanie, for always
caring!
During my time at LKB, I was fortunate to make many friends both within my group and
beyond, largely thanks to QICS. I’m especially grateful to Khamsa for her constant support
of all the projects we came up with as young PhD students. I also want to thank David
for our long hours of discussions, often over a beer, and for his many hours of DJing. Niels,
thank you for trying to get me to go to psytrance concerts; you have a way of brightening
people’s spirits, and I will always remember your amazing treehouse pre-party with the
Jacuzzi. Of course, I want to thank Clémentine and Francesca, without whom I would
have missed out on a great friendship, many hours of cooking, drinking beer by the Seine,
watching Bollywood movies, and many other experiences. I am so happy that we had each

i



other’s support during this time and am glad that we will stay in touch in the future.
Thank you so much, Alex, Kristina, Volha, and Dounia, for sharing the lockdown experi-
ence on the second floor with me. I will never forget our amazing evenings together and am
excited to create new memories with you!

Next, I want to thank my friends from before Paris. Special thanks go to Valeria; you
showed me how much fun research can be and gave me a lot of the confidence that led to
my decision to start a PhD. You are someone I really look up to in science, and I am happy
to have worked with you.
Natürlich will ich auch meiner Wiener-Gang danken! Sophie, Leo, Philipp, Klara, Michi,
Herbert, Mati, Luca, Dodo, Gregor und Ben – ich bin so glücklich, dass unsere Freundschaft
fest steht, auch wenn wir uns inzwischen weniger sehen. Meine Jahre in Wien waren wunder-
schön, und ich will zunächst besonders Leo danken für die extrem schöne Zeit und unseren
Zusammenhalt, der mich besonders warm an die Anfangsjahre unseres Studiums denken
lässt! Ich danke auch Sophie, mit der ich praktisch den gesamten Master durchgemacht
habe. Dank unseres ständigen mehrstimmigen Gesanges in den Laboren hast du meine
Motivation auf deine aufaddiert, und ich finde, wir waren ein Traumteam im Studium und
sind es heute auch noch außerhalb.
Un grand merci à Martin et Célestine, avec qui j’ai fait le tour de l’orchestre, mais surtout
de Vienne. Je suis incroyablement heureuse que nous nous rencontrions désormais presque
aussi souvent à Paris qu’à Vienne et je me réjouis déjà de nos prochaines excursions sportives.
Je tiens également à remercier Raphaël, tu as vraiment facilité mes débuts à Paris, même
si nous avons peut-être mangé un peu trop de crêpes.
Moni und Andrea, ich weiß gar nicht richtig, wie ich euch danken soll, weil wir uns einfach
schon so lange kennen, dass der Dank nicht nur den letzten vier Jahren gelten sollte. Ihr
wisst es eh, aber das Studieren habt ihr mir so ein bisschen in den Kopf gesetzt. Es ist
extrem selten, so gute Freundschaften zu finden, zu behalten und weiterzuentwickeln, und
ich bin stolz auf uns drei, dass wir das schaffen. Vielen Dank einfach fürs Dasein!
Mama und Papa, bei euch gilt das Gleiche. Natürlich wart ihr es, die mir alles ermöglicht
habt, und ich bin unendlich dankbar dafür. Papa, ohne deine frühen Mathe-Nachhilfestunden
wäre aus mir wohl nie eine Physikerin geworden, vielen Dank fürs Nicht-Lockerlassen. Die
Liebe zum Tüfteln im Labor kommt sicherlich von dir. Mama, du hast mir dafür beige-
bracht, wie man auf die Bedürfnisse anderer eingeht und sich in sie hineinfühlt, das ist eine
sehr gute Fähigkeit in so großen Teams. Beide habt ihr mir gezeigt, dass es Spaß macht, sich
in etwas reinzufuchsen, und dafür, aber auch für all die Jahre, will ich euch danke sagen.
Mein finales Danke gilt dir, Pierre-Emmanuel. Ich kann nicht in Worte fassen, wie viel mir
deine Unterstützung bedeutet und wie wichtig du für mich bist. Dein unerschütterlicher
Glaube daran, dass ich den PhD meistere, und dein beeindruckendes Vorbild von Ruhe und
Gelassenheit haben mich durch diese Zeit getragen.

ii



iii



ABSTRACT

This thesis focuses on the creation and manipulation of Non-Gaussian states with the goal
of testing emerging heterogeneous quantum networks. These networks are envisioned to
host multiple physical platforms, that are connected by optical communication lines. The
optical states used for this communication will have to be adapted to the encoding of the
physical platform they connect to, leading to a variety of possible encoding strategies. In
this work, we develop criteria to test the quality of different encodings and benchmark tools
that ensure faithful information transfer. Moreover, we show that multiple encodings can
simultaneously be used in the same quantum network without losing their quantum prop-
erties through conversion.
We use high-quality optical parametric oscillators, producing single- or two-mode squeezed
states. Together with heralding via superconducting nanowire single-photon detectors, we
create two different optical encodings representing a two-level system and a harmonic os-
cillator. The two-level system corresponds to superpositions of photon-number excitations,
while the harmonic oscillator state translates to optical Schrödinger cats. By creating en-
tanglement between those two different encodings, its use in network protocols is possible.
Network protocols are intrinsically limited by the success rate and fidelity of Bell-state
measurements. We present an improvement in output state fidelity and projectivity of an
all-optical linear Bell-state measurement by combining single photon detection with field
quadrature selection. Employing hybrid entanglement together with this hybrid Bell-state
measurement enables a two-level input qubit to be converted into its harmonic oscillator
counterpart in a teleportation-based setup. After thorough analysis of the results of the
converter experiment, we develop a criterion to judge the Non-Gaussianity of quantum co-
herences. This criterion is applied to two different experimental two-level systems. Finally, a
stimulative study of the possible generation of error-correctable Non-Gaussian states points
the way towards the future of this experiment.
This work promotes the use of multiple encodings in quantum networks and advances mea-
surements and state creation methods that expand the capability of optical systems for
quantum communication.
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RÉSUMÉ

Cette thèse porte sur la création et la manipulation d’états non gaussiens dans le but
de tester les réseaux quantiques hétérogènes émergents. Ces réseaux sont envisagés pour
héberger de multiples plateformes physiques, connectées par des lignes de communication
optiques. Les états optiques utilisés pour cette communication devront être adaptés à
l’encodage de la plateforme physique à laquelle ils sont connectés, ce qui conduit à une
variété de stratégies d’encodage possibles. Dans ce travail, nous développons des critères
pour tester la qualité des différents encodages et des outils de référence qui garantissent
un transfert d’informations fidèle. En outre, nous montrons que plusieurs encodages peu-
vent être utilisés simultanément dans le même réseau quantique sans perdre leurs propriétés
quantiques lors de la conversion.
Nous utilisons des oscillateurs paramétriques optiques de haute qualité, produisant des états
comprimés monomodes ou bimodes. Grâce à des détecteurs à photons uniques supracon-
ducteurs, nous créons deux encodages optiques différents représentant un système à deux
niveaux et un oscillateur harmonique. Le système à deux niveaux correspond à des super-
positions d’excitations de nombres de photons, tandis que l’état de l’oscillateur harmonique
à des chats de Schrödinger optiques. En créant une intrication entre ces deux encodages
différents, il est possible de les utiliser dans des protocoles de réseau. Ces derniers sont
intrinsèquement limités par le taux de réussite et la fidélité des mesures de l’état de Bell.
Nous présentons une amélioration de la fidélité de l’état de sortie et de la projectivité d’une
mesure linéaire tout-optique de l’état de Bell en combinant la détection de photons uniques
avec la sélection en quadrature du champ. L’utilisation de l’intrication hybride avec cette
mesure hybride de l’état de Bell permet de convertir un qubit d’entrée à deux niveaux en
son équivalent en oscillateur harmonique dans une configuration basée sur la téléportation.
Après une analyse approfondie des résultats de l’expérience du convertisseur, nous dévelop-
pons un critère pour juger de la non-gaussianité des cohérences quantiques. Ce critère
est appliqué à deux systèmes à deux niveaux expérimentaux différents. Enfin, des simula-
tions démontrent qu’une future version de l’expérience pourra comprendre de la génération
d’états non gaussiens corrigeables d’erreur.
Ce travail encourage l’utilisation de plusieurs encodages dans les réseaux quantiques et fait
progresser les méthodes de mesure et de création d’états qui élargissent les capacités des
systèmes optiques pour la communication quantique.
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ZUSAMMENFASSUNG

Diese Arbeit konzentriert sich auf die Erzeugung und Manipulation von nicht-Gaußschen
Zuständen mit dem Ziel, neue heterogene Quantennetze zu testen. Diese Netze sollen
mehrere physikalische Plattformen beherbergen, die durch optische Kommunikationsleitun-
gen verbunden sind. Die optischen Zustände, die für diese Kommunikation verwendet wer-
den, müssen an die Kodierung der physikalischen Plattform, mit der sie verbunden sind,
angepasst werden, was zu einer Vielzahl von möglichen Kodierungsstrategien führt. In
dieser Arbeit entwickeln wir Kriterien zur Prüfung der Qualität verschiedener Kodierungen
und Benchmarking-Tools, die eine getreue Informationsübertragung gewährleisten. Darüber
hinaus zeigen wir, dass mehrere Kodierungen gleichzeitig in ein und demselben Quantennet-
zwerk verwendet werden können, ohne dass ihre Quanteneigenschaften durch Umsetzung
verloren gehen.
Wir verwenden hochwertige optische parametrische Oszillatoren, die ein- oder zweimodige
gequetschte Zustände erzeugen. Indem wir die Präsenz eines Zustandes über supraleitende
Nanodraht-Einzelphotonendetektoren ankündigen, erzeugen wir zwei verschiedene optische
Kodierungen, die ein Zwei-Niveau-System und einen harmonischen Oszillator darstellen.
Das Zwei-Niveau-System entspricht einer Überlagerung von Photonen-Anregungen, während
der Zustand des harmonischen Oszillators optische Schrödinger-Katzen beschreibt. Durch
die Erzeugung von hybriden Verschränkung zwischen diesen beiden unterschiedlichen Kodierun-
gen ist ihre Verwendung in Netzwerkprotokollen möglich. Netzprotokolle sind von Natur aus
durch die Erfolgsrate und die Fidelität von Bell-Zustandsmessungen begrenzt. Wir präsen-
tieren eine Verbesserung der Fidelität des Ausgabezustandes und der Projektivität einer
rein optischen linearen Bell-Zustandsmessung durch die Kombination von Einzelphotonen-
detektion und Feldquadraturauswahl. Die Verwendung hybrider Verschränkung zusammen
mit dieser hybriden Bell-Zustandsmessung ermöglicht die Umwandlung eines Zwei- Level-
Input- Qubits in sein harmonisches Oszillator- Gegenstück in einem teleportationsbasierten
Aufbau. Nach einer gründlichen Analyse der Ergebnisse dieses Konverterexperiments en-
twickeln wir ein Kriterium zur Beurteilung der nicht-Gaußschen Eigenschaft von Quantenko-
härenzen. Dieses Kriterium wird auf zwei verschiedene experimentelle Zwei-Niveau-Systeme
angewendet. Schließlich weist eine Studie über die mögliche Erzeugung von fehlerkorrigier-
baren nicht-Gaußschen Zuständen den Weg in die Zukunft dieses Experiments.
Diese Arbeit bewirbt die Verwendung von Mehrfachkodierungen in Quantennetzwerken und
bringt Messungen und Methoden zur Erzeugung von Zuständen voran, die die Möglichkeiten
optischer Systeme für die Quantenkommunikation erweitern.
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Chapter

1 INTRODUCTiON AND CONTEXT

Physics is mathematical not because we know so much
about the physical world, but because we know so little;
it is only its mathematical properties that we can discover.

Bertrand Russell, An Outline of Philosophy, 1927

1.1 A SHORT STORY OF QUANTUM iNFORMATiON

The first half of the 20th century witnessed two major scientific revolutions that changed
our understanding of physics and are known as the relativist and quantum revolutions.
They arose from the search to better match scientific results, and driven by observations,
were both more or less established around the 1920s. While relativity was innovative but
could be accepted for its time, quantum mechanics was shocking. Two striking examples are
for instance Born’s rule, leading to a modification of the state through measurement, and
Heisenberg’s uncertainty principle, intrinsically limiting the precision in the measurement
result of two conjugate variables, such as position and momentum or time and energy. This
is especially clear when reading the conclusion of Heisenberg’s paper about uncertainty,
where he writes (translated from German)
”But in the sharp formulation of the law of causality: ”If we know the present exactly, we
can calculate the future”, it is not the conclusion that is wrong, but rather the premise. In
principle, we cannot get to know the present in all its determinants. Therefore, all percep-
tion is a selection from an abundance of possibilities and a limitation of what is possible
in the future. Since the statistical character of quantum theory is so closely linked to the
imprecision of all perception, one could be tempted to assume that behind the perceived
statistical world there is still a ”real” world in which the law of causality applies. But such
speculations seem to us, we emphasize explicitly, unfruitful and pointless. Physics should
only formally describe the connection between perceptions. Rather, the true facts can be
characterized much better in this way: Because all experiments are subject to the laws of
quantum mechanics [...], the invalidity of the law of causality is definitively established by
quantum mechanics.” - W. Heisenberg 1927 [1]
Heisenberg discusses the implication of quantum mechanics being a probabilistic theory,
which was for many physicists at the time a weakness. They saw it as a sign, that there
should be an underlying, hidden variable, theory that can explain the results of quantum
mechanics in a deterministic way and thereby preserve our understanding of causality. In-
stead of getting caught up in the philosophical ramifications of quantum mechanics, he urges
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the reader not to equate a physical model with reality, as models only explain what you
observe. This idea should later on form the foundation of one of the leading philosophical
interpretations of quantum physics, the Copenhagen interpretation. This interpretation
was once, a bit harshly, framed as “Shut up and calculate!” by N. D. Mermin [2] and in-
deed, this is what physicists did. Much of the significant technological development we use
today is based on the principles of quantum mechanics, first and foremost the semiconduc-
tor technology, enabling me to write this thesis on a computer, and the development of
lasers, enabling worldwide communication such that you can download this thesis on your
computer. These developments are often called the first quantum revolution and it is quite
ironic, that the second quantum revolution [3] should be fueled by physicists in the second
half of the 20th century who refused to just calculate.

By then, quantum mechanics was an established theory, but part of its implications were
not well understood. A famous example is the EPR-paradox of 1935 [4], asking how to keep
reality and locality in quantum mechanics, which was answered by J. Bell in 1964, showing
that you have to choose one or the other [5]. This new wave of research under the slogan
“Shut up and contemplate!” [6], asked questions about why macroscopic superpositions
don’t exist [7] or showed in 1986 that quantum jumps, transitions between energy levels,
really do occur [8]. Counter-intuitive features of quantum mechanics were further elabo-
rated: understanding strong quantum correlations or entanglement [9–11], reformulating
the discussion about causality in terms of contextuality [12–14], as well as the impossibility
to formulate a probability distribution for quantum systems [15] or the no-cloning theorem
[16] that showed that an unknown quantum state cannot be copied. Experimentally testing
these concepts did not serve to expand nor revolutionize quantum mechanics but rather to
fully understand it and thereby create a new way in which to think about it. In theoretical
quantum mechanics, this led to the merging of quantum and information theory, giving
birth to quantum information science. In quantum experiments, single quanta of light and
matter were able to be controlled, which had been a theoretical idea, discussed in 1958
by Feynman [17]. It was experimentally realized for atoms in 1978 via laser cooling and
trapping [18] and for light with squeezed light sources in 1983 [19] followed since the 2000s
by cavity QED [20] and circuit QED [21]. These high-precision experimental techniques
could then react to new advances in quantum theory, which proclaimed that information
is physical and showed the advantage of a quantum Turing machine over a classical one
[22]. A Turing machine is a mathematical model of a computer and can be used to show
which kind of algorithms are in principle possible. If the Turing machine is allowed to use
quantum mechanics, its main advantage lies in quantum parallelism, by which probabilistic
tasks can be performed faster than with any classical Turing machine. This promise of a
powerful quantum computer is one of the goals of this second quantum revolution. Another
branch of quantum information science asked questions about measurement precision and
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defined a new limit of parameter estimation with the quantum Fisher informational bound
[23]. It was shown how to approach this limit by using quantum states in quantum-enhanced
metrology [24–26]. Finally, the inability to clone quantum states has given rise to a whole
field of quantum encryption [27], which is unconditionally mathematically secure, be it for
banking [28] or communication. These three promises of quantum advances in computation,
metrology, and encryption are advancing steadily, in both experiment and theory and have
already expanded beyond the university sphere to branch out into start-ups.

In order to connect all those different devices, a worldwide quantum communication net-
work, the quantum internet [29], is envisioned. Similar to today’s internet, it will have to
deal with different physical devices that will be used in the context of computation, metrol-
ogy, or encryption on a variety of physical platforms. Nonetheless, the unchanged preferred
system to send and exchange information is optical states. This is the starting point for
this thesis, which explores the quality of optical states and measurements, as well as the
feasibility of harnessing multiple degrees of freedom of light in a network, that is envisioned
to be heterogeneous in both platforms and encodings.

1.2 CONTEXT OF THiS THESiS

The research of combining multiple encodings in optical states was started in the Quantum
Networks Team at LKB by Olivier Morin [30], who defended his thesis in 2014. He experi-
mentally demonstrated one of our basic tools, which is a hybrid entanglement between two
fundamentally different encodings in light, creating correlations between the particle and
wave properties of quantum light [31]. The three following PhD students Hanna Le Jeannic,
Kun Huang and Adrien Cavaillès improved both the experimental resource states [32, 33]
and measurements [34], such that non-locality, an important quality feature of entangle-
ment, could be proven via quantum steering in 2018 [35]. With those resources at hand,
one of the two cornerstone protocols of sending information through quantum networks
could be realized in 2020 [36] by the PhD-student and Post-doc at the time, Tom Darras
and Giovanni Guccione, who performed entanglement swapping using hybrid entanglement.
The clear goal of this group was then to show that the second key protocol, quantum tele-
portation, is reachable as well. In this context, I joined the group in October 2020 and
worked together with Tom Darras towards the goal of quantum teleportation. Measure-
ment and data analysis were finished in the spring of 2022 and the paper was published in
early 2023 [37]. After Tom Darras graduated in June 2021, I was joined by Ambroise Boyer
in February 2022 first as an intern and then as a PhD student on the project. Together with
Akito Kawasaki, who joined the group in September 2022 as a visiting PhD student from
Professor Akira Furusawa for three months, we worked on understanding the performance of
the measurement that enabled both the quantum teleportation and entanglement swapping
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experiment: a boosted version of the liner-optical Bell-state measurement1. Active collab-
oration with Lukáš Lachman, who is a Post-doc in the group of and in collaboration with
professor Radim Filip in the Palacký University Olomouc, led to the development of a tool
to quantify an important property of quantum states: their coherences2. Lately, we started
working towards the creation of error-correctable states in our setup and are working on
improved lock stabilization and state quality with the help of Priyanka Giri, who joined our
team as a Post-Doc in 2023. This work is being continued together with Albane Lapras,
who joined the team as an intern in March 2024.

1.3 THESiS STRUCTURE

This manuscript is structured into eight chapters, including this introduction and the ap-
pendix. First, we will recapture important aspects of quantum theory in chapter 2. This
chapter is written as a thorough introduction to quantum optics, where we will focus on
two aspects that are especially important for us: the multi-modal property of light, that we
want to suppress in our experiment, and the purely quantum counter-intuitive features of
light, that we want to highlight with our experiments. This is why we choose to introduce
quantum mechanics via the Koopman–von Neumann representation of classical mechanics.
It formulates classical mechanics in a Hilbert space, such that it looks formally equivalent
to quantum mechanics. In this framework, it is easier to see which features are necessary
in order to deviate from classical and towards quantum mechanics, which turns out to be
purely Heisenberg’s uncertainty. We furthermore introduce the density matrix and Wigner
function formalism, which are two equivalent ways to describe the states and measurements
of a quantum system. Moreover, the important concept of Non-Gaussianity is introduced
as an emerging property due to Heisenberg’s uncertainty, where deviation from Gaussian-
ity marks the beginning of quantum features that cannot be simulated by classical states.
Different Non-Gaussian and Gaussian states, operations, and measurements are introduced.
The last section of the theory chapter gives a motivation why Non-Gaussianity is interesting
beyond its fundamental aspect by framing it in the context of quantum error correction,
which is necessary for any quantum computation algorithm. In the following chapter 3 we
introduce the main tools in our laboratory, enabling us to create high-quality single-mode
states. Specifically, the optical parametric oscillators (OPO) and heralding, both at the
heart of our experiments, are explained. Furthermore, our two detection methods, homo-
dyne detection and superconducting nanowire single-photon detection are presented. The
experimental output states of all three OPOs are analyzed by the end of this chapter, before
describing how we record and reconstruct data. After those more general chapters, the main
results of this thesis follow. In chapter 4, the hybrid Bell-state measurement, enabling a
boost in measurement quality of all-linear Bell-state measurements, is analyzed and pre-
1Paper in preparation.
2Paper in preparation.
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sented together with the creation process of hybrid entanglement. Entangled states and
Bell-state measurements are essential cornerstones of any quantum network and ensuring
a high quality of both is crucial to enable those networks. In chapter 5 the quantum tele-
portation with hybrid entanglement, i.e. a quantum converter of encodings, is presented.
This experimental result shows that a quantum network can support different encodings
without losing its quantum properties. Those properties are further analyzed in chapter 6
with a very stringent criterion on the off-diagonal matrix elements, or coherences, of states.
In order to be considered quantum, we test them against all Gaussian states and apply this
criterion to two sets of experimental states. We show where to improve the quality of our
states further to create a next generation of Non-Gaussian states, which are discussed in
chapter 7. In this final chapter, we give first encouraging simulation results, suggesting that
our experiment can create error-correctable states if losses in the system can be reduced by
a reasonable amount.
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This chapter serves as a rigorous introduction to quantum optics that establishes notions,
formalism, and approximations that we will use throughout the thesis. It redraws the red
line from classical mechanics over quantum state representation to experimentally used
states, measurements, and operations and gives a thorough argument as to why non-
Gaussianity is an important feature in quantum optics. Consequently, it is tailored to
suit readers with varying levels of familiarity with the topic. For those well-versed in the
field, it can serve as a recapitulation of the key concepts, providing an opportunity to re-
visit and reinforce their understanding. Conversely, for readers who are relatively new to
the topic, this chapter offers a comprehensive, step-by-step exploration of the fundamental
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principles. To ensure comprehension and retention of the material, each section concludes
with a summary of takeaway messages.

The first section of this chapter introduces classical light as a multi-modal field and de-
velops its quantization using the Koopman-von Neumann representation, which highlights
two key aspects of our experimental work. Firstly, we state that the multi-modal field in
our experiment can be reduced to a single mode, an approximation that ensures high state
purity in our experiment. Secondly, by using the Koopman-von Neumann representation,
we can focus on the truly quantum aspects of our light field, independent of the mathemat-
ical framework, and represent states, operations, and measurements in both phase-space
and Hilbert space. We then discuss the naming convention of discrete- and continuous
variables, cast purely quantum aspects into the framework of Non-Gaussianity, and explain
why is valid and useful, and how it allows us to classify and characterize quantum states
and operations in a meaningful way. The second section of this chapter outlines different
Gaussian and non-Gaussian states that have been or could be studied experimentally with
our setup. The third section turns to operations, drawing a parallel distinction between
Gaussian and non-Gaussian scenarios. This section encompasses both gates and measure-
ments, and further explores cases that are not yet experimentally feasible. The fourth
section elaborates on the previously introduced concept of Non-Gaussianity, highlighting
its importance in the context of quantum advantage. We focus on quantum error correction
within the stabilizer formalism and examine bosonic encodings. Although this discussion
may seem distant from our current experimental capabilities, it sheds light on why gener-
ating non-Gaussian states is a key objective. This motivates a study in the final chapter
of this thesis, chapter 7 , where we explore the potential for experimentally approaching
error-correctable states.

2.1 DESCRiPTiON OF LiGHT iN QUANTUM OPTiCS

In the first subsection, we develop the multi-modal aspects of classical light fields and
recast them into a modal Hilbert space. We then use this Hilbert space to describe clas-
sical mechanics in the Koopman-von Neumann representation and elaborate on the main
ingredient to make quantum aspects appear: the Heisenberg uncertainty relation. As this
formulation is rather general, we refocus on its implications for quantum light in the next
subsection and elaborate on commutator relations and the resulting photon-number Hilbert
space. Finally, we revisit Heisenberg’s uncertainty relation. In the second subsection, we
explore two distinct methods for representing quantum states using the formalism estab-
lished in the previous subsection. The first method involves constructing density matrices
from the eigenvectors of the Hilbert space, while the second method utilizes the conjugate
variables of the light field to describe a state as a quasi-probability distribution via the
Wigner function. We introduce the concepts of pure and mixed states, define purity and
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fidelity, and examine these two methods in the context of composite systems, enabling us
to define entanglement and its measures. Furthermore, we demonstrate the equivalence
of these two approaches and discuss alternative formulations beyond the Wigner function.
In the third subsection, we discuss how to formulate operations as unitary evolution of
quantum systems within the framework of density matrices. We introduce the general ma-
trix formulation of measurement, known as positive operator-valued measures (POVMs),
and elaborate on how the impact of operations on the Wigner function can be assessed via
changes in its phase-space coordinates. In the fourth subsection, we explain how the
two equivalent approaches to describing quantum states, presented in the previous subsec-
tions, have historically led to two distinct communities focusing on either the continuous
or discrete aspects of quantum light. This historical division has led to different naming
conventions in our experiment, where states are distinguished based on whether they are
described in small or larger Hilbert spaces. In the fifth subsection, we use the Heisenberg
limit to compute all possible states that have minimal uncertainty. We demonstrate that
these states can be described by a product of Gaussian phase-space distributions, showing
that they can be generated using classical light. To conclude the section, in the sixth
subsection we will summarize the key concepts that we have developed.

2.1.1 FROM MAXWELL’S EQUATiONS TO HEiSENBERG’S UNCERTAiNTY

2.1.1.1 CLASSiCAL LiGHT DESCRiPTiON

Here, we will recall the orthonormal mode basis solution to Maxwell’s equations in free
space, following the approach of C. Fabre and N. Treps [38] and G. Grynberg et al. [39].
Maxwell’s equations are the basis for classical and quantum electrodynamics. Classically,
light is electromagnetic radiation, described as a real-valued electrical field E⃗(r⃗, t). This
field can be decomposed into two complex fields, containing the sums of positive frequency
components E⃗+(r⃗, t) and negative frequency components E⃗−(r⃗, t). As they carry the same
information, such that E⃗(r⃗, t) = E⃗+(r⃗, t)+ E⃗−(r⃗, t) = E⃗+(r⃗, t)+(E⃗+(r⃗, t))∗, we will further
only consider the positive complex field component E⃗+(r⃗, t). This field can be further
decomposed into different orthonormal mode bases f⃗m(r⃗, t). Each mode is a normalized
solution to Maxwell’s equations in vacuum, obeying Maxwell’s wave equation (2.1), with
the electric field being orthogonal/transverse to its propagation direction through eq. (2.2)
and normalized at all times through eq. (2.3)

(∆− 1

c2
∂

∂t2
)f⃗m(r⃗, t) = 0, (2.1)

∇ · f⃗m(r⃗, t) = 0, (2.2)
1

V

∫
V
d3r|f⃗m(r⃗, t)|2 = 1, (2.3)
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where the volume V contains the entire physical system. This volume is taken to be large
but finite1, such that the complex electric field can be written as [41] as a sum of discrete
modes

E⃗+(r⃗, t) =
∑
m

Emf⃗m(r⃗, t), (2.4)

where Em is the complex amplitude of each mode, whose real and imaginary parts are called
the field quadratures Em = EXm + iEPm.

We can interpret the vector of field quadratures Q⃗ = (EX1 , ..., E
X
N , E

P
1 , ..., E

P
N ) ∈ R2N

as the optical phase-space coordinates of the field. Note that the electromagnetic field E⃗+

itself verifies Maxwell’s wave equation (2.1). The simplest orthonormal mode basis are plane
wave modes

f⃗m(r⃗, t) = ϵ⃗me
i(k⃗mr⃗−ωmt), (2.5)

where ϵ⃗m, k⃗m and ωm are the polarization vector, wave vector, and frequency of the mode.

In order to see the main components of optical modes let us consider an electrical field
in the narrow-band and paraxial approximation 2, where the carrier plane wave is consid-
ered to propagate along z such that

f⃗m(r⃗, t) = ϵ⃗me
i(k0z−ω0t)f (T )(x, y, z)f (L)(z, t). (2.6)

Here k0 is the mean value, close to which each mode’s wave vector lies, and ω0 is the central
frequency. Each mode is factorized into its spatial (or transverse) component f (T )(x, y, z)
and its temporal (or longitudinal) component f (L)(z, t) in addition to the polarization vector
ϵ⃗m. Each of those components can be used to define a polarization, temporal, or spatial mode
basis. Those degrees of freedom can be coupled if the above approximations are violated,
as for ultrashort laser pulses [42, 43]. In the non-pulsed, continuous wave approximation
that we are working with here, those effects can be ignored.
As the choice of orthonormal mode basis is not unique, we can define a unitary operator U
mapping one basis f⃗m(r⃗, t) into another g⃗n(r⃗, t) via

f⃗m(r⃗, t) =
N∑
n=1

Unmg⃗n(r⃗, t), (2.7)

g⃗m(r⃗, t) =
N∑
n=1

U †
nmf⃗n(r⃗, t), (2.8)

1This assumption stems from the fact that Maxwell’s equations imply the conservation of charge (continuity
equation), which is defined in a finite volume [40].

2The narrow-band approximation assumes that mostly one frequency component is dominant, with a small
bandwidth, while the paraxial approximation assumes small divergence of the mode.
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where U is defined via
Unm =

1

V

∫
V
d3rg⃗n(r⃗, t)

∗f⃗m(r⃗, t). (2.9)

If we expand the electromagnetic field in the new basis we importantly also have to transform
the complex field amplitude E ′

m =
∑

n UmnEn, thereby also transforming the phase-space
coordinates as seen in [41]. We therefore conclude that each mode has its proper optical
phase-space.

Let us now focus on the complex field amplitude Em and the idea of the coherence of
an electromagnetic field. The level of coherence of a field describes how well-defined it is in
time and space. The above modal decomposition allows for a perfectly coherent field if the
complex field amplitudes are complex coefficients. More realistically we have to consider
amplitude and phase fluctuations of the field, which leads to the complex field amplitudes
to be described as probability distributions. The coherence is then defined by those fluctu-
ations and correlations between them [38]. A prominent measure of the coherence of a field
is the quadrature covariance matrix ΓQ, defined as the expectation value of the quadrature
vector with its transpose

ΓQ = E[Q⃗Q⃗T ], (2.10)

containing the second moment or variance of each mode on the diagonal and their correlation
in the off-diagonal elements.

2.1.1.2 UNDERLYiNG ASSUMPTiONS OF CLASSiCAL LiGHT AND MECHANiCS

Before we formulate a quantum description of light let us examine the mathematical struc-
ture we have placed the classical light field into. The electromagnetic wave lives in a vector
space, spanned by its modes, called the modal Hilbert space [38]. Generally, a Hilbert space
is a vector space over the complex or real numbers such that its inner product ⟨., .⟩ is linear,
positive definite, and conjugate symmetric, and defines a norm |x| =

√
⟨x, x⟩. The norm

helps to define a distance measure d(x, y) = |x− y| that is invariant under basis change.
In the case of the electromagnetic field, we have already defined the inner product in eq.
(2.3) as the complex dot product ⟨f⃗ , g⃗⟩ = f⃗ † · g⃗. This is indeed the spatial overlap between
f⃗ and g⃗.

Let us now define when an electromagnetic field E⃗ is normalized: it is only possible if
there exists an eigenmode-decomposition of the field in which only one mode is populated.
We can therefore define the state of the system to be in a single-mode approximation.
For simplicity let us keep this approximation to investigate the dynamics of the system.
The state of the system is now described by the complex amplitude E of the single mode,
and its trajectory in phase-space. We have stated before that the complex amplitude can
be a normalized probability distribution P(X,P ) over the phase-space coordinates X and
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P . Now, we can define a pure state, which is the limiting case in which the state exists in
only one point PX′,P ′(X,P ) = δ(X −X ′, P − P ′), considered to be perfectly coherent.

The evolution of any such phase-space distribution is governed by the Liouville equation,
assuring that the density of the system is time-independent,

∂P
∂t

= −{P ,H}, (2.11)

where the effect of any Hamiltonian H is described by the Poisson bracket [44]. The expec-
tation value of function A(X,P ) is then defined as E[A] =

∫
P(X,P )A(X,P )dxdp.

We can translate this phase-space formulation of the evolution of the complex amplitude of
the electromagnetic field into a Hilbert space. Note that this is not the same Hilbert space
as our previously defined modal Hilbert space, but rather in a tensor product with it.

2.1.1.3 FROM CLASSiCAL TO QUANTUM MECHANiCS

There exist many ways to describe what happens in the quantization process of quantum
mechanics: One can start from Hilbert space and commutators, phase-space and Moyal
product or path integrals, and the Dirac notation. All of them have in common that there
is no physical intuition that leads to the formulation of quantum mechanics, rather axioms
are found that fit perfectly the experimental results of their time. This is why here we will
start from a basic set of axioms, which elegantly show the main difference between classical
and quantum mechanics, formulated in the same mathematical language. We closely follow
Bondar et al. [45] and use the Koopman–von Neumann representation of classical mechanics.
Those axioms are

Axiom 1. The states of a system are represented by normalized vectors |Ψ⟩ of a complex
Hilbert space.

Axiom 2. The measurables or observables Â of a system are defined as self-adjoined op-
erators acting on this space and its expectation value at time t is defined as ⟨A(t)⟩ =

⟨Ψ(t)| Â |Ψ(t)⟩.

Axiom 3. The probability that measuring Â at time t yields the value A is given by
| ⟨A|Ψ(t)⟩ |2 where A is an eigenvalue of Â: Â |A⟩ = A |A⟩.

Axiom 4. The Hilbert space of a composite system is written as the tensor product of its
subsystems Hilbert spaces.
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We immediately see that those axioms are the usual postulates of quantum mechanics [46].
The equation of motion with kinetic energy V (p) and potential energy U(x) for a system
x(t) are

d

dt
x(t) = V ′(p)(t)

Axioms−−−−→ d

dt
⟨Ψ(t)| x̂ |Ψ(t)⟩ = ⟨Ψ(t)|V ′(p̂) |Ψ(t)⟩ , (2.12)

d

dt
p(t) = −U ′(x)(t)

Axioms−−−−→ d

dt
⟨Ψ(t)| p̂ |Ψ(t)⟩ = ⟨Ψ(t)| − U ′(x̂) |Ψ(t)⟩ , (2.13)

and can be written straightforwardly with those axioms, where V ′(p) = ∂V (p)
∂p and U ′(x) =

∂U(x)
∂x .

Until here we have not specified whether we are talking about quantum or classical me-
chanics. For this, we will add one more assumption, differentiating those two cases. For
classical mechanics, we add the assumption that the observables of phase-space x̂ and p̂

commute, such that
[x̂, p̂] = 0. (2.14)

This describes the assumption that classical measurements are non-invasive, meaning that
further statistics of the system are not affected by whether or not another measurement
was conducted [47, 48]. Indeed we will see that with the above axioms and the non-invasive
assumption we can recover the Liouville equation. The chain rule can be applied to equations
(2.12) and (2.13) such that

⟨ d
dt
Ψ(t)| x̂ |Ψ(t)⟩+ ⟨Ψ(t)| x̂ | d

dt
Ψ(t)⟩ = ⟨Ψ(t)|V ′(p̂) |Ψ(t)⟩ , (2.15)

⟨ d
dt
Ψ(t)| p̂ |Ψ(t)⟩+ ⟨Ψ(t)| p̂ | d

dt
Ψ(t)⟩ = ⟨Ψ(t)| − U ′(x̂) |Ψ(t)⟩ . (2.16)

If we now assume that observable smoothly depends on time (Stone’s theorem 3) we can
introduce a motion generator operator L̂ such that

i | d
dt
Ψ(t)⟩ = L̂ |Ψ(t)⟩ . (2.17)

With this we can rewrite eq. (2.15) and (2.16) as

i ⟨Ψ(t)| [L̂, x̂] |Ψ(t)⟩ = ⟨Ψ(t)|V ′(p̂) |Ψ(t)⟩ , (2.18)
i ⟨Ψ(t)| [L̂, p̂] |Ψ(t)⟩ = −⟨Ψ(t)|U ′(x̂) |Ψ(t)⟩ , (2.19)

which gives for all states the commutator relations

i[L̂, x̂] = V ′(p̂), i[L̂, p̂] = −U ′(x̂). (2.20)
3Stone’s theorem states that every self-adjoint operator T in Hilbert space has a one-to-one correspondence
to a strongly continuous unitary operator U(t) = exp(−iT t) [49].
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We can see that the if the motion generator operator L̂ would be a function that depends
only on x̂, p̂ then we would contradict eq. (2.20) and (2.14): i[L(x̂, p̂), x̂] = 0 = V ′(p̂) and
i[L(x̂, p̂), p̂] = 0 = −U ′(x̂). Therefore we will introduce two new operators λ̂x = −i ∂∂x and
λ̂p = −i ∂∂p such that

[x̂, λ̂x] = [p̂, λ̂p] = i, (2.21)
[x̂, p̂] = [x̂, λ̂p] = [p̂, λ̂x] = [λ̂x, λ̂p] = 0. (2.22)

Note here that in this formulation x̂, p̂ are not the canonical coordinates and we thus have
to add operators to fully describe the evolution in phase-space, which is why their counter-
parts λ̂ were added. Now the motion generating operator L(x̂, λ̂x, p̂, λ̂p) is defined by the
commutator relations (2.20) to be

L̂ = V ′(p̂)λ̂x − U ′(x̂)λ̂p + f(x̂, p̂), (2.23)

where f(x̂, p̂) is an arbitrary real-valued function. This follows from Theorem 1 in the
supplementary of [45]. We can now use eq. (2.17) to write the equation of motion for L̂ in
x̂, p̂ by using the eigenvector |x, p⟩ (as they commute, they share common eigenvectors):

⟨x, p| i | d
dt
Ψ(t)⟩ = ⟨x, p| L̂ |Ψ(t)⟩ , (2.24)

i
∂

∂t
⟨x, p|Ψ(t)⟩ = ⟨x, p|V ′(p̂)λ̂x |Ψ(t)⟩

− ⟨x, p|U ′(x̂)λ̂p |Ψ(t)⟩

+ ⟨x, p| f(x̂, p̂) |Ψ(t)⟩ ,

i
∂

∂t
⟨x, p|Ψ(t)⟩ =

(
−iV ′(p)

∂

∂x
+ iU ′(x)

∂

∂p
+ f(x, p)

)
⟨x, p|Ψ(t)⟩ , (2.25)

which indeed yields the Louville equation for the density function P(x, p, t) = | ⟨px|Ψ(t)⟩ |2

such that

∂

∂t
P(x, p, t) =

(
−V ′(p)

∂

∂x
+ U ′(x)

∂

∂p

)
P(x, p, t), (2.26)

∂

∂t
P(x, p, t) = −{P(x, p, t),H}, (2.27)

with the Poisson bracket as in eq. (2.11). We have therefore retrieved classical dynamics.

Let us now move to the derivation of quantum mechanics. We will now state that there is
the Heisenberg uncertainty

[x̂, p̂] = ih̄, (2.28)
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which implies that quantum measurements can interfere 4. If we compare the commutation
relation of eq. (2.28) with the one of eq. (2.21) we see that

p̂ := −ih̄ ∂
∂x
, (2.29)

meaning that p̂ can be viewed as the Fourier transform of x̂.
We can treat the derivation analogously until eq. (2.20), where we rename the motion
generation operator Ĥ. Now indeed we can simply set Ĥ = H(x̂, p̂) and get

Ĥ = V (p̂) + U(x̂), (2.30)

which is any general quantum Hamiltonian. Via axiom 3 we can define the probability
of measuring the state |Ψ(t)⟩ as a probability density ρ̂ = |Ψ(t)⟩ ⟨Ψ(t)| such that Stone’s
equation (2.17) becomes

ih̄
d

dt
|Ψ(t)⟩ ⟨Ψ(t)| = ih̄ | d

dt
Ψ(t)⟩ ⟨Ψ(t)|+ ih̄ |Ψ(t)⟩ ⟨ d

dt
Ψ(t)| , (2.31)

= Ĥρ̂− ρ̂Ĥ, (2.32)

ih̄
d

dt
ρ̂ = [Ĥ, ρ̂], (2.33)

such that we recover the von Neumann equation for time evolution.
Let us now try to investigate the phase-space behavior of such a system. Importantly we
note that as x̂ and p̂ do not commute, they each form their own orthonormal basis such
that they do not have common eigenvectors and the projection of eq. (2.24) cannot be
applied to eq. (2.30). However, due to axiom 3 we can deduce the probability densities of
the eigenvalues of x̂ and p̂

P(x, t) = | ⟨x|Ψ(t)⟩ |2, (2.34)
P(p, t) = | ⟨p|Ψ(t)⟩ |2. (2.35)

Equally, using axiom 2 we can find the average value of any function that depends on x̂

and/or p̂

⟨f(x̂, p̂)⟩ = ⟨Ψ(t)| f(x̂, p̂) |Ψ(t)⟩ , (2.36)

⟨Ψ(t)| f(x̂) |Ψ(t)⟩ =
∫
dxP(x, t)f(x), (2.37)

⟨Ψ(t)| f(p̂) |Ψ(t)⟩ =
∫
dpP(p, t)f(p), (2.38)

4The Planck constant h̄ has to be added to Stone’s theorem here and can be any constant, used for normal-
ization.
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where in eq. (2.37) the function solely depends on x̂ or in eq. (2.38) on p̂. Stone’s theorem of
eq. (2.17), which is equivalent to the Schrödinger equation, therefore governs the evolution
of the state |Ψ(t)⟩ such that we can indeed calculate the mean value of any function on the
quantum phase-space at any time.

The next step would be to find an equation governing the dynamics of P(x, t) and P(p, t),
but as in classical mechanics, there is no equation describing the evolution of marginal dis-
tributions [50]. We are left with trying to find a joint probability distribution P(x, p, t) as
in classical mechanics such that we can find a quantum equivalent to the Liouville equation.
We already note here that any joint probability distribution would require joint eigenvectors
|x, p⟩, which do not exist due to the operators not commuting. Therefore we will search for
a quasi-probability distribution W(x, p, t) such that

P(x, t) ∝
∫ ∞

−∞
dxW(x, p, t), (2.39)

P(p, t) ∝
∫ ∞

−∞
dpW(x, p, t). (2.40)

Let us come back to the definition of the classical phase-space, where we have defined four
phase-space variables with commutator relations as in eq. (2.21) and (2.22). Indeed we can
construct our quantum mechanical operators via those four classical operators. For this let
us denote the classical operators x̂c, p̂c, λ̂xc, λ̂pc as to avoid confusion. We can now write our
quantum mechanical operators as

x̂ = x̂c −
h̄

2
λ̂pc, (2.41)

p̂ = p̂c +
h̄

2
λ̂xc, (2.42)

and preserve the commutator relation of eq. (2.28). We can now use the von Neumann eq.
of (2.33) and project it onto the eigenvectors of the two positions x, x′, where x̂′ = x̂c+

h̄
2 λ̂pc.

This is equivalent to asking for the probability that the state of the system is on average in
the position xc = x′+x

2 and can pass a distance λpc = x′ − x in a certain time interval. We
find

ih̄
d

dt
⟨x| ρ̂ |x′⟩ = ⟨x|

[
Ĥ, ρ̂

]
|x′⟩ (2.43)

= ⟨x| Ĥρ̂ |x′⟩ − ⟨x| ρ̂Ĥ |x′⟩ (2.44)

=

[
H

(
x̂,−ih̄ ∂

∂x

)
−H

(
x̂′, ih̄

∂

∂x′

)]
⟨x| ρ̂ |x′⟩ (2.45)

=

[
H

(
xc −

h̄λpc
2

,− ih̄
2

∂

∂xc
+ i

∂

∂λpc

)
−H

(
xc +

h̄λpc
2

,
ih̄

2

∂

∂xc
+ i

∂

∂λpc

)]
× ⟨x| ρ̂ |x′⟩ . (2.46)
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This already gives us an equation of motion, but dependent on xc and λpc, whereas we want
xc and pc. Now, as we know that λ̂pc is defined as the conjugate variable to p̂c, we can
obtain the quasi-probability W via the inverse Fourier transform of ⟨xc − h̄λpc

2 | ρ̂ |xc + h̄λpc
2 ⟩

W(xc, pc) =
1

2π

∫
dλpc ⟨xc −

h̄λpc
2

| ρ̂ |xc +
h̄λpc
2

⟩ eipcλpc (2.47)

= ⟨xc +
ih̄

2

∂

∂pc
| ρ̂ |xc −

ih̄

2

∂

∂pc
⟩ , (2.48)

and as such we can see that the Wigner function is the Fourier transform of the density
matrix.
This important concept shows the equivalence between those two representations of quan-
tum states. As required, this quasi-probability function normalizes to one

∫
W(x, p)dxdp =

1 and fulfills eq. (2.39) and (2.40) but is not strictly positive. This shows an important
difference between classical and quantum states. We can then write the equation of motion
for W(xc, pc) as

ih̄
d

dt
W(xc, pc) =

[
H(xc +

ih̄

2

∂

∂pc
, pc −

ih̄

2

∂

∂xc
)−H(xc −

ih̄

2

∂

∂pc
, pc +

ih̄

2

∂

∂xc
)

]
W(xc, pc).

(2.49)
This is called the Moyal’s equation and describes the dynamical evolution of the joint prob-
ability distribution W of the quantum phase-space [51].

We have seen that for each mechanical system, there exists a phase-space x, p which can
be mapped to a complex Hilbert space. The difference between quantum and classical dy-
namics finds itself in the commutator relation. In classical mechanics we can see that the
commutator relation necessitates four phase-space operators to define the motion of a state.
This shows that the pure states |x, p⟩ are not to be associated with the vectors |Ψ⟩ spanning
the Hilbert space. This prevents the classical states from being in superpositions. Different
expectation values of density functions are simultaneously sharp [47] due to all observables
commuting. In the quantum phase-space, on the other hand, enforcing a joint description of
the phase-space coordinates leads to a quasi-probability distribution that can take negative
values.

2.1.1.4 QUANTUM LiGHT

Let us now transition from the general description of quantum mechanics above to our case
of a quantum electromagnetic wave. For this, we will write the Hamiltonian of the EM
field, for which we need the electric and magnetic fields. We recall eq. (2.4) of the complex
electric field, written as a sum of discrete modes. We can use Maxwell’s equation (2.50),
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where it is clear that B⃗ will depend on the orthonormal mode basis we choose for E⃗. Here,
we proceed with the plane wave modes of eq. (2.5), such that B⃗ takes the form of eq. (2.52)

∇× E⃗+ = −∂B⃗
+

∂t
, (2.50)

∇× E⃗+ =
∑
m

Emk⃗m × ε⃗me
i(k⃗mr⃗−ωmt). (2.51)

We can see that in order for the equation to account for the right side of eq. (2.50), we need
to add a factor −iωm to the electric field, resulting in the new fields

B⃗+ = i
∑
m

Emk⃗m × ε⃗me
i(k⃗mr⃗−ωmt), (2.52)

E⃗+ = −i
∑
m

ωmEmε⃗mei(k⃗mr⃗−ωmt). (2.53)

This added pre-factor comes from the fact that the modal decomposition used for eq. (2.50),
although using the Coulomb gauge, omitted iωm, as it is specific to the orthonormal basis
chosen and can be described by the complex field amplitude E .

We can now write the classical Hamiltonian of the free radiating field HR
c as

HR
c =

ε0
2

∫
V
d3r
[
|E⃗(r⃗, t)|2 + c2|B⃗(r⃗, t)|2

]
(2.54)

= V
ε0
2

∑
m

(
ω2
m|Em|2 + c2 |⃗km|2|Em|2

)
. (2.55)

If we insert E⃗+ in eq. (2.1), we find |⃗km|c = ωm and as such we define the Hamiltonian

HR
c =

∑
m

ϵ0V ω
2
m|Em|2 (2.56)

=
∑
m

ϵ0V ω
2
m((EXm )2 + (EPm)2), (2.57)

where we set Em = EXm + iEPm as quadratures.

Let us now verify if the quadratures can be used as phase-space coordinates {x, p} !
= {x, dxdt }

such that p is the canonical momentum. Using the Hamiltonian equations, we find that

dEXm
dt

=
∂H

∂EPm
= 2ε0V ω

2
mEPm, (2.58)
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with the results that {EXm , EPm}
!
= {EXm ,

dEX
m
dt } = {EXm , 2ε0V ω2

mEPm}. This can be easily solved
by introducing a normalization constant E(1c)

m for the two new coordinates {x, p}, such that

E(1c)
m =

√
2ωmϵ0V , (2.59)

xm = E(1c)
m EXm , (2.60)

pm = E(1c)
m EPm, (2.61)

HR
c =

∑
m

ωm
2

(x2m + p2m), (2.62)

where we left ωm in the Hamiltonian to ensure that the condition of Stone’s theorem of eq.
(2.17) is met. We can now quantize the canonical coordinates

{xm, pm}
quantization−−−−−−−→ {x̂m, p̂m}, (2.63)

leading to m uncoupled harmonic oscillators describing the quantized EM radiation Hamil-
tonian

HR
c

quantization−−−−−−−→ HR
q =

∑
m

ωm
2

(x̂2m + p̂2m). (2.64)

To make sure that the commutator relation is fulfilled, as we will see in the next subsub-
section, the normalization constant becomes E(1)

m =
√
2ωmϵ0V/h̄. If we now rewrite the

quantized electrical field vector in the plane wave modal basis, we find

Ê+(r⃗, t) =
∑
m

E(1)
m

x̂m + ip̂m√
2

ϵ⃗me
i(k⃗mr⃗−ωmt), (2.65)

such that in an arbitrary mode basis, we write

Ê+(r⃗, t) =
∑
m

F (1)
m

x̂m + ip̂m√
2

f⃗m(r⃗, t). (2.66)

The phase-space quadrature operators can be arbitrarily rotated by θ in a manner that

x̂θm = cos(θ)x̂m + sin(θ)p̂m (2.67)
p̂θm = x̂θ+π/2m , (2.68)

can also form the phase-space. The choice of θ is arbitrary.

The normalization constant E(1)
m can be seen as the electric field per photon, which is

transformed with a mode basis change similar to eq. (2.9). The general electrical field per
mode F (1)

m can be written as

(F (1)
m )2 =

∑
n

(E(1)
m )2|Unm|2. (2.69)
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In general, this dependence of the quantum quadrature operators on the orthonormal mode
basis shows one part of the wave-particle duality. Even though there is a Hilbert space,
defined as a quantum mechanical oscillator for each modem and an optical phase-space can
be formed, these two are still dependent on the underlying physical system, which is the
mode the light lives in [38].

2.1.1.5 COMMUTATOR RELATiONS

Let us now verify that our treatment of the electromagnetic field has a normalization that
is consistent with the general commutator relation of conjugate variables in quantum me-
chanics, eq. (2.28). For this we start with the classical normalization E(1c)

m

[x̂, p̂] = [E(1c)
m ÊXm , E(1c)

m ÊPm] (2.70)
= (E(1c)

m )2[ÊXm , ÊPm], (2.71)

[ÊXm , ÊPm] =
i

(E(1)
m )2

to obey eq. (2.21) and (2.28) (2.72)

[x̂, p̂] =
(E(1c)
m )2

(E(1)
m )2

i (2.73)

= ih̄. (2.74)

Therefore, we justified the choice of E(1c)
m → E (1)

m with the normalization of the commutator
relation in quantum mechanics. Moreover, we remind ourselves, that the complex amplitude
operator has been defined as Êm = ÊXm + iÊPm. It can now be rewritten with eq. (2.65) as

Êm = E(1)
m

x̂m + ip̂m√
2

= E(1c)
m

x̂m + ip̂m√
2h̄

,

â =
Êm
E(1c)
m

=
x̂m + ip̂m√

2h̄
.

Here, we can see that we can redefine the quantized complex field amplitude operator as
a dimensionless5 operator âm. By defining its complex conjugate â†m, we can write the
complex set of dimensionless operators for any m in phase-space

x̂ =

√
h̄

2
(â† + â), (2.75)

p̂ = i

√
h̄

2
(â† − â), (2.76)

â =
1√
2h̄

(x̂+ ip̂), (2.77)

â† =
1√
2h̄

(x̂− ip̂), (2.78)

5If h̄ has no dimension, which is always the case for us.
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such that the commutator relations are

[âm, â
†
n] = δmn, (2.79)

[x̂m, p̂n] = ih̄δmn. (2.80)

Here â is called annihilation and â† creation operator, for reasons we will see in the next
subsubsection. As in the classical case, an orthonormal mode change is performed as

b̂†m =
∑
n

Unmâ
†
n, (2.81)

by once again using the transformation matrix of eq. (2.9).

2.1.1.6 HiLBERT SPACE OF PHOTONS

Let us now have a closer look at the energy levels of the quantum harmonic oscillator defined
in eq. (2.64), where we will look at one mode only, therefore omitting the subscript m

H =
ω

2
(x̂2 + p̂2) (2.82)

=
ω

2
(x̂x̂† + p̂p̂†) (2.83)

=
h̄ω

2
(â†â+ ââ†) (2.84)

= h̄ω(â†â+
1

2
) (2.85)

= h̄ω(n̂+
1

2
), (2.86)

such that we can see that the discrete energy levels depend on the number of excitations in
the system, shown by the newly defined number operator n̂ := â†â with a minimal energy of
h̄ω/2. We can define a Hilbert space, spanned by vectors that correspond to all excitation
states of the quantum harmonic oscillator. As such we can define the vacuum state as
|0⟩ = (1, 0, 0, 0, .....) and in fact any number-of-excitation-state like |1⟩ = (0, 1, 0, ..., 0) or
|3⟩ = (0, 0, 0, 1, 0..., 0). If we now reconsider the creation and annihilation operator, we find
that their action on the number operator is

[n̂, â] = [â†â, a] = −â, [n̂, â†] = â†, (2.87)

such that we can find the action of annihilation and creation operator with the help of the
eigenvalue equation n̂ |n⟩ = n |n⟩ to be

n̂â |n⟩ = (ân̂+ [n̂, â]) |n⟩

= ân |n⟩ − â |n⟩

= (n− 1)â |n⟩ . (2.88)
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This shows, that if |n⟩ is an eigenvector of n̂ with eigenvalues n, then â |n⟩ is an eigenvector
of n̂ with eigenvalues n− 1. We can reformulate this statement in the following equation

n̂â |n⟩ = (n− 1)â |n⟩ ≡ (n− 1) |n− 1⟩ = n̂ |n− 1⟩ . (2.89)

Applying the annihilation operator therefore destroys or annihilates one excitation in the
system, thereby explaining its naming. The creation operator, being its conjugate transpose
counterpart, creates one excitation in the system. The action of those operators adapted to
respect the eigenvalue equation of the number operator, is most commonly formulated as

â† |n⟩ =
√
n+ 1 |n+ 1⟩ , (2.90)

â |n⟩ =
√
n |n− 1⟩ , (2.91)

n̂ |n⟩ = n |n⟩ . (2.92)

The eigenvectors of the number operator, we have used in this subsubsection, are called
Number states and are also known as Fock states. Now, it becomes evident that if n is
indeed the number of excitations in the system, then in the case of an EM field, this
corresponds to the number of photons in the mode of interest.

2.1.1.7 REViSiTiNG THE HEiSENBERG’S UNCERTAiNTY

The commutator relation [x̂, p̂] = ih̄ leads to an uncertainty of the measurement precision, or
standard deviation, of x̂ and p̂. Let us define the standard deviation as ∆x̂ =

√
⟨x̂2⟩ − ⟨x̂⟩2

and similar for ∆p. Using the Cauchy-Schwartz inequality we write

(∆x̂)2(∆p̂)2 = ⟨Ψ|x̂2|Ψ⟩ ⟨Ψ|p̂2|Ψ⟩ (2.93)
≥ | ⟨Ψ|x̂p̂|Ψ⟩ |2, (2.94)

where we assumed without loss of generality that the means vanish, corresponding to a
shift towards the phase-space origin. Now we can further use that the modulus square of a
complex number is |z|2 ≥ ( z−z

∗

2i )2 such that we continue with

(∆x̂)2(∆p̂)2 ≥ | ⟨Ψ|x̂p̂|Ψ⟩ |2 (2.95)

≥ | 1
2i
[⟨Ψ|x̂p̂|Ψ⟩ − ⟨Ψ|p̂x̂|Ψ⟩]|2 (2.96)

≥ | 1
2i

⟨[x̂, p̂]⟩ |2 (2.97)

≥ h̄2

4
. (2.98)

We can therefore see that the product of the standard deviation of position and momentum
are bound ∆x̂∆p̂ ≥ h̄/2.
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We note that for this derivation, pure states are assumed. Indeed if it is applied to mixed
states the variance will consist of a classical and quantum part, where the quantum variance
is dominating the limit [52].

2.1.2 HOW TO DESCRiBE STATES

2.1.2.1 THE DENSiTY MATRiX

We have seen in the previous subsection that each quantized light mode has a Hilbert space
associated with it that can be described by a quantum harmonic oscillator. The Hilbert
space is spanned by the eigenstates of the number operator n̂, called Fock states n̂, where
n ∈ [0, N ] for the Hilbert space size N . This suggests that the set of all possible states is
convex with the Fock states at its surface. As such we can define a matrix representation
of those pure states

ρ̂pure,n = |n⟩ ⟨n| . (2.99)

Consequently, if a state is impure it can be described as a statistical mixture of pure states
with probabilities pn to find the state in a pure state, which leads to the general density
matrix formalism of quantum states

ρ̂ =
L∑
l=0

pl |l⟩ ⟨l| , (2.100)

where we take |l⟩ to be any basis in the Fock Hilbert space including superpositions of Fock
states. Each density matrix is written in a finite dimension N , dependent on the maximal
Fock excitation in the system.
The density matrix is a Hermitian positive semi-definite matrix and fulfills

Tr[ρ̂] = 1, (2.101)
ρ̂ = ρ̂†, (2.102)

Tr[ρ̂2] ≤ 1, (2.103)

such that with eq. (2.101) we ensure the normalization of the state, with eq. (2.102) it
is defined as hermitian or self-adjoined and eq. (2.103) defines its eigenvalues to be non-
negative and therefore the matrix to be positive semi-definite. Indeed here we can see that
if Tr[ρ̂2] = 1 then the matrix ρ̂ is a projection. In this way we can define the purity of a
density matrix:

P(ρ̂) = Tr[ρ̂2], (2.104)
1

N
≤ P(ρ̂) ≤ 1, (2.105)
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which thereby shows, that the purity of a state lies between a completely mixed state, bound
by its dimension N , and a pure state such that

P(ρ̂pure) = Tr[ρ̂2pure] = Tr[ρ̂pure] = 1. (2.106)

Here we notice one key feature of quantum states: they can be statistical mixtures, akin to
classical statistical mixtures, but indeed can also exist as a superposition of pure states

|Ψ⟩ =
∑
n

cn |n⟩ where
∑

c2n = 1, (2.107)

which unlike the statistical mixture of eq. (2.100) will have correlations between the different
Fock states and are themselves pure. This of course means that any superposition of Fock
states can lead to a new vector basis of the Hilbert Space, which are the already defined |l⟩
of eq. (2.100), which will be crucial in chapter 6. Moreover, we can now view the purity P
as an eigenanalysis, where a pure state has only one non-zero eigenvalue.
Let us now define the Fidelity as the overlap between two states. If those states are pure,
we simply write F(|ψ⟩ , |ϕ⟩) = | ⟨ψ|ϕ⟩ |2. For mixed state this equation becomes6

F(ρ̂1, ρ̂2) =

(
Tr
[√√

ρ̂1ρ̂2
√
ρ̂1

])2

, (2.108)

which is a symmetric measure F(ρ̂1, ρ̂2) = F(ρ̂2, ρ̂1) bound to be 0 ≤ F(ρ̂1, ρ̂2) ≤ 1 and
preserved under unitary transformation on both states. In all the following chapters, the
quality of both states and measurements will be evaluated using the criteria of purity and
fidelity.

2.1.2.2 DENSiTY MATRiX OF COMPOSiTE SYSTEMS

As defined in axiom 4, two quantum systems can be written as their tensor product. Take
a system of dimension N1 and another of dimension N2. The combined Hilbert space of
those two systems HN1N2 = HN1 ⊗HN2 has dimension N1N2.

Here, we can see that in quantum mechanics “the whole is greater than the sum of its
parts” 7 as N1 × N2 > N1 + N2 (except if N1 = N2 = 2). The basis that spans this
Hilbert space HN1N2 is the tensor product of the basis vectors of the individual systems
|m⟩HN1

⊗ |n⟩HN2
= |m⟩HN1

|n⟩HN2
, where the sign ⊗ is often omitted. We can see that the

basis vectors are products of vectors of the individual systems. The larger size of the com-
posite systems stems from the fact, that we can now create superpositions in this new vector

6The Fidelity for mixed states can be derived via minimizing over any POVM that maximizes the indistin-
guishability between the measurement outcomes of the two density matrices. As we have not introduced
POVMs yet, we will omit the derivation.

7Hermann Weyl
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basis. Each possible pure state of the composite system can then be written as a tensor
product of the eigenvectors of the two systems or as a superposition of those tensor products.

If a state in the composite system cannot be expressed as a product of vectors of the
individual system it is said to be entangled. Note that we can compose a system out of in-
finitely many Hilbert spaces. For simplicity here we will work with bipartite systems where
only two Hilbert spaces are considered. An operator Â applied to the density matrix of the
whole system ρ̂12 is then written as

Âmn,µν = ⟨m| ⟨n| Â |µ⟩ |ν⟩ , (2.109)

where m,µ are the indices of the first and n, ν of the second subsystem. We can recover
the density matrices of the subsystems ρ̂1 and ρ̂2 via the partial trace

ρ̂1 = Tr2ρ̂12 where (ρ̂1)m,µ =

N2∑
ν

(ρ̂12)mν,µν , (2.110)

where the resulting matrix is called reduced density matrix. If the operator Â is only acting
on the first subsystem we write

Â = Â1 ⊗ 1 with Âmn,µν = (A1)m,µδ(n− ν). (2.111)

The partial trace is interesting, as it transforms a pure entangled state ρ̂12 into a mixed
state ρ̂1. It is always possible to describe a mixed state as taking the partial trace over
a pure state in a larger Hilbert space. The partial trace therefore can be described as in-
formational ignorance, where part of the information about the system is not considered.
We will use the partial trace in the next chapters to apply losses to a system and to omit
already measured modes.

Moreover, we can now connect this to our notion of entanglement. If tracing out the
system HN2 leads to a mixed state ρ̂1 then clearly the state ρ̂12 could not be expressed by
a product of vectors of the individual systems. Therefore the information about ρ̂1 was not
only in HN1 but delocalized over the composite system HN1N2 . This points to the fact that
the two systems are correlated and we can easily see that this is achieved by a superposition
of the new basis vectors |mn⟩

|ψ12⟩ =
N1∑
m

N2∑
n

cmn |mn⟩ where
∑

c2mn = 1. (2.112)

This kind of state is indeed pure and taking the partial trace leads to completely mixed
reduced density matrices. We can therefore define entanglement as the correlation between
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the subsystems of composite systems, where a state is said to be maximally entangled if
the partial trace leads to maximally mixed subsystems. As was the case for single quantum
systems, an arbitrary basis change can be performed on the state 2.112, which cannot
increase its entanglement. This fact can be used to quantify the degree of entanglement
in a system, by performing the singular value decomposition of the matrix c of complex
numbers cmn, such that c = udv where d is a positive semi-definite diagonal matrix and u, v
are unitary matrices. We can rewrite eq. (2.112) as

|ψ12⟩ =
∑
imn

umidiivin |mn⟩ , (2.113)

such that we can write the subsystem basis vectors as

|i⟩1 =
∑
m

umi |m⟩ , (2.114)

|i⟩2 =
∑
n

vin |n⟩ . (2.115)

In this way, eq. (2.113) becomes

|ψ12⟩ =
s∑
i

λi |i⟩1 |i⟩2 , (2.116)

where dii := λi. The bases |i⟩1 and |i⟩2 are called the Schmidt basis and the number of
non-zero values λi is called the Schmidt number s of the state |ψ12⟩. Trivially the reduced
density matrices are of the form

ρ̂1/2 =
s∑
i

λ2i |i⟩1/2 ⟨i|1/2 , (2.117)

and therefore both reduced-density matrices have identical eigenvalues. We can connect this
to our notion of maximal entanglement and say that a state is maximally entangled if s = N1

(assuming N1 = N2) such that λi =
√
1/s ∀ i and not entangled if λi = 0 ∀ i ̸= 0, in

which case the subsystems will be pure. The Schmidt number is preserved under unitary
transformations applied to the subsystem(s). Of course, a state of the composite Hilbert
space will be generally written as a density matrix, being a mixture of pure states. The
Schmidt rank of a density matrix is then defined as the maximal Schmidt coefficient of the
ensemble of pure states. Even though the Schmidt coefficient provides us with an intuition
about entanglement, it is not the most used measure of entanglement.

2.1.2.3 ENTANGLEMENT MEASURES

In the last subsubsection, we have connected entanglement to the purity of a composite
system. Experimentally, we will find ourselves in between pure and mixed composite sys-
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tems. To be able to quantify entanglement a threshold is used, where we limit ourselves to
bipartite entanglement here.
When analyzing a two-mode state, we can separate it into three classes: fully separable,
bound entangled, and distillable entangled. Fully separable states can be written as a (sum)
of tensor products, as explained in the last subsubsection. Distillable entanglement coin-
cides with the usual notion of entanglement: it is typically verified via the positive partial
transpose (PPT) criterion, developed in 1996 [53], where at least one eigenvalue of the
density matrix after partial transpose of one subsystem has to be negative, to witness en-
tanglement in the system. The most common measure/witness constructed from the PPT
criterion is either the negativity N or logarithmic negativity EN = log2(2N + 1). Given a
bipartite state ρ with modes A and B, the partial transpose taken on subsystem A (or B),
ρΓA , leads to the negativity and logarithmic negative to be defined as [54]

N =
||ρΓA || − 1

2
= |

∑
λi<0

λi| for a bipartite system 0 ≤ N ≤ 0.5 (2.118)

EN = log2(||ρΓA ||) for a bipartite system 0 ≤ EN ≤ 1, (2.119)

where ||O|| = Tr(
√
O†O) is the trace-norm of a density matrix O. The negativity can either

be written with this trace norm or can be seen as the absolute value of the sum of all nega-
tive eigenvalues λi < 0 of the partially transposed state ρΓA . Any measure of entanglement
has to be an entanglement monotone, meaning that any Gaussian operation8 on the state
ρ cannot increase its negativity [55]. Setting the negativity N equal to the sum of the
negative eigenvalues of the partially transposed state in eq. (2.118) gives the upper bound
for the negativity, equal to applying the ideal negativity-maximizing Gaussian operation on
the state. The negativity is a convex measure, which cannot be said about the logarithmic
negativity. It has, on the other hand, the comfortable quality of being additive for ten-
sor products, meaning that increasing our system to more than a bipartite state is easily
calculable. Moreover, the logarithmic negativity EN gives a upper bound of the distillable
entanglement [55]. Entanglement distillation [56] takes several weakly entangled copies and
performs measurements that distill one highly entangled state out of those copies. A state
is distillable if its entanglement is increased via this process of distillation and by defini-
tion all PPT-negative states are distillable [54]. There are many entanglement measures
for distillable states, but given that logarithmic negativity already gives an upper bound,
we will only present two more measures, that are interesting for us. One can also base an
entanglement criterion on the fidelity with a maximally entangled state, which has to be
above 50% [57]. Another measure of entanglement is the famous Bell-inequality-violation
[58]. There the correlation is tested against local and real hidden variables, which form a
general class of classical models of physics. We will further discuss the Bell basis and the

8Sometimes called LOCC for local operations and classical communication.
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Bell inequality in chapter 4. A complete table of possible distillable entanglement measures
can be found in the paper by H. Jeng et al. [59].

Bound entanglement cannot be used to distill, therefore its fidelity with a maximally en-
tangled state is below 50%. Nonetheless, it is not fully separable. Proper definitions of
bound entanglement are plentiful and are thoroughly discussed by M. Gaida et al. [60].
Interestingly we do not generally know how many bound entangled states there are [61],
even though they have been under intense study. We note, however, that a two-mode Gaus-
sian entangled state cannot have bound entanglement [62]. Importantly, bound states can
violate locality [63] if their modes are not two-level systems, showing their usefulness for
many device-independent quantum applications. Entanglement plays an important role in
our experiments. We will quantify the entanglement of an experimentally generated state
in chapter 4 and its quality plays a key role in the working principle of chapter 5. More
generally we will discuss in those two chapters, that the choice of entanglement in the con-
text of networks depends on the specific application. However, in most cases, distillable
entanglement is favored.

2.1.2.4 THE WiGNER FUNCTiON: A QUANTUM PHASE-SPACE REPRESENTATiON

As elaborated in subsubsection 2.1.1.3, the phase-space representation of the quadrature
eigenvalues belonging to the quadrature operators x̂ and p̂ can be written as

W(xc, pc) =
1

2π

∫
dλpc ⟨xc −

h̄λpc
2

| ρ̂ |xc +
h̄λpc
2

⟩ eipcλpc , (2.120)

where we interpreted xc as the mean value of the position and λpc as a position shift. The
standard expression of the Wigner functions can be obtained by substituting y = h̄λpc/2

and dropping the subscript ”c”, such that we can write

Wρ(x, p) =
1

πh̄

∫
dy e2ipy/h̄ ⟨x− y|ρ̂|x+ y⟩ . (2.121)

The derivation in subsubsection 2.1.1.3 can be straightforwardly applied to mixed density
matrices too, such that eq. (2.121) is a general phase-space description. Note that if the
state is not living in one single mode and therefore has to be described by multiple phase
spaces, the normalization for k modes changes to (πh̄)−k. For pure states, the Wigner
function simplifies to

Wρpure(x, p) =
1

πh̄

∫
dy e2ipy/h̄ψ∗(x− y)ψ(x+ y), (2.122)
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where ψ is the wave function in the position representation ψ(x) = ⟨x|ψ⟩. The Wigner
function has the following properties [64]

W(x, p) ∈ R(2k) Real-valued function (2.123)∫
dxWρ(x, p) = ⟨p|ρ̂|p⟩∫
dpWρ(x, p) = ⟨x|ρ̂|x⟩ Marginal distributions (2.124)∫
dp

∫
dxWρ(x, p) = Tr[ρ̂] = 1 Normalization (2.125)

if ψ(x) → ψ(x+ a) then W(x, p) → W(x+ a, p) Galilei invariant (2.126)
if ψ(x) → ψ(−x) then W(x, p) → W(−x,−p) Space symmetric (2.127)
if ψ(x) → ψ∗(x) then W(x, p) → W(x,−p) Time symmetric (2.128)

We can define fidelity and purity in this formalism too. An overlap between two operators
Â and B̂ can be calculated with their Wigner functions as

Tr[Â, B̂] = 2πh̄

∫
dx

∫
dpWA(x, p)WB(x, p), (2.129)

which is called the inner product rule. The fidelity of two pure states can be calculated
straightforwardly with this equation9. Moreover, it follows, that the purity of a state can
be calculated as

P(ρ̂) = 2πh̄

∫
dx

∫
dpWρ(x, p)

2. (2.130)

The limits of the Wigner function remind us again why it is not a properly defined proba-
bility distribution: The Wigner function is bound to be between

− 1

πh̄
≤ W(x, p) ≤ 1

πh̄
(2.131)

and therefore has negative values. It will become visible in section 2.2 that pure non-
Gaussian states have negative Wigner function values.

2.1.2.5 THE WiGNER FUNCTiON FOR COMPOSiTE SYSTEMS

The Wigner function is not as well suited for an easy formulation of composite systems in
comparison to the density matrix. Instead, one uses the same tensor product formalism as
in subsubsection 2.1.2.2 to write the composite system as a weighted sum of pure states and
then translates this into the Wigner function. As the Wigner function is linear convex

W∑
i piρi

(x, p) =
∑
i

piWρi(x, p) (2.132)

9The fidelity for mixed states is more elaborate and will be omitted here.
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any mixture of pure states can be calculated analytically with the formulas presented in the
next subsubsection.

2.1.2.6 THE WiGNER FUNCTiON AND THE FOCK BASiS

Let us now consider how to write the Wigner function conveniently for the Fock basis, in
which we formulated the density matrix. For each element of the density matrix, one can
write

W|k⟩⟨n|(x, p) =
(−1)k

πh̄

√
k!

n!
ei(n−k)θz(n−k)/2e−z/2Ln−kk (z),

with z =
2

h̄
(x2 + p2) and θ = arctan(p/x), (2.133)

with Ln−kk being the Laguerre polynomial for n ≥ k. Here we can view z and θ as the radial
and angular variables of the quantum Hamiltonian of eq. (2.82) with ω = 1. We already
know the eigenvectors of this Hamiltonian to be the Fock state |n⟩. We can now project
those Fock states onto the position eigenstate |x⟩ of phase-space. This gives a normalized,
real-valued eigenfunction, called the wavefunctions of the corresponding Fock state

⟨x|n⟩ = Ψn(x) = (
√
πh̄ 2n n!)(−1/2)e−x

2/(2h̄)Hn(
x√
h̄
), (2.134)

where Hn(x) are the Hermite polynomials as defined the appendix, section 8.1 [65]. The
marginal distribution of the Fock state |n⟩ can be easily calculated as ⟨x|ρ̂n|x⟩ = |Ψn(x)|2.
Now we combine that the Wigner function is linear convex, with our eq. (2.133). For a
density matrix ρ̂ of dimension N the Wigner function now reads

W(x, p) =

N∑
k=0

N∑
n=k

ρ̂knW|k⟩⟨n|(x, p) + c.t., (2.135)

where c.t. stands for conjugate transpose, which can be calculated easily by utilizing the
time symmetry in eq. (2.128). Moreover, the expression (2.133) produces complex values
but due to the hermitian conjugate, the resulting value of the Wigner function is real.

At the origin of phase-space x = 0, p = 0 the Wigner function values only depend on
the diagonal elements of the density matrix, such that

Wρ(0, 0)) =
1

πh̄

∑
n

(−1)nρ̂nn. (2.136)

This shows that the maximal and minimal Wigner function values can be obtained by pure
Fock states, where even Fock states maximize, while odd Fock states minimize the Wigner
function.
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The operation to go from the density operator to the Wigner function has now been exten-
sively studied. Let us now consider the opposite direction, i.e. how to retrieve the density
matrix from the Wigner function. Mathematically, we can define phase-point operators
Â(x, p), which are hermitian operators that act on the Hilbert space of the system. There
is one operator per phase point (x, p), making it an infinite set of operators, such that

ρ̂ =

∫
dx

∫
dpWρ(x, p)Â(x, p) (2.137)

holds [66]. Practically it is hard to numerically construct such a phase-point operator.
Luckily we can use the tools to compute the Wigner function of density matrices in the
Fock basis and invert them. One can use the overlap formula of eq. (2.129) together with
eq. (2.133) to find the density matrix of the Wigner function W? as

ρ̂ =

N∑
k=0

N∑
n=k

cnmρ̂kn + c.t. cnm = 2πh̄

∫
dx

∫
dpW|k⟩⟨n|(x, p)W?. (2.138)

We can see that the Wigner function and the density matrix contain the same information
about the state of the system. In the laboratory, we always reconstruct the density matrix of
the system and use the Wigner function for state analysis, as explained in subsection 3.3.4.

2.1.2.7 ON THE UNiQUENESS OF THE WiGNER FUNCTiON

Until here we only have presented the Wigner function as a possible phase-space distribution.
In fact, there is a large class of possible phase-space distributions that can be connected
with the Wigner function. If we consider the phase-space function e−

i
h̄
(λxx+λpp) then this

function can be associated with the characteristic operator

M̂(λx, λp) = e−
i
h̄
(λxx̂+λpp̂), (2.139)

called the Weyl association. Due to the Baker-Campbell-Hausdorff expansion we can write
e−

i
h̄
(λxx̂+λpp̂) = e−iλpp̂/(2h̄)e−iλxx̂/(h̄)e−iλpp̂/(2h̄) such that we can write the characteristic

function belonging to the operator M̂ of an arbitrary state ρ as

M(λx, λp) = Tr[e−iλpp̂/(2h̄)e−iλxx̂/(h̄)e−iλpp̂/(2h̄)ρ] (2.140)

=

∫ ∞

−∞
dxe−iλxx̂/(h̄) ⟨x|e−iλpp̂/(2h̄)ρe−iλpp̂/(2h̄)|x⟩ (2.141)

=

∫ ∞

−∞
dxe−iλxx̂/(h̄) ⟨x− λp/2|ρ|x+ λp/2⟩ , (2.142)
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which has the form of an inverse Fourier transform. If we invert it we find

⟨x− λp/2|ρ|x+ λp/2⟩ =
1

2πh̄

∫ ∞

−∞
dλxM(λx, λp)e

iλxx/nq. (2.143)

We can rewrite in the form of our well known Wigner function as

W (x, p) =
1

(2πh̄)2

∫ ∞

−∞
λx

∫ ∞

−∞
λpM(λx, λp)e

i
h̄
(λxx+λpp). (2.144)

Therefore we find that the Wigner function is the Fourier transform of the characteristic
function. The choice of characteristic function itself is flexible and if we set e− i

h̄
(λxx+λpp)) =

ezα
∗−z∗α we define the characteristic function as ezâ†e−z∗â, leading to theGlauber–Sudarshan

P-function. If we choose e− i
h̄
(λxx+λpp)) = ezα

∗−z∗α with the characteristic function e−z∗âezâ†

we find the Husimi Q-function. Here we choose to work with the Wigner function for both
historical reasons in the laboratory and personal preferences and refer the reader to [67, 68]
for more information.

It is important to realize that the Wigner function itself has several conventions, which
all depend on how the factor h̄ is defined. In literature there are three common conven-
tions: h̄ = 0.5, 1, 2. They change the normalization of the Wigner function but also translate
and re-scale the phase-space coordinates. The usual use in literature is h̄ = 1, such that
the phase-space operators are expressed in their standard form with a factor 1/

√
2. It will

become clear later that for us the choice of

h̄ =
1

2
(2.145)

is the most convenient, in section 2.2. We will moreover use this factor, but set to h̄ = 1,
as a normalization to vacuum fluctuations in the reconstruction of our experimental states
in subsection 3.3.4.
Now that we know how to express states in quantum optics, let us transition to oper-
ations and measurements. We remark that from now on, we will sometimes omit the
hat-superscript for operators if it is clear from context that they are operators.
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2.1.3 HOW TO DESCRiBE OPERATiONS AND MEASUREMENTS

Here we will first discuss the action of general operators on a system, corresponding to
unitary transformation applied to the system. We then describe the general formalism of a
specific operation, the measurement of a quantum system, in the density matrix and Wigner
function formalism.

2.1.3.1 UNiTARY EVOLUTiON OF A QUANTUM SYSTEM

Operations generally describe the evolution of a system under the influence of a Hamiltonian
Ĥ. A pure state vector |Ψ⟩ evolves according to Schrödinger’s equation, which is equivalent
to Stone’s theorem of eq. (2.17) such that

ih̄
d

dt
|Ψ(t)⟩ = Ĥ |Ψ(t)⟩ . (2.146)

For a general density matrix one writes

ih̄
d

dt
ρ̂ = [Ĥ, ρ̂] = Ĥρ̂− ρ̂Ĥ. (2.147)

We can see from eq. (2.146), that for a time-independent Hamiltonian, the states evolve as

U = e−
i
h̄
Ĥt (2.148)

|Ψ(t)⟩ = U |Ψ(0)⟩ (2.149)
ρ̂(t) = Uρ̂(0)U †, (2.150)

where the time evolution is defined by the unitary operator Û of eq. (2.148). This unitary
evolution of quantum systems assumes, that the quantum system is isolated and does not
interact with its environment, which makes it trace-preserving. This does not have to be
the case. If we introduce a second quantum system of dimension K and extend our Hilbert
space such that

H = HN ⊗HK , (2.151)

where we can call the Hilbert space HK the environment. The full state of the system can be
denoted by ρ̂′. Now any unitary U can act on the full Hilbert space such that ρ̂′ → Uρ̂′U †.
To see the effect on the system of interest in HN we can trace out the environment via the
partial trace such that

ρ̂ = TrK [ρ̂′]. (2.152)

One particularly important (trace-preserving) operation is the measurement of a quantum
system, which cannot in general be described as a Hamiltonian 10.

10Only quantum non-demolition measurements can be formulated with a Hamiltonian.
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2.1.3.2 MEASURiNG THE DENSiTY MATRiX: POVM FORMALiSM

Let us define how a general measurement acts on the density matrix of a quantum system
in HN . A general measurement has k possible outcomes and each outcome i has one
measurement operator Ai associated to it, such that the completeness relation

k∑
i=1

A†
iAi = 1 (2.153)

is satisfied. It ensures that the probabilities for each outcome i add up to one and incor-
porates the trace-preserving nature of measurements. A measurement on the initial state ρ̂
giving the ith outcome with probability pi transforms ρ̂ into ρ̂i such that

ρ̂→ ρ̂i =
Aiρ̂A

†
i

Tr[Aiρ̂A†
i ]
, (2.154)

with pi = Tr[Aiρ̂A†
i ] such that the normalization is preserved. This measurement postulate

is a direct consequence of axioms 1-4 [46]. Note here that if we do not select a certain
outcome measurement i then ρ̂ will be transformed into a convex mixture of all possible
outcomes

∑k
i=1Aiρ̂A

†
i . This stands in contrast to classical physics, where the probability

distribution of a state is not changed if no selection of measurement outcomes i is made∑
i P (X|Yi)P (Yi) = P (X). Equation (2.154) shows that Ai is equivalent to a Hamiltonian-

type evolution if there exists only one measurement outcome k = 1, such that Tr[A1ρ̂A
†
1] = 1.

This shows that in general, any measurement on a quantum system will perturb its unitary
time evolution.
The most general formulation of a measurement is via Positive Operator Valued Measures
(POVM), which are defined by any partition of the identity operator into k positive opera-
tors Ei, called effects and satisfy

k∑
i=1

Ei = 1 Ei = E†
i Ei ≥ 0. (2.155)

The probability of the ith outcome can then be calculated by

pi = Tr[Eiρ̂]. (2.156)

The POVM effects do not have to form a discrete set, such that the sum in eq. (2.155) can
be replaced by an integral. Moreover, the operators Ei do not need to commute and can
be expressed as Ei = A†

iAi to fit with the completeness relation of eq. (2.153), where in
general Ei does not define Ai uniquely.

A POVM applied to a Hilbert space of size N is called informationally complete if it has
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at least N2 elements, which means that any input state can be reconstructed from its mea-
surement outcomes. A POVM is called pure if each effect Ei fulfills eq. (2.106). As such
a pure POVM has effects that are proportional to the pure density matrices ρ̂pure and are
called projective measurements. Note that here it seems as if the projective measurement is
a special case of the general POVM formalism. This can be inverted by Naimark’s theorem,
which states that any pure POVM can be embedded in a larger Hilbert space as a projective
measurement [68]. The POVM formalism will be used in chapter 4, where the importance
of the projectivity of a measurement will become clear.

2.1.3.3 OPERATiONS ON THE WiGNER FUNCTiON

The mathematical definition of the Wigner function can be applied to any Hermitian op-
erator, not only density matrices such that we can use eq. (2.121) to write the Wigner
functions for any POVM element and any unitary evolution, defined in eq. (2.148). In the
case of a measurement, the probability of the outcome of a pure POVM element, applied
on a Wigner function can then be calculated with eq. (2.129). Although possible, in this
way we are losing the simplicity of matrix multiplications, which is why Wigner functions
are rarely used in this way.

The power of the Wigner formalism lies in the fact, that we can rather easily calculate
the action of any unitary Û on the phase-space coordinates x̂, p̂. If we have an analytical
solution of the Wigner function for a certain state, applying a unitary does not require us to
recalculate this solution. We can simply calculate the action of the unitary on x̂ and p̂ and
plug this action into the Wigner function. This approach also favors a fast understanding
of the action of a unitary, which is hard to see at first glance for density matrices.
To facilitate the calculation of the action of any unitary operator Û = eX̂ on the quadrature
operators we use a particularly useful variant of the Baker–Campbell–Hausdorff formula.
The action of Û = eX̂ on any operator Ŷ , which in our case in either position or momentum,
can be computed via

eX̂ Ŷ e−X̂ =

∞∑
n=0

[(X̂)n, Ŷ ]

n!
, where [(X̂)0, Ŷ ] = Y (2.157)

and [(X̂)n, Ŷ ] is the formulation of n-nested commutators. Indeed now the action of the
unitary can be written as as a change of coordinates

Wρ(x, p) → Wρ(x
′, p′). (2.158)

We will see the usefulness of this approach in section 2.3. For completeness, we note,
that one can also compute the phase-space evolution due to any operation with Moyal’s
equation (2.49). This equation of motion is difficult to solve and many numerical methods
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are under active development [51, 69] and can lead to insights into quantum chaos and the
classical-to-quantum transition [70].

2.1.4 DiSCRETE AND CONTiNUOUS VARiABLES

Until now we have seen two different formalisms that can describe a quantum system: a
Hilbert space with excitation states called Fock states and a phase-space with quadrature
operators. The former is formulated in a discrete density matrix formalism while the latter
uses a continuous integral over phase-space. For this reason, the quantum optics commu-
nity often makes the distinction between a continuous variable (CV) system which would
live in infinite dimensional Hilbert spaces and therefore prefers to be expressed as a Wigner
function, and discrete variable (DV) systems with a small excitation occupation that can
be easily expressed via a density matrix.
This stems from the fact that the Hilbert space is often considered a quantum object while a
phase-space is connected to the notion of classicality. But as we saw in subsubsection 2.1.1.3
a Hilbert space itself does not point to any quantumness and quantum and classical phase-
space are isomorphic to their Hilbert spaces. As argued by M. Walschaers [41], a Hilbert
space makes it easier to forget the underlying mode structure of light, because no direct
connection to the vocabulary of classical optics is possible. Importantly, the modes are the
physical system that contains the quantum system we are interested in, much like electrons
are the physical systems that contain spins. The difference is, that light modes can be
changed by optical elements thereby also transforming the Hilbert space or phase-space to
be considered.
The experimental implications of this can be significant. For instance, in a DV approach,
entanglement between two paths can be generated by directing a single photon onto a beam-
splitter, a phenomenon known as path-entanglement. However, this type of entanglement
is not considered inherent or “intrinsic” in a CV approach, as it doesn’t remain unchanged
under mode transformation [41]. In the CV approach, any quantity that remains constant
is termed “intrinsic”, with system purity or entropy serving as useful examples. This leads
to the introduction of “intrinsic entanglement”, which remains unchanged under mode basis
transformation. This particular definition of entanglement excludes any Gaussian states,
which we will define in the next subsection, from being considered entangled.

In this thesis, we adopt the terms CV and DV to classify systems that reside in small or
large Hilbert spaces, respectively, based on historical conventions. However, it’s important
to note that this distinction is somewhat arbitrary from a theoretical perspective. In the
context of this experiment, we combine and leverage diverse methods of state creation and
measurements that have been separately developed within the distinct experimental com-
munities of DV and CV. This integrated approach employs theoretical frameworks from
both domains, reflecting a unified strategy.
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2.1.5 QUANTiFYiNG QUANTUMNESS: NON-GAUSSiANiTY

We have already defined a quantum state to be a state of maximal purity and a classical
state a state of minimal purity in the Fock basis. This is because a maximally mixed state,
showing no coherences between Fock states and therefore being fully classical, has minimal
purity, as in eq. (2.106). In order to approach this idea in a realistic scenario, we need to
define what we say is a quantum system and when this system for us becomes classical.

We recall that the reason why the Wigner function is non-positive is the Heisenberg uncer-
tainty. Let us therefore define for which kinds of states the Heisenberg limit eq. (2.98) is
reached. To find this limit, we remind ourselves that we started from

(∆x̂)2(∆p̂)2 = ⟨Ψ|x̂2|Ψ⟩ ⟨Ψ|p̂2|Ψ⟩ (2.159)

and used two inequalities to define the Heisenberg limit: The Cauchy-Schwartz inequality
and the modulus square inequality of a complex number. We therefore need to find con-
straints on the state |Ψ⟩, such that those inequalities become equalities.
The Cauchy-Schwartz inequality can generally be written as

| ⟨f |g⟩ |2 ≤ ⟨f |f⟩ ⟨g|g⟩ (2.160)

and only becomes an equality if f and g are linearly dependent. In our case we can define
f and g to be of the form

|f⟩ = (x̂− ⟨x̂⟩) |Ψ⟩ , (2.161)
|g⟩ = (p̂− ⟨p̂⟩) |Ψ⟩ , (2.162)

such that we find that we have rewritten the Heisenberg uncertainty (this time without
shifting to the phase-space origin). In order to make |f⟩ and |g⟩ linearly dependent, we
require |g⟩ = c |f⟩. The coefficien c can now be determined via the second inequality we
used. The modulus square inequality of a complex number |z|2 ≥ ( z−z

∗

2i )2 becomes an
equality if z has no real part. We therefore require c to be a complex number c = ia, such
that

|g⟩ = ia |f⟩ . (2.163)

As |f⟩ and |g⟩ are linearly dependent, we expect to find one type of state vector |Ψ⟩ (a),
which will generally minimize the Heisenberg uncertainty. We can now find the wavefunction
of |Ψ⟩ as in eq. (2.134) and write

(p̂− ⟨p̂⟩) |Ψ⟩ = ia(x̂− ⟨x̂⟩) |Ψ⟩ / ⟨x| (2.164)

(−ih̄ ∂
∂x

− ⟨p̂⟩)ψ(x) = ia(x− ⟨x̂⟩)ψ(x). (2.165)
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Solving this equation we find

ψ(x) = Ae−a/(2h̄)(x−⟨x̂⟩)2+i⟨p̂⟩x/h̄ (2.166)

with a = 1/(2c2) and A ∝ (a/π)−1/4 for normalization. This means that minimal uncer-
tainty states take the form of a displaced Gaussian wavefunction. Importantly, it shows that
mixed states can never reach the Heisenberg uncertainty limit as our approach only works
for pure states. Moreover we can calculate the Wigner function for such general Gaussian
states and find

WG(x, p) =
1

πh̄
e
− (x−⟨x̂⟩)2

2(∆x)2 e
− (p−⟨p̂⟩)2

2(∆p)2 , (2.167)

where we set ∆x = c
√
h̄ and ∆p =

√
h̄/(2c) [71]. This is just a product of a Gaussian

position and momentum distribution and therefore is positive over the whole phase-space.
Indeed it seems that we have found a class of states that one can consider trivial states
as they can be described by a joint classical probability distribution of momentum and
position. Interestingly, those are the states that fulfill the Heisenberg uncertainty relation.
Let us now require additionally that position and momentum have a symmetric uncertainty,
∆x = ∆p =

√
h̄/2. This leads to |g⟩ = i |f⟩, which shows that common eigenvectors

for position and momentum exist |Ψ⟩
∆x=∆p=

√
1/2

= |x′, p′⟩. Such states are approximate
eigenstates of position and momentum, where the error in this approximation is given by
the Heisenberg uncertainty. We can therefore write ⟨x̂⟩ = x′ and ⟨x̂⟩ = p′ such that we
find a subclass of Gaussian states that we shall call coherent states or classical states with
a Wigner function of

WC(x, p) =
1

πh̄
e−(x−x′)2/h̄e−(p−p′)2/h̄, (2.168)

Their classicality can be connected to subsubsection 2.1.1.3, where classical state are defined
to have shared eigenvectors for position and momentum. We note that in phase-space those
states will exactly show a marginal distribution standard deviation of

√
h̄/2 as expected

from the Gaussian distribution we required. This is due to those minimal uncertainty states
normalizing the state space (compare eq. (2.75)-(2.78)) and consequently the Wigner func-
tion. We have now defined a class of pure states that we define to be non-quantum, due
to convexity. Indeed any mixture of such states will also lead to non-quantum states. One
usually singles out a property L of the state ρ̂ and then compares them to the set of Gaus-
sian and Classical states. If any mixture of Gaussian states cannot reach the value such
that LG < L(ρ̂), then ρ̂ is said to be non-Gaussian. If any mixture of classical/coherent
states cannot reach the value such that LC < L(ρ̂), then ρ̂ is said to be non-Classical,
where LC ≤ LG as it is just a special case of the non-Gaussian set. What we called here
LC and LG will be referred to as thresholds in the following chapters.
The underlying meaning of a state being non-Gaussian is that it cannot be efficiently sim-
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ulated by a classical system, which has been extensively studied [72–76] and will be further
discussed in section 2.4.
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2.1.6 TAKE-AWAY MESSAGE

The most important concepts we have developed so far as summarized here.
About classical light:

• Light is classically described by an electromagnetic wave. This wave lives in a
vector space, spanned by its modes, called the modal Hilbert space.

• We can have polarization, temporal, or spatial modes that can be used inde-
pendently in the continuous wave regime we are operating in. Each mode has a
complex field amplitude, whose real and imaginary parts are called quadratures.
Those quadratures form the optical phase-space. Each mode has its phase-space
and can be described by a harmonic oscillator.

• In the single mode approach we assume that one mode describes the electro-
magnetic field. This will be our experimental regime.

About the transition from classical to quantum mechanics:

• The main difference between classical and quantum mechanics is Heisenberg’s
uncertainty and therefore the idea that quantum measurements can interfere.
An example of interfering measurements are the quantized field quadratures or
position and momentum. They form a phase-space, which can be mapped to a
complex Hilbert space.

• In classical mechanics pure states in this phase-space are not the basis of their
Hilbert space, which prevents them from being in superpositions. In quantum
mechanics, pure states are the basis of their Hilbert space, such that they can
be in superpositions.

• We can develop a joint probability distribution, describing the evolution of po-
sition and momentum in phase space. The governing equation for this evolution
is the Liouville equation in classical and Moyal’s equation in quantum mechan-
ics. In this way, we can define the Wigner function, which is normalized but
can take negative values. It is therefore not a proper probability distribution.

About the implications of quantizing the light field:

• The complex field amplitude becomes the annihilation operator â. The quadra-
tures therefore also become operators x̂, p̂. The complex conjugate of the anni-
hilation operator is the creation operator â†.

• The harmonic oscillator describing the electromagnetic field of a quantized mode
has discrete energy levels. Those levels depend on the number of excitations
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in the system, defined by the number operator n̂. Applying the annihilation
operator to a system decreases the number of excitations by one and inversely
for the creation operator. The eigenvectors of the number operators are called
the Fock states.

About expressing a state as a matrix:

• Any state can be described as a superposition of Fock states and their statistical
mixtures, forming the density matrix. Those density matrices ρ̂ are Hermitian
positive semi-definite. A density matrix is pure if the trace of its square is one
Tr[ρ̂2] = 1. This defines the purity of a state P(ρ̂). A state of minimal purity is
called a fully mixed state. The overlap between two states is called the fidelity
F(ρ̂1, ρ̂2).

• A pure composite system is entangled. Taking the partial trace of a fully en-
tangled system results in fully mixed sub-states. Entanglement between two
modes can be calculated by applying a partial transpose and calculating if the
resulting matrix has negative eigenvalues resulting in the measure of negativity
or logarithmic negativity.

About writing a state as a phase-space probability function:

• The Wigner function describes the phase-space distribution of the two quadra-
tures and is written as Wρ(x, p) =

1
πh̄

∫
dy e2ipy/h̄ ⟨x− y|ρ̂|x+ y⟩.

• It is a real-valued function, that is normalized to one. Its minimum and maxi-
mum value are ±1/(h̄π), where h̄ is the normalization. Changing the normaliza-
tion changes the proportionality factor between annihilation, creation, position,
and momentum operator. The Wigner function is not the unique phase-space
description.

Wigner function and density matrix are equivalent representations for the state.
About the evolution and measurement of quantum systems:

• The evolution of a state is described by Schrödinger’s equation and is equivalent
to a unitary operator. If this unitary acts on an isolated system, the evolution
is trace-preserving. If it acts on an environment and a system, the action on the
system is not trace-preserving.

• A measurement is an example of a trace-preserving operation. Measurements
can be formulated as positive operator valued measures (POVMs), which are
described by one matrix per possible measurement result and add up to unity.
If the matrices of a POVM are pure then the measurement is projective.
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• The effect of an operation on the Wigner function can be calculated by the effect
this operation has on the phase-space coordinates.

From the viewpoint of the Wigner function or the density matrix two different com-
munities developed, focusing on a continuous variable (CV) or discrete variable (DV)
approach. While historically they have developed different experimental and theoret-
ical practices, nowadays they are merging. We are using their naming convention to
describe states that live in approximately two-dimensional Hilbert spaces as DV or
larger Hilbert spaces as CV.
About Non-Gaussianity:

• All states that have a minimal Heisenberg uncertainty can be described in phase-
space by a product of a Gaussian position and momentum distribution. Those
states are called Gaussian states. Gaussian states are states that have a positive
Wigner function and therefore can be described by classical mechanics. Classical
states are Gaussian states that have symmetric uncertainty in position and
momentum.

• Non-Gaussian states are states that cannot be described by classical mechanics
and therefore capture the quantum character of states.

After having developed a notion of Gaussian and non-Gaussian states the next section will
give typical examples of those states.
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2.2 STATES iN QUANTUM OPTiCS

In this section we want to investigate states, that are typically found in quantum optical
systems and investigate if they are non-Gaussian. For each state we will show the its density
matrix, Wigner function, marginal distribution of the quadratures and the photon-number
distribution PΨ(n) = | ⟨n|Ψ⟩ |2. The phase-space normalization h̄ will be set to h̄ = 0.5 for
plotting or left as a variable.

2.2.1 GAUSSiAN STATES

In this subsection, we will introduce four types of states: the vacuum state, coherent state,
thermal state, and squeezed state. It should be noted that while the thermal state does not
satisfy the minimal Heisenberg uncertainty relation, the other three states do.

2.2.1.1 VACUUM

The easiest state in any optical system is the vacuum state. The vacuum state has no
photon excitation such that corresponds to a Fock state |0⟩. We can use eq. (2.133) to find
its corresponding Wigner function

W|0⟩⟨0|(x, p) =
1

π
e−(x2+p2)/h̄ (2.169)

as the Laguerre polynomial is always L0
0(x) = 1. For such a state the density matrix is

simply
ρ̂0 = |0⟩ ⟨0| , (2.170)

and its photon number distribution is only nonzero for P0(0) = 1 because n̂ |n⟩ = n |n⟩.
The properties of the vacuum state are shown in fig. 2.1, where in (d) we see that this
state is completely symmetric. Indeed we will see that this is the case for all Fock states.
Moreover, the Wigner function is a coherent state with its mean at the phase-space origin.
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Figure 2.1: Properties of the vacuum state |0⟩. In (a) the imaginary and real parts of the density
matrix in the Fock basis of vacuum are shown. (b) depicts the photon number distribution of this
state, equivalent to the diagonal of the density matrix. The Wigner function is visible in (c) with
its marginal distributions in (d). Note that the marginal distributions drawn in (c) are not up to
scale.

2.2.1.2 COHERENT STATES

Let us now define properly what a coherent state is. We have already stated that all classical
or coherent states have shared eigenvectors |x, p⟩ in subsection 2.1.5. We can define this as
a complex vector |α⟩ and use eq. (2.165) to find its eigenvalues. Indeed we stated that the
constant a for coherent states is a = 1/(2c2) = 1/(2(1/

√
2)2 = 1 and can therefore write

(p̂− ⟨p̂⟩) |α⟩ = i(x̂− ⟨x̂⟩) |α⟩

x̂+ ip̂ |α⟩ = ⟨x̂+ ip̂⟩ |α⟩
√
2h̄ â |α⟩ = ⟨x̂+ ip̂⟩ |α⟩ (2.171)

â |α⟩ ≡ α |α⟩ , (2.172)

where α are the eigenvalues and are usually defined as α = |α|eiϕ with the amplitude |α|
and the phase ϕ. We can see here that |α⟩ are eigenstates of the annihilation operator
of eq. (2.77) and as such â it is unchanged by the annihilation of a photon. Importantly
we see that there is a factor

√
2h̄ appearing in eq. (2.171). This means that there is a
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re-scaling factor of the eigenvalues α = 1/
√
2h̄ ⟨x̂+ ip̂⟩ = 1/

√
2h̄(ℜ(α) + iℑ(α)) in the x, p

representation. If we set h̄ = 0.5 we find α = ℜ(α) + iℑ(α) and can avoid always re-scaling
the input state to the Wigner function.
If we now want to write the generating Hamiltonian of the eigenvalue equation 2.171, we
first search for the corresponding equation for the eigenvectors in terms of annihilation and
creation operators

assume the general form |α⟩ =
∞∑
n=0

cn |n⟩

â |α⟩ = â

∞∑
n=0

cn |n⟩

α |α⟩ =
∞∑
n=1

cn
√
n |n− 1⟩ /n→ n+ 1

|α⟩ =
∞∑
n=0

cn+1

√
n+ 1 |n⟩

α

∞∑
n=0

cn |n⟩ =
∞∑
n=0

cn+1

√
n+ 1 |n⟩ (2.173)

we get the recursion relation cn+1 = α/
√
n+ 1cn which leads to cn+1 = αn/

√
n!c0 and with

normalization we finally arrive at

|α⟩ = e−|α|2/2
∞∑
n=0

αn√
n!

|n⟩ . (2.174)

We can now write the creating Hamiltonian of the coherent state as

|α⟩ = e−|α|2/2
∞∑
n=0

αn

n!
(â†)n |0⟩ (2.175)

= e−|α|2/2eαâ
† |0⟩ (2.176)

due to â |0⟩ = 0 we also find eα
∗â |0⟩ = |0⟩

such that |α⟩ = e−|α|2/2eαâ
†
eα

∗â |0⟩ (2.177)
= eαâ

†−α∗â |0⟩ (2.178)
= D(α) |0⟩ (2.179)

which shows indeed that the vacuum state is |0⟩ = |α = 0⟩ a coherent state and therefore has
minimum uncertainty. The operatorD(α) in eq. (2.178) is called Displacement operator and
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Figure 2.2: Properties of the coherent state |α = 1⟩. Caption as in fig. 2.1.

generates coherent states by displacing them in phase-space. If we write the displacement
operator in terms of position and momentum for h̄ = 0.5, we find

D(α) = eαâ
†−α∗â, (2.180)

Dα(x, p) = eα(x̂−ip̂)−α
∗(x̂+ip̂) (2.181)

= ei[ℑ(α)x̂−ℜ(α)p̂]. (2.182)

The Wigner function of a displaced state is therefore

Wα(x, p) =
2

π
e−2(x−ℜ(α))2e−2(p−ℑ(α))2 (2.183)

and has the wavefunction

ψα(x) = (2/π)−1/4e−(x−ℜ(α))2+i2ℑ[α]x. (2.184)

We moreover see that a real amplitude influences x while an imaginary amplitude influences
p in the displacement.
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This is shown in fig. 2.2, where we plot for α = 1. As visible in (c) this constitutes a shift of
x+1 in phase-space. The coherent state basis is over-complete, meaning that two coherent
states are not orthogonal, but in fact overlap

| ⟨α|β⟩ |2 = e−|β−α|2 . (2.185)

Interestingly in the phase-space representation, we have to adapt the normalization to our
choice of h̄ ∫

dx[Ψβ(x)Ψα(x)
∗]2 = e−|β−α|2/h̄. (2.186)

The photon statistics can be calculated as

Pα(n) = | ⟨n|α⟩ |2 (2.187)

= |e−|α|2/2
∞∑
m=0

αm√
m!

⟨n|m⟩ |2 (2.188)

= e−|α|2 (|α|2)n

n!
(2.189)

and therefore follows a Poisson statistic. The expectation value of the number operator is

⟨n̂⟩α = |α|2 (2.190)

giving a mean photon number of the squared amplitude of the coherent state.

Let us define the term shot noise, which describes the fluctuations of the number of photons
present in a state being the standard deviation of the photon number operator ∆n̂, which
grows with n. This is not to be confused with the Heisenberg limit, which is the same for
all coherent states. Because ⟨α|(∆n̂)2|α⟩ = ⟨n̂⟩α we see that the vacuum state with α = 0

has no shot noise because it has no photon number fluctuations. In an experimental setup,
the shot noise is equivalent to the accumulation of electronic noise and the above-explained
intensity fluctuations. In our experiment, we use the shot noise of the vacuum state to
calibrate the whole setup, as we will see in chapter 3.

2.2.1.3 THERMAL STATES

Thermal states are all states that have symmetric standard deviations ∆x = ∆p. Those
states connect the quantum descriptions to the laws of thermodynamics such that the quan-
tum counterpart of the canonical (Gibbs) ensemble, corresponding to the equilibrium state
at the temperature T and a Hamiltonian Ĥ is described by

ρ̂b =
1

Z
e−bĤ b = 1/(kBT ) Z = Tr[e−bĤ ], (2.191)
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where kB is the Boltzmann constant [77]. Let us consider the quantum harmonic oscillator
of eq. (2.82) where for simplicity we set ω = 1. This system is closed and as for classical
systems preserves entropy. It therefore cannot describe the equilibration process for an
isolated quantum system needed to achieve a state of the form ρ̂b. The only equilibrium
state we can achieve is by imagining a kind of time averaging of the eigenstates of the
quantum harmonic oscillator, leading to the loss of all coherences in the density matrix
such that we can redefine a quantum optical thermal state as follows

ρ̂Th =
1

Z

∞∑
n=0

|n⟩ ⟨n| e−bEn , (2.192)

where En = h̄(n+1/2) are the energy eigenvalues of the corresponding Fock states [77, 78].
We find Z =

∑
n e

−bEn = e−bh̄/2/(1 − e−bh̄) and the mean value of the excitation in the
oscillator becomes ⟨n̂⟩ = 1/(ebh̄ − 1). Let us find the Heisenberg uncertainty for thermal
states. The standard deviations for the eigenstates of our Hamiltonian read

⟨n|(∆x̂)2|n⟩ = ⟨n|x̂2|n⟩ − (⟨n|x̂|n⟩)2 = h̄(n+
1

2
), (2.193)

⟨n|(∆p̂)2|n⟩ = h̄(n+
1

2
), (2.194)

which are their energies. If we now write the variances of the thermal state of eq. (2.192)

(∆x̂)2Th = h̄(
1

2
+ ⟨n⟩), (2.195)

(∆p̂)2Th = h̄(
1

2
+ ⟨n⟩), (2.196)

we find symmetric values that for n = 0 reduce to the Heisenberg limit. As we know that
⟨n⟩ = 1/(eb − 1) we see that the Heisenberg uncertainty goes towards its minimal value as
T → 0 and goes towards infinity for T → ∞. Following our definition in eq. (2.167), the
Wigner function of a thermal state reads

WTh(x, p) =
1

πh̄
e
− (x−⟨x̂⟩)2

2h̄(0.5+⟨n̂⟩) e
− (p−⟨p̂⟩)2

2h̄(0.5+⟨n̂⟩) , (2.197)

This kind of state with a temperature of T = 5 10−11K (and the Boltzmann constant
expressed as kB = 2.083661912 1010 Hz/K) and h̄ = 0.5 is visible in fig. 2.3. The values
were chosen for the clarity of the plot.

Thermal states provided an early link between thermodynamics and quantum mechanics
and opened the path toward the calculation of entropy in quantum systems. Nowadays
quantum thermodynamics is an active area of research where many concepts are connected
with the quantum informational aspect of quantum mechanics. In experiments, thermal
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Figure 2.3: Properties of the thermal state ρTh with a temperature of 5 10−11 K. Caption as in fig.
2.1

states are usually unwanted, as the equilibration towards the thermal state washes out
interesting quantum phenomena like superposition and entanglement.

2.2.1.4 SQUEEZED STATES

Up until now, we have only considered Gaussian states with symmetric standard deviations,
let us now introduce states that also reach the Heisenberg limit, but with ∆x̂ ̸= ∆p̂. Then
one quadrature will be squeezed, while the conjugate quadrature will be anti-squeezed, such
that we can define a squeezing e−ξ with ξ ∈ C and therefore a squeezing factor s = (e−ξ)2 =

e−2ℜ(ξ). We can now write

∆x̂ = e−ξ
√
h̄

2
, (2.198)

∆p̂ = eξ
√
h̄

2
, (2.199)
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where we used again the connection a = 1/(2c2) with c = e−ξ
√

1
2 of subsection subsec-

tion 2.1.5. We can plug our coefficient a = 1/(2c2) = e2ℜ(ξ) into eq. (2.164) such that

(p̂− ⟨p̂⟩) |Ψ⟩ = i

2c2
(x̂− ⟨x̂⟩) |Ψ⟩ (2.200)

(e2ℜξx̂+ ip̂) |Ψ⟩ = ⟨e2ℜξx+ ip⟩ |Ψ⟩ (2.201)
(
√
2h̄ sinh(ξ)â† +

√
2h̄ cosh(ξ)â) |Ψ⟩ = ⟨e2ℜξx+ ip⟩ |Ψ⟩ , (2.202)

where in eq. (2.202) we have written the left-hand side in terms of annihilation and creation
operators instead of the quadrature operators. We have defined the squeezed state as a
deviation from the coherent state, such that we expect eq. (2.202) to reduce to eq. (2.171)
for ξ = 0. We can now define an operator Ô, capturing the left-hand side of eq. (2.202)
and rewrite it, such that we see the coherent state solution

Ô =
√
2h̄ sinh(ξ)â† +

√
2h̄ cosh(ξ)â =

√
2h̄ sinh(r)â† +

√
2h̄eiϕ cosh(r)â

=
√
2h̄UâU †, (2.203)
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Figure 2.4: Properties of the squeezed vacuum state |ξ⟩ with a squeezing of 4 dB, i.e. r = 0.46 or
λ = 0.43. Caption as in fig. 2.1.
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with U being a unitary transformation and ξ = reiϕ. Therefore, a squeezed state is a
coherent state up to this unitary transformation, that is defined as the squeezing operator

U = S(ξ) = e
1
2
(ξ∗â2−ξ(â†)2). (2.204)

We often use the squeezed vacuum state, defined as

S(ξ) |0⟩ = |ξ⟩ . (2.205)

The fact that eq. (2.204) shows that Ô is a linear transformation of the annihilation oper-
ator, such that for ξ = 0 we retrieve our eigenvalue equation of the coherent state shows,
that both coherent |α⟩ and squeezed vacuum states |ξ⟩ are general eigenstates of Ô such
that we can write the general eigenvalue equation

Ô |Ψ⟩ =
(√

2h̄ sinh(r)â† +
√
2h̄eiϕ cosh(r)â

)
|α, ξ⟩ = (α cosh(r) + α∗ sinh r) |α, ξ⟩ . (2.206)

In this way we found the most general states that are Gaussian as the eigenstates of Ô,
being squeezed and displaced vacuum:

D(α)S(ξ) |0⟩ = |α, ξ⟩ . (2.207)

We can write the squeezed vacuum state of eq. (2.205) in the Fock basis as

|ξ⟩ = 1√
cosh(r)

∞∑
n=0

(−1)n
√

(2n)!

2nn!
einϕ tanh(r)n |2n⟩ (2.208)

which can be simplified by setting λ = tanh(r) and explicitly written in subsection 3.2.3.
The squeezing is then often given in decibels

sdB = −10 log10(
1− λ

1 + λ
) =

20

ln(10)
r. (2.209)

We see in eq. (2.208), that squeezed vacuum is a superposition of even numbers of Fock
states. The probability of a 2n-photon detection is

Pξ(2n) =
(2n)!

22n(n!)2
tanh(r)2n

cosh(r)
. (2.210)

Its marginal distribution in position can be written as

Pξ(x) =
eξ√
πh̄
e
− x2

h̄e−2ξ . (2.211)
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The Wigner function of a squeezed state is

WG(x, p) =
1

πh̄
e−

(x−⟨x̂⟩)2

h̄e−2r e−
(p−⟨p̂⟩)2

h̄e2r . (2.212)

Such a state can be seen in fig. 2.4, where we applied a squeezing of 4 dB, i.e. r = 0.46

or λ = 0.43. We notice that the x-quadrature is squeezed while the p-quadrature is anti-
squeezed, as defined above. The squeezing operator of eq. (2.204) can also be rewritten,
such that the squeezing is applied to two modes. This is nothing else than a mode change of
the classical modal light basis and we will encounter it in subsection 3.2.4. For completeness,
the displaced squeezed state in the Fock basis can be written as [79]

|α, ξ⟩ = e−|z|2/2 sinh(2r)+(z∗)2 sinh2(r)√
cosh(r)

∑
n

1√
n!
(eiϕ

tanh(r)

2
)n/2Hn(z

∗) |n⟩ ,

with z =
1√

2 tanh(r)
α∗eiϕ/2 +

√
tanh(r)

2
αe−iϕ/2. (2.213)

2.2.2 NON-GAUSSiAN STATES

Now we explore all states, that cannot be described by a Gaussian distribution in phase-
space. The most common states of those non-Gaussian states are the so-called Fock states,
equivalent to the excitations in the quantum harmonic oscillator. Other famous non-
Gaussian states are superpositions of Gaussian states. We refer to those states as ”qubit”
states and will explain qubits before presenting two examples: cat- and GKP-qubits.

2.2.2.1 FOCK STATES

In the previous subsection, we have already explored the vacuum state. We can write an
arbitrary Fock state as

|n⟩ = (a†)n√
(n+ 1)!

|0⟩ (2.214)

and have previously defined its wavefunction in eq. (2.134) and Wigner function in eq.
(2.133). In fig. (2.5) we can see that the single photon has the maximal Wigner negativity
of −2/π at the phase-space origin.
All Fock states are symmetric around the origin, which is why both marginal distributions
are identical. The photon number distribution is trivial in this ideal case. In experiments
both marginal and photon number distribution are good indicators of the system quality.
We see that the higher the Fock number, the more x-p-zero-crossings are present, as visible
in fig. 2.6. Those crossings are circular around the origin. We can moreover see that each
odd Fock state tends to −2/π and each even Fock state towards 2/π at the phase-space
origin. This is expected due to eq. (2.136).
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Figure 2.5: Properties of single photon state |1⟩. Caption as in fig. 2.1.

(a) (b) (c) (d)

Figure 2.6: Wigner functions of the Fock states (a) for a two photon state, (b) a three photon state,
(c) a four-photon state and (d) a five-photon state.

2.2.2.2 THE QUBiT

Any of the Gaussian states we defined in subsection subsection 2.2.1, can be used to create
non-Gaussian states by creating a superposition of two (quasi-) orthogonal Gaussian states.
The weights of each and the phase between the superposition-components can vary, forming
a two-dimensional parameter space. Any possible state in this parameter space is called
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a pure qubit. In order to have a general description, the logical states |0⟩L and |1⟩L are
defined. Those states are orthogonal and a qubit can thus be written as

|qubit⟩ = c0 |0⟩L + eiϕc1 |1⟩L and c20 + c21 = 1 (2.215)

for normalization. A realistic qubit does not have to be a pure state and can be written in
the basis of any 2x2 Hermitian matrices, which are the logical Pauli matrices XL, YL, ZL

together with the identity 1 such that the qubit density matrix is

ρ̂Q =
1

2
[1 + r⃗ σ⃗], (2.216)

with r⃗ = (rx, ry, rz)
T and σ⃗ = (XL, YL, ZL)

T (2.217)

XL =

[
0 1

1 0

]
YL =

[
0 −i
i 0

]
ZL =

[
1 0

0 −1

]
. (2.218)

The eigenvectors of the Pauli matrices with eigenvalues 1,−1 are the qubits

|0⟩L |1⟩L for ZL (2.219)

|+⟩L =
1√
2
(|0⟩L + |1⟩L) |−⟩L =

1√
2
(|0⟩L − |1⟩L) for XL (2.220)

|+i⟩L =
1√
2
(|0⟩L + i |1⟩L) |−i⟩L =

1√
2
(|0⟩L − i |1⟩L) for YL, (2.221)

where Y = iXZ. The state is pure if |r⃗| = 1.
We can now represent this state in spherical coordinates by using the transformation

r⃗ = (sin(θ) cos(ϕ)), sin(θ) sin(ϕ), cos(θ), (2.222)

where θ is the colatitute with respect to the z−axis and ϕ is the longitude with respect to
the x−axis. In those coordinates a qubit is a sphere, where all pure states lie on its surface
and a fully mixed state at its center.

The logical Pauli matrices of eq. (2.218) have to be adapted to the physical system, that
represents the qubit. In principle, any decomposition of the density matrix into a set of
linearly independent operators is sufficient to represent a qubit as a Bloch vector. Those
operators have to be generators of the special unitary group SU(N) to represent quantum
systems, which are always based on Lie-algebra. As long as the matrices of those operators
are unitary, they can be chosen as Pauli matrices, depending on the application.
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2.2.2.3 CAT STATES

The cat states, or Schrödinger cat states, in optics, are defined as the superposition of two
orthogonal coherent states

|cat⟩ϕ =
1

Nϕ
(|α⟩+ eiϕ |−α⟩),

where Nϕ =

√
2(1 + cos(ϕ)e−2|α|2) (2.223)

is the normalization factor.
The naming convention goes back to the famous Gedankenexperiment of Schrödinger, where
he imagined two massive systems in a superposition, an alive and a dead cat. In the original
idea, the superposition was rather an entanglement of this massive system with a quantum
particle. This is why sometimes the state of eq. (2.223) is rather called coherent-state
superposition. We will stick with the name cat state, as it is the more common naming
convention.
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Figure 2.7: Properties of an even cat state |cat⟩+ with an amplitude of α = 2. Caption as in fig. 2.1.
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Figure 2.8: Properties of an odd cat state |cat⟩− with an amplitude of α = 2. Caption as in fig. 2.1.

Note, that if the phase ϕ = 0, this superposition consists of only even Fock states and for
ϕ = π of only odd Fock states. Consequently, they are called even and odd cat states and
can be written as

|cat⟩+ =
1

N0
(|α⟩+ |−α⟩) (2.224)

=
2

N0
e−|α|2/2

∑
n

α2n√
(2n)!

|2n⟩ , (2.225)

|cat⟩− =
1

Nπ
(|α⟩ − |−α⟩) (2.226)

=
2

Nπ
e−|α|2/2

∑
n

α2n+1√
(2n+ 1)!

|2n+ 1⟩ . (2.227)

If we want to write those states in a phase-space description, we have to adapt the normal-
ization dependent on h̄. This stems from the fact that the overlap between coherent states
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changes depending on the chosen h̄, as visible in eq. (2.186). With this re-normalization
change in phase-space Nϕ → Nx,p

ϕ we can express the wavefunction of a cat state as

ψcat,α,ϕ =
1

Nx,p
ϕ

(ψα(x) + eiϕψ−α(x)),

where Nx,p
ϕ =

√
2(1 + cos(ϕ)e−|α|2/h̄). (2.228)

If we assume α ∈ R, we find a simplified expression for the Wigner function

Wcat,α,ϕ =
1

(Nx,p
ϕ )2

[Wα(x, p) +W−α(x, p) + h̄2W0(x, p) cos(
p

2h̄x
α− ϕ)]. (2.229)

We can see an even and odd cat state with an amplitude of α = 2 in figures 2.7 and 2.8. We
clearly see the two coherent states, that form those cats, appearing in the marginal position
distribution, respectively sub-figures (d). The interference fringes between the coherent
states shift with the phase-change of the cat state.

2.2.2.4 GOTTESMAN-KiTAEV-PRESKiLL (GKP) STATES

Gottesman Kitaev and Preskill proposed the so-called GKP states in 2001 as a qubit encoded
in an oscillator [80]. It therefore describes the use of an infinitely large system to encode a
finite-size object in it. The infinitely large system they chose is the phase-space of bosonic
modes, which in our case is the light mode and therefore the optical phase-space. Here, we
focus on the case where one single bosonic mode is used to encode a n dimensional state
space in it, with n eigenvectors that are defined as superpositions of position eigenvectors.
Those position eigenvectors are spaced in regular multiples of n γ, where γ can be connected
to a displacement amplitude, as we will see later. In this way, the ideal (”id”) GKP basis
states in position and momentum representation can be written as

|GKPidx ⟩ =
∑
s∈Z

|x = γ(ns+ k)⟩ , (2.230)

|GKPidp ⟩ =
∑
s∈Z

|p = 2πh̄

nγ
(ns+ k)⟩ , (2.231)

where k ∈ [0, n−1] switches between the n eigenvectors and n ∈ N+. For the most common
case of n = 2, this system forms a qubit. For n > 2, a qudit is formed, where the ”d” in
qudit stands for the dimension n of the system.
Due to their regular spacing in both quadratures, those states therefore form a grid in
phase-space such that their Wigner function can be written as a sum of two-dimensional
Dirac peaks

Wk
GKP (x, p) =

∞∑
s,t=−∞

(−1)stδ(p− πh̄

nγ
t)δ(x− nγ

2
s− γk). (2.232)
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In eq. (2.230) and eq. (2.234) we clearly see, that the amplitude γ is connected to the
displacement operator of eq. (2.178). If we calculate the effect of the displacement operator
on x̂ (and similarly for p̂), we find

D†(α)x̂D(α) = x̂−
√
2h̄ℜ(α) (2.233)

such that we can rewrite equations (2.230) and (2.231) as

|GKPidx ⟩ =
∑
s∈Z

D((ns+ k)
γ√
2h̄

) |x = 0⟩ =
∑
k∈Z

D(α(ns+ k)) |x = 0⟩ , (2.234)

|GKPidp ⟩ =
∑
k∈Z

D((ns+ k)
i2h̄π

nγ
√
2h̄

) |p = 0⟩ =
∑
k∈Z

D(β(ns+ k)) |p = 0⟩ , (2.235)

such that α = γ/
√
2h̄ and β = i2h̄π/(nγ

√
2h̄). We learned that ideal GKP states are

displaced position or momentum eigenstates. The displacement operator is most commonly
used to define GKP states, which will become clear in section section 2.4.
The above-defined states have infinite energy and are thus un-normalizable and unphysical.
In order to make the states physical, Gottesman Kitaev and Preskill proposed to approxi-
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Figure 2.9: Properties of a logical 0 GKP state with with ∆ = κ = 0.4, n = 2 and γ = 2πh̄
n . Caption

as in fig. 2.1.
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Figure 2.10: Properties of a logical 1 GKP state with with ∆ = κ = 0.4, n = 2 and γ = 2πh̄
n . Caption

as in fig. 2.1.

mate the ideal GKP state as a sum of displaced squeezed states11 with a Gaussian envelope
of width κ−1 to truncate the summation, such that we arrive at the physical GKP states
(here only written in the position representation)

|GKPκ⟩ = Nk

∑
s∈Z

e−0.5(ns+k)2κ2α2
D(α(ns+ k))S(ξ) |0⟩ (2.236)

where Nk is the normalization constant. We see that in the limit (ξ, κ) → (∞, 0) the ideal
GKP states are recovered. The definition of eq. (2.236) can also be written in terms of the
position wavefunction [81, 82] as in

ψκ,∆GKP,k =
1

Ñk

∫
dx
∑
s∈Z

e−0.5(ns+k)2κ2α2
e−(x−α(ns+k))2/(nh̄∆2)ψ(x), (2.237)

where Ñk is the normalization constant, κ the same as in eq. (2.236) and ∆2 is connected
to the squeezed variance of the position ∆2 = e−2ℜ(ξ) h̄

2 . GKP states are promising states
for quantum error correction, which we will sketch in subsection section 2.4. For the choice

11Here, squeezing should approximate a Dirac peak in the quadrature the state is formulated in, corresponding
to infinite squeezing.
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of γ = 2πh̄
n such that α =

√
π/n = iβ we can observe a grid structure where the momentum

has half the spacing of the position quadrature, which enables equal correctability of errors
in position and momentum. Those states are called square GKP states and are depicted in
fig. 2.9 and fig. 2.10 for κ = ∆ = 0.2 and n = 2.
The analytical Wigner function and marginal distribution of the GKP states was calculated
by L. García-Álvarez for any superposition of the two ideal GKP basis states [83]. For
approximate GKP states the analytical Wigner function is rather complicated and does not
provide more insight than the ideal GKP Wigner function, such that we omit it here.
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2.2.3 TAKE-AWAY MESSAGE

Here we have presented the usual states used in quantum optics.
For Gaussian states:

• Vacuum has symmetric and minimal uncertainty. Shot noise theoretically is
the photon-number fluctuation of a state and practically also includes electrical
noise. Vacuum has minimal shot noise and is used to calibrate our setup.

• Coherent states have symmetric and minimal uncertainty and an amplitude α.
They are vacuum states, which have been displaced by the amplitude α. The
displacement can be cast into an operator, the displacement operator.

• Two coherent states are not necessarily orthogonal to each other.

• Thermal states have symmetric but not minimal uncertainty.

• Squeezed states have minimal uncertainty but are not symmetric. In this way,
one quadrature can be measured more precisely than the other. Any coherent
state can be squeezed but we use squeezed vacuum in our setup. The squeezing
can be quantified in decibels.

For non-Gaussian states

• Fock states have negative Wigner functions and are symmetric around the phase-
space origin.

• Many non-Gaussian states are formed by superpositions of Gaussian states.
Allowing for any phase and weights between those superpositions creates a qubit.

• Qubits are defined via the Pauli matrices and can be described by a Bloch
sphere.

• Cat states are superpositions of orthogonal coherent states. This superposition
creates interference between the coherent states.

• Gottesmann-Kitaev-Preskill states are ideal superpositions of position (or mo-
mentum) eigenstates. Those states are unnormalizable and therefore un-
physical. They are approximated by a superposition of displaced squeezed
states.

Now that we’ve covered various properties of Gaussian and non-Gaussian states, let’s delve
deeper into the distinction between Gaussianity and non-Gaussianity when it comes to
operations.
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2.3 OPERATiONS iN QUANTUM OPTiCS

Let us now define what operations and measurements we can apply to states. We have
already established, that any operation can be written as a Wigner function in the subsection
subsection 2.1.3. Consequently not only states can be non-Gaussian - operators can have
this property too. If an operation is Gaussian or non-Gaussian can be easily judged by
their generating Hamiltonian: Gaussian operation have a Hamiltonian that is maximally
quadratic in the position and/or momentum operator. For measurements, one can determine
their (Non-)Gaussianity via a threshold (as explained in the subsection subsection 2.1.5). In
practice, the non-Gaussian measurements we are presenting, are easily identifiable as non-
Gaussian via their proximity to known non-Gaussian states. In the following, we will discuss
Gaussian and non-Gaussian operations and measurements. While experimentally we make
use of almost all Gaussian operations and measurements, the non-Gaussian operations are
notoriously hard to implement. This is why we use non-Gaussian measurements only in the
experiment. We choose to show the non-Gaussian operations for completeness.

2.3.1 GAUSSiAN GATES

Here we will give a list12 of Gaussian operators, that are relevant for optics. Some operations
have already been introduced in section 2.2. In fig. 2.11 (a)-(d) the action of all single-mode
Gaussian operations we will discuss here on the Wigner function of an exemplary state is
shown.
2.3.1.1 THE DiSPLACEMENT OPERATOR

We have already seen the displacement operator appear in eq. (2.178) as the generator of
coherent states. We recall its definition:

D(α) = eαâ
†−α∗â (2.238)

= e
i
√

2
h̄
(ℑ(α)x̂−ℜ(α)p̂) (2.239)

A displacement operator shifts the center of any state in phase-space by the amplitude α,
which is a complex number and therefore can span the two dimensions x and p of phase-
space.

12No claim of completeness is made here.
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(a) (b)

(c) (d)

(e)

(f)

Figure 2.11: In (a) a vacuum state is shown. In (b) this vacuum state is displaced by the dis-
placement operator D(α) with α = 2. The action of a squeezing operator S(ξ) on vacuum, with a
squeezing of 5 dB, is shown in (c). In (d) the rotation operator R(ϕ) with ϕ = π/2, giving a Fourier
gate, is applied to the displaced state of (b). In (e) and (f) the Wigner functions of the homodyne
projectors HD(x, ϕ, η) are shown for x = 0 and η = 1 for the two angles ϕ = π/2 in (e) and ϕ = π/4
in (f). We note that the slight negativities that appears in those two plots are parasitic and due to
finite size effects. The homodyne measurements were normalized before plotting.

Such a shift is visible in fig. 2.11 (a) to (b) for a shift of α = 2. This operator has the
following properties:

D†(α) = D(−α), (2.240)
D†(α)âD(α) = â+ α, (2.241)
D†(α)â†D(α) = â† + α∗, (2.242)

D(α+ β) = D(α)D(β)e−iℑ(αβ∗), (2.243)
D(β)D(α) = eβα

∗−β∗αD(α)D(β). (2.244)

The displacing property of this operator can be seen in eq. (2.241) and eq. (2.242), where
its action on creation and annihilation operator corresponds to a shift in phase-space, de-
pendent on the amplitude α. In eq. (2.243) we see that the product of two displacement
operations is a new displacement operator, equivalent to their summed-up displacement
amplitude α + β. The global phase factor is not measurable and therefore irrelevant here.
If one wants to swap the causal order of the two displacement operators in eq. (2.243),
another global phase factor appears, as visible in eq. (2.244). This equation can be used to
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define the commutator relation of displacement operators in section section 2.4.
The displacement operator’s action in the phase-space can be calculated with the help of
eq. (2.157) as

D†(α)x̂D(α) = x̂−
√
2h̄ℜ(α) D†(α)p̂D(α) = p̂−

√
2h̄ℑ(α). (2.245)

To displace a state, whose analytical Wigner formula is known, one therefore only needs
to replace each x by x−

√
2h̄ℜ(α) (and similarly for p). Instead of applying the operation

on each individual state, this approach can be used on all states, whose Wigner function is
known.

However, if there exists no analytical Wigner function, then the displacement operator
is often used on density matrices. For this we need to write D(α) in the Fock basis, the
question is therefore how to write this operator as a matrix. For this, we remark that the
annihilation and creation operators can be written as matrices

â =


0
√
(0 + 1) 0 0 ...

0 0
√

(1 + 1) 0 ...

0 0 0
√

(2 + 1) ...

0 0 0 0 ...

... ... ... ... ...

. (2.246)

This means that the displacement operator can be written as an exponential, whose argu-
ment is a matrix. To write this as a matrix, we can either perform a Taylor expansion of
the exponential or (more conveniently) use the fact, that the exponential of any diagonal
matrix can be obtained by exponentiating each entry on the main diagonal. Because this
principle will be used many times it is quickly drafted here.

Let eX be the operator you want to write as a matrix and let X be a diagonalizable matrix
13. Then you can first diagonalize X via its eigen-decomposition such that X = UDU−1

where U is the unitary matrix incorporating the basis change and D is the diagonalized
version of the original matrix. We can then proceed to write eX = UeDU−1. Luckily, the
coding language python with its in-build functions, makes this computation very easy and
fast.

We have already discussed in subsubsection 2.1.2.1, that the dimension of the density matrix
has to be adapted to the maximal Fock excitation in the system. This argument carries over
to the Fock representation of operations, where here the maximal excitations are determined

13All matrices X such that X∗X = XX∗ (normal matrices) are diagonalizable, thereby including hermitian
matrices.
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by α. Note that a displacement (seen as a POVM) is not pure and as such is not a projec-
tive measurement. If we view the displacement as a POVM, then each α corresponds to a
different POVM element. We know that two amplitudes α and α′ can create states, that
are not orthogonal (eq. (2.185)). Consequently, there are more than N2 POVM element
displacement operators than orthogonal states in a system of size N .

2.3.1.2 THE SQUEEZiNG OPERATOR

Another operator we have already seen is the squeezing operator defined in eq. (2.204) where
we set ξ = reiϕ. It squeezes the standard deviation of the quadratures while preserving the
Heisenberg uncertainty, the state had before the squeezing operation. In fig. 2.11 (a) to (c)
we can see such a squeezing applied to a vacuum state. This squeezing of 5 dB decreased
the uncertainty of the momentum quadrature, at the cost of increasing the uncertainty of
position. The squeezing operator has the following properties

S(ξ)S†(ξ) = S†(ξ)S(ξ) = 1, (2.247)
S†(ξ)âS(ξ) = cosh(r)â− eiϕ sinh(r)â†, (2.248)
S†(ξ)â†S(ξ) = cosh(r)â† − e−iϕ sinh(r)â. (2.249)

As for the displacement, its matrix is unitary, visible in eq. (2.247). The action of the
squeezing operator on the annihilation and creation operator is visible in eq. (2.248) and
(2.249). The action of the squeezing operator is most intuitive in its transformation of the
phase-space coordinates

S†(ξ)x̂S(ξ) = cosh(r)x̂− sinh(r)[cos(ϕ)x̂+ sin(ϕ)p̂], (2.250)
S†(ξ)p̂S(ξ) = cosh(r)p̂+ sinh(r)[cos(ϕ)p̂− sin(ϕ)x̂], (2.251)

such that we can also write the squeezing operator in terms of position and momentum:

Sξ(x, p) = exp[
1

2h̄
[ir sin(ϕ)x̂2 − r cos(ϕ)p̂2 − r cos(ϕ)(h̄− 2ix̂p̂)]. (2.252)

If one wants to write the squeezing as a matrix in the Fock basis, the matrix diagonalization
method that we already explained in the last subsubsection, can be used. As for the
displacement, we do not write this matrix explicitly because its dimension cut-off depends
on ξ.
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2.3.1.3 THE FOURiER AND ROTATiON GATE

The rotation gate is defined as

R(ϕ) = eiϕn̂ = e
i
2h̄
ϕ(x̂2+p̂2−h̄1), (2.253)

such that it rotates the quadrature operators anticlockwise in phase-space:

R†(ϕ)x̂R(ϕ) = cos(ϕ)x̂− sin(ϕ)p̂, (2.254)
R†(ϕ)p̂R(ϕ) = cos(ϕ)p̂+ sin(ϕ)x̂. (2.255)

For ϕ = π/2 this gate is called Fourier gate. Its action on a displaced state is visible in fig.
2.11 (b) to (d), where the displaced state is rotated. If one wants to write the Fourier (or
rotation) gate as a matrix in the Fock basis, the matrix diagonalization method that we
already explained in the last subsubsection, can be used. In fact its transformation on the
state |ϕ⟩ of dimension N can be written as

|ϕ⟩ =
N−1∑
k

ck |k⟩
R(π/2)−−−−→

N−1∑
k

 1√
N

N−1∑
j

cjω
k j
N

 |k⟩ , ωN = ei2π/N . (2.256)

We see that this gate performs a discrete Fourier transform on the coefficients ck [84].

2.3.1.4 BEAMSPLiTTER OPERATiON

The beamsplitter acts on the physical mode of the state, splitting it into two different
paths for which we use two different creation and annihilation operators â, â† and b̂, b̂†. Its
operator is

BS(θ, ϕ) = exp[θeiϕâb̂† − θe−iϕâ†b̂], (2.257)
with t = cos(θ) and r = eiϕ sin(θ) |r|2 + |t|2 = 1. (2.258)

Here r and t are the reflective and transmittive amplitude of the beamsplitter: if R = |r|2 =
1 then the beamsplitter is a mirror if T = |t|2 = 1 it does nothing to the input mode. The
phase ϕ corresponds to the phase of the reflective coating of the beamsplitter. We can now
formulate the effect on the two modes

BS(θ, ϕ)†âBS(θ, ϕ) = tâ− r∗b̂, (2.259)
BS(θ, ϕ)†b̂BS(θ, ϕ) = tb̂+ râ. (2.260)
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For the quadratures we find

BS(θ, ϕ)†x̂aBS(θ, ϕ) = cos(θ)x̂a − sin(θ)[cos(ϕ)x̂b + sin(ϕ)p̂b], (2.261)
BS(θ, ϕ)†p̂aBS(θ, ϕ) = cos(θ)p̂a − sin(θ)[cos(ϕ)p̂b − sin(ϕ)x̂b], (2.262)
BS(θ, ϕ)†x̂bBS(θ, ϕ) = cos(θ)x̂b + sin(θ)[cos(ϕ)x̂a − sin(ϕ)p̂a], (2.263)
BS(θ, ϕ)†p̂bBS(θ, ϕ) = cos(θ)p̂b + sin(θ)[cos(ϕ)p̂a + sin(ϕ)x̂a]. (2.264)

The beamsplitter is very useful to model losses, which are then equivalently expressed as
the efficiency of a path η, with 1− η = R. The phase ϕ is dependent on the coating on the
reflective port of the beamsplitter and is usually set to π or π/2 for energy conservation.

2.3.1.5 CONTROLLED GATES

Controlled gates [85] refer to gates that act on two modes, where one mode is unchanged
and functions as a ”control” mode that determines if a gate is applied to the second mode.
The most common controlled gates are the controlled X-gate and controlled phase-gate.
The controlled X-gate is also called the sum gate as it acts in the position basis as follows

CX(s) |xa, xb⟩ = |xa, xb + sxa⟩ . (2.265)

We can see here, that mode a is left unchanged, while mode b is displaced in dependence of
xa. The controlled phase-gate acts as

CZ(s) |xa, xb⟩ = eisxaxb/h̄ |xa, xb⟩ , (2.266)

such that the global phase of the state is changed. We do not use those gates experimentally
as they are very hard to implement.

2.3.2 THE GAUSSiAN MEASUREMENTS: HOMODYNiNG

In optics, the most commonly used Gaussian measurement is the homodyne detection. It
will be discussed experimentally in chapter 3 and chapter 4. Here we will rather focus on
its measurement operator, given by

HD(x, θ) = |x, θ⟩ ⟨x, θ| (2.267)

|x, θ⟩ = ⟨xθ|n⟩ = einθ(
√
πh̄ 2n n!)(−1/2)e−x

2/(2h̄)Hn(
x√
h̄
), (2.268)
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which is eq. (2.134) with the quadrature xθ. We can account for an imperfect detection
efficiency η, by applying a beamsplitter operation, called Bernoulli transformation B. The
resulting homodyne POVM elements can be written as

Πη(x, θ) =
∑
m,n,i

Bm+i,m(η) Bn+i,n(η) HD(x, θ) |n+ i⟩ ⟨m+ i| , (2.269)

Bm+i,m =

√(
m+ i

m

)
ηm(1− η)i. (2.270)

We can therefore interpret this measurement as sampling from the marginal distribution
along xϕ of the Wigner function. This is also an intuitive way of seeing why it is a Gaussian
measurement: It projects the state onto a positive, classical probability distribution. The
Wigner functions of two measurement settings with HD(x = 0, ϕ, η = 1) are shown for
ϕ = π in fig. 2.11 (e) and ϕ = π/2 in (f). The measurement operator is un-normalized and
for η = 1 corresponds to a position eigenstate.

Naturally, this measurement can be used to reconstruct the Wigner function, which we
will also see in chapter chapter 3 as our main technique. Being a position eigenstate, this
measurement is a pure POVM, and therefore a projection.

We note that a second common measurement is called heterodyning, which we will not
discuss here.

2.3.3 NON-GAUSSiAN GATES

There exist many non-Gaussian operations. What they have in common is that their gen-
erating Hamiltonian is at least cubic in the position and/or momentum operator. This can
be intuitively understood when remembering the Gaussian Wigner function, showing at
most quadratic polynomials of the position and momentum operator. Any of those gates
are experimentally extremely challenging, which is why Non-Gaussianity is rather achieved
through measurements, as we will see in subsection 3.2.3 and subsection 3.2.4.
In fig. 2.12 (a)-(c) the action of the two non-Gaussian operations presented here are shown.

2.3.3.1 THE CUBiC PHASE GATE

One of the most famous gates with cubic polynomials of the position is the cubic phase
gate, which is often proposed for universal quantum computation. Its operator is

C(γ) = e
i
3h̄
γx̂3 (2.271)
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(a) (b)

(d) (e)

(c)

(f)

Figure 2.12: In (a) a squeezed state with 5 dB of squeezing is shown. In (b) the action of a cubic
phase gate with γ = 21 on this state is shown, while in (c) a Kerr gate of strength κ = 0.4 is shown.
The Fock dimension of all operations and states is set to 20. In d the photon number resolution
(PNR) single click element is shown with no losses. This corresponds to the Wigner function of a
single photon. In (e) the POVM ”on” element is shown for no losses. In (f) we have artificially
normalized N(Π) the POVM ”on” element. This shows the action of this measurement if all Fock
states from |0⟩ to |10⟩ are present in the system to be measured. Note that this can of normalizing
has no influence on (d).

and acts on annihilation, position, and momentum operators as follows

C(γ)†âC(γ) = â+
γ

2
√
2/h̄

(â+ â†)2, (2.272)

C(γ)†x̂C(γ) = x̂, (2.273)
C(γ)†p̂C(γ) = p̂+ γx̂2. (2.274)

It changes the momentum dependent on the quadratic position and can create coherences.
Its action on a squeezed state is shown in fig. 2.12 (a) to (b) for γ = 21, where we see
negativities appearing.
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2.3.3.2 THE KERR GATE

The Kerr gate describes the effect of a χ3 non-linearity, which will be introduced in sub-
section 3.1.2. This gate changes already existing coherences but does not affect states that
are diagonal in the Fock basis. Its operator is written as

K(κ) = eiκn̂
2
= eiκ(x̂

2+p̂2−h̄1)2/(4h̄2) (2.275)

and changes the annihilation operator as follows

K†(κ)âK(κ) = âeiκ(2â
†â−1). (2.276)

Its action on a squeezed state is shown in fig. 2.12 (a) to (c) for κ = 0.4. We note that the
cross-Kerr gate also exists, acting on two modes instead of one mode, such that n̂2 → n̂1n̂2.

2.3.4 NON-GAUSSiAN MEASUREMENTS

The most used non-Gaussian measurement is a projective measurement on the Fock basis.
For this we can first introduce on-off detectors and then proceed to its idealized extension,
the photon-number-resolving detector. Here we choose to focus on the theory and discussion
their implementation in chapter 3 and section 4.2.

2.3.4.1 ON-OFF DETECTORS

On-off detectors are also called bucket detectors as they cannot distinguish between different
excitations/Fock states. They detect the existence of photonic energy and therefore give
binary outputs 0 for no photon and 1 for some number of photons. They therefore have
two POVM elements, Πoff if the output is 0 and Πon if the output is 1. The detection,
corresponding to the POVM “on” element, can be written as

Πon =
∑
n

(1− (1− η)n) |n⟩ ⟨n| , (2.277)

where η is the measurement efficiency. Here only diagonal elements exist. Depending on
the efficiency, the on-off detector has a higher probability of detecting higher-order Fock
states. If η = 1 we can see that the probability for this measurement to detect any Fock
state is equal. This can be seen in fig. 2.12 (e) and (f). In (e) the Wigner function of the
POVM “on” element up to dimension 10 is plotted. We can see the maximal negativity of this
measurement. This negativity stems from the fact that POVM elements are not normalized,
which means that we are plotting the sum of the Fock states n = 1 − 9. To see why this
is problematic we can (somewhat artificially) normalize Πon, which is visible in (f). We
observe that this Wigner function only has faint negativities. This illustrates the problem
of this measurement if an equally weighted superposition

∑9
n=1 |n⟩ is measured. The state is
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projected onto a full mixture of all its Fock states, losing any coherences. Moreover, this case
is indistinguishable from measuring a single photon. We, therefore, need a good estimation
of the states traveling in our experimental setup, to use this measurement faithfully.

2.3.4.2 PHOTON NUMBER RESOLViNG DETECTORS (PNRD)

It can be beneficial to be able to distinguish photon numbers in the detection. This can be
theoretically described as multiplexing on-off detectors [86, 87], which gives the operator

ΠPNR,s,N =
∑
n

p(s|n,N, η) |n⟩ ⟨n| , (2.278)

p(s|n,N, η) =
s∑

p=0

(
p

s− p

)(
N

p

) p∑
j=0

(
p

j

)
(−1)p−j(1− η − j

N
η)n, (2.279)

where p(s|n,N, η) is the probability to detect s photons if n photons are impinging on the
detector, that is multiplexed with N on-off detectors that each have an efficiency of η. For
η → 1 and N → ∞ this becomes the perfect photon number resolving detector, where each
POVM element is the perfect projection onto one Fock state. Note that this POVM has
N + 1 elements, corresponding to the detector clicking s times. This detector will become
important in chapter 4 and chapter 7.

70



2.3.5 TAKE-AWAY MESSAGE

Here we have discussed Gaussian and non-Gaussian operations that are typical for
quantum optics.
For Gaussian gates and measurements:

• Single-mode Gaussian operations are displacement, squeezing, and rotation
gates. In our experiment, we implement the first two.

• Two-mode Gaussian operations are the beamsplitter operation and controlled
gates. In our experiment, we use the beamsplitter. In simulations, it can model
losses.

• The typical Gaussian measurement is homodyne detection. It corresponds to
the measurement of a quadrature operator. Scanning over the phase of this
quadrature gives a data set that can be used to reconstruct the measured state.

For non-Gaussian gates and measurements:

• Non-Gaussian operations have to have a generating Hamiltonian that is at least
cubic in the position or/and momentum operator.

• Non-Gaussian single-mode gates are the cubic phase gate and the Kerr gate.
We do not implement those experimentally.

• Non-Gaussian two-mode gates are the cross-Kerr gate. We do not implement it
experimentally.

• Typical non-Gaussian measurements are on-off detectors and photon number
resolving detectors. We use the former experimentally. Those two detectors are
not mode-selective.

We have developed the differences between Gaussian and non-Gaussian states and measure-
ments. In the next section, we will elaborate, on why this is not only of theoretical interest
but has real relevance in the application of quantum mechanics.
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2.4 THE BENEFiTS OF NON-GAUSSiANiTY

In this section, we will finally argue, why we are interested in creating and measuring non-
Gaussian states. The two main arguments lie in the computational advantage and error
correctability of quantum systems. While computational advantage needs Non-Gaussianity
(or Non-Clifford operations), error correction codes try to work with only Gaussian (or
Clifford) operations, which are easier to implement. This sets the stage for arguing why
Bosonic qubits, which are inherently non-Gaussian and, if chosen well, error correctable with
Gaussian operations, are good candidates for computation and error correction. Creating
bosonic qubits adapted to those tasks is challenging in any physical platform, including
photonics. In chapter 3 and chapter 4, experimental states are presented that are bosonic
qubits, but do not yet fulfill all requirements to be usable in the computational context. In
chapter 7 we will discuss how GKP states could be created with our experimental platform,
which is why we lay a large focus on their working principle here.

2.4.1 COMPUTATiONAL ADVANTAGE AND NON-GAUSSiANiTY

Quantum information is envisioned to improve security for communication and to enable
considerable speed-ups in calculations that can make use of parallelization. Even though
there are many different ways in which one can analyze or try to establish those benefits
there are a few no-go theorems that draft the broader idea. It has been shown that improv-
ing the transmission of Gaussian states in a Gaussian channel with Gaussian error correction
is impossible [88]. Usually, noise in the transmission is assumed to be Gaussian too, such
that either the states or the error-correction operations have to be non-Gaussian for error
correction to work. In the field of quantum computation, a similar result exists: either
the measurements or the input states have to be non-Gaussian to obtain a computational
advantage over classical computers [89–91].

The group of all Gaussian gates is called the Clifford group and can be represented by the
displacement gate, squeezing gate, Fourier gate, and the beamsplitter [92], which reduces
to the minimal set of Clifford gates for a single mode: displacement and squeezing, which
is consistent with our Wigner function analysis. If only those gates are used, the quantum
computation is proven to be efficiently simulatable on a classical computer which is the
usual definition of a computation being not quantum. If we add for example the cubic phase
gate with only one allowed value of γ, we already reach universal quantum computation.
As those gates are hard to get by, many proposals envision so-called measurement-based
quantum computation, where all measurements are Gaussian and either then the input
states have to be non-Gaussian [90].
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We emphasize, that even though we are focusing here on bosonic encodings, the same
challenges are faced by quantum computers utilizing two-level systems, or qubits. There,
the Clifford group is defined as the Hadamard gate, phase gate S, and CNOT gate. The
Hadamard gate can be defined via the Pauli matrices as H = 1√

2
(X + Z) and as such per-

forms a basis change rotation on the Bloch sphere. The phase S gate can be expressed as
the n-th root of the Pauli Z gate. The CNOT gate carries the same idea as our two-mode
gates, such that the bit flip of the second qubit is conditioned on the state the first qubit is
in. To achieve universal quantum computation with qubits, a non-Clifford gate has to be
added and there are many candidates like the qubit version of the controlled phase gate or a
rotation gate [93]. For bosonic encodings, a promising candidate is non-linear feed-forward
[94].

2.4.2 ERROR CORRECTABiLiTY

If one wants to use a physical system as a carrier of information, it is important to verify
that the information will not be altered by the environment, i.e., that no error occurred.
Let us quickly review concepts of “good” classical bits to generalize them to the quantum
case.
For the review of classical and quantum error correction we mostly use ”Quantum computa-
tion and quantum information” by M. Nielsen and I. Chuang [84], together with the article
”Introduction to Quantum Error Correction and Fault Tolerance” by S. Girvin [95].

2.4.2.1 CLASSiCAL ERROR CORRECTiON

Classical information is stored in bits, meaning that we only have two logical (“L”) bits 0L
and 1L but do not allow superposition between them. For bits, there are two types of errors

• Bit-flip error: 0L → 1L or 1L → 0L

• Loss/erasure error: 0L → or 1L →.

Bits are usually encoded in the physical system as two discrete voltages, where the higher
voltage represents the 1 state. In classical systems, the bit-flip error is considered the main
error. The loss-error will become more important in the quantum case. The error rate of
the bit-flip is considered to be symmetric ϵ = p01 = p10. An error correction code means
to define a logical basis, consisting of physical bits, in which a certain set of errors can be
detected and corrected via operations on the physical bits.

The easiest is the repetition code, in which three physical bits are used to encode one
logical bit 0L = {000}, 1L = {111}. The additional bits (2 in this case) are called ancilla
bits. The detection of errors is done via measurement of each physical bit. If we express
the bit as a density matrix this measurement is equivalent to Tr[Zρ0,1], where X is the
Pauli Z-gate in the physical basis we choose. We therefore obtain results ±1, define an
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error detection as a majority vote, and can correct a detected error by applying a Pauli
X-gate. If more than one error occurs in the system the majority is wrong and the error
correction fails. We can nicely see here that adding ancillas to the system increases the
error probability as we now have to write

Probability of no error p0 = (1− ϵ)3 (2.280)
Probability of one error p1 = 3ϵ(1− ϵ)2 (2.281)
Probability of two error p2 = 3ϵ2(1− ϵ) (2.282)
Probability of three error p3 = ϵ3 (2.283)

such that the probability of at least one error is 1−p0 ≈ 3ϵ for small ϵ. Therefore by defining
three physical bits as one logical bit, the logical bit error 14 probability got worse and there-
fore our error correction needs to be able to push the logical bit error below ϵ, otherwise
there is no use for the ancillae. As we can only correct a single logical error (corresponding
to the probability of one error), the logical error is ϵL = p2 + p3 = 3ϵ2 − 3ϵ3. In our case,
this works if we hit the physical error probability ϵ∗ = 0.5, where ϵL = ϵ, which is called
the break-even point of error correction. If ϵ < ϵ∗, error correction decreases the errors, if
ϵ > ϵ∗ it makes things worse. In this simple example, we see that the main idea in classical
error correction is redundancy and this intuition will be carried over to the quantum regime.

The repetition code is very inefficient which can be seen by computing the minimal re-
dundancy needed to correct for n errors [95]. Imagine we have M data bits that we want to
protect by adding R ancillary bits. In total, there are N =M +R possible single-bit errors
and a total of M + R + 1 so-called error states (including no error). Error states are the
states after any possible error occurred. Not being able to encode them would be equivalent
to not being able to detect them, as they would leave the code space, i.e. would be lost.
This means that there have to be enough ancillary bits R such that their state space is at
least as big as the number of error states. As a bit has two possible states per ancillary bit,
we can write

2R ≥M +R+ 1. (2.284)

Imagine R = 10, then we should be able to maximally protect M = 1013 states against a
single bit flip. Until now, we have assumed only the error of the physical bit but of course,
any gates applied to those bits to measure or correct can also introduce errors. The break-
even point is therefore a purely mathematical property of the code-space and needs to be
paired with gates that do not add uncorrectable errors to the circuit.

14The logical bit error is the error accumulation due to the physical bits.
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Here there are two more important observations to make. We have implicitly assumed
that the probability of an error is constant in time. In physical systems, however, it mostly
grows over time. The longer we store a bit, the higher should be its error probability which
is incorporated by a effective logical error rate κeff where the probability of the logical
bit being in the right bit-state after time t is p0(t) ≈ 1 − κeff t. This time is the time to
be optimized between error-correction rounds in order not to introduce errors because of
correcting too often.

2.4.2.2 QUANTUM ERROR CORRECTiON

The fundamental difference between classical and quantum error correction lies in the logical
state space we use: the qubit. However, this qubit can be encoded in an infinitely large state
space, as we have seen in subsection 2.2.2. Important changes to classical error correction
are:

1. No-cloning theorem. It is impossible to clone/copy an unknown quantum state.

2. Errors are continuous. As we are working with qubits an error does not have to be a
discrete operation but can rotate (and shrink) anywhere within the Bloch sphere.

3. Measurements destroy quantum information. General measurements destroy the state
and therefore it cannot be error-corrected afterward.

Due to the no-cloning theorem, we cannot straightforwardly reproduce the classical repe-
tition code, but will see a quantum version of it later. The possible errors are coherent
superpositions of all four Pauli matrices, corresponding to the bit-flip X, the phase flip Z,
and a combination of both Y = iXZ. In general, such a trace-preserving error is

Uε =
√
1− ε1 − i

√
ϵσ⃗m (2.285)

where the Pauli matrices σ⃗ can be defined with an arbitrary axis m. Moreover, we will
also consider loss (not trace-preserving) equivalent to the application of the annihilation
operator as

σ− =
1√
2
(X − iY ). (2.286)

Even though there are numerous errors there exist quantum codes that can correct all pos-
sible errors (with a minimum of five physical qubits) [95]. If one uses higher levels of redun-
dancy, qubits and therefore superpositions can in principle be stable over an arbitrary long
time if the errors are sufficiently unlikely and are not correlated between physical qubits [95].

Let us now consider the quantum version of the repetition code. A logical qubit will have
the form

α |0⟩L + β |1⟩L → α |000⟩+ β |111⟩ . (2.287)
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As for its classical version we expect to be able to protect one logical qubit against three
errors (and identity) according to eq. (2.284), which turns out to be single physical qubit
bit-flips X1, X2 or X3. Note that the logical Pauli operators of the whole system change to

XL = X1X2X3 ZL = Z1Z2Z3 YL = iXLZL = −Y1Y2Y3 (2.288)

which means that to rotate the logical qubit a physical three-qubit joint rotation has to be
applied, which is a non-trivial operation. To find the measurements we have to perform to
detect and correct the errors a convenient formalism called the stabilizer formalism exists,
which we will introduce now.

2.4.2.3 THE STABiLiZER FORMALiSM

We need to introduce the concept of stabilizers. A state is stabilized by a unitary operation
if

gi |ψ⟩ = |ψ⟩ , (2.289)

meaning that gi stabilizes |ψ⟩ if it is an eigenvector of gi with eigenvalue +1. Stable here
means that applying gi on the state does not change it. If g1 and g2 both stabilize the state,
then any product of them will. The identity matrix is a trivial stabilizer for all states. All
gi that stabilize this state form a group S which is called the stabilizer and uniquely defines
a state (up to a global phase). We can clearly see that the Pauli matrices stabilize qubits

|0⟩L is stabilized by {1, Z} |1⟩L is stabilized by {1,−Z} (2.290)
|+⟩L is stabilized by {1, X} |−⟩L is stabilized by {1,−X} (2.291)
|i⟩L is stabilized by {1, Y } |−i⟩L is stabilized by {1,−Y } (2.292)

The stabilizer S is always a subgroup of the Pauli group Gn for n qubits, with the elements
for n = 1 being

G1 = {±1,±i1,±X,±iX,±Y,±iY,±Z,±iZ}, (2.293)

thereby including all the Pauli matrices (with the Identity) and the multiplicative factors
± and ±i. Those are included to guarantee that Gn defines a proper group, closed under
multiplication. Gn then includes all possible n-fold tensor products of G1 with the multi-
plicative factors ± and ±i. In order to form a non-trivial stabilizer, all elements of S have
to commute and −1,±i1 /∈ S.

For large n, one might want to have a compact description of S. We already stated that any
product of elements of S is also in S. We can therefore try to find the minimum number of
elements gi such that via multiplication we find back S. The set of these elements g1, ..., gn
is said to generate the group S. A group of size k has at most n ≤ log(k) generators. If we
take the example of the logical states |0⟩L , |1⟩L we can see that S0L has the generator Z
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because Z2 = 1 and similar for S1L. The choice of generators is not unique and generally
one tries to find independent generator elements. Note that only a subclass of all quantum
states can be described using stabilizers.

2.4.2.4 STABiLiZERS AND ERROR CORRECTiON

Why should we use this new formalism to describe states envisioned for error correction?
If we use the stabilizers, a large state space with n qubits can be described more efficiently
because the action of specific unitaries U on the state can be described by a transformation
of the stabilizer group as USU †. Indeed those are the unitaries that map elements of Gn
to Gn and therefore operate within the Pauli group. Any such unitary can be composed
from the Hadamard, phase, and controlled-NOT gates and are therefore part of the Clifford
group. This is very practical because we plan to use the whole Clifford group in quantum
computation. If one or more gates in the Clifford group would change what kind of mea-
surements and correction-operations we have to apply for error correction, that would be
rather unfortunate. Choosing a stabilizer state for computation therefore guarantees, that
one can perform (in theory) universal quantum computation if the states themselves are
non-Gaussian.

More importantly for us, the stabilizer formalism can be used to analyze if a quantum
code-space can protect against the effect of arbitrary trace-preserving errors on its logical
qubits. We will simplify this such that our code consists of one qubit and ask the question
under which errors this logical qubit is stable. Those two errors can be described by the
effect of a X gate for the bit-flip and a Z gate for the phase-flip. In general, an error E ∈ Gn

is defined to be an element of the Pauli group. If now a stabilizer state is corrupted by
such an error, there are three cases. If E anti-commutes with one of the elements of S,
then the error will push the state not to be stabilized anymore, which is detectable. If E
commutes with all elements in S and is part of S, then it is not considered an error. But if E
commutes with all elements in S but is not an element of S, then the error is not correctable.

Let us now go back to our example of the quantum repetition code. Our logical qubit is
encoded in three physical qubits such that the basis states are |0⟩L = |000⟩ and |1⟩L = |111⟩.
We find that the generators for those basis states are Z1Z2 and Z2Z3

15. Let us now consider
the set of errors E = {1, X1, X2, X3} and see how they can be detected. To detect an error
the measurement of both generators is performed such that we see the error syndromes as
in the following table.

15Where Z1Z2 = Z1Z213.
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Error syndrome on Z1Z2 syndrome on Z2Z3

X1 −1 +1

X2 −1 −1

X3 +1 −1

We see that we can detect a single bit-flip error that happened in one of the physical states.
This code therefore can protect against single-qubit bit flips. There are more advanced
codes protecting against bit- and phase-flip errors on multiple qubits and the interested
reader is referred to [84, 96].

2.4.2.5 GENERAL FRAMEWORK OF QUANTUM ERROR CORRECTABiLiTY

If the logical states are not stabilizer states or the errors to consider are not part of the Pauli
group, then a more general framework is needed to analyze them. We define the general set
of errors ε = {Ei} to be error correctable if they fullfill the Knill–Laflamme condition [97]

PE†
iEjP = αijP, (2.294)

where P is defined to be the projection operator on the logical state space and αij the
coefficients of a Hermitian matrix [84]. Clearly this requires

⟨0L|E†
iEj |0L⟩ = ⟨1L|E†

iEj |1L⟩ , (2.295)
⟨0L|E†

iEj |1L⟩ = ⟨1L|E†
iEj |0L⟩ = 0, (2.296)

such that the logical states should not be distinguishable under the errors. This mirrors the
requirement of subsubsection 2.4.2.1, where a state has to be encoded in the state space to
be correctable.

2.4.3 BOSONiC QUBiTS FOR ERROR CORRECTiON

We see for the example of the quantum version of the repetition code, that even for a simple
example a superposition of three qubits has to be created where errors need to be localized
on one of the physical qubits to be correctable.
To scale this approach up to the error correction of multiple logical qubits can be a serious en-
gineering challenge. Moreover, interconnecting those devices can introduce non-correctable
cross-talk. An alternative approach can be to search the redundancy needed in one sin-
gle mode, instead of using multiple modes with a limited Hilbert space. This promising
approach avoids cross-talk and reduces the resource overhead of quantum error correction.
There are infinite ways in which one can decide to split the phase-space of one mode into
two logical states.
There exist two leading approaches that each exploit different symmetries in the phase-
space: number-phase codes and GKP codes. The former exploits rotation-symmetry while
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the latter uses discrete translation-symmetry [98]. We will draft the power of those states
in the framework of error correction in the following.

2.4.3.1 BOSONiC ROTATiON CODES

A quantum state is said to have a N-fold rotational symmetry if it is the +1 eigenstate of
the discrete rotational operator

RN = ei(2π/N)n̂, (2.297)

where n̂ is the number operator. The logical states (full qubit space) of any N-order rota-
tional code can be constructed from a core state |Θ⟩ such that they form the logical basis
|0⟩N,Θ and |1⟩N,Θ. In order to find the equivalent to the logical Z operator, we need to define
a hermitian matrix from the operator of eq. (2.297) that leaves the symmetry invariant,
which we find to be its square root ZN = ei(π/N)n̂. We can now define the general form of
the logical basis states via

ZN |0⟩N,Θ = |0⟩N,Θ |0⟩N,Θ ∝
2N−1∑
m=0

ei(mπ/N)n̂ |Θ⟩ , (2.298)

ZN |1⟩N,Θ = − |1⟩N,Θ |1⟩N,Θ ∝
2N−1∑
m=0

(−1)mei(mπ/N)n̂ |Θ⟩ . (2.299)

Let us now find the ideal states of rotational symmetry. We can write the logical ideal states
in the Fock basis via the observation ZN

∑
n cn |n⟩ =

∑
n e

iπn/Ncn |n⟩ such that to be ±1

eigenstates we have to write

|0⟩N =
∑
k

f2kN |2kN⟩ , (2.300)

|1⟩N =
∑
k

f(2k+1)N |(2k + 1)N⟩ , (2.301)

with f2kN =
c2kN∑
k |c2kN |2

and f(2k+1)N =
c(2k+1)N∑
k |c(2k+1)N |2

(2.302)

where the superposition of the two basis states 1√
2
(|0⟩N ± |1⟩L) show a more visually clear

rotational structure

|+⟩N =
1√
2

∑
k

fkN |kN⟩ |−⟩N =
1√
2

∑
k

(−1)kfkN |kN⟩ . (2.303)

Those states are practical as they have the same average excitation numbers. This means
that photon loss does not make the logical states distinguishable pointing to the fact that
they can correct loss. Moreover, as we have defined them to be rotational invariant, they
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will also be able to correct rotational errors. The set of correctable errors is therefore
E = {1, E1, E2} such that they can detect:

Loss error E1 ∝ âk for k < N, (2.304)
Rotational error E2 ∝ eiθn̂ for θ < π/N. (2.305)

We note that the code is equivalently able to detect gain errors ∝ (â†)k (which is usually
not an error that occurs in photonics).

Whether this code is also able to correct those errors depends on the chosen core state
|Θ⟩. Most realistic states are only approximately able to correct errors. To correct for loss
errors one would measure the excitation number and round up to the nearest kN . An even
outcome announces a logical |0⟩L while an odd outcome announces a logical |1⟩L. Here,
the error correction was implicitly done by rounding up the result, which is only working
if gain and loss errors are equally likely. This is a good example to see that even though a
code can correct an error, one still needs to find an error correction strategy adapted to the
realistic errors in the system. A phase error can be measured via phase estimation of the
estimator ϑ. This estimator is to be determined in eiϑn̂ such that if ϑ mod (2π/N) = 0 if
the state is |+⟩N and ϑ mod (2π/N) = π/N if the state is |−⟩N . With continuous errors,
the outcome will be between [0, π/N ] such that we have to define the uncertainty on this
measurement, which will tell us if we can know in which logical state the measured system
should have been. The phase uncertainty is defined as ∆ϑ = 4/(

∑
k |fkNf(k+1)N |2)− 1 and

depends on the rotation symmetry order N and the chosen core state. We can see that this
uncertainty is minimized if |fkN | = |f(k+1)N | for all k.
Similar to the GKP states in the next subsubsections, this leads to unnormalizable, unphys-
ical ideal states which have the stabilizers RN and TN =

∑
n |n⟩ ⟨n+ 2N | and the logical

operators XN =
∑

n |n⟩ ⟨n+N | [98].

One example of an approximate rotational code is the binomial code. It is based on
the fact that the coefficients f are binomial and have a cut-off Fock number K. The lowest
binomial code has the logical states

|0⟩L =
1√
2
(|0⟩+ |4⟩) |1⟩L = |2⟩ (2.306)

which can correct up to one photon lost because N = 2, as stated above. In terms of
rotational correction, its uncertainty is very large with ∆ϑ = 7, with the general formula
being ∆ϑK,N = (0.5K

∑K−1
k=0

√
(K − k)/(k + 1)

(
K
k

)
)−2 − 1. Higher-order binomial codes

are needed to perform any kind of phase error correction and will also enable higher loss
corrections.
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Another rotational code is the Cat code. The cat code is based on using coherent states
as the core state such that the qubits defined in eq. (2.227) and (2.226) are the easiest
examples of cat states. In general, cat codes are based on a superposition of 2N coherent
states, being spaced equidistantly on a circle around the phase-space origin [99]. For our
simple case of N = 1 which we will see in subsection 3.2.3, error correction is not possible,
but for N = 4 the cat code is promising. We will discuss a possible implementation of such
a state in chapter 7.

2.4.3.2 THE GKP-CODE

The GKP states we defined in eq. (2.234) and (2.235) form a qubit basis, that is invariant
under discrete translation. We can define the Pauli matrices of those states as displacement
operators, that have to fulfill the displacement operators commutator relation of eq. (2.244)
to ensure they anti-commute [80]

Z = D(β) = e−iγp̂/h̄ X = D(α) = e2iπx̂/(nγ) Y = iXZ, (2.307)
with βα∗ − β∗α = 2iπ/n.

The stabilizers of those GKP states are then

SGKP = {SZ = Zn = D(nβ), SX = Xn = D(nα)}, (2.308)

where there are infinite choices of α and β as long as they obey the anti-commutator relation
of eq. (2.244), such that we find β = iπ/(nα). The most common choices in literature are

Square GKP α =

√
π

n
β = i

√
π

n
, (2.309)

Rectangular GKP α = λ

√
π

n
β =

i

λ

√
π

n
λ > 0, (2.310)

Hexagonal GKP α =

√
π

n
√
3

β = i

√
π
√
3

n
. (2.311)

Since SX and SZ are stabilizers of the GKP states, bit-flip and phase-flip errors can both
be corrected. If a Pauli gate is applied, a full bit- or phase-flip occurs. We should be able
to calculate less than half a bit-flip and phase-flip. If the error exceeds this range one does
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not know if the state has to be corrected towards the logical zero or one. We can calculate
the correctable magnitude with

Z†x̂Z = x̂− γ, (2.312)

X†p̂X = p̂− 2πh̄

nγ
(2.313)

such that the correctable errors are |∆x| < γ
2 and |∆p| < πh̄

nγ obeying ∆x∆p < πh̄
2n , where we

can see that increasing n decreases the maximal correctable error. Now we can understand
the naming of the square GKP state γ =

√
2πh̄/n, as we see that it is the only configuration

that enables the same error correction in position and momentum ∆x = ∆p. This is not
the case in the rectangular or hexagonal code [80, 100, 101].

In the realistic physical GKP state case of eq. (2.236), the quality of a GKP state can
be measured either via the stabilizers or via its error-correctability. First, we can define
how close a GKP approximation is to its real state via the modular squeezing parameters

∆x =
1

2|α|
√
− ln(|Tr[Sxρ̂]|2), (2.314)

∆z = ∆p =
1

2|β|
√

− ln(|Tr[Szρ̂]|2), (2.315)

which in dB is sx,z = −10 log10(∆
2
x,Z). For ∆x,Z = 0 we recover the ideal state. It is

important to note though that this modular squeezing is not sufficient as an indicator for
quantum error correction. Indeed many error correction thresholds depend strongly on the
error correction code one wants to use [102, 103]. Another possibility is to calculate the
expectation value of its stabilizers. We will further investigate those approaches in chapter 7.
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2.4.4 TAKE-AWAY MESSAGE

Here we have shown the power of non-Gaussian states in the context of error correc-
tion. We first developed an idea of classical error correction:

• The two main errors are: bit-flip error and erasure error.

• If more than one physical bit is used to define a logical bit, the overhead is called
ancillae.

• If more than one physical bit is defined as a logical bit, the error probability
is raised. The break-even point is defined as the moment when the error cor-
rection code can push the error probability of the logical qubit below the error
probability of a single physical qubit.

• The state after an error can only be corrected, if we can encode it in our system.

In quantum error correction, we saw:

• The main errors are: bit-flip errors, phase-flip errors, and erasure errors.

• We cannot clone states, errors are continuous and measurements destroy quan-
tum information.

• To ensure that all errors can be corrected, we also need to be able to encode
all states after an error in the system. This is ensured by using the stabilizer
formalism.

• Stabilizers are operators that do not change a state. They also uniquely define
a state. Those operators are part of the Pauli group.

• As the Pauli group can be efficiently simulated by classical computers we need
to add Non-Gaussianity to the system to gain a quantum advantage.

• This can be done by choosing non-Gaussian stabilizer states, which are bosonic
qubits. Dependent on their symmetries in phase-space they can correct either
phase-flip or phase-flip and bit-flip errors. The former are binomial or cat codes
and the latter are GKP codes. In chapter 7 we will discuss how GKP codes and
binomial states could be created in our system.
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3 EXPERiMENTAL TOOLBOX
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This chapter presents the operational framework for our experiment, which aims to generate
high-purity non-Gaussian states and entangle them. The chapter proceeds by describing
how both the generated non-Gaussian states and their entanglement are utilized in vari-
ous protocols. The first section emphasizes the key components of the experiment: three
optical parametric oscillators (OPOs) that generate either two-mode or single-mode cavity-
enhanced squeezing. To achieve these states, stable locks and filtering stages are required,
along with two detection methodologies: homodyne detection using high-efficiency conven-
tional balanced photodiodes and single photon detection using superconducting nanowire
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single-photon detectors. In the second section we focus on quantum state engineering. We
discuss how such created Gaussian two- or single-mode squeezed states are then projected
onto non-Gaussian states via heralding. The operation mode of our experiment, alternating
between measuring and lock stabilization, is presented. This section ends with the analysis
of our experimentally generated single-mode non-Gaussian output states, created with the
three OPOs. The third section concludes with an explanation of the data processing,
enabling us to infer the measured state from our measurement data. The current optical
table setup is shown in fig. 3.1

Figure 3.1: The optical table in early 2024.
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3.1 LAB GEAR DESCRiPTiON

This section is dedicated to introducing the main optical table components and measurement
devices we use throughout this thesis. First, the laser, providing us with infrared and green
light, is presented. The green output of this laser is used to pump nonlinear crystals inside
cavities, called optical parametric oscillators. Their theoretical description and experimental
implementation are discussed. As we are using many cavities in our setup, filtering and
locking methods will be presented. Finally, our two types of detectors are introduced.

3.1.1 THE LASER

We are working in the lab with the commercial laser Diabolo from Innolight. It consists of
two outputs. The first comes from a continuous Nd:YAG solid-state laser that is optically
pumped using two laser diodes. Its output wavelength is centered at 1064nm and can be
slightly tuned by changing the set temperature of the temperature PID of the Nd:YAG
crystal. Half of the power, around 250 mW, is used in various stages of our experiment
while the rest is sent to a doubling cavity that is inside of the laser housing. This doubling
cavity is semi-monolithic with a Lithium Niobate crystal. Here the laser light is doubled
via second-harmonic generation. The cavity is locked with a Pound-Drever-Hall generated
error signal, which will be explained in subsection 3.1.3. We have access to the doubling
crystal’s temperature and the overall gain and offset of the error signal for the PID of the
cavity lock. The output power is in the 500-600 mW range at a wavelength of 532 nm. In
table 3.1 we summarize what the two laser outputs are used for in our experiment, which
will be discussed in detail in this section. This laser has been in the group since the thesis
of Julien Laurat in 2004 [104].

During this thesis, the doubling cavity of the laser stopped emitting light due to pho-
torefractive damage. We will describe the problem and its solution in the following. During
the production period of this laser, many commercial doubling cavities were built as a two-
mirror Fabry-Perot cavity, which is also our case. In this setting, the powerful standing
wave building up in the cavity can damage the crystal via the photorefractive effect, which
was first reported (to our knowledge) in 1966 [105] and is nicely explained in the PhD thesis
of A. Hellwig [106]. The observed effect can be a change in the output mode or, as in our
case, a slow (at the scale of seconds) power and spatial shape modulation. This effect is
sometimes also called gray tracking or optical damage. The photorefractive damage can be

Table 3.1: Full use of the two laser outputs in this experiment.

wavelength used in/for
1064 nm Mode cleaner, OPO seed, lock micro cavities, local oscillator
532 nm pump OPO and lock OPO cavity length
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explained in a nutshell by charges in the crystal moving away from the illuminated area.
This leads to a charge field building up, which locally changes the refractive index of the
crystal due to the electro-optic effect. This local change stays even after the illumination
has seized. The most common solution is to heat the crystal for several weeks, suggesting
that some self-re-ordering occurs. In our case, we solved the issue by heating the crystal
to 104◦C for 3.5 weeks, which is only one degree above its working temperature. The ideal
heat load, to make this effect disappear depends heavily on the crystal specification, which
we do not have. Most likely we could have sped up the repair process by increasing the
temperature even more. Given our working temperature, we think that our Lithium Nio-
bate crystal has been annealed in nitrogen to produce oxygen deficiencies. Those crystals
are also more prone to show photorefractive damage [105].

3.1.2 OPTiCAL PARAMETRiC OSCiLLATORS - THEORY AND DESiGN

An optical parametric oscillator (OPO) consists of a second-order nonlinear crystal be-
ing placed inside a cavity. The crystal exhibits spontaneous parametric down-conversion
(SPDC), which is a broadband nonlinear optical process in which a high-frequency pump
photon impinges on the crystal and spontaneously splits into two lower-frequency photons
that are called signal and idler. Placing the crystal inside a cavity can enhance the efficiency
of the down-conversion and will define the bandwidth of the down-converted photons. In
the following, we will consider the physical requirements for this process and introduce its
Hamiltonian in free space, before analyzing the effect of the cavity. For this analysis, we
closely follow G. Shafiee et al. [107].

3.1.2.1 SPDC PHASE-MATCHiNG

Here we investigate the physical constraints for spontaneous parametric down-conversion.
The subscripts p, s, i henceforth stand for the pump, signal, and idler photons. SPDC is
described as a closed system and as such obeys energy conservation, which implies

ωp = ωs + ωi, (3.1)

where the process is called degenerate in frequency if ωs = ωi. Momentum conservation is
ensured via the pump, signal, and idler wavevectors k⃗ if

k⃗p = k⃗s + k⃗i. (3.2)

If the momentum conservation is fulfilled, a crystal is said to be phase-matched such that
∆k⃗ = k⃗p − k⃗s − k⃗i = 0. Phase-matching prevents the three waves from interfering destruc-
tively inside the crystal and needs to be achieved via the crystal design. The wave vector
in a medium k⃗ = 2π

λ n⃗ depends on the index of refraction, which in turn depends on the
wavelength, polarization, and propagation direction of the incoming light. The non-linear
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property of the crystal arises from the polarization density P⃗ of the medium reacting to an
electrical field E⃗ non-linearly, such that

Pi = ε0χ
(1)
ij Ej + ε0χ

(2)
ijkEjEk + ε0χ

(3)
ijklEjEkEl + ... (3.3)

The polarization density P⃗ describes the formation of microscopic electrical dipoles that
form in dielectric materials if an electrical field is applied. The polarization density then
translates to the dipole moment per volume. Here we are interested in the second-order non-
linearity, governed by the second-order susceptibility χ(2)

ijk which is a tensor that generally
describes non-linear processes involving three frequencies and depends on the wavelengths
involved. Each tensor χ(2)

ijk(ω1, ω2, ω3) has 18 elements which usually can be reduced due to
symmetries and properties of the crystal. One can then calculate the effective non-linearity
of a material for the given polarization χ(2)

eff [108], which corresponds to the non-linearity
given the pump input angle and polarization. In the case of KTP crystals for example, the
effective non-linearity can change from 1.3 pm/V to 14.3 pm/V dependent on the input
polarization [109].

As all non-linear crystals inherit their non-linearity from being non-isotropic, one often uses
birefringence to achieve phase-matching. In our case, uni-axial birefringent materials are
used, which means that one crystal axis governs the non-isotropic behavior of the medium,
and rotating around this optical axis does not change the optical properties of the crystal.
The index of refraction will depend on the direction of the electrical field vector which is
governed by the polarization of this field (eq. (2.5)). If the electrical field direction is par-
allel to the optical axis it will experience the extraordinary refractive index ne. This means
that the wavevector is perpendicular to the optical axis. If the electrical field direction is
perpendicular to the optical axis, then the light will experience the ordinary refractive index
no and propagate along the optical axis. An arbitrary direction of propagation to the opti-
cal axis will therefore lead to a difference in refractive index dependent on the polarization.
With this, the birefringence can compensate for the difference in refractive index due to its
wavelength dependency (dispersion) and lead to birefringent phase-matching. This practi-
cally means that the angle and polarization, at which the incoming pump beam impinges
on the crystal is adapted such that ∆k⃗p = 0. If both angle and polarization have to be
tuned, the phase matching is said to be “critical”, while it is “non-critical” if the polarization
tuning is sufficient. The two main configurations are

Type-I phase-matching Type-II phase-matching
o→ e+ e o→ e+ o

e→ o+ o e→ o+ e,
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where o and e stand for a beam polarized along the ordinary or extraordinary axis of the
crystal. A crystal that uses type-I phase-matching is said to output photons that are de-
generate in polarization.

If birefringent phase matching is not possible, the second most used method at hand is
called quasi phase-matching where the crystal has a periodic switching of the sign of its
non-linearity. This can either be done by cutting the crystal and rotating each second piece
by π or (more commonly) by ferroelectric domain engineering [110]. The domain linearity
direction is then switched with a periodicity of Λ = 2πm/∆k⃗, where ∆k⃗ is the phase mis-
match in one domain and m called the order of this quasi-phase-matching. The poling is
chosen such that the effective non-linearity χ(2)

eff is growing over the crystal length. Only if
phase-matching is fulfilled we can observe any SPDC output.

3.1.2.2 SPDC HAMiLTONiAN

The Hamiltonian of SPDC can be divided into a linear and non-linear Hamiltonian. The
linear Hamiltonian is our known quantum harmonic oscillator of eq. (2.82) for each field,
while the non-linear part Hnl2 can be guessed by the physical process: One photon of the
pump is annihilated to create two signal and idler photons such that [107]

Hnl2 = h̄κ(âpâ
†
sâ

†
i + h.c.) with κ = χ

(2)
effO

√
(2π)3h̄ωpωsωi
npnins

, (3.4)

where κ is the parametric coupling which is connected to the effective non-linearity χ(2)
eff , the

overlap between signal, pump, and idler modes O1 and the frequencies and refractive indices
of the fields. We see that here the hermitian conjugate (h.c.) creates one high-frequency
photon out of two lower-frequency photons, which is exactly the second-harmonic generation
process used to create our second laser output (see subsection 3.1.1).
If we now assume the pump to be a bright field, then its operators can be approximated by
an amplitude αp such that h̄κ(αpâ†sâ†i + α∗

pâiâs). If we now compare this to the squeezing
operator of eq. (2.204), we find that in the degenerate case of ωi = ωs the Hamiltonian of
spontaneous parametric down conversion produces squeezing. In this case the time evolution
of the annihilation operator â = âs = âi

2 (and creation operator â†) can be written as

ih̄
d

dt
â = [H

αp

nl2, â] ih̄
d

dt
â† = [H

αp

nl2, â
†], (3.5)

d

dt
â = 2iκαâ†

d

dt
â† = −2iκαâ, (3.6)

1Here the temporal and spatial mode overlap is considered.
2Here, signal and idler are assumed to have the same polarization
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such that we find the solutions

â(t) = â(0) cosh(2ακt) + iâ†(0) sinh(2ακt), (3.7)
â†(t) = â†(0) cosh(2ακt)− iâ(0) sinh(2ακt). (3.8)

The position quadrature is transformed as

x̂(t) = x̂(0) cosh(2ακt) + p̂(0) sinh(2ακt), (3.9)

which is equivalent to the action of a squeezing operator with r = 2ακt and phase ϕ = −π/2
in eq. (2.250). The time t here can be seen as the interaction time with the non-linear
crystal.
If we now choose to analyse the non-degenerate case of ωi ̸= ωs or signal and idler having
orthogonal polarization, then we find

âi(t) = âi(0) cosh(2ακt) + iâ†s(0) sinh(2ακt),

â†i (t) = â†i (0) cosh(2ακt)− iâs(0) sinh(2ακt), (3.10)
âs(t) = âs(0) cosh(2ακt) + iâ†i (0) sinh(2ακt),

â†s(t) = â†s(0) cosh(2ακt)− iâi(0) sinh(2ακt), (3.11)
x̂i(t) = x̂i(0) cosh(2ακt) + p̂s(0) sinh(2ακt),

x̂s(t) = x̂s(0) cosh(2ακt) + p̂i(0) sinh(2ακt), (3.12)

which looks like squeezing between the signal and idler mode leading to its name, two-mode
squeezing, which can be described via the operator

S2(ξ) = e
1
2
(ξ∗âiâi−ξâ†i â

†
s). (3.13)

We have already stated in chapter 2 that this can be interpreted as squeezing with an
imperfect choice of mode basis. Indeed if we perform a beamsplitter operation with R = 0.5,
we find

x̂i/s(t)
BS(0.5)−−−−→ 1√

2
(x̂i(t) + x̂s(t)) (3.14)

such that two-mode squeezing corresponds to two squeezing operations with half the squeez-
ing

S2(ξ)
BS(0.5)−−−−→ Si(

ξ

2
)Ss(−

ξ

2
). (3.15)

Here we implicitly choose to simplify the Hamiltonian by disregarding that SPDC is a
broadband process and focusing on its central frequency, which is motivated by our experi-
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mental setup. A more complete model can be found in [111, 112], where the full-width half
maximum (FWHM) of the SPDC process is approximated as

FWHMSPDC ≈ 5.56
c

2πL

1

|ngs − ngi|
, (3.16)

where L is the crystal length and ngi/s = ns/i + ωs/i
∂n
∂ωs/i

the group index of signal and
idler. In our case the FWHMSPDC is wider than the cavity bandwidth the crystal is placed
in, and thus can be ignored, as the cavity will fully determine the spectral properties of the
emitted light.

3.1.2.3 SPDC iN A CAViTY

Placing a nonlinear crystal inside a cavity forms a system of gain and loss [107]. This can
be compared to a laser but instead of the gain through stimulated emission, the optical gain
is coming from parametric amplification. The gain is competing against the loss inside the
cavity. Increasing the pump power will bring the system to a point where loss and gain
are the same, called the OPO threshold. This can lead to two distinct regimes, above and
below threshold. While above threshold the vacuum-fluctuations can be ignored, leading
to a semi-classical treatment of the physical system, below threshold a quantum treatment
is necessary. All our experiments are performed below threshold, such that we will discuss
the field evolution in a quantum framework.
We also need to specify the fields, with which the OPO cavity resonates. If the cavity is
resonant on the pump, it extends the effective length of the nonlinear crystal by making the
pump light interact with the crystal for many round-trips. If the resonator is resonant with
the created signal and idler fields, it also acts as a filter by cutting the output’s spectral
width to the cavity transmission. In our case the cavity is built such that it is resonant
with all circulating light fields inside of it, making it triply resonant for a type-II crystal
and doubly resonant for a type-I crystal.
We will now investigate the time evolution of the creation operators of signal and idler. For
this, we will take inspiration from the paper of M. Collett and C. Gardiner, serving as the
foundational cornerstone of the analysis of squeezing in cavities [113]. In order to express
the time evolution of the annihilation operator â in a cavity system, the quantum Langevin
equations can be used

d

dt
â = − i

h̄
[â, Hs]−

γ1 + γ2
2

â+
√
γ1âin +

√
γ2b̂in, (3.17)

where γi are defined to be unit-less cavity damping constants3, âin is the input field towards
the cavity and b̂in the loss mode of the cavity. With the system Hamiltonian Hs defined
3Originally a coupling constant κ(ω) between a bath (either the input/out modes or the loss mode) and the
cavity mode is considered. The damping constant appears if we assume that the coupling is frequency
independent such that κ(ω) =

√
γ/(2π) [114]
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in eq. (3.4) we therefore find a system of three intracavity operators âs, âi and âp. As
previously, we assume the pump field to be classical âp → αp, such that for signal and idler
we write

d

dt
âs = −iκαpâ†i −

T + L

2
âs +

√
T âin,s +

√
Lb̂in,s, (3.18)

d

dt
âi = −iκαpâ†s −

T + L

2
âi +

√
T âin,i +

√
Lb̂in,i. (3.19)

We can see that the main damping factors are set to be the transmission of the output
coupler T and the loss inside the cavity L, which is set to be the same for signal and idler.
A sketch of the relevant parameters of this system can be found in fig. 3.2 (a).
We can decouple those two differential equations in the same way we did for the two-mode
squeezing in the previous subsubsection, by defining new operators â1 = (âs + âi)/

√
2 and

â2 = (âs − âi)/
√
2, leading to the uncoupled equation

d

dt
ân = (−1)niκαpâ

†
n −

T + L

2
ân +

√
T âin,n +

√
Lb̂in,n for n ∈ 1, 2, (3.20)

where we note that the sign of the non-linear interaction changes from one mode to the
other, such that we expect the squeezing to be in orthogonal quadratures. In eq. (3.20) we
can see the previously mentioned threshold, which is exactly when the losses equal the gain

|iκαthp | = T + L

2
→ |αthp | = T + L

2κ
. (3.21)

In order to connect this intracavity power to a measurable input power we use the formula
of Wagner et al. [115]

Pin = Pc(1− g)2 with g =
2F 2 + π2 − π

√
4F 2 + π2

2F 2
(3.22)

with the round trip cavity gain g that can be defined from the cavity pump finesse Fp =

π
√
g/(1− g), and the circulating power Pc = |αp|2. This leads to the threshold

P thin = (Ts/i + Ls/i)
2 (1− g)2

4κ2
=
π
(√

4F 2
p + π2 − π

)
(Ts/i + Ls/i)

2

8F 2
p κ

2
(3.23)

∝
(
Ts/i + Ls/i

)2
F 2
p

∝
(
Ts/i + Ls/i

)2√
1− Tp

. (3.24)

We can therefore see that we can decrease the threshold by either increasing the finesse of
the cavity for the pump or decreasing the transmission for the signal and idler fields, which
in turn increases the signal and idler finesse. It would also be lowered by decreasing the
signal and idler losses. As those are mainly attributed to the losses inside the non-linear
crystal, they are harder to change than the finesse or transmission.
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Let us now return to the uncoupled intra-cavity field operator of signal and idler and solve
equations (3.20). For this, we move into the rotating frame â(t) → â(t)eiωs and assume
the signal and idler frequencies to be degenerate ωs = ωi. This means that for now, we are
interested in the frequency response of a single-mode squeezer inside a cavity around the
central frequency ωs. Furthermore, we define the threshold parameter ε = iκαp and drop
the subscript n. The solution to the problem can be obtained by moving into the frequency
domain, such that

ã(ω + ωs) =
1√
2π

∫
dωe−iωteiωs â(t) ã†(ω − ωs) =

1√
2π

∫
dωe−iωte−iωs â†(t). (3.25)

Solving eq. (3.20) now for the annihilation and creation operator gives

ã(ω + ωs) =
(T+L2 − iω)

[√
T ãin(ω + ωs) +

√
Lb̃in(ω + ωs)

]
(T+L2 − iω)2 − |ε|2

+
ε
[√

T ã†in(ω − ωs) +
√
Lb̃†in(ω − ωs)

]
(T+L2 − iω)2 − |ε|2

, (3.26)

and similar for the creation operator. This is the solution for the intra-cavity field, which
we can translate into the cavity output field with

ãout(ω + ωs) =
√
T ã(ω + ωs)− ãin(ω + ωs). (3.27)

We expect the output state to be squeezed in quadratures, which is why we want to now
write the output quadratures

x̃out(ω + ωs) =

√
h̄

2

(
ã†out(ω − ωs) + ãout(ω + ωs)

)
, (3.28)

p̃out(ω + ωs) = i

√
h̄

2

(
ã†out(ω − ωs)− ãout(ω + ωs)

)
. (3.29)

To analyze squeezing we need to compute the variance of the quadratures (see chapter 2)

(∆x̃out(ω + ωs))
2 and (∆p̃out(ω + ωs))

2. (3.30)
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Figure 3.2: In (a) the schematics of the optical parametric oscillator are shown. The crystal with
the non-linear coefficient κ is placed inside a Fabry-Perot cavity. The fields circulating inside the
cavity are the pump field (green) and the signal and idler fields (red), which are created by the
nonlinear process. Here signal and idler share the description for simplicity. The input power of
the pump field Pin becomes the intracavity field αp, both are classical. The cavity is designed such
that the flat mirror has a transmittivity Tp ̸= 1 while the output mirror (output coupler) reflects
the maximum of the pump field Rp → 1. The losses in the cavity are modeled by a beamsplitter
with the reflectivity equal to the loss Lp for the pump field. The signal and idler fields are connected
to the vacuum fluctuation of their mode via âin and hence are described as quantum fields. Their
losses can be modeled by the same beamsplitter that is now connecting the cavity to a vacuum
fluctuation bath of the loss mode b̂in. The flat input mirror has high reflectivity Rs/i → 1 while
the output coupler has some transmission Ts,i such that the intracavity field â can be converted
to the output field âout to be analyzed. In (b) we see the analysis of this output field in terms of
squeezing, following eq. (3.35). Here the frequency to analyze is set to ω = 0, meaning that we are
at the center frequency of the down-conversion process. The transmission of the output coupler is
set to Ts/i = 0.1 and losses are varied from 0% to 50%. In (c) the frequency ω is a detuning from
ωs, to scan the cavity bandwidth of signal and idler L+T . We see the development of the squeezing
spectrum as is approaches the threshold cth.

We find [113] that the variances are

(∆x̃out(ω + ωs))
2 = ⟨x̃out(ω + ωs), x̃out(ω

′ + ωs)⟩

=
h̄

2

4|ε|T/2
(T+L2 − |ϵ|)2 + ω2

δ(ω + ω′), (3.31)

(∆p̃out(ω + ωs))
2 = − h̄

2

4|ε|T/2
(T+L2 + |ϵ|)2 + ω2

δ(ω + ω′). (3.32)

Integration over ω yields the spectrum Sx/p of the OPO output. Now we write ε in terms
of the OPO threshold cth (eq. 3.21) such that ε

(T+L)/2 = cth and normalize the spectrum
by the vacuum variance ∆2

0 =
h̄
2 such that

Sx/p(ω + ωs) = ±η 4cth
(1∓ cth)2 + 4(ω/(T + L))2

(3.33)

η = T/(T + L), (3.34)
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where η is called the escape efficiency, which describes the probability of the output mode
exiting via the output coupler.
The frequency ω/(T + L) can be connected to the decay rate of the cavity [116] such that
we can interpret (T + L) as the dimensionless bandwidth BWc of the cavity for signal
and idler. We see that if the threshold is reached cth = 1, η = 1, ω → 0, anti-squeezing
at the central frequency reaches infinity Sx → 1/(ω2) → ∞ while squeezing approaches
Sp → −1/(1 + ω2) → −1, consistent with literature [30, 116, 117]. On a measurement
device, like homodyne detection or a spectrum analyzer, the spectral density is measured,
which is related to the spectrum via the equation [118]

Φx/p(ω + ωs) = 1 + ηmeasSx/p(ω + ωs), . (3.35)

It tells us, that the spectral density shows the spectrum with an offset, due to the vac-
uum variance (or shot noise in general), and a re-scaling factor, due to imperfect detection.
We are now profiting from the fact that we have normalized the spectrum to the vacuum
quadrature variance (otherwise the addition factor ”1” would be the vacuum variance). The
factor ηmeas includes path losses after the OPO, detector efficiency, and other loss factors
that will be discussed more in detail in subsection 3.1.4. We can now realize that we could
have added the losses inside the cavity to ηmeas, therefore showing that an imperfect escape
efficiency is equivalent to adding losses after a perfect OPO. In fig. 3.2 (b) and (c) we can
see how the squeezing develops with losses, threshold values, and in the frequency domain.
We can see in (b) that the symmetry of squeezing and anti-squeezing is destroyed by losses,
which act harsher on squeezing. In (c) we can see (for no losses) that the squeezing and
anti-squeezing rapidly reduce within the cavity bandwidth. We note that the sensitivity to
losses in (b) can be decreased by increasing the transmission of the output coupler. This
discussion showed that the controllable parameters of our non-linear cavity system are the
output coupler transmission Ts/i and the transmission of the flat input mirror for the pump
Tp. Losses are hard to control as they depend mostly on the losses inside the non-linear
crystal, which also fixes the non-linearity.

To gain a better understanding of how the cavity properties are affected, let’s take a closer
look at the influence of the two tunable parameter Ts/i and Tp. For this, we will define
the most important formulas for two-mirror optical cavities [119] in table 3.2. Usually, the
approximation for the Airy finesse is used in experiments. In our case of the dominant
transmission Tp or Ts/i we can approximate (first order Taylor expansion)

pump or signal/idler ∆ν ≈ cT

4πL
and F ≈ 2π

T
− π − 5πT

24
.

We can see that decreasing Tp leads to a smaller OPO threshold, but also a smaller band-
width and a larger finesse for the pump. If we decrease Ts/i this will reduce the escape

95



efficiency and therefore results in a reduction of the maximal possible squeezing in the sys-
tem. It will also lead to smaller bandwidth and a larger finesse for signal and idler.
It is in our interest to decrease Tp up to the point where every pump regime is easily ac-
cessible with our laser and to increase Ts/i such that the escape efficiency and therefore
the maximal squeezing become sufficiently large. Importantly there is a trade-off with the
bandwidth of the electronics, which we discuss in subsection 3.1.4.

Table 3.2: Important formulas for two-mirror optical cavities. Here T +R = 1 are transmittivity and
reflectivity, and L′ = 2L is the absolute length of the cavity (including the crystal). the bandwidth
is sometimes also refereed to as linewidth. The bandwidth/linewidth here is given in [Hz] and can
be converted to [m] via ∆λ = λ2 ∆ν/c.

Round trip time [s] tRT =
2L

c
(3.36)

Photon decay time [s] τc =
tRT∑

i− ln(Ri)
(3.37)

Free spectral range FSR =
1

tRT
=

c

2L
[Hz] FSR =

λ2

2L
[m] (3.38)

Lorentzian bandwidth [Hz] ∆νL =
1

2πτc
=

c

4πL

∑
i

− ln(Ri) (3.39)

Lorentzian finesse FL =
FSR
∆νL

=
2π∑

i− ln(Ri)
(3.40)

Airy bandwidth [Hz]4 ∆νA =
c

πL
arcsin

(
1−

√∏
iRi

2 4
√∏

iRi

)
(3.41)

Airy finesse FA =
FSR
∆νA

=
π

2

[
arcsin

(
1−

√∏
iRi

2 4
√∏

iRi

)]−1

≈
π 4
√∏

iRi

1−
√∏

iRi
(3.42)

3.1.2.4 OPOS iN THE LAB

In the lab, we are using three OPOs, where two have a type-II phase-matched bulk KTP
crystal of dimension 3x3x10 mm3 and the other a type-I phase-matched ppKTP (periodi-
cally poled) crystal of dimension 1x2x10 mm3. All crystals are bought from the company
Raicol and coated by the company Layertec GmbH. We will now name them such that in
the rest of this thesis we will speak about OPOIIa, OPOIIb, and OPOI. Photos of all three
OPOs are shown in fig. 3.3.

4ΠiRi = R1 ∗R2 ∗R3 ∗ ...
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The laser light at 532nm is used to pump the cavities and we are phase-matching signal
and idler at 1064nm (IR), degenerate in frequency. OPOIIa and OPOI are semi-monolithic
cavities, such that the input mirror is coated on one facet of the non-linear crystal, while
OPOIIb has a flat input mirror. All cavities must have the same bandwidth and length
such that we can guarantee good interference between all output states having the same
spectral and spatial properties.
All three cavities have an output coupler curvature of 38mm. The transmission of the out-
put coupler for the IR signal and idler is chosen to be Ts/i = 0.1. The transmission of the
input mirror for the green pump is Tp = 0.05. The cavity length is chosen to be L = 38

mm and locked in resonance with the laser by a piezo-electric transducer (PTZ), which is
glued to the output coupler.
As we want the cavities to be fully resonant, meaning triply resonant in the OPOII cases
and doubly resonant in the OPOI case we use the degrees of freedom given in table 3.3.
The change of the Nd:YAG crystal temperature changes the IR and thus the green output
frequency such that we are adapting the OPO pump frequency. As this parameter can
only be tuned for one cavity, we now understand why OPOIIb has its own input mirror.
This ensures that the crystal can be tilted without changing the cavity axis. In general,
the main loss channels are absorption in the crystal and scattering from surfaces inside
the cavity. Therefore it is preferable to reduce the number of interfaces inside the cavity,
which is why we can expect higher losses for OPOIIb. In table 3.3 we see that we need
one active lock of the OPO cavity length on the 532 nm pump frequency. This is achieved
via Pound-Drever-Hall locking and explained in the next subsection. All the degrees of
freedom for signal and idler frequencies are passively stable but have to be optimized ev-
ery 5-7 hours. Passively stable in this case means that the tilt of the IIb-crystal and the
temperature of the crystals do not drift much over time. Of course, the temperature of
each crystal itself is stabilized by a PID control. For the three OPOs, we use the Vescent
SLICE-QTC Four-channel Temperature Controller with a stability below 0.2 mK since 2023.

To be able to monitor the tuning of those parameters, we inject infrared probe beams
at the signal and idler frequency 1064 nm into the cavity. Then, by scanning the cavity
length, we can overlap the peaks (or dips) of the three fields.

Table 3.3: Here the degrees of freedom, used to ensure triple or double resonance of the OPOs are
shown. All cavities have a output coupler curvature of 38mm, a length of 38mm, Ts/i = 0.1 and
Tp = 0.05.

OPO pump signal idler
OPOIIa IIa-cavity length IIa-crystal temperature Nd:YAG crystal temperature
OPOIIb IIb-cavity length IIb-crystal temperature tilt of the IIb-crystal
OPOI I-cavity length I-crystal temperature not needed

97



(a) (b) (c)

Figure 3.3: Here OPOI, OPOIIb and OPOIIa are shown in (a)-(c). One can clearly see that only
OPOIIb has an input mirror that is not coated on the crystal facet.

This procedure will be explained in subsubsection 3.1.3.2. After locking the cavity length,
the power increase usually requires a slight adaptation of the signal and idler degrees of
freedom due to thermal effects.
We can also measure the finesse of the pump, signal, and idler, which allows us to give a first
approximation of the losses inside the cavity. Measuring the finesse consists of measuring
the free spectral range and (Lorentzian) bandwidth on an oscilloscope trace while applying
a large scan on the cavity PZT. Especially the bandwidth, being the FWHM of the peak,
can cause resolution problems. A high sampling has to be guaranteed, such that one is sure
to see the peak of the transmission faithfully. Otherwise, a fitting function can be used.
A more precise way of characterizing the escape efficiency, and thereby the losses, is by
analyzing the state fidelity of the OPO output states, which is given in section 3.2. The
following finesses were measured and are given in table 3.4 and can give a first estimation of
the losses5. The measured free spectral range is around 4.3 GHz, slightly above the expected
theoretical value. The bandwidth of the selected TEM00 mode is therefore ≈ 60 MHz. The
formulas to measure length, bandwidth, and FSR are given in section 8.2. The threshold
input power of OPOI is estimated to be 50 mW, while the threshold power for OPOIIa and
OPOIIb is estimated to be 80 mW [120].

Table 3.4: Here the measured finesse for pump and signal/idler frequencies of all three OPOs are
given. From those, the losses can be estimated (est.).

OPO pump finesse signal/idler finesse est. loss pump est. loss signal/idler
OPOIIa Fp = 75.1 Fs/i = 68.0 LOPOIIap = 0.03 LOPOIIas/i = 0

OPOIIb Fp = 50.9 Fs/i = 29.4 LOPOIIbp = 0.07 LOPOIIbs/i = 0.1

OPOI Fp = 44.2 Fs/i = 53.5 LOPOIp = 0.09 LOPOIs/i = 0.01

5Those values are obtained by fitting the traces on the oscilloscope to double exponential decays and should
give the reader a feeling for the order of magnitude of finesse. Due to small fitting errors resulting in a big
change of the Finesse, we do not expect those values to be precise.
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3.1.3 LOCKiNG AND FiLTERiNG

The main reasons why we need stable locks in this experiment are three-fold: Most simply
we need stable locks to have stable OPO and filtering cavities. We further need a stable
lock to have a stable reference power for alignment and third, we want to have a controlled
phase between two paths interfering.

We will introduce the three types of locks we are using in our system and show how they are
used in our setup. In table 3.5 we summarize the locking method for each locked system and
specify how often we check those locks. The goal of the rest of this subsection is to explain
this table. We will first elaborate on the elements to lock and then the locking methods.

Table 3.5: Here we see all locked elements in our setup, together with the locking method, if the PID
is analog or digital and the continuity of the check. PDH stands for Pound-Drever-Hall locking and
S&H for sample and hold.

Locked element method analog or digital check
Mode cleaner Tilt locking digital since July 2023 continuous

Doubling laser cavity length PDH analog continuous
OPO cavity lengths PDH digital since July 2023 S&H
OPO seed phase side-locking digital since July 2023 S&H
Micro cavities side-locking digital S&H
Path fringes side-locking digital S&H

3.1.3.1 OPTiCAL CAViTiES AS FiLTERS

Optical cavities can be used for filtering/ cleaning spatial and spectral aspects of a beam.
We will use two- and three-mirror configurations, such that we choose to discuss three-
mirror configurations as the more general case. In the case of cavities only containing
parabolic mirrors, which is approximately our case, the cavity modes are Hermite-Gaussian
TEMnm modes, where n and m determine the shape of the beam profile in the x and
y direction. In order for a mode to resonate (interfere constructively) the phase shift it
experiences after each round trip has to be an integer i multiple of 2π. Moreover, only the
two eigenpolarizations of the cavity can resonate, which are linear or degenerate without
additional birefringence in the cavity [121]. The optical frequencies that can resonate within
a cavity of nM mirrors can then be defined via the resonance condition [122]

H (p) polarization 2πi =
4πL

c
νn,m,i + φG(n,m), (3.43)

V (s) polarization 2πi =
4πL

c
νn,m,i + φG(n,m) + πnM (mod 2), (3.44)
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where φG(n,m) = (1 + m + n)φG(0,0) is the Gouy phase shift6, that takes into account
the non-plane, Gaussian, wavefront evolution and is different for each TEM mode7. We
see that higher-order Hermite-Gaussian modes have higher resonant frequencies than the
fundamental mode ν0. The fundamental mode here refers tom = n = 0, such that the beam
profile is perfectly Gaussian. The fundamental modes resonate in the cavity axis, while all
higher-order modes only appear as off-axis coupling, either by misaligning the cavity or the
incoming beam. Therefore we note that a cavity can clean the incoming beam from higher
order modes, outputting only the fundamental mode TEM00. For this, the incoming light
needs to be aligned onto the cavity axis, and the waist of the incoming beam ω0 needs to
be matched with the cavity waist x0 and its position [124, 125]. A misalignment of the
beam on the cavity axis creates coupling to mostly the TEM01 and TEM10 modes, while a
waist size mismatch and waist positioning mismatch lead mostly to coupling to the TEM02

and TEM20 modes. The bandwidth for each TEMnm is slightly different due to a change
in effective cavity length L for the off-axis modes. Each cavity mode can then be expressed
in the frequency domain as a Lorentzian

f(ν) =
1√

0.5π∆νi,m,nL

1 +

(
ν

0.5∆νi,m,nL

)2
−1

(3.45)

and in time domain as a double exponential decay

f(t) =

√
π∆νi,m,nL e−π∆ν

i,m,n
L |t|. (3.46)

The sketch of a frequency spectrum of an imperfectly coupled cavity is shown in fig. 3.4
(b).
Additionally one can use cavities as band-pass or band-stop filters. This can be more easily
seen for triangular cavities, with distinct reflection and transmission ports as visible in fig.
3.4 (a), but can be applied as well to linear Fabry-Perot cavities. A cavity that is resonant to
the frequency ν0 = ν0,0,0 adds a frequency dependent phase shift Φ = ΩL/c to any sideband
frequency ν = ν0 + Ω for one round trip in the cavity. We can write the cavity amplitude
transmission and reflection coefficient as

r(Ω) =
√
R1 −

T1
√
R2R3e

2iΦ

1−
√
R1R2R3e2iΦ

, (3.47)

t(Ω) =

√
T1T2e

iΦ

1−
√
R1R2R3e2iΦ

, (3.48)

6φG(0,0) = − arctan(z/zR), where zR is the Rayleigh length and z = 0 is the position of the beam waist
7Note that this degeneracy in polarization of the resonance condition is only valid if the angles of incidence
on the mirrors are greater than the polarization Brewster angle [123]
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Figure 3.4: In (a) a sketch of a triangular cavity is shown with its two output modes, one in reflection
and one in transmission. In (b) the sketch of a spectrum of an imperfectly matched cavity is plotted.
We see the fundamental mode, accompanied by TEM01 mode due to imperfect alignment and TEM02

due to imperfect mode-matching. In (c) the output spectrum around the resonance frequency Ω = 0
of the cavity is shown for the reflected spectrum (dip) and the transmitted spectrum (peak). Here a
bandwidth of 20 MHz was chosen. The transmission heavily depends on the losses L1 in the system.
The dotted line marks -3 dB, and therefore the filter cut-off frequency.

where r(Ω) gives the reflected output port amplitude, while t(Ω) gives the transmitted
output port amplitude. It is common to model all losses inside the cavity with one coefficient,
where we choose the loss on M1, such that R1 + T1 + L1 = 1 but R2 + T2 = 1 and
R3 + T3 = 1. Moreover, we will see that the cavity analysis becomes easier to read if
we write the reflectivities in terms of the Lorentzian bandwidth, where we use ∆νL ≈
(1−R1R2R3)c/(4πL), which is the first order Taylor expansion of the Loretzian bandwidth
of eq. (3.39). The reflectivities that are important in eq. (3.47) and (3.48) then become

R1 =

√
1− 4L∆νL

c
× (1− L1), (3.49)

R2R3 =

√
1− 4L∆νL

c
/(1− L1). (3.50)

Here we will additionally assume R3 = 1, which is the ideal case. We can now insert the
above equations (3.49) and (3.50) in eq. (3.47) and (3.48) and find

r(Ω) =

√
R1(1− e2iΦ)

1− R1
1−L1

e2iΦ
≈ Ω

i∆νL +Ω
, (3.51)

t(Ω) =

√
(1−R1 − L1)(1− R1

(1−L1)2
)eiΦ

1− R1
1−L1

e2iΦ
. (3.52)

The approximation in eq. (3.51) shows that the cavity acts as a band-stop filter at the re-
flected output and as a band-pass filter at the transmitted output. Ideally (without losses)
the reflected port output filters out all frequencies within the cavity bandwidth, while the
transmitted port only lets those frequencies pass. The band of the band-stop filter is mostly
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dependent on the cavity bandwidth, while the band-pass filter quality8 is strongly influenced
by both loss L1 and bandwidth. In fig. 3.4 (c) we see the effect of loss on a cavity with
length L = 1 and bandwidth ∆νL = 20 MHz. Importantly the reflected port keeps its
band-stop property, almost independent of the cavity loss, while the transmitted output
port rapidly loses its filtering quality. The transmission port is often used to filter out laser
intensity noise above the cavity frequency [126, 127].

Triangular cavities can moreover be used as polarization filters. Different from Fabry-Perot
cavities, the round-trip phase shift is different for the two linear polarizations in a triangular
cavity, as visible in eq. (3.43) and (3.44). Horizontally polarized light has a phase shift
of 0 after one round trip, independent of the number of mirrors, while vertically polarized
light (s-polarized) will have a phase shift of π nM , where nM is the number of mirrors in
the cavity. The output is therefore non-degenerate in polarization, making it easy to re-
ject one polarization by locking the cavity resonance on the other [122, 128]. This condition
is only fulfilled for certain incident angles on the mirrors, as explained by S. Saraf et al. [123].

The first cavity in our setup that is used as a filter is the mode cleaner. It is a tri-
angular cavity, placed at the output of the Nd:YAG infrared laser. At low frequencies,
typically below 10 MHz, a laser has technical noise due to acoustic, thermal, or electrical
disturbances as well as possible relaxation oscillation. This results in the beam showing
intensity fluctuations above the standard quantum noise limit until a frequency of the order
of 10 MHz. This is the case for our laser, for which a strong relaxation oscillation occurs
around 1 MHz [104]. Next to using an inbuilt feedback called “noise-eater” we can also
reduce the low-frequency noise by installing a triangular low bandwidth, high finesse cavity
and use it as a band-pass filter in transmission, as described above. This will also ensure
that we have a clean TEM00 mode at the output. It can be used at both linear polariza-
tions, where it has a finesse of FV = 3500 for vertically polarized light and of FH = 200 for
horizontally polarized light. Here we choose to work with the latter to ensure easier locking.
The mode cleaner cavity is locked via tilt locking on the laser resonance.
The second important filter cavity type in our setup is called micro cavity and is a linear
two-mirror Fabry-Perot cavity. Especially for detectors that are not mode selective, like
on-off detectors or photon number resolving detectors, we have to select the output mode
of the OPO cavity we want to detect. If we do not perform additional filtering that allows
us to select, in our case ν0, we would create a statistical mixture of several modes sepa-
rated by the OPO FSR and could not detect high purity states. In our setup, a homemade
micro cavity, in addition to an interferential filter (IF) from Barr associates centered at
1064 nm with a bandwidth of 125 GHz is placed before each non-mode-selective detector.
The bandwidth of the homemade micro cavity is designed to be at least four times larger

8Quality here asks where the -3 dB cut-off frequencies are, relative to the ideal cavity bandwidth.
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(a) (b)

Figure 3.5: (a) shows the design of the homemade micro cavity, used to filter the OPO output. The
cavity is composed of three invar modules that are screwed together in a bulk configuration. In
(b) the filtering of the OPO output IR mode, at a free spectral range of 4.3 GHz and a bandwidth
of 60 MHz (red), is shown. The first broad filtering is performed by an interferential filter (IF)
with a bandwidth of 125 GHz. To have a clean output mode, the Fabry-Perot micro cavity with a
bandwidth of 320 MHz and a free spectral range of 330 GHz is used.

than the OPO bandwidth, such that in the design considerations ∆νuCav = 5∆νOPO = 320

MHz. Furthermore, the FSR should shift the non-centered resonance peaks beyond the IF
bandwidth. We choose FSRuCav = 330 GHz. If we now calculate the length of this cavity,
we find L = 0.45 mm, hence the name micro cavity. The plano-concave cavity is built in
a monolithic configuration, visible in fig. 3.5 (a). Input and output mirrors are coated by
ATFilms and have a transmission of 0.3% each, ensuring the desired bandwidth and FSR.
Its high filtering power due to the large finesse comes at the price of a lower transmission.
The overall filtering scheme is shown in fig. 3.5 (b). Those cavities cannot be aligned as
soon as they are closed. This is why it is very important to ensure that all the parts are
assembled parallel to each other. In order to control the cavity length one can insert ormolu
plates of 200-400 µm. The curved mirror has a radius of curvature (ROC) of one meter.
In total, we have three micro cavities in the setup, called µCavI, µCavII, and µCavIII.
The (Lorentzian) finesse of the micro cavities has been measured to be FµCavI = 132.8,
FµCavII = 260.1, and FµCavIII = 392.9.

3.1.3.2 CAViTiES FOR UP AND DOWN CONVERSiON

The other types of cavities in our systems have already been described in detail before.
The doubling laser cavity is used to create a bright TEM00 output beam at 532 nm, see
subsection 3.1.1. The three OPOs in our system generate our quantum states of interest,
see subsection 3.1.2. The OPO cavity shapes the spatial and spectral output mode of the
signal and idler. The interesting point to mention here is the fourth locked element in
table 3.5, called OPO seed phase. To enable us to lock cavities and paths after the OPO
with the resonance of the infrared OPO output, we need a stable reference beam. This is
achieved by sending (“seeding”) a few mW of the 1064 nm laser into each OPO cavity. The
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cavity length is already locked onto the 532 nm green pump laser, such that the IR is by
default also resonant. This configuration is called optical parametric amplification (OPA).
The seed power can be increased (amplified) or decreased (de-amplified) by constructive or
destructive interference with the down-converted light from the pump. With the seed being
polarized like the signal beam we find the phases [129]

ϕs = ϕs(0) ϕi =
π

2
+ ϕp − ϕs ϕp = ϕp(0) (3.53)

of the light created in this three-wave mixing process. If (as in our case) the polarization is
put at 45◦ between signal and idler, a stable relative phase ϕp − ϕs,i between IR seed and
green pump is needed in order to have a stable output power after the OPO.
We, therefore, install a piezo-electric transducer (PZT) on the IR seed path and lock it on
any part of the amplification/de-amplification fringe. This does not only allow us to have
a bright, stable output-power, locking light for path locks and micro cavities but could also
be used to calculate the threshold power of the OPO [127].

3.1.3.3 A QUiCK NOTE ON LOCKiNG

Here we want to give a quick overview of system control, specifically PID control. For a
more in-depth discussion, we suggest the lecture notes on the control system design of K.
Åström [130]. In order to lock, an error signal is needed. An error signal e(t) is the direct
response of the system to active or passive changes and incorporates the deviation from a
desired set-point. This error signal is fed to a proportional–integral–derivative controller
(PID) that sends a control signal u(t) to the element of interest, mostly a piezo-electric
transducer for controlling a path phase or cavity length or a Peltier element to control
temperature. The error signal is modified by the PID such that the control signal is

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t), (3.54)

where Kp,Ki,Kd are the proportional, integral, and derivative gain. The integration adds
a slow trend towards the set value, while the derivation allows for a fast reaction to changes.
Often we set Kd = 0 to avoid unstable behaviour. Each PID has an electronic bandwidth,
describing to which frequency noises it can react in dependence on its integration time and
derivation precision. The limiting element is often the system itself, piezo-electric trans-
ducer, or Peltier element, which themselves have a limited bandwidth and in the case of
PZT eigenresonance frequencies that limit its use.

We will now describe the three locking methods used in our setup for controlling piezo-
electric transducers, where a locking method corresponds to a method to create an error
signal. An ideal error signal has a linear region around the set point (not a symmetric
behavior) such that we know in which direction we need to apply the correction. If we take
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the simple example of taking a cavity transmission peak as an error signal we easily see
that the theoretical set-point should be the peak maximum. However, any deviation from
the peak is symmetric, such that the error signal gives us no indication of direction. The
PID can therefore not discriminate the sign of the deviation from the set point and might
drive the system away from the set point. In general, the reflected beam from the cavity is
used to create an error signal. Its intensity shows the interference between two beams: one
directly reflected from the cavity input mirror and another that circulated in the cavity. On
resonance, those two beams are perfectly out of phase, leading to no measurable intensity.
By using interference, the signal is independent of laser intensity fluctuations.
In fig. 3.6 we can see our three looking methods, which are explained in the next subsub-
sections.

3.1.3.4 TiLT LOCKiNG

Tilt locking uses spatial mode interference between symmetric and asymmetric modes to
lock a cavity to a laser frequency [131, 132]. As spatial modes are orthogonal to each
other, no interference can be measured if the whole beams are detected. This is why this
method necessitates split photodiodes, where the active area is divided into two or four
elements and the beams centered between them. Here we use two elements of the four-split
photodiode (until 2023: EG&G C30843E, now: Thorlabs (PDQ80A)) to lock the triangular
mode cleaner cavity. We want to misalign the input beam such that a few percent of the
beam power circulate in the TEM01 (or TEM10) mode. As analyzed above, the cavity is
not resonant on both TEM modes for the same length. If we scan the cavity around the
TEM00 resonance, the TEM01 mode is fully rejected into the reflected port and as such has
a phase that is independent of the cavity length. The TEM00 mode on the contrary does
accumulate a phase in dependence on the cavity length deviating from resonance. Using
TEM01 as a reference we can now measure the interference between the two beams on each
split photodiode and subtract the two photodiode outputs, which gives zero on resonance.
This can be seen in fig. 3.6 (a) on the right, where the electrical field vectors are shown
in green for the TEM01 and in red for the TEM00 mode. The output of each photodiode
is proportional to the squared vector summation (in black). The three examples in (a)
show three points of a cavity length scan, where only the middle example is on resonance.
Here we can see that the length of the vector summation (in black) is equal, such that a
subtraction of the two photodiode outputs results in zero. The left and right examples are
out of resonance, resulting in a non-zero subtraction with opposite signs.

3.1.3.5 POUND DREVER HALL (PDH) LOCKiNG

We follow closely the methodology outlined by E. Black [133] on PDH locking, with a par-
ticular focus on our use case. The PDH scheme is based on frequency(or phase)-modulated
light, which generates the error signal via a beat note between the back-reflection of reso-
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Figure 3.6: In (a) tilt locking on the mode cleaner is shown. We see that the reflection port of a
triangular cavity is monitored by an effective two-quadrant photodiode. The intensity distribution
of the detected TEM00 (red) and TEM01 (green) mode on the lower left. The output of each sub-
photodiode is proportional to the vector summation (in black) of the electric field vectors (red and
green) of the two modes, visible on the right side of the (a) from one side of the resonance to the
other. The difference signal of the two photodiodes is the error signal, fed into the PID that controls
the piezo-electric transducer, which determines the cavity length. In (b) the Pound-Drever-Hall
method is depicted. This method requires sidebands on the incoming laser beam, created via an
electro-optical modulator (EOM) that is driven by the signal generator (SG) at 12 MHz. The beat
signal between the reflected sidebands and the resonant cavity mode exiting on the reflection port is
separated from the main beam via an optical isolator. The output of the photodiode, which has to
be faster than the modulation frequency, is mixed with the modulation from the signal generator.
The demodulated signal is sent to the PID and can control the cavity length via the piezo-electric
transducer of the output coupler. In (c) side-locking is shown, in the example of a micro-cavity. An
additional beam (“alignment beam”) is inserted as a counter-propagating beam into the cavity and its
transmission is separated from the main beam via an optical isolator (OI). The recorded transmission
is used to control the cavity length via the piezo-electric transducer of the input coupler.

nant and off-resonant frequencies impinging on the cavity. A beat-note is an output signal
at the frequency difference between two optical frequencies, that impinges on a photodiode
and is created if the two beams are indistinguishable in all degrees of freedom except for
the frequency. The off-resonant frequencies, called sidebands, do not accumulate a phase
as a function of the cavity length and can therefore act as a reference. Inside the laser-head
the 1064 nm laser beam is phase-modulated via an electro-optical modulator (EOM) at
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12 MHz, creating sidebands at integer multiples of ±12 MHz. The electrical field can be
written as

Ein = E0e
i(ωt+βsin(Ωt)) ≈ E0(J0(β)e

iωt + J1(β)e
i(ω+Ω)t − J1(β)e

i(ω−Ω)t, (3.55)

where β is the modulation depth (strength), which is assumed to be small enough to only
create first-order sidebands. We use the Bessel functions to expand the first expression. In
the case used for the PDH technique we only want one pair of sidebands to appear, meaning
that we want low modulation depth, such that the total power of the beam splits as

P0 = Pc + 2Ps = J2
0 (β)|E0|2 + 2J2

1 (β)|E0|2, (3.56)

where P0 is the power impinging on the cavity, Pc is the power in the carrier frequency, and
Ps is the power in each sideband. The reflected power Pr after the beam impinged on the
cavity is then measured on a fast photodiode that has at least enough bandwidth to resolve
the beat pattern, as visible in fig. 3.6 (b). The reflected power can be written with the help
of eq. (3.51) where we assume the cavity to be resonant on ω′

Er = E0

(
r(ω)J0(β)e

iωt + r(ω +Ω)J1(β)e
i(ω+Ω)t − r(ω − Ω)J1(β)e

i(ω−Ω)t
)
, (3.57)

Pr = |Er|2 = Pc|r(ω)|2 + Ps(|r(ω +Ω)|2 + |r(ω − Ω)|2)

+ 2
√
PcPsℜ[r(ω)r∗(ω +Ω)− r∗(ω)r(ω − Ω)] cos(Ωt)

+ 2
√
PcPsℑ[r(ω)r∗(ω +Ω)− r∗(ω)r(ω − Ω)] sin(Ωt) +O(2Ω), (3.58)

where we omitted terms that are oscillating at ≥ 2Ω. To create an error signal we now
have to find a way to extract the deviation δ of the carrier frequency from the cavity
resonance frequency ω′ inside of r, where we need to see the phase of this deviation. This
is only possible in the terms oscillating at Ωt, as all other terms lose the phase information
by being squared. Until now we have made no assumption on the relationship between
the sidebands and the bandwidth of the cavity. We can use the relationship between the
Lorentzian bandwidth and the FSR of the cavity. By using the first-order Taylor expansion
of the Lorentzian bandwidth ∆νL ≈ (1 − R1R2)c/(4πL) and the FSR FSR = c/(2L) we
find ∆νL ≈ FSR(1 − R1)/(2π), where we assume R2 to be high. If we think about the
case of the OPOs, where the PDH is used on the green pump beam, then this is indeed the
case as the output coupler has high reflectivity (R2 → 1). We can now write the sideband
frequency in terms of the Lorentzian bandwidth divided by the finesse, multiplied by a
proportionality factor k, such that Ω = k∆νL/FL = k(∆νL)

2/FSR = k FSR(1−R)2/(4π2),
where we rename R1 = R. Moreover, we can write r, given by eq. (3.51) in dependency
of ϕ = ΩL/c = Ω/(2FSR) = k(1 − R)2/(8π). We can now write the terms of eq. (3.58)
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that oscillated with Ω with this proportionality factor and find after a first-order Taylor
expansion around ω + δ, assuming a small deviation from the cavity resonance ω′ = ω + δ

r(δ)r∗(δ +Ω)− r∗(δ)r(δ − Ω) ∝ δ

(
i− i cos

(
k

4π2
(R− 1)2

)
+ sin

(
k

4π2
(R− 1)2

))
(
(L−R− 1)R+ (L− 1)2

[
cos(

k

4π2
(R− 1)2)

+ i sin(
k

4π2
(R− 1)2)

])
(3.59)

for k ≫ 1 ∝ iδ (3.60)
for k ≤ 1 ∝ δ (3.61)

showing that if the sidebands are larger than the bandwidth divided by the finesse, this
term becomes imaginary such that we want to isolate the sin(Ωt)-term in eq. (3.58), while
if the sidebands are transmitted by the cavity we want to isolate the cos(Ωt)-term in eq.
(3.58) in order to get a signal that is proportional to the deviation from resonance δ.
To isolate the cos or sin terms, we are mixing the output signal of our photodiode ∝ Pr

with the modulation signal sin(Ω′t) that was sent to the EOM. Here we are trying to isolate
the cos(Ωt)-term such that after mixing

sin(Ωt) cos(Ω′t) =
1

2

(
sin([Ω− Ω′]t)− sin([Ω + Ω′]t)

)
(3.62)

we want a DC signal. We therefore need to apply a π/2 phase shift one of the two electrical
inputs into our mixer (by simply adding BNC cables) such that Ω′t = Ω t+ π/2, giving us
a DC term sin(π/2) = 1 and a fast oscillating term sin(2Ω t+ π/2) = cos(2Ω t). After the
mixer, our electrical signal power Pmix will be proportional to

Pmix ∝ sin(Ω t)
(
Pc|r(ω)|2 + Ps(|r(ω +Ω)|2 + |r(ω − Ω)|2)

)
+ 2
√
PcPsδ +O(2Ω), (3.63)

from which the error signal can be extracted by applying a low-pass filter, suppressing all
the oscillating terms at Ω or higher, such that the power of the error signal Pe becomes
proportional to the deviation from the cavity resonance

Pe ∝ 2
√
PcPsδ, (3.64)

which can be fed into the PID and now used for locking.
We note that the first time PDH is used in our setup is for the doubling cavity. As this
cavity does not reject the sidebands, they carry over to the green 532 nm output and are
subsequently used for locking all OPO cavities. At the output of those cavities, the signal
and idler will also carry those sidebands, which will be visible in their squeezing spectrum.
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The error signal is then created via analog mixing. The PDH locking of the OPO cavities
was changed from an analog custom-made PID to a digital PID lock in 2023 by using a low
noise Red Pitaya STEMlab 125-14 Low Noise together with the python package PyRPL
[134], which is used for both PDH and side-locking.

3.1.3.6 SiDE LOCKiNG

Side locking uses the cavity transmission as the error signal. As we have already stated, the
peak of the transmission should not be used for locking, as a slight detuning of the cavity
length gives no indication in which direction we need to correct. Locking at the top will
therefore lead to an increase in locking noise. If the locking point we are aiming for is not
the peak, we regain the power of knowing the direction and can use the transmission as an
error signal for the price of losing power as the maximal output power will be at the peak.
This is why this technique is called “side” locking and not “peak” locking. Optimal locking is
achieved in the steepest slope of the cavity transmission. This method is extremely easy and
used in our setup for locks that do not require high power outputs, like the micro-cavities,
OPO seed-to-pump phase, and relative phases of path interferences. Side locking in this
experiment is always performed via an electronic PID, programmed on the micro-controller
ADUC7020. The corresponding code can be found in the thesis of H. Le Jeannic [135].

3.1.4 HOMODYNE DETECTiON

We have already briefly mentioned homodyne detection in subsection 2.3.2, as our preferred
method for state analysis. Homodyne detection aims at recording the quadratures of the
signal field at different angles by interfering it with a bright coherent beam, the local os-
cillator, on a 50:50 beamsplitter. Here we follow the analysis of Ling-An Wu, Min Xiao,
and H. J. Kimble [118]. Each beamsplitter output is detected on a photodiode, creating the
photocurrents i1(t) and i2(t), whose subtraction results in the current i(t) = i1(t) − i2(t).
We can now analyze the homodyne output in time and frequency, where we will add the
effect of losses in the frequency domain.

3.1.4.1 HOMODYNiNG iN THE TiME DOMAiN

The basic idea (without losses) is sketched as follows. Let us define the signal mode âs and
the bright local oscillator α = E0e

iθ. After impinging on a 50:50 beamsplitter the output
modes are

â1 =
1√
2

(
E0e

iθ + âs

)
â2 =

1√
2

(
E0e

iθ − âs

)
, (3.65)

i1,2 ∝ n̂1,2 = â†1,2â1,2 =
1

2

(
E2

0 + n̂s ± E0(âse
−iθ ∓ â†se

iθ)
)
, (3.66)

i = i1 − i2 ∝ E0(cos(θ)x̂s + sin(θ)p̂s) = E0x̂
θ
s, (3.67)
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where we can see that after subtraction the current i(t) is proportional to the quadrature
of the signal field, rotated by the relative phase θ between the signal and local oscillator.
Importantly here we assume that the time to take a measurement t is smaller than the time
needed for a phase change. Experimentally we guarantee this by adding a slow active phase
scan with a piezo-electrical transducer. In the above calculation, we implicitly assumed that
the measured current i at one time is equivalent to the whole mode of our state in the time
domain. While this is true for the pulsed regime, in our case we have a continuous trace
of current values, transformed to voltage v(t), that we need to integrate over the temporal
mode f(t) of the signal mode of eq. (3.46), such that the real quadrature is calculated as

xθ =

∫
v(t)f(t)dt, (3.68)

where the integration limits have to be adapted to the temporal mode. Any time trace with
the values v(t) is recorded in a mixture of all possible temporal modes and by the above
integration we are performing a projection onto the temporal mode of the cavity. This is
equivalent to an eigenanalysis, as we will see in section 3.3.

3.1.4.2 HOMODYNiNG iN THE FREQUENCY DOMAiN

Instead of recording a time trace on an oscilloscope, we can think about the output of the
homodyne detection in the frequency domain, plugged into a spectrum analyzer. We mainly
follow the analysis of Wu et al. [118]. In this case, we expect that the spectral density Φ(ν)

as in eq. (3.35) of the current i(t) is recorded and can write

Φ(ω) =

∫
⟨∆i(t) ∆i(t+ τ)e−iωτdτ⟩ where ∆i(t) = i(t)− ⟨i⟩ , (3.69)

where τ is the response time of the detector. For the simplest case of both photodiodes
having a delta function response, one can write

⟨∆i(t) ∆i(t+ τ)e−iντdτ⟩ =(R1Q
2
1 +R2Q

2
2)δ(τ) +R2

1Q
2
1λ11(τ) +R2

2Q
2
2λ22(τ)

−R1R2Q1λ12(τ)−R1R2Q1Q2λ21(τ), (3.70)

where Ri is the count rate of each photodiode, Qi = eGi the charge per photopulse, where
Gi is the gain of the detector and λij is a fourth-order correlation function. In the limit of a
strong local oscillator ELO = E0e

iθ, the count rates depend on the beamsplitter coefficients
RBS +TBS = 1 and the quantum efficiency of each detector ηPDi, such that the count rates
of the photodiodes are R1 = ηPD1RBSE

2
0 and R2 = ηPD2TBSE

2
0 . With those assumptions,

we find the spectral density

Φ(ω, θ) = ⟨Q1i1 +Q2i2⟩ (1 + ηmeasSθ(ωs + ω)), (3.71)
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where ωs here is set by the local oscillator frequency, ηmeas the measurement efficiency and
Sθ(ωs+ω) the spectrum of the signal. If the signal input is vacuum we measure Φ(ω, θ)0 =

⟨Q1i1 +Q2i2⟩ (compare to eq. (3.33)), such that as in eq. (3.35) we can normalize the
homodyne output by the vacuum noise experimentally, such that after normalization we
have the normalized spectral density Φ′(ω, θ) = 1 + ηmeasSθ(ωs + ω). Importantly this
spectral density can only be measured within the bandwidth of the homodyne detector.
This requires the bandwidth of the homodyne detector to be adapted to the bandwidth of
the OPO cavity, as otherwise, we would lower the overall detector efficiency.

3.1.4.3 HOMODYNE MEASUREMENT EFFiCiENCY

Let us now focus on the overall detector efficiency ηmeas. It is comprised of the loss on
the signal path Ls, the mode overlap O = V 2, connected to the visibility V of the signal
beam and local oscillator, the photodiode quantum efficiency ηPD (which are assumed to be
equal) and the efficiency reduction due to electronic noise of the detector ηnoise, such that

ηmeas = (1− Ls)V
2ηPDηnoise. (3.72)

Electronic noise adds random values to each quadrature measurement. As we are calibrat-
ing each quadrature element by a vacuum measurement, we are effectively re-scaling the
quadratures due to those random values, which can be shown to be equivalent to loss [136].
While path losses Ls can be reduced by choosing better optical components and the mode
overlap O can, in continuous wave experiments, almost be increased to unity, a smart choice
has to be made for the photodiodes and electronic components of the homodyne to combine
the targeted bandwidth with low noise. The electrical noise can be measured via the clear-
ance C, which shows the signal-to-noise ratio in decibel [dB], and therefore corresponds to
the difference between the spectral density of the homodyne electronics without any input
light and the spectral density with input light. It depends on the local oscillator power and
can be used to calculate the electronic noise efficiency [137] as

ηnoise =
C − 1

C
. (3.73)

Note that increasing the local oscillator power only increases the clearance in the linear
region of the homodyne detector. Linear here means that the response of the photodiodes
and amplifiers, and therefore the response of the detector increases linearly with the power.
This poses a power limit on the local oscillator.

3.1.4.4 HOMODYNE CiRCUiT CONSiDERATiONS

The most widely used circuit design for homodyne detection is the current subtracting
design, visible in fig. 3.7 (a). Here the two currents are subtracted before undergoing any
electronic gain. Each photodiode PDi has a junction capacitance CPDi and shunt resistance
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Ri, where ideally the capacitance should be as small as possible and the resistance as high
as possible. This can be understood when writing down the photodiode bandwidth [138]

fPD =

(
1

f2t
+

1

f2RC

)−1/2

, (3.74)

where fRC = 1/(2πRC) is the known cut-off frequency for a simple RC low pass filter
and ft is the transit limit bandwidth of the device. We can easily see that fRC grows
inversely proportional to C. The shunt resistanceRi leads to the resistance of the zero-biased
photodiode junction, which ideally is infinite. Of course, photodiodes have to be chosen that
have a good quantum efficiency at our target wavelength of 1064 nm. We choose Fermionics
FD500N-1064 with a bandwidth of several GHz and a quantum efficiency of ηPD = 0.98.
The two photodiodes have opposite biasing, such that Kirchhoff’s law dictates that the
merged current is a subtraction i(t) = i1(t)− i2(t). The following description of the circuit
is highly simplified and should give a feeling about what the components in the circuit
are for. A more in-depth analysis can be found in the PhD thesis of O. Morin [30]. The
subtracted current i(t) = i1(t)− i2(t) is converted to voltage via a transimpedance amplifier
(TIA), where the clearance can be improved by selecting an appropriate capacitance C3

and resistance R3. The resistance R3 converts the current to a voltage via Ohm’s law but
it also forms a low pass filter with the capacitance of the photodiodes. This is why C3 is
introduced in parallel to R3 to counteract by decoupling the circuit before and after the
amplifier. R3 and C3 also form a low-pass filter. Typically the clearance increases with
increased resistance R3 at the price of a decreased bandwidth. We can see that a capacitor
C4 and resistance R4 form a high pass filter. On this output, there is no DC-offset. This
high-frequency output is used to record the measurement traces. The low-frequency output
part undergoes a high gain amplifier with variable offset. With our current parameters, we
expect a bandwidth of 50 MHz, visible in the power spectral density of fig. 3.7 (b) and
the homodyne clearance, plotted in (c). There are two identical homodyne detectors in our
setup.
We can now perform a detector efficiency analysis of our two homodyne detection stages.
For this, we analyze the electronic noise at the local oscillator measurement power of around
6 mW and the effect it has on the cavity spectrum SC(ν) = |f(ν)|2, where the cavity mode
f(ν) is defined in eq. (3.45). The electronic noise efficiency is shown in fig. 3.7 (d) in the
frequency domain and is multiplied in (e) with the cavity spectrum.
The integration of the difference between the lossy cavity spectrum and the lossless cavity
spectrum is defined as the electronic noise inefficiency. Importantly we can see in (e) that
for a homodyne detection, the low-frequency noise is dominant for the degradation of the
cavity spectrum. We calculate that with the measured clearance, the losses would increase
by only 1% if the cavity bandwidth is increased from 60 MHz to 100 MHz. All homodyne
noise contributions are given in table 3.6.
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Figure 3.7: In (a) our simplified homodyne detection circuit is shown. The light is impinging on
two photodiodes, with their junction capacitance and shunt resistance C1, R1 and C2, R2. Their
subtracted current is amplified and converted to a voltage by the transimpedance amplifier. The
homodyne has a high-frequency output (HF) and a low-frequency output (LF). In (b) the power
spectral density of the homodyne for different power levels of the local oscillator is depicted. The
corresponding clearance for a local oscillator power of 6 mW is shown in (c). The homodyne noise
efficiency in the frequency domain is shown in (d) and its effect on the cavity bandwidth spectrum
for different cavity bandwidths can be seen in (e). The solid lines show the cavity spectrum for no
noise, while the dotted lines show the cavity spectrum for the measured HD efficiency of (d). The
integrated difference between those two curves is defined as the loss due to the homodyne electronics.

Table 3.6: Here the overall HD efficiency is shown for all three OPOs. OPOIIa and OPOIIb use the
same homodyne but are different in mode matching, while OPOI uses its own homodyne. Transmis-
sion, Visibility, and noise efficiency are experimentally measured, while the PD efficiency was given
by the manufacturer.

path transmission Ts Visibility V PD efficiency ηPD noise efficiency ηnoise ηmeas
OPOI 0.92 0.996 0.98 0.95 0.85
OPOIIa 0.90 0.993 0.98 0.95 0.83
OPOIIb 0.90 0.990 0.98 0.95 0.82

We will see later, that one can correct for all losses given in table 3.6 before reconstructing
the state from homodyne measurement. This process will be explained in the section 3.3.
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3.1.5 ON-OFF DETECTORS: SNSPDS iNSiDE A CRYOSTAT

In our setup, we want to perform non-Gaussian operations and on-off detectors as described
in eq. (2.277) are the most used detectors to induce non-Gaussianity. We have four su-
perconducting nanowire single-photon detectors (SNSPD) in a custom-made cryostat from
MyCryoFirm. We will first describe the cooling stages of the cryostat and the working
principle of SNSPDs. We will then discuss further improvements and current limitations of
the system. In the last subsubsection, we will discuss two problems we encountered after
the repair of our cryostat and how we could solve them.

3.1.5.1 COOLiNG PRiNCiPLE OF THE CRYOSTAT

The cryostat reaches a stable temperature of 1.3 K for on average five days, such that
we can cool it down remotely on Sunday and leave it to warm up over the weekend. It
has two cooling mechanisms: a commercial cooling stage reaching 4K and a custom-made
saturation-based cooling stage to reach 1.3 K. The first one cools the cryostat from room
temperature to 50 K and then to 4 K via a two-stage Gifford McMahon (GM) cooling
cycle. This closed-cycle cryostat therefore needs an expander (usually called cold-head),
compressor, vacuum shroud, and radiation shield. We use the commercial cold head Sum-
itomo RDK101-D and water-cooled helium compressor Sumitomo HC-4E2. Cold-head and
compressor are connected by two gas lines and an electrical power cable. One of the gas
lines supplies high-pressure helium gas to the cold-head, and the other gas line returns low-
pressure helium gas from the cold-head, which is sketched in fig. 3.8 (a) and photographed
in (c). The cooling capacity of the cold-head is dependent on the Helium gas flow rate at
both pressures. The vacuum shroud is the vacuum created at the cold end of the cold-head,
isolating the created cold from the room temperature. The radiation shield is cooled via
the first stage such that no room temperature thermal radiation from the vacuum shroud
disturbs the second cooling stage.

The MG cooling cycle has four stages. First, the high-pressure valve is opened. Due to
its high pressure, the gas passes through the regenerating material9 into the expansion
space. In the second stage, the pressure differential forces the displacer upwards such that
the gas can expand and cool at the bottom. In the third stage, the low-pressure output is
opened, which now makes the cold gas flow through the regenerating material and into the
output. While passing through the regenerating material the gas removes heat from the
system. In the fourth step, the displacer returns to its original position due to the pressure
differential, and the cycle can start anew. In a two-stage MG cycle, the above-described
stages happen for both cycles at the same time.

9It stores heat from a warm gas passing through it and supplies heat when cold gas is passed through it.
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Figure 3.8: In (a) the coldhead for a two-stage Gifford McMahon cooling cycle is shown. The 1st
and 2nd stage displacer are moving together, such that temperatures around 4 K can be reached
within half a day. A photo of the coldhead in our system is shown in (c). In (b) the screenshot of a
typical cooling cycle of one week is shown from Sunday to Friday. The technical drawing of the whole
cryostat system is shown from the outside in (d) and from the inside in (e). The SNSPDs installed
in the cryostat are shown in (f), where they are screwed onto the cold-plate that is connected to the
1 K-pot. Fibers and electrical feed-through are homemade.

After 4 K has been reached, the second cooling mechanism comes into play, which is com-
pletely independent.
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It uses the fact that condensation cools down a system. The gas that we use for the
condensation is again He4, which is stored in a tank beneath the cryostat at a pressure of
800-1000 mbar. This tank is connected to capillaries that circulate through the coldhead,
first passing the 50 K stage for thermalization and then passing through the 4 K stage,
being driven by a dry scroll pump Edwards nXDS 15i. When the Helium thermalizes
with the 4K stage at this pressure, it condenses. For the condensation temperature under
certain pressure, we can use the approximation of the Clausius–Clapeyron equation, to get
an approximate saturation/condensation temperature

Tsat =

(
1

T
− R

H
ln

(
P

Psat

))−1

, (3.75)

where T [K] is the temperature of the gas, R [J/(mol K)] is the specific gas constant,
H [J/mol] is the specific latent heat, P [mbar] is the actual pressure of the gas and Psat

[mbar] is the saturation pressure. For He4 we have R = 8.313 J/mol K, H = 84.5 J/mol,
Psat = 1013.25 mbar such that for a temperature of T = 4.2 K and a pressure of P =

800−1000mbar we find a saturation temperature of Tsat = 4.1−3.8K, which can be provided
by our commercial cooling stage. The lower the pressure, the lower the temperature needs
to be for the saturation to occur. The saturation itself is happening in a flow impedance,
favoring condensation, that is placed right before the 1 K pot, which stores the condensed
Helium. A flow impedance is a porous disordered material placed within the capillary. The
material exerts an attractive potential on the fluid, such that a liquid film can form on its
surface. This creates a liquid-gas interface, inducing a pressure difference between the two
phases such that the unconfined Helium saturation pressure is lowered in the medium [139].
The 1 K pot is then thermally connected to the sample region via a cold-plate. In fig. 3.8
(b) we can see a screenshot of the cooling cycle of our cryostat. Here it was turned on on
Sunday and kept cold until Friday.

3.1.5.2 ELECTRiCAL AND OPTiCAL FEED-THROUGH

The SNSPDs have an electrical feed-through via vacuum-compatible SMA-to-SMA connec-
tors. From 2020-2023 we have been using homemade SMA-to-SMP stainless steel coaxial
cables to connect the SNSPD (SMP) to the feed-through (SMA). Stainless steel has a low
thermal conductivity, which enabled us to not thermalize those cables. Unfortunately, they
also exhibit low electrical conductivity, such that we chose to exchange them with commer-
cial SMA-to-SMP cupronickel coaxial cables from Intelliconnect C-SPSMPJ-CNCN047-1M
with a length of one meter. Those cables now need to be thermalized via aluminium tape
at the 4 K stage.
The optical feedthrough is ensured by a homemade fiber feed-through. The fibers Oz Optics
SMJ-32.5F-1064/125-0.25-1.1-AR2 have an FC/PC connector for outside the cryostat and
a fiber ferrule end face that is AR coated and can be plugged directly to the SNSPD (as
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visible in fig. 3.8 (f)). The fibers are passed through a homemade QF16 centering ring and
are then sealed applying vacuum epoxy Varian Torr Seal. The fiber ends hanging out of
the QF16 centering ring are passed through a QF16 to QF50 reducing nipple to protect
the sensitive parts around the epoxy. The fiber ends are then fixed on a QF50 flange with
four FC/PC to FC/PC mating sleeves Thorlabs ADAFC2. This structure can easily break
at any point of the fiber, when not handled with care. In total, we have four optical fibers
leading to the four detectors. The transmission from the mating sleeve to the ferrule was
measured to be above 80% for each fiber feed-through at room temperature.

3.1.5.3 WORKiNG PRiNCiPLE OF SNSPDS

Superconducting nanowire single-photon detectors (SNSPDs) are high-speed, high detection
efficiency, and low noise on-off detectors that are based on superconductivity and thus
need a cryostat to operate. Our WSi SNSPDs are provided by NIST and are starting
to be superconducting around 1.5 K. The working principle is given with the electrical
equivalence scheme in fig. 3.9 (a). The model description of the SNSPDs follows mostly
Kerman et al. [140]. The SNSPD is modeled with a variable resistance Rn, which is zero
in the superconducting state, and has a kinetic inductance L, which is proportional to the
device area and depends on the substrate. The current Id is the current flowing through the
SNSPD, which is biased at I0. Each nanowire has a critical current Ic above which it loses
its superconductivity. The nanowire response is read out via the load impedance RL, which
is typically the transmission line resistance of 50 Ω and has a current IL flowing through
it. Usually, one wants to operate the device as close to Ic as possible, to obtain the highest
sensitivity to photons, translating directly to the quantum efficiency. We note, that Rn and
RL form a current divider.
As long as the nanowire is superconducting, such that Rn = 0 Ω all current is flowing
through the nanowire, such that IL = 0 A. As soon as a photon hits the nanowire, hundreds
of Cooper-pairs are broken by the photon energy being up to three orders of magnitude
larger than the Cooper-pair binding energy. The such created quasi-particles form a hotspot
in the nanowire and the current now flows around this hotspot, where the device is still
superconducting. Now, because the effective area of the SNSPD changed (excluding the
hot spot) the critical current is lowered in the region around the hot spot, leading to the
biasing current exceeding the critical current. The resistive area can therefore grow around
the hot-spot until it exceeds the width of the nanowire, by which time it has a resistance
of several hundred ohms. Due to Joule heating it expands along a large section of the
nanowire [141]. As soon as the nanowire has some resistance, part of the current is divided
towards IL. The nanowire resistance Rn grows exponentially after the detection of a photon
but could be completely counter-balanced by a perfect voltage divider between IL and Id.
Fortunately for us, the inductive time constant of the SNSPD is long enough, such that
before IL becomes large, Joule heating is already taking place. In this way, Rn ≫ RL and
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Figure 3.9: In (a) the equivalent electrical circuit of an SNSPD is shown. The SNSPD can be
modeled as a variable resistance Rn and inductance L. The biasing current I0 is divided between
the detector current Id and load current IL, which can be read out by the load resistance RL. The
experimental circuit is shown in (b), where a series resistor Rs can be used to increase the signal
amplitude. A bias-tee is used to supply the SNSPD with the bias current I0, created by a stable
voltage source in series with the resistor R0. The RF output of the bias-tee enables read-out of the
load current IL on the load resistance RL. This readout is amplified and filtered, as shown in c.
The traces are then recorded by a high-bandwidth oscilloscope. In d and (e) the two main detection
problems of SNSPDs are shown: ground loops and after-ringing. A clean detection trace is shown
in (f). (d)-(f) are shown on the x-axis with 2 µs per division and on the y-axis 1 mV per division.
For those traces, only one amplifier was used and all filters were removed.

the current Id reduces to nearly zero. We detect this sharp rise of current IL as a voltage
peak through RL. As now there is no current flowing through the SNSPD it can recover
to its superconducting state, where the recovery time is τrec = L/RL. As the rise time of
an SPSND is very fast, this recovery time usually limits the maximal detection rate of the
device. Decreasing L or/and increasing RL can help to make the SNSPD faster, but can
also render the device unusable, by preventing Joule heating.
This will cause the resistance Rn to stabilize around a fixed value and never go back to
the superconducting state, which is called latching and is associated with a latching current
Ilatch. One should choose a device where Ilatch > Ic, such that the device can operate also at
high rates. We remark that L ∝ Ilatch, such that if the inductance L is decreased too much,
the device will have Ilatch < Ic and as such cannot be used close to the critical current,
reducing its quantum efficiency. Of course, those design considerations are fixed once the
SNSPDs are produced, and we experience low latching at count rates of 200− 900 MHz. If
an SNSPD has latched, it can be automatically reset by turning the bias on and off.

3.1.5.4 SNSPD READOUT AND BiASiNG iN THE LABORATORY

Now that we understand the general principle of SNSPDs, let us explain the experimental
setup, shown in fig. 3.9 (b). The SNSPD is shown in series with a resistor Rs. Here a
large resistance can be used to increase the readout voltage pulse but has to be impedance-
matched to the 50 Ω readout circuit [142]. In our case Rs = RL = 50 Ω. Read-out resistance
RL, SNSPD, and bias source are connected via a bias-tee (Minicircuits ZFBT-6G+). The
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bias source consists of an ultra-stable voltage source SRS SIM928 in series with a resistance
R0 = 10 kΩ, such that the SNSPD are biased around 15-30 µA. The readout is only possible
with at least one amplifier, as the voltage peak into 50 Ω is below 1 mV. We usually employ
two low noise amplifiers (Minicircuits ZFL 1000LN+) in series and record the output on
a fast oscilloscope (Lecroy Teledyne WaveRunner 6 Zi). A low-pass filter at 100 MHz
(Crystek Corp. CLPFL-0100-BNC) is used between the two amplifiers, and a 21 MHz
low-pass filter before the input to the oscilloscope (Crystek Corp. CLPFL-0021-BNC). On
the oscilloscope, we use a voltage trigger to trigger on the rising edge of each pulse. The
whole setup is sketched in fig. 3.9 (c).
The main figures of merit for SNSPDs are the quantum efficiency at maximal possible bias
before latching, the dark count rate, and the timing jitter. Experimentally we have access
to the overall system detection efficiency, including the optical fibers and electronic readout.
We measure an overall detection efficiency to be ηon−off = 0.8− 0.85. The dark count rate,
false clicks induced by charge-discharge in the SNSPD or stray photons, should be low and
is measured to be around 10 Hz in our setup. The dark count rate not only depends on
the SNSPD characteristics but also on the cryostat temperature. A notable discussion on
this topic can be found in the work of Shehata et al. [143]. Moreover, the timing jitter,
defined as the FWHM of the normalized detection event distribution, is of the order of
tens of picoseconds. In general, the maximal possible count rate should be adapted to the
maximal capability of the setup, which is our case with a measured count rate of up to 2
MHz.

3.1.5.5 POSSiBLE ERROR SOURCES

The main sources of error in the setup of fig. 3.9 (c) are ground loops and after-ringing
of the SNSPDs. Ground-loops can occur if a system has several grounds. If each ground
has a slightly different potential, a closed circuit between the grounds is created, leading to
slow (in comparison with the SNSPD pulses) oscillations over the whole signal. Ideally one
would avoid multiple grounds, but our setup needs at least two grounds, one ground for
the high voltage compressor, grounding thereby also the cryostat, and another ground for
the oscilloscope. If multiple grounds cannot be avoided a preferred ground can be defined,
meaning that a low-resistance grounding cable can be installed on the cryostat. We used
the ground of a power line and connected all electrical equipment, except for the inherently
noisy compressor, on this power line. In fig. 3.9 (d) we can see 0.5 MHz ground-loop
oscillations, on top of which we can see detection peaks of the SNSPD. For the study of this
problem, we removed all low-pass filters and left only one amplifier in the setup of fig. 3.9
(c). We were able to suppress the ground loops by the above-described grounding procedure
and by using the same power line for all electronic equipment. Moreover, we also decided to
try increasing the detection amplitude by changing from a stainless-steel to a cupronickel
read-out coaxial cables for the electronic feed-through, as already written before.
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After-ringing, often also called after-pulsing is observed as a train of pulses after a detection
event. This increases significantly the dark count rate, visible in fig. 3.9 (e). Explanations
of this phenomenon are rare, but most often it is explained by either unwanted trapping of
charge carriers that are released after a single photon detection event or back-reflections in
the detection circuit, causing a ringing effect [144]. In our case, we observed this effect for
the first time around 2023, after a repair on the cryostat. We could reduce it substantially
by removing a capacitance after R0, which is intended to form a low-pass filter to suppress
any possible voltage fluctuations from the voltage source. A further reason for the effect to
persist could be small vacuum leaks, leading to depositions on the SNSPD detection area.
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3.1.6 TAKE-AWAY MESSAGE

In this section, we have presented the tools available in our laboratory. Our laser
is a continuous Nd:YAG solid-state laser that emits light at 1064 nm. It includes a
doubling cavity that emits light at 532 nm. This second output is used to pump three
optical parametric oscillators (OPOs):

• An OPO consists of a second-order nonlinear crystal placed inside a cavity. The
cavity enhances the pump and the non-linear process. The non-linear process
is spontaneous parametric down-conversion, where one pump photon is sponta-
neously split into signal and idler.

• All three OPOs in our lab are degenerate in frequency. Two OPOs emit signal
and idler at orthogonal polarizations (OPOIIa and OPOIIb) while the third
(OPOI) is fully degenerate. The former create two-mode squeezing, while the
latter creates single-mode squeezing.

• The OPO cavities are resonant on pump, signal, and idler fields. For this, we
control cavity length, crystal temperature, and the Nd:YAG output frequency
(OPOIIa) or crystal tilt (OPOIIb). The cavity enhances the pump power. It
furthermore introduces a threshold, marking the pump power at which the gain
in the signal and idler creation overcomes the losses inside the cavity. We always
operate below this threshold.

• The probability of the output mode exiting via the output coupler and not being
lost is captured by the escape efficiency η = T/(T + L). This parameter limits
the squeezing of the output and is therefore a measure of state quality. There
is a trade-off between having a high finesse or a high escape efficiency. In our
experiment we chose Tp = 0.05 and Ts/i = 0.1, leading to a finesse between 30
and 68, depending on the intracavity losses. The cavities are linear Fabry-Perot
cavities with a bandwidth of 65 MHz. The threshold is estimated to be 50 mW
for OPOI and 80 mW for OPOIIa and OPOIIb.

We have furthermore discussed which locking techniques and cavities we use in our
experiment:

• We use a mode cleaner with tilt locking to have a pure TEM00 mode at 1064
nm.

• The OPO cavities are locked via the Pound-Drever-Hall locking. Additionally,
we ensure that they are resonant on the signal and idler fields by injecting a seed
at 1064 nm and conditioning the Pound-Drever-Hall lock on the seed resonance.
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• Before detection on on-off detectors, we filter the OPO output mode via an
interferential filter and a homemade microcavity, locked with a side lock. This
combination allows only the central OPO cavity mode to pass.

We detect the OPO output signal via homodyne detection

• Homodyne detection samples the field quadrature xθ at different phases θ. For
this, a local oscillator is interfering with the signal path on a 50:50 beamsplitter.
Each beamsplitter output is detected on a photodiode and their subtracted
photo-current is recorded. The phase of the quadrature is the relative phase
between the local oscillator and the signal.

• Integrating the recorded photo-current over the temporal mode of the signal
gives a value proportional to the quadrature xθ. This requires the bandwidth
of the homodyne detector the be adapted to the temporal mode, for us the
homodyne bandwidth is 60 MHz. This measurement is mode-selective as it can
only measure a signal in the same mode as the local oscillator.

• Losses in this detection accumulate from path losses, visibility, photodiode effi-
ciency, and electronic noise. In total, we have an efficiency of 85% when mea-
suring OPOI, 83% when measuring OPOIIa, and 82% when measuring OPOIIb.

Another detection method available to us are four superconducting nanowire single-
photon detectors (SNSPDs), operating in a cryostat:

• The cryostat uses a two-stage Gifford McMahon cooling cycle to cool to 4 K.
We then use He condensation to cool the cryostat further to 1.3 K. For this,
helium is circulating in capillaries at room pressure through the coldhead and
condensates into a cold pot. This cold pot is thermally connected to the samples.
The cryostat can stay at 1.3 K for five days.

• Electrical and optical feed-through are homemade and lead to a SNSPD overall
detection efficiency of 80% to 85% with a dark count rate below 10 Hz and a
timing jitter of the order of tens of picoseconds. The maximal count rate before
latching is around 2 MHz.

Next, we will explain the process of generating non-Gaussian states using the available
laboratory resources. This process, along with the locking mechanisms, represents the
routine tasks performed in this experiment on a daily basis.
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3.2 NON-GAUSSiAN STATE CREATiON AND DATA ACQUiSiTiON

So far, we have discussed which kind of states we can create in our setup: single- and two-
mode squeezed states, which are Gaussian. Furthermore, we have presented our detection
methods, which we now use in two different ways. The Gaussian homodyne detection will
be used for state analysis, while the on-off SNSPD detection makes our states non-Gaussian
via an essential process, the heralding. To achieve efficient heralding we need to periodically
check all locks in our system, as explained in the Sample & Hold subsection. Finally, the
output states of all three OPOs are presented and analyzed, followed by a discussion about
possible improvements. We remark that those states are the most common ones we produce
but that our catalog of states will be extended in the next chapters.

3.2.1 HERALDiNG

Since spontaneous parametric down-conversion is a probabilistic process, we require a sig-
nal to indicate when a state can be measured using homodyne detection. This is why we
tap part of the output of each OPO and use it to herald a signal arriving on homodyne
detection. Each OPO therefore has two output paths, one for heralding and one for signal
analysis. What part of the output it sent to the heralding depends on the envisioned signal
state and will be discussed in subsection 3.2.3 and subsection 3.2.4.
The heralding path filters the light via an interferential filter and a micro-cavity, as de-
scribed in subsubsection 3.1.3.1 and shown in fig. 3.5. This filtered heralding mode is then
detected on a SNSPD, thereby projecting the signal mode onto this filtered mode. The
filtering can as such be seen as a mode selection, allowing us to take the single mode ap-
proximation (see subsubsection 2.1.1.2) for the signal path. The filtering therefore justifies
the full state-characterization via the homodyne detection, which can only resolve one single
mode: the mode of the local oscillator.

As we have three micro-cavities in our setup we can have three simultaneous heralding
events. Heralding can also be performed between two paths. This means that two herald-
ing paths are mixed on a polarizing beam splitter (PBS) and projected onto the same
polarization. The rejected polarization can then be used to lock the relative path differ-
ence between the two paths. A detection click of the new merged heralding path can not
be back-tracked to either of the two original heralding paths, such that this process can
induce entanglement or superpositions. A general experimental sketch of an heralding path
is shown in fig. 3.10 (a) and heralding between two paths is visible in (b). Here we can
see the two possibilities of where to place the merging of heralding paths, either before the
cavity or after the cavity.
In our experiment, uCavII has merged heralding paths before the uCav, uCavI after the
cavity and uCavIII has simply one heralding path. The heralding detection event, being
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(a) (b)
TTL

Figure 3.10: In (a) a general heralding scheme is shown. The heralding mode is filtered by an
interferential filter (IF) and a micro-cavity (µCav). It is then transmitted towards a fiber coupler,
leading towards the SNSPD detection if the detection shutter SD is open. The shutter is controlled
via a TTL signal and opens when the TTL voltage is low. To lock the cavity, a locking beam is
injected into the cavity if the locking shutter SL is open, such that after the optical isolator (OI)
the reflected transmission signal on the photodiode PDL can be used to lock the cavity length. The
locking shutter is controlled by the same TTL signal as the detection shutter but closes when the
TTL voltage is low. (b) is an inset of (a), showing the merging of two heralding modes either before
or after the filtering. Here part of the heralding mode II is scanned via a piezo-electric transducer
and can be locked on any point in the resulting fringe, recorded on the photodiode PDF . The locking
is only possible while the OPOs are seeded, which is controlled by yet another shutter (not visible
in the figure) that opens when the TTL voltage is high.

the SNSPD detection pulse, is then used as a trigger on a fast oscilloscope (Lecroy Teledyne
WaveRunner 6 Zi). This trigger indicates when a homodyne detection trace should be
recorded. It is therefore essential to take into account the time delay between a SNSPD
heralding click and the homodyne trace showing the corresponding signal. The time delay
can be adapted with additional BNC cables.

3.2.2 SAMPLE & HOLD - KEEPiNG THE EXPERiMENT LOCKED

To lock the OPOs, micro-cavities, and the relative lengths of paths that are interfering as
they are merged, a bright IR light is needed. This bright light cannot be present during
quantum state generation and detection as it would saturate and therefore dominate the
detection. This is why we need two phases in our experiment that alternate in 50 ms: a
non-measurement “sample” phase where bright light is allowed and all locks are checked,
followed by a “hold” phase, where the bright IR light is blocked and the locks unchanged
such that quantum states can be measured. Here we will discuss the experimental setup for
this procedure in a single-mode measurement.

3.2.2.1 EXPERiMENTAL SETUP OF A SiNGLE-MODE MEASUREMENT

The experimental setup of a single-mode measurement is similar for all three OPOs. It is
depicted in fig. 3.11 (a) for the example of OPOI. Each OPO lock consists of three stages.
First, a side lock on the transmission seed signal is implemented, locking the cavity length.
For this, a small part of the heralding path is tapped towards a photodiode PDSL. After the
side lock has been established, the PDH error signal, created at the mixer with the pump
reflection signal on PDPDH and the EOM driving signal, is used as the final lock of the
cavity length. Now the piezo-electric transducer on the IR seed path is scanned, creating
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Figure 3.11: In (a) the whole experimental setup for any single-mode measurement on either OPOI,
OPOIIa, or OPOIIb is shown. For more details, we refer the reader to the main text. The data-taking
is executed as a Sample & Hold scheme, which is shown explicitly in (b). During “sample”, bright
IR light is used to check/relock all locks, while the SNSPDs are protected by closing SD. During
this phase the oscilloscope wavesurfer takes data. The “hold” phase is the waverunner measurement
phase, where we allow for no bright IR light and open the detection shutter SD. In (c) the inputs
to our two main oscilloscopes are shown, together with their time-settings.

fringes on the photodiode PDSL due to parametric amplification and de-amplification (see
subsubsection 3.1.3.2), and locked close to the maximum of the fringe. Thanks to this lock
we have a stable IR output of the cavity, that enables us to lock other path interference
fringes down the line, as shown in fig. 3.10 (b) on PDF . The signal path ends in the
homodyne detection stage HDI. The phase of the local oscillator is continuously scanned
via a signal generator (SG). Some of the bright locking light cannot be present during the
measurement of the quantum states, as it would dominate the signal by orders of magnitude.
To ensure that the OPOs, micro-cavities, and path lengths are nonetheless locked during
the measurement, we implement a Sample & Hold procedure, as visible in fig. 3.11 (b).

3.2.2.2 DATA ACQUiSiTiON

The Sample & Hold procedure is controlled by a 10 Hz TTL signal, such that we sample
for 50 ms and then hold for 50 ms.
During the sample phase, the OPO lock is checked and the seed is transmitted via the open
shutter SL. The only shutter that is closed is SD, leading to the SNSPDs. We use mechan-
ical shutter heads SRS 475 and SRS 470 that are controlled by the four-channel shutter
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driver SRS 474. The locks of OPO, micro-cavities, and relative phases are checked during
this period. Moreover, the seed is used to record interference fringes between the local
oscillator beam and the signal on a slow 350 MHz digital oscilloscope Lecroy WaveSurfer
434, visible on the low-frequency output of the homodyne HD LF . The triangular voltage
signal HD V , scanning the piezo-electric transducer, is recorded as well. During the data
processing, those traces can be used to fit the phase of the fringe to the voltage applied on
the piezo-electric transducer, such that we can know the phase of the quadrature that was
measured on the homodyne. As this calibration can shift, we re-measure this fringe-voltage
pair during each sampling phase and use it to calibrate the HD phase for the proceeding
hold phase.
During the hold phase all shutters are closed, except for the shutters leading to the SNSPDs
SD. A fast oscilloscope Lecroy WaveRunner 6Zi is used to record the high-frequency homo-
dyne output HD HF and the homodyne voltage signal HD V . The recording of the traces
of those two channels is conditioned on an AND trigger, combining a low TTL voltage with
a SNSPD click. After each 1000 traces the data is sent to our laboratory PC and processed,
as explained in section 3.3.

3.2.2.3 A NOTE ON THE OSCiLLOSCOPES

Both oscilloscopes have the possibility of employing the remote access protocol TCP/IP,
with which we fetch the data and send it to our laboratory PC. While the wavesurfer is a
standard oscilloscope, the waverunner has specific requirements. First, we require a reason-
able bandwidth. The highest frequency signal might be the SNSPD detection signal, whose
bandwidth is determined by the rising edge of this signal, being around 33 MHz. As we
employ a 21 MHz low-pass filter before the SNSPD input to the waverunner (see subsub-
section 3.1.5.4) we consider its maximal bandwidth to be 21 MHz. Therefore the homodyne
detection, with its bandwidth of 60 MHz, sets the minimal bandwidth of the waverunner,
which is easy to achieve. The number of samples per minute we require is more challenging.
The sample rate determines the maximal horizontal resolution (timing resolution) of the
oscilloscope, which should be as low (in s) as possible as it smears out the arrival time of
the SNSPD detection and therefore the data of the quadratures. In our case, the maximal
timing resolution is 50-100 ps with a timing jitter of maximally 3.5 ps and a sampling rate
of 20 GigaSamples/s (2 channels) or 10 GigaSamples/s (4 channels).

Next, the voltage resolution or vertical resolution determines how precise the homodyne
quadrature trace data is. In our case the available 8-bit resolution with a possibility of 1
mV - 1 V per division on display is sufficient. In general, higher resolution would allow us
to avoid signal amplification after the HD output. Currently, we are using a low noise am-
plifier Minicircuits ZFL 1000LN+ before the oscilloscope. As we see no degradation of the
signal quality, we do not push for a higher resolution. The final important consideration is
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the trigger sensitivity, which describes the smallest voltage signal that can generate a stable
trigger. In our case, the trigger sensitivity is 0.9 div. Meaning that 90% of one voltage
division has to be reached. Moreover, we need the possibility to employ the AND-trigger,
which takes as a condition the low TTL signal and the arrival of a SNSPD signal. Last
we can ask how many homodyne signals we want to record, meaning how many modes we
want to measure. Currently, we have the possibility of measuring two modes, such that
two channels can be used to input homodyne data, channel 3 is the homodyne voltage scan,
channel 4 is the SNSPD signal and the external input is the Sample & Hold TTL signal.
With this, we have maxed out the possible channels and would have to invest in a new
oscilloscope to measure additional traces.
We will now discuss the single-mode states we can measure with our three OPOs.

3.2.3 OUTPUT OF OPOI: THE CAT STATE

The OPOI is used to produce odd cat states, see eq. (2.227). If we set the losses inside
the cavity to L = 0, we can use equations (3.26) and (3.27) and connect it to the squeezing
parameter of eq. (2.208) and the creation operator after squeezing of eq. (2.249). To
compare those two expressions, we have to set ω = 0 in eq. (3.26), corresponding to the
degenerate down-conversion frequency. In this way we can write how squeezing ξ = reiϕ is
altered by a (lossless) cavity

λ = tanh(r) =
2cth

1 + c2th
and ϕ = π such that (3.76)

|ξ⟩ =
(
1− λ2

)(1/4) ∞∑
n=0

√
(2n)!

2nn!
λn |2n⟩ , (3.77)

with a squeezing axis of ϕ = π in eq. (2.249) and the cavity (OPO) threshold cth = 1. To
include losses, one can now either apply a beamsplitter or use eq. (3.26). In both cases, the
partial trace is used to trace out the loss mode. We can analyze the squeezing produced
by OPOI, to get a better loss estimation. The measured squeezing is shown in the paper
by O. Morin et al. [145] and can be compared with eq. (3.35). It suggests an intra-cavity
OPOI loss of LIR = 0.01, which indeed is lower than what we estimated with the finesse
measurement (see subsubsection 3.1.2.4).

Now we want to take this squeezing and build a basis of even and odd cat states with
it. Interestingly, a squeezed vacuum can have a high fidelity with an even cat state, and
subtracting one photon from this squeezed vacuum can have in turn a high fidelity with
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an odd cat state. This is why we usually refer to the output from OPOI as cat states, as
defined in eq. (2.227) and (2.226). If α ≤ 1, we can approximate

|cat(α)⟩+ ≈ S |0⟩ , (3.78)
|cat(α)⟩− ≈ âS |0⟩ = SS†âS |0⟩ = −eiϕ sinh(r)S(reiϕ) |1⟩ (3.79)

= sinh(r)S(−r) |1⟩ . (3.80)

Intuitively we can see that both squeezing and even cat states are a superposition of even
Fock numbers, while photon-subtracted squeezing transforms this into a superposition of
odd Fock numbers, similar to an odd cat state. The reason why the amplitude α is rather
small is the weights of the superpositions of squeezing and cat states, which are similar only
in those regimes. In this regime, the odd cat state can be expressed as a squeezed single
photon. Those cat states, having a small amplitude α, are sometimes called Schrödinger’s
kitten, although we will call them cat states. In fig. 3.12 the state overlaps (fidelities)
between squeezed states and cat states are shown. Importantly we remark that for each cat
amplitude α, a different squeezing is ideal.
Moreover, we can see that for the same targeted cat amplitude, the ideal squeezing value
differs from even to odd cat. This motivates choosing a fixed cat amplitude α (not optimizing
over alpha) and then computing the fidelity with even and odd cat states, to judge how
good of a computational basis, or how orthogonal, the experimentally generated states are.
To create a proper Bloch sphere, bigger cat amplitude values are envisioned (see coherent
state overlap in eq. (2.185)).
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Figure 3.12: In (a) the fidelity Fc between ideal squeezing and an ideal even cat state is shown for
different cat amplitudes. (b) shows the corresponding values for an odd cat state. For each cat
amplitude, there is a different ideal squeezing to achieve maximal fidelity. The squeezing phase is
set to ϕ = π.
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Figure 3.13: In (a) the Wigner function of the experimental data for an odd cat state is shown. (b)
shows the corresponding density matrix with the ideal odd cat of α = 0.89 in dashed lines. The
fidelity with an ideal odd cat is shown in (c).

The generation of odd cat states is especially interesting, as they show Non-Gaussianity
also at low cat amplitudes. The experimental setup is given in fig. 3.11 (a), where we tap
3% of the OPOI output by tuning the HWP before the first PBS accordingly. The created
output state is shown in fig. 3.13, where we plot the Wigner function10 in (a) and its density
matrix in (b).
If we optimize its fidelity with a lossy photon subtracted squeezed state, then we find 97%
fidelity with a squeezing of sdB = 2.4 dB. The best achievable fidelity with a cat state is
around 80% for an amplitude of α = 0.89, where the corresponding plot is shown in fig.
3.13 (c). The state is corrected for the measurement efficiency ηmeas = 0.85, leaving only
the losses inside the OPOI.
With the results of OPOI now laid out, let’s move forward and discuss OPOII.

3.2.4 OUTPUT OF OPOII: THE SiNGLE PHOTON

The OPOIIa and OPOIIb can produce Fock states and are mainly used to produce single
photon states. From eq. (3.15) we can deduct how to write the output state of OPOII if no
losses are present. For this, we use our results of OPOI and write

ξ = reiϕ λ = tanh(r) =
2cth

1 + c2th
and ϕ = π, (3.81)

S2(ξ) |0⟩ = (1− λ2)(1/2)
∞∑
n=0

λn |n⟩1 |n⟩2 (3.82)

BS(0.5)−−−−→ |ξ
2
⟩
1
|ξ
2
⟩
2
, (3.83)

where the subscripts 1 and 2 stand for the two orthogonal polarizations that can either be
mixed in two-photon correlations (eq. (3.82)) or can be separated by a 50:50 beamsplitter
10with the normalization taken to be h̄ = 0.5
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(eq. (3.83)). A very elegant derivation of this result is given by Lvovsky [146].

The photon number correlations between the two orthogonal polarization modes are of-
ten called EPR-entanglement, which refers to a Gedankenexperiment of Einstein, Podolsky,
and Rosen about locality in quantum mechanics [4]. Importantly all the information in this
system is stored in the correlation, such that if we trace out one mode, a thermal state
is created in the other. If a beamsplitter is applied the modes are separated and thereby
decorrelated, transferring the information to the separate modes. Tracing out one mode
in this setting will therefore not affect the other mode. In which of those cases we are
operating, depends on the HWP angle right after the OPO in fig. 3.11 (a). A complete
study of the HWP setting is given in chapter five of the thesis of H. Le Jeannic [147].

To create a single photon, modes 1 and 2 have to be perfectly separated, such that one
polarization component is sent to the heralding mode. If this splitting is perfect, the de-
tection of n photons in the heralding mode will project the state onto a Fock state |n⟩ in
the signal mode. The single photon output of OPOIIa is shown in fig. 3.14. The fidelity
with a single photon is F = 0.85 and the state purity is P = 0.74. The state purity and
fidelity can be improved by lowering the pump rate, which was kept rather high here as
those states were used in subsequent protocols, described in chapter 5.
Here, the optical isolator in fig. 3.1 before the homodyne measurement is especially im-
portant. It avoids back-reflections from the homodyne, which induce false clicks on the
heralding path. Those clicks act as a displacement on the signal and are in phase with the
homodyne measurement, producing a kind of qubit. A full discussion about this effect can
be found in chapter 4.4.3 of the thesis of O. Morin [30].

In fig. 3.15 the single photon output of OPOIIb is shown.
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Figure 3.14: The single photon of OPOIIa is shown, where (a) shows the Wigner function and (b)
the real density matrix.
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Figure 3.15: The single photon of OPOIIb is shown, where (a) shows the Wigner function and (b)
the real density matrix.

The single photon fidelity F = 0.74 and purity P = 0.6 shows that the additional input
mirror on OPOIIb increases the losses, such that this state has a lower state quality than
the OPOIIa single photon. Both states have been corrected for all losses between the
measurement and the OPO output, such that the single photon fidelity is equivalent here
with the OPO escape efficiency η = T/(T +L), where T is the output coupler transmission,
which in our system is 10%.
With the escape efficiency, we can re-evaluate the losses in both OPOs as LOPOIIa

IR = 0.018

and LOPOIIb
IR = 0.035. As already remarked for OPOI, this measurement of the losses

is more reliable and also shows smaller values than the measurement via the finesse (see
subsubsection 3.1.2.4).
Single photons are not the only possible output states of such OPOs. We will discuss other
OPOII output states in chapters chapter 6 and chapter 7.

3.2.5 DiSCUSSiON

The typical single-mode state capabilities of our setup have been discussed in this section,
with a large focus on the single-mode approach via state filtering and data acquisition.
We first note that the equations for single and two-mode squeezing, given in eq. (3.82) and
(3.77) show the dependency of the squeezing on the OPO pump and how close it is to OPO
threshold, i.e. how close it is to cth = 1. This is directly related to the count rate, such
that if we want almost no |2⟩ |2⟩ photon component in the two-mode squeezing, we need to
pump far below threshold, leading to a lower count rate. This trade-off between count rate
and state fidelity will also be discussed in the next chapters. Here we explicitly optimized
the state fidelity with no regard to the count rate.

To obtain a high purity state, the pump of the photon-subtracted squeezed vacuum was
optimized. In this way near-unity fidelity with a (lossy) squeezing of sdB = 2.4 was shown,
which corresponds to an 80% fidelity with an ideal cat of the amplitude of α = 0.89. In
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the case of OPOIIa and OPOIIb, we achieve high single photon purity and fidelity of max-
imally F = 0.85. This differs by 5% from previously reported values [30], which hints at an
increase in the losses inside the OPO cavity. To counteract this, strategies will be presented
in chapter 7.

In terms of Non-Gaussianity we can get an indication of the quality of our states via
their negativity11. With the normalization h̄ = 0.5 we can expect the minimal value of
the Wigner function to be −2/π ≈ −0.64 and find especially that OPOIIa to be very close
to this value with a negativity of −0.44. All three experimental states presented here show
clear Wigner negativity. Moreover, the fidelity with pure states exhibiting Wigner negativ-
ities can serve as a witness for Non-Gaussianity. To show that a state is non-Gaussian one
needs to exceed a threshold, which in our case is the fidelity with a single photon above 50%
[148]. We compute the lowest fidelity to be that of the odd cat of OPOI, with F1 = 0.72,
which is somehow logical as this state is not “trying” to be a single photon. All our states
are therefore highly non-Gaussian.

11We note that negativity is only a non-Gaussian criterion for pure states.
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3.2.6 TAKE-AWAY MESSAGE

In this section, we have seen, that

• Heralding allows us to introduce Non-Gaussianity into our two-mode or single-
mode squeezed output states of the OPOs. It involves tapping part of the OPO
output state, filtering it, and detecting it on SNSPDs. This detection is then
used as a trigger to measure the remaining OPO signal via homodyne detection.

• To be able to measure data in a stable experiment, we need to implement a
sample and hold feature. During 50 ms the experiment is sampled, meaning
that all locks are relocked. The next 50 ms are for quantum state creation and
their data acquisition, and all the locks are set on “hold”.

• In terms of data acquisition we use two oscilloscopes: a waverunner and a
wavesurfer. During the hold phase the fast waverunner records the high-
frequency homodyne output, triggered by a detection click on the SNSPD.
During the sample phase, the fringe between the seed and local oscillator is
recorded on the wavesurfer, enabling the calibration of the homodyne phase.

• For OPOI, we tap a small fraction of the output state and use it as heralding.
This corresponds to a single-photon subtraction of the squeezed vacuum and
can be approximated by an odd cat state of amplitude α ≤ 1. We achieve a
fidelity of 80% with an odd cat state of amplitude α = 0.89. We estimate the
intra-cavity loss to be LOPOI

IR = 0.01.

• For both OPOIIa and OPOIIb we split signal and idler perfectly, and use their
photon-number correlation to project the state onto a single photon with fideli-
ties of 85% and 74%. We estimate their intra-cavity losses to be LOPOIIa

IR = 0.018

and LOPOIIb
IR = 0.035.

• All three OPOs can create highly non-Gaussian states.

In this section, the density matrices and Wigner functions of the measured states have
already been displayed. In the next section, we will detail the method for reconstructing
them from the measured homodyne data.
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3.3 DATA PROCESSiNG

In the previous section, we have discussed data acquisition and have shown typical states
that can be measured in our setup. We now present how the homodyne data is processed
such that we can find the output state density matrix. In our setup, we recall that we have
two distinct steps: a sample phase and a hold phase.
During the sample phase, we record the data from a relatively slow oscilloscope, the
wavesurfer. This data is used to calibrate the voltage ramp applied to the piezo-electric
transducer, attaching a phase value to each homodyne measurement with a known ramp
value.
In the hold phase a high sample-rate oscilloscope, the waverunner, is used to record mea-
surement traces of the homodyne detection, together with the ramp voltage. For more
detail, we refer the reader to subsection 3.2.2.

Here we will focus in the first three subsections on how to compute the quadrature
phase and value from the raw data. In the fourth subsection, the maximum Likelihood
reconstruction algorithm is presented, followed by the fifth subsection about uncertain-
ties in this reconstruction. We finally describe the transition from pure C code to a more
user-friendly Python code in the sixth subsection and end this section with a discussion
in the seventh subsection. The take-away messages are given in the last subsection.

3.3.1 CODE AND RAW FiLES

Historically, C has been used as the programming language for communicating with oscil-
loscopes, saving the data, and processing it. The communication is based on the VICP
(Versatile Instrument Control Protocol) Client Library, which is developed by Teledyne
Lecroy and is publicly available.
First, the vacuum noise or shot noise is recorded with 40000 raw traces. This data will
be used as a normalization. During this measurement the signal path is manually blocked,
such that only vacuum and measurement noise contribute.
Now the actual quantum signal is measured and the signal path is unblocked. We record
between 20000 and 40000 traces to reconstruct the measured state. Each time the hold
sequence is initiated, the oscilloscope gathers 1000 traces before sending them to the lab-
oratory PC, as the communication time between the PC and oscilloscope is the slowest
process in data taking for us.
With our usual count rate of 200 KHz to 1 MHz, single-mode data acquisition takes below
five minutes. The data is saved in the form of .bin files because the VICP client library
is optimized for this file format. We will now discuss how the data is processed such that
quadrature values can be extracted from the raw traces.
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3.3.2 COMPUTiNG THE QUADRATURE VALUES

We recall from subsubsection 3.1.4.1, that the homodyne trace v(t) needs to be integrated
over the temporal mode of the state. This temporal mode corresponds to the OPO cavity
mode and is set to a bandwidth of ∆ν = 60 MHz for all analyzed data. Note that before
taking data, the time delay between the SNSPD detection event and the homodyne trace
recording has to be calibrated, such that we are sure to have the temporal mode in each raw
trace. The temporal mode itself cannot be seen in the individual traces but in the variance
of all recorded traces, which is equivalent to the variance of phase-averaged quadratures.
For this, we calculate the point-wise variance of all recorded signal traces. Each trace has
usually 2002 points, which corresponds to 10 Gigasamples per second for the recorded length
of 200 ns.

If one wants to verify the single-mode approach, a temporal mode analysis can be done. For
this, the autocorrelation matrix of all traces is computed. If we then perform an eigenanal-
ysis, we find that the eigenvectors are temporal modes. Given that each eigenvector is a
temporal mode, we ideally want only one eigenvalue to be non-zero. The eigenvalues mark
consequently how “single-mode” our signal state is or how much it can be defined with one
single temporal mode. An analysis of the single photon of OPOIIa, as shown in fig. 3.14,
can be seen in fig. 3.16. In (a) we can see the dominant eigenvalue which should correspond
to the cavity mode, visible in (b). The discrepancy between the measured output mode and
the ideal cavity mode is mainly a broadening of the curve. This can probably be attributed
to the bandwidth of the homodyne detection.
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Figure 3.16: Here the temporal mode analysis of a typical state of OPOIIa is shown. In (a) the first
25 eigenvalues are shown, each eigenvalue corresponding to another temporal mode. In comparison
to the temporal mode of vacuum, we can clearly see that the first eigenvalue dominates in the
OPOIIa case. The corresponding eigenvector to the first eigenvalue is plotted in (b), in comparison
with the ideal cavity mode.
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By performing the integration over the temporal mode we can therefore compute a value x′
θ,

proportional to the quadrature value of each trace. Here we have the choice to integrate the
computed temporal mode or the theoretical temporal mode of fig. 3.16 (b). We find that
the reconstructed state is barely influenced by this choice, such that we always reconstruct
with the theoretical mode. The quadrature values of the shot noise v0(t) are computed in
the same way, and we can compute its standard deviation and mean and use it to find the
final quadrature value

x
′
θ =

∫
v(t)f(t)dt, (3.84)

x0θ =

∫
v0(t)f(t)dt, (3.85)

xθ =
(
x

′
θ −mean(x0θ)

)
/std(x0θ), (3.86)

where v(t) is the recorded trace and f(t) the temporal mode. Next, we need to find the
phase θ of each quadrature value.

3.3.3 FiNDiNG THE QUADRATURE PHASES

The quadrature phase is recorded as a voltage value on the waverunner for each trace.
To connect each voltage value to a phase, we need the fringes between the seed and local
oscillator, recorded on the wavesurfer. A simple squared sinus fit of the fitting function

f(A,B, a, b, c, t)fit = A sin2(at2 + bt+ c) +B, (3.87)

then reveals the phase, which can now be associated with each trace. Practically we only
take the rising slope of the voltage scan, such that a fit typically looks as in fig. 3.17. Here
the recorded interference fringe between the seed and local oscillator is shown in orange,
while the scan voltage is shown in pink. The fit is applied on the positive slope of this can
voltage, colored in light green. The fit itself is shown in dashed black lines. To translate
the voltage in the phase of the fitting function, we can first write the trace index vector t
in terms of the voltage

t =
max(t)−min(t)

max(V )−min(V )
(V − V [0]), (3.88)

where V [0] is the first voltage value measured and therefore gives the offset. The phase for
any voltage v′ can then be translated into an index t′, which can be used to calculate the
phase θ′ with

θ′ = 2
(
a (t′)2 + b t′ + c

)
. (3.89)

In this way, we can fit any voltage to any phase and have now a complete set of quadratures
and corresponding phases.
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Figure 3.17: Here the phase fit of voltage to fringe-phase is shown. The interference between the
local oscillator and signal (in orange) is cropped to the rising slope of the voltage scan of the local
oscillator (in pink). This cropped part is fitted with the function f(A,B, a, b, c, t), which is plotted
in dashed lines with the found fitting parameters.

3.3.4 MAXiMUM LiKELiHOOD RECONSTRUCTiON (MAXLiK)

The raw homodyne data is now available as N pairs of quadratures and phases {xθ, θ}. This
is equivalent to sampling the marginal distribution Pθ of the state, being the integration
of the Wigner function over the orthogonal quadrature. The homodyne data is therefore
not a direct measurement but needs processing to reveal the state it has measured. Here a
statistical approach is used, called the maximum likelihood estimation [149]. It computes
the most likely state that can produce those measurement results.

3.3.4.1 GENERAL WORKiNG PRiNCiPLE

Assume we have N measurements with outcomes xi i ∈ [0, N − 1]. A measurement
frequency fj is now associated with this set of outcomes, such that fj = nj/N . We see that
this is the relative frequency of the outcome xj , which occurs nj times in the data set. The
likelihood L of this new dataset fj , xj is then defined as

L =
∏
j

[Tr[Πj ρ̂]]fj , (3.90)

where Πj denotes the measured POVM element, fj the previously explained relative fre-
quency and ρ̂ the density matrix. This density matrix is what we are trying to compute,
such that it maximizes the likelihood. For this, an operator R̂ is introduced, which will be
used iteratively to update the density matrix

R̂(ρ̂) =
∑
j

fj
Tr[Πj ρ̂]

Πj . (3.91)
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For the exact measured state ρ0 we should find fj = Tr[Πj ρ̂0]. As we know from eq. (2.155),
the POVM elements Πj sum to the identity, we can find that for the ideal state R̂(ρ̂0) ≈ 1.
The algorithm to find this perfect state starts with the initial matrix ρ̂ = 1 and converges
towards ρ̂0 in K iterative steps

ρ̂k+1 = R̂(ρ̂k)ρ̂kR̂(ρ̂k), (3.92)

ρ̂k+1 =
1

Tr[ρ̂k+1]
ρ̂k+1, (3.93)

where the second step ensures the normalization of the density matrix. In each step, the
density matrix is projected onto the state it would be in if it would have been measured
in a weighted superposition of all measured quadratures, represented by R̂, such that each
iteration further pushes the density matrix closer to convergence, which is when the state
does not change anymore R̂(ρ̂0)ρ̂0R̂(ρ̂0) ∝ ρ̂0. This algorithm assumes ρ̂ to be a quantum
state, such that after each iterative step it is a normalized, hermitian matrix. To run this
algorithm one has to choose the number of iterative steps K and the dimension of the density
matrix dimρ.

3.3.4.2 MAXLiK iN PRACTiSE

In our case we start from N sets of measurement data {xθi , θi} and use the set {fi, xθi , θi}
for the reconstruction. Indeed in our case j = i, as each measurement occurs only once. To
speed up the reconstruction one could bin the homodyne data, leading to a faster but less
precise algorithm. As we care for precision, we do not bin. Therefore the relative frequency
of each measurement is equal fi = f = 1/N . The ideal measurement POVM element in our
case is the homodyne projector, as defined in eq. (2.269), where we can find a projector
HD(x, θ, ηmeas) for a certain detection efficiency ηmeas, phase θ and quadrature outcome xθ.
This approach can be extended to several modes by using a super-POVM-element, which is
the tensor product of the POVM elements that were measured on the individual systems.
In our reconstructions, we set the number of iterations to K = 200, which shows good
convergence of the algorithm. The density matrix size is chosen to be dimrho = 5 for
OPOIIa and OPOIIb and dimrho = 10 for OPOI. One can verify that the correct dimension
was chosen by running the algorithm with a higher dimension. If the higher-density matrix
elements are not populated we can come back to the faster, smaller dimensions. The loss
corrections implemented via η are given in table 3.6.

3.3.5 UNCERTAiNTiES

One of the drawbacks of the MaxLik reconstructions (or any statistical reconstruction of
quantum states) is, that it is very hard to define error bars. Firstly we need to define
what the error bars should capture: experimental fluctuations or reconstruction uncertainty.
Experimental fluctuations beyond the measured data fluctuations are only reasonable if one
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measured state should represent the system over several hours. This approach is taken in
chapter 5. For a single measured state, the experimental fluctuation is incorporated in the
data and is therefore indistinguishable from the reconstruction uncertainty. Our preferred
approach is defined by P. Faist and R. Renner [150], where a quantum error region can be
calculated. This is only applicable to a measure (like fidelity) of the density matrix and
cannot be applied to get the uncertainty of off-diagonal elements of the density matrix.
We therefore choose the widely used bootstrapping approach. There, new homodyne data
is simulated from the calculated density matrix, leading to a newly reconstructed density
matrix. If this process is repeated many times, the standard deviation of the matrices from
their mean can be used as error bars on each density matrix element. We note, however,
that defining an uncertainty for each density matrix element is somehow artificial in an
algorithm where after each iteration a fully new density matrix is calculated.
The uncertainty could be better defined as an uncertainty of the whole density matrix,
approaching the definition of P. Faist and R. Renner [150]. In general, we expect and find
the error bars on each density matrix element to be very small due to our high number of
measurements.

3.3.6 FROM C TO PYTHON

The code is very fast in C, but learning to read and navigate in C is commonly challenging
for any new PhD arriving. We therefore decided to transfer part of this code to Python.
Since the beginning of 2024, a Python script calls a C .dll file to keep fast communication
with the oscilloscopes in its native language. The quadrature calculation, phase calibration,
and MaxLik are then done via Python. To speed up the MaxLik computation in Python,
one can make use of parallelization. All data analysis on the density matrices was also
transferred from Mathematica to Python during this PhD. Except for calling a C .ddl file
and the occasional use of the programming language Julia, which serves as a fast language
for programs that are not already written in C and can be used via the .dll file, all data
processing is now in Python.

3.3.7 DiSCUSSiON

We have presented the maximum likelihood algorithm, used to reconstruct the signal state
from homodyne data. Loss correction and N-mode reconstructions were discussed and are
commonly used for our setups. The discussion of uncertainties in that kind of reconstruction
is closely connected to the bias introduced by the maximum likelihood algorithm. A bias in a
statistical estimation incorporates the prior knowledge about the system, which in our case,
is the state dimension. Moreover, the algorithm itself has a bias towards physical states, as
we enforce the output to be a properly defined density matrix. There are several analytical
approaches, like the Radon transform, which can output unphysical density matrices (for a
more complete discussion we refer the reader to [30]). With our size of measurement data,
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we can be quite confident that our reconstruction is faithful, but remark that for small
data samples, the MaxLik algorithm is known to deviate from the true state [151]. New
approaches use machine learning [152, 153] for a speed-up in reconstruction and to avoid
a bias setting. While it can be very useful to employ machine learning for a faster data
analysis, the implicit bias coming from the model or the training data set of any machine
learning algorithm is hard to quantify and an active field of research [154]. Given this
unknown implicit bias, we prefer the MaxLik approach, where we have full knowledge of
the chosen bias.

3.3.8 TAKE-AWAY MESSAGE

In this section, we have discussed that:

• We record first 40000 traces of vacuum shot noise, which are used for normal-
ization. For the data, we take between 20000 and 40000 traces. Single-mode
data acquisition takes below 5 minutes.

• The center of the temporal mode in each trace is visible by computing the
point-wise variance of all recorded traces. Each trace is then integrated over the
temporal mode and normalized by the vacuum data. The single-mode approach
can be verified by computing the eigenanalysis on the corresponding covariance
matrix.

• The phase of each quadrature value is recorded as a voltage level. To con-
nect each voltage to a phase, the fringes between the seed and local oscillator,
recorded on the wavesurfer, are used. They are fitted to a squared sinus function,
allowing us to extract a phase for each voltage.

• The 20000-40000 quadrature-phase tuples are then used to reconstruct the mea-
sured state. For this, we use the maximum likelihood reconstruction algorithm.
With this algorithm, we can correct for the losses on the homodyne detection.

• The challenge of defining error bars in this statistical approach to reconstruction
is addressed by using bootstrapping.

• To increase the ease of navigation, part of the reconstruction code was trans-
ferred from C to Python during this thesis. All data analysis was written and/or
transferred to Python and Julia.
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This chapter briefly introduces the idea of future quantum networks with a special focus
on heterogeneity. The first section builds up the tools needed to use quantum networks
and argues for entanglement between different non-Gaussian states to be a good testbed for
quantum networks, called hybrid entanglement. Such a hybrid entanglement is experimen-
tally created and analyzed towards the end of this section. The second section discusses an
improved Bell-state measurement in the Fock basis. This Bell-state measurement improves
the output fidelity of swapping and teleportation protocols. It has been fully characterized
during this thesis and a paper about the results is in preparation. Moreover, it is an essential
cornerstone of the protocol presented in chapter 5. Here we show this characterization and
compare it with state-of-the-art photon number-resolving detectors. The third section
concludes this chapter and the fourth section gives the key results.

4.1 HETEROGENEOUS QUANTUM NETWORKS

In this section, we want to introduce quantum networks and motivate why hybrid en-
tanglement, which we can create in the laboratory, is interesting in this context. In the
first subsection a general quantum network is described and current quantum networks
are analyzed. In the second subsection the two most important protocols for networks:
entanglement swapping and quantum teleportation are introduced in the framework of
the Bell-state measurement. The third subsection aims at analyzing the most general
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encoding choices for quantum networks. It furthermore discusses post-selection and non-
deterministic sources. The fourth subsection presents and analyses our experimentally
generated hybrid entanglement, between cat states and Fock states. Its network compati-
bility is discussed and possible improvements are suggested.

4.1.1 THE iDEA OF QUANTUM NETWORKS

Inspired by the success of today’s internet, a common goal in quantum research is the cre-
ation of a quantum network [155] to connect different quantum devices and enable commu-
nication between them. In the last years, we have already seen examples of small quantum
networks in the context of quantum key distribution (QKD), that can enable mathemat-
ically secure information transfer, superior to the classical computational security. This
technology is commercially available and is employed in Japan, China, and the European
Union [156, 157]. In their current form, those QKD quantum networks use quantum chan-
nels to transmit classical information stored in quantum states in point-to-point protocols,
for example with the famous BB84 protocol [158].
The quantum states are always encoded in light, being the only ”flying” quantum system,
and as such have to battle fiber losses of 0.2 dB/km at the standard telecommunication
wavelength of 1550 nm.
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Figure 4.1: In (a) the structure of a linear quantum network is visible. In this simple form, the
network connects user A with user B viaN (in this case two) Bell-state-measurement (BSM) stations.
An entangled state source S emits two photonic modes, traveling in opposite directions. One mode
of each source is used for the BSM. The communication idea - quantum teleportation - is shown in
(b), where information is sent from left to right by projecting the input state, which we wish to send,
together with one mode of the source onto a Bell state via the BSM. After the measurement, the
output state is equal to the input state up to a local unitary U , which is adjusted according to the
BSM outcome, communicated via a classical channel. Over a long distance, the direct entanglement
link needed to perform teleportation is achieved by subsequent BSMs between the entangled state of
neighboring sources. This process is shown in (c), where a successful BSM between two modes of two
sources entangles the remaining modes traveling in opposite directions, which is called entanglement
swapping.
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Even though low loss fibers are under development1, the losses will pose a hard limit to
the maximal length of a direct quantum link between two parties to several hundreds of
kilometers. This is why current quantum networks define trusted nodes, at which the quan-
tum signal is measured and recreated in an amplifier fashion. Those nodes pose an important
security issue, as they require the trusted notes to know what they will measure.

For a quantum network to be fully usable for any quantum task and to be secure, trusted
nodes have to be avoided. This requires two additional ingredients in the quantum net-
works of today: quantum memories and entanglement. We already know from subsub-
section 2.4.2.2, that quantum information cannot be cloned. Therefore, unlike in classical
networks, quantum signals can not be amplified to account for losses in the transmission
channels (hence the measurement interception in the before-mentioned excising QKD net-
works). To still be able to build large quantum networks, we envision connecting two users
via entanglement, which is stored in several untrusted nodes between the users with the
help of quantum memories. Once all those untrusted nodes have received a signal, the
entanglement swapping protocol creates entanglement between the two end-users, who can
now perform quantum teleportation to exchange information in a loss-reduced fashion [157],
as shown in fig. 4.1.
In the following subsection, we will explain the teleportation and swapping protocol in the
context of quantum networks.

4.1.2 SWAPPiNG AND TELEPORTATiON WiTH THE BSM

4.1.2.1 QUANTUM ENTANGLEMENT AND THE BELL BASiS

To understand entanglement-based protocols, we remember our definition of entanglement
in subsubsection 2.1.2.2, where a bipartite system is defined to be maximally entangled if
the partial trace on one mode yields a fully mixed state on the other. For two-mode systems,
the maximally entangled states are the so-called Bell states, which form a computational
basis and are thus pure. They can be written in the logical basis |0⟩L , |1⟩L, where for
simplicity we drop the subscripts, such that

|ϕ⟩± =
1√
2
(|00⟩ ± |11⟩), (4.1)

|ψ⟩± =
1√
2
(|01⟩ ± |10⟩). (4.2)

The naming of those states stems from the famous Bell theorem of 1964 [5]. It states, that
the physical principles of locality and reality are incompatible with quantum mechanics.
Locality here refers to the idea that a system can only be influenced by its surroundings,

1For example by the company Corning.
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defined by its light cone2 while reality describes the assumption, that a system has proper-
ties that are independent of measurements. Any theory that fulfills reality and locality is
classical and can be formulated as a so-called hidden variable mode, where those variables
are assumed to describe the underlying physics of a model. Bell showed, that quantum me-
chanics cannot be described by such a hidden variable model and the states that maximally
violate the measurement predictions of such a model are the Bell states. This theorem is
based on reasoning on probability theories and can be translated into the expectation values
of observables, forming an inequality such that it can be measured and verified in the lab.
The most famous inequality used to measure a Bell violation is called the CHSH inequality
and was formulated in 1996 [159]. It has been experimentally verified against loopholes3

many times since 2015 [160–165]. Let us now show the ideal cases of quantum teleportation
and swapping, utilizing those pure maximally entangled non-local states.

4.1.2.2 QUANTUM TELEPORTATiON BEFORE MEASUREMENT

Quantum teleportation was first proposed in 1993 by Bennet et al. [166] and experimentally
implemented in 1997 by Bouwmeester et al. [167]. Since then, this protocol has known
remarkable progress and lies at the heart of quantum network protocols [168, 169]. The
idea is depicted in fig. 4.1 (b) and shows that the quantum state to be teleported |φ⟩in =
√
c0 |0⟩+

√
c1 |1⟩ is measured in a two-mode measurement with one part of a Bell-pair |ψ⟩+4.

If we write the tensor product of the system with modes a, b, c before measurement we find

|φa⟩in ⊗ |ψb,c⟩+ ∝ |ψa,b⟩+ ⊗ |φc⟩in + |ψa,b⟩− ⊗ Z |φc⟩in +

|ϕa,b⟩+ ⊗X |φc⟩in + |ϕa,b⟩− ⊗ ZX |φc⟩in . (4.3)

We realize that we can write the tensor product as a sum of all Bell states in the product
with either the perfect input state or the input state up to Pauli Gate operations X,Z.

4.1.2.3 ENTANGLEMENT SWAPPiNG BEFORE MEASUREMENT

Let us now transition to the case of entanglement swapping, which was first proposed in
1993 by M. Zukowski et al. [170] and experimentally implemented in 1998 by J. Pan et al.
[171]. Here, any two Bell states are created and one mode of each is measured together,
creating remote entanglement as shown in fig. 4.1 (c). For the example of two |ψ⟩+ Bell

2The light cone is the path light takes through space-time. This essentially requires any interaction to be at
maximum at the speed of light.

3Loopholes in Bell tests refer to possible ways in which we could describe this system as a hidden-variable
model after all. Famous loopholes are the detection loophole, the free-choice loophole, the memory loophole,
and super-determinism, where the latter is usually ignored in experiments.

4The results is equivalent for all Bell states.
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states in modes a, b, c, d, where the inner modes b, c are supposed to be measured together,
we can rewrite their tensor product as

|ψa,b⟩+ ⊗ |ψc,d⟩+ ∝ |ψa,d⟩+ ⊗ |ψb,c⟩+ − |ψa,d⟩− ⊗ |ψb,c⟩−

+ |ϕa,d⟩+ ⊗ |ϕb,c⟩+ − |ϕa,d⟩− ⊗ |ϕb,c⟩− . (4.4)

Here we can see that the input states can be rewritten as four tensor products of Bell states.
This works for all combinations of input states and chosen measured-mode combinations 5.

4.1.2.4 LET’S MEASURE: THE BELL STATE MEASUREMENT

When rewriting the input states for quantum teleportation and entanglement swapping, we
find a superposition of tensor products with Bell states. The Bell state measurement (BSM)
is a two-mode projective measurement, projecting on one of the four Bell states each time
a measurement is taken. Its POVM has four elements, corresponding to a pure projection
on one of the four Bell states (see definition of POVM (2.155))

Π1 = |ψ⟩+ ⟨ψ+| Π2 = |ψ⟩− ⟨ψ−|

Π3 = |ϕ⟩+ ⟨ϕ+| Π4 = |ϕ⟩− ⟨ϕ−| (4.5)
1 = Π1 +Π2 +Π3 +Π4. (4.6)

Each projection occurs with an equal probability of 25%, such that the measured modes are
projected in one of the four Bell states with equal probability. In the case of teleportation
we can see, that such a projection recreates the input state of mode a in mode c (up to
a local unitary). This is why one says that information, not matter, was ”teleported”. To
communicate if a local unitary has to be applied, a classical channel between mode a and
c is needed in addition. In the swapping protocol a projection onto one of the four Bell
states in modes b, c will entangle the two modes a, d. As in the case of teleportation, this
is astonishing, as those two modes have never interacted. The Bell-state measurement can
therefore be seen as information preserving, where the information of a system or between
systems can be imprinted onto another system. If we now consider a network, we can imagine
several BSM stages between a communication line. If entanglement swapping is performed
between all of them at the same time or asynchronously using quantum memories, the two
user nodes can be entangled, independent of the distance between them. Using quantum
teleportation then allows user A to send information to user B.

4.1.2.5 THE PHYSiCAL BSM

Now that we have discussed the ideal BSM, let us see how we can implement it in physical
systems. Our wish list for a perfect BSM should include deterministic operation, high

5Albeit with variations in how the different Bell states are combined in the tensor product
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detection probability, and easy implementation. As our Bell-state-sources are emitting
photonic states, all-optical BSMs are preferable and often used in state-of-the-art network
demonstrations [157, 172–175]. Here, the basic scheme always relies on a 50:50 beamsplitter
between the two modes to measure. Depending on the encoding, additional optical elements
are added, where most often time-bin, polarization, and Fock basis are discussed. Here we
will focus on the Fock basis, and this choice will be motivated in subsection 4.1.3. If we
assume the physical basis to be vacuum for |0⟩L and a single photon for |1⟩L, we can write
the action of a beamsplitter on each Bell state in the tensor product of eq. (4.3) or (4.4) as

BS(0.5) |ψ⟩+ ∝ |10⟩ ,

BS(0.5) |ψ⟩− ∝ |01⟩ ,

BS(0.5) |ϕ⟩± ∝ |00⟩ ∓ 1√
2
(|02⟩ − |20⟩ . (4.7)

Only the states |ψ⟩± can be detected with this scheme and this detection relies on the fact
that one can indeed detect exactly a single photon. Consequently, a BSM with linear op-
tics is probabilistic and inherently limited to a success probability of 50%, if no additional
resources are added [176].

This kind of measurement can be made complete (detecting all four Bell states) and de-
terministic, by adding a source of non-linearity in the measurement. Optically this can
be achieved by using fast feed-forward in combination with homodyne detection instead of
single-photon-detectors, but its usefulness is limited by a high loss-sensitivity and limited
fidelity [177, 178]. Another approach consists in adding a light-matter interface in the form
of (artificial) atoms to the measurement. Several complete BSM experiments have been
performed in this paradigm [179–182], but suffer from very low success rates and highly in-
volved setups, making them challenging to scale up. As all of the complete BSM nowadays
have a low success probability, we can consider any state-of-the-art Bell-state measurement
to be probabilistic. The two main bottle-necks to improve those existing BSM are either
by improving the success rate or by improving the fidelity of the BSM. In section 4.2 we
will present and analyse an improvement made to the second bottle-neck in an all-photonics
setup.

4.1.3 WHiCH QUANTUM STATES TO USE iN QUANTUM NETWORKS?

Until now we have discussed quantum networks in a rather general manner and made no
choice regarding the optical states which propagate in the system. We did however argue
for the use of entangled states, such that longer distances can be overcome via entanglement
swapping. Moreover, highly multi-mode entangled states are predicted to facilitate routing
and network structure optimization, making those processes independent of the underlying
physical network design [183]. Here, however, we will limit our discussion to bipartite
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entanglement. Bipartite entanglement is experimentally accessible to us, forms a convenient
test-bed for quantum networks, and has well-defined entanglement measures [61]. When
choosing the kind of entangled-state sources S to be used in fig. 4.1 (a), one has to consider
the quality of entanglement and the compatibility of the information encoding of each mode
with the network. In the next subsubsections, we will discuss encoding considerations and
present the implications of post-selection and non-deterministic sources.

4.1.3.1 ENCODiNG CONSiDERATiONS iN A NETWORK

There is a vast choice of optical systems that can create entanglement but differ in the
encoding of the individual states. One example we have already discussed is the two-mode
squeezing of eq. (3.15) or the single-photon entanglement of subsubsection 4.1.2.5. Those
two examples capture perfectly a choice that has to be made: Independent of the quality of
entanglement, which can be high in both cases, one needs to choose if the entangled states
should be non-Gaussian or Gaussian. This question is highly related to the kind of network
one envisions. If we assume the network connects quantum sensing devices or/and quantum
computers, then it is reasonable to assume that non-Gaussian states are the information
carriers (see discussion in section 2.4). This means that node A in fig. 4.1 will input a
non-Gaussian state to be teleported. To our knowledge, no BSM between two different en-
codings has been demonstrated so far, leading to the requirement that the mode in A of the
final entangled state after swapping should be non-Gaussian. In the simplest network, with
only one BSM between A and B, we therefore require the mode sent to A to be non-Gaussian.

Let us now investigate if the modes sent to the BSM have any constraints. For this, we
motivate the use of quantum memories with a simple example. Let us assume a network
with one BSM, where A and B create an entangled pair each, keep one mode, and send
the other to the BSM station at half the distance between A and B, l = L/2. We can now
define the probability that both states arrive at the BSM station without being absorbed
due to loss in the fiber as the survival probability

ps(l) =
1

2
e−l/Latt , (4.8)

where l is the length between A (B) and the BSM station and Latt is the attenuation length,
defined as the length at which the signal amplitude drops to 1/e of its initial value, which
translates to a drop of ≈ 4.34 dB. With a standard fiber at 1550 nm, we find an attenuation
length of 21.7 km. Moreover, we are assuming to use a linear Bell-state measurement,
succeeding with probability pBSM = 0.5. Because of fiber losses and the probabilistic
nature of the BSM, this swapping protocol will have to be performed Ttot(l) times, before
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the protocol succeeds. We find that the total average number of tries needed to successfully
perform entanglement swapping is

⟨Ttot(l)⟩ =
1

ps(l)

1

pBSM
= 22eL/(2Latt), (4.9)

growing exponentially with the network length L. Let us now imagine that we add more
BSM stations. Now if we use NM = 2n − 1 BSM stations, we can decrease the number of
total tries to

⟨Ttot(l, NM )⟩ = 21+log2(Nm+1)e
L

Latt(Nm+1) , (4.10)

showing an exponential improvement in the number of trials. For details on this calculation,
see [157, 184]. Of course, this requires all states to arrive at all BSM stations at the same
time. This is why the BSM stations are replaced with repeater stations.

A repeater station is a BSM, equipped with one quantum memory per mode, which can store
the quantum state until each memory has a quantum state stored. Quantum memories are
therefore crucial for network synchronization, without which large networks cannot be built.
In the above calculation, we have omitted all realistic errors except for loss, but note that
there exist error correction protocols for errors in quantum memories [157]. Now that we
have discussed the importance of quantum memories, we realize that the main requirement
for our states arriving at the repeater stations is compatibility with quantum memories.
Quantum memory technology is dominated by cold atomic clouds [185] and atomic ensem-
bles embedded in crystalline structures [186]. Those quantum memories mostly work in the
Fock basis [185, 187, 188], and are often used with weak coherent states to approximate
single photons. Although weak coherent states, and cat states, have been considered [189]
for quantum memories, the envisioned input state mostly stays the single photon. More-
over, quantum memories also impose a requirement on the wavelength of this single photon.

We conclude, that for a general quantum network, the entangled states are preferred to
have a non-Gaussian end-point at A and should have an encoding in the low-excitation
Fock basis for any state arriving at repeater stations. This still leaves open whether one
wants to choose path encoding, where a qubit is encoded in the presence of a single photon
in one of two paths, time-bin encoding, where a qubit is encoded in the arrival time of a
single photon, which can be late or early, or Fock state encoding, where a qubit is encoded
in two Fock states. One can very well envision choosing one kind of encoding flying to-
wards the network, and another for the local use of teleportation. Moreover, those hybrid
entangled states can be used as high dimensional qubits for a more loss-tolerant quantum
computation [190]. We will present such a hybrid entangled state in subsection 4.1.4 and
will proceed to discuss post-selection and non-deterministic sources in quantum networks.
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4.1.3.2 POST-SELECTiON iN QUANTUM NETWORKS

Many entangled states are created via post-selection, referring to a process where only
a subset of the measurement outcomes are considered. This technique, therefore, takes
a (semi) classical state and creates the quantum properties afterward, by only selecting
measurement results that fit quantum behavior. This prohibits any form of entanglement
distillation [191] and is only possible in prepare-and-measure schemes [192], including some
QKD settings or metrology protocols [193]. In a general network, post-selection has to be
avoided, as it can only be performed once in the system and therefore hinders complicated
protocols where entanglement is needed in subsequent processes.

4.1.3.3 NON-DETERMiNiSTiC SOURCES iN QUANTUM NETWORKS

Currently, sources of single-mode non-Gaussian quantum states or entangled quantum states
are non-deterministic. They either are based on heralding, as in our case, which gives ran-
dom state creation events, or on quasi-deterministic sources. Quasi-deterministic sources
like quantum dots or other (artificial) atoms can output photons at specific times and are
therefore easy to synchronize, but have non-ideal output probabilities. Those are limited
by the coupling efficiencies of the emitter to free space or fiber and can be compared to the
escape efficiency of an OPO. As with the OPO escape efficiency, imperfect coupling leads
to a mixed output state in the Fock basis. Those coupling efficiencies are improved continu-
ously but, up to our knowledge, do not yet reach the Fock-state purity reachable with OPOs
[194]. Furthermore, interference between photonic states of quasi-deterministic sources is
constrained by their distinguishability, and compared to OPOs, achieving indistinguishable
states in those systems is challenging. As soon as coupling efficiencies and indistinguishabil-
ity comparable to an OPO can be reached, those quasi-deterministic sources will probably
be preferable due to the easier clock synchronization and very high count rates that can be
achieved.

4.1.4 HYBRiD ENTANGLEMENT iN THE LAB

Here we present the hybrid entangled state we can create in our laboratory [145]. Using
the non-Gaussian resource states presented in subsection 3.2.3 and subsection 3.2.4, we can
create a hybrid entangled state of the form

|ψ⟩H = c0 |0⟩ |cat⟩− + eiθc1 |1⟩ |cat⟩+ , (4.11)

where we have full control over the weights c0, c1 and the phase θ. Entanglement in our
case is created by erasing the ”which path” information of the heralding modes of OPOI and
OPOIIa, as shown in fig. 3.10 (b).
For convenience, the whole experimental setup is shown in fig. 4.2. The pump light at 532
nm, seed light at 1064 nm, and local oscillator light are shared between both OPOs. For
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details about the locking, the function of the seed, of the heralding, the Sample & Hold, or
of the homodyne detection we refer to chapter 3.
The important element is in the heralding mode, where the heralding path of OPOIIa and
OPOI are mixed with the help of a first polarizing beamsplitter (PBS), where c1 and c0 of
eq. (4.11) can be controlled via the half-wave plates on each path. The second PBS then
projects those two modes onto the same polarization, making them indistinguishable. This
is only true because of our efforts to match the OPO cavities of OPOIIa and OPOI, giving
the output modes the same spectral and spatial shape. The merged heralding path then
undergoes filtering and can be detected on one of our SNSPDs.

HWP
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HDII HF HD V HD VTTL TTLSNSPD

waverunner wavesurfer

Figure 4.2: The setup for hybrid entanglement creation is shown. From the left the laser (not visible)
is emitting green (532 nm) and IR (1064 nm) light. The green light is used as a pump and split
towards OPOIIa (top) and OPOI (bottom). The IR light passes the mode cleaner and is then used
as a seed for both OPOs and as a local oscillator for the homodynes HDI and HDII. Each homodyne
analyses the signal path of its OPO. The heralding path of OPOIIa and OPOI are merged and
their phase is locked. For this the heralding path phase of OPOIIa is scanned via a piezo-electric
transducer (PZT) and the phase of the interference fringe of the two heralding paths is locked with
the signal of PDF . After this locking stage, the heralding path is filtered via an interferential filter
(IR) and a homemade micro-cavity µCav, leading towards the SNSPD. A detection click on the
SNSPD (conditioned on a low TTL voltage) leads to the trace of the high frequency (HF) outputs
of the two homodynes being recorded on the waverunner, together with the voltage applied to the
local oscillator (LO) PZT (in pink). When the TTL voltage is high, a full scan of this homodyne
PZT voltage together with the fringes of the seed-LO of OPOI and OPOIIb are recorded on the
wavesurfer. The measurement is taken in a Sample & Hold configuration. HWP stands for Half-
wave-plate, OI for optical isolator, and PBS for polarizing beamsplitter.
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To create entanglement, and not a statistical mixture, the relative phase between the herald-
ing paths of OPOIIa and OPOI needs to be stable. For this, the phase of the OPOIIa
heralding path is scanned and the resulting fringe is recorded on the photodiode PDF .
With the help of a side lock, we can now lock the fringe and thereby the phase θ of eq.
(4.11) wherever we want. The data recording is shown at the bottom left of fig. 4.2, where
one more trace is added on each oscilloscope to be able to calculate the quadrature value
of OPOI and OPOIIa with the high-frequency output of HDII and HDI and know the cor-
responding phase thanks to the voltage-to-phase data on the wavesurfer, recording the low
frequency (LF) output of both homodynes.

It is not trivial how to plot such a state and we follow the tradition of this laboratory,
first explained in the PhD thesis of O. Morin [30].
For this, we use the fact that eq. (4.11) is a tensor product and plot the Wigner functions
of the tensor elements as shown in fig. 4.3 (a). Odd and even cat states are ideally on the
diagonal, while the off-diagonal terms form their bracket combinations. The off-diagonal
terms are therefore not hermitian, but conjugate, such that we plot only the real elements
of their Wigner function. We find that our experimental state has a fidelity of 64% with an
ideal hybrid state with a cat amplitude of α = 0.82, c0 = 0.4, and a phase θ = 0.35π. This
ideal state is plotted in fig. 4.3 (b) for comparison with the experimentally measured state,
shown in (c). Here both homodyne data sets were corrected for the losses given in table
3.6.

4.1.4.1 NETWORK COMPATiBiLiTY

We present here an experimentally generated state that fulfills many of the criteria explained
in subsubsection 4.1.3.1. Each mode in this entanglement is non-Gaussian, as discussed in
chapter 3 and represents two different ways of encoding: cat states and single photons.
Both modes can be used locally or sent to network repeater stations, thanks to experimen-
tal strategies to counteract losses on cat states [33].
The entanglement negativity of this state is calculated to be N = 0.296 and its logarithmic
negativity is EN = 0.671, showing very strong distillable quantum correlations (see subsub-
section 2.1.2.3). To test those correlations against classical local variable models, quantum
steering was performed [35], which is a one-sided Bell test, formulated as one party compar-
ing the measured output values with the other party, to decide whether or not they share
entanglement.

A recent publication in collaboration with the group of Professor Magdalena Stobińska
[195] discusses possible experimental Bell-test settings. There it is shown, that the specific
type of hybrid entanglement is maximal non-local in its pure form, making it a different
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(a)

(c)

(b)

Figure 4.3: In (a) the visualization of the hybrid entanglement ρH is depicted. The tensor structure is
used, where only the indices containing the cat-state combinations are plotted. The discrete mode up
to the Fock state n = 2 therefore can be used to show 3x3 Wigner states of the continuous mode.The
diagonal terms are ⟨0|ρH |0⟩,⟨1|ρH |1⟩ and ⟨2|ρH |2⟩. All terms are plotted as Wigner functions. Note
that in this notation only the diagonal terms are properly defined states, while the off-diagonal terms
are only conjugate and not hermitian matrices. We plot only the real part of their Wigner function.
In (b) the corresponding plot of an ideal hybrid entanglement with α = 0.82, c0 = 0.4, and a phase
θ = 0.35π is shown. (c) shows the experimental hybrid entanglement.

form of Bell-state. Moreover, the hybrid entanglement has been used for entanglement
swapping [36] in 2020 and quantum teleportation in 2022 [37] during this PhD work, which
will be presented in chapter 5.

4.1.4.2 POSSiBLE iMPROVEMENTS

The quality of the above-shown entanglement depends heavily on the quality of the resource
states, and therefore on the OPO output quality. To improve the single photon purity of
OPOIIa, its escape efficiency can be increased, which will be discussed in chapter 7. For
OPOI our main parameter to tune is the escape efficiency as well, rendering the squeezed
vacuum state purer. The usability of that kind of state in quantum networks is limited by
their low count rate of 30-100 kHz, which stems from the need to avoid erroneous clicks,
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due to multi-photon components in the heralding paths. Those are directly connected to
an increased heralding tapping on OPOI or/and an increased pump rate of OPOIIa. This
trade-off can be circumvented by exchanging our SNSPD on/off detectors with photon-
number resolving detectors (PNR). Currently, PNR detection is mostly performed with
transition-edge sensors, which show high quantum efficiency but have a considerably slower
recovery time than SNSPDs [196], which finally limits the maximal rates of those detectors.
Moreover, we note, that using an encoding solemnly based on the Fock basis is very sensitive
to errors. Especially losses, translating into errors due to vacuum being part of our qubit
sub-spaces, hider the usability of this hybrid entanglement in long-range networks. This
can be circumvented by using time-bin encoding as suggested by Gouzien et al. [197].

Now that we have discussed entanglement in quantum networks, we will shift our focus
to another crucial network-enabling technology: Bell state measurements.
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4.2 THE HYBRiD BELL STATE MEASUREMENT

Here we present an all-optical Bell state measurement (BSM), that has a boosted fidelity
with the ideal optical BSM. Bell-state measurements rely on the interference of two optical
modes and subsequent photon detection [198]. Central to this operation is the capability
to detect a single-photon state, visible in eq. (4.7). However, the two-photon component
is present in most photon creation processes including OPOs, and inherently in the BSM
as more than one photon can interfere on the beamsplitter. The most common detectors
used for BSMs are on-off detectors, which cannot distinguish photon numbers, and are thus
unable to discriminate one- from two-photon contributions [199]. This two-photon error
is a strong limitation for high-fidelity Bell-state measurements. A potential alternative to
on-off detectors are superconducting photon-number resolving detectors [200], which are
still under intense development and of limited availability, or a large number of multiplexed
on-off detectors that would require extremely high efficiencies.

Here we investigate a method to mitigate the effect of multi-photon components: the hybrid
Bell-state measurement (HBSM). It combines on-off single-photon detection with homodyne
conditioning, as sketched in fig. 4.4. The addition of the homodyne conditioning enables a
more faithful discrimination between single- and two-photon states, reducing the potential
errors and thereby boosting the measurement projectivity.

HD 

   
Conditioning

R 

Figure 4.4: Sketch of the hybrid Bell-state measurement (HBSM) consisting of an on-off single-
photon detection (SPD) and a quadrature conditioning via homodyne detection (HD) in a network
configuration. At a network node, two optical modes are mixed on a balanced beamsplitter. One of
the output modes is tapped via a beamsplitter with reflectivity R and this part is sent to a SPD.
The transmitted mode is directed to an HD, which is used for conditioning on quadrature values in
a window ∆ around q = 0. The HBSM success is heralded by both detection events.

154



This hybrid approach has been used in recent experimental realizations of entanglement
swapping and quantum teleportation, based on the hybrid entanglement presented in sub-
section 4.1.4 [36, 37, 145]. It turned out to be instrumental in these successful demonstra-
tions. We will now provide a formal description of the HBSM and analyze it in function of
the different tunable experimental parameters. We then apply this approach to the key ex-
amples of quantum teleportation and entanglement swapping protocols. We finally compare
the performances with demanding photon-number resolving detection.

4.2.1 HYBRiD BSM: FORMALiSM AND ERROR MiTiGATiON

The hybrid Bell-state measurement is depicted in fig. 4.4. It combines an on-off single-
photon detection (SPD) and quadrature conditioning via homodyne detection (HD). The
incoming mode impinges on a beamsplitter with a reflectivity R and the reflected path
leads to the SPD. The transmitted mode is sent to a homodyne detection, where we define
a conditioning window ∆ around the quadrature value q = 0. The success of the HBSM is
heralded by both detection events. The HBSM has therefore two tunable parameters, the
reflectivity R and the conditioning window ∆, and also depends on the detection efficiencies.
As explained in chapter 3, ∆ is normalized to the standard deviation of the vacuum shot
noise.
The general principle of the HBSM can be first understood in the limit of small R. In
this case, the first detection is equivalent to a photon subtraction. A two-photon state
then results in a single-photon state, while a single-photon state reduces to vacuum. A
subsequent homodyne detection can discriminate the parity as the states have different
probabilities of returning a given quadrature value. In particular, the probability of a value
close to zero is large for vacuum and negligible for a single photon, as can be seen in the
conditioning box of fig. 4.4, where the associated white and black marginal distributions
are shown. In the following, we provide the full theoretical analysis and benchmarking of
the HBSM.

4.2.1.1 POVM OF THE HYBRiD BELL-STATE MEASUREMENT

The overall detector can be described by its positive operator valued measure (POVM) [201],
see subsubsection 2.1.3.2. In the case of the HBSM, there are two possible measurement
outcomes, corresponding to a successful and an unsuccessful event. Here we are interested
in the successful POVM element Πon. The description of this POVM element relies on the
matrices of the beamsplitter operation BS(R) that depends on its reflectivity, the single-
photon detection POVM element Πon

SPD, which corresponds here to an on-off detection [202],
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and the homodyne detection POVM elements [203], integrated over the detection window
∆ and independent of the detection phase θ, i.e.,

Πon
HD(∆) =

∆/2∫
−∆/2

dq

2π∫
0

dθ Πq,θHD. (4.12)

The Πon HBSM matrix in the Fock basis can then be written as

Πon = BS(R)†
[
Πon

HD(∆) ⊗Πon
SPD

]
BS(R). (4.13)

As this measurement is phase-independent, the POVM element has only diagonal terms
that are non-zero. As mentioned in the introduction we mostly assume Fock states up to
|2⟩. The diagonal elements are given by

Πon
[0,0] = 0,

Πon
[1,1] = R ηSPD erf

(
∆

2

)
,

Πon
[2,2] = R ηSPD

[
erf
(
∆

2

)
(2−R ηSPD)

+
2∆√
π
ηHD(R− 1)e−∆2/4

]
, (4.14)

where ηSPD is the detection efficiency of the single-photon detector and ηHD the efficiency of
the homodyne detection. Many implementations require a filtering stage before the single-
photon detection, and its efficiency can be integrated into an overall ηSPD. In the asymptotic
limit of small R and ∆, the POVM elements reduce to

Πon
[0,0] = 0,

Πon
[1,1] ∼ R ∆ ηSPD√

π
,

Πon
[2,2] ∼ 2 R ∆ ηSPD√

π
(1− ηHD). (4.15)

As the ideal HBSM shall project on the single-photon state, we aim at reducing Πon
[2,2] while

increasing Πon
[1,1] with the experimentally tunable parameters R and ∆. As shown in fig. 4.5

(a)-(d), for a fixed reflectivity R, this is obtained by decreasing the conditioning window ∆.
From a certain value of ∆, typically 0.25, decreasing it further has a limited effect as can be
seen in fig. 4.5(c) and 4.5(d). Furthermore, we note that we are achieving a measurement
that detects odd Fock states with higher probability than even ones. In our case of interest
for BSM, this feature reduces to a boosted single-photon versus two-photon detection.
To further explore the HBSM in this case a benchmark needs to be defined.
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4.2.1.2 BENCHMARK: PURiTY OF THE HBSM

The ideal HBSM should act as a perfect single-photon detector, having only one non-zero
element, i.e., Πon[1, 1] = 1. In order to benchmark the HBSM we propose the purity P(Πon),
measuring the projectivity of the POVM. As above, the POVM element will be truncated
such that we only consider the first diagonal elements defined in Eq. 4.14. The purity can
then be defined as

P(Πon) =
(Πon

[1,1])
2 + (Πon

[2,2])
2

(Πon
[1,1] +Πon

[2,2])
2
. (4.16)
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Figure 4.5: On the left, diagonal elements of the HBSM POVM Πon element. They are given for
a fixed reflectivity R = 0.1 and for different conditioning windows ∆, from a large acceptance to
a very small one relative to shot noise: (a) ∆ = 10, (b) ∆ = 1, (c) ∆ = 0.25 and (d) ∆ = 0.001.
The coloring indicates the wanted green Πon

[1,1] and unwanted red Πon
[2,2] elements. All matrices were

normalized for comparability, with normalization factors Na = 0.824, Nb = 0.156, Nc = 0.037
and Nd = 0.00015. The detection efficiencies are set to ηHD = ηSPD = 0.9. On the right the
HBSM purity P(Π on) up to Fock state n = 2 is depicted. The purity is given as a function of (e)
the conditioning window ∆ with fixed reflectivity R = 0.1 and of (g) the reflectivity R with fixed
window ∆ = 0.1. (f) and (h) provide the purity as a function of the detection probability P on

max. The
homodyne detection efficiency is set to ηHD = 0.9 (ηHD = 1) for the solid (dotted) line, while two
values of the single-photon detector efficiency ηSPD are considered. The grey dotted line depicts the
purity for a perfect on-off detector.
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This measure takes values between 0.5 and 1, where 0.5 corresponds to Πon
[2,2] = Πon

[1,1]. In
the asymptotic limit of R→ 0 and ∆ → 0 the purity approaches

P(Πon) ∼ 1 + 4(ηHD − 1)2

(3− 2ηHD)2
, (4.17)

and only depends on the homodyne measurement efficiency ηHD. For ηHD → 1, the HBSM
becomes pure, corresponding to a projective measurement.

Given this expression, we can now evaluate how the purity depends on ∆ and R. This is de-
tailed in fig. 4.5 (e) and 4.5 (g), respectively, and for two values of SPD detection efficiency
ηSPD. Figures 4.5 (f) and 4.5 (h) provide the maximal possible detection probability P on

max.
This probability is defined as the maximization of the detection probability over all states,
thereby showing the detection probability for the most favorable state. This is the reason
for this probability having a minimum, which corresponds to the ideal state switching from
a single- to a two-photon state6. The reflectivity R has a larger impact on the purity while
∆ shows a more favorable trade-off between purity and detection probability. Importantly
we note, that a decrease in the SPD efficiency increases the importance of the two-photon
component.

The purity enables to benchmark of the HBSM. With R and ∆ well set, this detector can
herald with high probability a single photon and with low probability two photons. In the
next subsection, we now turn to the output of this hybrid measurement approach when
applied to different input states and detail its use for networking protocols.

4.2.2 APPLiCATiON TO THE HYBRiD BELL-STATE MEASUREMENT

In the following, we will consider the general scenario of a two-mode input state and the
HBSM applied on one of the two modes. The performance of the HBSM can be characterized
by calculating the fidelity F of the conditioned mode with the ideal projection if a perfect
single-photon measurement would be performed. We will first consider the case of an input
state with single- and two-photon components, and then consider the use of the HBSM for
two typical examples, namely quantum teleportation and swapping.

4.2.2.1 THE HBSM AS A SiNGLE-PHOTON DETECTOR

We will first investigate the effect of the HBSM on two-mode states with photon-number
correlations, i.e. of the form √

c11 |11⟩ +
√
1− c11 |22⟩ or c11 |11⟩ ⟨11| + (1 − c11) |22⟩ ⟨22|.

These two cases are identical as the HBSM is phase-insensitive. An ideal measurement on
one mode will project the other one onto a single-photon state |1⟩. Specifically, we want
to evaluate how the fidelity F between the conditioned mode and the target single photon
6This is a convex problem, thereby pure states will always maximize the detection probability
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Figure 4.6: Here the effect of the HBSM applied to one mode of a two-mode state with photon-
number correlations, of the form √

c11 |11⟩+
√
1− c11 |22⟩ or c11 |11⟩ ⟨11|+ (1− c11) |22⟩ ⟨22| where

c11 is the single-photon weight, is shown. The discrepancy from the ideal case, in which the HBSM
projects the second mode onto |1⟩, is given by the fidelity F as a function of the weight c11. The
fidelity is displayed for (a) different reflectivities R with fixed conditioning window ∆ = 0.1 and
for (c) different conditioning windows ∆ with fixed R = 0.1. The black dotted lines indicate the
fidelity without any measurement. (b) and (d) provide the corresponding success probabilities P on.
In (e) a detailed map of the HBSM success probability P on for the impinging two-mode state with
a single-photon weight c11 = 0.5 is shown. P on is given as a function of the conditioning window ∆
and the reflectivity R. The detection efficiencies are set to ηHD = 0.9 and ηSPD = 0.5.

depends on the HBSM settings, i.e., ∆ and R.
Figure 4.6 provides the fidelity F and the associated success probability P on of the measure-
ment as a function of the single-photon component c11. Figures 4.6 (a) and (b) correspond
to a given conditioning window and different reflectivities. A large reflectivity R ≥ 0.5 re-
sults in a projection worse than simply tracing out the second mode without a measurement.
As expected, the success probability P on is increasing with the single-photon weight, except
when the reflectivity is very large (here R = 0.9), due to SPD event corresponding more
and more to a two-photon detection. In (c) and (d), the reflectivity is fixed to R = 0.1 while
the conditioning window ∆ varies. A very large conditioning window has a stronger effect
than a very high reflectivity seen in (a). This leads to the conclusion that the conditioning
window is the more responsive parameter, whereas the reflectivity can act as fine-tuning.
This effect strongly depends on the SPD efficiency ηSPD, which here is set to ηSPD = 0.5.
Decreasing both R and ∆ enables to achieve a large fidelity with the target single photon
but reduces the success probability P on. This trade-off is shown in (e), where the success
probability is given as a function of the reflectivity and the conditioning window. At the
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price of a low success probability, arbitrarily high fidelities can be achieved, even if the SPD
efficiency is set as here to a moderate value ηSPD = 0.5.
As we have shown, for some sets of parameters, the HBSM can efficiently separate a two-
photon contribution from a single-photon one, at the price of the success probability. For
the linear BSM, the usual detection schemes do not enable this discrimination, and two-
photon errors are one of the limiting factors, hindering faithful quantum teleportation and
entanglement swapping. We will now focus on the performances when a HBSM is used for
these two operations.

4.2.2.2 THE HBSM iN A TELEPORTATiON PROTOCOL

Quantum teleportation as shown in fig. 4.7 (a) considers an input qubit of the form

|φ⟩in =
√
c0 |0⟩ +

√
c1 |1⟩ (4.18)

and one of the four entangled Bell state as a resource. A Bell-state measurement between
one mode of the Bell state and the input state will then project the remaining mode into
the input state up to a local unitary, as in eq. (4.3). With a linear BSM as in eq. (4.7),
only the states |ψ⟩± can be detected with this scheme and this detection relies on the fact
that one can indeed detect exactly a single photon. For simplification, we will only consider
|ψ⟩+.
The probability to measure a single photon is 0.25, while the probability to measure two
photons is c1/4. If both single- and two-photon components are detected equally, we can
define the worst-case scenario for detection of the teleportation fidelity FT, which decreases
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Figure 4.7: Teleportation protocol with the hybrid Bell-state measurement is shown. (a) A qubit to be
teleported |ψ⟩in =

√
c0 |0⟩+

√
c1 |1⟩ undergoes a BSM with one mode of a Bell state. The remaining

mode is ideally projected onto the input state upon successful detection. (b) The fidelity FT between
the input and teleported states and (c) the success probability P on are given as a function of the
input single-photon weight c1 for different reflectivities R of the HBSM. The conditioning window
is fixed at ∆ = 0.1 and the detection efficiencies are set to ηHD = 0.9 and ηSPD = 0.5.
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with the input single-photon weight. This is equivalent to the usual BSM detection, using
on-off detectors.
Figures 4.7 (b) and (c) provide the teleportation fidelity FT and the probability of success
when using a HBSM, for a fixed conditioning window and various values of the reflectivity
R. The HBSM leads to fidelities larger than the ones obtained with the usual BSM for all
possible single-photon input weights.

4.2.2.3 THE HBSM iN A SWAPPiNG PROTOCOL

We now turn to the case of entanglement swapping, as sketched in fig. 4.8 (a). Here the
input states are twice the same Bell state. A Bell state measurement between one mode of
each then projects the remaining modes once again into a Bell state. We assume that the
two input entangled states are of the form

|ψ⟩
√
c10

in =
√
c01 |01⟩ +

√
c10 |10⟩ , (4.19)

such that their tensor product can be written as in eq. (4.4), where the BSM is applied
between each second mode. After one mode of each interacted on a balanced beamsplitter,
a projection onto a single-photon state will lead to a Bell state |ψ⟩±, dependent on the
detector. We will again consider the detection on only one output port, projecting the final
modes into

|ψ⟩out =
1√
2
(|01⟩+ |10⟩). (4.20)
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Figure 4.8: The entanglement swapping protocol used with hybrid Bell-state measurement is shown.
(a) Two Bell states of the form |ψin⟩ = √

c01 |01⟩+
√
c10 |10⟩ are created and the second mode of each

undergoes a BSM. This operation ideally entangles the two remaining modes onto |ψout⟩ ∝ |01⟩+|10⟩.
(b) The fidelity FS between the ideal |ψout⟩ and the projected state and (c) the success probability
P on are given as a function of the input weight c10 for different reflectivities R of the HBSM. The
coincidence window is fixed at ∆ = 0.1 and the detection efficiencies are set to ηHD = 0.9 and
ηSPD = 0.5.
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Equal detection of single photons with probability c10(1−c10) and two photons 0.5(1−c10)2

leads to the worst case of the swapping fidelity FS between the ideal output state |ψout⟩
and the actual output state, one again corresponding to the usual BSM.
Figure 4.8 (b) and (c) provide the swapping fidelity FS and the probability of success when
using a HBSM, for a fixed conditioning window and various values of the reflectivity R.
Similarly to the teleportation case, the HBSM leads to fidelities larger than the worst case
scenario for all possible single-photon input weights. We note that the swapping fidelity
drops to zero for the extreme cases c01 = 0 and c01 = 1.
Compared to the teleportation fidelity of fig. 4.7 (b) this might seem peculiar at first glance.
However, here entanglement between two remote states is verified, which cannot be created
at all if the input states are not entangled, i.e., at the extreme points of c01. For decreasing
c01, the swapping state becomes closer to the target state |ψ⟩+ as the two photon detection
probability is decreasing steadily. This improvement in fidelity drops abruptly to zero for
c01 = 0, corresponding to no entanglement in the system that could be swapped. This
differs from the teleportation where the theoretical minimum is not zero. Depending on the
reflectivity R, the two-photon event probability reduces slower or faster. Those false two-
photon detection events shift the maximum of the success probability P on towards lower
input weights c10 as shown in fig. 4.8 (c).

We have seen that the HBSM enables substantially improving the output state fidelity
of both swapping and teleportation operations. We will now compare the HBSM to photon-
number resolving (PNR) detectors, which are another option to improve linear BSM.

4.2.3 BENCHMARKiNG THE HBSM AGAiNST PNR DETECTORS

An obvious but daunting solution to two-photon errors are photon-number resolving (PNR)
detectors. Those detectors are under intense development, and promising candidates are
transition-edge sensors or superconducting-nanowire detectors that are multiplexed or where
the number resolution is based on different dynamics [200]. There is a maximal number of
Nphotons that can be distinguished in realistic detectors [200, 204].

Independent of the technology, all PNR detectors can be described via the same under-
lying POVM elements [86], equivalent to N multiplexed detectors.
In order to compare PNR detectors to the HBSM, as sketched in Fig. 4.9, we will only
consider the POVM element of a single detection event with a photon resolution up to N ,
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Π(1,N). All PNR POVM elements are phase-independent such that their matrices only have
diagonal elements and can be written as

Π
(1,N)
[0,0] = 0, (4.21)

Π
(1,N)
[1,1] = ηSPD,

Π
(1,N)
[2,2] = ηSPD

[
2(1− ηSPD) +

ηSPD
N

]
.

We have already see this equation in subsection 2.3.4. We note that even in the limit of
perfect PNR N → ∞ imperfect detection efficiency ηSPD < 1 will lead to an unavoidable
two-photon error with

lim
N→∞

Π
(1,N)
[2,2] = 2ηSPD(1− ηSPD). (4.22)

This trend is to be compared to the HBSM in fig. 4.10 (a), where the purity of either the
HBSM POVM element Πon or the PNR POVM element Π(1,N) are shown as a function of
ηSPD. We can observe that for a PNR detector with N = 1 the HBSM with small ∆ has a
higher purity for all ηSPD. This is indeed also true for N = 2 even if here we can observe
that towards larger SPD efficiency the purity recovers, still staying below the one of the
HBSM.
Remarkably, even the ideal PNR (N → ∞) only surpasses the HBSM purity with ∆ = 0.1

from ηSPD = 0.85 onward, a very stringent condition.

HD 

   
Conditioning

R 

(a)

N 

detectors 

(b)

Figure 4.9: Sketch of Bell-state measurement implementations: (a) with a single-photon on/off
detector in a HBSM scenario as studied before and (b) with N multiplexed single-photon on/off
detectors. This multiplexed implementation leads to photon-number resolution in the limit of a
large number N of detectors. We compare the two configurations.
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Figure 4.10: Comparison of the hybrid BSM with BSM implementations based on N-multiplexed
single-photon detectors in terms of purity as well as entanglement and swapping fidelity. The POVM
success element of the HBSM Πon is benchmarked against the POVM elements of N-multiplexed
single photon detectors Π(1,N). The purity P is given in (a) as a function of the SPD efficiency ηSPD.
The corresponding success probability Pmax is given in (b). Two values of conditioning window ∆
are considered for HBSM, and compared to implementations with N = 1, N = 2, and N = ∞
that emulates perfect photon-number resolution. (c) and (d) provide the fidelity FT and success
probability P on for the teleportation of a balanced qubit. (e) and (f) provide the fidelity FS and
success probability P on for the swapping of two balanced |ϕ+⟩ states. Two values of conditioning
window ∆ are considered for HBSM, and compared to implementations with N = 1, N = 2 and
N = ∞ that emulates perfect photon-number resolution. All POVM elements are truncated at
n = 2. For HBSM, the homodyne detection efficiency is set to ηHD = 0.9 and the reflectivity is fixed
at R = 0.1.

Indeed if we compare the limits of the HBSM purity of eq. (4.17), we can see that it is
independent of the efficiency ηSPD, while the purity of the PNR depends on it as

lim
N→∞

P(Π
(1,N)
[1,1] ) =

4η2SPD − 8ηSPD + 5

(3− 2ηSPD)2
< 1 for all ηSPD.

This explains the strong advantage of the HBSM in terms of purity. As stressed before, it
comes at the cost of a low success probability, as shown in fig. 4.10 (b).

We further want to compare the performance of the HBSM and PNR detectors in the
typical use cases of teleportation and entanglement swapping. The results are summarized
in fig. 4.10 (c)-(f). Here all states are balanced, including the teleportation input state
(1/

√
2)(|0⟩+ |1⟩) and the swapping input states (1/

√
2)(|00⟩+ |11⟩). The achieved fidelities

with the HBSM with ∆ = 0.1 are superior to the ones obtained with the ideal PNR detector
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with N = ∞ until an efficiency ηSPD = 0.79 in the case of teleportation and ηSPD = 0.86 in
the case of swapping.
Up to typically N = 5, the fidelities are always larger for the HBSM whatever the efficiency.
These numbers illustrate the advantage that the HBSM can provide in a variety of scenarii.

4.3 CONCLUSiON

In summary, we have initially presented a form of hybrid entanglement that harvests the
output state of both OPOI and OPOIIa. This hybrid entanglement, while not currently
envisioned for direct real-world applications, provides a robust framework for investigating
heterogeneous networks and the distribution of highly entangled non-Gaussian states. This
exploration serves as a valuable avenue for theoretical and experimental investigations into
the properties and potential applications of hybrid entanglement.
Subsequently a hybrid Bell-state measurement that relies on homodyne conditioning and
single-photon detection was discussed. This original BSM implementation enables to miti-
gate the two-photon errors in this measurement and to thereby improve quantum telepor-
tation or entanglement swapping fidelities. This advantage comes at the cost of a reduced
success rate due to the conditioning. We have provided a detailed study of the HBSM
properties as a function of the different tunable experimental parameters, namely detection
efficiencies, tapping ratio and conditioning window. The effect of these parameters on pro-
tocol fidelities have been considered. Interestingly, we have also shown that this strategy
beats in fidelity performances ideal photon-number resolving detectors for efficiencies up
to typically 90%, a very demanding value. This study confirms the relevance of detection
method combination, and calls for a broader exploration of the capabilities opened by hybrid
scenario for linear-optical quantum information processing.
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4.4 KEY RESULTS

• The backbone of quantum networks are entanglement and Bell-state measure-
ments. With this, the two important protocols, entanglement swapping and
quantum teleportation, can be executed.

• The optical states within the network have to be compatible with quantum
memories to enable synchronization. This requires an encoding in the low-
excitation Fock basis. The end users will most generally use non-Gaussian states.
This can lead to the need for entangled states between different encodings.

• We experimentally create entanglement between the two non-Gaussian resource
states of OPOI and OPOIIa of the form c0 |0⟩ |cat⟩−+ eiθc1 |1⟩ |cat⟩+ and verify
that this entanglement belongs to the class of distillable entangled states. This
makes it a versatile resource in quantum networks.

• For the network to function, the Bell-state measurements have to be high-quality
projections.

• We present and analyze an improved all-linear Bell-state measurement. It con-
sists of an on-off detector, combined with homodyne conditioning, giving it the
name hybrid Bell-state measurement (HBSM).

• The HBSM is shown to outperform photon-number resolving detectors up to
a photon-number resolving capability of five. This comes at the price of a low
count rate. It will be crucial in the experiment presented in the next chapter.
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Chapter

5 THE QUBiT CONVERTER
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In this chapter an experiment, converting a qubit in the Fock basis to a qubit in the cat-
state basis is presented. In the first section, the general need for information conversion
in quantum networks is discussed. We expand the general idea of a quantum network,
explained in the previous chapter, by focusing on the integration of each end user into the
network. Specifically, different quantum machines that are implemented on a variety of
physical platforms are envisioned and we argue why, next to transducers, converters play a
key role in their network integration. The second section is dedicated to the experimental
setup. The converter is based on teleportation with hybrid entanglement. As the Bell-state
measurement and entanglement were already discussed in previous chapters, we focus on
the input qubit creation. Moreover, coincidence detection is discussed. This experiment
was carried out together with Tom Darras and is also described in his PhD thesis [120] up
to this point. The third section explains how the success of conversion can be assessed,
focusing on the process matrix formalism and a teleportation threshold, derived for this
purpose. The fourth section discusses important steps in the analysis of the experimental
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data. Specifically, we present the setting of the hybrid Bell-state measurement as well as
the assessment of uncertainties of the input state. The fifth and sixth section present the
successful quantum conversion for both the fidelity and process matrix analysis, followed
by a discussion. The work presented in this chapter has been published in 2023 [37]. The
chapter concludes with a summary of the key results.

5.1 INFORMATiON CONVERSiON iN QUANTUM NETWORKS

In chapter 4 we have sketched how information can be transferred in future quantum net-
works. The simplest network has two users A and B, that are connected via entanglement
swapping at repeater stations, creating two entangled modes ρab shared between the end
users. A final teleportation protocol can be used to send information from A to B (or B
to A). This information is, in the most general case, a non-Gaussian state ρI , encoded in
a chosen basis, on a physical platform. For the teleportation protocol to function, the en-
coding and platform have to coincide with the entangled mode a of ρab. This is a rather
stringent requirement, as there are many quantum machines and protocols, that are being
developed on completely different physical systems, including photons, atoms, mechanical
oscillators, solid-state or superconducting devices [29, 205]. The encoding is chosen in de-
pendence of the favored degrees of freedom in the physical system and its practicality in the
envisioned local usage. Sometimes, several routes of encoding are taken, as in the example
of superconducting quantum computing, where qubits of two-level systems and Schrödinger
cat states are both actively pursued [206]. Similarly, we have already seen the plurality of
encodings in quantum photonics in the previous chapters [207, 208]. All of those quantum
machines have to be able to connect to the network, if we want to harness the fruits of
nowadays research.

This consideration adds a new dimension to our definition of heterogeneous quantum net-
works: the heterogeneity of encodings and the heterogeneity of platforms. The main chal-
lenge of the latter consists in transducing any non-photonic state into a photonic state close
to 1550 nm for ideal fiber transmission (often called optical) via quantum transducers. For
example, superconducting platforms need a microwave-to-optical transducer, bridging their
large energy difference via nonlinear frequency mixing techniques [209, 210], which is ex-
tremely challenging and an active research area. Building high efficiency and high fidelity
transducers is complicated in all physical platforms, such that another possible route to
“translate” one physical system into another is by harvesting quantum teleportation. Here,
microwave-optical Bell states can be created in the case of superconducting qubits [211],
atom-optical Bell states in the case of atomic infrastructure [212, 213] and spin-optical Bell
states in the case of solid-state qubits [214, 215]. This entanglement allows to connect a
non-optical quantum device to the network. Instead of teleportation, the end user performs
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Figure 5.1: In (a) examples of physical platforms of quantum machines the network user A could be
using in a quantum network are depicted. Those include (nano-)photonic platforms, superconducting
qubits (here the transmon qubit is shown as an example), atomic processors, or solid-state artificial
atoms, where here an NV center is sketched. For non-photonic platforms, entanglement between
their qubit(s) and a light mode (in orange) is created, such that a BSM inside those platforms
projects any information |ψ⟩ onto the light mode. This light mode does not necessarily have to have
the same encoding E1 (in orange) as the network encoding E2 (in blue). This is why a quantum
converter, in marine blue, is needed. There, a hybrid source (HS) creates a hybrid entangled state
between one mode encoded in E2 and the other in E1. A BSM between the E1-encoded mode and
|ψ⟩, now projects the original quantum information onto the network-compatible optical qubit with
encoding E2. The rest of the network protocol consists of entanglement swapping and one more
teleportation step, as explained in chapter 4.

entanglement swapping in the optical domain, such that any quantum teleportation can
happen within the non-optical device1.
Although all the above-mentioned platforms do exhibit the possibility of creating entangle-
ment between their natural qubit and an optical mode, the encoding of this optical mode
varies. In the references cited above, time-bin encoding, polarization encoding, and fre-
quency encoding were used.
To guarantee that all those devices are usable in one single network, we have to be able to
convert one optical encoding into another. Such photonic quantum converters also ensure
that the encoding choice of photonic quantum machines is not dependent on the network.
This conversion has to preserve fragile quantum superpositions, such that phase and am-
plitude are not altered during the process. Importantly, the converter has to function as a
black box, with freely propagating input and output modes. As such, a quantum converter
has to be either deterministic or heralded. As already argued for general quantum networks
in subsubsection 4.1.3.2, post-selection cannot be allowed for such a process either. As
for quantum transducers, we follow a teleportation-based approach for quantum encoding
conversion. Although experimentally challenging, the idea of such a conversion is rather
simple: a mode a, encoded in the encoding E1 should be converted into the encoding E2.

1A complete BSM is possible in non-optical platforms, [216, 217].
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For this, optical hybrid entanglement between two modes b, c, one being encoded in E1 and
the other in E2, is created. A Bell-state measurement between modes a and b, which share
the same encoding, teleports the amplitude and phase information of mode a onto mode
c. In this way, mode c, encoded in the target encoding E2, incorporates the information
of the former mode a. This idea requires each local node in a network to prepare hybrid
entanglement, adapted to its quantum machine optical output encoding and the encoding
of the network. This kind of network is shown in fig. 5.1 (a), where the different physical
platforms are sketched, together with the quantum converter. We note that distillable op-
tical hybrid entanglement is hard to experimentally produce and up to our knowledge only
exists in the group of Professor M. Bellini in Florence and our group [145, 218].
A converter using post-selected hybrid entanglement between polarization-qubits and cat
states has been realized in 2018 [219]. In this implementation, next to the post-selection
of entanglement, the qubit itself is approximated by an attenuated coherent state, being
always classical. A full analysis of this experiment can be found in the thesis of T. Darras
[120]. Here, we build upon this first attempt and present a post-selection free quantum
converter using hybrid entanglement of light [37]. The idea of this converter is shown in
fig. 5.1 (b), where a qubit in the discrete Fock-basis encoding is converted into a qubit in
the continuous cat-state encoding.

5.2 EXPERiMENTAL SETUP AND iNPUT QUBiT CREATiON

The complete experimental setup is shown in fig. 5.2 and can be divided into three blocks:
the hybrid entanglement creation, the input qubit creation, and the hybrid Bell-state mea-
surement (HBSM). Finally, the output qubit is analyzed to verify successful conversion.
Here, we first present the hybrid entanglement and HBSM settings. For a more detailed
analysis, we refer to chapter 4. Then a detailed discussion of the input qubit creation follows.
Two physical qubit models are compared and the experimental input states are presented.
For this experiment, three heralded events signal success: the creation of the input state,
hybrid entanglement, and the HBSM. The effect of a chosen coincidence window on the
temporal modes of those events is discussed in the last subsection.
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Figure 5.2: The full setup for the qubit converter experiment is shown. Here, hybrid entanglement
is used to teleport phase and weights of an input qubit in the Fock basis |Ψ⟩in = c0 |0⟩ + eiϕc1 |1⟩
onto the output qubit |Ψ⟩out = c0 |cat⟩+ + eiϕc1 |cat⟩− in the cat basis. The protocol can be
subdivided into the input qubit creation (in blue), the hybrid entanglement creation (in red), and
the hybrid Bell-state measurement (in green). Qubit creation, entanglement creation, and HBSM are
all heralded by probabilistic independent clicks on SNSPDs, leading to a three-fold event heralding
the successful conversion of the input to the output qubit. The output qubit is then analyzed via
homodyne detection on HDI (in yellow). The data is recorded via a fast oscilloscope, the waverunner,
and a slow oscilloscope, the wavesurfer. The experiment is divided into sample and hold sequences,
controlled by a TTL signal. During the hold sequence, the shutters SL close and SD open, such that
data can be recorded on the waverunner. This data corresponds to the trace of the output qubit,
the trace of the conditioning on HDII, and the phase-voltage of the local oscillator (LO) sweep.
It is triggered by the three-fold coincidence. High TTL corresponds to the sample phase, where
the wavesurfer records the interference fringes between seed and LO together with the voltage for
subsequent calibration.
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5.2.1 HYBRiD ENTANGLEMENT SETTiNGS

Highlighted in red in fig. 5.2 we see the merged heralding path of OPOIIa and OPOI, such
that a click on SNSPD2 marks the creation of hybrid entanglement. We pump OPOI with
15 mW, corresponding to 4.5 dB of squeezing, and tap 7% of the OPOI output towards
the heralding of hybrid entanglement. OPOIIa is pumped at 3.5 mW and its output is
perfectly split into signal and idler polarization. The idler is merged with the heralding
path of OPOI and their relative path lengths are phase-locked on the photodiode PDH . We
balance the individual count rates of OPOI and OPOIIa by tuning the HWP responsible
for their mixing on the PBS and choose the phase between the two heralding paths, such
that we create a hybrid entanglement of the form

|ψ⟩H ∝ |0⟩ |cat⟩− + |1⟩ |cat⟩+ . (5.1)

The hybrid phase is locked with a side-lock, close to the maximum of the interference fringe
by using a micro-controller (aduc7020) and its phase-noise has been evaluated to be around
3% [220]. The heralding rate of the hybrid entanglement is 400 kHz.

5.2.2 HBSM SETTiNGS

In the green box in fig. 5.2, the HBSM is performed on the two signaling paths of OPOIIa
and OPOIIb, which are merged on a PBS and phase-locked via a side-lock on the signal
of the photodiode PDB with another microcontroller (aduc7020). A small fraction of the
path is tapped and sent towards SNSPD3. The tapping ratio corresponds to the reflectivity
parameter R, analyzed in section 4.2. The smaller R is, the higher the projective quality
of the HBSM, but at the price of reducing the count rate on SNSPD3. Here, we choose to
set R = 0.1, corresponding to a count rate of several kHz. The second parameter of the
HBSM is the conditioning window, which is optimal towards zero. We choose a conditioning
window of ∆ = 0.5, normalized to vacuum shot noise. This choice of parameter will reduce
the effective count rate by a factor of four but ensures a high-fidelity output.

5.2.3 INPUT QUBiT CREATiON AND MODEL

The input qubit creation is shown in blue in fig. 5.2 and will be explained now in more
detail. OPOIIb’s heralding path, with the photon-number correlation between signal and
idler, is expected to herald a single photon, as discussed in subsection 3.2.4. However,
an addition has been made to the heralding path: a second beam β is merged with the
OPOIIb heralding path after its filtering. This corresponds to a scheme first used by J.
Neergaard-Nielsen et al. in 2010 [221]. In their paper, the scheme is applied to single-mode
squeezing, while we apply it to the heralding path of two-mode squeezing. Nonetheless,
the mathematics to calculate the output state is quite similar and can also be found in the
PhD thesis of T. Darras [120] and the supplementary material of the paper corresponding
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to this thesis chapter [37]. Here, we discuss this simple model in the first subsubsection,
add phase noise in the second, and then show the set of input qubits that we choose for the
teleportation experiment, in the third subsubsection.

5.2.3.1 QUBiT MODEL WiTH LOSSES

For a low pump rate of 2 mW, one can approximate eq. (3.83) as

|ψ⟩si ∝ |0⟩s |0⟩i + λ |1⟩s |1⟩i +O(λ2), (5.2)

where λ is related to the squeezing parameter and the pump power as discussed in subsec-
tion 3.2.4. s marks the signal mode, and i the idler mode, used for heralding. We can now
model the coherent state of amplitude β as a weak displacement, applied on the idler mode.
Weak displacement can be approximated by a first-order Taylor expansion, such that eq.
(2.178) simplifies to, Di(β) ∼ 1 + βâ†i − β∗âi. Applying this operator on the two-mode
squeezed vacuum gives

|ψ⟩si ∝ (β |0⟩s + λ |1⟩s) |1⟩i + λβ |1⟩s |2⟩i . (5.3)

Now the idler path is detected by SNSPD1, which is an on-off detector. For an ideal single
photon detection |1⟩ ⟨1| the signal state is projected onto

|ψ⟩s ∝ β |0⟩s + λ |1⟩s , (5.4)

such that the creation of a qubit is heralded. The weights of this superposition are controlled
by the displacement amplitude β. Practically, this corresponds to adjusting the heralding
rate of the displacement beam Ndisp, in relation to the heralding rate of OPOIIb NOPO.
The relative phase between the displacement beam and the heralding path of OPOIIb is
”hidden” in this expression, in the phase of β. The full state, in dependence on the count
rates, can then be written as

|ψ⟩s = cos

(
θ

2

)
|0⟩s + eiϕ sin

(
θ

2

)
|1⟩s , (5.5)

with cos2
(
θ

2

)
=

Ndisp
Ndisp +NOPO

and ϕ = π − arg(β), (5.6)

where the two phases θ, ϕ relate the state to the qubit Bloch sphere. The fact that a
superposition, and not a mixture, is created, stems from the indistinguishability of detection
clicks from the displacement or the OPOIIb heralding beam. Without a phase-lock, the
phase-averaging would degrade the state to a statistical mixture too. In fig. 5.2 we see
c0 = cos

(
θ
2

)
being connected to the setting of the HWP before the mixing PBS (similar for

c1). The phase ϕ is controlled by the tilt of a HWP, which will be explained in the last
subsubsection of this subsection.
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Let us now take into account the OPO escape efficiency ηOPO and the detection efficiency of
realistic SNSPDs, modeled as on-off detector (see subsubsection 2.3.4.1) with efficiency ηh.
This is modeled by first applying losses on the OPOIIb output via a beamsplitter, whose
transmittivity corresponds to the escape efficiency. Next, a displacement, approximated to
the first-order Taylor expansion is applied on the idler mode. A bucket detection then acts
on the idler mode and finally, the idler mode is traced out. This calculation for a simplified
model, ignoring Fock states in the OPO output above the single photon, yields the density
matrix ρs:

ρs[0, 0] ∝ ηh
(
1− λ2

)(
β2
(
λ2(ηOPO − 1)2 + 1

)
− λ2(ηOPO − 1)ηOPO

)
,

ρs[0, 1] ∝ βηhλ
(
1− λ2

)
ηOPO

(
2λ2(ηOPO − 1)2 + 1

)
,

ρs[1, 0] = ρs[1, 0]
∗,

ρs[1, 1] ∝ ηhλ
2
(
1− λ2

)
ηOPO

(
β2(1− ηOPO) + 4λ2(ηOPO − 1)2ηOPO + ηOPO

)
, (5.7)

where we have not normalized the state for better readability. In this simple case, it is
clear, that the efficiency of the bucket detector ηh plays no role and disappears with the
normalization. In the case of eq. (5.7), we have therefore effectively only added the OPO
escape efficiency. If we set it to the measured value of ηOPOIIb = 0.74 of subsection 3.2.4,
and calculate λ = 0.05 for a pump of 2 mW and a threshold of 80 mW, furthermore aiming
at a balanced qubit β = λ, we find the density matrix to be of the form

ρs =

[
0.685 0.425

0.425 0.315

]
. (5.8)

We see that the escape efficiency adds vacuum to the ideal qubit, as expected. If we
now simulate the OPO output up to three-photon components and Taylor expand the
displacement operator up to the third order, we can find a more complete picture of the
output qubit. For this we set ηh = 0.3, taking into account the SNSPD efficiency and the
losses due to filtering. We find the more realistic qubit

ρs =


0.684 0.424 0 0

0.424 0.315 0.001 0

0 0.001 0.001 0.001

0 0 0 0

. (5.9)

We can therefore see that with the experimental pump rate, the higher-order Fock compo-
nents are not relevant to the qubit creation. A factor that will, however, become relevant is
the stability of the phase lock of the relative phase between qubit and displacement path,
on photodiode PDQ in fig. 5.2.
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5.2.3.2 COMPLETE QUBiT MODEL

We will now extend our model to capture only the signal path after heralding, with a specific
focus on phase noise. We can divide the signal state ρs into a vacuum component, stemming
from the limited OPO escape efficiency, the qubit component, showing coherences and a
two-photon component, contributed to the pump rate. In this way, we ignore any non-qubit
off-diagonal density matrix terms, which is justifiable, given the matrix of eq. (5.9). We
can therefore formulate an input qubit as

ρ̂s = cvac |0⟩ ⟨0|+ csp |Q⟩ ⟨Q|+ ctp |2⟩ ⟨2| , (5.10)

where cvac represents the vacuum component, csp the single-photon component and ctp the
two-photon component. As the qubit will be created by indistinguishable clicks on the
heralding path of the OPO we choose the dominant weight csp for the qubit component. In
this way, we can now model the phase noise, which will reduce the qubit coherences. To do
so, we take the qubit |Q⟩ of eq. (5.10) (|Q⟩ ⟨Q| = |Q(ϕ)⟩ ⟨Q(ϕ)|) and model it as a mixture
of states with a Gaussian phase distribution, centered around the desired qubit phase ϕ,

|Q(ϕ)⟩ ⟨Q(ϕ)| = 1√
2π∆ϕ

∫ π

−π
|Q(ϕ′)⟩ ⟨Q(ϕ′)| e

−(ϕ−ϕ′)2

2∆2
ϕ dϕ′, (5.11)

where ∆ϕ is the phase standard deviation, that can be treated as a free parameter, that we
can fit to the experimental states.

5.2.3.3 EXPERiMENTAL QUBiT iNPUT STATES

For this experiment, we create six input qubits, corresponding to the eigenstates of the
Pauli Z,X, and Y operator: |0⟩, |1⟩, |±⟩ and |±i⟩. In fig. 5.3 (a) the ideal, pure qubit is
plotted. The theoretical states with losses are shown in (b) for γ = |β| = 0.05, ηh = 0.3, and
ηOPO = 0.712. Those values are the measured single-photon values in this data set, visible
in (d), second from the left. The phase noise brings our model closer to the measured state,
visible in (c). Here, the phase noise has been optimized for each qubit state. The slightly
lower fidelity with the single photon measured in chapter 3 stems from the increased pump
rate for this experiment. The fidelities of the experimental qubits with the ideal input states
and the theoretical model of the input states are given in table 5.1. We can see that phase
noise is an important parameter to model the experiment faithfully.

Experimentally, we use a side-lock on the microcontroller aduc7020 to lock the phase. The
fringe signal is very small due to the low amplitude of the displacement beam. Moreover,
part of the locking beam, which is on the path with shutter SL is back-reflected from the
cavity and adds perturbations from a third interference on the PDQ. This is why we chose
to keep the locking point at its ideal value, where the fringe slope is steepest.
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Experimental data

Theoretical input states

Theoretical input states

(a)

(b)

(d)

Theoretical input states with phase noise(c)

Figure 5.3: In (a) the ideal pure input qubit is shown. In (b) simulated input qubits with an escape
efficiency of ηOPO = 0.712 and a heralding efficiency of ηh = 0.3 are depicted. In (c) the model of eq.
(5.10) is used, to include phase noise in the qubit simulation. The phase noise has been numerically
optimized for each qubit and corresponds to ∆ϕ ∈ [0.56, 0.80]. In (d) the experimental states are
plotted. The color map is normalized to the minimal (blue) and maximal (red) Wigner function
value [−2/π, 2/π].

To still be able to control the phase, we tilt a HWP. The light from the displacement path
has polarization V and the light from the OPO heralding path H, such that this tilt adds a
different phase to each polarization component, while simultaneously applying a polariza-
tion rotation [222]. In this way, we effectively shift the phase ϕ, to which the locking point
corresponds. The PBS after this tilted HWP projects both polarizations onto H, thereby
cleaning the interference fringe. After the phase has been locked, a final HWP and PBS on
the heralding path towards the SNSPD attenuate the coherent state further, by rejecting
99.5% of the displacement beam polarization V. All qubits are corrected for HD losses, as
given in table 3.6. The heralding rate varies: For the single-photon, it is 250 kHz, for the
qubits on the Bloch equator 500 kHz and 2 MHz for vacuum.
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Table 5.1: Experimental input state fidelity for all six qubits. Fid = F(ρexp, ρid) shows the fidelity
with the perfect input state, while Fm1 = F(ρexp, ρ

loss
id ) shows the fidelity to modeled input states,

taking into account the escape efficiency of the OPO and imperfect on-off detection. The fidelity
Fm2 = F(ρexp, ρ

loss,noise
id ) takes into account loss and phase noise.

|Q⟩ |0⟩ |1⟩ 1√
2
(|0⟩−|1⟩) 1√

2
(|0⟩+|1⟩) 1√

2
(|0⟩+ i |1⟩) 1√

2
(|0⟩ − i |1⟩)

Fid 0.975 0.710 0.783 0.797 0.785 0.753

Fm1 0.975 0.956 0.924 0.933 0.922 0.893

Fm2 1 1 0.965 0.966 0.968 0.967

5.2.4 THREE-FOLD COiNCiDENCES

This experiment needs three SNSPD detection events to succeed: The input qubit creation
“click”, the hybrid entanglement creation “click” and the HBSM “click”. Ideally, those clicks
should happen at the exact same moment. In this way, the input qubit and the DV part
of the hybrid entanglement can interfere on the HBSM PBS, while the HBSM click corre-
sponds to exactly those heralded resource states. The meaning of “at the same time” has
to be specified: it depends on the delay calibration in the setup. Each SNSPD event has
a slightly different delay, corresponding to the time difference between a SNSPD detection
event, and the corresponding trace recording on the waverunner.

We have discussed in section 3.3, that the variance over all recorded traces shows the
center of the temporal mode. We therefore plot the variance continuously and adjust the
delays, such that for all three heralding events the temporal mode is visible in the chosen
trace length of 500 ns on the waverunner. For this, the length of the BNC cables connecting
the SNSPDs output to the waverunner, as well as the length of the BNC cables between
the homodyne detectors and the waverunner, can be changed. The delays for the SNSPD
BNC cables are adjusted via a coaxial delay box (SRS DB64) with a precision of 200 ps.
The homodyne traces needed to be delayed, for which we used around 80 m of BNC cables
in total. After the delay calibration, the three separate detection events of the SNSPDs
have to be transformed into a three-fold-coincidence click. For this, we have to choose the
maximally allowed time delay between each of those clicks, where we use the analysis about
two-fold coincidences from the PhD thesis of H. Le Jeannic [135]. We can calculate the
temporal mode overlap between two heralding events as

I12 =

∫
f1(t)f2(t)dt = e−π ∆ν(t2−t1)(1 + π ∆ν(t2 − t1)), (5.12)

fi(t) =
√
π ∆νe−π ∆ν|t−ti|, (5.13)
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where we have slightly adapted the definition of the temporal mode in eq. (3.46), to be
centered around the arrival time ti and assumed t1 < t2. The graphic interpretation of this
overlap integral is shown in fig. 5.4 (a). A three-mode overlap can then be modeled as a
nested two-mode overlap. The first two modes build a new mode function and its overlap
with the third mode is calculated.
We set t2 = t1 + δ2 and t3 = t1 + δ2 + δ3 and find

I123 =

∫
1

2

(
f1(t) + f2(t)

)
f3(t), (5.14)

I123 = e−π∆ν(t1+δ3)
[
e∆ν(πδ2+2πt1+2πδ3)

(
−1

2
π∆νδ2 −

π∆νt1
2

− π∆νδ3
2

+
1

2

)
+
π∆νt1

2
+
π∆νδ3

2
+

1

2

]
. (5.15)

Note that in this formula the first click is defined at t1 = 0, as we have centered all the other
functions around it. This overlap is graphically shown in 5.4 (b). Modelling a three-fold
event as two nested two-fold events corresponds to our experimental settings.

We use a commercial time controller (IDQuantique ID900), capable of coincidence detec-
tion with sub-nanosecond resolution. The resolution here is very important, as it adds time
jitter to the trigger event. The time jitter should be far below the temporal mode size as
it would otherwise hinder detection events to correspond to interference in the experiment.
Here, we set the coincidence window to 1.5 ns for both nested two-fold events. Once the
three-fold coincidence is detected, a 100 ns long TTL signal is sent to the “SNSPD” input
of the waverunner in fig. 5.2. For the parameters δ2 = δ3 = 1.5 ns and the bandwidth of
our OPOs, eq. (5.15) gives a three-mode overlap of I123 = 0.865.
This value was chosen as a trade-off between the temporal mode overlap of the three modes
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Figure 5.4: In (a) the temporal modes f1(t), f2(t) of two states are shown. Their overlap (in green)
is dependent on their time difference t2 − t1. In (b) a three-mode overlap is shown. For this the
first two modes form the new mode 1/2(f1(t) + f2(t)) and its overlap with the third mode f3(t) is
calculated (in green).
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and the experimental count rate. The count rate R is related to the temporal mode overlap
window δ as follows [120]

R1,2 = R1R2δ, (5.16)

such that with the individual count rates R1 = 250 kHz and R2 = 400 kHz for the qubit
and hybrid creation, the conditioning window reduces the two-fold count rate to R12 = 150

Hz. The three-fold event rate, taking into account the HBSM count rate, reduces to 0.2 Hz
with those settings.

5.3 JUDGiNG THE “QUANTUM” iN TELEPORTATiON

We present two methods here to quantify the success of quantum teleportation. For quan-
tum teleportation to be truly ”quantum”, it has to perform better than classical measure-
and-best-guess teleportation strategies. This leads to a threshold between the fidelity of
input and output qubits, which, if surpassed, indicates true quantum teleportation. An-
other strategy is the evaluation of the quantumness of the process itself, called process
tomography. Here we will explain both approaches and apply them in section 5.5.

5.3.1 A TELEPORTATiON THRESHOLD

The usual threshold for quantum teleportation is Fc = 2/3. This bound describes how well
a qubit could be teleported without the use of a quantum channel and, therefore without the
use of any quantum entanglement. This is equivalent, to calculating the optimal extraction
of information from a finite quantum ensemble, derived by S. Massar and S. Popescu in
1995 [223]. They consider an experimentalist, who takes part in a game: After receiving N
copies of a pure qubit, the experimentalist has to announce which qubit was sent. The catch
is that only classical resources are in the experimentalist’s laboratory. The game consists of
several rounds and in each round the Bloch vector of the pure state will change, according
to a uniform distribution.
By optimizing the measurement strategy in each run, Massar and Popescu find that with
the best possible strategy, the experimentalist’s guessed states have an average fidelity of
F = 2/3 = Fc with the original quantum qubit for N = 1, thereby giving a threshold any
teleportation protocol has to beat to be quantum. This problem is equivalent to finding
the threshold accuracy for the faithful cloning of a qubit [224] and connected to Maximum
Confidence Quantum State Discrimination [225, 226]. Importantly, the derivation of this
bound is valid only for pure input qubits because they assume pure input qubits in their
theoretical model. This renders the 2/3 bound impractical unless one has a perfect experi-
mental setup or post-selection is applied. In fact, Takeda et al. [227] argue, that any qubit
that is not pure in the Fock basis cannot be treated as a pure input qubit, even if it has
perfect fidelity in the chosen encoding.
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Unfortunately, their approach is based on the fact that the Fock basis and the qubit-encoding
are orthogonal and thus cannot be used in our case.

Here, we therefore extend the original approach of S. Massar and S. Popescu to general
input qubits and find the general fidelity bound F ′. For this we closely follow Bagan et al.
[228], discussing the optimal full estimation of a qubit mixed state. We formulate the qubit
on the Bloch sphere and consider the input qubit as

ρ̂ =
1

2
(1 + r⃗ · σ⃗) (5.17)

where r⃗ = (rx, ry, rz) is the Bloch vector and σ⃗ = (X,Y ,Z) a vector containing the
Pauli matrices. We allow ourselves to act on this state with any POVM element Πε with
outcomes ε such that

∑
εΠε = 1, which corresponds to local measurement allowed in the

original paper [223]. If the outcome is ε, the best classical strategy is to announce that the
original state was ρ̂ε with the associated Bloch vector R⃗ε. The success of this round of the
game is then evaluated with the fidelity between the actual state ρ̂ and assumed state ρ̂ε

f(r⃗, R⃗ε) =

(
Tr(
√√

ρ̂ερ̂
√
ρ̂ε)

)2

. (5.18)

For unit purity, this formulation reduces to the one of Massar and Popescu. Here we simply
added one additional degree of freedom with the length of the Bloch vector, while they only
use its angles.

The average fidelity, which will be the classical bound, is then calculated by integrating
over the length of the Bloch vector and its two Bloch angles θ and ϕ. Additionally, all the
possible operators Πε have to be taken into account, such that we can write the classical
threshold in its general form

F =
∑
ε

∫
dρf(r⃗, R⃗ε)p(ε|r⃗), (5.19)

where the probability for the outcome ε to occur is p(ε|r⃗) = Tr(Περ̂). We have to choose the
prior probability distribution over the Bloch sphere, dρ. For this, the spherical coordinates
simplify the problem r⃗ = (r sin(θ) cos(ϕ), r sin(θ) sin(ϕ), r cos(θ)), with |r⃗| = r, θ ∈ [0, π]

and ϕ ∈ [0, 2π].
Our lack of knowledge of the direction (the two angles) implies dρ ∝ dΩ as the solid angle
element dΩ represents an isotropic directional distribution on the Bloch sphere. On the
contrary, the radial prior is not unique. Usually, there are two prior r-functions used in
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quantum mechanics: The hard sphere prior w(r) = 3r3 and the Bures prior w(r) = 4r2

π
√
1−r2

[229]. We choose follow references [228, 230] and choose the Bures prior, such that

dρ = w(r)dΩdr =
sin(θ)r2

π2
√
1− r2

dθdϕdr. (5.20)

Next, we need to find the POVM Π, whose elements maximize eq. (5.19). This is simplified
[228] when assuming a Bloch vector Rε := Vε/|Vε| with Vε =

∫
dρrp(ε|r⃗) where r is the

four-dimensional euclidean vector r := (
√
1− |r⃗|2, r⃗).

In such a way, we can define the upper bound of eq. 5.19 as the general teleportation bound

F
maximize−−−−−→ F = 1/2(1 +

∑
ε

|Vε|), (5.21)

making it independent of the defined POVM. We will make the easy choice of the Pauli
matrix Π = X, but stress that this choice is arbitrary with the above formulation. Two
outcomes are possible with the X Pauli matrix: Π1 = |0⟩ ⟨0| and Π−1 = |1⟩ ⟨1|.
Let us quickly test eq. (5.21) for pure states: As expected for |r⃗| = 1 (and dρ = sin(θ)

4π dθdϕ)
we find |V1| = |V−1| = 1/6 such that Fpure = 2/3. Equally, we find the trivial result that
F |r⃗|=0 = 1 for |r⃗| = 0, which simply states that the parameters of any fully mixed and as
such classical state, can be extracted perfectly. We expect our bound to lie between those
two cases, as classical teleportation becomes easier the more classical, and therefore mixed,
a state is.

If no assumption whatsoever is made about the purity of the input states we find V±1 =

( 2
3π , 0, 0,±

1
8) such that |V1| = |V−1| ≈ 0.246286. The average fidelity for all possible states

on the Bloch sphere is then Fall = 0.746.
In our case, the produced input qubits will exhibit a range of different purities, depend-
ing on the weight of the single-photon component. Therefore the minimal purity or Bloch
sphere radius is defined via the escape efficiency of OPOIIb used to generate the qubits,
i.e., |r⃗|min = |1 − 2ηqubit| = 0.41. We can therefore limit the integration space to |r⃗| ∈
[|r⃗|min, |r⃗|max] = [0.41, 1] while renormalizing the Bures prior. This leads to the classical
threshold, slightly improved from the general case, used in this work given the input qubits,
F |r⃗|∈[0.41,1] = F ′ = 74.1% and we will judge our results by this threshold.

5.3.2 THE PROCESS MATRiX

By using a threshold, the focus is placed on the input-output relationship between experi-
mentally teleported qubits. Alternatively, teleportation can be quantified by identifying the
process that maps input qubits to output qubits. Unlike the discrete input-output approach,
this method provides information about the entire Bloch sphere.
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5.3.2.1 THEORY OF THE PROCESS MATRiX

Quantum process tomography was first discussed in 1998 [231], where D’Ariano and Mac-
cone proposed to reconstruct the Hamiltonian of an optical system via measurement out-
comes and known input states. The general idea is nicely formulated by J. Yuen-Zhou et
al. [232] and will be described briefly in the following.
Each quantum process is a quantum map ε(•) acting on the quantum system •. In the
process matrix representation, we choose to express this quantum map with the help of a
d2 × d2 matrix (d being the dimension of the quantum system the map acts on) and choose
a full d× d basis set Ai such that the transformation is described via

ε(•) =
d2∑

n,m=1

χnmAm(•)A†
n, (5.22)

where we expect the process matrix χ to be a hermitian positive semi-definite matrix. If
the process is trace preserving, the condition

∑
n,m χn,mA

†
mAn = 1 is applied [233], which

can be connected to the success probability d × d matrix P of the map [234]. Note, that
here success is interpreted as the probability that you send any state into a black box that
performs the map ε(•) and get an output state. The probability matrix can be reformulated
in the question: Do I always have the same quality of transformation, independent on the
input state? In general, our map will obey P =

∑
n,m χn,mA

†
mAn ≤ 1 which leaves space

for two interpretations: Either the process has a state-independent success probability (in
this case we expect P ≤ c1, where c is a constant factor) or a state-dependent success
probability (where c changes, depending on the input state).

5.3.2.2 HOW TO CALCULATE THE PROCESS MATRiX

There are many works related to the calculation of the process matrix. The easiest way
is to calculate χ directly from the measured output and input states of the process. To
reconstruct χ, both states and measurements must each form a basis set for the set of
qubit density matrices, therefore each set holds d2 elements. This gives the exact number
of measurements on the exact number of states one has to perform to solve eq. (5.22)
analytically [235]. In most cases, the experimentalist will want to measure a bigger set,
thereby over-defining the problem. Ideally, one would get the exact same χ for all possible
input-measurement combinations when reducing this over-complete set to the minimal set.
In realistic measurement results, the success probability of the chosen set might be state-
dependent and/or might be slightly altered by noise sources. This makes the outcome χ
highly dependent on the initial choice of input-measurement sets. This is why, many papers
in the early 2000s try to solve eq. (5.22) via a maximum-likelihood approach, where we
focused mainly on the two references [236, 237]. This approach is practical, as the maximum
likelihood approach guarantees a physical matrix and is well established in quantum physics.
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The easiest solution to follow is the iterative approach by J. Fiurášek and Z. Hradil [236].
In this solution, the trace preservation

∑
n,m χn,mA

†
mAn = 1 is assumed. To adapt it to a

non-trace preserving solution, Lagrange Multipliers for inequalities can be used. Another
possibility would be to perform a non-gradient maximization on the likelihood itself (we
tried Nelder-Mead). Unfortunately, there seem to be many local maxima that hinder the
global solution to appear2 such that we finally chose convex programming as the most prac-
tical way to find the global solution.
We follow the suggestion of C. Baldwin et al. [233], presenting three possible formulations
of a convex problem-solving eq. (5.22), where we choose the one that is equivalent to finding
the constrained maximum likelihood solution under the assumption that the data is drawn
from a Gaussian distribution. Conveniently, this is the only formulation where we do not
need to make any prior assumptions about the process. The problem is written as follows

minimize
∑
jl

|fjl − Tr(
d2∑

n,m=1

χnmAmρ
j
inA

†
nE

l)|2 (5.23)

subject to
∑
n,m

χn,mA
†
mAn ≤ 1 (5.24)

χ = χ† (5.25)
χ ≥ 0. (5.26)

One minimizes the square of the distance between the measured frequencies fjl = Tr(ρ̂joutEl)
and the computed ones from the χ of each iteration. In this way, we can use the complete
measured data set and allow for non-trace preserving processes. The results for our experi-
ment are given in subsection 5.5.1.

Now that we are familiar with the experimental procedure and have developed the nec-
essary tools for data analysis, let’s examine the results.

5.4 CONVERTER DATA ANALYSiS

Here we will present two important steps in the analysis of the converter protocol. First,
the homodyne conditioning window ∆ of the HBSM has to be set. Next, error bars on the
input states have to be established. While the conditioning window constitutes a choice,
the error bars on the input states are important to give confident results for the fidelity
bound. For each of the six measured qubits, 10 000 three-fold unconditioned events are
detected, leading to a data acquisition time of 10 and 16 hours per qubit. The homodyne

2One solution here could be, to add a probabilistic noise term to the maximization, which can drive the system
away from local maxima. We did not explore this possibility as we finally chose to use convex programming,
naturally finding the global maxima by definition.
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conditioning is applied in a post-processing step with a conditioning window of ∆ = 0.5,
normalized to vacuum shot noise. The conditioning reduces the data per qubit to around
2500 four-fold events.

5.4.1 HOMODYNE CONDiTiONiNG WiNDOW

After having measured and processed (see section 3.3) six teleported output qubits we have
the following data sets

• Quadrature and phase values of each teleported state xIθ (HDI in fig. 5.2)

• Quadratue and phase value of the HBSM xIIθ (HDII in fig. 5.2).

The conditioning step of the HBSM has not been applied yet. We remark, that it is tech-
nically possible to implement this kind of conditioning electronically via a non-linear fast
feed-forward that would practically create a fourth detection event. Keeping a low time
jitter on this kind of electronics is extremely challenging, which is why we choose not to
investigate it further. Instead, we post-process the recorded data.

Post-processing means that we only keep a quadrature value xIθ of the teleported out-
put state if the quadrature value of HDII, which was recorded simultaneously, fulfills
∆/2 ≤ xII ≤ ∆/2, where we omit the phase as it is not relevant for this analysis. This is
equivalent to a controlled gate on the data. In contrast, post-selection would mean that we
try to optimize the data xIθ to keep the best output state, iterating over different quadratures
and deciding if we keep them, based on their effect on the output state. Any subsequent
operation that changes the state would therefore make post-selection impossible, render-
ing this method problematic, as discussed in subsubsection 4.1.3.2. Unlike post-selection,
post-processing is not problematic in quantum networks, as the data selection choice is
independent of subsequent operations on the output state.
Practically, the post-processing is done with the help of simple for-loops in Python. A
smaller conditioning window ∆ is always beneficial. In practice, we want to have enough
data to faithfully reconstruct our teleported state density matrices via the maximum likeli-
hood algorithm. Here we decide for ∆ = 0.5, which corresponds to around 2500 quadrature
values per teleported output state. In section 5.5 we will show the effect of different condi-
tioning windows on the fidelity of the single photon state |1⟩.

5.4.2 INPUT STATE UNCERTAiNTY - FiDELiTY UNCERTAiNTY

The success of quantum teleportation is most commonly measured in terms of fidelity - the
comparison between output and input state. In general, the input state that was teleported
cannot be measured together with the output state as it has been destroyed during the
teleportation. Here, we measured many input states over the duration of two weeks, which
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Table 5.2: Average input density matrix elements and standard deviations.

|Q⟩ |0⟩ ⟨0| |1⟩ ⟨1| |0⟩ ⟨1| |2⟩ ⟨2|

|0⟩ 0.980± 0.007 0.015± 0.007 0.000± 0.000 0.005± 0.00

|1⟩ 0.250± 0.020 0.710± 0.020 0.000± 0.000 0.025± 0.020

1√
2
(|0⟩+ eiϕ |1⟩) 0.615± 0.021 0.355± 0.019 (0.276 ± 0.039 ±

0.012eiπ/2)eiϕ
0.014± 0.005

should represent possible long-term deviations in the qubit creation. We estimate those
long-term deviations to be our dominant source of teleportation fidelity uncertainty. This
can be intuitively understood by the time frames: Each input state is measured for one
minute, while we collect the output teleported data during one day.
We therefore want to find error bars on the input qubit, accounting for experimental vari-
ations during one day. This will enable us to faithfully give fidelity error bars. The un-
certainty on the input states is calculated as the standard deviation on the density matrix
elements of the two weeks’ worth of experimentally generated input states. The average
value and standard deviation for each relevant density matrix element for the data set of all
qubits are given in table 5.2. It is obtained in two steps: For the diagonal density matrix
elements eq. (5.10) is optimized onto each input state. The mean and standard variance
of the such acquired data set is given in table 5.2. For the off-diagonal elements, the phase
noise is modeled with eq. (5.11), reducing the coherences of the qubit. With this technique,
we can estimate the average phase noise to be ∆ϕ = 0.707 corresponding to a relative phase
noise of 11%. This rather large value is owed to the long measurement time - two weeks -
in which the qubit can be measured in different experimental conditions. We are confident
that with this input qubit data set, we will not underestimate the error bars on the input
qubits used in this experiment.
In the next section, we will estimate the minimal and maximal fidelities for each of our six
experimental output states, dependent on the minimal and maximal value of each density
matrix element, given in table 5.2. Those values will give the minimal and maximal point
of each qubit’s error bar. We will then choose an experimental input state for the fidelity
calculation. This state is chosen to represent the average input state our experiment provides
and has already been shown in fig. 5.3 (d). Due to the experimental input state not perfectly
representing the mean value, we will have asymmetric error bars. With this rather stringent
uncertainty analysis, we want to give realistic and fair error bars to our experimental data.

5.5 RESULTS OF THE QUBiT CONVERTER

We can now present the results of the converter experiment, as given in fig. 5.5. The input
qubits (as presented in subsection 5.2.3) are plotted in the top row, while the teleported
states are shown in the lower row. After conditioning, the output states are reconstructed
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from respectively 3691, 2185, 2802, 2657, 3641, and 2839 homodyne measurements. The
input qubits are reconstructed from 40000 homodyne measurements.

The measurement data was taken over the course of one week, with 10-16 hours of data
taking per qubit, while actively stabilizing 14 locks.
After five hours, the triple-resonance condition of the OPOs was adjusted.

5.5.0.1 QUALiTATiVE ASSESSMENT OF THE DATA

A first discussion of the teleportation protocol is based on how the output states “look” in
the Wigner representation. The logical basis |0⟩L was converted from vacuum to squeezed
vacuum, approximated for us by an even cat. The squeezing is clearly visible in fig. 5.5.
The |1⟩L has been transformed from a single photon Fock state towards a photon-subtracted
squeezed vacuum, or approximate odd cat-state. Although we can see the “ears” of the cat,
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Figure 5.5: Converted qubit characterization before and after conversion. A set of six qubits, corre-
sponding to the Bloch poles and equator qubits are converted from discrete Fock encoding (top row)
to continuous cat-state encodings (bottom row). The density matrices of the input DV qubits are
each reconstructed from 40000 quadrature measurements and projected onto the {|0⟩ , |1⟩} Fock-state
basis, and their Wigner functions plotted (h̄ = 1). The converted output qubits are reconstructed
from 3691, 2185, 2802, 2657, 3641, and 2839 quadrature measurements respectively. The density
matrices are projected onto the {|cat⟩+ , |cat⟩−} cat-state basis, which is labeled {|+⟩ , |−⟩} here.
The real parts of the density matrices are shown in blue while the imaginary parts are shown in
red. The Wigner functions are shown in 3D for the Bloch poles, and in 2D top-view for the equator
qubits to provide a better visualization of the phase of the qubits located along the Bloch sphere
equator. This figure was published as is in [37]
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which correspond to the coherent state amplitudes, we cannot see the interference fringes
between them. Those fringes are extremely sensitive to losses.

The main loss in our experiment is attributed to the transmission losses of the HDII for the
HBSM, estimated to be 17%, and the finite coincidence window ∆, leading to an overall
vacuum admixture of 30% to the teleported state. Reducing those losses would require
longer measurements per qubit (to be able to reduce the coincidence window further). Re-
ducing the losses on the path is challenging: They mainly come from the optical isolator,
ensuring that no back-reflection on the homodyne photodiodes induces false heralding clicks.

When looking at the Wigner function of the Bloch equator qubits, we see that the phase of
each qubit is preserved. This can be verified by comparing where the center of the Wigner
function of input and output qubits lie in phase-space. Our first assessment indicates quali-
tatively good teleportation, which will be analyzed in the two ways discussed in section 5.3.
Before this step, an important choice has to be made.

5.5.0.2 THE OUTPUT BASiS CHOiCE

To quantitatively judge the measurement results via the teleportation fidelity and the pro-
cess matrix, we have to decide what should have been the perfect output qubit. We know
that the basis choice for our input qubits is the Fock basis, such that the perfect input state
is parameterized as

|Ψ⟩in = c0 |0⟩+ eiϕc1 |1⟩ . (5.27)

This basis choice for our output qubit basis is an odd and even cat state

|Ψ⟩out = c0 |cat⟩+ + eiϕc1 |cat⟩− , (5.28)

but the size of those cat states has to be defined. In this analysis, we choose |α| = 0.9.
Any projective basis could have been chosen for the output states, including their native
squeezed and single-photon subtracted squeezed vacuum basis. By enforcing cat states as
the basis, with a rather high amplitude for our setup, we want to show that this teleporta-
tion is doable in the context of bosonic qubit bases, as discussed in section 2.4.

The chosen basis makes teleportation more challenging for us. In fact, when projecting
the measured output states onto the cat basis, the normalization of the state is lost. This
trace-loss corresponds to part of the measured state not belonging to the chosen cat-basis.
The trace-loss for all measured output states ranges between 8% - 18%. We stress, that the
output states are not re-normalized. This would correspond to an artificial raise of overlap
between the measured output state and the chosen qubit basis. This in turn means, that
even with perfect teleportation a fidelity of one is not achievable due to the non-normalized
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output states. Additionally, the input states, projected onto the Fock basis of vacuum and
single-photon lose maximally 2% of their trace and are not re-normalized as well. The anal-
ysis of the process matrix, as well as the fidelity overlap, uses those non-normalized input
and output states, projected on their relative computational basis.

5.5.1 THE QUBiT CONVERTER PROCESS MATRiX

5.5.1.1 OPTiMiZATiON iMPLEMENTATiON

As explained in subsection 5.3.2, we use convex optimization to find the optimal process
matrix corresponding to our data. First, we have to choose the operator basis Ai of the
process matrix. Given that we work with qubit input and output states, we need four
basis matrices, for which we choose the Pauli basis 1, X, Y, Z. Conveniently it gives an
easy physical interpretation: the diagonal elements of the process matrix correspond to
the fidelity of the process, bit flip, bit-phase flip, and phase flip errors (see Quantum error
correction). The off-diagonal elements are interpreted as cross-talk between the diagonal
elements. We can rewrite the trace condition

∑
n,m χn,mA

†
mAn ≤ 1 for the Pauli basis as

χ[0, 0] + χ[1, 1]− χ[2, 2] + χ[3, 3] ≤ 1. (5.29)

Furthermore, we need to define how to calculate the ideal frequencies fjl of eq. (5.23).
In our case, each measurement POVM element El corresponds to a homodyne projection
operator (see eq. (2.269)) such that we can compute the probability of an outcome as
fjl = Tr[ρjoutEl]. Here ρout is projected onto the cat basis, but written as a 10× 10 matrix
in the Fock basis. Here, it is important to take the same number of POVM elements per
state, as otherwise, not all states have equal importance in the convex algorithm.

To solve the convex problem fast and efficiently, we make use of the coding language Julia,
which is a marriage between Python and C++. In Julia, we use the package ”Convex.jl” to
translate our problem of eq. (5.23) to a convex problem, solvable by the solver ”COSMO”.
Cosmo stands for ”Conic operator splitting method” [238] and was developed by Garstka et
al. in Oxford3.

3We strongly discourage the reader to use the solver ”SCS”, which solve both primal and dual cone of the
convex problem and gives ill-defined outcomes in our case.
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5.5.1.2 CONVERTER PROCESS MATRiX RESULS

We calculated our process matrix to be

χ =


0.578 + 0.000i 0.011− 0.021i 0.006− 0.027i 0.069− 0.065i

0.011 + 0.021i 0.165− 0.000i 0.001− 0.105i 0.002− 0.015i

0.006 + 0.027i 0.001 + 0.105i 0.136− 0.000i −0.010 + 0.006i

0.069 + 0.065i 0.002 + 0.015i −0.010− 0.006i 0.026− 0.000i

. (5.30)

The process matrix is plotted in fig. 5.7 (a). We chose to take 2000 quadrature values (and
therefore homodyne POVM elements) per state, to ensure zero state bias. The working
principle of the algorithm was verified, by using the input-input data (instead of input-
output) for 2000 quadrature values. As expected it gave a process matrix that is identical
to no process that has occurred, with only one non-zero matrix element χ[0, 0] = 1. Our
program needs 2-3 minutes to reach a solution.

5.5.1.3 UNCERTAiNTY OF THE PROCESS MATRiX

Now we are interested in how to calculate error bars for the matrix in eq. (5.30). The
approach taken for density matrices, bootstrapping, usually takes the output state and
samples new quadratures from it, which are then used to in turn reconstruct the output
matrix. Here, as our output is not a state but dynamics generating this state, bootstrapping
seemed impractical.

Instead, we decided to follow the approach of the supplementary information of Guccione
et al. [36]: we divide the output-state data set into non-overlapping partitions of size
N = 100, 200, 300, 400, 500 and repeat the process of partitioning the data 30 times for each
data set. This ensures that the partitions of each size N are as independent as possible.
We are interested in the standard deviation for N = 2000. This means that after having
calculated the standard deviation for each partition, we need a fitting function to extrapo-
late the desired value.
To this end, we are only aware of one typical relation between the size of the data set and
the behavior of the standard deviation, described by

stdN ∝ 1√
N
. (5.31)

We use the module ”LsqFit.jl” to fit the standard deviation of the partitioned data to the
function g(N, p1, p2) = p1/

√
N + p2 thereby allowing for an offset and a re-scaling factor.

Overfitting by allowing more free parameters will lead to negative standard deviation values.
The corresponding plots are visible in fig. 5.6. In (a) and (b) the standard deviations for all
ten independent process matrix elements are shown, where (a) corresponds to the real and
(b) to the imaginary values of the matrix. The dominant uncertainty can be found in the

189



0.00

0.02

0.04

0.06

0.08

0.10

st
a
n
d
a
rd

d
ev

ia
ti

o
n
<(

st
d
)

(a) [0,0]

[0,1]

[0,2]

[0,3]

[1,1]

0.00

0.02

0.04

0.06

0.08

st
a
n
d
a
rd

d
ev

ia
ti

o
n
=(

st
d
)

(b) [1,2]

[1,3]

[2,2]

[2,3]

[3,3]

0 2000 4000 6000

size of data set N

0.02

0.04

0.06

0.08

0.10

st
a
n
d
a
rd

d
ev

ia
ti

o
n

st
d(c) fit

data

0 2000 4000 6000

size of data set N

0.02

0.04

0.06

st
a
n
d
a
rd

d
ev

ia
ti

o
n

st
d

(d)
data, real

data, imag

fit real

fit imag

Figure 5.6: The uncertainties (standard deviations) of the process matrix for different non-
overlapping partitions of size N of the full data are shown, together with a fitting function. In
(a) and (b) the real (imaginary) independent process matrix element standard deviations are plot-
ted. In (c) we focus on the largest standard deviation, which occurs for χ[0, 0]. In (d) the mean
uncertainty on the whole process matrix is shown.

χ[0, 0] value, which can be extrapolated to χ[0, 0] = 0.578 ± 0.032. To get the uncertainty
of the whole matrix, we take the mean of all matrix element standard deviations, visible in
fig. 5.6 (d).
With this fit, we get the overall uncertainty χ± 0.0178± 0.0100i.

5.5.1.4 ViSUALiZATiON AND DiSCUSSiON

Comparing this process matrix to the ideal teleportation, we find a process fidelity, meaning
a fidelity between the ideal and experimental map, of Fprocess ≃ 0.58 - corresponding to
χ[0, 0]. This value can usually be connected to the average teleportation fidelity but as-
suming pure input states and trace preservation 4 [239, 240]. To adapt this analysis to our
case, we can perform a test on our process matrix: we can apply the reconstructed process
matrix in a simulation to pure input states and then calculate their average teleportation
fidelity. We find, that we would still beat the teleportation threshold for pure states with
an average teleportation fidelity of 0.687 > 2/3. This value is expected to be lower than
our actual fidelity result, as expected in a non-trace-preserving process.

4The formula is F̄ =
2Fprocess+1

3
= 0.72 but given that we meet none of the assumptions for this calculation

we disregard this result.
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We can now also visualize both the process matrix and its effect on pure states, which
is visible in fig. 5.7. We see that the output Bloch sphere is shifted towards the logical
zero in (b). This can be explained by the bit flip error ∝ χ[1, 1] and the bit/phase flip
mixture ∝ χ[2, 2]. Those are related to loss being part of our computational basis. More-
over, the process matrix has rather high imaginary X-Y -Pauli correlations ∝ χ[1, 3]. The
overall shrinking of the output Bloch sphere is also due to the process matrix not being
trace-preserving such that the output state normalization in (b) and (c) do not correspond
to one. The threshold for a process matrix to be quantum (in the Pauli basis) is given by
χ[0, 0] > 1/2 [232]. With a value of χ[0, 0] = 0.58 ± 0.03 > 1/2 we can confirm that our
process matrix corresponds to quantum teleportation.

(a) (b) (c)

Figure 5.7: In (a) the process matrix of the experimental data is shown, together with the ideal
process matrix for teleportation (in dashed bars). In (b) and (c) its simulated effect on pure input
states is shown. The larger Bloch sphere belongs to the input states, while the inner, smaller, Bloch
sphere belongs to the output states, which are highlighted in purple. Here we can see that the purity
of the output states reduces, especially for the logical |1⟩L state. Moreover, the bit- and phase-flip
errors are not symmetric, such that the output Bloch sphere is distorted. Note, that the output
states have not been re-normalized. As this process is not trace-preserving the inner Bloch sphere
does not have the same norm as the outer Bloch sphere.

5.5.2 THE CONVERTER FiDELiTY

The final test for any teleportation protocol is the fidelity between input and output states.
In order to give uncertainties, table 5.2 is used to compute the absolute maximal and
minimal fidelity, which are given in table 5.3.

Table 5.3: Experimental maximal and minimal converter fidelity, providing the error estimation on
the fidelity with a chosen experimental input state.

|Q⟩ |0⟩ |1⟩ 1√
2
(|0⟩−|1⟩) 1√

2
(|0⟩+|1⟩) 1√

2
(|0⟩+i |1⟩) 1√

2
(|0⟩−i |1⟩)

Fmin 0.815 0.750 0.772 0.795 0.775 0.750
Fmax 0.836 0.769 0.811 0.848 0.828 0.792
Fexp 0.823+0.013

−0.008 0.756+0.013
−0.006 0.798+0.013

−0.026 0.824+0.024
−0.030 0.812+0.016

−0.037 0.770+0.022
−0.020
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The experimental fidelity has to be compared to the classical fidelity threshold for mixed
states, as derived in subsection 5.3.1 to be F ′ = 0.741. Figure 5.8 (a) shows this teleportation
threshold for our six input qubits. It is exceeded over the full Bloch sphere, with an average
fidelity of Fexp = 79.7+0.7

−1.0%. We can thereby confirm the success of the encoding conversion.
In fig. 5.8 (b) we can see the effect of the conditioning window ∆, which for (a) is set to
∆ = 0.5. Here we can see the importance of the HBSM, as without conditioning, the
teleportation threshold would not be surpassed. (c) and (d) show a fidelity sphere, where
the length of the Bloch vector does not indicate purity, but fidelity.
We can see that the output qubit is shrunken in comparison to the input qubit due to the
non-trace preserving process. This egg-shaped output fidelity sphere however does not show
the same distortion as the analysis of the process matrix, indicating that bit- and phase-flip

0.6

0.8

1.0
(a) (b)

(c) (d)

Figure 5.8: In (a) the six teleported qubits ρi with their respective fidelities are shown for the
conditioning window ∆ = 0.5. The red dashed line marks the classical teleportation threshold
F ′ = 0.741. (b) assesses the effect of homodyne conditioning on the single photon qubit, with the
conditioning window decreasing. (c) shows a fidelity sphere for the input qubit. Here the radius is
equivalent to the fidelity between the experimental input state with an ideal input state. In (d) the
same plot is shown for the output qubits.

192



errors have a larger effect on purity than on fidelity in our chosen input and output qubit
bases.

5.6 DiSCUSSiON

In this section we presented a post-selection-free, successful quantum teleportation, con-
verting a discrete qubit into a continuous cat basis encoding. This was possible due to
high-purity and indistinguishable sources, active phase stabilization of multiple paths, a
low-loss implementation, and the use of highly efficient single-photon and homodyne de-
tectors. Due to several heralding events having to occur in a very short time window, the
rate of the protocol is reduced to three events per minute. This is a problem for distributed
quantum computing or long-distance quantum communication, where resources have to be
combined. Luckily several routes can tackle the slow rate. Firstly quantum memories can
be used to synchronize those stochastic events, making the overall success rate decrease only
polynomial with the number of modes. Secondly, we also emphasize that our input-output
circuit is compatible with quasi-deterministic sources based on solid-state emitters that
have also recently been used in teleportation protocols [241, 242]. They could substantially
increase the rates in the future. Finally, the bit flip error on the DV mode encoded in the
Fock-state basis naturally occurs upon propagation of the states in lossy quantum channels.
Changing the DV mode can also be a practical route to follow. Several non-postselected
schemes have been proposed either with polarization [243] or time-bin qubits [197].

Now follows a short analysis to judge if our OPOIIb output state can be used in those
schemes. For this we can use the analysis of Takeda et al. [227] that we already discussed
in subsection 5.3.1. In this way, we can judge the performance of our implementation with
other discrete encodings, such as time-bin or polarization. We will quickly recall the idea:
In non-post-selected schemes, vacuum, and multiphoton components are errors that exist in
an orthogonal space to the qubit subspace, which has a weight η given by the single-photon
component of any created qubit. Those errors are classical and as such can be teleported
with unit fidelity. The unconditional classical fidelity bound Fη calculated in [227] is there-
fore defined as the linear combination between detecting a classical state with probability
1− η and detecting the pure qubit with probability η, giving Fη = (1− η)+ η 2

3 = 1− η
3 and

reduces to the 2/3 bound for pure states. In our case, the qubit fraction η in the fidelity
bound Fη is given by the heralding efficiency of OPOIIb, which in our case is equal to
η = 71.2 ± 1.5%. This sets Fη = 76.3 ± 0.5%, which is achievable in our system, although
with a smaller conditioning window, as visible in fig. 5.8 (b). The measured fidelity reaches
78.6+0.5

−0.1% > Fη for a conditioning window equal to ∆ = 1/4. This constitutes a first assess-
ment of using our experiment for unconditional conversion for other than Fock encodings.
Next to adapting the discrete mode, the hybrid Bell-sate measurement would have to be
adapted too.
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In conclusion, we have presented the first not post-selected optical qubit converter, which
converts information from the Fock basis to the cat-state basis. The successful outcome
of this experiment was accompanied by a comprehensive theoretical analysis of the results,
making the measurement and analysis components crucial aspects of this thesis work. The
classical threshold of such a conversion was assessed theoretically and exceeded experi-
mentally with an average fidelity above 79% over the Bloch sphere. The results of this
experiment were published in 2023 [37].
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5.7 KEY RESULTS

• Achieving the full potential of quantum networks requires the ability to convert
information between different platforms and encoding schemes. This chapter
focuses on contributing to the latter aspect.

• Hybrid entanglement was created and used in a teleportation-based scheme to
convert a discrete input qubit into a continuous output qubit. Discrete here
means a superposition between vacuum and single-photon components while
continuous refers to the superposition of even and odd cat states. We use the
hybrid BSM, explained in the previous chapter. This experiment needs three-
fold-coincidence events and uses homodyne conditioning.

• To asses the success of the protocol, a new teleportation threshold, valid for
mixed input states, was derived and found to be F ′ = 0.741. Furthermore,
the process matrix approach was used, which analyses the mapping of input
to output qubits. In the chosen basis its first matrix element has to fulfill
χ[0, 0] > 0.5 for the process to be considered quantum.

• Both methods require input and output qubits to have equally sized density
matrices. We therefore project the output qubit onto the cat basis. This process
is not trace-preserving, leading to unnormalized states.

• The process matrix of the unnormalized input and output states is calculated
with convex programming to have the element χ[0, 0] = 0.578 > 0.5, describing
a quantum process.

• The fidelities between input and output states are all above the classical thresh-
old F ′, with an average value of 79% over the Bloch sphere.

• With this we presented the first not post-selected optical qubit converter. The
results were published in 2023 [37].
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Chapter

6 EXPERiMENTALLY VERiFiABLE CRiTERiA
OF NON-GAUSSiAN COHERENCES
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In this chapter, we will discuss the emergence of non-Gaussian coherences in quantum states.
The wave-like nature of particles, as demonstrated by quantum coherences, forms the foun-
dation of our understanding of quantum mechanics. This phenomenon has also played a
crucial role in the development of laser technologies and is of fundamental interest in quan-
tum error correction. Here, we develop a threshold that can certify the Non-Gaussianity
of coherences in a quantum state. In the first section we will discuss the main idea of
quantum resource theory. Resource theory separates operations into free (or easy) opera-
tions and resource (or hard) operations. We can therefore formulate Non-Gaussianity as a
resource theory in the second section and use this notion to develop a criterion to compute
a threshold for non-Gaussian coherences. Furthermore, the idea of building a hierarchy of
thresholds is introduced and our chosen hierarchy is motivated. In the third section, this
hierarchy of thresholds is applied to two experimentally generated states. This is followed by
a discussion about the experimental results and an outlook for the verification of a broader
class of non-Gaussian coherences in the fourth section. The fifth section summarized
the key results. The theory was developed in close collaboration with Lukáš Lachman from
the Palacký University Olomouc, and a paper about the results is in preparation.
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6.1 QUANTUM RESOURCE THEORY AND COHERENCES

In the last chapters, we have seen many attributes of experimental quantum states that
render them useful in protocols: purity, entanglement, basis-state orthogonality, fidelity,
and production rate. Deciding which properties of a state are useful in a quantum system
is not always straightforward, resulting in the development of resource theories in quantum
information theory [244]. In these theories, certain operators are considered easy and any
state that can be created by applying those operations on a fully mixed state is consid-
ered a free state. A state that cannot be created within this set of operations is called a
resource state and is deemed especially valuable. Which operations are considered as “free”
can be adapted to the experimental capabilities. We can recast quantum teleportation in
the framework of resource theory: if the set of free operators is defined to contain local
unitary operations and classical communication (LOCC), then entangled states cannot be
created by operations within this set. Therefore, entangled states are considered a resource,
that unlock new quantum operations, which in this case would be quantum teleportation.
Another example of a resource theory has been discussed in section 2.4, where free operators
form the Clifford group and non-Clifford resource states have to be used to enable error
correction [88]. While resource theories do not restrict the definition of free operations, a
subset of operations that can be efficiently simulated on a classical computer is often used.
Famous examples are the resource theory of purity and the resource theory of entanglement.

While these theories are basis-independent, one can also define the resource theory of co-
herence, which is basis-dependent and was first formulated by J. Aberg in 2006 [245].
Quantum coherences lie at the basic understanding of quantum mechanics by showing the
wave nature of particles and have enabled the development of laser technologies. Moreover,
they are at the heart of quantum information manipulation, enabling superposition and
entanglement [246]. Additionally, coherences are of fundamental interest in quantum error
correction, where Bosonic qubits are encoded in infinite Hilbert spaces. Error correction
requires high quality and stable logical qubits, both factors that translate directly to the
coherences in the physical system. In this context, the resource theory of coherences defines
any diagonal state in a fixed basis and their coherent mixtures

∑
i pi |i⟩ ⟨i| as free states.

The free operations capable of creating those states are defined such that they cannot in-
crease the coherence of a state. How coherent a state is, can be quantified via a coherence
measure, which is defined by a function C [247].

In this work we present a modification to the before-mentioned resource theory, connecting
it to the notion of Non-Gaussianity. Especially in single-mode quantum optics, this is a
natural definition of free operations (see section 2.3). Naturally, we will choose the Fock
states as a basis, in which coherences have to be verified. Coherences can be either scram-
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bled over the whole Hilbert space of a system, forming strongly non-local correlations, or
can be localized as the interference term between two Fock state probabilities. Although
both possibilities are equally relevant, we will focus on the localized case, which translates
to the target state

|target⟩ = 1√
2
(|n1⟩) + eiϕ |n2⟩). (6.1)

To connect coherence resource theory with non-Gaussian theory, we need to construct a
criterion that can only be verified by quantum coherences, it should not be satisfied by
any Fock state, as they do not exhibit any coherences. This indicates that we will consider
the highly non-Gaussian Fock states as “trivial” in the study of non-Gaussian coherences,
as also suggested by A. Streltsov et al. [246]. This can be reformulated as restricting the
coherence-inducing non-Gaussianity to be located in the system’s dynamics.

With this approach, we can now consider non-Gaussian coherences, purely induced by
non-Gaussian dynamics (see section 2.2 and section 2.3). The general idea is depicted in
fig. 6.1, where non-Gaussian dynamics are applied on an input state, which can include
Gaussian or non-Gaussian states. The dynamics create coherences in these states, which
can be measured and judged by the criterion we will develop in this chapter.
Furthermore, our goal is to develop a non-Gaussian coherence criterion that features a hi-
erarchical structure, allowing states to be ranked from less valuable to more valuable. In
quantum information, hierarchies are not a fixed concept and can be thought of as sorting
criteria. A commonly employed hierarchy is the entanglement hierarchy, where states are
organized based on the number of entangled particles or the intricacy of their entanglement

Figure 6.1: The creation of non-Gaussian coherences is shown. On the left, any purely Wigner-
symmetric input state enters a system that applies a unitary transformation U on this mode. If
this operation cannot be described by the general Gaussian dynamics of a displacement D(α) and
squeezing S(ξ) operation, then non-Gaussian coherences can be measured in the output state.
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structure. Generally, states can be arranged hierarchically according to their relevance,
usefulness, or performance in various applications. By selecting a specific hierarchy, we ef-
fectively determine which states are more valuable or challenging to achieve experimentally.
This can be visualized as a ladder, where increased experimental complexity propels the
state to a higher rank on the hierarchy ladder. Consequently, this corresponds to a ladder
of thresholds that a state must surpass to advance to the subsequent stage on the ladder.
A formal definition of this hierarchization procedure shall be developed in the next section.

6.2 BUiLDiNG A HiERARCHY AND CHOOSiNG FREE STATES

In this section, we develop the theoretical framework of a non-Gaussian coherence criterion
in the first subsection. For this, we first discuss the definition of a hierarchy. We present
the Stellar hierarchy, which forms a hierarchy of non-Gaussian states and use it to generalize
the idea of hierarchies in non-Gaussian criteria. In the second subsection, we will devise
on which state property shall be evaluated by the hierarchical criterion. This depends on
the envisioned target state ordering. Given this ordering, two possible hierarchy definitions
are discussed: one that is based on the maximal Fock excitation in the system and another,
that is based on the maximal distance between the two Fock states forming the target
superposition. Both hierarchies are developed and applied to different examples of target
states. Finally, the hierarchy resulting in higher thresholds is chosen.

6.2.1 STATE HiERARCHiES iN QUANTUM MECHANiCS

As explained in e.g. [248], a hierarchy criterion follows certain properties. For the sake of
the explanation, we review here the famous example of non-Gaussian states hierarchy: the
so-called Stellar hierarchy.

6.2.1.1 STELLAR HiERARCHY

Here, we will sketch the stellar hierarchy by summarizing the results of Chabaud et al.
that are relevant for us [248]. The goal is to characterize quantum states in terms of their
Non-Gaussianity in a way that is invariant under Gaussian operations. In this way, ranks
r ∈ [0,∞] are defined, where r = 0 corresponds to Gaussian states. Each state is formulated
in the stellar function F ⋆ψ(α) of a state |ψ⟩, which corresponds to the function

F ⋆ψ(α) = e|α|
2/2 ⟨α∗|ψ⟩ =

∞∑
n

ψn
αn√
n!
, (6.2)

where α is the coherent state amplitude and ψn = ⟨n|ψ⟩. It represents the projection of the
state onto the basis of coherent states. This representation is unique up to a global phase,
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such that two states are deemed equivalent if they have the same stellar representation. The
stellar rank of a state is then defined as the number of zero points in the Husimi Q-function

Qψ(α) =
1

π
e−|α|2 |F ⋆ψ(α∗)|2, (6.3)

which is equivalent to the zero-crossings of the Wigner function. This automatically gives
each Fock state |n⟩ a stellar rank of r = n. The stellar hierarchy is equivalent to the minimal
number of photon additions N to create a state of rank r = N . Moreover, mixing of any
states with a stellar rank r < N cannot create a state with r ≥ N .

6.2.1.2 GENERAL FORMULATiON OF A HiERARCHY OF STATES

Let us extract the general properties of hierarchies via the example of the stellar hierarchy.
To formulate a hierarchy, a set of target states has to be defined. Next, properties have to
be found, that enable the envisioned ordering of the target states.

In the stellar hierarchy, the target states are the pure Fock states and the property is
the number of zero points of the Husimi Q-function. Moreover, the goal of the Stellar hi-
erarchy is to verify the Non-Gaussianity of a state. Therefore, Gaussian dynamics on any
convex mixture of states with a certain rank should not be able to create a higher-ranked
state.

Here, we see the connection to section 6.1, defining Gaussian dynamics as free operations.
For each rank r = k of the hierarchy, all target states of r < k are included in a set
{|f⟩0 , |f⟩1 , ..., |f⟩k−1} that we call the basis set of pure free states. Besides, we require
this set to be convex, allowing for coherent superpositions with arbitrary weights between
members of this set. In the example of the Stellar hierarchy, this set of states for rank
r = 3 would be all the target states of lower ranks {|0⟩ , |1⟩ , |2⟩} including their coherent
superposition c0 |0⟩+ c1 |1⟩+ c2 |2⟩.

Following resource theory, arbitrary free operations can be applied to this basis set, such
that a linear combination of the basis set together with all allowed free operations applied to
those combinations, from the set of pure free states. From this set, any statistical mixtures
can be created, forming the full set of free states Fk, where to be a proper hierarchy, this
set of states for r = k has to be included in next ranks Fk ⊂ Fk+1 ⊂ Fk+2....
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We can now write any set of free states from the basis states |f⟩k becoming a general pure
free state |G⟩Fi , such that

Free Gaussian states of rank r < k ρF,Gk =

k−1∑
i

pi |G⟩Fi ⟨G|Fi ,

|G⟩Fj =
k−1∑
j

S(ξ)D(α)cj |f⟩j , (6.4)

Free classical states of rank r < k ρF,Ck =

k−1∑
i

pi |C⟩Fi ⟨C|Fi ,

|C⟩Fj =

k−1∑
j

D(α)cj |f⟩j . (6.5)

Here, we have also allowed for the set of free classical states ρF,Ck , applying only displacement
to the basis states. In fact, hierarchies for non-classicality are not common. They should
be seen as a first step to test each hierarchy: If a state beats the non-classical threshold of
rank k, then the non-Gaussian threshold of rank k can be tested1.

Next, a property P has to be defined. This property is the measure, i.e. evaluates the
performance of any state in the context of the defined hierarchy. In the case of the stellar
hierarchy, the property is the number of zero points in the Husimi Q-function. In this case,
the property is unchanged by the target states of the hierarchy but we can also imagine a
set of properties Pt adapted to the target rank in the hierarchy.
We require that the property Pt is maximized if applied to its target state |target⟩t, such
that Pt(|target⟩t) = maxρ Pt(ρ) over all possibles states ρ.
To judge if a state ρ′ achieves a certain rank t, the threshold value of the free states of this
rank has to be computed. The best possible value any free Gaussian (classical) state can
achieve, creates a set of thresholds for the target state |target⟩t

TF,Gt,k = max
ρk∈FG

k

Pt(ρk), (6.6)

TF,Ct,k = max
ρk∈FC

k

Pt(ρk). (6.7)

Here the maximization over the set of free states F includes maximizing over the superpo-
sitions weights cj , the squeezing ξ and the displacement α as well as the statistical mixing
weights pi of eq. (6.4) or (6.5).

1We note here, that the non-classical thresholds are strictly lower than the non-Gaussian ones for the same
rank. It can however happen, that a non-classical threshold for rank r = 5 is harder to beat than a
non-Gaussian threshold of rank r = 1.
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Any state ρ′, tested against the free states of the target state |targett⟩ could achieve ranks
k = 1 to k = t. For this, ρ′ has to achieve a higher value of the property Pt(ρ′) than TF,Gt,k

(TF,Ct,k ), such that Pt(ρ′) > TF,Gt,k . If the state lies above the tested threshold TF,Gt,k it has
(at least) rank k. In cases where the state does not exceed the k = 1 threshold, the result
remains inconclusive. The selection of free states and the property to measure are crucial
decisions that largely depend on the objective of the hierarchy. Subsequently, our choices
of features will be elaborated upon.

6.2.2 COHERENCE BASED HiERARCHiES

Our goal is to build a hierarchy that quantifies coherences in the Fock basis. As discussed
in section 6.1, the free operations in our system are defined to be all Gaussian (classical)
operations. While this choice is the same as in the Stellar hierarchy, we choose a different
property that we evaluate for creating thresholds.

Measuring non-Gaussian (-classical) coherences requires us to build a criterion that is not
verified by non-Gaussian states without coherences: the Fock states. After having defined
the property, we will choose an ordering of target states and discuss two possible sets of
free states and therefore hierarchies that enable this ordering2. One is based on the Fock-
state excitation, similar to the Stellar hierarchy, while the other is based on the length of a
quantum superposition. We will finally argue why we chose the latter for our experimental
states.

6.2.2.1 THE CHOSEN PROPERTY: LOCAL COHERENCE MEASURE

A properly defined measure of local coherences between two Fock excitations should be
maximized by the ideal target state of eq. (6.1), which we recall to be

|target⟩ = 1√
2
(|n1⟩+ eiϕ |n2⟩).

For this, we can define the operator S

S(ϕ, θ)n1,n2 = sin(θ)[cos(ϕ)Xn1,n2 + sin(ϕ)Yn1,n2 ] + cos(θ)Zn1,n2 , (6.8)

which is equivalent to a projective measurement of a qubit on a Bloch sphere with poles
|n1⟩ and |n2⟩. The angle θ is the colatitude concerning the z−axis and ϕ is the longitude

2We do not claim that these are the only two possible sets of free states. They are the simplest and therefore
most logical sets to consider in our view.

202



concerning the x−axis. Here, the Pauli matrices have to be defined for the corresponding
state-space n1 and n2, shifting their matrix values to the corresponding Fock basis as in

Xn1,n2 = |n1⟩ ⟨n2|+ |n2⟩ ⟨n1| , (6.9)
Yn1,n2 = i |n1⟩ ⟨n2| − i |n2⟩ ⟨n1| , (6.10)
Zn1,n2 = |n1⟩ ⟨n1| − |n2⟩ ⟨n2| . (6.11)

The local coherence measure C of any state ρ can then be defined as applying S on the state
and fetching the highest coherences around the Bloch equator θ = π/2:

Cn1,n2(ρ) =
1

2

(
max
ϕ

Tr[S(ϕ, π
2
)n1,n2 ρ]−min

ϕ
Tr[S(ϕ, π

2
)n1,n2 ρ]

)
. (6.12)

We can interprete this as an interferometric measurement with a phase scan ϕ, where C
would be the contrast of the fringes. As such, C ∈ [0, 1] and ϕ is not fixed here such that
we are only interested in the absolute value of the coherences. The target state will achieve
the ideal value of unity.

6.2.2.2 TARGET STATE ORDERiNG

In the previous subsubsection, we established a measure of coherences C. To conceive a
hierarchy, we must first determine the ordering of coherences Cn1,n2 with different n1, n2,
assuming n2 > n1. As previously mentioned, this is analogous to assessing the difficulty of
creating coherences between different fock states.
We aim at an ordering of the form

r = k |target⟩k =
1√
2
(|n1⟩+ |n2⟩) with Cn1,n2 ,

r = k − 1 |target⟩k−1 =
1√
2
(|n1⟩+ |n2 − 1⟩) with Cn1,n2−1,

...

r = 1 |target⟩1 =
1√
2
(|n1⟩+ |n1 + 1⟩) with Cn1,n1+1, (6.13)

where the last superposition occurs for the rank r = 1. This ordering can be achieved by
choosing two different target state properties for the hierarchy definition: the two most
striking features of the target order for superposition between n1 and n2, that can define
its rank, are either the maximal Fock excitation n2 or the maximal length of the superpo-
sition n2−n1. Both of these properties can be used to order the target states as in eq. (6.13).

By choosing one of these properties our hierarchy will include more states than the ones in
eq. (6.13)). The extend of this set can generally increase the threshold value of each rank.
A hierarchy can therefore be evaluated by this threshold value for different ranks, as in eq.
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(6.6) or eq. (6.7). If one hierarchy consistently gives a higher threshold for different ranks,
it should be chosen.
We will now formally present two hierarchies, based on the maximal excitation or length in
the target superposition.

6.2.2.3 FREE STATES BASED ON THE MAXiMAL FOCK EXCiTATiON

One can achieve the desired ordering of the target states based on their maximal Fock exci-
tation in the system n2, which we call here N -hierarchy. This idea is physically grounded, as
creating higher-order Fock states is experimentally hard. With the maximal Fock excitation
n2 being the dominant property, any lower excitation should be free, such that the set of
basis states |f⟩ for the state of rank r = n2 enlarges to

r = n2 − 1 |f⟩n2−1 =
1√
2
(|x⟩+ |n2 − 1⟩) x ∈ [0, n2 − 1],

r = n2 − 2 |f⟩n2−2 =
1√
2
(|x⟩+ |n2 − 2⟩) x ∈ [0, n2 − 2],

...

r = 1 |f⟩1 =
1√
2
(|0⟩+ |1⟩),

r = 0 |f⟩0 = |0⟩ . (6.14)

The full set of pure free states for the N -hierarchy includes superpositions of the above basis
states |f⟩, to which free operations can be applied. The set of free states is then containing
any statistical mixtures of the set of pure free states. As such, the set of basis states can be
written in a simpler form, here exemplary for the non-Gaussian set of free states

set of free states FN,Gn2
for r = n2 |f⟩j ∈ {|0⟩ , |1⟩ , |2⟩ , |3⟩ ..., |n2 − 1⟩},

ρN,Gn2
=

n2−1∑
i=0

pi |G⟩Fi ⟨G|Fi |G⟩N,Gi =

N∑
j

S(ξ)D(α)cj |f⟩j . (6.15)

Written in this form, we see that the pure free states of the rank r = n2 are composed of
any displaced and squeezed superposition of Fock states, while excluding the maximal Fock
excitation n2 of the target state of this rank. This set of free states is equivalent to the
one of the Stellar hierarchy. Nonetheless, our definition of the N -hierarchy has a different
property to define thresholds: the coherence measure. Applied to those states the threshold
for the rank r = n2 can be calculated as

TN,Gt,n2
= max

ρn2∈F
N,G
n2

Ct(ρn2), (6.16)

TN,Ct,n2
= max

ρn2∈F
N,C
n2

Ct(ρn2), (6.17)
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Figure 6.2: In (a) the N -hierarchy for the length of superpositions of the form ∝ |0⟩+ |N⟩ is shown.
Above each stair of this hierarchy, the ideal target state is shown, while below, the set of basis
states for the corresponding rank is explicitly written. The threshold for each hierarchy rank n2 is
calculated by optimizing over the set of free operations applied to the set of basis states, that can
be mixed classically. For each target state ∝ |0⟩+ |N⟩, all threshold values are given in (b)-(e).

where the target state, and therefore maximal rank n2 = t is defined by the target state’s
n1, n2.

The N -hierarchy for the example of a maximal value of n2 = 4 is shown in fig. 6.2 (a). The
hierarchy is drawn as a staircase with the target states sitting on each stair and all basis
states hovering below this stair. The threshold values for each target state are shown in
(b)-(e) for all possible ranks n2.
Let us now turn to the length of the target superposition as another criterion to order the
hierarchy.

6.2.2.4 FREE STATES BASED ON THE MAXiMAL LENGTH OF SUPERPOSiTiONS

In the previous approach, the maximal Fock state excitation in the system was chosen as
an ordering parameter for the target states. In the present approach, we follow a different
idea, using the length L of the superposition state ∝ |n1⟩ + |n2⟩, named the L-hierarchy.
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Given that we now choose to prioritize the length, we should see all states ∝ |m⟩+ |m+ l⟩
as equal such that we can define the additional basis states as follows

|f⟩l,m =
1√
2
(|m⟩+ |m+ l⟩),

|f⟩l−1,m =
1√
2
(|m⟩+ |m+ l − 1⟩),

...

|f⟩1,m =
1√
2
(|m⟩+ |m+ 1⟩),

|f⟩0,m = |m⟩ , (6.18)

where we set m ∈ [0, Nmax − l]. This set of basis states is only dependent on the difference
between n1 and n2 such that we can write the set of free states as

set of free states FL,Gl,m for r = l and m ∈ [0, Nmax − l]

|f⟩j ∈ {|0⟩ , |1⟩ , |2⟩ , |3⟩ ..., |Nmax⟩},

ρL,Gl,m =

Nmax−l∑
i=0

pi |G⟩Li,m ⟨G|Li,m |G⟩L,Gi,m =
m+l∑
j=m

S(ξ)D(α)cj |f⟩j . (6.19)

We have once again further simplified the set of basis states. Comparing this set to that of
the N -hierarchy in eq. (6.15), we can see that the only difference the number of states per
rank allowed.

While in the N -hierarchy the rank r = 1 only permits for the basis state |0⟩, the L-hierarchy
allows for |0⟩ , |1⟩ , ... |Nmax − l⟩, where Nmax can be arbitrarily high.
Even if we set Nmax = n2, the example of the lowest rank of the L-hierarchy will still include
Fock states up to the target state value n2, while the N -hierarchy will always only consider
vacuum. Therefore, we note that the L-hierarchy is a generalisation of the N -hierarchy.

The threshold for each rank r = l has now also to be maximized over the running vari-
able m, such that

TL,Gt,l = max
m

max
ρl∈FL,G

l,m

Ct(ρl), (6.20)

TL,Ct,l = max
m

max
ρl∈FL,C

l,m

Ct(ρl), (6.21)

where the target t is defined by the target state’s n1, n2. In fig. 6.3 we set Nmax = 4

and evaluate the hierarchy up to l = 4. Importantly, we observe that in (d) and (e), the
threshold values are higher than the ones of the N -hierarchy. This has been numerically
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Figure 6.3: In (a) the L-hierarchy for the length of superpositions of the form ∝ |0⟩+ |N⟩ is shown.
Above each stair of this hierarchy, the ideal target state is shown, while below the set of basis states
for Nmax = 4 is explicitly written. The threshold for each hierarchy step l is calculated by optimizing
over the set of free operations applied to the set of basis states, that can be mixed classically. For
each target state ∝ |0⟩ + |N⟩, all thresholds are shown in (b)-(e). Each threshold of rank r = l is
optimized over the set of free states, defined by the basis states shown in the same color. The bright
green and blue numbers in (d) and (e) mark where this threshold lies above the N -hierarchy.

verified for multiple values n1, n2 and seems to consistently be the case for n1 = 0.

Moreover, we remark that after numerical checks, Nmax for n1 = 0 does not have to be
restricted in the L-hierarchy, as the highest threshold is always given for m = 0.
We can therefore set Nmax → ∞ if n1 = 0, thereby being able to test the threshold against
an infinite Hilbert space.

6.2.2.5 HiERARCHY DiSCUSSiON

If we compare fig. 6.2 and fig. 6.3, we observe several trends. First, we see that the maxi-
mal threshold, meaning the threshold of the maximal rank l is steadily decreasing for target
states with higher n2.
This has been numerically checked for n1 = 0 and n2 up to n2 = 7 but seems to be
consistently the case also for n1 ̸= 0. It leads to the somehow counter-intuitive fact, that
non-Gaussian (classical) coherences are harder to achieve, if one wants to produce ∝ |0⟩+|1⟩
than ∝ |0⟩+ |5⟩. This monotonic decrease mirrors the importance of higher and longer su-
perpositions. It shows that they are harder to produce with Gaussian operations and is
valid for both hierarchies. Experimentally this can be explained as follows: given small
displacement and squeezing, a coherent superposition of vacuum and single photon can be
created with high fidelity. This will raise the threshold to verify any non-Gaussian coherence
between those states. On the other hand, displacement and squeezing will always create
unwanted excitations if one wants to create coherence between for example a two-photon
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and a five-photon state. These unwanted excitations will lower the maximal achievable
coherence value, thereby lowering the threshold.

Moreover, we see that for the case of n1 = 0, the L-hierarchy produces harder or equivalent
thresholds, especially when comparing (d) and (e) of fig. 6.2 and fig. 6.3, where the value
where the L-hierarchy exceeds the N -hierarchy threshold is indicated by color. As n1 = 0

corresponds to our experimental states, we will use the L-hierarchy.

Before proceeding we briefly discuss how to calculate each threshold. The calculation of
the threshold values requires a global optimization over many parameters: the squeezing
and its phase, the displacement, and the weights of the basis state superposition. We do not
have to optimize over statistical mixtures of basis states, as a linear function, defined on a
convex set is always optimal on the boundary of the convex set due to the Bauer maximum
principle, formulated in 1958 [249, 250]. To compute the thresholds for each rank, we have
to consider all possible basis states. For each basis state, we optimize over the squeezing,
the displacement amplitude, and the angle between displacement and squeezing. Moreover,
we optimize the coefficient weights of the superposition. The threshold values of all basis
states are compared and the maximum value is defined as the threshold.
This problem requires a global optimization algorithm. We choose the combination of a
bound-constrained Nelder-Mead minimization, together with basinhopping as implemented
in scipy [251]. Basin-hopping [252] is an iterative optimization algorithm that finds the
global minimum of a smooth function by randomly perturbing coordinates, performing local
minimization, and accepting or rejecting the new minimum based on the function value. All
parameters and snippets of this code are given in section 8.3. Due to the stochastic behavior
of the minimization algorithm, we run each each optimization at least ten times, to consider
the solution converged. Note that one can never completely be sure to obtain a global so-
lution. Moreover, all values are cross-checked with the calculation of Lukáš Lachman, who
uses a different approach.

6.3 COHERENCE iN EXPERiMENTAL STATES

6.3.1 INTRODUCTiON

Creating high-quality coherences experimentally can be very challenging or very easy, de-
pending on the physical platform. In the example of atomic systems, high fidelity rota-
tions between atomic levels via laser pulses [253] or a combination of radiofrequency and
microwave magnetic fields [254] enable the creation of coherences in d-level systems [255],
which can be read out with high fidelity and even mapped onto photonic states [256]. These
approaches are limited to qubit systems, where higher-order Fock states are not available.
To see non-Gaussian coherences in the Fock basis beyond coherences between |0⟩ and |1⟩,
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the mode of the atomic system should be described by a quantum harmonic oscillator. For
this, the motional state of ions or atoms is used [257] and microwave pulses can decrease
or increase the excitation of the motional state. As previously mentioned, the creation of
a Fock state or a coherence between two Fock states is equivalently hard. Similarly, in
superconducting systems, a cavity-qubit coupled system can use projective qubit measure-
ments to create Fock states and their coherences in the cavity mode, although only with
post-selection [258]. Fock states and their coherences have also been shown to exist in bulk
acoustic-wave resonators [259]. Although all those approaches can create high-quality quan-
tum coherences, their measurement is based on a projection on only a few operators 3, from
which the density matrix is reconstructed. While this leads to trustworthy measurements
of Fock number probabilities, equivalent to the diagonal elements of the density matrix, a
faithful reconstruction of the off-diagonal elements requires a phase scan rather than a few
projective measurements.

We will see with the example of the coherence between ∝ |0⟩ + |1⟩, that already small
loss and de-phasing can reduce the coherences drastically, such that high confidence in the
measured coherences is absolutely necessary. For this, we use the qubit model of chapter 5,
given in eq. (5.10) and (5.11), for balanced qubits. First, we can assume a pure state
(cvac = 0, csp = 1, ctp = 0) and find that phase noise with a standard deviation of maxi-
mally ∆ϕ = 0.37 rad can be allowed, reducing the coherences to C0,1 = 0.933, equal to the
non-Gaussian threshold. This is equivalent to a maximal allowed phase noise of 5.9 % and
reduces to a maximal allowed phase noise of 3 % if we consider losses of 5 % (cvac = 0.05,
csp = 0.95, ctp = 0) in the system. The maximally allowed phase noise in percentage is
calculated by taking ∆ϕ/(2π).
In fig. 6.4 we show the phase noise and loss combinations that allow a balanced qubit with
coherences between n1 = 0 and n2 ∈ {1, 2, 3, 4} to surpass the the non-Gaussian threshold.
Once loss or phase-noise are increased, the threshold cannot be reached anymore such that
those qubits do not have non-Gaussian coherences.
With those stringent requirements on the quality of the system, a significant uncertainty in
the measurement and readout can render a confident verification of non-Gaussian coherences
very challenging. In contrast, optical systems are better suited in terms of measurement
and offer a fine-grained highly reliable full tomographic reconstruction of the state, leading
to high confidence in the off-diagonal elements. High-quality Fock states in optics can only
be produced to date via optical parametric oscillators, as detailed in chapter 3. These sys-
tems initially emit Gaussian states and therefore need non-Gaussian measurements to be
lifted into Non-Gaussianity. Inducing coherences in these states is non-trivial and different
from atomic or superconducting systems requires additional resources that have to exhibit
non-Gaussian dynamics.

3Most often the parity operator is used.
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Figure 6.4: The maximally allowed combinations of phase-noise and losses to reach the Non-Gaussian
threshold of highest rank are calculated for qubits ranging from n2 = 1 to n2 = 4. We assume losses
and dephasing to be the only sources of error. On the left side the plot areas, where the qubit
can reach coherences up to its threshold are colored. Markers correspond to simulated values. The
corresponding color and threshold value for each qubit and clarified to the right side of the plot.

Therefore, the faithful generation of high-quality Fock states in optics does not guarantee
the Non-Gaussianity of coherences in the Fock basis.

We will test experimentally generated states in superpositions of ∝ |0⟩+ |1⟩ and ∝ |0⟩+ |2⟩
against their non-Gaussian (classical) coherence threshold.
We first explain how the experimental states are created and then apply the non-Gaussian
coherence criteria to these states. We calculate different threshold values by taking into
account additional information about the density matrix and show the performance of our
experimental states against these thresholds. Finally, we present an alternative criterion,
which evaluates qubit coherences rather than general coherences.

6.3.2 EXPERiMENTAL STATE CREATiON

The first set of states we want to test are the input qubits for the qubit converter we pre-
sented in chapter 5. The experimental setup is shown again for completeness in fig. 6.5
(a). The type-II OPOIIb creates two-mode squeezed light and is pumped at a low threshold
of around 2 mW. The degenerate signal and idler photons at 1064 nm can be separated
on a polarizing beam-splitter. Upon detection of n idler photons on high-efficiency super-
conducting nanowire single-photon detectors (SNSPD 1), the creation of a Fock state n
on the signal path is heralded. The generated state is emitted into a well-defined spatio-
temporal mode due to filtering in the heralding mode, with a bandwidth of about 60 MHz.
The signal is characterized via a high-efficiency homodyne detection and reconstructed by
a maximum-likelihood algorithm. To create a superposition of the form c0 |0⟩ + c1e

iφ |1⟩,
a weak displacement is applied on the heralding mode. The phase φ is defined by the rel-
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Figure 6.5: The experimental setups for the creation of two types of Fock-state coherences are shown.
In (a) the creation of a superposition of the form ∝ |0⟩+ |1⟩ is depicted. The coherence is created
by a displacement beam β that interferes with the heralding path of OPOIIb after filtering by an
interferential filter (IF) and the micro-cavity (µCav). The superposition phase is locked on the
interference fringe between displacement and heralding path ϕ and the weights of this superposition
can be controlled by the two respective HWPs, controlling the merging weight of each path. The
output state is measured with a homodyne detector. In (b) the creation setup of a superposition
∝ |0⟩ + |2⟩ is shown. Here, the heralding path of OPOIIa is split into two after filtering, enabling
two on-off SNSPD detectors to monitor the path. If both SNSPDs click within a small time window,
then a two-photon state has been heralded with high probability. Tuning the HWP after OPOIIa
can correlate signal and idler beams instead of perfectly separating them, creating correlations in
their photon-number distribution. Those correlations can be analyzed via homodyne detection.

ative phase between the displacement and heralding path, whereas the weights c0, c1 can
be controlled by the relative count rates between the two paths. Upon one heralding click,
the signal state is projected onto the desired superposition, with a maximal single-photon
heralding efficiency of 72%. For a more detailed explanation and modeling of this process,
we refer to subsection 5.2.3.
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We use the state proportional to ∝ |0⟩− |1⟩, as it showed the best performances of our data
set. In fig. 6.5 (b), the setup to create a superposition of the form ∝ |0⟩ + |2⟩ is shown.
The two-mode squeezing of OPOIIa is not ideally separated into signal and idler but rather
mixed by a ratio x%. This induces correlations that can, upon a heralding detection of
two photons with two SNSPDs, create a coherent superposition of Fock states in the weak
pump limit. This experiment was conducted in the group and we make use of the data set
used in the paper Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpo-
sitions with Minimal Resources by K. Huang et al. [32]. We interpret these cat states of
an amplitude around α = 1.73 as a good approximation of the target superposition. For
this data set, the coincidence window of the two on-off detection events of SNSPD1 and
SNSPD2 was set to 0.8 ns. This reduces the rate of the experiment to 200 Hz, as discussed
in subsection 5.2.4. The ideal setting of the half-wave plate in 6.5 (b), which controls the
mixing ratio, is at an angle of 2.5◦, corresponding to a mixing of signal and idler by 5.6
%. We do, however, test the full set of states available to us, independent of the mixing ratio.

Our states have a maximal fidelity with the ideal qubit of F1 = 82.1% and F2 = 83.1%

without post-selection and are therefore among the purest photonic qubits created to-date.
Their Wigner functions and density matrices are visible in fig. 6.6 (a)-(c) for the super-
position of vacuum and a single photon and (e)-(g) for the superposition of vacuum and
two-photon components. Given the high overlap with the ideal superposition state, we will
test the non-Gaussian coherence criterion on them and then present strategies to refine this
criterion.

6.3.3 ABSOLUTE AND CONDiTiONAL CRiTERiA ON EXPERiMENTAL STATES

6.3.3.1 ABSOLUTE COHERENCE CRiTERiON

Now that our experimental states are created we can test them against the calculated
non-Gaussian (-classical) absolute coherence criterion of fig. 6.3. As discussed in subsec-
tion 6.2.2, we will choose the L-hierarchy due to its higher thresholds. The maximal values
free states can obtain, and therefore the thresholds to beat are given in table 6.1. Before
calculating the coherences C of our experimental states this table allows us to make impor-
tant observations. As analyzed in chapter 5, the phase noise of our superpositions between
vacuum and single photon is on average ∆ϕ = 0.707 rad, which is above the tolerable phase

Table 6.1: Here the thresholds for quantum non-Gaussian and non-classical coherences for the target
coherences C01 and C02 are given. While the first has only one rank, the latter has two ranks in the
hierarchy of coherences, given by the number of l.

rank threshold TL,C1,l threshold TL,G1,l threshold TL,C2,l threshold TL,G2,l

l = 1 0.86 0.93 0.52 0.71
l = 2 none none 0.78 0.86

212



noise of 0.37 rad for lossless states, calculated in subsection 6.3.1. Given that our system
has losses and phase noise above the calculated limit, we cannot expect those states to beat
the non-Gaussian coherence threshold.
This phase-noise limitation is not present in the superposition of vacuum and two-photon
components, as these are created via phase-stable two-mode squeezed states and include no
additional phase lock. Only the losses should hinder us from surpassing the non-Gaussian
coherence threshold. We calculate that states with losses below 14 %, under the assumption
of no phase noise, can beat the highest non-Gaussian coherence threshold for the rank l = 2.

In fig. 6.6, we can see representative states of all measured coherent states.
In the first row (a)-(c) the state ∝ |0⟩ − |1⟩ is shown, while in the second row (e)-(g) the
state ∝ |0⟩+ |2⟩ is depicted. In (d) the threshold for absolute non-Gaussian (in orange) and
non-classical (in turquoise) coherences is shown, together with the experimental coherence
value Cexp

0,1 = 0.66, represented by a dashed line and a star marker. In (h) the threshold
for absolute non-Gaussian and non-classical coherences are shown for both ranks l = 1 and
l = 2. The experimental coherence value Cexp

0,2 = 0.72 is depicted by a dashed line and a
diamond marker. The absolute non-Gaussian threshold of the first rank l = 1 is beaten,
while the second rank l = 2 is not reached.
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Figure 6.6: The experimental input states and their performance on the absolute non-Gaussian
(classical) coherence threshold are shown. In (a) to (c) the top and 3D view of the Wigner function
of the experimental state ∝ |0⟩ − |1⟩ and its density matrix are shown. The dotted lines in (c)
indicate the ideal state. In (d) the coherence C0,1 of this state is shown in dashed lines and marked
with a star against the absolute non-classical (in turquoise) and non-Gaussian (in orange) threshold.
e to g show the top and 3D view of the Wigner function of the experimental state ∝ |0⟩ + |2⟩ and
its corresponding density matrix. In (h) the coherence C0,2 of this state is shown in dashed lines
and marked with a diamond against the absolute non-classical (in turquoise) and non-Gaussian (in
orange) thresholds for the ranks l = 1 and l = 2.
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This can be explained by the residual 4% single photon component in the experimental
state, due to the imperfect heralding detectors and 2% higher order Fock components.
Moreover, we do observe small phase noise, which can be due to the laser’s small phase
fluctuations, changing the squeezing axis. This results in a small phase averaging in the
squeezing and therefore reduces the purity of the output state [260]. Moreover, we find that
the qubit is unbalanced, which contributes also to the lowering of the maximal achievable
coherences.

Given how stringent the “absolute” non-Gaussian coherence criterion presented so far is,
we discuss two possible additional criteria necessitating additional accessible information of
the measured density matrix. These criteria are equivalent but less strong non-Gaussian
(-classical) coherence criteria and can be seen as steps towards the absolute criterion. For
these criteria, we will only use the strongest hierarchy, allowing for the maximal set of free
states to compute the thresholds.

6.3.3.2 CONDiTiONAL COHERENCE CRiTERiA

Instead of using only the operator S of eq. (6.8) we will take additional properties of the
experimental states into account. Each additional property can be seen as a new dimension,
added to the absolute criterion, forming a conditional criterion. This new dimension adds
a restriction to the set of free states, intuitively making it harder for this set to reach high
values. There is no restriction as to which property can be chosen, such that we can test
which one is the best choice for our target states [261].

Let us call the additional measurements S′
i and the new properties that are tested with

each new measurement P ′
i . The new d-dimensional overall property Pc can then be written

as a convex linear combination of all measured properties, such that

P {gi}
c =

∑
i

giP
′
i , (6.22)

where gi are the weights over this convex sum. Any threshold derived from this convex
sum is a conditional non-Gaussian (classical) coherence criterion, as it is conditioned on
i ̸= 1 dimensions. Note that the weights gi are determined by optimizing them for each
experimental input state, such that the threshold can be computed as

TF,Gt,k = max
ρk∈FG

k

P {gi}
c (ρk), (6.23)

TF,Ct,k = max
ρk∈FC

k

P {gi}
c (ρk). (6.24)
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For our states, we will use two types of additional measurements. The first is a simple Fock
state m projection Pm and the second a projection Pn+ on all Fock states from a certain
excitation n onward

Pm = |m⟩ ⟨m| , (6.25)

Pn+ =

∞∑
i=n

Pn. (6.26)

We propose to first try a second dimension Pn2 as defined in eq. (6.25) and adapted to our
experimental states ∝ |0⟩+ |n2⟩. Each threshold value is therefore a linear combination of
g0Pn2+g1 Cn1,n2 , optimized over g0 and g1, shown in fig. 6.7. While some of our experimental
states ∝ |0⟩ + |2⟩ exceeds this two-dimensional conditional coherence threshold in (b), the
experimental state ∝ |0⟩ − |1⟩ in (a) does not succeed.

This is why we add a third dimension for the experimental state ∝ |0⟩ − |1⟩, consisting of
P2+ as defined in eq. (6.26). All threshold values can now be computed with linear com-
binations of g0P1 + g1 C0,1 + g2P2+. This results in a 3d plot, shown in fig. 6.8 (a), where
the threshold is plotted against the more-than-two-photon and single-photon probability.
The experimental state has P2+ = 0.02, which corresponds to a 2D cut through (a), shown
in light grey. This cut is plotted in (b), where the three-dimensional criterion is shown as
a two-dimensional criterion with one dimension fixed. While the experimental state lies
above the non-classical threshold it does not beat the non-Gaussian threshold.
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Figure 6.7: Two-dimensional conditional non-Gaussian (-classical) coherence threshold. In (a) the
non-Gaussian threshold TL

1 is plotted against the single photon probability P1. This imposes a
physical boundary on all possible states, shown as a half-circle in black. The non-Gaussian (in
orange) and non-classical (in turquoise) thresholds change with P1, where the maximal value is
equal to the absolute threshold. The experimental state is shown as a star. In (b) we see a similar
figure but with the second dimension P2. All experimental states are plotted as round markers,
except for three diamonds, which surpassed the first-ranked threshold of fig. 6.6
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Figure 6.8: Three-dimensional conditional non-Gaussian (-classical) coherence threshold for the ex-
perimental state ∝ |0⟩ − |1⟩. In (a) the non-Gaussian threshold TL,G

1 is plotted against the single
photon probability P1 and the higher Fock population probability P2+. We take a 2D slice of this
3D plot, corresponding to our experimental value P2+ = 0.02. This 2D cut is shown in (b), where
the black line shows the physical boundary for all states. The experimental state is shown as a star.

Therefore, we can see that adding additional dimensions can help improving the perfor-
mance of experimental states, but at the price of making the threshold dependent on some-
thing that is not a coherence, thereby deviating from the pure definition of non-Gaussian
(-classical) coherences.
Instead of adding dimensions to the coherence criterion, we can also construct a qubit-
coherence criterion, valuing all superpositions instead of trying to achieve the maximal
coherence for the balanced superposition.

6.3.4 QUBiT-COHERENCE CRiTERiON

In this subsection, we shift our perspective and focus on qubit coherences. Contrary to the
method employed for absolute coherences, a qubit may have unbalanced weights. This im-
balance diminishes the achievable maximum coherences. By adopting a coherence measure
that accommodates this discrepancy, we have to consider both n1 and n2. We can therefore
define a new target state

|target⟩Q = cos(θ) |n1⟩+ eiϕ sin(θ) |n2⟩ , (6.27)

differing from the previous target state of eq. (6.1) by its freedom of θ. This freedom is
mirrored by an adapted measure. For this, we do not change the operator S of eq. (6.8),
but change the definition of the local coherence measure to a set value of θ

Gθn1,n2
(ρ) = max

ϕ
Tr[S(θ, ϕ)n1,n2ρ]. (6.28)
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In opposition to the coherence measure C, the qubit-coherence measure has different limits
G ∈ [−1, 1]. It is equivalent to a Mach–Zehnder interferometer, where both its phase and
splitting ratio are fixed, before the measurement is realized.
Fixing the phase ϕ will not penalize the set of free states as there are enough degrees of
freedom that can align their maximal value on this phase. Given that we can fix both
phases, this measurement is projective. The threshold can be calculated as

TF,Gt,k (θ) = max
ρk∈FG

k

Gθt (ρk), (6.29)

TF,Ct,k (θ) = max
ρk∈FC

k

Gθt (ρk), (6.30)

where t is determined by the target state’s n1, n2.
We will in the following apply the qubit-coherence non-Gaussian and non-classical threshold
on the experimental state ∝ |0⟩ + |2⟩, as it has already shown promising performances in
the previous thresholds.
The threshold can be calculated for different angles θ and the corresponding plot is shown
in fig. 6.9. We see that the threshold has a minimum for certifying qubit-non-Gaussian
coherences around θ = 0.4× π/2. We can define this as the minimal requirement to call a
qubit non-Gaussian. In the inset of fig. 6.9 two of our experimental states are plotted as
dotted lines, where the diamond markers beat the threshold.
We can see that around and at the minimal requirement for qubit-non-Gaussian coherences,
both states beat the threshold, thereby verifying said coherences.
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Figure 6.9: Qubit non-Gaussian (-classical) coherence threshold for the experimental state ∝ |0⟩+|2⟩.
The threshold TL

Q,2 is plotted against the qubit phase θ. The inset shows the development of the
non-Gaussian (orange) and non-classical (blue) thresholds around their respective minima. The
dotted lines represent two experimental states that show non-Gaussian qubit coherences, marked by
the diamond positions.
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6.4 DiSCUSSiON

A local non-Gaussian and non-classical coherence criterion within a hierarchical framework
has been established. The non-Gaussian threshold completely depends on the target state
definition and the property one wants to evaluate. In our case, this hierarchy is founded on
the difference n2−n1 between the target coherences of the state ∝ |n1⟩+ |n2⟩. The absolute
criterion was then modified to create a set of conditional criteria, which take into account
additional state dimensions such as the Fock state probabilities n2 or n1. Furthermore,
an alternative approach was presented, focusing on qubit-coherences instead of perfectly
balanced superpositions.
By testing those criteria on highly non-Gaussian experimental resource states, we have
highlighted the challenges associated with non-Gaussian coherence verification in optics,
particularly when contrasted with non-Gaussian verification based on Fock state probabil-
ities.

Nonetheless, Non-Gaussianity over the whole Bloch-sphere is implicitly assumed in the
theory of Non-Gaussianity such that its results are only valid if this feature can be main-
tained. In the experiment, this study has made us even more vigilant of phase noise and
can be used to quantify an improvement in our system. Especially for the superposition of
vacuum and single-photon components, we should be able to decrease the phase noise by
improving the fringe visibility and increasing the PID micro-controller voltage resolution
and algorithm. This work is ongoing and will serve for future experiments, as presented in
the next chapter. In the context of theory development, a natural progression would involve
incorporating non-local coherences. This extension would enable the inclusion of cat-states
and GKP-states within this framework.
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6.5 KEY RESULTS

We have presented a criterion with a hierarchy of thresholds that can verify non-
Gaussian and non-classical coherences in comparison to a target state superposition
of the two Fock states n1 and n2.
These thresholds are based on the notion of coherence resource theory and non-
Gaussianity and therefore have operational relevance, given the connection of Gaus-
sianity to classical computing.
Our main findings can be summarized as follows:

• We have tested this criteria on state-of-the-art optical qubits with n1 = 0, n2 = 1

and n1 = 0, n2 = 2. Although these states are generally non-Gaussian, their
coherences do not show absolute non-Gaussianity such that the criterion can
be adapted by adding different Fock state probabilities, resulting in conditional
criteria.

• With the conditional criteria, we find that the experimental superposition ≈
|0⟩+ |2⟩ surpasses the conditional non-Gaussian and ≈ |0⟩+ |1⟩ the conditional
non-Classical threshold.

• The final approach we presented allowed for any qubit superposition to be the
target and is closer to the use case in computing and communication where
phase scans are seldom applied before the final measurement. We find that
the experimental state ≈ |0⟩ + |2⟩ surpasses the minimal requirement of this
threshold.
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Chapter

7 PROPOSAL: TOWARDS THE GENERATiON
OF GKP STATES
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In this last chapter, we want to give an outlook and discuss new projects that can enhance
our experimental capability. Using OPOs, heralding with SNSPDs and homodyne condi-
tioning we have discussed the creation of high-quality single-photon, two-photon, and cat
states of an amplitude around α = 1 in chapter 3. The indistinguishably of those output
states enable the generation of hybrid entanglement, discussed in chapter 4 and led to the
experimental demonstration of information conversion from a single-photon qubit of to a
cat-state qubit in chapter 5. Analyzing the Non-Gaussianity of the coherences we can create
in the laboratory in chapter 6 has shown, that there is room for higher quality states which
can be achieved by improving phase-noise and increasing the escape efficiency.

Here we will discuss how those improvements can enable the creation of GKP states thereby
providing more of an experimentalist’s view of their introduction in chapter 2. In the first
section we recall the definition of ideal and approximate GKP states and introduce the
stabilizer expectation value as a quantitative measure for the quality of GKP states. In
the second section we give a short overview of experimentally created GKP states. The
third section then introduces our envisioned setup and we simulate the kind of states we
can produce. The feasibility of this experiment is discussed in the fourth section. This
chapter is concluded by the fifth section, summarizing the key results.
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7.1 ERROR-CORRECTABiLiTY OF PURE GKP STATES

7.1.1 IDEAL GKP STATE

In chapter 2 we have introduced ideal GKP states (eq. (2.234) and (2.235)) as the coherent
superposition of momentum or position eigenvectors in phase space, which we recall to be
written as

|GKPidx ⟩ =
∑
s∈Z

D((ns+ k)
γ√
2h̄

) |x = 0⟩ =
∑
k∈Z

D(α(ns+ k)) |x = 0⟩ ,

|GKPidp ⟩ =
∑
k∈Z

D((ns+ k)
i2h̄π

nγ
√
2h̄

) |p = 0⟩ =
∑
k∈Z

D(β(ns+ k)) |p = 0⟩ ,

where n is the dimension of a qudit (n = 2 is a qubit, n = 3 is a qutrit ...), k the logical
eigenstate k ∈ [0, n − 1] and γ the GKP amplitude, which can be translated into two
displacement amplitudes α and β, which are both uniquely defined by γ. Those states are
celebrated for their good error correctability, which was explained in subsubsection 2.4.3.2.
We want to first discuss the ideal GKP states for the square GKP, rectangular GKP (with
λ = 1.3), and hexagonal GKP state. We recall their definitions, which are given in eq.
(2.309)-(2.311) for the displacement amplitudes, and here for the amplitude γ of the ideal
GKP states

Square GKP γ =

√
2πh̄

n
, (7.1)

Rectangular GKP γ = λ

√
2πh̄

n
λ > 0, (7.2)

Hexagonal GKP γ =

√
2πh̄

n
√
3
. (7.3)

In order to visualize that they are indeed stabilized by the squared Pauli-X and Pauli-Z
gates (eq. (2.308)), we want to plot the marginal distribution of the GKP state against the
binning of the stabilizers.

7.1.2 STABiLiZER AND PAULi GATE BiNNiNG

The binning corresponds to regions in position or momentum which are associated to pos-
itive weights (blue) or a negative weights (red). Those weights are multiplied with the
integrated marginal distribution, such that the overall sum of this process give the expec-
tation value of the operator on the state.
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As the GKP states are eigenstates of both stabilizers with eigenvalues +1, we expect the
peaks in their marginal distributions to only be in blue regions. In order to find the binning
size, we can apply the stabilizers on the quadratures

S†
z x̂Sz = x̂− nγ, (7.4)

S†
xp̂Sx = p̂− 2πh̄

γ
. (7.5)

A state is stabilized, or unchanged, if a shift by the above value leaves the GKP states in
the blue bins. Therefore eq. (7.4) and (7.5) has to correspond to the width of two bins, one
blue and one red, such that a shift by this value shifts the state into the next blue bin. We
can calculate the binning sizes for the stabilizers to be

2nγbinx = nγ ⇔ binx =
1

2
, (7.6)

2nγbinp =
2πh̄

γ
⇔ binp =

πh̄

nγ2
, (7.7)

where we choose to write position and momentum in multiples of γ. If we now write binp
in terms of eq. (7.2), we find binp = binx/λ2. The same logic can be applied to the binning
for the Pauli gates, such that we find the overall binnings

Stabilizer binning binx =
1

2
binp =

1

2λ2
, (7.8)

Pauli binning binx = 1 binp =
1

λ2
. (7.9)

The ideal GKP state is plotted in fig. 7.1 for the squared GKP state. For better visibility
we choose to shift the plots of the rectangular and hexagonal GKP state into section 8.4
(fig. 8.1 and fig. 8.2).
Here we are always plotting the logical computational basis |0⟩L and |1⟩L.

Independently of the type of GKP, the marginal distributions of the two plotted states
are completely in the +1-region (blue) for both stabilizers. As such, they are clearly eigen-
vectors of the stabilizers with eigenvalues +1. For the Pauli Z gate binning they are either
completely in the +1-region for |0⟩L or in the −1-region (red) for |1⟩L, showing that they are
the ±1 eigenvectors of the Z gate. Logically, they are completely mixed for the PauliX gate.

However, the GKP states we have plotted so far are not physical as they have infinite en-
ergy. This is easily visible in each of the above mentioned figures, where a two-dimensional
integration of the Wigner function does not normalize to one but rather to infinity.
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(a) Stabilizers on the GKP logical basis

−2 0 2

x in multiples of γ

−2

0

2

p
in

m
u

lt
ip

le
s

o
f
γ

GKP0 and γ = m
√
π/2, m=1

−4 −2 0 2 4

x in multiples of γ

0.0

0.5

1.0

Pauli Z = e−ipγ/h̄

−4 −2 0 2 4

p in multiples of γ

0.0

0.5

1.0

Pauli X = eix2πnγ

−2 0 2

x in multiples of γ

−2

0

2

p
in

m
u

lt
ip

le
s

o
f
γ

GKP1 and γ = m
√
π/2, m=1

−4 −2 0 2 4

x in multiples of γ

0.0

0.5

1.0

Pauli Z = e−ipγ/h̄

−4 −2 0 2 4

p in multiples of γ

0.0

0.5

1.0

Pauli X = eix2πnγ

(b) Pauli gates on the GKP logical basis

Figure 7.1: The ideal square GKP state is plotted in multiples of γ for n = 2 and h̄ = 0.5 for the
logical |0⟩L and |1⟩L state. It is an eigenvector of both stabilizers with eigenvalue +1, visible as all
peaks of the marginal position and momentum distribution lie in the blue area in (a), representing
an eigenvalue of +1. We can see that the logical states are eigenvectors of the Pauli Z gate, with
eigenvalues +1 and −1 in (b), where the red bins represent −1.
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7.1.3 IDEAL PHYSiCAL GKP STATE

In eq. (2.236) we have given the physical approximation of an ideal GKP state, which we
recall is

|GKPκ⟩ = Nk

∑
s∈Z

e−0.5(ns+k)2κ2α2
D(α(ns+ k))S(ξ) |0⟩ ,

where Nk is the normalization constant. We see that in the limit (ξ, κ) → (∞, 0) the ideal
GKP states are recovered. Physical achievable states have finite (ξ, κ), such that we need a
way to assess their quality.

7.1.4 QUALiTY CRiTERiON OF GKP STATES

The question of how to asses the quality of a GKP state is not trivial to answer because the
general quality of a GKP state depends strongly on the envisioned error-correction code. To
the best of our understanding, the only code-independent way to verify the GKP-ness of a
state is via the calculation of the expectation value of its stabilizers, which ideally gives +1

for both stabilizers. We will therefore use the stabilizer expectation values as a quantitative
measure for the quality of approximate GKP states.

We plot the square approximate square GKP state in figure 7.2, for a squeezing of ξ = 0.24

and an envelope κ = 0.2. The approximate rectangular and hexagonal GKP states are
plotted in the appendix (section 8.4 fig. 8.3 and fig. 8.4). Here, the expectation values of
stabilizers and Pauli gates are directly given in each plot.

One important observation is that for physical GKP states, the two logical states do not
have the same quality for the same values κ, ξ. This indicates, that the error correctability
over the whole Bloch sphere is not the same. This is an interesting point, as we remind
ourselves that we are still talking about pure states. It can be explained by components
of the state living outside the defined Hilbert space of the Bloch sphere, and is very sim-
ilar to our discussion in chapter 5 about non-preserved traces. In order to have a good
error-correctability over the whole Bloch sphere, the values κ, ξ have to approach their
ideal values, which makes those states hard to achieve experimentally. We will now discuss
existing experimental implementations of GKP states.
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Figure 7.2: The physical version of the ideal squared GKP state is plotted in multiples of α for n = 2
and h̄ = 0.5 for the logical |0⟩L and |1⟩L state with parameters κ = 0.2 and ξ = 0.45. It is an
eigenvector of both stabilizers with eigenvalue → +1, visible as all peaks of the marginal position
and momentum distribution lie in the blue area in (a), representing an eigenvalue of +1. We can
see that the logical states are eigenvectors of the Pauli Z gate, with eigenvalues → +1 and → −1 in
(b), where the red bins represent −1.
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7.2 EXPERiMENTALLY CREATED GKP STATES SO FAR

High-quality GKP states have been produced experimentally for the first time in 2018 with
trapped ions by C. Flühmann et al. [262] and have been improved upon by the same group
in 2019 and 2022 [263, 264]. In superconducting circuits, they were first achieved in 2020 by
P. Campagne-Ibarcq [265] and since repeated three times [266–268]. The small number of
groups in trapped ions and superconducting circuits that can produce a GKP state can do
this with astonishing precision, as visible in fig. 7.3. Those states show a large qualitative
resemblance to the physical GKP codes and have been shown to be usable beyond the
break-even point (see definition in subsubsection 2.4.2.1).

(a)

Figure 7.3: Two examples of experimentally generated GKP states are shown. (a) is produced on
a superconducting platform and taken from [267]. (b) and (c) are on a trapped ion platform and
taken from [263].

In photonics, the GKP state is hard to achieve, as precise control of coherences and high
Fock excitations in the system is required. The first version of an optical GKP state was
published in 2024 by S. Konno et al. [269] using photonic capabilities similar to ours. In fig.
7.4 the experimental setup in (a) is shown. Two OPO sources are used, that emit single-
mode squeezing. A small fraction of this squeezed output is used for heralding, creating
an odd cat-state if the pumping is in the right regime. This is equivalent to our setup for
OPOI and gives states similar to the ones presented in subsection 3.2.3.

(a) (b)

Figure 7.4: The first optical GKP state with (a) the experimental setup and (b) the measured GKP
state. Figures are taken from [269].
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Those two odd cats are interfering on a 50:50 beamsplitter and one output arm of this
beamsplitter is used for homodyne conditioning. Here the conditioning, different than in
chapter 4, is done on both quadrature and phase, which are set to θ = 0 and x = 0 with a
conditioning window of ∆ = 0.3. The experimental output state is then verified via homo-
dyne detection and its reconstruction (without any loss correction) is shown in fig. 7.4 (b).
In this paper the expectation value of the stabilizer Sx is measured to be ⟨Sx⟩ = 0.170. The
second stabilizer Sz is not measured and instead the Pauli gate −Z is used as a stabilizer.
This can be done if one aims to verify that a logical |1⟩L state is created, which indeed is the
+1 eigenstate of the −Z operator and the Sx stabilizer. While this stabilizer pair Sx,−Z
can serve as a test of how close the system is to the logical |1⟩L state, it does not indicate if
the logical |1⟩L state can be used as a qubit - for this the expectation value of Sz has to be
measured. This setup is, therefore, a hybrid between a n = 1 and n = 2 GKP state space,
having a qubit character for the bit-flip and a single-state behavior for the phase-flip.

We can simulate the output of this setup without losses and phase noise for simplification.
Because we do not know the cat amplitude, we guess it from fig. 7.4 (a) to be α = 0.7i.
Upon perfect conditioning, we find that we can visually reproduce the results in fig. 7.5.
Moreover, this state is close to an eigenstate of −Z with an eigenvalue ⟨Z⟩ = −0.707 and
is intermediately stabilized by the stabilizer Sx with an expectation value ⟨Sx⟩ = 0.46.
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Figure 7.5: Here the simulated result of the setup used for the creation of the experimental state in
the paper of S. Konno et al. [269] is shown. We set n = 2. Losses and phase noise were not taken
into account.
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Those values would reduce if our simulation would take into account phase noise and losses,
such that we can consider that we have a good tool to simulate an ideal experimental
case. We also note, that the input state was assumed to be a perfect odd cat state and
not a single-mode photon subtracted squeezed vacuum. In the following, we want to use a
different setup and simulate how an experimental state could look with this setup.

7.3 A SETUP TO iNCREASE OUR NON-GAUSSiAN CAPABiLiTY

7.3.1 MOTiVATiON: SiMULATiONS ON A SiMPLiFiED MODEL

The setup we are considering was proposed for the creation of four-headed cat states in
2020 by J. Hastrup et al. [270]. We adapt the setup to our experimental capabilities by
exchanging photon-number resolution with homodyne conditioning, shown in fig. 7.6.
Here two even cat states of amplitude α and αeiϕ interfere on a beamsplitter with variable
reflectivity R. The variable reflectivity is equivalent to allowing for different input cat sizes.
One of the two beamsplitter output modes is used to project the other mode onto a GKP
state via homodyne conditioning with variable phase θ. We use a local optimization with
the Python package scipy with the Nelder-Mead minimization algorithm to find the best
settings of those parameters. In table 7.1 the free and set parameters for the simulation are
shown, where the optimization is allowed on the free parameters.
Depending on the minimization function we define, two different types of states can be
found. In fig. 7.7 (a), the simulated state is a rotated and slightly higher quality version of
our simulation in fig. 7.5.

Figure 7.6: A simplification of the proposed setup is shown. Two ideal even cat states with a free
relative phase ϕ between their amplitudes are interfering on a beamsplitter with reflectivity R. The
homodyne conditioning on x = 0 and a phase θ should then project the output state on a GKP
state. We show in color which parameters we optimize in our simulation: The cat amplitude α, the
phase between the two cat states ϕ, the reflectivity R, the conditioning phase θ and the binning
proportionality factor for the measurement of the stabilizers m.
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Table 7.1: Here we show the parameters that are tunable in our simulation of the simplified setup
shown in fig. 7.6. For all simulations, only pure input states are considered, such that the losses
are L = 0. To avoid parasitic effects from a too-small density matrix size, we simulate all results
for Fock excitations of up to 20 photons. The homodyne efficiency is set to one, such that an ideal
projection is possible. After fixing those parameters, we run an optimization algorithm over the
free parameters, which include the cat amplitude α, the relative phase between the two input cat
amplitudes ϕ, the mixing ratio R on the beamsplitter, the homodyne phase θ and the GKP target
spacing m.

free parameters cat amplitude α relative phase ϕ mixing R
homodyne phase θ GKP parameter m

set parameters Losses L = 0 Fock dimension dim= 21 efficiency HD ηHD = 1

This state has stabilizers SZ ,−X and is therefore not usable for full error correction. On
the other hand, the state obtained in (b) is more interesting because it shows relatively
good expectation values for both stabilizers ⟨Sz⟩ = 0.66 and ⟨Sx⟩ = 0.68. Unfortunately,
this state has similar expectation values for both Pauli gates X and Z. This means that
this approximate GKP state is not a pure state of the GKP Bloch sphere as it would need
to be of the form

√
0.678 |1⟩L +

√
0.631 |−⟩L, which is not a normalized state. The same

problem occurs if one wants to formulate this state as a mixed state. Therefore we can
see that this state is not fully living in the GKP Bloch sphere but has support outside of
this Hilbert space. We are not sure how error correction can work on a state that is only
partially a GKP state, such that we have to change this simplified circuit.

From our optimization, we see that this is the closest this setup can come to an ideal
GKP state, hinting at the fact that we might need other input states than even cat states.
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(a) Optimization no1. α = 1.4,ϕ = 1.56 rad, R = 0.8, θ = 0,m = 1.

−2.5 0.0 2.5

x in multiples of α

−2

0

2

p
in

m
u

lt
ip

le
s

o
f
α

Simulated GKP and α = m
√
π/n,

m=0.98

−4 −2 0 2 4
0.000

0.025

0.050

0.075

Stabilizer SZ = D(iπ/α)
and < SZ > = 0.662

−4 −2 0 2 4
0.000

0.025

0.050

0.075

Stabilizer SX = D(nα)
and < SX > = 0.677

−4 −2 0 2 4

x in multiples of α

0.000

0.025

0.050

0.075

Pauli Z = D(iπ/(nα))
and < Z > = -0.678

−4 −2 0 2 4

p in multiples of α

0.000

0.025

0.050

0.075

Pauli X = D(α)
and < X > = -0.631

(b) Optimization no2. α = 1.83,ϕ = π/2 rad, R = 0.47, θ = 0,m = 0.98.

Figure 7.7: The optimal results of the simplified setup are shown. Two cat states of amplitude
α and phase-difference ϕ are interfering on a beamsplitter with reflectivity R. One mode of this
beamsplitter is used for homodyne conditioning on the quadrature x = 0 and the phase θ. The
output state after conditioning is plotted on the left of the two optimization results (a) and (b). In
(a) we see that no real grid appeared such that this state is close to a shared eigenstate of SZ and
−X. In (b) the state shows reasonable eigenvalues for both stabilizers Sx and Sz and is therefore
closer to an ideal GKP state.
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7.3.2 MODELiNG THE GKP-CREATiON SETUP

Here we take inspiration from M. Eaton, R. Nehra, and O. Pfister [271] and H. M. Vascon-
celos, L. Sanz, and S. Glancy [272] who propose squeezed cat states as input states. We
therefore consider an updated setup, visible in fig. 7.8. We see the main change to the
previous setup in the input states of (a), which are squeezed even cat states.
The experimental setup to produce those states is shown in (b) and is equivalent to the
setup for the creation of a superposition between vacuum and two-photon components in
chapter 6.

HWP

PBS

PZT

OI

+ mirror

(b)

(a)

Figure 7.8: The simulation model of the experimental setup is shown. In (a) two squeezed even cat
states interfere on a beamsplitter with mixing reflectivity R, where one path is used for homodyne
conditioning of x = 0 at a phase θ. The state of the other beamsplitter port is then ideally projected
onto a GKP state with target amplitude αGKP . All free parameters in our optimization are shown
in color. This includes the creation parameters of the squeezed even cat states, shown in (b). Here
a type-II OPO is producing two-mode squeezing of a strength sdBi. The orthogonal signal and
idler output modes are mixed via an HWP and a PBS, modeled by a tapping ratio Ri. The tapped
heralding path is subsequently filtered via a micro-cavity and an interferential filter (IF) such that
only a single mode can be detected on the SNSPDs. The two SNSPDs act as an imperfect two-
photon projection of a photon number resolution detector. Dependent on the tapping ratio Ri a
two-photon state (Ri = 0) can be tuned towards a squeezed cat state.
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Table 7.2: Here we show the parameters that are tunable in our simulation of the experimental setup
shown in fig. 7.8. We allow for an imperfect escape efficiency in both OPOs, which can be modeled
by the losses L1, L2. To avoid parasitic effects from a too-small density matrix size we simulate all
results for Fock excitations of up to 20 photons. The homodyne efficiency as well as the SNSPD
efficiency are variable but are not included in the optimization. After fixing those parameters, we
run an optimization algorithm over the free parameters, which include the initial OPO squeezing
sdB, the relative phase between the two squeezed states ϕ2, the tapping ratios R1, R2, the mixing
ratio R on the beamsplitter, the homodyne phase θ and the GKP target spacing m.

free parameters squeezing sdB1= sdB2 2x tapping ratio Ri relative phase ϕ2
mixing R homodyne phase θ GKP parameter m

set parameters Losses L1, L2 Fock dimension: 21 efficiency ηSNSPD
efficiency ηHD

Turning the HWP after the OPO corresponds to a tapping ratio Ri, which mixes the
signal and idler polarizations, thereby creating coherences. The output states range from
a two-photon state for Ri = 0 to a squeezed even cat state with amplitudes between α =

1.3− 1.7 and a squeezing ranging from 3-4 dB. Experimental results of those states, having
been created with the current OPOIIa, have been published by K. Huang et al. [32].
There, a fidelity of maximally 68% with the ideal squeezed cat state was measured. In
our simulations, we want to create two of those squeezed cat states with a variable phase
between their amplitudes. We account for the imperfect escape efficiency of the OPO by
allowing for losses Li. The two SNSPDs are each modeled to have an efficiency ηSNSPD. In
fig. 7.8 (a), the free parameters of the simulation are visible.
The before-mentioned two-mode-squeezing strength sdBi and tapping ratio Ri as well as the
relative phase between the two cat amplitudes ϕ2 are optimized together with the mixing
reflectivity R, the homodyne phase θ and the targeted GKP amplitude via the parameterm.
The parameters of the simulation are given in table 7.2. Here, we use the same optimization
algorithm as in the previous subsection but due to the increased complexity, the optimization
result is sub-optimal, such that we fine-tune it by hand. We note, that allowing for different
squeezings sdB1 and sdB2 is equivalent to changing the mixing reflectivity R, such that we
can reduce the parameter space by setting sdB1= sdB2. We optimize the parameters first
for the lossless case and then apply realistic losses L1 = L2 = 0.1, reduce the homodyne
efficiency to ηHD = 0.85 and each SNSPD efficiency to ηSNSPD = 0.5.
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(a) Optimization no1: sdB=2.2, R1 = 0.05, R2 = 0.05, ϕ2 = π/2, R = 0.3, θ = π/2, m = 1.3. With
L1 = L2 = 0, ηHD = 1, ηSNSPD = 1
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(b) Optimization no1: sdB=2.2, R1 = 0.05, R2 = 0.05, ϕ2 = π/2, R = 0.3, θ = π/2, m = 1.3. With
L1 = L2 = 0.1, ηHD = 0.85, ηSNSPD = 0.5

Figure 7.9: An optimized outcome of the simulated experimental setup is shown without losses in (a)
and with losses in (b). The outcome was optimized for the case without losses and left unchanged
when losses were applied. This state approximates the logical |1⟩L GKP state, visible in the Pauli
Z expectation value ⟨Z⟩ = −0.917 in (a) but still has some unwanted non-zero expectation value in
the Pauli X operation.
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(a) Optimization no2: sdB=4.0, R1 = 0.05, R2 = 0.1, ϕ2 = π/2, R = 0.3, θ = π/2, m = 1.3. With
L1 = L2 = 0, ηHD = 1, ηSNSPD = 1
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(b) Optimization no2: sdB=4.0, R1 = 0.05, R2 = 0.1, ϕ2 = π/2, R = 0.3, θ = π/2, m = 1.3. With
L1 = L2 = 0.1, ηHD = 0.85, ηSNSPD = 0.5

Figure 7.10: An alternative optimized outcome of the simulated experimental setup is shown without
losses in (a) and with losses in (b). The outcome was optimized for the case without losses and left
unchanged when losses were applied. This state approximates the logical |1⟩L GKP state, visible in
the Pauli Z expectation value ⟨Z⟩ = −0.946 in (a).
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We present two different optimization results in figures 7.9 and 7.10. In both cases, the
states were optimized on the lossless case such that applying losses can quantify how much
they worsen our states. In both lossless cases ( fig. 7.9 (a) and fig.7.10 (a)), we achieve
reasonable expectation values for the stabilizers. They differ in their Pauli X and Z eigen-
values, which should ideally add up to unity in absolute values, such that the full state can
be described by the logical GKP state space. We see in fig. 7.9 (a), that this is not the case,
such that a small part of the state will be defined outside the logical basis. By allowing
for slightly lower stabilizer expectation values in fig. 7.10 (a), we can create a state that is
fully described by the GKP Bloch sphere.
Applying losses to both cases leaves those characteristics unchanged, but reduces the ab-
solute value of both stabilizer and Pauli expectation values. Surprisingly, even realistic
experimental loss in detection and state creation leaves an important part of the peak
structure intact.

Before attempting its experimental realization, this simulation has to be extended. Es-
pecially the effect of phase noise on the homodyne measurement and the phase ϕ2 have to
be considered. Moreover, here we have assumed a perfect coincidence window of the two
SNSPD heralding events for the creation of the squeezed cat states. Nonzero coincidence
windows have to be taken into account as they will add loss to the system. Finally, a finite
conditioning window and phase-noise on the homodyne phase lock of θ have to be taken
into account. Those final simulations should be optimized for the realistic, not the ideal
system, such that a potent optimization algorithm has to be used.

7.3.3 MODELLiNG A BiNOMiAL CODE STATE

The setup we presented in fig. 7.8 can be used to create a binomial logical code state |0⟩L
of the first order (see Bosonic rotation codes), which is almost equivalent to a four-headed
cat state of low amplitude. Those two states can be written as

Binomial code: |0⟩L =
1√
2
(|0⟩+ |4⟩), (7.10)

4-headed cat code: |0⟩L ∝ |α⟩+ |−α⟩+ |iα⟩+ |−iα⟩ . (7.11)

In fig. 7.11 we can see the ideal four-headed cat state of amplitude α = 1.5 in (a). It closely
resembles the logical zero binomial state in (b) and those two states show a fidelity overlap
of 99.2%. We can simulate how faithfully our experimental model can produce such a state,
visible in (c) for no losses, and find an overlap of 98% with either of the ideal states. We
can now allow for the same losses as in the GKP consideration, such that L1 = L2 = 0.1,
ηHD = 0.85 and ηSNSPD = 0.5. To adapt for those losses, we can slightly increase the
squeezing and find that we can maintain an overlap of 62% with both target states. Here
we can adapt the losses in the simulation to our experimental parameters of L1 = 0.15 and
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Figure 7.11: In (a) the ideal four-headed cat state with an amplitude of α = 1.5 is shown. This
state has an overlap of 99.2% with the logical zero binomial code state, shown in (b). For no losses
and perfect detection efficiencies we can recreate (a) and (b) with an overlap of 98% by using the
parameters sdB= 0.2, R1 = 0.014, R2 = 0.004, ϕ2 = π/2, R = 0.2 and θ = π/2, visible in (c). For
losses of L1 = L2 = 0.1, ηHD = 0.85 and ηSNSPD = 0.5 we can reproduce a 62% overlap with the ideal
state by increasing the squeezing to sdB= 0.4.

L2 = 0.26 and optimize the fidelity overlap between the binomial state and the simulated
state. The result of this optimization is shown in fig. 7.12. If we enforce the experimental
parameters ηHD = 0.85, ηSNSPD = 0.5, L1 = 0.15 and L2 = 0.26 we can still achieve an
overlap of 53% of the resulting state with the ideal binomial state. However, reducing the
amplitude of the four-headed cat state to α = 1.2 enables an overlap of 60% between the
simulated and ideal state.
We can therefore see the creation of an approximate binomial code or four-legged cat state
as a valuable first step towards the creation of a GKP state and can consider using our
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Figure 7.12: In (a) the ideal four-headed cat state with an amplitude of α = 1.2 is shown. This
state has an overlap of 75.1% with the logical zero binomial code state, shown in (b). For our
experimental losses of L1 = 0.15,L2 = 0.26, ηHD = 0.85 and ηSNSPD = 0.5 we can reproduce a 53%
overlap with the ideal binomial state and a 60% overlap with the ideal four-legged cat stat. The
parameters are set to: sdB= 0.2, R1 = 0.008, R2 = 0, ϕ2 = π/2, R = 0.324 and θ = π/2.
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current resources. As for GKP states, improving the losses in our system would benefit
the state quality greatly. In the next section, we will discuss possible improvements in the
system that can reduce the losses.

7.4 EXPERiMENTAL GKP FEASiBiLiTY

The proposed setup in fig. 7.8 includes two OPOII sources, four SNSPD detectors, and
two homodyne detectors. Those resources are readily available in the lab. The current
losses in our system, equivalent to the inefficiency due to the escape efficiency 1 − η, are
L1 = 0.15 for OPOIIa and L2 = 0.26 for OPOIIb. One OPO, together with two SNSPDs
will be used to create squeezed even cat states. Those cat states have already been created
for OPOIIa in our lab [32]. This resource state is needed two times, resulting in the full
use of all available SNSPDs in our setup. Moreover, a coincidence window has to be set
between those four SNSPD detection events, which should result in a single trigger pulse
to record the homodyne conditioning trace and the homodyne measurement that will an-
alyze the output state. This four-fold coincidence can be programmed on the coincidence
detector IDQuantique ID900, which we already used in chapter 5 and which has four input
possibilities. Moreover, one new phase lock has to be added. The homodyne conditioning
phase cannot be allowed to scan, but has to be locked, which was already demonstrated
in our setup in 2018 [35]. Additionally, we need to be able to control the relative phase ϕ
between the two OPOs, which is equivalent to locking the relative phase between the two
pump beams. Luckily the two pump beams have a constant relative phase relation because
they are coming from the same laser beam. Consequently, we can use a beamsplitter with
a relative phase between reflected and transmitted output of π/2 [177, 273]. This does
not give us any flexibility in the phase or the reflectivity, but all our simulations so far
suggested, that the phase is ideal at π/2. As far as we see, all possible setups with a flexible
reflectivity would involve a polarizing beam-splitter. Because we need the two input beams
impinging on the beamsplitter to interfere, and interference is only possible if the beams
have the same polarization, we would effectively add losses with this kind of setup, which
is why we do not consider it.

If we install one additional phase lock on the homodyne we could use the components
on our experimental optical table today to try and create four-legged cat states. To at-
tempt GKP states, the losses created inside the OPOs have to be reduced. As mentioned
above, the current losses are measured to be L1 = 0.15 for OPOIIa and L2 = 0.26 for
OPOIIb, with an output coupler transmission of T = 0.1 for both. The efficiency of the
output state can then be calculated via the escape efficiency of the OPO η = T/(T + L).
We can therefore increase the output coupler transmission T to reduce the effective losses,
but at the price of increasing the bandwidth of the output state, calculated with eq. (3.39).
In a first step, we can use an output coupler with transmission T ′ = 0.15, which we already
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have in stock. This would reduce the losses to L′
1 = 0.11 and L

′
2 = 0.19 and lead to an

OPO bandwidth of 90-94 MHz. Given our analysis in subsection 3.1.4, we expect that this
mismatch between the OPO and homodyne bandwidth reduces the homodyne detection
efficiency by maximally 1%. The micro-cavities, which were built to be 4-5 times wider
than the OPO bandwidth could also support this change. We do however expect that the
count rate will be an important factor, given that we can expect an overall lower count rate
than in chapter 5, below the Hz level. As such a possible improvement could be to buy
commercial etalon fabry-perot cavities for the filtering on the heralding path1 that have
higher transmission performances and would allow for higher count rates. Moreover, we
can also re-consider changing the homodyne circuit, not to increase its bandwidth, but to
increase its clearance at low frequencies of up to 20-30 MHz, as our analysis in chapter 3
has identified this range to be the most crucial to improve the homodyne efficiency.

1For example from LightMachinery

238



7.5 CONCLUSiON AND KEY RESULTS

In this chapter, we discussed a possible experimental setup, that can enable us to cre-
ate GKP, binomial, or four-legged cat states. It includes the creation of two squeezed
even cat states with an OPOII and two SNSPDs each. Those states with a phase
difference of π/2, are then impinging on a beamsplitter with reflectivity R. One beam-
splitter output is used for homodyne conditioning, such the other beamsplitter output
is projected onto the target state. The main results are:

• Our simulations of the proposed setup, including losses and detector imperfec-
tions, suggest that we can create a four-legged cat state of 60% fidelity with an
ideal state of amplitude α = 1.2 with our current experimental capabilities.

• For this, one additional phase lock needs to be installed, controlling the phase
of the homodyne conditioning.

• An increased fidelity four-legged cat state, binomial state as well as GKP states
are within reach of our current experiment, if we choose to exchange the output
coupler of both OPOs, thereby increasing their escape efficiency.

The next steps on the experiment and in terms of simulations are identified to be

• We want to exchange the OPO output couplers. Currently, we have output
couplers with a transmission of T = 0.15 in stock in the lab.

• Other proposed improvements include the reduction of losses on the homodyne
detection by a new circuit design that focuses on higher clearance at frequencies
up to 20-30 MHz. The count rate of the experiment could also be improved by
reducing the losses on the heralding path via commercially available filtering
cavities.

• The simulation will be made more complete, to include phase noise on the OPO
lock, the four-fold-coincidence window, and the conditioning window.

• We want to develop an optimization, that tolerates small deviations from the
parameters, such that the output change is robust to experimental imperfections.
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8.1 HERMiTE POLYNOMiALS

The Hermite polynomials used in this work are defined as (physicist’s version)

Hn+1(x) = 2xHn(x)− 2nHn−1(x),

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2. (8.1)

8.2 MEASURiNG CAViTY PARAMETERS

Here we give the formulas in order to measure the length L, free spectral range FSR and
bandwidth ∆ν of a cavity. For this we slightly misalign the beam onto the cavity, such that
we see at least one higher order mode TEMnm (mostly TEM01) appear. While sweeping
the cavity two successive FSR should appear within the same sweep, labeled I and II. The
center of the peak is called cjnm, where j is either I or II. The radius of curvature of the
mirror (ROC) is assumed to be know. The length and finesse of the cavity can then be
calculated as

L = ROC(1− cos2(π
cI01 − cI00
cII00 − cI00

)), (8.2)

F =
1

2

(
cI00
wI00

+
cII00
wII00

)
, (8.3)

where w is the FWHM of the targeted peak. The calculated length will be the length of
the cavity for one round trip, meaning 2L in the case of a Fabry-Perot cavity. Calculating
the FSR from the length enables an easy calculation of the bandwidth.
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8.3 OPTiMiZATiON ALGORiTHM FOR NON-GAUSSiAN COHERENCES

Here we draft the combinations of optimization algorithms that were used to calculate the
non-Gaussian coherence thresholds. For this the package scipy.optimize was used. The
squeezing and displacement function are defined first:

from scipy.linalg import expm
from sympy.physics.quantum.dagger import Dagger
import numpy as np

def a(dim):
#annihilation matrix
return np.diag([np.sqrt(i+1) for i in range(0,dim)],1)

def Displacement(dim,alpha):
#Displacement matrix
aM = a(dim-1)
D = expm(alpha * Dagger(aM) - np.conjugate(alpha) * aM)
return D

def SqM(sdB,ph,dim):
#squeezing matrix
dim = dim-1
z = np.log(10)/20*sdB*np.exp(1j*ph)
M = np.conjugate(z)/2*np.matmul(a(dim),a(dim))-

z/2*np.matmul(qs.Dagger(a(dim)),qs.Dagger(a(dim)))
return expm(M)

We can then define the function to minimize, here shown for the non-Gaussian coherences
between |n1⟩ and |n2⟩:

def FockKet(Fock,Sum):
vec = np.zeros(Sum)
vec[Fock] = 1
return vec

def CN1N2(params,N1,N2,VecFocks,dim):
'''
Calculates the effect of Gaussian dynamics on a Fock superposition defined via

VecFocks for the rho element N1N2
params --> alphaR,sdB,phasesdB,input weights of VecFocks the code varies
N1,N2 --> Superposition you are targeting
VecFocks --> vector with Fock states of interest, for example

np.array([0,1,2]) optimizes over the weights of the superposition 0+1+2
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dim --> Fock state maximal dimension
'''
alphaR, sdB, ph = params[:3]
ketin = params[3:]

if len(ketin) != len(VecFocks)-1:
print("Difference in defined fock space, please review ketin and VecFocks")
return

vec_in = np.zeros(dim)
for i in range(0,len(ketin)):

vec_in += ketin[i]*FockKet(VecFocks[i],dim)
if len(ketin) == 0:

vec_in = FockKet(VecFocks[-1],dim)
else:

vec_in +=np.sqrt(1-np.sum(np.array(ketin)**2))
*FockKet(VecFocks[len(VecFocks)-1],dim)

Donket = np.matmul(SqM(sdB,ph,dim),np.matmul(Displacement(dim,alphaR),vec_in))
return np.round(2*abs(Donket[N1]*Donket[N2]),7)

def CN1N2_min(params,N1,N2,VecFocks,dim):
#function to minimize
return (1-CN1N2(params,N1,N2,VecFocks,dim))**2

We can now finally write the optimization function

from scipy.optimize import minimize, basinhopping

def GiveAbsoluteNonGThreshold_bound(N1,N2,VecFocks,dim):
#initial parameters
aR_init = 0
sdb_init = 0
ph_init = 0
ketin_init = [0]*(len(VecFocks)-1)
param_init = [aR_init,sdb_init,ph_init,ketin_init]
param_init = flatten_list(param_init)
#blounds
bnds = [(-5, 5), (0, 10), (0,2*np.pi)]
bnds.extend([(0, 1)] * (len(VecFocks)-1))

result0 = basinhopping(CN1N2_min,param_init,niter= 300,niter_success=20,
T=5.0, stepsize=1,minimizer_kwargs={'args' :
(N1,N2,VecFocks,dim),"method": "Nelder-Mead","bounds":bnds})

fitted_params0 = result0.x
C = CN1N2(fitted_params0,N1,N2,VecFocks,dim)
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print("Normalization VecFocks", np.sum(fitted_params0[3:]**2))
return C, fitted_params0

Here we try all possible basis states by hand, by changing the input ”VecFocks”. We choose
dimension 20 for our simulations. Here a typical function call is shown

GiveAbsoluteNonGThreshold_bound(0,4,np.array([0,1,2,3]),20)

where we output the threshold for the target state ∝ |0⟩+ |1⟩, given the basis state c0 |0⟩+
c1 |1⟩+ c2 |2⟩+ c3 |3⟩. Each run takes maximally half a minute with those settings.
We note, that the above optimization is somehow a ”brute-force” optimization. Especially
for higher dimensional target states it might take too long to be practical. For this we
envision the use of a more elegant optimization, for example with the package SMT, which
has a potent optimization algorithm [274, 275].

8.4 SUPPORTiNG GKP FiGURES

Here additional plots of chapter 7 are to be found. The ideal GKP states are plotted in
fig. 8.1 for the rectangular GKP state and in fig. 8.2 for the hexagonal GKP state. The
physical ideal GKP states are plotted in fig. 8.3 for the rectangular GKP state and in fig.
8.4 for the hexagonal GKP state.
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Figure 8.1: The ideal rectangular GKP state with λ = 1.3 is plotted in multiples of γ for n = 2 and
h̄ = 0.5 for the logical |0⟩L and |1⟩L state. It is an eigenvector of both stabilizers with eigenvalue
+1, visible as all peaks of the marginal position and momentum distribution lie in the blue area
in (a), representing an eigenvalue of +1. We can see that the logical states are eigenvectors of the
Pauli Z gate, with eigenvalues +1 and −1 in (b), where the red bins represent −1.
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Figure 8.2: The ideal hexagonal GKP state is plotted in multiples of γ for n = 2 and h̄ = 0.5 for the
logical |0⟩L and |1⟩L state. It is an eigenvector of both stabilizers with eigenvalue +1, visible as all
peaks of the marginal position and momentum distribution lie in the blue area in (a), representing
an eigenvalue of +1. We can see that the logical states are eigenvectors of the Pauli Z gate, with
eigenvalues +1 and −1 in (b), where the red bins represent −1.
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Figure 8.3: The physical version of the ideal rectangular GKP state with λ = 1.3 is plotted in
multiples of α for n = 2 and h̄ = 0.5 for the logical |0⟩L and |1⟩L state with parameters κ = 0.2 and
ξ = 0.45. It is an eigenvector of both stabilizers with eigenvalue → +1, visible as all peaks of the
marginal position and momentum distribution lie in the blue area in (a), representing an eigenvalue
of +1. We can see that the logical states are eigenvectors of the Pauli Z gate, with eigenvalues → +1
and → −1 in (b), where the red bins represent −1.
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Figure 8.4: The physical version of the ideal hexagonal GKP state is plotted in multiples of α for
n = 2 and h̄ = 0.5 for the logical |0⟩L and |1⟩L state with parameters κ = 0.2 and ξ = 0.45. It is an
eigenvector of both stabilizers with eigenvalue → +1, visible as all peaks of the marginal position
and momentum distribution lie in the blue area in (a), representing an eigenvalue of +1. We can
see that the logical states are eigenvectors of the Pauli Z gate, with eigenvalues → +1 and → −1 in
(b), where the red bins represent −1.
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