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Abstract

This thesis explores the theory and application of stochastic differential equations (SDEs),
with a particular focus on parameter estimation and the behavior of processes with dis-
continuous coefficients.

The first part focuses on the Ornstein-Uhlenbeck (OU) process. We introduce an estima-
tor for the OU parameters based on supremum observations of one trajectory. We derive
an analytic expression for the supremum density and build an estimator using a pseudo-
likelihood method. The statistical properties of this estimator, including consistency and
asymptotic normality, are established using weak-dependence results. The effectiveness
of our estimator is demonstrated through its application to both simulated and real data.
Additionally, we explore the behavior of Parabolic Cylinder functions, which are involved
in the law of the OU supremum. Specifically, we investigate the µ-zeros of the function
µ 7→ Dµ(z) with respect to the real variable z, establishing a formula for the derivative of
a zero and providing an asymptotic expansion for large positive z.

The second part investigates processes governed by SDEs with discontinuous coefficients.
Introducing the threshold Ornstein-Uhlenbeck (T-OU) process, we provide explicit ex-
pressions for transition probability density and first hitting time density for the killed
process. Then, we introduce the threshold CKLS (T-CKLS) process and focus on esti-
mating its parameters using observations of a single trajectory. We study the asymptotic
behavior of maximum likelihood and quasi-maximum likelihood estimators for drift pa-
rameters, as well as a volatility estimator. Some statistical properties under continuous
and high-frequency observations over long time horizons are derived. Finally, we highlight
the relevance of multiple thresholds through applications to simulated and real data.

Keywords: OU, CIR, CKLS, supremum law, parameters estimation, pseudo-likelihood,
asymptotic normality, hitting time, self-exciting process , maximum likelihood, thresholds
diffusion.



Resumé

Cette thèse traite de la théorie et des applications des équations différentielles stochas-
tiques (EDS), en se concentrant particulièrement sur l’estimation des paramètres et le
comportement des processus aux coefficients discontinus.

La première partie introduit un estimateur pour les paramètres du processus d’Ornstein-
Uhlenbeck (OU), construit à partir d’observations du supremum d’une unique trajectoire.
Une fois l’expression analytique pour la densité du supremum établie, nous procédons à
la construction d’un estimateur en utilisant une méthode de pseudo-vraisemblance. Les
propriétés statistiques de cet estimateur, à savoir la consistance et la normalité asymp-
totique, sont établies en utilisant des propriétés de faible dépendance de l’échantillon
d’observations. L’efficacité de notre estimateur est démontrée à travers son application
à des données simulées et réelles. De plus, nous étudions le comportement des fonctions
Paraboliques Cylindrique, qui sont impliquées dans la loi du supremum de l’OU. Plus
précisément, nous étudions les µ-zéros de la fonction µ 7→ Dµ(z) par rapport à la vari-
able réelle z. Nous établissons une formule pour la dérivée d’un zéro et fournissons un
développement asymptotique pour de grands z positifs.

La deuxième partie développe la théorie des processus solutions des EDS à coefficients
discontinus. Après avoir introduit le processus d’Ornstein-Uhlenbeck à seuil (T-OU),
nous établissons des expressions analytiques pour la densité de probabilité de transition
et la densité de premier temps d’atteinte pour le processus tué. Ensuite, le processus
CKLS avec seuil (T-CKLS) est introduit et nous nous concentrons sur l’estimation de ses
paramètres de dérive et de volatilité en utilisant des observations d’une seule trajectoire.
L’analyse du comportement asymptotique des estimateurs de maximum de vraisemblance
et de quasi-maximum de vraisemblance pour les paramètres de dérive, ainsi qu’un es-
timateur de volatilité, est effectuée. Les propriétés statistiques sont obtenues à partir
d’observations continues et à haute fréquence en temps long. Enfin, la pertinence d’une
modélisation à plusieurs seuils est mise en évidence à travers des applications à des don-
nées simulées et réelles.

Mots clés: OU, CIR, CKLS, loi du supremum, estimation des paramètres, pseudo-
vraisemblance, normalité asymptotique, premier temps d’atteinte, processus auto-excitant,
maximum de vraisemblance, diffusion à seuils.



Introduction

In the field of stochastic processes, contributions have established the groundwork for
understanding a wide array of phenomena. At the center of this framework lies the con-
cept of Brownian motion, first observed by R. Brown in 1828 [23]. Brownian motion’s
random behavior paved the way for the development of stochastic differential equations
(SDEs), offering a powerful tool for modeling systems subject to random fluctuations over
time. One notable extension of SDEs is the Ornstein-Uhlenbeck process, introduced by
L.S. Ornstein and G.E. Uhlenbeck in [104]. This process is known for its mean-reverting
behavior and finds applications in various fields, including physics [110], finance [107],
and biology [64]. In particular, it can be used to model the evolution of temperatures
over time (see [37] and [4]). Moving on from our exploration of stochastic processes,
the Cox-Ingersoll-Ross (CIR) process, introduced in [31], extends the understanding be-
yond the Ornstein-Uhlenbeck (OU) process. This process is used in fields such as finance
for interest rate modeling and biology. Both of these processes are particular cases of the
Chan–Karolyi–Longstaff–Sanders (CKLS) process, introduced in [27]. The CKLS process,
which includes both the OU and CIR processes, is used in financial modeling, particularly
in analyzing asset pricing dynamics and modeling interest rate fluctuations.

This thesis focuses on studying processes that are solutions to stochastic differential equa-
tions (SDEs). Specifically, the focus is on parameter estimation of these processes, as well
as on explicit computation of the laws associated with these processes. We mainly study
SDEs with discontinuous coefficients. This study is divided into two parts: one part on the
parameter estimation of a classical OU process, while the second part explores processes
that are solutions to SDEs with discontinuous coefficients. In the first part, we focus on
parameter estimation for an OU process based on observations of its supremum. As illus-
trated by [37] (also referenced in [4]), temperatures typically exhibit a tendency to cluster
around a mean value, suggesting a natural fit for modeling their dynamics using a mean-
reverting process. In [15], the authors propose parameter estimation of an OU process to
perform risk assessments for phenomena like heatwaves. Because meteorological datasets
commonly contain only daily temperature extremes, their estimation approach relies on
a dataset composed of supremum values of the OU process. The authors introduced a
least squares method based on the integral representation of the cumulative distribution
function of the supremum. This representation is provided in [6]. Note that they lack
statistical properties on their estimators, and moreover, their method is computationally



demanding. In this work, we consider a stationary OU process X solution of: dXt = (a− bXt)dt+
√
βdBt,

X0 ∼ N
(
a
b
, β
2b

)
,

with parameter θ = (a, b, β) ∈ R×R⋆
+×R⋆

+, and B a Brownian motion independent of X0.

We introduce an alternative estimation method for the parameter θ of the Ornstein-
Uhlenbeck (OU) process. Our approach uses a pseudo-likelihood framework tailored to
the supremum distribution of the OU process. As highlighted in [16], this distribution
can be expressed as a series of Parabolic Cylinder functions, denoted Dµ(z), solution of
the following differential equation: y′′ (z) +

(
µ+ 1

2
− 1

4
z2
)
y (z) = 0,

y(z) ∼
z→+∞

zµe−z
2/4.

To establish statistical properties for our estimator, such as consistency and asymptotic
normality, it is essential to bound the supremum distribution. To this end, we focus on
the asymptotic behavior of the zeros of the Parabolic Cylinder function. Indeed, the µ-
zeros of the Parabolic Cylinder function play a crucial role in determining the law of the
OU process running supremum ([6], [16]). Thus, the second aspect of this study involves
exploring the properties of the µ-zeros of the Parabolic Cylinder functions. These func-
tions belong to the set of special functions such as Bessel functions and Hankel functions.
Various studies have investigated the zeros of special functions of order µ and argument z.
For instance, Olver explores the z-zeros of Parabolic Cylinder functions for large values of
µ [87]. However, fewer studies have focused on the µ-zeros. In works such as [78] and [56],
the authors investigate the behavior of the µ-zeros of the Hankel function of the first kind.
We provide a formula for the µ-zeros for large values of z and establish a formula for the
derivative of a µ-zero, deducing some monotonicity results. Since the z-zeros of Hermite
functions are related to those of Parabolic Cylinder functions, our analysis relies on the
findings presented in [41]. Asymptotic expressions for the µ-zeros are obtained from the
expansion provided by Olver [87]. This analysis contributes to a deeper understanding of
the behavior of these special functions, which are essential for bounding the distribution
of the OU supremum. One contribution of this work is to propose an explicit expression
of this density based on the Parabolic Cylinder function, which is computationally inex-
pensive. By using the asymptotic expressions for the µ-zeros of the Parabolic Cylinder
function, we obtain consistency and asymptotic normality of our estimator. Furthermore,
our estimators outperform those presented in [15] in terms of relative root mean squared
error (RMSE) and mean error (ME). We also provide an application to a meteorological
dataset.

The second part of this thesis deals with stochastic processes governed by SDEs with
discontinuous volatility and drift functions.

The analysis of discontinuous coefficients for the drift and volatility of SDEs represents a
novel approach in the domain of stochastic modeling. These models, often categorized as
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threshold diffusion models, exhibit dynamics that change abruptly when certain thresholds
are crossed. In traditional SDEs, the coefficients of drift and volatility are assumed to
be continuous functions. However, in many scenarios, discontinuities in these coefficients
can significantly affect the behavior of the system. Threshold diffusion models capture
such discontinuities by incorporating specific threshold values that trigger changes in
the dynamics of the process. The analysis of these discontinuous coefficients presents
unique challenges compared to traditional continuous coefficient models. Techniques from
stochastic calculus and numerical analysis are often employed to study the properties and
behavior of such models. Additionally, applications of threshold diffusion models are found
in various fields including finance [34], biology, and ecology [24], where abrupt changes in
dynamics are observed. Overall, the investigation of discontinuous coefficients in SDEs
offers valuable insights into complex systems characterized by sudden shifts in behavior,
contributing to advancements in stochastic modeling and its applications.

In the first stage, we focus on deriving explicit probability distributions associated with a
stochastic differential equation featuring discontinuous coefficients. There is considerable
interest in computing explicit laws for processes that are solutions of this this type of SDEs.
For instance, in [34], the authors compute the transition probability of threshold Ornstein-
Uhlenbeck (T-OU) and threshold Cox-Ingersoll-Ross (T-CIR) processes. Additionally, [35]
determines the law of a drifted Skew Brownian motion, while [108] computes the law of
the Skew Ornstein-Uhlenbeck (OU) process.

The computation of distribution densities associated with killed processes over constant
boundaries has received significant attention in the literature. For example, in the works
of V. Linetsky [76] and [75], the density of first hitting times for prominent processes
like the Ornstein-Uhlenbeck and Cox-Ingersoll-Ross processes has been computed. Few
studies have been conducted on computing the law of threshold killed processes.
In this work, we consider the T-OU process X solution of:

Xt = x0 +

∫ t

0

a(Xs)− b(Xs)Xs ds+

∫ t

0

σ(Xs) dBs, t ≥ 0,

where a, b and σ are discontinuous at a finite number of thresholds. We explicitly compute
the transition probability density of the process X killed at a constant boundary, and the
first hitting time density of this process.

Moving from computing distribution laws to estimating parameters involves understand-
ing how estimation, simulation, and modeling are closely related. This connection is
important because accurate calibration of models is necessary to represent the underlying
dynamics of the system. The parametric estimation of threshold processes has recently
attracted attention in the literature. For instance, in [72], the authors introduce a max-
imum likelihood estimator for a threshold drifted Brownian motion. They obtain the
consistency and asymptotic normality results for both continuous and discrete observa-
tions, covering both ergodic and non-ergodic regimes of the process. Similarly, in [81],
the authors focus on parameter estimation for a T-OU process, while in [70], the authors
introduce an estimation approach for the diffusion parameter of a threshold Brownian
motion.
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In this part, we focused on parameter estimation for threshold processes using observations
from a single trajectory, considering both continuous and discrete observation frameworks.
We consider a multi-threshold CKLS (T-CKLS) process solution of the SDE:

Xt = x0 +

∫ t

0

(a(Xs)− b(Xs)Xs) ds+

∫ t

0

σ(Xs)|Xs|γ(Xs) dBs, t ≥ 0,

where a, b, σ are piecewise constant coefficients and γ possibly discontinuous. We focus
on the case γ ∈ [0, 1]. In this study, we examine both continuous-time observations and
non-equally spaced discrete observations. The methods introduced include maximum like-
lihood estimation (MLE) and quasi-maximum likelihood estimation (QMLE) for the drift
coefficients. Additionally, we provide an estimator for the diffusion coefficients σ, based
on quadratic variation. We investigate the asymptotic properties of these estimators, de-
riving both a law of large numbers and a central limit theorem for the estimators of the
drift coefficients, as well as establishing consistency for the estimator of the volatility.

Structure of the thesis: This thesis is organized as follows:

Chapter 1: In this chapter, we present essential tools in stochastic calculus and differen-
tial equations, beginning with foundational concepts like local time of semi-martingales
and the existence and uniqueness of SDEs. Then, we explore diffusion process properties,
including killed processes, Fokker-Planck equation, and boundary classification. Finally,
we examine the Ornstein-Uhlenbeck and CKLS processes, investigating their properties
to understand their dynamics.

Part 1:

Chapter 2: We propose an estimator for the Ornstein-Uhlenbeck parameters based on ob-
servations of its supremum. We derive an analytic expression for the supremum density.
Making use of the pseudo-likelihood method based on the supremum density, our esti-
mator is constructed as the maximal argument of this function. Using weak-dependency
results, we prove some statistical properties on the estimator such as consistency and
asymptotic normality. Finally, we apply our estimator to simulated and real data.

Chapter 3: We study the µ-zeros of the function µ 7→ Dµ(z) with respect to the real
variable z. We establish a formula for the derivative of a zero and deduce some mono-
tonicity results. Then we also give an asymptotic expansion for µ-zeros for large positive z.

Part 2:

Chapter 4: In this chapter, we propose an approach to studying diffusion processes with
piecewise constant coefficients, focusing on the threshold Ornstein-Uhlenbeck (T-OU) pro-
cess. We provide explicit solutions for the probability transition density and first hitting
time density for the killed process. An explicit expression for the Laplace transform of
the first hitting time is proposed for numerical testing.
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Chapter 5: We consider a continuous-time process which is self-exciting and ergodic, called
threshold Chan–Karolyi–Longstaff–Sanders (CKLS) process. We allow for the presence
of several thresholds which determine changes in the dynamics. We study the asymptotic
behavior of the maximum and quasi-maximum likelihood estimators of the drift parame-
ters in the case of continuous time and discrete time observations. We show that for high
frequency observations and infinite horizon the estimators satisfy the same asymptotic
normality property as in the case of continuous time observations. We discuss diffusion
coefficient estimation as well. Finally, we apply our estimators to simulated and real data
to motivate considering (multiple) thresholds.
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Chapter 1

Diffusion Processes: An introduction

In this chapter, we introduce the main tools in stochastic calculus and differential equa-
tions that will be used in this thesis. We begin by establishing foundational notions,
exploring topics such as local time of semi-martingales, and existence and uniqueness of
stochastic differential equations (SDEs).

Additionally, we focus on properties of diffusion processes. This includes discussions on
killed processes, Fokker-Planck equation, boundary classification and process regimes.

Then, we introduce some well-known processes as solutions of SDEs, focusing on the
Ornstein-Uhlenbeck process and the CKLS process.

Notation: In this thesis, we denote N⋆ as the set of all strictly positive integers. Fur-
thermore, R⋆ is defined as the set of all non-zero real numbers, and R⋆

+ as the set of all
strictly positive real numbers.

1.1 Local time of semi-martingale

In the first part of this chapter, we introduce the local time and Itô-Tanaka formula
for continuous semi-martingales. These results can be found in [91]. Consider a filtered
probability space (Ω,F , (Ft)t≥0,P).

Definition 1.1.1 (Semi-martingales). A continuous (Ft,P)-semi-martingale is a contin-
uous process X which can be written X =M+A where M is a continuous local martingale
and A a continuous adapted process of finite variation.

Additional information on semi-martingales and local martingales can be found in [91].
Let us recall the Itô formula, which provides a powerful tool for expressing the differential
of a continuous semi-martingale.



Theorem 1.1.2 (Itô formula). Let f belongs to C2(R) and let X =M+A be a continuous
semi-martingale. Then, the process f(X) is a continuous semi-martingale and

t ≥ 0, f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d⟨X,X⟩s P− a.s.

Remark 1.1.3. Note that the assumption f ∈ C2(R) can be relaxed. In fact, if f admits
an absolutely continuous derivative, then f ′′ exists Lebesgue-almost everywhere, and we
have:

t ≥ 0, f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d⟨X,X⟩s P− a.s.,

and f(X) is a continuous semi-martingale. We refer to this formula as the generalized
Itô formula.

We now seek to introduce a generalization of the Itô formula. We respectively denote
(ℓxt (X))t≥0 as the right local time. The local time of a semi-martingale can be constructed
in several different ways. We mainly focus on the construction based on Tanaka formula.
In the next results, the positive and negative parts of x ∈ R are denoted x+ = x ∨ 0,
x− = (−x) ∨ 0. We also denote f ′

l and f ′
r as the left and right derivatives of the function

f .

Theorem 1.1.4. (Tanaka formula) For x ∈ R and X a continuous semi-martingale,
there exists an increasing continuous process (ℓxt (X))t≥0 such that:

1

2
ℓxt (X) = (Xt − x)+ − (X0 − x)+ −

∫ t

0

1(Xs>x)dXs, (1.1.1)

1

2
ℓxt (X) = (Xt − x)− − (X0 − x)− +

∫ t

0

1(Xs≤x)dXs.

In particular, (X − x)+ and (X − x)− are semi-martingales.

Theorem 1.1.5. (Ito-Tanaka formula, Theorem 1.5, Chapter VI in [91]) Let X be a
continuous semi-martingale. If f is the difference of two convex functions, we have:

f(Xt) = f(X0) +

∫ t

0

f ′
l (Xs)dXs +

1

2

∫
R
ℓxt (X)f ′′(dx).

In particular, f(X) is a semi-martingale.

Note that Itô-Tanaka formula extends Itô formula for functions that are differences of two
convex functions.

Theorem 1.1.6 (Theorem 1.7, Chapter VI in [91]). Let X a continuous semi-martingale,
there exists a modification of the process {ℓxt : x ∈ R, t ∈ R+} such that (x, t) 7→ ℓxt is a.s.
continuous in t and cadlag in x. Additionally, if X =M + A, we have:

ℓxt (X)− ℓx
−

t (X) = 2

∫ t

0

1(Xs=x)dXs = 2

∫ t

0

1(Xs=x)dAs, (1.1.2)

where ℓx−t (X) = limh→0,h<0 ℓ
x+h
t .
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Remark 1.1.7. Note that, from (1.1.2), we have:

1

2
ℓx

−

t (X) = (Xt − x)− − (X0 − x)− +

∫ t

0

1(Xs<x)dXs. (1.1.3)

In particular, we can prove that ℓxt (−X) = ℓ
(−x)−
t (X). Then there exists a modification

of {ℓx−t : x ∈ R, t ∈ R+} such that (x, t) 7→ ℓx
−
t is continuous in time and caglad in

x. Furthermore, if X is a local martingale, Theorem 1.1.6 implies that there exists a
bicontinuous modification of the family ℓxt of local times.

Building upon the preceding theorem, we define an analogous Itô-Tanaka formula, which
enables us to introduce the concept of symmetric local time.

Corollary 1.1.8. (Symmetric Itô-Tanaka formula) If f is the difference of two convex
functions and if X is a continuous semi-martingale,

f(Xt) = f(X0) +

∫ t

0

f ′
l (Xs) + f ′

r(Xs)

2
dXs +

1

2

∫
R
Lxt (X)f ′′(dx),

where Lxt (X) is the symmetric local time at x, and defined such that:

Lxt (X) =
ℓxt (X) + ℓx

−
t (X)

2
.

Furthermore, f(X) is a semi-martingale.

Proof. Summing (1.1.1) and (1.1.3), leads to:

Lxt (X) = |Xt − x| − |X0 − x| −
∫ t

0

sgn(Xs − x)dXs,

where sgn(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0.

Then, applying a similar reasoning as Theorem 1.5, Chapter VI in [91], we conclude.

Remark 1.1.9. Note that, from Theorem 1.1.6 and Remark 1.1.7, there exists a modi-
fication {Lxt : x ∈ R, t ∈ R+} such that (x, t) 7→ Lxt is continuous in time and laglad in
x. In the case where X is a continuous local martingale, there exists an a.s. continuous
modification in t and x of {Lxt : x ∈ R, t ∈ R+}.

Proposition 1.1.10. The measure dLxt (X) is a.s. carried by the set
{t : Xt = x}.

Proof. Applying Itô formula to (|Xt − x|2)t≥0, we have:

|Xt − x|2 = |X0 − x|2 + 2

∫ t

0

|Xs − x| d(|X − x|)s + ⟨|X − x|, |X − x|⟩t. (1.1.4)
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Then, using Corollary 1.1.8 in (1.1.4), we obtain:

|Xt − x|2 = |X0 − x|2 + 2

∫ t

0

|Xs − x|sgn(Xs − x) dXs + 2

∫ t

0

|Xs − x| dLxs(X) + ⟨X,X⟩t.

(1.1.5)
Comparing equality (1.1.5) with the equality given by applying Itô-formula:

(Xt − x)2 = (X0 − x)2 + 2

∫ t

0

(Xs − x)dXs + ⟨X,X⟩t,

we have
∫ t
0
|Xs − x| dLxs(X) = 0 a.s.. Then the conclusion holds.

Comparing Itô-Tanaka formula and Itô formula, we get the following result.

Proposition 1.1.11. (Occupation times formula, Corollary 1.6, Chapter VI in [91]) For
all t ≥ 0, and for every measurable positive function f , we have:∫ t

0

f(Xs)d⟨X,X⟩s =
∫ ∞

−∞
f(x)Lxt (X)dx.

Remark 1.1.12. We have defined the right and symmetric local time of a continuous
semi-martingale X at x, using Itô-Tanaka formula. From the occupation times formula
in Proposition 1.1.11, the symmetric and the right local time can be constructed as follows:

Lxt (X) = lim
ε→0

1

2ε

∫ t

0

1(x−ε≤Xs≤x+ε)d⟨X,X⟩s and ℓxt (X) = lim
ε→0

1

ε

∫ t

0

1(x≤Xs≤x+ε)d⟨X,X⟩s.

1.2 Stochastic Differential Equations

1.2.1 Definitions and uniqueness

We refer to stochastic differential equations (SDEs), the equations of the form:

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs, t ≥ 0, (1.2.1)

where b is the drift function and σ is the volatility function. In this section, we remind
the classical results on the existence and uniqueness of the solution of equation (1.2.1).
Discussions on the extension of these results are covered later in this thesis. We first
introduce the concepts of solutions, as well as the notions of existence and uniqueness for
SDEs. These definitions are given in [54, 67, 91].

Definition 1.2.1. A solution of SDE (1.2.1) is a pair (X,B) of adapted processes defined
on a filtered probability space (Ω,F , (Ft)t≥0),P) and such that:

• B is a standard (Ft)- Brownian motion.
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• X is continuous and, for all t ≥ 0:

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs, P− a.s.

Definition 1.2.2. (Strong and weak solution) A solution (X,B) is said to be a strong
solution if X is adapted to the filtration F̄B : (F̄B

t )t≥0, i.e., the filtration of B completed
with respect to P. By contrast, a solution that is not strong is called a weak solution.
Definition 1.2.3. (Uniqueness in law) There is uniqueness in law for (1.2.1) if for every
(X,B) and (X̃, B̃) solutions to (1.2.1) with X0 = X̃0 in law, then the laws of X and X̃
are equal.
Remark 1.2.4. Note that, uniqueness in law can hold even for solutions defined on two
different filtered probability space.
Definition 1.2.5. There is pathwise uniqueness for (1.2.1) if for every (X,B) and (X̃, B)
solutions to (1.2.1) on the same filtered probability space with X0 = X̃0 a.s., then X = X̃
a.s..

Strong solution to (1.2.1) can also be defined up to a hitting time τ . In the following
definition, the hitting time τ∞ is referred to as the explosion time.
Definition 1.2.6. (Strong solution up to an explosion time) On the filtered probability
space (Ω,F , (Ft)t≥0,P), we say that (X, τ∞, B) is a strong solution of (1.2.1), if:

1. τ∞ is a stopping time and X[0,τ∞) is F̄B-adapted.

2. X[0,τ∞) is continuous and, on {t < τ∞}, we have:

Xt = X0 +

∫ t

0

b(Xs) ds+

∫ t

0

σ(Xs) dBs, P− a.s.

3. On the event {τ∞ < +∞}, limt→τ∞ |Xt| = +∞ P-a.s..

The following results state the link between the previous notions of uniqueness and exis-
tence.
Theorem 1.2.7. (Yamada Watanabe [111]) Consider the equation (1.2.1).

1. Pathwise uniqueness property implies uniqueness in law.

2. Weak existence and pathwise uniqueness imply strong existence.

Let b and σ be two Lipschitz functions. In this case, strong existence and uniqueness
results for (1.2.1) are provided by the following theorem.
Theorem 1.2.8 (Theorem 7.1 in [67]). Assume that X0 ∈ L2(Ω,F ,P). Then (1.2.1)
admits a unique strong solution X.

Assume now that b and σ are locally Lipschitz functions, i.e., Lipschitz on every compact
set. The following theorem states the existence and uniqueness of a strong solution to
(1.2.1) up to an explosion time τ∞.
Theorem 1.2.9 (Theorem 3.1 in [48]). Assume that X0 ∈ L2(Ω,F ,P). Then there exists
a unique strong solution (X, τ∞, B) of (1.2.1).
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1.2.2 Weak existence and uniqueness in law

We now outline the key results that establish the properties of weak existence and unique-
ness in law, which are used throughout this thesis.

SDE without drift: Let us first recall some basic results on the weak existence and
uniqueness in law of the solution to (1.2.1) without drift. We have the following equation:

Xt = X0 +

∫ t

0

σ(Xt)dBt, t ≥ 0. (1.2.2)

Proposition 1.2.10 (Proposition 1 in [43] and Problem 5.3, Chapter 5 in [54]). Suppose
that weak existence holds for (1.2.2) up to an explosion time τ∞. Then, we have τ∞ = +∞
a.s..

In [44], the authors provide a necessary and sufficient result for weak existence and unique-
ness in law for the equation (1.2.2). Let us introduce the following sets:

Sσ =

{
x ∈ R, ∀ϵ > 0

∫ x+ϵ

x−ϵ

1

σ2(y)
dy = ∞

}
and Nσ = {x ∈ R, σ(x) = 0}.

Proposition 1.2.11 (Weak existence and uniqueness in law to (1.2.2)). Weak existence
holds (without explosion) for equation (1.2.2) with arbitrary initial distribution X0 if and
only if Sσ ⊂ Nσ. In that case, uniqueness in law holds for every initial distribution X0 if
and only if Sσ = Nσ.

SDE with drift: We return to the general framework for the case where the drift term
is nonzero. Let us introduce the following hypotheses:

(ND): ∀x ∈ R, σ2(x) > 0,

(LI): ∀x ∈ R,∃ε > 0 such that
∫ x+ε
x−ε

|b(y)|
σ2(y)

dy <∞.

Under these assumptions, we fix a number c ∈ R and define the scale function (see Section
1.3 for more details on this function):

∀x ∈ R, s(x) =

∫ x

c

exp

(
−2

∫ u

c

b(v)

σ2(v)
dv

)
du.

The function s has a continuous, strictly positive derivative, and s′′ exists almost every-
where. Furthermore, s has a continuously differentiable inverse s̃ : (s(−∞), s(+∞)) → R
and such that s̃′(y) = 1

s′(s̃(y))
. We extend s to [−∞,+∞] and s̃ to [s(−∞), s(∞)].

Proposition 1.2.12 (Proposition 5.13, Chapter 5 in [54]). Assume (ND) and (LI) hold,
then the process X is a weak (or strong) solution of equation (1.2.1) if and only if the
process Y is a weak (or strong) solution of:

Yt = Y0 +

∫ t

0

σ̃(Ys)dBs, t ≥ 0,
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where s(−∞) < Y0 < s(+∞) a.s., and

σ̃(y) =

{
s′(s̃(y))σ(s̃(y)) if s(−∞) < y < s(+∞),

0 otherwise.

The process X may explode in finite time, but the process Y does not.

The following theorem is a direct application of Proposition 1.2.11 and Proposition 1.2.12.

Theorem 1.2.13 (Theorem 5.15, Chapter 5 in [54]). Assume that b is a locally integrable
function at every point in R, and conditions (ND) and (LI) hold. Then, for every initial
distribution X0, the equation (1.2.1) has a weak solution up to an explosion time, and this
solution is unique in law.

We also recall the following two classical results that will be used in the upcoming section.

Theorem 1.2.14 (Theorem 2.3 in [48]). Assume that b and σ are continuous, if X0 ∈
L2(Ω,F ,P), then there exists a weak solution (X, τ∞, B) of (1.2.1).

Proposition 1.2.15 ([111], Corollary 1.14, Chapter IX in [91]). Assume σ and b are
bounded measurable functions and for some ϵ > 0, we have |σ| ≥ ϵ. Then, weak existence
and uniqueness in law hold for (1.2.1).

Remark 1.2.16. In the case where b and σ are at most linear growth, we have τ∞ = +∞
a.s. (see Theorem 2.4 in [48]). We can also use the result in Section 1.3.3 to conclude
whether τ∞ = +∞ a.s. or not.

1.2.3 Pathwise uniqueness

We are now focusing on the pathwise uniqueness property of the SDE given by (1.2.1).
The following results are taken from [66] and [91].
We denote ρ : [0,∞) → [0,∞), an increasing function such that

∫
V(0+)

dx
ρ(x)

= +∞, where
V(0+) is a neighbourhood of 0+. Let us state the key results that lead to pathwise
uniqueness for (1.2.1).

Proposition 1.2.17. If X1, X2 are two solutions of (1.2.1) on the same filtered proba-
bility space such that X1

0 = X2
0 a.s., then X1 ∨X2 is a solution to (1.2.1) if and only if

L0(X2 −X1) = 0 a.s..

Proof. Applying Itô-Tanaka formula to X1 ∨X2 = X1 + (X2 −X1)+, we have:

X1
t ∨X2

t = (X1
0 ∨X2

0 ) +

∫ t

0

b(X1
s ∨X2

s )ds+

∫ t

0

σ(X1
s ∨X2

s )dBs +
1

2
L0
t (X

2 −X1).

Then the conclusion holds.

Lemma 1.2.18. Let X1, X2 be two solutions of (1.2.1) on the same filtered probability
space such that X1

0 = X2
0 a.s.. If uniqueness in law holds for (1.2.1) and L0(X2−X1) = 0

a.s., then pathwise uniqueness holds for (1.2.1).
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Proof. Using Proposition 1.2.17, X1 and X1 ∨X2 are solutions of (1.2.1). Uniqueness in
law implies X1 = X1 ∨X2, then X1 = X2 a.s..

Lemma 1.2.19. Assume X is a continuous semi-martingale and for all t ∈ R⋆
+:

At =

∫ t

0

1(0<Xs<ϵ)
d⟨X,X⟩s
ρ(Xs)

<∞ a.s., (1.2.3)

then L0
t (X) = 0 a.s..

Proof. For all t ∈ R⋆
+, suppose that (1.2.3) holds. Then, using the occupation times

formula in Proposition 1.1.11, we have:

At =

∫ ϵ

0

ρ(x)−1Lxt (X)dx.

If there exists a Lebesgue-non-negligible set B such that L0
t (X) > 0 P-a.s., then At = ∞

with strictly positive probability. Then, by contradiction, L0
t (X) = 0 a.s..

Corollary 1.2.20. Suppose σ and b are two bounded measurable functions such that σ
satisfies:

∀(x, y) ∈ R, (σ(x)− σ(y))2 ≤ ρ(|x− y|). (1.2.4)

If X1 and X2 are two solutions of (1.2.1) on the same filtered probability space, then we
have:

L0
t (X

2 −X1) = 0 a.s.

Proof. Using (1.2.4), we have:∫ t

0

1(X2
s−X1

s>0)

d⟨X2 −X1⟩s
ρ(X2

s −X1
s )

=

∫ t

0

(σ(X2
s )− σ(X1

s ))
2

ρ(X2
s −X1

s )
1(X2

s−X1
s>0)ds ≤ t.

Applying Lemma 1.2.19 on X = X2 −X1, the conclusion holds.

Corollary 1.2.21. Suppose σ and b are two bounded measurable functions such that for
all x ∈ R, σ(x) > ϵ. Furthermore, assume that there exists an increasing bounded function
f , such that

∀x, y ∈ R, (σ(x)− σ(y))2 ≤ |f(x)− f(y)|.

If X1 and X2 are two solutions of (1.2.1) on the same filtered probability space, then we
have:

L0
t (X

1 −X2) = 0 a.s.

Proof. Let X = X1 −X2, the idea is to apply Lemma 1.2.19. Without loss of generality,
we focus on the case ρ(x) = x. So, we need to prove that:

∀t ≥ 0,

∫ t

0

1(Xs>0)

Xs

d⟨X,X⟩s <∞ a.s. (1.2.5)
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Let δ > 0 be fixed, we have:

E
[∫ t

0

1(Xs>δ)

Xs

d⟨X,X⟩s
]
= E

[∫ t

0

(σ(X1
s )− σ(X2

s ))
2

X1
s −X2

s

1(X1
s−X2

s>δ)
ds

]
,

≤ E
[∫ t

0

f(X1
s )− f(X2

s )

X1
s −X2

s

1(X1
s−X2

s>δ)
ds

]
.

The function f can be approximated by a sequence of uniformly bounded increasing
functions (fn)n≥0 in C1(R) such that fn(x) −−−→

n→∞
f(x) and supn∈N,x∈R |fn(x)|) ≤ M =

supx∈R |f(x)|. Then we have:

E
[∫ t

0

f(X1
s )− f(X2

s )

X1
s −X2

s

1(X1
s−X2

s>δ)
ds

]
= lim

n→∞
E
[∫ t

0

fn(X
1
s )− fn(X

2
s )

X1
s −X2

s

1(X1
s−X2

s>δ)
ds

]
,

= lim
n→∞

E
[∫ t

0

∫ 1

0

f ′
n(Z

u
s )1(X1

s−X2
s>δ)

duds

]
,

≤ lim
n→∞

∫ 1

0

E
[∫ t

0

f ′
n(Z

u
s )ds

]
du.

where for all u ∈ [0, 1]: Zu
s = X2

s + u(X1
s −X2

s ). Note that Zu is solution to :

Zu
t = Zu

0 +

∫ t

0

b̃(u,X1
s , X

2
s )ds+

∫ t

0

σ̃(u,X1
s , X

2
s )dBs,

where b̃(u,X1
s , X

2
s ) = b(X2

s ) + u(b(X1
s )− b(X2

s )) and σ̃(u,X1
s , X

2
s ) = σ(X2

s ) + u(σ(X1
s )−

σ(X2
s )). As the function σ and b are bounded, we have σ̃ ≥ ϵ and |b̃| + |σ̃| ≤ M .

Applying the symmetric Itô-Tanaka formula (see Corollary 1.1.8), we can easily prove
that supu∈[0,1],x∈R E[Lxt (Zu)] ≤ C <∞, where C is independent of δ. We deduce that,

E
[∫ t

0

f(X1
s )− f(X2

s )

X1
s −X2

s

1(X1
s−X2

s>δ)
ds

]
≤ lim

n→∞

∫ 1

0

E
[∫ t

0

f ′
n(Z

u
s )ds

]
du,

≤ 1

ϵ2
lim
n→∞

∫ 1

0

E
[∫

R
f ′
n(x)L

x
t (Z

u)dx

]
du,

≤ 2MC

ϵ2
.

Finally, we have:

E
[∫ t

0

1(Xs>δ)

Xs

d⟨X,X⟩s
]
≤ 2MC

ϵ2
.

Letting δ tend to 0 leads to (1.2.5). Then, from Lemma 1.2.19, the conclusion holds.

Making use of the previous results, pathwise uniqueness can be deduced for (1.2.1) under
several hypotheses on b and σ.

Theorem 1.2.22 (Theorem 3.5, Chapter IX in [91]). Pathwise uniqueness holds for
(1.2.1) in each of the following cases:

1. |σ(x)− σ(y)|2 ≤ ρ(|x− y|), |σ| ≥ ϵ > 0 and b and σ bounded.
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2. |σ(x)− σ(y)|2 ≤ |f(x)− f(y)| where f is increasing and bounded, σ ≥ ϵ > 0 and b
is bounded.

3. |σ(x)− σ(y)|2 ≤ ρ(|x− y|) and b is bounded and K-Lipschitz continuous.

Proof. Let X1 and X2 be two solutions of equation (1.2.1) on the same filtered probability
space and such that X1

0 = X2
0 a.s..

In the case 1. and 2., since |σ| > ϵ, from Proposition 1.2.15, weak existence and unique-
ness in law hold for (1.2.1). Then from Corollary 1.2.20 and Corollary 1.2.21, we have,
for all t ≥ 0, L0

t (X
1 −X2) = 0 a.s.. We conclude by using Lemma 1.2.18.

Let us now focus on 3., suppose that b is K-Lipschitz continuous. From Itô-Tanaka
formula and Lemma 1.2.19, we have:

|X1
t −X2

t | =
∫ t

0

sgn(X1
s −X2

s )d(X
1
s −X2

s ).

As σ is bounded, we can prove that:

|X1
t −X2

t |−
∫ t

0

sgn(X1
s −X2

s )(b(X
1
s )− b(X2

s ))ds =

∫ t

0

sgn(X1
s −X2

s )(σ(X
1
s )−σ(X2

s ))dBs,

is martingale. Then, E
[∫ t

0
σ(X1

s )− σ(X2
s )dBs

]
= 0 and we have:

E
[
|X1

t −X2
t |
]
= E

[∫ t

0

sgn(X1
s −X2

s )(b(X
1
s )− b(X2

s ))ds

]
,

≤ KE
[∫ t

0

|X1
s −X2

s |ds
]
.

Grönwall Lemma leads to X1 = X2 a.s. and the conclusion holds for 3..

Under the hypotheses of Theorem 1.2.22, we deduce a comparison theorem for processes
solution of (1.2.1).

Theorem 1.2.23 (Comparison Theorem). For i = 1, 2, let X i be the solution of the
following SDE:

t ≥ 0, X i
t = X i

0 +

∫ t

0

bi(Xs) ds+

∫ t

0

σ(Xs) dBs.

Assume further that for all x ∈ R, b1(x) ≥ b2(x), one of the two functions b1 or b2 is
K-Lipschitz, and X1

0 ≥ X2
0 a.s.. Then, under the hypotheses of Theorem 1.2.22, X1

t ≥ X2
t

for all t ≥ 0 a.s..
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Proof. Without loss of generality, suppose that b1 is Lipschitz. Then, from Tanaka for-
mula:

E
[
(X2

t −X1
t )

+
]
= E

[∫ t

0

1(X2
s>X

1
s )
(b2(X

2
s )− b1(X

1
s ))ds

]
≤ E

[∫ t

0

1(X2
s>X

1
s )
(b1(X

2
s )− b1(X

1
s ))ds

]
≤ K

∫ t

0

E
[
(X2

t −X1
t )

+
]
ds.

Using Grönwall Lemma, we have E [(X2
t −X1

t )
+] = 0 for all t ≥ 0.

We refer to [48] and [91] for further discussions on the existence and uniqueness of solu-
tions, as well as for examples and remarks related to Theorem 1.2.22.

1.3 Diffusion processes

1.3.1 Infinitesimal generator, scale function and speed measure

Let I be an interval with left endpoint l1 ≥ −∞ and right endpoint l2 ≤ +∞. Define X
as the process that takes values in I and such that X is the unique strong solution of:

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs, t ≥ 0, (1.3.1)

where X0 = x0 ∈ I, b and σ are two measurable functions that satisfy:

(ND)’: ∀x ∈ I, σ2(x) > 0,

(LI)’: ∀x ∈ I,∃ε > 0 such that
∫ x+ε
x−ε

|b(y)|
σ2(y)

dy <∞.

Here I is called the state space of the process. The solution of (1.3.1) is defined up to
the first exit time τI := τl1 ∧ τl2 , where for i = 1, 2, τli = inf{t > 0 : Xt = li}. Next, we
denote P(.|X0 = x0) = Px0(.).

Proposition 1.3.1 ([53],[91]). The process X is a strong Markov process with continuous
paths on I, such that Px(τy <∞) > 0 for all x, y ∈ I.

We denote (Pt)t≥0 as the semigroup of the process X.

Definition 1.3.2 (Definition 1.1, Chapter VII in [91]). The infinitesimal generator L of
X is defined by

Lf(x) = lim
t→0

Ptf(x)− f(x)

t
, ∀x ∈ I, (1.3.2)

with f ∈ Dom(L) = {f ∈ C0(I)|Lf ∈ C0(I)}.
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Proposition 1.3.3. The infinitesimal generator L of X is given by:

L : Dom(L) → Dom(L)

f 7→ 1

2
σ2f ′′ + bf ′,

with f ∈ Dom(L) = {f ∈ C0(I)|Lf ∈ C0(I)}.

Proof. Let f ∈ C2(I) with compact support, using Itô formula, we have:

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)b(Xs) +
1

2
f ′′(Xs)σ

2(Xs)ds+

∫ t

0

f ′(Xs)σ(Xs)dBs.

Then, from Definition 1.3.2, for x ∈ I:

Lf(x) = lim
t→0

1

t
Ex
[∫ t

0

f ′(Xs)b(Xs) +
1

2
f ′′(Xs)σ

2(Xs)ds

]
,

= Ex
[
lim
t→0

1

t

∫ t

0

f ′(Xs)b(Xs) +
1

2
f ′′(Xs)σ

2(Xs)ds

]
,

= b(x)f ′(x) +
1

2
σ2(x)f ′′(x).

Definition 1.3.4. Let X be a solution of (1.3.1). A scale function is a continuous,
increasing function from I to R such that, for x ∈ [a, b] ⊂ I,

Px(τa < τb) =
s(x)− s(b)

s(a)− s(b)
.

Note that from Definition 1.3.4, the scale function is unique up to a multiplicative and
an additive constant. Furthermore, the continuity and increasing property of the scale
function can be deduced from the strong Markov property of X.

Proposition 1.3.5. The process s(X.∧τI ) is a local martingale. Furthermore, the scale
function satisfies

1

2
σ2(x)s′′(x) + b(x)s′(x) = 0, (1.3.3)

and for x, c ∈ I, we have:

s(x) =

∫ x

c

exp

(
−2

∫ u

c

b(v)

σ2(v)
dv

)
du. (1.3.4)

Proof. Let τ < τI be a stopping time for the process X. Applying the strong Markov
property, we have:

Ex
[
s(Xτ )− s(b)

s(a)− s(b)

]
= Ex

[
E
[
1(τa<τb)|Fτ

]]
,

=
s(x)− s(b)

s(a)− s(b)
.

Then s(X.∧τI ) is a local martingale. The differential equation (1.3.3) is obtained by
applying the general Itô formula (see Remark 1.1.3).
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Let τ[a,b] = {t > 0 : Xt /∈ [a, b]}, we now introduce the speed measure of the process X.

Theorem 1.3.6 (Theorem 3.6, Chapter VII in [91]). There exists a unique strictly positive
locally finite measure m defined on int(I) such that, for x, a, b ∈ I with a < x < b and
f : R → R, the function x 7→ Ex[f(τ[a,b])] is continuous on the interval [a, b] and we have:

Ex[τ[a,b]] =
∫ b

a

G[a,b](x, y)m(dy),

where,

G[a,b](x, y) =


(s(x)− s(a))(s(b)− s(y))

s(b)− s(a)
if a ≤ x ≤ y ≤ b,

(s(b)− s(x))(s(y)− s(a))

s(b)− s(a)
if a ≤ y ≤ x ≤ b,

0 otherwise.

An alternative definition for the speed measure can be given by the following results.

Theorem 1.3.7 (Theorem 3.12, Chapter VII in [91]). The speed measure m is defined as
the measure such that L can be written as:

Lf =
d

dm

d

ds
f, (1.3.5)

where:
d

ds
f(x) = lim

h→0

f(x+ h)− f(x)

s(x+ h)− s(x)
and

d

dm
g(x) = lim

h→0

g(x+ h)− g(x)∫ x+h
x

m(dy)
.

In this thesis, we mainly consider processes that are solutions of (1.3.1). In this case, the
scale function is always in C1(I) and m is always absolutely continuous with respect to
the Lebesgue measure.

Proposition 1.3.8. Let X be the solution of (1.3.1) then the speed measure m associated
to this process is given by:

m(dx) =
2

σ2(x)s′(x)
dx. (1.3.6)

Proof. Using (1.3.5), we have:

Lf(x) = d

dm

d

ds
f(x) =

1

m(x)s′(x)
f ′′(x) +

2b(x)

m(x)s′(x)σ2(x)
f ′(x).

Then we conclude by identification, using Proposition 1.3.3.

Proposition 1.3.9. Let X be the solution of (1.3.1). Then, for all x ∈ int(I), we have:∫ t

0

1(Xs=x)ds = 0, P-a.s.

In particular, we have Lxt (X) = ℓxt a.s..

Proof. This result follows from a direct application of Proposition 1.1.11 and Theorem
1.1.6.
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1.3.2 Killed process and Fokker-Planck equation

Let X, the process solution of:

Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs, t ≥ 0, (1.3.7)

where x0 ∈ (−∞, c), c ∈ R. Here, b and σ are two Lipschitz functions such that b : R → R
and σ : R → R+. From the previous section, these conditions imply that X is the unique
non-exploding strong solution of (1.3.7). Here, the conditions on b and σ are sufficient
for the results introduced in this section.

We introduce the process X̄, which is the process X killed at the constant boundary c,
i.e.,

X̄t =

 Xt on {t < τc},

∆ otherwise,

where ∆ is the cemetery.

Proposition 1.3.10. The infinitesimal generator L of X̄ is given by:

L : Dom(L) → Dom(L)

f 7→ 1

2
σ2f ′′ + bf ′,

where Dom(L) = {f ∈ C0((−∞, c))|f(c) = 0,Lf ∈ C0((−∞, c))}.

We denote p(x0, t) = Px0(t < τc). The following proposition states the Fokker-Planck
equation associated to p.

Proposition 1.3.11. The function p satisfies the following Fokker-Planck equation:
∂
∂t
p(x0, t) =

σ2(x0)
2

∂2
x20
p(x0, t) + b(x0)∂x0p(x0, t), (t, x0) ∈ R⋆

+ × (−∞, c),

p(c, t) = 0, t ∈ R⋆
+,

p(x0, 0) = 1, x0 ∈ (−∞, c].

Proof. This result is a straight application of Theorem 4.4.5 in [46].

Remark 1.3.12. Let c1, c2 ∈ R such that c1 < c2. Similar results can be obtained for the
process X killed when it leaves the interval [c1, c2]. In this case, x0 ∈ [c1, c2] and for all
t ∈ R⋆

+, the boundary conditions are p(c1, t) = p(c2, t) = 0.
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1.3.3 Boundary classification

In this section, we provide the classification of boundary conditions for the solutions of
stochastic differential equations given by (1.3.1).

Definition 1.3.13 ([49] and [19]). The boundary conditions are classified as follows: for
all l1 < x < l2,

1. The left-hand endpoint l1 is called exit if,∫ x

l1

∫ x

y

m(dz)s′(y)dy <∞.

2. and entrance if, ∫ x

l1

∫ y

l1

m(dz)s′(y)dy <∞.

For all l1 < x < l2,

1. The left-hand endpoint l2 is called exit if,∫ l2

x

∫ y

x

m(dz)s′(y)dy <∞.

2. and entrance if, ∫ l2

x

∫ l2

y

m(dz)s′(y)dy <∞.

• A boundary point, which is both entrance and exit, is called non-singular, i.e., the
process can reach this point with positive probability.

• A boundary point, which is neither entrance nor exit, is called natural, i.e., the
boundary point cannot be reached in finite time. It is not possible to start the process
from this boundary.

• A boundary point, which is entrance but not exit, cannot be reached from an interior
point of I. It is possible to start the process from this boundary.

• A boundary point, which is exit but not entrance, can be reached from an interior
point of I with positive probability. It is not possible to start the process from this
boundary.

In this thesis, we study the behavior of processes with both singular and non-singular
boundaries. We define the notion of instantaneous reflecting boundary in the following
definition.

Definition 1.3.14. Let X be the solution of (1.2.1) and let i = 1, 2 such that {li} is
a non-singular boundary, then {li} is said to be instantaneously reflecting if and only if
Px
(∫ t

0
1(Xs=li)ds = 0

)
= 1.

Remark 1.3.15. For i = 1, 2, if {li} is an instantaneously reflecting boundary, then
according to Proposition 1.3.1, for all y ∈ (l1, l2), we have Pli(τy <∞) > 0.
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1.3.4 Regime of the process

In this section, we define the conditions for a non-exploding strong solution X of (1.2.1) to
be ergodic. The regime of the process is characterized by properties on the scale function s
and the speed measure m defined above. We mainly focus on the case where {l1} and {l2}
are unattainable boundaries. Some remarks will be done in the case where one boundary
is instantaneously reflecting.

Definition 1.3.16 (Invariant measure). A measure µ on (I,B(I)) is called invariant if
for all t ≥ 0, we have: ∫

I

µ(dx)Pt(dy) = µ(dy).

Definition 1.3.17 (Recurrent process). The process X with values in I is said to be
recurrent if:

Px(τy <∞) = 1, for all x, y ∈ I,

otherwise the process is transient. Furthermore, if:

Ex[τy] <∞ for all x, y ∈ I,

then X is positive recurrent, otherwise the process is null-recurrent.

The recurrence property for the process X can be deduced from the scale function. The
following proposition states the relation between the scale function behavior and the
recurrence property.

Proposition 1.3.18. The process X is recurrent if and only if s(l1) = −∞ and s(l2) =
+∞.

Proof. Let l1 < a < x < b < l2, from Definition 1.3.4,

Px(τa < τb) =
s(x)− s(b)

s(a)− s(b)
,

Letting b→ l2, since X is non-exploding, we have:

Px(τa <∞) =
1− s(x)

s(l2)

1− s(a)
s(l2)

.

Then, for all x > a Px(τa <∞) = 1 if and only if s(l2) = +∞. We also have,

Px(τb < τa) =
s(x)− s(a)

s(b)− s(a)
.

The same argument can be applied by letting a → l1. As the scale function is strictly
increasing, we conclude that s(l1) = −∞ and s(l2) = +∞ if and only if X is recurrent.
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Proposition 1.3.19. Let X be a recurrent process with speed measure m, and fix two
measurable functions f, g : I → R+ with f ∈ L1(m) and g > 0 m-almost-surely. Then

lim
t→∞

∫ t
0
f(Xs) ds∫ t

0
g(Xs) ds

=

∫
I
f(x)m(dx)∫

I
g(x)m(dx)

, P-a.s.

Proof. The proof of this result is omitted. For further details, see Lemma 20.14 [53] and
[77].

By abuse of language, positive recurrent processes are often called “ergodic”. In the next,
we refer to an ergodic process as a positive recurrent process. We also denote Eµ[.], when
we are referring to the expectation of a random variable under the measure µ.

Proposition 1.3.20. (Existence invariant measure) Any ergodic process X solution of
(1.2.1) admits an invariant measure.

Proof. The proof of this result is given in Lemma 20.18 in [53].

Proposition 1.3.21. The process X is ergodic if and only if
∫
I
m(dx) <∞. In this case,

we have µ(dx) = m(dx)∫
I m(dx)

.

Proof. Letting a→ l1 and b→ l2 in Theorem 1.3.6, one can easily verify that:

1. For x < b, we have:

Ex[τb] = (s(b)− s(x))

∫ x

l1

m(dy) +

∫ b

x

(s(b)− s(y))m(dy).

2. For x > a, we have:

Ex[τa] = (s(x)− s(a))

∫ l2

a

m(dy) +

∫ x

a

(s(y)− s(a))m(dy).

Then for all x, y ∈ I, Ex[τy] < ∞ if and only if
∫
I
m(dx) < ∞. So X is ergodic and

from Proposition 1.3.20, it admits an invariant measure µ. Let f : I 7→ R+ with bounded
support, using Proposition 1.3.19, Fubini Theorem and dominated convergence, we have:

1

t

∫ t

0

Eµ[f(Xs)]ds −−−→
t→∞

∫
I
f(x) m(dx)∫
I
m(dx)

,

then we get
∫
I
f(x)µ(dx) =

∫
I f(x) m(dx)∫
I m(dx)

and the conclusion holds.

Remark 1.3.22. The previous results can be adapted in the case where {l1} is an in-
stantaneously reflecting barrier. In fact, for the recurrence property, it suffices to have
s(l2) = +∞ and s(l1) < +∞. For further details on the ergodic behaviour of the process
X with differents boundary conditions, we refer to Theorem 20.15 in [53].
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1.4 Some examples of stochastic differential equations

In this section, we introduce some well-known processes solution of SDEs used in this
thesis.

1.4.1 Ornstein-Uhlenbeck process

In the following, we present the Ornstein-Uhlenbeck (OU) process, originally introduced
in [104].

Definition 1.4.1 (Ornstein-Uhlenbeck (OU) process). Let (a, b, σ) ∈ R2 × R⋆
+, x0 ∈ R

and B a Brownian motion. The OU process is solution of:

Xt = x0 +

∫ t

0

a− bXsds+ σBt, t ≥ 0. (1.4.1)

Proposition 1.4.2. There exists a unique strong solution to (1.4.1). Additionally, the
solution is given by:

Xt = x0e
−bt +

a

b
(1− e−bt) + σ

∫ t

0

eb(s−t)dBs, t ≥ 0, (1.4.2)

Furthermore, the process X is a Gaussian process with mean and covariance given by:

E [Xt] = x0e
−bt +

a

b
(1− e−bt) and Cov(Xt, Xs) = σ2e−b(t+s)

(
e2b(t∧s) − 1

2b

)
.

Proof. Existence of a unique strong solution to (1.4.1) follows from Theorem 1.2.8. The
solution (1.4.2) can be obtained by applying Itô formula on (ebtXt)t≥0. Proving that X is
a gaussian process follows directly from (1.4.2).

In finance, the solution of equation (1.4.1) is commonly referred as a Vasicek model.
Typically, the parameter b is selected to be positive, resulting in E[Xt] −−−−→

t→+∞
a
b
, which is

why this process is described as having a mean-reverting property.

Proposition 1.4.3. The process X is ergodic if and only if b ∈ R⋆
+.

Proof. The speed measure and scale function of the process X are given by:

s(x) =

∫ x

e
1
σ2

(by2−2ay)dy and m(dx) =
2

σ2
e−

1
σ2

(bx2−2ax)dx.

Then, using Proposition 1.3.18 and Proposition 1.3.21, we have s(x) −−−−→
x→±∞

±∞ and∫
Rm(dy) <∞ if and only if b ∈ R⋆

+.
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1.4.2 Chan–Karolyi–Longstaff–Sanders process

The Chan–Karolyi–Longstaff–Sanders (CKLS) process is a stochastic process used in
finance. It was first introduced in [27] for modeling the term structure of interest rates.

Definition 1.4.4 (CKLS process). Let (a, b, σ, γ) ∈ R⋆
+ × R+ × R⋆

+ × [1/2, 1] and B a
Brownian motion, the CKLS process X is solution of:

Xt = x0 +

∫ t

0

a− bXsds+

∫ t

0

σ|Xs|γdBs, t ≥ 0, (1.4.3)

where x0 > 0.

This process includes several different models such as the Cox-Ingersoll-Ross (CIR) process
(γ = 1

2
) and the OU process (γ = 0) introduced in Definition 1.4.1.

Proposition 1.4.5. There exists a unique strong solution to (1.4.3).

Proof. Existence of a unique non-exploding strong solution follows from Theorem 1.2.14,
Theorem 1.2.22 and Remark 1.2.16. In fact, we have:

|σxγ − σyγ|2 ≤ ρ(|x− y|) = σ2|x− y|2γ.

Lemma 1.4.6. For the process X solution of the SDE (1.4.3), the following holds:

1. The state space is I = [0,+∞) and the point {0} is instantaneously reflecting, if
γ = 1

2
and a ≤ σ2

2
.

2. Otherwise, the state space is I = (0,+∞) and {0} is an unattainable boundary.

Proof. 1. The state space can be directly deduce from Theorem 1.2.23 and Definition
1.3.13. In fact, taking a = 0 and x0 = 0, one can verify that 0 is solution of
(1.4.3). According to Theorem 1.2.23, we have Xt ≥ 0 a.s.. Then, using the scale
function, the speed measure, and Definition 1.3.13, we can establish that {0} is
a non-singular boundary. It remains now to prove that {0} is an instantaneously
reflecting boundary. Using Theorem 1.1.6, we have:

ℓ0t (X)− ℓ0
−

t (X) = 2a

∫ t

0

1(Xs=0)ds.

As the process is positive, we have ℓ0−t (X) = 0 a.s.. Making use of the occupation
times formula, we obtain:

t ≥
∫ t

0

1(0<Xs)ds =

∫ t

0

1(0<Xs)

σ2Xs

d⟨X,X⟩s =
∫ ∞

0

Lyt (X)

σ2y
dy.

Then L0
t (X) = 0 a.s., and the process X spends no time in zero (see Definition

1.3.14).
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2. Using the boundary classification, we can prove that {0} cannot be reached from
an interior point of (0,+∞) (see Definition 1.3.13).

From the previous lemma, we can remove the absolute values on the SDE (1.4.3). The
following lemma states an alternative construction of the CIR process (γ = 1/2 in (1.4.3)).

Lemma 1.4.7 (Construction of a CIR process). Let (a, b, σ) ∈ R⋆
+×R×R⋆

+ and ∥Yt∥2 =∑n
j=1(Y

(j)
t )2 where (Y

(j)
t )nj=1 satisfy for all j = 1, . . . , n the SDE:

Y
(j)
t = y0 −

b

2

∫ t

0

Y (j)
s ds+

σ

2
B̃

(j)
t , t ≥ 0,

with y0 ∈ R and B̃ = (B̃(j))nj=1 a n-dimensional Brownian motion. Then, X = ∥Y ∥2 is
solution of:

Xt = x0 +

∫ t

0

(
nσ2/4− bXt

)
dt+

∫ t

0

σ
√
XtdBt, t ≥ 0, (1.4.4)

where x0 = ny20 and B is a Brownian motion.

Proof. The proof follows by using a similar reasoning to Theorem 1.2 in Chapter XI of
[91]. By Itô-formula, it holds:

dXt =
n∑
j=1

2Y
(j)
t dY

(j)
t +

1

4

n∑
j=1

σ2dt =
(
nσ2/4− bXt

)
dt+

n∑
j=1

σY
(j)
t dB̃

(j)
t ,

=
(
nσ2/4− bXt

)
dt+ dMt.

where Mt :=
∑n

j=1

∫ t
0
σY

(j)
s dB̃

(j)
s . The process M is a local martingale and, by Levy-

characterization theorem, there exists a Brownian motion B such that Mt =
∫ t
0
σ
√
XsdBs.

Therefore X satisfies (1.4.4). The proof is thus completed.

Remark 1.4.8. In the case where b = 0 in the previous lemma, a Square Bessel process
(see e.g. [52]) can be constructed as the norm of a sequence of Brownian motions.
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Part I

Parameters inference of the
Ornstein-Uhlenbeck process
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The Ornstein-Uhlenbeck (OU) process was introduced by G.E. Uhlenbeck and L.S Orn-
stein in [104]. This model provides a stochastic framework to describe systems that revert
to an average or equilibrium state.

In finance, the OU process has found extensive use, particularly in interest rate modeling.
One prominent application is the Vasicek model, introduced by O. Vasicek in [107]. This
model uses the OU process to capture the dynamics of interest rates over time, assum-
ing they follow a mean-reverting pattern with fluctuations around a long-term mean level.

In addition to finance, the OU process is also widely used in fields such as neuroscience [63],
and other natural sciences to analyze and model various types of dynamic phenomena.
In particular, the OU process can be used to model the dynamics of temperatures. For
instance, as demonstrated by [37] (see also [4]), temperatures tend to distribute around a
mean axis, making it natural to model their evolution through a mean-reverting process.
Given the effectiveness of mean-reverting processes for temperature modeling, estimating
their parameters becomes crucial for accurate risk assessment. In [15], the authors es-
timate the parameters of an OU process to conduct risk measures for phenomena such
as heatwaves. Since meteorological datasets typically only include daily temperature ex-
tremes, their estimation method is built from a sample of suprema from a single trajectory
of the OU process. The authors proposed a least squares method to estimate the OU pa-
rameters. They used the cumulative distribution function of the supremum in integral
form obtained from the findings in [6] on the hitting times of the OU process. Note
that they do not possess statistical properties on their estimators, and furthermore, their
method is computationally expensive.

In this part, our goal is to propose an alternative estimation method for this problem.
Additionally, this method should be less computationally expensive, and we aim to have
statistical properties on our estimators. We focus on parameter estimation for an OU
process based on observations of its supremum. The distribution associated with the OU
supremum, according to [16], is represented as a series of Parabolic Cylinder functions.
Studying the asymptotic behavior of the µ-zeros of the Parabolic Cylinder functions is a
crucial step in deriving the statistical properties of estimators. Therefore, the second part
of this work addresses the properties of the µ-zeros of the Parabolic Cylinder functions.
More precisely, in Chapter 2, we derive an analytical expression for the supremum density.
Making use of the pseudo-likelihood method based on the supremum density, our estima-
tor is constructed as the maximum argument of this function. Using weak-dependence
results, we establish some statistical properties of the estimator such as consistency and
asymptotic normality. Finally, we apply our estimator to simulated and real data. In
Chapter 3, we study some properties of µ-zeros of Parabolic Cylinder functions. This
analysis contributes to a deeper understanding of the behavior of these special functionss,
which are essential for bounding the distribution of the OU supremum. Let Dµ(z) be
the Parabolic Cylinder function. The zeros of the function µ 7→ Dµ(z) are studied with
respect to the real variable z. A formula for the derivative of a zero is established, lead-
ing to some monotonicity results. Additionally, an asymptotic expansion for µ-zeros is
provided when z is a large positive real number. We conclude this part by suggesting
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potential directions for further research and highlighting areas for improvement.

In this part only, we introduce a slight change in notation. Instead of considering an OU
process with parameters (a, b, σ) as in (1.4.1), we consider (a, b, β) with β = σ2. This
change will allow us to be consistent with the parameterization used in [15].

The works presented in this part were published in Statistical Inference for Stochastic
Processes [18] and in Le Mathematiche [17].
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Chapter 2

A pseudo-likelihood estimator of the
Ornstein-Uhlenbeck parameters from

suprema observations

2.1 Introduction

Ornstein-Uhlenbeck processes are often used in various fields such as finance [92, 106],
temperature modeling [4, 22, 37, 38], medicine [103], physics [110], neuroscience [64]. Es-
timation comes together with simulation and modeling, as models need to be calibrated.
Estimators of discretely observed diffusions are presented in [3]. In [64], the authors pro-
pose an estimation based on observations of first hitting times.

We consider a stationary OU process X solution of: dXt = (a− bXt)dt+
√
βdBt,

X0 ∼ N
(
a
b
, β
2b

)
,

(2.1.1)

with parameter θ = (a, b, β) ∈ R × R⋆
+ × R⋆

+, and B a Brownian motion independent
of X0. In this chapter, we focus on the parameter estimation of X when we observe
(S1, · · · , SN), N ∈ N⋆ a set of suprema observations taken over a single trajectory.

This approach has already been proposed in [15], using an estimator constructed by the
least squares method. Few statistical results have been proved on this estimator and it
is computationally expensive to deal with. Our goal is to provide a new estimator with
good statistical properties and less computational cost.

Even if the observations (S1, · · · , SN) are dependent, the sequence has some mixing prop-
erties that imply asymptotic independence. So we estimate the parameter θ using a



pseudo-likelihood method introduced in the early 70’s in [13]. Our estimator is then the
maximal argument of the pseudo-likelihood function:

L(θ) =
N∏
i=1

fSi(S
i, θ),

where fSi is the probability density function associated to the random variable Si.

The estimator requires an expression of the probability density fSi . One contribution
of this work is to propose an explicit expression of this density based on the Parabolic
Cylinder function which is numerically inexpensive. Moreover, with this expression we
obtain the consistency and asymptotic normality properties of the estimator.

Outline: In Section 2.2, we present some properties of the OU supremum sequence, then
we derive the probability density function of the supremum. The estimation method and
the estimator statistical properties are presented in Section 2.3. In Section 2.4, some
numerical experiments on simulated data are performed. We also present an application
of our procedure to a dataset of daily temperature extreme values from Paris [60]. Proofs
are collected in Section 2.5 and some auxiliary results in Section 2.6.

2.2 Some results related to the supremum of an OU
process

Let X be an OU process defined by (2.1.1), (tn)n≥0 a sequence of time such that t0 = 0
and for i ≥ 1, ti − ti−1 = ∆, where ∆ > 0 is fixed. We denote (Si,0)i≥1 the following
sequence of suprema observations on time windows of size ∆:

Si,0 = sup
s∈[ti−1,ti]

Xs.

2.2.1 Properties of the suprema sequence (Si,0)i≥1

In order to present the estimation method, we give some properties of the sequence
(Si,0)i≥1. As the sequence of observations are dependent, some weak dependence no-
tions as mixing properties (see [20, 39] e.g.) are required to get statistical results on the
estimator.

The following result is induced by the properties of the stationary OU process.

Proposition 2.2.1. The sequence (Si,0)i≥1 is stationary, ergodic and exponentially ρ-
mixing.

Proof. Since the process X is stationary and ergodic, then by Theorem 3.5.8 in [95], the
sequence (Si,0)i≥1 is also stationary and ergodic.
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Using the definition in [20], for p ∈ N⋆, the sequence (Si,0)i≥1 is ρ-mixing if it verifies:

ρ(p) = sup
n≥1

sup
f∈L2(Fn0 ),g∈L2(F+∞

n+p)
|Corr(f, g)| −−−−→

p→+∞
0, (2.2.1)

with Fn
0 = σ(Si,0, 1 ≤ i ≤ n) and F+∞

n+p = σ(Si,0, i ≥ n+ p).

From Theorem 2.1 in [47], for all 0 ≤ s ≤ t, for all functions f̃ : C0([0, s],R) → R,
g̃ : C0([t,+∞],R) → R such that f̃ and g̃ are square integrable with respect to the law of
X0, we have:∣∣∣Cov

[
f̃ ((Xu)u≤s) , g̃ ((Xv)v≥t)

]∣∣∣ ≤ e−b(t−s)
√

Var
[
f̃ ((Xu)u≤s)

]
Var [g̃ ((Xv)v≥t)]. (2.2.2)

Therefore, process X is exponentially ρ-mixing.

However, the following inclusions are verified:

σ(Si,0, 1 ≤ i ≤ n) ⊂ σ(Xt, 0 ≤ t ≤ tn) and σ(Si,0, i ≥ n+ p) ⊂ σ(Xt, t ≥ tn+p−1).

Then, the exponentially ρ-mixing property of (Si,0)i≥1 is induced by (2.2.2).

2.2.2 Supremum law

In this section, we give some results on the law of S1,0. Since S1,0 = sups∈[0,∆]Xs, we
can use the existing results on supremum of an OU process. The cumulative distribution
function has already been introduced in [15]. The authors used the Bessel formulation
(see [6] e.g.) which is numerically expensive. In [16], the authors give the supremum
cumulative distribution of the non-stationary OU process with parameter θ = (0, b, 1) in
terms of Parabolic Cylinder function. Using this result, we easily obtain the cdf and the
density of the supremum of a stationary OU process with parameter θ = (a, b, β).

Proposition 2.2.2 (Probability density of the supremum). Let X be an OU process
solution of (2.1.1), with parameter θ = (a, b, β) ∈ R × R⋆

+ × R⋆
+. For ∆ > 0 and c ∈ R,

the probability density of the supremum S1,0 is given by:

f∆(c, θ) =−

√
b

βπ
e−

b
β (c−

a
β )

2∑
n≥1

e−bµn,c,θ∆

−∆b
D2
µn,c,θ−1

(
−(c− a

b
)
√

2b
β

)
∂µDµn,c,θ

(
−(c− a

b
)
√

2b
β

)2
+ 2

Dµn,c,θ−1

(
−(c− a

b
)
√

2b
β

)
∂µDµn,c,θ−1

(
−(c− a

b
)
√

2b
β

)
∂µDµn,c,θ

(
−(c− a

b
)
√

2b
β

)2
−
D2
µn,c,θ−1

(
−(c− a

b
)
√

2b
β

)
∂2µDµn,c,θ

(
−(c− a

b
)
√

2b
β

)
∂µDµn,c,θ

(
−(c− a

b
)
√

2b
β

)3
 , (2.2.3)

with µn,c,θ the positive (ordered) zeros of the function µ 7→ Dµ

(
−(c− a

b
)
√

2b
β

)
and Dµ(.)

the Parabolic Cylinder function (see Section 2.6).
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Proof. For x0, c ∈ R such that c > x0 and ∆ > 0, by replacing c, x0, ∆ and b respectively
by c− a

b
, x0 − a

b
, β∆ and b

β
in Proposition 3 in [16], we get the cumulative distribution of

the supremum for the non-stationary OU process with parameter θ = (a, b, β).

Integration with respect to the invariant measure X0 ∼ N
(
a
b
, β
2b

)
and Formula (2.6.3)

give the cumulative distribution function of S1,0 for the stationary OU process:

P(S1,0 < c) = −e
−(c−a

b
)2 b
β

√
2π

∑
n≥1

e−bµn,c,θ∆
Dµn,c,θ−1

(
−(c− a

b
)
√

2b
β

)
µn,c,θ∂µDµn,c,θ

(
−(c− a

b
)
√

2b
β

) . (2.2.4)

Then, making use of Proposition 2.6.1, the series in Equation (2.2.4) is differentiable. We
easily get the probability density of the random variable S1,0.

The new cdf expression (2.2.4) is less expensive than the one in [15].

Remark 2.2.3. For ∆ > 0, the support of the random variable S1,0 is R.

2.3 Estimation problem

In this section, we introduce the estimation method of a stationary OU process parame-
ters. As the sample of observations are weak dependent, the basic idea is to use a pseudo-
likelihood approach. The computation of the likelihood is simplified by approximating
the joint probabilities of all data by the product of marginal probabilities.

The data (Si,0)i≥1 are collected on disjoint but consecutive time windows of constant size
∆. Proposition 2.2.1 suggests to sample the initial set of observations by keeping one
observation over k to obtain a sequence of data with less dependence between each other.
Let k ∈ N⋆ and r = (k−1)∆, then the set of observations used in the estimation procedure
is given by:

Si,r = sup
s∈[ti−1+(i−1)r,ti+(i−1)r]

Xs.

The choice k = 1 is equivalent to deal with the initial data (Si,0)i≥1.

Remark 2.3.1. For all r = (k − 1)∆ with k ∈ N⋆, the sequence (Si,r)i≥1 has the same
properties as (Si,0)i≥1.

We consider a stationary OU process with parameter θ0 = (a0, b0, β0) and θ0 ∈ Θ, a
compact subset of R × R⋆

+ × R⋆
+. We denote Pθ0 the probability measure associated to

marginals from the sequence (Si,r)i≥1.

Let N ∈ N⋆ and (S1,r, · · · , SN,r) be a sample from the sequence (Si,r)i≥1. The pseudo-
likelihood LrN associated to the sub-sequence is given by:

LrN(θ) =
N∏
i=1

f∆(S
i,r, θ). (2.3.1)
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The OU process parameter θ0 = (a0, b0, β0) is estimated by:

θ̂N = (âN , b̂N , β̂N) = Argmax
θ∈Θ

LrN(θ). (2.3.2)

The results on the sequence (Si,r)i≥1 allow to get statistical properties on the estimator.
A basic but necessary result is the identifiability of the statistical model.

Proposition 2.3.2. The statistical model P = {Pθ, θ ∈ Θ} is identifiable.

The following results state the statistical properties of the estimator.

Theorem 2.3.3. Consider an OU process solution of (2.1.1), with parameter θ0 =
(a0, b0, β0). Assume that θ0 belongs to Θ a compact subset of R × R⋆

+ × R⋆
+. For any

N ∈ N⋆, the estimator θ̂N defined by (2.3.2) is consistent:

θ̂N
Pθ0−−−−→

N→+∞
θ0.

Using Central Limit Theorem on ρ-mixing sequence of random variables, the asymptotic
normality of the estimator follows.

Theorem 2.3.4. For any N ∈ N⋆ and r >
ln( 5

3)
b0

, the following convergence is satisfied:

√
N(θ̂N − θ0)

law−−−−→
N→+∞

N3(0, I
−1
θ0

), (2.3.3)

where Iθ0 is the Fisher information matrix given by:

Iθ0 = Eθ0
[(

∇θ log f∆(., θ)|θ=θ0
) (

∇θ log f∆(., θ)|θ=θ0
)T]

.

Proofs of Proposition 2.3.2, Theorems 2.3.3 and 2.3.4 are postponed in Section 2.5.

2.4 Numerical experiment

In this section, we discuss the existence of an optimal gap r used in the estimation
procedure. Then, we apply our estimation method to a simulated dataset and a real
dataset. Part of of this section is dedicated to the comparaison between our method and
the one proposed in [15].
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2.4.1 Trade off between the number of observations and the gap
r

For N ∈ N⋆ and r = (k − 1)∆ with k ∈ N⋆, an important aspect of this study is the
choice of the sample as we take the set of observations from the sequence (Si,r)1≤i≤⌈N/k⌉
rather than (Si,0)1≤i≤N , where ⌈.⌉ is the ceiling function. The right choice of the gap r
between supremum observations is given by controlling the upper bound of an appropriate
inequality. Indeed for a fixed dataset, creating a gap between the observations of the
supremum removes a quantity of observations in the sample used. For r = (k − 1)∆ and
k ∈ N⋆, we have:

E

[(
1

⌈N/k⌉
logLr⌈N/k⌉ −

1

⌈N/k⌉
E
[
logLr⌈N/k⌉

])2
]
≤

Var(log(f∆(S1,r, θ)))

 1

⌈N/k⌉
+

2

⌈N/k⌉2
∑

1≤i<j≤⌈N/k⌉

Cov(log(f∆(Si,r, θ), log(f∆(Sj,r, θ))

 .

(2.4.1)

The inequality (2.4.1) bounds the variance of the pseudo-likelihood. As (Si,r)i≥1 is iden-
tically distributed, the quantity 1

⌈N/k⌉E
[
logLr⌈N/k⌉

]
does not depend on k and N . For

N ∈ N⋆ observations and a time window of size ∆, there exists an r∗ which minimizes the
upper bound of this inequality.

Proposition 2.4.1. Consider an OU process solution of (2.1.1) with parameter θ0 =
(a0, b0, β0). The optimal upper bound of (2.4.1) is reached for r∗ = (k∗ − 1)∆ with

k∗ = Argmin
1≤k≤N

g(∆, N, k, θ0),

and

g(∆, N, k, θ0) = C

(
1

⌈N/k⌉
+

2

⌈N/k⌉2
eb0∆

eb0k∆ − 1

[
⌈N/k⌉+ eb0k∆

(
e−b0k⌈N/k⌉∆ − 1

eb0∆k − 1

)])
and C a strictly positive constant.

Proof. Using inequality (2.4.1) and the ρ-mixing property on the sequence (log(f∆(Si,r, θ)))1≤i≤⌈N/k⌉,
we obtain the following inequality:

E

[(
1

⌈N/k⌉
logLr⌈N/k⌉ −

1

⌈N/k⌉
E
[
logLr⌈N/k⌉

])2
]
≤ g(∆, N, k, θ0).

To obtain the optimal r = (k − 1)∆, it is enough to minimize the function g:

k∗ = Argmin
1≤k≤N

g(∆, N, k, θ0).
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The appropriate gap for the estimation is r⋆ = (k⋆ − 1)∆.

Remark 2.4.2. In the case where the minimal argument is not unique, we choose the
largest one. As we will have fewer observations when k⋆ is larger, the minimisation
algorithm will be numerically less expensive. Moreover, the larger k⋆, the greater the
observations are decorrelated. Thus, the pseudo-likelihood will be more suitable for our
model.

Remark 2.4.3. When we deal with a real dataset, we do not know the value of the
parameter θ0. To find r⋆, we first need to compute some bounds, see an example in [15].

2.4.2 Numerical simulation

Numerical issues emerge from the µ-zeros of Dµ(c) involved in the probability density.
For large values of |c|, the µ-zeros are no longer computable through dichotomy. We use
the asymptotic expansions (2.6.8) and (2.6.9) to evaluate the density for large values of
|c|. In the pseudo-likelihood maximization, a multi-start method with 10 repeats is also
used to reduce the instability.

• Simulated data:

We simulate a stationary OU process with parameter θ0,1 = (a0,1, b0,1, β0,1) = (0, 1, 1) using
an Euler scheme with T = 103 and dt = 10−3. We denote (N, r), the set of numerical
parameters, with N the number of suprema observations and r the gap between these
observations. We apply our estimation method for ∆ = 1. Repeating this process 100
times, we obtain a sample of our estimator. We also performed the estimation method
for the parameter θ0,2 = (a0,2, b0,2, β0,2) = (20.9, 0.95, 47.5). From Proposition 2.4.1, for
θ0,1 and θ0,2 with N = 1000, we have r⋆ = 1. Simulations will be carried out for three
different sets of numerical parameters, (1000, 0), (500, 1) and (250, 3). Each estimation
will be compared using the relative root-mean-square error (RMSE) and the mean-error
(ME).
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(1) (2) (3)

(4) (5) (6)

Figure 2.1: Boxplots of the estimated parameters: (1), (2), (3) θ0,1 = (a0,1, b0,1, β0,1) =
(0, 1, 1); (4), (5), (6) θ0,2 = (a0,2, b0,2, β0,2) = (20.9, 0.95, 47.5). The red line corresponds
to the theoretical value of the parameters.

Numerical parameters Relative RMSE ME

(250,3) (0.0436, 0.0855, 0.0731) (0.0240, 0.0114, 0.0201)

(500,1) (0.0265, 0.0472, 0.0572) (0.0081, -0.0048, 0.0198)

(1000,0) (0.0279, 0.0507, 0.0473) (0.0033, 0.0044, 0.0032)

Table 2.1: Table of the relative RMSE and ME for the estimator of θ0,1 = (a0,1, b0,1, β0,1) =
(0, 1, 1) with different numerical parameters.
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Numerical parameters Relative RMSE ME

(250,3) (0.0154, 0.0615, 0.0701) (-0.1072, -0.0063, -0.6946)

(500,1) (0.0109, 0.0351 , 0.0557) (-0.0538, -0.0096, -1.0821)

(1000,0) (0.0113, 0.0348 , 0.0578) (-0.0482, -0.0074, -1.0693)

Table 2.2: Table of the relative RMSE and ME for the estimator of θ0,2 = (a0,2, b0,2, β0,2) =
(20.9, 0.95, 47.5) with different numerical parameters.

Relative RMSE are small enough and validate the results on the trade off between the
number of observations and the time gap r.

The overestimation/bias on the β estimator comes from the decrease of β 7→ LrN(a, b, β).
As β becomes greater than b, the pseudo-likelihood function becomes flat in β. Conse-
quently, the β estimator will have a big variation, which slowly decreases as the number
of observations increases. Better results can be obtained by fixing β and performing the
estimation method on parameters a and b (2D-estimation).

Using Theorem 2.3.3 in [93], we look at the probability that θ0,1 and θ0,2, fall into the
95% confidence ellispoïd for the set of numerical parameters (500, 1).

(a) βb plane (b) βa plane

(c) ba plane

Figure 2.2: Cut planes of the 95% confidence ellispoïd associated to the estimator of
θ0,1 = (0, 1, 1) and the set of numerical parameters (N, r) = (500, 1).
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As a consequence of a small variance and a relatively high bias on the β estimator, the
parameters θ0,1 and θ0,2 fall infrequently into the 95% confidence ellispoïd. For the 2D-
estimation problem (β fixed), both parameters fall into the 95% confidence ellipse with a
≈ 93% probability for the same set of numerical parameters.

• Weather data:

In [58], we can find the daily temperatures of Paris. This dataset is one of the longest we
can find, as it started in 1900. In this dataset, we find the daily maximum and minimum
temperature measurements as well as the average daily temperature. We choose to focus
this study on the maximum temperatures from 15th of June to 14th of August from 1950
to 1984 (2135 days), using a gap of one day between each daily extreme values.

A multi-start method is also used for the estimation. We obtain the following estimates:
(a, b, β) = (18.0866, 0.9510, 36.0201).

We use the same approches as [15], to compare the two different estimation methods. The
first validating method is the prediction. We take the mean temperature of 14/06/1985
as the starting point for the simulation of our 10-day process and we make confidence
intervals on 1000 simulations of the maximum temperatures for each of these days and
compare them with the true temperature values (between 15/06/1985 and 24/06/1985).
The second method compares the theoretical quantiles with the empirical quantiles.

Figure 2.3: 95% confidence interval for daily extreme temperatures between 15/06/1985
and 24/06/1985, and Quantile-Quantile Graph.

The results are slightly better as [15] for the QQ-plot and the prediction method.

Our method is more efficient in computation time and in accuracy. In [15], the evaluation
of the cumulative distribution function required a very expensive Monte Carlo method.
Their estimation procedure took a week for the computation of the estimator, our method
takes only a few minutes on the same machine.
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2.5 Proofs

This section is dedicated to the proofs of Proposition 2.3.2, Theorem 2.3.3 and Theorem
2.3.4.

2.5.1 Proof of Proposition 2.3.2

Identifiability of the statistical model P depends on the injectivity of the supremum
law. For the sake of proof, we denote (Xθ

t )t≥0 a stationary OU process with parameter
θ = (a, b, β) and Sθt = sups≤tX

θ
s . Using (2.6.5), the cdf of the supremum (2.2.4) can be

rewritten:

P(Sθt < c) =
1

2
√
π
e−(c−a

b
)2 b
β

∑
n≥1

e−bµn,c,θt
D2
µn,c,θ−1

(
−(c− a

b
)
√

2b
β

)
∫ (c−a

b
)
√

b
β

−∞ D2
µn,c,θ

(
−x

√
2
)
dx

. (2.5.1)

We prove the injectivity of the measure Pθ associated with the random variable Sθt for t
fixed. We suppose, by absurd, that there exists θ1 = (a1, b1, β1) and θ2 = (a2, b2, β2) such
that Pθ1 = Pθ2 i.e.:

∀c ∈ R, P(Sθ1t < c) = P(Sθ2t < c). (2.5.2)

In particular; the equality is satisfied for c→ ∞. Using the asymptotic expansion (2.6.13)
with the three parameters variable change, we get:

1− e
−(c−a1

b1
)2
b1
β1

2
√
π
(
c− a1

b1

)√
b1
β1

(1 + o(c−2+δ)) = 1− e
−(c−a2

b2
)2
b2
β2

2
√
π
(
c− a2

b2

)√
b2
β2

(1 + o(c−2+δ)),

with 0 < δ < 2. Therefore(
c− a2

b2

)√
b2
β2(

c− a1
b1

)√
b1
β1

e
−(c−a1

b1
)2
b1
β1

+(c−a2
b2

)2
b2
β2 = 1 + o(c−2+δ)

⇐⇒ lim
c→+∞

c2−δ


(
c− a2

b2

)√
b2
β2(

c− a1
b1

)√
b1
β1

e
−c2

(
b1
β1

− b2
β2

)
+2c

(
a1
β1

− a2
β2

)
+

a21
b1β1

− a22
b2β2 − 1

 = 0.

We deduce that b1
β1

= b2
β2

= b
β

and a1
β1

= a2
β2

= a
β

and thus µn,c,θ1 = µn,c,θ2 = µn,c. Making
use of (2.5.2) and (2.5.1), we have:

∑
n≥1

(
e−b1µn,ct − e−b2µn,ct

) D2
µn,c−1

(
−(c− a

b
)
√

2b
β

)
∫ (c−a

b
)
√

b
β

−∞ D2
µn,c

(
−x

√
2
)
dx

= 0.
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Since
D2
µn,c−1

(
−(c−a

b
)
√

2b
β

)
∫ (c−a

b
)
√

b
β

−∞ D2
µn,c(−x

√
2)dx

> 0, then the previous sum is strictly positive if b1 < b2

(resp. strictly negative if b1 > b2) because all the terms are strictly positive (resp. strictly
negative). We deduce that b1 = b2, so β1 = β2 and a1 = a2.

Therefore the measure Pθ associated with the variable Sθt is identifiable.

2.5.2 Proof of Theorem 2.3.3

Thereafter, without loss of generality, we suppose θ = (0, b, 1). In the case of three
parameters, the arguments are the same. In the following we write b instead of θ and Θ is
then a compact subset of R⋆

+. To prove the consistency of the estimator θ̂N , we adapt the
proof of Corollary 3.2.9 in [33]. We first prove some regularity properties on the density
f∆ with respect to the parameter b.

Lemma 2.5.1. Let X be an OU process solution of (2.1.1), with parameter b0 ∈ Θ, the
following conditions are satisfied:

1. For all c ∈ R, b 7→ log(f∆(c, b)) is continuous on Θ.

2. For all b ∈ Θ, there exists a neighborhood V of b and G ∈ L1(Pb0) such that:

sup
η∈V

| log(f∆(., η)| ≤ G, (2.5.3)

with f∆ the probability density function of the supremum.

Proof. 1. Continuity of b 7→ log(f∆(c, b)) for all c ∈ R is proved using Proposition 2.6.1
in Section 2.6.

2. Using Corollary 2.6.5 and Corollary 2.6.9, there exists C > 0, G1 ∈ L1(Pb0) and
G2 ∈ L1(Pb0) such that for all η in a neighborhood V of b ∈ Θ:

∀c ≤ −C, |log(f∆(c, η))| ≤ G1(c),

∀c ≥ C, |log(f∆(c, η))| ≤ G2(c).

As (c, b) 7→ log(f∆(c, b)) is continuous on R× R⋆
+, we have:

∀(c, η) ∈ [−C,C]× V, |log(f∆(c, η))| ≤ K,

with K > 0. Then, for all η ∈ V and c ∈ R:

sup
η∈V

| log(f∆(c, η)| ≤ G1(c)1]−∞,−C[(c) +K1[−C,C](c) +G2(c)1]C,+∞[(c)︸ ︷︷ ︸
G(c)

.

We easily prove that G ∈ L1(Pb0) and the conclusion holds.
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Combining the results of the previous lemma with Proposition 2.3.2 and the Ergodic
Theorem (see [14] e.g.), we can prove Theorem 2.3.3. More precisely, for a sample
(S1,r, · · · , SN,r) with N ∈ N⋆, the maximum pseudo-likelihood estimator is the maximal
argument of the function:

MN(b) =
1

N

N∑
i=1

log

(
f∆(S

i,r, b)

f∆(Si,r, b0)

)
.

For all b ∈ Θ, the strict concavity of the logarithm function and Jensen’s inequality, give:

Eb0
[
log

(
f∆(S

i,r, b)

f∆(Si,r, b0)

)]
< 0. (2.5.4)

According to the Ergodic Theorem, the following convergence holds:

MN(b)
Pb0 -a.s.
−−−−→
N→+∞

M(b) = Eb0
[
log

(
f∆(., b)

f∆(., b0)

)]
. (2.5.5)

Using Lemma 2.5.1, we prove that the convergence in Equation (2.5.5) is uniform.

To conclude, M(b) is the Kullback-Leibler divergence and according to Proposition 2.3.2,
it reaches its maximum for b = b0, proving that the estimator is consistent.

2.5.3 Proof of Theorem 2.3.4

Asymptotic normality is a basic property used in statistics, details on the classical proof
can be found in [105]. We mainly use the ρ-mixing property to obtain the asymptotic
normality of the estimator. As in the previous section, we consider only the case θ =
(0, b, 1), the three parameters case is obtained by similar reasoning. We introduce the
following notations:

lb(c) = ∂b log(f∆(c, b)) , l̇b(c) = ∂2b log(f∆(c, b)) and l̈b(c) = ∂3b log(f∆(c, b)),

ψN(b) =
1

N

N∑
i=1

lb(S
i,r) , ψ̇N(b) =

1

N

N∑
i=1

l̇b(S
i,r) and ψ̈N(b) =

1

N

N∑
i=1

l̈b(S
i,r).

To obtain the asymptotic normality, the first step is to perform a Taylor expansion of the
function ψ(b̂N) around b0:

√
N(b̂N − b0) =

−
√
NψN(b0)

ψ̇N(b0) +
1
2
(b̂N − b0)ψ̈N(b̄N)

, (2.5.6)

with b̄N a point located between b̂N and b0.

Lemma 2.5.2. For r >
ln( 5

3)
b0

, the following convergence is satisfied:

√
NψN(b0)

law−−−−→
N→+∞

N
(
0,Eb0

(
lb0(.)

2
))
.
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Proof. Convergence is obtained using a Central Limit Theorem for ρ-mixing sequence
[39, Theorem 2]. Three conditions need to be checked to apply this theorem. The first
condition is a direct consequence of the ρ-mixing property of (Si,r)i≥1. The second one is
satisfied from the asymptotic expansions and the smoothness of the cumulative distribu-
tion given in Section 2.6.
Concerning the last condition, it is necessary to check that lim

N→+∞
V
(∑N

i=1 lb0(S
i,r)
)

=

+∞. We notice that, by inclusion of the sigma-fields, the sequence (lb0(S
i,r))i≥1 is ρ-

mixing. Moreover, according to Lemma 2.5.4 below, for any i ≥ 1 the random variable
lb0(S

i,r) is centered. Using Proposition 1.5.1 in [39], we have:

V

(
N∑
i=1

lb0(S
i,r)

)
= Nσ̃2 +O(1), (2.5.7)

with σ̃2 = E[lb0(S1,r)2] + 2
∑+∞

i=1 E[lb0(S1,r)lb0(S
i,r)].

Using the ρ-mixing property, σ̃2 ≥ E[lb0(Si,r)2]3−5e−b0r

1−e−b0r . By assumption r >
ln( 5

3)
b0

, then
σ̃2 > 0. So, according to (2.5.7):

lim
N→+∞

V

(
N∑
i=1

lb0(S
i,r)

)
= +∞.

Since all the conditions are satisfied, we can apply Theorem 2 in [39] and we obtain:
√
NψN(b0)

law−−−−→
N→+∞

N
(
0,Eb0

(
lb0(.)

2
))
.

Remark 2.5.3. The condition r >
ln( 5

3)
b0

remains the same in the three parameters case.

The required conditions on the other quantities involved in the Taylor expansion are listed
in the following lemma:

Lemma 2.5.4. For all b ∈ Θ, the function b 7→ lb(c) is twice continuously derivable
for all c ∈ R. Moreover, EPb0 |lb0(.)| < ∞ and EPb0

∣∣∣l̇b0(.)∣∣∣ exists and is non-zero. The

functions lb0 and l̈b0 are respectively dominated by G(.) and F (.) in L1(Pb0) for all b in a
neighborhood of b0.

Proof. Integrability and differentiability conditions are satisfied using the asymptotic ex-
pansions and the smoothness of the cumulative distribution in Section 2.6. Domination
conditions are verified using the same reasoning as the one in the proof of Lemma 2.5.1.

Combining Lemmas 2.5.2, 2.5.4 and Theorem 2.3.3, we have the following convergence:
√
N(b̂N − b0)

law−−−−→
N→+∞

N (0, I−1
b0

), (2.5.8)

where Ib0 is the Fisher information.
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2.6 Appendix

2.6.1 Parabolic Cylinder function

We recall the definition and some auxiliary results about the Parabolic Cylinder function.
Some of these results can be found in [16, 68].

For all x, µ ∈ R, the Parabolic Cylinder function Dµ (x) is a solution of the differential
equation:  y′′ (z) +

(
µ+ 1

2
− 1

4
z2
)
y (z) = 0,

y(z) ∼
z→+∞

zµe−z
2/4,

(2.6.1)

Moreover for µ ∈ C with Re(µ) > 0 and z ∈ C, the function (z, µ) 7→ Dµ(z) is a
holomorphic function ([68], Chapter 10).

The Parabolic Cylinder function satisfies the following relations:

∂xDµ(x) = µDµ−1(x)−
x

2
Dµ(x). (2.6.2)

For all µ, c ∈ R, ∫ c

−∞
e−

x2

2 Dµ(−x
√
2)dx =

e−
c2

2

√
2
Dµ−1(−c

√
2). (2.6.3)

and, from [68] p286:

Dµ(x
√
2)Dµ−1(−x

√
2) +Dµ(−x

√
2)Dµ−1(x

√
2) =

√
2π

Γ(1− µ)
. (2.6.4)

We recall now some properties on the µ-zeros of the Parabolic Cylinder function. Let
n ∈ N⋆, we denote µn,c, the positive (ordered) zeros of the function µ 7→ Dµ

(
−c

√
2
)
.

Then, thanks to [16] (Proposition 3.14), we have:∫ c

−∞
D2
µn,c(−x

√
2)dx = −µn,c√

2
Dµn,c−1(−c

√
2)∂µDµn,c(−c

√
2). (2.6.5)

According to Proposition 3.2.1 and Proposition 3.3.2 in Chapter 3, we have:

∂cµn,c =
√
2
∂xDµn,c(−c

√
2)

∂µDµn,c(−c
√
2)

(2.6.6)

= − 2
√
π
∫∞
0
e−(2µn,c+1)u+c2 tanh(u)erfc

(
−c
√
tanh (u)

)
du√

sinh(u) cosh(u)

, (2.6.7)

and the following asymptotic expansion is verified:

µn,c =
c→−∞

c2

2
− 1

2
− |c|

2
32−

1
3an +O

(
|c|−

2
3

)
, (2.6.8)
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where an, n ∈ N⋆ are the zeros of the first kind Airy function.

Furthermore, the following convergence is verified:

µn,c −→
c→+∞

n− 1. (2.6.9)

Recall that the zeros an of the first kind Airy function are all real, negative and satisfy
the following inequality ([90]), for n ≥ 1:

−
(
3π

8
(4n− 1)

) 2
3

(
1 +

5

48
(
3π
8
(4n− 1)

)2
)
< an ≤ −

(
3π

8
(4n− 1)

) 2
3

. (2.6.10)

2.6.2 Smoothness of the cumulative distribution function

Some smoothness properties are needed to prove the set of derivations and continuities
of the functions presented in the proof of consistency and asymptotic normality. These
properties will be proved using results on holomorphic functions. Making use of (2.6.6),
we can rewrite the cumulative distribution function as:

P(S1,0 < c) = − e−bc
2

2
√
bπ

∑
n≥1

e−bµn,c,b∆
∂cµn,c,b
µ2
n,c,b

. (2.6.11)

Proposition 2.6.1. The cumulative distribution function of the supremum verifies the
following properties:

1. (c, b) 7→ P(S1,0 < c) is a smooth function on R× R⋆
+.

2. For any k, j ∈ N⋆:

∂kb ∂
j
cP(S1,0 < c) =

∑
n≥1

∂kb ∂
j
cfn(∆, c, b),

with

fn(∆, c, b) = −e
−bc2−bµn,c,b∆

√
2π

Dµn,c,b−1

(
−c

√
2b
)

µn,c,b∂µDµn,c,b

(
−c

√
2b
) . (2.6.12)

Proof. We introduce the following notation, Cθ1≤arg≤θ2
C1≤|.|≤C2

= {z ∈ C s.t. θ1 ≤ arg(z) ≤
θ2 , C1 ≤ |z| ≤ C2}. We denote (z, b) 7→ F̃∆(z, b) the continuation of the cumulative
distribution function on C × C−π

2
<arg<π

2

|.|̸=0 . According to the Implicit Function Theorem,
the function (z, b) 7→ µn,z,b is holomorphic. Then by composition of holomorphic functions,
we deduce that (2.6.12) is holomorphic.

We can write F̃∆ as follows:

F̃∆(z, b) = G̃1(z, b)1
C
π
2<arg<

3
2π

|.|>C ×C
−π

2 ≤arg<π2
|.|>C

(z, b) + G̃2(z, b)1C|.|<C×C
−π

2 ≤arg<π2
0<|.|<C

(z, b)

+ G̃3(z, b)1C
−π

2<arg<
π
2

|.|>C ×C
−π

2 ≤arg<π2
|.|>C

(z, b),
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with C large enough.

For G̃1 and G̃3, using the asymptotic expansion (2.6.8) and the limit (2.6.9), we easily
prove the normal convergence of the associate series.

For G̃2, the normal convergence can be obtained using the following equivalence from [6]:

µn,z,b ∼
n→+∞

2n− 1 +
4bz2

π2
− 2

√
bz2

π

√
4n− 1 + 4

bz2

π2

and

Dµ(z) =
µ→+∞

√
2

(
µ+

1

2

)µ
2

e−(
µ
2
+ 1

4) cos

(
z

√
µ+

1

2
− πµ

2

)(
1 +O(µ− 1

2 )
)
.

From Theorem 3.2 in [88], the conclusion holds.

2.6.3 Asymptotic expansions

For the integrability conditions required in the Ergodic Theorem, some asymptotic ex-
pansions on the cumulative distribution and the probability density of the supremum S1,0

are provided. In the following proofs, without loss of generality we assume θ = (0, b, 1).
To return to the three parameters case, we replace c, ∆, b respectively by c− a

b
, β∆ and

b
β
.

For large positive c

Since the zeros µn,c,b tend to positive integers when c goes to infinity, then we are able to
give an asymptotic expansion for (2.5.1).

Proposition 2.6.2. For large positive c, the cumulative distribution function of S1,0 has
the following asymptotic expansion:

P(S1,0 < c) =
c→+∞

1− e−bc
2

2
√
πbc

(
1 + o(c−2+δ)

)
, (2.6.13)

with 0 < δ < 2.

Proof. Recall that the cumulative distribution function is given by (2.5.1). Using Formula
(2.6.9), we obtain:

P(S1,0 < c) =
c→+∞

1

2
√
π
e−bc

2

 D2
−1(−c

√
2b)∫ c√b

−∞ D2
0(−x

√
2)dx

+
∑
n≥1

e−bn∆
D2
n−1(−c

√
2b)∫ c√b

−∞ D2
n(−x

√
2)dx

 .
(2.6.14)

According to Formula (10.5.4) in [68]:

e−bc
2

2
√
π

D2
−1(−c

√
2b)∫ c√b

−∞ D2
0(−x

√
2)dx

=
1

2

(
1 + erf(c

√
b)
)
,
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where erf(c) = 2√
π

∫ c
0
e−t

2
dt is the Error function. Then applying Formulas (4.9.6) and

(4.13.4) in [68], we get:

∞∑
n=1

e−bn∆
D2
n−1(−c

√
2b)∫ c√b

−∞ D2
n(−x

√
2b)dx

=
c→+∞

e
−bc2 1−e−b∆

1+e−b∆O(1).

As we combine these two results, we get:

P(S1,0 < c) =
c→+∞

1

2

(
1 + erf(c

√
b)
)
+ e

−bc2 1−e−b∆

1+e−b∆O(1).

Since 1− erf(c) =
c→+∞

e−c
2

√
πc
(1 +O(c−2)), the conclusion holds.

Proposition 2.6.3. For large positive c, the asymptotic expansion of the probability den-
sity of S1,0 is given by:

f∆(c, b) =
c→+∞

√
b

π
e−bc

2

(
1 + ce

−bc2 1−e−b∆

1+e−b∆O(1)

)
, (2.6.15)

with |O(1)| ≤ 4
√
be−b∆√

π(1−e−2b∆)
.

Proof. When c goes to infinity, using (2.6.14) the derivative of the cumulative distribution
function satisfies:

f∆(c, b) =
c→+∞

√
b

π
e−bc

2

+
1

2
√
π
∂c

e−bc2∑
n≥1

e−bn∆
D2
n−1(−c

√
2b)∫ c√b

−∞ D2
n(−x

√
2)dx

 .
Using Formulas (4.9.5) and (4.13.4) in [68], one can prove that:

∂c

e−bc2∑
n≥1

e−bn∆
D2
n−1(−c

√
2b)∫ c√b

−∞ D2
n(−x

√
2)dx

 =
c→+∞

ce
− 2bc2

1+e−b∆O(1),

with |O(1)| ≤ 8be−b∆√
π(1−e−2b∆)

.

Remark 2.6.4. We have:

f∆(c, b) =
c→+∞

e−bc
2

√
b

π

(
1 + o(c−α)

)
,

with α > 0.

Corollary 2.6.5. For large positive c,

log (f∆(c, b)) =
c→+∞

−bc2 + 1

2
log

(
b

π

)
+ ce

−c2b 1−e
−∆b

1+e−∆bO(1), (2.6.16)

with |O(1)| ≤ 16
√
be−b∆

3
√
π(1−e−2b∆)

.
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A similar reasoning as the one in the proof of Proposition 2.6.2 and Proprosition 2.6.3
may be applied to prove the following results:

Proposition 2.6.6. For large positive c, the following asymptotic expansions are satisfied:

1. ∂b log (f∆(c, b)) =
c→+∞

−c2 + 1
2b
+ c3e

−bc2 1−e−b∆

1+e−b∆O(1).

2. ∂2b log (f∆(c, b)) =
c→+∞

− 1
2b2

+ c5e
−bc2 1−e−b∆

1+e−b∆O(1).

3. ∂3b log (f∆(c, b)) =
c→+∞

1
b3
+ c7e

−bc2 1−e−b∆

1+e−b∆O(1).

For large negative c

Using (2.6.7) and (2.6.8), we can give an asymptotic expansion for the cumulative distri-
bution function of S1,0 for large negative c.

Proposition 2.6.7. For large negative c, the cumulative distribution function of S1,0 has
the following asymptotic expansion:

P(S1,0 < c) = 2|c
√
b|−3 e

−bc2−
(
c2b
2

− 1
2

)
b∆+|c|

2
3 b

4
3 2−

1
3 a1∆

√
π

(1 + o(1)), (2.6.17)

where a1 is the first zero of the Airy function of the first kind.

Proof. Formula (2.6.11) gives:

P
(
S1,0 < c

)
= −e

−bc2−b∆µ1,c,b

2
√
π

∂cµ1,c,b√
bµ2

1,c,b

(
1 +

∑
n≥2

e−b∆(µn,c,b−µ1,c,b)
µ2
1,c,b∂cµn,c,b

µ2
n,c,b∂cµ1,c,b

)
.

From the asymptotic expansion of µ-zeros for large negative c (2.6.7) and (2.6.8), it follows
that:

∂cµ1,c,b√
bµ2

1,c,b

=
c→−∞

−4|c
√
b|−3(1 + o(1)),

µ2
1,c,b∂cµn,c,b

µ2
n,c,b∂cµ1,c,b

−→
c→−∞

1 if n < N(c, b) = ⌊2bc
2

3π
+

1

4
⌋+ 1,

µ2
1,c,b∂cµn,c,b

µ2
n,c,b∂cµ1,c,b

−→
c→−∞,n→∞

0 if n > N(c, b).

Therefore for all ϵ > 1, there exists C > 0 such that for all c < −C, we get:

∑
n≥2

e−b∆(µn,c,b−µ1,c,b)
µ2
1,c,b∂cµn,c,b

µ2
n,c,b∂cµ1,c,b

< ϵ
∑
n≥2

e−b∆(µn,c,b−µ1,c,b).
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Using (2.6.10), we easily prove that for large negative c,∑
n≥2

e−b∆(µn,c,b−µ1,c,b) = e−b∆(µ2,c,b−µ1,c,b)O(1) = o(1).

We then conclude the proof with (2.6.8).

Using similar arguments, we can prove the following result:

Proposition 2.6.8. For large negative c, the asymptotic expansion of the probability
density of S1,0 is given by:

f∆(c, b) = 2|c|−2 e
−bc2−

(
c2b
2

− 1
2

)
b∆+|c|

2
3 b

4
3 2−

1
3 a1∆

√
π

(2 + ∆b)(1 +O(|c|−
2
3 )). (2.6.18)

Corollary 2.6.9. For large negative c,

log f∆(c, b) = −bc2−
(
c2b

2
− 1

2

)
b∆+|c|

2
3 b

4
32−

1
3a1∆+log

2(2 + ∆b)√
π

−2 log(|c|)+O(|c|−
2
3 ).

A similar reasoning as the one in the proof of Proposition 2.6.7 may be applied to prove
the following:

Proposition 2.6.10. For large negative c, the following asymptotic expansions are sat-
isfied:

1. ∂b log(f∆(c, b)) = −c2 −∆
(
c2b− 1

2
− |c| 23 2

2
3 b−

2
3

3
a1

)
+ ∆

2+∆b
+ |c|− 2

3O(1).

2. ∂2b log(f∆(c, b)) = −∆
(
c2 + |c| 23 2

5
3 b−

5
3

9
a1

)
− ∆2

(2+∆b)2
+ |c|− 2

3O(1).

3. ∂3b log(f∆(c, b)) = ∆|c| 23 5
27
2

5
3 b−

8
3a1 +

2∆3

(2+∆b)3
+ |c|− 2

3O(1).
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Chapter 3

Some properties for µ-zeros of
Parabolic Cylinder functions

3.1 Introduction

Since the mid-twentieth century, real and complex zeros of special functions such as
Bessel functions, Parabolic Cylinder functions, Hankel functions etc. have been intensively
studied for various applications in physics, applied mathematics and engineering.

Studies on zeros for a special function of order µ and argument z have been performed
by several authors. For example, Olver finds the z-zeros of Parabolic Cylinder functions
[87] for large values of µ. The case of Bessel functions has been frequently studied (see
for example Olver [86], Watson [109], Laforgia and Natalini [61]). In [40], the author
presents a selection of results on the zeros of Bessel functions. Other authors have been
interested in the z-zeros of Hermite functions or Confluent Hypergeometric functions (see
for example Elbert and Muldoon [41], [42]). In [41], the authors study the variation of
the z-zeros of the Hermite function and establish a formula for the derivative of a zero
with respect to the parameter µ.

Fewer studies have been published on the µ-zeros. In [78] or [56], the authors study
the behavior of the µ-zeros of the Hankel function of the first kind. Later on, these
results were improved by Cochran [29]. Conde and Kalla [30] compute the µ-zeros of the
Bessel function. Slater [94] gives an asymptotic formula for large µ-zeros of the Parabolic
Cylinder function when z is fixed. Besides that, little is known about the µ-zeros of the
Parabolic Cylinder function.

In this chapter we study the µ-zeros of the Parabolic Cylinder function, solution of the
differential equation:  y′′ (z) +

(
µ+ 1

2
− 1

4
z2
)
y (z) = 0,

y(z) ∼
z→+∞

zµe−z
2/4,

where the Parabolic Cylinder function, denoted Dµ(z), is to be considered as function of
its order µ.



The aim of this chapter is to complete Slater’s study and to propose a formula for µ-zeros
for large values of z. We also establish a formula for the derivative of a µ-zero and deduce
some monotonicity results. Since the z-zeros of Hermite functions are linked to those
of Parabolic Cylinder functions, our analysis is based on the results of [41]. Asymptotic
expressions for the µ-zeros are derived from the expansion of Olver [87]. Our analysis is
similar to that of [29] for Hankel functions. This study is motivated by applications in
Statistics. Indeed the µ-zeros of the Parabolic Cylinder function then appear in the law of
the first time the Ornstein Uhlenbeck process hits a given level or in the law of its running
supremum ([6], [16]). The estimation of the Ornstein Uhlenbeck parameters is a subject of
interest in Statistics. The purpose of the parameter estimation is to provide a basis from
which this process can be used in empirical applications (in finance, temperature modeling,
medicine, physics...). Some authors proposed an estimation based on the observations
of the first passages times ([64]) or of the supremum of this process ([18]). To obtain
statistical properties on the estimators such as consistency and asymptotic normality, we
need to check some integrability properties on the law of these observations. To do this,
the asymptotic behavior of these µ-zeros is required.

The chapter is organized as follows: in Section 3.2 we present some properties for the
µ-zeros of the Parabolic Cylinder function Dµ(z). Section 3.3 focuses on the behavior of
the µ-zeros for large z. Moreover, numerical verifications of the asymptotic expansion are
displayed. Only real parameters are considered in this chapter.

3.2 Variation of zeros

In this section we present some properties for the µ-zeros of the Parabolic Cylinder func-
tion Dµ(z) with respect to the real variable z. Since the function is holomorphic (see [68],
ch. 10) in the complex plane, the set of µ-zeros has no accumulation points and there is a
countably infinite number of zeros. Moreover, in real cases they are strictly positive [16].
In the following, we denote by (µn(z))n≥1 the ordered sequence of zeros of the function
µ 7→ Dµ(z).

The following proposition gives some monotonicity properties of the zeros.

Proposition 3.2.1. For all n ∈ N∗ :

1. The first derivative of the n− th µ-zero is given by:

∂zµn (z) =
2

√
π
∫∞
0
e−(2µn(z)+1)u+ z2

2
tanh(u)erfc

(
z
√

tanh(u)
2

)
du√

sinh(u) cosh(u)

(3.2.1)

2. The function z 7→ µn (z) is strictly increasing and convex.

Proof. 1. Let z(µ, α) be a zero of the function z 7→ cos(α)Hµ(z)+sin(α)Gµ(z) where α
is fixed and Hµ(z) and Gµ(z) are linear independent solutions of y′′−2zy′+2µy = 0
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with Hµ(z) ∼ (2z)µ and Gµ(z) ∼ 1√
π
Γ(1 + µ)z−µ−1ez

2 when z → +∞. In [41], the
authors compute the derivative with respect to µ and obtain

∂µz(µ, α) =

√
π

2

∫ ∞

0

e−(2µ+1)u+z(µ,α)2 tanh(u)erfc
(
z(µ, α)

√
tanh(u)

) du√
sinh (u) cosh (u)

.

Since Dµ(z) = 2−
µ
2 e−

z2

4 Hµ

(
z√
2

)
, then choosing α = 0 the result is a direct conse-

quence of the local inversion theorem.

2. Elbert and Muldoon [41] (Corollary 7.2) prove that µ 7→ z(µ, α) is completely
monotonic : ∂µz(µ, α) > 0, (−1)k∂k+1

µ z(µ, α) ≥ 0, k = 1, 2, . . . , n. The conclusion
follows from the local inversion theorem.

If z = 0, Formula (3.2.1) can be simplified. Indeed, the zeros (µn(0))n≥1 of µ 7→ Dµ(0)
are the positive odd integers, µn(0) = 2n− 1. In this particular case, (3.2.1) becomes:

∂zµn (z) |z=0 =
2

√
π
∫∞
0

e−(4n−1)udu√
sinh(u) cosh(u)

=


2√
π

if n = 1,

2√
π(n−1)B(n−1, 3

2)
if n ≥ 2.

Remark 3.2.2. We can prove that the function z 7→ µn (z) is strictly increasing without
using the form (3.2.1) of the derivative ∂zµn (z). Indeed, on the one hand, thanks to [16]
(Proposition 3.14), we have:∫ ∞

z

D2
µn(z) (x) dx = −µn (z)Dµn(z)−1 (z) ∂µDµn(z) (z) .

On the other hand, by differentiating Dµn(z) (z) = 0 with respect to z, we get:

∂µDµn(z) (z) ∂zµn (z) + µn (z)Dµn(z)−1 (z) = 0.

Therefore

∂µDµn(z) (z) = −
µn (z)Dµn(z)−1 (z)

∂zµn (z)
.

So that we finally get

∂zµn (z) =
µn (z)

2D2
µn(z)−1 (z)∫∞

z
D2
µn(z)

(x) dx
> 0.

As a consequence of (3.2.1), we obtain some bounds on the derivative of a µ-zero with
respect to z.

Corollary 3.2.3. The following inequalities hold:

1. If z > 0, then µn (z) > 1 for all n ∈ N∗ and

4
√
π (µn (z)− 1)B

(
µn(z)−1

2
, 3
2

) ≤ ∂zµn (z) ≤
4e−

z2

2

√
π (µn (z)− 1) erfc

(
z√
2

)
B
(
µn(z)−1

2
, 3
2

) .
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2. If z < 0, then 0 < µ1(z) < 1 and µn (z) > 1 for n ≥ 2. We also have

2e−
z2

2

cµ1(z)
√
πerfc

(
z√
2

) ≤ ∂zµ1 (z) ≤
2√

πcµ1(z)
,

4e−
z2

2

√
π (µn (z)− 1) erfc

(
z√
2

)
B
(
µn(z)−1

2
, 3
2

) ≤ ∂zµn (z) ≤
4

√
π (µn (z)− 1)B

(
µn(z)−1

2
, 3
2

) , n ≥ 2,

where cµ1(z) ∈
[
1 π

2

)
is a constant depending on µ1(z).

Proof. 1. If z = 0, the zeros (µn(0))n≥1 are the positive odd integers. Since the z 7→
µn (z) is strictly increasing (see Proposition 3.2.1), then for z > 0, we get:

µn (z) > µn (0) ≥ µ1 (0) = 1, n ∈ N∗.

Since u is positive, then tanh (u) ∈ [0, 1] and

e
z2

2 erfc

(
z√
2

)
≤ e

z2

2
tanh(u)erfc

(
z

√
tanh(u)

2

)
≤ 1.

Moreover, µn (z) > 1 for all n ∈ N∗, then∫ ∞

0

e−(2µn(z)+1)u√
sinh(u) cosh(u)

du =
µn (z)− 1

2
B

(
µn (z)− 1

2
,
3

2

)
.

2. On the one hand, in the case of negative z, the strictly monotonicity property of
z 7→ µn(z) gives µn (z) < µn (0) = 2n− 1 for all n ∈ N∗.
On the other hand, the behavior of Dµ (z) for large negative z is ([68]) :

Dµ(z) = zµe−
z2

4

(
1 +O

(
|z|−2

))
−

√
2πe−µπi

Γ(−µ)
z−µ−1e

z2

4

(
1 +O

(
|z|−2

))
. (3.2.2)

If µ ∈ N, the dominant part (second term) in (3.2.2) vanishes and Dµ(z) −→
z→−∞

0.

Therefore µn(z) −→
z→−∞

n− 1 for all n ∈ N∗. We deduce that for n ∈ N∗, we have:

n− 1 < µn (z) < 2n− 1.

If z < 0, then 1 ≤ e
z2

2
tanh(u)erfc

(
z
√

tanh(u)
2

)
≤ e

z2

2 erfc
(

z√
2

)
.

Moreover∫ ∞

0

e−(2µ+1)u√
sinh(u) cosh(u)

du =

 cµ ∈
[
1 π

2

)
if 0 < µ ≤ 1,

µ−1
2
B
(
µ−1
2
, 3
2

)
if µ > 1,

where cµ is a constant depending on µ.

Remark 3.2.4. In the case z < 0, by using the inequality n − 1 < µn (z) < 2n − 1, we
obtain less accurate bounds depending only on n.
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3.3 Asymptotic expansions of µ-zeros for large z

We are now interested in the behavior of µ-zeros for large positive values of z. Since the
µ-zeros are positive, we restrict ourselves to the case of real positive µ.

Asymptotic expansion of Parabolic Cylinder function

Recall that the Parabolic Cylinder function Dµ (z) is solution of the differential equation:

y′′ (z) +

(
µ+

1

2
− 1

4
z2
)
y (z) = 0, z ∈ C. (3.3.1)

The behavior of Dµ (z) for large positive z and z >> |µ| is ([68]):

Dµ (z) = e−
z2

4 zµ
[
1 +O

(
z−2
)]
. (3.3.2)

Equation (3.3.1) has two turning points at
√
4µ+ 2 and −

√
4µ+ 2.The asymptotic be-

havior of Dµ (z) changes significantly depending on the relative position of z with respect
to the turning points. The asymptotic behavior (3.3.2) is not valid if z runs through
an interval containing one of the turning points. In this case, an Airy type expansion is
needed to obtain those of the Parabolic Cylinder function. Its expression is ([87], [101]) :

D 1
2
ν2− 1

2

(
νt
√
2
)

=
ν→+∞

2
√
πν

1
3 g (ν)

(
ξ (t)

t2 − 1

) 1
4

Ai(ν 4
3 ξ (t)

)
Aν (ξ) +

Ai′
(
ν

4
3 ξ (t)

)
ν

8
3

Bν (ξ)

 ,
(3.3.3)

where Ai is the Airy function of the first kind,

2

3
(−ξ (t))

3
2 =

∫ 1

t

√
1− u2du, −1 < t ≤ 1 (ξ ≤ 0) ,

2

3
(ξ (t))

3
2 =

∫ t

1

√
u2 − 1du, t ≥ 1 (ξ ≥ 0) ,

g (ν) ∼
ν→+∞

2−
1
4
ν2− 1

4 e−
1
4
ν2ν

1
2
ν2− 1

2

(
1 +

1

2

∑
s≥1

2sγs
ν2s

)
and the coefficients γs are defined by

Γ

(
1

2
+ z

)
∼

z→+∞

√
2πe−zzz

∑
s≥0

γs
zs
.

More details on these coefficients γs and their computation can be found in [87], pages
134-135. For example, Olver finds for s ≤ 4:

γ0 = 1, γ1 = − 1

24
, γ2 =

1

1152
,

γ3 =
1003

414720
, γ4 =

4027

39813120
.
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The functions Aν and Bν satisfy Aν (ξ) ∼
ν→+∞

∑
s≥0

As(ξ(t))
ν4s

, Bν (ξ) ∼
ν→+∞

∑
s≥0

Bs(ξ(t))
ν4s

,

where the coefficients As (ξ(t)) and Bs (ξ(t)) are given by:

As (ξ(t)) = ξ(t)−3s

2s∑
m=0

βm

(
ξ (t)

t2 − 1

) 3
2

(2s−m)u2s−m(t),

Bs (ξ(t)) = −ξ(t)−3s

2s+1∑
m=0

αm

(
ξ (t)

t2 − 1

) 3
2

(2s−m+ 1)u2s−m+1(t),

α0 = 1 and αm =
(2m+ 1)(2m+ 3) . . . (6m− 1)

m!(144)m
, βm = −6m+ 1

6m− 1
αm

and us(t) are polynomials in t of degrees 3s (s odd), 3s − 2 (s even, s ≥ 2) and they
satisfy the recurrence relation

(t2 − 1)u′(t)− 3stus(t) = rs−1(t),

where
8rs(t) = (3t2 + 2)us(t)− 12(s+ 1)trs−1(t) + 4(t2 − 1)r′s−1(t).

Formula (3.3.3) gives the asymptotic behavior of Dµ (z) if z runs through an interval
containing the turning point

√
4µ+ 2. Near the other turning point −

√
4µ+ 2 (so when

z < 0), the asymptotic behavior of Dµ (z) is given by another formula (see [87], (9.7.)).
As in this section we study the µ-zeros only in the case of large positive z, this second
formula will not be useful here.

Remark 3.3.1. If z belongs to an interval containing the other turning point −
√
4µ+ 2,

the study of the asymptotic behavior of the zeros is easier. The zeros tend to positive
integers.

Indeed, in this case the asymptotic behavior of the Parabolic Cylinder function is given by
([87], [101]):

D 1
2
ν2− 1

2

(
−νt

√
2
)

=
ν→+∞

2
√
πν

1
3 g (ν)

(
ξ(t)
t2−1

) 1
4

[
sin
(
1
2
πν2
)(

Ai
(
ν

4
3 ξ (t)

)
Aν (ξ) +

Ai′
(
ν
4
3 ξ(t)

)
ν
8
3

Bν (ξ)

))

+ cos

(
1

2
πν2
)Bi(ν 4

3 ξ (t)
)
Aν (ξ) +

Bi′
(
ν

4
3 ξ (t)

)
ν

8
3

Bν (ξ)

 , (3.3.4)

where Bi is the Airy function of the second kind. Recall that ([86]):

Ai(z) ∼
z→+∞

1

2
√
π
z−

1
4 e−

2
3
z
3
2 Ai′(z) ∼

z→+∞
− 1

2
√
π
z

1
4 e−

2
3
z
3
2 ,

Bi(z) ∼
z→+∞

1√
π
z−

1
4 e

2
3
z
3
2 Bi′(z) ∼

z→+∞

1√
π
z

1
4 e

2
3
z
3
2 .

As the factor Bi
(
ν

4
3 ξ (t)

)
Aν (ξ) +

Bi′
(
ν
4
3 ξ(t)

)
ν
8
3

Bν (ξ) goes to infinity when ν → +∞, to
obtain the zeros of D 1

2
ν2− 1

2
we must cancel this term. If 1

2
ν2 = n+ 1

2
in (3.3.4), the cosine

vanishes and, hence, the dominant part vanishes.
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Asymptotic expansion of µ-zeros

For large positive values of z, the µ-zeros of Dµ(z) are linked to an, n = 1, 2, . . . , the zeros
of the Airy function (Ai (an) = 0). The zeros of Ai have been studied ([86]). Olver shows
that they are all real and negative. They may be expressed asymptotically as

an ∼
n→+∞

−
(
3π

2

(
n− 1

4

)) 2
3

.

The following proposition gives the behavior of µn (z) when z → ∞.

Proposition 3.3.2. For large positive z, we have:

µn (z) =
z2

4
− 1

2
− z

2
32−

2
3an +O

(
z−

2
3

)
, (3.3.5)

where an, n = 1, 2, . . . are the zeros of the Airy function.

Proof. We apply the method given in [29] to compute the zeros of the Hankel function.

Taking ν =
√
2µ+ 1 in (3.3.3), the original argument z of Dµ(z) has temporarily been

replaced by t (ξ)
√
2
√
2µ+ 1. The µ-zeros of Dµ

(
t (ξ)

√
2
√
2µ+ 1

)
are given asymptoti-

cally by the µ-zeros of the right hand side of (3.3.3). These zeros in turn appear to be
given by the µ-solutions of Ai

(
(2µ+ 1)

2
3 ξ (t)

)
= 0, from which we deduce that

(2µ+ 1)
2
3 ξ (t) ∼ an,

as µ → +∞. Since an is negative, then ξ (t) < 0. Hence we obtain the asymptotic
relation between zeros of the Airy function and µ-zeros of the Parabolic Cylinder function
(we restore the original argument z = t (ξ)

√
2
√
2µ+ 1):(

an
ξ (t)

) 3
2

∼ 2µn + 1 =
z2

2t2 (ξ)
,

where ξ and t are related by the relation 2
3
(−ξ (t))

3
2 =

∫ 1

t

√
1− u2du. We deduce that

the limiting case that gives rise to large values of z (so large values of µn) is ξ (t) → 0.
As ξ is negative, so the case ξ (t) ↑ 0 is associated with the behavior of the µ-zeros of
Dµ(z) for large positive z. We easily deduce that if ξ (t) ↑ 0, then t ↑ 1 and t (ξ) =

1 + 2−
1
3 ξ − 1

10
2−

2
3 ξ2 +O (ξ3).

Thus, for z → ∞,

2µj + 1 =
z2

2t2 (ξ)
=
z2

2

1(
1 + 2−

1
3 ξ − 1

10
2−

2
3 ξ2 +O (ξ3)

)2 ,
=
z2

2

(
1− 2

2
3 ξ +

16

5
2−

2
3 ξ2 +O

(
ξ3
))

,

=
z2

2
− z

2
32

1
3aj +

8

5
2

2
3 z−

2
3a2j + z−2O (1) .
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Remark 3.3.3. The expansions (3.3.5) are still valid for complex values of the parame-
ters.

Numerical verification

The values of the function µ 7→ Dµ (z) exceed the computer capabilities, the zeros are no
longer observable and computable. For large values of z, the function oscillates between
+∞ and −∞, so numerical verifications will be performed for moderate values of z. To
check the quality of our results, we compare the µ-zeros given by the dichotomy method
with those obtained by the asymptotic expansion (3.3.5). The computations are done in
Python.

n 1 2 3 4 5

Dichotomy 143.8036 153.0062 160.6533 167.4948 173.8159

Asymptotic expansion 143.6623 152.5775 159.8764 166.3272 172.2242

Relative error 0.0009 0,0028 0,0048 0,0069 0,0091

Table 3.1: Numerical comparison of the first five µ-zeros of µ 7→ Dµ (23) obtained by the
dichotomy method and by the asymptotic expansion formula (3.3.5).

In Table 1, we observe that, although the asymptotic formula (3.3.5) is for large z, for
z = 23 we already obtain acceptable estimates compared to the dichotomy method. We
clearly see the loss of accuracy, but numerical right shift of the µ-zeros estimated with
(3.3.5) can be explained as follows. Since simulations cannot be performed for very large
z, as n increase, the zeros of Airy function become dominant on (3.3.5). The quantity
−z 2

32−
2
3an > 0 becomes too small, which involves a right shift on the simulation. This

example shows that our formula allows to evaluate the first µ-zeros even for moderates
values of z.
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Conclusion and Perspectives

Several perspectives are possible in this study. For example, questions may arise regard-
ing the behavior of the pseudo-likelihood estimator compared to the likelihood estimator.
Also, we believe that the condition r > log( 5

3
)

b0
in the asymptotic normality property is only

sufficient. We think that this property holds for r > 0.

Furthermore, in the data set [58], we can find the daily supremum, infimum, and mean
of the temperature. One perspective would be to consider an estimation based on both
infimum and supremum observations of a stationary OU process. Specifically, revisiting
the previous notation, we would have a sample:

Si,0 = sup
s∈[ti−1,ti]

Xs and I i,0 = inf
s∈[ti−1,ti]

Xs.

The sample of the supremum and infimum would follow the same properties as stated in
Proposition 2.2.1. The estimation would be constructed by making use of the joint law
between the supremum and infimum of the OU process, which is directly related to the
law of the first exit time from an interval of the OU process. In fact, for x0, c1, c2 ∈ R
such that c1 < x0 < c2 we have:

Px0
(
t < τ[c1,c2]

)
= Px0

(
c1 < inf

s<t
Xs, sup

s<t
Xs < c2

)
.

We denote p(x0, t) = Px0
(
t < τ[c1,c2]

)
. By applying Proposition 1.3.11 together with

Remark 1.3.12, the function p is solution of:
∂tp(x0, t) =

β
2
∂2x02p(x0, t) + (a− bx0)∂x0p(x0, t) (t, x0) ∈ R⋆

+ × (c1, c2),

p(c1, t) = p(c2, t) = 0 t ∈ R⋆
+,

p(x0, 0) = 1 x0 ∈ [c1, c2].

Making use of a spectral decomposition method (see Chapter 4), the function p can be
explicitly computed.
In this case, we could propose a pseudo-likelihood method. We think that statistical
properties for this estimator would follow from similar reasoning as in Section 2.5. In
particular, the difficulty would lie in studying the series for asymptotic expansion and
regularity. Similarly, we could propose an estimation method based on observations of
the infimum, supremum, and mean of an OU process. In this case, the joint distribution
has not been explicitly computed. Classical methods such as spectral decomposition used
would not work because the distribution would be a solution of a partial differential
equation whose spatial operator is not Hermitian.
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Part II

Threshold diffusion processes

61



The analysis of discontinuous coefficients for the drift and volatility of SDEs represents a
novel approach in the domain of stochastic modeling. These models are often categorized
as threshold diffusion models, where the dynamics of the system change abruptly when
some of the thresholds are crossed. This approach offers an alternative to the continuous-
time models such as the Self-Exciting Threshold Autoregressive (SETAR), which belongs
to the broader class of Threshold Autoregressive (TAR) models (see [102]). While SETAR
models provide a framework for capturing non-linear dynamics in time series data, the in-
troduction of discontinuous coefficients in SDEs offers a different perspective on modeling
dynamic phenomena. These processes find applications across various domains, such as
finance [34] and population ecology [24] for example. A representation for such processes
can be given by the following SDE:

Xt = X0 +

∫ t

0

µ(Xs) ds+

∫ t

0

σ(Xs) dBs, t ≥ 0, (3.3.6)

where the functions µ and σ exhibit discontinuities. Equations of the class (3.3.6) are
closely linked, through Itô-Tanaka formula, to processes solution of:

Yt = Y0 +

∫ t

0

µ(Ys) ds+

∫ t

0

σ(Ys) dBs +

∫
R
Lxt (Y )ν(dx), t ≥ 0, (3.3.7)

where Lxt (X) is the symmetric local time, ν is a finite measure, singular with respect to
the Lebesgue measure, with |ν(x)| ≤ 1 for all x ∈ R.

The computation of explicit laws for SDEs is of paramount importance due to its wide-
ranging applications in various fields. There is also significant interest in computing
explicit laws for the process solution of thresholds SDE (3.3.6). For example, in [34],
the authors compute the transition probability density of threshold Ornstein-Uhlenbeck
(T-OU) and threshold Cox-Ingersoll-Ross (T-CIR) processes. Also, in [35], the authors
compute the law of a drifted Skew Brownian motion using a method involving the inver-
sion of the resolvent.

Several studies have been conducted on the parametric estimation of these type of pro-
cesses. In [72], the authors use a maximum likelihood estimator for diffusions with piece-
wise constant drift and diffusion coefficients. Consistency and asymptotic normality re-
sults are provided for both continuous and discrete observations in the case of the ergodic
and non-ergodic regimes of the process. In another study, [81] examines the estimation
of drift parameters for a T-OU process. Additionally, [70] introduces a method for esti-
mating the diffusion parameter of a threshold Brownian motion.

In Chapter 4, we propose an approach to studying the T-OU process. We provide explicit
expressions for transition probability density and first hitting time density for the process
killed at a constant boundary. Extensions to multi-threshold cases are explored, and an
explicit expression for the Laplace transform of the first hitting time is proposed. In Chap-
ter 5, we consider a thresholds Chan–Karolyi–Longstaff–Sanders (CKLS) process. This
study focuses on the asymptotic behavior of maximum and quasi-maximum likelihood
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estimators for drift parameters, considering both continuous and discrete time observa-
tions. We demonstrate that under high-frequency observations and infinite horizon, these
estimators exhibit the same asymptotic normality property as in continuous time ob-
servations. Additionally, we discuss the estimation of diffusion coefficients. Finally, the
application of these estimators to simulated and real data motivates the consideration of
multiple thresholds. We conclude this part by suggesting directions for further research
and highlighting areas for improvement.

Chapter 5 is in collaboration with Sara Mazzonetto and it is submitted, and available on
Hal [80].
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Chapter 4

The killed Threshold
Ornstein-Uhlenbeck process

4.1 Introduction

Diffusion processes play a crucial role in modeling dynamic phenomena across various
fields. A novel approach proposes investigating diffusion processes with piecewise con-
stant coefficients. These processes find applications in various domains, such as popu-
lation ecology and finance [24, 34]. For example, in [98, 81], the authors demonstrate
through statistical tests that US Treasury Bills data exhibit threshold behavior, showing
that this data can be modeled over some time windows by a threshold Ornstein-Uhlenbeck
process.

This chapter deals with the computation of explicit laws of the process X = (Xt)t≥0,
which is solution of the following one-dimensional SDE:

Xt = x0 +

∫ t

0

a(Xs)− b(Xs)Xs ds+

∫ t

0

σ(Xs) dBs, t ≥ 0, (4.1.1)

with x0 ∈ R, a, b and σ piecewise constants functions at levels called "thresholds".
Following the nomenclature in [81], we refer to the process X solution of (4.1.1) as the
threshold Ornstein-Uhlenbeck (T-OU). Sometimes, we use (d)-T-OU to refer to a T-OU
process with d thresholds. We use this alternative notation, when we wish to emphasize
the number of thresholds.

Several studies have focused on the explicit computation of the laws of such processes.
For instance, in [34], the transition probability densities of the (1)-T-OU and (1)-T-Cox-
Ingersoll-Ross processes are computed using a spectral decomposition method. We can
also mention [55], which computes laws associated to a threshold Brownian motion.

As noted in [36], threshold SDEs such as (4.1.1) are closely related to the solution of the



following SDE:

Yt = Y0 +

∫ t

0

a(Ys)− b(Ys)Ys ds+

∫ t

0

σ(Ys) dBs +

∫
R
Lyt (Y )ν(dy), t ≥ 0, (4.1.2)

where, Lyt (Y ) is the symmetric local time, ν is a finite measure, singular with respect to
the Lebesgue measure, with |ν(y)| ≤ 1 for all y ∈ R, and a, b, and σ are measurable
functions that may be discontinuous. The solutions to such equations are commonly
referred to as singular diffusions (see [49]). From this equation, one can, for example,
derive the SDEs associated with well-known processes in the literature, such as the Skew
Brownian Motion (see [69]) or the Skew Ornstein-Uhlenbeck process (see [108]).

Computing the distributions for process solutions to (4.1.2) has been a key focus in the
literature. For instance, in [35], the authors compute the law of a drifted Skew Brow-
nian motion by inverting the resolvent. Also, in [108], the authors propose a spectral
decomposition method to compute the law of the Skew Ornstein-Uhlenbeck process.

The computation of density distributions associated with killed processes over constant
boundaries is a well-explored topic. In a series of works (see [76] and [75]), V. Linetsky
computes the density of first hitting times for well-known processes such as the Ornstein-
Uhlenbeck and Cox-Ingersoll-Ross processes. The author uses a spectral decomposition
method, as presented in [49], which forms the foundation of their study.

In this chapter, we focus on computing the law associated with the killed T-OU process
at a constant boundary. Specifically, we provide existence and explicit expressions for
the transition probability density and the density of the first hitting time of the process.
The transition probability density of the killed process is computed using a spectral de-
composition method applied to the Fokker-Planck equation. Moreover, we can compute
the density of the first hitting time using the transition probability density. Essentially,
the hitting time density is related to the spatial derivative of the transition probability
density. Since the transition probability density is expressed as a series of functions,
the challenge lies in proving the term-by-term differentiation of this series. In [108], the
authors study the Skew OU process and raise this challenging point. In particular, they
note the difficulty in finding an associated asymptotic expansion for the eigenvalues of the
spectral decomposition. In their article, the authors focus on a (1)-T-OU process, while
in our case, we are investigating the multi-threshold case. In this chapter, we prove their
intuition about the density (see Section 5 in [108]) and extend it to the multi-threshold
case. Note that from our results, one can also recover the results in [6] and [8]. To
our knowledge, this is the first time that the density of the first hitting time has been
explicitly provided for a multiple thresholds process. Furthermore, we also propose an
explicit expression for the Laplace transform of the first hitting time. This enables us to
numerically test various methods for evaluating the hitting time density.

Outline. In Section 4.2, we introduce the T-OU by defining the drift and volatility as
piecewise continuous functions. We also provide some preliminary results on the genera-
tor of the T-OU killed at a constant boundary. In Section 4.3, an explicit formulation is
given for the transition probability density of the killed T-OU. Section 4.4 deals with the
distribution of the first hitting time density of the T-OU process. Furthermore, in Sec-
tion 4.5, we establish the connection between the T-OU and processes solutions to SDEs
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of the class (4.1.2). In Section 4.6, some numerical experiments are performed. Proofs
are collected in Section 4.7. Further results and discussion are provided in Section 4.8.

4.2 T-OU process

Let B be a standard Brownian motion defined on a probability space (Ω,F , (Ft)t≥0,P).
We define X, the process solution of (4.1.1), with a, b, and σ as piecewise constant
coefficients that are discontinuous at levels −∞ = r0 < r1 < · · · < rd < rd+1 = +∞,
where d ∈ N⋆. Let Īd = (rd,+∞) and Īj = (rj, rj+1], for j ∈ {0, · · · , d − 1}. The drift
coefficients and the volatility coefficients are given by:

a(x) =
d∑
j=0

aj1Īj(x) , b(x) =
d∑
j=0

bj1Īj(x) and σ(x) =
d∑
j=0

σj1Īj(x), (4.2.1)

where aj ∈ R, bj > 0 and σj > 0.

Proposition 4.2.1. There exists a unique strong solution of (4.1.1).

Proof. We easily verify that (ND) and (LI) hold for (4.1.1) (see Chapter 1). Then, from
Theorem 1.2.13, there exists a unique weak solution of (4.1.1) up to an explosion time
τ∞. As the drift and volatility have at most linear growth, we have τ∞ = +∞ a.s.
(see Remark 1.2.16). Thus, the solution of (4.1.1) does not explode. Let us introduce
the function f : R → R such that f(x) =

∑d
j=0 fj(x)1Īj(x) where for j ∈ {0, · · · , d},

fj(x) =
∑j

k=0

∑d
i=0(σk−σi)2. Then, using Item 2 in Theorem 1.2.22, pathwise uniqueness

holds for (4.1.1). Making use of Theorem 1.2.7, there exists a unique strong solution of
(4.1.1).

Let c ∈ R be fixed, we introduce the first hitting time of X of the level c:

τc = inf{t > 0, Xt = c},

Next, we sometimes denote τc(X) to refer to the first hitting of the constant boundary c
of the process X. Without loss of generality, we suppose that x0 < c and rd < c.

Remark 4.2.2. Note that for j ∈ {0, · · · , d} and c ∈ Īj, if x0 < c, then τc is the first
hitting time of a (j)-T-OU process. In the case c < x0, τc(X) has the same law as
τ−c(−X), where, from Itô formula, −X is still a T-OU process.

Let us introduce X̄, the T-OU killed at the boundary c, i.e.,

X̄t =

 Xt on {t < τc},

∆ otherwise.
(4.2.2)

where ∆ is the cemetery. Note that from classical results (see [49], for example), the
process X̄ remains a diffusion process. The following proposition states the existence of
a transition probability density with respect to the Lebesgue measure for the process X̄.
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Proposition 4.2.3. For all t ∈ R⋆
+, the probability Px0(X̄t ∈ dx) admits a density with

respect to the Lebesgue measure.

Proof. For every B ∈ B(R) such that B is a Lebesgue-negligible set, we have:

Px0(X̄t ∈ B) = Px0(Xt ∈ B, t ≤ τc) ≤ Px0(Xt ∈ B). (4.2.3)

In particular, if Px0(Xt ∈ dx) admits a density with respect to the Lebesgue measure,
then Px0(X̄t ∈ dx) also admits a density with respect to the Lebesgue measure.
The idea is to apply a well-chosen change of measure such that under the new measure
Q ∼ P, we have Qx0(Xt ∈ B) = 0. Using Girsanov Theorem, we have:

∀t ∈ [0, T ],
dQ
dP

∣∣∣∣
Ft

= Zt, (4.2.4)

where T ∈ R+ is fixed and Zt = exp

(
−
∫ t
0
a(Xs)−b(Xs)Xs

σ(Xs)
dBs − 1

2

∫ t
0

(
a(Xs)−b(Xs)Xs

σ(Xs)

)2
ds

)
is

a P-martingale. The martingale property of Z follows by applying a reasoning similar to
Theorem 1 in [28]. In fact, using Theorem 1.7 and Proposition 1.2 in [91, Chapter VIII],
we can prove that P and Q are equivalent and Zt > 0 for all t ∈ [0, T ], P-almost-surely.
Under the measure Q, X is solution of:

Xt = x0 +

∫ t

0

σ(Xt)dB
Q
t , t ≥ 0

where, BQ
t = Bt +

∫ t
0
a(Xs)−b(Xs)Xs

σ(Xs)
ds is a Q-Brownian motion. Using Theorem 9.1.9 in

[96], Qx0(Xt ∈ dx) admits a density with respect to the Lebesgue measure. This implies
that Px0(Xt ∈ B) = 0. Then, from (4.2.3), for every Lebesgue-negligible set B, we have
Px0(X̄t ∈ B) = 0 and the conclusion holds.

In the following, we denote Px0(X̄t ∈ dx) = p(x, t)dx and for j ∈ {0, . . . , d−1}, we denote
Ij = Īj and Id = (rd, c].

It is a well-known result that a diffusion process is defined by its speed measure and its
scale function (see Chapter 1 or Chapter VII in [91]). These quantities can be computed
explicitly by using (1.3.4) and (1.3.6).

Proposition 4.2.4. Let X̄ be defined by (4.2.2). For x ∈ (−∞, c), the derivative of the
scale function, denoted by S, and the speed measure m are defined as follows:

S(x) =
1

C0S0(x, r1)
1I0(x) +

d∑
j=1

1

CjSj(x, rj)
1Ij(x),

with, for i ∈ {0, · · · , d}, Si(x, r) = exp
(

2ai(x−r)−bi(x2−r2)
σ2
i

)
and

m(dx) = m(x)dx =
2

σ2(x)S(x)
dx,

where C0 = C1 = 1 and for j ∈ {2, · · · , d}, Cj =
∏j−1

i=1 Si(ri+1, ri).
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We now introduce the forward operator of the process X̄. This will allow us to define the
Fokker-Planck equation for the transition probability density p. From Definition 1.3.7 and
Proposition 1.3.10, the infinitesimal generator (L,Dom(L)) of the process X̄, solution of
(4.2.2), may be written as follows:

Lf =
1

m(.)

(
S−1(.)f ′(.)

)′
, (4.2.5)

for all f ∈ Dom(L). The forward operator L⋆ is defined as the adjoint operator of L in
L2((−∞, c]):

⟨Lf, g⟩L2((−∞,c]) = ⟨f,L⋆g⟩L2((−∞,c]),

where f ∈ Dom(L) and g ∈ Dom(L⋆) verifies:

L⋆g =
(
S−1(.)

( g
m
(.)
)′)′

, (4.2.6)

for all g ∈ Dom(L⋆).

The domain of the adjoint generator can be constructed such that L⋆ is Hermitian (see
Section 4.7 for further details). In order for L⋆ to be well-defined, each derivative needs to
make sense in (4.2.6). So, the function g ∈ Dom(L⋆) satisfies the transmission conditions:
g
m
(.) and S−1(.)

(
g
m
(.)
)′ are continuous in space. Using the explicit expressions for the

derivative of the scale function and the speed measure in Proposition 4.2.4, g ∈ Dom(L⋆)
satisfies, for all j ∈ {1, · · · , d}: σ2

j g(r
+
j ) = σ2

j−1g(r
−
j ),

σ2
j

2
g′(r+j ) + (bjrj − aj)g(r

+
j ) =

σ2
j−1

2
g′(r−j ) + (bj−1rj − aj−1)g(r

−
j ).

(4.2.7)

The probability density p is solution of the following Fokker-Planck equation:

∂tp(x, t) =
1
2
∂2x2(σ

2(x)p(x, t)) + ∂x[(b(x)x− a(x))p(x, t)], (x, t) ∈ (−∞, c)× R⋆
+,

for all t ∈ R⋆
+, p(t, .) verifies (4.2.7),

p(c, t) = 0, t ∈ R⋆
+,

limt→0 p(x, t)dx = δx0(dx).

(4.2.8)

Note that, for all j ∈ {1, · · · , d}, the function p is discontinuous at rj. This discontinuity
arises from the discontinuity of the volatility function σ. The discontinuities in the drift
and the volatility imply discontinuities in the derivative of the transition probability
density.

4.3 Transition probability density of the killed T-OU
process

By solving the Fokker-Planck equation (4.2.8) using a spectral decomposition method, we
provide an explicit expression of the transition probability density of the killed process X̄.
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We introduce the functions involved in formulating the solution of the Fokker-Planck
equation (4.2.8). For all j ∈ {0, · · · , d}, we define the function ϕ(j)

µ as follows:

ϕ(j)
µ (x) =

√
m(x)

[
α(j)
µ D µ

bj

(
−
(
x− aj

bj

) √
2bj

σj

)
+ β(j)

µ D µ
bj

((
x− aj

bj

) √
2bj

σj

)]
,

where, for all j ∈ {1, · · · , d}, the pairs (α
(j)
µ , β

(j)
µ ) are solutions of the linear system: σ2

jϕ
(j)
µ (rj) = σ2

j−1ϕ
(j−1)
µ (rj),

σ2
j

2
(ϕ

(j)
µ )′(rj) + (bjrj − aj)ϕ

(j)
µ (rj) =

σ2
j−1

2
(ϕ

(j−1)
µ )′(rj) + (bj−1rj − aj−1)ϕ

(j−1)
µ (rj),

(4.3.1)
with (α

(0)
µ , β

(0)
µ ) = (1, 0). Here, Dµ is the Parabolic Cylinder function of parameter µ

introduced in Chapter 2 and Chapter 3. The following theorem provides an explicit for-
mulation for the transition probability density of the T-OU process killed at the constant
c.

Theorem 4.3.1. For i, j ∈ {0, · · · , d}, suppose that x ∈ Ii and x0 ∈ Ij. The transition
probability density of the T-OU process killed at the constant boundary c is given by:

p(x, t) =
1

m(x0)

∞∑
n=1

e−µnt

N(µn)
ϕ(i)
n (x)ϕ(j)

n (x0), (4.3.2)

where:
N(µn) =

σ2
d

2m(c)
∂x
[
ϕ(d)
n (x)

]
x=c

∂µ
[
ϕ(d)
n (c)

]
µ=µn

, (4.3.3)

and ϕn = ϕµn, with (µn)n≥1 the ordered sequence of positive zeros of µ 7→ ϕ
(d)
µ (c).

4.4 First hitting times distributions of the T-OU pro-
cess

In this section, we focus on the first hitting time distribution of a constant boundary c
for a T-OU process. First, we provide the Laplace transform, which is known to be the
solution of a Sturm-Liouville problem. Next, we prove the existence of the density of the
first hitting time. Then we give an explicit formulation for this density by differentiating
with respect to the spatial variable the transition probability density (4.3.2).

4.4.1 Laplace transform of the first hitting times

Let uc(µ, x0) = Ex0 [e−µτc ], the Laplace transform of the first hitting time τc. Following the
results in [49], the Laplace transform τc is the C1 solution of the following Sturm-Liouville
equation: 

Luc(µ, x0) = µuc(µ, x0), x0 ∈ (−∞, c),

lim
x0→−∞

uc(µ, x0) = 0,

uc(µ, c) = 1.

(4.4.1)
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Theorem 4.4.1. For all j ∈ {0, · · · , d} and x0 ∈ Ij, the Laplace transform of τc is given
by:

uc(µ, x0) =
ϕ
(j)
−µ(x0)

ϕ
(d)
−µ(c)

. (4.4.2)

Furthermore, the function uc(., x), is holomorphic on {µ ∈ C|Re(µ) > 0}.

4.4.2 Hitting times density

From the explicit representation (4.3.2) of the transition probability density of the killed
T-OU process, we can derive a series representation for the first hitting time density. The
following theorem provides this explicit formulation.

Theorem 4.4.2. For all x0 < c, we have Px0(τc < +∞) = 1. Consequently, the distri-
bution function of τc admits a density with respect to the Lebesgue measure, denoted pτc.
Furthermore, for all t ∈ R⋆

+, j ∈ {0, · · · , d}, and for x0 ∈ Ij, the density pτc is given by:

pτc(t) = − m(c)

m(x0)

∞∑
n=1

e−µnt
ϕ
(j)
n (x0)

∂µ

[
ϕ
(d)
n (c)

]
µ=µn

, (4.4.3)

where ϕ(j)
n (.) and (µn)n≥1 are defined as above.

Let us comment on the methodology to obtain the density (4.4.3) in Theorem 4.4.2. The
idea is to use the transition probability density of the killed process computed in Theorem
4.3.1. Using the Fokker-Planck equation (4.2.8), we can establish a direct link between
pτc and p (see [8] for an example). Indeed, we have:

pτc(t) = −σ
2
d

2
∂xp(x, t)|x=c.

To differentiate the series term by term, it is necessary to verify that the series in (4.4.3)
converges uniformly. To do this, for all j ∈ {0, · · · , d}, we compute the asymptotic
expansions of ϕ(j)

µ for µ large enough and of (µn)n≥1 for n large enough. Then Lemma
4.4.3 and Corollary 4.4.4 below are the key elements to prove Theorem 4.4.2 (for further
details see Section 4.7 and Section 4.8).

Lemma 4.4.3. For µ large enough and x ∈ I0, we have: 1:

ϕ
(0)
µ (x)√
m(x)

=
2

µ
2b0

√
π
Γ

(
1

2
+

µ

2b0

)
cos

(
x

√
b0 + 2µ

σ0
+
πµ

2b0

)[
1 +O

(
µ− 1

4

)]
, (4.4.4)

and(
ϕ
(0)
µ (x)√
m(x)

)′

= −2
µ

2b0

σ0

√
b0 + 2µ

π
Γ

(
1

2
+

µ

2b0

)
sin

(
x

√
b0 + 2µ

σ0
+
πµ

2b0

)[
1 +O

(
µ− 1

4

)]
.

(4.4.5)
1Here, each asymptotic notation O and o depends on x.
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For j ∈ {1, · · · , d} and x ∈ Ij:

ϕ
(j)
µ (x)√
m(x)

=
2

µ
2b0Kj(µ)√
π
∏j

i=1 σi
Γ

(
1

2
+

µ

2b0

)
cos

(
πµ

2b0
(1 + o(1))

)[
1 +O

(
µ− 1

4

)]
,

and(
ϕ
(j)
µ (x)√
m(x))

)′

= −2
µ

2b0 K̃j(µ)

σj
∏j

i=1 σi

√
bj + 2µ

π
Γ

(
1

2
+

µ

2b0

)
sin

(
πµ

2b0
(1 + o(1))

)[
1 +O

(
µ− 1

4

)]
.

Additionally,
∏j

i=1 σi ∧ σi−1 ≤ Kj(µ) ≤
∏j

i=1 σi ∨ σi−1, and the same bounds hold for K̃j.

Corollary 4.4.4. For n large enough, we have µn = b0(2n+ 1)(1 + o(1)) and∣∣∣∂µ [ϕ(d)
µ (c)

]
µ=µn

∣∣∣ =√πm(c)
2
µn
2b0

−1
Kd(µn)

b0
∏d

i=1 σi
Γ

(
1

2
+
µn
2b0

)
(1 + o(1)) . (4.4.6)

4.5 Interplay between the T-OU and the threshold Skew
OU

Let us introduce the process Y solution of the following SDE:

Yt = y0 +

∫ t

0

ã(Ys)− b̃(Ys)Ys ds+

∫ t

0

σ̃(Ys) dBs +
d∑
j=1

β̃jL
r̃j
t (Y ), t ≥ 0, (4.5.1)

where ã, b̃, and σ̃ are piecewise constant coefficients, discontinuous at r̃j, j ∈ {1, · · · , d},
defined as (4.2.1) and β̃j ∈ (−1, 1). We refer to this process as the Threshold-Skew-OU
(TS-OU) process. Strong existence and uniqueness of the SDE (4.5.1) are induced by the
results in [66].

We can find a function that establishes a relationship between the process Y and the
process X solution of (4.1.1). We provide an explicit example illustrating the link between
the Skew-OU process and X solution of (4.1.1) when d = 1 (see Remark 4.5.3 for further
details on the case d > 1). Suppose that Z is a Skew-OU process, solution of:

Zt = z0 +

∫ t

0

ã− b̃Zs ds+ σ̃Bt + β̃Lr̃t (Z), t ≥ 0,

with (ã, b̃, σ̃, r̃) ∈ R× (R⋆
+)

2 ×R, β̃ ∈ (−1, 1) and Lr̃t (Z), the symmetric local time of the
process Z at r̃.

Proposition 4.5.1. Let H be the function given by H(x) = x−r̃
α(x)

+ r̃, where α(x) =

1x>r̃+α01x≤r̃, and such that α0 =
1+β̃

1−β̃ . There exists a process X such that H−1(Zt) = Xt

for all t ∈ R+, where X is the solution of (4.1.1) with x0 = α(z0)(z0 − r̃) + r̃, threshold
r̃, and drift and volatility parameters:

[a0; a1] = [ãα0 + b̃r̃ − α0b̃r̃; ã+ b̃r̃ − b̃r̃], [b0; b1] = b̃[1; 1], [σ0;σ1] = σ̃[α0; 1]. (4.5.2)
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Proof. Applying Itô-Tanaka formula in Corollary 1.1.8, we obtain:

dH(Xt) =
1

α(Xt)
1(Xt ̸=r̃)dXt +

1

2

(
1 +

1

α0

)
1(Xt=r̃)dXt +

1

2

(
1− 1

α0

)
dLr̃t (X)

From Proposition 1.3.9, we have:

dH(Xt) =
1

α(Xt)

[(
ãα(Xt) + b̃r̃ − α(Xt)b̃r̃ − b̃Xt

)
dt+ σ̃α(Xt) dBt

]
+
α0 − 1

2α0

dLr̃t (X),

We also prove that Lr̃t (X) = α0+1
2α0

Lr̃t (Z) by using Itô-Tanaka formula. Then, by setting
Zt = H(Xt) a.s., the conclusion holds.

Using Proposition 4.5.1, one can easily prove the following statement:

Proposition 4.5.2. The transition probability density pZ of the process Z, killed at the
constant boundary c, and the density of τc(Z) exist and are given by:

pZ(x, t) =
p(H(x), t)

α(x)
and pτc(Z)(t) = pτH−1(c)(X)(t),

where X is the process solution of (4.1.1) with parameters (4.5.2), killed at the constant
boundary H−1(c).

Remark 4.5.3. For further details on the construction of the function H, we refer to
Section 2.1 in [36]. In a similar way, the transition probability density and hitting time
density of the process Y solution of (4.5.1) can be obtained from Theorem 4.3.1 and
Theorem 4.4.2.

4.6 Numerical experiments

In this section, we illustrate the explicit formulations obtained for the transition probabil-
ity density (4.3.2) and the first hitting time density (4.4.3). We compare these expressions
with an approximation obtained using a Monte Carlo method, employing 106 simulations
with time step ∆t = 10−3 in the Euler Scheme. To numerically compare these expressions,
we use the parameters set given in the table below. Numerical simulations are performed
using Python on a processor running at 3.6 GHz with 8 cores.

a0 b0 σ0

-1 1 1

a1 b1 σ1

-1 2 1.5

a2 b2 σ2

0 1 1

r1 r2 x0 c

-1 0 -1.5 1

Table 4.1: Simulations parameters.
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Since the expressions of these densities admit a series representation, we approximate
these solutions by truncating this series at N ∈ N, i.e,

pN(x, t) =
1

m(x0)

N∑
n=1

e−µnt

N(µn)
ϕ(j)
n (x0)ϕ

(i)
n (x), (4.6.1)

and

pτc,N(t) = − m(c)

m(x0)

N∑
n=1

e−µnt
ϕ
(j)
n (x0)

∂µ

[
ϕ
(d)
n (c)

]
µ=µn

. (4.6.2)

Here, the zeros (µn)n≤N are obtained using a dichotomy method on the interval [0, 30].
The coefficients (α(j)

µ , β
(j)
µ )dj=1 are computed by explicitly solving (4.3.1). Note that these

coefficients can also be computed by solving this system numerically.

Figure 4.1: The left figure compares the truncated transition probability density (4.6.1)
for t = 1 and N = 5 with a Monte Carlo method. The figure on the right compares the
truncated density (4.6.1) for N = 1, N = 2, and N = 5.

The truncated density (4.6.1) fits well with the approximation obtained by the Monte
Carlo method (see Figure 4.1). Evaluating the function pN for N = 5 takes 95 ms
(milliseconds). Furthermore, as seen in Figure 4.1, the truncated density pN(t, .) seems
to approximate the actual density quite well, even for N = 2. It is worth noting that the
approximation also depends on the parameters of the process listed in Table 5.1.

Alternative formulations for the transition probability density of the killed process can
be explored numerically. For instance, in [26], the authors propose a semi-analytical
formulation for the Fokker-Planck equation associated to a multi-Skew Brownian motion.
Their method can be adapted to the solution of equation (4.2.8).

Remark 4.6.1. Note that the parameter t influences the convergence speed of the series.
Here, we have chosen t = 1. With a smaller t, the approximation is less accurate for
small N . For example, for t = 10−2, the approximation seems to approximate the actual
density well for N = 30, and by increasing the search window for (µn)n≤N to [0, 50].
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For the first hitting time density, we propose different approximation methods. First, we
use the expression (4.6.2) for various values of N . Then, we suggest a method based on
Laplace transform inversion of (4.4.2), using the Talbot method. For further details on
this approach, see [1] and [100]. This method is already implemented in the mpmath
library of Python.

The last method used is inspired by the results in [6] for the first hitting time of the OU
process (see Definition 1.4.1). Making use of the holomorphic property of the Laplace
transform of τc, we can prove that

pτc(t) =
2

π

∫ ∞

0

cos(µt)Ex0 [cos (µτc)] dµ, (4.6.3)

where Ex0 [cos (µτc)] = Re (Ex0 [eiµτc ]) = Re (uc(−iµ, x0)). This formulation provides an
integral representation for the first hitting time density. In the same way as [6], we refer
to this representation as the cosine transform. By using the results in [2], we approximate
the integral, not by a Riemann sum, but by the following approximation:

pτc,Napprox(t) =
eA/2

2t
uc

(
A

2t
, x0

)
+
e
A
2

t

Napprox∑
k=1

Re
[
uc

(
A

2t
+
kπi

t
, x0

)]
, (4.6.4)

with A > 0 and Napprox ∈ N⋆. Furthermore, the question still arises of selecting suitable
values for A and N . In the same way as in [6], we choose A < 18.1 to ensure that the
discretization error is of the order 10−7. We also set Napprox = 500. Suitable choices for
the parameters Napprox and A are discussed in [2].

Figure 4.2: The figure on the left compares the expression (4.6.2) for N = 5 with a Monte
Carlo method. The figure on the right compares the hitting time density obtained through
cosine transform (4.6.3), Laplace transform inversion (Talbot method) of (4.4.2), and the
truncated density (4.6.2) for N = 1, N = 2, and N = 5.

In the table below, we list the numerical evaluation times at a point of the hitting time
density for each of the methods used.
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Truncated series (N = 5) Laplace inversion (Talbot) Cosine transform

110 ms 2.69 s 31.3 s

Table 4.2: Computation time for the first hitting time density according to the different
methods: truncated series, Laplace inversion (Talbot), cosine transform.

As with the transition probability density, the truncated series (4.6.2) for the first hitting
time density closely matches the approximation obtained from the Monte Carlo method
(see Figure 4.2). The cosine transform and Laplace transform inversion methods yield
similar results. Note that the truncated series seems to approximate the density well for
N = 5.
The primary distinction among these methods lies in their computation time (see Table
4.2). The truncated series method is notably faster than the other two. However, the
Laplace transform inversion method also proves to be quite efficient in terms of compu-
tation time. Here, the truncated density is evaluated for N = 5. Note that, N has small
effect on the computation speed of the method. Furthermore, what takes the most time
here is the computation of µ-zeros of µ 7→ ϕ

(d)
µ (c) by the Dichotomy method. But, these

zeros are independent from the variable t and can be computed only once outside the
function.

Note that for the approximation pτc,N , the series convergence breaks down for very small
values of t, causing pτc,N to tend towards −∞ or +∞ in such cases. In contrast, the
Laplace inversion and cosine transform methods converge to 0 for small values of t. To
address the issue of divergence for small t, as the Talbot method remains quick enough,
we can use the Laplace transform inversion method for small values of t and the truncated
series for higher values.

4.7 Proofs

This section is devoted to the proofs of Theorem 4.3.1, Theorem 4.4.1 and Theorem 4.4.2.

4.7.1 Proof of Theorem 4.3.1

The idea is to use a spectral decomposition method such that the explicit solution of the
Fokker-Planck equation (4.2.8) can be expressed as follows:

p(x, t) =
∞∑
n=1

cn(t)en(x), (4.7.1)

where (en)n≥1 are eigenfunctions of L⋆. To apply this spectral decomposition method,
we use a technique from classical functional analysis (see [21]). We construct the op-
erator L⋆ over a well-chosen domain DomW(L⋆), and then, based on the properties of
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(L⋆,DomW(L⋆)), we prove that the solution of the equation (4.2.8) can be expressed as a
spectral decomposition of eigenfunctions and eigenvalues.

Let us denote DomW(L⋆) the set{
f ∈ L2

(
(−∞, c],

1√
m(.)

)
|f(c) = 0,

f

m
(.) ∈ H1

(
(−∞, c],

1√
m(.)

)

, S−1(.)

(
f

m
(.)

)′

∈ H1

(
(−∞, c],

1√
m(.)

)}
.

The operator L⋆ is defined by

L⋆ : DomW(L⋆) → L2

(
(−∞, c],

1√
m(.)

)

f →

[
L⋆f : x 7→

(
S−1(x)

(
f(x)

m(x)

)′)′

=
1

2
(σ(x)2f(x))′′ + ((b(x)x− a(x))f(x))′

]
.

Here, L⋆ is constructed over a weighted space. Within this domain, the operator is
Hermitian, i.e.,

∀f, g ∈ DomW(L⋆), ⟨L⋆f, g⟩
L2

(
(−∞,c], 1√

m(.)

) = ⟨f,L⋆g⟩
L2

(
(−∞,c], 1√

m(.)

).

The following lemma provides necessary properties on (L⋆,DomW(L⋆)) to justify the
spectral decomposition method.

Lemma 4.7.1. The space L2

(
(−∞, c], 1√

m(.)

)
admits a countable Hilbertian basis of

eigenvectors of L⋆ for the scalar product ⟨., .⟩
L2

(
(−∞,c], 1√

m(.)

). Additionally, the spectrum

of L⋆ is contained in (−∞, 0].

Proof. Since directly proving this result on (L⋆,DomW(L⋆)) is not straightforward, we
use a common method by introducing a new operator T defined by

T : L2

(
(−∞, c],

1√
m(.)

)
→ L2

(
(−∞, c],

1√
m(.)

)
g 7→ fg

where fg is solution of:

(⋆) =



(σ(x)
2

2
fg(x))

′′ + ((b(x)x− a(x))fg(x))
′ = g(x), x ∈ (−∞, c),

fg verifies (4.2.7),

fg(c) = 0,

fg, f
′
g ∈ L2

(
(−∞, c], 1√

m(.)

)
.
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Using a similar reasoning as Lemma 2 in [8], we prove that fg(x) = 2
∫ c
−∞K(x, z)g(z)dz

where K ∈ L2

(
(−∞, c]× (−∞, c], 1√

m(.)
× 1√

m(.)

)
.

Then, the operator T : L2

(
(−∞, c], 1√

m(.)

)
→ L2

(
(−∞, c], 1√

m(.)

)
is well defined,

continuous and compact. Applying Theorem VIII.20 in [21], we conclude.

To complete the proof, we need to demonstrate that the spectrum is contained in (−∞, 0].
Let us assume that (f,−µ) is a couple of eigenfunction and eigenvalue of L⋆. Then we
have:

⟨L⋆f, f⟩
L2

(
(−∞,c], 1√

m(.)

) = −µ||f ||2
L2

(
(−∞,c], 1√

m(.)

).
Using (4.2.6) and integration by part, we obtain:

⟨L⋆f, f⟩
L2

(
(−∞,c], 1√

m(.)

) = −
∫ c

−∞
S−1(x)

[(
f(x)

m(x)

)′]2
dx.

Then, as the derivative of the scale function is strictly positive, −µ ≤ 0 and the conclusion
holds.

Let ϕµ be an a eigenvector of L⋆ with eigenvalue −µ. Then, for all x ≤ c, the couple
(ϕµ,−µ) is solution of the following equation on DomW (L⋆):

L⋆ϕµ(x) = −µϕµ(x) ⇔
(
S−1(x)

(
ϕµ(x)

m(x)

)′)′

= −µϕµ(x),

⇔ 1

2
(σ(x)2ϕµ(x))

′′ + ((b(x)x− a(x))ϕµ(x))
′ = −µϕµ(x). (4.7.2)

We rewrite ϕµ(x) as ϕµ(x) =
∑d

j=0 ϕ
(j)
µ (x)1Ij(x). For all j ∈ {0, · · · , d} such that x ∈ Ij,

the function ϕ̃(j)
µ (x) = 1√

m(x)
ϕ
(j)
µ (x) ∈ L2((−∞, c]), satisfies the following equation:

(ϕ̃(j)
µ )′′(x) +

 bj
σ2
j

−

(
(x− aj

bj
)bj

σ2
j

)2

+
2µ

σ2
j

 ϕ̃(j)
µ (x) = 0, on Ij. (4.7.3)

Solutions of (4.7.3) are well known in the literature (see [68]). We obtain that:

ϕ(j)
µ (x) =

√
m(x)

[
α(j)
µ D µ

bj

(
−
(
x− aj

bj

) √
2bj

σj

)
+ β(j)

µ D µ
bj

((
x− aj

bj

) √
2bj

σj

)]
, on Ij,

where (α
(j)
µ , β

(j)
µ ) ∈ R2. As ϕµ ∈ L2

(
(−∞, c], 1√

m(.)

)
, we choose (α

(0)
µ , β

(0)
µ ) = (1, 0).

Since ϕµ ∈ DomW(L⋆), using the transmission conditions, for all j ∈ {1, · · · , d}, the
couple (α

(j)
µ , β

(j)
µ ) satisfies the following system of equations: σ2

jϕ
(j)
µ (rj) = σ2

j−1ϕ
(j−1)
µ (rj),

σ2
j

2
(ϕ

(j)
µ )′(rj) + (bjrj − aj)ϕ

(j)
µ (rj) =

σ2
j−1

2
(ϕ

(j−1)
µ )′(rj) + (bj−1rj − aj−1)ϕ

(j−1)
µ (rj),
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with (α
(0)
µ , β

(0)
µ ) = (1, 0).

Moreover, from the boundary condition, we have ϕµ(c) = 0, i.e., ϕ(d)
µ (c) = 0. In the

following we denote by (µn)n≥1 the ordered sequence of zeros of µ 7→ ϕ
(d)
µ (c). Note that

from Lemma 4.7.1, the eigenvalues (−µn)n≥1 are negative. Normalizing the eigenfunctions
(ϕn)n≥1, we obtain:

en(x) =

∑d
j=0 ϕ

(j)
n (x)1Ij(x)√∑d

j=0

∫
Ij

[
ϕ
(j)
n (y)

]2
m−1(y)dy

.

Furthermore, classical results on the Parabolic Cylinder functions allow us to express the
denominator without the integral.

Lemma 4.7.2. Under the assumptions of Theorem 4.3.1, we have:

N(µn) =
d∑
j=0

∫
Ij

(
ϕ(j)
n (y)

)2
m−1(y)dy =

σ2
d

2m(c)
∂x
[
ϕ(d)
n (x)

]
x=c

∂µ
[
ϕ(d)
n (c)

]
µ=µn

.

Proof. The proof follows by using Remark 4.8.1. It is identical to Lemma 3 in [8].

Then (en)n≥1 forms an Hilbertian basis of L2

(
(−∞, c], 1√

m(.)

)
. Let us return to the

initial problem of solving the Fokker-Planck equation (4.2.8). We can now decompose p
in the form (4.7.1). Now, the only remaining task is to explicitly provide the function
t 7→ cn(t) for n ≥ 1.
Using the initial condition in (4.2.8), we have p(x, 0) =

∑∞
n=1 cn(0)en(x), then for n ∈ N⋆:

cn(0) = ⟨p(., 0), en⟩
L2

(
(−∞,c], 1√

m(.)

) =
d∑
j=0

∫
Ij

p(z, 0)en(z)

m(z)
dz

=

∑d
j=0

ϕ
(j)
n (x0)
m(x0)

1Ij(x0)√
N(µn)

It remains to find cn(t) for t > 0. By differentiating (4.7.1) and using ∂tp(x, t) =
−L⋆p(x, t) = −

∑∞
n=1 cn(t)µnen(x), one can derive c′n(t) = −cn(t)µn, leading to cn(t) =

cn(0)e
−µnt due to the uniqueness of the decomposition, thus the conclusion holds.

4.7.2 Proof of Theorem 4.4.1

The method for computing the solution is inspired by the previous results obtained for
the transition probability density of the killed process. Making use of the formulation of
the infinitesimal generator L in (4.2.5), we have:

Luc(µ, x0) = µuc(µ, x0) ⇐⇒ 1

m(x0)
∂x0
(
S−1(x0)∂x0(uc(µ, x0))

)
= µuc(µ, x0).
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Then using (4.7.2), one can remark that ϕ−µ(x0) = m(x0)uc(µ, x0) is solution of L⋆ϕ−µ(x0) =

µϕ−µ(x0). Let us write uc(µ, x0) =
∑d

j=0 u
(j)
c (µ, x0)1Ij(x0), hence, for x0 ∈ Ij, there exists

(α̃
(j)
µ , β̃

(j)
µ ) ∈ R2 such that we have:

u(j)c (µ, x0) =
1√
m(x0)

[
α̃(j)
µ D− µ

bj

(
−
(
x− aj

bj

) √
2bj

σj

)
+ β̃(j)

µ D− µ
bj

((
x− aj

bj

) √
2bj

σj

)]
.

Since limx0→−∞ uc(µ, x0) = 0, we choose β̃(0)
µ = 0. For all j ∈ {1, · · · , d}, the regularity

of the Laplace transform leads to the system: σ2
ju

(j)
c (µ, rj) = σ2

j−1u
(j−1)
c (µ, rj),

σ2
j

2
∂x0u

(j)
c (µ, x0)|x0=rj + (bjrj − aj)u

(j)
c (µ, rj) =

σ2
j−1

2
∂x0u

(j−1)
c (µ, x0)|x0=rj + (bj−1rj − aj−1)u

(j−1)
c (µ, rj).

Note that this system is the same as (4.3.1). Then, for all j ∈ {0, · · · , d}, we obtain
(α̃

(j)
µ , β̃

(j)
µ ) = α̃

(0)
µ (α

(j)
−µ, β

(j)
−µ). The solution still depends on α̃

(0)
µ which needs to be deter-

mined. Furthermore, using that uc(µ, c) = 1, we obtain α̃
(0)
µ = 1

ϕ−µ(c)
and the conclusion

holds.
Using Lemma 2.1 in [73], the holomorphic property of the Laplace transform follows
directly.

4.7.3 Proof of Theorem 4.4.2

Using the scale function (see Proposition 1.3.18), defined by s(x) =
∫ x

S(y)dy, we can
establish that the process X̄ is recurrent. The regime of the process X̄ only depends on its
behavior over the interval I0. As b0 > 0, we can verify that limx→−∞ s(x) = −∞, which
implies that for all x0, c ∈ R such that x0 < c, we have Px0(τc < +∞) = 1 (see the proof
of Proposition 1.3.18). Let us now prove that Px0(τc ∈ dt) is absolutely continuous with
respect to the Lebesgue measure. For every B ∈ B(R) such that B is Lebesgue-negligible,
we have:

Px0(τc(X) ∈ B) ≤ Px0(τ[x0−ϵ,c](X) ∈ B) (4.7.4)

where ϵ > 0 and τ[x0−ϵ,c](X) is the first exit time of the process X from the interval
(x0 − ϵ, c).

We construct a process Y such that it admits a state space [l1, l2] with l1 ≤ x0−ϵ < c ≤ l2

and such that Y.∧τ[x0−ϵ,c](Y )
law
= X.∧τ[x0−ϵ,c](X). Here, {l1} and {l2} are chosen as non-singular

boundaries (see Definition 1.3.13). As an example, Y can be instantaneously reflected on
the boundaries {l1} and {l2}:

Yt = x0 +

∫ t

0

a(Ys)− b(Ys)Ysds+

∫ t

0

σ(Ys)dBs + Ll1t (Y )− Ll2t (Y ).

Strong existence and uniqueness for this SDE follows from Theorem 4.5 in [9]. For more
details on reflected SDEs, we refer to [89]. Now using (4.7.4), we have:

Px0(τc(X) ∈ B) ≤ Px0(τx0−ϵ(Y ) ∈ B) + Px0(τc(Y ) ∈ B). (4.7.5)
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Then, from Theorem 6.1 in [57], τx0−ϵ(Y ) and τc(Y ) admit a density with respect to the
Lebesgue measure. Using the inequality (4.7.5), we prove the existence of the density pτc .

We now focus on computing the explicit expression for pτc . Recall that p and pτc are
linked by:

pτc(t) = −σ
2
d

2
∂xp(x, t)|x=c.

It suffices now to compute the derivative in space of the function p at the point c. Since the
function p admits a series representation, obtaining formulation (4.4.3) requires proving
that we can differentiate each term of the series in (4.3.2) separately.

Let x ∈ [c− ϵ, c], we want to show that:

1

m(x0)

∞∑
n=1

e−µnt

N(µn)
∂x
[
ϕ(d)
n (x)

]
ϕ(j)
n (x0), (4.7.6)

converges uniformly. Using (4.3.3) and Corollary 7 in [8], we have:

1

m(x0)

∞∑
n=1

∣∣∣∣ e−µntN(µn)
∂x
[
ϕ(d)
n (x)

]
ϕ(j)
n (x0)

∣∣∣∣ ≤ σ2
dm(c)

2m(x0)

∞∑
n=1

∣∣∣∣∣∣e−µnt ϕ
(j)
n (x0)

∂µ

[
ϕ
(d)
n (c)

]
∣∣∣∣∣∣ .

Then, from Corollary 4.4.4, we have, for large n:∣∣∣∣ e−µntN(µn)
∂x
[
ϕ(d)
n (x)

]
ϕ(j)
n (x0)

∣∣∣∣ ≤ Ce−b0(2n+1)t,

with C a strictly positive constant. The series (4.7.6) converges uniformly and the con-
clusion holds.

4.8 Appendix

4.8.1 On the Parabolic Cylinder functions

In this section, for the convenience of the reader, we recall the definition and some prop-
erties of the Parabolic Cylinder function.

For all x, µ ∈ R, the Parabolic Cylinder function, denoted Dµ(.), is the solution of the
differential equation:  y′′ (x) +

(
µ+ 1

2
− 1

4
x2
)
y (x) = 0,

y(x) ∼
x→+∞

xµe−x
2/4.

(4.8.1)

In the case µ > −1, the Parabolic Cylinder function can be expressed as follows (see [68]
p290):

Dµ(x
√
2) =

2
µ
2
+1e

x2

2

√
π

∫ ∞

0

e−t
2

tµ cos
(
−2xt+

µπ

2

)
dt. (4.8.2)
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Furthermore, we have the following relations:

∂xDµ(x) = µDµ−1(x)−
x

2
Dµ(x). (4.8.3)

and, from [68] p286:

Dµ(x
√
2)Dµ−1(−x

√
2) +Dµ(−x

√
2)Dµ−1(x

√
2) =

√
2π

Γ(1− µ)
. (4.8.4)

For µ large enough, we have:

Dµ(x) =
2
µ
2

√
π
Γ

(
1

2
+
µ

2

)
cos

(
x

√
µ+

1

2
− πµ

2

)(
1 +O(µ− 1

4 )
)
. (4.8.5)

Moreover, using (4.8.1) and integration by parts:∫ x

−∞
D2
µ

(
−y

√
2
)
dy = −

√
2

2

[
Dµ

(
−x

√
2
)
∂µ

(
µDµ−1

(
−x

√
2
))

− µDµ−1

(
−x

√
2
)
∂µDµ

(
−x

√
2
)]
.

(4.8.6)

Remark 4.8.1. If f : R2 → R is a solution of ∂2x2f(x, µ) +
(
µ+ 1

2
− 1

4
x2
)
f(x, µ) = 0,

then for all x, µ, c1, c2 ∈ R,∫ c2

c1

f(x, µ)2 dx =− 1

2
[f(c2, µ)∂x∂µf(c2, µ)− ∂xf(c2, µ)∂µf(c2, µ)− f(c1, µ)∂x∂µf(c1, µ)

+∂xf(c1, µ)∂µf(c2, µ)] .

4.8.2 Homogeneous and particular solutions of the weighted Sturm-
Liouville problem

For all j ∈ {0, · · · , d} and x ∈ Ij, we have ϕ(j)
µ (x) =

√
m(x)ϕ̃

(j)
µ (x), where:

ϕ̃(j)
µ (x) = α(j)

µ D µ
bj

(
−
(
x− aj

bj

) √
2bj

σj

)
+ β(j)

µ D µ
bj

((
x− aj

bj

) √
2bj

σj

)
,

with ϕ̃ solution of:

(ϕ̃(j)
µ )′′(x) +

 bj
σ2
j

−

(
(x− aj

bj
)bj

σ2
j

)2

+
2µ

σ2
j

 ϕ̃(j)
µ (x) = 0. (4.8.7)

Additionally, for all j ∈ {1, · · · , d}, the couple (α
(j)
µ , β

(j)
µ ) verifies: ϕ̃

(j)
µ (rj) =

σj−1

σj
ϕ̃
(j−1)
µ (rj),

(ϕ̃
(j)
µ )′(rj) =

σj−1

σj

[
(ϕ̃

(j−1)
µ )′(rj) + rj

(
bj−1

σ2
j−1

− bj
σ2
j

)
ϕ̃
(j−1)
µ (rj) +

(
aj
σ2
j
− aj−1

σ2
j−1

)
ϕ̃
(j−1)
µ (rj)

]
,

(4.8.8)
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with (α
(0)
µ , β

(0)
µ ) = (1, 0). Making use of the method on p284 in [68], we provide a different

formulation for the solution of equation (4.8.7). For all j ∈ {1, · · · , d} and x ∈ Ij, we
have:

ϕ̃(j)
µ (x) = ϕ̃

(j)
H,µ(x) + ϕ̃

(j)
P,µ(x),

where:

ϕ̃
(j)
H,µ(x) =

σj−1

σj
ϕ̃(j−1)
µ (rj) cos

(
(x− rj)

√
bj + 2µ

σj

)
+ sin

(
(x− rj)

√
bj + 2µ

σj

)

×

σj−1(ϕ̃
(j−1)
µ )′(rj) + rj−1σj−1

(
bj−1

σ2
j−1

− bj
σ2
j

)
ϕ̃
(j−1)
µ (rj) + σj−1

(
aj
σ2
j
− aj−1

σ2
j−1

)
ϕ̃
(j−1)
µ (rj)√

bj + 2µ

 ,

(4.8.9)

and

ϕ̃
(j)
P,µ(x) =

b2j

σ3
j

√
bj + 2µ

∫ x

rj

(
y − aj

bj

)2

ϕ̃(j)
µ (y) sin

(
(x− y)

√
bj + 2µ

σj

)
dy. (4.8.10)

Here, ϕ̃(j)
H,µ is the homogeneous solution and ϕ̃(j)

P,µ is the particular solution of (4.8.7).

4.8.3 Asymptotic expansions

This section is dedicated to the proof of Lemma 4.4.3 and Corollary 4.4.4. In this section,
without loss of generality, we suppose that a(.) = 0. If a(.) ̸= 0, the proof follows by
straightforward computations.

Proof of the asymptotic expansions in Lemma 4.4.3:

This lemma is demonstrated by recurrence. In the case j = 0, (4.4.4) is given in [68], and
(4.4.5) is easily obtained by using the method on p69 in [94]. The recurrence involves
technical and laborious computations. However, when focusing on the case j = 1, the
proof remains similar across all other instances where j ∈ {2, · · · , d}. We focus on proving
that, for x ∈ I1 and µ large enough:

ϕ
(1)
µ (x)√
m(x)

=
2

µ
2b0K1(µ)

σ1
√
π

Γ

(
1

2
+

µ

2b0

)
cos

(
πµ

2b0
(1 + o(1))

)[
1 +O

(
µ− 1

4

)]
, (4.8.11)

where σ1 ∧ σ0 ≤ K1(µ) ≤ σ1 ∨ σ0.

Recall that for x ∈ I1,
ϕ
(1)
µ (x)√
m(x)

= ϕ̃
(1)
µ (x). We focus on the asymptotic expansion of ϕ̃(1)

µ .

In this case, for all x ∈ I1, we have ϕ̃(1)
µ (x) = α

(1)
µ D µ

b1

(
−x

√
2b1
σ1

)
+ β

(1)
µ D µ

b1

(
x
√
2b1
σ1

)
where

(α
(1)
µ , β

(1)
µ ) satisfies:
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 σ1

[
α
(1)
µ D µ

b1

(
−r1

√
2b1
σ1

)
+ β

(1)
µ D µ

b1

(
r1

√
2b1
σ1

)]
= σ0D µ

b0

(
−r1

√
2b0
σ0

)
,

1√
b1

[
β
(1)
µ D µ

b1
−1

(
r1

√
2b1
σ1

)
− α

(1)
µ D µ

b1
−1

(
−r1

√
2b1
σ1

)]
= − 1√

b0
D µ

b0
−1

(
−r1

√
2b0
σ0

)
.

(4.8.12)
We assume that µ /∈ b1N (see Remark 4.8.5 for more details). Solving the system (4.8.12)
and using (4.8.4), we obtain:

α(1)
µ = Γ

(
1− µ

b1

) [σ0
σ1
D µ

b0

(
−r1

√
2b0
σ0

)
D µ

b1
−1

(
r1

√
2b1
σ1

)
+
√

b1
b0
D µ

b0
−1

(
−r1

√
2b0
σ0

)
D µ

b1

(
r1

√
2b1
σ1

)]
√
2π

,

β(1)
µ = Γ

(
1− µ

b1

) [σ0
σ1
D µ

b0

(
−r1

√
2b0
σ0

)
D µ

b1
−1

(
r1

√
2b1
σ1

)
−
√

b1
b0
D µ

b0
−1

(
−r1

√
2b0
σ0

)
D µ

b1

(
r1

√
2b1
σ1

)]
√
2π

.

From Section 4.8.2:
ϕ̃(1)
µ (x) = ϕ̃

(1)
H,µ(x) + ϕ̃

(1)
P,µ(x).

We start by studying the asymptotic expansion of the particular and the homogeneous
solution separately. We obtain the following asymptotic expansion for the particular
solution.

Lemma 4.8.2. For µ large enough and x ∈ I1, we have:

ϕ̃
(1)
P,µ(x) = 2

µ
2b0Γ

(
1

2
+

µ

2b0

)
O(µ− 1

4 ).

Proof. Using (4.8.10), we have ϕ̃(1)
P,µ(x) = α

(1)
µ I1 + β

(1)
µ I2, where,

I1 =
b21

σ3
1

√
b1 + 2µ

∫ x

r1

y2D µ
b1

(
−y

√
2b1
σ1

)
sin

(
(x− y)

√
b1 + 2µ

σ1

)
dy,

I2 =
b21

σ3
1

√
b1 + 2µ

∫ x

r1

y2D µ
b1

(
y

√
2b1
σ1

)
sin

(
(x− y)

√
b1 + 2µ

σ1

)
dy.

Then, from Cauchy-Schwartz inequality together with (4.8.6) and Lemma 4.8.8, we obtain:

I1 = 2
µ

2b1Γ

(
1

2
+

µ

2b1

)
O(µ− 1

4 ) and I2 = 2
µ

2b1Γ

(
1

2
+

µ

2b1

)
O(µ− 1

4 ).

Using formula (4.8.5) together with Stirling formula (see (1.4.25) in [68]), we prove that:

α(1)
µ O(µ− 1

4 ) + β(1)
µ O(µ− 1

4 ) =2
µ

2b0
+ µ

2b1Γ

(
1− µ

b1

)
Γ

(
1

2
+

µ

2b0

)
Γ

(
1

2
+

µ

2b1

)

×

 Γ
(

µ
2b1

)
Γ
(

1
2
+ µ

2b1

)O(µ− 1
4 ) +

Γ
(

µ
2b0

)
Γ
(

1
2
+ µ

2b0

)O(µ− 1
4 )

 ,
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and
Γ
(
µ

2b0

)
Γ
(

1
2
+ µ

2b0

) = O(µ− 1
2 ). Then, we obtain:

ϕ̃
(1)
P,µ(x) = 2

µ
2b0

+ µ
b1Γ

(
1

2
+

µ

2b0

)
Γ

(
1− µ

b1

)
Γ2

(
1

2
+

µ

2b1

)
O(µ− 3

4 ).

Using again Stirling formula, we have 2
µ
b1Γ
(
1− µ

b1

)
Γ2
(

1
2
+ µ

2b1

)
O(µ− 3

4 ) = O(µ− 1
4 ) and

the conclusion holds.

We now focus on the asymptotic expansion of the homogeneous solution of (4.8.7).

Lemma 4.8.3. For µ large enough and x ∈ I1, we have:

ϕ̃
(1)
H,µ(x) =

2
µ

2b0K1(µ)

σ1
√
π

Γ

(
1

2
+

µ

2b0

)[
cos

(
r1
√
b0 + 2µ

σ0
+
πµ

2b0
+ θ(µ)

)
+O(µ− 1

4 )

]
,

where σ1 ∧ σ0 ≤ K1(µ) ≤ σ1 ∨ σ0 and θ(µ)√
b1+2µ

= O(1).

Proof. Using (4.4.4), (4.4.5), and (4.8.9), we have:

ϕ̃
(1)
H,µ(x) =

2
µ

2b0
−1
(σ0 + σ1)

σ1
√
π

Γ

(
1

2
+

µ

2b0

)[
cos

(
r1
√
b0 + 2µ

σ0
+
πµ

2b0
+ f(x, µ)

)
+
σ0 − σ1
σ0 + σ1

cos

(
r1
√
b0 + 2µ

σ0
+
πµ

2b0
− f(x, µ)

)
+O

(
µ− 1

4

)]
,

where f(x, µ) = (x−r1)
√
b1+2µ

σ1
. Then, we get:

cos

(
r1
√
b0 + 2µ

σ0
+
πµ

2b0
+ f(x, µ)

)
+
σ0 − σ1
σ0 + σ1

cos

(
r1
√
b0 + 2µ

σ0
+
πµ

2b0
− f(x, µ)

)
=

2
√
A2(µ) +B2(µ)

σ0 + σ1

×

[
A(µ)√

A2(µ) +B2(µ)
cos

(
r1
√
b0 + 2µ

σ0
+
πµ

2b0

)
− B(µ)√

A2(µ) +B2(µ)
sin

(
r1
√
b0 + 2µ

σ0
+
πµ

2b0

)]
,

where A(µ) = σ0 cos (f(x, µ)) and B(µ) = σ1 sin (f(x, µ)).
Using the following variable change A(µ)√

A2(µ)+B2(µ)
= cos(θ(µ)) and B(µ)√

A2(µ)+B2(µ)
= sin(θ(µ)),

we get:

cos

(
r1
√
b0 + 2µ

σ0
+
πµ

2b0
+ f(x, µ)

)
+
σ0 − σ1
σ0 + σ1

cos

(
r1
√
b0 + 2µ

σ0
+
πµ

2b0
− f(x, µ)

)
=

2K1(µ)

σ0 + σ1
cos

(
r1
√
b0 + 2µ

σ0
+
πµ

2b0
+ θ(µ)

)
.

with K1(µ) =
√
A2(µ) +B2(µ). Note that σ2

0 ∧ σ2
1 ≤ A2(µ) + B2(µ) ≤ σ2

0 ∨ σ2
1, then

σ0 ∧ σ1 ≤ K1(µ) ≤ σ0 ∨ σ1. As θ(µ) = arctan
(
A(µ)
B(µ)

)
+ nπ, by differentiation with respect

to µ, we have:

θ′(µ) =
σ0(r1 − x)√

b1 + 2µ(A2(µ) +B2(µ))
.

Then, we obtain r1−x
(σ2

0∧σ2
1)
√
b1+2µ

≤ θ′(µ) ≤ r1−x
(σ2

0∨σ2
1)
√
b1+2µ

. Integrating with respect to µ leads

to θ(µ)√
b1+2µ

= O(1).
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Combining the two preceding lemmas, we provide an asymptotic expansion for the func-
tion ϕ̃(1)

µ .

Lemma 4.8.4. For µ large enough and x ∈ I1, we have:

ϕ̃(1)
µ (x) =

2
µ

2b0K1(µ)

σ1
√
π

Γ

(
1

2
+

µ

2b0

)
cos

(
r1
√
b0 + 2µ

σ0
+
πµ

2b0
+ θ(µ)

)[
1 +O(µ− 1

4 )
]
.

(4.8.13)

Proof. Using Lemma 4.8.2 and Lemma 4.8.3, for µ large enough and x ∈ I1, we have:

ϕ̃(1)
µ (x) =

2
µ

2b0K1(µ)

σ1
√
π

Γ

(
1

2
+

µ

2b0

)[
cos

(
r1
√
b0 + 2µ

σ0
+
πµ

2b0
+ θ(µ)

)
+O(µ− 1

4 )

]
.

Let µ⋆ be large enough and such that r1
√
b0+2µ⋆
σ0

+ πµ⋆
2b0

+ θ(µ⋆) = nπ + π
2
. When µ is not

in a neighborhood of a zero µ⋆, we can factorize the cosine in our expression. It remains
to prove that in a neighborhood of µ⋆ we can also factorize the cosine. The idea is to use
Lemma 4.8.7. By differentiation, we have:

∂µ

[
r1
√
b0 + 2µ

σ0
+
πµ

2b0
+ θ(µ)

]
µ=µ⋆

=
r1

σ0
√
b0 + 2µ⋆

+
π

2b0
+ θ′(µ⋆). (4.8.14)

Then, as θ′(µ⋆) = O(µ
− 1

2
⋆ ), we obtain:∣∣∣∣∣∂µ

[
r1
√
b0 + 2µ

σ0
+
πµ

2b0
+ θ(µ)

]
µ=µ⋆

∣∣∣∣∣ > C,

with C a strictly positive constant. We conclude the proof by applying Lemma 4.8.7.

This completes the proof of (4.8.11). Note that, by differentiating ϕ̃
(1)
H,µ(x) and ϕ̃

(1)
P,µ(x)

with respect to x and by applying a similar reasoning we can prove that, for µ large
enough and x ∈ I1:

(ϕ̃(1)
µ )′(x) = −2

µ
2b0 K̃1(µ)

σ2
1

√
b1 + 2µ

π
Γ

(
1

2
+

µ

2b0

)
sin

(
πµ

2b0
(1 + o(1))

)[
1 +O

(
µ− 1

4

)]
,

where σ1 ∧ σ0 ≤ K̃1(µ) ≤ σ1 ∨ σ0.

Remark 4.8.5 (Pathological case). Given that µ ∈ b1N, the function x 7→ D µ
b1
(x) is

either odd or even. In this case, we have: ϕ(1)
nb1

(x) =
(
(−1)nα

(1)
nb1

+ β
(1)
nb1

)
Dn

(
x
√
2b1
σ1

)
if a

solution of the following system exists:
(
(−1)nα

(1)
nb1

+ β
(1)
nb1

)
Dn

(
r1

√
2b1
σ1

)
= σ0

σ1
Dnb1

b0

(
−r1

√
2b0
σ0

)
,(

(−1)nα
(1)
nb1

+ β
(1)
nb1

)
Dn−1

(
r1

√
2b1
σ1

)
=
√

b1
b0
Dnb1

b0
−1

(
−r1

√
2b0
σ0

)
.

Therefore, we still obtain the same asymptotic expansion for ϕ(1)
nb1

when n is large enough.
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Remark 4.8.6 (Reccurence in the other state). Let us assume that the statement is true
for j − 1. In this case, we have ϕ̃(j)

µ (x) = ϕ̃
(j)
H,µ(x) + ϕ̃

(j)
P,µ(x). For µ /∈ bjN, using (4.8.3)

and (4.8.4), for all x ∈ Ij, (α
(j)
µ , β

(j)
µ ) are solutions of:

α
(j)
µ = Γ

(
1− µ

bj

) σj−1

σ2
j

ϕ̃
(j−1)
µ (rj)D µ

bj
−1

(
rj

√
2bj
σj

)
−
σj−1

√
bj

µ
√
2

D µ
bj

(
rj

√
2bj
σj

)[
(ϕ̃

(j−1)
µ )′(rj)+rj

bj−1

σ2
j−1

ϕ̃
(j−1)
µ (rj)

]
√
2π

,

β
(j)
µ = Γ

(
1− µ

bj

) σj−1

σ2
j

ϕ̃
(j−1)
µ (rj)D µ

bj
−1

(
rj

√
2bj
σj

)
+
σj−1

√
bj

µ
√
2

D µ
bj

(
rj

√
2bj
σj

)[
(ϕ̃

(j)
µ )′(rj−1)+rj

bj−1

σ2
j−1

ϕ̃
(j−1)
µ (rj)

]
√
2π

.

The proof follows by similar reasoning based on the previous system and (4.8.8) together
with (4.8.9). If µ ∈ bjN, the asymptotic behavior remains the same by a similar reasoning
as in Remark 4.8.5.

Proof of the asymptotic expansions in Corollary 4.4.4:

Using Lemma 4.4.3, for all x ∈ Id and n large enough, we have:

ϕ(d)
n (x) =

2
µn
b0 Kd(µn)∏d

i=1 σi

√
m(x)

π
Γ

(
1

2
+
µn
2b0

)
cos

(
πµn
2b0

(1 + o(1))

)[
1 +O

(
µ
− 1

4
n

)]
.

(4.8.15)
Here (µn)n≥1 is the ordered sequence of zeros of µ 7→ ϕ

(d)
n (c). From (4.8.15), for n large

enough, µn are the zeros of µ 7→ cos
(
πµ
2b0

(1 + o(1))
)
. Then, we have:

µn = b0(2n+ 1)(1 + o(1)).

It remains now to prove (4.4.6). By differentiating (4.8.15) with respect to µ, we have:

∂µ
[
ϕ(d)
µ (c)

]
µ=µn

=∂µ

[
2
µn
b0 Kd(µn)∏d

i=1 σi

√
m(c)

π
Γ

(
1

2
+

µ

2b0

)(
1 +O(µ− 1

4 )
)]

µ=µn

×

=0︷ ︸︸ ︷
cos

(
πµn
2b0

(1 + o(1))

)
−
√
πm(c)

2
µn
2b0

−1
Kd(µn)

b0
∏d

i=1 σi

× Γ

(
1

2
+
µn
2b0

)
sin

(
πµn
2b0

(1 + o(1))

)
︸ ︷︷ ︸

=±1

(1 + o(1)) .

Applying the absolute values, we obtain:∣∣∣∂µ [ϕ(d)
µ (c)

]
µ=µn

∣∣∣ =√πm(c)
2
µn
2b0

−1
Kd(µn)

b0
∏d

i=1 σi
Γ

(
1

2
+
µn
2b0

)
(1 + o(1)) .

The conclusion holds, and Corollary 4.4.4 is proved.
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4.8.4 Auxiliary results

Lemma 4.8.7. Let f, g : R+ → R such that f is differentiable, and for µ large enough,
g(µ) = O

(
µ− 1

4

)
. Let µ⋆ such that f(µ⋆) = nπ + π

2
. If |f ′(µ⋆)| > ϵ > 0, then for n large

enough, we have:

lim
µ→µ⋆

g(µ)

cos(f(µ))
= O

(
µ
− 5

4
⋆

)
.

Proof. This result is a direct application of L’Hôpital’s rule.

Using (4.8.2) and (4.8.6), one can prove the following lemma.

Lemma 4.8.8. For µ large enough,∣∣∣∣∣Dµ(−x
√
2)∂µ

(
µDµ−1(−x

√
2)
)

2µΓ2
(
1
2
+ µ

2

)√
µ

∣∣∣∣∣+
∣∣∣∣∣µDµ−1(−x

√
2)∂µDµ(−x

√
2)

2µΓ2
(
1
2
+ µ

2

)√
µ

∣∣∣∣∣ = O(1). (4.8.16)

Proof. Using (4.8.2), we have |Dµ(−x
√
2)| ≤ 2

µ
2 e

x2

2√
π

Γ
(
1
2
+ µ

2

)
and |Dµ−1(−x

√
2)| ≤ 2

µ
2 − 1

2 e
x2

2√
π

Γ
(
µ
2

)
.

Then, by differentiating (4.8.2) with respect to µ, we obtain:

∂µDµ(−x
√
2) =

ln(2)

2
Dµ(−x

√
2)−

√
π2

µ
2 e

x2

2

∫ ∞

0

e−t
2

tµ sin
(
2xt+

µπ

2

)
dt

+
2
µ
2
+1e

x2

2

√
π

∫ ∞

0

e−t
2

tµ ln(t) cos
(
2xt+

µπ

2

)
dt, (4.8.17)

and

∂µDµ−1(−x
√
2) =

ln(2)

2
Dµ−1(−x

√
2) +

√
π2

µ−1
2 e

x2

2

∫ ∞

0

e−t
2

tµ−1 cos
(
2xt+

µπ

2

)
dt

+
2
µ+1
2 e

x2

2

√
π

∫ ∞

0

e−t
2

tµ−1 ln(t) sin
(
2xt+

µπ

2

)
dt. (4.8.18)

Using (4.8.2), (4.8.17) and (4.8.18), we have:

−Dµ(−x
√
2)∂µ

(
µDµ−1(−x

√
2)
)
+ µDµ−1(−x

√
2)∂µDµ(−x

√
2)

=−Dµ(−x
√
2)Dµ−1(−x

√
2)︸ ︷︷ ︸

=A1

−µ2µ+
1
2 ex

2

∫ ∞

0

∫ ∞

0

e−t
2−y2tµyµ−1 cos (2x(t− y)) dtdy︸ ︷︷ ︸

=A2

− µ
2µ+

3
2 ex

2

π

∫ ∞

0

∫ ∞

0

e−t
2−y2tµyµ−1 cos

(
2xt+

µπ

2

)
sin
(
2yt+

µπ

2

)
(ln(y)− ln(t)) dtdy︸ ︷︷ ︸

=A3

.
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For i = 1, 2, 3, it remains to bound |Ai|. We easily get:

|A1| ≤ C12
µΓ

(
1

2
+
µ

2

)
Γ
(µ
2

)
and |A2| ≤ C2µ2

µΓ

(
1

2
+
µ

2

)
Γ
(µ
2

)
,

with C1, C2 two strictly positive constants. It remains now to bound A3: Using that, for
x strictly positive, we have 1− 1

x
≤ ln(x) ≤ x− 1, then for (t, y) ∈ R+ × [0, t]:∣∣∣(ln(y)− ln(t)) cos
(
2xt+

µπ

2

)
sin
(
2xy +

µπ

2

)∣∣∣ ≤ t

y
− 1,

and, for (t, y) ∈ R+ × [t,+∞), we have:∣∣∣(ln(y)− ln(t)) cos
(
2xt+

µπ

2

)
sin
(
2xy +

µπ

2

)∣∣∣ ≤ y

t
− 1.

We bound A3 in the following way:

|A3| ≤ C3µ2
µ

[∫ ∞

0

∫ t

0

e−t
2−y2tµ+1yµ−2dydt+

∫ ∞

0

∫ ∞

t

e−t
2−y2tµ−1yµdydt

]
,

≤ C3µ2
µ

[
Γ
(µ
2
+ 1
)
Γ

(
µ

2
− 1

2

)
+ Γ

(µ
2

)
Γ

(
µ

2
+

1

2

)]
.

with C3 a strictly positive constant. Using Stirling formula, for µ large enough, we have∑3
i=1 |Ai|

2µ
√
µΓ2(µ2+

1
2)

= O(1). Then the conclusion holds.
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Chapter 5

Parameters estimation of an ergodic
Multi-threshold CKLS process from
continuous and discrete observations

5.1 Introduction

We deal with parameter estimation of a stochastic process, which follows different Chan-
Karolyi-Longstaff-Sanders (CKLS) dynamics separately on different intervals (see equa-
tion (5.2.1) for a definition), that we call threshold CKLS (T-CKLS) process. T-CKLS is
in particular a Self Exciting Threshold model [34]. It excites itself by changing dynamics
according to its own position. The class of T-CKLS models includes several threshold
and non-threshold models such as Ornstein-Uhlenbeck (OU) or Vasicek, Cox-Ingersoll-
Ross (CIR), Black-Scholes, Merton, Constant Elasticity of Variance (CEV) model. Let
us recall the equation satisfied by (non-threshold) CKLS:

Xt = x0 +

∫ t

0

(a− bXs) ds+

∫ t

0

σ|Xs|γ dBs (5.1.1)

where σ ∈ (0,∞), b ∈ R, γ ∈ [0, 1]. Assume also that the deterministic initial condition x0
and the coefficient a are strictly positive. CKLS was considered for interest rate modeling
in [27]. Among statistical studies of non-threshold diffusions such as CKLS and CIR, let
us mention [83] and [10, 11, 12]. The approaches exploit the knowledge of the law of some
functionals of the process. Except for very special threshold diffusions (TDs), this law is
not available nor easily exploitable. Therefore, when dealing with TDs, one must consider
different techniques, which would also hold for non-threshold cases (see Section 5.5.2 for
details).

Recently, several studies have been conducted on the parametric estimation of TDs. Just
to mention some results, in the case of continuous time observations [59, 97, 72], high-
frequency observations on finite or infinite horizon [70, 81, 82], low frequency ones [113,
112, 82]. TDs attract attention for applications, in financial modelling e.g. [34, 71, 85],



population ecology [24], etc. One of the features of the TDs is that they allow for mean
reversions, even with several mean reversion levels.

In this chapter we focus on ergodic T-CKLS. Note that this includes ergodic T-CIR model
and allows for different dynamics on fixed intervals: OU on a region, CIR on another, and
possibly other special cases of CKLS on another interval. We consider both continuous
time observations and discrete observations, which are not necessarily equally spaced.

We study both maximum likelihood estimation (MLE) and a quasi maximum likelihood
estimation (QMLE) for the drift coefficients and we also propose an estimator for the
diffusion coefficient σ based on quadratic variation. We study the asymptotic behavior of
these estimators, obtaining a law of large numbers and a central limit theorem for the drift
coefficients estimators. We discuss these asymptotic results in long time in the continuous
time setting, see Theorem 5.3.5, and in high frequency and long time in the discrete time
setting, see Theorem 5.4.4. We also study consistency and provide a lower bound for the
speed of convergence for the diffusion coefficient estimator in high frequency and long
time, see Theorem 5.4.3.

In the continuous time setting, Theorem 5.3.5 is new for MLE. The drift QMLE was con-
sidered in [97]. In the same paper, numerical studies were conducted on the discretization
of the QMLE. In the discrete time setting, the statistical properties of the discretized
MLE and QMLE are proven in Theorem 5.4.4, which is the main result of this chapter.
Let us mention that, up to our knowledge, the results obtained in this chapter are also
new when the process follows some special dynamics of T-CKLS process, such as T-CIR.
Moreover, up to our knowledge, Theorem 5.4.3 about diffusion coefficient estimation is
the first result of its kind in the context of TDs observed in high frequency and long time.

In the case of discrete observations, we assume that the process is in its stationary regime
(Xt is distributed according to the stationary distribution for all t ≥ 0) and it is ob-
served on a time-grid of N observations 0 = t0 < t1 < . . . < tN = TN with maximal
lag between two consecutive observations, say ∆N , such that limN→∞ TN = +∞ and
limN→∞∆N → 0. To prove the convergence speed, we require an additional condition of
the form limN→∞∆α

NTN = 0, for some power α ∈ (0, 1] that depends on the parameter
vector γ. This is consistent with the existing literature in the context of parameter esti-
mation of diffusions from discrete observations with and without threshold, e.g. [7, 10, 81]
(where α = 1). Further comments on our results, their assumptions, possible extensions
and comparisons with the literature are provided in Section 5.5.

Outline. In Section 5.2, we introduce the model and the quasi-likelihood and likelihood
functions associated to the T-CKLS process. In Section 5.3, we deal with estimation of T-
CKLS from continuous observations. We provide some statistical properties related to the
drift estimator. The main results of this chapter are provided in Section 5.4, which deals
with drift and volatility estimation from discrete observations. We study the asymptotic
behavior in high frequency and long time for both estimators. In Section 5.5 we comment
on the results. Numerical experiments are provided in Section 5.6, where the estimators
are implemented and tested on simulated data and US interest rates data. Proofs are
collected in Section 5.7. Further useful results are available in Section 5.8.
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Throughout the chapter, we use the notion of stable convergence, denoted stably−−−→. Further
details on this type of convergence can be found in [50] and [51].

5.2 The framework: model and assumptions

In the entire chapter, (Ω,F , (Ft)t≥0,P) denotes a filtered probability space, and B an (Ft)-
standard Brownian motion. The T-CKLS process solves the following one-dimensional
SDE:

Xt = X0 +

∫ t

0

(a(Xs)− b(Xs)Xs) ds+

∫ t

0

σ(Xs)|Xs|γ(Xs) dBs, t ≥ 0, (5.2.1)

with X0 > 0, X0 (either deterministic, or X0 independent of (Bt)t≥0), piecewise constant
coefficients a, b, σ and γ possibly discontinuous at levels 0 = r0 < r1 < . . . < rd < rd+1 =
+∞, d ∈ N. We focus on the case γ(R) ⊆ [0, 1] and γ(0) ∈ [1/2, 1] ∪ {0}. More precisely,
let Ij := [rj, rj+1), for j ∈ {0, . . . , d}, unless γ(0) = 0, in which case I0 = (−∞, r1). The
drift coefficients are given by:

a(x) =
d∑
j=0

aj1Ij(x) ∈ R and b(x) =
d∑
j=0

bj1Ij(x) ∈ R,

and similarly, the volatility coefficients are given by:

σ(x) =
d∑
j=0

σj1Ij(x) > 0 and γ(x) =
d∑
j=0

γj1Ij(x) ≥ 0.

When γ0 ∈ [1/2, 1), we assume in addition that a0 > 0. When γ0 = 1, we allow for a0 ≥ 0.
When γ0 = 0, for the sake of simplicity, we keep the assumptions r1 > 0 and, although
unnecessary, X0 > 0.

For existence of a pathwise unique strong solution to (5.2.1) under the assumption that
γ0 ∈ [1/2, 1] ∪ {0}, we refer for instance to [66] for existence and uniqueness results
for threshold diffusions. Moreover, T-CKLS is a Markov process (see e.g. [44]). When
γ0 ∈ [1/2, 1] the process is always non-negative and 0 is either an unreachable point or a
reflecting one (see Lemma 5.7.1 in Section 5.7.1).

We suppose that (γj)
d
j=0 and the thresholds (rj)

d
j=0 are known, and we estimate drift

and diffusion parameter vectors a, b, σ for continuous time observations and discrete (not
necessarily equally spaced) high frequency observations and infinite horizon.

Definition 5.2.1 (Ergodicity). We say that the process is ergodic, if it is positive recur-
rent.

In this chapter we consider only the case in which the process is ergodic. For instance,
the process is ergodic if we restrict the drift coefficients of the first interval I0 and the last
interval Id to satisfy

(a0, b0) ∈ (0,+∞)× R and (ad, bd) ∈ R× (0,+∞)
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when γ0 ̸= 0. When γ0 = 0, the process is ergodic if, for instance,

(a0, b0) ∈ R× (0,+∞) and (ad, bd) ∈ R× (0,+∞).

More precise restrictions to the parameters are given in Table 5.4 in Section 5.7.1.

When the process is ergodic, there exists a stationary distribution (invariant distribution
for the transition semigroup), denoted by µ. An expression for the stationary distribution
is given in Section 5.7.1.

Definition 5.2.2 (Stationarity). We say that the process is stationary if it is ergodic,
X0 is independent of the driving Brownian motion, and X0 is distributed according to the
stationary distribution.

The maximum likelihood estimation method for the drift parameter requires some addi-
tional parameter restrictions that we are going to detail in the remainder of this section.
Assume that we have access to an observation of an entire trajectory on the time in-
terval [0, T ] of the T-CKLS. We denote by θ := (a, b) = (aj, bj)

d
j=0 the drift parameters

and we assume the thresholds r and the coefficients γ to be known. In the next sec-
tions, we assume σ to be unknown, and we propose an estimator. Yet, in the following
lines, the reader should think as if σ is known (replaced by an estimator). We consider
two different contrast functions: likelihood and quasi-likelihood. The likelihood function
θ 7→ LT (θ;σ, γ) is related to the Girsanov weight:

LT (θ;σ, γ) = exp

(∫ T

0

a(Xs)− b(Xs)Xs

σ(Xs)2(Xs)2γ(Xs)
dXs −

1

2

∫ T

0

(a(Xs)− b(Xs)Xs)
2

σ(Xs)2(Xs)2γ(Xs)
ds

)
. (5.2.2)

Note that it is well defined if the integrals above are well defined (see Proposition 5.8.1 for
details). Hence, we further restrict the parameter space Θ(L) to the coefficients for which
the integrals above are well defined: e.g. ,if γ0 = 1/2, we have to restrict to a0 ≥ σ2

0/2.

We consider the quasi-likelihood function θ 7→ q-LT (θ) := lnLT (θ; 1, 0) [97]. Hence,

q-LT (θ) =
∫ T

0

(a(Xs)− b(Xs)Xs) dXs −
1

2

∫ T

0

(a(Xs)− b(Xs)Xs)
2 ds. (5.2.3)

The advantage of this contrast function is the fact that it does not depend on the diffusion’s
coefficients γ, σ. We denote Θ(q-L) the set of parameters such that the quasi-likelihood
is well defined. Note that q-LT is always well defined because the process we consider
has continuous trajectories. So, it covers a wider range of parameters than the likelihood
function.

Summarizing, in the next sections, we suppose that the parameter r = (rj)
d
j=1 and γ =

(γj)
d
j=0 are known. We denote θ⋆ := (a, b) = (aj, bj)

d
j=0 and σ⋆ the parameters to be

estimated. We suppose that the parameters are in Θ(L), resp. Θ(q-L), when dealing with
the likelihood, resp. quasi-likelihood function. Moreover, we assume that the process is
ergodic (see Table 5.4 in Section 5.7.1 for the parameter restrictions ensuring ergodicity).
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5.3 Estimation from continuous time observations

Let T ∈ (0,∞), and assume we have at our disposal continuous time observations on the
interval [0, T ] of a trajectory of the process X solution to the SDE (5.2.1).

First, we provide estimators which maximize likelihood and quasi-likelihood. Next, we
study the asymptotic behavior of the estimators in long time under the assumption that
the process is ergodic (see Definition 5.2.1).

5.3.1 Estimators expressions

The drift parameters estimators, MLE and QMLE, are defined as the maximal argument
of the log-likelihood (5.2.2) and the quasi-likelihood (5.2.3):

θ
(L)
T := argmax

θ∈Θ(L)

lnLT (θ;σ, γ) and θ
(q-L)
T := argmax

θ∈Θ(q-L)

q-LT (θ).

We look for expressions for MLE and QMLE in terms of the following quantities:

Qj,m
T :=

∫ T

0

Xm
s 1Ij(Xs) ds and M j,m

T :=

∫ T

0

Xm
s 1Ij(Xs) dXs (5.3.1)

for j ∈ {0, . . . , d} and m ∈ {−2γj, 1 − 2γj, 2 − 2γj, 2γj} ∪ {0, 1, 2}. It is convenient to
express log-likelihood and quasi-likelihood as follows. The log-likelihood satisfies

lnLT (θ;σ, γ) :=
d∑
j=0

1

σ2
j

(
ajM

j,−2γj
T − bjM

j,1−2γj
T −

a2j
2
Q
j,−2γj
T − ajbjQ

j,1−2γj
T −

b2j
2
Q
j,2−2γj
T

)
,

(5.3.2)
and the quasi-likelihood q-LT (θ) := lnLT (θ; 1, 0), which rewrites as

q-LT (θ) =
d∑
j=0

ajM
j,0
T − bjM

j,1
T −

a2j
2
Qj,0
T − ajbjQ

j,1
T −

b2j
2
Qj,2
T . (5.3.3)

The following proposition provides explicit expression of MLE and QMLE, in terms of
the quantities in (5.3.1).

Proposition 5.3.1. Let T ∈ (0,∞), the maximum of the likelihood LT (θ;σ, γ) is achieved
at θ(L)T := (aj,γT , bj,γT )dj=0 with

(aj,γT , bj,γT ) =

(
M

j,−2γj
T Q

j,2−2γj
T −Q

j,1−2γj
T M

j,1−2γj
T

Q
j,−2γj
T Q

j,2−2γj
T − (Q

j,1−2γj
T )2

,
M

j,−2γj
T Q

j,1−2γj
T −Q

j,−2γj
T M

j,1−2γj
T

Q
j,−2γj
T Q

j,2−2γj
T − (Q

j,1−2γj
T )2

)
.

(5.3.4)
The maximum of the quasi-likelihood q-LT (θ) is achieved at θ(q-L)T := (aj,0T , b

j,0
T )dj=0, that is

(aj,0T , b
j,0
T ) =

(
M j,0

T Qj,2
T −Qj,1

T M
j,1
T

Qj,0
T Q

j,2
T − (Qj,1

T )2
,
M j,0

T Qj,1
T −Qj,0

T M
j,1
T

Qj,0
T Q

j,2
T − (Qj,1

T )2

)
.
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Proof. We sketch the proof for MLE. The same works for QMLE. One shows that (5.3.4)
is the unique singular point of the gradient (vector of the derivatives with respect to aj
and bj for all j ∈ {0, . . . , d}) of (5.3.2) and the Hessian is negative definite.

Remark 5.3.2. If γ ≡ 0, then the diffusion coefficient is piecewise constant, so T-CKLS
is a threshold OU (T-OU) and QMLE and MLE coincide, as noticed in [81].

Remark 5.3.3. For every j = 0, . . . , d, (aj,γT , bj,γT ) only depend on the observations of the
trajectory t 7→ Xt which belong to Ij. Of course, the same holds for (aj,0T , b

j,0
T ).

MLE and QMLE do not depend on σ⋆ explicitly, but only on the quantities in (5.3.1).
The following result ensures that σ⋆ is a.s. equal to an estimator expressed in terms of
Qj,·
T ,M

·,0
T ,M

j,1
T , XT , X0.

Proposition 5.3.4. Let T ∈ (0,∞) and j ∈ {0, . . . , d}. Then

σj =

√
Qj
T

Q
j,2γj
T

a.s. on the event {Qj,0
T > 0}

where

Q0
T := (f0(XT ))

2 − (f0(X0))
2 + 2

(
r1M

0,0
T −M0,1

T

)
− 2r1f0

Qd
T := (fd(XT ))

2 − (fd(X0))
2 + 2

(
rdM

d,0
T −Md,1

T

)
,

(5.3.5)

with f0(x) = x1I0(x) + r11[r1,+∞)(x), fd(x) = 1Id(x)(x − rd), and f0 = min(XT , r1) −
min(X0, r1), and for j ∈ {1, . . . , d− 1}:

Qj
T := (fj(XT ))

2 − (fj(X0))
2 − 2M j,1

T + 2rjM
j,0
T + 2(rj+1 − rj)

(
fj+1 −

d∑
i=j+1

M i,0
T

)
(5.3.6)

with fj(x) = 1Ij(x)(x− rj)+ (rj+1− rj)1[rj+1,+∞)(x) and fj = max(XT , rj)−max(X0, rj).

Proof. We only consider the case j ∈ {1, . . . , d − 1}. When j ∈ {0, d} the proof works
analogously. Considering the event {Qj,0

T > 0} corresponds to take trajectories, which
spend some time in Ij and so Qj,2γj

T does not vanish. Applying Itô-Tanaka formula (see
Corollary 1.1.8 in Chapter 1 or [91, Chapter VI, exercice 1.25]) ensures that

dfj(Xs) = 1Ij(Xs) dXs + 2−1 d (Lrjs (X)− Lrj+1
s (X)) .

The quadratic variation of fj(X) satisfies a.s. the equality:

⟨fj(X)⟩T = σ2
j

∫ T

0

(Xs)
2γj1Ij(Xs) ds = σ2

jQ
j,2γj
T .

Since for every semi-martingale Y Itô formula ensures that a.s. dY 2 = 2Y dY + d⟨Y ⟩,
Itô formula applied to the semi-martingale (fj(XT ))

2, yields that a.s.

d⟨fj(X)⟩s = d (fj(Xs))
2 + 2rj dM

j,0
s − 2 dM j,1

s + (rj+1 − rj) dL
rj+1
s (X).

In order to check that ⟨fj(X)⟩T is a.s. equal to Qj
T , we exploit Itô-Tanaka formula to

rewrite the local times in terms of M j,0,M j,1. Itô-Tanaka formula applied to max (XT , rj)

yields LrjT (X) = 2fj − 2
∑d

i=jM
i,0
T a.s.. The proof is thus completed.
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5.3.2 Asymptotic properties: long time

In this section, we explore the statistical properties as T → ∞ of the MLE and QMLE
from continuous time observations of a trajectory of the T-CKLS process.

We assume that the process is ergodic, µ is the stationary distribution given in Sec-
tion 5.7.1, and we introduce the following hypotheses:

• HL: µ admits finite (−2γ0)-th and (2− 2γd)-th moment,

• Hq-L: µ admits finite (2 + 2γd)-th moment.

See Section 5.5.3 for comments on these assumptions. However, often the above required
moments are finite. For instance, if bd ̸= 0, then µ admits positive moments of all order
and for γ0 > 1/2 admits negative moments of all order without any further condition. If
γ0 = 1/2 then parameters restrictions may be necessary (see Proposition 5.8.2).

The asymptotic behavior of the MLE and QMLE are provided in the following theorem,
which states that MLE and QMLE are strongly consistent and asymptotically normal
estimators of the drift parameter θ⋆.

Theorem 5.3.5. For ℓ ∈ {L, q-L}, under Hypothesis Hℓ, the MLE and QMLE are
strongly consistent estimators of θ⋆ i.e.

θ
(ℓ)
T

a.s.−−−−→
T→+∞

θ⋆.

Furthermore, the following convergence is satisfied:
√
T
(
θ
(ℓ)
T − θ⋆

)
stably−−−−→
T→+∞

N(ℓ),

where N(ℓ) = (N
(ℓ)
j,a , N

(ℓ)
j,b )

d
j=0 are d + 1 independent, independent of X, two-dimensional

centered Gaussian random variables with covariance matrices respectively given by σ2
jΓ

(ℓ)
j

such that

Γ
(L)
j := Γ

(L,γj)
j :=

 Q
j,−2γj
∞ −Qj,1−2γj

∞

−Qj,1−2γj
∞ Q

j,2−2γj
∞

−1

and Γ
(q-L)
j =

(
Γ
(L,0)
j

)−1

Γ
(L,−γj)
j

(
Γ
(L,0)
j

)−1

where Qj,.
∞ are real constants defined in Lemma 5.3.6.

Proof. The proof is similar to the one in [72, 81], nevertheless we summarize the steps
and stress the specificity of the case we consider in this chapter. Note that MLE and
QMLE rewrite as follows:

θ
(L)
j

a.s.
= θj + σj

(
M

j,−γj
T ,−M

j,1−γj
T

)
Γ(L) and θ

(q-L)
j

a.s.
= θj + σj

(
M

j,γj
T ,−M

j,1+γj
T

)
Γ(L,0)

where Mj,k
T =

∫ T
0
(Xs)

k1Ij(Xs) dBs for k ∈ {−γj, 1−γj, γj, 1+γj} are martingales. Indeed,
note that Qj,2k

T is the quadratic variation of M j,k−γj
T which is the one of Mj,k

T up to a
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multiplicative factor. We can now exploit martingale theorems. The consistency of the
estimator (MLE and QMLE) follows directly from [74, Theorem 1] and the ergodicity of
the process which implies, for instance, Lemma 5.3.6. The asymptotic normality property
follows from [32, Theorem 2.2]. Hypotheses HL and Hq-L are necessary for the application
of [74, Theorem 1].

Lemma 5.3.6 (Ergodic properties). For j ∈ {0, . . . , d} and m ∈ R, if the m-th moment
of µ is finite on the set Ij, then

Qj,m
∞

a.s.
:= lim

T→∞

Qj,m
T

T
=

∫
Ij

xmµ( dx),

are non-vanishing constants.

Remark 5.3.7. The above asymptotic normality of the estimators implies the local asymp-
totic normality (LAN) property (see [65]). The LAN property, is a fundamental concept
in the asymptotic theory of statistics. For instance, when it is satisfied, it can be com-
bined with the Minimax theorem to establish a lower bound for the asymptotic variance of
estimators.

Since statement and proof are analogous to the one of the T-OU process (corresponding
to γ = 0) given in [81, Theorem 1.(iv)], we just provide a short statement.

Let ℓ ∈ {L, q-L} and assume that Hℓ holds. The LAN property holds for the ℓ-function
with rate of convergence 1/

√
T . Furthermore, the asymptotic Fisher information is given

by:

Γ(ℓ) =



1
σ2
0

(
Γ
(ℓ)
0

)−1

0R2×2 . . . 0R2×2

0R2×2
. . . . . . ...

... . . . 1
σ2
d−1

(
Γ
(ℓ)
d−1

)−1

0R2×2

0R2×2 . . . 0R2×2
1
σ2
d

(
Γ
(l)
d

)−1


.

5.4 Estimation from discrete observations

In this section, we assume to observe the process on a discrete time grid 0 = t0 < t1 <
. . . < tN−1 < tN = TN <∞, for N ∈ N.

First, we provide estimators, which maximize a discretized versions of likelihood and quasi-
likelihood. Next, we study the asymptotic behavior of the estimators in high frequency
and long time under the assumption that the process is stationary (see Definition 5.2.2).

5.4.1 Estimators expressions

There is no exploitable explicit expression for the transition densities of the T-CKLS
process, nor for the finite dimensional distributions. This is also true in the well known
special case of threshold Brownian motion with piecewise constant drift. Hence, instead
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of considering the likelihood function associated to the sample (Xtk)
N
k=0, we considered

a discretization of the likelihood LT (5.2.2) and quasi-likelihood q-LT (5.2.3). Further
comments on this choice are given in Section 5.5. Once these discretizations introduced,
we denote them respectively by LTN ,N and q-LTN ,N and we compute the estimators

θ
(L)
TN ,N

= argmax
θ∈Θ(L)

lnLTN ,N(θ;σ, γ) and θ
(q-L)
TN ,N

= argmax
θ∈Θ(q-L)

q-LTN ,N(θ).

Let us denote by Qj,m
TN ,N

and M j,m
TN ,N

the discrete versions of Qj,m
TN

and M j,m
TN

in (5.3.1):

Qj,m
TN ,N

:=
N−1∑
i=0

Xm
ti
1Ij(Xti)(ti+1 − ti) and M j,m

TN ,N
:=

N−1∑
i=0

Xm
ti
1Ij(Xti)(Xti+1

−Xti)

(5.4.1)
for j ∈ {0, . . . , d} and m ∈ {−2γj, 1 − 2γj, 2 − 2γj, 2γj} ∪ {−1, 0, 1, 2}. To obtain the
discretized likelihood and quasi-likelihood, it would be natural to replace the above quan-
tities in the continuous-time observations likelihood and quasi-likelihood functions given
in (5.3.2)-(5.3.3). The discretized quasi-likelihood is then

q-LTN ,N(θ) :=
d∑
j=0

ajM
j,0
TN ,N

− bjM
j,1
TN ,N

−
a2j
2
Qj,0
TN ,N

− ajbjQ
j,1
TN ,N

−
b2j
2
Qj,2
TN ,N

, (5.4.2)

and we could do similarly for the log-likelihood. We would get

lnLTN ,N(θ;σ, γ) =
d∑
j=0

1

σ2
j

(
ajM

j,−2γj
TN ,N

− bjM
j,1−2γj
TN ,N

−
a2j
2
Q
j,−2γj
TN ,N

− ajbjQ
j,1−2γj
TN ,N

−
b2j
2
Q
j,2−2γj
TN ,N

)
.

(5.4.3)
Actually, we do not choose the latter quantity as discretized-log-likelihood. Instead, we
consider a different discretization of M j,m based on an alternative expression, which de-
pends on M j,0 and Qj,0 and Qj,−1 (see Lemma 5.5.1 in Section 5.5, where we also explain
this choice for the discretization). For every j ∈ {0, . . . , d} we define Mj,0

TN ,N
:= M j,0

TN ,N

and for m ∈ {−2γj, 1− 2γj} \ {0}, then

M0,m
TN ,N

= f0,m+1(X0)− f0,m+1(XTN )−
m

2
σ2
0Q

0,m+2γ0−1
TN ,N

+ rm1
(
M0,0

TN ,N
+ f0

)
,

Md,m
TN ,N

= fd,m+1(XTN )− fd,m+1(X0)−
m

2
σ2
dQ

d,m+2γd−1
TN ,N

+ rmd

(
Md,0

TN ,N
− fd

)
,

where f0,m(x) =
∫ r1
x
ym−1dy 1I0(x), fd,m(x) =

∫ x
rd
ym−1dy 1Id(x), and if j ∈ {1, . . . , d− 1},

then

Mj,m
TN ,N

= fj,m+1(XTN )− fj,m+1(X0)−
m

2
σ2
jQ

j,m+2γj−1
TN ,N

+ rmj M
j,0
TN ,N

+ rmj+1fj+1 − rmj fj − (rmj+1 − rmj )
d∑

k=j+1

Mk,0
TN ,N

(5.4.4)

where fj,m(x) =
∫ x∧rj+1

rj
ym−1dy 1(rj ,+∞)(x).
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Finally, we consider the following discretized log-likelihood:

lnLTN ,N(θ;σ, γ) =
d∑
j=0

1

σ2
j

(
ajM

j,−2γj
TN ,N

− bjM
j,1−2γj
TN ,N

−
a2j
2
Q
j,−2γj
TN ,N

− ajbjQ
j,1−2γj
TN ,N

−
b2j
2
Q
j,2−2γj
TN ,N

)
.

The following proposition establishes an explicit expression of the discretized MLE and
discretized QMLE.

Proposition 5.4.1. Let (TN)N∈N be a sequence in (0,∞) and let N ∈ N. The maximum
of the discretized likelihood is achieved at θ(L)TN ,N

= (a
j,γj
TN ,N

, b
j,γj
TN ,N

)dj=0 with

(a
j,γj
TN ,N

, b
j,γj
TN ,N

) :=

(
Mj,−2γj

TN ,N
Q
j,2−2γj
TN ,N

−Q
j,1−2γj
TN ,N

Mj,1−2γj
TN ,N

Q
j,−2γj
TN ,N

Q
j,2−2γj
TN ,N

− (Q
j,1−2γj
TN ,N

)2
,
Mj,−2γj

TN ,N
Q
j,1−2γj
TN ,N

−Q
j,−2γj
TN ,N

Mj,1−2γj
TN ,N

Q
j,−2γj
TN ,N

Q
j,2−2γj
TN ,N

− (Q
j,1−2γj
TN ,N

)2

)
.

(5.4.5)
The maximum of discretized quasi-likelihood is achieved at θ(q-L)TN ,N

= (aj,0TN ,N , b
j,0
TN ,N

)dj=0 with

(aj,0TN ,N , b
j,0
TN ,N

) =

(
M j,0

TN ,N
Qj,2
TN ,N

−Qj,1
TN ,N

M j,1
TN ,N

Qj,0
TN ,N

Qj,2
TN ,N

− (Qj,1
TN ,N

)2
,
M j,0

TN ,N
Qj,1
TN ,N

−Qj,0
TN ,N

M j,1
TN ,N

Qj,0
TN ,N

Qj,2
TN ,N

− (Qj,1
TN ,N

)2

)
.

(5.4.6)

The proof is omitted because it is analogous to the one of Proposition 5.3.1.

Note that the QMLE does not depend on the parameter vector σ⋆ = (σj)
d
j=0, instead the

MLE does because so do the expressions Mj,m
TN ,N

. Since we assume σ⋆ is not known, we
replace it by an estimator. For j ∈ {0, . . . , d},

σjTN ,N =

√√√√Qj
TN ,N

Q
j,2γj
TN ,N

, (5.4.7)

where Qj
TN ,N

is obtained by discretizing the right hand side of formula (5.3.5) and (5.3.6)
in Proposition 5.3.4. Note that Qj

TN ,N
depends on M j,1

TN ,N
and M j,0

TN ,N
defined in (5.4.1).

For instance,

Qd
TN ,N

:= 1Id(XT )(XT − rd)
2 − 1Id(X0)(X0 − rd)

2 + 2
(
rdM

d,0
TN ,N

−Md,1
TN ,N

)
.

5.4.2 Asymptotic properties: high frequency - long time

In this section, we state the statistical properties of the discretized MLE and QMLE.

Let ∆N := maxk=1,...,N(tk − tk−1) denote the maximal lag between two consecutive obser-
vations. We assume that the observation time window goes to infinity (long time) and
the maximal lag between consecutive observations vanishes (high frequency):

lim
N→+∞

TN = +∞ and lim
N→+∞

∆N = 0. (5.4.8)

Moreover, we assume that the process is stationary, see Definition 5.2.2.

The results of this section require additional assumptions on the moments of the stationary
distribution and on ∆N . Let HL and Hq-L be the following assumptions:
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• HL: µ admits finite p-th moment and (−q)-th moments with

– p = 2 + 2γd and q = 2γmax if γ0 = 0 and γmax ∈ [0, 1/2),
– p = max(2 + 2γd, pL) and q = qL if γmax ∈ (0, 1/2) and γ0 ̸= 0 or γmax = 1/2,
– p = max(2 + 2γd, pL, p

′γmax) and q = max(qL, 2q
′γmax) if γmax ∈ (1/2, 1],

• Hq-L = Hq-L: µ admits finite (2 + 2γd)-th moment,

where γmax := max{γj : j = 0, . . . , d}, and pL, qL, p
′, q′ ≥ 1 such that 1 = 1/pL + 2/qL =

1/p′ + 3/(2q′). Observe that, if p′ = 4 then q′ = 2 and p′γmax = 2q′γmax = 4γmax.
Note that, the conditions on moments of µ may lead to parameters restrictions for our
asymptotic results (see Proposition 5.8.2), e.g. if γ0 = 1/2. Nevertheless, if we restrict
to bd ̸= 0 and γ0 > 1/2 then µ admits positive and negative moments of all order.
The interplay between pL, qL, p

′, q′ may come into play to reduce the required negative
moments if, for instance, µ admits positive moments of all orders. See Section 5.5.3 for
more details and comments on these assumptions.

Without loss of generality we assume ∆N ∈ (0, 1) for all N . Then, we also introduce the
following quantities g(q-L)N = ∆N ,

g
(L)
N = max

j=0,...,d



∆
2−2γj
N if γj ∈ (3

4
, 1),

∆
2γj−1
N if γj ∈ (1

2
, 3
4
],

∆
1−2γj
N if γj ∈ (1

4
, 1
2
),

∆
2γj
N if γj ∈ (0, 1

4
],

∆N if γj ∈ {0, 1
2
, 1},

g
(σ)
N := max

j=0,...,d


∆
γj
N if γj ∈ (1

2
, 1),

∆
2γj
N if γj ∈ (0, 1

2
),

∆N if γj ∈ {0, 1
2
, 1}.

Remark 5.4.2. ∆N = g
(q-L)
N ≤ g

(σ)
N ≤ g

(L)
N . If γmax ∈ {0, 1/2, 1}, then g

(L)
N = ∆N .

We are now ready to provide our first convergence result in the discrete setting. We
consider the volatility estimator in (5.4.7) and we prove consistency, and show that the
speed of convergence is larger than

√
TN .

Theorem 5.4.3. Assume that (5.4.8) holds, that the T-CKLS X is stationary and that
Hypothesis Hq-L holds. Then, the estimator σ2

TN ,N
= ((σjTN ,N)

2)dj=0 in (5.4.7) is a consis-
tent estimators of the diffusion coefficient vector σ2

⋆ = ((σj)
2)dj=0, i.e.

σ2
TN ,N

P−−−−→
N→+∞

σ2
⋆.

Under the additional assumption that lim
N→+∞

TNg
(σ)
N = 0, it holds that:

√
TN
(
σ2
TN ,N

− σ2
⋆

) P−−−−→
N→+∞

0Rd+1 .

Since we assume that the diffusion coefficient σ⋆ vector is unknown, we replace it by
estimator (5.4.7) in the expression of Mj,·

TN ,N
.

The following theorems state the asymptotic properties in high frequency and long time
observations of the discretized MLE and QMLE of θ⋆.
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Theorem 5.4.4. Assume that (5.4.8) holds and that the T-CKLS X is stationary. For
ℓ ∈ {L, q-L}, under Hypothesis Hℓ, the MLE and QMLE are consistent estimators of θ⋆
i.e.

θ
(ℓ)
TN ,N

P−−−−→
N→+∞

θ⋆.

Furthermore, if lim
N→+∞

TNg
(ℓ)
N = 0, then under the same hypothesis, we have:

√
TN

(
θ
(ℓ)
TN ,N

− θ⋆

)
stably−−−−→
N→+∞

N(ℓ),

where N(.) is defined in Theorem 5.3.5.

The proof of Theorem 5.4.3 and Theorem 5.4.4 are postponed to Section 5.7. Nevertheless
we give the main ideas and tools in Section 5.5.

Remark 5.4.5. For ℓ ∈ {L, q-L}, it follows from the previous results that the estimator
(θ

(ℓ)
TN ,N

, σTN ,N) is a consistent estimator of (θ⋆, σ⋆). By the stable convergence properties,
√
TN(θ

(ℓ)
TN ,N

, σTN ,N) converges stably to the vector (N(ℓ), 0Rd+1). If σ⋆ is known, the analo-
gous to the LAN property in Remark 5.3.7 holds for the discretized MLE and QMLE.

5.5 Comments on the results and their proofs

In this section, we comment the results of the previous section and we summarize the key
elements of the proofs of consistency and asymptotic normality of the continuous time
and discretized MLE and QMLE. Moreover, we discuss assumptions and extensions, and
compare with related literature.

The main results of this chapter are the asymptotic results in the context of a T-CKLS
process observed in high frequency and long time: Theorems 5.4.3 and 5.4.4. As we
already mentioned, these results are also new in the context of other threshold diffusions
such as T-CIR, and for mixed dynamics: CIR on a space interval, OU on another, CKLS
on another one. We exploit this feature in Section 5.6. In Section 5.5.1 we comment on
the estimators. In particular, we discuss the discretization choice M and the novelty on
estimation of σ⋆.

Since the process is ergodic, the proofs of the asymptotic results in the context of continu-
ous time observations follow from standard martingale central limit theorems. This is the
case in other results for TDs, e.g. [97, 72, 81]. Therefore, in this section, we only focus on
the proofs in the case of discrete observations. This is done in Section 5.5.2. Nevertheless,
in Section 5.5.3, we provide some comments on the assumptions of the results both in the
context of discrete and continuous time observations and we compare our assumptions
with those considered in the literature.

5.5.1 On the estimators

On the volatility estimator. Estimator (5.4.7) is inspired by the results in [70]. The
latter reference studies some estimators for the volatility of a threshold Brownian motion
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(null drift, γ = 0, one threshold) from high frequency discrete observations over a finite
time horizon. The estimators are based on quadratic variation, but on two separate inter-
vals over which the volatility is constant. Our estimator exploits a different discretization
choice for the quadratic variation over the intervals Ij, which allows to obtain information
about its behavior in high frequency and long time. Up to our knowledge, this is the
first time an estimator of the volatility for TDs (with γ ≡ 0 as well) is analyzed in high
frequency and long time.

Likelihood discretization: M .,m
TN ,N

versus M.,m
TN ,N

. Let us first introduce an expres-
sion P-a.s. equal to M j,m

T , which would not involve any term M j,k except if k = 0. The
notation, in particular the functions fj,m, has been introduced for equation (5.4.4).

Lemma 5.5.1. Let T ∈ (0,∞), j ∈ {1 . . . , d} and m ∈ {−2γj, 1 − 2γj} \ {0}. It holds
P-a.s. that:

M0,m
T =f0,m+1(X0)− f0,m+1(XT )−

m

2
σ2
0Q

0,m+2γ0−1
T + rm1

(
M0,0

T + f0
)
, (5.5.1)

Md,m
T =fd,m+1(XT )− fd,m+1(X0)−

m

2
σ2
dQ

d,m+2γd−1
T + rmd

(
Md,0

T − fd

)
, (5.5.2)

and for j ∈ {1, . . . , d− 1}:

M j,m
T = fj,m+1(XT )− fj,m+1(X0)−

m

2
σ2
jQ

j,m+2γj−1
T

+ rmj M
j,0
T + rmj+1fj+1 − rmj fj − (rmj+1 − rmj )

d∑
k=j+1

Mk,0
T , (5.5.3)

where f0 = min(XT , r1)−min(X0, r1) and fj = max(XT , rj)−max(X0, rj) for j ≥ 1.

Proof. We prove only the case j ∈ {1, . . . , d− 1}, and the case j ∈ {0, d} works similarly.
Applying Itô-Tanaka formula (see Corollary 1.1.8 in Chapter 1 or [91, Chapter VI, exercice
1.25]), yields the a.s. equality

fj,m+1(XT ) = fj,m+1(X0) +
m

2
σ2
jQ

j,m+2γj−1 +M j,m
T +

1

2

(
rmj L

rj
T (X)− rmj+1L

rj+1

T (X)
)
.

(5.5.4)
Applying a second time Itô-Tanaka formula to max (XT , rj) shows that a.s. L

rj
T (X) =

2fj − 2
∑d

i=jM
i,0
T . Combining the latter equation with (5.5.4) completes the proof.

We used the latter result to obtain Mj,m
TN ,N

: we just considered the discretized versions
of the right hand side of (5.5.1), (5.5.2) and (5.5.3) in Lemma 5.5.1 by replacing the
quantities M j,0 and Qj,m+2γj−1 by their discretized versions (5.4.1). Without this choice,
proceeding as in the next sections, we would have obtained a more restrictive hypothesis
HL.
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5.5.2 Key elements of proofs, comments and extensions.

We now comment on the proofs of consistency and asymptotic normality for drift and dif-
fusion coefficients, namely Theorems 5.4.3 and 5.4.4. They rely on the next Lemma 5.5.2
and on the continuous time results Proposition 5.3.4 and Theorem 5.3.5. More precisely,
one shows that the rescaled difference between the discrete-time and continuous-time es-
timators (e.g.

√
TN

(
θ
(L)
TN ,N

− θ
(L)
TN

)
) vanishes as N → ∞. Since all estimators depend on

M j,m
TN ,N

and Qj,k
TN ,N

for suitable k,m, the proof is based on the following result.

Lemma 5.5.2. Let λ ∈ {1, 2}. Assume that (5.4.8) holds and that the T-CKLS X is
stationary (see Definition 5.2.2). Then

lim
N→∞

T
−1/λ
N E

[
|Qj,k

TN
−Qj,k

TN ,N
|
]
= 0 and lim

N→∞
T

−1/λ
N E

[
|M j,m

TN
−M j,m

TN ,N
|
]
= 0 (5.5.5)

for all j ∈ {0, . . . , d} in each one of the following cases:

(a) (drift QMLE) for every k ∈ {0, 1, 2} and m ∈ {0, 1},
under the assumptions: lim

N→+∞
T λ−1
N g

(q-L)
N = 0 and hypothesis Hq-L.

(b) (volatility estimation) for every k = 2γj and m ∈ {0, 1},
under the assumptions: lim

N→+∞
T λ−1
N g

(σ)
N = 0 and hypothesis Hq-L.

(c) (drift MLE, σ⋆ unknown) for every k ∈ {−2γj, 1− 2γj, 2− 2γj, 2γj} ∪ {−1, 0} and
m ∈ {0, 1}, under the assumptions: lim

N→+∞
T λ−1
N g

(L)
N = 0 and hypothesis HL.

Remark 5.5.3. If λ = 1, then limN→∞ T λ−1
N g

(·)
N = 0 is equivalent to limN→∞∆N = 0.

The proof of Lemma 5.5.2 is provided in Section 5.7.4. It is quite technical so we give
the main ideas and tools here. It relies on two auxiliary results for T-CKLS processes:
Propositions 5.5.4-5.5.5, whose proofs are postponed to Section 5.7.5 and Section 5.7.6
respectively. Proposition 5.5.4 is a property very commonly used in statistics for diffusion
processes.

Proposition 5.5.4. Assume that the T-CKLS X is stationary. Let j ∈ {0, . . . , d} and
m ≥ 1. Assume that the m-th moment of µ is finite. Then there exists a constant
C ∈ (0,∞) such that for all 0 ≤ s < t it holds E [|Xt −Xs|m] ≤ C(t− s)m/2.

Proposition 5.5.5, instead, is the remedy to the lack of knowledge of the finite dimensional
distributions of TDs. Indeed, the quantities M j,·, Qj,· consider only observations taking
values on Ij together with their following observation. Hence, in the proof of Lemma 5.5.2,
one needs to bound the probability that the process crossed a threshold between two
consecutive observations.

Proposition 5.5.5. Assume that the T-CKLS X is stationary. Let j ∈ {0, . . . , d} and
m ∈ R, such that the m-th moment of µ is finite on the set Ij. Then there exists a
constant C ∈ (0,∞) such that for all 0 ≤ s < t, we have:

E
[
|Xs|mPXs

(
τ ξ

(j)

Ij
< t− s

)
1Ij(Xs)

]
≤ C(t− s)

1/2,
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where ξ(j) is a CKLS process with parameters (aj, bj, σj, γj) starting at Xs and driven by
a Brownian motion independent of Fs (denoted by B as well), and τ ξ

(j)

Ij
is the first hitting

time of the interval Ij for the process ξ(j).

Differences with respect to related literature. Let us first consider standard dif-
fusions related to T-CKLS, for instance CIR process. The proofs in [10, 11] rely on
the knowledge of the law of the process, and some other quantities such as the integral∫ t
0
(Xs)

−1 ds. We do not have access to the law of T-CKLS, nor even to that of threshold
Brownian motion (with multiple thresholds). Under the ergodicity assumption, in the
context of discrete observations our Theorem 5.4.4, recovers and improves the existing
result for CIR.

The proof strategy that we just illustrated above, is analogous to the one exploited in [81]
for drift estimation of T-OU. Nevertheless, we believe that the way we deal with controlling
the probability of crossing a threshold between two consecutive observations (proof of
Proposition 5.5.5) is the key to extend the results of this chapter to more general TDs.
Hence, in our opinion, Proposition 5.5.5 is one of the most relevant results of this chapter.

5.5.3 Comments on assumptions

Assumptions in the continuous setting: Hq-L and HL. In the case of T-OU process
(solution to (5.2.1) with γ ≡ 0), Hq-L and HL rewrite as follows: µ admits finite second
moment. When T-OU is ergodic (see Table 5.4), µ admits moments of all order (see
Proposition 5.8.2), so Hq-L and HL hold. Indeed, for the asymptotic results in [81], no
additional assumptions have been introduced.

For CIR process (solution to the SDE (5.1.1), with γ = 1/2). The asymptotic behavior
of the MLE of an ergodic standard CIR process with a, b > 0 is studied in [11] under the
additional condition a > σ2/2. This condition ensures that µ admits finite (−1)-moment
(see Proposition 5.8.2) and so HL is satisfied. Indeed, since b > 0 the stationary measure
of the CIR process admits positive moments of all order (see Proposition 5.8.2).

In a similar way, in [83], the author studies the asymptotic behavior of the MLE of a CKLS
process (solution to the SDE (5.1.1)) in the ergodic case with a, b > 0 and γ ∈ (1/2, 1).
In this case, the stationary distribution of the CKLS process admits moments of all order
(see [83, Proposition 2.1] or next Proposition 5.8.2). Therefore, Hq-L and HL are satisfied.

We improve the conditions in [97], where consistency and asymptotic normality of the
QMLE have been proven. More precisely, in [97], the process is supposed to be stationary
and geometrically ergodic and they require finiteness of the fourth order moment. We
only assume ergodicity, and, for the QMLE, assumption Hq-L is less restrictive than the
existence of the fourth order moment.

Assumptions in the discrete setting: the discretization choice. Let us note that
in the likelihood function (5.4.3) there could be a term such as M0,−1

T (take γ0 = 1/2). If
one takes M0,−1

T,N instead of M0,−1
TN ,N

for the discretization of the likelihood function, then
one should prove the convergence in Lemma 5.5.2 for it. Following our proof, this requires
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stronger hypothesis than the ones we consider in HL. Let us mention that the idea of
considering a different expression is inspired by [11], which deals with non-threshold CIR
process.

In the case of the QMLE estimator, the replacement of M j,1
TN ,N

by Mj,1
TN ,N

makes no sense
if σ⋆ is unknown because the estimator (5.4.7) of σ⋆ depends on M j,1

TN ,N
, and, if σ⋆ is

known, the replacement would not allow for better assumptions (see Remark 5.7.5).

Assumptions in the discrete setting: asymptotic normality. In the case γ ≡ 0
(T-OU) or γ ≡ 1

2
(T-CIR), the hypotheses limN→∞ TN∆N = 0 has been considered for the

asymptotic normality of estimators for CIR in [11], T-OU process and threshold drifted
Brownian motion in [81, 82]. The condition degrades when the diffusion coefficient is
non-linear in some interval, i.e. when there exists j ∈ {0, . . . , d} such that γj is not equal
to 0, 1/2, or 1. Indeed, ∆N = g

(q-L)
N ≤ g

(σ)
N ≤ g

(L)
N .

The quantities g(L)N and g
(σ)
N involve the maximum over all j of some powers of ∆N de-

pending on γj. Indeed, for each interval Ij we get a condition for convergence on ∆N

depending on γj (for a rigorous proof, see Section 5.7.4), and, taking the most restrictive
condition, corresponds to taking the maximum.

Let us comment on the Hypothesis HL. Finiteness of moments for the stationary measure
µ is summarized in Proposition 5.8.2. When γ0 = 0 and γmax < 1/2, HL is satisfied. When
γ0 = 1/2 and bd > 0, HL is satisfied if a0 > σ2

0. Indeed, qL in hypothesis HL can be taken
such that 2 < qL < 2a0/σ

2
0. This condition is the one in [11, Proposition 5] in the case of

the CIR process (solution to (5.1.1) with γ = 1/2).

Theorem 5.4.4 when σ⋆ is known. When σ⋆ is known, there is no need to replace it by
its estimator. Theorem 5.4.4 holds with weaker assumptions, we show this in Section 5.7.4.
The case of the QMLE is discussed in Remark 5.7.5. Nevertheless, the assumption Hq-L
have to be more restrictive than Hq-L and it is already equal to it. The case of the MLE
is developed in details in the paragraph for the proof of Item (c) (see Section 5.7.4).

5.6 Numerical Experiments

In this section, we implement the MLE and QMLE based on discrete observations on
simulated and US interest rates data.

5.6.1 Simulated Data

In this section, we investigate the efficiency of our estimators on simulated data. We
simulate the T-CKLS process combining known Euler-Type schemes on different intervals
such as the schemes in [5, equation (3)] when the process is a CIR or a drifted version of
the scheme in [99] when the diffusion coefficient is non-linear. More precisely we use the
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following scheme. Given X0 ∈ (0,∞) and (Gk)k∈N a sequence of i.i.d. standard Gaussian
random variables, next we set X(n)

0 = X0 and, we define for all k ∈ N

X
(n)
(k+1)/n :=

∣∣∣∣X(n)
k/n +

1

n

(
a(X

(n)
k/n)− b(X

(n)
k/n)X

(n)
k/n

)
+

1√
n
σ(X

(n)
k/n)(X

(n)
k/n)

γ(X
(n)
k/n

)Gk

∣∣∣∣ .
Further discussion about the most suitable numerical scheme for T-CKLS is beyond the
purpose of this chapter. To estimate the parameters from the simulated data, we use the
estimators from discrete observations in Section 5.4.1. The implementation has been done
using Matlab and the parameters are as in Table 5.1.

a0 b0 σ0 γ0

0.3 0.2 0.2 0.5

a1 b1 σ1 γ1

0 0 0.4 0

a2 b2 σ2 γ2

0.3 0.2 0.2 0.5

r1 r2

1 1.5

Table 5.1: Simulations parameters.

Firstly, we illustrate Theorem 5.4.4 for the drift parameters θ⋆ = (ai, bi)
d=2
i=0 , diffusion

parameters σ⋆, γ and two thresholds r1, r2 given in Table 5.1. We consider a process, which
follows a CIR dynamic close to 0 and far away from 0 and is a BM on an intermediate
bounded interval. We simulate 104 trajectories of the T-CKLS with two threshold. The
set of numerical parameters is (T,N) = (103, 106) with starting condition determined
as follows. As the process is supposed to be stationary, we first simulate one trajectory
starting from X0 > 0 chosen arbitrarily, say X0 = 1, with the scheme X(n) given above
with n = kN/T for some k ∈ N \ {0} (we took k = 1). Then, we consider the final value
of the latter trajectory as initial condition of the 104 trajectories.

Figure 5.1: Asymptotic normality property in Theorem 5.4.4, with parameters as in Table
5.1. We plot the theoritical distribution using (5.7.1) and compare with the empirical
distribution on 104 trajectories.
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Remark that, despite the fact that the set of numerical parameters (T,N) does not satisfy
the conditions for the asymptotic normality in Theorem 5.4.4 (T 2 = N instead of T 2 ≪
N), numerics show good results.

We compare the estimators by means of relative root-mean-square error (RMSE) and
mean-error (ME) in Table 5.2.

Estimator Relative RMSE ME

(a
0,(L)
TN ,N

, a
1,(L)
TN ,N

, a
2,(L)
TN ,N

) (0.3206, 0.2341, 0.2921) (0.0154, 0.0092, 0.0156)

(b
0,(L)
TN ,N

, b
1,(L)
TN ,N

, b
2,(L)
TN ,N

) (0.5500, 0.1857, 0.2439) (0.0173, 0.0069, 0.0093)

(a
0,(q-L)
TN ,N

, a
1,(q-L)
TN ,N

, a
2,(q-L)
TN ,N

) (0.3233, 0.2341, 0.2965) (0.0170, 0.0092, 0.0191)

(b
0,(q-L)
TN ,N

, b
1,(q-L)
TN ,N

, b
2,(q-L)
TN ,N

) (0.5555, 0.1857, 0.2478) (0.0182, 0.0069, 0.0112)

(σ0
TN ,N

, σ1
TN ,N

, σ2
TN ,N

) (0.0088, 0.0087, 0.0015) (0.0087, -0.0034, 0.001)

Table 5.2: Table of the relative RMSE and ME for the estimator of (θ⋆, σ⋆) using the
MLE (5.4.5), QMLE (5.4.6) and volatility estimator (5.4.7).

Observe that the MLE gives a better estimation of the drift parameters, which is easily
explained by the fact that the likelihood contains more information about the model. In
general the MLE tends to have a better RMSE and ME than the QMLE. Applying the
estimator on several data sets, we remark that the QMLE has a greater variance than the
MLE.

Remark 5.6.1 (Threshold estimation). The thresholds can be estimated using the method
proposed in [97] based on continuous observations. We use this procedure in the next
section. It is a QMLE-based method without an explicit expression for the threshold es-
timator. Consequently, the numerical cost of this method increases with the number of
thresholds. However, satisfactory results can still be achieved in the case of two thresholds.
Mathematical study of the estimator for discrete observations should be conducted.

Remark 5.6.2 (Diffusion exponent estimation). The parameter γ was estimated in [83]
for non-threshold CKLS. A study on the estimator properties for discrete observations in
the context of CKLS or its generalisation to T-CKLS is necessary. However, we expect
that the estimator converges quite slowly, especially around 0.

5.6.2 Interest rates analysis

In this section, we apply our estimators to the ten year US treasury rate based on the
Federal Reserve Bank’s H15 data set. We apply a discretized version of the test to evaluate
the existence of one threshold (see [97], see Remark 5.6.1) or more thresholds (see [98])
in this dataset. In [98], the authors introduce a test statistic to identify thresholds in
the drift term of a diffusion model: detect their presence and estimate them. They also
develop a computationally efficient approach to calibrate the p-value and extend the test

108



to detect multiple thresholds. Inspired by [113], we exploit here a discretized version of
the method presented in [98] and combine with the drift MLE and σ⋆ estimator considered
in this chapter.

General step. Let us describe the test to be applied at a general step and then the
procedure describing the steps. Suppose that there are m thresholds, and that we look
for the presence of an additional threshold on the k-th interval Ik = (rk−1, rk) (we know
the value of rk−1, rk: either known or estimated in previous steps). We consider the
hypothesis:  H0 : Null hypothesis m thresholds;

H1 : Alternative hypothesis (m+ 1) thresholds.
(5.6.1)

Under the null hypothesis H0, the model has m thresholds. Under hypothesis H1, there
is an additional threshold r̄ in the k-th regime, meaning that the sequence of thresholds
becomes −∞ = r0 < r1 < . . . < rk−1 < r̄ < rk < . . . < rm. The quasi-likelihood ratio test
statistic is given by:

T = sup
r̄∈[a,b]

T (r̄)

with
T (r̄) := 2

(
q-LTN ,N

(
θ
(H1)
TN ,N

(m+ 1, r̄)
)
− q-LTN ,N

(
θ
(H0)
TN ,N

(m)
))

(5.6.2)

where a and b are 20 and 80 percentiles of the data in [rk−1, rk], the value θ(H1)
TN ,N

(m+1, r̄)
is the drift MLE under hypothesis H1 with the additional threshold given by r̄, and
θ
(H0)
TN ,N

(m) is the drift MLE of the model under hypothesis H0. The MLE is given in
Proposition 5.4.1, with volatility parameter σ⋆ estimated by (5.4.7).

We compute the statistics for some values of r̄, say r̄j := a(1−j/n)+bj/n, j ∈ {0, 1, . . . , n}
(we choose n = 103). Next, we take as an estimator for the threshold rj the r̄j which
maximises T (r̄) and the observed test statistics Tdata is then the quantity T (r̄j).

The distribution of the test statistic (5.6.2) is obtained using a bootstrap method. To
compute the p-value we simulate 103 trajectories of the process with the parameters
under H0, we compute Tj the statistics on the j-th trajectory. Then the p-value is given
by #{j : Tdata < Tj}/103.

We fix the significance level at the conventional 5%.

Procedure. We apply the test above as follows, in a sequential procedure. We first
test for the presence of a threshold on the data: applying this test for m = 0. If the test
is significant, then we take as an estimator for the threshold r̂1 the r̄ which realises the
maximum in the test statistics. This threshold divides the state space into two intervals.
We then test the presence of thresholds on each of the two intervals, starting from the
left to the right. On each interval, if the test is significant, we keep dividing the interval
into two sub-intervals and so on. Once we do not have evidence of new thresholds in the
interval we are considering, we go to the next interval.
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Application to ten year US treasury rate. We consider the ten year US Treasury
rate and we adopt the convention that the daily time intervals is dt = 0.046, where one
unit of time represents one month. We assume that the data follow a T-CIR dynamics,
i.e. γ ≡ 1/2.

We consider the ten year US Treasury rate for two different time window: Jan 2016 - Dec
2019, and Jan 2020 - Jan 2024 represented in Figure 5.2.

Figure 5.2: The figure shows the interest rate daily data (solid line) for the time window
Jan 2016 - Dec 2019, and Jan 2020 - Jan 2024. The fitted thresholds are represented by
the dashed lines.

Let us consider the time window, Jan 2016 - Dec 2019. The threshold test (5.6.1) form = 0
is significant and the threshold estimation is r1 = 2.0303. We apply the test (5.6.1) to
detect a threshold on (0, r1). It is not significant. The same conclusion holds testing for
threshold presence on (r1,+∞).

On the time window, Jan 2020 - Jan 2024, the threshold test (5.6.1) form = 0 is significant
and we estimate the threshold r1 = 2.0507. There is no evidence of additional thresholds
on (0, r1), and the null hypothesis is rejected for the existence of a threshold r2 = 3.5112
on (r1,+∞). Instead, for the tests (5.6.1) with m = 2 for finding a threshold on (r1, r2)
and (r2,+∞), the null hypothesis H0 is not-rejected.

Jan 2016 - Dec 2019

Estimator Value

(a
0,(L)
TN ,N

, a
,(L)
TN ,N

) (1.6434, 0.1713)

(b
0,(L)
TN ,N

, b
1,(L)
TN ,N

) (0.9410, 0.0723)

(σ0
TN ,N

, σ1
TN ,N

) (0.1616, 0.1053)

r1TN ,N (2.0303)

Jan 2020 - Jan 2024

Estimator Value

(a
0,(L)
TN ,N

, a
1,(L)
TN ,N

, a
2,(L)
TN ,N

) (0.2013, 0.5826, -0.0207)

(b
0,(L)
TN ,N

, b
1,(L)
TN ,N

, b
2,(L)
TN ,N

) (0.1556, 0.0670, 0.0236)

(σ0
TN ,N

, σ1
TN ,N

, σ2
TN ,N

) (0.2129, 0.2091, 0.1807)

(r1TN ,N , r
2
TN ,N

) (2.0507, 3.5112)

Table 5.3: Estimated parameters corresponding to Figure 5.2.
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Therefore, we conclude that there is a single threshold in the time window, Jan 2016 -
Dec 2019, and two thresholds in Jan 2020 - Jan 2024. In Table 5.3, we summarize the
values obtained for each of the fitted parameters using the estimators.

5.7 Proofs

In this section, recalling some well known results, we show under which conditions, on the
parameters, the process admits a stationary distribution. Then, we prove Theorem 5.4.3,
Theorem 5.4.4, Lemma 5.5.2, Proposition 5.5.4 and Proposition 5.5.5.

5.7.1 The process: properties of solutions and conditions for the
stationary distribution

T-CLKS shows several behaviors, it may behave as an OU process on some intervals, a
CIR or CKLS in others. The state space of T-CKLS is determined by the process behavior
around 0, in particular at I0 where it behaves as a standard CKLS process. The regime
of the process (transient, recurrent, positive-recurrent) is also determined by the behavior
at I0 and Id.

Let us introduce the scale function s and the speed measure m(x) dx. The interested
reader could refer to Chapter 1 or [19, II.4] for a summary or find more details e.g. in [91,
Chapter VII, Section 3]. The scale function is continuous, unique up to a multiplica-
tive constant, and its derivative satisfies s′(x) = exp

(
−
∫ x
r1

2(a(y)−b(y)y)
σ(y)2y2γ(y)

dy
)
. The speed

measure is given by m(x) dx = 2
(σ(x))2|x|2γ(x)s′(x) dx. The state of space of the T-CKLS

process, denoted I = ∪dj=0Ij, depends on the value of the parameters in I0 (a0, σ0 and
γ0). When γ0 ∈ [1/2, 1], a suitable comparison theorem for SDEs ensures that the process
is non-negative. This, together with an adaptation of the proof of Proposition 1.5 in [91,
Chapter XI] and the Feller boundary classification criteria (see Section 1.3.3 in Chapter
1 or [91]), imply the following lemma.

Lemma 5.7.1. Let X be the solution to the SDE (5.2.1).

• If γ0 = 0, the state of space of the process is I = R.

• If γ0 = 1/2 and 0 < a0 < σ2
0/2, the state space is I = [0,+∞) and the point 0 is

instantaneously reflecting.

• If γ0 ∈ (1/2, 1] or if γ0 = 1/2 and a0 ≥ σ2
0/2, then I = (0,+∞) and 0 is an

unattainable boundary.

The regime of the process can be obtained by properties on the scale function and the
spead measure (see Section 1.3.4, [91, Exercice 3.15 in Chapter X] and [53, Theorem
20.15]). We recall that, in the recurrent case the measure m(x) dx is a stationary measure
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and the fact that m(x) dx is a finite measure corresponds to positive recurrence (ergod-
icity) of the process. In the ergodic case, the stationary measure can be renormalized to
the stationary distribution:

µ(dx) =
m(x)∫

I
m(y) dy

dx. (5.7.1)

The recurrent positivity property of the process only depends on the parameters below
the first threshold (on I0) and above the last threshold (on Id). In the following table, we
give conditions on the parameters a0, ad, b0, bd and σ0, σd depending on the value of γ0, γd
such that the process is ergodic (admits a stationary distribution).

γ0 = 0 a0 ∈ R and b0 > 0, or

a0 > 0 and b0 = 0

γ0 ∈ [1/2, 1) a0 > 0 and b0 ∈ R

γ0 = 1 a0 > 0 and b0 ∈ R, or

a0 = 0 and b0 < −σ2
0/2

ad ∈ R and bd > 0, or

γd ∈ [0, 1/2] ad < 0 and bd = 0

γd ∈ (1/2, 1) ad ∈ R and bd = 0

γd = 1 ad ∈ R and bd ∈ (−σ2
d/2, 0]

Table 5.4: Parameter conditions for ergodicity of T-CKLS process X solution to (5.2.1).

5.7.2 Proof of Theorem 5.4.3

This proof relies on Lemma 5.5.2 whose proof is provided in Section 5.7.4.

We study the asymptotic behavior of (σTN ,N)2 − σ2
⋆. For j ∈ {0, . . . , d}, by Proposition

5.3.4, on the event {Qj,0
T > 0}, we have:

(σjTN ,N)
2 − σ2

j = σ2
j

Q
j,2γj
TN

−Q
j,2γj
TN ,N

Q
j,2γj
TN ,N

+
Qj
TN ,N

−Qj
TN

Q
j,2γj
TN ,N

.

By equations (5.3.5)-(5.3.6), we have:

∣∣Qj
TN

−Qj
TN ,N

∣∣ ≤ 2
∣∣M j,1

TN
−M j,1

TN ,N

∣∣+ 2max(|rj|, |rj+1|)
d∑
i=j

∣∣M i,0
TN

−M i,0
TN ,N

∣∣ ,
for j ∈ {1, . . . , d− 1} and for j ∈ {0, d}∣∣Qj

TN
−Qj

TN ,N

∣∣ ≤ 2
∣∣M j,1

TN
−M j,1

TN ,N

∣∣+ 2|r(j+1)∧d|
∣∣M j,0

TN
−M j,0

TN ,N

∣∣ .
Then, we conclude by making use of item (b) in Lemma 5.5.2 and the fact that
P
(
limT→+∞Qj,0

T > 0
)
= 1.
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5.7.3 Proof of Theorem 5.4.4

This proof relies on Lemma 5.5.2 that we prove in the next section. For all N ∈ N and
ℓ ∈ {L, q-L} it holds that:(

θ
(ℓ)
TN ,N

− θ⋆

)
=
(
θ
(ℓ)
TN ,N

− θ
(ℓ)
TN

)
+
(
θ
(ℓ)
TN

− θ⋆

)
.

The second term, on the right hand side of the equality, provides the asymptotic behavior
by applying Theorem 5.3.5.
In the case ℓ = L, for j ∈ {0, . . . , d}, using equations (5.3.4) and (5.4.5), each component
of the first term can be rewritten as follows:(

Qj,k
TN ,N

Q
j,−2γj
TN ,N

Q
j,2−2γj
TN ,N

− (Q
j,1−2γj
TN ,N

)2
−

Qj,k
TN

Q
j,−2γj
TN

Q
j,2−2γj
TN

− (Q
j,1−2γj
TN

)2

)
Mj,m

TN

+
Qj,k
TN ,N

(Mj,m
TN ,N

−Mj,m
TN

)

Q
j,−2γj
TN ,N

Q
j,2−2γj
TN ,N

− (Q
j,1−2γj
TN ,N

)2
,

with k ∈ {−2γj, 1 − 2γj, 2 − 2γj} and m ∈ {−2γj, 1 − 2γj}. Let r̄ := max{|rj| : j =
1, . . . , d}. Then, using formula (5.5.1), (5.5.2) and (5.5.3), for j ∈ {1, . . . , d−1}, we have:

|Mj,m
TN

−Mj,m
TN ,N

| ≤ r̄m
d∑
i=j

|M i,0
TN

−M i,0
TN ,N

|+ |m|
2

∣∣∣(σjTN ,N)2 − σ2
j

∣∣∣ ∣∣∣Qj,m+2γj−1
TN

−Q
j,m+2γj−1
TN ,N

∣∣∣ ,
and for j ∈ {0, d}:

|Mj,m
TN

−Mj,m
TN ,N

| ≤ r̄m|M j,0
TN

−M j,0
TN ,N

|+ |m|
2

∣∣∣(σjTN ,N)2 − σ2
j

∣∣∣ ∣∣∣Qj,m+2γj−1
TN

−Q
j,m+2γj−1
TN ,N

∣∣∣ .
This, Item (c) in Lemma 5.5.2, and Theorem 5.4.3 ensure that

T
−1/λ
N

∣∣∣Qj,k
TN ,N

−Qj,k
TN

∣∣∣ P−−−−→
N→+∞

0 and T
−1/λ
N

∣∣Mj,m
TN ,N

−Mj,m
TN

∣∣ P−−−−→
N→+∞

0

with λ = 1 to get the consistency of the MLE and λ = 2 for the speed of convergence.

The case ℓ = q-L, the first term works analogously, exploiting Item (a) in Lemma 5.5.2.

5.7.4 Proof of Lemma 5.5.2

We prove (5.5.5) under the assumptions corresponding to the different possible values of
k and m appearing in the different estimators we consider.

Let us recall that (5.4.8) holds and that the process is stationary, where µ denotes the
stationary distribution. Let us introduce the round ground notation ⌊t⌋∆N := tk for
t ∈ [tk, tk+1) ⊆ [tk, tk + ∆N ]. Moreover, without loss of generality, we assume TN ≤ N
and ∆N ≤ 1 for all N ∈ N.

113



Analogously to [81], the proof relies on Proposition 5.5.4 and 5.5.5, that we prove in the
next sections. Basically, for λ ∈ {1, 2}, the proof of Lemma 5.5.2 reduces to prove that
the following integrals are o(T 1/λ

N ):∫ TN

0

E
[
|Xt −X⌊t⌋∆N |

p
]
dt, (5.7.2)

∫ TN

0

E
[
|X⌊t⌋∆N |

q1Xt /∈Ij ,X⌊t⌋∆N
∈Ij

]
dt and

∫ TN

0

E
[
|X⌊t⌋∆N |

q1Xt∈Ij ,X⌊t⌋∆N
/∈Ij

]
dt

(5.7.3)
for some suitable p > 0 and q ∈ R and specific assumptions, all depending on the value
of m and k appearing in M j,m and Qj,k.

Proposition 5.5.4 and Proposition 5.5.5, once they can be applied (i.e. if µ admits finite
moments of order max(p, 1) and q respectively), yield upper bounds involving TN and ∆N

for (5.7.2) and (5.7.3) :∫ TN

0

E
[
|Xt −X⌊t⌋∆N |

p
]
dt ≤

∫ TN

0

E
[
|Xt −X⌊t⌋∆N |

max(p,1)
]min(p,1)

dt ≤ CTN∆
p/2
N

(5.7.4)
and ∫ TN

0

E
[
|X⌊t⌋∆N |

q(1Xt /∈Ij ,X⌊t⌋∆N
∈Ij + 1Xt∈Ij ,X⌊t⌋∆N

/∈Ij)
]
dt ≤ CTN

√
∆N (5.7.5)

for some positive constant C independent of N . The assumptions on g(·)N ensure that these
quantities are o(T 1/λ).

The proof of each item of Lemma 5.5.2 is then reduced to determine the corresponding
values of p and q in (5.7.4) and (5.7.5) and so deduce the assumptions HL and Hq-L on
moments of µ and the conditions on g

(·)
N . This is done in the next sections. We consider

separately the two quantities in (5.5.5) and then we summarize the items of Lemma 5.5.2
in Section 5.7.4.

To conclude the section, for the reader’s convenience, let us rewrite equation (5.7.3) in
such a way that it can be more easily recognised that Proposition 5.5.5 can be applied.
The tower property of conditional expectation and Markov property imply that:

E
[
|X⌊t⌋∆N |

q1Xt /∈Ij ,X⌊t⌋∆N
∈Ij

]
≤ E

[
|X⌊t⌋∆N |

qPX⌊t⌋∆N

(
τ ξ

(j)

Ij
< ∆N

)
1Ij(X⌊t⌋∆N )

]
,

and

E
[
|X⌊t⌋∆N |

q1Xt∈Ij ,X⌊t⌋∆N
/∈Ij

]
≤

d∑
i=0
i ̸=j

E
[
|X⌊t⌋∆N |

qPX⌊t⌋∆N

(
τ ξ

(i)

Ii
< ∆N

)
1Ii(X⌊t⌋∆N )

]
,

where ξ(j) is a CKLS process with parameter (aj, bj, σj, γj) starting at ξ(j)0 = X⌊t⌋∆N but
driven by a BM, (denoted by B as well), independent of F⌊t⌋∆N and τ ξjIj is the first hitting
time of the interval Ij for the process ξ(j). The right-hand-side of the latter equations is
of the same kind of (5.7.3).
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Dealing with E
[
|Qj,k

TN
−Qj,k

TN ,N
|
]
.

In this section, exploiting (5.7.4)-(5.7.5), we precise under which assumptions on the
moments of µ and on ∆N , it holds that E

[
|Qj,k

TN
−Qj,k

TN ,N
|
]

is o(T 1/λ
N ) for k ∈ [−2, 2],

j ∈ {0, . . . , d}. Let us remind that we are interested in k ∈ {−2γj, 1− 2γj, 2− 2γj, 2γj}∪
{−1, 0, 1, 2}.

Let us first note that

Qj,k
TN

−Qj,k
TN ,N

=

∫ TN

0

(Xk
t −Xk

⌊t⌋∆N
)1Ij(Xt) dt+

∫ TN

0

Xk
⌊t⌋∆N

(1Ij(Xt)− 1Ij(X⌊t⌋∆N )) dt

=

∫ TN

0

Xk
⌊t⌋∆N

(1Xt∈Ij ,X⌊t⌋∆N
/∈Ij − 1Xt /∈Ij ,X⌊t⌋∆N

∈Ij) dt+

∫ TN

0

(Xk
t −Xk

⌊t⌋∆N
)1Ij(Xt) dt,

therefore

E
[
|Qj,k

TN
−Qj,k

TN ,N
|
]
≤
∫ TN

0

E
[
|Xk

t −Xk
⌊t⌋∆N

|1Ij(Xt)
]
dt

+

∫ TN

0

E
[
|X⌊t⌋∆N |

k1Xt∈Ij ,X⌊t⌋∆N
/∈Ij

]
dt+

∫ TN

0

E
[
|X⌊t⌋∆N |

k1Xt /∈Ij ,X⌊t⌋∆N
∈Ij

]
dt.

(5.7.6)

Inequality (5.7.6) involves only terms of the kind (5.7.3) with q = k (leading to the bounds
in (5.7.5)) and a term similar to (5.7.2):∫ TN

0

E
[
|Xk

t −Xk
⌊t⌋∆N

|1Ij(Xt)
]
dt. (5.7.7)

This term is trivial if k = 0, it is bounded from above by (5.7.2) if k = 1, and, in all other
cases, we manage to bound (5.7.7) with functions as (5.7.2). We then derive the desired
conditions by (5.7.4)-(5.7.5). Our bounds are not necessarily optimal.

The case k = 0, 1. µ admits finite k-th moment and limN→∞ T λ−1
N ∆N = 0.

The case k ∈ (0, 1). µ admits finite first moment and limN→∞ T λ−1
N ∆k

N = 0.

Note that k ∈ (0, 1) if γj ∈ (0, 1/2) for k = 2γj, k = 1 − 2γj and if γj ∈ (1/2, 1) for
k = 2(1− γj). Sub-additivity of x 7→ xk yields (5.7.4).

Remark 5.7.2. The inequalities in the next paragraph work for all k ∈ (0, 2]. Nev-
ertheless, when k ∈ (0, 1) the previous paragraph, requires less restrictive assumptions:
∆k
N ≤ ∆

k/2
N .
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The case k ∈ (1, 2]. µ admits finite k-th moment and limN→∞ T λ−1
N ∆

k/2
N = 0.

This is the case if γj ∈ (1/2, 1] when k = 2γj, and if γj ∈ [0, 1/2) when k = 2(1 − γj).
Cauchy-Schwarz inequality implies

E
[
|Xk

t −Xk
⌊t⌋∆N

|1Ij(Xt)
]
≤

√
E
[(
X
k/2
t −X

k/2
⌊t⌋∆N

)2](
E
[
Xk
t

]
+ E

[
Xk

⌊t⌋∆N

])
.

Moreover, the fact that x 7→ xk/2 is sub-additive ensures that

E
[(
X
k/2
t −X

k/2
⌊t⌋∆N

)2]
≤ E

[
|Xt −X⌊t⌋∆N |

k
]
.

The case k ∈ [−1, 0). µ admits finite moments of order −qL and pL with pL, qL ≥ 1

such that 1 = 1/pL + 2/qL, and limN→∞ T λ−1
N ∆

|k|
N = 0.

This is the case if k = −1 or k = 1 − 2γj ∈ [−1, 0) with γj ∈ (1/2, 1] or k = −2γj with
γj ∈ (0, 1/2). By sub-additivity of x 7→ x−k and Jensen’s inequality, we have:

E
[
|Xk

t −Xk
⌊t⌋∆N

|1Ij(Xt)
]
≤ E

[
|X−1

t −X−1
⌊t⌋∆N

||k|1Ij(Xt)
]
≤ E

[
|X−1

t −X−1
⌊t⌋∆N

|1Ij(Xt)
]|k|

.

Hölder’s inequality with 1 = 1/pL + 2/qL gives

E
[
|X−1

t −X−1
⌊t⌋∆N

|1Ij(Xt)
]
≤ E

[
|Xt −X⌊t⌋∆N |

pL
]1/pL

E
[
|X−1

t |qL
]1/qL E [|X−1

⌊t⌋∆N
|qL
]1/qL

.

The case k ∈ [−2,−1). µ admits finite moments of order −q′|k| and max(1, p′|k|/2)
with p′, q′ ≥ 1 such that 1 = 1/p′ + 1/q′ + 1/(2q′) and limN→∞ T λ−1

N ∆
|k|/2
N = 0.

This is the case when k = −2γj with γj ∈ (1/2, 1]. Note that what follows holds for all
k ∈ [−2, 0) as well. Observe that

E
[
|Xk

t −Xk
⌊t⌋∆N

|
]
≤ E

[
|Xk/2

t −X
k/2
⌊t⌋∆N

||Xk/2
t +X

k/2
⌊t⌋∆N

|
]

This rewrites E
[
|X |k|/2

t −X
|k|/2
⌊t⌋∆N

||Xk
t X

k/2
⌊t⌋∆N

+X
k/2
t Xk

⌊t⌋∆N
|
]
. The fact that x 7→ x|k|/2 is

sub-additive and Hölder’s inequality (with p′, q′ ≥ 1 such that 1 = 1/p′ + 1/q′ + 1/(2q′),
e.g. p′ = 4, q′ = 2) yield

E
[
|Xk

t −Xk
⌊t⌋∆N

|
]
≤ E

[
|Xt −X⌊t⌋∆N |

p′|k|/2
]1/p′ (

E
[
Xq′k
t

]1/q′
E
[
X

2q′k/2
⌊t⌋∆N

]1/(2q′)
+E

[
X

2q′k/2
t

]1/(2q′)
E
[
Xq′k

⌊t⌋∆N
|
]1/q′)

.

Remark 5.7.3. If k ∈ [−1, 0), considering the same bounds as in the last paragraph, we
get a more restrictive condition on ∆N than with the previously considered bounds in the
case k ∈ [−1, 0) but a possibly less restrictive condition on moments. For instance, taking
p′ = 4 and q′ = 2, if k = −1 then finite moments of order −2 and 2 are finite for µ
suffice, while qL ≥ 2.
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Remark 5.7.4. Let k ∈ [−2, 0] and let j ̸= 0. Note that Xk
t 1Ij(X) ≤ rk11Ij(X). Hence,

the integrand of (5.7.7) in k can be bounded from above by

r2k1 E
[
|X |k|

t −X
|k|
⌊t⌋∆N

|1Ij(Xt)1Ij(X⌊t⌋∆N )
]
+ E

[
|Xk

t −Xk
⌊t⌋∆N

|1Ij(Xt)1Icj (X⌊t⌋∆N )
]
.

The first term is the integrand of (5.7.7) in |k| ∈ [0, 2] and the second is bounded by

rk1E
[
1Ij(Xt)1Icj (X⌊t⌋∆N )

]
+ E

[
Xk

⌊t⌋∆N
1Ij(Xt)1Icj (X⌊t⌋∆N )

]
which is sum of terms of the kind (5.7.3) with q = 0 and q = k. If, e.g., k ∈ [0, 1] then
the conditions are µ admits finite first and (−|k|)-th moment and limN→∞ T λ−1

N ∆
|k|
N = 0.

Dealing with E
[
|M j,m

TN
−M j,m

TN ,N
|
]

As in the previous section, we exploit (5.7.4)-(5.7.5) to obtain the assumptions on the
moments of µ and on ∆N under which E

[
|M j,m

TN
−M j,m

TN ,N
|
]

is o(T 1/λ
N ) for m ∈ {0, 1},

j ∈ {0, . . . , d}.
As for Qj,k, we can rewrite M j,m

TN ,N
−M j,m

TN
as follows:

M j,m
TN ,N

−M j,m
TN

=

∫ TN

0

(
Xm
t 1Ij(Xt)−Xm

⌊t⌋∆N
1Ij(X⌊t⌋∆N )

)
(a(Xt)− b(Xt)Xt) dt

+

∫ TN

0

(
Xm
t 1Ij(Xt)−Xm

⌊t⌋∆N
1Ij(X⌊t⌋∆N )

)
σ(Xt)(Xt)

γ(Xt) dBt.

Using Triangular inequality, Hölder’s inequality, and Itô-isometry, we obtain:

E
[
|M j,m

TN
−M j,m

TN ,N
|
]
≤
∫ TN

0

E
[
|Xm

t −Xm
⌊t⌋∆N

|(|aj|+ bj|X⌊t⌋∆N |+ bj|Xt −X⌊t⌋∆N |)
]
dt

+

∫ TN

0

E
[
|X⌊t⌋∆N |

m1Xt∈Ij ,X⌊t⌋∆N
/∈Ij

(
max
i=0,...,d

|ai|+ max
i=0,...,d

|bi|
(
|X⌊t⌋∆N |+ |Xt −X⌊t⌋∆N |

))]
dt

+

∫ TN

0

E
[
|X⌊t⌋∆N |

m1Xt /∈Ij ,X⌊t⌋∆N
∈Ij

(
max
i=0,...,d

|ai|+ max
i=0,...,d

|bi|
(
|X⌊t⌋∆N |+ |Xt −X⌊t⌋∆N |

))]
dt

+
√
2 max
i=0,...,d

(σi)

(∫ TN

0

E
[
(Xm

t −Xm
⌊t⌋∆N

)2(Xt)
2γ(Xt) +X2m

⌊t⌋∆N
(Xt)

2γ(Xt)1Xt∈Ij ,X⌊t⌋∆N
/∈Ij

+X2m
⌊t⌋∆N

(Xt)
2γ(Xt)1Xt /∈Ij ,X⌊t⌋∆N

∈Ij

]
dt
)1/2

. (5.7.8)

The case m = 0. µ has finite max(1, 2γd)-th moment and limN→0 TN∆N = 0.

Inequality (5.7.8) involves terms of the kind (5.7.2) with p = 1 and (5.7.3) with q ∈ {0, 1}
but also (∫ TN

0

E
[
(Xt)

2γ(Xt)(1Xt∈Ij ,X⌊t⌋∆N
/∈Ij + 1Xt /∈Ij ,X⌊t⌋∆N

∈Ij)
]
dt

)1/2

.
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Since Ij is not bounded only if j = d or j = 0 with γ0 = 0, the above quantity is bounded
from above for all j ̸= d and for j = d if γd = 0 by terms (5.7.3) with q = 0. If j = d and
γd ̸= 0, its square is bounded by a sum of terms as (5.7.2) with p = 2γd and (5.7.3) with
q = 2γd:

E
[
(Xt)

2γd1Xt∈Id,X⌊t⌋∆N
/∈Id

]
≤ CE

[
|Xt −X⌊t⌋∆N |

2γd +X2γd
⌊t⌋∆N

1Xt∈Id,X⌊t⌋∆N
/∈Id

]
for some positive constant C. The latter inequality is derived from sub-additivity (if
γd ≤ 1/2) or Jensen’s inequality (if γd > 1/2).

Inequalities (5.7.4)-(5.7.5) ensure that

E
[
|M j,0

TN
−M j,0

TN ,N
|
]
≤ C1TN

√
∆N + C2

√
TN∆

max(1,2γd)/2
N ≤ (C1 + C2)TN

√
∆N

for some positive constants C1, C2.

The case m = 1. µ admits finite 2(1 + γd)-th moment and limN→0 TN∆N = 0.

Inequality (5.7.8) involves terms of the kind (5.7.2) with p ∈ {1, 2} and (5.7.3) with
q ∈ {1, 2} but also the square root of the following term:∫ TN

0

E
[
(Xt −X⌊t⌋∆N )

2X
2γ(Xt)
t +X2

⌊t⌋∆N
X

2γ(Xt)
t (1Xt∈Ij ,X⌊t⌋∆N

/∈Ij + 1Xt /∈Ij ,X⌊t⌋∆N
∈Ij)
]
dt.

Similarly to the case m = 0, by the fact that X2γj
s 1Ij(Xs) is not bounded from above

(up to multiplicative constant) by 1Ij(Xs) only if j = d, the fact that the same holds for
X2
s1Ij(Xs) unless j = d or j = 0 and γ0 = 0, and by sub-additivity of the square-root, we

can reduce to(∫ TN

0

E
[
(Xt −X⌊t⌋∆N )

2 + 1Xt∈Ij ,X⌊t⌋∆N
/∈Ij + 1Xt /∈Ij ,X⌊t⌋∆N

∈Ij

]
dt

)1/2

+

(∫ TN

0

E
[
(Xt −X⌊t⌋∆N )

2X2γd
t 1Id(Xt) +X2

⌊t⌋∆N
X2γd
t 1Xt∈Id,X⌊t⌋∆N

∈I0

])1/2

+

(∫ TN

0

E
[
X2

⌊t⌋∆N
1Xt /∈Id,X⌊t⌋∆N

∈Id +X2γd
t 1Xt∈Id,X⌊t⌋∆N

/∈Id∪I0

])1/2

.

The first line involves terms like (5.7.2) with p = 2 and (5.7.3) with q = 0. The last line
shows a term (5.7.3) with q = 2 and a term appearing for the case m = 0. The second
line, by subadditivity and Hölder’s inequality ((1 + γd)

−1 + (1+ γd)
−1γd = 1), is bounded

from above by(∫ TN

0

E
[
(Xt −X⌊t⌋∆N )

2(1+γd)
]1/(1+γd)

E
[
X

2(1+γd)
t

]γd/(1+γd)
dt

)1/2

+

(∫ TN

0

E
[
X

2(1+γd)
⌊t⌋∆N

1Xt∈Id,X⌊t⌋∆N
∈I0

]1/(1+γd)
E
[
X

2(1+γd)
t

]γd/(1+γd)
dt

)1/2

where we recognise (5.7.2) and (5.7.3) with p = q = 2(1 + γd).
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By (5.7.4) and (5.7.5) we deduce E
[
|M j,1

TN
−M j,1

TN ,N
|
]

is bounded from above by

C1(TN
√

∆N + TN∆N +
√
TN∆N +

√
TN∆

1/2(1+γj)
N ) ≤ 4C1TN

√
∆N

for some positive constant C1.

End of the proof of Lemma 5.5.2

In this section, we complete the proof of Lemma 5.5.2 by summarising the assumptions
of the previous sections for each item.

Proof of Item (a) (QMLE θ
(q-L)
TN ,N

). The QMLE (5.4.6) involves the statistics Qj,k

and M j,m, where m ∈ {0, 1}, k ∈ {0, 1, 2}, and j ∈ {0, . . . , d}. The most restrictive
assumptions on the moments of µ is obtained for m = 1: µ has finite moment of order
2(1 + γd), that is Hq-L. Instead, the unique condition on ∆N is limN→∞ T λ−1

N ∆N = 0.
Hence, g(q-L)N = ∆N .

Remark 5.7.5. If σ⋆ is known, one could replace M j,1
TN ,N

by Mj,1
TN ,N

in (5.4.2) obtaining
the analogous of (5.4.6). However, in order to exploit the asymptotic properties of the
estimator from continuous time observations, Hq-L has to be included in HL, hence it
cannot be relaxed. Moreover, the most restrictive condition on ∆N would come from
k = 2γj when γj ∈ (0, 1/2) ∪ (1/2, 1), for all j ∈ {0, . . . , d}, leading to the condition
limN→∞ T λ−1

N g
(σ)
N = 0, which is worse than limN→∞ T λ−1

N ∆N = 0.

Proof of Item (b) (Volatility estimation). Only the statistics Qj,k, M j,m, and M i,0

with m ∈ {0, 1}, k = 2γj, and i, j ∈ {0, . . . , d} appear in the volatility estimator (5.4.7).
We observe that the most restrictive assumptions on the moments of µ is obtained for m =
1: µ has finite moment of order 2(1+γd), that is Hq-L. Instead the unique condition on ∆N

more restrictive than limN→∞ TN∆N = 0 comes from k = 2γj when γj ∈ (0, 1/2)∪(1/2, 1),
for all j ∈ {0, . . . , d}, leading to the condition limN→∞ T λ−1

N g
(σ)
N = 0.

Proof of Item (c) (MLE θ
(L)
TN ,N

with σ⋆ unknown). First, assume that σ⋆ is known.
To deal with the case σ⋆ is unknown, one shall then take the most restrictive conditions
among the ones in Item (b) and the ones obtained in the case σ⋆ known.

The MLE (5.4.5) involves the statistics Qj,k, M i,0, where k ∈ {−2γj, 1 − 2γj, 2 − 2γj} ∪
{−1, 0}, and i, j ∈ {0, . . . , d}. This case is more subtle than the others. The more
restrictive conditions come from the different values of k. Let us consider separately the
cases γj ∈ (0, 1/2] and γj ∈ (1/2, 1]. Let pL, qL, p′, q′ given in HL.

If γj ∈ (0, 1/2], the unique negative moment condition comes from k = −1 (and k =
−2γj), while for the positive moments the most restrictive conditions come from k =
−1 and k = 2(1 − γj): finite moments of order −qL and max(pL, 2(1 − γj)) . The
condition on ∆N follows from the fact that limN→∞ T λ−1

N (∆N +∆
2γj
N +∆

1−2γj
N +∆

1−γj
N ) ≤

limN→∞ T λ−1
N g

(L)
N = 0.
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If γj ∈ (1/2, 1], the most restrictive moment conditions comes from k = −1 and k = −2γj:
max(pL, p

′γj) and −max(qL, 2q
′γj). The most restrictive condition on ∆N is given by

limN→∞ T λ−1
N (∆N +∆

γj
N +∆

2γj−1
N +∆

2(1−γj)
N ) ≤ limN→∞ T λ−1

N g
(L)
N = 0.

In conclusion, since j ∈ {0, . . . , 1}, we have limN→∞ T λ−1
N g

(L)
N = 0 and µ has finite mo-

ments of orders

−max(qL, 2q
′γmax1(1/2,1](γ

max)) and max(pL, p
′γmax1(1/2,1](γ

max), 2(1−γmin)1(0,1/2](γ
min)).

(5.7.9)

Remark 5.7.6. If γmax ≤ 1/2, taking p′ = 4 and q′ = 2, the orders are −qL and pL.

We consider separately the case γ0 = 0 and γmax ≤ 1/2. If γ0 = 0 then we deal with
positive moments up to the one of order 2, and with negative moments when k = −2γj.
By Remark 5.7.4, the most restrictive moment conditions are finite 2-nd and −2γj-th
moment and the following one on ∆N : limN→0 T

λ−1
N g

(L)
N = 0.

5.7.5 Proof of Proposition 5.5.4

Given s and t such that 0 ≤ s < t, we show that for every m ≥ 1 such that µ admits
finite m-th moment, there exists a constant C ∈ (0,∞) depending only on m and the
parameters of the process such that E [|Xt −Xs|m] ≤ C(t− s)m/2.

By the triangular inequality,

|Xt −Xs| ≤
∫ t

s

|a(Xu)− b(Xu)Xu| du+
∣∣∣∣∫ t

s

σ(Xu)(Xu)
γ(Xu) dBu

∣∣∣∣
≤ (t− s) max

i=0,...,d
|ai|+ max

i=0,...,d
|bi|
∫ t

s

|Xu| du+
∣∣∣∣∫ t

s

σ(Xu)(Xu)
γ(Xu) dBu

∣∣∣∣ .
Then, Jensen’s inequality ensures that for m ≥ 1 it holds that:

E [|Xt −Xs|m] ≤ 22m−2 max
i=0,...,d

|ai|(t− s)m + 22m−2 max
i=0,...,d

|bi|(t− s)m−1

∫ t

s

E [|Xu|m] du

+ 2m−1E
[∣∣∣∣∫ t

s

σ(Xu)(Xu)
γ(Xu) dBu

∣∣∣∣m] .
Since X0 is distributed as the stationary distribution µ, which admits finite m-th moment,
then supu∈[s,t] E [|Xu|m1Id(Xu)] <∞.

Burkholder-Davis-Gundy inequality implies that

E
[∣∣∣∣∫ t

s

σ(Xu)(Xu)
γ(Xu) dBu

∣∣∣∣m] ≤ E

[(∫ t

s

max
i=0,...,d

|σi|(Xu)
2γ(Xu) du

)m/2]
.

Then, we distinguish the case m ≥ 2 and m ∈ [1, 2). In both cases we apply Hölder’s
inequality but in a different way. If m ≥ 2, we obtain:

E
[∣∣∣∣∫ t

s

σ(Xu)(Xu)
γ(Xu) dBu

∣∣∣∣m] ≤ (t− s)
m/2−1( max

i∈{0,...,d}
|σi|)

m/2

∫ t

s

E [|Xu|mγd ] du

≤ C(t− s)
m/2,
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since, supu∈[s,t] E [|Xu|mγd1Id(Xu)] < ∞. If m ∈ [1, 2), we reduce to the previous case
(m ≥ 2):

E
[∣∣∣∣∫ t

s

σ(Xu)(Xu)
γ(Xu) dBu

∣∣∣∣m] ≤
(
E

[∣∣∣∣∫ t

s

σ(Xu)(Xu)
γ(Xu) dBu

∣∣∣∣2m
])1/2

≤ C(t− s)
m/2.

The proof is thus completed.

5.7.6 Proof of the key result: Proposition 5.5.5

For all j ∈ {0, . . . , d}, let ξ(j) denote a standard CKLS process with parameters (aj, bj, σj, γj)
starting at Xs. Let s, t ∈ [0,∞) be fixed such that 0 ≤ s < t. Note that:

E
[
|Xs|mPXs

(
τ ξ

(j)

Ij
< t− s

)]
≤ E

[
|Xs|m

(
PXs

(
τ ξ

(j)

rj ,↘ < t− s
)
+ PXs

(
τ ξ

(j)

rj+1,↗ < t− s
))

1Ij(Xs)
]
,

where τ ξ
(j)

rj ,↘ is the first hitting time from above of the level rj, τ ξ
(j)

rj+1,↗ is the first hitting
time from below of the level rj+1 of the process ξ(j).

Without loss of generality, we reduce to show that:

E
[
|Xs|mPXs

(
τ ξ

(d)

rd,↘ < t− s
)
1Id(Xs)

]
≤ C2(t− s)

1/2, (5.7.10)

and
E
[
|Xs|mPXs

(
τ ξ

(0)

r1,↗ < t− s
)
1I0(Xs)

]
≤ C1(t− s)

1/2, (5.7.11)

where C1 and C2 are strictly positive constant.

Indeed, in the other cases, Xs belongs in Ij for j /∈ {0, d}, which is compact, and the
desired inequality can be deduced using a similar reasoning.

Bounds on the first hitting time from above of the level rd: (5.7.10)

We focus on the case γd ∈ [0, 1). The case γd = 1 can be proven using a similar reasoning,
the proof is thus omitted. Let us recall that the parameters (ad, bd, σd, γd) satisfy the
ergodicity conditions in Table 5.4 in Section 5.7.1, in particular bd ≥ 0.
The main idea of this proof is to bound the first hitting time by the hitting times of some
drifted Brownian motions. To do so, we apply the Lamperti transform and we bound the
process, over a well chosen time interval.

We define the process (Yu)u≥0 as follows. For all u ≥ 0 let Yu = ψ(ξ
(d)
u ) where

ψ(x) =
∫ x
0

1
σdy

γd
dy = x1−γd

σd(1−γd)
(Lamperti transform). We denote ψ−1 as the inverse func-

tion of ψ, then Y is solution to the following SDE:

dYu =
ad
σd

(ψ−1(Yu))
−γd − bd(1− γd)Yu −

1

2
σdγd(ψ

−1(Yu))
γd−1 du+ dBu.
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Let ε > 0 be fixed and let τY[ψ(rd),ψ(Xs)+ε] denote the first hitting time of the boundary of
[ψ(rd), ψ(Xs) + ε] of the process Y . Then, we have

PXs
(
τ ξ

(d)

rd,↘ < t− s
)
= Pψ(Xs)

(
τYψ(rd),↘ < t− s

)
≤ Pψ(Xs)

(
τY[ψ(rd),ψ(Xs)+ε] < t− s

)
.

By applying the Comparison Theorem (e.g. [48, p352]) until time τY[ψ(rd),ψ(Xs)+ε], Y −ψ(Xs)
is bounded from above by a drifted BM Bν+ starting from 0 and from below by a drifted
BM Bν− starting from 0 with parameters: ν+ = |ad|

σd
r−γdd

ν− = − |ad|
σd
r−γdd − bd(1− γd)(ψ(Xs) + ε)− 1

2
σdγdr

γd−1
d .

Hence, the following inequality holds:

PXs
(
τ ξ

(d)

rd,↘ < t− s
)
≤ P0

(
τB

ν−
ψ(rd)−ψ(Xs),↘ < t− s

)
+ P0

(
τB

ν+

ε,↗ < t− s
)
,

and classical results on the first hitting of a drifted Brownian motion (see [19]) yield

P0

(
τB

ν+

ε,↗ < t− s
)
≤ K1e

− ε2

2(t−s) ,

and,

P0

(
τB

ν−
ψ(rd)−ψ(Xs),↘ < t− s

)
≤ K2e

− |ψ(rd)−ψ(Xs)|2

2(t−s) +bd(1−γd)ψ(Xs)2f(Xs),

where K1 and K2 are two strictly positive constants, f is an explicit function which
depends only on Xs and such that limx→+∞ f(x)e−ψ(x)

2
= 0.

Let us note that

µ(x)1x≥rd = K3
2

σ2
dx

1−2
ad
σ2
d

exp
(
−bd(1− γd)ψ(x)

2
)
1x≥rd ,

with K3 a strictly positive constant. Since µ admits finite m-th moment by assumption,
inequality (5.7.10) holds. We avoid details here, but the interested reader could appreciate
the following remarks. When t − s is close to 0, e−K/(t−s) decreases faster than any
polynomial of (t− s). So, by splitting the integral to distinguish between when
ψ(x)−ψ(rd) is small (e.g. O(

√
t− s)) and when it isn’t, we can easily compute the bounds.

To avoid repetitions, we do not mention anymore this remark.

Bounds on the first hitting time from below of the level r1: (5.7.11)

The parameters (a0, b0, σ0, γ0) satisfy the conditions ensuring ergodicity in Table 5.4. We
remark that, on a suitable time interval, the process (ξ(0))2(1−γ0) can be bounded from
above by the norm of a multi-dimensional Brownian motion. This leads to obtaining
(5.7.11) under the assumption that γ0 ∈ {0, 1/2}. Instead, if γ0 ∈ (1/2, 1], this bound
is not enough. Thus, we additionally bound from below the Lamperti transform of the
process ξ(0) by a drifted Brownian motion.
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The case γ0 = 1/2. We remind the following results, for i ∈ {1, . . . , n}, we denote
B̃ := (B̃i)i≤n a n-dimensional Brownian motion. Itô formula and Levy characterization
imply that

∀u ≥ 0,

∣∣∣∣∣
∣∣∣∣∣σ02 B̃u −

√
Xs

n

∣∣∣∣∣
∣∣∣∣∣
2

2

= Yu,n = Xs + n
σ2
0

4
u+

∫ u

0

σ0
√
Yv,n dWv,

where W is a Brownian motion. Then Y·,n is a CIR process whose coefficients satisfy the
conditions for ergodicity in Table 5.4. Moreover we take n such that 0 < a0 < nσ2

0/4. So,
by the Comparison Theorem, it holds a.s. that ξ(0)u ≤ Yu,n for all 0 ≤ u ≤ τ ξ

(0)

r1,↗ and then

PXs
(
τ ξ

(0)

r1,↗ ≤ t− s
)
≤ PXs

(
τ
Y.,n
r1,↗ ≤ t− s

)
.

Moreover, we have

{τY.,nr1,↗ ≤ t− s} ⊆
n⋃
i=1

{
∀u ≤ t− s,−

√
r1
n
<

(
σ0
2
B̃i
u −

√
Xs

n

)
<

√
r1
n

}c

.

Then, by the Comparison Theorem and the symmetry of BM, we obtain:

PXs
(
τ ξ

(0)

r1,↗ ≤ t− s
)
≤ 2nP0

(
τ B̃

1

2
√
r1−

√
Xs

σ0
√
n

,↗
≤ t− s

)
≤ K4e

− 2(√r1−
√
Xs)

2

σ20n(t−s) ,

with K4 a strictly positive constant. This, and the stationary distribution µ (5.7.1), if µ
admits finite m-th moment, yield inequality (5.7.11).

The case γ0 = 0. By applying Itô formula on Y := (ξ(0))2, for all u ≥ 0, we have:

dYu = 2

(
sgn(ξ(0))a0

√
Yu − b0Yu +

σ2
0

2

)
du+ 2σ0

√
Yu dB̃u

with Y0 = X2
s and B̃u another Brownian motion. Since 2 sgn(ξ(0))a0

√
Yu − 2b0Yu + σ2

0 ≤
2|a0|r1+σ2

0 ≤ nσ2
0 for some n ∈ N, the Comparison Theorem ensures that for all u ≤ τY

r21 ,↗
the process Y is bounded from above by the norm of a n-dimensional Brownian motion.
Hence, similarly to the case γ0 = 1

2
, we have:

PXs
(
τ ξ

(0)

r1,↗ ≤ t− s
)
≤ 2nP0

(
τ B̃

1

r1−Xs
σ0

√
n
,↗ ≤ t− s

)
≤ K5e

− (r1−Xs)
2

2σ20n(t−s) ,

with K5 a strictly positive constant. We conclude analogously to the case γ0 = 1/2.

The case γ0 ∈ (1/2, 1). By Lamperti transform, Yu := dψ(ξ
(0)
u ) with ψ(x) = x1−γ0

σ0(1−γ0)

(in particular Y0 = X
1−γ0
s

σ0(1−γ0)). So,

dYu =

[
a0
σ0

((1− γ0)Yu)
1− 1

(1−γ0) − b0(1− γ0)Yu −
γ0

2(1− γ0)
Y −1
u

]
du+ dBu.
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By the Comparison Theorem, it holds a.s. for all u ∈ [0, τ[ψ(Xs)
2

,ψ(r1)]) that

Bν−
u ≤ Yu and Y 2

u ≤
∣∣∣∣∣∣∣∣12B̃u −

ψ(Xs)√
n

∣∣∣∣∣∣∣∣2
2

,

where Bν− is drifted Brownian motion and B̃ := (B̃i)i≤n a n-dimensional Brownian mo-
tion. Here the drift parameter ν− and the dimension n are given by

ν− = − |b0|r
1−γ0
1

σ0
− γ0σ0

X
1−γ0
s

,

n(Xs) =

⌈
a0

σ2
0(1−γ0)

X1−2γ0
s + |b0|(1− γ0)

r
2(1−γ0)
1

σ2
0(1−γ0)2

⌉
.

Finally, we obtain the following inequality:

PXs
(
τ ξ

(0)

r1,↗ < t− s
)
≤ P0

(
τB

ν−

−ψ(Xs)
2

,↘
< t− s

)
+ 2n(Xs)P0

(
τ B̃

1

2
ψ(r1)

2−ψ(Xs)2√
n(Xs)

,↗
< t− s

)

≤ K6

(
e−

|ψ(r1)−ψ(Xs)|2
2(t−s) + n(Xs)e

−
2(ψ(r1)

2−ψ(Xs)
2)

2

n(Xs)(t−s)

)
,

with K6 a strictly positive constant.

Similarly to the previous cases, this, and the stationary distribution µ (5.7.1), if µ admits
finite m-th moment, yield inequality (5.7.11).

The case γ0 = 1. One can conclude by bounding directly the Lamperti transform from
above by a drifted Brownian motion as it has been done for the bounds on the first hitting
time from above of the level rd.

5.8 Appendix: Auxiliary results

In this section, we provide some auxiliary results on well posedness of some integrals
appearing in the likelihood in Proposition 5.8.1 and on the finiteness of the moments of
the stationary measure µ in Proposition 5.8.2. More precisely, we give some properties
of the moments of the T-CKLS process. Some are straightforward applications of the
ergodic properties.

The following proposition describes the behavior of various integrals of the T-CKLS pro-
cess. It establishes whether the likelihood (5.2.2) is well defined or not. Properties of this
kind have also been considered in [84].

Proposition 5.8.1. Let X be solution to the SDE (5.2.1).

(a) If γ0 = 1/2 and a0 ≥ σ2
0/2 or if γ0 ∈ (1/2, 1] ∪ {0}, then

∀t ≥ 0,

∫ t

0

1

X2γ0
s

1I0(Xs) ds <∞ Px0 − a.s..
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(b) If γ0 = 1/2 and a0 < σ2
0/2, then

∀t ≥ 0, Px0
(∫ t

0

1

X2γ0
s

1I0(Xs) ds = ∞
)
> 0.

Proof. If γ0 = 0, it is trivial. When γ0 ̸= 0, the first item follows from the fact that 0 is
an unattainable boundary and continuity of the trajectories: the image of [0, t] through
each trajectory s 7→ Xs(ω) is a compact of ]0,∞[. The second item, for γ0 = 1/2 has
been proven in [11] by using properties of the Laplace transform.

The following proposition describes the behaviour of the moments from the stationary
distribution of the T-CKLS process in the ergodic regime. We recall that the stationary
distribution µ is given by (5.7.1).

Proposition 5.8.2. Let m ∈ (0,∞) and assume that the conditions in Table 5.4 (ensuring
that µ is the stationary distribution) hold. Then µ admits finite m-th moment unless it
holds simultaneously bd = 0 and γd ∈ [1/2, 1] in which case the m-th moment is finite if

• γd = 1/2, bd = 0 and ad < −mσ2
d/2.

• γd ∈ (1/2, 1), bd = 0 and m < γd − 1/2 < 1.

• γd = 1 and m ≤ 1.

The measure µ admits finite −m-th moment unless γ0 ∈ {0, 1/2} in which case the (−m)-
th moment is finite if

• γ0 = 1/2 and a0 > mσ2
0/2.

• γ0 = 0 and m < 1.

125



126



Conclusion and Perspectives

In Chapter 4, we explicitly compute some densities related to the killed Ornstein-Uhlenbeck
process. We focused on the transition probability density of the killed process over a con-
stant boundary and the density of the first hitting time. To compute the transition
probability density, we use a spectral decomposition method. This approach allows us to
derive an explicit formulation of the transition probability density in the form of a function
series. Based on this transition probability density, we have provided an explicit expres-
sion for the density of the first hitting time of this process. We justified the term-by-term
derivation of the series using asymptotic expansion on the Parabolic Cylinder functions.
We also computed the Laplace transform of the first hitting time. Then, we numerically
compared each explicit formulation of these distributions with some well-known meth-
ods used in the literature. In terms of computational time, we have demonstrated the
numerical advantage of our formulations. In this chapter, several observations can be
made, and various perspectives can be explored. Firstly, for j ∈ {0, · · · , d}, we computed
the transition probability density and the first hitting time density only in the case of a
T-OU that admits a mean-reverting mechanism on each subinterval Ij (i.e., bj > 0). Note
that, under this hypothesis, the process X is ergodic. Thus, one perspective would be to
remove the assumption bj > 0 on Ij. For example, we could consider a Brownian motion
on the intervals Ij (i.e., aj, bj = 0) or a drifted Brownian motion (i.e., bj = 0).

Regarding the transition probability density of the killed process, we have only proposed
a formulation based on the spectral decomposition method. We believe that the method
in [26] can be readapted for (4.2.8). This method would provide us with a semi-analytical
formulation. Note that their formulation avoids the computation of eigenvalues that
depend on the process parameters on each Ij. Furthermore, this method is presented in
a more analytical manner, and we believe that a probabilistic interpretation is possible.
Additionally, in [25], the same authors also provide this semi-analytical formulation for
non-homogeneous boundary conditions.

The transition probability density of the killed process and the density of the first hitting
times are closely related to the Parabolic Cylinder functions. These functions belong to
a special class of Confluent Hypergeometric functions (see [68] for further discussion on
this particular function). Moreover, some properties of the Parabolic Cylinder functions
represent particular cases of properties of the Confluent Hypergeometric function. Here,
the key element to deriving an explicit formulation for the density of the first hitting
times lies in the asymptotic expansion associated with the Parabolic Cylinder functions.
We believe that in some cases, our results can be extended to hitting time problems for
other processes. More precisely, killed processes that have transition probability densities



expressed as Confluent Hypergeometric functions. For example, in the case of the T-CIR
process (see [34]), the expressions for the first hitting time density are in the form of series
of functions that involve Bessel functions. Furthermore, note that these series of func-
tions remain complex to manipulate, especially when considering estimation problems as
discussed in Chapter 2. An alternative perspective would be to explore other types of for-
mulations that would facilitate a more straightforward derivation of properties regarding
the density.

In Chapter 5, we propose a method for estimating the drift and volatility parameters of
the T-CKLS process based on observations from a trajectory. We focus on the T-CKLS
under the ergodic regime and the framework of continuous and high-frequency long-term
observations. We propose drift estimators based on both likelihood and quasi-likelihood
approaches. The volatility parameters are estimated using a quadratic estimator. We
have established the consistency and asymptotic normality of our estimators. Following
that, we compare our convergence hypotheses with those already existing in the literature
for specific cases of the T-CKLS. Finally, we apply our estimators to a set of simulated
data and to an interest rate dataset.

Note that the study of the T-CKLS process highlighted the problem of existence and
uniqueness of some threshold SDEs. One can easily verify that the volatility function in
(5.2.1) does not satisfy the hypotheses of Theorem 1.2.22 in Chapter 1. The following
discussions are a work in progress with Sara Mazzonetto and focus on extending the
existence and uniqueness results to a class of SDEs with discontinuous coefficients, which
satisfies:

Xt = X0 +

∫ t

0

b(Xs) ds+

∫ t

0

σ(Xs) dBs, t ≥ 0 (5.8.1)

where B is a one-dimensional Brownian motion and b and σ are measurable functions
which may be discontinuous at points called "thresholds". We can see the discontinuous
coefficients as follows:

b(x) =
N∑
i=1

bi(x)1Ii(x) and σ(x) =
N∑
i=1

σi(x)1Ii(x),

for functions bi and σi which are the restrictions of b and σ on the interval Ii. In Chapter
1, we remind the key results on pathwise uniqueness for SDEs under classical assumptions
on the drift and volatility functions. These results are outlined in Theorem 1.2.22. The
benefit of these results lies in their simple proof, which depends on the fact that the
local time between two solutions of the same SDE is a.s. zero at zero. For specific
threshold SDEs, these results can be extended. The main approach involves localizing
each assumption outlined in Theorem 1.2.22. In our current work, we have extended these
assumptions to the framework of processes solving the equation (5.8.1). Specifically, our
results enable us to establish the existence and uniqueness of a strong solution of (5.2.1).
Additionally, we can provide a comparison theorem for this type of SDE.

In Chapter 5, several remarks can be made, and various perspectives can be explored.
Firstly, we believe that our assumptions regarding the moments of µ for consistency and
asymptotic normality are sufficient in high-frequency long-time data. It would be inter-
esting to explore other proof methods that could potentially weaken these assumptions.
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Additionally, further study of the estimator for the parameter σ could aim to achieve a
more optimal speed than

√
TN . The estimation of the parameters γ and r remains an

open problem, and the main goal would be to establish joint properties for the estimation
of all parameters.

To explore further, investigating the statistical properties of our estimators for other
regimes of the process would be valuable. We believe that obtaining these properties in
the null recurrent regime should be achievable without significant difficulty. However,
studying these estimators in the transient regime is an ongoing task.

Obtaining results for high-frequency data and fixed time under the assumption of er-
godicity remains unresolved. In [81], for the T-OU process, the authors use a change of
measure and the transition probability density of a threshold Brownian motion to estab-
lish statistical properties in this setting. The goal here would be to find a process with a
reasonable transition probability density to apply similar reasoning (see [62] for the case
of a CKLS process).

Based on our results, we can construct statistical tests for the existence of one or more
thresholds in a CKLS process. We believe that this follows quite easily from the asymp-
totic normality properties stated in Theorem 5.4.4.

Additionally, as mentioned previously, the proofs of Proposition 5.5.4 and Proposition
5.5.5 are applicable to other processes. A research direction would be to extend our
results on drift parameter estimation of a more general SDE:

Xt = X0 +

∫ t

0

µ(Xs, θ0) ds+

∫ t

0

σ(Xs) dBs, t ≥ 0

where µ, σ are given functions and discontinuous at certain levels and θ0, the parameter to
be estimated. In this case, proofs will be slightly different as we cannot explicitly compute
the MLE and QMLE. We would need to study the statistical properties on the likelihood
and quasi-likelihood functions. In some cases, we believe that we could also obtain results
in the high-frequency and fixed time data case using the local time approximation [79],
as demonstrated in [82] for the threshold drifted Brownian motion.

Furthermore, note that we currently have no results concerning the existence of the tran-
sition probability density of the T-CKLS process. Indeed, the process does not satisfy the
assumptions outlined in [45]. Partly because the volatility function is no longer elliptical
around zero nor locally Hölder continuous near a threshold.
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Multi-Mean Reverting Processes: Analytical and Statistical Approaches

Abstract : This thesis explores the theory and application of stochastic differential equations (SDEs), with
a particular focus on parameter estimation and the behavior of processes with discontinuous coefficients. The
first part focuses on the Ornstein-Uhlenbeck (OU) process. We introduce an estimator for the OU parameters
based on supremum observations of one trajectory. We derive an analytic expression for the supremum density
and build an estimator using a pseudo-likelihood method. The statistical properties of this estimator, including
consistency and asymptotic normality, are established using weak-dependence results. The effectiveness of our
estimator is demonstrated through its application to both simulated and real data. Additionally, we explore the
behavior of Parabolic Cylinder functions, which are involved in the law of the OU supremum. Specifically, we
investigate the µ-zeros of the function µ 7→ Dµ(z) with respect to the real variable z, establishing a formula for
the derivative of a zero and providing an asymptotic expansion for large positive z. The second part investigates
processes governed by SDEs with discontinuous coefficients. Introducing the threshold Ornstein-Uhlenbeck (T-
OU) process, we provide explicit expressions for transition probability density and first hitting time density for the
killed process. Then, we introduce the threshold CKLS (T-CKLS) process and focus on estimating its parameters
using observations of a single trajectory. We study the asymptotic behavior of maximum likelihood and quasi-
maximum likelihood estimators for drift parameters, as well as a volatility estimator. Some statistical properties
under continuous and high-frequency observations over long time horizons are derived. Finally, we highlight the
relevance of multiple thresholds through applications to simulated and real data.

Keywords: OU, CIR, CKLS, supremum law, parameters estimation, pseudo-likelihood, asymptotic nor-
mality, hitting time, self-exciting process , maximum likelihood, thresholds diffusion.

Processus à plusieurs réversions à la moyenne : Approches analytiques et statistiques

Résumé : Cette thèse traite de la théorie et des applications des équations différentielles stochastiques
(EDS), en se concentrant particulièrement sur l’estimation des paramètres et le comportement des processus aux
coefficients discontinus. La première partie introduit un estimateur pour les paramètres du processus d’Ornstein-
Uhlenbeck (OU), construit à partir d’observations du supremum d’une unique trajectoire. Une fois l’expression
analytique pour la densité du supremum établie, nous procédons à la construction d’un estimateur en utilisant une
méthode de pseudo-vraisemblance. Les propriétés statistiques de cet estimateur, à savoir la consistance et la nor-
malité asymptotique, sont établies en utilisant des propriétés de faible dépendance de l’échantillon d’observations.
L’efficacité de notre estimateur est démontrée à travers son application à des données simulées et réelles. De plus,
nous étudions le comportement des fonctions Paraboliques Cylindrique, qui sont impliquées dans la loi du supre-
mum de l’OU. Plus précisément, nous étudions les µ-zéros de la fonction µ 7→ Dµ(z) par rapport à la variable réelle
z. Nous établissons une formule pour la dérivée d’un zéro et fournissons un développement asymptotique pour de
grands z positifs. La deuxième partie développe la théorie des processus solutions des EDS à coefficients discon-
tinus. Après avoir introduit le processus d’Ornstein-Uhlenbeck à seuil (T-OU), nous établissons des expressions
analytiques pour la densité de probabilité de transition et la densité de premier temps d’atteinte pour le processus
tué. Ensuite, le processus CKLS avec seuil (T-CKLS) est introduit et nous nous concentrons sur l’estimation
de ses paramètres de dérive et de volatilité en utilisant des observations d’une seule trajectoire. L’analyse du
comportement asymptotique des estimateurs de maximum de vraisemblance et de quasi-maximum de vraisem-
blance pour les paramètres de dérive, ainsi qu’un estimateur de volatilité, est effectuée. Les propriétés statistiques
sont obtenues à partir d’observations continues et à haute fréquence en temps long. Enfin, la pertinence d’une
modélisation à plusieurs seuils est mise en évidence à travers des applications à des données simulées et réelles.

Mots clefs. OU, CIR, CKLS, loi du supremum, estimation des paramètres, pseudo-vraisemblance, nor-
malité asymptotique, premier temps d’atteinte, processus auto-excitant, maximum de vraisemblance,
diffusion à seuils.
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