
HAL Id: tel-04917007
https://theses.hal.science/tel-04917007v1

Submitted on 28 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Foundations of machine learning interpretability
Gianluigi Lopardo

To cite this version:
Gianluigi Lopardo. Foundations of machine learning interpretability. Artificial Intelligence [cs.AI].
Université Côte d’Azur, 2024. English. �NNT : 2024COAZ5051�. �tel-04917007�

https://theses.hal.science/tel-04917007v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

Fondements de l’Interprétabilité de
l’Apprentissage Automatique

Gianluigi LOPARDO

Laboratoire Jean-Alexandre Dieudonné (LJAD), Centre Inria d’Université Côte
d’Azur (Maasai)

Présentée en vue de l’obtention
du grade de docteur en Mathématiques
d’Université Côte d’Azur

Dirigée par : Damien GARREAU
Co-dirigée par : Frédéric PRECIOSO
Soutenue le : 14 Octobre 2024

Devant le jury, composé de :
Céline HUDELOT, Professeure, CentraleSu-
pélec, Paris
Jean-Michel LOUBES, Professeur, Univer-
sité Toulouse Paul Sabatier
Ulrike VON LUXBURG, Professeure, Uni-
versity of Tübingen
Tim VAN ERVEN, Professeur Associé, Uni-
versity of Amsterdam

FONDEMENTS DE L’INTERPRÉTABILITÉ DE L’APPRENTISSAGE

AUTOMATIQUE

Foundations of Machine Learning Interpretability

Gianluigi LOPARDO

▷◁

Jury :

Rapporteurs
Céline HUDELOT, Professeure, CentraleSupélec, Paris
Jean-Michel LOUBES, Professeur, Université Toulouse Paul Sabatier

Examinateurs
Ulrike VON LUXBURG, Professeure, University of Tübingen
Tim VAN ERVEN, Professeur Associé, University of Amsterdam

Directeur de thèse
Damien GARREAU, Professeur, Julius-Maximilians-Universität Würzburg

Co-directeur de thèse
Frédéric PRECIOSO, Professeur, Université Côte d’Azur

Université Côte d’Azur

Gianluigi LOPARDO

Fondements de l’Interprétabilité de l’Apprentissage Automatique

xviii+196 p.

Gianluigi Lopardo

v

“I checked it very thoroughly,” said the
computer, “and that quite definitely is the
answer. I think the problem, to be quite
honest with you, is that you’ve never
actually known what the question is.”

Douglas Adams,

The Hitchhiker’s Guide to the Galaxy

v

Fondements de l’Interprétabilité de l’Apprentissage Automatique
Résumé

L’utilisation croissante de modèles complexes d’apprentissage automatique (ML), en particu-
lier dans des applications critiques, a souligné le besoin urgent de méthodes d’interprétabilité.
Malgré la variété de solutions proposées pour expliquer les décisions algorithmiques automa-
tisées, comprendre leur processus de prise de décision reste un défi. Ce manuscrit examine
l’interprétabilité des modèles ML, utilisant une analyse mathématique et une évaluation empi-
rique pour comparer les méthodes existantes et proposer de nouvelles solutions. Notre principal
objectif est sur les méthodes d’interprétabilité post-hoc, qui fournissent des informations sur le
processus de prise de décision des modèles de ML après l’entraînement, indépendamment des
architectures de modèles spécifiques. Nous nous interessons plus particuliermenet du langage
naturel, explorant des techniques pour expliquer les modèles de texte. Nous abordons un défi
clé : les méthodes d’interprétabilité peuvent produire des explications variées même pour des
modèles apparemment simples. Cela met en évidence un problème critique : l’absence d’une
base théorique solide pour ces méthodes. Pour tenter de resoudre ce problème , nous utilisons
un cadre théorique rigoureux pour analyser formellement les techniques d’interprétabilité exis-
tantes, évaluant leur comportement et leurs limites. Sur cette base, nous proposons un nouvel
explicateur pour fournir une approche plus fidèle et robuste pour interpréter les modèles de
données textuelles. Nous nous engageons également dans le débat sur l’efficacité des poids
d’attention comme outils explicatifs au sein des architectures de transformateurs puissants.
Grâce à cette analyse, nous éclairons les forces et les limites des méthodes d’interprétabi-
lité existantes et ouvrons la voie à des approches plus fiables et théoriquement fondées. Cela
conduira à une compréhension plus profonde de la façon dont les modèles prennent des déci-
sions, favorisant la confiance et le déploiement responsable dans les applications ML critiques.

Mots-clés : Interprétabilité de l’apprentissage automatique, IA Explicable, Traitement du langage

Foundations of Machine Learning Interpretability
Abstract

The rising use of complex Machine Learning (ML) models, especially in critical applications,
has highlighted the urgent need for interpretability methods. Despite the variety of solutions
proposed to explain automated algorithmic decisions, understanding their decision-making
process remains a challenge. This manuscript investigates the interpretability of ML models,
using mathematical analysis and empirical evaluation to compare existing methods and pro-
pose novel solutions. Our main focus is on post-hoc interpretability methods, which provide
insights into the decision-making process of ML models post-training, independent of specific
model architectures. We delve into Natural Language Processing (NLP), exploring techniques
for explaining text models. We address a key challenge: interpretability methods can yield
varied explanations even for simple models. This highlights a critical issue: the absence of
a robust theoretical foundation for these methods. To address this issue, we use a rigorous
theoretical framework to formally analyze existing interpretability techniques, assessing their
behavior and limitations. Building on this, we propose a novel explainer to provide a more
faithful and robust approach to interpreting text data models. We also engage with the de-
bate on the effectiveness of attention weights as explanatory tools within powerful transformer
architectures. Through this analysis, we expose the strengths and limitations of existing in-
terpretability methods and pave the way for more reliable, theoretically grounded approaches.
This will lead to a deeper understanding of how complex models make decisions, fostering
trust and responsible deployment in critical ML applications.

Keywords: Machine Learning Interpretability, Explainable AI, Natural Language Processing.

Acknowledgments

Firstly, I would like to thank my supervisors. Fred, thank you for the trust you placed in me
from the very beginning and for all the time you dedicated to me, especially in the early days,
despite your countless commitments. I place immense value on everything I have learned thanks
to your advice and all our discussions. Nonetheless, I am grateful to you for making every moment
together, whether in a meeting, at lunch or over a coffee, a pleasure. I truly believe that a large part
of the great atmosphere I found at Maasai is thanks to you. Your passion has always been engaging
and motivating.

Damien, thank you for your constant support throughout these years. Much of the value of this
thesis is due to your precise and insightful feedbacks. Your rigor and your desire to really delve
deep have inspired me and taught me a lot about how to approach science, and much more beyond
that. I will really miss all our conversations, not just the scientific ones. I think we talked about
just about everything during this time, and whether it was politics, cooking, economics, wine,
cinema, or where to go on vacation, you always offered an interesting and unique perspective. I
truly believe that every single conversation we had enriched me in some way. You have been an
important mentor to me, in the highest sense of the word. Thank you so much.

I also want to express my sincere gratitude to the committee members. Professors Céline
Hudelot, Jean-Michel Lobes, Tim van Erven, and Ulrike von Luxburg: I am incredibly honored
to have you on my PhD jury. Thank you for accepting and for the patience and time you have
dedicated to the entire process and to my emails. Special thanks to the reviewers, Céline and
Jean-Michel: your reports are full of insightful comments, which I sincerely appreciated.

I am grateful to the fantastic colleagues and officemates, both past and present, that I’ve had at
Maasai and LJAD. Thank you to the Valrose PhD gang: my life in Nice would have been empty
without you. Thank you to those who managed to stay close despite the distance; I constantly
felt the support of my friends and would not have been able to get through so much without you.
Thank you to my entire family for your unconditional support.

Table of contents

List of figures xv

List of tables xvii

1 Introduction 1
1.1 The need for interpretability . 1

1.1.1 Use cases: when do we need interpretability? 2
1.1.2 Motivation: why do we need interpretability? 5
1.1.3 Interpretable models . 7

1.2 A brief overview of contemporary AI . 11
1.2.1 Neural networks . 12
1.2.2 Transformers . 14
1.2.3 Black-boxes . 16

1.3 From AI concerns to the right to explanation 16
1.3.1 AI risks and concerns . 16
1.3.2 Right to explanation . 18

1.4 Introduction to Machine Learning Intepretability 21
1.4.1 Terminology . 22
1.4.2 Global vs. local . 22
1.4.3 Explainable by design vs. post-hoc . 24
1.4.4 Model-dependent vs. model-agnostic 26
1.4.5 Gradient-based interpretability . 27
1.4.6 Perturbation-based interpretabiliy . 28
1.4.7 Concept-based interpretability . 31
1.4.8 Example-based interpretability . 32
1.4.9 Counterfactual explanations . 32

1.5 Open challenges . 34
1.5.1 Out-of-distribution samples . 35
1.5.2 Lack of consensus for evaluation . 36
1.5.3 Lack of mathematical foundation . 37

1.6 Contributions . 41

2 Setting and notation 43
2.1 Notation . 45
2.2 Text vectorizers . 47
2.3 Post-hoc explanations in NLP . 50

2.3.1 Identifying keywords . 50
2.3.2 Sentence highlighting . 51
2.3.3 Counterfactual explanations . 52

2.4 Evaluating explanations . 53

xi

xii TABLE DES MATIÈRES

3 Sentence Highlighting vs. Keyword Identification in Text Models 55
3.1 Introduction . 57
3.2 Methods . 57

3.2.1 LIME for text data . 58
3.2.2 Anchors for text data . 59

3.3 Experiments . 60
3.3.1 Qualitative Evaluation . 60
3.3.2 Quantitative Evaluation . 63

3.4 Conclusion . 64

4 An In-Depth Analysis of Anchors for Text Data 67
4.1 Introduction . 69
4.2 Anchors for text data . 71

4.2.1 Setting and Notation . 71
4.2.2 Precision and Coverage . 72
4.2.3 The Algorithm . 72
4.2.4 The Sampling . 73

4.3 Exhaustive p-Anchors . 74
4.3.1 Description of the Algorithm . 74
4.3.2 Stability with Respect to the Evaluation Function 74

4.4 Analysis on explainable classifiers . 76
4.4.1 Vectorizers and Immediate Consequences 76
4.4.2 Simple decision rules . 77
4.4.3 Linear classifiers . 78

4.5 Anchors on neural networks . 80
4.6 Conclusion . 82

5 Faithful and Robust Local Interpretability for Textual Predictions 83
5.1 Introduction . 85

5.1.1 Related work . 86
5.2 FRED . 87

5.2.1 Drop in prediction . 87
5.2.2 Sampling scheme . 89
5.2.3 Explanations . 91

5.3 Analysis on Explainable Classifiers . 92
5.3.1 Linear Classifiers . 92
5.3.2 Shortcuts Detection . 93

5.4 Experiments . 93
5.5 Conclusion . 95

6 Attention Meets Post-hoc Interpretability 99
6.1 Introduction . 101
6.2 Related Work . 102

6.2.1 The debate . 103
6.2.2 Attention meets post-hoc interpretability 105

6.3 Attention-based classifier . 105

xii

TABLE DES MATIÈRES xiii

6.3.1 General Description . 105
6.3.2 The attention mechanism . 106

6.4 Attention-based Explanations . 108
6.5 Gradient-based Explanations . 109

6.5.1 Methods . 109
6.5.2 Gradient of the model . 109

6.6 Perturbation-based Explanations . 110
6.6.1 Reminder on LIME . 110
6.6.2 Limit Explanations . 111

6.7 Limitations . 113
6.8 Conclusion and Future Work . 114

7 Conclusion and Perspectives 115
7.1 Conclusion . 115
7.2 Perspectives . 116

Bibliography 121

Appendix

A Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data 147
A.1 Proofs . 147

A.1.1 Proof of Proposition 4.2.1: Equivalent sampling 147
A.1.2 Proof of Proposition 4.3.1: Stability of exhaustive p-Anchors 148
A.1.3 Proof of Proposition 4.3.2: ˆ︃Precn(A) uniformly approximates Prec . . . 148
A.1.4 Proof of Proposition 4.4.1: Dummy features 149
A.1.5 Proof of Proposition 4.4.2: Presence of a set of words 149
A.1.6 Proof of Proposition 4.4.3: Precision of a linear classifier 152
A.1.7 Proof of Proposition 4.4.4: Approximate precision maximization 153
A.1.8 Additional result for Section 4.4.2: Simple if-then rules 154
A.1.9 Normalized TF-IDF . 155

A.2 Technical results . 160
A.2.1 Binomial wonderland . 160
A.2.2 Other probability results . 161

A.3 Additional experimental results . 162
A.3.1 Typical values of mj and vj . 163
A.3.2 Comparison between Anchors and exhaustive Anchors 164
A.3.3 Dummy property . 165
A.3.4 Empirical validation of Proposition 4.4.3: Precision of a linear classifier . 165
A.3.5 Additional experiments for Section 4.4: Analysis on explainable classifiers 166
A.3.6 Empirical validation of Proposition A.1.4: Normalized-TF-IDF, Berry-

Esseen . 166
A.3.7 Additional experiments for Section 4.5: Anchors on Neural Networks . . 166
A.3.8 BERT replacement . 166

xiii

xiv TABLE OF CONTENTS

B Appendix for Chapter 5: Faithful and Robust Local Interpretability for Textual Predic-

tions 173
B.1 Proofs . 173

B.1.1 Proof of Lemma 5.2.1: Convergence of Empirical Drop ˆ︁∆c 173
B.1.2 Proof of Lemma 5.2.2: Choosing n . 174
B.1.3 Proof of Proposition 5.3.1: Linear models 174
B.1.4 Proof of Proposition 5.3.2: Presence of shortcuts 175

B.2 Experiments . 176
B.2.1 Setting . 177
B.2.2 Additional experimental results . 177

C Appendix for Chapter 6: Attention Meets Post-hoc Interpretability 185
C.1 Proof of Theorem 6.5.1 . 185
C.2 Proof of Theorem 6.6.1 . 186

C.2.1 Discussion on Theorem 6.6.1 . 188
C.3 Proof of Proposition C.2.1 . 189
C.4 Technical results . 190

C.4.1 Conditional variance computations . 191
C.4.2 Probability computations . 193

C.5 Experiments on multi-layer architecture . 193
C.6 Experiments . 194

xiv

List of figures

1.1 Comparison of worldwide Google search trends for ChatGPT, Taylor Swift, the
Olympics, and the Eurovision Song Contest. 2

1.2 An illustration of an automated loan application process as in Example 1.1.1. . . 3
1.3 Interpretability helps detecting spurious correlations 4
1.4 Illustration of two interpretable models. 7
1.5 Probability curve in logistic regression . 9
1.6 Illustration of a K-Nearest Neighbors (kNN) classification model. 10
1.7 AI test scores across different capabilities relative to human performance. 11
1.8 A schematic representation of a feed-forward neural network architecture. 13
1.9 AlexNet’s architecture. 14
1.10 Evolution of the number of parameters in notable artificial intelligence systems

from 1950 to 2024. 15
1.11 Computation employed in training notable AI systems. 17
1.12 The EU AI Act classifies AI systems by risk level. 19
1.13 Cumulative citations over time for key XAI papers according to Google Scholar. . 21
1.14 Illustration of local interpretabiliy. 23
1.15 Architecture of Logic Explained Networks. 24
1.16 GradCAM results on an image classifier. 27
1.17 LIME’s sampling scheme for images. 29
1.18 Illustration of the perturbation-based approach for explaining text classifiers. . . . 30
1.19 Illustration of counterfactual explanations in a classification scenario. 33
1.20 Illustration of the out-of-distribution problem in LIME for tabular data. 34

2.1 Explaining the prediction of a sentiment analysis model. 51

3.1 Comparison of LIME and Anchors explanations on a sentiment analysis model. . 58
3.2 Comparison of LIME and Anchors explanation on a simple decision rule. 61
3.3 Making a word disappear from the explanation by adding one occurrence. 61
3.4 Anchors explanations depend on words multiplicity. 62
3.5 Comparison of LIME and Anchors on logistic models. 63

4.1 Anchors explaining the positive prediction of a black-box model. 69
4.2 Illustration of Anchors sampling scheme. 73
4.3 Illustration of the p-Anchors algorithm. 75
4.4 Effect of adding one occurrence on Anchors explanation. 78
4.5 Illustration of Proposition 4.4.4. 80

5.1 Illustration of FRED pos-sampling scheme and mask-sampling scheme. 89
5.2 Illustration of Proposition 5.3.1. 93

6.1 Different explainers can produce very different explanations. 102

xv

xvi LIST OF FIGURES

6.2 Attention matrices for the histogram task show two distinct solutions correspon-
ding to different local minima in the loss landscape. 103

6.3 Illustration of the architecture of the model defined in Section 6.3. 106
6.4 Attention matrices across the heads. 107
6.5 Illustration of the accuracy of Eq. (6.19). 111

A.1 Illustration of Proposition 4.4.2. 151
A.2 Histograms for the Restaurant Reviews dataset. 163
A.3 Histograms for the Yelp Reviews dataset. 164
A.4 Anchors includes dummy features. 165
A.5 Illustration of Proposition 4.4.3. 168
A.6 Jaccard index standard deviations for 10 runs of Anchors on Restaurant reviews. . 169
A.7 Illustration of Proposition A.1.3. 169
A.8 Illustration of Proposition 4.4.2. 169
A.9 Illustration of Proposition 4.4.4. 170
A.10 Illustration of Proposition 4.4.4. 171
A.11 Illustration of Proposition A.1.4. 172

C.1 Illustration of the accuracy of Theorem 6.5.1. 186
C.2 Relation between LIME explanations and attention weights. 194

xvi

List of tables

3.1 Comparison between LIME and Anchors in terms of ℓ-index and computing time. 64

4.1 Validation of Proposition 4.4.4. 81
4.2 Average Jaccard similarity between the extracted anchor A and the first ♣A♣ words

ranked by λjvj . 81

5.1 Comparison on Roberta for Restaurant reviews (p = 0.5, ε = 0.15). 95
5.2 Comparison on Random forest classifier for Yelp reviews (p = 0.5, ε = 0.15). . . 95
5.3 Comparison on DistilBERT for IMDb (p = 0.5, ε = 0.15). 96
5.4 Comparison on Roberta for IMDb (p = 0.5, ε = 0.15). 96
5.5 Comparison on a decision tree for Tweets (p = 0.5, ε = 0.15). 97
5.6 Comparison on random forest classifier for Tweets (p = 0.5, ε = 0.15). 97

A.1 Jaccard similarity between exhaustive Anchors and default implementation. . . . 165
A.2 Anchors on a neural network. 167

B.1 Accuracy of machine learning models evaluated on datasets used in the experiments.178
B.2 Comparison on a logistic classifier for Restaurant reviews (p = 0.1, ε = 0.15). . . 178
B.3 Comparison on a logistic classifier for Restaurant reviews (p = 0.5, ε = 0.15). . . 179
B.4 Comparison on a decision tree for Restaurant reviews (p = 0.1, ε = 0.15). 179
B.5 Comparison on a decision tree for Restaurant reviews (p = 0.5, ε = 0.15). 179
B.6 Comparison on a random forest classifier for Restaurant reviews (p = 0.1, ε = 0.15).179
B.7 Comparison on a random forest classifier for Restaurant reviews (p = 0.5, ε = 0.15).179
B.8 Comparison on DistilBERT for Restaurant reviews (p = 0.1, ε = 0.15). 180
B.9 Comparison on DistilBERT for Restaurant reviews (p = 0.5, ε = 0.15). 180
B.10 Comparison on Roberta for Restaurant reviews (p = 0.1, ε = 0.15). 180
B.11 Comparison on logistic classifier for Yelp reviews (p = 0.1, ε = 0.15). 180
B.12 Comparison on logistic classifier for Yelp reviews (p = 0.5, ε = 0.15). 180
B.13 Comparison on decision tree for Yelp reviews (p = 0.1, ε = 0.15). 181
B.14 Comparison on decision tree for Yelp reviews (p = 0.5, ε = 0.15). 181
B.15 Comparison on random forest classifier for Yelp reviews (p = 0.1, ε = 0.15). . . 181
B.16 Comparison on DistilBERT for Yelp reviews (p = 0.1, ε = 0.15). 181
B.17 Comparison on DistilBERT for Yelp reviews (p = 0.5, n = 70, ε = 0.15). 181
B.18 Comparison on Roberta for Yelp reviews (p = 0.1, ε = 0.15). 182
B.19 Comparison on logistic classifier for IMDb (p = 0.1, ε = 0.15). 182
B.20 Comparison on logistic classifier for IMDb (p = 0.5, ε = 0.15). 182
B.21 Comparison on decision tree for IMDb (p = 0.1, ε = 0.15). 182
B.22 Comparison on decision tree for IMDb (p = 0.5, ε = 0.15). 182
B.23 Comparison on random forest classifier for IMDb (p = 0.1, ε = 0.15). 183
B.24 Comparison on random forest classifier for IMDb (p = 0.5, ε = 0.15). 183
B.25 Comparison on DistilBERT for IMDb (p = 0.1, ε = 0.15). 183

xvii

xviii LIST OF TABLES

B.26 Comparison on Roberta for IMDb (p = 0.1, ε = 0.15). 183
B.27 Comparison on decision tree for tweets hate speech detection (p = 0.1, ε = 0.15). 183
B.28 Comparison on random forest classifier for tweets hate speech detection (p = 0.1,

ε = 0.15). 184
B.29 Comparison on DistilBERT for tweets hate speech detection (p = 0.1, ε = 0.15). 184

xviii

CHAPTER 1
Introduction

In the last fifteen years, Artificial Intelligence (AI) has transitioned from a futuristic and al-
most science-fiction concept, mainly confined to academia, to a tangible tool successfully applied
across nearly every sector. More recently, AI chatbots like ChatGPT [Bahrini et al., 2023], have
been developed and are used daily by millions of people (see Figure 1.1), radically transforming
not only our digital experience but also the way we learn and work (Smith [2021], Schmelzer
[2024], Marr [2024]). This rapid evolution has been primarily driven by Machine Learning (ML):
the study and development of algorithms that learn from data and generalize to unseen instances
(UC Berkeley [2020]). Machine Learning has harnessed the vast availability of data on the inter-
net [Boucher, 2020], the increase in computational power [Ajani et al., 2024], and advancements
in technology and methodology, such as improved network architectures and optimization tech-
niques. Additionally, the boost from commercial applications has made large-scale AI applications
possible. Thanks to machine learning, automated systems can perform tasks without explicit
instructions by learning recurrent patterns from large amounts of available data.

The widespread adoption of AI in various sectors, especially critical ones like healthcare,
finance, and transportation brings significant economic, political, and social implications (Ro-
ser [2022]). AI has been leveraged from developing new healthcare diagnosis based on patient
data [Bohr and Memarzadeh, 2020] to optimizing financial decisions in real-time [Nazareth and
Reddy, 2023], from improving transportation efficiency through predictive maintenance [Bhara-
diya, 2023] to personalizing education by understanding individual learning patterns [Chen et al.,
2020]. The integration of AI in these fields has the potential to improve efficiency and optimize
decision-making processes, but it also presents challenges related to privacy [Manheim and Ka-
plan, 2019, Murdoch, 2021], ethics [Cath, 2018, Gerke et al., 2020, Akgun and Greenhow, 2022],
and security [Hoadley and Lucas, 2018, Li, 2018, Akgun and Greenhow, 2022]. These profound
implications have led AI to emerge as a crucial topic in public debate (The Economist [2023],
Kaminski [2024], The Economist [2024a]), attracting the attention and participation of various
stakeholders, from the scientific community to industry professionals, domain experts, politicians
and civil society. Today, there is a strong demand for reliable and manageable AI systems that
can meet the needs and expectations of a wide range of users and stakeholders, respecting societal
norms and values. Interpretability is among the most urgent requirements.

1.1 The need for interpretability

As AI continues to evolve at a rapid pace, the need to ensure the accountability of these systems
becomes increasingly important. In certain domains, such as music recommendation systems, the
risks associated with AI might be negligible, with little to no potential harm for users. However,

1

2 CHAPTER 1 — Introduction

December 2021 May 2022 October 2022 February 2023 July 2023 November 2023 April 2024

0

20

40

60

80

100
Google search interest over time

ChatGPT
Taylor Swift
Olympics
Eurovision

Figure 1.1 – Comparison of worldwide Google search trends for ChatGPT, Taylor Swift, the
Olympics, and Eurovision Song Contest.. Following its debut, ChatGPT has seen a steady rise
in search interest, outpacing the 2023 Person of the Year (TIME [2023]), and eclipsing major
global events in sports and music. This trend underscores the immense public interest in ChatGPT,
growing since its release.

when AI is employed in high-stakes areas, such as when making medical decisions, unders-
tanding the underlying principles that govern these models becomes imperative [Jan et al.,
2020]. This is where the field of eXplainable AI (XAI) comes into play [Molnar, 2020], aiming
to create techniques that produce more understandable and interpretable AI predictions, thereby
bridging the gap between AI decision-making and human understanding.

1.1.1 Use cases: when do we need interpretability?

This section illustrates specific situations where interpretability is particularly beneficial for
citizens and customers by providing a few concrete examples. These examples will demonstrate
how transparency in AI systems can enhance trust, ensure fairness, and improve outcomes across
various domains.

Example 1.1.1 – Loan application. Imagine applying for a loan to purchase your dream house.
Figure 1.2 shows a schematic representation of this process. Traditionally, obtaining a mortgage
involves a loan officer evaluating your financial situation and the property’s worthiness. This pro-
cess includes analyzing documents, verifying income, job security, creditworthiness, and details
about the property such as location, size, and ownership history. After gathering all the required
documentation, you visit the bank, providing personal information such as your place of birth, age,
gender, and family situation. The bank officer diligently completes the necessary forms. However,
at the end of the process, your loan application is rejected.

At the very least, you will want an explanation for the denial. If a human operator made the
decision, you might receive an explanation (though potentially dubious) that you could contest and

1.1 – 1.1.1 Use cases: when do we need interpretability? 3

...

NEIGHBORHOOD

AGE

INCOME

GENDER

REJECT

RISK

CREDIT SCORE

BLACK BOX

Figure 1.2 – An illustration of an automated loan application process as in Example 1.1.1.
A customer arrives at the bank with personal documents (income, gender, age, nationality, neigh-
borhood). The bank leverages artificial intelligence to streamline the loan application process: the
bank operator inputs the customer’s information into a sophisticated model. This black-box model,
while complex and seemingly mysterious, analyzes the data and produces the outcome: the loan
application has been rejected.

discuss. However, the situation becomes more complicated if the bank uses complex algorithms
to analyze your data and make automated decisions. While efficient, such models can be opaque,
making it difficult, if not impossible, to understand the reasoning behind their rejections.

There might be legitimate reasons for the denial. Perhaps the AI considered the house’s loca-
tion and factored in data suggesting upcoming construction that could decrease its value. It might
have concluded the house is too expensive for your income or simply too large for your needs.
In the worst case, one might suspect discriminatory biases, such as racism or sexism, influencing
the outcome, especially if the provided reasons seem arbitrary. Even the loan officer might not
understand why your application was denied. When the only possible explanation given is a
vague “our super accurate automated system decided so”, it becomes nearly impossible to
challenge such biases or understand the factors that led to the denial.

Example 1.1.2 – U.S. Welfare eligibility. The United States Government frequently employs
AI systems to determine individuals’ eligibility for welfare assistance (Gilman [2020]). However,
these systems, designed to detect welfare fraud, often end up disproportionately penalizing those in
need. Despite intentions to streamline processes and minimize fraudulent claims, these algorithms
can inadvertently perpetuate racist and sexist biases, leading to erroneous denials of aid for
deserving applicants. Clear explanations can promptly detect these biases and help understand
why a decision has been made, emphasizing the need for interpretability in AI systems used for
such critical purposes.

Example 1.1.3 – Spurious correlations. Consider an image classifier for animals that boasts high
overall accuracy. However, a detailed examination of the model reveals some disconcerting biases.
For instance, the model consistently predicted “waterbird” for any image containing a bird with a
sea background (as in Figure 1.3). Conversely, it classified any dog with snow in the background
as a “wolf” (as in Ribeiro et al. [2016, Figure 11]).

The model failed to recognize the key features that define a waterbird, such as the shape of the
beak or the pattern of the wings, or a wolf, such as the texture of the fur or specific facial features.
Instead, it relied on the background of the image, which can often be misleading. Detecting this

4 CHAPTER 1 — Introduction

Figure 1.3 – Interpretability helps detecting spurious correlations (Example 1.1.3). On the
left, an image of a waterbird is shown [Sagawa et al., 2020], and on the right, the output of an
interpretability method that produces saliency maps. The saliency map reveals a critical insight: the
model is primarily focusing on the water in the image rather than the bird itself. This suggests that
while the model is correctly classifying the bird as a waterbird, it is doing so for the wrong reason,
relying on the presence of water in the image to make the prediction. The model is relying on a
spurious correlation, using the presence of water in the image to make the prediction. This example
clearly demonstrates that a model’s accuracy is not the sole determinant of its usefulness or
reliability; understanding why and how it makes its predictions is equally important.

problem is challenging. Explainable AI tools can identify these biases early, allowing them to be
addressed before the model is deployed to production.

While this example might not have serious risks, imagine the case where the model is a brain
scanner classifier used to detect the presence of a tumor. In such high-stakes scenarios, spurious
correlations could lead to devastating misdiagnoses. Therefore, ensuring the interpretability of AI
models is crucial to understand and mitigate potential biases and errors.

Example 1.1.4 – Amazon automated recruitment process. In 2014, Amazon attempted to au-
tomate its recruitment process using a machine learning model (Dastin [2018]). This model was
trained on the resumes of existing employees to identify the most promising candidates. Howe-
ver, it soon became apparent that the system was not evaluating candidates for software developer
roles and other technical positions in a gender-neutral manner. Essentially, Amazon’s system had
learned to favor male candidates over female candidates. This bias was not due to the model’s
design but rather a reflection of the training data it was fed. The models were trained on resumes
submitted to the company over a decade, a period that mirrored the male predominance within the
broader tech industry. Consequently, the model learned to replicate this imbalance, underscoring
the critical importance of careful data selection.

Example 1.1.5 – Prediction of Criminal Recidivism. In the criminal justice system, decisions
about bail, sentencing, and parole have profound implications for individuals’ lives. To assist
judges in making fast and accurate decisions, AI models are increasingly being used (Hao [2019]).
These models analyze vast amounts of data to predict the likelihood of an individual committing
a future crime. By considering factors such as criminal history, demographic information, and
socioeconomic background, these AI systems aim to provide judges with additional insights into
a defendant’s risk level. However, concerns have been raised about the fairness and transpa-
rency of these models. Critics argue that they may perpetuate biases present in historical data,
leading to discriminatory outcomes, particularly against marginalized communities.

1.1 – 1.1.2 Motivation: why do we need interpretability? 5

Example 1.1.6 – Automated medical prescriptions. Healthcare systems worldwide, especially
in the wake of the pandemic, are under mounting pressure. Doctors often find themselves overw-
helmed by paperwork, leading to exhaustion and dissatisfaction. AI can alleviate this burden by
assisting with treatment prescriptions, particularly in less severe cases. By analyzing extensive
patient data, including medical records, lab results, and medication profiles, AI models can pro-
pose fast and accurate treatment plans. These models draw from a large pool of patient data, en-
abling them to leverage insights from a wider spectrum of cases compared to individual doctors.
This potential for learning from a broader range of scenarios theoretically allows for more infor-
med recommendations, thereby enhancing patient outcomes. However, the question remains: can
a computer-generated medical prescription, lacking human-readable explanation, be fully
trusted?

1.1.2 Motivation: why do we need interpretability?

As demonstrated with previous examples, machine learning interpretability is vital for fos-
tering trust and transparency in AI systems across various domains [Doshi-Velez and Kim,
2017, Gilpin et al., 2018, Tolmeijer et al., 2022, Verma et al., 2023]. The lack of trust is indeed
one of the main deterrents to the use of artificial intelligence systems [Lee and Rich, 2021, Ma
et al., 2023], despite their effectiveness. In their research, Jan et al. [2020] identify the lack of
explainability in AI models as a major obstacle to their adoption in business settings. Business
users, often domain experts but not necessarily skilled in data science, struggle to trust model pre-
dictions without a clear understanding of their automated process. This skepticism arises from
the inherent lack of transparency in decision-making models, hindering the full utilization of
AI’s potential in improving business operations [Lopardo, 2021].

This is exemplified in Example 1.1.1. While automated systems hold promise for enhancing
the efficiency of loan application processes and potentially improving overall accuracy, their re-
liance on opaque decision-making poses significant challenges. Banks face difficulties in trusting
a system that makes specific and vital decisions for their operation without providing explanations.
The lack of transparency restricts the bank’s ability to intervene and validate or reject automatic
decisions. Interpretability is fundamental for effective human-AI collaboration [Zhang et al.,
2022], and responsible AI development. Doshi-Velez and Kim [2017] argue that explanations are
essential for trusting automated decisions, facilitating human oversight, and ensuring accountabi-
lity.

In Example 1.1.6 and in the healthcare sector in general [van de Sande et al., 2021, Bur-
gess et al., 2023], the interpretability of machine learning models is of fundamental importance
[Vellido, 2020, Lee and Rich, 2021, Verma et al., 2023]: clinicians confidence is necessary for
adoption [Charachon et al., 2021]. Miotto et al. [2018] suggests that machine learning could be
instrumental in translating large biomedical data into an improvement in human health, but reco-
gnizes the importance of making these models more understandable at least for domain experts
and scientists, and supports the development of interpretable systems to guarantee human unders-
tanding. Li et al. [2019] highlights the potential of AI in bioinformatics, in tasks ranging from
processing DNA sequences to classifying biomedical images, but emphasizes the need for trans-
parency in the decision-making process of these models. Stiglic et al. [2020] criticizes the absence
of explainability, especially in light of the rapid spread of advanced AI applications in sensitive
applications. Abdullah et al. [2021] argues that it would be advantageous if ML models could
provide explanations that allow doctors to make data-based decisions. This could reveal specific

6 CHAPTER 1 — Introduction

patient characteristics, such as age, medical history, and test results, which significantly influence
the prescription. In this way, the model can be understood and therefore trusted by healthcare pro-
fessionals. Interpretability can be crucial in life-or-death scenarios, potentially enabling the
detection of anomalous decisions.

However, providing a form of explanations to support a decision does not automatically ensure
trust in an automated system. In a user-based study, Ahn et al. [2024] analyzed how interpretabi-
lity influences users’ task performance and trust in AI, concluding that it had modest effects on
participants. Specifically, in a clinical context, Yang et al. [2023] found that when the clinician’s
hypothesis was wrong and the AI advice was correct, the explanations rarely persuaded clinicians
to take the advice. Ehsan et al. [2021] states that for interpretability to effectively contribute to
transparency and social acceptance, explanations must be designed for being user-centered.

Beyond ensuring trust, XAI offers significant advantages for developers. Machine learning mo-
dels can sometimes establish spurious correlations [Hermann et al., 2020, Izmailov et al., 2022],
leading to incorrect outputs due to unforeseen reasons. In other instances, they may arrive at cor-
rect predictions, but the underlying justifications may be flawed or misleading. This is exemplified
in Example 1.1.3, where the waterbird picture on the left panel of Figure 1.3 is correctly classi-
fied. However, the saliency map on the right panel reveals a critical insight: the model is primarily
focusing on the water in the image rather than the bird itself. While these correlations may result
in high accuracy metrics, they are misleading and demonstrate misunderstanding by the model.
Interpretability techniques aid in debugging machine learning models by examining inter-
nal mechanisms, enhancing robustness against adversarial perturbations, and ensuring meaningful
variables drive the output, thereby validating the model’s reasoning [Arrieta et al., 2020].

Machine learning algorithms are designed to generalize to unseen instances by learning from
large amounts of existing data. An intrinsic problem of machine learning, due to its very defi-
nition, is that it can result in models perpetuating existing biases. In Example 1.1.4, Amazon’s
hiring model was trained on applications from the previous decade, in an industry heavily domi-
nated by men. Consequently, the model learned that, statistically, a successful candidate is male
and perpetuated this bias, effectively adopting sexist behavior (Dastin [2018]). By interpreting
model’s predictions, it became evident that it paid significant attention to gender, enabling prompt
intervention. Mehrabi et al. [2021] analyzes various real-world applications that have shown bias
and identifies several sources of bias that can influence AI applications. Similar issues arise in
Example 1.1.5, where concerns have been raised about the fairness of recidivism prediction algo-
rithms (Angwin et al. [2016]), which exhibit racist behaviors [Dressel and Farid, 2018]. Efforts are
underway to enhance the interpretability and fairness of AI systems in the criminal justice domain
[Berk et al., 2021].

Researchers are developing methods to detect and mitigate bias in algorithmic decision-
making, as well as techniques to provide judges with understandable explanations for AI-generated
recommendations [Barocas et al., 2023]. Similarly, Schwartz et al. [2022] discusses how bias can
emerge in AI systems: bias can be linked to the design and creation of the system, the data used
to train models, or the biases of the individuals who create and use AI systems. Caton and Haas
[2024] also delves into the issue of fairness in machine learning, identifying interpretability as a
central tool for evaluating the fairness of automatic decisions. Interpretability can be leveraged
to detect and mitigate biases, ensuring non-discriminatory behaviors. Nevertheless, while inter-
pretability and fairness are deeply connected, they must be approached with careful consideration
of their limitations. Deck et al. [2024] critically examines the relationship between explainable AI

1.1 – 1.1.3 Interpretable models 7

y = 0.5 · x1 − 0.2 · x2

x1

y

−x2

Loan Application

Credit Risk

High

Reject

Medium

Income

High

Accept

Medium

Review

Low

Reject

Low

Accept

Figure 1.4 – Illustration of two interpretable models. On the left panel, a small linear model
predicting an outcome y as a linear combination of two parameters: x1 and x2. On the right panel,
a small decision tree is used for loan applications. This tree operates on a simple risk assessment:
applicants with high credit risk are immediately rejected, while those with low credit risk undergo
further scrutiny based on their income. These two models are intrinsically interpretable; their
simple structure allows humans to predict precisely how any variation in the input para-
meters will influence the output, providing clear and understandable results. This transparency
is crucial in many fields where understanding the decision-making process is as important as the
decision itself.

and fairness, highlighting that many claims about XAI’s fairness benefits often lack grounding, or
are poorly aligned with the actual capabilities of existing interpretability methods.

1.1.3 Interpretable models

It is now clear that interpretability is fundamental, therefore it is important to understand how
to achieve it. However, as explored in Section 1.4.1, defining interpretability in a clear and unam-
biguous manner proves to be a complex challenge. Interpretability is ensured by using intrin-
sically interpretable models, such as linear models and decision trees, which are intrinsically
interpretable (or self-explainable) by design [Doshi-Velez and Kim, 2017] due to their simple un-
derlying structure. As emphasized by Molnar [2020], such models provide transparency by design,
allowing for straightforward interpretation of their predictions.

Linear models. In the regression setting, linear models predict outcomes by computing a weigh-
ted sum of input features. Mathematically, this can be expressed as:

y = β0 + β1x1 + β2x2 + · · · + βbxb + ε , (1.1)

where y is the predicted outcome for the instance point x, while x1, x2, . . . , xb are the input fea-
tures, β0 is the intercept, β1, β2, . . . , βb are the weights (coefficients) associated with each feature,
and ε is the error term. These weights and the intercept are learned from the data in such a way as
to minimize the error between the actual prediction and the model outcome. These parameters are
typically determined using methods like LASSO regression [Tibshirani, 1996] or Ridge regression
[Hoerl and Kennard, 1970], which minimize the differences between the actual and estimated

8 CHAPTER 1 — Introduction

outcomes by solving the following optimization problems, respectively:

min
β

⎧
⋁︂⨄︂
⋁︂⋃︂

n∑︂

i=1

⎛
∐︂y(i) − β0 −

b∑︂

j=1

βjx
(i)
j

∫︁
⎠

2

+ λ
b∑︂

j=1

β2
j

⎫
⋁︂⋀︂
⋁︂⋂︂

and

min
β

⎧
⋁︂⨄︂
⋁︂⋃︂

n∑︂

i=1

⎛
∐︂y(i) − β0 −

b∑︂

j=1

βjx
(i)
j

∫︁
⎠

2

+ λ
b∑︂

j=1

♣βj ♣

⎫
⋁︂⋀︂
⋁︂⋂︂
,

where x(i)
j is the j-th feature of the i-th sample, y(i) its actual outcome, while λ is a regularization

parameter that controls the trade-off between fitting the data and keeping the model coefficients
small to prevent overfitting (see Hastie et al. [2009], Section 3.4.3).

One of the main advantages of linear models is their interpretability. Each coefficient βj di-
rectly represents the change in the outcome variable y(i) for a one-unit change in the corresponding
predictor x(i)

j , holding all other predictors constant. This straightforward relationship allows for
an easy understanding and explanation of the effect of each feature.

Consider the left panel of Figure 1.4. It shows that, all else being equal, increasing the value
of x1 by one unit will increase the outcome y by 0.5, while an augment of one unit of x2 will
results in a decrease of 0.2. The simplicity and interpretability of the linear relationships have
made linear models a popular tool not only in statistics and computer science but also in fields
such as medicine, sociology, psychology, and other quantitative research fields.

Logistic regression. Logistic regression extends linear regression to binary classification pro-
blems by using the logistic function to ensure outputs fall between 0 and 1, making them interpre-
table as (pseudo) probabilities. This model is particularly useful for two-class problems, providing
a meaningful threshold for class separation and avoiding extrapolation outside the 0 − 1 range.
Logistic regression works by modeling the log-odds (or logit) of the probability of an event occur-
ring:

logit(p) := log

(︃
p

1 − p

)︃
= β0 + β1x1 + β2x2 + · · · + βbxb , (1.2)

where p is the probability of the event occurring, and, as before, x1, x2, . . . , xb are the input fea-
tures, β0 is the intercept, and β1, β2, . . . , βb are the coefficients.

The coefficients in a logistic regression model represent the change in the log-odds of the
outcome for a one-unit change in the predictor variable, holding all other predictors constant. This
relationship helps to understand and explain how each feature impacts the likelihood of the event
occurring. To convert the log-odds back to a probability, the logistic function is used:

p =
1

1 + e−(β0+β1x1+β2x2+···+βbxb)
.

Understanding the log-odds is particularly insightful when considering the decision boundary.
Indeed, close to the decision boundary, where the log-odds are near zero, small changes in input

1.1 – 1.1.3 Interpretable models 9

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
x1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.5

Pr
ob

ab
ilit

y
Logistic function
Decision boundary (p=0.5)

Figure 1.5 – Probability curve in logistic regression with the decision boundary at p = 0.5.
Here, there is only one input feature (x1, i.e., b = 1). Points above this threshold are classified as
True, while points below are classified as False. Close to the boundary, where p is near 0.5, the
classification is sensitive: a small variation in input features can lead to a change in prediction. Far
from the boundary, the model shows stronger confidence in the predicted class.

features can significantly affect the predicted probability, reflecting high uncertainty in classifi-
cation (see Figure 1.5). Far from the decision boundary, the log-odds are larger in magnitude,
indicating stronger confidence in the predicted class and smaller impacts of input changes on the
probability.

Decision rules. Decision rules are often used in machine learning [Holte, 1993]. These consist
of simple IF-THEN statements of the form:

IF condition 1 AND condition 2 AND · · · THEN outcome .

The effectiveness of decision rules is measured by support (the proportion of instances in the
dataset where the rule applies) and accuracy (the proportion of correct predictions made by the
rule). This has a very straightforward interpretation: one simply needs to check whether a
series of conditions are satisfied or not.

Various approaches have been proposed to identify an optimal trade-off between support and
accuracy [Borgelt, 2005, Letham et al., 2015]. RuleFit [Friedman and Popescu, 2008] combines
decision rules with linear regression to create a model that is simple and interpretable like linear
regression, but also incorporates interaction effects. The model is learned as linear combinations
of compact decision rules derived from the data.

Decision trees. Decision trees [Breiman et al., 1983] make predictions based on a series of
nested if-else conditions on the input features. Each condition is made at a node of the tree, and
each outcome determines the path to the next node. The final prediction is made at the leaf nodes.

10 CHAPTER 1 — Introduction

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
k-Nearest Neighbors (kNN) with k=3

Class A
Class B
Class C
Example

Figure 1.6 – Illustration of a K-Nearest Neighbors (kNN) classification model with K = 3.
The plot shows decision boundaries separating three classes A, B, and C, in a two-dimensional
feature space. Points represent data samples, with colors indicating their respective class. The
black star marks the example point to predict. The dashed circle outlines an area around it, en-
compass three points: two belonging to the class C and one of class A. By majority voting, the
example is therefore classified as C.

They are intrinsically interpretable due to their simple structure, especially when they have a small
depth.

In the case of orthogonal splits to the axes, decision trees split the feature space into rectangular
regions by making decisions based on a single feature at a time, in the form xj ≤ τj (where xj is
a feature value and τj is the corresponding threshold). This means that each decision rule in the
tree corresponds to an axis-aligned cut in the feature space, partitioning it into subspaces where
the decision boundaries are parallel to the feature axes.

This method allows for a clear and interpretable structure where the criteria for each decision
are straightforward, making it easy to understand how the final predictions are reached. The in-
terpretation of a decision tree is straightforward: starting from the root node, one follows the path
determined by the decisions at each node, leading to the prediction at the leaf. All splits along
the path are connected by logical AND operations. Consider the right panel of Figure 1.4, where
a small decision tree is employed to process the loan application of Example 1.1.1. For instance,
the loan is always accepted if the credit risk is low (credit risk ≤ τ1) and the income is high
(income > τ2). For any new loan application, the decision-making path can be precisely followed,
allowing for an unambiguous determination of how changes in the inputs will impact the output.

1.2 – A brief overview of contemporary AI 11

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
−100

−80

−60

−40

−20

0

20
Test scores of AI systems on various capabilities relative to human performance

Code generation
General knowledge tests
Handwriting recognition
Image recognition
Language understanding
Math problem-solving
Predictive reasoning
Reading comprehension
Speech recognition
Human performance

Figure 1.7 – AI test scores across different capabilities relative to human performance. In
each domain, the initial AI performance is designated as −100. Human performance serves as
the baseline, set to zero. Crossing the zero line indicates that AI performance surpasses human
performance. Data from Kiela et al. [2023].

Other interpretable models. Among standard machine learning algorithms, the Naive Bayes
classifier and k-Nearest Neighbors (kNN) are intrinsically interpretable [Hastie et al., 2009, Mol-
nar, 2020]. The Naive Bayes model calculates the likelihood of a specific outcome y occurring
given the observed features x by assuming feature independence:

P (y ♣ x) ∝ P (y)
b∏︂

j=1

P (xj ♣ y) .

This assumption simplifies the interpretation, as the contribution of each feature xj to the predic-
tion can be understood through its conditional probability given the class label y.

The kNN model predicts the class of a data point by identifying its k nearest neighbors in the
feature space and assigning the majority class among them:

ŷ = arg max
ℓ∈C

∑︂

i∈Nk(x)

✶y(i)=ℓ ,

where Nk(x) represents the indices of the k nearest neighbors of x, ✶ is the indicator function,
and C is the set of possible labels to predict. This method is interpretable because predictions
are directly based on the proximity of data points, providing clear insight into how the neighbors
influence the prediction. An illustration for k = 3 and ℓ ∈ C = {A,B,C♢ is shown in Figure 1.6.

1.2 A brief overview of contemporary AI

The current state of AI demonstrates superior performance compared to humans in va-
rious tasks [Mnih et al., 2013,0, Silver et al., 2016, Doshi-Velez and Kim, 2017], as highlighted

12 CHAPTER 1 — Introduction

in the Figure 1.7. This success has contributed to making AI an omnipresent and influential pre-
sence in society today. The driving force behind this rapid evolution has been machine learning,
especially since the rise of artificial neural networks: far from the interpretable models seen in
Section 1.1.3. These networks consist of multiple layers of interconnected nodes, the neurons,
each performing simple calculations involving linear combinations of inputs, typically followed
by a nonlinear activation function. However, when combined across multiple layers, these simple
neurons enable the network to perform highly complex computations. As AI evolves at a rapid
pace, the complexity of machine learning models continues to increase. This increasing intri-
cacy often surpasses human’s ability to understand the mechanisms that guide such models. This
issue becomes particularly relevant when such models are employed in critical sectors as those
mentioned in Section 1.1.2, where any misinterpretation or error could have serious repercussions.

The aim of this section is to provide a concise overview of the main developments in the field
of artificial intelligence. It starts from the basics of neural networks and progresses to the modern
large language models (LLMs) that define the current technological landscape. This is intended
to underscore the notable disparities in complexity compared to, say, the linar models outlined
in Section 1.1.3, thereby elucidating the challenges of interpretability posed by state-of-the-art
models.

1.2.1 Neural networks

The seminal work on the perceptron [Rosenblatt, 1958a] laid the groundwork for neural net-
works by introducing a probabilistic model for information storage and organization in the brain.
The perceptron, a single-layer neural network, is a binary classifier that maps its input (a real-
valued vector) to an output value (a single binary value) using a set of weights and a biases. This
was followed by significant advancements in the 1980s with the development of backpropagation,
a method for training neural networks through gradient descent [Rumelhart et al., 1986]. Back-
propagation allows the weights of the network to be updated in a way that minimizes the error
between the network’s output and the desired output for a given input, effectively learning from
the data. For detailed explanations of such techniques, and a comprehensive treatment of neural
networks, refer to classical textbooks [Bishop and Nasrabadi, 2006, James et al., 2013].

Figure 1.8 illustrates a simple neural network architecture comprising three hidden fully-
connected layers. This schematic representation highlights the flow of data through the network,
from the input layer to the output layer. Each neuron in a given layer is fully connected to every
neuron in the subsequent layer. Specifically, each input neuron sends its signal to every neuron in
the first hidden layer. Similarly, each neuron in the first hidden layer sends its processed signal to
every neuron in the second hidden layer, and so on. This pattern continues until the output layer is
reached.

The connections between neurons, represented by lines, signify the weights and biases that are
adjusted during the training process. These weights and biases determine the strength and nature
of the signals being passed between neurons, allowing the network to learn and make predictions.
Importantly, these connections are enhanced by applying non-linear transformations. These non-
linearities, typically implemented as activation functions, introduce a level of complexity
that enables the network to learn non-linear relationships within the data. Without these non-
linearities, neural networks would be limited to modeling linear relationships, which are far less
effective for real-world tasks.

1.2 – 1.2.1 Neural networks 13

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Input
layer

Output
layer

Figure 1.8 – A schematic representation of a feed-forward neural network architecture with
three fully-connected hidden layers. Each circle represents a neuron and each line represents a
connection between neurons. The green circles denote the input layer, the blue circles denote the
hidden layers, and the red circle denotes the output layer. Each neuron in a layer is connected
to all neurons in the subsequent layer, illustrating the complexity and interconnected nature of
deep learning models. Importantly, these connections are not simply linear summations. Instead,
they often incorporate non-linear functions, allowing the network to learn complex patterns and
relationships within the data.

Convolutional Neural Networks (CNNs) were first proposed by Fukushima [1980] for image
classification tasks. LeCun et al. [1989] demonstrated their wide applicability by successfully
applying them to handwritten digit recognition. This innovation enabled the development for more
complex models, such as AlexNet [Krizhevsky et al., 2012], which demonstrated the power of deep
learning with large-scale data by winning the ImageNet [Deng et al., 2009] competition in 2012.
AlexNet’s architecture (illustrated in Figure 1.9), comprising eight layers, contained around 60
million parameters. This substantial parameter count was pivotal for capturing the intricate
patterns within the vast ImageNet dataset, marking a significant leap in architecture complexity
compared to earlier models.

Further advancements included the introduction of Long Short-Term Memory (LSTM) net-
works [Hochreiter and Schmidhuber, 1997], which addressed the challenge of learning long-term
dependencies in sequential data. LSTMs introduce a memory cell that can maintain its state over
time, and gating units that regulate the flow of information into and out of the cell, making them
particularly suited for tasks such as language modeling and time-series prediction.

Generative Adversarial Networks (GANs) enable the generation of realistic synthetic data
through adversarial training [Goodfellow et al., 2014]. This subfield excels in creating entirely
new data, including text, images, and even videos. The synthetic data produced by GANs closely
resembles real-world data, blurring the boundaries between the artificial and the authentic.

The inherent complexity of neural networks, while being the foundation of AI’s successes,
makes it difficult, when not impossible, to fully understand their inner workings. The complex
interaction between layers, weights, and non-linearities creates a “black-box” that hinders

14 CHAPTER 1 — Introduction

Figure 1.9 – AlexNet’s architecture includes 60 million parameters and 650, 000 neurons. It
features five convolutional layers and three fully connected layers. These layers are connected by
non-linear activation functions, typically ReLU (Rectified Linear Unit), and interspersed with max
pooling layers for dimensionality reduction. Figure from Krizhevsky et al. [2012].

the understanding of how these models arrive at their predictions. As neural networks become
more complex, they also become more efficient and consequently spread more and more in various
fields.

1.2.2 Transformers

This section briefly outlines the key concepts of transformers. A more focused explanation,
including the introduction of additional related concepts, will be provided with technical details
in Chapter 6. Recently, the attention mechanism [Bahdanau et al., 2015], transformed neural net-
works by enabling them to selectively attend to different segments of input sequences. The Trans-
former model, introduced by Vaswani et al. [2017], builds upon this advancement. Transformers
quickly emerged as the state-of-the-art architecture, particularly in natural language proces-
sing tasks. However, their versatility extends beyond this domain, finding applications in various
other fields due to their effectiveness in capturing long-range dependencies and handling sequen-
tial data. Transformers have demonstrated remarkable applicability in Generative AI, where their
ability to model complex relationships within data has led to unprecedented advancements. This
has nowadays reached a level where the distinction between synthetically generated and real-
world data is virtually impossible (Metz [2022]). As a result, transformers have emerged as the
go-to technology for various domains, opening up new frontiers in image and video generation to
text and audio synthesis.

Large Language Models (LLMs) [Devlin et al., 2019, Yang et al., 2019, Brown et al., 2020,
Zhao et al., 2023] exemplify these advancements. These powerful models harness the power of
increasingly larger architectures, such as transformer-based neural networks. Transformers are
able to process vast datasets efficiently, enabling LLMs to decipher intricate relationships within
the data and generate outputs that achieve human quality. This confluence of advancements has re-
cently culminated in the emergence of groundbreaking applications. Popular LLMs include GPT-3
(Generative Pre-trained Transformer) counting 175 billion parameters [Achiam et al., 2023], and
PaLM (Pathways Language Model), with 540 billion parameters [Chowdhery et al., 2023]. This
trend of increasing model capacity over time is illustrated in Figure 1.10, where the red dot is the
AlexNet architecture illustrated in Figure 1.9.

1.2 – 1.2.2 Transformers 15

1950 1960 1970 1980 1990 2000 2010 2020
0

100
1,000

10,000
100,000
1 million

10 million
100 million

1 billion
10 billion

100 billion
1 trillion

Nu
m

be
r o

f p
ar

am
et

er
s

Parameters in notable artificial intelligence systems
Perceptron
LeNet-5
LSTM
AlexNet
ResNet
Transformer
BERT-L
DALL-E
GPT-3.5T
Llama 3.1

Figure 1.10 – Evolution of the number of parameters in notable artificial intelligence systems
from 1950 to 2024. The figure illustrates the exponential growth in model complexity, ranging
from early models such as the Perceptron and LeNet-5 to modern architectures like Transformer-
based models including BERT-L, DALL-E, and the latest versions of GPT-3.5T and Llama 3.1.
This trend highlights the increasing capacity of AI systems, which correlates with improvements
in performance and the need for enhanced interpretability to ensure transparency and trust in high-
stakes decision-making scenarios. Data from Epoch [2024].

Notably, ChatGPT [Bahrini et al., 2023], the first widely used AI chatbot, brought artificial
intelligence to the forefront of public debate due to its widespread adoption (see Figure 1.1) and
impressive capabilities. Following its success, other chatbots have emerged, such as Copilot, also
based on GPT, and Gemini, which relies on PaLM. In addition, text-to-image generation using
transformer architectures has emerged as a focal point. Applications like Stable Diffusion [Rom-
bach et al., 2022], Midjourney [Oppenlaender, 2022], and DALL-E [Borji, 2022] have enabled
users to convert textual descriptions into compelling visuals. The innovation continues unabated,
with the advent of text-to-video generators like Sora [Liu et al., 2024], which showcase the ability
to synthesize realistic video content from textual prompts. Driven by commercial applications, the
development of efficient and accessible AI tools remains a key focus for developers. Companies
are actively exploring lightweight versions of these powerful models, aiming to achieve similar
capabilities with lower computational requirements.

The rise of Transformer models has been an even greater double-edged sword. On the one
hand, their growing complexity has fueled remarkable progress in artificial intelligence. On the
other hand, it has further complicated the already difficult challenge of interpretability. As these
models become more intricate, understanding their inner workings and decision-making pro-
cesses becomes increasingly difficult. Concurrently, as they became more widespread, inter-
pretability become more urgent.

16 CHAPTER 1 — Introduction

1.2.3 Black-boxes

The rapid transition from linear models and decision trees, described in Section 1.1.3, to in-
creasingly complex neural networks (as seen in Figures 1.8 and 1.9), and eventually to transfor-
mers and large language models (LLMs), has rendered these models opaque and difficult to un-
derstand [Selbst and Barocas, 2018]. These complex models are often referred to as “black-boxes”
[Benítez et al., 1997], because their decision-making processes are not easily interpretable.

The term “black-box model” in machine learning describes systems whose internal wor-
kings are either too complex to understand or are not accessible [Lipton, 2018]. Deep neural
networks, for example, fall into this category. As shown in Figure 1.9, it is not straightforward
to decipher the internal processes that lead from inputs to outputs. While these models can make
highly accurate predictions, the process of transforming input data into output is not easily inter-
pretable or transparent.

Additionally, a black-box model could be a proprietary system owned by a third-party com-
pany. For business reasons or due to intellectual property rights, the company may not disclose
the model’s internal algorithms, training data, or feature importance. Users can input data and
receive predictions via an interface, but the underlying decision-making process remains hidden.
This could easily be the case in Example 1.1.1 on the loan application: the bank might have used
third-party models, for example, to calculate the credit score or risks (see Figure 1.2), and there-
fore does not have full access to the model. In this manuscript, the term black-box will be used
to refer to any model that is not inherently explainable, without distinguishing between specific
cases.

1.3 From AI concerns to the right to explanation

Understanding the broader context and implications of AI is essential for grasping its full im-
pact on society and technology. This section briefly introduces (Section 1.3.1) the risks and impli-
cations of the AI innovations discussed in the previous section, highlighting potential challenges
and unintended consequences. Then, Section 1.3.2 illustrates the attempts of public institutions
in many countries to regulate their applications, emphasizing the importance of governance and
ethical considerations in the deployment of AI technologies. These discussions provide valuable
insights into the technical implications observed in similar regulatory efforts, hinting at how so-
cietal needs and requirements shape the development and implementation of AI systems.

1.3.1 AI risks and concerns

It has already been noted that the proliferation of AI presents a range of risks and concerns
spanning ethical, economic, and social dimensions. Specifically, Section 1.1.2 discussed how AI
can perpetuate biases and discrimination if not properly managed, leading to unfair treatments and
decisions, and posing serious ethical risks.

Despite incredible performance on many benchmarks (see Figure 1.7), AI often makes glaring
errors in real-world cases [Hutson, 2022], failing in practical tasks and showing significant biases,
such as difficulty in correctly recognizing the faces of dark-skinned women. A striking example of
this is a case from 2021, when an AI system mistakenly labeled videos of black men as “primates”
[BBC News, 2021], raising concerns about racial biases in AI. A related example is gender bias in
automatic translations, where algorithms often perpetuate gender stereotypes [Zhang et al., 2023b].

1.3 – 1.3.1 AI risks and concerns 17

1950 1960 1970 1980 1990 2000 2010 2020

10
−12

10
−9

10
−6

10
−3

10
0

10
3

10
6

10
9

Tr
ai

ni
ng

 c
om

pu
ta

tio
n

(p
et

aF
LO

P)

Computation used to train notable artificial intelligence systems

Perceptron (1960)
AlexNet
BERT-Large
GPT
GPT-3 175B (davinci)
GPT-3.5 (text-davinci-003)
GPT-4
Gemini Ultra
LLaMA-65B
Transformer

Figure 1.11 – Computation employed in training notable artificial intelligence systems, quan-
tified in total petaFLOP (1015 floating-point operations). Data from Epoch AI [2024].

The study shows that roles like CEO, scientist, or engineer are translated as male, while roles like
nurse, baker, or wedding planner are translated as female, demonstrating an inherent bias in
translation systems. Interpretability is a key tool to mitigate these phenomena and ensure
fairness [Caton and Haas, 2024, Berk et al., 2021].

However, human intervention is often necessary to clean the data from the start. This has
also led to different sort of problems: In January 2023, an investigation [Perrigo, 2023] revealed
that OpenAI employed underpaid workers to make ChatGPT less toxic. These workers had to la-
bel texts containing extremely violent and sexual content to train the AI to recognize and filter
such content. The reliance on low-cost labor and the precarious working conditions of labelers
raise serious ethical issues in the AI industry. Additionally, recent developments also pose econo-
mic challenges: the rapid advancement of AI technology threatens unemployment and economic
inequality, as automated processes replace human labor in various sectors. Some argue that tech-
nology creates more jobs than it eliminates (Di Battista et al. [2023], Frick [2024]), while other
economists are rethinking this, focusing on income inequality and the need for supportive poli-
cies [Lane and Saint-Martin, 2021]. There are also warnings that the benefits of AI might not be
equally distributed, potentially increasing inequalities (Georgieva [2024]). Jarrahi [2018] supports
the idea of human-AI collaboration to improve productivity; Salvagno et al. [2023] explores the
use of ChatGPT for generating high-quality scientific writing.

Another current issue is the so-called “hallucinations”: responses generated by AI that contain
false or misleading information presented as facts [Zhang et al., 2023b]. This phenomenon is
particularly concerning as it can undermine trust in AI-based technologies. Additionally, AI
systems are becoming increasingly sophisticated in generating fake content that appears convin-
cingly real (Williams [2024]). One of the most alarming examples of this is the creation of deep-
fakes, where AI is used to produce realistic but fake news, videos and audio recordings [Mirsky
and Lee, 2021, Verdoliva, 2020]. These deepfakes can be so convincing that they are impossible
to distinguish from authentic content, posing significant risks to privacy, security, and public trust.

18 CHAPTER 1 — Introduction

The proliferation of deepfakes and other AI-generated fake content can heavily manipulate public
opinion and spread misinformation (Bueermann and Perucica [2023]).

A recent report by AI Forensics investigates the use of generative AI imagery in the 2024
French political campaigns (Schueler et al. [2024]). Every case of detected AI-generated imagery
has been curated to dramatize narratives through aesthetic choices, employing exaggerated story-
telling tactics. These images focus on issues through a politically biased lens, depicting “factually
misleading imagery intended to enforce radicalized ideologies.” According to Europol [2022], “as
much as 90% of online content may be synthetically generated by 2026.” The implications are
profound, as highlighted by various experts and researchers who emphasize the urgent need for
regulatory frameworks and advanced detection tools to combat the spread of AI-generated misin-
formation [Marsden and Meyer, 2019].

Moreover, due to the enormous computational resources required to train these large models
(see Figure 1.11), a critical issue is the significant energy consumption associated with training
neural networks and transformers. Strubell et al. [2020] and Thompson et al. [2023] highlight
the environmental impact and energy demands of deep learning models, emphasizing the need
for policy changes to address these concerns, while Patterson et al. [2021] estimate the carbon
footprint of transformer models. Narayanan et al. [2021] analyze the energy efficiency of training
language models on GPU clusters, offering strategies to reduce consumption.

There is ongoing debate about how much these models should be allowed to grow and
the extent to which their associated risks should be accepted. Bender et al. [2021] recommend
prioritizing the evaluation of environmental and financial costs, and suggest investing resources
in curating and carefully documenting datasets rather than indiscriminately ingesting everything
available on the web.

Lastly, AI is widely used in military applications (Effoduh [2021]), including the development
of lethal autonomous weapons, espionage and intelligence operations, and immigration control
[Morgan et al., 2020, Longpre et al., 2022, Adam, 2024]. The use of AI in these areas is already
critical and debatable, introducing additional issues of transparency, accuracy, robustness, and
control. Who is responsible for a potential AI error?

1.3.2 Right to explanation

Following growing public concern, institutions are slowly attempting to regulate critical AI
applications, emphasizing the need for trustworthiness. This trend was pioneered by the European
Union’s “General Data Protection Regulation” (GDPR), implemented in 2016 (EU [2016]). The
GDPR introduced the concept of a “right to explanation,” recommending that individuals
be informed of the rationale behind automated decisions that impact them, particularly when
these decisions deny access to something of value (like a loan) based on the information they provi-
ded. While the GDPR does not impose a direct legal obligation for explaining automated decisions
[Wachter et al., 2017a], it has introduced the principle, paving the way for future regulations in this
area. Subsequently, in 2019, the European Commission released the “Ethics Guidelines for Trust-
worthy AI” [European Commission, 2019]. This influential document outlines three key pillars
that AI systems should strive for throughout their lifecycle: they should be lawful (i.e., compliant
with all applicable laws and regulations), ethical (adhering to ethical principles and values to mi-
nimize bias and ensure fairness), and robust (from both technical and social aspects, to minimize
unintended harm and ensure reliable operation). The principle of explainability is defined in the
text as a fundamental principle for Trustworthy AI, stating that the processes behind AI deci-

1.3 – 1.3.2 Right to explanation 19

Risk Levels
ObligationsExamples

UNACCEPTABLE

HIGH RISK

LIMITED RISK

MINIMAL RISK

Social Scoring,

Facial Recognition

Autonomous Ve-

hicles,

Loan Applications

Chatbots,

Fraud Detection

Spam Filters,

Song Recommen-

der

Banned

Conformity

Assessment

Transparency

Obligation

No Obligations

Figure 1.12 – The EU AI Act classifies AI systems by risk level, with proportional correspon-
ding regulatory approaches. Unacceptable risk applications, like social scoring and facial recogni-
tion, are banned due to their threat to fundamental rights. High-risk, such as recruitment software,
requires strict oversight to mitigate potential harm. Limited-risk, exemplified by chatbots, necessi-
tates transparency obligations. Finally, minimal-risk applications, like music recommenders, face
no regulations due to their negligible potential harm.

sions should be clear and understandable, and, automated decisions should be explained to
those directly and indirectly affected.

In October 2023, the USA Administration issued a significant executive order on Artificial
Intelligence [Harris and Jaikaran, 2023]. This order aimed to balance promoting innovation in
AI with mitigating the potential risks of the technology. It directed federal agencies to address
these risks while using AI themselves and established new safety requirements for developers of
advanced AI systems.

More recently, after a long technical, political, and legal journey, in March 2024, the European
Parliament approved the AI Act. Its final draft (EU [2024]) has just been released in July 2024:
the first real regulation on artificial intelligence will come into effect on August 1, 2024. This
legislation aims to strike a balance between fostering innovation in AI and mitigating potential
risks associated with the technology. The core principle of the AI Act lies in classifying artifi-
cial intelligence systems based on the level of risk they pose (see Figure 1.12 for a schematic
representation):

1. Unacceptable risk: the Act institutes a complete ban on certain critical applications, in-
cluding social scoring systems that categorize people based on socio-economic factors and
real-time biometric identification systems like facial recognition. Exceptions for law enfor-

20 CHAPTER 1 — Introduction

cement might be granted in limited circumstances, such as for national security or severe
criminal investigations.

2. High-risk: AI systems that could potentially endanger safety or fundamental rights, such
as those used in critical infrastructure management or employment decisions, are subject
to stricter regulations. These systems require thorough assessments before deployment and
must be registered in a central EU database. Additionally, the Act emphasizes transpa-
rency, granting users the right to challenge AI decisions and demanding clear labeling
of AI-generated content like images or videos (e.g., deepfakes).

3. Limited risk: systems that may raise some ethical concerns, but the overall risk to indi-
viduals is considered low. Examples might include AI-powered fraud-detection systems,
customer service chatbots, and recommendation engines. The focus is on ensuring these
systems are fair and unbiased in their operation, minimizing potential harm to users.

4. Minimal risk: systems that pose minimal risk to individuals and typically require little to
no oversight from regulatory bodies. Examples include spam filters, image recognition
software, AI-powered games, weather forecasting models.

The EU AI Act is a pioneering piece of legislation that sets a global precedent for the regulation of
artificial intelligence. It acknowledges the transformative power of AI, while also recognizing the
potential risks associated with its misuse. By classifying AI systems based on their level of risk,
the Act ensures that high-risk applications are subject to stringent oversight, including regular
audits and compliance checks, thereby safeguarding public interest and individual rights.

The aforementioned Ethics Guidelines for Trustworthy AI, which form the foundation of the
AI Act, are instrumental in shaping the ethical landscape of AI development and deployment.
Grounding these guidelines are seven key principles:

1. Human agency and oversight: AI should empower humans and respect fundamental rights.
This means employing human-in-the-loop methods to ensure human involvement in
decision-making.

2. Technical robustness and safety: AI systems must be robust, secure, and accurate. De-
velopers should incorporate fail-safe mechanisms and prioritize data quality to minimize
unintended harm.

3. Privacy and data governance: respect of user privacy and data protection. This requires
robust data governance practices to ensure data quality, integrity, and legitimate access.

4. Transparency: people should understand how AI systems work, and their decisions should
be explained in a manner adapted to the stakeholder concerned. Users should be aware
they are interacting with AI and understand its capabilities and limitations.

5. Diversity, non-discrimination and fairness: AI should be inclusive and avoid bias, pro-
moting equal access for all. Developers must actively identify and mitigate potential
biases in data and algorithms to prevent marginalization of vulnerable groups.

6. Societal and environmental well-being: AI advancements should benefit all humans,
present and future. This means developing sustainable and environmentally friendly sys-
tems that consider the broader social and environmental impact.

7. Accountability: clear mechanisms for accountability are crucial. Developers should design
auditable systems, allowing for assessment of algorithms, data, and design processes. Ad-
ditionally, accessible grievance procedures must be established.

1.4 – Introduction to Machine Learning Intepretability 21

2016 2017 2018 2019 2020 2021 2022 2023 2024

0

5000

10000

15000

20000
To

ta
l c

ita
tio

ns
Anchors
GradCAM
LIME
SHAP

Figure 1.13 – Cumulative citations over time for key XAI papers according to Google Scho-
lar. The graph includes Anchors [Ribeiro et al., 2018], GradCAM [Selvaraju et al., 2017], LIME
[Ribeiro et al., 2016], and SHAP [Lundberg and Lee, 2017]. Last update: 7th June 2024.

The newly enacted AI regulation emphasizes transparency as a cornerstone, sparking
discussions on the significance of explainability across both high-risk and minimal-risk systems
[Panigutti et al., 2023]. However, the discourse is far from settled. Numerous pivotal questions
remain unanswered, including the criteria for adequate transparency and the tools necessary for
effective human oversight, leaving much to be clarified in the practical implementation of these
principles. One of the most pressing inquiries pertains to the adequacy of existing interpretability
methods in satisfying the stringent transparency requirements stipulated by the regulation. Popular
techniques such as LIME [Ribeiro et al., 2016], SHAP [Lundberg and Lee, 2017], GradCAM
[Selvaraju et al., 2017], and Anchors [Ribeiro et al., 2018] are widely adopted to provide insights
into model decisions after they have been made. However, it is not yet clear whether these
methods are suitable for meeting the new requirements.

While these methods can elucidate the reasoning behind complex models, their explanations
are restricted to specific instances and may not capture the global behavior of the model. On the
other hand, inherently interpretable models, such as the decision trees or linear regression discus-
sed in Section 1.1.3, offer transparency by design, making them easier to understand and inter-
pret. However, these models often sacrifice predictive performance for interpretability, which
might not be desirable in high-stakes applications where accuracy is paramount. There are
essentially two main approaches to addressing this issue: developing methods capable of explai-
ning the predictions of existing complex models or prioritizing the design and use of inherently
interpretable models. Each approach has its own set of trade-offs and potential impacts on the
deployment of AI systems in critical domains.

1.4 Introduction to Machine Learning Intepretability

Machine Learning Intepretability, popularly referred to as eXplainable AI (XAI), aims
to make AI systems’ decision-making processes understandable to humans. It focuses on
enhancing the transparency and interpretability of AI models, addressing the black-box nature of
modern automated systems. The research field of XAI has grown immensely and continues to

22 CHAPTER 1 — Introduction

expand rapidly, becoming a dynamic and prolific area of research [Guidotti et al., 2018b, Adadi
and Berrada, 2018, Linardatos et al., 2021, Bodria et al., 2023]. Every day, dozens of new scientific
papers are published, exploring novel methodologies and applications of interpretability across
various domains of artificial intelligence. To give an idea of the field’s breadth, the surveys by
Guidotti et al. [2018b] include 143 references, Linardatos et al. [2021] 165, and Bodria et al.
[2023] counts 177 references. Just on the specific sub-field of concept-based interpretability, Poeta
et al. [2023] has 126 references. Figure 1.13 illustrates how this topic is increasingly trending in
research. Additionally, the implementation of these methodologies is evident in many toolboxes
and, as seen above, in public debate (The Economist [2024b]) and regulation.

Given this vast landscape, this overview does not aim to be exhaustive. For comprehensive
coverage, refer to recent surveys [Linardatos et al., 2021, Bodria et al., 2023] and the book by
Molnar [2020]. Instead, this section presents a brief taxonomy and key methods that will be used
throughout this thesis.

Interpretability methods in machine learning can be classified based on several criteria, in-
cluding the scope of explanation (global vs. local, discussed in Section 1.4.2), the timing of their
application (intrinsic vs. post-hoc, elaborated in Section 1.4.3), their dependence on the underlying
model (model-specific vs. model-agnostic, detailed in Section 1.4.4), and the format of the expla-
nation (rule-based vs. feature attribution). These factors significantly influence their behavior and
characteristics.

1.4.1 Terminology

The field of Explainable AI grapples with a fundamental challenge: the lack of a universally
accepted definition for a good explanation. This ambiguity arises because different stakehol-
ders have conflicting needs and expectations when it comes to interpretability. One influential
non-mathematical definition, proposed by Miller [2019], posits that interpretability hinges on “the
degree to which a human can understand the cause of a decision.” Further complexities emerge
when considering the relationship between terms like explainability, interpretability, and explana-

tion. Indeed, the International Organization for Standardization (ISO) defines [for Standardization,
2020] interpretability as the “level of understanding how the underlying (AI) technology works”,
while explainability as the “level of understanding how the AI-based system came up with a gi-
ven result.” This manuscript adopts the convention proposed by Miller [2019] and Molnar [2020],
using interpretable and explainable interchangeably, while reserving the term explanation for the
specific output generated by explaining an individual prediction.

1.4.2 Global vs. local

A critical distinction in interpretability methods lies in their scope of explanation. Global in-

terpretability refers to methods that aim to explain the overall behavior of the model and how it
arrives at its predictions across the entire dataset. Examples include Interpretable Decision Sets

[Lakkaraju et al., 2016] and Setzu et al. [2020], both of which generate rule-based global ex-
planations but in contrasting ways. Lakkaraju et al. [2016] propose an interpretable-by-design

model, inherently compromising between accuracy and explainability. Conversely, Setzu et al.
[2020] focus on generating rules that globally approximate any already existing black-box model.
This method follows a “local-to-global” approach, where it aggregates insights from individual
predictions to construct a generalized explanation summarizing the overall decision logic of the

1.4 – 1.4.2 Global vs. local 23

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

y

Globally: a nonlinear model

====⇒

1 2 3 4
0.2

0.4

0.6

x

y

Locally: nearly a linear model

Figure 1.14 – Illustration of local interpretabiliy. Even for complex, non-linear models, a sim-
pler, linear approximation can be achieved by focusing on a local region. The red line represents
the decision boundary, with points above classified as positive (blue dots) and those below as nega-
tive (white dots). The right panel represents the black rectangle in the figure on the left. The black
line on the right is the local linear approximation of the model, making the model’s decisions more
understandable and transparent by ’zooming in’ on a specific area, transforming global complexity
into local simplicity.

black-box model. Similarly, [Setzu et al., 2021], combines local and global explanations, further
illustrating the diverse approaches to achieving global interpretability. Additionally, methods dis-
cussed by Guidotti et al. [2019,0,0] and Albini et al. [2020] enhance global interpretability by
providing factual, counterfactual (Section 1.4.9), and relation-based counterfactual explanations
for Bayesian network classifiers. Anjomshoae et al. [2020], propose Contextual Importance and
Utility (CIU) to explain predictions.

In contrast, local interpretability focuses on explaining the reasoning behind individual
predictions [Linardatos et al., 2021, Bodria et al., 2023]. This granular understanding is crucial
for several reasons. Local explanations can help identify potential biases or errors in the model’s
decision-making process for a specific instance. Consider again the Example 1.1.1. If a loan appli-
cation is denied for an individual with a good credit score, a local explanation could reveal that the
model placed undue weight on a particular feature (e.g., zip code) that might be correlated with
socio-economical factors.

A common idea is to locally approximate any complex black-box model with a simpler,
inherently interpretable model for a specific prediction. In essence, complex models like those
mentioned in Section 1.2 can be accurately approximated locally by simpler models like those
presented in Section 1.1.3, with the significant advantage that the latter are interpretable and can
therefore provide insights into the model’s behavior on the instance of interest. This idea is illus-
trated in Figure 1.14.

Several approaches fall under the umbrella of local interpretability methods. LIME, short for
Local Interpretable Model-Agnostic Explanations [Ribeiro et al., 2016], is arguably the pionee-
ring method of this category. LIME approximates the complex model locally around a specific
instance by building a simpler, interpretable model that can explain the prediction for that

24 CHAPTER 1 — Introduction

Figure 1.15 – Architecture of Logic Explained Networks. A LEN is applied atop a convolutional
neural network to classify the bird species and provide explanations for the classification. Fig. 2
in Ciravegna et al. [2023].

instance (by default, a linear model). Similarly, SHAP [Lundberg and Lee, 2017] assigns impor-
tance scores to each feature based on their contribution to the model’s prediction for a specific
instance. This allows for an understanding of which features were most critical in driving the
model’s prediction for that data point.

Additionally, Anchors provide concise rule-based explanations that capture the reasoning
behind a prediction, balancing between local and global interpretability [Ribeiro et al., 2018].
Anchors optimize for both providing the most concise rule for an individual prediction and ensu-
ring a broad applicability across the dataset, thus achieving global coverage. This nuanced balance
is further explored in Chapter 4. Amoukou and Brunel [2022] propose an explainer based on Mini-

mal Sufficient Rules: a concept akin to Anchors. This explainer is capable of handling continuous
features in regression tasks, thereby eliminating the need for the discretization of continuous fea-
tures, a process that can be prone to errors and is often necessitated by other sampling-based
explainers. A similar method is LORE [Guidotti et al., 2018a], which uses a decision tree as local
surrogate.

Some popular local methods based on feature attribution [Ribeiro et al., 2016, Lundberg and
Lee, 2017], are also leveraged for global explanations. This is achieved by aggregating feature
importance weights across the entire dataset. This results in assigning an importance score to each
input feature, reflecting its average influence on model predictions for the entire data collection.

1.4.3 Explainable by design vs. post-hoc

Furthermore, XAI methods can be divided into two main subcategories. One area of research
focuses on developing models that are interpretable/explainable by design. Meanwhile, another
area explores post-hoc methods for analyzing already trained models without altering their archi-
tecture. As said in Section 1.1.3 that some models, such as small decision trees and linear models,
are intrinsically interpretable thanks to their simple structure. However, these do not achieve high
accuracy on many tasks and have not demonstrated a good ability to generalize well from data,
being effectively surpassed by more complex architectures as those presented in Section 1.2.

Explainable-by-design architectures aim to strike a balance between model accuracy and
interpretability. The already mentioned Interpretable Decision Sets [Lakkaraju et al., 2016], for
example, are a way to build machine learning models that are both accurate and easy to unders-
tand. This is achieved by using a set of independent IF-THEN rules, where each rule explains a

1.4 – 1.4.3 Explainable by design vs. post-hoc 25

specific prediction condition. This makes them simpler and more interpretable than complex mo-
dels, while still maintaining high accuracy. Ross et al. [2017] proposes training neural networks
with constraints on input gradients to ensure models make decisions based on relevant features.
Senetaire et al. [2023], instead, proposes a modular self-interpretable probabilistic model class
that allows for instance-wise feature selection.

Explainable Boosting Machine (EBM, Nori et al. [2019]) and Neural Additive Models (NAM,
Agarwal et al. [2021]) are both designed to balance performance with interpretability as advanced
variants of Generalized Additive Models (GAMs). EBM employs a boosting algorithm to iterati-
vely train feature functions, allowing each feature to contribute additively to the final prediction.
NAM combines deep neural networks with the interpretability of GAMs by training separate sub-
networks for each feature. Continued Fractions Nets (CoFrNets, [Puri et al., 2021]) use continued
fractions to represent neuron outputs, enabling precise computation of feature contributions.

Logic Explained Networks (LENs, [Ciravegna et al., 2023, Barbiero et al., 2022]) is a concept-
based method [Poeta et al., 2023] that ensure the generated explanations are directly connected
to the model’s internal logic by integrating “explainability layers” within neural networks. An
illustration is shown in Figure 1.15. In essence, this class of models learns human-readable
predicates or concepts during training, along with the model parameters.

Conversely, post-hoc interpretability methods are applied to models that have already
been trained. These methods operate on pre-trained models, where the underlying architecture
and learned parameters are fixed. While direct modification of the model’s architecture is not fea-
sible, some post-hoc approaches can still leverage access to the model’s internal parameters
to gain insights into its decision-making process. These include gradient-based (discussed in
Section 1.4.5) and attention-based methods (covered in Chapter 6). Additionally, there are model-

agnostic approaches (Section 1.4.4) that do not require any information about the internal wor-
kings of the model.

Post-hoc interpretability methods also include perturbation-based methods (Section 1.4.6),
which analyze how changes to the input data (e.g., occluding pixels in an image or masking fea-
tures in tabular data) affect the model’s predictions. By observing how these perturbations impact
the predictions, it is possible to identify which features are most influential for the model. As
discussed in Section 1.4.6, LIME, SHAP, RISE, and Anchors fall into this category.

Criticisms of post-hoc methods. Post-hoc explanations have been criticized for lacking expli-
citness, faithfulness, and stability. They often do not align well with the internal logic of the model
they aim to explain and can vary considerably with slight changes in the input data. Alvarez Me-
lis and Jaakkola [2018] formalize the class of self-explainable models, proposing desiderata for
explanations, and demonstrate that post-hoc methods do not meet these requirements. Similarly,
Rudin [2019] critiques the use of post-hoc explanations for black-box models, arguing that these
methods often fail to meet the standards required for high-stakes decisions. In particular, Rudin
[2019] advocates for developing and using inherently interpretable models that do not sacrifice
transparency for performance. Furthermore, post-hoc explanations particularly lack a strong ma-
thematical foundation, as detailed in Section 1.5.3.

However, although post-hoc interpretability methods may not perfectly align with the archi-
tecture of the model being explained, they offer several significant advantages. They are highly
versatile and can be applied to a wide range of (pre-trained) models, often regardless of their un-

26 CHAPTER 1 — Introduction

derlying architecture [Bodria et al., 2023, Queen et al., 2024]. This allows for their use across
different domains without needing significant model alterations.

Conversely, some ad-hoc methods require human intervention to define the concepts and lo-
gical constructs that the network must learn [Barbiero et al., 2022, Ciravegna et al., 2023]. This
process is time-consuming and can introduce errors and biases. The need for domain-specific
knowledge adds complexity and subjectivity, potentially undermining transparency and trustwor-
thiness.

Post-hoc interpretability methods are often the only viable option in scenarios where mo-
difying the model architecture is not feasible due to time, resource, or commercial constraints
[Saporta et al., 2022], as mentioned in Section 1.2.3. In such cases, these methods provide a prac-
tical solution for achieving model interpretability without necessitating a complete redesign. They
enable insights into the model’s decision-making process after training, which is particularly use-
ful for deployed models [Lundberg and Lee, 2017, Sundararajan et al., 2017a].

Finally, as machine learning models have evolved independently from the field of Explainable
AI, many innovations have been developed without considering interpretability. In such cases,
post-hoc methods remain relevant and increasingly popular (see Figure 1.13) due to their adap-
tability and ability to provide meaningful insights. These methods ensure continued importance
in the interpretability landscape by offering practical solutions to understand and analyze models
that were not initially designed with interpretability in mind [Saporta et al., 2022].

This thesis focuses on post-hoc interpretability methods for machine learning models. It
does not address global interpretability or the design of specific architectures for training inhe-
rently interpretable models.

1.4.4 Model-dependent vs. model-agnostic

Another critical distinction in interpretability methods lies in their dependence on the under-
lying model. Model-dependent methods leverage information specific to the model’s architec-
ture or internal parameters. For instance, interpreting weights in linear models or analyzing the
tree structure of decision trees are inherently model-specific approaches. These methods require a
detailed understanding of the model’s inner workings to explain its predictions.

Popular model-dependent approaches include DeepLIFT, introduced by Shrikumar et al.
[2017], which propagates activation differences to identify important features in neural networks.
Arras et al. [2017] focused on interpreting predictions of recurrent neural networks, particularly in
text sentiment analysis.

In attention-based [Bahdanau et al., 2015] models such as transformers [Vaswani et al., 2017],
some techniques examine the attention weights allocated to input data [Chefer et al., 2021, My-
lonas et al., 2023], revealing the model’s focus for prediction, as elaborated in Chapter 6. These
weights can indicate where the model focuses its attention when making a prediction, theoretically
highlighting the most influential input features.

Gradient-based approaches also fall under this category [Simonyan et al., 2014]. Smilkov et al.
[2017] developed SmoothGrad, which enhances gradient-based methods by averaging noisy sen-
sitivity maps to produce clearer visual explanations for image classifiers. Class Activation Map-
ping (CAM, Zhou et al. [2016], Selvaraju et al. [2017], Chattopadhay et al. [2018], Zhang et al.
[2023a]) utilizes the gradients of a target class to create a localization map highlighting crucial
image regions for predicting the label. By analyzing the activations of the convolutional layer,

1.4 – 1.4.5 Gradient-based interpretability 27

original image GradCAM: lion GradCAM: african elephant

Figure 1.16 – GradCAM results on an image classifier, based on ResNet-50 [He et al., 2016].
The first panel shows the original image (from ImageNet, Deng et al. [2009]). The second panel
highlights the most influential regions (according to GradCAM) for classifying the image as a
lion. The third panel displays the regions most influential for classifying the image as an african

elephant.

CAM identifies the regions of the input image that contribute most significantly to the classifica-
tion decision.

In contrast, model-agnostic methods treat any model as a black-box. They do not require
knowledge of the model’s inner workings and rely solely on analyzing the input features and
corresponding outputs. Techniques such as permutation importance, feature interaction analysis,
LIME, SHAP, Anchors, LORE [Guidotti et al., 2018a], MAPLE [Plumb et al., 2018], DBA [Vlas-
sopoulos et al., 2020] fall under this category. These methods offer the advantage of being appli-
cable to any trained model, regardless of its underlying architecture. The versatility of model-
agnostic methods makes them suitable for a broader range of scenarios compared to other
interpretability approaches, which may either necessitate intervention during model training [Ci-
ravegna et al., 2021, Rigotti et al., 2021] or access to specific model parameters [Selvaraju et al.,
2017, Lopardo et al., 2022, Mylonas et al., 2024].

1.4.5 Gradient-based interpretability

The distinction between model-specific and model-agnostic methods is not always clear-cut.
Gradient-based explanations, for example, can be applied across various (differentiable) archi-
tectures despite relying on internal model workings. This demonstrates a spectrum from highly
specific methods to those more generally applicable. Gradient-based methods are typically local
and post-hoc, offering feature importance by quantifying each input’s contribution to predictions.
However, they are not entirely model-agnostic as they require access to internal parameters to
compute gradients. High gradients indicate significant feature influence on the model’s predic-
tion. In practice, gradient-based interpretability methods compute the model’s gradients with
respect to input features to identify which features most influence the model’s predictions.

Li et al. [2016] compute the gradient ∇xF (x) of the output F (x) with respect to each input
feature x1, . . . , xd, highlighting features where small changes in input lead to large changes in
output. Sometimes, x1, . . . , xd are vectors themselves (for instance, they are embedding vectors
in the case of language models). To derive per-token importance weights, several strategies exist.

28 CHAPTER 1 — Introduction

The primary approaches involve taking the mean value [Atanasova et al., 2020], the L1 norm [Li
et al., 2016], or the L2 norm [Poerner et al., 2018, Arras et al., 2019, Atanasova et al., 2020]
of ∇x1F (x), . . . ,∇xd

F (x). Gradient × Input [Denil et al., 2014], instead, takes the dot product
between the gradient and the input feature value, xj · ∇xjF (x), emphasizing features with signi-
ficant impact. However, gradients can fail to satisfy the sensitivity requirements [Shrikumar et al.,
2017]: differing features between an input and a baseline with different predictions should have
non-zero attributions. Sundararajan et al. [2017a] address this issue with Integrated Gradients,
which provide more reliable attributions by averaging gradients along a path from a predefined
baseline instance x̃ to the actual input instance x:

IntegratedGradientsj(x) = (xj − x̃j)

∫︂ 1

0
∇xjF (x̃+ α(x− x̃)) dα .

Expected Gradients [Erion et al., 2019] extend Integrated Gradients by averaging the gradients
over a distribution of baselines rather than a single baseline, enhancing robustness and interpreta-
bility by accounting for variability in input distributions.

Gradient-based attribution methods are effective in interpreting neural network decisions [An-
cona et al., 2018], generating saliency maps that highlight important regions in images or signifi-
cant words in text data [Simonyan et al., 2014, Denil et al., 2014, Li et al., 2016]. GradCAM [Sel-
varaju et al., 2017] uses gradient information from the last convolutional layer to create saliency
maps by calculating gradients of a target class’s output with respect to feature map activations,
pooling these gradients to form a coarse heatmap. In Figure 1.16, GradCAM is used to produce
saliency maps for explaining image classifications. GradCAM++ [Chattopadhay et al., 2018] im-
proves upon this by providing more accurate and detailed explanations through a weighted average
of pixel-wise gradients. Other variations include Score-CAM [Wang et al., 2020], which eliminates
the need for gradients by using forward pass scores as weights; Eigen-CAM [Muhammad and
Yeasin, 2020], which employs eigenvector projections for more uniform scores; Ablation-CAM
[Ramaswamy et al., 2020], which uses ablation analysis to determine feature map importance;
and CXPlain [Schwab and Karlen, 2019], which frames explanation as a causal learning task, en-
hancing interpretability through a causal perspective. Despite their effectiveness, CAM-based
methods have been proved to incorrectly assign importance to parts of the image that the
model cannot see [Taimeskhanov et al., 2024].

SmoothGrad [Smilkov et al., 2017] bridges gradient-based and perturbation-based explana-
tions by reducing noise in gradient-based explanations. It does this by averaging gradients from
multiple noisy input versions, leading to clearer attributions.

1.4.6 Perturbation-based interpretabiliy

Perturbation-based interpretability includes techniques used to understand how machine lear-
ning models make predictions by observing changes in the output when the input data is slightly
modified or perturbed. The basic concept involves systematically modifying parts of the in-
put and analyzing the resulting variations in the model’s predictions [Covert et al., 2021].
Perturbation-based methods can offer both local and global explanations and are generally appli-
cable to any type of machine learning model, including black-box models like neural networks,
because they do not require access to the model’s internal structure or parameters.

In general, small changes are first made to the input data. These changes can be as simple
as altering the value of a single feature, adding noise, or removing certain features entirely. The

1.4 – 1.4.6 Perturbation-based interpretabiliy 29

original mean rep. sample 2 sample 3

· · ·

sample n

superpixels zero rep. sample 2 sample 3

· · ·

sample n

Figure 1.17 – LIME’s sampling scheme for images. First, the original image is split into super-
pixels, which are contiguous segments of pixels with similar colors or other features (by default,
LIME uses quickshift [Vedaldi and Soatto, 2008] for segmentation). In this example, the image is
divided into 87 superpixels. The replacement image is then computed by either averaging the color
within each superpixel (top row) or setting each superpixel to a zero value, i.e., a predetermined
color (bottom row). Finally, n samples are generated by randomly replacing superpixels, with each
superpixel having a replacement probability of 0.5 by default.

model’s output is then observed before and after the perturbation. By comparing the differences
in predictions, insights can be gained about the importance and influence of the perturbed features
on the overall result. By analyzing how much and in what way the prediction changes in response
to perturbations, it is possible to determine which features are most important to the model’s
decision-making process. Features that cause significant changes in the output when modified
are considered more important.

LIME, [Ribeiro et al., 2016], is the pioneering perturbation-based method that popularized
the concept of local, post-hoc, model-agnostic explanations for any model making predictions on
structured data, text, or images. LIME perturbs the input data by generating a set of perturbed
samples around the instance, observes the changes in predictions, and fits an interpretable model
(by default, using linear regression) to approximate the local behavior of the complex model,
thereby making it locally interpretable.

Figure 1.17 illustrates the sampling that LIME performs to explain image classifications. In
this example, an image classifier (Inception, Szegedy et al. [2016]) has been trained on the Image-
Net [Deng et al., 2009] dataset. The figure shows a photo of a leopard, which the model correctly
classifies with high confidence. LIME can explain which parts of the image the model focu-
sed on the most by generating a sample of perturbed images, “turning off or on” parts of
the image, i.e., the superpixels. These are the interpretable components used as input features
for the surrogate model. In the case of a linear surrogate, each superpixel essentially has a weight
proportional to its importance. The same idea can be applied to text classifiers, where words are
randomly removed to assess their impact on the model’s prediction (see Figure 1.18).

Many works build upon the foundations of LIME, addressing its limitations and extending
its capabilities [Zafar and Khan, 2019, ElShawi et al., 2019, Shankaranarayana and Runje, 2019,
Bramhall et al., 2020]. SHAP (SHapley Additive exPlanations, Lundberg and Lee [2017]) and An-
chors [Ribeiro et al., 2018] are two popular contenders within the domain of perturbation-based

30 CHAPTER 1 — Introduction

The weather in
Nice is amazing,
and the food is
also good. But
sometimes there
are just too
many tourists.

−→

The weather in
Nice is amazing,
and the food is
also good. But
sometimes there
are just too
many tourists.

x1

· · ·

The weather in
Nice is amazing,
and the food is
also good. But
sometimes there
are just too
many tourists.

xn

f(ξ) = positive f(x1) = negative · · · f(xn) = positive

Figure 1.18 – Illustration of the perturbation-based approach for explaining text classifiers.
The original sentence ξ is perturbed by randomly removing words to create modified versions
(x1, x2, . . . , xn). Each perturbed instance is then evaluated using the classifier f , and the impact
of the removed words on the prediction outcome is measured. The goal is to identify which words
contribute most significantly to the model’s decision.

interpretability, sharing similarities with LIME. Like LIME, both SHAP and Anchors are desi-
gned to explain the predictions of any model operating on structured data, text, or images. SHAP
leverages foundations from cooperative game theory [Shapley, 1953] to assign each feature an im-
portance value based on how it contributes to the prediction. On the other hand, Anchors focuses
on identifying the smallest anchor, i.e., a subset of features that sufficiently changes the predic-
tion, providing a more concise explanation compared to LIME’s perturbation-based approach.
RISE (Randomized Input Sampling for Explanation, Petsiuk et al. [2018]) specializes in genera-
ting saliency maps tailored for image data by randomly sampling and masking regions of input
images to understand model decisions at the pixel level.

Most perturbation-based explainers follow the explaining by removing framework [Covert
et al., 2021]. The basic idea of removal-based explanation methods is to remove a feature
and observe how the model’s behavior changes. In many scenarios, the direct removal of fea-
tures is impractical or computationally expensive. When dealing with tabular data, this would
imply removing and retraining the model for every possible combination of features, resulting in
2b trained models, where b is the number of features, which is computationally infeasible. In com-
puter vision tasks, the analogous solution would be to occlude one or more pixels to the model,
which may not necessarily be straightforward. Therefore, in practice, feature removal is simulated
using various techniques. Approaches include setting features to zero [Zeiler and Fergus, 2014,
Petsiuk et al., 2018, Schwab and Karlen, 2019], using pre-defined default values [Ribeiro et al.,
2016, Dabkowski and Gal, 2017]. In tabular data, this can involve setting the feature to be removed
to a zero value or replacing it with the average value (i.e., setting x̃j = 0 or x̃j = xj̄). For images,
pixels (or superpixels) can be “removed” by setting them to black or to the average pixel value
(see Figure 1.17). Alternatively, a random value from can be assigned to simulate feature remo-
val, by marginalizing features using their conditional distribution x̃j ∼ P (Xj ♣ Xk = xk , k ̸= j)
[Lundberg and Lee, 2017].

Crucially, it becomes evident that the sampling mechanism used to construct the local neigh-
borhood profoundly influences the quality of the ultimate explanation. In particular, as illus-
trated in Section 1.5.1, it can potentially lead to out-of-distribution (OOD) samples, which can
compromise the validity of the explanation. Perturbation-based methods generate explanations by

1.4 – 1.4.7 Concept-based interpretability 31

creating a set of perturbed samples around the instance of interest and then querying the model on
these samples. If the generated samples are OOD, meaning they fall outside the distribution of the
training data, it violates a fundamental principle of machine learning: the training and test data
must come from the same distribution. This violation can lead to erratic model responses and
unreliable explanations.

1.4.7 Concept-based interpretability

Concept-based methods focus on explaining AI decisions by identifying and presenting
human-understandable concepts rather than features or model parameters [Poeta et al., 2023].
By mapping model decisions to relatable concepts such as objects, actions, colors, shapes, or
relationships, concept-based XAI allows users to comprehend not only which features contribute
to a decision but also why these features are relevant in the task context.

Several approaches have been developed to implement concept-based interpretability in AI
models. One prominent method is Testing with Concept Activation Vectors (T-CAV, Kim et al.,
2018), which quantifies the influence of human-interpretable concepts on neural network pre-
dictions. T-CAV creates vectors in the model’s latent space representing specific concepts and
assesses how variations in these vectors affect the model’s output. This method provides a mea-
sure of how much a concept contributes to a decision, offering insight into the inner workings
of complex models. Another approach, Automatic Concept-based Explanations (ACE, Ghorbani
et al., 2019), is an unsupervised method that segments images at multiple resolutions to capture a
range of concepts and clusters these segments in the network’s latent space, filtering out outliers.
The importance of each concept is then calculated using the T-CAV score, which measures the
influence of a concept on class prediction.

Concept Bottleneck Models (CBMs, Koh et al., 2020) introduce an intermediate layer where
each neuron corresponds to a distinct human-defined concept. These models ensure that decisions
are based on comprehensible concepts by predicting the concept values first, which are then used
for the final prediction [Poeta et al., 2023]. Despite their transparency, a naive implementation may
result in performance loss due to concept bottlenecks not capturing all relevant task-specific infor-
mation. Logic Explained Networks (LENs, Ciravegna et al., 2021) co-learn explanations alongside
neural network parameters, solving clustering tasks and providing logical explanations about clus-
ter assignment in terms of frequent concept relations. LENs achieve transparency by predicting
concept values first and using them for final predictions, though they also face potential perfor-
mance trade-offs.

Self-explanatory Neural Networks (SENN, Alvarez Melis and Jaakkola, 2018) and Bottle-

neck Concept Learners (BotCL, Wang et al., 2023) employ unsupervised approaches to create
explainable-by-design networks. SENN uses a concept encoder to derive a clustered representa-
tion of features from the input and generates class-concept relevance scores, outputting a linear
combination of these basis concepts and their relevance scores. BotCL builds on SENN by using a
slot attention-based mechanism to predict concept scores, ensuring consistency in learned concepts
through specific regularization.

Trade-offs between interpretability and performance vary across these approaches, with
some ensuring high transparency at the cost of slight reductions in accuracy, while others
maintain competitive performance levels. Invertible Concept-based Explanations (ICE, Zhang
et al., 2021) and ConceptSHAP [Yeh et al., 2020] enhance post-hoc methods by improving concept

32 CHAPTER 1 — Introduction

identification and importance assessment. ConceptSHAP modifies SHAP values to reflect the suf-
ficiency of concepts in representing the class.

Recent developments include a framework for identifying known concepts in embedding
spaces, connecting with classical methods like Principal Component Analysis (PCA) [Leemann
et al., 2023], and a model-agnostic method grounded in axioms of linearity, recursivity, and simi-
larity [Feng et al., 2024], ensuring reliability and applicability across various models.

1.4.8 Example-based interpretability

Another relevant category is example-based (or prototype-based) interpretability. Example-
based interpretability methods offer to understand model decisions by identifying represen-
tative examples within the dataset, often called prototypes, that the model uses to make pre-
dictions. These prototypes act as tangible references, allowing users to see concrete examples that
illustrate how the model arrives at its conclusions. This approach is related to the k-Nearest Neigh-
bors (Section 1.1.3), where predictions are based on the closest examples in the training data (see
Figure 1.6).

Prototype-based methods such as ProtoPNet [Chen et al., 2019], ProtoTree [Nauta et al.,
2021], and Deformable ProtoPNet [Donnelly et al., 2022] enhance interpretability in image clas-
sification tasks by explaining model decisions through image prototypes. For instance, ProtoPNet
identifies prototypes within the training data that most resemble the input image. ProtoTree com-
bines decision tree structures with prototype learning to offer a hierarchical view of how proto-
types influence decisions. In natural language processing, ProtoTex [Das et al., 2022] applies the
prototype-based approach using prototype tensors for classification. This method identifies proto-
typical text segments that are most representative of each class, offering an interpretable way to
understand how the model processes and classifies text data.

1.4.9 Counterfactual explanations

Alternatively, counterfactual explanations use counterexamples (counterfactuals), which show
how small changes to the input could lead to different outcomes, thus highlighting the model’s de-
cision boundaries and offering insights into its behavior under different scenarios. Counterfactual
explanations are a key component of providing recourse; they offer insights into how the out-
come would have been different if certain input features were altered. Essentially, counterfactuals
describe hypothetical scenarios that indicate what changes a user can make to achieve a more de-
sirable outcome, thus enabling practical recourse. An illustration is shown in Figure 1.19. These
explanations identify an alternative instance that is similar to the original input but leads
to a different outcome [Guidotti, 2022, Pawelczyk, 2024]. For example, if a loan application is
denied (Example 1.1.1), a counterfactual explanation might suggest that if the applicant’s income
were slightly higher, the application would be approved.

LORE, LOcal Rule-based Explainer [Guidotti et al., 2018a], has already been mentioned: it is
a local and model-agnostic method that leverages decision trees to generate post-hoc explanations.
By following the specific path in the decision tree (see Figure 1.4) corresponding to the example
being explained, LORE produces factual explanations. Simultaneously, it leverages different paths
followed by synthetic neighbors in the local neighborhood to retrieve counterfactual rules, illustra-
ting conditions that can be varied to change the output decision. Wachter et al. [2017b] proposed a
method to identify the minimal changes needed in the input features to change the model’s predic-

1.4 – 1.4.9 Counterfactual explanations 33

x1

x 2

Class 1
Class 2
Example
Counterfactuals

Figure 1.19 – Illustration of counterfactual explanations in a classification scenario. The star
represents the Example to be explained, belonging to Class 1. The arrows highlight the paths to
Counterfactual examples. The decision boundary emphasize the necessary changes for the ins-
tance to be classified differently.

tion, balancing the difference in prediction and the similarity to the original input. Several works
emphasize the importance of generating not only accurate but also plausible counterfactuals
[Wachter et al., 2017b, Pawelczyk et al., 2021,0]. Moreover, Charachon [2023] defines three pro-
perties, Relevance, Regularity, and Realism, which are essential for generating effective visual
explanations in the context of medical image analysis. Relevance ensures that the highlighted fea-
tures in the explanation directly correspond to the classifier’s decision-making process. Regularity
focuses on the consistency and smoothness of the explanations, avoiding noise and complexity to
enhance interpretability. Realism guarantees that the explanations appear authentic and plausible
within the context of the input data, thereby improving their credibility and usefulness for medical
practitioners. These properties collectively aim to create explanations that are not only accurate
but also interpretable and practical for end-users.

Similarly, Contrastive Explanation Method (CEM, Dhurandhar et al. [2018] provides both
necessary factors (“pertinent positives”) that must be present for a certain prediction and unne-
cessary factors (“pertinent negatives”) that should be absent, formulating these as an optimization
problem to find the smallest changes needed. C-CHVAE (short for Counterfactual Conditional

Heterogeneous Variational AutoEncoder) generates plausible counterfactuals by ensuring they are
not outliers and are close to correctly classified examples, using a variational autoencoder instead
of relying solely on distance measures [Pawelczyk et al., 2020b,0]. DICE, Diverse Counterfac-

tual Explanations [Mothilal et al., 2020], focuses on generating diverse and plausible counter-
factuals by solving an optimization problem with constraints, ensuring multiple ways to change
the outcome. FACE, Feasible and Actionable Counterfactual Explanations, emphasizes actionable
counterfactuals by identifying feasible paths within the data distribution, ensuring the suggested
changes are realistic and actionable [Poyiadzi et al., 2020].

34 CHAPTER 1 — Introduction

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Training data distribution

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Training data distribution

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Perturbed data distribution

Figure 1.20 – Illustration of the out-of-distribution problem in LIME for tabular data. The
left panel shows the training data used by a black-box model. In the middle panel, the feature
space is split into quantiles for each feature, highlighting highly unbalanced data. The right panel

reports the density of samples generated by LIME: it generates random samples centered in each
box. Note that by default, LIME would divide each axis into quartiles.

Additionally, Albini et al. [2020] propose counterfactual for Bayesian Network Classifiers to
identify key factors influencing the classification, indicating which factors need to change to alter
the outcome. Abrate and Bonchi [2021] propose a method to produce counterfactual explanations
for graph classifiers: it introduces counterfactual graphs, which are minimally modified versions
of the original graph that result in a different classification, thereby providing insights into the
critical features influencing the model’s decisions in brain network classifications. Crupi et al.
[2022] generate counterfactual explanations by intervening in the latent space of machine learning
models. Pawelczyk et al. [2023] use generative models to generate realistic recourses, methods
to ensure the robustness of these recourses against small changes. Jain et al. [2024] introduces
CAVIAR, a novel method for generating counterfactual explanations for visual recommender sys-
tems. It identifies minimal perturbations to an item’s visual features, causing it to drop from a
user’s top-K recommended list. Finally, Pawelczyk [2024] deeply analyze the reliability of algo-
rithmic recourse through realistic and robust counterfactual explanations.

1.5 Open challenges

In previous sections, it has been demonstrated that interpretability in machine learning re-
presents one of the most pressing and fascinating challenges of contemporary AI. Despite the
significant progress made in recent years, there are still many open questions that need to be
addressed to ensure that machine learning models are not only accurate but also understan-
dable and reliable. Among the numerous outstanding research questions, this section focuses on
three main points that motivate the work presented in this thesis: the problem of out-of-distribution

samples (Section 1.5.1), the lack of standardized evaluation metrics (Section 1.5.2), and the ab-
sence of solid mathematical foundations (Section 1.5.3).

1.5 – 1.5.1 Out-of-distribution samples 35

1.5.1 Out-of-distribution samples

As discussed in Section 1.4.6, one of the primary approaches to explaining black-box models
without altering their architecture or using their internal parameters is to perturb the instance to
be explained and evaluate how the output changes as a result. This allows for the analysis of
the impact of individual features on the model’s predictions. However, it becomes evident that
the sampling mechanism used to construct the local neighborhood not only influences the
quality of the final explanation but also leads to fundamentally different explanations. This
aspect, despite being critical, remains underexplored.

Consider a dataset comprising house sizes in square meters and the number of rooms. When
perturbing a single instance, various sampling strategies can be employed. For example, one ap-
proach is setting the numerical values to zero, which would generate samples with zero rooms or
zero square meters. Alternatively, using the average value or selecting a random value from the
dataset could produce samples with unusual combinations, such as 10 square meters and 20 rooms
or 1 room for 100 square meters.

This poses a challenge as it may lead to out-of-distribution (OOD) samples, querying the
model in parts of the feature space where it is not adequately trained [Jacovi and Goldberg,
2021, Hase et al., 2021]. Therefore, this can violates one of the key assumptions in machine lear-
ning: the training and evaluation data come from the same distribution [Vapnik, 1998, Hooker
et al., 2019]. Thus, potentially compromise the validity of the explanation. This issue is illustrated
in Figure 1.20, in the specific case of LIME for tabular data.

Similarly, perturbing a text can involve completely removing tokens or words [Nguyen, 2018,
DeYoung et al., 2020], or replacing them with fixed feature values [Ribeiro et al., 2016,0, Lundberg
and Lee, 2017]. LIME, SHAP, and Anchors, for instance perturb the text to explain by replacing
them with mask tokens like UNK, thus significantly alter the original context.

Sturmfels et al. [2020], Haug et al. [2021] have compared different replace functions for vi-
sion and tabular data, respectively. However, concerns about samples leading to unreliable ex-
planations persist. Fong and Vedaldi [2017] and Mothilal et al. [2020] emphasized the need for
realistic perturbations to avoid OOD issues in generating trustworthy explanations. Hooker et al.
[2019] benchmarked various interpretability methods, noting significant inaccuracies due to OOD
samples. Qiu et al. [2021] and Hsieh et al. [2021] proposed methods to resist the impact of OOD
data but acknowledged the persistent challenge it poses. Jethani et al. [2021] demonstrated that in-
terpretability methods could still lead to unreliable explanations when encountering OOD samples.
Additionally, Slack et al. [2020] demonstrated that adversarial attacks can exploit vulnerabili-
ties, further undermining the reliability of these post-hoc explanation methods. Their work
revealed that by subtly manipulating the input data, one could generate explanations that are signi-
ficantly misleading, highlighting a critical weakness in these popular explainability techniques.

Various solutions have been proposed to mitigate OOD samples, and their efficiency strongly
depends on the setting and the application context. If the dataset used to train the model comes
from the same distribution as the test data, it may more easily be leveraged to generate perturbed
samples that remain approximately in-distribution. Additionally, the type of task significantly in-
fluences the outcome: in natural images, the objects of interest and the overall content can vary
significantly in the database. In contrast, in more specific tasks, such as medical image classifi-
cation for object or pathology detection, the variability is reduced. For example, in the case of
chest X-rays, all the images in the database present similar structures, with a dark background, the
thorax in the center of the image, and very similar characteristics among patients. In this context,

36 CHAPTER 1 — Introduction

synthetic perturbations tend to have a greater impact on the generated image, which ends up no
longer belonging to the distribution of real images. For example, Charachon [2023] leverages do-
main translation techniques to produce an in-distribution stable and counterfactual image.

On tabular data, LORE [Guidotti et al., 2018a] uses a genetic algorithm to explore the deci-
sion boundary close to the data point of interest. In contrast, SHAP [Lundberg and Lee, 2017]
approximates the evaluation of any combination of input features by simulating feature removals,
allowing it to estimate Shapley values accurately [Shapley, 1953]. Hooker et al. [2019] sugges-
ted that marginalizing predictions over counterfactual inputs and using counterfactuals close to
real inputs can help mitigate the OOD issue by maintaining a closer alignment with the training
data distribution. Additionally, Jethani et al. [2021] proposed training models on counterfactual
inputs to make them in-distribution, thereby improving the faithfulness of explanations to the task
model. Furthermore, Delaunay et al. [2020] put forth an advanced approach to Anchor [Ribeiro
et al., 2018] sampling, tailored specifically for tabular data. Their methodology generates samples
that are more representative of the local neighborhood, which potentially reduces the generation
of OOD data and enhances the accuracy of explanations. Jacovi and Goldberg [2021] concept
of social alignment further supports the need for explanations that align with user expectations
and the model’s behavior, reinforcing the importance of these solutions in producing reliable and
interpretable explanations.

1.5.2 Lack of consensus for evaluation

The evaluation of explanation and interpretability methods in machine learning lacks consen-
sus, particularly regarding metrics and ground truth. Essentially, there are no globally accepted
metrics or clear, unambiguous definitions. When it comes to quantitatively evaluating explana-
tions for predictions made by machine learning models, four main desiderata are typically men-
tioned [Nguyen, 2018, Guidotti et al., 2019, DeYoung et al., 2020, Margot and Luta, 2021, Bhatt
et al., 2021, Bodria et al., 2023]: Simplicity, Faithfulness, Broadness, and Stability. Simplicity (i.e.,

low complexity) measures how easily the explanation can be understood: explanations should be
simple and not involve too many features, making it easier for humans to understand. Faith-

fulness (or Fidelity): measures how accurately an explainer mimics the predictions of the black-box
model [Guidotti et al., 2019, DeYoung et al., 2020]. Coverage (or Broadness) refers to the general
applicability of the explanation across different contexts. Stability (or Sensitivity): checks if simi-
lar inputs yield similar explanations [Alvarez Melis and Jaakkola, 2018]; the explanation should
be stable and not change significantly with small perturbations in the input.

However, several ways have been proposed to assess the performance and reliability of explai-
ners [Bodria et al., 2023]. Deletion and insertion metrics [Petsiuk et al., 2018] gauge the impact
on model performance when important features, as identified by the explainer, are removed or
added. The deletion metric observes how model accuracy degrades when important features are
systematically removed, while the insertion metric examines how accuracy improves as important
features are added back. Monotonicity [Luss et al., 2021] assesses whether the model’s perfor-
mance increases with the addition of more important features. Running time is also crucial metric,
focusing on the computational efficiency of the explainer in generating explanations.

Notably, Jethani et al. [2021] propose EVAL-X and REAL-X, designed to enhance the evalua-
tion and generation of explanations. EVAL-X evaluates explanations by estimating the true data-
generating distribution for any input subset, using an evaluator model to avoid out-of-distribution
issues common in other methods. REAL-X selects minimal feature subsets that maximize data li-

1.5 – 1.5.3 Lack of mathematical foundation 37

kelihood under the true data distribution estimate, ensuring selected features genuinely contribute
to predictions without inflating performance metrics. Several benchmarks and tools have been
developed to address the challenges in evaluating explanation methods in machine learning.

Some works employ user studies to evaluate explanations, recognizing that humans are the
ultimate users of these explanations. Rong et al. [2023] analyze user studies in explainable AI
conducted over recent years, categorizing them by focus on trust, understanding, usability, and
human-AI collaboration performance. The review identifies a lack of integration of cognitive and
social science insights and discusses best practices for designing and conducting user studies. The
authors propose guidelines to better align XAI development with user needs. However, no metric
has become a standard, and many definitions exist for the same. The problem is that users tend
to prefer explanations that align with their idea of the task: they seek a good explanation for the
problem itself, not for what the model does. This thesis focuses on explaining the predictions made
by the model, while users are biased by their own ideas in this evaluation.

It is important to stress again that there is a lack of standardization in the quantitative evaluation
of explanation methods. For the aforementioned desiderata, various metrics have been proposed,
but they come with different mathematical definitions and/or experimental settings. This can lead
to contradictory conclusions, as a metric, even if used with the same goal, measures different
things concretely when defined differently [Hsia et al., 2024]. Additionally, the type of explainer
used clearly impacts the results: evaluations for global and local explanations, for example, are
significantly different. Furthermore, ad-hoc methods (specifically designed for a particular model)
tend to be more faithful to the model compared to post-hoc and model-agnostic methods, but the
advantages of the latter are difficult to quantify. Another issue is that the evaluation changes based
on the type of data as well as the type of explanation. As we will see in Chapter 3, it is not easy to
compare methods based on feature importance with those based on rules [Margot and Luta,
2021].

All of this presents additional challenges and issues, resulting in inconsistent and incomparable
results across studies due to the absence of a unified approach or common ground truth. Without
a widely accepted benchmark for explainable AI, the assessment of explanation methods remains
complicated, hindering progress in the field.

1.5.3 Lack of mathematical foundation

Numerous methods have been proposed to explain machine learning predictions, each with its
strengths and limitations. While these methods offer significant benefits, they often lack a robust
theoretical foundation [Garreau and Luxburg, 2020], which can undermine their reliability and the
trust placed in them. Often, their mechanisms are either overlooked or insufficiently studied, po-
tentially making the explainer as opaque as the prediction it seeks to elucidate. This risks creating
a black-box explainer for understanding a black-box model, defeating the purpose of inter-
pretability. Consequently, using an explainer without a clear understanding of its mechanisms can
lead to misinterpretations of the model’s behavior, undermining trust and potentially resulting in
biased decisions [Lipton, 2018].

Consider again an automated loan application system (Example 1.1.1). A bank operator might
use an explainer to understand which features most influenced the loan decision. Different ex-
plainers might prioritize features differently based on their mechanisms, such as those closest to
decision boundaries or those with extreme values. Without understanding how these explainers

38 CHAPTER 1 — Introduction

work, the operator might misinterpret the model’s behavior, leading to incorrect decisions, such as
approving risky loans or rejecting safe ones.

SHAP [Lundberg and Lee, 2017], is frequently cited as a theoretically grounded approach to
explaining machine learning predictions. SHAP leverages concepts from cooperative game theory,
specifically Shapley values [Shapley, 1953], to provide a unified measure of feature importance.
Shapley values provide a fair distribution of a total payout to players based on their contributions
to the overall game. In the context of machine learning, the “game” is the prediction task, and the
“players” are the input features. The Shapley value of a feature represents its average contribution
to the prediction, considering all possible coalitions (subsets of features). Mathematically, the
Shapley value ϕj for a feature j is defined as

ϕj(v) =
∑︂

S⊆N\{j♢

♣S♣! · (♣N ♣ − ♣S♣ − 1)!

♣N ♣! [v(S ∪ {j♢) − v(S)] , (1.3)

where:
— N is the set of all features,
— S is a subset of N not containing feature j,
— v(S) is the value (or payoff) function that represents the contribution of the subset S of

features to the overall prediction.
This formula calculates the Shapley value by considering the marginal contribution of feature i

across all possible subsets S. The factorial terms ♣S♣! and (♣N ♣ − ♣S♣ − 1)! represent the number of
permutations of features where subset S appears before and after feature j, respectively, ensuring
that each selection of a subset of features is weighted appropriately.

Calculating exact Shapley values in practice can be computationally infeasible. The main pro-
blem is the need to retrain the model for each subset of features to accurately determine their
contributions. Shapley values assume that the model works on a subset of the features and requires
retraining. Even with methods to simulate the removal of subsets of features, the exponential
growth in the number of possible coalitions makes the computation impractical for complex mo-
dels with many features. Specifically, for a model with b features, there are 2b possible subsets
of features, and evaluating the contribution of each feature across all these subsets is computa-
tionally prohibitive. Therefore, alternative methods and approximations, such as using sampling
techniques or simplified models, are often employed to estimate Shapley values in practice.

To address this, the official SHAP repository ∗ proposes several approximation methods to
estimate Shapley values efficiently. These methods include

— Kernel SHAP, which uses a weighted linear regression model to approximate Shapley va-
lues by sampling coalitions and weighting them based on their likelihood.

— Tree SHAP [Lundberg et al., 2020] is an optimized algorithm designed for tree-based mo-
dels, leveraging their structure to compute Shapley values in polynomial time.

— Deep SHAP combines DeepLIFT [Shrikumar et al., 2017] and Shapley values to approxi-
mate contributions in deep learning models.

Each of these approximation methods aims to balance the trade-off between computational ef-
ficiency and the accuracy of the Shapley value estimates. Despite the use of approximations, SHAP
remains a popular choice for explaining machine learning models (see Figure 1.13). In addition,

∗. https://github.com/shap/shap

https://github.com/shap/shap

1.5 – 1.5.3 Lack of mathematical foundation 39

SHAP is designed to handle different types of data, including tabular, image, and text data. Howe-
ver, some significant details in their implementation change accordingly, and these are not always
explicitly documented. In general, there may be discrepancies between the methods described in
the papers and the default settings in the official implementation. The reliance on approximation
techniques introduces variability in the explanations provided by SHAP, depending on the specific
implementation and parameters chosen. This variability can affect the interpretability and relia-
bility of the explanations, particularly for complex models. Therefore, it is crucial to understand
the limitations and assumptions underlying its approximation methods to use it effectively and
interpret its results accurately.

However, the approximation is not the only issue: some research challenges the entire
concept of applying Game Theory techniques to interpretability. Huang and Marques-Silva
[2023a] demonstrates that Shapley values can misrepresent feature importance in certain classi-
fiers, and associated predictions, thus incorrectly assign more importance to features that are pro-
vably irrelevant for the prediction, and less importance to features that are provably relevant for the
prediction. Huang and Marques-Silva [2023b] supports this claim, providing theoretical and empi-
rical evidence of their failure to identify true feature relevance, particularly in rule-based models.
Marques-Silva and Huang [2023], Huang and Marques-Silva [2024] critique the use of Shapley
values for explanations, also highlighting their potential to mislead by assigning high importance
to irrelevant features and underestimating relevant ones. The authors underscore the computatio-
nal complexity and approximation errors inherent in Shapley value calculations, as seen in SHAP,
therefore advocating for alternative, logic-based explanation methods that more accurately reflect
feature relevancy.

Anyway, numerous studies build on SHAP and Shapley values [Ibrahim et al., 2020, Frye
et al., 2020, Tallón-Ballesteros and Chen, 2020, Lewis et al., 2021]. In particular, Bordt and von
Luxburg [2023] extend the concept of Shapley values to demonstrate their ability to recover Ge-
neralized Additive Models (GAMs) with interactions. Bordt and von Luxburg [2023] introduce
n-Shapley Values, a parametric family of local post-hoc explanation algorithms that incorporate
interaction terms up to order n. This extension allows for a sequence of explanations that range
from traditional Shapley Values to a complete decomposition of the function. They show that n-
Shapley Values can recover GAMs with interaction terms up to order n, thereby linking Shapley
Values to GAMs and providing a precise characterization of Shapley Values used in explainable
machine learning.

Recall that LIME works by perturbing the instance to be explained, querying the model on
these generated samples, and training a linear model on the perturbed data. The coefficients of the
linear model then represent the importance of each feature. However, the process is not straight-
forward in practice and requires careful adaptation depending on the type of data being analyzed.
Garreau and Luxburg [2020] provide a theoretical analysis of LIME for tabular data (with de-
fault setting), showing that its coefficients are approximately proportional to the gradient of the
function being explained, thus confirming its ability to identify significant features. However, an
inappropriate parameter selection, such as the number of samples or the definition of the
neighborhood, can cause LIME to miss important features, reducing the reliability of its ex-
planations.

Extending this analysis, Mardaoui and Garreau [2021] and Garreau and Mardaoui [2021] exa-
mine LIME in the context of text data and images, respectively. They demonstrate that LIME
explanations converge to a limit explanation when a large number of examples are generated.

40 CHAPTER 1 — Introduction

Additionally, their work uncovers connections between LIME and Integrated Gradients [Sunda-
rarajan et al., 2017a]. This connection highlights that both methods share a common theoretical
foundation in gradient-based explanations, further validating LIME’s approach while emphasizing
the need for careful parameter tuning to ensure accurate and meaningful explanations.

With the aim of providing theoretical results to the field, Garreau and Luxburg [2020] propose
focusing on how explainers behave when applied to simple, inherently interpretable models such
as basic linear models or small decision trees. In these cases, the decision-making process is clear
and unambiguous, with a precise understanding of which features impact the outcome. An ideal,
trustworthy explainer should accurately capture and highlight these relationships, providing clear
and understandable explanations. Conversely, if an explainer fails to elucidate the behavior of
simple models, it raises serious doubts about its ability to handle more complex architectures.
After all, if an explainer falls short in simple scenarios, how can we trust it to accurately
explain the behavior of more complex models?

One important reason to assess the reliability of these methods is their necessity for legal and
regulatory purposes. Bordt et al. [2022] claim that post-hoc explanation algorithms (such as
SHAP and LIME) are inadequate for legal and regulatory transparency objectives (as those
described in Section 1.3.2) in adversarial contexts, where the explanation provider and receiver
have conflicting interests. The authors combine legal, philosophical, and technical arguments to
demonstrate that post-hoc explanations can be manipulated, lack clear standards, and do not re-
liably convey the true reasons behind decisions. Similarly, Pawelczyk et al. [2022b] investigates
the conflict between two key principles in data protection regulations: the right to be forgotten and
the right to (actionable) explanations. They theoretically and empirically demonstrate that even a
small number of data deletion requests can significantly invalidate the recourses generated
by state-of-the-art algorithms. In addition, Agarwal et al. [2022a] highlight that existing me-
thods, such as SHAP and LIME, are unstable, meaning that small perturbations in input can lead
to significantly different explanations.

Fokkema et al. [2023] explores the inherent conflict between robustness and recourse in fea-
ture attribution methods for machine learning models and prove that no single attribution method
can be both recourse sensitive and robust for all models. This impossibility applies to the afo-
rementioned methods like LIME, SHAP, Integrated Gradients. However, they suggest potential
workarounds to mitigate the conflict between robustness and recourse. Bilodeau et al. [2024] exa-
mine the limitations of feature attribution methods, showing that these can provably fail to improve
on random guessing for simple tasks. More broadly, Bordt and von Luxburg [2024] argue that
many explanation algorithms are mathematically complex but lack clear interpretation, leading to
potential misinterpretations. They propose a distinction between the mathematical properties of
explanation algorithms and their interpretation, also suggesting that complex algorithms without
clear interpretation are essentially black-boxes. The paper emphasizes the need for explanation
algorithms to explicitly state the interpretable questions they are designed to answer and to be
studied rigorously through empirical validation.

Several works explore the mathematical foundations of counterfactual explanations [Pawelc-
zyk, 2024], which are hypothetical scenarios that illustrate how altering certain input features can
change the outcome of an algorithm’s decision (described in Section 1.19). These explanations are
crucial for providing algorithmic recourse, allowing individuals to understand and take actionable
steps to reverse unfavorable decisions, such as a loan denial (Example 1.1.1). Pawelczyk et al.
[2023], Fokkema et al. [2024], Leemann et al. [2024b] address the challenges related to ensuring

1.6 – Contributions 41

the reliability and robustness of these recourse mechanisms, making sure that the suggested actions
are realistic, feasible, and effective even in the presence of data changes or noise.

Other explore the foundations of concept-based explanations [Poeta et al., 2023], focusing on
the identifiability and interpretability of learned embedding spaces. Leemann et al. [2023] intro-
duce a framework for concept discovery in embedding spaces, emphasizing the need for identi-
fiable methods that can reliably recover known concepts. Feng et al. [2024] proposes an axiomatic
and model-agnostic approach for producing robust concept-based explanations.

Recently, with the rise of transformer models [Vaswani et al., 2017], the attention mechanism
[Bahdanau et al., 2015] has been widely utilized to provide explanations for model predictions,
with the intuition to provide insight on the part of the input that the model is focusing on [Chefer
et al., 2021, Mylonas et al., 2023]. However, the use of attention weights as explanations is the
subject of a broad and complex debate [Jain and Wallace, 2019, Wiegreffe and Pinter, 2019, Ser-
rano and Smith, 2019, Cui et al., 2024]. The efficacy and reliability of attention-based explanations
have been questioned [Leemann et al., 2024a]. In Chapter 6, we will delve deeply into this debate,
mathematically analyzing attention-based explanations.

1.6 Contributions

This thesis focuses on post-hoc interpretability methods for machine learning models. It does
not delve into global interpretability or the design of specific architectures for training inherently
interpretable models. Instead, the primary focus is on model-agnostic approaches, which comple-
tely disregard the internal workings of the underlying model, treating it as a black box.

Thus, this work focuses on solutions based solely on the ability to query the model as nee-
ded. Among model-dependent methods, attention-based approaches are explored in Chapter 6
and compared with other techniques. While these methods are still local and post-hoc, explaining
individual predictions made by an already trained model, they require access to certain internal
parameters, specifically attention weights.

The manuscript begins with an empirical comparison of popular existing methods, particularly
LIME and Anchors, in Chapter 3. Lopardo and Garreau [2022] examined whether these methods
agree both qualitatively and quantitatively in their explanations. Chapter 4 describes the first theo-
retical analysis conducted on Anchors. Lopardo et al. [2023a] provide rigorous definitions and
employ a robust mathematical framework to understand its behavior. This theoretical understan-
ding allowed for the identification of the strengths and weaknesses of existing methods. With these
insights at hand, Lopardo et al. [2023b] proposed a novel solution for text model interpretability.
This solution, described in Chapter 5, leverages the strengths of existing methods while addressing
their limitations, offering a more robust and reliable approach. This manuscript also contributes
to the ongoing debate on the use of attention weights for transformer interpretability. Chapter 6
mathematically and empirically compare attention-based explanations with those obtained from
other post-hoc methods [Lopardo et al., 2024]. All theoretical claims are supported by mathema-
tical proofs, discussed in detail in their respective chapters. Furthermore, the claims are validated
with numerical experiments in Python. To ensure reproducibility, the code is publicly available on
GitHub, supporting the reliability and robustness of the results.

42 CHAPTER 1 — Introduction

Publications List

International conferences:
— G. Lopardo, D. Garreau, F. Precioso, G. Ottosson (2022). SMACE: A New Method for

the Interpretability of Composite Decision Systems. In Joint European Conference on Ma-

chine Learning and Knowledge Discovery in Databases (ECML 2022).
— G. Lopardo, F. Precioso, D. Garreau (2023). A Sea of Words: An In-Depth Analysis of

Anchors for Text Data. In Proceedings of the 26th International Conference on Artificial

Intelligence and Statistics (AISTATS 2023).
— G. Lopardo, F. Precioso, D. Garreau (2024). Attention Meets Post-hoc Interpretability: A

Mathematical Perspective. In Proceedings of the 41st International Conference on Ma-

chine Learning (ICML 2024).

Workshops and national conferences:
— G. Lopardo, D. Garreau (2022). Comparing Feature Importance and Rule Extraction for

Interpretability on Text Data. In Proceedings of the 2nd Workshop on Explainable and

Ethical AI at the 26th International Conference on Pattern Recognition (XAIE ICPR
2022).

— G. Lopardo, F. Precioso, D. Garreau (2023). Understanding Post-hoc Explainers: The Case
of Anchors. In 54th Journées de Statistique (JDS 2023).

Working paper:
— G. Lopardo, F. Precioso, D. Garreau (2024). Faithful and Robust Local Interpretability for

Textual Predictions. arXiv:2311.01605 preprint, 2024.

CHAPTER 2
Setting and notation

This manuscript focuses on the application of interpretable machine learning to text-
based models. This chapter begins by introducing the general notation used throu-
ghout the manuscript in Section 2.1. Following that, Section 2.2 provides a comprehen-
sive overview of text vectorization methods employed in Natural Language Processing
(NLP). Since computers can only process numbers, these methods transform documents
into numerical vectors. A particular focus is on TF-IDF vectorization, which will be fre-
quently referenced in subsequent chapters. Section 2.3 examines the interpretability of
NLP models, covering specific approaches from Section 1.1 that are applicable to text
data. Finally, Section 2.4 discusses the metrics and approaches used to evaluate expla-
nations in the specific context of text models, emphasizing the challenges and lack of
agreement in quantitatively assessing explanations, as mentioned in Section 1.5.2.

43

2.1 – Notation 45

2.1 Notation

Throughout this manuscript, z represents any generic document from a corpus T ⊆ X (i.e., a
collection of texts), while ξ denotes the specific example under exam. Refer to D as the global dic-

tionary: the complete collection of D = ♣D♣ unique words used across T . In practice, it represents
the set of distinct words contained in the documents of the corpus T . A document z is essentially
a sequence (i.e., an ordered list) z = (z1, . . . , zb) of words from this dictionary. For any integer k,
define [k] := {1, . . . , k♢.

Definition 2.1.1 (Multiplicity of a word). Let mj(z) denote the multiplicity of the word wj ∈ D
in document z, defined as mj(z) := ♣{k ∈ [b] ♣ zk = wj♢♣. When the context is clear, mj is used
as shorthand for mj(z).

Definition 2.1.2 (Local dictionary). Let z be a document composed of words from a global
dictionary D. The local dictionary Dz is the subset of D containing all distinct words present in z.
Formally,

Dz = {wj ∈ D ♣ mj(z) > 0♢ .
For instance, consider the restaurant review ξ:

ξ = “the food is great and the location is nice” .

It contains d = 7 distinct words from the (global) dictionary D. The local dictionary Dξ is:

Dξ = {the, food, is, great, and, location, nice♢ = {w1, w2, w3, w4, w5, w6, w7♢ .

It is crucial to differentiate between two key concepts: tokens and words. A word in a document
z is any unique and distinct element within the local dictionary Dz . In this manuscript, a token
is defined as a specific instance of a word appearing at a particular position within a text
document. A document z is as an ordered sequence of tokens z1, . . . , zb.

In practice, however, the representation of a token can vary depending on the tokenization
method used. For example, Byte Pair Encoding [Gage, 1994, Sennrich et al., 2016], which is
employed by models such as GPT-2, uses sub-words. This method breaks down words into smaller,
more frequent sub-word units to handle rare words and improve model efficiency. This approach
allows for a more flexible representation of text, accommodating different levels of granularity.

The example ξ above is therefore defined as

ξ = (the, food, is, great, and, the, location, is, nice) = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9) ,

with b = ♣ξ♣ = 9 tokens and d = ♣Dξ♣ = 7 distinct words. Note that d = ♣Dξ♣ ≤ ♣ξ♣ = b: the
words “the” and “is” appear twice in ξ, but each occurrence is a separate token. In particular, the
multiplicities m1 and m3 are equal to 2, while mj = 1 for all j ∈ [d] with j ̸= 1, 3. Finally, note
that b = ♣ξ♣ =

∑︁d
j=1mj .

The goal is to explain the predictions made by a generic prediction model, denoted by F ,
which takes as input textual documents from a corpus T . Unless explicitly stated otherwise, this
model is considered as a black-box function. Formally, consider a model F : X → Y ∈ Rp.

This framework encompasses both regression and classification settings. In regression tasks, Y
represents a continuous value. Consider a model predicting housing prices based on textual des-
criptions, Y would correspond to a range of possible prices. In multi-class classification problems,

46 CHAPTER 2 — Setting and notation

Y represents a set of confidence scores for p different classes in C = {0, 1, . . . , p − 1♢. Thus,
F (z) = (F0(z), . . . , Fp−1(z))⊤ ∈ [0, 1]p, such that

p−1∑︂

ℓ=0

Fℓ(z) = 1 . (2.1)

In practice, for classification tasks, the model F is a function designed to assign a confidence
score to each class in C for a given input. This confidence score indicates the likelihood that the
input belongs to a particular class. The predicted class is therefore the one corresponding to the
highest confidence score.

Consider a model F that makes predictions for a given input ξ. The predicted class ℓ⋆ ∈ C is
the one with the highest confidence score:

ℓ⋆ := arg max
ℓ∈C

Fℓ(ξ) , (2.2)

where Fℓ(ξ) denotes the confidence score assigned by the model F to the class ℓ for the input ξ.

While the model F represents the generic black-box model, in the following chapters f refers
to the specific out prediction to be explained. Unless otherwise specified, f will be used to explain
why the model made a specific prediction (as in Chapters 3 and 4). Therefore, in the case of
classification, f(z) = Fℓ⋆(z) for any z ∈ X . In other cases (Chapter 5), where it is also necessary
to understand why a different class was not predicted, f(z) = Fℓ(z) will be evaluated to explain
the missed prediction of class ℓ ∈ C. However, in general, note that f : T ⊆ X → R.

Example 2.1.1 – Consider a (binary) sentiment analysis model (i.e., C = {0, 1♢) classifying re-
views as negative (indexed as ℓ = 0) or positive (indexed as ℓ = 1). The output space Y = [0, 1]2

is a p = 2-dimensional vector, with each element reflecting the confidence score for a specific
sentiment class. Consider again the example review ξ = “the food is great and the place is nice”.
The example ξ is classified as positive, since F1(ξ) > F0(ξ). The classifier f will therefore be the
confidence score for the positive class, i.e., f(z) = F1(z), for any document z ∈ X .

Without loss of generality, binary classification will often be considered in this manuscript.
This is because any multiclass classification problem can be reduced to multiple binary classifi-
cation problems by using a one-vs-all approach, where classes are considered mutually exclusive
as per Eq. (2.1). For example, in a sentiment analysis model as described in Example 2.1.1, the
classifier would output a binary decision based on whether the confidence score for the positive
class exceeds that for the negative class. By using this one-vs-all approach, the generality of the
analysis in Eq. (2.1) is maintained, while simplifying the discussion to the binary case for clarity
and ease of understanding.

In essence, the primary focus of this thesis is to study and develop methods for providing clear
and comprehensive explanations of the prediction of interests f(ξ) ∈ F (ξ) made by any black-
box model F . This model could be any machine learning model used for text prediction, without
any specific assumptions about its nature or architecture unless explicitly stated. The prediction
F (ξ) is made on a specific text instance, denoted as the example ξ = (ξ1, . . . , ξb). The goal is
to understand which tokens in ξ contribute to the prediction, and how they do so. This involves
determining the most influential tokens driving the prediction and analyzing how changes in these
tokens might affect the outcome.

2.2 – Text vectorizers 47

2.2 Text vectorizers

Computers, and by extension machine learning models, can only process numerical data. The-
refore, text data is usually encoded into a numerical format for these models to function
effectively. Natural language processing classifiers are typically based on a vector representation,
denoted as φ, of the document [Young et al., 2018]. This transformation process is achieved using
text vectorizers, tools that transform text into numerical vectors: structured arrays of numbers that
models can manipulate. This numerical representation is essential for enabling the application of
machine learning algorithms to natural language processing tasks. In practice, the model F can be
represented as F = h ◦ φ, where φ is a deterministic mapping X → RD and h : RD → Y is a
function that applies machine learning algorithms to the vectorized representation.

One basic idea is to simply count the words in a text, which is the basis of the Bag of Words

(BoW) model. In BoW, a text document is represented by the multiplicity of each word within it.
Each document is converted into a vector where each element corresponds to a specific word from
the entire vocabulary, and the value of each element is its multiplicity, i.e., count of how often
that word appears in the document. To illustrate this mechanism, consider three simple restaurant
reviews:

z(1) = “the food is great and the place is nice” ,

z(2) = “the place is simply great” ,

z(3) = “the price is low” .

This means that the corpus X = {z(1), z(2), z(3)♢. First, construct the dictionary D from all unique
words in X :

D = {the, food, is, great, and, place, nice, simply, price, low♢
= {w1, w2, w3, w4, w5, w6, w7, w8, w9, w10♢ .

Next, the BoW representation φ is created, by mapping any element of the global dictionary D to
its multiplicity in any document z(i), for i = 1, 2, 3, i.e., φ(z(i)) = (m1(z(i)), . . . ,mD(z(i))):

the food is great and place nice simply price low

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

z(1) 2 1 2 1 1 1 1 0 0 0

z(2) 1 0 1 1 0 1 0 1 0 0

z(3) 1 0 1 0 0 0 0 0 1 1

Here, each row represents a document, and each column represents a word from the global
dictionary D. The values indicate the multiplicity of each word in the respective document. For
example, “the” appears twice in z(1), hence m1(z(1)) = 2, and once in z(2) and z(3), so that
m1(z(2)) = 1 and m1(z(3)) = 1; “food” appears once in z(1) (i.e., m2(z(1)) = 1), but never in
z(2) and z(3), thus m2(z(2)) = m2(z(3)) = 0.

Note that, while BoW is straightforward and effective for capturing word occurrences, it
ignores the order and context of words, focusing only on their presence and frequency. In
particular, in the example above, BoW gives undue weight to common, less meaningful words like
“the” and “is.”

48 CHAPTER 2 — Setting and notation

The Term Frequency-Inverse Document Frequency (TF-IDF) technique [Luhn, 1957, Jones,
1972] refines the BoW approach by considering not just the frequency of words in a document,
but also the importance of these words across the entire corpus T . Term frequency (TF) is the
count of a word in a document, i.e., its multiplicity, while inverse document frequency (IDF)
measures how common or rare a word is across all documents. The TF-IDF score is the product
of these two metrics. The principle is to assign more weight to words that appear frequently
in a document, and not so frequently in the corpus.

The (non-normalized) TF-IDF vectorization is defined as follows:

Definition 2.2.1 (TF-IDF vectorization). Let N be the size of the initial corpus T , i.e., the num-
ber of documents in the dataset. Let Nj be the number of documents containing the word wj ∈ D.
The TF-IDF of z is the vector φ(z) ∈ RD defined as

∀j ∈ [D], φ(z)j := mj(z)vj ,

where vj := log
(︂

N
Nj

)︂
+ 1 is the inverse document frequency ∗ (IDF) of wj in T .

To illustrate the TF-IDF vectorization, consider the previous example sentences z(1), z(2), and
z(3). First, calculate the term frequency (TF) for each word in each document: and this correspond
exactly to the BoW representation shown above:

the food is great and place nice simply price low

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

z(1) 2 1 2 1 1 1 1 0 0 0

z(2) 1 0 1 1 0 1 0 1 0 0

z(3) 1 0 1 0 0 0 0 0 1 1

Next, calculate the document frequency Nj for each word wj .

the food is great and place nice simply price low

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

DF 3 1 3 2 1 2 1 1 1 1

Then, compute the inverse document frequency (IDF) as vj := log
(︂

N
Nj

)︂
+ 1.

the food is great and place nice simply price low

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

IDF 1.0 2.1 1.0 1.4 2.1 1.4 2.1 2.1 2.1 2.1

Finally, compute the TF-IDF score by multiplying the TF by the IDF:

the food is great and place nice simply price low

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

z(1) 2.0 2.1 2.0 1.4 2.1 1.4 2.1 0 0 0

z(2) 1.0 0 1.0 1.4 0 1.4 0 2.1 0 0

z(3) 1.0 0 1.0 0 0 0 0 0 2.1 2.1

∗. As defined in the scikit-learn library: https://scikit-learn.org/stable/modules/

generated/sklearn.feature_extraction.text.TfidfVectorizer.html.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

2.3 – Text vectorizers 49

Here, each row represents a document, and each column represents a word from the global
dictionary D. The values indicate the TF-IDF score of each word in the respective document.
TF-IDF normalizes the importance of terms across the corpus, which helps in highlighting less
frequent but potentially more significant words. This allows words like “food” and “price” to
stand out more in the analysis, whereas they may be overshadowed by common words in a BoW
model.

Note that, in Definition 2.2.1, once the TF-IDF vectorizer is fitted on a corpus T , the vo-
cabulary is fixed once and forever afterward. Meaning that, if a word is not part of the initial
corpus T , its TF-IDF term is zero. As will be detailed in the following Chapters, explainers like
LIME, SHAP, and Anchors perturb documents by replacing tokens with a mask: a word, such as
UNK, that realistically is not present in the initial corpus. Thus, replacing any token with this
word is equivalent to simply removing it, from the point of view of TF-IDF. However, de-
pending to the underlying model, as discussed in Section 1.5.1, this can cause out-of-distribution
samples.

While BoW and TF-IDF are effective methods for text representation, they are limited by their
inability to capture the semantic meaning of words beyond mere frequency. BoW and TF-IDF
primarily treat text as a collection of individual words, ignoring the order and context in which
these words appear. To address some of these limitations, several approaches have been proposed
over the years. n-grams [Shannon, 1951, Broder et al., 1997] consider sequences of n words to-
gether, capturing some context but often leading to high-dimensional and sparse representations.
Part-of-speech (POS) tagging [Petrov et al., 2012] identifies the grammatical role of each word in
a sentence (e.g., noun, verb, adjective), providing syntactic context that can enhance text represen-
tation. However, these methods still struggle with representing deeper semantic relationships and
can be less efficient.

Modern word embeddings address this limitation by providing dense vector representations of
words in a continuous vector space, where semantically similar words are mapped to nearby points.
Word2Vec [Mikolov et al., 2013] uses neural networks to learn word representations. The objective
is to maximize the probability of the observed word given the context, resulting in vectors where
words with similar contexts are closer together. GloVe [Pennington et al., 2014] is based on matrix
factorization techniques: it constructs a co-occurrence matrix, where each entry represents how
frequently a word pair appears together within a specified context window. By factorizing this
matrix, GloVe generates word vectors that capture both local and global statistical information
of words in the corpus. Doc2Vec [Le and Mikolov, 2014] extends the Word2Vec approach to
generate vectors for entire documents, allowing for capturing the semantic content and context of
entire documents, rather than just isolated words. This makes it particularly useful for tasks like
document classification, clustering, and recommendation systems.

In modern natural language processing, more advanced models often utilize approaches where
embeddings are learned directly from data. For instance, models like BERT and GPT-3 leverage
deep learning techniques to generate context-sensitive embeddings [Gage, 1994, Sennrich et al.,
2016]. These embeddings are obtained by training on large corpora using transformers, which
consider the entire context of a word or sentence, resulting in more nuanced and accurate repre-
sentations. This allows for a deeper understanding of language, capturing subtleties and variations
in meaning that simpler methods might miss.

50 CHAPTER 2 — Setting and notation

2.3 Post-hoc explanations in NLP

In this section, the focus is on the interpretability of Natural Language Processing (NLP) mo-
dels, with an emphasis on post-hoc methods. These methods aim to elucidate the decision-making
processes of black-box models, as described in Section 1.1. Addressing the intrinsic complexity
and unstructured nature of textual data requires specialized approaches to generate interpretable
explanations.

This subfield is demonstrably underexplored [Danilevsky et al., 2020]. For instance, Bodria
et al. [2023] states that “explanations for classifiers acting on text data are at the very early stages
compared to tabular data and images.” Current interpretability techniques predominantly address
structured data or computer vision tasks, with less methods specifically designed for textual data.
This gap is concerning given the rapid rise of transformers and large language models (Section
1.2), which are becoming integral to increasingly pervasive applications (Section 1.3.1).

This thesis explores various post-hoc interpretability frameworks. Each method is discussed
in the context of its application to NLP models, highlighting its strengths and limitations. Ad-
ditionally, challenges in interpreting complex models such as transformers are addressed, with
suggestions for future research to bridge the gap between model performance and interpretabi-
lity. In summary, the aim is to illuminate the current state of interpretability in NLP, emphasize
the need for tailored methods for textual data, and advocate for increased research efforts in this
crucial area.

In practical terms, to obtain meaningful explanations from textual predictions, three funda-
mental strategies emerge: (1) identifying keywords, which involves pinpointing a representative
subset of tokens that are influential and crucial in the prediction; (2) assigning importance weights
to tokens, also known as sentence highlighting, which entails attributing weights to each token
based on their contribution to the prediction, thereby highlighting the most significant tokens; and
(3) producing counterfactual explanations: this involves generating hypothetical documents by
altering certain tokens in the original text to obtain different predictions. Generating counterfac-
tual and prototype explanations for textual data presents significant challenges due to the semantic
richness and sensitivity of text, where small changes in wording can drastically alter the meaning
of a sentence.

These three form of explanations, obtained with FRED (the explainer described in Chapter 5)
are exemplified by Figure 2.1.

Clearly, many difficulties arise when providing explanations, especially using perturbation-
based approaches. Perturbation-based methods involve making small changes to the text to observe
how these changes affect the model’s predictions. However, even minor alterations can disrupt the
coherence and grammatical structure of the text, leading to nonsensical phrases. This disruption
often results in out-of-distribution samples (Section 1.5.1), where the modified text no longer
resembles the kind of data the model was trained on. Consequently, the model’s predictions on
these perturbed texts may be unreliable or invalid, complicating the task of generating meaningful
and accurate explanations. This issue underscores the need for more sophisticated methods that
can perturb text while maintaining its semantic integrity.

2.3.1 Identifying keywords

The first strategy involves rule-based explanations for text by identifying a representative
subset of tokens, often referred to as keywords. This process entails isolating a compact yet critical

2.3 – 2.3.2 Sentence highlighting 51

(a) Identifying keywords

Explaining class “positive”:

The minimal subset of tokens

that make the confidence

drop by 50.0% if perturbed

is {“decent”, “great”}

(b) Sentence highlighting

(c) Counterfactual explanations

k = 3 samples with minimal perturbation classified as negative:

“poor drinks decent food dirty service”

“poor drinks decent food awful service”

“poor drinks bad food great service”

Figure 2.1 – Explaining the prediction of a sentiment analysis model for the restaurant review
“poor drinks, decent food, great service,” classified as positive. (a) The identified keywords. (b)
Saliency weights of token importance score: dark green (resp., red) means high positive (resp.,
negative) influence. (c) Counterfactual explanations: instances close to the example, but classified
as negative. Perturbations with respect to the example are in orange.

set of tokens that encapsulate the core meaning of the text and play a decisive role in influencing
the model’s prediction. These keywords exert the most substantial impact on the model’s decision-
making process, making them crucial for understanding how the model interprets and prioritizes
different parts of the input.

Consider Figure 2.1. The goal here is to identify a small group of words that, on their own,
strongly influence the model’s decision, meaning they lead to a specific classification. For positive
reviews, keywords might include excellent, amazing, or great, while negative reviews might be
flagged by words like disappointing, terrible, or poor. Mathematically, given the example ξ =
(ξ1, ξ2, . . . , ξb) and the prediction f(ξ), this class of methods identify a (possibly small) subset of
tokens (e.g., {ξ3, ξ7, ξ12♢) that mainly trigger the predictor f .

This approach is related to rule-based explanations mentioned in Section 1.1, where specific
rules or patterns are identified to provide clear and interpretable insights into the model’s behavior.
As deeply discussed in Chapter 4, Anchors falls into this category: it explains a decision by
identifying the smallest set of words (an anchor) such that the model to explain has similar
outputs when they are present in a document. In this context, Anchors essentially tells us that,
for instance, if the tokens ξ3, ξ7, ξ12 are present in the example ξ, then the prediction will be
positive, with a certain confidence. This ensures that the identified tokens are pivotal in driving the
prediction.

2.3.2 Sentence highlighting

Importance-based methods assign numerical weights to each token in the text, reflecting
its relative importance in determining the model’s prediction. In the context of text data, this
enables sentence highlighting to visually emphasize the most influential tokens.

Consider the Figure 2.1 again. In a sentiment analysis task, assigning weights helps us un-
derstand how each token contributes to the overall sentiment of the text. Words like “amazing,”

52 CHAPTER 2 — Setting and notation

“terrible,” or “extraordinary,” which convey strong emotions, might receive higher weights compa-
red to common words like “the,” “a,” or “and,” which hold less significance in shaping sentiment.
Formally, these methods assign a score s to each input feature, i.e., s(ξ1), s(ξ2), . . . , s(ξb), that al-
lows us to highlight the important part of the text (see Figure 2.1), in a similar vein as the saliency
maps used for images in Figure 1.3.

Pertubation-based techniques such as LIME and SHAP are key methods in this cate-
gory. LIME creates neighborhoods of sentences by perturbing the input through randomly mas-
king words, which helps in identifying the words that most significantly influence the model’s
prediction. For a detailed analysis of LIME for text data, refer to Mardaoui and Garreau [2021].
Additionally, Lopardo and Garreau [2022] compare LIME and Anchors explanations, as exposed
in Chapter 3. SHAP assigns importance scores to each word using Shapley values from coopera-
tive game theory, providing a unified and theoretically grounded measure of feature importance.

As shown in Chapter 6, gradient-based methods and attention-based methods can also
be used for sentence highlighting. These methods assign numerical weights to each token in
the text to reflect its relative importance in determining the model’s prediction. Gradient-based
methods calculate these importance scores by leveraging the gradients of the model’s output with
respect to its input features (see Section 1.4.5). The Gradient method uses the raw gradients of
the output with respect to the input tokens. The gradient value indicates how much a small change
in the input token would affect the output prediction. However, raw gradients can be noisy and
may not always provide clear insights. Gradient×Input improves upon this by multiplying the
gradient by the token embeddings, providing a measure of feature importance that accounts for
both the sensitivity (gradient) and the actual value of the token. Integrated Gradients addresses
the shortcomings of raw gradients by computing the integral of gradients along the path from a
baseline input to the token embedding. Similarly, DeepLIFT decomposes the output prediction by
comparing the activations of the input with those of a baseline. It assigns contribution scores to
each input token based on the difference in activations, providing a clear explanation of how each
token influences the prediction.

Alvarez-Melis and Jaakkola [2017] presents a method for explaining sequence-to-sequence
models by identifying causally related input-output token pairs. Poerner et al. [2018] introduces
LIMSSE, an explanation method inspired by LIME specifically designed for NLP, ideal for word-
order sensitive tasks (e.g., RNNs, CNNs). LIMSSE evaluates feature importance by creating per-
turbed versions of input texts and assessing their impact on model predictions. It combines insights
from LIME with adaptations for textual data, ensuring more accurate and contextually relevant ex-
planations.

2.3.3 Counterfactual explanations

Counterfactual explanations offer a powerful approach to understanding model predic-
tions by exploring hypothetical scenarios. These explanations involve modifying the input text
to observe how changes affect the model’s prediction, providing valuable insights into the mo-
del’s reasoning process and its sensitivity to specific textual elements. As discussed in Section
1.4.9, counterfactual explanations are particularly useful because they align with users’ thought
processes, making them more intuitive and acceptable.

In the context of NLP models, a counterfactual explanation typically consists of a text that
is similar to the original but with certain tokens removed or altered to change the prediction.
For example, in Figure 2.1, the counterfactual explanations identify specific changes to the text

2.4 – Evaluating explanations 53

that could switch the prediction to negative. This involve suggesting alternative words, such as
replacing “great” with “awful” or “decent” with “bad”, thereby demonstrating how these modifi-
cations could alter the classification. Formally, counterfactual explanations indicate that replacing
specific tokens, such as ξ2 and ξ5, with different words from the dictionary D would provably

change the prediction.
Recent works have underscored the potential of counterfactual explanations in providing

realistic, aligned, and user-accepted insights. Martens and Provost [2014] introduced SEDC

(Sentence-Level Explanation for Document Classification), a method tailored for text classifiers
that generates counterfactuals by identifying minimal textual changes to alter classification out-
comes. Wachter et al. [2017b] expanded the concept by proposing a general framework for coun-
terfactual explanations applicable to various models, especially non-linear classifiers like neural
networks. XSpells [Lampridis et al., 2020] applies linguistic transformations to create realistic and
grammatically correct exemplars and counterfactuals. Pawelczyk et al. [2021] introduced CARLA,
a benchmarking framework for counterfactual explanations that allows for systematic comparison
and evaluation of different methods. Building on this, Pawelczyk et al. [2022a] explored the ro-
bustness and reliability of counterfactual explanations, addressing challenges such as feasibility
and plausibility in their generation. CAT [Chemmengath et al., 2022] uses a BERT [Devlin et al.,
2019], a language model, to perturb words while maintaining sentence structure.

Prototype explanations enhance model understanding by showing the similarity between in-
put text and representative examples, offering a contextually rich complement to counterfactual
methods. For instance, Wallace et al. [2018] presents Deep-kNN, which improves neural network
interpretability by using labels of the nearest neighbors during testing. This method explains pre-
dictions by finding and using the most similar training examples. Other methods aim to identify
similar documents within a dataset to boost interpretability. Croce et al. [2018] and Jiang et al.
[2019] suggest comparing input text with similar documents to explain model predictions. These
approaches provide insights into individual predictions and offer a broader view of the model’s
behavior by leveraging similarity to known instances.

2.4 Evaluating explanations

Evaluation of text explanations involves assessing how well generated explanations align with
human rationales and the faithfulness of these rationales in influencing model predictions.

ERASER [DeYoung et al., 2020] evaluates rationales using multiple datasets with human-
annotated rationales, proposing metrics to measure the alignment (plausibility) and faithfulness

of these rationales. Faithfulness is often assessed by measuring the impact of perturbing or erasing
important words on model output. Common evaluation metrics include Deletion and Insertion,
which measure the impact on model performance when important words identified by the explai-
ner are removed or added. For the Deletion metric, words are removed in order of importance to
observe how model accuracy degrades. For the Insertion metric, words are added back in order
of importance to examine how accuracy improves. The final score is typically obtained by taking
the area under the curve (AUC) of accuracy as a function of the percentage of removed or added
words [Petsiuk et al., 2018].

Faithfulness measures how accurately an explainer’s highlighted important words align with
the predictions of the black-box model. For example, if an explainer identifies specific words in
a review as crucial for a positive sentiment prediction, faithfulness evaluates whether those words

54 CHAPTER 2 — Setting and notation

truly influenced the model’s decision. Stability checks if similar sentences yield similar expla-
nations, ensuring consistency in the importance of words across slight variations in input [Alva-
rez Melis and Jaakkola, 2018]. Additionally, metrics like Monotonicity evaluate whether a model’s
performance improves with the incremental addition of important words [Luss et al., 2021]. This
involves adding words back into a minimal context in order of their importance and observing
whether the model’s accuracy improves as expected, ensuring that the identified important words
genuinely contribute positively to the model’s predictions.

Several tools and libraries have been developed to address the challenges in evaluating ex-
planation methods for text. OpenXAI [Agarwal et al., 2022b] provides a synthetic data generator,
diverse real-world datasets, pre-trained models, state-of-the-art feature attribution methods, and
quantitative metrics to assess faithfulness, stability, and fairness of explanations. Ferret [Attana-
sio et al., 2023] is a Python library for comparing explainable AI methods on transformer-based
NLP models. It supports methods such as Gradient, Integrated Gradient, SHAP, and LIME, and
includes metrics for evaluating faithfulness and plausibility. The ERASER benchmark [DeYoung
et al., 2020] includes multiple datasets with human-annotated rationales and proposes metrics
to assess the alignment and faithfulness of model-generated rationales with human rationales.
Captum [Kokhlikyan et al., 2020] focuses on implementing explanation methods without empha-
sizing evaluation, while Quantus [Hedström et al., 2023] includes some evaluation metrics but
lacks comprehensive benchmarks and up-to-date stability metrics. CEBaB [Abraham et al., 2022]
introduces a benchmark dataset consisting of restaurant reviews and human-generated counter-
factuals to study the causal effects of abstract, real-world concepts on model behavior. It allows
for the comparison of various concept-based explanation methods, emphasizing the importance of
aspect-level and review-level sentiment annotations to understand model behavior beyond mere
input features.

As said in Section 1.5.2, despite significant advancements in developing tools and metrics
for evaluating text explanations, there is still no broad consensus on best practices or universally
accepted standards. The various metrics and benchmarks, though useful, lack universally precise
definitions and often yield inconsistent results across different studies. Furthermore, Hsia et al.
[2024] critically examines the effectiveness of saliency-based explanation metrics in NLP, speci-
fically focusing on ERASER and EVAL-X metrics. The authors demonstrate that these metrics
can be manipulated to show improved performance without genuinely enhancing the model’s ex-
plainability. This exposes fundamental issues with these benchmarks and underscores the need for
reevaluating their intended goals.

Using feature-attribution methods, it is possible leverage the score function s to order tokens
by their importance for a specific prediction. Let ξ(k) represent the kth most important token of ξ
for the prediction f(ξ). Consequently, tokens can be arranged in descending order of importance
as ξ(1), ξ(2), . . . , ξ(b). Ideally, two feature importance methods should yield similar token orde-
rings based on these importance scores. Additionally, the top-ranked tokens identified by a feature
importance method (e.g., LIME) are expected to overlap with the keywords identified by a rule-
based method (e.g., Anchors). However, as empirically demonstrated in Chapter 3 and highlighted
throughout this manuscript, such consistency is not guaranteed. The discrepancies between expla-
nations are significant because they indicate that different explainers can produce divergent and
sometimes conflicting explanations. This, in turn, can lead to varied and potentially erroneous and
dangerous conclusions.

CHAPTER 3
Sentence Highlighting

vs. Keyword
Identification in Text

Models
The increasing use of complex machine learning algorithms in critical tasks involving
text data has led to the development of various interpretability methods, which are es-
sential for understanding and trusting the decisions made by models, particularly in
high-stakes domains. Among local interpretability methods, two primary families have
emerged: those that compute importance scores for each feature, allowing for sentence

highlighting, and those that extract simple logical rules, identifying keywords when ap-
plied to text data. However, Lopardo and Garreau [2022] demonstrate that using different
interpretability methods can lead to unexpectedly different explanations, even when ap-
plied to simple models where qualitative consistency would be expected. This highlights
the need for careful consideration and validation of interpretability techniques to ensure
their reliability and usefulness in practice. This chapter defines two representative me-
thods from both families, namely LIME (Section 3.2.1) and Anchors (Section 3.2.2), and
reports an empirical comparison from both qualitative (Section 3.3.1) and quantitative
(Section 3.3.2) perspectives.

55

56 CHAPTER 3 — Sentence Highlighting vs. Keyword Identification in Text Models

1.1 The need for interpretability . 1
1.1.1 Use cases: when do we need interpretability? 2
1.1.2 Motivation: why do we need interpretability? 5
1.1.3 Interpretable models . 7

1.2 A brief overview of contemporary AI 11
1.2.1 Neural networks . 12
1.2.2 Transformers . 14
1.2.3 Black-boxes . 16

1.3 From AI concerns to the right to explanation 16
1.3.1 AI risks and concerns . 16
1.3.2 Right to explanation . 18

1.4 Introduction to Machine Learning Intepretability 21
1.4.1 Terminology . 22
1.4.2 Global vs. local . 22
1.4.3 Explainable by design vs. post-hoc 24
1.4.4 Model-dependent vs. model-agnostic 26
1.4.5 Gradient-based interpretability 27
1.4.6 Perturbation-based interpretabiliy 28
1.4.7 Concept-based interpretability 31
1.4.8 Example-based interpretability 32
1.4.9 Counterfactual explanations 32

1.5 Open challenges . 34
1.5.1 Out-of-distribution samples 35
1.5.2 Lack of consensus for evaluation 36
1.5.3 Lack of mathematical foundation 37

1.6 Contributions . 41

3.2 – Introduction 57

3.1 Introduction

As discussed in previous chapters, increasing complexity has been crucial for achieving state-
of-the-art performance in natural language processing, allowing large and complex models to per-
meate high-impact applications. However, the opacity of these models limits their use in sensitive
areas such as healthcare and the legal field due to inadequate explanations for individual predic-
tions, hindering social acceptance.

To improve interpretability, numerous methods have been proposed over the past decade. This
chapter focuses on local, post hoc explanations, which elucidate individual decisions of pre-trained
models. These methods vary widely in their intrinsic functionalities. Methods like LIME [Ribeiro
et al., 2016] assign attribution scores to features by fitting a linear model on the presence or absence
of a feature. As explained in Section 2.3, this allows for sentence highlighting in text data, where
each token (feature) has an associated weight. Rule-based methods, such as Anchors [Ribeiro et al.,
2018], provide explanations through decision sets that maximize interpretability and accuracy
[Lakkaraju et al., 2016]. Extracting rules that locally approximate the model’s behavior in
text classification equates to identifying the keywords that best summarize the document
under examination.

As explained in Section 1.5.2, one of the main challenges of Explainable AI is the lack of
universally accepted metrics to compare explanations. This is even more problematic when com-
paring different types of methods, such as rule-based methods and feature-importance methods
(see Figure 3.1). Ideally, for the same prediction, the keywords identified by a rule-based method
should be highlighted as important by a feature-importance method. Conversely, the top-ranked
tokens identified by a feature-importance method (e.g., LIME) are expected to overlap with the
keywords identified by a rule-based method (e.g., Anchors). However, due to the lack of unifor-
mity in evaluations on one hand and the absence of theoretical foundations on the other, such
consistency is not guaranteed. For instance, in Figure 3.1, LIME identifies “amazing” and “goo-
d” as the most influential words for the positive prediction, as they have the highest contribution
scores. On the other hand, Anchors indicates that the presence of both “Nice” and “amazing”
is sufficient to confidently produce the same prediction as the original input. The discrepancies
between explanations are significant because they indicate that different explainers can produce
divergent and sometimes conflicting explanations. This, in turn, can lead to varied and potentially
erroneous and dangerous conclusions.

This chapter, primarily based on the work of Lopardo and Garreau [2022], compares the ex-
planations provided by LIME and Anchors for text classification models through qualitative and
quantitative experiments.

The rest of the chapter is organized as follows: Section 3.2 briefly recalls the methods un-
der scrutiny. Section 3.3 presents the main findings, and Section 3.4 offers the conclusions. The
code used for the comparison is available at https://github.com/gianluigilopardo/
anchors_vs_lime_text, ensuring that experiments are reproducible.

3.2 Methods

In this section, the operational procedures of LIME (Section 3.2.1) and Anchors (Section 3.2.2)
are briefly recalled, introducing the notation used in the process. For both methods, the official

https://github.com/gianluigilopardo/anchors_vs_lime_text
https://github.com/gianluigilopardo/anchors_vs_lime_text

58 CHAPTER 3 — Sentence Highlighting vs. Keyword Identification in Text Models

LIME Anchors

0.2 0.0 0.2 0.4
Contribution to prediction

many
too

Nice
But

good
amazing The weather in

Nice is amazing,
and the food is
also good. But
sometimes there
are just too
many tourists.

The weather in
Nice is amazing,
and the food is
also good. But
sometimes there
are just too
many tourists.

Figure 3.1 – Comparison of LIME and Anchors explanations on a sentiment analysis model.
LIME provides feature importance scores and highlights contributions of individual words, while
Anchors identifies a minimal set of features (highlighted words) sufficient for the same model
prediction.

repositories ∗ are used, with all default parameters, as these are the most commonly used configu-
rations.

The main assumption is that the model F takes as input the TF-IDF vectorization of the words,
as defined in Section 2.2. This mapping is denoted by φ. Therefore, any prediction f(z), for
z ∈ X , relies on φ. As will be demonstrated later, this choice clearly impacts the performance of
the models.

3.2.1 LIME for text data

LIME [Ribeiro et al., 2016] provides explanations in the form of feature attribution, focusing
on the presence or absence of individual words in the document to explain the prediction for ξ.
Below, the main steps of LIME for textual data are summarized, with a detailed explanation and
in-depth analysis available in Mardaoui and Garreau [2021].

1. Generate n (by default, n = 5000) perturbed samples x(1), . . . , x(n) from the original
document ξ by randomly removing words.

2. Obtain the predictions f(x(i)) for all perturbed samples i ∈ [n].

3. Train a weighted linear model on these samples to approximate the original model’s beha-
vior locally around ξ.

Sampling. Recall from Section 2.1 that b = ♣ξ♣ is the number of tokens in the example ξ, and
d = ♣Dξ♣ is the number of unique words in its local dictionary.

The sampling procedure is as follows: for each perturbed document x(i), draw si, the number
of deletions, uniformly at random from [d]. Then, draw a subset Si ⊆ Dx(i) of size si uniformly at
random, and replace all corresponding words in the document with the mask token UNKWORDZ.
Specifically, all occurrences of a selected word are removed.

This implies that, by default, LIME provides explanations at the word level rather than the
token level. Additionally, under the realistic assumption that the token UNKWORDZ was not part of

∗. LIME: https://github.com/marcotcr/lime.
Anchors: https://github.com/marcotcr/anchor

https://github.com/marcotcr/lime
https://github.com/marcotcr/anchor

3.2 – 3.2.2 Anchors for text data 59

the corpus T on which the TF-IDF vectorizer was trained, its TF-IDF weight is zero. Therefore,
replacing any word with the mask token is equivalent to removing it, as explained in Section 2.2.

Surrogate model. Weights πi are assigned to each perturbed sample x(i) based on their simi-
larity to the original document ξ. A linear model is then fitted on the TF-IDF vectorizations of
the perturbed samples, using the predictions f(x(i)) as the target variable. The input to this linear
model is the TF-IDF vector for each sample, where each word in the local dictionary is assigned
a weight. Words that have been replaced or were not originally in ξ have a weight of zero. The
resulting linear model provides a visualization of the scores, indicating the importance of each
word in making the prediction for ξ.

3.2.2 Anchors for text data

Anchors, introduced by Ribeiro et al. [2018], provide explanations in the form of logical condi-
tions that sufficiently approximate the model’s behavior locally. In the case of textual data, anchors

are subsets of the tokens in the example ξ, and the goal is to identify the keywords that maxi-
mize the coverage, while guarantee for high precision. Anchors for text data is properly detailed
in Chapter 4, while the main notions are as follows.

Recall from Eq. (2.2) that ℓ⋆ is the predicted class for the example ξ, i.e., the one class cor-
responding with higher confidence: ℓ⋆ := arg maxℓ∈C Fℓ(ξ). Hence, the prediction of interest is
f(ξ) = Fℓ⋆(ξ). Further define y(z) := arg maxℓ∈C Fℓ(z) as the predicted class for any generic
document z ∈ X .

The precision of an anchorA associated to a prediction f(ξ) is defined by Ribeiro et al. [2018]

as Prec (A) := E
[︂
✶y(x)=ℓ⋆ ♣ A ∈ x

]︂
, where the condition means that all words in A belong to

the sample x. Since Prec (A) is generally not available in practice, an empirical estimate of the
precision is computed from new samples x(i) of the text.

The core idea of Anchors is to pick an anchor with high precision while preserving some
notion of globality. More precisely, Anchors solves (approximately)

A ∈ arg max
Prec(A)≥1−ε

cov(A) , (3.1)

where, by default, ε = 0.05 and the coverage cov(A) is defined as the probability that A ap-
plies to samples. However, due to Anchors’ sampling, maximizing the coverage is equivalent to
minimizing the length of A (see Lopardo et al. [2023a] for more details).

Sampling. The sampling procedure ensures that the behavior of the classifier f is observed in
a local neighborhood of ξ while keeping the anchor A fixed. For a given document ξ and each
candidate anchor A ⊆ ξ, the sampling is performed as follows:

1. Create n (by default, n = 10) samples x(1), . . . , x(n) by generating identical copies of ξ.

2. For each token ξj ∈ ξ not in A, randomly select each occurrence x(i)
j with probability 1/2

and replace selected words with the token UNK.

3. Query the classifier on these perturbed samples to compute the empirical precision of the
anchor A using Eq. (3.1).

Note that, given the TF-IDF vectorization, reaplacing a token with the UNKWORDZ or UNK
does not make any difference (assuming that both tokens were unkown to the vectorizer φ): both
terms will have zero weight, i.e., masking a token with these words is equivalent to remove them.

60 CHAPTER 3 — Sentence Highlighting vs. Keyword Identification in Text Models

Anchor selection. Anchors are selected based on their empirical precision and coverage. The
goal is to find an anchor A with high precision (by default, Prec (A) ≥ 0.95) while maximizing
its coverage, defined as the probability that the anchor applies to samples. The user is provided with
the shortest anchor that satisfies the precision condition, indicating the key words that consistently
lead to the same model prediction.

Comparison with LIME. One main difference between LIME and Anchors lies in their sam-
pling methods. LIME removes words based on their presence in the local dictionary Dξ: if a word
is selected, all its occurrences in ξ will be removed. Anchors, on the other hand, treat tokens in
ξ as independent, removing individual occurrences randomly. Another notable difference is that
LIME evaluates samples on the prediction f(x) by leveraging the confidence scores for each class.
Conversely, Anchors directly uses the predicted labels y(x): the precision is assessed based solely
on whether the sample receives the same classification as the original example.

3.3 Experiments

The main results are presented by comparing LIME and Anchors for text data when applied to
simple classification models. The experiments are conducted on three review datasets: Restaurants,
Yelp, and IMDB. The task is binary sentiment analysis, where label 1 denotes a positive review
and label 0 denotes a negative review, as in Example 2.1.1. In practice, the model is defined as
F : X → [0, 1]2. The predicted class is y(z) := arg maxℓ∈{0,1♢ F (z). Without loss of generality,
the focus is on explaining positive predictions, i.e., examples z ∈ T such that y(z) = 1, hence
f(z) = F1(z).

In Section 3.3.1, a qualitative comparison of LIME and Anchors is provided by examining
individual explanations. In Section 3.3.2, the ℓ-index is introduced as a metric to evaluate the
quality of explanations for text data, measuring their faithfulness to the classifier. Unless otherwise
specified, the figures report the average LIME coefficient and the occurrence count for Anchors,
each based on 100 runs of the default algorithms.

3.3.1 Qualitative Evaluation

3.3.1.1 Simple Decision Rules

This section begins by examining simple decision rules that rely on the presence or absence
of specific words in the text. This task, sometimes referred to as shortcut identification [Bastings
et al., 2022], involves detecting straightforward patterns or features that the model uses to make
predictions. These rules are typically represented by indicator functions, which denote whether
a word is present in the text. Four cases of increasing complexity are explored to illustrate how
decision rules can be constructed and interpreted based on these simple patterns.

Presence of a given word. Consider a simple decision rule that returns 1 or 0 based on the pre-
sence or absence of a specific predefined word wj ∈ D. Specifically, f(z) := ✶wj∈z = ✶φ(z)j>0.

Examine an example ξ where wj ∈ ξ, resulting in f(ξ) = 1. In this scenario, both methods
behave as expected: LIME assigns a high weight to wj and negligible weights to the other words,
while Anchors correctly identifies the keyword, producing the anchor A = {wj♢, as illustrated in
Figure 3.2.

3.3 – 3.3.1 Qualitative Evaluation 61

0.0 0.5 1.0

this
place

is
not
bad
food
good

LIME

good
0

25

50

75

100

co
un

t

Anchors

0.00 0.25 0.50

this
place

is
not
bad
food
good

LIME

good
0

25

50

75

100

co
un

t

Anchors

Figure 3.2 – Comparison of LIME and Anchors explanation on a simple decision rule. The
classifiers ✶good∈z (left panel) and ✶(not∈z and bad∈z) or good∈z (right panel) are applied to the same
review. Anchors makes no difference between the two: the presence of the word good is sufficient
to get a positive prediction.

0.0 0.5

very
good

is
food

LIME

good, very
good

0

50

O
cc

ur
re

nc
es

Anchors

Food is very very very very good!

0.0 0.5

very
good
food

is

LIME

good, very
good

0

50

O
cc

ur
re

nc
es

Anchors

Food is very very very very very good!

Figure 3.3 – Making a word disappear from the explanation by adding one occurrence. The
classifier ✶(very∈z and good∈z) is applied when mvery = 4 (left) and mvery = 5 (right).

Small decision tree. Consider a small decision tree that checks for the presence of words w1

and w2 or word w3, i.e.,
f(z) = ✶(w1∈z and w2∈z) or w3∈z .

Analyze an example ξ where w1, w2, w3 ∈ ξ. LIME assigns the same positive weight to w1

and w2, a higher weight to w3, and negligible weights to all other words, as shown in Mardaoui
and Garreau [2021]. In contrast, Anchors only identifies w3 as the anchor. Ideally, both methods
would highlight the same words since they are all important for the decision. However, Anchors
does not consider w1 and w2 in its explanation because the presence of w3 alone is sufficient

for a positive classification, and {w3♢ is a shorter anchor than {w1, w2♢, thus it has higher
coverage.

Presence of several words. To generalize the previous example, consider a model that classifies
documents based on the presence of a set of words. Let J = [k] ⊆ [♣D♣] represent a set of distinct
indices associated with distinct words in the dictionary. The model considered is:

f(z) =
∏︂

j∈J

✶wj∈z =
∏︂

j∈J

✶φ(z)j>0 .

62 CHAPTER 3 — Sentence Highlighting vs. Keyword Identification in Text Models

0.00 0.25

very
bad
not

good
food

place
is

this

LIME

bad, not

good, very
0

20

40
O

cc
ur

re
nc

es

Anchors

{'not': 1, 'bad': 1, 'very': 1, 'good': 1}

0.00 0.25

bad
good
very
not
this

food
is

place

LIME

good, very
0

25

50

75

100

O
cc

ur
re

nc
es

Anchors

{'not': 1, 'bad': 1, 'very': 2, 'good': 1}

0.00 0.25

good
not

bad
very

place
food
this

is

LIME

good

good, not

good, very
0

20

40

60

O
cc

ur
re

nc
es

Anchors

{'not': 1, 'bad': 1, 'very': 4, 'good': 1}

0.00 0.25

good
bad
very
not

is
food
this

place

LIME

good, very
good

0

25

50

75

100

O
cc

ur
re

nc
es

Anchors

{'not': 1, 'bad': 1, 'very': 5, 'good': 1}

Figure 3.4 – Anchors explanations depend on words multiplicity. Comparison on the classifier
✶(not∈z and bad∈z) or (very∈z and good∈z) when only mvery is changing. LIME assigns the same weight
to the important words.

In this scenario, LIME assigns the same importance to each word in J , regardless of their
occurrences (in accordance to Mardaoui and Garreau [2021, Proposition 3]). In contrast, Anchors’
explanations are influenced by the number of occurrences of each word (Proposition 6 in Lopardo
et al. [2023a]). Specifically, if the number of occurrences of a word in J exceeds a certain
threshold, it disappears from the anchors (see Figure 3.3). This behavior is unexpected and
undesirable, especially since this threshold is beyond control. An explicit formula for the threshold,
depending on the parameters of Anchors, is provided in Chapter 4.

Presence of disjoint subsets of words. Now, consider two disjoint sets of indices J1 = [k1] ⊆
[♣D♣] and J2 = {k1 + 1, . . . , k2♢ ⊆ [♣D♣] with the same cardinality, ♣J1♣ = ♣J2♣. We examine the
model

f(z) =
∏︂

j∈J1

✶wj∈z ·
∏︂

j∈J2

✶wj∈z =
∏︂

j∈J1

✶φ(z)j>0 ·
∏︂

j∈J2

✶φ(z)j>0 ,

and an example ξ such that wj ∈ ξ for all j ∈ J1 and for all j ∈ J2.

3.3 – 3.3.2 Quantitative Evaluation 63

0.0 0.5

good
love
all

tons
options

placecant
this
for
are

without

LIME

goo
d

0

50

100

co
un

t

Anchors

0.0 0.5

good
are
for
of

the
tons
all

placecant
beat
meal

LIME

goo
d

0

50

100

co
un

t

Anchors

Figure 3.5 – Comparison of LIME and Anchors on logistic models with λlove = −1, λgood =
+5, and λw = 0 for other words (left), vs. λgood = 10 and λw ∼ N (0, 1) for other words (right),
applied to the same document. Good is the most important word for classification in both cases.

LIME assigns the same weight to words in J1 and words in J2. However, Anchors’ explana-
tions depend on the multiplicities of words (see Figure 3.4): as the occurrences of one word in
J1 (or in J2) increase, the presence of other words in the same subset becomes sufficient to get a
positive prediction.

3.3.1.2 Logistic models

The focus now shifts to logistic models, adapting the definition from Section 1.1.3 and Eq.
(1.2) to the current setting. Let σ : R → [0, 1] be the sigmoid function, with λ0 ∈ R as the
intercept and λ ∈ RD as fixed coefficients. For any document z, the model considered is:

f(z) = ✶σ(λ0+λ⊤φ(z))> 1
2
.

Sparse Case Consider a scenario where only two coefficients, λ1 > 0 and λ2 < 0, are nonzero,
with ♣λ1♣ > ♣λ2♣. In this case, LIME assigns nonzero weights to w1 and w2, and zero importance
to the other words. In contrast, Anchors only identifies w1 (see Figure 3.5), as expected, since w1

is the primary word influencing a positive prediction.

Arbitrary coefficients. Consider the case where λ1 ≫ 0, and λj ∼ N (0, 1) for j ≥ 2. LIME
assigns a large weight to w1 and small weights to the other words, while Anchors only identifies
w1 as it is the most influential word for the decision (see Figure 3.5).

When applied to simple if-then rules based on the presence of specific words, the analysis
reveals that Anchors exhibit unexpected behavior related to the multiplicities of these words in a
document, whereas LIME captures the classifier’s support. The experiments on logistic models in
Figure 3.5 demonstrate that even when both methods agree on the most important words, LIME
captures more detailed information than Anchors.

3.3.2 Quantitative Evaluation

When applying a logistic classifier f (Section 3.3.1.2) on top of a TF-IDF vectorizer φ(·)
(Section 2.2), the contribution of a word wj is given by λjφ(()z)j , allowing words to be unambi-
guously ranked by importance. To evaluate an explainer’s faithfulness (Section 2.4), the similarity

64 CHAPTER 3 — Sentence Highlighting vs. Keyword Identification in Text Models

TABLE 3.1 – Comparison between LIME and Anchors in terms of ℓ-index and computing time.

ℓ-index time (s)
Restaurants Yelp IMDB Restaurants Yelp IMDB

LIME 0.96 ± 0.17 0.95 ± 0.22 0.94 ± 0.23 0.21 ± 0.05 0.45 ± 0.22 0.73 ± 0.44
Anchors 0.67 ± 0.44 0.29 ± 0.43 0.22 ± 0.35 0.19 ± 0.27 3.83 ± 13.95 33.87 ± 165.08

between the N most important words for the interpretable classifier, ΛN (z), and the N most
important words according to the explainer, EN (z), is measured. This method assesses the explai-
ner’s ability to accurately identify the most important words for classifying a document z.

The ℓ-index for the explainer E is defined as:

ℓE :=
1

♣T ♣
∑︂

z∈T
J (EN (z),ΛN (z)) ,

where J (·, ·) is the Jaccard similarity and T is the test corpus.
Since N cannot be fixed a priori for Anchors, the experiments are conducted as follows. For

any document z, let A(z) be the obtained anchor and set N = ♣A(z)♣. The Jaccard similarity is

then computed as J
(︂
A(z),Λ♣A(z)♣(z)

)︂
for Anchors and J

(︂
L♣A(z)♣(z),Λ♣A(z)♣(z)

)︂
for LIME.

Table 3.1 reports the ℓ-index and computation time for LIME and Anchors across three data-
sets. LIME demonstrates high performance in extracting the most important words while requiring
less computational time compared to Anchors. An anchor A is a minimal set of words that is
sufficient (with high probability) to yield a positive prediction, but it does not necessarily
coincide with the ♣A♣ most important words for the prediction.

3.4 Conclusion

The absence of standard evaluation methods for Explainable AI presents a significant chal-
lenge, especially when comparing feature importance-based methods with rule-based methods.
This lack of standardized metrics exacerbates the discrepancies observed in machine learning in-
terpretability.

In this chapter, explanations for text data from two popular methods, LIME and Anchors, were
compared, highlighting differences and unexpected behaviors when applied to simple models.
Observations indicate significant discrepancies: the set of words A extracted by Anchors does not
coincide with the set of ♣A♣ words with the largest interpretable coefficients determined by LIME.

To compare different forms of explanations (feature importance-based and rule-based), the
ℓ-index was proposed, measuring the ability of explainers to identify the most important words.
Experiments show that LIME performs better than Anchors in this task while requiring fewer
computational resources. Additionally, experiments revealed unusual behaviors in Anchors, un-
derscoring the need for deeper analysis to understand these anomalies.

Contributing to these discrepancies is the lack of robust theoretical foundations for machine
learning interpretability. Despite substantial advancements in prediction accuracy, the interpretabi-
lity of models—which is crucial for trust and actionable insights—remains inadequately grounded
in theory. This gap likely contributes to the inconsistencies observed in explanations provided by
different models.

3.4 – Conclusion 65

This manuscript aims to address these critical issues by contributing towards the establishment
of a more solid theoretical basis for machine learning interpretability, facilitating more reliable and
consistent explanations across different methods.

CHAPTER 4
An In-Depth Analysis of

Anchors for Text Data
Anchors [Ribeiro et al., 2018] has been introduced as a representative post-hoc, rule-
based interpretability method. For text data, it explains a decision by highlighting a
small set of words (an anchor) such that the model produces similar outputs when these
words are present in a document. Empirical observations, as shown in Chapter 3, indi-
cate that Anchors exhibit unexpected behavior even on simple models, such as an unclear
dependence on word multiplicities. In this chapter, the first theoretical analysis of An-
chors is presented [Lopardo et al., 2023a], assuming an exhaustive search for the best
anchor. After formalizing the algorithm for text classification in Section 4.2, explicit
results are provided in Section 4.4 for different classes of models using TF-IDF vectori-
zation, where words are replaced by a fixed out-of-dictionary token when removed. The
analysis covers models such as elementary if-then rules (Section 4.4.2) and linear classi-
fiers (Section 4.4.3). This analysis is then leveraged to gain insights into the behavior of
Anchors for any differentiable classifiers. For neural networks, it is empirically shown
in Section 4.5 that Anchors select words corresponding to the highest partial derivatives
of the model with respect to the input, reweighted by the inverse document frequencies.

2.1 Notation . 45
2.2 Text vectorizers . 47
2.3 Post-hoc explanations in NLP . 50

2.3.1 Identifying keywords . 50
2.3.2 Sentence highlighting . 51
2.3.3 Counterfactual explanations 52

2.4 Evaluating explanations . 53

67

4.1 – Introduction 69

The selection on the

menu is great, and so

is the food! The

service is not bad,

prices are fine.

precision : 0.97
coverage : 0.12

Figure 4.1 – Anchors explaining the positive prediction of a black-box model f on an example
ξ from the Restaurant review dataset. The anchor A = {great, not, bad, fine♢ (in blue), having
length ♣A♣ = 4 is selected. Intuitively, these four words together ensure a positive prediction by f
with high probability (precision : 0.97), while being not too uncommon (coverage : 0.12).

4.1 Introduction

In Chapter 3, a comparison between Anchors and LIME revealed some unusual behavior.
While LIME has been extensively studied [Mardaoui and Garreau, 2021] and its behaviors are
well-understood, a robust theoretical foundation for Anchors has been lacking. The paper by Lo-
pardo et al. [2023a] conducted the first in-depth analysis of Anchors, and this chapter presents
those findings.

The focus is on Anchors [Ribeiro et al., 2018], particularly its implementation for text data.
For a given prediction, the core idea of Anchors is to provide a simple rule that yields the same
prediction with high probability if it is satisfied. These rules can be formulated as the presence of
a list of tokens in the document to be explained and are presented as such to the user (see Figure
4.1).

A key question explored is whether Anchors will highlight the important words in the expla-
nation, especially when the model to be explained is intrinsically interpretable and the important
words for the prediction are known with absolute certainty.

To provide a comprehensive understanding, the basic concepts of Anchors and its mechanism
for text classification are first explained in Section 4.2. Next, the definition of a more tractable,
exhaustive version of the algorithm is detailed in Section 4.3, which constitutes the central focus
of this study.

To assess the efficacy of Anchors for text data, a theoretical and empirical analysis of its
behavior on explainable classifiers is conducted in Section 4.4. This analysis offers new insights
that can be extended to broader classes of models. Specifically, in Section 4.5, a surprising result
on neural networks is empirically demonstrated, providing valuable insights into the real-world
applications of Anchors for explaining document classifiers.

Finally, in Section 4.6, conclusions are drawn and the findings of the study are summarized.
Some unexpected results highlight the importance of theoretical analysis for explainers. The in-
sights presented in this chapter are intended to be useful for researchers and practitioners in the
field of natural language processing, aiding in the accurate interpretation of the explanations pro-
vided by Anchors. Additionally, the framework designed for this analysis can be valuable to the
explainability community, both in designing new methods with solid theoretical foundations and
in analyzing existing ones.

70 CHAPTER 4 — An In-Depth Analysis of Anchors for Text Data

Contributions. This chapter presents the first theoretical analysis of Anchors for text data [Lo-
pardo et al., 2023a], based on the default implementation available on GitHub ∗ (as of June 2024).
The analysis primarily relies on simplifying the combinatorial optimization procedure by consi-
dering an exhaustive version of Anchors, using an out-of-dictionary token when removing words,
and assuming TF-IDF vectorization as a preprocessing step. Specifically, the contributions are as
follows:

— The Anchors algorithm for text classification is dissected, demonstrating that the sampling
procedure can be described simply as an i.i.d. Bernoulli removal of words not belonging
to the anchor (Proposition 4.2.1).

— The exhaustive version is shown to be stable with respect to perturbations of the preci-
sion function, justifying the study of the exhaustive Anchors algorithm (Proposition 4.3.1
and 4.3.2).

— It is established that if the classifier ignores some words, they will not appear in the anchor
selected by exhaustive Anchors (Proposition 4.4.1).

— Exhaustive Anchors for simple if-then rules is proven to provide meaningful explanations,
though words can be excluded from the explanation if their multiplicity is too high (Pro-
position 4.4.2).

— Exhaustive Anchors is demonstrated to select words associated with the most positive co-
efficients reweighted by the inverse document frequency for all linear classifiers (Proposi-
tion 4.4.3 and 4.4.4).

— It is empirically shown that exhaustive Anchors picks the words associated with the most
positive partial derivatives scaled by the inverse document frequency for neural networks
(Section 4.5).

All theoretical claims are supported by mathematical proofs, available in Section A.1, and
numerical experiments, detailed in Section A.3. The code for the experiments is available at
https://github.com/gianluigilopardo/anchors_text_theory. Unless other-
wise specified, the experiments use the official implementation of Anchors with all default options.

Related work. Among the numerous methods for machine learning interpretability proposed in
recent years (Section 1.4), rule-based methods have emerged as popular contenders. This popu-
larity is partly due to users’ preference for rule-based explanations over other types [Lim et al.,
2009, Stumpf et al., 2007]. Hierarchical decision lists [Wang and Rudin, 2015] are valuable for
understanding the global behavior of a model by prioritizing the most interesting cases. Lakkaraju
et al. [2016] introduced a compromise between accuracy and interpretability to extract small and
disjoint rules, which are easier to interpret, and introduced the concept of coverage. Alternatively,
Barbiero et al. [2022] proposed learning simple logical rules alongside the model’s parameters to
maintain accuracy.

Several rule-based approaches focus on local interpretability (Section 1.4.2), based on the
idea that any black-box model can be accurately approximated by a simpler, more understandable
model around a specific instance to explain. For instance, LORE [Guidotti et al., 2018a] uses a de-
cision tree where the explanation is a list of logical conditions satisfied by the instance within the
tree. A central aspect of perturbation-based methods (Section 1.4.6) is the sampling scheme. De-
launay et al. [2020] modified Anchors sampling for tabular data, using the Minimum Description

Length Principle discretization [Fayyad and Irani, 1993] to learn the minimal number of intervals

∗. https://github.com/marcotcr/anchor

https://github.com/gianluigilopardo/anchors_text_theory
https://github.com/marcotcr/anchor

4.2 – Anchors for text data 71

needed to separate instances from distinct classes. Amoukou and Brunel [2022] proposed Mini-

mal Sufficient Rules, similar to Anchors for tabular data, extended to regression models, capable
of directly handling continuous features without discretization.

Few local, post-hoc explainability techniques exist for text data (Section 2.3). Among them,
LIME [Ribeiro et al., 2016] and SHAP [Lundberg and Lee, 2017] provide explanations using a
linear model as a local surrogate, trained on perturbed samples of the instance to explain. While
LIME and SHAP assign a weight to each word of the example, Anchors extracts the minimal subset
of words that is sufficient to achieve, with high probability, the same prediction as the example.
Delaunay et al. [2020] extended Anchors by also considering the absence of words.

Moreover, the lack of standard evaluation methods for Explainable AI (Sections 1.5.2 and 2.4)
complicates the comparison between different interpretability techniques, especially when com-
paring feature importance methods with rule-based approaches. In Chapter 3, LIME and Anchors
were compared experimentally, revealing some unexpected behaviors from Anchors that are not
yet fully understood. This observation highlighted the need for a deeper theoretical analysis to
explain these anomalies.

The primary concern of this work is to provide theoretical guarantees for interpretability me-
thods. For feature importance methods, Lundberg and Lee [2017] offers insights in the context
of linear models for kernel SHAP (even with some caveats mentioned in Section 1.5.3), while
Mardaoui and Garreau [2021] specifically examines LIME for text data, building on Garreau and
Luxburg [2020]. These papers also analyze the behave of LIME on simple if-then rules and linear
models. To the best of our knowledge, the question of theoretical guarantees for rule-based me-
thods had not been addressed until Lopardo et al. [2023a], the work explained in this paper, which
was the first to provide such an analysis.

4.2 Anchors for text data

This section presents the operating procedure of Anchors for text data, as introduced by Ri-
beiro et al. [2018]. After specifying the setting and notation in Section 4.2.1, the key notions of
precision and coverage are detailed in Section 4.2.2. The algorithm is described in Section 4.2.3,
with further details on the sampling scheme provided in Section 4.2.4.

4.2.1 Setting and Notation

With the notation presented in Section 2.1 at hand, consider the problem of explaining the
decision of a classifier f taking documents as input, denoted by z for a generic document and ξ
for the specific example of interest.

The analysis is restricted to binary classification, where f(z) = ✶F (z)∈R, with F : X → Rp

being a measurable function and R a collection of intervals of Rp. It is assumed that F relies
on a TF-IDF vectorization of the documents (Section 2.2), specifically F = h ◦ φ, where φ is a
deterministic mapping X → RD and h : RD → Rp. For simplicity, and without loss of generality,
the example ξ is always classified as positive, i.e., f(ξ) = 1. The models considered take the form:

f(z) = ✶h(φ(z))∈R . (4.1)

Definition 4.2.1 (Anchor). An anchor is defined as any non-empty subset of [b], corresponding
to a preserved set of tokens in ξ. The set of all candidate anchors for the example ξ is denoted

72 CHAPTER 4 — An In-Depth Analysis of Anchors for Text Data

by A. The length of an anchor A ∈ A, ♣A♣, is defined as the number of tokens in the anchor. In
practice, an anchor A for a document ξ is represented as a non-empty sublist of tokens present in
the document, which is the output of Anchors (illustrated in Figure 4.1).

4.2.2 Precision and Coverage

The key concepts of precision and coverage, as defined by Ribeiro et al. [2018], briefly men-
tioned in Chapter 3, are detailed in the following.

Definition 4.2.2 (Precision). The precision of an anchor A ∈ A is the probability that a local
perturbation of ξ is classified as ξ. Given the restriction to ξ such that f(ξ) = 1, the precision can
be expressed as:

Prec (A) = E [f(x) = 1 ♣ A ∈ x] = EA [f(x) = 1] = PA (h(φ(x)) = 1) , (4.2)

where the expectation is taken with respect to x, a random perturbation of ξ that still contains all
the words included in the anchor A.

The sampling of x is further detailed in Section 4.2.4. For an anchor containing all the words
of ξ, the precision is exactly 1, while smaller anchors generally have lower precision.

Large anchors with sizes comparable to b = ♣ξ♣ are less interesting from an interpretability
perspective (the text in Figure 4.1 would be completely highlighted). To quantify this, the notion
of coverage is used, defined as the proportion of documents in the corpus (the dataset on which the
vectorizer is fitted) that contain the anchor. For instance, the coverage of the anchor in Figure 4.1
is 0.12, meaning that 12% of the reviews contain it.

Precision and coverage are crucial to the Anchors algorithm: in essence, Anchors seeks an
anchor of maximal coverage with a prescribed precision. This process is detailed in the next
section.

4.2.3 The Algorithm

In practice, the coverage can be costly to compute, and in many cases, a corpus is not available
when the prediction is explained. Since anchors with smaller lengths tend to have larger cove-
rage, a natural solution, used in the default implementation, is to minimize the length instead of
maximizing the coverage, leading to:

Minimize
A∈A

♣A♣ , subect to Prec (A) ≥ 1 − ε , (4.3)

where ε > 0 is a pre-determined tolerance threshold (set to 0.05 in practice). The lower ε is, the
harder it is to find an anchor satisfying Eq. (4.3).

The exact precision of a specific anchorA ∈ A is unknown, as the expectation in Eq. (4.2) can
be very costly to compute, in general. The strategy used by Ribeiro et al. [2018] is to approximate
Prec (A) by ˆ︃Precn(A), an empirical approximation, defined in Section 4.3. The optimization pro-
blem in Eq. (4.3) is generally intractable due to the large cardinality of A in practical scenarios.
Consequently, the default implementation applies the KL-LUCB [Kaufmann and Kalyanakrish-
nan, 2013] algorithm to identify a subset of rules with high precision. This subset is then used as
a representative of all candidate anchors, finding an approximate solution to Eq. (4.3). In Lopardo
et al. [2023a], this optimization procedure is not considered, and instead, an exhaustive version of
Anchors is described in Section 4.3.

4.2 – 4.2.4 The Sampling 73

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9

ξ the quick brown fox jumps over the lazy dog
x1 UNK UNK brown fox jumps over the lazy dog
x2 the quick brown UNK jumps UNK the lazy dog
...

...
...

...
...

...
...

...
...

...
xn the quick brown UNK jumps over the lazy UNK

Figure 4.2 – Illustration of Anchors sampling scheme. Anchors sampling is performed in three
main steps: copies generation, random selection, word replacing. Here, for instance, for the fourth
token (fox), {2, n♢ ∈ S4 (B4 ≥ 2), so the second and the n-th copies are considered for replace-
ment.

4.2.4 The Sampling

The sampling procedure (briefly introduced in Section 3.2.2) used to compute the precision
of an anchor (see Eq. (4.2)) is detailed here. The goal is to observe the behavior of the model F
in a local neighborhood of ξ, while keeping the set of words in the anchor A fixed. In the offi-
cial implementation, this is achieved by setting use_unk_distribution=True (the default
choice). Formally, for a given example ξ and for a candidate anchor A ∈ A, perturbed samples
x(1), . . . , x(n) are generated as follows:

1. Copies generation: Create n (by default, n = 10) identical copies x(1), . . . , x(n) of the
example to explain ξ.

2. Random selection: For each token with index k ∈ [b] not in the anchor, draw Bk ∼
Bin(n, 1/2), representing the number of copies to be perturbed (words in the candidate
anchor are the blue columns of Table 4.2).

3. Word replacement: For each token not in the anchor, independently and uniformly draw
a set Sk of cardinality Bk from the copies to be perturbed. Replace the words in copies
whose indices are in Sk with the token UNK.

The perturbation distribution described here differs from Ribeiro et al. [2018], which involves
replacing selected words with others having the same part-of-speech tag based on similarity in an
embedding space. Replacing words with a predefined token can create meaningless sentences
that might mislead a classifier by producing unrealistic samples (as discussed in Section 1.5.1).
However, this option is not implemented in the official release. A similar solution, described in
Chapter 5, is one of the main contributions of this manuscript. Alternatively, when using Anchors
official implementation, it is possible to replace selected words using BERT [Devlin et al., 2019].

This work relies on the UNK-replacement because (i) the default choices are likely the most
used by Anchors users, necessitating interpretation and theoretical guarantees, and (ii) as detai-
led in Section 2.2, in the case of TF-IDF vectorization, the UNK-replacement exactly replicates
word removals. Experiments show that the results hold when BERT-replacement is applied (see
Section A.3.8).

Anchors sampling procedure is similar to that of LIME for text data [Ribeiro et al., 2016], with
the crucial difference that LIME removes all occurrences of a given word when it is selected for
removal. More details can be found in Mardaoui and Garreau [2021]. The sampling procedure can
be described more simply, as shown in Section A.1.1:

74 CHAPTER 4 — An In-Depth Analysis of Anchors for Text Data

Proposition 4.2.1 (Equivalent sampling). The sampling process described above is equivalent

to replacing, for any sample x(i), each token x
(i)
j not in A independently with probability 1/2.

Intuitively, parsing each line of Table 4.2, Anchors flips an imaginary coin for each word not
belonging to the anchor, replaces it in the perturbed example if the coin shows heads, and keeps
it if it shows tails. Proposition 4.2.1 provides a simple description of Mj , the random variable
representing the multiplicity of word wj in the perturbed sample x. For any given anchor A,
Mj ∼ aj + Bin(mj − aj , 1/2), where aj is the number of occurrences of wj in A.

4.3 Exhaustive p-Anchors

This section presents the central object of our study, exhaustive p-Anchors. Essentially, this is
a formalized version of the original combinatorial optimization problem described in Eq. (4.3) for
any evaluation function p : A → R. The procedure is detailed in Section 4.3.1, followed by an
exploration of a key stability property that motivates further investigations in Section 4.3.2.

4.3.1 Description of the Algorithm

The optimization problem in Eq. (4.3) can be decomposed into two steps. First, select all
anchors in A such that Prec (A) ≥ 1 − ε. This subset of anchors is denoted as A1(ε). Note that
A1(ε) ̸= ∅ since the full anchor [b] has precision 1. Then, among these anchors, keep those with
minimal length, resulting in A2(ε). At this point, it is not clear from Eq. (4.3) which anchors
should be selected, so the ones with the highest precision are chosen. In cases of equality (e.g.,
several anchors with precision 1), the set is referred to as A3(ε). If A3(ε) contains more than one
element, an anchor is selected uniformly at random.

Algorithm 1 formally describes this procedure for a generic evaluation function p : A → R,
illustrated in Figure 4.3. When using p, the sets constructed are denoted as Ap

k(ε), and the selected
anchor is denoted as Ap(ε).

The goal is to provide a flexible framework: Algorithm 1 can be used with p = ˆ︃Precn or
p = Prec as the selection function, or any other function that approximates Prec well. When
p = Prec, this version of the algorithm is called exhaustive Anchors, whereas when p = ˆ︃Precn it
is called empirical Anchors.

Empirical Anchors closely resembles the original Anchors; the main difference is that empi-
rical Anchors considers all possible anchors, while the original uses an efficient approximate
procedure, which is not considered here. Another difference is that empirical Anchors selects
anchors with maximal precision in the third step. This is not necessarily the case with the default
implementation, which uses an approximate procedure. Nonetheless, the chosen anchors tend to
have high precision, and empirical Anchors and the default implementation produce very similar
outputs in practice, as demonstrated in Section A.3.2.

4.3.2 Stability with Respect to the Evaluation Function

Applying Algorithm 1 to functions taking similar values on A leads to similar results, as shown
in the following.

4.3 – 4.3.2 Stability with Respect to the Evaluation Function 75

Algorithm 1 An overview of exhaustive p-Anchors.

Require: set of candidate anchors A, selection function p : A → R, tolerance threshold ε
1: select Ap

1(ε) = {A ∈ A s.t. p(A) ≥ 1 − ε♢
2: select Ap

2(ε) = arg min
A′∈Ap

1(ε)

\︄\︄A′\︄\︄

3: select Ap
3(ε) = arg max

A′∈Ap
2(ε)

p(A′)

4: select Ap(ε) ∈ Ap
3(ε) uniformly at random

5: return Ap(ε)

0 1 2 3 4 5 6 7 8 9 10
|A|

0.0
0.2
0.4
0.6
0.8
1.0

p(
A)

b

1− ε
p

1(ε)p
2(ε)

p
3(ε)p
3(ε)

Figure 4.3 – An illustration of Algorithm 1 with evaluation function p = Prec. Each blue dot
is an anchor, with its length on the horizontal axis and its value for p on the vertical axis. Here,
ε = 0.2 and the maximal length of an anchor is b = 10 (the length of ξ). In the end, the anchor A
such that ♣A♣ = 3 and p(A) = 0.9 is selected (red circle).

Proposition 4.3.1 (Stability of exhaustive p-Anchors). Let ε > 0 be a tolerance threshold,

p : A → R be an evaluation function, and set A⋆ := Ap(ε), the output of exhaustive p-Anchor.

Assume that (i) p(A⋆) ≥ 1 − ε/4, and (ii) p(A) ≤ 1 − 3ε/4 for any A ∈ Ap
2(ε) \ {A⋆♢. Let

q : A → R be another evaluation function such that

δ := sup
A∈A

♣p(A) − q(A)♣ < ε

4
. (4.4)

Then Aq(ε− δ) = A⋆.

In plain words, if A⋆ is a solution with a high value for the chosen p function, and q is a good
approximation of p, then running Algorithm 1 on q instead of p will yield approximately the same
result. This is the key motivation for studying Prec instead of ˆ︃Prec, and later considering
further approximations to Prec. One can study directly Prec, or an approximation thereof, and
gain insights into the output of the original algorithm. Proposition 4.3.1 is proved in Section A.1.2.

Note that, since the values of the p function are perturbed, an anchor with a smaller length
than A⋆ could cross the 1 − ε barrier and become a solution for exhaustive q-Anchors if the same
tolerance threshold ε is maintained. This is the case for the anchor with length two and the highest

76 CHAPTER 4 — An In-Depth Analysis of Anchors for Text Data

value of p in Figure 4.3. Therefore, the tolerance threshold must decrease: Proposition 4.3.1 cannot
be improved to show that Aq(ε) = A⋆. However, having a large value of p for Ap (assumption
(i)) is not strictly necessary. What is important is that the gap between Ap and the anchor with the
second-largest value of the p function in Ap

2 cannot be filled by q (assumption (ii)). Otherwise, an
anchor with the same length could get a larger value for q than Ap and be selected in the final step.

As a first application of Proposition 4.3.1, consider the empirical precision,

ˆ︃Precn(A) :=
1

n

n∑︂

i=1

✶f(x(i))=1 ,

where n is the number of perturbed samples with A fixed, as described in Section 4.2.4. Then the
empirical precision satisfies the following:

Proposition 4.3.2 (ˆ︃Precn(A) uniformly approximates Prec). Recall that b denotes the number

of tokens in ξ. Let δ > 0. With probability higher than 1 − 2b+1e−2nδ2
,

∀A ∈ A,
\︄\︄\︄ ˆ︃Precn(A) − Prec (A)

\︄\︄\︄ ≤ δ . (4.5)

In particular, Proposition 4.3.2 guarantees that ˆ︃Precn and Prec satisfy Eq. (4.4) with high
probability, as soon as n ≫ b/ε2. This is the main motivation for studying exhaustive Anchors

in the next section: Proposition 4.3.1 shows that exhaustive Anchors and empirical Anchors will
output the same result with high probability. Proposition 4.3.2 is proved in Section A.1.3.

4.4 Analysis on explainable classifiers

Before presenting the main results, the implications of the vectorizer under consideration are
described in Section 4.4.1. The analysis then examines Anchors’ behavior when applied to simple
rule-based classifiers in Section 4.4.2 and to linear models in Section 4.4.3. All claims are suppor-
ted by mathematical proofs, provided in Section A.1, and validated by reproducible experiments.

4.4.1 Vectorizers and Immediate Consequences

Recall the TF-IDF vectorizer defined in Definition 2.2.1. As said, once the TF-IDF vectorizer
is fitted on a corpus T , the vocabulary is fixed. Thus, if a word is not part of the initial corpus T ,
its TF-IDF term is zero. As described in Section 4.2.4, Anchors perturbs documents by replacing
words with a fixed token UNK. It is assumed that the word UNK is not present in the initial corpus.
Therefore, replacing any word with this token is equivalent to simply removing it from the
perspective of TF-IDF.

Models considered in this paper are always trained on a (non-normalized) TF-IDF vectoriza-
tion φ as in Definition 2.2.1. However, it is shown in Section A.1.9 that the same results hold for
the ℓ2-normalized TF-IDF vectorization, defined as

∀j ∈ [D], φ(z)j :=
mj(z)vj√︂∑︁D
j=1mj(z)2v2

j

.

This normalization is the default in the scikit-learn † implementation of TF-IDF.

†. https://scikit-learn.org/stable/modules/generated/sklearn.feature
_extraction.text.TfidfVectorizer.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

4.4 – 4.4.2 Simple decision rules 77

Given that the models follow the form of Eq. (4.1), the exact location of the words in
the document does not matter when the vectorizer is applied. Therefore, when computing
precision, only the occurrences of word wj in anchor A matter. An anchor is thus written as
A = (a1, . . . , ad, . . . , aD). Since aj ≤ mj for all j ∈ [D], aj = 0 for any j > d. Thus, A can be
written as A = (a1, . . . , ad) without ambiguity.

With this notation, and following the discussion after Proposition 4.2.1, the TF-IDF of wj in
the perturbed sample x will satisfy:

φ(x)j = Mjvj ∼ (aj + Bin(mj − aj , 1/2))vj , (4.6)

whereMj is the random multiplicity of the wordwj . Intuitively,Mj corresponds to aj occurrences
ofwj which cannot be removed, plus a random number of occurrences depending on the sampling.
This has several important consequences in the analysis, the first being:

Proposition 4.4.1 (Dummy features). Let f be defined as in Eq. (4.1) and assume that h does not

depend on coordinate j. Let ε > 0 be a tolerance threshold. Then, for any anchor A ∈ APrec
3 (ε),

aj = 0.

Proposition 4.4.1 is a natural property: if the model does not depend on wordwj , then it should
not appear in the explanation. This concept, often investigated in the interpretability literature, was
originally introduced by Friedman [2004]. Here, the vocabulary of Sundararajan et al. [2017b] is
used, which introduced the notion as an axiom for feature importance.

Note that Proposition 4.4.1 is not satisfied by the empirical version (with p = ˆ︃Precn), nor
by the default implementation of Anchors (see Section A.3.3). Proposition 4.4.1 is proved in Sec-
tion A.1.4.

4.4.2 Simple decision rules

This section focuses on classifiers that rely on the presence or absence of specific words, as
in Section 3.3.1.1. In this setting, the function h introduced in Eq. (4.1) takes a straightforward
form. With the TF-IDF vectorizer, the presence (resp. absence) of word wj in x corresponds to the
condition φ(x)j > 0 (resp. φ(x)j = 0).

Thus, h is the projection on the relevant coordinates, and using Eq. (4.6), the precision of any
given anchor can be computed. Here, the case of a model classifying documents based on the
presence of a set of words is shown. Additional cases are presented in Section A.3.5.

Proposition 4.4.2 (Presence of a set of words). Assume thatm1 > · · · > mk. Let J = {1, . . . , k♢
be a subset of [d], and assume that the model is defined as

f(z) = ✶wj∈z , ∀j∈J =
∏︂

j∈J

✶wj∈z =
∏︂

j∈J

✶φ(z)j>0 .

Define the quantities B := ⌊log2 1/ε⌋ and c0 := inf{c ∈ [k],
√︃k−c+1

ℓ=1 (1−2−ℓ) ≥ 1−ε♢. If there

exists j ∈ J such that mj > B, then the anchor Ac0 such that aj = 1 for all j ∈ Jk − c0 + 1, kK
and aj = 0 otherwise, will be selected by exhaustive Anchors. On the contrary, if mj < B for all

j ∈ [d], the anchor AJ such that aj = 1 for all j ∈ [k] and aj = 0 otherwise, will be selected.

78 CHAPTER 4 — An In-Depth Analysis of Anchors for Text Data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Proportion

good

 very, good

Food is very very very very good!

0.0 0.2 0.4 0.6 0.8
Proportion

good

 very, good

Food is very very very very very good!

Figure 4.4 – Effect of adding one occurrence on Anchors explanation. The model predicts
1 if very and good are present. The count corresponds to the appearance of the token(s) in the
selected anchor over 100 runs of Anchors. When the multiplicity of very in the document crosses
the breakpoint value B = 4 (by default, ε = 0.05), it disappears from the selected anchor with
high probability (top panel: mvery = 4, bottom panel: mvery = 5).

Note that AJ contains all the words with index in J , i.e., each word in the support of the clas-
sifier f . In contrast, Ac0 contains the c0 words with the lowest multiplicity among those indexed
in J . Proposition 4.4.2 is proved in Section A.1.5.

As a concrete example, consider a model classifying reviews as positive if both the words
“very” and “good” are present. The review “Food is very good!” is classified as positive, and An-
chors will extract {very, good♢ as an anchor, which is sensible. However, if the multiplicity of the
word “very” (resp. “good”) exceeds the breakpoint value B = 4 (by default, ε = 0.05), Proposi-
tion 4.4.2 predicts that Anchors will only extract {“good”♢ (resp. {“very”♢). This example effec-
tively shows a word disappearing from an explanation simply because its multiplicity crosses
an arbitrary threshold. This phenomenon is observed in practice with the default implementa-
tion of Anchors (see Figure 4.4), with some variability due to the sampling and the approximate
optimization scheme of Anchors.

4.4.3 Linear classifiers

This section shifts focus to linear classifiers. For any document z, the classifier is defined as:

f(z) = ✶λ⊤φ(z)+λ0>0 , (4.7)

where λ ∈ RD is a vector of coefficients, and λ0 ∈ R is an intercept. In the context of Eq. (4.1),
this translates to h(x) = λ⊤x+ λ0 and R = (0,+∞).

Eq. (4.7) encompasses several significant examples, two of which are empirically investigated:
— The Perceptron [Rosenblatt, 1958b], which predicts exactly as in Eq. (4.7).
— Logistic Models, which predict 1 if σ(λ⊤φ(z) + λ0) > 1/2, where σ : R → [0, 1] is the

logistic function. Since σ(x) > 1/2 if, and only if, x > 0, they can also be rewritten as in
Eq. (4.7).

4.4 – 4.4.3 Linear classifiers 79

This list is not exhaustive; refer to Hastie et al. [2009, Chapter 4] for a more comprehensive
overview.

In this setting, starting from Eq. (4.6), it is shown that the precision satisfies a Berry-Esseen-
type statement [Berry, 1941, Esseen, 1942]:

Proposition 4.4.3 (Precision of a Linear Classifier). Let λ, λ0 be the coefficients associated with

the linear classifier defined by Eq. (4.7). Assume that for all j ∈ [d], λjvj ̸= 0.

Define, for all A ∈ A,

L (A) :=
−λ0 − 1

2

∑︁d
j=1 λjvj(mj + aj)

√︂
1
4

∑︁d
j=1 λ

2
jv

2
j (mj − aj)

. (4.8)

Let Φ := 1 − Φ, where Φ denotes the cumulative distribution function of a N (0, 1). Then, for any

A ∈ A such that ♣A♣ ≤ b/2,

\︄\︄\︄Prec (A) − Φ (L (A))
\︄\︄\︄ ≤ C ·

(︄
maxj λ

2
jv

2
j

minj λ2
jv

2
j

)︄3/2

·
(︄

maxj mj

minj mj

)︄3/2

· 1√
d
, (4.9)

where C ≈ 7.15 is a numerical constant.

In other words, when d is large, the precision of an anchor for a linear classifier can be well
approximated by Φ◦L, and a (local) version of Proposition 4.3.1 can be used to study exhaustive
p-Anchors with p = Φ ◦ L instead of exhaustive Anchors.

Nevertheless, a very good fit between the two terms is observed even for small values of d (see
Section A.3.4). Proposition 4.4.3 is proven in Section A.1.6. In Section A.1.9, it is shown that in
the case of normalized TF-IDF, a constant with the same rate appears.

Typical values for vj and mj in this setting range between 1 and 10 (see Section A.3.1). The
primary assumption here is that there are no zero components in λ. Additionally, the result holds
only for anchors with a length less than half the document length. This is a realistic constraint, as
explanations based on more than half of the document are uncommon in practice and generally
lack interpretability. It is possible to refine the constant by ensuring that the anchors are even
smaller in relative size.

In view of Proposition 4.3.1, the focus can now be on exhaustive Φ ◦ L-Anchors. Let γ :=
λ0 +

∑︁
j λjvjmj . Note that, since f(ξ) = 1, γ > 0. Also, define

A+ := {A ∈ A ♣ aj > 0 ⇒ λj > 0♢ , (4.10)

as the set of anchors with support corresponding to words with a positive influence.

Proposition 4.4.4 (Approximate Precision Maximization). Assume that λ1v1 > λ2v2 > · · · >
λdvd, with at least one λj greater than zero. Assume that λ0 > −γ/2. Then Algorithm 1 applied

to the selection function p := Φ ◦L will select an anchor Ap ∈ A+ such that there exists j0 ∈ [d]
with the following properties: for all j < j0, aj = mj , aj0 ≤ mj , and for all j ≥ j0, aj = 0.

In plain words, Proposition 4.4.4 implies that for a linear classifier, Anchors keeps only
words with a positive influence on the prediction. Moreover, it selects the words having the
highest λjvj values first, adding them to the anchor until the precision condition is met. This is a
reassuring property of Anchors. Proposition 4.4.4 is proven in Section A.1.7.

80 CHAPTER 4 — An In-Depth Analysis of Anchors for Text Data

Φ
(L

(A
))

≈
P

re
c

(A
)

(1, 0, 0, 0, 0, . . . , 0)

(2, 0, 0, 0, 0, . . . , 0)

...

(m1, 0, 0, 0, 0, . . . , 0)
(m1, 1, 0, 0, 0, . . . , 0)

...

(m1,m2, 0, 0, 0, . . . , 0)

(m1,m2, 1, 0, 0, . . . , 0)

...

(m1,m2,m3, 1, 0, . . . , 0)

(m1,m2,m3, 2, 0, . . . , 0)

(m1,m2,m3, 3, 0, . . . , 0)

1 − ε

Figure 4.5 – Illustration of Proposition 4.4.4. For linear models, the algorithm priori-
tizes words with the highest λjvj values. The minimal anchor that satisfies the precision
condition Φ (L (A)) ≈ Prec (A) ≥ 1 − ε is selected, which in this example is A =
(m1,m2,m3, 2, 0, . . . , 0).

To demonstrate this phenomenon, the following experiment was conducted. A logistic model
was first trained on three review datasets, achieving accuracies between 85% and 88% on the test
set. Anchors was then run with the default setting 10 times on positively classified documents. For
each document, the Jaccard similarity between the anchorA and the first ♣A♣ words ranked by λjvj

was measured. The average Jaccard index is reported in Table 4.1, confirming Proposition 4.4.4.
Note that the official Anchors implementation does not apply step 3 of Algorithm 1. When

the prediction is easy (for instance, h(φ(ξ)) ≥ 0.75 or g(φ(ξ)) ≥ 0.85), A3 realistically contains
more than one anchor, and the algorithm will randomly select among them. This explains the
different similarity between the full dataset and the hard subset.

It is also noteworthy that the individual multiplicities do not affect the ranking of the wjs,
unlike the discussion following Proposition 4.4.2. This behavior is consistent across all models
tested (see Section A.3.5).

4.5 Anchors on neural networks

In this section, empirical results for neural networks are presented, linking the explanations
provided by Anchors with the partial derivatives of the model with respect to the input. Intuitively,
while examining a specific prediction, Anchors generates local perturbations of the example to be
explained. The behavior of a neural network in such a local neighborhood of the example, at the
first order, is approximately linear. This implies that Proposition 4.4.3 roughly holds true, taking

4.5 – Anchors on neural networks 81

TABLE 4.1 – Validation of Proposition 4.4.4. Average Jaccard similarity between the anchorA and
the first ♣A♣ words ranked by λjvj for a logistic model on positive documents and low-confidently
classified subset (pr = h(φ(ξ)) < 0.85, or pr < 0.75).

Restaurants Yelp IMDB

full 0.69 ± 0.2 0.35 ± 0.2 0.32 ± 0.2

pr < 0.85 0.78 ± 0.2 0.74 ± 0.2 0.45 ± 0.2

pr < 0.75 0.82 ± 0.1 0.80 ± 0.2 0.59 ± 0.1

TABLE 4.2 – Average Jaccard similarity between the extracted anchor A and the first ♣A♣ words
ranked by λjvj for a 3 (top table), 10 (middle), and 20-layers (bottom) feed-forward neural
network for positively classified documents and low-confidently (pr = h(φ(ξ)) < 0.85, or
pr < 0.75) classified subsets.

Restaurants Yelp IMDB

3
-l

ay
er

s full 0.68 ± 0.2 0.50 ± 0.3 0.45 ± 0.3

pr < 0.85 0.68 ± 0.2 0.88 ± 0.1 0.52 ± 0.3

pr < 0.75 0.74 ± 0.2 0.82 ± 0.1 0.68 ± 0.2

10
-l

ay
er

s full 0.76 ± 0.2 0.56 ± 0.2 0.55 ± 0.2

pr < 0.85 0.80 ± 0.2 0.78 ± 0.1 0.79 ± 0.2

pr < 0.75 0.83 ± 0.1 0.69 ± 0.2 0.81 ± 0.2

20
-l

ay
er

s full 0.73 ± 0.1 0.60 ± 0.3 0.63 ± 0.2

pr < 0.85 − 0.81 ± 0.2 0.69 ± 0.2

pr < 0.75 − − 0.74 ± 0.1

as linear coefficients

∀j ∈ [d] , λj :=
∂g(φ(x))

∂φ(x)j
,

where ∂h(φ(x))
∂φ(x)j

is the partial derivative of the model g with respect to the word wj .
In practice, this means that Anchors selects the words corresponding to the highest par-

tial derivatives of the model with respect to the input, reweighted by the inverse document
frequencies, until the precision condition is met.

To validate this conjecture, three feed-forward neural networks were trained on three datasets.
For each document in the test set, the Jaccard similarity between the anchor A and the first ♣A♣
words ranked for all j ∈ [d] by λjvj = ∂g(φ(x))

∂φ(x)j
vj was measured. This approach is similar to the

experiments in the previous section. Details on the training are reported in Section A.3.7, with each
model achieving approximately 90% accuracy. Anchors was run with default settings 10 times on
positively classified documents to account for the randomness in Anchors optimization.

Table 4.2 shows the results for the three networks. There is a significant overlap between the
anchors selected by Anchors and the subset suggested by the analysis, becoming a near match for
examples that are hard to predict.

82 CHAPTER 4 — An In-Depth Analysis of Anchors for Text Data

As in the previous section, when the prediction is easy, i.e., the classifier is very confident
about the prediction, the anchor is selected at random among many candidates. This is because it
requires a strong perturbation (removing many words) to change the prediction of a confidently
classified document.

Since these models perform better than linear models, the confidence is often extremely high,
resulting in a more random selection process and thus lower similarity values. More details about
the experiments are available in Section A.3.7.

Compared to the Anchors algorithm for text classification, obtaining explanations for a predic-
tion in this manner would be a faster and more efficient procedure. This is because the randomness
due to the optimization scheme is avoided, making it more efficient for obtaining explanations on
neural networks and, it is conjectured, any other differentiable classifier. However, this would not
be a fully model-agnostic approach, as it requires knowledge of the model gradient and the inverse
document frequencies for each example to be explained.

This is a somewhat surprising result: without the theoretical analysis and empirical evidence,
it would intuitively be expected that explanations for this class of models would be obtained from
the gradient reweighted by the input (i.e., the entire vectorization).

Lopardo et al. [2023a] conjecture that for any differentiable classifier, it is possible to predict
the behavior of Anchors by extending the results for linear classifiers, considering a first-order
approximation of the model.

4.6 Conclusion

This chapter presented Lopardo et al. [2023a]: the first theoretical analysis of Anchors. Spe-
cifically, the implementation for textual data was formalized, providing insights into the sampling
procedure. Anchors behavior was then studied on simple if-then rules and linear models. An ap-
proximate, tractable version of the algorithm was introduced, closely aligned with the default
implementation. The analysis showed that Anchors provides meaningful results when applied
to these models, supported by experiments with the official implementation. Finally, theoretical
claims about explainable classifiers were exploited to obtain empirical results for neural networks,
yielding a surprising result that links the classifier gradient to the importance of words for a pre-
diction. When access to the model is available, this result can be used as a faster and more efficient
method of obtaining explanations.

This work uncovered some unexpected findings that highlight the importance of theoretical
analysis in the development of explainability methods. The insights presented in this chapter may
be valuable for researchers and practitioners in natural language processing who seek to correctly
interpret Anchors explanations. Furthermore, the analysis framework developed can aid the ex-
plainability community in designing new methods based on sound theoretical foundations and in
scrutinizing existing ones.

CHAPTER 5
Faithful and Robust

Local Interpretability
for Textual Predictions

Local and model-agnostic interpretability methods are versatile but can exhibit unexpec-
ted behaviors (Chapter 3) and lack theoretical foundations. Popular explainers like An-
chors and LIME sometimes fail on simple tasks and models, making them as opaque as
the predictions they aim to clarify. While theoretical analyses exist for LIME [Mardaoui
and Garreau, 2021], Anchors were largely unexplored before Lopardo et al. [2023a] (pre-
sented in Chapter 4), highlighting the need for a deeper understanding of these methods.
This chapter introduces FRED (Faithful and Robust Explainer for textual Documents)
as a novel method for interpreting predictions over text [Lopardo et al., 2023b]. FRED
offers three key insights to explain a model’s prediction: (1) it identifies the minimal set
of words in a document whose removal has the strongest influence on the prediction,
(2) it assigns an importance score to each token, reflecting its influence on the model’s
output, and (3) it provides counterfactual explanations by generating examples similar
to the original document but leading to a different prediction. The reliability of FRED is
established through formal definitions (Section 5.2) and theoretical analyses on interpre-
table classifiers (Section 5.3). Additionally, empirical evaluation against state-of-the-art
methods demonstrates the effectiveness of FRED in providing insights into text models
(Section 5.4).

3.1 Introduction . 57
3.2 Methods . 57

3.2.1 LIME for text data . 58
3.2.2 Anchors for text data . 59

3.3 Experiments . 60
3.3.1 Qualitative Evaluation . 60

3.3.1.1 Simple Decision Rules 60
3.3.1.2 Logistic models 63

3.3.2 Quantitative Evaluation . 63
3.4 Conclusion . 64

83

5.1 – Introduction 85

5.1 Introduction

Previous chapters have emphasized that local and model-agnostic interpretability methods are
particularly well-suited for explaining predictions made by any model for a specific instance wi-
thout requiring any knowledge of the underlying model. This versatility makes them applicable
to a broader range of scenarios compared to other methods that typically intervene during model
training or require access to model parameters.

In Chapter 3, it was empirically demonstrated that even popular explainers like Anchors and
LIME can exhibit unexpected behaviors, especially on simple tasks and models. Many interpreta-
bility methods lack a theoretical foundation, and their behavior on simple and interpretable models
is often unclear. Each explainer employs various internal mechanisms, such as sampling, local ap-
proximations, and importance measures, which can significantly influence the final explanations
(see Section 1.5.3). These mechanisms are often ignored or understudied, making the explainers
as opaque as the predictions they aim to clarify.

While theoretical analyses exist for LIME, providing a comprehensive understanding of its
behavior on tabular data [Garreau and Luxburg, 2020, Garreau and von Luxburg, 2020], text [Mar-
daoui and Garreau, 2021], and images [Garreau and Mardaoui, 2021], Anchors remained largely
unexplored before Lopardo et al. [2023a]. Using a poorly understood explainer on a complex
model can lead to misinterpretations of the model’s behavior. Without a clear understanding of
the method used and its internal mechanisms, drawing accurate conclusions can be challenging
and may even lead to incorrect conclusions. Chapter 4 presented the first theoretical analysis of
Anchors to address this gap, particularly for text classification models.

With these analyses available, including on different methods (feature importance-based and
rule-based) but following the same principle of studying a model’s behavior in the neighborhood
of the instance to be explained, it becomes natural to compare the three key dimensions of post-hoc
perturbation-based methods [Covert et al., 2021]: 1) how the method removes features, 2) what
model behavior the method explains, and 3) how the method summarizes each feature’s influence.
The paper Lopardo et al. [2023b] leverages insights from these methods to propose a new method
for explaining text-based models, ideally encapsulating the advantages of previous methods.

In Lopardo et al. [2023b], FRED (Faithful and Robust Explainer for text Documents) is in-
troduced as a novel interpretability framework for text classification and regression tasks. FRED
provides three insights to explain a model’s prediction: (1) it identifies the keywords, i.e., the
minimal set of words in a document whose removal has the strongest influence on the prediction,
(2) it assigns an importance score to each token, allowing for sentence highlighting, and (3) it
offers counterfactual explanations by generating examples similar to the original document but
leading to a different prediction. An illustration of FRED applied to a sentiment analysis task is
shown in Figure 2.1.

Contributions. This chapter introduces FRED (Faithful and Robust Explainer for text Docu-
ments), a novel interpretability framework for text classification and regression tasks, as first pre-
sented in Lopardo et al. [2023b]. The framework provides a comprehensive set of tools for inter-
preting model predictions through various innovative techniques. Specifically, the contributions
are as follows:

— FRED identifies the minimal set of words in a document whose removal has the stron-
gest influence on the prediction, providing a clear understanding of crucial features (Sec-
tion 5.2).

86 CHAPTER 5 — Faithful and Robust Local Interpretability for Textual Predictions

— Each token is assigned an importance score reflecting its impact on the model’s output,
facilitating a granular analysis of feature relevance (Section 5.2).

— Counterfactual explanations are provided by generating examples similar to the original
document but leading to different predictions, enhancing the interpretability of model be-
havior (Section 5.2).

— A novel sampling scheme that leverages tokens’ part-of-speech tags is introduced, optimi-
zing the efficiency and effectiveness of the explanations (Section 5.2).

— A rigorous theoretical analysis of FRED’s behavior on interpretable classifiers is conduc-
ted, ensuring it meets expectations on simpler models (Section 5.3).

— Empirical evaluations against well-established explainers on a variety of models, including
state-of-the-art models, demonstrate FRED’s effectiveness, particularly on more complex
models and larger documents (Section 5.4).

— Theoretical claims are substantiated in Appendix B.1, supported by numerical experiments
detailed in Appendix B.2.

— The empirical results highlight that FRED performs better on modern models and larger
documents, making it more suitable for realistic cases (Section 5.4).

The code for FRED and the experiments is available at https://github.com/

gianluigilopardo/fred.

5.1.1 Related work

FRED falls under the category of local, post-hoc and model-agnostic interpretability me-
thods within the field of machine learning interpretability (see Section 1.4). Local methods
explain predictions for individual data points (Section 1.4.2), while post-hoc methods are applied
to already trained models, with no intervention during the design phase (Section 1.4.4). Model-
agnostic explainers work on any black-box model, without needing access to their internal para-
meters, requiring only repeated queries. Methods like LORE [Guidotti et al., 2018a] and LIME
[Ribeiro et al., 2016] approximate the model locally for a specific instance using a decision tree
and a linear model as local surrogates, respectively. Anchors [Ribeiro et al., 2018] extracts pro-
vable rules that guarantee the model’s prediction (Chapter 4).

More precisely, FRED is a perturbation-based approach (Section 1.4.6). As stated in Sec-
tion 1.5.1, these methods leverage sampling mechanisms to perturb the instance to explain, and
therefore evaluate the model change in prediction, but risk generating out-of-distribution data
[Hase et al., 2021], leading to inaccurate explanations and vulnerability to adversarial attacks
[Slack et al., 2020]. Some works addressed sampling issues of popular explainers. For instance,
LORE employs a genetic algorithm for a more realistic sampling, Delaunay et al. [2020] improves
Anchor sampling for tabular data, while Amoukou and Brunel [2022] extends Minimal Sufficient

Rules (similar to Anchors) to regression models, handling continuous features without discretiza-
tion.

While LIME and SHAP [Lundberg and Lee, 2017] explain predictions by feature importance,
Anchors identifies a compact set of features guaranteed to produce the same prediction with high
probability [Lopardo et al., 2023a]. Studies show that users prefer rule-based explanations [Lim
et al., 2009, Stumpf et al., 2007], such as hierarchical decision lists [Wang and Rudin, 2015], which
reveal global behavior, and [Lakkaraju et al., 2016], which balance accuracy and interpretability
with smaller, disjoint rules. LIME and SHAP assign importance scores to tokens, while Anchors
targets the most significant token set for the prediction. FRED accomplishes both tasks.

https://github.com/gianluigilopardo/fred
https://github.com/gianluigilopardo/fred

5.2 – FRED 87

Counterfactual explanations (Sections 1.4.9 and 2.3.3), which explore what changes to the in-
put text would cause a different model prediction, offer valuable insights into model behavior. This
concept is explored by Wachter et al. [2017b], Pawelczyk et al. [2021,0], emphasizing the impor-
tance of generating not only accurate but also plausible counterfactuals to build trust in the model’s
decision-making process. FRED offers counterfactual explanations by generating examples simi-
lar to the original document but leading to different predictions, allowing users to see which slight
changes to the text can alter the model’s decision-making process.

FRED leverages the explaining by removing strategy, where removing features reveals their
influence on predictions. While this approach is established for tabular data and images [Covert
et al., 2021], it is underexplored for text. FRED isolates token sets within a document and measures
the confidence drop upon removal to quantify the impact of each token. It pinpoints a concise
subset of words crucial for the prediction and assigns an importance value to each token reflecting
its influence on the model’s output.

The field of interpretable machine learning often prioritizes practical application over formal
guarantees, leading to explanations that may not be reliable [Marques-Silva and Ignatiev, 2022].
To address this, La Malfa et al. [2021] propose a method for generating robust explanations in text
models, focusing on minimal word subsets sufficient for prediction and resistant to minor input
changes. Inspired by [Garreau and Luxburg, 2020] and its adaptation to text data for LIME and
Anchors [Mardaoui and Garreau, 2021, Lopardo et al., 2023a], this chapter includes a theoretical
analysis to ensure FRED behaves as expected on well-understood models like linear models and
shortcut detection. This check is crucial to guarantee that explanations reflect the model’s true
inner workings.

5.2 FRED

This section introduces FRED, a novel explainer designed to provide faithful and robust expla-
nations for text classification and regression tasks. FRED employs a perturbation-based approach,
analyzing the model’s behavior on slightly altered versions of the original text. When presented
with an example to explain, FRED first generates a perturbed sample (as detailed in Section 5.2.2).

Then, FRED explains model predictions through three key functionalities:

1. Identifying keywords: FRED identifies the minimal subset of tokens within the example
that, when removed, cause a significant decline in the model’s prediction confidence, ex-
ceeding a predefined threshold.

2. Sentence highlighting: FRED assigns an importance score to each token, reflecting its
impact on the final prediction. This score helps understand the contribution of each word
to the model’s decision.

3. Counterfactual explanations: FRED offers counterfactual explanations by generating mi-
nimally perturbed samples of the original text that lead to a different prediction.

5.2.1 Drop in prediction

Key notations include z as a generic document, ξ as the specific document under consideration,
D as the global dictionary with D unique terms, ξ = (ξ1, . . . , ξb) as a document composed of b
ordered words, Dξ = w1, . . . , wd ⊆ D as the distinct words in ξ, with d ≤ b, and [k] representing
the set of integers from 1 to k.

88 CHAPTER 5 — Faithful and Robust Local Interpretability for Textual Predictions

This chapter focuses on explaining the predictions of a generic model F : T ⊆ X → Y ⊆ Rp,
referred to as the black-box, which takes textual documents as input (as defined in Section 2.1).
For classification problems, F maps textual inputs to confidence scores for p different classes,
i.e., Y = [0, 1]p. The goal is to identify the optimal subset of tokens in the example ξ whose
removal significantly decreases the confidence score for the class ℓ ∈ C of interest: Fℓ(ξ). As
before, the prediction for the class ℓ ∈ C of interest for any document is f(z) = Fℓ(z).

Finally, a candidate explanation is defined as any non-empty ordered sublist of [b], correspon-
ding to tokens of ξ. The set of all candidates for ξ is denoted as C. The length of a candidate, ♣c♣,
is defined as the number of tokens (not necessarily distinct words) it contains.

To assess the impact of removing specific words on model predictions, the key concept of drop

in prediction is introduced.

Definition 5.2.1 (Drop in prediction). For any sample x ∈ X and model f , the drop in prediction

for is defined as
d(x) := E [f(x)] − f(x) ,

where E [f] is the expected prediction under a sampling distribution, and x is a local perturbation
of ξ (detailed in Section 5.2.2).

The influence of a candidate explanation c for a prediction f(x) is subsequently computed
using the candidate drop.

Definition 5.2.2 (Candidate drop). For any sample x ∈ X and model f , the candidate drop is
defined as

∆c := E [f(x)] − E [f(x) ♣ c /∈ x] = E [d(x) ♣ c /∈ x] = Ec [d(x)] , (5.1)

which represents the expected drop in prediction when the candidate c is removed from the original
document ξ.

Using Eq. (5.1), the drop in prediction of samples where the candidate is perturbed is attributed
to any candidate. The optimal candidate, denoted as c⋆, is determined by minimizing the size of
the candidate subset while ensuring that it causes the average prediction E [f(x)] to drop by a
significant amount. Formally, this is expressed by the optimization problem:

Minimize
c∈C

♣c♣ , subject to ∆c ≥ ε · E [f(x)] . (5.2)

Empirical drop in prediction. Calculating the prediction drop for each candidate in closed
form, as formulated in Eq. (5.1), requires an exhaustive search and evaluation of 2b candidates,
which is impractical for large documents. To overcome this computational challenge, an empirical
approach is employed to estimate the prediction drop.

For a given document ξ, a set of n samples is generated through random perturbations of
words in ξ (detailed in Section 5.2.2). Consider any candidate c, and let nc represent the number
of samples where c is absent, defined as nc =

\︄\︄\︄{i ∈ [n] ♣ c /∈ x(i)♢
\︄\︄\︄. The empirical candidate drop

for c is then defined as

ˆ︁∆c :=
1

n

n∑︂

i=1

f(x(i)) − 1

nc

∑︂

c/∈x(i)

f(x(i)) = ˆ︃f(x) − 1

nc

∑︂

c/∈x(i)

f(x(i)) . (5.3)

5.2 – 5.2.2 Sampling scheme 89

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 d(x)

ξ Poor drinks decent food great service d(ξ)

x(1) great drinks decent view slow service d(x(1))

x(2) Poor seats bad boost great house d(x(2))

x(3) good table poor food awful service d(x(3))

x(4) amazing spot decent food bad tips d(x(4))

x(5) Poor drinks boring walk inept service d(x(5))
...

...
...

...
...

...
...

...
x(n) Poor space average food lousy service d(x(n))

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 d(x)

ξ Poor drinks decent food great service d(ξ)

x(1) UNK drinks decent UNK UNK service d(x(1))

x(2) Poor UNK UNK UNK great UNK d(x(2))

x(3) UNK UNK UNK food UNK service d(x(3))

x(4) UNK UNK decent food UNK UNK d(x(4))

x(5) Poor drinks UNK UNK UNK service d(x(5))
...

...
...

...
...

...
...

...
x(n) Poor UNK UNK food UNK service d(x(n))

Figure 5.1 – Illustration of FRED pos-sampling scheme (left panel) and mask-sampling
scheme (right panel) for computing the drop of a candidate. For a given example ξ, FRED ge-
nerates n perturbed samples x(1), . . . , x(n) by independently perturbing tokens with probability
p(= 0.5). Each sample i ∈ [n] is associated with the model’s drop in prediction d(x(i)). Fi-
nally, the empirical drop ˆ︁∆c of a candidate is computed by averaging the drops over the samples
that do not contain c. In the example, the candidate consists of the words decent and great. The
samples where both tokens are perturbed are highlighted in gray. The empirical drop associated
with {decent, great} is therefore computed by averaging d(x(3)), d(x(5)), . . ., d(x(n)).

The sampling scheme ensures that, with high probability, there is at least one sample in which each
candidate is not present. This definition ensures that, for a large number of samples, the empirical
drop is a good estimate of Eq. (5.1), as expressed by the following:

Lemma 5.2.1 (Convergence of Empirical Drop ˆ︁∆c). For a candidate explanation c, let nc re-

present the count of samples in x where c is not included. Then, as n → ∞, the empirical drop in

prediction ˆ︁∆c associated with the candidate c converges in probability to

E [f(x)] − E [f(x)✶c/∈x]

P (c /∈ x)
.

This result justifies using Eq. (5.1) in subsequent analysis instead of Eq. (5.3). Lemma 5.2.1 is
proved in Section B.1.1 of the Appendix.

5.2.2 Sampling scheme

This section details the sampling scheme used to estimate the drop associated with a candidate
(see Eq. (5.1)). The goal is to examine the behavior of the model f in the local neighborhood of
ξ, i.e., when some tokens of ξ are absent. To mitigate the out-of-distribution issue (Section 1.5.1),
absent tokens are replaced by random words with the same Part-of-Speech (POS) tag [Ribeiro
et al., 2018]. This ensures, for instance, that a verb is replaced by another verb and an adjective
by another adjective. Additionally, to highlight the difference in prediction, if the absent token has
a polarity (positive or negative), FRED replaces it with a word with the same POS tag but the
opposite polarity.

Indeed, in the example of Figure 5.1, replacing the word “great” with the word “amazing”
will likely not result in any significant change in prediction. Conversely, replacing it with “bad” or
“awful” will highlight its impact. This approach is referred to as pos-sampling.

Specifically, given a corpus T , FRED under the pos-sampling scheme creates two dictio-
naries: D+

pos and D−
pos, which correspond to the sets of tokens with the same POS tag but with

90 CHAPTER 5 — Faithful and Robust Local Interpretability for Textual Predictions

positive and negative polarity, respectively (neutral words are included in both sets). For a given
example ξ, FRED generates perturbed samples x(1), . . . , x(n) as follows:

1. Create n copies of ξ.

2. For each sample, select each token independently with probability p.

3. Associate the selected tokens with a pair (pos, polarity).

4. Replace the selected tokens with a randomly (uniformly) chosen word that has the same
pos and the opposite polarity from D+

pos and D−
pos, respectively.

5. Associate each sample x(i) with its drop in prediction d(x(i)).

See Figure 5.1 for an illustration.
The sample size n is chosen such that, for each candidate, there is a high probability that at

least one sample does not contain it, i.e., such that for each c ∈ C, nc ≥ 1 with probability greater
than α (see Lemma 5.2.2).

Lemma 5.2.2 (Choosing n). If the sample size n is greater than or equal to

log (1 − α)

log (1 − 1/2lmax)
,

then, for any candidate c with size less than or equal to lmax, there exists at least one sample not

containing it, with probability at least α. Specifically, for any candidate c:

n =

⌈︃
log (1 − α)

log (1 − 1/2lmax)

⌉︃
=⇒ P

(︂
∃i ∈ [n] : c /∈ x(i)

)︂
≥ α .

For “high probability,” α is set to 0.95 by default, with a token perturbation probability p =
0.5. The maximum number of words used for an explanation, lmax, is set to 10, as it is not practical
to use a high proportion of a text. According to Lemma 5.2.2 (proven in Appendix B.1.2), these
choices imply a sample size of approximately n ≈ 3000.

Remark. This sampling scheme requires the availability of a corpus T and can be computatio-
nally expensive, as it necessitates computing the POS-tag and polarity for each token. Additionally,
its effectiveness may depend on the underlying model. Alternatively, following the default imple-
mentation of the official repositories for Anchor, LIME, and SHAP, the mask-sampling method
is proposed: simply mask the tokens to be removed with a predefined token.

The mask-sampling scheme is often criticized for creating out-of-distribution samples
[Hase et al., 2021], as also previously discussed in Section 1.5.1, by generating meaningless sen-
tences. To address this issue, Anchors official implementation includes an option to sample by
using BERT to predict the missing words. While this solution is potentially interesting, it may
not meet practical expectations. First, replacing words with large language models is extremely
resource-intensive: BERT-Anchor is ten times slower than mask-Anchor, even for small docu-
ments [Lopardo et al., 2023a], with no significant improvement in explanations. Second, exami-
ning the generated samples often reveals that the sentences remain meaningless. Note that Ribeiro
et al. [2018] proposes replacing tokens with random words of the same part-of-speech tag, with a
probability proportional to their similarity in the embedding space (however, this is not implemen-
ted in Anchors official repository). As previously mentioned, the opposite-sentiment approach is
considered more suitable for our purposes, as it better captures the impact of the original token.

5.3 – 5.2.3 Explanations 91

Algorithm 2 An overview of FRED’s algorithm. By default, ε = 0.15, lmax = 10, p = 0.5, and
the sample size n is computed according to Lemma 5.2.2.

Require: model F , example ξ, threshold ε, max length lmax, perturb probability p, sample size n
1: initialize ˆ︁∆best = 0
2: x = generate_sample(ξ, p, n) according to pos-sampling or mask-sampling

3: ˆ︁F (x) = average(F (x))

4: d(x) = ˆ︁F (x) − F (x) difference between average and each sample prediction

5: for l = 1 : lmax do:
6: candidates = get_candidates(ξ, l) return subsets with cardinality l

7: for c ∈ candidates do:
8: ˆ︁∆c = compute_drop(F, c, x, d(x)) average d(x) where c /∈ x

9: if size = 1 then:
10: sc = ˆ︁∆c per-token importance score

11: end if
12: if ˆ︁∆c ≥ ˆ︁∆best then:
13: ˆ︁∆best = ˆ︁∆c, best = c
14: end if
15: end for
16: if ˆ︁∆best ≥ εˆ︁F (x) then:
17: return best
18: end if
19: end for
20: return best

5.2.3 Explanations

Once the sample x is created, the empirical drop associated with a candidate ˆ︁∆c is computed
by averaging the drops over the samples that do not contain c. See Figure 5.1 for an illustration.
The keywords, i.e., minimal influential subset of tokens, is then identified using the empirical
version of Eq. (5.2):

Minimize
c∈C

♣c♣ , subject to ˆ︁∆c ≥ ε · ˆ︃f(x) . (5.4)

Algorithm 2 illustrates FRED’s mechanism, with its output shown in Figure 2.1.
Candidates of size 1 correspond to the tokens in the example. Therefore, FRED assigns an

importance score s to each token j ∈ [b] in the example ξ as

∀j ∈ [b] , sj = ˆ︁∆{ξj♢ . (5.5)

In practice, the importance score sj is the average drop of samples where the jth token ξj is
perturbed. Figure 2.1 (b) shows the saliency maps for these scores.

Additionally, for classification tasks, FRED provides counterfactual explanations by iden-
tifying the samples in x with minimal perturbation (i.e., with the minimal number of perturbed
tokens) that lead to a different classification. See Figure 2.1 (c) for an illustration.

92 CHAPTER 5 — Faithful and Robust Local Interpretability for Textual Predictions

5.3 Analysis on Explainable Classifiers

To rigorously assess FRED’s effectiveness, a comprehensive theoretical analysis is performed.
The framework established by Garreau and Luxburg [2020] for LIME, extended for text data by
Mardaoui and Garreau [2021], Lopardo et al. [2023a], is leveraged, in the same vein as exposed
in Chapter 4 for Anchors. Since there is no perfect way to verify explanation correctness (Section
1.5.2), the analysis ensures that FRED behaves as expected on simple, well-understood models.
The investigation focuses on FRED’s behavior with inherently interpretable classifiers. Firstly,
its ability to identify the most critical token subset when applied to linear models is examined.
Secondly, its capability in detecting shortcuts [Bastings et al., 2022] is evaluated.

For the theoretical analysis, two key assumptions about the models are made: as for Chapter 4.
First, the focus is on binary sentiment analysis tasks, assuming, without loss of generality, that the
example ξ is classified as positive. In other words, the model f outputs a confidence score for the
positive class. Second, to simplify the analysis and obtain closed-form solutions, classifiers that
operate on the well-established TF-IDF vectorization φ of documents are considered (defined in
Section 2.2). While not the most recent technique, TF-IDF’s simplicity allows for the derivation
of closed-form solutions in this analysis.

It is assumed that the mask token is not in the fitted corpus, thus, under the mask-sampling
(Section 5.2.2), replacing any token with this mask is equivalent to simply removing it from the
perspective of TF-IDF. As a consequence, a candidate explanation c is any ordered sublist of
words in Dξ, formally defined as c = (c1, c2, . . . , cd), where 0 ≤ cj ≤ mj for all j ∈ [d]. The
length of a candidate, denoted as l, is defined as l = ♣c♣ =

∑︁d
j=1 cj .

5.3.1 Linear Classifiers

This section focuses on linear classifiers, defined by the model

f(z) = λ⊤φ(z) + λ0 ,

where λ ∈ RD is a learned vector of coefficients and λ0 ∈ R is an intercept term. This setup
encompasses a broad range of models, including logistic models and perceptrons, making it a
useful starting point for analysis. The decision boundary is determined by the hyperplane where
the linear combination of the TF-IDF vector φ(z), weighted by λ and offset by the intercept λ0, is
greater than zero.

Proposition 5.3.1 (Linear Models). Let λ, λ0 be the coefficients associated with the linear clas-

sifier defined by Eq. (4.7). Assume λ1v1 > λ2v2 > · · · > λdvd. The solution to Eq. (5.2) is such

that (i) words associated with a negative coefficient do not appear in the optimal candidate, and

(ii) the algorithm starts including words with higher λjvj values until a threshold is met.

In simpler terms, Proposition 5.3.1 reveals that for a linear classifier, FRED retains only words
that positively impact the prediction. It prioritizes words with the highest λjvj values, gradually
including them in the explanation until the desired confidence level is achieved. An illustration is
shown in Figure 5.2. The proof of Proposition 5.3.1 is provided in Appendix B.1.3. Note that this
behavior is analogous to Anchors (Section 4.4.3).

5.4 – 5.3.2 Shortcuts Detection 93

ˆ︁ ∆
c

≈
E

[F
(x

)]
−
E

c
[F

(x
)]

(1, 0, 0, 0, 0, . . . , 0)

(2, 0, 0, 0, 0, . . . , 0)

...
(m1,m2, 0, 0, 0, . . . , 0)

(m1,m2, 1, 0, 0, . . . , 0)

...

(m1,m2,m3, 1, 0, . . . , 0)

(m1,m2,m3, 2, 0, . . . , 0)

(m1,m2,m3, 3, 0, . . . , 0)

ε · E [F (x)]

Figure 5.2 – Illustration of Proposition 5.3.1. In linear models, Algorithm 2 prioritizes words
with the highest λjvj values first. The minimal candidate that satisfies the threshold condition is
then selected. In this example, the selected candidate is c = (m1,m2,m3, 2, 0, . . . , 0).

5.3.2 Shortcuts Detection

This section focuses on classifiers that rely on the presence or absence of specific tokens (short-
cuts) in a document (analogously to Section 4.4.2). This approach is facilitated by the TF-IDF
vectorizer, where the presence (or absence) of a word wi in a document z is captured by the condi-
tion φ(z)i > 0 (or φ(z)i = 0). This characterization allows the exploration of classifiers whose
predictions depend on specific terms occurring in the document.

Proposition 5.3.2 (Presence of shortcuts). Assume m1 < m2 < . . . < mk, where k is the

maximum number of unique words in the document. Consider the set J = {1, 2, . . . , k♢ as a

subset of [d], and suppose the classifier f is defined as

f(z) = ✶wj∈z, ∀j∈J =
∏︂

j∈J

✶wj∈z =
∏︂

j∈J

✶φ(z)j>0.

Then, the resulting optimal candidate c⋆ is characterized by c⋆
1 = min{m1, l♢ and c⋆

j = 0 for

j ≥ 2.

In essence, if a model classifies a document based on the presence of specific words, removing
all occurrences of just one of those words is sufficient to change the classification. FRED captures
this information by identifying the minimal set of words whose removal would trigger this change.

Proposition 5.3.2 indicates that the smallest set of words necessary to trigger this shift in
prediction consists of the word with the fewest occurrences in the document. This property aligns
well with the definition of explanations in FRED. The proof of Proposition 5.3.2 is provided in
Appendix B.1.4.

5.4 Experiments

FRED’s explanations quality is assessed against three popular methods: LIME [Ribeiro et al.,
2016], SHAP [Lundberg and Lee, 2017], and Anchors [Ribeiro et al., 2018]), with a focus on faith-

94 CHAPTER 5 — Faithful and Robust Local Interpretability for Textual Predictions

fulness—the adherence of the explanation to the model’s behavior—and robustness. Evaluations
are conducted on three sentiment analysis datasets (Restaurants, Yelp reviews, IMDb) and a hate
speech detection dataset (Tweets), each with varying document lengths (details in Appendix B.2).
Logistic regression, decision trees, and random forests were trained on each dataset. Additionally,
pre-trained RoBERTa [Liu et al., 2019] and DistilBERT [Sanh et al., 2019] models were applied.

Faithfulness. Faithfulness is evaluated using Comprehensiveness and Sufficiency [DeYoung
et al., 2020] to assess explainers’ ability to identify crucial token subsets, and AUC-MoRF (Area
Under the Most Relevant First Perturbation Curve) [Kakogeorgiou and Karantzalos, 2021] for
importance-based explanations.

Given an explanationE defined as a subset of tokens in the example ξ to explain, Comprehen-
siveness is computed as the difference between the prediction confidence of the entire document
ξ and the prediction confidence when the explanation E is removed. Sufficiency is computed
as the difference between the prediction confidence of the entire document ξ and the prediction
confidence based only on the explanation E. Formally,

Comprehensiveness = f(ξ) − f(ξ \ E) and Sufficiency = f(ξ) − f(E) .

A high Comprehensiveness score implies that the subset E was indeed influential in the pre-
diction, while a low score suggests it had little impact. A low Sufficiency score implies that the
subsetE does not sufficiently summarize the document, indicating more information is needed for
an accurate prediction.

When applying feature-importance-based explainers, tokens in ξ are ranked according to their
score. AUC-MoRF is defined as

AUCMoRF =
1

K

K∑︂

k=2

f(x(k−1)) + f(x(k))

2
,

where K is the maximum number of perturbations, and x(k) is the example ξ after the kth MoRF
perturbation, i.e., after removing the k most important (positive) tokens according to the explana-
tion. A smaller AUC-MoRF value indicates a more faithful explanation. Only tokens with positive
scores are perturbed for this computation. Let E+ denote the list of tokens with positive influence
according to the explainer. In the experiments, K is set to K = min (20,

\︄\︄E+
\︄\︄).

For the three faithfulness metrics, token removals are simulated by replacing the missing token
with the mask UNK.

Robustness. Robustness of an explanation E is computed as follows. First, the explainer is ap-
plied to obtain its explanation E as the ground truth for the example. Then,K additional iterations
of the explainer are conducted on the same document, yielding K new explanations, denoted as
E1, E2, . . . , EK . The Jaccard Similarity between the original explanation E and each Ek is com-
puted for k ∈ [K]. Robustness is then calculated as the average Jaccard Similarity score across the
K new explanations and the original explanation. Formally,

∀k ∈ [K] , J(E,Ek) =
♣E ∩ Ek♣
♣E ∪ Ek♣ and Robustness =

∑︁k
i=1 J(E,Ek)

K
.

5.5 – Conclusion 95

TABLE 5.1 – Comparison on Roberta for Restaurant reviews (p = 0.5, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.517(0.49) 0.548(0.49) 0.925(0.22) 0.146(0.11) 35.814(1.69) 0.127(0.06)

fredpos 0.517(0.49) 0.542(0.49) 0.920(0.23) 0.198(0.16) 35.249(1.57) 0.127(0.06)
lime 0.527(0.49) 0.528(0.50) 0.925(0.22) 0.162(0.13) 38.834(2.72) 0.127(0.06)
shap 0.766(0.42) 0.323(0.46) 1.000(0.00) 0.306(0.21) 1.899(1.74) 0.127(0.06)

anchor 0.509(0.49) 0.538(0.50) 0.850(0.32) 0.454(0.45) 15.491(20.40) 0.126(0.06)

TABLE 5.2 – Comparison on Random forest classifier for Yelp reviews (p = 0.5, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred −0.142(0.11) 0.114(0.04) 0.804(0.21) 0.759(0.13) 0.418(0.18) 0.117(0.14)

fredpos −0.123(0.12) 0.080(0.05) 0.833(0.23) 0.740(0.09) 0.452(0.21) 0.071(0.10)

lime −0.126(0.11) 0.083(0.04) 0.933(0.16) 0.782(0.08) 0.332(0.10) 0.061(0.08)

shap −0.132(0.11) 0.073(0.05) 0.972(0.09) 0.776(0.08) 0.638(0.23) 0.071(0.10)

anchor −0.049(0.16) 0.032(0.05) 0.754(0.33) 0.942(0.09) 2.530(6.26) 0.038(0.04)

Results. In addition to the aforementioned metrics, the average computing time and the average
proportion of the document used for the explanation (i.e., ♣E♣ / ♣ξ♣) are reported. Note that AUC-
MoRF is independent of this proportion. FRED under the pos-sampling scheme is referred
to as FRED-pos (fredpos in the tables), and FRED under the mask-sampling scheme is
referred to as FRED-mask (fred in the tables).

The results compare various models across different datasets: Roberta for Restaurants reviews
(Table 5.1, k = 2 for Robustness), Random forest classifier for Yelp reviews (Table 5.2, k = 10
for Robustness), DistilBERT and Roberta on IMDb (Tables 5.3 and 5.4, k = 2 for Robustness),
Decision tree and random forest classifier for Tweets hate speech detection (Tables 5.5 and 5.6,
k = 10 for Robustness).

Both FRED-mask and FRED-pos produce significantly more faithful explanations than other
methods. FRED-mask slightly outperforms FRED-pos in terms of sufficiency and comprehensi-
veness but requires a larger number of tokens (higher proportion). In general, Anchors performs
well on small documents (Restaurant dataset) but exhibits highly nonlinear behavior on larger do-
cuments, tending to be conservative with the anchor size. It also performs poorly on documents
classified with high confidence, as demonstrated by Lopardo et al. [2023a]. LIME and SHAP ex-
hibit similar behavior, with SHAP being significantly more efficient. On small documents, SHAP
performs an exhaustive search over all possible token subsets, contributing to its high robustness.
Additional details on the experimental setting and results are provided in Appendix B.2.

5.5 Conclusion

Building trustworthy AI necessitates interpretable machine learning, especially in critical do-
mains. Existing explainers for text models, however, often grapple with complexity, lack formal
grounding, and unreliable performance. Our proposed method, FRED, tackles these limitations
by providing three key explanatory insights: 1) identifying the minimal set of crucial words, 2)
assigning importance scores to each token, and 3) generating counterfactual explanations. We for-

96 CHAPTER 5 — Faithful and Robust Local Interpretability for Textual Predictions

TABLE 5.3 – Comparison on DistilBERT for IMDb (p = 0.5, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred −0.002(0.01) 0.020(0.01) 0.602(0.15) 0.970(0.01) 9.406(0.87) 0.387(0.13)

fredpos 0.002(0.01) 0.017(0.01) 0.499(0.14) 0.975(0.01) 9.754(0.65) 0.381(0.13)
lime 0.001(0.01) 0.019(0.01) 0.897(0.10) 0.972(0.01) 11.052(1.31) 0.292(0.15)
shap 0.000(0.01) 0.016(0.01) 1.000(0.00) 0.975(0.01) 1.934(0.86) 0.381(0.13)

anchor 0.020(0.01) 0.003(0.00) 1.000(0.00) 0.995(0.01) 0.633(0.06) 0.039(0.02)

TABLE 5.4 – Comparison on Roberta for IMDb (p = 0.5, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.201(0.39) 0.249(0.43) 0.864(0.23) 0.204(0.17) 47.849(4.14) 0.069(0.05)

fredpos 0.454(0.49) 0.209(0.40) 0.910(0.27) 0.328(0.26) 48.098(4.51) 0.038(0.02)
lime 0.348(0.46) 0.219(0.41) 0.810(0.37) 0.295(0.33) 66.732(8.62) 0.038(0.02)
shap 0.621(0.47) 0.149(0.35) 1.000(0.00) 0.475(0.32) 15.147(4.37) 0.038(0.02)

anchor 0.463(0.48) 0.228(0.42) 0.640(0.41) 0.777(0.40) 55.617(115.33) 0.037(0.02)

mally established FRED’s reliability through theoretical analysis on interpretable models, while
our empirical evaluation assess its effectiveness in surpassing current methods for explaining text
predictions.

Extending FRED to different data types. FRED can naturally be extended to image classifiers
and tabular data, making it a versatile tool for various types of machine learning models. The defi-
nitions in Section 5.2 remain applicable, and the analyses in Section 5.3 can be straightforwardly
adapted to these different types of data. However, the primary aspect that needs to be addressed
for this extension is the sampling process. When adapting the sampling mechanisms from other
methods, such as those used in LIME (see for example Figure 1.17), FRED retains its innovative
edge due to its original definition of candidate drop in Definition 5.2.2. This concept is key to
FRED’s ability to identify the minimal set of features that most significantly impact the prediction
when removed.

In the case of images, typical approaches for perturbation include masking pixels (or groups of
pixels) with random values, replacing them with the mean pixel value, or blurring them with black.
While these methods are straightforward to implement, they introduce the out-of-distribution is-
sue. Masked or altered images do not resemble the natural images the model was trained on, poten-
tially leading to misleading explanations. Modern vision-language models, incorporating transfor-
mer architectures, present an alternative approach for generating perturbed samples. These models
could be used to create more realistic and contextually appropriate modifications to the images.
However, this approach is extremely resource-intensive. Generating a meaningful sample using
a vision-language model requires significant computational power and time, which might not be
feasible for all applications.

For tabular data, the challenges are equally significant. Perturbing features in tabular data-
sets often involves replacing values with mean or median values, random sampling from the fea-
ture distribution, or using domain-specific logic to generate plausible alternatives. Each of these

5.5 – Conclusion 97

TABLE 5.5 – Comparison on a decision tree for Tweets (p = 0.5, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.870(0.34) 0.930(0.26) 0.975(0.12) 0.079(0.04) 0.054(0.01) 0.140(0.05)

fredpos 0.880(0.32) 0.930(0.26) 0.954(0.14) 0.078(0.04) 0.065(0.01) 0.140(0.05)

lime 0.870(0.34) 0.920(0.27) 0.881(0.22) 0.082(0.06) 0.129(0.01) 0.140(0.05)

shap 0.880(0.32) 0.910(0.29) 1.000(0.00) 0.088(0.08) 0.034(0.16) 0.140(0.05)

anchor 0.890(0.31) 0.800(0.40) 0.650(0.39) 0.109(0.14) 0.582(0.48) 0.138(0.05)

TABLE 5.6 – Comparison on random forest classifier for Tweets (p = 0.5, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.781(0.21) 0.295(0.19) 0.892(0.21) 0.156(0.05) 0.512(0.04) 0.108(0.03)

fredpos 0.784(0.20) 0.386(0.15) 0.958(0.15) 0.149(0.05) 0.379(0.05) 0.108(0.03)

lime 0.784(0.20) 0.384(0.15) 0.974(0.14) 0.159(0.05) 0.452(0.05) 0.108(0.03)
shap 0.784(0.20) 0.383(0.15) 1.000(0.00) 0.156(0.05) 0.155(0.15) 0.108(0.03)

anchor 0.788(0.20) 0.281(0.19) 0.493(0.40) 0.221(0.10) 8.019(4.09) 0.108(0.03)

approaches comes with its own set of challenges, particularly regarding the preservation of the
feature distribution and the relationships between features.

In both cases, whether dealing with image or tabular data, the key to effective perturbation lies
in generating samples that remain within (or close to) the data distribution the model was trained
on. This ensures that the explanations provided by FRED are reliable and truly reflective of the
model’s decision-making process.

CHAPTER 6
Attention Meets

Post-hoc Interpretability

Attention-based architectures, in particular transformers [Vaswani et al., 2017], are at
the heart of a technological revolution (Section 1.2). Interestingly, in addition to helping
obtain state-of-the-art results on a wide range of applications, the attention mechanism
[Bahdanau et al., 2015] intrinsically provides meaningful insights on the internal beha-
vior of the model. Can these insights be used as explanations? Debate rages on (Section
6.2). This chapter mathematically study a simple attention-based architecture (introdu-
ced in Section 6.3) and pinpoint the differences between attention-based explanations
(Section 6.3.2) and popular post-hoc approaches, namely gradient-based (Section 6.5)
and perturbation-based (Section 6.6). Lopardo et al. [2024] show that they provide quite
different results, and that, despite their limitations, post-hoc methods are capable of cap-
turing more useful insights than merely examining the attention weights.

4.1 Introduction . 69
4.2 Anchors for text data . 71

4.2.1 Setting and Notation . 71
4.2.2 Precision and Coverage . 72
4.2.3 The Algorithm . 72
4.2.4 The Sampling . 73

4.3 Exhaustive p-Anchors . 74
4.3.1 Description of the Algorithm 74
4.3.2 Stability with Respect to the Evaluation Function 74

4.4 Analysis on explainable classifiers 76
4.4.1 Vectorizers and Immediate Consequences 76
4.4.2 Simple decision rules . 77
4.4.3 Linear classifiers . 78

4.5 Anchors on neural networks . 80
4.6 Conclusion . 82

99

6.1 – Introduction 101

6.1 Introduction

The attention mechanism, introduced by Bahdanau et al. [2015], revolutionized neural net-
works by enabling models to dynamically focus on different parts of input sequences, enhancing
their ability to capture long-range dependencies. This innovation laid the groundwork for various
deep learning models. The most notable application is the Transformer architecture, introduced by
Vaswani et al. [2017], which eliminated the need for recurrent neural networks and convolutional
layers, relying solely on attention mechanisms. The Transformer has since become the state-of-
the-art in numerous machine learning domains due to its flexibility, performance, and ability to
model complex relationships in data (see Section 1.2). Its innovative design and significant impro-
vements in training efficiency have paved the way for the development of advanced models such
as BERT [Devlin et al., 2019] and GPT-3 [Brown et al., 2020], revolutionizing NLP.

As a by-product of the attention mechanism, per-token attention weights at a given layer can
be easily extracted from the model. These weights are often used as explanations for model predic-
tions, and many researchers have indeed adopted this approach [Chefer et al., 2021, Mylonas et al.,
2023]. However, the use of attention mechanisms for explainability has been questioned. Jain and
Wallace [2019] critique its clarity, questioning the relationship between attention weights and mo-
del output. Conversely, Wiegreffe and Pinter [2019] argue that attention mechanisms remain useful
for interpretability, without specifically addressing Jain and Wallace [2019]’s requirements. This
debate, which elaborated in Section 6.2, highlights the need for a deeper theoretical foundation for
attention-based explanations.

This chapter illustrates a mathematical analysis of attention-based models, first proposed in
Lopardo et al. [2024], and their associated explanations, aiming to clarify the merits of each ap-
proach beyond experimental validation. The analysis centers on a single-layer multi-head network,
detailed in Section 6.3, a simplified variant of the transformer architecture tailored for a binary
prediction task. The binary classification restriction is illustrative; the same results hold for multi-
label predictions when examining a specific class of interest. While focusing on text classification
tasks, the analysis of token-level explanations could also apply to pixels in the context of Vision
Transformers.

Specifically, the analysis examines the connections between attention-based explanations and
established post-hoc explanations, including gradient-based methods such as Gradient [Li et al.,
2016], Gradient×Input [Denil et al., 2014], and perturbation-based approaches like LIME [Ribeiro
et al., 2016]. The findings demonstrate that perturbation-based and gradient-based methods pro-
vide more insightful explanations than solely examining attention weights in Transformer models.
This aligns with Bastings and Filippova [2020], who argue that attention weights, while useful
for input token weighting, can be misleading as explanations for model predictions, advocating
instead for post-hoc approaches.

Contributions. This chapter presents a detailed analysis of attention-based models and their
explanations, with a specific focus on addressing the ongoing debate in the literature. The key
contributions are as follows:

— Section 6.2 discusses the relevant literature, particularly the debate surrounding attention-
based explanations.

— The model under study is described in Section 6.3.
— Attention-based explanations are specifically addressed in Section 6.4.

102 CHAPTER 6 — Attention Meets Post-hoc Interpretability

α-avg: attention based explanations are popular but questionable
α-max: attention based explanations are popular but questionable
lime: attention based explanations are popular but questionable
G-avg: attention based explanations are popular but questionable
G-l1: attention based explanations are popular but questionable
G-l2: attention based explanations are popular but questionable
G×I: attention based explanations are popular but questionable

Figure 6.1 – Different explainers can produce very different explanations. Here, the attention

mean (α-avg) and maximum (α-max) over the heads, LIME (lime), the gradient mean (G-avg),
L1 norm (G-l1), and L2 norm (G-l2), with respect to the tokens, and Gradient times Input (G×I)
are employed to interpret the prediction of a sentiment-analysis model. Words with positive (res-
pectively, negative) weights are highlighted in green (respectively, red), with intensity proportional
to their weight. In the example, all the explainers identify the word questionable as highly signifi-
cant, while only lime, and G×I highlight a negative contribution. Interestingly, α-avg and α-max
identify the word popular as the most important word in absolute terms, in disagreement with the
all others.

— Sections 6.5 and 6.6 derive explicit expressions for gradient-based and LIME explanations,
respectively, associated with the model. These expressions (Theorems 6.5.1 and 6.6.1)
are explicit with respect to the model parameters and the input document, allowing for a
precise comparison of these approaches.

— Section 6.7 discusses the main limitations of the work, including the theoretical assump-
tions underlying the model.

— Conclusions are drawn in Section 6.8.
All theoretical claims are supported by mathematical proofs and empirical validation, detailed in
the Appendix. The code for the model and experiments is available at https://github.com/
gianluigilopardo/attention_meets_xai.

6.2 Related Work

The attention mechanism, pioneered by Bahdanau et al. [2015], significantly enhanced neural
networks’ ability to focus on different parts of input sequences. Various forms of attention me-
chanisms exist, each characterized by distinct methods of query generation and computation of
attention weights. Two primary methods are additive attention, as originally proposed by Bahda-
nau et al. [2015], and scaled dot-product attention, introduced by Vaswani et al. [2017], which
is the focus of this study. Despite their differences, these forms are theoretically similar [Vaswani
et al., 2017] and yield comparable results [Jain and Wallace, 2019]. This innovation paved the
way for numerous deep learning models, notably the Transformer architecture by Vaswani et al.
[2017].

Self-attention quantifies the relationship between each token in a sequence and every other
token, represented as attention weights. These weights indicate the model’s focus on different
parts of the input, making it tempting to use them as explanations for the model’s predictions.
They offer an intuitive way to understand what the model is paying attention to when making

https://github.com/gianluigilopardo/attention_meets_xai
https://github.com/gianluigilopardo/attention_meets_xai

6.2 – 6.2.1 The debate 103

X X A A I I I I A A
X
X
A
A
I
I
I
I
A
A

Po
sit

io
na

l

39 7 7 7 7 7 7 6 7 7

6 40 7 7 7 7 7 6 7 7

7 6 42 6 7 7 6 6 6 6

6 7 7 39 7 6 7 7 7 7

7 6 7 6 40 7 7 7 6 7

7 7 7 7 7 40 7 6 6 7

7 7 7 7 7 7 40 7 7 7

6 7 7 7 7 6 6 40 7 6

7 7 7 7 7 7 6 7 40 7

6 7 7 7 7 7 7 7 7 40

X X A A I I I I A A
X
X
A
A
I
I
I
I
A
A

Se
m
an

tic

27 27 6 6 5 5 5 5 6 6

27 27 6 6 5 5 5 5 6 6

4 4 19 19 4 4 4 4 19 19

4 4 19 19 4 4 4 4 19 19

4 4 5 5 18 18 18 18 5 5

4 4 5 5 18 18 18 18 5 5

4 4 5 5 18 18 18 18 5 5

4 4 5 5 18 18 18 18 5 5

4 4 19 19 4 4 4 4 19 19

4 4 19 19 4 4 4 4 19 19

Figure 6.2 – Attention matrices for the histogram task show two distinct solutions correspon-
ding to different local minima in the loss landscape [Cui et al., 2024]. The left panel depicts the
positional solution, where the attention matrix is largely invariant to the specific input sequence,
indicating a focus on positional information. The right panel shows the semantic solution, where
attention values vary significantly based on the tokens at each position, emphasizing semantic rela-
tionships. Red squares highlight elements where the tokens at positions i and j are identical. These
findings imply that the same predict can yield two extremely different attention matrices for the
same prediction on the same task, leading to potentially misleading attention-based explanations.

decisions. Indeed, several methods generate attention-based explanations, which are discussed in
Section 6.4.

While attention weights provide valuable insights into the model’s behavior, their use for ex-
plainability has been met with skepticism in the literature, sparking an ongoing debate. This de-
bate, summarized below, addresses whether attention mechanisms genuinely enhance interpreta-
bility or if they merely offer a superficial understanding.

6.2.1 The debate

Jain and Wallace [2019] offer a significant critique of the relationship between attention
weights and model output. They argue, based on experiments across various NLP tasks, that at-
tention weights do not provide meaningful explanations. Specifically, Jain and Wallace [2019]
propose two properties that should hold if attention provides faithful explanations: (i) attention
weights should correlate with feature importance measures (e.g., gradient-based measures and
leave-one-out), and (ii) alternative (or counterfactual) attention weight configurations should yield
corresponding changes in prediction. Their experiments suggest that these properties do not hold,
leading to the conclusion that attention weights are not suitable for interpretability.

However, Wiegreffe and Pinter [2019] highlight several limitations of Jain and Wallace
[2019]’s work. Experimentally, Wiegreffe and Pinter [2019] conclude that “prior work does not
disprove the usefulness of the attention mechanism for interpretability.” They critique the expe-
rimental design proposed for point (ii) while somewhat agreeing with the first observation and
its corresponding experimental setup. Specifically, Wiegreffe and Pinter [2019] introduce an end-

104 CHAPTER 6 — Attention Meets Post-hoc Interpretability

to-end model training approach for finding adversarial attention weights, ensuring that the new,
adversarial weights are plausible and consistent with the model, contrasting with Jain and Wal-
lace [2019]’s approach of changing only the attention scores, which disrupts the model’s training.
Furthermore, Wiegreffe and Pinter [2019] argue against the exclusive explanation: “attention is an
explanation, not the explanation.”

Serrano and Smith [2019] also scrutinize the use of attention for interpretability by mani-
pulating attention weights in pre-trained text classification models and analyzing the impact on
predictions. They conclude that attention provides a noisy prediction of the input tokens overall
importance to a model but is not a reliable indicator.

More recently, Bibal et al. [2022] provide an overview of the debate on whether attention
serves as an explanation, focusing on literature building on Jain and Wallace [2019] and Wiegreffe
and Pinter [2019]. Bibal et al. [2022] argue that the applicability of attention as an explanation hea-
vily depends on the specific NLP task. For instance, Clark et al. [2019] demonstrate that BERT’s
attention mechanism can provide reliable explanations for syntax-related tasks like part-of-speech
tagging. Similarly, Vig and Belinkov [2019] present comparable results for GPT-2, showing that
syntactic knowledge appears to be encoded across various attention heads and layers. Galassi et al.
[2020] further show that attention in transformers focuses on syntactic structures, making it sui-
table for global explanations.

Brunner et al. [2020] theoretically demonstrate that attention weights can be decomposed into
two parts, with the effective attention part focusing on the effective input without being biased
by its representation. This work is expanded by Kobayashi et al. [2020] and Sun and Marasović
[2021], who conduct more in-depth evaluations and find that alternative attention distributions
obtained through adversarial training perform poorly, suggesting that the attention mechanism of
RNNs indeed learns something useful. This finding contradicts Jain and Wallace [2019]’s claim
that attention weights do not provide meaningful explanations.

Currently, there is no definitive theoretical support for either side of the debate on whether
attention serves as an explanation. Both Jain and Wallace [2019] and Wiegreffe and Pinter [2019]
base their positions primarily on empirical experiments. The subsequent debate has provided va-
luable insights and provoked thoughtful discussion but has not conclusively proven or disproven
the interpretability of attention mechanisms.

Recent works have investigated the role of attention through mathematical examination on
specific tasks, similar to our approach. Wen et al. [2024] examine transformer interpretability by
analyzing the model’s weight matrices and attention patterns in the context of learning a Dyck

language [Schützenberger, 1963]. The authors demonstrate that vastly different solutions can be
reached via standard training, cautioning against making interpretability claims based on inspec-
ting individual components of the model. In particular, the attention pattern of a single layer can be
“nearly randomized” and still achieve high accuracy. Similarly, Li et al. [2023] provide a mecha-
nistic understanding of how transformers learn semantic structure through mathematical analysis
and experiments on Wikipedia and LDA-generated [Blei et al., 2003] data, showing that both the
embedding and self-attention layers can encode topical structures. Even when the attention score
is set to be uniform, the transformer can achieve a near-optimal loss, as other parts of the model
compensate. Finally, Cui et al. [2024] demonstrate that for a simple counting task (the histogram

task defined in Weiss et al. [2021]), the loss landscape of a transformer with a dot-product attention
layer and positional encodings reveals two distinct solutions: one with an attention matrix largely
independent of the input tokens, and another that varies significantly based on the tokens and their
semantic content. This results is illustrated in Figure 6.2. Ultimately, these works demonstrate

6.3 – 6.2.2 Attention meets post-hoc interpretability 105

that there is no evidence to assume that attention scores capture the core information underlying a
transformer’s predictions.

6.2.2 Attention meets post-hoc interpretability

Attention-based explanations are post-hoc since they can be generated after training, but they
are not model-agnostic as they require specific internal parameters (attention weights) of the mo-
del. Existing literature explores the differences between popular attention-based and other post-hoc
explanations, employing diverse methodologies and drawing varied conclusions. Ethayarajh and
Jurafsky [2021] formally establish that attention weights are not Shapley values [Shapley, 1953],
but attention flows (a post-processed version of attention weights) are, at least at the layerwise
level. Thorne et al. [2019] conduct a comparative analysis between post-hoc and attention-based
methods. They select key features according to each explainer, subsequently using these features
to make predictions and evaluate their accuracy. Their findings indicate that post-hoc methods like
LIME and Anchors yield more accurate explanations than attention-based ones when implemented
on an LSTM [Sak et al., 2014] for natural language inference.

Neely et al. [2021] evaluate the “agreement as evaluation” paradigm, comparing various ex-
planation methods on Bi-LSTM [Huang et al., 2015] and Distil-BERT [Sanh et al., 2019] models.
They conclude that consistency between different explainers should not be a criterion for eva-
luation unless a proper ground truth is available, contradicting the agreement between Jain and
Wallace [2019] and Wiegreffe and Pinter [2019]. They also highlight the theoretical limitations of
state-of-the-art explainers and suggest using robust diagnostic tools like those proposed by Atana-
sova et al. [2020].

Building on Neely et al. [2021]’s work, Neely et al. [2022] find a lack of correlation among
explanation methods, particularly in complex settings. They question the existence of an ideal

explanation and challenge the agreement as evaluation paradigm for comparison by demonstrating
that similar explanations may not yield correlated rankings.

6.3 Attention-based classifier

In this section, the attention-based architecture studied in Lopardo et al. [2024] is introduced.
The presentation and notation follow Phuong and Hutter [2022].

6.3.1 General Description

This paper considers a set of tokens belonging to a dictionary identified with [D]. A docu-
ment ξ is an ordered sequence of tokens ξ1, . . . , ξT , where T denotes the length of the document.
Without loss of generality, it is assumed that the d unique tokens of ξ are the first d elements
of [D].

The model f is a single-layer, multi-head, attention-based network followed by a linear layer.
More formally:

f(x) :=
1

K

K∑︂

i=1

fi(x) =
1

K

K∑︂

i=1

W
(i)
ℓ ṽ(i)(x) , (6.1)

where fi := W
(i)
ℓ ṽ(i) ∈ Rdout , with W (i)

ℓ ∈ R1×dout being the part of the final linear layer associa-
ted with head i, and for i ∈ [K], ṽ(i)(x) is the output of an individual head defined by Eq. (6.9).

106 CHAPTER 6 — Attention Meets Post-hoc Interpretability

Input
x

Embedding
e

Positional
Encoding
Wp

Query
q

Key
k

Value
v

Scaled
dot-product
Attention

α

Average
over the
K heads

Ouput
f(x)

We

⊕

Wk

Wq

Wv

ṽ
Wℓ

K heads

Figure 6.3 – Illustration of the architecture of the model defined in Section 6.3. The input text,
denoted as x ∈ [D]T , is transformed into an embedding e ∈ RT ×de by summing word embeddings
and positional encodings as in Eq. (6.2). For each of the K heads, the key k ∈ RT ×datt , query
q ∈ RT ×datt , and value v ∈ RT ×dout matrices are computed by applying linear transformations
to e using Wk,Wq ∈ Rdatt×de , and Wv ∈ Rdout×de , respectively. The attention weights α ∈ RT

are then computed as the softmax of the scaled dot-product of k and q, as per Eq. (6.8). Then
the intermediary output ṽ ∈ Rdout is computed are the average of the values v weighted by the
attention α. Each head outputs the linear transformation Wℓ ∈ R1×dout of the ṽ associated with the
query corresponding to the [CLS] token. The final prediction f(x) of the model is the average of
the outputs across all heads.

The value of f is used for classification; for instance, in the sentiment analysis task described in
the introduction, document ξ is classified as positive if f(ξ) > 0.

6.3.2 The attention mechanism

The self-attention mechanism within each head is now described mathematically. Formally, fi

is detailed for a given i, temporarily dropping the i index for simplicity.

Token Embedding. For each t ∈ [T], the token ξt = j is embedded as

et := (We):,j +Wp(t) ∈ Rde , (6.2)

where We ∈ Rde×D is a matrix containing the embedding of all tokens, and Wp : Z → Rde is a
deterministic mapping often called the positional embedding. It is common to set

⎧
⨄︂
⋃︂
Wp(t)2i = cos(t/T

2i/de
max)

Wp(t)2i−1 = sin(t/T
2i/de
max) ,

(6.3)

with Tmax being the maximal document size. For all T < t ≤ Tmax, the embedding of the fictitious
token value is set to an arbitrary h ∈ Rde , while the positional embedding remains the same. In
other words,

∀T < t ≤ Tmax, et := h+Wp(t) ∈ Rde . (6.4)

If T > Tmax, the last tokens are ignored and the input document is effectively discarded. It is
assumed that the embedding matrices are shared between the K heads, although the analysis can
easily accommodate different embedding matrices for each individual head.

6.3 – 6.3.2 The attention mechanism 107

[C
LS

]
at
te
nt
io
n

ba
se

d
ex

pl
an

at
io
ns ar
e

po
pu

la
r

bu
t

qu
es

tio
na

bl
e

[CLS]
attention

based
explanations

are
popular

but
questionable

Head 1

[C
LS

]
at
te
nt
io
n

ba
se

d
ex

pl
an

at
io
ns ar
e

po
pu

la
r

bu
t

qu
es

tio
na

bl
e

[CLS]
attention

based
explanations

are
popular

but
questionable

Head 2

[C
LS

]
at
te
nt
io
n

ba
se

d
ex

pl
an

at
io
ns ar
e

po
pu

la
r

bu
t

qu
es

tio
na

bl
e

[CLS]
attention

based
explanations

are
popular

but
questionable

Head 3

[C
LS

]
at
te
nt
io
n

ba
se

d
ex

pl
an

at
io
ns ar
e

po
pu

la
r

bu
t

qu
es

tio
na

bl
e

[CLS]
attention

based
explanations

are
popular

but
questionable

Head 4
[C
LS

]
at
te
nt
io
n

ba
se

d
ex

pl
an

at
io
ns ar
e

po
pu

la
r

bu
t

qu
es

tio
na

bl
e

[CLS]
attention

based
explanations

are
popular

but
questionable

Head 5

[C
LS

]
at
te
nt
io
n

ba
se

d
ex

pl
an

at
io
ns ar
e

po
pu

la
r

bu
t

qu
es

tio
na

bl
e

[CLS]
attention

based
explanations

are
popular

but
questionable

Head 6

Figure 6.4 – Attention matrices across the heads. Each head is represented by a distinct matrix,
demonstrating the unique focus each head has on different parts of the document. The matrices
illustrate that tokens within the document can carry significantly different weights, indicating the
varying importance or relevance of each token in the context of the document. The aggregation
of these weights to provide token-level scores is a critical aspect. Note that Eqs. (6.10) and (6.11)
correspond to the average and the maximum values, respectively, of the first row across all six
matrices.

Keys, Queries, Values. Next, these embeddings are mapped to key, query, and value vectors,
defined respectively as

kt := Wket + bk ∈ Rdatt , (6.5)

qt := Wqet + bq ∈ Rdatt , (6.6)

vt := Wvet + bv ∈ Rdout , (6.7)

with Wk,Wq ∈ Rdatt×de , and Wv ∈ Rdout×de . For simplicity, the bias vectors bk, bq ∈ Rdatt and
bv ∈ Rdout are considered to be zero.

108 CHAPTER 6 — Attention Meets Post-hoc Interpretability

Attention. For a given query q ∈ Rdatt , the attention αt received by each index t is defined as

αt :=
exp

(︂
q⊤kt/

√
datt

)︂

∑︁Tmax
u=1 exp

(︁
q⊤ku/

√
datt
)︁ . (6.8)

The scaling factor 1/
√
datt, although not strictly necessary (since Wq and Wk are learnable para-

meters of the model), is retained to properly scale the positional embedding.

Output of the Model. The intermediary output value before the final linear transformation as-
sociated with the query q is

ṽ :=
Tmax∑︂

t=1

αtvt ∈ Rdout . (6.9)

Each individual head transforms the ṽ associated with the query corresponding to the [CLS]

token. Specifically, for i ∈ [K], fi(x) = W
(i)
ℓ ṽ(i).

Limitations and differences between this model and practical architectures are discussed in
Section 6.7.

6.4 Attention-based Explanations

The scaled dot-product attention, introduced by Vaswani et al. [2017] (corresponding to
the definition in Eq. (6.8)), measures the relationship among tokens. This mechanism generates a
matrix where each entry represents the degree of association between a pair of tokens. Specifically,
any attention head i ∈ [K] produces a T×T attention matrixA(i) (illustrated in Figure 6.4), where

each entry A(i)
s,t = αt(qs) is the attention value defined in Eq. (6.8), computed with respect to the

s-th query token.
Furthermore, as this study focuses on a classification model, only the [CLS] token, which

encapsulates the core of the classification [Chefer et al., 2021], is considered. Formally, this means
that only the specific query q linked to the [CLS] token is relevant in Eq. (6.8). This is equivalent
to selecting the first row of the attention matrices in Figure 6.4.

Note that, in general, a Transformer model is structured as a series of sequential layers, each
equipped with a specific number of parallel heads. These heads operate independently, executing
the attention mechanism. To produce token-level attention-based explanations, one must aggregate
the attention matrices at both the head and layer levels. Mylonas et al. [2023] provide a detailed
depiction of these operations; refer to Figure 2 in Mylonas et al. [2023] for a comprehensive
illustration.

In our scenario, the model defined in Section 6.3 is single-layered, hence layer-level aggrega-
tion is omitted.

As a result, each head produces an attention vector of size T that highlights the focus of the
head on each token. However, as depicted in Figure 6.4, heads often concentrate on different
sections of the document. Thus, aggregating the K attention vectors is crucial. The two most
common aggregation methods involve computing the average vector or determining the maximum
value among the vectors for each token. Formally, for any token t ∈ [T], we define:

α-avgt :=
1

K

K∑︂

i=1

α
(i)
t , (6.10)

6.5 – Gradient-based Explanations 109

and
α-maxt := max

i∈[K]
α

(i)
t . (6.11)

It is important to note that α-avg and α-max can lead to very different explanations. Additio-
nally, α-avg, α-max, and G-l1 generate non-negative weights. Consequently, these methods do not
differentiate between words that contribute positively or negatively to the prediction, as depicted
in Figure 6.1.

6.5 Gradient-based Explanations

This section delves into gradient-based explanations, beginning with an overview of the main
methods before computing these explanations for the model proposed in Section 6.3.

6.5.1 Methods

This section describes existing gradient-based methods, often referred to as saliency maps,
drawing an analogy to a similar technique in computer vision. Given a model f and an instance x,
the gradient with respect to a token t ∈ [T] is defined as:

∇etf(x) ∈ Rde . (6.12)

It is important to note that the gradient ∇et is calculated with respect to the embedding vec-
tor et ∈ Rde . To derive per-token importance weights, several strategies exist. The primary ap-
proaches, known as Gradient explanations, involve taking the mean value (G-avg) [Atanasova
et al., 2020], the L1 norm (G-l1) [Li et al., 2016], or the L2 norm (G-l2) [Poerner et al., 2018,
Arras et al., 2019, Atanasova et al., 2020] of the components of Eq. (6.12).

An alternative approach, known as Gradient times Input (G×I) [Denil et al., 2014], suggests
computing saliency weights by performing the dot product of the gradient from Eq. (6.12) with the
input word embedding et. In this notation, the saliency weights are calculated as e⊤

t (∇etf(x)).
While these methods share a common foundation, the explanations they generate can vary si-

gnificantly and may even be contradictory. As illustrated in Figure 6.1, the G-l1 and G-l2 methods
yield non-negative weights. In other words, these methods do not distinguish between words that
contribute positively or negatively to the prediction, contrary to G×I (see Figure 6.1).

6.5.2 Gradient of the model

Consider the model described in Section 6.3. The function f is linear with respect to the fi

head, i ∈ [K], hence, the gradient of f with respect to the token embedding et is:

∇etf(x) :=
1

K

K∑︂

i=1

∇etfi(x) ∈ Rde . (6.13)

The primary quantity of interest is the gradient of a single attention head, ∇fi(x). Recall that q
is the query corresponding to the classification token [CLS]. With this notation, the following
theorem can be stated (proved in Appendix C.1).

110 CHAPTER 6 — Attention Meets Post-hoc Interpretability

Theorem 6.5.1 (Gradient Meets Attention). The gradient of the model f , defined by Eq. (6.1),
with respect to the embedded token et, t ∈ [T], is:

∇etf(x) =
1

K

K∑︂

i=1

[︄
α

(i)
t (W (i)

v)⊤(W
(i)
ℓ)⊤ +

α
(i)
t√
datt

W
(i)
ℓ

(︄
v

(i)
t −

Tmax∑︂

s=1

α(i)
s v(i)

s

)︄
(W

(i)
k)⊤q

⟨︂
∈ Rde .

(6.14)

By substituting Eq. (6.14) into Eq. (6.13), the gradient-based explanations discussed in Sec-
tion 6.5.1 can be reconstructed. Specifically, G-avg, G-l1, and G-l2 are the average, the L1, and
the L2 norm of ∇etf(x) ∈ Rde , respectively, while G×I is the dot product between the gradient
and the embedding vector: e⊤

t (∇etf(x)).
Several key points are noteworthy. (i) The gradient of f , at the first-order approximation, is

linear in α, which partly explains its correlation with the attention weights. Consequently, α-avg
correlates with G-avg and G-l1, aligning with desiderata (i) of Jain and Wallace [2019], while
the same does not hold for α-max and G-l2. However, this correlation may not necessarily hold
true for deeper models.

(ii) The gradient captures the influence of the linear layers W (i)
ℓ , providing an insight

disregarded by attention-based explanations. For instance, assuming K = 1 and vt ≈ ∑︁Tmax
s=1 αsvs

(reflecting a situation where the value vector is “typical”), the only remaining part in Eq. (6.14)
is αtW

⊤
v W

⊤
ℓ . A positive αt can yield negative explanations if the coordinates of W⊤

v W
⊤
ℓ reflect

the true behavior of the model.

6.6 Perturbation-based Explanations

This section focuses on perturbation-based explanations, specifically using LIME for text data.
The following subsections will provide an overview of how LIME operates, introduce necessary
additional notation, and present the main result.

6.6.1 Reminder on LIME

LIME for text data, as detailed in Mardaoui and Garreau [2021], operates by starting with the
document ξ to be explained and generating local perturbations X1, . . . , Xn. A local linear model
is then trained on these perturbations to approximate the predictions of f . The linear coefficients
of this model are provided as the explanation to the user.

Sampling. Let X denote the distribution of the randomly perturbed documents. In this context,
X is generated as follows: first, pick s uniformly at random from [d] (the local dictionary), then
choose a set S ⊆ [d] of size s uniformly at random. Finally, remove all occurrences of words
appearing in S from ξ, where removing means replacing with the UNK token. For simplicity, it is
assumed that tokens and words coincide. The perturbed samples X1, . . . , Xn are independent and
identically distributed repetitions of this process.

Associated with the Xi samples are vectors Z1, . . . , Zn ∈ {0, 1♢d, indicating the presence or
absence of a word in Xi. Specifically, Zi,j = 1 if word j is present in Xi and 0 otherwise.

6.6 – 6.6.2 Limit Explanations 111

aw
fu

l

am
az

in
g

no
th

in
g it

m
an

y

se
qu

el no
t

ex
ce

pt is

an
d

Token

−1.5

−1.0

−0.5

0.0

0.5

1.0
W

ei
gh

ts
LIME meets Attention

Figure 6.5 – Illustration of the accuracy of Eq. (6.19). The boxplots show the results from 5 runs
of LIME with default parameters, while the red crosses indicate the predictions given by Theo-
rem 6.6.1. The document ξ contains T = 99 tokens and d = 71 distinct words and is classified
as a negative review. Note that Theorem 6.6.1 holds true even with T ̸= d for reasonable word
multiplicities, as discussed in Section 6.7.

Weights. Each new sample Xi receives a positive weight πi, defined as

πi := exp

(︄
−d(✶, Zi)

2

2ν2

)︄
, (6.15)

where d is the cosine distance and ν > 0 is a bandwidth parameter. The intuition behind these
weights is that Xi can be far from ξ if many words are removed. In the most extreme case, where
s = d, all words from ξ are removed. In such cases, zi has mostly 0 components and is distant
from ✶ in terms of cosine distance.

Surrogate Model. The next step involves training a surrogate model on Z1, . . . , Zn, aiming to
match the responses Yi := f(Xi). In the default implementation of LIME, this model is linear and
is obtained through weighted ridge regression. Formally, LIME outputs

ˆ︁βλ
n ∈ arg min

β∈Rd+1

∮︂
n∑︂

i=1

πi(yi − β⊤zi)
2 + λ ∥β∥2

⨀︁
, (6.16)

where λ > 0 is a regularization parameter. The components of ˆ︁βλ
n are referred to as the interpre-

table coefficients, with the 0-th coordinate conventionally representing the intercept.

6.6.2 Limit Explanations

Under mild assumptions, Mardaoui and Garreau [2021, Theorem 1] demonstrate that LIME’s
coefficients converge to limit coefficients β∞. Specifically, this convergence occurs when the num-

112 CHAPTER 6 — Attention Meets Post-hoc Interpretability

ber of perturbed samples n is large, the penalization in Eq. (6.16) is not too strong (which is
typically the default case), and the bandwidth ν is also large.

The expression for the limit coefficient associated with word j is

β∞
j = 3E [f(X) ♣ j /∈ S] − 3

d

∑︂

k

E [f(X) ♣ k /∈ S] . (6.17)

This coefficient can be computed (exactly or approximately) as a function of the model parameters,
providing precise insights into LIME’s behavior in this context. This computation represents the
main result of this section.

Before presenting Theorem 6.6.1, some additional notation is required. The index hwill denote
the quantity corresponding to the [UNK] token. Specifically, kh,t := Wkh+WkWp(t) ∈ Rdatt is
the key vector associated with the [UNK] token at position t ∈ [Tmax]. For any t ∈ [Tmax], we
define:

gh,t := exp

(︄
q⊤kh,t√
datt

)︄
, (6.18)

and
αh,t :=

gh,t∑︁
u gh,u

.

Here, αh,t represents the attention corresponding to the [UNK] token at position t, from the pers-
pective of the query associated with the [CLS] token. Finally, set vh,t := Wv(h+Wp(t)).

Theorem 6.6.1 (LIME meets Attention). Assume that d = T = T ε
max, with ε ∈ (0, 1). Further

assume the existence of positive constants 0 < c < C such that, as T → +∞, for all t ∈ [Tmax],
max(♣vt♣ , ♣vh,t♣) ≤ C, and c ≤ min(gt, gh,t) ≤ C. Then,

β∞
j =

3

2K

K∑︂

i=1

Tmax∑︂

t=1

W
(i)
ℓ

(︂
α

(i)
t v

(i)
t − α

(i)
h,tv

(i)
h,t

)︂
✶ξt=j + O

(︂
T (2−ε)∨3/2

max

)︂
. (6.19)

Theorem 6.6.1 is proved in Section C.2. The main challenge in the proof is to derive accurate
approximations for Eq. (6.17), as the considered model, despite being single-layered, exhibits high
non-linearity.

It is important to note that Theorem 6.6.1 assumes all tokens are distinct. While it is conjectu-
red that this assumption can be relaxed (as discussed in Section 6.7), it is necessary for a rigorous
comparison between attention and LIME explanations. However, the experiments were conducted
without assuming distinct tokens.

Despite this, a very good match was observed between the theoretical approximation and the
empirical outputs of LIME with default parameters. This is illustrated in Figure 6.5 on a specific
example, and further quantified in Appendix C.2.

Several observations can be drawn:

(i) It is evident from Eq. (6.19) that LIME explanations are quite different from gradient-
based explanations (Eq. (6.14)), except for the leading term (which is proportional to
αtWℓvt) found in both expressions.

(ii) It is apparent that LIME explanations are approximately an affine transformation of
the α(i)

t .

6.7 – Limitations 113

(iii) As with gradient-based explanations, there is a significant difference compared to plain
attention-based explanations: the final layer plays a crucial role in the explanation. To put
it simply, assume K = 1 and Wℓvt = 0, then the influence of αt vanishes regardless
of its value. This is advantageous for LIME, as it corresponds to the model nullifying the
influence of token t in later stages, despite a positive attention score.

(iv) From Eq. (6.19), it is clear that LIME explanations will be near zero whenever α(i)
t v

(i)
t ≈

α
(i)
h,tv

(i)
h,t, indicating that the attention × value of head i for token t is comparable to that

for the [UNK] token. This highlights the importance of carefully choosing the embedding
for the replacement token.

6.7 Limitations

The model described in Section 6.3 differs from practical architectures primarily in the follo-
wing aspects: (i) number of layers, (ii) skip connections, and (iii) non-linearities:

(i) Only a single layer is considered, which introduces non-linearity and presents a challen-
ging analysis while providing good performance for the task.

(ii) Skip connections are not included as they did not enhance performance, but the analysis
can easily adapt to include them since this operation is linear.

(iii) Following typical theoretical works [Gunasekar et al., 2018], additional non-linearities,
such as ReLU activations or its variants, are not incorporated.

The main limitation of this analysis is its focus on a single-layer model. This allows for a deep
theoretical exploration, yet its applicability to more complex architectures may not be straightfor-
ward. Extending this analysis to multi-layer architectures introduces additional theoretical chal-
lenges. In multi-layer transformers, approximation errors can accumulate and intensify as they
propagate through the network. Moreover, assumptions valid for a single layer may not hold for
deeper networks, especially those with non-linearities like ReLU activations. However, even for
simple architectures, many questions remain unresolved, and the interpretability of these models
has not been thoroughly studied in a formal manner.

Several theoretical studies on transformers share these limitations. For example, Jelassi et al.
[2022] elucidates how Vision Transformers discern spatial patterns within a single-layer, single-
head architecture. Similarly, Tarzanagh et al. [2023] establishes the correspondence between the
optimization geometry of self-attention and an SVM problem. Von Oswald et al. [2023] suggests
that training transformers with a specific objective can induce a form of meta-learning, exemplified
on a linear single-layer model. Additionally, Edelman et al. [2022] investigate transformers in time
series forecasting, showcasing their superiority over traditional methods by accurately capturing
temporal dependencies. In a bid to enhance transformer efficiency and scalability, Fu et al. [2023]
introduce sparse attention mechanisms and efficient training strategies by formalizing single-layer
transformers. Furthermore, Makkuva et al. [2024] tackle transformer interpretability, developing
tools to visualize and comprehend attention patterns within the models, aiming to bridge the gap
between high performance and the imperative for transparency in critical applications. Appendix
C.5 reports experiments on a multi-layer transformer.

Theorem 6.6.1 also has limitations. First, as in previous work, the approximation holds true
for large document and window sizes. While this is expected, the results are experimentally sa-
tisfying for documents a few dozen tokens long. Second, Theorem 6.6.1 assumes all tokens are
distinct. This simplification allows for a rigorous formalization of LIME’s behavior using its de-

114 CHAPTER 6 — Attention Meets Post-hoc Interpretability

fault parameters as defined in the official implementation. Experimentally, Eq. (6.19) holds for
documents containing repeated words. Theorem 6.6.1 was validated without this assumption by
computing the norm-2 error between the official LIME weights and our approximation (illustrated
in Figure 6.5). The average error over the full test set (described in Appendix C.6) is 0.808, with a
standard deviation of 0.219. Theoretically, this assumption can be relaxed if the maximal multipli-
city of tokens is small relative to T . If many tokens are identical, this is no longer true: consider,
for instance, the extreme case of two groups of identical tokens. Further details are discussed in
Appendix C.2.1.

6.8 Conclusion and Future Work

This chapter presents a theoretical analysis of how post-hoc explanations relate to a single-
layer multi-head attention-based network. By providing exact and approximate expressions for
post-hoc explanations on such a model, this work contributes to the ongoing debate in this area.
These expressions highlight the fundamental differences between attention-based, gradient-based,
and perturbation-based explanations. This deeper understanding not only enriches the discourse
surrounding interpretability but also offers valuable insights for practitioners and researchers na-
vigating the complexities of transformer interpretation.

The quest for perfect explanations remains elusive; no single method has emerged as entirely
satisfactory. Current models employ attention scores in a non-intuitive manner to arrive at the final
prediction. These scores undergo a series of transformations, often ignored when focusing solely
on attention scores. Additionally, attention scores always provide a positive explanation, unlike
most perturbation-based and gradient-based approaches. For these reasons, these approaches can
extract more valuable insights than merely examining attention weights. This finding aligns with
the assertions made by Bastings and Filippova [2020].

Future work will broaden the scope of this analysis by extending investigations to a diverse
range of post-hoc interpretability methods, including Anchors, to understand model explanations
across different methodologies. Similar statements (connecting explanations to the model’s pa-
rameters) will be sought for more complex architectures, including skip connections, additional
non-linearities, and multi-layer models. This will help discern the relationship between model pa-
rameters and different explanations. Additionally, the interplay between the sampling mechanism
of perturbation-based methods (often replacing at the word level) and the tokenizer used by the
model (tokens are often subwords) will be explored further.

The focus of this paper has been on text classification, leveraging well-established and broadly
studied post-hoc explainers for a thorough theoretical analysis. However, the scope of applications
for this analysis will be expanded. Specifically, while this study focused on token-level explana-
tions, future research will extend these findings beyond text models to encompass other domains,
such as computer vision.

CHAPTER 7
Conclusion and

Perspectives
7.1 Conclusion

This PhD thesis has contributed to the field of Machine Learning interpretability by studying
its foundations. Chapter 3 highlighted problems and unexpected behaviors in methods widely
used by researchers and practitioners. Through empirical comparisons and rigorous mathema-
tical analyses, the limitations of these methods have been brought to light, in particular about
Anchors (Chapter 4) and attention-based explanations (Chapter 6). Additionally, Chapter 5 in-
troduced FRED: a new method based on insights derived from the analysis of other methods,
which aims to overcome some of their limitations. In particular, this thesis has focused on local
and post-hoc interpretability methods, which explain individual predictions of machine lear-
ning models without intervening in their training or the design of their architecture. Additionally,
except for Chapter 6, this thesis has examined model-agnostic methods: designed to explain any
black-box model without knowing its nature or using any of its internal parameters. While text
classification, particularly with a limited number of classes, has been extensively studied and de-
veloped through various models, tools, and research, the interpretability of these models remains
a significant challenge. Therefore, this thesis has primarily focused on this task.

The starting point of the PhD has been noticing that different explainers often produce di-
verse, sometimes even conflicting explanations. This phenomenon occurs even with the most
commonly used methods and on simple tasks such as sentiment analysis. The natural consequence
of this observation has been to question which method produces better explanations. While me-
trics such as accuracy, precision, and recall are commonly employed to compare different models
for text classification across well-known benchmark datasets, a similar standard for evaluating in-
terpretability has been largely absent. This topic has been discussed in Section 1.5.2, and some
options specifically for NLP have been explored in Section 2.4. This problem has been even more
pronounced when comparing methods that produce different types of explanations, such as feature
attribution and rule-based methods. In such case, one would expect that the keywords identified
as most crucial by a rule-based method have been highlighted as most important by a feature
attribution method. However, it has been shown in this thesis that this is not guaranteed, nor is it
clear which explanation is the most faithful to the model.

To this end, Lopardo and Garreau [2022] presented in Chapter 3 has compared the explanations
of LIME [Ribeiro et al., 2016] and Anchors [Ribeiro et al., 2018] on simple models, for which the
decision-making process is precisely known. Qualitative experiments (Section 3.3.1) have shown
that Anchors exhibit unclear behavior that depends on the multiplicity of words in the text:

115

116 CHAPTER 7 — Conclusion and Perspectives

the explanation changes depending on how many times an important word appears in the
text. In contrast, quantitative experiments (Section 3.3.2) have shown that LIME has been much
more faithful to a linear classification model compared to Anchors. This was expected, given that
LIME uses a linear model as its local surrogate.

In essence, what has emerged from this comparison is that different methods effectively ex-
plain different aspects of the prediction, depending on their internal mechanisms. Therefore, the
explanation itself must be interpreted, and to do so correctly, it is essential to precisely unders-
tand the foundations of the method being used.

LIME, with its pros and cons, has been extensively studied. In contrast, Anchors remained
popular but insufficiently studied. For this reason, Lopardo et al. [2023a] has presented the first
comprehensive study of Anchors, revealing its strengths and limitations. The analysis has included
a detailed exploration of Anchors precision and coverage, the algorithm, and its sampling methods.
The findings have provided a robust theoretical foundation for understanding and improving An-
chors.

Subsequently, leveraging insights from these previous analyses, Lopardo et al. [2023b] has
proposed FRED: a local, post-hoc, and model-agnostic method with clear and explicit definitions,
which aims to overcome some of the limitations of LIME and Anchors. FRED provides explana-
tions in the form of feature attribution (sentence highlighting), by identifying the minimal set of
most important keywords for the prediction, and through example-based explanations, showcasing
slightly perturbed versions of the original text that receive a different classification (counterfac-
tuals) or the same classification (prototypes).

Chapter 5 has provided a theoretical analysis that illustrates the behavior of FRED when ap-
plied to intrinsically interpretable models, in the same spirit as Lopardo et al. [2023a]. Addi-
tionally, experiments comparing various explainability techniques, including LIME, SHAP, and
Anchors, across different datasets and models, have validated the robustness and faithfulness of
FRED’s explanations.

The thesis has then shifted to the study of attention-based explanations in Chapter 6. The
attention mechanism [Bahdanau et al., 2015], notably used by transformers [Vaswani et al., 2017],
produces attention weights for each input token, leading to the natural idea of using these weights
as explanations. These weights have been interpreted as a measure of how much the model focuses
on different parts of the input text.

However, there has been a wide and animated debate on whether these attention weights can be
used as explanations, summarized in Section 6.2. Lopardo et al. [2024] has entered this debate with
a mathematical analysis that has highlighted the distinctions between attention-based and other
post-hoc explanations. In summary, Section 6.3 defined a mathematically tractable and simplified
version of a multi-head, single-layer transformer. The analysis has demonstrated that post-
hoc methods capture more useful insights than merely examining attention weights. In fact,
while attention weights undoubtedly provide useful information about a model’s decision-making
process, focusing solely on these weights ignores the way they are interconnected throughout the
network.

7.2 Perspectives

Building on the findings and contributions of this thesis, several promising avenues for future
research and development can be identified.

7.2 – Perspectives 117

Word replacement. A first direction is to study the impact of different methods for perturbing
text documents. It has been shown that the sampling scheme used by perturbation-based methods
(Section 1.4.6) is central and has a direct impact on the explanations. Directly removing words to
alter the text can be problematic for some models, as it changes the structure and length of the text,
and likely disrupts the semantic and grammatical structure. Replacing with an out-of-dictionary
mask token, as default several techniques, including LIME, SHAP, Anchors, is an improvement,
but the resulting samples are out-of-distribution (OOD, Section 1.5.1) and still lack coherence.

The pos-sampling used by FRED (Section 5.2.2) is a significant improvement, as it re-
places the selected word with one that retains the same part-of-speech tag. However, this does not
guarantee that the generated samples are coherent (for example, the sentence “I love this movie”
could become “I eat this movie”), and thus it is not immune to the OOD issue.

A promising approach could be to rely on vector representations such as Word2Vec [Mikolov
et al., 2013] or GloVe [Pennington et al., 2014]. In this case, a concept of similarity between words
can be defined based on the distance of their vector representations. Similar words should have
similar vector representations in some sense. If trained on an appropriate corpus, these represen-
tations can be leveraged to replace a word with one that has a similar representation. Preliminary
experiments (on small datasets) have shown that the generated samples are still largely nonsensi-
cal. However, using an adapted corpus designed to maximize the similarity between vector repre-
sentations of words that are likely to belong to the same context can represent an effective (and
computationally lightweight) method for addressing word replacement.

Replacing missing words using BERT [Devlin et al., 2019] is an alternative implemented as
a second option in the Anchors repository ∗. However, empirical results † have shown that this
option is not entirely satisfactory in the context of interpretability. BERT, in fact, is specifically
designed to predict missing words, and it performs well in this task. If an example is moderately
large and contains many positive words, for instance, BERT understands from the context that
the text is positive and, when replacing a masked word, will most likely use another word with
a positive connotation. As a result, the underlying model likely maintains the same prediction
whether an important token is present in a sample or not, and thus the explainer fails to identify it
as important.

Such a task seems straightforward for modern LLMs. However, a more significant issue could
be the computational cost: generating 5000 perturbed samples (as LIME by default) using an
LLM can be very resource-intensive, which is why this approach is not widely used. It would
be interesting to quantitatively measure which method works best. This obviously depends on
the underlying model and the specific task for which the replacement is needed. However, an
intriguing research question is to identify one or a set of metrics to measure the quality of text
perturbations.

Evaluation of explanations. Consequently, it would be possible to make progress in the chal-
lenging discourse of evaluation metrics for explanations (Section 1.5.2). The metrics introduced in
Section 2.4) heavily rely on word replacement. The faithfulness metrics used in Chapter 5, namely
the sufficiency and comprehensiveness as defined in DeYoung et al. [2020], measure the quality of a
rule-based explanation (i.e., the relevance of the identified keywords) when they are removed from
the original document or when they are the only words present, respectively. To achieve this, other

∗. https://github.com/marcotcr/anchor
†. https://github.com/marcotcr/anchor/blob/master/notebooks/Anchor%20for%

20text.ipynb

https://github.com/marcotcr/anchor
https://github.com/marcotcr/anchor/blob/master/notebooks/Anchor%20for%20text.ipynb
https://github.com/marcotcr/anchor/blob/master/notebooks/Anchor%20for%20text.ipynb

118 CHAPTER 7 — Conclusion and Perspectives

words are masked with a predefined token (such as UNK). Similarly, the AUCMorf [Kakogeorgiou
and Karantzalos, 2021], which measures the quality of feature-based explanations, evaluates the
model’s prediction deviation when the top k tokens in order of importance are removed: in practice
replaced by a token. Depending on the mask, one explainer may be favored over another, making
comparisons using such metrics potentially unfair [Hsia et al., 2024]. Adopting an optimal mask
token is therefore crucial.

Adapting the analysis to different data types. The analysis of Anchors [Lopardo et al., 2023a]
discussed in Chapter 4 can be extended to its implementation for tabular data and images. In the
case of tabular data, Anchors identifies the minimal set of input features that most significantly
impact the prediction, maximizing coverage while ensuring high precision, exactly as in Eq. 4.3.
Similarly, for image classifiers, the critical difference is that the input features are superpixels
(i.e., groups of pixels), as in the case of LIME. Anchors, therefore, identifies the minimal set of
superpixels that satisfy Eq. 4.3.

Similarly, the analysis of attention-based explanations can be extended to vision models. The
definitions for attention in Section 6.3.2 remain applicable, and the model in Section 6.3 can
be adapted with minor adjustments for the task of image classification. In fact, explanations are
considered at the token level, and whether the token is a word or a pixel does not change the
analysis. The same applies to gradient-based explanations, meaning that the results from Section
6.5 are equally valid for image data.

The challenging part that requires further work is related to LIME. In practice, LIME operates
differently on various types of data. For Section 6.6, insights from preious work have been adapted
to the model of Section 6.3, in order to obtain the explicit LIME weights for each token. In the case
of images, additional considerations are necessary. Fortunately, LIME on images has also been
studied. The main challenge lies in adapting the model in exam to Garreau and Mardaoui [2021,
Proposition 2], as the number of superpixels and the superpixel to which each pixel belongs are
not known a priori.

As detailed in Section 5.5, FRED can also be extended to image classifiers and tabular data by
adapting its sampling process. For images, common perturbation methods, such as pixel masking
or blurring, risk creating out-of-distribution samples. Vision-language models can generate more
realistic perturbations, but are resource-intensive. For tabular data, perturbation methods include
replacing values with mean or median values or using domain-specific logic, with challenges in
preserving feature distribution and relationships. The key challenge is developing a fast and effec-
tive sampling method that avoids systematically producing out-of-distribution samples, ensuring
the reliability of FRED’s explanations.

Exploring the technical explainability requirements in regulation. As introduced in Section
1.3.2, interpretability is one of the central points around which new artificial intelligence regula-
tions revolve. The AI Act of the European Union mandates that decisions made by high-risk

AI applications must be explainable. More specifically, Article 13 of on Transparency and pro-

vision of information to deployers mandates that

High-risk AI systems shall be designed and developed in such a way as to ensure that
their operation is sufficiently transparent to enable deployers to interpret a system’s
output and use it appropriately. An appropriate type and degree of transparency shall

7.2 – Perspectives 119

be ensured with a view to achieving compliance with the relevant obligations of the
provider and deployer [...].

Similarly, Article 14 on Human oversight states that

[...] the high-risk AI system shall be provided to the deployer in such a way that
natural persons to whom human oversight is assigned are enabled, as appropriate and
proportionate [...] to correctly interpret the high-risk AI system’s output, taking into
account, for example, the interpretation tools and methods available [...].

It is crucial to interpret the regulations to understand the necessary requirements for explana-
tions. The law is not precise: Article 13 refers to “an appropriate type and degree of transparency,”
leaving the question of what this means open. Additionally, Article 14 says “taking into account
the interpretation tools and methods available”, implying that existing methods are compliant, but
it has already been shown that these methods are often flawed.

Preliminary interpretations suggest that only self-explainable models (Section 1.4.4) may be
suitable for compliance. Bordt et al. [2022] argue that post-hoc explanation algorithms, such as
SHAP and LIME, fail to meet legal and regulatory transparency requirements, especially in ad-
versarial contexts where the explanation provider and receiver have conflicting interests, proving
that post-hoc explanations can be manipulated, lack clear standards, and do not reliably convey
the true reasons behind decisions.

In the case of the GDPR, the conflict between the right to be forgotten and the need for actio-
nable explanations has already proven problematic, as discussed in Pawelczyk et al. [2022b]. The
study highlights how data deletion requests can significantly impact the validity of algorithmic
recourse, emphasizing the need for careful consideration of these regulatory requirements. Addi-
tionally, a recent review [Nannini et al., 2024] reveals that many XAI research papers engage with
ethical considerations only superficially, without substantial engagement to practically integrating
ethical analysis into XAI development. This underscores the need for a deeper, more comprehen-
sive integration of ethical considerations in XAI research and practice to ensure that transparency
and explainability requirements are met effectively.

Bibliography

Talal A. A. Abdullah, Mohd Soperi Mohd Zahid, and Waleed Ali. A Review of Interpretable ML
in Healthcare: Taxonomy, Applications, Challenges, and Future Directions. Symmetry, 13(12):
2439, 2021.

Eldar D. Abraham, Karel D’Oosterlinck, Amir Feder, Yair Gat, Atticus Geiger, Christopher
Potts, Roi Reichart, and Zhengxuan Wu. CEBaB: Estimating the Causal Effects of Real-World
Concepts on NLP Model Behavior. Advances in Neural Information Processing Systems (Neu-

rIPS), 35:17582–17596, 2022.

Carlo Abrate and Francesco Bonchi. Counterfactual Graphs for Explainable Classification of
Brain Networks. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery

& Data Mining, pages 2495–2504, 2021.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4
Technical Report. arXiv preprint arXiv:2303.08774, 2023.

Amina Adadi and Mohammed Berrada. Peeking Inside the Black-Box: A Survey on Explainable
Artificial Intelligence (XAI). IEEE access, 6:52138–52160, 2018.

David Adam. Lethal AI weapons are here: how can we control them? Nature, 2024.

Chirag Agarwal, Nari Johnson, Martin Pawelczyk, Satyapriya Krishna, Eshika Saxena, Marinka
Zitnik, and Himabindu Lakkaraju. Rethinking Stability for Attribution-based Explanations. In
ICLR International Workshop on Privacy, Accountability, Interpretability, Robustness, Reaso-

ning on Structured Data (PAIR2Struct), 2022a.

Chirag Agarwal, Satyapriya Krishna, Eshika Saxena, Martin Pawelczyk, Nari Johnson, Isha Puri,
Marinka Zitnik, and Himabindu Lakkaraju. OpenXAI: Towards a Transparent Evaluation of Post
hoc Model Explanations. Advances in Neural Information Processing Systems (NeurIPS), 35:
15784–15799, 2022b.

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Ca-
ruana, and Geoffrey E Hinton. Neural Additive Models: Interpretable Machine Learning with
Neural Nets. Advances in Neural Information Processing Systems (NeurIPS), 34:4699–4711,
2021.

Daehwan Ahn, Abdullah Almaatouq, Monisha Gulabani, and Kartik Hosanagar. Impact of Model
Interpretability and Outcome Feedback on Trust in AI. In Proceedings of the CHI Conference on

Human Factors in Computing Systems, pages 1–25, 2024.

Samir N Ajani, Prashant Khobragade, Mrunalee Dhone, Bireshwar Ganguly, Nilesh Shelke, and
Namita Parati. Advancements in Computing: Emerging Trends in Computational Science with
Next-Generation Computing. International Journal of Intelligent Systems and Applications in

Engineering, 12(7s):546–559, 2024.

Selin Akgun and Christine Greenhow. Artificial intelligence in education: Addressing ethical
challenges in K-12 settings. AI and Ethics, 2(3):431–440, 2022.

121

122 BIBLIOGRAPHY

E. Albini, A. Rago, P. Baroni, F. Toni, et al. Relation-Based Counterfactual Explanations for
Bayesian Network Classifiers. In Proceeding of the International Joint Conference on Artificial

Intelligence (IJCAI), volume 2021, pages 451–457, 2020.

David Alvarez-Melis and Tommi Jaakkola. A causal framework for explaining the predictions of
black-box sequence-to-sequence models. In Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 412–421, 2017.

David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
neural networks. Advances in Neural Information Processing Systems (NeurIPS), 31, 2018.

Salim I. Amoukou and Nicolas J. B. Brunel. Consistent Sufficient Explanations and Minimal Lo-
cal Rules for explaining regression and classification models. In Advances in Neural Information

Processing Systems (NeurIPS), 2022.

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards Better Understanding
of Gradient-based Attribution Methods for Deep Neural Networks. In International Conference

on Learning Representations (ICLR), 2018.

Sule Anjomshoae, Timotheus Kampik, and Kary Främling. Py-CIU: A Python Library for Ex-
plaining Machine Learning Predictions Using Contextual Importance and Utility. In IJCAI-

PRICAI 2020 Workshop on Explainable Artificial Intelligence (XAI), January 8, 2020, 2020.

Leila Arras, Franziska Horn, Grégoire Montavon, Klaus-Robert Müller, and Wojciech Samek.
"What is relevant in a text document?": An interpretable machine learning approach. PloS one,
12(8):e0181142, 2017.

Leila Arras, Ahmed Osman, Klaus-Robert Müller, and Wojciech Samek. Evaluating Recurrent
Neural Network Explanations. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analy-

zing and Interpreting Neural Networks for NLP, pages 113–126, 2019.

Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Ta-
bik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Benjamins, ,
et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and chal-
lenges toward responsible AI. Information fusion, 58:82–115, 2020.

Pepa Atanasova, Jakob Grue Simonsen, Christina Lioma, and Isabelle Augenstein. A Diagnostic
Study of Explainability Techniques for Text Classification. In Proceedings of the 2020 Confe-

rence on Empirical Methods in Natural Language Processing (EMNLP), pages 3256–3274, 2020.

Giuseppe Attanasio, Eliana Pastor, Chiara Di Bonaventura, and Debora Nozza. ferret: a Frame-
work for Benchmarking Explainers on Transformers. In Proceedings of the 17th Conference of

the European Chapter of the Association for Computational Linguistics: System Demonstrations,
2023.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Representations (ICLR),
2015.

Aram Bahrini, Mohammadsadra Khamoshifar, Hossein Abbasimehr, Robert J Riggs, Maryam
Esmaeili, Rastin Mastali Majdabadkohne, and Morteza Pasehvar. ChatGPT: Applications, oppor-
tunities, and threats. In 2023 Systems and Information Engineering Design Symposium (SIEDS),
pages 274–279. IEEE, 2023.

Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Pietro Lió, Marco Gori, and Stefano
Melacci. Entropy-based logic explanations of neural networks. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 36, pages 6046–6054, 2022.

BIBLIOGRAPHY 123

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and machine learning: Limita-

tions and opportunities. MIT Press, 2023.

Jasmijn Bastings and Katja Filippova. The elephant in the interpretability room: Why use atten-
tion as explanation when we have saliency methods? In Proceedings of the Third BlackboxNLP

Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 149–155, 2020.

Jasmijn Bastings, Sebastian Ebert, Polina Zablotskaia, Anders Sandholm, and Katja Filippova.
“Will You Find These Shortcuts?” A Protocol for Evaluating the Faithfulness of Input Salience
Methods for Text Classification. In Proceedings of the 2022 Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages 976–991, 2022.

BBC News. Facebook apology as AI labels black men ’primates’, September 6 2021.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM

conference on fairness, accountability, and transparency, pages 610–623, 2021.

José Manuel Benítez, Juan Luis Castro, and Ignacio Requena. Are artificial neural networks
black boxes? IEEE Transactions on neural networks, 8(5):1156–1164, 1997.

Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in
criminal justice risk assessments: The state of the art. Sociological Methods & Research, 50(1):
3–44, 2021.

Andrew C Berry. The accuracy of the Gaussian approximation to the sum of independent variates.
Transactions of the American Mathematical Society, 49(1):122–136, 1941.

Jasmin Bharadiya. Artificial intelligence in transportation systems a critical review. American

Journal of Computing and Engineering, 6(1):34–45, 2023.

Umang Bhatt, Adrian Weller, and José MF Moura. Evaluating and aggregating feature-based mo-
del explanations. In Proceedings of the Twenty-Ninth International Conference on International

Joint Conferences on Artificial Intelligence, pages 3016–3022, 2021.

Adrien Bibal, Rémi Cardon, David Alfter, Rodrigo Wilkens, Xiaoou Wang, Thomas François,
and Patrick Watrin. Is attention explanation? An introduction to the debate. In Proceedings

of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 3889–3900, 2022.

Blair Bilodeau, Natasha Jaques, Pang Wei Koh, and Been Kim. Impossibility theorems for feature
attribution. Proceedings of the National Academy of Sciences, 121(2):e2304406120, 2024.

Christopher M. Bishop and Nasser M. Nasrabadi. Pattern Recognition and Machine Learning,
volume 4. Springer, 2006.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation. Journal of

machine Learning research, 3(Jan):993–1022, 2003.

Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino Pedreschi, and
Salvatore Rinzivillo. Benchmarking and survey of explanation methods for black box models.
Data Mining and Knowledge Discovery, 37(5):1719–1778, 2023.

Adam Bohr and Kaveh Memarzadeh. The rise of artificial intelligence in healthcare applications.
In Artificial Intelligence in healthcare, pages 25–60. Elsevier, 2020.

Sebastian Bordt and Ulrike von Luxburg. From Shapley values to generalized additive models
and back. In International Conference on Artificial Intelligence and Statistics (AISTATS), pages
709–745. PMLR, 2023.

124 BIBLIOGRAPHY

Sebastian Bordt and Ulrike von Luxburg. Statistics without Interpretation: A Sober Look at
Explainable Machine Learning. arXiv preprint arXiv:2402.02870, 2024.

Sebastian Bordt, Michèle Finck, Eric Raidl, and Ulrike von Luxburg. Post-hoc explanations fail
to achieve their purpose in adversarial contexts. In Proceedings of the 2022 ACM Conference on

Fairness, Accountability, and Transparency, pages 891–905, 2022.

Christian Borgelt. An Implementation of the FP-growth Algorithm. In Proceedings of the 1st

international workshop on open source data mining: frequent pattern mining implementations,
pages 1–5, 2005.

Ali Borji. Generated Faces in the Wild: Quantitative Comparison of Stable Diffusion, Midjourney
and DALL-E 2. arXiv preprint arXiv:2210.00586, 2022.

Philip Nicholas Boucher. Artificial intelligence: How does it work, why does it matter, and what
can we do about it? EPRS: European Parliamentary Research Service, 2020.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nona-

symptotic theory of independence. Oxford university press, 2013.

Steven Bramhall, Hayley Horn, Michael Tieu, and Nibhrat Lohia. Qlime-a quadratic local inter-
pretable model-agnostic explanation approach. SMU Data Science Review, 3(1):4, 2020.

L. Breiman, J. Friedman, R. Olshen, and C. J. Stone. Classification and Regression Trees, 1983.

Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntactic clus-
tering of the web. Computer networks and ISDN systems, 29(8-13):1157–1166, 1997.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Zie-
gler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. Advances in Neural

Information Processing Systems (NeurIPS), 33:1877–1901, 2020.

Gino Brunner, Yang Liu, Damian Pascual, Oliver Richter, Massimiliano Ciaramita, and Roger
Wattenhofer. On Identifiability in Transformers. In International Conference on Learning Re-

presentations (ICLR), 2020.

Eleanor R. Burgess, Ivana Jankovic, Melissa Austin, Nancy Cai, Adela Kapuścińska, Suzanne
Currie, J. Marc Overhage, Erika S. Poole, and Jofish Kaye. Healthcare AI treatment decision
support: Design principles to enhance clinician adoption and trust. In Proceedings of the 2023

CHI Conference on Human Factors in Computing Systems, pages 1–19, 2023.

Corinne Cath. Governing artificial intelligence: ethical, legal and technical opportunities and
challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 376(2133):20180080, 2018.

Simon Caton and Christian Haas. Fairness in machine learning: A survey. ACM Computing

Surveys, 56(7):1–38, 2024.

Martin Charachon. Designing Visual Explanations of Deep Learning Classifiers Decisions in

Medical Image Analysis. PhD thesis, Université Paris-Saclay, 2023.

Martin Charachon, Céline Hudelot, Paul-Henry Cournede, Camille Ruppli, and Roberto Ardon.
Combining Similarity and Adversarial Learning to Generate Visual Explanation: Application to

BIBLIOGRAPHY 125

Medical Image Classification. In 2020 25th International Conference on Pattern Recognition

(ICPR), pages 7188–7195. IEEE, 2021.

Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-
CAM++: Generalized gradient-based visual explanations for deep convolutional networks. In
2018 IEEE winter conference on applications of computer vision (WACV), pages 839–847. IEEE,
2018.

Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualiza-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 782–791, 2021.

Saneem Chemmengath, Amar Prakash Azad, Ronny Luss, and Amit Dhurandhar. Let the CAT
out of the bag: Contrastive Attributed explanations for Text. In Proceedings of the 2022 Confe-

rence on Empirical Methods in Natural Language Processing (EMNLP), pages 7190–7206, 2022.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K. Su. This
looks like that: deep learning for interpretable image recognition. Advances in Neural Informa-

tion Processing Systems (NeurIPS), 32, 2019.

Lijia Chen, Pingping Chen, and Zhijian Lin. Artificial intelligence in education: A review. IEEE

Access, 8:75264–75278, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Gabriele Ciravegna, Pietro Barbiero, Francesco Giannini, Marco Gori, Pietro Lió, Marco Mag-
gini, and Stefano Melacci. Logic Explained Networks. arXiv preprint arXiv:2108.05149, 2021.

Gabriele Ciravegna, Pietro Barbiero, Francesco Giannini, Marco Gori, Pietro Lió, Marco Mag-
gini, and Stefano Melacci. Logic explained networks. Artificial Intelligence, 314:103822, 2023.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What Does BERT
Look at? An Analysis of BERT’s Attention. In Proceedings of the 2019 ACL Workshop Black-

boxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 276–286, 2019.

Ian Covert, Scott Lundberg, and Su-In Lee. Explaining by removing: A unified framework for
model explanation. Journal of Machine Learning Research, 22(209):1–90, 2021.

Danilo Croce, Daniele Rossini, and Roberto Basili. Explaining non-linear classifier decisions
within kernel-based deep architectures. In Proceedings of the 2018 EMNLP Workshop Black-

boxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 16–24, 2018.

Riccardo Crupi, Alessandro Castelnovo, Daniele Regoli, and Beatriz San Miguel Gonzalez.
Counterfactual explanations as interventions in latent space. Data Mining and Knowledge Dis-

covery, pages 1–37, 2022.

Hugo Cui, Freya Behrens, Florent Krzakala, and Lenka Zdeborova. A Phase Transition bet-
ween Positional and Semantic Learning in a Solvable Model of Dot-Product Attention. In High-

dimensional Learning Dynamics 2024: The Emergence of Structure and Reasoning, 2024.

Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers. Advances in

Neural Information Processing Systems (NeurIPS), 30, 2017.

126 BIBLIOGRAPHY

Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban Kawas, and Prithviraj Sen.
A Survey of the State of Explainable AI for Natural Language Processing. In Proceedings of the

1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and

the 10th International Joint Conference on Natural Language Processing, pages 447–459, 2020.

Anubrata Das, Chitrank Gupta, Venelin Kovatchev, Matthew Lease, and Junyi Jessy Li. Proto-
TEx: Explaining Model Decisions with Prototype Tensors. In Proceedings of the 60th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2986–
2997, 2022.

Luca Deck, Jakob Schoeffer, Maria De-Arteaga, and Niklas Kühl. A Critical Survey on Fairness
Benefits of Explainable AI. In The 2024 ACM Conference on Fairness, Accountability, and

Transparency, pages 1579–1595, 2024.

Julien Delaunay, Luis Galárraga, and Christine Largouët. Improving anchor-based explanations.
In Proceedings of the 29th ACM International Conference on Information & Knowledge Mana-

gement, pages 3269–3272, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet Classification
with Deep Convolutional Neural Networks. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 248–255. Ieee, 2009.

Misha Denil, Alban Demiraj, and Nando De Freitas. Extraction of Salient Sentences from La-
belled Documents. arXiv preprint arXiv:1412.6815, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong, Richard
Socher, and Byron C Wallace. ERASER: A Benchmark to Evaluate Rationalized NLP Models.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 4443–4458, 2020.

Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shan-
mugam, and Payel Das. Explanations based on the missing: Towards contrastive explanations
with pertinent negatives. Advances in Neural Information Processing Systems (NeurIPS), 31,
2018.

Persi Diaconis and Sandy Zabell. Closed form summation for classical distributions: variations
on a theme of de Moivre. Statistical Science, pages 284–302, 1991.

Jon Donnelly, Alina Jade Barnett, and Chaofan Chen. Deformable protopnet: An interpretable
image classifier using deformable prototypes. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 10265–10275, 2022.

Finale Doshi-Velez and Been Kim. Towards A Rigorous Science of Interpretable Machine Lear-
ning. arXiv preprint arXiv:1702.08608, 2017.

Julia Dressel and Hany Farid. The accuracy, fairness, and limits of predicting recidivism. Science

advances, 4(1):eaao5580, 2018.

Benjamin L. Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and va-
riable creation in self-attention mechanisms. In International Conference on Machine Learning

(ICML), pages 5793–5831. PMLR, 2022.

BIBLIOGRAPHY 127

Upol Ehsan, Q Vera Liao, Michael Muller, Mark O Riedl, and Justin D Weisz. Expanding explai-
nability: Towards social transparency in ai systems. In Proceedings of the 2021 CHI conference

on human factors in computing systems, pages 1–19, 2021.

Radwa ElShawi, Youssef Sherif, Mouaz Al-Mallah, and Sherif Sakr. ILIME: Local and Global
Interpretable Model-Agnostic Explainer of Black-Box Decision. In Advances in Databases and

Information Systems: 23rd European Conference, ADBIS 2019, Bled, Slovenia, September 8–11,

2019, Proceedings 23, pages 53–68. Springer, 2019.

Gabriel Erion, Joseph D Janizek, Pascal Sturmfels, Scott M Lundberg, and Su-In Lee. Learning
explainable models using attribution priors, 2019.

Carl-Gustav Esseen. On the Liapunov limit error in the theory of probability. Ark. Mat. Astr.

Fys., 28:1–19, 1942.

Kawin Ethayarajh and Dan Jurafsky. Attention Flows are Shapley Value Explanations. In Pro-

ceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the

11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers),
pages 49–54, 2021.

European Commission. Ethics guidelines for trustworthy AI. European Commission and
Directorate-General for Communications Networks, Content and Technology, 2019. doi/10
.2759/346720.

Usama Fayyad and Keki Irani. Multi-interval discretization of continuous-valued attributes for
classification learning. In Proceeding of the International Joint Conference on Artificial Intelli-

gence (IJCAI), 1993.

Zhili Feng, Michal Moshkovitz, Dotan Di Castro, and J. Zico Kolter. An Axiomatic Approach to
Model-Agnostic Concept Explanations. arXiv preprint arXiv:2401.06890, 2024.

Hidde Fokkema, Rianne de Heide, and Tim van Erven. Attribution-based explanations that pro-
vide recourse cannot be robust. Journal of Machine Learning Research, 24(360):1–37, 2023.

Hidde Fokkema, Damien Garreau, and Tim van Erven. The Risks of Recourse in Binary Clas-
sification. In International Conference on Artificial Intelligence and Statistics (AISTATS), pages
550–558. PMLR, 2024.

Ruth C. Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful
perturbation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3429–3437, 2017.

International Organization for Standardization. ISO/IEC TR 29119-11:2020 Software and sys-
tems engineering, Software testing, Part 11: Guidelines on the testing of AI-based systems, 2020.

Eric J. Friedman. Paths and consistency in additive cost sharing. International Journal of Game

Theory, 32(4):501–518, 2004.

Jerome H. Friedman and Bogdan E. Popescu. Predictive Learning via Rule Ensembles. The

Annals of Applied Statistics, pages 916–954, 2008.

Christopher Frye, Damien de Mijolla, Tom Begley, Laurence Cowton, Megan Stanley, and Ilya
Feige. Shapley explainability on the data manifold. In International Conference on Learning

Representations (ICLR), 2020.

Hengyu Fu, Tianyu Guo, Yu Bai, and Song Mei. What can a Single Attention Layer Learn?
A Study Through the Random Features Lens. In Advances in Neural Information Processing

Systems (NeurIPS), volume 36, pages 11912–11951, 2023.

128 BIBLIOGRAPHY

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202,
1980.

Philip Gage. A new algorithm for data compression. The C Users Journal, 12(2):23–38, 1994.

Andrea Galassi, Marco Lippi, and Paolo Torroni. Attention in natural language processing. IEEE

Transactions on Neural Networks and Learning Systems, 32(10):4291–4308, 2020.

Damien Garreau and Ulrike Luxburg. Explaining the explainer: A first theoretical analysis of
LIME. In International Conference on Artificial Intelligence and Statistics (AISTATS), pages
1287–1296. PMLR, 2020.

Damien Garreau and Dina Mardaoui. What does LIME really see in images? In International

Conference on Machine Learning (ICML), pages 3620–3629. PMLR, 2021.

Damien Garreau and Ulrike von Luxburg. Looking deeper into tabular LIME. arXiv preprint

arXiv:2008.11092, v3, 2020.

Sara Gerke, Timo Minssen, and Glenn Cohen. Ethical and legal challenges of artificial
intelligence-driven healthcare. In Artificial intelligence in healthcare, pages 295–336. Elsevier,
2020.

Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic concept-
based explanations. Advances in Neural Information Processing Systems (NeurIPS), 32, 2019.

Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal.
Explaining explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th

International Conference on data science and advanced analytics (DSAA), pages 80–89. IEEE,
2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural Informa-

tion Processing Systems (NeurIPS), 27, 2014.

Riccardo Guidotti. Counterfactual explanations and how to find them: literature review and
benchmarking. Data Mining and Knowledge Discovery, pages 1–55, 2022.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi, Franco Turini, and Fosca
Giannotti. Local Rule-Based Explanations of Black Box Decision Systems. arXiv preprint

arXiv:1805.10820, 2018a.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino
Pedreschi. A survey of methods for explaining black box models. ACM computing surveys

(CSUR), 51(5):1–42, 2018b.

Riccardo Guidotti, Anna Monreale, Fosca Giannotti, Dino Pedreschi, Salvatore Ruggieri, and
Franco Turini. Factual and counterfactual explanations for black box decision making. IEEE

Intelligent Systems, 34(6):14–23, 2019.

Riccardo Guidotti, Anna Monreale, Stan Matwin, and Dino Pedreschi. Black box explanation
by learning image exemplars in the latent feature space. In Machine Learning and Knowledge

Discovery in Databases: European Conference, ECML PKDD 2019, Würzburg, Germany, Sep-

tember 16–20, 2019, Proceedings, Part I, pages 189–205. Springer, 2020.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent
on linear convolutional networks. Advances in Neural Information Processing Systems (Neu-

rIPS), 31, 2018.

BIBLIOGRAPHY 129

Laurie A Harris and Chris Jaikaran. Highlights of the 2023 Executive Order on Artificial Intel-
ligence for Congress. Congressional Research Service (CRS) Reports and Issue Briefs, pages
NA–NA, 2023.

Jochen Hartmann, Mark Heitmann, Christian Siebert, and Christina Schamp. More than a feeling:
Accuracy and application of sentiment analysis. International Journal of Research in Marketing,
40(1):75–87, 2023.

Peter Hase, Harry Xie, and Mohit Bansal. The out-of-distribution problem in explainability and
search methods for feature importance explanations. Advances in Neural Information Processing

Systems (NeurIPS), 34:3650–3666, 2021.

Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, and Jerome H. Friedman. The Elements

of Statistical Learning: Data Mining, Inference, and Prediction, volume 2. Springer, 2009.

Johannes Haug, Stefan Zürn, Peter El-Jiz, and Gjergji Kasneci. On Baselines for Local Feature
Attributions. AAAI-21 Workshop on Explainable Agency in AI, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Re-

cognition (CVPR), pages 770–778, 2016.

Anna Hedström, Leander Weber, Daniel Krakowczyk, Dilyara Bareeva, Franz Motzkus, Wo-
jciech Samek, Sebastian Lapuschkin, and Marina M-C Höhne. Quantus: An Explainable AI
Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond. Journal of

Machine Learning Research, 24(34):1–11, 2023.

Katherine Hermann, Ting Chen, and Simon Kornblith. The origins and prevalence of texture bias
in convolutional neural networks. Advances in Neural Information Processing Systems (Neu-

rIPS), 33:19000–19015, 2020.

Daniel S. Hoadley and Nathan J. Lucas. Artificial intelligence and national security. Congres-

sional Research Service Washington, DC, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

Robert C Holte. Very simple classification rules perform well on most commonly used datasets.
Machine learning, 11:63–90, 1993.

Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for interpre-
tability methods in deep neural networks. Advances in Neural Information Processing Systems

(NeurIPS), 32, 2019.

Jennifer Hsia, Danish Pruthi, Aarti Singh, and Zachary C Lipton. Goodhart’s Law Applies to
NLP’s Explanation Benchmarks. In Findings of the Association for Computational Linguistics:

EACL 2024, pages 1322–1335, 2024.

Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Ravikumar, Seungyeon Kim, Sanjiv
Kumar, and Cho-Jui Hsieh. Evaluations and Methods for Explanation through Robustness Ana-
lysis. In International Conference on Learning Representations (ICLR), 2021.

Xuanxiang Huang and Joao Marques-Silva. The inadequacy of Shapley values for explainability.
arXiv preprint arXiv:2302.08160, 2023a.

130 BIBLIOGRAPHY

Xuanxiang Huang and Joao Marques-Silva. A Refutation of Shapley Values for Explainability.
arXiv preprint arXiv:2309.03041, 2023b.

Xuanxiang Huang and Joao Marques-Silva. On the failings of Shapley values for explainability.
International Journal of Approximate Reasoning, page 109112, 2024.

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991, 2015.

Matthew Hutson. TAUGHT TO THE TEST: AI software clears high hurdles on IQ tests but
still makes dumb mistakes. Can better benchmarks help? Science, 376(6593), 2022. 10.1126/
science.abq7853.

Lujain Ibrahim, Munib Mesinovic, Kai-Wen Yang, and Mohamad A Eid. Explainable prediction
of acute myocardial infarction using machine learning and shapley values. IEEE Access, 8:
210410–210417, 2020.

Pavel Izmailov, Polina Kirichenko, Nate Gruver, and Andrew G Wilson. On feature learning
in the presence of spurious correlations. Advances in Neural Information Processing Systems

(NeurIPS), 35:38516–38532, 2022.

Alon Jacovi and Yoav Goldberg. Aligning faithful interpretations with their social attribution.
Transactions of the Association for Computational Linguistics, 9:294–310, 2021.

Neham Jain, Vibhhu Sharma, and Gaurav Sinha. Counterfactual Explanations for Visual Re-
commender Systems. In Companion Proceedings of the ACM on Web Conference 2024, pages
674–677, 2024.

Sarthak Jain and Byron C. Wallace. Attention is not Explanation. In Proceedings of NAACL-HLT,
pages 3543–3556, 2019.

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, , et al. An introduction to statis-

tical learning, volume 112. Springer, 2013.

Steve T.K. Jan, Vatche Ishakian, and Vinod Muthusamy. AI trust in business processes: the need
for process-aware explanations. Proceedings of the AAAI Conference on Artificial Intelligence,
34(08):13403–13404, 2020.

Mohammad Hossein Jarrahi. Artificial intelligence and the future of work: Human-AI symbiosis
in organizational decision making. Business horizons, 61(4):577–586, 2018.

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial struc-
ture. Advances in Neural Information Processing Systems (NeurIPS), 35:37822–37836, 2022.

Neil Jethani, Mukund Sudarshan, Yindalon Aphinyanaphongs, and Rajesh Ranganath. Have We
Learned to Explain? How Interpretability Methods Can Learn to Encode Predictions in their
Interpretations. In International Conference on Artificial Intelligence and Statistics (AISTATS),
pages 1459–1467. PMLR, 2021.

Yichen Jiang, Nitish Joshi, Yen-Chun Chen, and Mohit Bansal. Explore, Propose, and Assemble:
An Interpretable Model for Multi-Hop Reading Comprehension. In Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, pages 2714–2725, 2019.

Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval.
Journal of documentation, 28(1):11–21, 1972.

Kakogeorgiou and Karantzalos. Evaluating explainable artificial intelligence methods for multi-
label deep learning classification tasks in remote sensing. Int. Journal of Applied Earth Obser-

vation and Geoinformation, 2021.

BIBLIOGRAPHY 131

Emilie Kaufmann and Shivaram Kalyanakrishnan. Information complexity in bandit subset se-
lection. In Conference on Learning Theory, pages 228–251. PMLR, 2013.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International Conference on Machine Learning (ICML), pages 2668–2677. PMLR,
2018.

Andreas Knoblauch. Closed-form expressions for the moments of the binomial probability dis-
tribution. SIAM Journal on Applied Mathematics, 69(1):197–204, 2008.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. Attention is Not Only a
Weight: Analyzing Transformers with Vector Norms. In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing (EMNLP), pages 7057–7075, 2020.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim,
and Percy Liang. Concept bottleneck models. In International Conference on Machine Learning

(ICML), pages 5338–5348. PMLR, 2020.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan
Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, et al. Captum: A
unified and generic model interpretability library for PyTorch. arXiv preprint arXiv:2009.07896,
2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. Advances in Neural Information Processing Systems (NeurIPS),
25, 2012.

Emanuele La Malfa, Agnieszka Zbrzezny, Rhiannon Michelmore, Nicola Paoletti, and Marta
Kwiatkowska. On guaranteed optimal robust explanations for NLP models. Proceeding of the

International Joint Conference on Artificial Intelligence (IJCAI), 2021.

Himabindu Lakkaraju, Stephen H. Bach, and Jure Leskovec. Interpretable decision sets: A joint
framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD internatio-

nal conference on knowledge discovery and data mining, pages 1675–1684, 2016.

Orestis Lampridis, Riccardo Guidotti, and Salvatore Ruggieri. Explaining sentiment classifica-
tion with synthetic exemplars and counter-exemplars. In International Conference on Discovery

Science, pages 357–373. Springer, 2020.

Marguerita Lane and Anne Saint-Martin. The impact of Artificial Intelligence on the labour
market: What do we know so far? OECD Social, Employment and Migration Working Papers,
2021.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Inter-

national Conference on Machine Learning (ICML), pages 1188–1196. PMLR, 2014.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Min Kyung Lee and Katherine Rich. Who is included in human perceptions of AI?: Trust and
perceived fairness around healthcare AI and cultural mistrust. In Proceedings of the 2021 CHI

conference on human factors in computing systems, pages 1–14, 2021.

132 BIBLIOGRAPHY

Tobias Leemann, Michael Kirchhof, Yao Rong, Enkelejda Kasneci, and Gjergji Kasneci. When
are post-hoc conceptual explanations identifiable? In Uncertainty in Artificial Intelligence, pages
1207–1218. PMLR, 2023.

Tobias Leemann, Alina Fastowski, Felix Pfeiffer, and Gjergji Kasneci. Attention Mechanisms
Don’t Learn Additive Models: Rethinking Feature Importance for Transformers. arXiv preprint

arXiv:2405.13536, 2024a.

Tobias Leemann, Martin Pawelczyk, Bardh Prenkaj, and Gjergji Kasneci. Towards Non-
adversarial Algorithmic Recourse. In World Conference on Explainable Artificial Intelligence,
pages 395–419. Springer, 2024b.

Benjamin Letham, Cynthia Rudin, Tyler H McCormick, and David Madigan. Interpretable clas-
sifiers using rules and bayesian analysis: Building a better stroke prediction model. The Annals

of Applied Statistics, pages 1350–1371, 2015.

Robert Lewis, Yuanbo Liu, Matthew Groh, and Rosalind Picard. Shaping Habit Formation
Insights with Shapley Values: Towards an Explainable AI-system for Self-understanding and
Health Behavior Change. Proc. Realizing AI Healthcare, Challenges Appearing Wild CHI, 2021.

Jian-hua Li. Cyber security meets artificial intelligence: a survey. Frontiers of Information

Technology & Electronic Engineering, 19(12):1462–1474, 2018.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. Visualizing and Understanding Neural
Models in NLP. In Proceedings of the 2016 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, pages 681–691,
2016.

Yu Li, Chao Huang, Lizhong Ding, Zhongxiao Li, Yijie Pan, and Xin Gao. Deep learning in
bioinformatics: Introduction, application, and perspective in the big data era. Methods, 166:
4–21, 2019.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards
a mechanistic understanding. In International Conference on Machine Learning (ICML), pages
19689–19729. PMLR, 2023.

Brian Y. Lim, Anind K. Dey, and Daniel Avrahami. Why and why not explanations improve the
intelligibility of context-aware intelligent systems. In Proceedings of the SIGCHI conference on

human factors in computing systems, pages 2119–2128, 2009.

Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Explainable AI: A Review
of Machine Learning Interpretability Methods. Entropy, 23(1):18, 2021.

Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of
interpretability is both important and slippery. Queue, 16(3):31–57, 2018.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Optimized BERT Pre-
training Approach. arXiv preprint arXiv:1907.11692, 2019.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue
Huang, Hanchi Sun, Jianfeng Gao, et al. Sora: A Review on Background, Technology, Limita-
tions, and Opportunities of Large Vision Models. arXiv preprint arXiv:2402.17177, 2024.

Shayne Longpre, Marcus Storm, and Rishi Shah. Lethal autonomous weapons systems &
artificial intelligence: Trends, challenges, and policies. MIT Science Policy Review, 2022.
10.38105/spr.360apm5typ.

BIBLIOGRAPHY 133

Gianluigi Lopardo. Explainable AI for business decision-making. Master’s thesis, Politecnico di
Torino, 2021.

Gianluigi Lopardo and Damien Garreau. Comparing Feature Importance and Rule Extraction for
Interpretability on Text Data. In 2-nd Workshop on Explainable and Ethical AI-26TH Internatio-

nal Conference on Pattern Recognition (XAIE@ ICPR) 2022, 2022.

Gianluigi Lopardo, Damien Garreau, Frédéric Precioso, and Greger Ottosson. SMACE: A New
Method for the Interpretability of Composite Decision Systems. In Joint European Conference

on Machine Learning and Knowledge Discovery in Databases, pages 325–339. Springer, 2022.

Gianluigi Lopardo, Frederic Precioso, and Damien Garreau. A Sea of Words: An In-Depth Ana-
lysis of Anchors for Text Data. In International Conference on Artificial Intelligence and Statis-

tics (AISTATS), 2023a.

Gianluigi Lopardo, Frederic Precioso, and Damien Garreau. Faithful and Robust Local Interpre-
tability for Textual Predictions. arXiv preprint arXiv:2311.01605, 2023b.

Gianluigi Lopardo, Frederic Precioso, and Damien Garreau. Attention Meets Post-hoc Interpre-
tability: A Mathematical Perspective. In International Conference on Machine Learning (ICML).
PMLR, 2024.

Hans Peter Luhn. A statistical approach to mechanized encoding and searching of literary infor-
mation. IBM Journal of research and development, 1(4):309–317, 1957.

Scott M. Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. Ad-

vances in Neural Information Processing Systems (NeurIPS), 30:4765–4774, 2017.

Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala Nair,
Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to
global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1):2522–
5839, 2020.

Ronny Luss, Pin-Yu Chen, Amit Dhurandhar, Prasanna Sattigeri, Yunfeng Zhang, Karthikeyan
Shanmugam, and Chun-Chen Tu. Leveraging latent features for local explanations. In Pro-

ceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pages
1139–1149, 2021.

Shuai Ma, Ying Lei, Xinru Wang, Chengbo Zheng, Chuhan Shi, Ming Yin, and Xiaojuan Ma.
Who should I trust: AI or myself? Leveraging human and AI correctness likelihood to promote
appropriate trust in AI-assisted decision-making. In Proceedings of the 2023 CHI Conference on

Human Factors in Computing Systems, pages 1–19, 2023.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning Word Vectors for Sentiment Analysis. In Proceedings of the 49th Annual Meeting

of the Association for Computational Linguistics: Human Language Technologies, pages 142–
150. Association for Computational Linguistics, 2011.

Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error correcting

codes, volume 16. Elsevier, 1977.

Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Martin Jaggi, Hyeji
Kim, and Michael Gastpar. Attention with Markov: A Framework for Principled Analysis of
Transformers via Markov Chains. arXiv preprint arXiv:2402.04161, 2024.

Karl Manheim and Lyric Kaplan. Artificial intelligence: Risks to privacy and democracy. Yale

JL & Tech., 21:106, 2019.

134 BIBLIOGRAPHY

Dina Mardaoui and Damien Garreau. An analysis of LIME for text data. In International Confe-

rence on Artificial Intelligence and Statistics (AISTATS), pages 3493–3501. PMLR, 2021.

Vincent Margot and George Luta. A new method to compare the interpretability of rule-based
algorithms. AI, 2(4):621–635, 2021.

Joao Marques-Silva and Xuanxiang Huang. Explainability is NOT a Game. arXiv preprint

arXiv:2307.07514, 2023.

Joao Marques-Silva and Alexey Ignatiev. Delivering trustworthy AI through formal XAI. Pro-

ceedings of the AAAI Conference on Artificial Intelligence, 36(11):12342–12350, 2022.

Chris Marsden and Trisha Meyer. Regulating disinformation with artificial intelligence: effects of

disinformation initiatives on freedom of expression and media pluralism. European Parliament,
2019.

David Martens and Foster Provost. Explaining data-driven document classifications. MIS quar-

terly, 38(1):73–100, 2014.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A
survey on bias and fairness in machine learning. ACM computing surveys (CSUR), 54(6):1–35,
2021.

Joseph Meixner. Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden
Funktion. Journal of the London Mathematical Society, 1(1):6–13, 1934.

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 conference of the north american chapter of the

association for computational linguistics: Human language technologies, pages 746–751, 2013.

Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial

intelligence, 267:1–38, 2019.

Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T. Dudley. Deep learning for
healthcare: review, opportunities and challenges. Briefings in bioinformatics, 19(6):1236–1246,
2018.

Yisroel Mirsky and Wenke Lee. The creation and detection of deepfakes: A survey. ACM com-

puting surveys (CSUR), 54(1):1–41, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. NIPS Deep

Learning Workshop, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bel-
lemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, , et al. Human-
level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Christoph Molnar. Interpretable machine learning, 2020.

Forrest E. Morgan, Benjamin Boudreaux, Andrew J. Lohn, Mark Ashby, Christian Curriden,
Kelly Klima, and Derek Grossman. Military applications of artificial intelligence. Santa Monica:

RAND Corporation, 2020.

Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning clas-
sifiers through diverse counterfactual explanations. In Proceedings of the 2020 conference on

fairness, accountability, and transparency, pages 607–617, 2020.

BIBLIOGRAPHY 135

Mohammed Bany Muhammad and Mohammed Yeasin. Eigen-CAM: Class activation map using
principal components. In 2020 international joint conference on neural networks (IJCNN), pages
1–7. IEEE, 2020.

Blake Murdoch. Privacy and artificial intelligence: challenges for protecting health information
in a new era. BMC Medical Ethics, 22:1–5, 2021.

Nikolaos Mylonas, Ioannis Mollas, and Grigorios Tsoumakas. An attention matrix for every
decision: Faithfulness-based arbitration among multiple attention-based interpretations of trans-
formers in text classification. Data Mining and Knowledge Discovery, pages 1–26, 2023.

Nikolaos Mylonas, Ioannis Mollas, and Grigorios Tsoumakas. An attention matrix for every
decision: Faithfulness-based arbitration among multiple attention-based interpretations of trans-
formers in text classification. Data Mining and Knowledge Discovery, 38(1):128–153, 2024.

Luca Nannini, Marta Marchiori Manerba, and Isacco Beretta. Mapping the landscape of ethical
considerations in explainable AI research. Ethics and Information Technology, 26, 2024.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vi-
jay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
Efficient large-scale language model training on GPU clusters using megatron-LM. In Procee-

dings of the International Conference for High Performance Computing, Networking, Storage

and Analysis, pages 1–15, 2021.

Meike Nauta, Ron Van Bree, and Christin Seifert. Neural prototype trees for interpretable fine-
grained image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 14933–14943, 2021.

Noella Nazareth and Yeruva Venkata Ramana Reddy. Financial applications of machine learning:
A literature review. Expert Systems with Applications, 219:119640, 2023.

Michael Neely, Stefan F. Schouten, Maurits J. R. Bleeker, and Ana Lucic. Order in the court:
Explainable AI methods prone to disagreement. arXiv preprint arXiv:2105.03287, 2021.

Michael Neely, Stefan F. Schouten, Maurits Bleeker, and Ana Lucic. A Song of (Dis)agreement:
Evaluating the Evaluation of Explainable Artificial Intelligence in Natural Language Processing.
In HHAI2022: Augmenting Human Intellect, pages 60–78. IOS Press, 2022.

Dong Nguyen. Comparing automatic and human evaluation of local explanations for text clas-
sification. In 16th Annual Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pages 1069–1078. Association for
Computational Linguistics, 2018.

Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. InterpretML: A Unified Framework
for Machine Learning Interpretability. arXiv preprint arXiv:1909.09223, 2019.

Jonas Oppenlaender. The creativity of text-to-image generation. In Proceedings of the 25th

International Academic Mindtrek Conference, pages 192–202, 2022.

Cecilia Panigutti, Ronan Hamon, Isabelle Hupont, David Fernandez Llorca, Delia Fano Yela,
Henrik Junklewitz, Salvatore Scalzo, Gabriele Mazzini, Ignacio Sanchez, Josep Soler Garrido,
et al. The role of explainable AI in the context of the AI Act. In Proceedings of the 2023 ACM

conference on fairness, accountability, and transparency, pages 1139–1150, 2023.

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Ro-
thchild, David So, Maud Texier, and Jeff Dean. Carbon Emissions and Large Neural Network
Training. arXiv preprint arXiv:2104.10350, 2021.

136 BIBLIOGRAPHY

Martin Pawelczyk. On the Generation of Realistic and Robust Counterfactual Explanations for

Algorithmic Recourse. PhD thesis, Universität Tübingen, 2024.

Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci. On counterfactual explanations
under predictive multiplicity. In Conference on Uncertainty in Artificial Intelligence, pages 809–
818. PMLR, 2020a.

Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci. Learning model-agnostic coun-
terfactual explanations for tabular data. In Proceedings of The Web Conference 2020, pages
3126–3132, 2020b.

Martin Pawelczyk, Sascha Bielawski, Johan Van den Heuvel, Tobias Richter, and Gjergji Kas-
neci. CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Ex-
planation Algorithms. In Thirty-fifth Conference on Neural Information Processing Systems Da-

tasets and Benchmarks Track (Round 1), 2021.

Martin Pawelczyk, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay, and Himabindu Lakka-
raju. Exploring counterfactual explanations through the lens of adversarial examples: A theore-
tical and empirical analysis. In International Conference on Artificial Intelligence and Statistics

(AISTATS), pages 4574–4594. PMLR, 2022a.

Martin Pawelczyk, Tobias Leemann, Asia Biega, and Gjergji Kasneci. On the trade-off between
actionable explanations and the right to be forgotten. In International Conference on Learning

Representations (ICLR), 2022b.

Martin Pawelczyk, Himabindu Lakkaraju, and Seth Neel. On the privacy risks of algorithmic
recourse. In International Conference on Artificial Intelligence and Statistics (AISTATS), pages
9680–9696. PMLR, 2023.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language

processing (EMNLP), pages 1532–1543, 2014.

Billy Perrigo. Exclusive: OpenAI Used Kenyan Workers on Less Than $2 Per Hour to Make
ChatGPT Less Toxic. TIME, January 18 2023.

Slav Petrov, Dipanjan Das, and Ryan McDonald. A Universal Part-of-Speech Tagset. In Procee-

dings of the Eighth International Conference on Language Resources and Evaluation (LREC’12),
pages 2089–2096, 2012.

Vitali Petsiuk, Abir Das, and Kate Saenko. RISE: Randomized Input Sampling for Explanation
of Black-box Models. arXiv preprint arXiv:1806.07421, 2018.

Mary Phuong and Marcus Hutter. Formal Algorithms for Transformers. arXiv preprint

arXiv:2207.09238, 2022.

Gregory Plumb, Denali Molitor, and Ameet S Talwalkar. Model agnostic supervised local expla-
nations. Advances in Neural Information Processing Systems (NeurIPS), 31, 2018.

Nina Poerner, Hinrich Schütze, and Benjamin Roth. Evaluating neural network explanation me-
thods using hybrid documents and morphosyntactic agreement. In Proceedings of the 56th An-

nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
340–350, 2018.

Eleonora Poeta, Gabriele Ciravegna, Eliana Pastor, Tania Cerquitelli, and Elena Baralis. Concept-
based explainable artificial intelligence: A survey. arXiv preprint arXiv:2312.12936, 2023.

BIBLIOGRAPHY 137

Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach. FACE: fea-
sible and actionable counterfactual explanations. In Proceedings of the AAAI/ACM Conference

on AI, Ethics, and Society, pages 344–350, 2020.

Isha Puri, Amit Dhurandhar, Tejaswini Pedapati, Karthikeyan Shanmugam, Dennis Wei, and
Kush R Varshney. CoFrNets: interpretable neural architecture inspired by continued fractions.
Advances in Neural Information Processing Systems (NeurIPS), 34:21668–21680, 2021.

Luyu Qiu, Yi Yang, Caleb Chen Cao, Jing Liu, Yueyuan Zheng, Hilary Hei Ting Ngai, Janet
Hsiao, and Lei Chen. Resisting Out-of-Distribution Data Problem in Perturbation of XAI. arXiv

preprint arXiv:2107.14000, 2021.

Owen Queen, Tom Hartvigsen, Teddy Koker, Huan He, Theodoros Tsiligkaridis, and Marinka
Zitnik. Encoding time-series explanations through self-supervised model behavior consistency.
Advances in Neural Information Processing Systems (NeurIPS), 36, 2024.

Harish Guruprasad Ramaswamy, , et al. Ablation-CAM: Visual explanations for deep convolu-
tional network via gradient-free localization. In Proceedings of the IEEE/CVF winter conference

on applications of computer vision, pages 983–991, 2020.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I trust you?” Explai-
ning the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining, pages 1135–1144, 2016.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-
agnostic explanations. In Proceedings of the AAAI Conference on Artificial Intelligence, vo-
lume 32, 2018.

Mattia Rigotti, Christoph Miksovic, Ioana Giurgiu, Thomas Gschwind, and Paolo Scotton.
Attention-based interpretability with concept transformers. In International Conference on Lear-

ning Representations (ICLR), 2021.

Rockafellar. Convex analysis. Princeton university press, 1997.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confe-

rence on Computer Vision and Pattern Recognition (CVPR), pages 10684–10695, 2022.

Yao Rong, Tobias Leemann, Thai-Trang Nguyen, Lisa Fiedler, Peizhu Qian, Vaibhav Unhelkar,
Tina Seidel, Gjergji Kasneci, and Enkelejda Kasneci. Towards human-centered explainable ai:
A survey of user studies for model explanations. IEEE transactions on pattern analysis and

machine intelligence, 2023.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organiza-
tion in the brain. Psychological review, 65(6):386, 1958a.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, 65(6):386, 1958b.

Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. Right for the right reasons:
training differentiable models by constraining their explanations. In Proceeding of the Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), pages 2662–2670, 2017.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986.

138 BIBLIOGRAPHY

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generaliza-
tion. International Conference on Learning Representations (ICLR), 2020.

Haşim Sak, Andrew Senior, and Françoise Beaufays. Long Short-Term Memory Based Recur-
rent Neural Network Architectures for Large Vocabulary Speech Recognition. arXiv preprint

arXiv:1402.1128, 2014.

Michele Salvagno, Fabio Silvio Taccone, and Alberto Giovanni Gerli. Can artificial intelligence
help for scientific writing? Critical care, 27(1):75, 2023.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled ver-
sion of BERT: smaller, faster, cheaper and lighter. 5th Workshop on Energy Efficient Machine

Learning and Cognitive Computing - NeurIPS 2019, 2019.

Adriel Saporta, Xiaotong Gui, Ashwin Agrawal, Anuj Pareek, Steven QH Truong, Chanh DT
Nguyen, Van-Doan Ngo, Jayne Seekins, Francis G Blankenberg, Andrew Y Ng, et al. Bench-
marking saliency methods for chest X-ray interpretation. Nature Machine Intelligence, 4(10):
867–878, 2022.

Marcel Paul Schützenberger. On context-free languages and push-down automata. Information

and control, 6(3):246–264, 1963.

Patrick Schwab and Walter Karlen. Cxplain: Causal explanations for model interpretation under
uncertainty. Advances in Neural Information Processing Systems (NeurIPS), 32, 2019.

Reva Schwartz, Reva Schwartz, Apostol Vassilev, Kristen Greene, Lori Perine, Andrew Burt,
and Patrick Hall. Towards a standard for identifying and managing bias in artificial intelligence,
volume 3. US Department of Commerce, National Institute of Standards and Technology, 2022.

Andrew D. Selbst and Solon Barocas. The intuitive appeal of explainable machines. Fordham L.

Rev., 87:1085, 2018.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Pa-
rikh, and Dhruv Batra. Grad-CAM: Visual explanations from deep networks via gradient-based
localization. In Proceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV), pages 618–626, 2017.

Hugo Henri Joseph Senetaire, Damien Garreau, Jes Frellsen, and Pierre-Alexandre Mattei. Ex-
plainability as statistical inference. In International Conference on Machine Learning (ICML),
pages 30584–30612. PMLR, 2023.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), pages 1715–1725, 2016.

Sofia Serrano and Noah A Smith. Is Attention Interpretable? In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 2931–2951, 2019.

Mattia Setzu, Riccardo Guidotti, Anna Monreale, and Franco Turini. Global explanations with
local scoring. In Machine Learning and Knowledge Discovery in Databases: International Work-

shops of ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, Proceedings, Part I,
pages 159–171. Springer, 2020.

Mattia Setzu, Riccardo Guidotti, Anna Monreale, Franco Turini, Dino Pedreschi, and Fosca Gian-
notti. Glocalx-from local to global explanations of black box AI models. Artificial Intelligence,
294:103457, 2021.

BIBLIOGRAPHY 139

Sharath M. Shankaranarayana and Davor Runje. ALIME: Autoencoder based approach for local
interpretability. In Intelligent Data Engineering and Automated Learning–IDEAL 2019: 20th In-

ternational Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part I 20, pages
454–463. Springer, 2019.

Claude E Shannon. The redundancy of English. In Cybernetics; Transactions of the 7th Confe-

rence, New York: Josiah Macy, Jr. Foundation, pages 248–272, 1951.

Lloyd S. Shapley. A value for n-person games. Contributions to the Theory of Games, number

28 in Annals of Mathematics Studies, pages 307–317, II, 1953.

Irina G. Shevtsova. An improvement of convergence rate estimates in the Lyapunov theorem.
Doklady Mathematics, 82(3):862–864, 2010.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International Conference on Machine Learning (ICML),
pages 3145–3153. PMLR, 2017.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
et al. Mastering the game of Go with deep neural networks and tree search. nature, 529(7587):
484–489, 2016.

K Simonyan, A Vedaldi, and A Zisserman. Deep inside convolutional networks: visualising
image classification models and saliency maps. In Proceedings of the International Conference

on Learning Representations (ICLR). ICLR, 2014.

Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fooling
LIME and SHAP: Adversarial attacks on post hoc explanation methods. In Proceedings of the

AAAI/ACM Conference on AI, Ethics, and Society, pages 180–186, 2020.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smooth-
Grad: removing noise by adding noise. ICML Workshop on Visualization for Deep Learning,
2017.

Gregor Stiglic, Primoz Kocbek, Nino Fijacko, Marinka Zitnik, Katrien Verbert, and Leona Cilar.
Interpretability of machine learning-based prediction models in healthcare. Wiley Interdiscipli-

nary Reviews: Data Mining and Knowledge Discovery, 10(5):e1379, 2020.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and Policy Considerations for
Modern Deep Learning Research. Proceedings of the AAAI conference on artificial intelligence,
34(09):13693–13696, 2020.

Simone Stumpf, Vidya Rajaram, Lida Li, Margaret Burnett, Thomas Dietterich, Erin Sullivan,
Russell Drummond, and Jonathan Herlocker. Toward harnessing user feedback for machine
learning. In Proceedings of the 12th international conference on Intelligent user interfaces,
pages 82–91, 2007.

Pascal Sturmfels, Scott Lundberg, and Su-In Lee. Visualizing the impact of feature attribution
baselines. Distill, 5(1):e22, 2020.

Kaiser Sun and Ana Marasović. Effective Attention Sheds Light On Interpretability. In Findings

of the Association for Computational Linguistics (ACL-IJCNLP), pages 4126–4135, 2021.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International Conference on Machine Learning (ICML), pages 3319–3328. PMLR, 2017a.

140 BIBLIOGRAPHY

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International Conference on Machine Learning (ICML), pages 3319–3328. PMLR, 2017b.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethin-
king the inception architecture for computer vision. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016.

Magamed Taimeskhanov, Ronan Sicre, and Damien Garreau. CAM-Based Methods Can See
through Walls. Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, 2024.

A Tallón-Ballesteros and C Chen. Explainable AI: Using Shapley value to explain complex
anomaly detection ML-based systems. Machine learning and artificial intelligence, 332:152,
2020.

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Trans-
formers as Support Vector Machines. In NeurIPS 2023 Workshop on Mathematics of Modern

Machine Learning, 2023.

Neil Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. The Computational
Limits of Deep Learning. In Ninth Computing within Limits. LIMITS, 2023.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Generating
Token-Level Explanations for Natural Language Inference. In NAACL 2019, 2019.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statis-

tical Society Series B: Statistical Methodology, 58(1):267–288, 1996.

Suzanne Tolmeijer, Markus Christen, Serhiy Kandul, Markus Kneer, and Abraham Bernstein.
Capable but amoral? Comparing AI and human expert collaboration in ethical decision making.
In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, pages
1–17, 2022.

Davy van de Sande, Michel E van Genderen, Joost Huiskens, Diederik Gommers, and Jasper van
Bommel. Moving from bytes to bedside: a systematic review on the use of artificial intelligence
in the intensive care unit. Intensive care medicine, 47:750–760, 2021.

Vladimir Naumovich Vapnik. Statistical learning theory. wiley New York, 1998.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information

Processing Systems (NeurIPS), 30, 2017.

Andrea Vedaldi and Stefano Soatto. Quick shift and kernel methods for mode seeking. In Com-

puter Vision–ECCV 2008: 10th European Conference on Computer Vision, Marseille, France,

October 12-18, 2008, Proceedings, Part IV 10, pages 705–718. Springer, 2008.

Alfredo Vellido. The importance of interpretability and visualization in machine learning for
applications in medicine and health care. Neural computing and applications, 32(24):18069–
18083, 2020.

Luisa Verdoliva. Media forensics and deepfakes: an overview. IEEE Journal of Selected Topics

in Signal Processing, 14(5):910–932, 2020.

Himanshu Verma, Jakub Mlynar, Roger Schaer, Julien Reichenbach, Mario Jreige, John Prior,
Florian Evéquoz, and Adrien Depeursinge. Rethinking the role of AI with physicians in onco-
logy: revealing perspectives from clinical and research workflows. In Proceedings of the 2023

CHI Conference on Human Factors in Computing Systems, pages 1–19, 2023.

BIBLIOGRAPHY 141

Jesse Vig and Yonatan Belinkov. Analyzing the Structure of Attention in a Transformer Language
Model. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting

Neural Networks for NLP, pages 63–76, 2019.

Georgios Vlassopoulos, Tim van Erven, Henry Brighton, and Vlado Menkovski. Explaining
Predictions by Approximating the Local Decision Boundary. arXiv preprint arXiv:2006.07985,
2020.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mord-
vintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning (ICML), pages 35151–35174. PMLR,
2023.

Sandra Wachter, Brent Mittelstadt, and Luciano Floridi. Why a Right to Explanation of Automa-
ted Decision-Making Does Not Exist in the General Data Protection Regulation. International

data privacy law, 7(2):76–99, 2017a.

Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without ope-
ning the black box: Automated decisions and the GDPR. Harv. JL & Tech., 31:841, 2017b.

Eric Wallace, Shi Feng, and Jordan Boyd-Graber. Interpreting Neural Networks with Nearest
Neighbors. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Inter-

preting Neural Networks for NLP, pages 136–144, 2018.

Bowen Wang, Liangzhi Li, Yuta Nakashima, and Hajime Nagahara. Learning bottleneck
concepts in image classification. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 10962–10971, 2023.

Fulton Wang and Cynthia Rudin. Falling rule lists. In Artificial intelligence and statistics, pages
1013–1022. PMLR, 2015.

Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel,
and Xia Hu. Score-CAM: Score-weighted visual explanations for convolutional neural net-
works. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 24–25, 2020.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Confe-

rence on Machine Learning (ICML), pages 11080–11090. PMLR, 2021.

Kaiyue Wen, Yuchen Li, Bingbin Liu, and Andrej Risteski. Transformers are uninterpretable with
myopic methods: a case study with bounded Dyck grammars. Advances in Neural Information

Processing Systems (NeurIPS), 36, 2024.

Sarah Wiegreffe and Yuval Pinter. Attention is not not Explanation. In 2019 Conference on

Empirical Methods in Natural Language Processing and 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP 2019), pages 11–20. Association for Computa-
tional Linguistics, 2019.

Qian Yang, Yuexing Hao, Kexin Quan, Stephen Yang, Yiran Zhao, Volodymyr Kuleshov, and
Fei Wang. Harnessing biomedical literature to calibrate clinicians’ trust in AI decision support
systems. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems,
pages 1–14, 2023.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in Neural

Information Processing Systems (NeurIPS), 32, 2019.

BIBLIOGRAPHY Media References

Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and Pradeep Ravikumar.
On completeness-aware concept-based explanations in deep neural networks. Advances in Neural

Information Processing Systems (NeurIPS), 33:20554–20565, 2020.

Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent trends in deep
learning based natural language processing. IEEE Computational intelligence magazine, 13(3):
55–75, 2018.

Muhammad Rehman Zafar and Naimul Mefraz Khan. DLIME: A Deterministic Local Interpre-
table Model-Agnostic Explanations Approach for Computer-Aided Diagnosis Systems. arXiv

preprint arXiv:1906.10263, 2019.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,

2014, Proceedings, Part I 13, pages 818–833. Springer, 2014.

Hanwei Zhang, Felipe Torres, Ronan Sicre, Yannis Avrithis, and Stephane Ayache. Opti-CAM:
Optimizing saliency maps for interpretability. arXiv preprint arXiv:2301.07002, 2023a.

Qiaoning Zhang, Matthew L. Lee, and Scott Carter. You complete me: Human-AI teams and
complementary expertise. In Proceedings of the 2022 CHI conference on human factors in com-

puting systems, pages 1–28, 2022.

Ruihan Zhang, Prashan Madumal, Tim Miller, Krista A. Ehinger, and Benjamin IP Rubinstein.
Invertible concept-based explanations for cnn models with non-negative concept activation vec-
tors. Proceedings of the AAAI Conference on Artificial Intelligence, 35(13):11682–11690, 2021.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo
Zhao, Yu Zhang, Yulong Chen, et al. Siren’s Song in the AI Ocean: A Survey on Hallucination
in Large Language Models. arXiv preprint arXiv:2309.01219, 2023b.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A Survey of Large Language Models, 2023.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE/CVF Conference on Compu-

ter Vision and Pattern Recognition (CVPR), pages 2921–2929, 2016.

Media References

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine Bias. ProPu-

blica, 2016. URL https://www.propublica.org/article/machine-bias-risk

-assessments-in-criminal-sentencing.

Gretchen Bueermann and Natasa Perucica. How can we combat the worrying rise in deepfake
content? World Economic Forum, May 2023. URL https://www.weforum.org/

agenda/2023/05/how-can-we-combat-the-worrying-rise-in-deepfake

-content/.

Jeffrey Dastin. Insight - Amazon scraps secret AI recruiting tool that showed bias against women.
Reuters, 2018. URL https://www.reuters.com/article/idUSKCN1MK0AG/.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.weforum.org/agenda/2023/05/how-can-we-combat-the-worrying-rise-in-deepfake-content/
https://www.weforum.org/agenda/2023/05/how-can-we-combat-the-worrying-rise-in-deepfake-content/
https://www.weforum.org/agenda/2023/05/how-can-we-combat-the-worrying-rise-in-deepfake-content/
https://www.reuters.com/article/idUSKCN1MK0AG/

Media References BIBLIOGRAPHY

Attilio Di Battista, Sam Grayling, Else Hasselaar, T Leopold, Ricky Li, Mark Rayner, and Saadia
Zahidi. Future of jobs report 2023. In World Economic Forum, Geneva, Switzerland., 2023. URL
https://www.weforum.org/reports/the-future-of-jobs-report-2023.

Jake Okechukwu Effoduh. Weapons powered by artificial intelligence need to be regulated.
World Economic Forum, June 2021. URL https://www.weforum.org/agenda/2021/

06/the-accelerating-development-of-weapons-powered-by-artificial

-risk-is-a-risk-to-humanity/.

AI Epoch. Parameter, compute and data trends in machine learning. Published online at

https://epochai. org/data/notable-ai-models-documentation# inclusion, 2024.

Epoch AI. Parameter, Compute and Data Trends in Machine Learning. Epoch AI, 2024. URL
https://epochai.org/data/epochdb/visualization.

EU. General Data Protection Regulation (GDPR). Official Journal of the European Union,
679, 2016. URL https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/

?uri=CELEX:32016R0679.

EU. Artificial Intelligence Act. Official Journal of the European Union, 2024.
URL https://eur-lex.europa.eu/legal-content/en/TXT/HTML/?uri=OJ%

3AL_202401689#d1e2918-1-1.

Europol. Facing Reality? Law Enforcement and the Challenge of Deepfakes. Europol

Innovation Lab, 2022. URL https://www.europol.europa.eu/cms/sites/

default/files/documents/Europol_Innovation_Lab_Facing_Reality

_Law_Enforcement_And_The_Challenge_Of_Deepfakes.pdf.

Walter Frick. AI Is Making Economists Rethink the Story of Automation. Harvard Busi-

ness Review, 2024. URL https://hbr.org/2024/05/ai-is-making-economists

-rethink-the-story-of-automation.

Kristalina Georgieva. AI Will Transform the Global Economy. Let’s Make Sure it Benefits Huma-
nity. International Monetary Fund (IMF) Blog, 2024. URL https://www.imf.org/en/

Blogs/Articles/2024/01/14/ai-will-transform-the-global-economy

-lets-make-sure-it-benefits-humanity.

Michele Gilman. AI algorithms intended to root out welfare fraud often end up punishing the
poor instead. The Conversation, Feb 2020. URL https://theconversation.com/

ai-algorithms-intended-to-root-out-welfare-fraud-often-end-up

-punishing-the-poor-instead-131625.

Karen Hao. Algorithms in the Criminal Justice System: The Pros and Cons of AI. MIT Techno-

logy Review, January 2019. URL https://www.technologyreview.com/2019/01/

21/137783/algorithms-criminal-justice-ai/.

Matthew Kaminski. The Coming War Between DC and Silicon Valley. POLITICO, 2024.
URL https://www.politico.com/news/magazine/2024/05/20/artificial

-intelligence-tech-antitrust-dc-silicon-valley-00158479.

Douwe Kiela, Tristan Thrush, Kawin Ethayarajh, and Amanpreet Singh. Plotting Progress
in AI. Contextual AI Blog, 2023. URL https://contextual.ai/blog/plotting

-progress.

Bernard Marr. AI and Jobs: The Good and Bad News. Forbes, May 2024. URL
https://www.forbes.com/sites/bernardmarr/2024/05/29/ai-and-jobs

-the-good-and-bad-news/?sh=55bafe5872a3.

https://www.weforum.org/reports/the-future-of-jobs-report-2023
https://www.weforum.org/agenda/2021/06/the-accelerating-development-of-weapons-powered-by-artificial-risk-is-a-risk-to-humanity/
https://www.weforum.org/agenda/2021/06/the-accelerating-development-of-weapons-powered-by-artificial-risk-is-a-risk-to-humanity/
https://www.weforum.org/agenda/2021/06/the-accelerating-development-of-weapons-powered-by-artificial-risk-is-a-risk-to-humanity/
https://epochai.org/data/epochdb/visualization
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/en/TXT/HTML/?uri=OJ%3AL_202401689#d1e2918-1-1
https://eur-lex.europa.eu/legal-content/en/TXT/HTML/?uri=OJ%3AL_202401689#d1e2918-1-1
https://www.europol.europa.eu/cms/sites/default/files/documents/Europol_Innovation_Lab_Facing_Reality_Law_Enforcement_And_The_Challenge_Of_Deepfakes.pdf
https://www.europol.europa.eu/cms/sites/default/files/documents/Europol_Innovation_Lab_Facing_Reality_Law_Enforcement_And_The_Challenge_Of_Deepfakes.pdf
https://www.europol.europa.eu/cms/sites/default/files/documents/Europol_Innovation_Lab_Facing_Reality_Law_Enforcement_And_The_Challenge_Of_Deepfakes.pdf
https://hbr.org/2024/05/ai-is-making-economists-rethink-the-story-of-automation
https://hbr.org/2024/05/ai-is-making-economists-rethink-the-story-of-automation
https://www.imf.org/en/Blogs/Articles/2024/01/14/ai-will-transform-the-global-economy-lets-make-sure-it-benefits-humanity
https://www.imf.org/en/Blogs/Articles/2024/01/14/ai-will-transform-the-global-economy-lets-make-sure-it-benefits-humanity
https://www.imf.org/en/Blogs/Articles/2024/01/14/ai-will-transform-the-global-economy-lets-make-sure-it-benefits-humanity
https://theconversation.com/ai-algorithms-intended-to-root-out-welfare-fraud-often-end-up-punishing-the-poor-instead-131625
https://theconversation.com/ai-algorithms-intended-to-root-out-welfare-fraud-often-end-up-punishing-the-poor-instead-131625
https://theconversation.com/ai-algorithms-intended-to-root-out-welfare-fraud-often-end-up-punishing-the-poor-instead-131625
https://www.technologyreview.com/2019/01/21/137783/algorithms-criminal-justice-ai/
https://www.technologyreview.com/2019/01/21/137783/algorithms-criminal-justice-ai/
https://www.politico.com/news/magazine/2024/05/20/artificial-intelligence-tech-antitrust-dc-silicon-valley-00158479
https://www.politico.com/news/magazine/2024/05/20/artificial-intelligence-tech-antitrust-dc-silicon-valley-00158479
https://contextual.ai/blog/plotting-progress
https://contextual.ai/blog/plotting-progress
https://www.forbes.com/sites/bernardmarr/2024/05/29/ai-and-jobs-the-good-and-bad-news/?sh=55bafe5872a3
https://www.forbes.com/sites/bernardmarr/2024/05/29/ai-and-jobs-the-good-and-bad-news/?sh=55bafe5872a3

BIBLIOGRAPHY Media References

Cade Metz. A.I. Is Mastering Language. Should We Trust What It Says? The New York Times,
2022. URL https://www.nytimes.com/2022/04/15/magazine/ai-language

.html.

Max Roser. The brief history of artificial intelligence: the world has changed fast — what
might be next? Our World in Data, 2022. URL https://ourworldindata.org/

brief-history-of-ai.

Ron Schmelzer. How AI is Shaping the Future of Education. Forbes, May
2024. URL https://www.forbes.com/sites/ronschmelzer/2024/05/28/how

-ai-is-shaping-the-future-of-education/.

Miazia Schueler, Salvatore Romano, Natalia Stanusch, Raziye Buse Çetin, Sonia Tabti,
Marc Faddoul, and Ibis Lilley. Artificial Elections: Exposing the Use of Genera-
tive AI Imagery in the Political Campaigns of the 2024 French Elections. AI Fo-

rensics, 2024. URL https://aiforensics.org/uploads/Report_Artificial

_Elections_81d14977e9.pdf.

Craig S. Smith. A.I. Here, There, Everywhere. The New York Times, 2021. URL
https://www.nytimes.com/2021/02/23/technology/ai-innovation

-privacy-seniors-education.html.

The Economist. What will artificial intelligence mean for your pay? The Economist,
2023. URL https://www.economist.com/finance-and-economics/2023/11/

16/what-will-artificial-intelligence-mean-for-your-pay.

The Economist. What happened to the artificial-intelligence investment boom? The Economist,
2024a. URL https://www.economist.com/finance-and-economics/2024/

01/07/what-happened-to-the-artificial-intelligence-investment

-boom.

The Economist. Researchers are Figuring Out How Large Language Models Work. The Eco-

nomist, 2024b. URL https://www.economist.com/science-and-technology/

2024/07/11/researchers-are-figuring-out-how-large-language

-models-work.

TIME. 2023 PERSON OF THE YEAR: Taylor Swift. TIME, 2023. URL https://time

.com/6342806/person-of-the-year-2023-taylor-swift.

UC Berkeley. What is Machine Learning? UC Berkeley School of Information Blog,
2020. URL https://ischoolonline.berkeley.edu/blog/what-is-machine

-learning/.

Rhiannon Williams. AI systems are getting better at tricking us. MIT Technology Review, May
10 2024. URL https://www.technologyreview.com/2024/05/10/1092293/ai

-systems-are-getting-better-at-tricking-us/.

https://www.nytimes.com/2022/04/15/magazine/ai-language.html
https://www.nytimes.com/2022/04/15/magazine/ai-language.html
https://ourworldindata.org/brief-history-of-ai
https://ourworldindata.org/brief-history-of-ai
https://www.forbes.com/sites/ronschmelzer/2024/05/28/how-ai-is-shaping-the-future-of-education/
https://www.forbes.com/sites/ronschmelzer/2024/05/28/how-ai-is-shaping-the-future-of-education/
https://aiforensics.org/uploads/Report_Artificial_Elections_81d14977e9.pdf
https://aiforensics.org/uploads/Report_Artificial_Elections_81d14977e9.pdf
https://www.nytimes.com/2021/02/23/technology/ai-innovation-privacy-seniors-education.html
https://www.nytimes.com/2021/02/23/technology/ai-innovation-privacy-seniors-education.html
https://www.economist.com/finance-and-economics/2023/11/16/what-will-artificial-intelligence-mean-for-your-pay
https://www.economist.com/finance-and-economics/2023/11/16/what-will-artificial-intelligence-mean-for-your-pay
https://www.economist.com/finance-and-economics/2024/01/07/what-happened-to-the-artificial-intelligence-investment-boom
https://www.economist.com/finance-and-economics/2024/01/07/what-happened-to-the-artificial-intelligence-investment-boom
https://www.economist.com/finance-and-economics/2024/01/07/what-happened-to-the-artificial-intelligence-investment-boom
https://www.economist.com/science-and-technology/2024/07/11/researchers-are-figuring-out-how-large-language-models-work
https://www.economist.com/science-and-technology/2024/07/11/researchers-are-figuring-out-how-large-language-models-work
https://www.economist.com/science-and-technology/2024/07/11/researchers-are-figuring-out-how-large-language-models-work
https://time.com/6342806/person-of-the-year-2023-taylor-swift
https://time.com/6342806/person-of-the-year-2023-taylor-swift
https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/
https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/
https://www.technologyreview.com/2024/05/10/1092293/ai-systems-are-getting-better-at-tricking-us/
https://www.technologyreview.com/2024/05/10/1092293/ai-systems-are-getting-better-at-tricking-us/

Appendix

APPENDIX A
Appendix for Chapter 4:
An In-Depth Analysis of

Anchors for Text Data

Organization of the Appendix. The proofs of all results presented in Chapter 4 are provided
in Section A.1. Specifically, Section A.1.9 demonstrates the validity of all findings for a nor-
malized TF-IDF vectorization. Section A.2 compiles all required technical results. Additionally,
Section A.3 contains further experiments for empirical validation of the findings.

A.1 Proofs

In this section, all proofs omitted from the Chapter 4 are collected. Section A.1.1 contains the
proof of Proposition 4.2.1. Sections A.1.2 and A.1.3 refer to Section 4.3. Sections A.1.4 to A.1.7
contain the proofs for Section 4.4. Section A.1.8 provides an additional result to those presented
in Section 4.4.2. Section A.1.9 proves that the statements for TF-IDF vectorization remain valid
for a normalized TF-IDF vectorization.

In all proofs where there is only one tolerance threshold ε and where the selection function p
is clear from context, Ak is written instead of Ap

k(ε) for k ∈ [3].

A.1.1 Proof of Proposition 4.2.1: Equivalent sampling

Let i ∈ [n] be fixed and let R ⊆ [b] be the (random) set of replaced indices for this specific
perturbed example. Let us first compute the probability that a given word with index k ∈ [b] \ A
is removed:

P (k ∈ R) = P (i ∈ Rk) (definition of Rk)

=
n∑︂

ℓ=0

P (i ∈ Rk ♣ Bk = ℓ) · P (Bk = ℓ) (law of total probability)

=
n∑︂

ℓ=0

(︄
n− 1

ℓ− 1

)︄(︄
n

ℓ

)︄−1

·
(︄
n

ℓ

)︄
1

2n
=

2n−1

2n
(uniform distribution among all subsets)

P (k ∈ R) =
1

2
.

147

148 Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data

The independence of the removals is now demonstrated. First, the column-wise independence
is verified by definition: for each word with index k ∈ [b], the number Bk of copies to perturb
is drawn independently by construction. Next, for a given column k ∈ [b], the removals from
example to example are shown to be independent.

Let i, j ∈ [n], with i ̸= j. Write

P (i, j ∈ Rk) =
n∑︂

ℓ=0

P (i, j ∈ Rk ♣ Bk = ℓ)P (Bk = ℓ) (law of total probability)

=
n∑︂

ℓ=0

(︄
n− 2

ℓ− 2

)︄(︄
n

ℓ

)︄−1(︄
n

ℓ

)︄
1

2n
=

2n−2

2n
(uniform distribution among all subsets)

P (i, j ∈ Rk) =
1

4
.

According to the first part of the proof, this is exactly P (i ∈ Rk) · P (j ∈ Rk), allowing us to
conclude.

A.1.2 Proof of Proposition 4.3.1: Stability of exhaustive p-Anchors

Recall that A⋆ is set as Ap(ε). First, it is shown that Aq
1(ε− δ) ⊆ Ap

1(ε). Let A ∈ Aq
1(ε− δ).

Using Eq. (4.4), the following is obtained:

p(A) ≥ q(A) − δ ≥ 1 − (ε− δ) − δ = 1 − ε .

Therefore, A ∈ Ap
1(ε). It is directly deduced that Aq

2(ε − δ) ⊆ Ap
2(ε). Next, it is shown that

Aq
2(ε− δ) is non-empty, specifically containing A⋆. Indeed,

q(A⋆) ≥ p(A⋆) − δ ≥ 1 − ε/4 − δ ≥ 1 − (ε− δ) ,

since δ < ε/4 < 3ε/8. At this point, it suffices to show that A⋆ has (strict) maximal q among
Aq

2(ε− δ). Let us pick any A ∈ Aq
2(ε− δ) such that A ̸= A⋆. Then,

q(A⋆) − q(A) = q(A⋆) − p(A⋆) + p(A⋆) − p(A) + p(A) − q(A)

≥ −δ + 1 − ε/4 − (1 − 3ε/4) − δ ≥ ε/4 > 0 ,

since δ < ε/4. Finally, there is no uniform random draw (last step of Algorithm 1), since Ap
3(ε) =

Aq
3(ε− δ) = {A⋆♢.

A.1.3 Proof of Proposition 4.3.2: ˆ︃Precn(A) uniformly approximates Prec

Let A ∈ A be any anchor and let x(1), . . . , x(n) be perturbed examples associated to this
anchor. For all i ∈ [n], the random variables Yi := ✶f(x(i))=1 ∈ {0, 1♢ are independent and

bounded by construction. Since Prec (A) = E
[︂
ˆ︃Precn(A)

]︂
, we can apply Hoeffding’s inequality

to the Yis [Boucheron et al., 2013, Theorem 2.8]. We obtain

P
(︂\︄\︄\︄ ˆ︃Precn(A) − Prec (A)

\︄\︄\︄ > δ
)︂

= P
(︂
n
\︄\︄\︄ ˆ︃Precn(A) − Prec (A)

\︄\︄\︄ > nδ
)︂

≤ 2e−2nδ2
. (A.1)

There are less than 2b anchors (since we are not considering the empty anchor as a valid anchor),
and we can conclude via a union bound argument.

Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data 149

A.1.4 Proof of Proposition 4.4.1: Dummy features

Let A ∈ APrec
3 (ε). If aj = 0, there is nothing to prove. Thus let us assume that aj > 0 and

come to a contradiction. Let us set Aj the anchor identical to A but with coordinate j to zero. The
precision of A is given by

Prec (A) = PA (g(φ(x)) ∈ R) = PA (g(. . . , φ(x)j , . . .) ∈ R) .

According to the discussion preceding Proposition 4.4.1, φ(x)j = Mjvj , where Mj ∼ aj +
Bj , with Bj ∼ Bin(mj − aj , 1/2) (this is Eq. (4.6)). Since g does not depend on coor-
dinate j and the sampling is independent, g(. . . , vj(aj + Bj), . . .) is equal in distribution to
g(. . . , vjBin(mj , 1/2), . . .). In particular, Prec

(︁
Aj
)︁

= Prec (A). Since
\︄\︄Aj

\︄\︄ < ♣A♣, we can
conclude.

A.1.5 Proof of Proposition 4.4.2: Presence of a set of words

Let pi := 1− 1
2mi . Since the model only depends on the coordinates belonging to J , according

to Proposition 4.4.1, we can restrict ourselves to anchors such that aj ̸= 0 if j ∈ J . Let us start by
computing the precision of any candidate anchor A ∈ A. We write

Prec (A) = EA

[︂
✶f(x)=f(ξ)

]︂

= PA (f(x) = 1) (since f(ξ) = 1)

= PA (wj ∈ x, ∀j ∈ J)

=
∏︂

j∈J

PA (wj ∈ x) (by independence)

=
∏︂

j∈J

PA (vjMj > 0)

=
∏︂

j∈J

PA (aj +Bj > 0)

Prec (A) =
∏︂

j∈J

p
✶aj =0

j .

Let us now apply Algorithm 1 step by step in each of the cases outlined in the statement of the
result.

Case (I): max
j∈J

mj ≤ B. If for all j ∈ J, aj > 0, then, according to the previous discussion,

Prec (A) =
∏︂

j∈J

p
✶aj =0

j = 1 .

150 Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data

Therefore, the anchor (1, . . . , 1) belongs to A1. If, instead, there exists j ∈ J such that aj = 0,
then

∑︁
j∈J ✶aj=0 ≥ 1 and

Prec (A) =
∏︂

j∈J

p
✶aj =0

j

≤
∏︂

j∈J

(︃
1 − 1

2B

)︃
✶aj =0

(since mj ≤ B for all j ∈ J)

=

(︃
1 − 1

2B

)︃∑︁
j∈J

✶aj =0

(since
∑︁

j∈J ✶aj=0 ≥ 1)

≤ 1 − 1

2B

Prec (A) < 1 − ε . (since 1 − 1
2B ≤ 1 − ε by definition of B)

Thus A1 consists of anchors having at least one occurrence of each word of J , and these anchors
only. In A2, Algorithm 1 will select the anchor AJ = {wj , j ∈ J♢, such that aj = 1 for all j ∈ J
and aj = 0 if j /∈ J , which is the shortest anchor satisfying the precision condition. Since there
are no equality cases, A3 is a singleton and we can conclude.

Case (II): max
j∈J

mj > B. We first make two claims:

Claim 1. We can restrict our analysis to anchors A ∈ A such that aj ∈ {0, 1♢ for j ∈ J .

Indeed, for any j ∈ J , the model f is checking the presence of the word wj in a document
δ, i.e., that φ(δ)j > 0, disregarding of its multiplicity. As said before, the anchor AJ (such that
aj = 1 for all j ∈ J) has precision 1. Any other anchor A = (a1, . . . , ad) such that ai ≥ 2 has the
same precision, but higher length.

Now let us consider two indices j and j′ in J such that j > j′ (implying, pj < pj′) and an
anchorA such that aj = aj′ = 0. We setAj (resp.Aj′

) the anchor identical toA except coordinate
j (resp. j′) put to 1. Let IA := {j ∈ [d], aj > 0♢.

Claim 2. If j > j′, Prec
(︁
Aj
)︁
> Prec

(︂
Aj′
)︂

.

Indeed,

Prec
(︂
Aj
)︂

=
∏︂

ℓ∈J, aℓ=0

pℓ

=
∏︂

ℓ∈J\(IA∪{j♢)

pℓ

= pj′ ·
∏︂

ℓ∈J\(IA∪{j♢∪{j′♢)

pℓ

> pj ·
∏︂

ℓ∈J\(IA∪{j♢∪{j′♢)

pℓ (since pj < pj′)

Prec
(︂
Aj
)︂

= Prec
(︂
Aj′
)︂
.

As a consequence, for any anchor of fixed length, we can get higher precision by moving
indices to the right. Therefore, the anchor Ac0 will be selected by Algorithm 1, see Figure A.1 for
an illustration.

Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data 151

a1 a2 . . . ak−c0 ak−c0+1 ak−c0+2 . . . ak−1 ak Prec (A) =
k∏︂

ℓ=1

p
✶aℓ=0

ℓ

0 0 . . . 0 0 0 . . . 0 0
k∏︂

ℓ=1

pj < 1 − ε

0 0 . . . 0 0 0 . . . 0 1
k−1∏︂

ℓ=1

pℓ < 1 − ε

0 0 . . . 0 0 0 . . . 1 1
k−2∏︂

ℓ=1

pℓ < 1 − ε

...
...

...
...

...
...

... 1 1 Prec (A) < 1 − ε

0 0 . . . 0 0 1 . . . 1 1
k−c0+1∏︂

ℓ=1

pℓ < 1 − ε

0 0 . . . 0 1 1 . . . 1 1
k−c0∏︂

ℓ=1

pℓ ≥ 1 − ε

0 0 . . . 1 1 1 . . . 1 1
k−c0−1∏︂

ℓ=1

pℓ > 1 − ε

...
... 1 1 1 1 1 1 1 Prec (A) > 1 − ε

1 1 1 1 1 1 1 1 1 1 > 1 − ε

Figure A.1 – Illustration of Proposition 4.4.2. Anchors extraction for a model classifying words
according to the presence or absence of words wj , j ∈ J = {1, . . . , k♢, ranked such that m1 >
m2 > · · · > mk. The anchor such that aℓ = 1 for ℓ ∈ Jk− c0 + 1, kK and aℓ = 0 otherwise, is the
minimal anchor satisfying the precision condition.

152 Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data

A.1.6 Proof of Proposition 4.4.3: Precision of a linear classifier

Let us set

Zd := λ0 +
d∑︂

j=1

λjvjMj ,

where Mj = aj + Bj are the random multiplicities, that is, aj is the number of anchored words
for j and, as before, Bj ∼ Bin(mj − aj , 1/2,). In our notation, the problem of evaluating the
precision of an anchor A is that of evaluating accurately P (Zd > 0). From Section A.2.1, we see
that, for all j ∈ [d],

E [Mj] =
1

2
(mj + aj) , and Var (Mj) =

1

4
(mj − aj) .

We deduce that

E [Zd] =
1

2

d∑︂

j=1

λjvj(mj + aj) and Var (Zd) =
1

4

d∑︂

j=1

λ2
jv

2
j (mj − aj) . (A.2)

By the Berry-Esseen theorem for non-identically distributed version [Shevtsova, 2010], uni-
formly in t ∈ R, it holds that

\︄\︄\︄\︄\︄P (Zd ≤ t) − Φ

(︄
t− E [Zd]√︁

Var (Zd)

)︄\︄\︄\︄\︄\︄ ≤ C ·
∑︁d

j=1 E
[︂
♣λjvjMj − E [λjvjMj]♣3

]︂

Var (Zd)3/2
, (A.3)

whereC ≈ 7.15 is a numerical constant. Setting t = −λ0 in the previous display, we recognize 1−
the definition of the precision. Using Eq. (A.2), we have obtained the left-hand side of Eq. (4.9).
The numerator is upper bounded by first writing

E
[︂
♣λjvjMj − E [λjvjMj]♣3

]︂
≤ max

j
♣λjvj ♣3 · E

[︂
♣Bj − E [Bj]♣3

]︂
(definition of Mj)

≤ max
j

♣λjvj ♣3 · 1√
8π

(︃
mj − aj

2

)︃3/2

(Eq. (A.11))

E
[︂
♣λjvjMj − E [λjvjMj]♣3

]︂
≤ 1√

π
· max

j
♣λjvj ♣3 · (max

j
mj)3/2 .

We deduce that

d∑︂

j=1

E
[︂
♣λjvjMj − E [λjvjMj]♣3

]︂
≤ 1√

π
·
(︃

max
j
λ2

jv
2
j

)︃3/2

· (max
j
mj)3/2 · d . (A.4)

Regarding the denominator, we have

Var (Zd) =
1

4

d∑︂

j=1

λ2
jv

2
j (mj − aj) (Eq. (A.2))

≥ 1

4
·
(︃

min
j
λ2

jv
2
j

)︃
· (b− ♣A♣) (definition of b and ♣A♣)

Var (Zd) ≥ 1

8
·
(︃

min
j
λ2

jv
2
j

)︃
· min

j
mj · d .

Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data 153

Thus

Var (Zd)3/2 ≥ 1

16
√

2
·
(︃

min
j
λ2

jv
2
j

)︃3/2

·
(︃

min
j

)︃3/2

· d3/2 . (A.5)

In particular, this is a positive quantity. Coming back to Eq. (A.3), we see that

\︄\︄\︄\︄\︄P (Zd ≤ t) − Φ

(︄
t− E [Zd]√︁

Var (Zd)

)︄\︄\︄\︄\︄\︄ ≤ 16C
√

2√
π

·
(︄

maxj λ
2
jv

2
j

minj λ2
jv

2
j

)︄3/2

·
(︄

maxj mj

minj mj

)︄3/2

· 1√
d
,

as announced.

A.1.7 Proof of Proposition 4.4.4: Approximate precision maximization

We start by proving two lemmas. The first shows that we can restrict ourselves to A+ when
considering the minimization of L.

Lemma A.1.1 (Restriction to positive anchors). LetA ∈ A be such that aj > 0 whereas λj < 0.

Then

L (. . . , 0, . . .) < L (. . . , aj , . . .) .

Proof.

Keeping in mind that λj > 0, we notice that −λjvj(mj +aj) > −λjvjmj , and that λ2
jv

2
j (mj −

aj) < λ2
jv

2
jmj . In other terms, removing the word wj from the anchor A both decreases the

numerator and increases the numerator of L.

□

The second shows that the minimization of L on A+ is straightforward, modulo a technical
assumption on the size of the intercept.

Lemma A.1.2 (Minimization of L). Assume that λ0 > −γ/2. Assume further that the indices of

the local dictionary are ordered such that the λjvjs are strictly decreasing. Then, for any k < ℓ
such that λk, λℓ > 0,

L (a1, . . . , ak + 1, . . . , aℓ, . . . , ad) < L (a1, . . . , ak, . . . , aℓ + 1, . . . , ad) . (A.6)

Proof.

First, since A ∈ A+ and λ0 ≥ −γ/2, we deduce that

λ0 +
1

2

∑︂

j

λjvjmj +
1

2

∑︂

j

λjvjaj ≥ 0 . (A.7)

Now, we will prove both inequalities by a function study. For any j ∈ [d], let us set αj := λjvj

. We also set Ω1 :=
∑︁

j αj(mj − aj), and Ω2 :=
∑︁

j α
2
j (mj − aj). Further, for any a, b ∈ R,

let us define the mapping

fa,b(t) :=
a+ t√
b− t2

.

With this notation in hand, Eq. (A.6) becomes

γ − 1
2(Ω1 − αk)√︂
Ω2 − α2

k

>
γ − 1

2(Ω1 − αℓ)√︂
Ω2 − α2

ℓ

154 Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data

which is simply
f2γ−Ω1,Ω2(αk) > f2γ−Ω1,Ω2(αℓ) .

Observe that, by our assumptions, 2γ − Ω1 > 0, and Ω2 > 0. It is straightforward to show that
f ′

a,b(t) = at+b
(b−t2)3/2 , and therefore f2γ−Ω1,Ω2(αk) is a strictly increasing mapping on [0,

√
b].

Since
√

Ω2 ≥ αk > αℓ > 0, we can conclude.

□

Proof of Proposition 4.4.4. In this proof, we set p = Φ ◦L. Let AF be the anchor containing all
words of ξ. In our notation,

AF = (m1, . . . ,md) .

We first notice that Ap
1 is non-empty since Φ

(︂
L
(︂
AF
)︂)︂

= 1. By construction, Ap
2 , consisting

of anchors of Ap
1 of minimal length, is non-empty as well. Lemma A.1.1 ensures that Ap

3 , the
anchors of Ap

2 with the highest p value, is a non-empty subset of A+. Indeed, one can remove
the anchors corresponding to the indices j ∈ [d] such that λjvj < 0, and increase the value of p.
Since we assumed that at least one λj is positive, it is always possible to do this removal. Finally,
let ℓ be the common length of the anchors belonging to Ap

3 . Since we satisfy the assumptions of
Lemma A.1.2, we see that the p value of any anchor of length ℓ is strictly increasing if we swap
indices towards the lower indices. We deduce the result.

A.1.8 Additional result for Section 4.4.2: Simple if-then rules

We present here a further result on a simple if-then classifier based on the presence of disjoint
subsets of words.

Proposition A.1.3 (Small decision tree). Let the (binary) classifier f be defined as follows:

f(z) = ✶(w1∈z and w2∈z) or w3∈z

Then, for any ε > 0, the anchor A = (0, 0, 1), will be selected by exhaustive Anchors.

For example, consider the sentiment analysis task, and f the model returning 1 (a positive
prediction) if words “not” and “bad” or the word “good” are present in the document. Proposi-
tion A.1.3 implies that only the word “good” will be selected as an anchor. This is a satisfying
property and corresponds to the intuition that we have from Anchors: in this class of examples,
the smallest rule is provably selected by Anchors. We prove Proposition A.1.3 in Section A.1.8
of the Appendix.

Of course, the scope of Proposition A.1.3 is limited. It is possible to obtain similar results for
other simple sets of rules, though challenging to present these results with a sufficient amount of
generality.

Proof of Proposition A.1.3 Let us start by computing Prec (A) for any candidate anchorA ∈ A.
Since the model only depends on the first three coordinates, according to Proposition 4.4.1, we can
restrict ourselves toA = (a1, a2, a3). In this proof, we set pi := 1− 1

2mi the probability of keeping

Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data 155

the word wi while sampling and Bk ∼ Bin(mj − aj , 1/2). The precision of a candidate anchor
A ∈ A (Eq. (4.2)) associated to f is

Prec (A) = EA

[︂
✶f(x)=f(ξ)

]︂

= PA (f(x) = 1)

= PA (φ(x)1 > 0) · PA (φ(x)2 > 0) · (1 − PA (φ(x)3 > 0)) + PA (φ(x)3 > 0)
(by independence)

= PA (M1 > 0) · PA (M2 > 0) · (1 − PA (M3 > 0)) + PA (M3 > 0)
(since vj > 0 for all j ∈ [d])

= PA (a1 +B1 > 0) · PA (a2 +B2 > 0) · (1 − PA (a3 +B3 > 0)) + PA (a3 +B3 > 0)

=

⎧
⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⨄︂
⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋃︂

1 , if a3 > 0 ,

1 , if a1, a2 > 0 and a3 = 0 ,

p2(1 − p3) + p3 = 1 − 1
2m2+m3

, if a1 > 0 and a2, a3 = 0 ,

p1(1 − p3) + p3 = 1 − 1
2m1+m3

, if a2 > 0 and a1, a3 = 0 ,

p1p2(1 − p3) + p3 = 1 − 2m1 +2m2 −1
2m1+m2+m3

, if a1 = a2 = a3 = 0 .

Now let us follow Algorithm 1 step by step. According to the previous discussion, any anchor
such that a1 and a2 are positive and/or a3 > 0 has precision 1, and thus belongs to A1. In particular,
the anchor (0, 0, 1) belongs to A1. We note that it also has minimal length 1, and therefore belongs
to A2. Finally, any other anchor with the same length will have a smaller precision, since p2(1 −
p3) + p3 < 1, p1(1 − p3) + p3 < 1, and p1p2(1 − p3) + p3 < 1. In conclusion, A3 is reduced to a
singleton and the anchor A = (0, 0, 1) will be selected by exhaustive Anchors.

A.1.9 Normalized TF-IDF

In this section we show that our theoretical results demonstrated considering a TF-IDF vectori-
zation as defined in Definition 2.2.1 still hold for the ℓ2-normalized TF-IDF vectorization, defined
as

∀j ∈ [D], ϕ(z)j :=
mj(z)vj√︂∑︁D
j=1mj(z)2v2

j

,

that is, the default normalization in the scikit-learn implementation of TF-IDF. The main
result of this section is the following:

Proposition A.1.4 (Normalized-TF-IDF, Berry-Esseen). Assume that 0 < vmin ≤ vj ≤ vmax

and m ≤ mj ≤ M for all j ∈ [d]. Assume further that A is not the empty anchor, that ♣A♣ ≤ b/2
and that aj < mj for all j. Finally, assume that ∥λ∥ = 1 as d → +∞. For all t ∈ R, define

P (t) := Φ

⎛
∐︂
t
√︂∑︁

j{(mj + aj)2 +mj − aj♢v2
j −∑︁

j λj(mj + aj)vj
√︂∑︁

j λ
2
j (mj − aj)v2

j

∫︁
⎠ .

Then
\︄\︄\︄P
(︂
λ⊤ϕ(x) ≤ t

)︂
− P (t)

\︄\︄\︄ ≤ 2
√
Mv

−3/2
min

d3/4−ε
+ 2exp

(︄
−d1+2εv6

min

4v4
maxM

4

)︄
. (A.8)

156 Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data

As a direct consequence of Proposition A.1.4, we know that a good approximation of Prec (A)
in the normalized TF-IDF case is Φ (L(A)), with

L(A) =
−λ0

√︂∑︁
j{(mj + aj)2 +mj − aj♢v2

j −∑︁
j λj(mj + aj)vj

√︂∑︁
j λ

2
j (mj − aj)v2

j

. (A.9)

This is reminiscent of Eq. (4.9) in the non-normalized case. When λ0 = 0, the analysis of the
maximization problem is a subcase of the non-normalized case, and we recover the same result.
Although λ0 = 0 can be a reasonable assumption (assuming centered data and no intercept), we
conjecture that the result is true for a larger range of λ0, similarly to the unnormalized case.

Let us now prove Proposition A.1.4. Let us set

Zd :=

∑︁d
j=1 λjvjMj√︂∑︁d

j=1 v
2
jM

2
j

and Z̃d :=

∑︁d
j=1 λjvjMj√︂

1
4

∑︁d
j=1{(mj + aj)2 +mj − aj♢

.

Intuitively, when d is large enough, both these quantities are close with high probability, and Z̃d

has the same structure as the linear form studied in the normalized case, up to a constant. Thus,
the analysis boils down to the previous case, modulo the following:

Proposition A.1.5 (Zd and Z̃d are close with high probability). Let ε ∈ (0, 1/2). Assume that

0 < vmin ≤ vj ≤ vmax and m ≤ mj ≤ M for all j ∈ [d]. Assume further that A is not the empty

anchor. Finally, assume that ∥λ∥ = 1 as d → +∞. Then

P

(︃\︄\︄\︄Zd − Z̃d

\︄\︄\︄ > c

d1/2−ε

)︃
≤ 2exp

(︄
−c2d1+2εv6

min

4v4
maxM

4

)︄
,

for any small positive constant c.

Proof of Proposition A.1.5. In this proof, we write D :=
∑︁d

j=1 v
2
jM

2
j . We begin by computing

the expectation of D. We know that Mj = aj +Bj , where Bj ∼ Bin(mj − aj , 1/2). Therefore,

E
[︂
M2

j

]︂
= E

[︂
a2

j + 2ajBj +B2
j

]︂

= a2
j + aj(mj − aj) +

1

4
(mj − aj)2 +

1

4
(mj − aj)

E
[︂
M2

j

]︂
=

1

4
(mj + aj)2 +

1

4
(mj − aj) ,

where we used Lemma A.2.1 to compute E
[︂
B2

j

]︂
. By linearity, we deduce that

E [D] =
1

4

d∑︂

j=1

{(mj + aj)2 +mj − aj♢ .

Note that, with this notation in hand,

Zd =

∑︁d
j=1 λjMjvj√

D
and Z̃d =

∑︁d
j=1 λjMjvj√︁

E [D]
.

We need to prove the following, which shows that D is concentrated around its expectation:

Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data 157

Lemma A.1.6 (Concentration ofD). Assume that 0 < vmin ≤ vj ≤ vmax and thatm ≤ mj ≤ M
for all j ∈ [d]. Then, for all t > 0,

P (♣D − E [D]♣ > t) ≤ 2exp

(︄
−2t2

dv4
maxM

4

)︄
.

Proof.

This is a straightforward application of Hoeffding’s inequality once we notice that the random
variables v2

jM
2
j are bounded and independent, and that

∑︁
j m

4
jv

4
j ≤ dv4

maxM
4 under our as-

sumptions.

□

Note that Lemma A.1.6 is tight, since Hoeffding’s inequality is tight for Bernoulli random
variables, a case which is possible under our assumption. Lemma A.1.6 allows controlling the
small deviations of D, a fact that we will maybe not use in the following, but can nonetheless be
useful to split a complicated event. Next, we control the size of D.

Lemma A.1.7 (D is small with high probability). Assume that 0 < vmin ≤ vj ≤ vmax for all

j ∈ [d]. Then

P

(︃
D <

1

4
dv2

min

)︃
≤ 2exp

(︄
−dv4

min

8v4
maxM

4

)︄
.

Proof.

We write

P

(︃
D <

1

4
dv2

min

)︃
= P

(︃
D − E [D] <

1

4
dv2

min − E [D]

)︃

≤ P

(︃
♣D − E [D]♣ < 1

2
dv2

min − 1

4
dv2

min

)︃
,

since 1
4{(mj + aj)2 + mj − aj♢ ≥ 1

4 · (12 + 1) for all j ∈ [d]. We conclude by applying
Lemma A.1.6 with t = 1

4dv
2
min.

□

Now we can control the key quantity:

Lemma A.1.8 (Control of the key quantity). Assume that 0 < vmin ≤ vj ≤ vmax andm ≤ mj ≤
M for all j ∈ [d]. Assume further that A is not the empty anchor. Then, for any t > 0,

P

(︄\︄\︄\︄\︄\︄1 −
√
D√︁

E [D]

\︄\︄\︄\︄\︄ > t

)︄
≤ 2exp

(︄
−d2t2v6

min

4v4
maxM

4

)︄
.

In particular, by taking t of the order 1
d1/2−ε for some ε > 0, we see that

P
(︂\︄\︄\︄1 −

√︁
D/E [D]

\︄\︄\︄ > t
)︂

= o (1).
Proof.

158 Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data

Multiplying by E [D], we see that we want to control

P

(︃\︄\︄\︄\︄
√
D −

√︂
E [D]

\︄\︄\︄\︄ > t
√︂
E [D]

)︃
.

Since E [D] ≤ 1
2dv

2
min, we can simply control

P

(︃\︄\︄\︄\︄
√
D −

√︂
E [D]

\︄\︄\︄\︄ >
1

2
dtv2

min

)︃
.

Additionally, since A is not the empty anchor, D ≥ v2
min almost surely, which is positive. Since

the mapping x ↦→ √
x is 1/2

√
C-Lipschitz on [C,+∞), we see that

\︄\︄\︄\︄
√
D −

√︂
E [D]

\︄\︄\︄\︄ ≤ 1

2vmin
♣D − E [D]♣ ,

which allows us to focus on
P
(︂
♣D − E [D]♣ > dtv3

min

)︂
.

We control this last display using Lemma A.1.6, and we obtain

P

(︄\︄\︄\︄\︄\︄1 −
√
D√︁

E [D]

\︄\︄\︄\︄\︄ > t

)︄
≤ 2exp

(︄
−d2t2v6

min

4v4
maxM

4

)︄
,

as promised.

□

Finally, coming back to the original problem, we write

P
(︂\︄\︄\︄Zd − Z̃d

\︄\︄\︄ > s
)︂

= P

(︄
♣Zd♣ ·

\︄\︄\︄\︄\︄1 −
√
D√︁

E [D]

\︄\︄\︄\︄\︄ > s

)︄
≤ P

(︄\︄\︄\︄\︄\︄1 −
√
D√︁

E [D]

\︄\︄\︄\︄\︄ > s

)︄
. (A.10)

By Cauchy-Schwarz inequality, we have
\︄\︄\︄\︄\︄\︄
∑︂

j

λjMjvj

\︄\︄\︄\︄\︄\︄
≤ ∥λ∥ ·

√
D ,

and we deduce that ♣Zd♣ ≤ ∥λ∥ = 1 under our assumptions. Coming back to Eq. (A.10), we can
therefore take s = 1

d1/2−ε and use Lemma A.1.8 to conclude.

We can now conclude this section with the proof of our main result.

Proof of Proposition A.1.4. Let us set N :=
∑︁

j λjMjvj . With this notation,

P
(︂
λ⊤ϕ(x) ≤ t

)︂
= P (Zd ≤ t), and

λ⊤ϕ(x) =
N√
D

= Zd and Z̃d =
N√︁
E [D]

.

Let s > 0. Using Lemma A.2.4, we have

P
(︂
Z̃d ≤ t− s

)︂
− P

(︂\︄\︄\︄Zd − Z̃d

\︄\︄\︄ > s
)︂

≤ P (Zd ≤ t) ≤ P
(︂
Z̃d ≤ t+ s

)︂
+ P

(︂\︄\︄\︄Zd − Z̃d

\︄\︄\︄ > s
)︂
.

Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data 159

Let us set s = 1
d1/2−ε for some small ε > 0. By Proposition A.1.5, we know that

P
(︂\︄\︄\︄Zd − Z̃d

\︄\︄\︄ > s
)︂

≤ 2exp

(︃
−d1+2εv6

min
4v4

maxM4

)︃
. Let us now turn towards the remaining terms, depen-

ding on Z̃. We write, for any u ∈ R,

P
(︂
Z̃d ≤ u

)︂
= P

(︄
N√︁
E [D]

≤ u

)︄

= P

(︄
N − E [N]√︁

Var (N)
≤ u

√︁
E [D] − E [N]√︁

Var (N)

)︄

P
(︂
Z̃d ≤ u

)︂
= Φ

(︄
u
√︁
E [D] − E [N]√︁

Var (N)

)︄
+ o (1) ,

uniformly in u, where we used Proposition 4.4.3 in the last derivation.
Since Φ is 1-Lipschitz, we see that
\︄\︄\︄\︄\︄P
(︂
Z̃d ≤ t+ s

)︂
− Φ

(︄
t
√︁
E [D] − E [N]√︁

Var (N)

)︄\︄\︄\︄\︄\︄ ≤ s

√︁
E [D]√︁

Var (N)
+ 2exp

(︄
−d1+2εv6

min

4v4
maxM

4

)︄
.

Moreover, under our assumptions,
√︁
E [D] /Var (N) = O (1) and s = 1

d1/2−ε . Therefore,

P
(︂
Z̃d ≤ t+ s

)︂
= Φ

(︄
t
√︁
E [D] − E [N]√︁

Var (N)

)︄
+

1

d1/2−ε

√︁
E [D]√︁

Var (N)
+ 2exp

(︄
−d1+2εv6

min

4v4
maxM

4

)︄
.

Additionally, one can show that Var
(︂
M2

j

)︂
= ν(mj − aj), with

ν(x) :=
x

8
(2(2a+ x)2 + x− 1) .

It is straightforward to show that ν is non-decreasing. When mj > aj , we see that

ν(mj − aj) ≥ ν(1) = a2
j + aj +

1

4
≥ 1

4
.

Therefore
∑︁

j v
4
j Var

(︂
M2

j

)︂
≥ d

4v
4
min. Under our assumptions, ∥λ∥ = 1, and by applying Cauchy-

Schwarz inequality E [D] ≤
√
dvmaxM , we deduce

E [D]

Var (N)
≤ 4vmaxM√

dv4
min

.

Thus, we find that

P
(︂
Z̃d ≤ t+ s

)︂
≤ Φ

(︄
t
√︁
E [D] − E [N]√︁

Var (N)

)︄
+

1

d1/2−ε

2
√
M

d1/4v
3/2
min

+ 2exp

(︄
−d1+2εv6

min

4v4
maxM

4

)︄

= Φ

(︄
t
√︁
E [D] − E [N]√︁

Var (N)

)︄
+

2
√
M

d3/4−εv
3/2
min

+ 2exp

(︄
−d1+2εv6

min

4v4
maxM

4

)︄
.

The same reasoning applies to t − s, and we can conclude by recognizing Φ

(︃
t
√

E[D]−E[N]√
Var(N)

)︃

as P (t).

160 Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data

A.2 Technical results

We present here some technical results that were used in our analysis regarding binomial
random variables (Section A.2.1) and two additional lemmas (Section A.2.2).

A.2.1 Binomial wonderland

In this section, we collect some facts about binomial random variables. We focus on the case
p = 1/2 because of the sampling scheme of Anchors, with a few exceptions. We start with straight-
forward moment computations, which are stated here for completeness’ sake.

Lemma A.2.1 (Moments of the binomial distribution). Let m ≥ 1 be an integer and B ∼
Bin(m, 1/2). Then

E [B] =
m

2
, E

[︂
B2
]︂

=
m2

4
+
m

4
, E

[︂
B3
]︂

=
m3

8
+

3m2

8
, and E

[︂
B4
]︂

=
m4

16
+

3m3

8
+

3m2

16
−m

8
.

In particular, Var (B) = m/4.
Proof.

We use the formula

E [Bp] =
p∑︂

k=1

Sk,pm
k 1

2k
,

where mk = m(m − 1) · · · (m − k + 1) and Sk,p are the Stirling numbers of the second kind
(see Knoblauch [2008] for instance).

□

Next, we turn to the computation of the third absolute moment of the binomial, which inter-
venes in the proof of Proposition 4.4.3.

Lemma A.2.2 (Third absolute moment of the binomial). Let m ≥ 1 be an even integer. Then

E
[︂
♣B −m/2♣3

]︂
=

m2

2m+2

(︄
m

m/2

)︄
.

From Lemma A.2.2, we deduce that

∀m ≥ 1, E
[︂
♣B −m/2♣3

]︂
≤ 1√

8π
m3/2 , (A.11)

where we used the well-known bound
(︁ m

m/2

)︁ ≤
√

22m√
πm

. Eq. (A.11) is better than a Jensen-type
bound, which can be obtained by noticing that

(︂
E
[︂
♣B −m/2♣3

]︂)︂4/3
≤ E

[︂
(B − E [B])4

]︂
=
m

4

(︃
1 +

3m− 6

4

)︃
,

where we used Lemma A.2.1 in the last step. This last expression is less than 3m2/16, and this

approach yields E
[︂
♣B −m/2♣3

]︂
≤ (3/16)3/4m3/2. Since 1/

√
8π ≈ 0.2 whereas (3/16)3/4 ≈

0.28, we prefer the use of Eq. (A.11) when bounding the third absolute moment of the binomial.
Proof.

Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data 161

We follow Diaconis and Zabell [1991]. First, we notice that the polynomial (X −m/2)3 can be
written

(X −m/2)3 =
−3

4
Pm

3 (X) +
−3m+ 2

8
Pm

1 (X) , (A.12)

where Pm
k denotes the Kravchuk polynomial of order k [MacWilliams and Sloane, 1977]. Using

Lemma 1 of Diaconis and Zabell [1991], we see that

1

2m

m/2∑︂

k=0

(︄
m

k

)︄
(k −m/2)3 =

−3

4

1

2m

m/2∑︂

k=0

(︄
m

k

)︄
Pm

3 (k) +
−3m+ 2

8

1

2m

m/2∑︂

k=0

(︄
m

k

)︄
Pm

3 (k)

=
−3

4

m

6

1

2m

(︄
m

m/2

)︄
Pm−1

2 (m/2)

+
−3n+ 2

8

m

2

1

2m

(︄
m

m/2

)︄
Pm−1

0 (m/2)

1

2m

m/2∑︂

k=0

(︄
m

k

)︄
(k −m/2)3 =

−m2

2m+3

(︄
m

m/2

)︄
.

Observing that the third absolute moment is twice the absolute value of the last display yields
the desired result.

□

Remark A.2.1 – It is unfortunately not possible to obtain a simple closed-form for a parameter
of the binomial p not equal to 1/2 using this method. Indeed, using the more general expression
of the Kravchuk polynomials (sometimes called the Meixner polynomials [Meixner, 1934]) the
decomposition obtained in Eq. (A.12) becomes (X −mp)3 =

∑︁3
q=0 λqP

m
q (X), with

⎧
⋁︂⋁︂⋁︂⋁︂⋁︂⨄︂
⋁︂⋁︂⋁︂⋁︂⋁︂⋃︂

λ0 = mp(1 − p)(1 − 2p)

λ1 = −3m+2
4 (1 − p) + 3m−6

4 (1 − p)(1 − 2p)2

λ2 = 6(1 − 2p)(1 − p)2

λ3 = −6(1 − p)3 .

In particular, λ0 is nonzero whenever p ̸= 1/2. Therefore, the partial sums of the binomial coeffi-
cients make their appearance, for which there is no simple closed-form.

A.2.2 Other probability results

Lemma A.2.3 (Probability splitting). Let X and Y be two random variables, t ∈ R and ε > 0.

Then

P (Y ≤ t) ≤ P (X ≤ t+ ε) + P (♣X − Y ♣ > ε) .

Proof.

162 Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data

This result is classical, we report the proof for completeness’ sake.

P (Y ≤ t) = P (Y ≤ t,X ≤ t+ ε) + P (Y ≤ t,X > t+ ε)

≤ P (X ≤ t+ ε) + P (Y −X ≤ t−X, t−X < −ε)
≤ P (X ≤ t+ ε) + P (Y −X < −ε)
≤ P (X ≤ t+ ε) + P (Y −X < −ε) + P (Y −X > ε)

P (Y ≤ t) ≤ P (X ≤ t+ ε) + P (♣X − Y ♣ > ε) .

□

As a direct consequence, we have the following:

Lemma A.2.4 (Convergence in probability implies convergence in distribution). Let X and

Y be two random variables, t ∈ R and s > 0. Then

P (X ≤ t− s) − P (♣X − Y ♣ > s) ≤ P (Y ≤ t) ≤ P (X ≤ t+ s) + P (♣X − Y ♣ > s) .

Proof.

Applying Lemma A.2.3 to Y and X instead of X and Y , and t− s instead of t yields

P (X ≤ t− s) ≤ P (Y ≤ t) + P (♣X − Y ♣ > s) . (A.13)

Combined with the original statement, we obtain the result.

□

A.3 Additional experimental results

In this section, additional experimental results are collected. Specifically, in Section A.3.1
we report statistics about the TF-IDF vectorization, in Section A.3.2 we empirically show that
Anchors and exhaustive Anchors produce similar explanations, In Section A.3.3 we provide a
counterexample proving that the default implementation of Anchors does not satisfy Property 4.4.1
(Dummy Property). Sections A.3.4 and A.3.6 provide empirical validation of Propositions 4.4.3
and A.1.4, respectively. Finally, additional experimental results for Sections 4.4 and 4.5 are in
Sections A.3.5 and A.3.7. The code used for the experiments is available at https://github
.com/gianluigilopardo/anchors_text_theory.

Setting. All the experiments reported in this Section and in Chapter 4 are implemented in
Python and executed on CPUs. Three dataset are used: Restaurant Reviews (available at
https://www.kaggle.com/hj5992/restaurantreviews), Yelp Reviews (available
at https://www.kaggle.com/omkarsabnis/yelp-reviews-dataset), and IMDB
Reviews (available at https://www.kaggle.com/datasets/lakshmi25npathi/

imdb-dataset-of-50k-movie-reviews). Unless otherwise specified, all the ex-
periments work with the official implementation of Anchors (available and licensed at
https://github.com/marcotcr/anchor) and default parameters. The vectorizer is
always TF-IDF from https://scikit-learn.org/stable/modules/generated/

sklearn.feature_extraction.text.TfidfVectorizer.html with the option

https://github.com/gianluigilopardo/anchors_text_theory
https://github.com/gianluigilopardo/anchors_text_theory
https://www.kaggle.com/hj5992/restaurantreviews
https://www.kaggle.com/omkarsabnis/yelp-reviews-dataset
https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://github.com/marcotcr/anchor
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data 163

0 5 10 15 20 25 300

2

4

6

8

10

12

14

Pe
rc

en
t

Histogram for b: length of text

2 3 4 5 6 70

10

20

30

40

50

60

Pe
rc

en
t

Histogram for v: inverse document frequency

1.0 1.5 2.0 2.5 3.0 3.5 4.00

20

40

60

80

100

Pe
rc

en
t

Histogram for m: term frequency

2.0 2.5 3.0 3.5 4.00

20

40

60

80
Pe

rc
en

t

Histogram for m>1: term frequency

Figure A.2 – Histograms for the Restaurant Reviews dataset. Figures report the length of the
document b (upper left), the inverse document frequency vj (upper right), the term frequency m
(lower left), the term frequency when m > 1 (lower right). Average value is shown in red.

norm=None. When experiments require it (Sections A.3.2, A.3.3, A.3.5, A.3.7), we use 75% of
the dataset for training and 25% for testing. All machine learning models used in the experiments
were trained with the default parameters of https://scikit-learn.org/. Finally, we
remark that we always consider documents with positive predictions, i.e., such that f(z) = 1.

A.3.1 Typical values of mj and vj

Figure A.2 and Figure A.3 show statistics about the TF-IDF transforms of the two considered
datasets. In Figure A.2 the average document length b is 11: each document is a short review,
generally containing one or two short sentences, while in Figure A.3 the average length b is 133:
documents are quite longer. This significant difference in documents size is also visible in the
multiplicities. In Figure A.2, the typical value for the term frequencymj is 1 and it is rarely higher
than 3, while in Figure A.3 the average is closer to 2 and multiplicities greater than 10 are present.
In contrast, the average, median, and maximum value for the inverse document frequency vj are
around 7 for both datasets: indeed, considering their size is around N = 1000 and that the typical
value for Nj is 1, we get vj = log N+1

Nj+1 + 1 ≈ 7.

https://scikit-learn.org/

164 Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data

0 200 400 600 8000

5

10

15

20

25

Pe
rc

en
t

Histogram for b: length of text

1 2 3 4 5 6 70

10

20

30

40

50

Pe
rc

en
t

Histogram for v: inverse document frequency

0 20 40 600

20

40

60

80

100

Pe
rc

en
t

Histogram for m: term frequency

0 20 40 600

20

40

60

80

Pe
rc

en
t

Histogram for m>1: term frequency

Figure A.3 – Histograms for the Yelp Reviews dataset. Figures report the length of the document
b (upper left), the inverse document frequency vj (upper right), the term frequency m (lower left),
the term frequency when m > 1 (lower right) for a subset of the dataset. Note that the maximum
value of multiplicity m is 75 in this case, while the average (in red) is 1.5.

A.3.2 Comparison between Anchors and exhaustive Anchors

We compute the similarity through the Jaccard index, defined as

J(Ap, Ad) :=

\︄\︄\︄Ap ∩Ad
\︄\︄\︄

♣Ap ∪Ad♣ =

\︄\︄\︄Ap ∩Ad
\︄\︄\︄

♣Ap♣ + ♣Ad♣ − ♣Ap ∩Ad♣ ,

where Ap is the anchor obtained by running empirical Anchors (exhaustive version with empirical
precision as an evaluation function) and Ad with default implementation. Table A.1 shows the
average Jaccard index for the two datasets considered and five different models. Overall, the output
of the two methods is quite similar.

As shown in Figure A.3, the Yelp dataset has longer documents, making Anchors more uns-
table (namely outputting quite different anchors for the same model / document configuration).
This explains why the similarity is lower in that case. In addition, Anchors requires a computa-
tional capacity that grows exponentially with the length of the document (and the length of the

Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data 165

TABLE A.1 – Jaccard similarity between exhaustive Anchors and default implementation.

Indicator DTree Logistic Perceptron RandomForest
Restaurants 1.00 1.00 0.90 0.87 0.93

Yelp 1.00 1.00 0.71 0.68 0.75

Figure A.4 – Anchors includes dummy features. 10 most frequent anchors on 100 runs of default
Anchors on a logistic model with zero coefficient for indie and arbitrary coefficients for the other
words. indie is a dummy feature, but still appears in 4 anchors.

optimal anchor). This makes it particularly onerous to apply empirical Anchors to large docu-
ments. Indeed, the experiment of Table A.1 requires about half an hour on Restaurants reviews,
while more than 24 hours are needed on Yelp reviews.

A.3.3 Dummy property

We report a counterexample showing that the default implementation of Anchors does not
satisfy Proposition 4.4.1. In Figure A.4, the word indie appears in 4 anchors, even though the
model does not depend on it. While the frequency of occurrence is not high, it is still non-zero.
This is slightly problematic in our opinion: since the model does not depend on the word indie,
its appearance in the explanation is misleading for the user. We conjecture that this behavior is
entirely due to the optimization procedure used in the default implementation of Anchors, since
the exhaustive version is guaranteed not to have this behavior by Proposition 4.4.1. We want to
emphasize that there is nothing special with the example presented here and other counterexamples
can be readily created.

A.3.4 Empirical validation of Proposition 4.4.3: Precision of a linear classifier

Figure A.5 shows an empirical validation for Proposition 4.4.3 for different document size and
for anchors of different sizes. The fit between the empirical distribution and Φ ◦ L is much better
as predicted by Proposition 4.4.3, even for small values of d. This motivates our further study of
the approximate precision instead of the precision. From the results in Figure A.5, we can see
why the anchors need to be small with respect to the document size: if they are two large, the
approximation of the precision is not justified. We remark, again, that this assumption is entirely
reasonable, since an anchor using more than half the document to explain a prediction is not
interpretable. In addition, Anchors rarely returns such anchors.

166 Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data

A.3.5 Additional experiments for Section 4.4: Analysis on explainable classifiers

In this Section we report additional experiments for our Analysis on explainable classifiers.
First, we validate our results on simple if-then-rules: Figure A.7 and Figure A.8 illustrate Propo-
sition A.1.3 and Proposition 4.4.2, respectively.

Second, we validate Proposition 4.4.4 as in Figure A.5, i.e., after training a logistic model
(Figure A.9) and a perceptron model (Figure A.10), we apply a shift S to the intercept λ0, as
follows

f(z) = ✶λ⊤φ(z)+(λ0−S)>0 . (A.14)

As S increases, the prediction becomes harder, and longer anchors are needed to reach the preci-
sion threshold. When a new word is included, we show that, as predicted by Proposition 4.4.4, the
first word with higher λjvj is picked.

Error bars In our experiments there are two sources of variability, coming from different runs
and documents, as we ran 10 times Anchors on each positively classified document. Figure A.6
shows the standard deviation for 10 runs on Restaurant reviews (model is a 10-layers neural net-
work): for half the documents, it is actually zero.

To further demonstrate this phenomenon, we also conducted the following experiment. We first
trained a logistic model on three review datasets, achieving accuracies between 80% and 90%. We
then ran Anchors with the default setting 10 times on positively classified documents. For each
document, we measure the Jaccard similarity between the anchor A and the first ♣A♣ words ranked
by λjvj . In Table 4.1 we report the average Jaccard index: results validate Proposition 4.4.4.

A.3.6 Empirical validation of Proposition A.1.4: Normalized-TF-IDF, Berry-
Esseen

Figure A.11 shows an empirical validation for Proposition A.1.4 for different document size
and for anchors of different sizes.

A.3.7 Additional experiments for Section 4.5: Anchors on Neural Networks

We show in Table 4.2 additional experiments that validate our conjecture expressed in Sec-
tion 4.5. To this end, we trained, for each dataset (Restaurants, Yelp, and IMDB), three feed-
forward neural networks, with 3, 10, and 20 layers, achieving accuracies around 90%. The
code used for model training is available at https://github.com/gianluigilopardo/
anchors_text_theory. We then ran Anchors with default settings 10 times on positively
classified documents. For each document, we get the gradient of the model with respect to the
input: for all j ∈ [d], λj := ∂g(φ(x))

∂φ(x)j
. We then measure the average Jaccard similarity between the

anchor A and the first ♣A♣ word ranked by λjvj .

A.3.8 BERT replacement

As discussed in Section 4.4.1, we study the UNK-replacement option even if when replacing
words with a fixed token can produce unrealistic samples and lead to out-of-distribution issue.
Nevertheless, we performed the same experiments of Section 4.5 using the BERT-replacement
option when a 3-layers neural network is applied on a sample of 50 Restaurants reviews. Somewhat

https://github.com/gianluigilopardo/anchors_text_theory
https://github.com/gianluigilopardo/anchors_text_theory

Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data 167

surprisingly, our message still stands: we reach a Jaccard Similarity of 0.83 ± 0.2, similarly to the
UNK setting. What is more, we notice that such option is 10 times slower and produces longer
anchors.

TABLE A.2 – Anchors on a neural network. Average Jaccard similarity between the anchor A
and the first ♣A♣ words ranked by λjvj for a 3-layers feed forward neural network on 50 Restaurant
reviews, using the BERT-replacement option.

full pr < 0.85 pr < 0.75

Restaurants 0.83 ± 0.2 0.83 ± 0.2 0.81 ± 0.2

168 Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data

20 40 60
0.0

0.5

1.0
d= 5, b= 10, |A| = 2

Estimated
Standard Normal

40 60 80
0.0

0.5

1.0
d= 5, b= 10, |A| = 6

Estimated
Standard Normal

100 150
0.0

0.5

1.0
d= 5, b= 33, |A| = 7

Estimated
Standard Normal

160 180 200 220
0.0

0.5

1.0
d= 5, b= 33, |A| = 26

Estimated
Standard Normal

70 80 90 100
0.0

0.5

1.0
d= 20, b= 28, |A| = 17

Estimated
Standard Normal

90 95 100
0.0

0.5

1.0
d= 20, b= 28, |A| = 27

Estimated
Standard Normal

250 300 350 400
0.0

0.5

1.0
d= 20, b= 160, |A| = 27

Estimated
Standard Normal

400 425 450 475
0.0

0.5

1.0
d= 20, b= 160, |A| = 111

Estimated
Standard Normal

Figure A.5 – Illustration of Proposition 4.4.3. The multiplicities are arbitrary numbers between 1
and 10. The λjvj where drawn according to a Gaussian. Monte-Carlo simulation of the probability
in blue 105 simulations). In red, the cumulative distribution function of the N (0, 1). Note that
Proposition 4.4.3 assumes ♣A♣ ≤ b/2: the approximation may be inaccurate when this assumption
is not satisfied (right column).

Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data 169

0.0 0.2 0.4
0

10

20

C
ou
nt

Figure A.6 – Jaccard index standard deviations for 10 runs on Restaurant reviews (model is a
10-layers neural network), same experiment as Table 2 in Chapter 4. Overall standard deviation is
0.39, while the average one is 0.17.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

awesome

(not AND bad)OR awesome

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

great

(good AND value)OR great

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

better

(good ANDmenu)OR better

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

best

(high AND quality)OR best

Figure A.7 – Illustration of Proposition A.1.3. Count on 100 runs of Anchors on four different
reviews. Classification rules consist of two conditions, shown above each figure. Note that, for each
case, both conditions are satisfied by the example. The shorter is always selected, as predicted
by Proposition A.1.3.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

better

better, daughter

'haircut': 5, 'daughter': 4, 'better': 1

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

best, food, fresh, great

'food': 2, 'best': 1, 'fresh': 1, 'great!': 1

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

love, happy, like

'love': 1, 'happy': 1, 'like': 1

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

formal, think

'and': 7, 'think': 2, 'formal': 1

Figure A.8 – Illustration of Proposition 4.4.2. Count on 100 runs of Anchors on four different
reviews. The classifier looks for the joint presence of the words reported above each figure (for ins-
tance, the model in the upper left panel predicts 1 if z contains “haircut,” “daughter,” and “better”).
The multiplicities of each word in the document is reported. As predicted by Proposition 4.4.2,
words with multiplicity higher than a given threshold disappear from the explanation.

170 Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data

Figure A.9 – Illustration of Proposition 4.4.4. Frequency on 100 runs of Anchors on four dif-
ferent documents with four different logistic models when a shift S is applied. Legend shows the
first three words ordered by λjvj . For example, in the lower-right figure, the shift S increases from
−2.5 to 1. As predicted by Proposition 4.4.4, first the words with higher λjvj are selected. Note
that the overlap of some curves is due to similar coefficients for the corresponding words.

Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data 171

Figure A.10 – Illustration of Proposition 4.4.4. Frequency on 100 runs of Anchors on four
different documents with four different perceptron models when a shift S is applied. Legend shows
the first three words ordered by λjvj . Anchors includes new words in order of λjvj , as predicted by
Proposition 4.4.4. The overlap of some curves is due to similar coefficients for the corresponding
words. For example, in the top-left figure, “great” has a coefficient λjvj equal to 207, close to the
coefficient for “amazing”, 192.

172 Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data

−2 0 2
0.0

0.5

1.0
d=5, b=15, |A| = 4

Estimated
Standard Normal

−2 0 2
0.0

0.5

1.0
d=5, b=18, |A| = 14

Estimated
Standard Normal

−2 0 2
0.0

0.5

1.0
d=5, b=21, |A| = 9

Estimated
Standard Normal

−2 0 2
0.0

0.5

1.0
d=5, b=26, |A| = 22

Estimated
Standard Normal

−2 0 2
0.0

0.5

1.0
d=20, b=41, |A| = 24

Estimated
Standard Normal

−2 0 2
0.0

0.5

1.0
d=20, b=52, |A| = 20

Estimated
Standard Normal

−2 0 2
0.0

0.5

1.0
d=20, b=103, |A| = 34

Estimated
Standard Normal

−2 0 2
0.0

0.5

1.0
d=20, b=128, |A| = 88

Estimated
Standard Normal

Figure A.11 – Illustration of Proposition A.1.4. The multiplicities are arbitrary numbers between
1 and 10. The λjvj were drawn according to a Gaussian. Monte-Carlo simulation of the probability
in blue 105 simulations). In red, the cumulative distribution function of the N (0, 1). Note that
Proposition A.1.4 assumes ♣A♣ ≤ b/2: the approximation may be inaccurate when this assumption
is not satisfied (right column).

APPENDIX B
Appendix for Chapter 5:

Faithful and Robust
Local Interpretability for

Textual Predictions
Organization of the Appendix. Section B.1 provides the theoretical proofs for the results pre-
sented in Chapter 5. Section B.2 details the implementation and presents additional results. Fur-
ther experimental details, along with the code for FRED and the experiments, are available at
https://github.com/gianluigilopardo/fred.

B.1 Proofs

In this section, we collect the proofs of the theoretical results presented in the Chapter 5.
First, we prove Lemma 5.2.1 and Lemma 5.2.2 from Section 5.2. Then, we move to the ma-
thematical validation of our analysis presented in Section 5.3 by proving Proposition 5.3.1 and
Proposition 5.3.2.

B.1.1 Proof of Lemma 5.2.1: Convergence of Empirical Drop ˆ︁∆c

Let n denote the sample size. We are interested in the empirical average of predictions on
instances that do not contain the candidate c, i.e., 1

nc

∑︁
c/∈x(i) f(x(i)). This quantity can be rewritten

using indicator functions, as

1

nc

∑︂

c/∈x(i)

f(x(i)) =
n

nc

1

n

n∑︂

i=1

f(x(i))✶c/∈x(i) .

We can therefore apply the weak law of large numbers. As n grows infinitely, this empirical ave-
rage converges in probability to the expected value of the predictions for instances without c:

1

n

n∑︂

i=1

f(x(i))✶c/∈x(i)
P−→ E [f(x)✶c/∈x] .

173

https://github.com/gianluigilopardo/fred

174 Appendix for Chapter 5: Faithful and Robust Local Interpretability for Textual Predictions

Likewise, as n → +∞, n
nc

converges in probability to 1
P(c/∈x) . By multiplying the two limits,

we get:
1

nc

∑︂

c/∈x(i)

f(x(i))
P−→ E [f(x)✶c/∈x]

P (c /∈ x)
.

This approximation holds true when both n and nc are sufficiently large, facilitating the esti-
mation of the drop in prediction associated to a candidate.

B.1.2 Proof of Lemma 5.2.2: Choosing n

For any candidate c with size l = ♣c♣, and any sample x(i), i ∈ [n], P
(︂
c /∈ x(i)

)︂
= 1

2l , since

word removals are i.i.d. with probability 1/2. Then,

P
(︂
∃i ∈ [n] : c /∈ x(i)

)︂
=

n∑︂

k=1

(︄
n

k

)︄(︃
1

2l

)︃k (︃
1 − 1

2l

)︃n−k

= 1 −
(︂
1 − 1/2l

)︂n

P
(︂
∃i ∈ [n] : c /∈ x(i)

)︂
≥ α ⇐⇒ n ≥ log (1 − α)

log (1 − 1/2l)
.

Since a candidate has maximal length lmax, we can choose the sample size by setting n =⌈︃
log (1−α)

log (1−1/2lmax)

⌉︃
.

B.1.3 Proof of Proposition 5.3.1: Linear models

Let ∆c be the drop in prediction associated to candidate c. Let λ, λ0 be the coefficients as-
sociated to the linear classifier f defined by Eq. (4.7). Assume λ1v1 > λ2v2 > · · · > λdvd.
Then,

∆c = Ec [d(x)] = E [f(x)] − Ec [f(x)] = E
[︂
λ⊤φ(ξ)

]︂
− Ec

[︂
λ⊤φ(x))

]︂

= E

⋃︁
⨄︁

d∑︂

j=1

λjvjMj

⋂︁
⋀︁− Ec

⋃︁
⨄︁

d∑︂

j=1

λjvjMj

⋂︁
⋀︁

=
d∑︂

j=1

λjvjE [Mj] −
d∑︂

j=1

λjvjEcj [Mj] (since removals are i.i.d.)

=
d∑︂

j=1

λjvjpmj −
⎛
∐︂∑︂

cj=0

λjvjE [Mj] +
∑︂

ci ̸=0

λiviE [Mi]

∫︁
⎠

=
d∑︂

j=1

λjvjpmj −
⎛
∐︂∑︂

cj=0

λjvjpmj +
∑︂

ci ̸=0

λivip(mi − 1)

∫︁
⎠ (since Mi ∼ B(mi − ci, p))

= p
∑︂

ci ̸=0

λivici, ,

and, for any fixed length l, this quantity is maximized by the subset c having ♣c♣ = l and containing
the firsts l words ranked by λjvj .

Appendix for Chapter 5: Faithful and Robust Local Interpretability for Textual Predictions 175

B.1.4 Proof of Proposition 5.3.2: Presence of shortcuts

Let us assume f(ξ) = 1 (the case f(ξ) = 0 is specular). We can rewrite the drop in prediction
associated to the candidate c as follows.

∆c = Ec [d(x)] = E [f(x)] − Ec [f(x)] = E

⋃︁
⨄︁∏︂

j∈J

✶wj∈x

⋂︁
⋀︁− Ec

⋃︁
⨄︁∏︂

j∈J

✶wj∈x

⋂︁
⋀︁

= E

⋃︁
⨄︁∏︂

j∈J

✶φ(x)j>0

⋂︁
⋀︁− Ec

⋃︁
⨄︁∏︂

j∈J

✶φ(x)j>0

⋂︁
⋀︁

=
∏︂

j∈J

E
[︂
✶φ(x)j>0

]︂
−
∏︂

j∈J

Ec

[︂
✶φ(x)j>0

]︂
(since removals are i.i.d.)

=
∏︂

j∈J

P (φ(x)j > 0) −
∏︂

j∈J

Pc (φ(x)j > 0)

=
∏︂

j∈J

P (Mjvj > 0) −
∏︂

j∈J

Pc (Mjvj > 0) (since φ(x)j = Mjvj)

=
∏︂

j∈J

P (Mj > 0) −
∏︂

j∈J

Pc (Mj > 0) (since vj > 0 for all j ∈ [d])

= const −
∏︂

j∈J

(1 − Pc (Mj = 0))

= const −
∏︂

j∈J

(1 − (1 − p)mj−cj)

= const −
∏︂

j∈J

(1 − (1 − p)mj−cj) .

Thus, the following conditions are equivalent.

Maximize ∆c ⇐⇒ Maximize const −
∏︂

j∈J

(1 − (1 − p)mj−cj)

⇐⇒ Minimize
∏︂

j∈J

(1 − pmj−cj) (we use p = 1/2)

⇐⇒ Minimize
∏︂

j∈J

(1 − pmj−cj) (B.1)

⇐⇒ Minimize log

⎛
∐︂∏︂

j∈J

(1 − pmj−cj)

∫︁
⎠

⇐⇒ Minimize
∑︂

j∈J

log
(︁
1 − pmj−cj

)︁
. (B.2)

176 Appendix for Chapter 5: Faithful and Robust Local Interpretability for Textual Predictions

Let us first consider Eq. (B.1). We study the problem for a length l ≤ lmax of the candidates, i.e.,
the problem is

Minimize G(c) :=
∏︂

j∈J

(1 − pmj−cj) (B.3)

subject to
d∑︂

j=1

cj = l

and cj ∈ [mj] , j ∈ [d] .

G(c) = 0 is the global minimum. We split the proof in three cases: (1) l = m1, (2) l > m1, and
(3) l < m1.

(1) l = m1. When l is equal to the smallest multiplicity, the optimal candidate c⋆ is such that
c⋆

1 = m1 and c⋆
j = 0 for j ̸= 1. Indeed, G(c⋆) = 0 < G(c) for any c ̸= c⋆ such that ♣c♣ = ♣c⋆♣.

(2) l > m1. The previous paragraph implies that the optimal candidate c⋆ is always such that
♣c⋆♣ ≤ m1. Indeed, any candidate c of size l such thatG(c) = G(c⋆) = 0 has size ♣c♣ > m1 ≥ ♣c⋆♣.
Hence, we can disregard this case.

(3) l < m1. The optimal candidate is c⋆ with c⋆
1 = l and c⋆

j = 0 for j ̸= 1. To prove this, let us
study the continuous problem from Eq. (B.2):

Minimize G(c) :=
∑︂

j∈J

log
(︁
1 − pmj−xj

)︁
(B.4)

subject to
d∑︂

j=1

xj = l

and 0 ≤ xj ≤ mj , j ∈ [d] .

First, we notice that Problem (B.4) consists of minimizing a concave function over a convex
set, indeed, since the problem is separable the Hessian matrix H of F is diagonal and defined, for
i, j ∈ [d], as

(H)i,j =

⎧
⨄︂
⋃︂

− (log (p))2pmj −x

(px−pmj)2 < 0 , if i = j ,

0 , if i ̸= j .

As a consequence, the solutions are found on the corners (see Corollary 32.3.1, Rockafellar
[1997]), defined as (l, 0, . . . , 0), (0, l, . . . , 0), . . ., (0, 0, . . . , l). Finally, we notice that the candidate
c minimizing Eq. (B.4) is such that mj − cj = mj − l is minima, i.e., c1 = l and ci = 0 for
i ∈ [d].

B.2 Experiments

In this section, we report details of experiments and additional results omitted in Chapter 5
due to space constraints.

Appendix for Chapter 5: Faithful and Robust Local Interpretability for Textual Predictions 177

B.2.1 Setting

All the experiments reported in this Section and in Chapter 5 are implemented in Python and
ran on GPU Nvidia A100. The code for FRED and the experiments is available at https://
github.com/gianluigilopardo/fred.

Datasets. We employ three sentiment analysis datasets: Restaurants ∗, Yelp reviews †, and
IMDb ‡, and the Tweets hate speech detection § dataset. Note that the datasets have a substan-
tial difference in document length: while the average length of tokens in Restaurants and Tweets is
about 10, for Yelp it is about 150, in IMDb it is 230. As shown below, this difference has a relevant
impact on explainers’ behavior.

Models. We trained a logistic classifier, a decision tree, and a random forest classifier on each
dataset (with the default parameters of https://scikit-learn.org/). Additionally, we
employed a pretrained version of RoBERTa ¶ [Hartmann et al., 2023] and DistilBERT ∥ for the
three sentiment analysis datasets. These are two cutting-edge transformer models for sentiment
analysis sourced from the Hugging Face repository. Finally, we remark that we always consider
documents with positive predictions, and we explain the positive class.

Table B.1 reports the accuracies for each model and dataset. Remark that logistic classifiers,
decision trees, random forest classifiers have been trained on each dataset according to their task.
Contrarily, we use pre-trained version of Roberta and DistilBERT on the datasets.

Explainers. FRED is compared to three well-known explainers: Anchors, SHAP, and LIME. We
use the official implementation (respectively available and licensed at https://github.com/
marcotcr/anchor, https://github.com/shap/shap, https://github.com/

marcotcr/lime) of these methods with all default parameters.
Remark that while LIME and SHAP share the principle of attributing an importance score for

each token, Anchor aim at outputting the most significant subset of tokens (while FRED has both
the options). We apply the following scheme to perform a fair evaluation. We use as explanation
set E for LIME and SHAP the first k tokens ranked by importance, where k is the size of FRED’s
explanation (fredpos) for the same example. This is used for computing comprehensiveness,
sufficiency, robustness, and proportion. Conversely, for computing the AUC-MoRF of Anchors
we select the tokens ordered as in the anchor.

Finally, the metrics are computed over the first 100 instances ranked by length of positively
classified documents from each test set.

B.2.2 Additional experimental results

We report below additional experimental results omitted in Chapter 5 due to space constraints.
Again, both FRED-mask and FRED-pos produce more faithful explanations than the others. In

∗. https://www.kaggle.com/hj5992/restaurantreviews
†. https://www.kaggle.com/omkarsabnis/yelp-reviews-dataset
‡. https://huggingface.co/datasets/imdb
§. https://huggingface.co/datasets/tweets_hate_speech_detection
¶. https://huggingface.co/siebert/sentiment-roberta-large-english
∥. https://huggingface.co/distilbert/distilbert-base-uncased

https://github.com/gianluigilopardo/fred
https://github.com/gianluigilopardo/fred
https://scikit-learn.org/
https://github.com/marcotcr/anchor
https://github.com/marcotcr/anchor
https://github.com/shap/shap
https://github.com/marcotcr/lime
https://github.com/marcotcr/lime

178 Appendix for Chapter 5: Faithful and Robust Local Interpretability for Textual Predictions

TABLE B.1 – Accuracy of machine learning models evaluated on datasets used in the experi-
ments. An asterisk (*) denotes models that were trained specifically on the corresponding dataset.
RoBERTa and DistilBERT are leveraged here as pre-trained models, meaning their weights were
not further fine-tuned on the individual datasets.

Dataset Model Accuracy

Restaurants

Logistic Regression* 0.808
Decision Tree* 0.676

Random Forest* 0.748
RoBERTa 0.972

DistilBERT 0.500

Yelp

Logistic Regression* 0.892
Decision Tree* 0.748

Random Forest* 0.868
RoBERTa 0.988

DistilBERT 0.472

IMDB

Logistic Regression* 0.710
Decision Tree* 0.700

Random Forest* 0.834
RoBERTa 0.950

DistilBERT 0.500

Tweets

Logistic Regression* 0.930
Decision Tree* 0.941

Random Forest* 0.959
RoBERTa 0.273

DistilBERT 0.929

general, Anchor performs well on small documents (Restaurant dataset), while its behavior on lar-
ger documents is highly nonlinear, as it tends to be conservative on the size of the anchor. LIME
and SHAP have a close behavior, as somehow expected, but the latter is significantly more effi-
cient. On small documents, SHAP performs an exhaustive search over all possible token subsets,
motivating its high robustness.

TABLE B.2 – Comparison on a logistic classifier for Restaurant reviews (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred −0.118(0.09) 0.130(0.05) 0.866(0.20) 0.709(0.09) 0.055(0.02) 0.227(0.13)
fredpos −0.094(0.11) 0.097(0.06) 0.876(0.21) 0.721(0.09) 0.059(0.02) 0.159(0.09)
lime −0.111(0.09) 0.102(0.06) 0.968(0.10) 0.726(0.09) 0.130(0.02) 0.159(0.09)
shap −0.120(0.09) 0.100(0.06) 1.000(0.00) 0.712(0.09) 0.065(0.37) 0.159(0.09)
anchor −0.058(0.15) 0.072(0.06) 0.772(0.30) 0.874(0.10) 0.121(0.19) 0.136(0.07)

Appendix for Chapter 5: Faithful and Robust Local Interpretability for Textual Predictions 179

TABLE B.3 – Comparison on a logistic classifier for Restaurant reviews (p = 0.5, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred −0.119(0.09) 0.120(0.05) 0.926(0.15) 0.707(0.09) 0.075(0.03) 0.216(0.14)
fredpos −0.089(0.11) 0.086(0.07) 0.924(0.20) 0.718(0.09) 0.075(0.02) 0.128(0.07)
lime −0.105(0.10) 0.093(0.06) 0.982(0.09) 0.726(0.09) 0.128(0.02) 0.128(0.07)
shap −0.114(0.09) 0.092(0.06) 1.000(0.00) 0.712(0.09) 0.065(0.36) 0.128(0.07)
anchor −0.054(0.15) 0.069(0.07) 0.784(0.30) 0.874(0.10) 0.122(0.19) 0.127(0.07)

TABLE B.4 – Comparison on a decision tree for Restaurant reviews (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.030(0.17) 0.940(0.24) 0.960(0.14) 0.138(0.14) 0.057(0.02) 0.158(0.09)
fredpos 0.040(0.20) 0.750(0.43) 0.947(0.15) 0.183(0.16) 0.062(0.02) 0.137(0.08)
lime 0.020(0.14) 0.750(0.43) 0.894(0.21) 0.110(0.09) 0.132(0.01) 0.137(0.08)
shap 0.010(0.10) 0.690(0.46) 1.000(0.00) 0.132(0.11) 0.054(0.20) 0.137(0.08)
anchor 0.020(0.14) 0.630(0.48) 0.968(0.15) 0.381(0.45) 0.190(0.76) 0.111(0.05)

TABLE B.5 – Comparison on a decision tree for Restaurant reviews (p = 0.5, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.020(0.14) 0.620(0.49) 0.807(0.28) 0.116(0.09) 0.067(0.02) 0.116(0.05)
fredpos 0.030(0.17) 0.650(0.48) 0.938(0.17) 0.167(0.17) 0.080(0.03) 0.113(0.05)
lime 0.020(0.14) 0.650(0.48) 0.822(0.27) 0.110(0.09) 0.132(0.01) 0.113(0.05)
shap 0.010(0.10) 0.600(0.49) 1.000(0.00) 0.132(0.11) 0.051(0.15) 0.113(0.05)
anchor 0.020(0.14) 0.630(0.48) 0.968(0.15) 0.381(0.45) 0.190(0.76) 0.111(0.05)

TABLE B.6 – Comparison on a random forest classifier for Restaurant reviews (p = 0.1, ε =
0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.040(0.15) 0.192(0.09) 0.919(0.17) 0.562(0.13) 0.134(0.02) 0.160(0.07)
fredpos 0.084(0.17) 0.156(0.11) 0.942(0.18) 0.544(0.11) 0.140(0.02) 0.126(0.06)
lime 0.061(0.14) 0.157(0.11) 0.974(0.12) 0.516(0.10) 0.218(0.01) 0.126(0.06)
shap 0.054(0.13) 0.150(0.11) 1.000(0.00) 0.495(0.09) 0.172(0.21) 0.126(0.06)
anchor 0.069(0.15) 0.129(0.13) 0.877(0.24) 0.778(0.18) 0.733(0.88) 0.118(0.05)

TABLE B.7 – Comparison on a random forest classifier for Restaurant reviews (p = 0.5, ε =
0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.047(0.15) 0.162(0.12) 0.955(0.15) 0.512(0.11) 0.219(0.03) 0.146(0.08)
fredpos 0.072(0.15) 0.156(0.12) 0.942(0.18) 0.523(0.10) 0.233(0.03) 0.138(0.08)
lime 0.063(0.15) 0.162(0.12) 0.980(0.09) 0.516(0.09) 0.329(0.02) 0.138(0.08)
shap 0.055(0.14) 0.157(0.12) 1.000(0.00) 0.500(0.09) 0.187(0.27) 0.138(0.08)
anchor 0.075(0.15) 0.139(0.13) 0.862(0.27) 0.770(0.17) 0.837(0.98) 0.135(0.08)

180 Appendix for Chapter 5: Faithful and Robust Local Interpretability for Textual Predictions

TABLE B.8 – Comparison on DistilBERT for Restaurant reviews (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred −0.017(0.01) 0.003(0.00) 0.910(0.17) 0.997(0.01) 7.273(0.40) 0.145(0.17)
fredpos −0.014(0.01) −0.004(0.01) 0.571(0.26) 1.002(0.01) 7.271(0.32) 0.363(0.23)
lime −0.018(0.01) 0.001(0.00) 0.943(0.17) 0.998(0.01) 7.806(0.34) 0.164(0.16)
shap −0.014(0.01) −0.004(0.01) 1.000(0.00) 1.015(0.01) 0.183(0.20) 0.363(0.23)
anchor −0.016(0.01) −0.003(0.00) 1.000(0.00) 1.008(0.01) 0.500(0.23) 0.121(0.07)

TABLE B.9 – Comparison on DistilBERT for Restaurant reviews (p = 0.5, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.003(0.01) 0.023(0.01) 0.961(0.08) 0.970(0.01) 7.331(0.40) 0.700(0.18)
fredpos 0.007(0.01) 0.015(0.01) 0.882(0.15) 0.978(0.02) 7.372(0.30) 0.461(0.32)
lime 0.006(0.01) 0.017(0.01) 0.982(0.08) 0.971(0.01) 7.833(0.53) 0.455(0.31)
shap 0.007(0.01) 0.015(0.01) 1.000(0.00) 0.974(0.01) 0.180(0.20) 0.461(0.32)
anchor 0.014(0.01) 0.006(0.01) 0.912(0.25) 0.988(0.01) 0.981(1.31) 0.130(0.09)

TABLE B.10 – Comparison on Roberta for Restaurant reviews (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.487(0.49) 0.766(0.42) 0.916(0.20) 0.151(0.12) 35.276(1.48) 0.158(0.08)
fredpos 0.577(0.49) 0.528(0.50) 0.953(0.18) 0.230(0.18) 34.953(1.49) 0.130(0.06)
lime 0.507(0.49) 0.538(0.50) 0.930(0.21) 0.162(0.13) 38.554(2.36) 0.130(0.06)
shap 0.756(0.42) 0.323(0.46) 1.000(0.00) 0.306(0.21) 1.814(1.58) 0.130(0.06)
anchor 0.509(0.49) 0.538(0.50) 0.850(0.32) 0.454(0.45) 15.556(20.26) 0.126(0.06)

TABLE B.11 – Comparison on logistic classifier for Yelp reviews (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred −0.200(0.09) 0.101(0.03) 0.551(0.27) 0.722(0.07) 0.251(0.15) 0.088(0.07)
fredpos −0.193(0.09) 0.088(0.03) 0.571(0.29) 0.721(0.07) 0.266(0.16) 0.075(0.06)
lime −0.207(0.09) 0.094(0.03) 0.897(0.18) 0.790(0.07) 0.280(0.12) 0.075(0.06)
shap −0.209(0.09) 0.086(0.03) 1.000(0.00) 0.748(0.07) 0.188(0.49) 0.075(0.06)
anchor −0.012(0.23) 0.034(0.05) 0.658(0.37) 0.948(0.07) 0.983(2.53) 0.041(0.05)

TABLE B.12 – Comparison on logistic classifier for Yelp reviews (p = 0.5, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred −0.205(0.09) 0.103(0.02) 0.749(0.23) 0.724(0.07) 0.355(0.21) 0.090(0.08)
fredpos −0.188(0.10) 0.068(0.04) 0.754(0.29) 0.718(0.07) 0.398(0.24) 0.069(0.09)
lime −0.196(0.10) 0.067(0.04) 0.866(0.23) 0.790(0.07) 0.287(0.12) 0.060(0.07)
shap −0.188(0.10) 0.066(0.04) 1.000(0.00) 0.747(0.08) 0.171(0.30) 0.069(0.09)
anchor −0.031(0.23) 0.037(0.05) 0.629(0.39) 0.945(0.07) 1.123(2.85) 0.043(0.06)

Appendix for Chapter 5: Faithful and Robust Local Interpretability for Textual Predictions 181

TABLE B.13 – Comparison on decision tree for Yelp reviews (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.240(0.43) 0.840(0.37) 0.899(0.23) 0.144(0.27) 0.292(0.17) 0.042(0.05)
fredpos 0.250(0.43) 0.810(0.39) 0.842(0.31) 0.194(0.33) 0.320(0.18) 0.041(0.05)
lime 0.200(0.40) 0.790(0.41) 0.936(0.18) 0.105(0.19) 0.324(0.14) 0.041(0.05)
shap 0.180(0.38) 0.730(0.44) 0.966(0.12) 0.143(0.23) 0.177(0.15) 0.041(0.05)
anchor 0.240(0.43) 0.560(0.50) 0.837(0.31) 0.477(0.48) 9.167(47.26) 0.028(0.03)

TABLE B.14 – Comparison on decision tree for Yelp reviews (p = 0.5, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.200(0.40) 0.560(0.50) 0.811(0.28) 0.102(0.16) 0.357(0.21) 0.030(0.03)
fredpos 0.190(0.39) 0.570(0.50) 0.818(0.29) 0.122(0.19) 0.445(0.27) 0.030(0.03)
lime 0.200(0.40) 0.580(0.49) 0.830(0.26) 0.105(0.19) 0.328(0.14) 0.030(0.03)
shap 0.180(0.38) 0.550(0.50) 0.972(0.11) 0.143(0.23) 0.175(0.15) 0.030(0.03)
anchor 0.250(0.43) 0.560(0.50) 0.840(0.31) 0.477(0.48) 9.164(47.25) 0.028(0.03)

TABLE B.15 – Comparison on random forest classifier for Yelp reviews (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred −0.126(0.11) 0.107(0.04) 0.653(0.28) 0.749(0.10) 0.306(0.13) 0.081(0.08)
fredpos −0.107(0.12) 0.100(0.04) 0.634(0.30) 0.753(0.09) 0.328(0.14) 0.076(0.09)
lime −0.138(0.10) 0.102(0.04) 0.909(0.17) 0.782(0.08) 0.345(0.13) 0.074(0.08)
shap −0.159(0.09) 0.086(0.05) 0.968(0.09) 0.776(0.08) 0.640(0.25) 0.076(0.09)
anchor −0.050(0.16) 0.032(0.05) 0.757(0.33) 0.942(0.09) 2.522(6.23) 0.040(0.04)

TABLE B.16 – Comparison on DistilBERT for Yelp reviews (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred −0.011(0.01) 0.012(0.01) 0.477(0.19) 0.983(0.02) 11.324(3.49) 0.141(0.12)
fredpos −0.011(0.01) 0.007(0.01) 0.359(0.16) 0.986(0.01) 11.816(3.69) 0.146(0.13)
lime −0.012(0.01) 0.008(0.01) 0.837(0.21) 0.986(0.01) 16.691(6.84) 0.125(0.14)
shap −0.011(0.01) 0.005(0.01) 1.000(0.00) 0.994(0.01) 2.827(1.16) 0.146(0.13)
anchor −0.007(0.01) 0.000(0.00) 0.865(0.32) 0.999(0.01) 1.452(1.11) 0.038(0.04)

TABLE B.17 – Comparison on DistilBERT for Yelp reviews (p = 0.5, n = 70, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.003(0.01) 0.019(0.01) 0.517(0.13) 0.966(0.01) 16.013(4.38) 0.222(0.14)
fredpos 0.007(0.01) 0.017(0.01) 0.425(0.11) 0.975(0.02) 16.320(4.36) 0.232(0.17)
lime 0.004(0.01) 0.017(0.01) 0.799(0.15) 0.973(0.01) 25.053(9.54) 0.197(0.14)
shap 0.006(0.01) 0.016(0.01) 1.000(0.00) 0.973(0.01) 4.612(1.58) 0.232(0.17)
anchor 0.003(0.01) 0.011(0.01) 0.520(0.29) 0.981(0.01) 184.020(228.83) 0.134(0.13)

182 Appendix for Chapter 5: Faithful and Robust Local Interpretability for Textual Predictions

TABLE B.18 – Comparison on Roberta for Yelp reviews (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.145(0.33) 0.180(0.38) 0.419(0.29) 0.656(0.36) 44.358(7.37) 0.096(0.09)
fredpos 0.170(0.34) 0.100(0.30) 0.393(0.38) 0.716(0.33) 45.003(8.14) 0.065(0.07)
lime 0.103(0.28) 0.100(0.30) 0.601(0.34) 0.676(0.39) 69.072(21.34) 0.065(0.07)
shap 0.244(0.40) 0.031(0.17) 1.000(0.00) 0.770(0.31) 8.455(3.40) 0.065(0.07)
anchor 0.419(0.43) 0.050(0.22) 0.626(0.43) 0.926(0.25) 22.924(47.58) 0.033(0.04)

TABLE B.19 – Comparison on logistic classifier for IMDb (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred −0.122(0.05) 0.045(0.02) 0.465(0.11) 0.873(0.05) 0.194(0.04) 0.151(0.08)
fredpos −0.117(0.05) 0.043(0.02) 0.416(0.09) 0.872(0.05) 0.211(0.04) 0.146(0.09)
lime −0.141(0.05) 0.048(0.02) 0.947(0.10) 0.908(0.03) 0.204(0.03) 0.142(0.09)
shap −0.141(0.05) 0.047(0.02) 1.000(0.00) 0.876(0.05) 0.202(0.30) 0.146(0.09)
anchor −0.090(0.09) 0.020(0.02) 0.591(0.35) 0.964(0.03) 0.671(0.74) 0.056(0.04)

TABLE B.20 – Comparison on logistic classifier for IMDb (p = 0.5, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred −0.103(0.04) 0.066(0.02) 0.595(0.13) 0.876(0.05) 0.603(0.12) 0.294(0.13)
fredpos −0.097(0.04) 0.063(0.02) 0.539(0.10) 0.874(0.05) 0.687(0.14) 0.296(0.12)
lime −0.138(0.05) 0.052(0.02) 0.950(0.10) 0.911(0.03) 0.375(0.05) 0.175(0.10)
shap −0.112(0.04) 0.066(0.02) 1.000(0.00) 0.880(0.04) 0.336(0.44) 0.296(0.12)
anchor −0.099(0.08) 0.020(0.02) 0.622(0.31) 0.964(0.03) 1.213(1.53) 0.057(0.04)

TABLE B.21 – Comparison on decision tree for IMDb (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.250(0.43) 0.690(0.46) 0.792(0.29) 0.174(0.24) 0.145(0.03) 0.059(0.04)
fredpos 0.270(0.44) 0.530(0.50) 0.749(0.35) 0.341(0.36) 0.160(0.03) 0.048(0.03)
lime 0.200(0.40) 0.550(0.50) 0.820(0.27) 0.091(0.08) 0.199(0.02) 0.048(0.03)
shap 0.160(0.37) 0.480(0.50) 0.933(0.19) 0.146(0.19) 0.185(0.13) 0.048(0.03)
anchor 0.150(0.36) 0.460(0.50) 0.777(0.30) 0.542(0.48) 1.946(8.13) 0.035(0.01)

TABLE B.22 – Comparison on decision tree for IMDb (p = 0.5, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.160(0.37) 0.440(0.50) 0.736(0.30) 0.098(0.09) 0.172(0.03) 0.039(0.02)
fredpos 0.220(0.41) 0.420(0.49) 0.855(0.26) 0.304(0.34) 0.213(0.04) 0.035(0.02)
lime 0.190(0.39) 0.470(0.50) 0.726(0.31) 0.091(0.08) 0.200(0.02) 0.035(0.02)
shap 0.180(0.38) 0.440(0.50) 0.921(0.22) 0.146(0.19) 0.182(0.14) 0.035(0.02)
anchor 0.180(0.38) 0.460(0.50) 0.775(0.31) 0.542(0.48) 1.972(8.24) 0.033(0.01)

Appendix for Chapter 5: Faithful and Robust Local Interpretability for Textual Predictions 183

TABLE B.23 – Comparison on random forest classifier for IMDb (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred −0.141(0.09) 0.091(0.03) 0.489(0.18) 0.840(0.09) 0.319(0.03) 0.139(0.10)
fredpos −0.136(0.09) 0.069(0.03) 0.401(0.23) 0.847(0.08) 0.324(0.03) 0.122(0.10)
lime −0.163(0.09) 0.082(0.03) 0.904(0.16) 0.861(0.06) 0.363(0.02) 0.111(0.07)
shap −0.173(0.10) 0.072(0.03) 0.961(0.11) 0.821(0.08) 0.822(0.22) 0.122(0.10)
anchor −0.095(0.11) 0.007(0.03) 0.813(0.32) 0.987(0.06) 0.995(2.98) 0.043(0.03)

TABLE B.24 – Comparison on random forest classifier for IMDb (p = 0.5, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred −0.175(0.09) 0.124(0.04) 0.582(0.17) 0.904(0.11) 0.780(0.14) 0.299(0.14)
fredpos −0.141(0.10) 0.077(0.05) 0.639(0.25) 0.870(0.10) 0.736(0.16) 0.215(0.19)
lime −0.158(0.11) 0.076(0.04) 0.916(0.15) 0.861(0.06) 0.589(0.04) 0.113(0.09)
shap −0.167(0.11) 0.086(0.05) 0.972(0.06) 0.821(0.08) 1.390(0.35) 0.215(0.19)
anchor −0.093(0.11) 0.008(0.03) 0.807(0.32) 0.987(0.06) 1.719(5.10) 0.046(0.04)

TABLE B.25 – Comparison on DistilBERT for IMDb (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred −0.011(0.01) 0.007(0.00) 0.460(0.18) 0.993(0.01) 9.092(0.73) 0.155(0.09)
fredpos −0.011(0.01) 0.004(0.00) 0.344(0.15) 0.990(0.01) 9.346(0.92) 0.167(0.08)
lime −0.014(0.01) 0.005(0.00) 0.872(0.18) 0.991(0.01) 11.029(1.29) 0.119(0.07)
shap −0.012(0.01) 0.002(0.01) 1.000(0.00) 0.995(0.01) 1.827(0.56) 0.167(0.08)
anchor −0.008(0.01) −0.001(0.00) 0.990(0.10) 1.001(0.01) 0.645(0.09) 0.044(0.03)

TABLE B.26 – Comparison on Roberta for IMDb (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.278(0.44) 0.488(0.49) 0.635(0.35) 0.353(0.36) 45.841(3.75) 0.090(0.06)
fredpos 0.417(0.48) 0.266(0.44) 0.674(0.35) 0.454(0.35) 46.691(4.01) 0.060(0.03)
lime 0.210(0.40) 0.278(0.44) 0.855(0.28) 0.295(0.33) 65.123(7.64) 0.060(0.03)
shap 0.436(0.48) 0.159(0.36) 1.000(0.00) 0.475(0.32) 15.901(5.05) 0.060(0.03)
anchor 0.453(0.48) 0.228(0.42) 0.642(0.41) 0.777(0.40) 54.867(112.66) 0.038(0.02)

TABLE B.27 – Comparison on decision tree for tweets hate speech detection (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.870(0.34) 0.950(0.22) 0.982(0.10) 0.078(0.04) 0.046(0.01) 0.143(0.05)
fredpos 0.880(0.32) 1.000(0.00) 0.952(0.15) 0.078(0.04) 0.052(0.01) 0.148(0.05)
lime 0.870(0.34) 0.990(0.10) 0.907(0.21) 0.082(0.06) 0.125(0.01) 0.148(0.05)
shap 0.880(0.32) 0.970(0.17) 1.000(0.00) 0.088(0.08) 0.035(0.18) 0.148(0.05)
anchor 0.880(0.32) 0.850(0.36) 0.669(0.39) 0.109(0.14) 0.578(0.47) 0.144(0.05)

184 Appendix for Chapter 5: Faithful and Robust Local Interpretability for Textual Predictions

TABLE B.28 – Comparison on random forest classifier for tweets hate speech detection (p = 0.1,
ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred 0.782(0.21) 0.391(0.15) 0.976(0.09) 0.162(0.06) 0.273(0.06) 0.108(0.03)
fredpos 0.784(0.20) 0.388(0.15) 0.985(0.09) 0.166(0.06) 0.250(0.07) 0.109(0.03)
lime 0.784(0.20) 0.385(0.14) 0.974(0.14) 0.159(0.05) 0.453(0.05) 0.109(0.03)
shap 0.784(0.20) 0.384(0.15) 1.000(0.00) 0.156(0.05) 0.153(0.14) 0.109(0.03)
anchor 0.788(0.20) 0.281(0.19) 0.493(0.40) 0.221(0.10) 7.841(4.00) 0.109(0.03)

TABLE B.29 – Comparison on DistilBERT for tweets hate speech detection (p = 0.1, ε = 0.15).

suffic. ↓ compreh. ↑ robust. ↑ aucmorf ↓ time (s) ↓ proport. ↓
fred −0.002(0.01) 0.019(0.01) 0.691(0.21) 0.974(0.01) 8.309(0.88) 0.411(0.10)
fredpos 0.001(0.01) 0.012(0.01) 0.460(0.16) 0.978(0.01) 8.392(0.91) 0.450(0.13)
lime −0.005(0.01) 0.016(0.01) 0.979(0.07) 0.972(0.01) 9.414(1.11) 0.427(0.10)
shap −0.003(0.01) 0.013(0.01) 1.000(0.00) 0.978(0.01) 0.497(0.33) 0.450(0.13)
anchor −0.002(0.01) 0.012(0.01) 0.891(0.20) 0.978(0.01) 11.732(11.18) 0.307(0.17)

APPENDIX C
Appendix for Chapter 6:
Attention Meets Post-hoc

Interpretability

Organization of the Appendix. The appendix begins with proofs for the theoretical results
presented in Chapter 6. Theorems 6.5.1 and 6.6.1 are proven in Sections C.1 and C.2, respec-
tively. Sections C.3 and C.4 provide additional technical details crucial for the proofs. Finally,
Section C.6 details the model used for the experiments. Further information, including the trai-
ning and experimental code, is available at https://github.com/gianluigilopardo/
attention_meets_xai.

C.1 Proof of Theorem 6.5.1

In this section, we show how to compute the gradient of f with respect to the embedding et,
t ∈ [T]. By linearity, we can focus on one head fi, i ∈ [K], and thus we momentarily drop the
i superscripts. Let us start by computing the gradients of the key, query, and value vectors kt, qt,
and vt (Eqs. (6.5), (6.6), and (6.7)). For any t ∈ [T], one has

∇etkt = ∇et (Wket) = Wk (∇etet) = W⊤
k ∈ Rde×datt , (C.1)

∇etqt = ∇et (Wqet) = Wq (∇etet) = W⊤
q ∈ Rde×datt , (C.2)

and

∇etvt = ∇et (Wvet) = W⊤
v ∈ Rde×dout . (C.3)

Therefore, the gradient of the attention αt as defined in Eq. (6.8), for any t ∈ [T],

∇etαt = ∇et

⎛
∐︂

exp
(︂
q⊤kt/

√
datt

)︂

∑︁Tmax
u=1 exp

(︁
q⊤ku/

√
datt
)︁

∫︁
⎠

=
αt√
datt

(︄
(W⊤

k q) −
Tmax∑︂

s=1

αs(W⊤
k q)

)︄
∈ Rde .

185

https://github.com/gianluigilopardo/attention_meets_xai
https://github.com/gianluigilopardo/attention_meets_xai

186 Appendix for Chapter 6: Attention Meets Post-hoc Interpretability

0 10 20 30 40 50 60 70
[CLS]

attention
based

explanations
are

popular
but

questionable

Theory

0 10 20 30 40 50 60 70
[CLS]

attention
based

explanations
are

popular
but

questionable

Practice

Figure C.1 – Illustration of the accuracy of Theorem 6.5.1. For illustrative purpose, de = 80.

The situation is similar if we look at another attention coefficient: let s ̸= t, then

∇etαs = ∇et

⎛
∐︂

exp
(︂
q⊤ks/

√
datt

)︂

∑︁Tmax
u=1 exp

(︁
q⊤ku/

√
datt
)︁

∫︁
⎠

=
−αuαt√
datt

(W⊤
k q) .

Finally, we can compute the gradient of ṽ as

∇et ṽ = ∇et

(︄
Tmax∑︂

u=1

αuvu

)︄

= ∇et(αt)vt + αt(∇etvt) +
∑︂

s ̸=t

(∇etαs)vs

=
1√
datt

(W⊤
k q)(αt − α2

t)vt + αtW
⊤
v +

∑︂

s ̸=t

−αuαt√
datt

(W⊤
k q)

∇et =
αt√
datt

(︄
vt −

Tmax∑︂

s=1

αsvs

)︄
(W⊤

k q) + αtW
⊤
v .

Finally, since f(x) = Wℓṽ, we deduce Eq. (6.14) from the last display, multiplying by W⊤
ℓ and

averaging.
Theorem 6.5.1 is also true in practice, as illustrated in Figure C.1.

C.2 Proof of Theorem 6.6.1

Preliminaries. The key idea of this proof is to leverage Eq. (6.17) and find a good approximation
for the conditional expectations involved. Looking closer at Eq. (6.17), we first notice that, by
linearity, we can focus on the limit coefficients associated to a single head. Thus we drop the i
indexation in this proof.

Now let us recall that S is the random subset of words from the dictionary being removed
when generating X . Our first key observation is that X has random token embeddings Et. More

Appendix for Chapter 6: Attention Meets Post-hoc Interpretability 187

precisely, Eq. (6.2) becomes

∀t ∈ [Tmax], Et := et✶ξt /∈S + (h+Wp(t))✶ξt∈S . (C.4)

We note that Et for t > T is actually not random (LIME does not perturb outside of ξ), but this
will be of no consequence. In turn, keys and queries are modified, that is, Eqs. (6.5) and (6.6)
become, respectively,

∀t ∈ [Tmax], Kt := kt✶ξt /∈S +Wk(h+Wp(t))✶ξt∈S , (C.5)

and
∀t ∈ [Tmax], Qt := qt✶ξt /∈S +Wq(h+Wp(t))✶ξt∈S . (C.6)

The attention coefficients associated to the [CLS] token also become random. In analogous fa-
shion to Eq. (6.18), let us define

∀u ∈ [Tmax], Gu := exp
(︂
q⊤Ku/

√︁
datt

)︂
,

where we recall that q ∈ Rdatt is the query vector associated to the [CLS] token. Taking dot
product and exponential, and noting that the indicator functions concern disjoint events, we see
that

∀u ∈ [Tmax], Gu = gu✶ξu /∈S + gh,u✶ξu∈S , (C.7)

where we let gu := exp
(︂
q⊤ku/

√
datt

)︂
and gh,t = exp

(︂
q⊤kh,t/

√
datt

)︂
as in Eq. (6.18). Then,

with this notation in hand, we define the random attention coefficient associated to token t by

∀t ∈ [Tmax], At :=
Gt∑︁Tmax

u=1 Gu

. (C.8)

Finally, value vectors are also random in this setting. Namely,

∀t ∈ [Tmax], Vt := vt✶ξt /∈S + vh,t✶ξt∈S , (C.9)

where we recall that vh,t = Wv(h+Wp(t)).

Reduction to key computation. Looking at Eq. (6.17), and now with appropriate notation, we
need to compute

E [f(X) ♣ ℓ /∈ S] = E

[︄
Tmax∑︂

t=1

AtVt ♣ ℓ /∈ S

⟨︂

for all ℓ ∈ [d]. Again by linearity, one can focus on the computation of E [AtVt ♣ ℓ /∈ S]. The
following result gives an approximation of this quantity when both Tmax and d are large:

Proposition C.2.1 (Approximated conditional expectation). Assume that d = T . Assume further

that there exist positive constants 0 < c < C such that, as T → +∞, for all t ∈ [Tmax],
max(♣vt♣ , ♣vh,t♣) ≤ C, and c ≤ min(gt, gh,t) ≤ C. Then, for any t ∈ [Tmax], if ξt = ℓ,

E [AtVt ♣ ℓ /∈ S] =
1

d

d−1∑︂

s=1

gtvt(︂
1 − s

d−1

)︂∑︁
u gu + s

d−1

∑︁
u gh,u

+ O
(︂
T−3/2

max

)︂
, (C.10)

and otherwise

E [AtVt ♣ ℓ /∈ S] =
1

d

d−1∑︂

s=1

(︂
1 − s

d−1

)︂
gtvt + s

d−1gh,tvh,t(︂
1 − s

d−1

)︂∑︁
u gu + s

d−1

∑︁
u gh,u

+ O
(︂
T−3/2

max

)︂
. (C.11)

188 Appendix for Chapter 6: Attention Meets Post-hoc Interpretability

The proof of Proposition C.2.1 is deferred to Section C.3. From Eqs. (C.10) and (C.11), coming
back to Eq. (6.17), we deduce that the jth limit coefficient associated to AtVt is approximately
equal to

3

d

d−1∑︂

s=1

s
d−1(gtvt − gh,tvh,t)(︂

1 − s
d−1

)︂∑︁
u gu + s

d−1

∑︁
u gh,u

+ O
(︂
T−3/2

max

)︂
. (C.12)

The derivative of the mapping

x ↦→ x

(1 − x)
∑︁

u gu + x
∑︁

u gh,u

is given by

x ↦→
∑︁

u gu

(x(
∑︁

u gh,u −∑︁
u gu) +

∑︁
u gu)2

.

On [0, 1], under our assumptions, the last display is uniformly bounded by O (︁
T−1

max

)︁
in absolute

value. Thus, by standard Riemann sum approximation, the last display is

3(gtvt − gh,tvh,t)

∫︂ 1

0

xdx

(1 − x)
∑︁

u gu + x
∑︁

u gh,u
+ O

(︂
T−3/2

max

)︂
.

Let us recall that, if T < u ≤ Tmax, gu = gh,u. Therefore,
∑︁

u gh,u−∑︁u gu = O (T) = O (T ε
max),

and (
∑︁

u gh,u −∑︁
u gu)/

∑︁
u gu = O (︁

T ε−1
max

)︁
. Therefore, according to Lemma C.4.2, the integral

in the last display can be well approximated by

1∑︁
u gu

·
(︃

1

2
+ O

(︃∑︁
u gh,u −∑︁

gu∑︁
gu

)︃)︃
=

1

2
∑︁
gu

+ O
(︂
T ε−2

max

)︂
.

The same reasoning shows that, whenever ξt ̸= j, the approximation is zero (with the same
precision in the error). Thus, by linearity (over the tokens and the model), we obtain the statement
of Theorem 6.6.1.

C.2.1 Discussion on Theorem 6.6.1

A theoretical limitation of Theorem 6.6.1 it the assumption of distinct tokens. This assump-
tion, while technically a simplification, enables a rigorous formalization of LIME’s behavior using
its default parameters as defined in the official implementation. We conducted quantitative experi-
ments that disregarded this assumption, and the results still hold. We empirically validate the accu-
racy of Theorem 6.6.1 by computing the norm-2 error between the LIME weights from the official
implementation (available on Github at https://github.com/marcotcr/lime) and our
approximation. The average norm-2 error, computed over the full test set (see Section C.6), is
0.808, with a standard deviation of 0.219.

The primary challenge in proving a formal result that allows for repetitions lies in the use of
Lemma C.4.1. The key intuition in the current proof mechanism is that if only one element of the
denominator of At varies randomly, this has a minimal overall effect on the entire denominator,
given that it has T ≫ 1 terms. However, if many tokens are identical, this is no longer true, and
it can result in high variance (consider, for instance, the extreme case of two groups of identical
tokens), which prevents us from using Lemma C.4.1. Nevertheless, we conjecture that if the tokens
are not distinct, but the maximal multiplicity of tokens is small relative to T , our findings hold true
(and this is empirically true).

https://github.com/marcotcr/lime

Appendix for Chapter 6: Attention Meets Post-hoc Interpretability 189

On a more practical note, we highlight that by default, LIME-text perturbs input data by remo-
ving all occurrences of individual words or characters (bow=True, i.e., bag-of-words), and this is
the subject of our study. However, if the underlying model uses word location (as in our classifier),
a possibility is to set bow=False (as recommended in their notebook), so that any occurrence of
the same word is considered a distinct token. By using this option, the same applies in Theorem
6.6.1: the same words in different parts of the text are considered different tokens.

C.3 Proof of Proposition C.2.1

Sketch of the proof. Essentially, assuming for a second that Vt is constant, the crux of the result
is to compute the (approximate) expectation of At, which is defined as the ratio of positive quanti-
ties (Eq. (C.8)). Since the denominator is quite large, one can use Lemma C.4.1 and approximate
the expected ratio by the ratio of expectation. This works only if, concurrently, the variance is not
too high, which is guaranteed by Lemma C.4.3. Lemmas C.4.1 and C.4.3 are stated and proved in
Section C.4.

Proof of Proposition C.2.1. We first write

E [AtVt ♣ ℓ /∈ S] = E

[︄
GtVt∑︁Tmax
u=1 Gu

♣ ℓ /∈ S

⟨︂
(Eqs. (C.8) and (C.9))

= E

[︄
gtvt✶ξt /∈S + gh,tvh,t✶ξt∈S∑︁Tmax
u=1

{︁
gu✶ξu /∈S + gh,u✶ξu∈S

⟨︄ ♣ ℓ /∈ S

⟨︂
(Eq. (C.7))

=
1

d

d−1∑︂

s=0

Es

[︄
gtvt✶ξt /∈S + gh,tvh,t✶ξt∈S∑︁Tmax
u=1

{︁
gu✶ξu /∈S + gh,u✶ξu∈S

⟨︄ ♣ ℓ /∈ S

⟨︂
.

(law of total expectation)

Note that there is no s = d term in the last display, since d removals is incompatible
with ℓ /∈ S. Let us set s ∈ [d − 1]. Define X := gtvt✶ξt /∈S + gh,tvh,t✶ξt∈S and Y :=∑︁Tmax

u=1

{︁
gu✶ξu /∈S + gh,u✶ξu∈S

⟨︄
. Under our assumptions, X is clearly bounded while Y has order

Tmax. Thus the hypotheses of Lemma C.4.1 are satisfied with n = Tmax. Moreover, Lemma C.4.3
guarantees that Vars(Y ♣ ℓ /∈ S) = O (Tmax). From Lemma C.4.1, we deduce that

Es

[︄
gtvt✶ξt /∈S + gh,tvh,t✶ξt∈S∑︁Tmax
u=1

{︁
gu✶ξu /∈S + gh,u✶ξu∈S

⟨︄ ♣ ℓ /∈ S

⟨︂
=

Es
[︁
gtvt✶ξt /∈S + gh,tvh,t✶ξt∈S ♣ ℓ /∈ S

⌊︄

Es

[︂∑︁Tmax
u=1

{︁
gu✶ξu /∈S + gh,u✶ξu∈S

⟨︄ ♣ ℓ /∈ S
]︂+O

(︂
T−3/2

max

)︂
.

(C.13)
Let us assume from now on that ξt = ℓ (the case ξt ̸= ℓ is similar). Then

Es
[︁
gtvt✶ξt /∈S + gh,tvh,t✶ξt∈S ♣ ℓ /∈ S

⌊︄
= gtvt , (C.14)

and for all u ̸= t,

Es
[︁
gu✶ξu /∈S + gh,u✶ξu∈S ♣ ℓ /∈ S

⌊︄
= gu Ps (ξu /∈ S ♣ ℓ /∈ S) + gh,u Ps (ξu ∈ S ♣ ℓ /∈ S) .

Since we assumed distinct tokens (d = T), Lemma C.4.5 yields

Es
[︁
gu✶ξu /∈S + gh,u✶ξu∈S ♣ ℓ /∈ S

⌊︄
=

(︃
1 − s

d− 1

)︃
gu +

s

d− 1
gh,u . (C.15)

190 Appendix for Chapter 6: Attention Meets Post-hoc Interpretability

Injecting Eqs. (C.14) and (C.15) into Eq. (C.13), we obtain

Es

[︄
gtvt✶ξt /∈S + gh,tvh,t✶ξt∈S∑︁Tmax
u=1

{︁
gu✶ξu /∈S + gh,u✶ξu∈S

⟨︄ ♣ ℓ /∈ S

⟨︂
(C.16)

=
gtvt(︂

1 − s
d−1

)︂∑︁
u gu + s

d−1

∑︁
u gh,u + s

d−1(gt − gh,t)
(C.17)

+ O
(︂
T−3/2

max

)︂
. (C.18)

Under our assumptions, s
d−1(gt − gh,t) is O (1), whereas the remainder of the denominator is

of order at least Tmax. We deduce that

Es

[︄
gtvt✶ξt /∈S + gh,tvh,t✶ξt∈S∑︁Tmax
u=1

{︁
gu✶ξu /∈S + gh,u✶ξu∈S

⟨︄ ♣ ℓ /∈ S

⟨︂
=

gtvt(︂
1 − s

d−1

)︂∑︁
u gu + s

d−1

∑︁
u gh,u

(C.19)

+ O
(︂
T−3/2

max

)︂
. (C.20)

We deduce the result coming back to the initial decomposition.

C.4 Technical results

Lemma C.4.1 (Expected ratio). Let X and Y be two random variables with finite variance.

Assume that there exist two positive constants c and C such that ♣X♣ ≤ C and cn ≤ Y ≤ Cn a.s.

Then \︄\︄\︄\︄E
[︃
X

Y

⎢
− E [X]

E [Y]

\︄\︄\︄\︄ ≤ CVar (Y)

c3n3
+
C2
√︁

Var (Y)

c2n2
.

Proof.

Set ψ : R2
+ → R defined as ψ(x, y) := x/y. Multivariate Taylor expansion at order 1 with

integral remainder for an arbitrary (x0, y0) ∈ R2
+ yields

ψ(x, y) = ψ(x0, y0) + (x− x0)∂xψ(x0, y0) + (y − y0)∂yψ(x0, y0)

+
2

2!
(x− x0)2

∫︂ 1

0
(1 − t)∂xxψ((x0, y0) + t(x− x0, y − y0))dt

+
2

1!1!
(x− x0)(y − y0)

∫︂ 1

0
(1 − t)∂xyψ((x0, y0) + t(x− x0, y − y0))dt

+
2

2!
(y − y0)2

∫︂ 1

0
(1 − t)∂yyψ((x0, y0) + t(x− x0, y − y0))dt .

Let us focus on the remainder (the last three lines of the previous display). Since ∂xxψ = 0,
∂xyψ = −1/y2, and ∂yyψ = 2x/y3, we are left with

−2(x− x0)(y − y0)

∫︂ 1

0

(1 − t)dt

(y0 + t(y − y0))2
+ 2(y − y0)2

∫︂ 1

0

(1 − t)(x0 + t(x− x0))dt

(y0 + t(y − y0))3
,

that is,

(y − y0) ·
∫︂ 1

0
(1 − t)

−2(x− x0)(y0 + t(y − y0)) + 2(y − y0)(x0 + t(x− x0))

(y0 + t(y − y0))3
dt .

Appendix for Chapter 6: Attention Meets Post-hoc Interpretability 191

One can actually compute this integral, which is

(y − y0) · x0y − xy0

yy2
0

= (y − y0) · x0(y − y0) − (x− x0)y0

yy2
0

.

Going back to the original expansion, we have proved that

ψ(x, y) = ψ(x0, y0) + (x− x0)∂xψ(x0, y0) + (y − y0)∂yψ(x0, y0) (C.21)

+ (y − y0) · x0(y − y0) − (x− x0)y0

yy2
0

. (C.22)

Let us now use Eq. (C.21) with x = X , y = Y , x0 = E [X], and y0 = E [Y], and then take
expectation on both sides. We see that the linear term vanishes, and we are left

E

[︃
X

Y

⎢
− E [X]

E [Y]
= E

[︄
(Y − E [Y]) · E [X] (Y − E [Y]) − (X − E [X])E [Y]

Y E [Y]2

⟨︂
.

In absolute value, the last display is smaller than

CVar (Y)

c3n3
+
C
√︁

Var (X) Var (Y)

c2n2
,

and we deduce the result using Popoviciu’s inequality to bound the variance of X .

□

We conclude with a technical result used in approximating an integral appearing in the proof
of Theorem 6.6.1.

Lemma C.4.2 (Integral approximation). Let a > 0. Then

∫︂ 1

0

xdx

1 + ax
=
a− log(a+ 1)

a2
=

1

2
− a

3
+ O

(︂
a2
)︂
.

Proof.

Taylor expansion.

□

C.4.1 Conditional variance computations

To use Lemma C.4.1 in a meaningful way, the variance of the denominator needs to be control-
led. We show that this is the case with this next result.

Lemma C.4.3 (Conditional variance computation). Let ai and bi be two sequences of positive

numbers for i ∈ [n]. We set HS as before. Let ℓ ∈ [n]. Then, for all s ∈ [n− 1],

Es [HS ♣ ℓ /∈ S] =
n− 1 − s

n− 1

∑︂

i

ai +
s

n− 1

∑︂

i

bi +
s

n− 1
(aℓ − bℓ) ,

and

Vars(HS ♣ ℓ /∈ S) =
ns(n− s− 1)

(n− 1)(n− 2)

[︃
ˆ︃Var (a− b) − 1

n− 1

(︂
aℓ − bℓ − (a− b)

)︂2
⎢
,

where a (resp. b) denote the empirical mean of a (resp. b).

192 Appendix for Chapter 6: Attention Meets Post-hoc Interpretability

Lemma C.4.3 is somewhat remarkable, connecting the variance of the random sum underpin-
ning our problems to the empirical variance of the coefficients. In particular, if we assume that the
variance of the summands is O (1), then Vars(HS ♣ ℓ /∈ S) = O (n).
Proof.

We first write

Es [HS ♣ ℓ /∈ S] = Es

[︄∑︂

i

{ai✶i/∈S + bi✶i∈S♢ ♣ ℓ /∈ S

⟨︂

=
∑︂

i

ai Ps (i /∈ S ♣ ℓ /∈ S) +
∑︂

i

bi Ps (i ∈ S ♣ ℓ /∈ S) .

Taking special care of the case i = ℓ in the previous display and using Lemma C.4.5, we obtain

Es [HS ♣ ℓ /∈ S] =
n− 1 − s

n− 1

∑︂

i̸=ℓ

ai +
s

n− 1

∑︂

i̸=ℓ

bi + aℓ .

Rearranging this expression yields the fist statement of the lemma. We now turn to the variance
computation. Without loss of generality, we can assume that b = 0 since

HS =
∑︂

i

{ai✶i/∈S + bi✶i∈S♢ =
∑︂

i

(ai − bi)✶i/∈S +
∑︂

i

bi .

Moreover, we notice that
∑︂

i

(ai + λ)✶i/∈S =
∑︂

i

ai✶i/∈S + λ
∑︂

i

✶i/∈S =
∑︂

i

ai✶i/∈S + (n− s)λ .

Thus, without loss of generality, we can assume that
∑︁

i ai = 0. Under this assumption, the
expectation is simply

Es [HS ♣ ℓ /∈ S] =
s

n− 1
aℓ .

We then compute the second raw moment:

Es

[︂
H2

S ♣ ℓ /∈ S
]︂

= Es

⋃︁
⨄︁
(︄∑︂

i

ai✶i/∈S

)︄2

♣ ℓ /∈ S

⋂︁
⋀︁

=
∑︂

i

a2
i Ps (i /∈ S ♣ ℓ /∈ S) + 2

∑︂

i<j

aiaj Ps (i /∈ S, j /∈ S ♣ ℓ /∈ S) .

As before, we have to take care of equality cases. Using Lemma C.4.5 and our assumption that∑︁
i ai = 0, we find

Es

[︂
H2

S ♣ ℓ /∈ S
]︂

=

⎛
∐︂∑︂

i̸=ℓ

a2
i

∫︁
⎠ n− s− 1

n− 1
+ a2

ℓ +

⎛
ˆ︂ˆ︂∐︂2

∑︂

i<j
i,j ̸=ℓ

aiaj

∫︁
⎟⎟⎠

(n− s− 1)(n− s− 2)

(n− 1)(n− 2)

+

⎛
∐︂2aℓ

∑︂

i̸=ℓ

ai

∫︁
⎠ n− 1 − s

n− 1

=

(︄∑︂

i

a2
i

)︄
n− s− 1

n− 1
+

⎛
∐︂2

∑︂

i<j

aiaj

∫︁
⎠ (n− s− 1)(n− s− 2)

(n− 1)(n− 2)
− a2

ℓ

s(n− 2s)

(n− 1)(n− 2)

=
s(n− s− 1)

n− 1)(n− 2)

∑︂

i

a2
i − s(n− 2s)

(n− 1)(n− 2)
a2

ℓ ,

Appendix for Chapter 6: Attention Meets Post-hoc Interpretability 193

since 2
∑︁

i<j aiaj = −∑︁i a
2
i . Putting everything together, we obtain

Vars(HS ♣ ℓ /∈ S) =
ns(n− s− 1)

(n− 1)(n− 2)

[︃
ˆ︃Var (a) − 1

n− 1
a2

ℓ

⎢
,

from which we deduce the result.

□

C.4.2 Probability computations

Lemma C.4.4 (Exact expressions). Let a, b, c be distinct elements of [n]. Then

⎧
⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⨄︂
⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋃︂

Ps (a /∈ S) = n−s
n

Ps (a /∈ S, b /∈ S) = (n−s)(n−1−s)
n(n−1)

Ps (a /∈ S, b ∈ S) = s(n−s)
n(n−1)

Ps (a /∈ S, b /∈ S, c /∈ S) = (n−s)(n−s−1)(n−s−2)
n(n−1)(n−2)

Ps (a /∈ S, b ∈ S, c /∈ S) = s(n−s−1)(n−s)
n(n−1)(n−2)

(C.23)

Proof.

Similar to Lemma 4 in Mardaoui and Garreau [2021].

□

Lemma C.4.5 (Exact expressions, conditional). Let a, b, ℓ be distinct elements of [n]. Then

⎧
⋁︂⋁︂⨄︂
⋁︂⋁︂⋃︂

Ps (a /∈ S ♣ ℓ /∈ S) = n−1−s
n−1

Ps (a ∈ S ♣ ℓ /∈ S) = s
n−1

Ps (a /∈ S, b /∈ S ♣ ℓ /∈ S) = (n−s−1)(n−s−2)
(n−1)(n−2)

(C.24)

Proof.

Let us prove the first statement, the other ones are similar. By Bayes formula,

Ps (a /∈ S ♣ ℓ /∈ S) =
Ps (a /∈ S, ℓ /∈ S)

Ps (ℓ /∈ S)
.

We now simply use Lemma C.4.4.

□

C.5 Experiments on multi-layer architecture

We have conducted numerical experiments on a multi-head, multi-layer architecture. We trai-
ned a classifier with 6 layers and 6 heads on the IMDb dataset (refer to Appendix C.6), achieving
an accuracy of 82.22%. Our interest lies in exploring the relationship between LIME and the at-
tention weights. We measured the correlation between LIME coefficients and the α-avg (refer to

194 Appendix for Chapter 6: Attention Meets Post-hoc Interpretability

Figure C.2 – Relation between LIME explanations and attention weights for a 6-layer 6-head
attention-based classifier. Attention weights correspond to the average attention over the 6 heads
of the first layer. Error bars represent the standard deviation of LIME weights on 5 repetition.

Eq. (6.19)) for the first layer. An illustration is available at Figure C.2, where the document corres-
ponds to Figure 6.5 of Chapter 6. The Pearson’s correlation in this case is ρ = −0.424. We attribute
the negative sign to the document being classified as negative (as in Figure 6.5). Attention weights
consistently fall within the range of [0, 1]. Considering the absolute values, the rankings of the two
explanations are closely aligned, and the correlation is ρ = 0.672. Although we cannot explicitly
state the dependency for multi-layers as in Eq. (6.19), our experiments suggest a significant rela-
tionship. We conclude that the attention weights are interconnected with LIME coefficients, which
adapt more effectively to the model. We are currently conducting broader experiments and will
incorporate their results and subsequent discussions into the manuscript.

C.6 Experiments

In this section, we report technical details for the model and the experiments. Any of the
experiments presented in Chapter 6 have been performed on a PyTorch implementation of the
model presented in Section 6.3 and ran on one GPU Nvidia A100.

Code. The full code is available at https://github.com/gianluigilopardo/

attention_meets_xai.

Model. The model parameters were set as follows: Tmax = 256, de = 128, datt = 64, dout = 64.

Dataset. We trained the model on the IMDB dataset [Maas et al., 2011], which was preprocessed
using standard tokenization and padding techniques. The dataset was split into training, validation,
and test sets with sizes of 20, 000, 5, 000, and 25, 000 samples, respectively.

Training. The model was trained for 10 epochs using a batch size of 16. We employed the
AdamW optimizer with a learning rate of 0.0001 and used cross-entropy loss as the optimization
objective.

https://github.com/gianluigilopardo/attention_meets_xai
https://github.com/gianluigilopardo/attention_meets_xai

Fondements de l’Interprétabilité de l’Apprentissage
Automatique

Gianluigi LOPARDO

Résumé

L’utilisation croissante de modèles complexes d’apprentissage automatique (ML), en particu-
lier dans des applications critiques, a souligné le besoin urgent de méthodes d’interprétabilité.
Malgré la variété de solutions proposées pour expliquer les décisions algorithmiques automa-
tisées, comprendre leur processus de prise de décision reste un défi. Ce manuscrit examine
l’interprétabilité des modèles ML, utilisant une analyse mathématique et une évaluation empi-
rique pour comparer les méthodes existantes et proposer de nouvelles solutions. Notre principal
objectif est sur les méthodes d’interprétabilité post-hoc, qui fournissent des informations sur le
processus de prise de décision des modèles de ML après l’entraînement, indépendamment des
architectures de modèles spécifiques. Nous nous interessons plus particuliermenet du langage
naturel, explorant des techniques pour expliquer les modèles de texte. Nous abordons un défi
clé : les méthodes d’interprétabilité peuvent produire des explications variées même pour des
modèles apparemment simples. Cela met en évidence un problème critique : l’absence d’une
base théorique solide pour ces méthodes. Pour tenter de resoudre ce problème , nous utilisons
un cadre théorique rigoureux pour analyser formellement les techniques d’interprétabilité exis-
tantes, évaluant leur comportement et leurs limites. Sur cette base, nous proposons un nouvel
explicateur pour fournir une approche plus fidèle et robuste pour interpréter les modèles de
données textuelles. Nous nous engageons également dans le débat sur l’efficacité des poids
d’attention comme outils explicatifs au sein des architectures de transformateurs puissants.
Grâce à cette analyse, nous éclairons les forces et les limites des méthodes d’interprétabi-
lité existantes et ouvrons la voie à des approches plus fiables et théoriquement fondées. Cela
conduira à une compréhension plus profonde de la façon dont les modèles prennent des déci-
sions, favorisant la confiance et le déploiement responsable dans les applications ML critiques.

Mots-clés : Interprétabilité de l’apprentissage automatique, IA Explicable, Traitement du langage

Abstract

The rising use of complex Machine Learning (ML) models, especially in critical applications,
has highlighted the urgent need for interpretability methods. Despite the variety of solutions
proposed to explain automated algorithmic decisions, understanding their decision-making
process remains a challenge. This manuscript investigates the interpretability of ML models,
using mathematical analysis and empirical evaluation to compare existing methods and pro-
pose novel solutions. Our main focus is on post-hoc interpretability methods, which provide
insights into the decision-making process of ML models post-training, independent of specific
model architectures. We delve into Natural Language Processing (NLP), exploring techniques
for explaining text models. We address a key challenge: interpretability methods can yield
varied explanations even for simple models. This highlights a critical issue: the absence of
a robust theoretical foundation for these methods. To address this issue, we use a rigorous
theoretical framework to formally analyze existing interpretability techniques, assessing their
behavior and limitations. Building on this, we propose a novel explainer to provide a more
faithful and robust approach to interpreting text data models. We also engage with the de-
bate on the effectiveness of attention weights as explanatory tools within powerful transformer
architectures. Through this analysis, we expose the strengths and limitations of existing in-
terpretability methods and pave the way for more reliable, theoretically grounded approaches.
This will lead to a deeper understanding of how complex models make decisions, fostering
trust and responsible deployment in critical ML applications.

Keywords: Machine Learning Interpretability, Explainable AI, Natural Language Processing.

	List of figures
	List of tables
	1 Introduction
	1.1 The need for interpretability
	1.1.1 Use cases: when do we need interpretability?
	1.1.2 Motivation: why do we need interpretability?
	1.1.3 Interpretable models

	1.2 A brief overview of contemporary AI
	1.2.1 Neural networks
	1.2.2 Transformers
	1.2.3 Black-boxes

	1.3 From AI concerns to the right to explanation
	1.3.1 AI risks and concerns
	1.3.2 Right to explanation

	1.4 Introduction to Machine Learning Intepretability
	1.4.1 Terminology
	1.4.2 Global vs. local
	1.4.3 Explainable by design vs. post-hoc
	1.4.4 Model-dependent vs. model-agnostic
	1.4.5 Gradient-based interpretability
	1.4.6 Perturbation-based interpretabiliy
	1.4.7 Concept-based interpretability
	1.4.8 Example-based interpretability
	1.4.9 Counterfactual explanations

	1.5 Open challenges
	1.5.1 Out-of-distribution samples
	1.5.2 Lack of consensus for evaluation
	1.5.3 Lack of mathematical foundation

	1.6 Contributions

	2 Setting and notation
	2.1 Notation
	2.2 Text vectorizers
	2.3 Post-hoc explanations in NLP
	2.3.1 Identifying keywords
	2.3.2 Sentence highlighting
	2.3.3 Counterfactual explanations

	2.4 Evaluating explanations

	3 Sentence Highlighting vs. Keyword Identification in Text Models
	3.1 Introduction
	3.2 Methods
	3.2.1 LIME for text data
	3.2.2 Anchors for text data

	3.3 Experiments
	3.3.1 Qualitative Evaluation
	3.3.2 Quantitative Evaluation

	3.4 Conclusion

	4 An In-Depth Analysis of Anchors for Text Data
	4.1 Introduction
	4.2 Anchors for text data
	4.2.1 Setting and Notation
	4.2.2 Precision and Coverage
	4.2.3 The Algorithm
	4.2.4 The Sampling

	4.3 Exhaustive p-Anchors
	4.3.1 Description of the Algorithm
	4.3.2 Stability with Respect to the Evaluation Function

	4.4 Analysis on explainable classifiers
	4.4.1 Vectorizers and Immediate Consequences
	4.4.2 Simple decision rules
	4.4.3 Linear classifiers

	4.5 Anchors on neural networks
	4.6 Conclusion

	5 Faithful and Robust Local Interpretability for Textual Predictions
	5.1 Introduction
	5.1.1 Related work

	5.2 FRED
	5.2.1 Drop in prediction
	5.2.2 Sampling scheme
	5.2.3 Explanations

	5.3 Analysis on Explainable Classifiers
	5.3.1 Linear Classifiers
	5.3.2 Shortcuts Detection

	5.4 Experiments
	5.5 Conclusion

	6 Attention Meets Post-hoc Interpretability
	6.1 Introduction
	6.2 Related Work
	6.2.1 The debate
	6.2.2 Attention meets post-hoc interpretability

	6.3 Attention-based classifier
	6.3.1 General Description
	6.3.2 The attention mechanism

	6.4 Attention-based Explanations
	6.5 Gradient-based Explanations
	6.5.1 Methods
	6.5.2 Gradient of the model

	6.6 Perturbation-based Explanations
	6.6.1 Reminder on LIME
	6.6.2 Limit Explanations

	6.7 Limitations
	6.8 Conclusion and Future Work

	7 Conclusion and Perspectives
	7.1 Conclusion
	7.2 Perspectives

	Bibliography
	Appendix
	A Appendix for Chapter 4: An In-Depth Analysis of Anchors for Text Data
	A.1 Proofs
	A.1.1 Proof of Proposition 4.2.1: Equivalent sampling
	A.1.2 Proof of Proposition 4.3.1: Stability of exhaustive
	A.1.3 Proof of Proposition 4.3.2:
	A.1.4 Proof of Proposition 4.4.1: Dummy features
	A.1.5 Proof of Proposition 4.4.2: Presence of a set of words
	A.1.6 Proof of Proposition 4.4.3: Precision of a linear classifier
	A.1.7 Proof of Proposition 4.4.4: Approximate precision maximization
	A.1.8 Additional result for Section 4.4.2: Simple if-then rules
	A.1.9 Normalized TF-IDF

	A.2 Technical results
	A.2.1 Binomial wonderland
	A.2.2 Other probability results

	A.3 Additional experimental results
	A.3.1 Typical values of and
	A.3.2 Comparison between Anchors and exhaustive Anchors
	A.3.3 Dummy property
	A.3.4 Empirical validation of Proposition 4.4.3: Precision of a linear classifier
	A.3.5 Additional experiments for Section 4.4: Analysis on explainable classifiers
	A.3.6 Empirical validation of Proposition A.1.4: Normalized-TF-IDF, Berry-Esseen
	A.3.7 Additional experiments for Section 4.5: Anchors on Neural Networks
	A.3.8 BERT replacement

	B Appendix for Chapter 5: Faithful and Robust Local Interpretability for Textual Predictions
	B.1 Proofs
	B.1.1
	B.1.2
	B.1.3 Proof of Proposition 5.3.1: Linear models
	B.1.4 Proof of Proposition 5.3.2: Presence of shortcuts

	B.2 Experiments
	B.2.1 Setting
	B.2.2 Additional experimental results

	C Appendix for Chapter 6: Attention Meets Post-hoc Interpretability
	C.1 Proof of Theorem 6.5.1
	C.2 Proof of Theorem 6.6.1
	C.2.1 Discussion on Theorem 6.6.1

	C.3 Proof of Proposition C.2.1
	C.4 Technical results
	C.4.1 Conditional variance computations
	C.4.2 Probability computations

	C.5 Experiments on multi-layer architecture
	C.6 Experiments

