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INTERNET traffic has grown significantly in the last few decades and continues to do so.
For example, between the end of 2020 and 2021, incoming IP traffic to the main French
network operators increased by 25% [1]. This growth is mainly due to the rise of video
services such as Netflix, which represented 53% of global IP traffic in 2021. In order to
support this growth while simultaneously reducing network infrastructure (CAPEX) costs
and the expense of operating that infrastructure (OPEX), Internet Service Providers
have adopted new technologies.
Over the years, the concept of Telco Cloud has emerged as a new paradigm to address
the challenges of modern networks. Telco Cloud hints at the numerous similarities
between the use case in which the latter runs and those in Cloud Computing, in particular
the use of virtualisation and automation. The Telco Cloud infrastructure relies on two
fundamental technologies Network Function Virtualization (NFV) and Software-Defined
Networking (SDN) to provide a flexible and automated network that can provide isolated
virtual network services with specific characteristics on demand.
With new IT technologies comes new security and privacy threats. Network operators
should consider these issues carefully, both for reputational and for legal reasons, as
more countries adopt network security legislation.
Telco Cloud security is a very broad topic. In this thesis, we examine the benefits
of one single technology that can achieve security in Telco Clouds, namely, remote
attestation. Remote attestation is a technique that allows a verifier to ensure that
a target satisfies certain properties. It relies on the use of a trusted anchor (which
can be a hardware secure co-processor, a Trusted Execution Environment, a piece
software or a hybrid of these elements) to provide evidence about the target. In the
context of NFV security, for example, attestation can be used to verify that a network
service has been properly deployed (i.e., no adversary has tampered with the service
code). Although remote attestation is not a new technique, current approaches are
not suitable for the telco cloud environment.
In this thesis, we propose new remote attestation schemes that aim to render remote
attestation suitable in practice for NFV usage.

Contributions

To make attestation convenient for Telco Cloud, we propose three remote attestation
solutions, designed for distinct use cases. The first two protocols are tailored to be
compatible with the Trusted Platform Module (TPM), a cryptoprocessor that offers
a specific form of attestation and acts as the trusted anchor. The TPM is a widely
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deployed chip but has limited capacity.
In our third scheme we assume that one can use any Trusted Execution Environment
(TEE). As this third protocol shows, using a generic TEE can lead to better performance
and easier solutions in certain use cases.
The security of each protocol is formally established through formal security models and
proofs, whereas its efficiency is assessed by means of implementations and experiments

Linkable Deep Attestation. In the Telco Cloud, network functions (e.g., firewalls,
routers, etc.) are virtualized. Hence, verifying the state of a network function involves a
verification on the state of the underlying physical infrastructure, as well as the state
of the virtualized component. This process is called Deep Attestation. There exist
two approaches for Deep Attestation. The first is called single-channel and allows
to attest the function and the infrastructure with a single request, thus providing a
strong biding between the function attestation and the infrastructure attestation. In
contrast, the multiple-channel approach attests independently the function and the
infrastructure. This method scales well for an infrastructure hosting a large number
of network functions as a single infrastructure attestation is needed. The downside of
the multiple-channel approach, however, is a lack of binding between the component
attestation and the infrastructure attestation.
As our first contribution, in Chapter 3 we present a hybrid approach to remote attestation,
which is as efficient as multiple-channel attestation, but as binding as single-channel
attestation. Specifically, our scheme provides a linking mechanism, enabling to check
that the attestation of a function is bound to the attestation of the infrastructure. In
addition, this contribution introduced for the first time in the attestation-literature, a
formalization of the security properties expected of linkable remote attestation. The
security definitions are game-based and follow a modular approach, in which new
properties can be cryptographically and gradually added to existing security. This
work "A Cryptographic View of Deep-Attestation, or how to do Provably-Secure Layer-
Linking" was presented at ACNS 2022 [2].

Multi-Tenant Attestation. Our linkable attestation scheme is a basic block for attestation
in Telco Cloud, but the scheme was designed with the assumption that everything (i.e.,
the network functions as well as the infrastructure) is owned by a single entity. However,
in practice, it is often true that attestation will occur in a multi-tenancy setting. Typically,
in the context of roaming (i.e., connecting a device to a network which is not its native
network) an operator might deploy some network functions on top the infrastructure
of another operator. In this setting, privacy concerns arise as traditional attestation
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constructions, by default, reveal the internal state of the target. Moreover, while the
multi-channel approach scales well with numerous VNFs, it does not do well when
those VNFs belong to several tenants. When there is a single verifier, the multiple
approach allows to only attest the infrastructure once. Unfortunately, if each tenant
acts as a verifier for the part of the infrastructure that is relevant to it, there will be as
many infrastructure attestation requests as there are tenants.
As our second contribution, in Chapter 4 we show how to build on the linkable scheme to
answer to this more complex use case. This new protocol uses a batching mechanism
which can answer multiple attestation requests with a single attestation report. In
addition our proposed scheme is privacy preserving and relies on zero-knowledge
proof. This works, entitled "Towards a Privacy-preserving Attestation for Virtualized
Networks" was published at ESORICS 2023 [3].

NFV Collective Attestation. Our two previous schemes focus on the attestation of
a single virtual component and the physical infrastructure underlying it. However the
use of a single network function does not provide a complete network service. In order
to offer a meaningful service, network operators chain functions to form a network
service. Such network services can be achieved through the use of several functions
scattered on multiple infrastructures and managed by various tenant. Such complex
infrastructures could, naïvely, be attested one VNF at a time, sequentially. The schemes
we presented in Chapters 3 and 4 could provide this type of attestation quite easily.
However, as a third contribution we describe a more efficient solution, which allows to
attest an entire network in a single, collective request. In our approach, the functions
making up the service can collaborate to provide an attestation of the entire set in a
very efficient way. This method called collective remote attestation was introduced in
the context of attestation of swarm of Internet of Things (IoT) devices. However, in the
context of multi-tenant NFV we need to take into account privacy and deep attestation
(not only the function must be attested but also the infrastructure) with binding. Unlike
in the two contributions presented in Chapter 3 and Chapter 4, which are tailored to
the use of TPMs, this scheme relies on generic TEEs able to internally compute a
zero-knowledge proof of knowledge, which will enable privacy-preserving attestation.
Then by simply including the infrastructure in the collaborative attestation we can get
both infrastructure and function attestation. We show that by verifying some linking
information locally we get a global verification of the linking for free. The result is a
very efficient protocol, which can attest a network service made up of thousands of
functions in less than a second, while also greatly reducing bandwidth with respect to
our naïve solutions. This work is currently in submission [4].
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Personal Contributions. The three articles presented in this thesis were produced
through collaborative efforts. In this paragraph, I outline my individual contributions.
For the first one, entitled "A Cryptographic View of Deep-Attestation, or how to do
Provably-Secure Layer-Linking", I contributed to the original concept and made the
implementation. The second paper, "Towards a Privacy-preserving Attestation for Virtu-
alized Networks", was primarily my work in terms of protocol design and implementation.
I also contributed to the security model and to a lesser extent to the proofs. Similarly,
the design and implementation of the final paper presented in this thesis, "Efficient
and Privacy-Preserving Collective Remote Attestation for NFV", were mainly my work,
with contributions to the model and proofs.

Outline

In Chapter 1 we start by describing what exactly a Telco Cloud and an NFV environment
are. Then, we introduce remote attestation. Finally, we provide some cryptographic
background in Chapter 2.
In Chapter 3 we introduce our linkable deep attestation protocol. This scheme only
works in a single tenant setting, but it allows us to introduce a fundamental technique
to provide attestation in NFV, namely, an efficient linking mechanism.
Chapter 4 builds on the authorised linked attestation scheme in Chapter 3 in order to
provide attestation in a multi-tenant use case. Specifically, we consider a multi-tenant
Telco Cloud where the operator hosts network functions of external entities. Each such
entities must be able to attest their own network functions.
Finally, we present our third protocol in Chapter 5. This protocol considers a more
complex use case where we are not attesting a single platform, but rather, multiple
platforms. In this scenario, we need to be able to attest a large number of targets in a
very efficient way, without generating too much control traffic in the network.
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Chapitre 1 – Telco Cloud and Remote Attestation

NETWORK operators tend to replace traditional network infrastructure with cloud-
like network infrastructure to gain flexibility. These cloud-like network infrastructures
are called Telco Cloud. Telco Cloud relies on two fundamental concepts: NFV, which
consists of virtualising networks, and SDN, which allows the automation of these
virtualised networks. In this thesis, we focus exclusively on NFV.

1.1 Network Function Virtualization

The basic idea of NFV is to execute network functions (e.g., firewall, router, etc.) as
software running on commodity hardware (i.e., Commercial Off The Shelf (COTS)
hardware) rather than having dedicated hardware for each function. These network
functions are typically implemented as software running inside a virtualised appliance
(e.g., a container or a Virtual Machine (VM)). Such a package is called a Virtual
Network Function (VNF) and can provide a very wide variety of network functionalities
in an operator’s infrastructure.

1.1.1 Architecture

The architecture of NFV is defined by the European Telecommunications Standards
Institute (ETSI) [5]. It consists of four main parts, each of which consists of several
functional blocks as represented in Figure 1.1:

1. Network Function Virtualization Infrastructure (NFVI): The NFVI corresponds
to the hardware infrastructure and resources, as well as the software required to
virtualise and abstract this underlying hardware to the layer above. It creates the
environment on which VNFs are deployed.

2. VNFs domain: It includes the VNFs as well as the Element Management (EM)
which is responsible for managing one or more VNFs.

3. NFV Management and Orchestration (MANO): The MANO is the management
system of NFV. It consists of the following components:

• VNF Manager (VNFM): This element is responsible for performing the life-
cycle operations of the virtual appliance (creation, update, termination, etc.).

• Virtualized Infrastructure Manager (VIM): The VIM is responsible for low-
level management operations. It allocates the necessary resources, keeps
track of the available resources, and monitors the NFVI (resource consump-
tion, faults, etc.).
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Chapitre 1 – Telco Cloud and Remote Attestation

• Orchestrator: The orchestrator implements the network service and provides
general orchestration and management of the NFV. It interfaces with both
the VNFM and the VIM to delegate lower level operation.

• Service, VNF and Infrastructure Description: This component is a data
set that contains information on the VNF deployment template, the VNF
forwarding graph1, etc. It is used by the Orchestrator to deploy and organize
the VNF.

4. Support System: The Operations Support System (OSS) and Business Support
System (BSS) are components that provide operational and business services,
such as billing, product catalogues, support tickets, etc. They are linked to the
orchestrator, which can take into account information from the support system to
adapt the management of the service.

Figure 1.1: The NFV architecture as defined by the ETSI.

A simple abstraction. Although the NFV architecture is intricate, we can adopt a
straightforward abstraction for the purpose of this thesis. We leave aside all the manage-
ment and service components of the NFV architecture. We also consider the NFVI as a
component on which the virtual appliance can run, without the details of the hardware

1for more information on VNF-FG, please turn to Section 1.1.2.
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and virtualization layer. This leads to the architecture shown in Figure 1.2, with an
infrastructure on which virtual components, possibly owned and managed by different
entities, are being used. We will use the terms infrastructure, NFVI, or hypervisor
interchangeably to denote the infrastructure element represented in Figure 1.2. Similarly
we will use the terms VNF or VM to denote the virtual component of Figure 1.2.

Figure 1.2: The simple architecture abstraction used in this thesis.

1.1.2 Network Services

A single network function alone does not offer much to the end customer. To provide
a valuable product, a network operator needs to integrate multiple functions into an
advanced network service. Examples of such services include Internet access and
virtual private networks. In a traditional, static architecture, the deployment of new
network services was laborious due to the necessity of manual hardware installation
and configuration of connectivity. NFV simplifies the process by enabling on-demand
service deployment and automatic scaling.

Note 1.1.1: SLA

Network services are often associated with a Service-Level Agreement (SLA),
a document which describes the service and its expected performance. These
performance expectations may relate to quality, reliability, security, etc. The
SLA also defines the metrics used to determine whether the service meets the
expected level of performance, as well as possible remedies and / or compensation
if performance targets are not met.

From a technical point of view, a network service is a set of interconnected VNFs with
an entry point (ingress) and an end point (egress). The set of VNFs between the
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ingress and the egress does not necessarily define a linear path and the network flow
can take different routes. Such multiple paths can exist for a variety of reasons: to
provide redundancy, to avoid congestion within a single path, to process network packets
differently after a filtering function, etc. This set of interconnected VNFs therefore forms
a graph and is called a VNF Forwarding Graph or VNF-FG.
A VNF Forwarding Graph (VNF-FG) provides an abstraction in the form of a network
service. This level of abstraction gives the operator flexibility in how it runs network
services, as long as the service remains compliant with the SLA. As an example of this
flexibility, the operator could for instance spawn a VNF-FG across a variety of NFVI
which are not in the same geographical location. The SLA can prevent that if it imposes
a strict latency requirement (a graph scattered over a large geographical distance would
yield too much latency) or by requiring the NFVI to be located in a specific country
(security or sovereignty concern). The operator providing the service can also use
the NFVI of another operator, or also use VNFs belonging to another entity. We say
that a VNF-FG can be multi-domain (i.e., the graph spawns on top of multiple NFVI
managed by different entities and potentially scattered across multiple locations) and/or
multi-tenant (i.e., the VNF are operated by different entities), as depicted in Figure 1.3.

Figure 1.3: A multi-tenant and multi-domain VNF-FG.

1.1.3 Security

Moving from a static architecture, where each function corresponds to a physical
appliance deployed in a known geographic location and operated by a single entity,
to the Telco Cloud model come with many security and privacy challenges. Consider,
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for example, the problem of ensuring that a given network function is in a valid state.
In a static (hardware-based) framework, the attack surface of a potential adversary is
somewhat limited. The function is implemented on dedicated hardware and in a specific
location, with no way to move it. The adversary can only interact by communicating
with that function. This changes in the VNF case, in which real functions can be
replaced by malicious ones.
Securing an NFV infrastructure involves taking into account a large number of potential
adversaries, attacks and vulnerabilities, as shown in the reports published by the
European Union Agency for Cybersecurity (ENISA) [6] and ETSI [7].
Remote attestation plays a central role in achieving NFV security. It can be used not
only to check that a VNF has been correctly deployed but also to continuously monitor
its state. Unfortunately, existing remote attestation schemes do not comply with all the
requirements of a Telco Cloud usage as we show in the next section.

1.2 Remote Attestation

Remote attestation has been identified by the ETSI as one of the fundamental security
mechanisms for NFV. The concept of attestation is not new, having been introduced in
the early 2000s with the Trusted Platform Module (TPM) [8]. Today, remote attestation
remains an active area of research, and recent developments and trends such as
confidential computing or IoT have renewed interest in the topic. Remote attestation is a
broad subject and the term can encompass a wide variety of techniques and schemes.
In this section, we introduce the basics of attestation and highlight some topics of
particular interest to our goal of using attestation in NFV security.

1.2.1 Definition

Basically, remote attestation is a security mechanism that allows a remote verifier
to check that a prover (also called an attester) satisfies certain properties. It is a
passive mechanism that can only detect an attack, but cannot itself prevent a breach
or heal an infected target. Attestation typically takes the form of a challenge-response
protocol. The verifier sends a challenge to the machine it wants to evaluate. The
prover then retrieves evidence that it has the required properties and sends it to the
verifier. To reason about, or infer the state of the prover, this evidence must satisfy
two requirements: (1) it must come from a trusted component called a Root of Trust
(RoT); (2) it must be authenticated.
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Figure 1.4: A simple view of remote attestation.

1. The prover is responsible for providing evidence of its state. If an adversary has
control of the prover, it can easily change the evidence so that the adversary
remains undetected and the prover appears to be in a correct state. Therefore,
there must be some part of the prover system, the root of trust, which is considered
trustworthy and which cannot be corrupted within the considered trust model2. A
conceptually simple way to implement a RoT is to use an isolated secure hardware
component (i.e., a Trusted Execution Environment (TEE) [9]) responsible for the
attestation operation. However, there are also software-based RoTs [10]–[12].

2. Obviously, in order to conclude that a piece of evidence is legitimate, the verifier
must ensure that the evidence originates with the prover and, more specifically,
from the prover’s RoT. In addition, the provided evidence must be fresh to prevent
replay attacks. Cryptographic mechanisms such as signatures and message
authentication codes with secrets sealed within the RoT can ensure the authenticity
of the attestation evidence.

TPM Attestation. We illustrate the principle of attestation with the concrete example
of the TPM, a secure cryptoprocessor specified by the Trusted Computing Group
(TCG). The TPM enables remote attestation of boot integrity and can be used as
a hardware RoT. During the boot process, each component, starting from a trusted
piece of code called the Core Root of Trust for Measurement (CRTM), measures the
next one before loading it (e.g. BIOS/UEFI will measure the code of the bootloader
and then launch the bootloader) and stores the measurements securely in the TPM.
The prover can later retrieve a TPM signature of these measurements and sends the
overall (measurements and signature) to the verifier. In return the verifier can check
the signature to ensure the origin of the measurements and reason about the state
of the prover based on the received values.

2Some security models only consider software adversaries, which cannot alter the RoT. Yet, most RoT
can still be affected by hardware attacks.

Thibaut JACQUES| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 4.0

18



Chapitre 1 – Telco Cloud and Remote Attestation

1.2.2 Deep Attestation

The basic attestation mechanism is not suitable for virtualised environments. In fact,
an infrastructure typically only has access to one RoT which can be a problem (e.g., a
TPM has limited memory to store measurements). To overcome this limitation, virtual
RoTs (vRoTs) have been proposed [13]. For each VM, the hypervisor runs a software
implementation of the RoT and transparently gives the guest access to this vRoT.
Although vRoT have enabled remote attestation of the VM, they do not provide the
same security guarantee as a physical RoT. To increase trust in the vRoT, it is possible
to attest the hypervisor in addition to the VM. This process is called deep attestation.
The ETSI [14] describes two classes of deep attestation schemes: Single-Channel Deep
Attestation (SC-DA) and Multiple-Channel Deep Attestation (MC-DA). SC-DA provides
a high level of security, but does not scale well with large numbers of virtual machines.
In contrast, MC-DA scales very well, but this comes at the expense of security.

Figure 1.5: Single-channel and Multiple channel Deep Attestation.

Single-Channel. In the single channel method, for each VM, the verifier opens an
attestation channel with the VM, as shown in Figure 1.5 on the left. The VM performs
a nested attestation: its dedicated vRoT computes the VM attestation that will be
then included in the hypervisor attestation (computed using the RoT). Since the VM
and hypervisor are attested simultaneously, the verifier can reason not only about
the state-validity of the VM and the hypervisor, but also about the link between the
two. In other words, the attesting VM and hypervisor can prove they are running on
the same physical hardware. The property of layer-linking can be extremely useful,
for instance when SLA includes clauses about the geographical location of the VMs.
However, it does not scale to a large number of VMs due to the need to perform an
expensive hardware attestation for each VM.

Multiple-Channel. The multi-channel technique uses a separate channel to attest the
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VM and the hypervisor independently, as shown on the right-hand side of Figure 1.5.
Both the VM and the hypervisor can perform attestation normally. The hypervisor only
needs to be attested once, while the VMs can be attested in parallel. The unique
hypervisor attestation and parallelism gives much greater scalability than the single
channel approach, but as VM and hypervisor attestations are fully independent, the
verifier cannot reason whether the two are linked or not.

Layer-Linking. A layer-linking mechanism can be used to verify that the VM and
hypervisor attestations originate from the same physical infrastructure, even when using
MC-DA. The TCG proposes several alternative high-level ideas to achieve this binding
for TPM and vTPM in the specifications of the Virtualized Trusted Platform [15]. Layer
binding can be achieved by including the vTPM information in the hypervisor attestation.
For example, during hypervisor attestation, it is possible to include a vTPM public key
in the attestation nonce; a tenant will be able to verify that its VM is running on that
hypervisor by checking that the VM’s vTPM public key is included in the hypervisor
attestation. This method is elaborated on in Chapter 3 in a broader context, not limited
to TPM. Building on the work of Chapter 3, we also provide linking in the schemes
presented in Chapter 4 and Chapter 5.

1.2.3 Privacy

Attestation raises concerns about the privacy of the attester. By issuing an attestation, a
target reveals everything about its internal state. We can protect such information against
external adversaries using traditional cryptographic techniques such as encryption, but
we can only trust that the verifier will not use this information maliciously. However,
in certain scenarios, typically a multi-tenant Telco Cloud, business competitors may
need to attest their equipment to each other in order to collaborate securely, potentially
revealing critical technical aspects that give them an edge over their competitor that
they would prefer to keep secret. While attestation inherently reveals information about
the target (at least that it is in a trusted state), Sadeghi and Stüble [16] propose a new
approach to attestation called Property-Based Attestation (PBA) in which the attester
has some form of control over the leakage.
In property-based attestation, instead of providing binary measurements in order to
confirm their validity, targets will only prove that they guarantee some high-level prop-
erties. Therefore, instead of revealing its full configuration, the prover only proves that
its configuration has specific properties. Several technical methods exist to construct
such proofs. The first is to use a Trusted Third Party (TTP) [16], [17], for the verification
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of a traditional attestation from the prover, and for the certification to the verifier of that
prover’s validity. While this approach is efficient and requires little modification to exist-
ing attestation methods, it does require the presence of an online TTP. An alternative
approach to TTP-based PBA features the use of Zero-Knowledge Proofs of knowledge
(ZKP) [18], [19]. In this case, the prover will be able to prove that its configuration
complies with certain properties without revealing its precise configuration.

Note 1.2.1: Anonymous Attestation

During an attestation one needs to show that the attestations are produced by
a valid RoT, and this involves some form of cryptographic authentication that
uniquely identifies the RoT. However, authentication makes it possible to link
attestations and trace a target based on its attestation reports. This problem leads
to the concept of anonymous attestation which can be achieved by using a privacy
CA [20] or Direct Anonymous Attestation (DAA) [21]. In this thesis, we consider
another aspect of privacy: the target state/configuration privacy instead of the
target/RoT identity privacy.

In Chapter 4 and Chapter 5 we will analyse use cases with multi-tenancy which require
privacy-preserving attestation. We will show how to use the zero-knowledge proof
approach in two different ways.

1.2.4 Collective Attestation

The privacy-preserving and/or layer-linkable attestation methods covered in the previ-
ous sections face serious scalability challenges when large numbers of VNFs require
attestation. This is typically the case if an operator wants to attest a complete network
service (i.e., all the VNFs of the VNF-FG and the underlying infrastructure). In this
case, an immediate solution is to attest each device individually (either sequentially
or in parallel). However, such an approach will result in a massive flow of messages
across the network, which could lead to congestion. It also requires the operator to
verify thousands of attestations, which is a time-consuming task. Collective Remote
Attestation (or Swarm Attestation) aims to attest large groups of elements in an efficient
way. Efficiency is considered in three ways:

• Bandwidth : A collective attestation protocol should reduce bandwidth consump-
tion by using some form of aggregation.

• Proving complexity : Attesting a group of VNF should be more efficient than
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attesting each one sequentially. In other words, the time to compute an attestation
should be sub-linear in the number of VNF to be certified.

• Verification complexity : Similar to proving, attestation verification should be
sub-linear in the number of VNF in the swarm.

SEDA. Collective remote attestation (cRA) was introduced in 2015 by Asokan et al. [22]
by means of SEDA. This scheme, like most works on cRA, focused on the attestation of
IoT swarms. The basic idea of SEDA (later adopted by several solutions) is to compute
a spanning tree over the IoT network and flood the attestation request into the tree
(through its root) as shown in Figure 1.6. Upon receiving the request, a device retrieves
its configuration, signs it and sends the result to its parent node device. The latter can
verify the attestation (i.e., the signature), aggregate the results of its children nodes,
compute its own attestation and send the overall result (i.e., its attestation and the
aggregation of its child nodes attestations) to its corresponding parent node.
Since each device computes its own attestation individually and the verification is done
by multiple devices, the burden is “parallelizable" and shared over the network; hence,
this approach is much more efficient than a simple sequential attestation. In addition,
aggregating the results reduces the amount of required bandwidth.
More precisely SEDA works in two phases: an offline and an online phase. During
the offline phase devices are initialized in a trusted way by the swarm owner. Each
device generates its cryptographic credentials and then establishes a symmetric keypair
with each one of its neighbours. Finally neighbouring nodes exchange their expected
configurations. Hence at the end of the offline phase each node has a symmetric keypair
for secure communication with every neighbour and knows their expected configuration.
The online phase can be triggered on demand by the verifier. To do so, the verifier
can chose any node in the swarm. Then a spanning tree rooted at the chosen node is
computed over the swarm. The verifier can now broadcast a request starting from the
root and forwarded by each node to its child nodes. Once a node receives the request,
it can attest to its parent node in a traditional manner using the keypair computed during
the offline phase for secure communication. When they receive attestations from child
nodes, parents nodes verify them using the expected configuration provided during the
offline phase. Then, the parent produces an aggregate indicating whether the subtree
rooted at this point has a correct configuration or not. Thus an attestation report in
SEDA is made of the attestation of the device itself, as well as an aggregate. This
process is repeated up to the root which sends the final attestation to the verifier. If both
the aggregate and the root attestation are valid then the swarm is in a correct state.
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Figure 1.6: Tree based collective attestation online phase.

Tree-Based Collective Attestation. SEDA belongs to a broader category of collective
attestation protocols, which we call tree-based attestation. Other tree-based protocols
include SANA [23], which works similarly to SEDA but no longer requires the verification
of the attestation and aggregate at each parent node; instead, nodes will only aggregate
attestations as they are received using a custom aggregate signature scheme. With
SANA, anyone in possession of the public keys and expected configurations of the
swarm can check the results. This is not a strong assumption in an IoT case, where the
configurations are often made public, but it can be in the use-case we are considering,
that of network function virtualization.
Another attestation scheme based on spanning trees is LISA[24]. It also introduces
a metric called Quality of Swarm Attestation (QoSA) which measures the information
given by the attestation report (i.e., SEDA is Binary-QoSA as it only give a binary result).
LISA comes in two flavours which provide different levels of QoSA: a synchronous one
where reports are aggregated similarly to SEDA and an asynchronous one, in which
devices directly forward the result upward to parent nodes.

Highly Dynamic Networks. Interestingly, while solutions using spanning trees are
effective, they are not very realistic in the use-case they consider: that of IoT swarm
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attestation. This is because spanning trees require a topology of the network that is
static and constant throughout the attestation process, which is not a typical scenario for
dynamic IoT swarms. Alternative means of IoT-based swarm attestation exist in the litera-
ture and can handle dynamic networks, albeit at the price of a high complexity [25]–[29].

In the case we consider, that of network function virtualization and VNF-FG, the as-
sumption of a static network is much more realistic as a VNF-FG is entirely specified by
a graph descriptor. Hence, we can avoid the more complex and less efficient protocols
in the literature, and adopt tree-based solutions instead. Unfortunately, existing tree
based collective attestation protocols do not consider virtualized networks and are
not privacy preserving. In Chapter 5 we show how to design a collective attestation
scheme for a network service.

1.3 Conclusion

While promising in terms of adaptability and increased potential of providing new
innovative services, Telco-Cloud architectures come with increased risks to security
and privacy, as compared to traditional, hardware-based ones. Obviously, securing
complex and dynamic architectures such as NFV is very challenging and many of the
aspects have associated research problems. In this thesis, we single out and focus
on remote attestation exclusively.
While, as described, some aspects of attestation are well established with standard
implementation of industrial maturity (e.g., Basic TPM Attestation), some remain still
in the realm of academic work (e.g., Collective Attestation). The consequence is that
attestation is not yet ready to be used in the Telco Cloud environment. In particular,
reconciling the three properties of scalability, privacy, and layer-linking has proved
elusive. Our goal in this thesis is to bridge the gap towards achieving practical attestation
for a Telco cloud. In addition, we aim to achieve security, privacy, and layer-linking
in a provable way for the first time in the literature. Finally, in order to prove the
viability of our proposals, we also report on the proof-of-concept implementations that
accompany each protocol.
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IN this chapter we review the cryptographic schemes that we will be using through-
out this thesis. We also define the security properties that we require from these
schemes in a formal way.

2.1 Collision-Resistant Hash Functions

A collision resistant hash function is a function that converts arbitrarily long data into a
fixed size string. Because inputs are of arbitrary size and outputs are of fixed size, sev-
eral different input values will be associated with the same output thus forming a collision.
Collisions are inevitable, but they often represent a security risk. Collision resistant hash
functions are not collision free, but they render finding collisions computationally difficult.

Definition 2.1.1 (Hash Function). An unkeyed hash function H :M→ B is a determin-
istic polynomial-time function that maps a string from an arbitrarily long message space
M to a fixed-size digest space B.

Definition 2.1.2 (Collision Resistance). Let GCR(λ) be a game in which the adversary
A is given access to an unkeyed hash function Hand must outputs two messages m1

and m2. It wins the game if H(m1) = H(m2) and m1 ̸= m2 ∈M. We define AdvCRH (A) as
the probability that A wins the game. We say that a hash function H is collision resistant
if, for all PPT A, there exists a negligible function negl(.) such that AdvCRH (A) ≤ negl(λ).

2.2 Commitment Schemes

A commitment scheme is a cryptographic primitive that allows a party P to commit to
a message m by producing a commitment string c and an opening string r. Later, P
can reveal the opening r to allow to verify that the message m is associated with
the commitment c.

Definition 2.2.1 (Commitment). A commitment scheme COM is a triplet of algorithms:
COM.Setup(1λ)→ pparCOM: The setup algorithm takes the security parameter (in unary)

1λ as input and outputs the public parameters pparCOM.
COM.Commit(m, r)→ c : This algorithm, given a message m and a random string r,

produces a commitment c.
COM.Verify(m, c, r)→ {0, 1}: Given a message m, a random string r, and a commit-

ment c, the verification algorithm outputs 1 if c is a commitment of m and 0 if it is
not.
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The commitment c should be hiding (it must not reveal anything about the committed
message m) and binding (a commitment c will not open for any message other than
m). In particular, given the opening information r, as well as c and m, anyone can
check the validity of c with respect to m.

Definition 2.2.2 (Computational Binding). We say that a commitment scheme is binding
if every PPT adversary that outputs a tuple (c,m1, r1,m2, r2) has at most a negligible ad-
vantage AdvBindCOM (A) = Pr[m1 ̸= m2 ∧ COM.Verify(m1, c, r1) = 1 ∧ COM.Verify(m2, c, r2) =

1] to win.

Definition 2.2.3 (Perfect Hiding). We say that a commitment scheme COM has perfect
hiding if for all messages m0,m1 ∈ M, where M is the message space, and for all
c ∈ C, where C is the commitment space it holds that :

Pr[COM.Commit(m0, r) = c] = Pr[COM.Commit(m1, r
′) = c]

Note that with perfect hiding, even an unbounded adversary can only distinguish be-
tween m0 and m1 with probability 1

2
. This is analogous to the perfect secrecy of the

one-time pad [30]. We also give a weaker computational definition, which will be
useful in the next section.

Definition 2.2.4 (Computational Left-or-Right Hiding). Let GComHide(λ) be a game in
which the challenger runs the COM.Setup algorithm and selects a random bit b. The
adversary A then has access to a left-or-right commit oracle oCommitb(m0,m1), which
outputs cb ← COM.Commit(mb, r) for some random string r and message mb depending
on the value of the bit b. The game ends when A outputs a bit b′. A wins the game if
b′ = b. We define the advantage AdvHideCOM (A) as the probability that the adversary A wins
the game. A commitment scheme is hiding if there exists a negligible function negl(.)

such that AdvHideCOM (A) =
∣∣Pr[A wins GComHide(λ)]− 1

2

∣∣ ≤ negl(λ).

Theorem 2.2.1. Perfect hiding implies computational left-or-right hiding.

Proof. Note that perfect hiding implies that given a commitment c the probability that
it is the commitment of some message m is exactly the same for any message m ∈
M. Therefore the outputs of oCommitb(m0,m1) have exactly the same probability of
corresponding to the commitment of m0 or m1. Thus, the adversary can only randomly
guess b′, and we have AdvHideCOM (A) = 0.
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2.3 Vector Commitments

Vector commitment schemes, introduced by Catalano and Fiore in 2011 [31], allow
for a commitment to a list of values, rather than to single message. In addition, the
opening of vector commitments is done by position, i.e., one computes opening in-
formation for each committed value in the list, potentially separately. Unlike classi-
cal commitment schemes, vector commitments do not always have the hiding prop-
erty needed for this thesis. Fortunately, Catalano and Fiore suggest that this prop-
erty can be obtained by combining the vector commitment scheme with a classical
commitment scheme. Instead of committing directly to the vector v = (v1, v2, ..., vn),
one can apply a commitment scheme to each value in the vector and then commit
v =

(
COM.Commit(v1), COM.Commit(v2), ..., COM.Commit(vn)

)
, then during the reveal phase

the opening of the commitment at position i will be added to the proof that mi is in
the committed vector. We will introduce a formal definition of hiding and show that
the above technique yields a hiding scheme.

2.3.1 Syntax and definitions

We note that the syntax of Catalano and Fiore featured an update algorithm to both
the values committed to and to the opening information. In this thesis we do not need
these features and we provide a definition of vector commitment that contains only four
algorithms but for which we will, however, also require a hiding property.

Definition 2.3.1 (Vector commitment). A vector commitment scheme VCO is made of
the following algorithm :
VCO.Setup(1λ, q)→ ppar: The setup algorithm (also called Key Generation by Catalano

and Fiore) takes in input a security parameter in unary, and the length q of the
vectors committed to, and outputs public parameters ppar, which include the
message spaceM.

VCO.Com(v)→ (c, aux) : The commitment algorithm takes as input a vector v ∈Mq (a
vector of q entries, each entry a message inM) and outputs a commitment c and
an auxiliary value aux.

VCO.Open(m, i, aux)→ πi: The opening algorithm is executed by the party that com-
putes the commitment. Given an index i ∈ {1, . . . , q}, a message m that is at
some position i within a vector, and the index i itself, this algorithm gives a proof
πi that m is the i-th message of the vector v associated with the commitment c.

VCO.Ver(m, c, i, πi)→ {0, 1}: The verification algorithm takes as input a message m, a
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vector commitment c, an index i ∈ {1, 2, . . . q}, and a proof πi, and outputs a bit
indicating whether the message m is assumed to be the message committed to at
the i-th position of v (in this case 1) or not (0).

Definition 2.3.2 (Conciseness). A vector commitment scheme is concise if the size of
the commitment is constant and independent of the length q of the vector, and the proof
size is constant or O(log q).

The position binding property says that it should not be possible to produce an open-
ing for a given vector commitment at some possible position i such that it opens
to two different messages.

Definition 2.3.3 (Position Binding). For every polynomially bounded adversaryA, the ad-
vantage AdvVCBindVCO (A) := Pr[(c, i,m,m∗, π, π∗)← A(ppar) : m ̸= m∗, VCO.Ver(m, c, i, π) =

VCO.Ver(m∗, c, i, π∗) = 1] is negligible.

The hiding property says that the a vector commitment should not reveal any information
about any of the values in the vector. Note that the definition of hiding we give only
holds if the two vectors submitted by the adversary are of the same size. In fact, for
some schemes, the opening size depends on the size of the vector and thus reveals
information about that size. Even so, we require hiding vector commitment, which must
not reveal any information about the commited values.

Let GVCHide(λ) be the following game :

Game GVCHide(λ)

ppar← VCO.Setup(1λ, q)

b
r← {0, 1}

(v0, v1 ∈Mq, ℓ ∈ (N+)
m, s.t. m ≤ q)← A(ppar)

Abort if ∃ℓj ⊂ ℓ s.t. v0ℓj ̸= v1ℓj
(cb, aux)← VCO.Com(vb)
∀j ∈ {1, . . . ,m} compute πℓj ← VCO.Open(vbℓj , i, aux)
d← A(cb, aux, {πℓj}mj=1)

A wins iff. b = d

Figure 2.1: The vector-commitment hiding game.

The adversary’s advantage against the hiding game is defined as:

AdvVCHideVCO (A) :=
∣∣∣∣Pr[A wins GVCHide(λ)]−

1

2

∣∣∣∣ .
Definition 2.3.4 (Hiding). We say that a vector commitment scheme VCO is hiding if for
every PPT A the advantage AdvVCHideVCO (A) is negligible.
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Theorem 2.3.1. Let COM be a left-or-right hiding commitment scheme and VCO be a
binding but non-hidding vector commitment scheme. Then we can construct a vector
commitment scheme VCO′ that satisfies the biding and hiding properties. The new
scheme works as follows :
VCO.Setup′(1λ, q)→ ppar: This algorithm computes pparCOM ← COM.Setup(1λ) and ppar′ ←

VCO.Setup(1λ, q) and outputs ppar← (pparCOM, ppar
′).

VCO.Com′(v)→ (c, aux, r) : This algorithm computes v′ = (COM.Commit(v1, r1), COM.Commit
(v2, r2), ..., COM.Commit(vn, rn)) and sets r = (r1, ..., rn) a vector storings the open-
ing of each commitment. Then it computes (c, aux) ← VCO.Com(v′) and outputs
(c, aux, r).

VCO.Open′(m, i, aux, ri)→ πi : This algorithm computes π′
i ← VCO.Open(m, i, aux) and

outputs πi ← (ri, π
′
i).

VCO.Ver′(m, c, i, πi)→ {0, 1} : This algorithm parses πi as (ri, π
′
i) and computes m′ ←

COM.Commit(m, ri). Then it outputs b← VCO.Ver′(m′, c, i, π′
i).

Proof. (Binding) This is immediate since both VCO and VCO′ are meant to be binding
vector commitment schemes.

Proof. (Hiding) Assuming that there exists an adversary A which wins the GVCHide(λ)

game, we show that we can construct an adversary B which wins GComHide(λ). We
let B simulate the GVCHide(λ) game to A. When A submits its two vectors v0 and v1

together with the set of indices {l1, ..., lm} for which it wants an opening, B first checks
whether v0 and v1 have a matching value for each position l. If this is not the case it
aborts. Otherwise for each l it computes cl ← COM.Commit(v0l , rl) = COM.Commit(v1l , rl)

for some random string rl. Then, for each position k for which A has not requested
an opening, it queries its own left-or-right commit oracle from the GComHide(λ) game
ck ← oCommitb(v0k , v1k). At this point B has a vector v of committed values of size
equal to that of v0 and v1 where the commitment comes from its oracle oCommitb or
is computed by itself with the associated opening rl. Hence it can use the vector
commitment algorithms to compute the commitment of this vector and all the requested
openings and pass them to A. Let b′ be the value of the bit in the GComHide(λ) game and
b be the value of the bit in the GVCHide(λ) game. Notice that when b′ = 0 the view of A is
exactly the same as in the GVCHide(λ) where b = 0. The same is true for b′ = b = 1. So
if A can correctly guess the value of b, then B knows the value of b′ which is equal to
b.
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2.3.2 A possible construction

In Chapter 4 we will introduce a new property for vector commitment schemes. We
will also show that vector commitment schemes based on Merkle trees guarantee this
property. Therefore, we spend some time here describing Merkle trees and how they
naturally provide vector commitments.

Merkle Tree. A Merkle tree is a data structure that allows messages to be aggregated
into a single short value. It takes the form of a binary tree, where each leaf is a
hash of a message. Each parent is computed by concatenating both child values and
computing the hash of the concatenation. The root of the tree obtained in this way is the
final aggregated value, which has a constant size equal to the digest size. A proof of
membership of message i can be obtained by getting all nodes on the path from the i-th
leaf up to the root. The verifier can then compute the hash of the message and use the
nodes to recompute the root of the tree, thus ensuring that this root was calculated using
the message i. We give an example in Figure 2.2. Four messages are aggregated,
each stored in a leaf. The nodes in blue represent the elements that make up the
proof that m1 is contained in the tree. Given m1 and the proof consisting of H(m2) and
H(H(m3)|H(m4)), a verifier, can recompute the root and check that it is the actual root.

Figure 2.2: Merkle tree based vector commitment.

Vector commitment construction. It is straightforward to construct a vector com-
mitment scheme from a Merkle tree. The commit algorithm simply computes the tree
with the leaves storing the vector elements and outputs the root as the commitment.
The opening for message i is the proof that element i is contained in the tree. The
verification is the verification of the Merkle tree proof. The hiding property can be easily
added to this construction. Instead of computing a simple hash of the message to get a
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leaf of the tree, one can compute a hiding commitment of the message.

2.4 Signature Schemes

A digital signature scheme allows one to sign a document (i.e., a string of characters).
This signature can later be verified by anyone. A valid signature indicates that the
document has not been altered and that it originated with the signer. Digital signatures
are public key schemes and users must begin by generating a pair of keys: the private
signing key sk and the public verification key pk.

Definition 2.4.1 (Signature). A signature scheme SIG is a tuple of four algorithms:
SIG.Setup(1λ)→ ppar: The setup algorithm takes as input the security parameter (in

unary) 1λ and outputs public parameters ppar.
SIG.KeyGen(ppar)→ (sk, pk): The key generation process produces a pair of secret and

public keys (sk, pk), the former used for signing and the latter used for verifying.
SIG.Sign(sk,m)→ σ: This algorithm takes as input the signing key sk, a message m

and outputs a signature σ.
SIG.Verify(pk,m, σ)→ {0, 1}: During verification, given a public verification key pk, a

message m and a signature σ, the algorithm returns 1 if is the signature is valid
for message m and nonce nonce under pk. Otherwise, it returns 0.

A signature scheme can guarantee various degrees of security, depending on the goal
(e.g., to sign a specific message or any message) and the capabilities of the adversary
(e.g., access to a signature oracle). However, one of the most used security property
is Existential Unforgeability under Chosen Message Attacks (EUF-CMA). Intuitively,
EUF-CMA implies that an adversary, even with access to a signature oracle, shouldn’t
be able to produce a valid signature (i.e., a forgery) on any new message (though prior
signatures can be replayed). This is a strong definition (but not the strongest), since we
are considering a "simple goal" (i.e., the adversary can forge signature on any message)
and a powerful adversary (i.e., with access to a signing oracle).

Definition 2.4.2 (EUF-CMA). Let GEUF−CMA(λ) be a game in which an adversary must
try to forge a signature on a fresh message, while having adaptive access to a signing
oracle. Next, we define AdvEUF−CMA

SIG (A) as the probability that the adversary A wins
the game. A signature scheme is (qSIG.Sign, ϵ)-EUF-CMA if any adversary making at
most qSIG.Sign queries to the signing oracle has an advantage of at most ϵ to win the
GEUF−CMA(λ) game. Asymptotically, a signature scheme is EUF-CMA if this probability
is negligible for all PPT A.
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2.5 Zero-Knowledge Proofs of Knowledge

Zero-knowledge proofs[32] are schemes that allow one to prove that a statement is
true without revealing anything other than the truth of the statement. For example,
consider a system of equations; with a zero-knowledge proof, it is possible to convince
a verifier that this system of equations has a solution without revealing that solution. In
this example, a prover can prove more than just the existence of a solution. They can
prove that they know that solution without revealing anything about it. We call this a
zero-knowledge proof of knowledge. We begin this section with some definitions and
informal discussion and end with a formal treatment.

Definition 2.5.1 (Language). Let f be a function which maps a finite string x into a
binary value : f : {0, 1}∗ → {0, 1}. A language Lf = {x : f(x) = 1} is the set of strings x

for which f outputs 1. Alternatively, we can define a language in terms of relations. Let
R ⊆ {0, 1}∗ × {0, 1}∗ be a relation. We define the language LR = {x : ∃w | (x,w) ∈ R}
as the set of all strings x for which there is a string w such that (x,w) ∈ R. We call x a
statement and w a witness for x.

Definition 2.5.2 (NP Language). Let R be a relation and LR = {x : ∃w | (x,w) ∈ R} a
language defined by R. We say that LR is an NP language if there exists an algorithm
RL for deciding membership in R in polynomial time and a polynomial p such that
LR = {x : ∃w | |w| ≤ p(|x|) ∧RL(x,w) = 1}.

Interactive Proof System. One way of capturing the idea of a proof is to introduce two
parties, a prover and a verifier. For a given statement, the prover and the verifier can
interact, and at the end of the interaction, given a proof provided by the prover, the verifier
should be convinced that this statement is true. Therefore, we can define an interactive
proof system for a language LR as a pair of interactive algorithms (P, V ), where V runs
in polynomial time. Such a proof system should be complete (i.e., every true statement
has a valid proof) and sound (i.e., only true statements should have a valid proof).
Note that every language LR ∈ NP has an interactive proof system. For a statement
x, the prover only needs to output the witness w. The verifier can check in polynomial
time if (x,w) ∈ R by checking that RL(x,w) = 1.

Zero-knowledge. A proof system that is zero-knowledge allows a prover to convince a
verifier that a statement is true without revealing anything, and in particular, a verifier
shouldn’t be able to learn anything more by interacting with the prover than it could
on his own. We can formalize this idea by introducing an algorithm called a simula-
tor S which, given the statement and without interacting with P , should produce an
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output that is indistinguishable (statistically or computationally) from the output of a
verifier V interacting with P .

Theorem 2.5.1. Assuming there exists a hiding and binding commitment scheme, then
every NP language has a zero-knowledge interactive proof system.

This result was proven in [33]. The idea is to show that the 3-graph colouring problem
has a zero-knowledge interactive proof system. Since this is an NP-complete problem,
any other NP-problem can be reduced to it in polynomial time. This yields a polynomial
verifier for any NP problem. The 3 graph colouring problem asks if the vertices of a
graph can be coloured with a maximum of three different colours such that no adjacent
vertices have the same colour. We give a very high-level view of how to prove this in
zero-knowledge. The prover randomly samples 3 colours (each encoded in a number)
and for each, commits to the assigned colour according to the solution of the problem.
The prover sends the committed graph to the verifier. The verifier selects a random edge
and sends it to the prover. Given the edge, the prover sends the verifier the openings of
the commitments of the two end vertices. The verifier can now open the two vertices
and check whether the colours are different. If they are not, then the verifier is sure that
the prover lied; otherwise the prover might know a valid solution with low probability (i.e.,
there is a high probability that even without a valid solution, the verifier has chosen 2
vertices with different colors). If we repeat this process (with a new random color), we
increase the chance of picking an edge where the two vertices are of the same color if
the prover is lying. If we repeat this a large number of times with success each time,
then we have high confidence that the problem is solved.
These results have important practical consequences. Consider the problem of finding
a valid assignment for an arithmetic circuit. This problem is NP, a zero-knowledge
interactive proof system must exist for proving that it can be solved. However, arithmetic
circuits also form a Turing-complete language. This means that we can prove, for any
computation, that it gives some specific output without revealing the input. This is the
basic idea behind zk-SNARK (zero-knowledge Succinct Non-interactive Argument of
Knowledge), which we introduce later in this section.

Proof of knowledge and knowledge soundness. As previously stated we can consider
a stronger form of soundness. Namely, that a prover not only proves that a problem
has a solution, but also that it knows that solution. Hence we need to define what it
means to "know" a witness w for a statement x such that (x,w) ∈ R. This gives rise to a
property called knowledge soundness. Intuitively, a protocol has knowledge soundness
if there exists an algorithm called an extractor E that interacts with the prover P and
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can extract the witness if the proof is valid.
The simultaneous existence of an extractor and a simulator seems contradictory. Both
can exist if we allow them to rewind the protocol (i.e., they can replay some part
of the interactions).
Note that, in the case of the simulator, it is often implied that the verifier will follow the
protocol when interacting with the simulator. This leads to a weaker notion of zero
knowledge, called Honest Verifier Zero-Knowledge (HVZK). In the remainder of this
thesis, however, we will only consider non-interactive proofs of knowledge for which no
interaction is needed thus eliminating the need for an honest verifier.

From interactive to non-interactive. Many interactive proof systems tend to have
a common structure. The prover starts by generating a committed value, and then
the verifier responds with a random challenge. Finally, given the challenge, the prover
generates the proof. This is the case for the 3-color graph proof. The commitment is
the list of committed colours for each vertex. The challenge is an edge. The final proof
is the opening for the vertices of the edge. Such a three-way move protocol is called
a Sigma protocol, and there is a method called the Fiat-Shamir heuristic [34] which
can be used to create non-interactive proofs from interactive ones. The idea is that the
prover can create the challenge by itself and does not need to interact with the verifier.
To do this, the prover uses a random oracle and queries it with all the public parameters
of the proof as well as the commitment. The output of the random oracle is used in the
challenge. The prover outputs the commitment, the random oracle outputs, and the
proof. The verifier can thus recompute the challenge by querying the random oracle
to check that the challenge is valid, and then verify the proof. Note that in this context,
zero-knowledge and knowledge soundness can’t be proved by rewinding. Instead, the
proof relies on the programmability of the random oracle.

Non-Interactive Zero-Knowledge Proof of Knowledge. We now have all the elements
we need to provide a formal definition of the tool we will use during this thesis, namely
non-interactive zero-knowledge proof of knowledge.

Definition 2.5.3 (Non-Interactive Zero-Knowledge Proof of Knowledge). A NIZK is
composed of the following algorithms:
NIZK.Setup(1λ)→ (pparNIZK): The setup algorithm takes as input the security parameter

and then outputs public parameters pparNIZK.
NIZK.Pr(pparNIZK, x, w)→ π: The proof algorithm takes as input public parameters

pparNIZK, a statement x, and a witness w and outputs a ZK proof π.
NIZK.Ver(pparNIZK, x, π)→ b ∈ {0, 1}: The verification algorithm takes in input a proof, a
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statement, and the public parameters pparNIZK. It outputs 1 if the proof is accepted
and 0 if it is rejected.

Definition 2.5.4 (Knowledge Soundness). For all PPT adversaries A there exist an
extractor ExtA and a negligible function negl() with pparNIZK ← NIZK.Setup(1λ) and
((x, π);w)← ExtA(pparNIZK) such that AdvKSNIZK(A) = Pr[(x,w) /∈ R∧ NIZK.Ver(pparNIZK, x,
π) = 1] = negl(λ).

Definition 2.5.5 (Zero-knowledge). For all (x,w) ∈ R and for all PPT adversaries A
there exist a simulator such that AdvZKNIZK(A) = |Pr[(pparNIZK) ← NIZK.Setup(1λ);π ←
NIZK.Pr(pparNIZK, x, w)]−Pr[(pparNIZK)← NIZK.Setup(1λ); π ← Sim(pparNIZK, x)]| = negl(λ).

Zero-Knowledge Succinct Non-Interactive Argument of Knowledge. We can define
an additional requirement for NIZK, namely succinctness. Succinctness means that
the proof should be small and the verification should be efficient. More precisely, the
size of the proof should be sublinear in the security parameter and the verification
should be linear in the statement size. Such proof systems are called Zero-Knowledge
Succinct Non-interactive Argument of Knowledge (ZK-SNARK) [35]. As we said before,
a powerful aspect of ZK-SNARK is that the statement aims to prove the validity of
some NP statement that forms a computational model (e.g., an arithmetic circuit).
Thus, by encoding a program in that NP statement, it is possible to prove that one
have done some computation that produces some outputs, without revealing what
the associated input is. This leads to generic proof systems. However, unlike more
specific proof systems (e.g., proof of knowledge of a discrete logarithm), ZK-SNARK
are computationally very expensive.

2.6 Authenticated Key Exchange

In most situations, when two entities want to communicate remotely, they are forced
to communicate over an insecure channel (e.g., the Internet). An Authenticated Key
Exchange (AKE) protocol allows one to create a secure channel session from scratch
over an insecure channel. Intuitively, when communicating over a secure channel,
both endpoints are authenticated, and thus have a guarantee about who they are
communicating with and that the messages they exchange have integrity and confi-
dentiality protection. We will now describe a formal model for AKE, taken from the
work of Jager et al. [36] and Krawczyk et al. [37]. We begin by describing one of the
building blocks that we will use to define AKE security, namely the Stateful Length
Hiding Authenticated Encryption scheme.
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Stateful Length Hiding Authenticated Encryption. An authenticated encryption
scheme with associated data (AEAD) is a scheme that can be used to protect the
confidentiality and integrity of a message in a symmetric setting. Furthermore, the
message can be accompanied by what is known as associated data, for which only
integrity and authentication protections are provided. It consists of an encryption
algorithm which takes as input a key, a message and associated data in order to
produce a ciphertext, and a decryption algorithm which works in the same way but takes
as output the ciphertext and returns a message. Intuitively, integrity ensures that it is not
possible to modify the message or associated data, and confidentiality ensures that it is
not possible to learn the contents of the message. Authenticated encryption is the basic
tool to provide a secure channel. In practice, however, many AKE protocols provide more
than integrity and confidentiality over the communication channel. They often also allow
the order in which messages were sent to be checked and the length of the message to
be hidden. Therefore, we can define Stateful Length Hiding Authenticated Encryption
schemes sLHAE = (sLHAE.Init, sLHAE.Enc, sLHAE.Dec). To use sLHAE schemes, one
must first initialize the states (ste, std)← sLHAE.Init(). Then it can encrypt a message
(c, st′e)← sLHAE.Enc(k, l, ad,m, ste) where l is the length of the ciphertext. The ciphertext
can be decrypted later: (m, st′d) ← sLHAE.Dec(k, ad, c, std).

Phases. We consider two-party AKE protocols consisting of two phases. The pre-accept
phase corresponds to the phase in which the two parties authenticate each other and
establish a shared key. During the post-accept phase, the parties can exchange data.
When one party is authenticated by the other, it is said to be in an accepting state. The
post-accept phase occurs when both endpoints are in an accepting state.

Sessions. The protocol runs in sessions between an instance of one endpoint and
an instance of the other. We denote the i-th instance of the party P by πi

P. Each P

is associated with a tuple of long-term parameters (sk, pk) and each instance keeps
track of the following attributes:

• πi
P.pid : this is the identifier of the communication partner which must be another

party Q ∈ P \ P.
• πi

P.T : this attribute is a transcript of all messages sent and received by instance
πi
P in chronological order.

• πi
P.ρ : where ρ ∈ {init, resp}, indicating whether party P was the initiator or the

responder in session πi
P.

• πi
P.α : with α ∈ {accept, reject,⊥} indicate whether the party identified by πi

P.pid

has been authenticated (accept) or not (reject). If authentication has not yet
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taken place, then α = ⊥.
• (πi

P.ke, π
i
P.kd) : these are the (authenticated) encryption and decryption session

keys of the instance such that (ke, kd) ∈ K where K is the keyspace. They can
start with the special symbol ⊥ as a value and change later when πi

P.α = accept.
• (πi

P.u, π
i
P.v) : u and v are counters initialised to zero.

• (πi
P.ste, π

i
P.std) : these are the states used by the sLHAE scheme. They start with

the special symbol ⊥ and are replaced with appropriate values by the sLHAE.Init

algorithm as soon as πi
P.α = accept.

• πi
P.C : this is a list of ciphertext initially empty.

• πi
P.b : this is a bit randomly assigned by the challenger at the start of the game.

Definition 2.6.1 (Matching conversation). We say that πi
P has a matching conversation

with πj
Q if πj

Q.T is a prefix ( i.e., the first few messages of the two transcripts are the
same) of πi

P.T and πi
P has sent the last message or if πj

Q.T = πi
P.T and πj

Q has sent the
last message.

Oracles. We will give the adversary access to the following oracles :
πi
P ← oNewSession(P,Q, role) : The new session oracle allows a new communication

session to be instantiated between party P and party Q. The instance is set up so
that πi

P.pid = Q and πi
P.ρ = role ∈ {init, resp}.

(m∗,⊥)← oSend(πi
P,m) : The send oracle allows the adversary to send message m to

instance πi
P during the pre-accept phase. If πi

P.α = accept, then the oracle outputs
⊥ otherwise the oracle responds with the message m∗ according to the protocol
specification. A special message m = start can be used to start a session.

k ← oReveal(πi
P) : This oracle reveals the session key of πi

P. The key is equal to ⊥ if
πi
P.α ̸= accept.

sk← oCorrupt(P) : With this oracle, the adversary can gain access to the long-term
secret key skj of party P. We say that party P is τ -corrupted if oCorrupt(P) is the
τ -th query of an adversary A.

(cb, ⊥)← oEncrypt(πi
P,m0,m1, l, ad) : This oracle replaces oSend during the post-accept

phase. If πi
P.α ̸= accept it outputs ⊥. Otherwise, because the instance is in an

accept state it means that πi
P.ste ̸= ⊥. Hence, the oracle can encrypt one of the

two messages (cb, st
′)← sLHAE.Enc(πi

P.ke, l, ad,mb, π
i
P.ste) depending on πi

P.b. The
oracle also increments the counter u by one, updates the state of the instance
πi
P.ste ← st′ and appends cb to πi

P.C. Finally it outputs cb.
(m, ⊥)← oDecrypt(πi

P, c, ad) : During the post-accept phase, the decryption oracle
allows to decrypt ciphertext c. If πi

P.α ̸= accept or πi
P.b = 0 it outputs ⊥. Otherwise,
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it runs (m, st′)← sLHAE.Dec(πi
P.kd, ad, c, π

i
P.std). It increments v, updates πi

P.std ←
st′ and outputs m.

Security game. We define ACCE security, introduced by Jager et al. [36] by means of a
game. Let GACCE(λ,NP) be a game between a challenger G and an adversary A. We de-
note NP = |P|. The challenger starts by initializing each party P ∈ P with its long-term key
pair (pki, ski). The adversary is then given access to all the public keys and to the oracles
oNewSession, oSend, oReveal, oCorrupt, oEncrypt, and oDecrypt as described above.
From this game we define two advantages:

1. AdvACCE−Auth
AKE (A) is the probability that there is an instance πi

P such that :
• πi

P.pid = Q and πi
P.α = accept such that πi

P switches to an accepting state
during A τ0-th query.

• Q is τ -corrupted and τ0 < τ

• A did not query oReveal(πj
Q) with πj

Q.α = accept and having matching conver-
sation with πi

P.pid.
• there is no instanceπj

Q with πi
P having a matching conversation to πj

Q.
2. The second advantage is defined as the probability that A produces a triplet

(P, i, b′) such that : AdvACCE−SC
AKE (A) = |Pr[πi

P.b = b′]− 1
2
| with b′ ̸= ⊥ if the following

conditions hold:
• πi

P.pid = Q and πi
P.α = accept such that πi

P switches to an accepting state
during A τ0-th query.

• Q is τ -corrupted and τ0 < τ

• A did not query oReveal(πi
P) or oReveal(πj

Q) with πi
P having a matching conver-

sation to πj
Q.

Definition 2.6.2. We say that an AKE scheme is ACCE-secure if the exists a negligible
function negl() such that AdvACCE−Auth

AKE (A) ≤ negl(λ) and AdvACCE−SC
AKE (A) ≤ negl(λ).

A simple syntax. The syntax and construction of AKE schemes can be quite complex.
In this thesis we will only consider such schemes as high-level black boxes. Thus, we will
use a very simple syntax consisting of a key generation algorithm (pk, sk)← AKE.KGen(1λ)

that generates long-term credentials, a secure channel establishment algorithm (k,⊥)←
AKE.Sce(P,Q) that corresponds to the pre-accept phase (i.e., mutual authentication and
establishment of shared secret) described above, and an encryption c← AKE.Enc(k,m)

and decryption m ← AKE.Dec(k, c) algorithm for the post-accept phase.
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2.7 Conclusion

In this chapter we have briefly introduced the cryptographic schemes we will be using
throughout this thesis. We focused on the syntax and formal definitions of security.
There are many ways of implementing these schemes, but the constructions we propose
in this work are independent of any particular implementation.
Hash functions and signatures are the basis of all attestation schemes for authenticating
measurements. Vector commitment schemes will be used to handle multiple attestation
requests in one go, while zero-knowledge proofs will be used to make attestation more
privacy-friendly. Finally, AKE will enable us to transfer attestations confidentially and
only to authorized verifiers.
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DEEP Attestation is the fundamental tool for providing a fully-fledged attestation
service dedicated to the telco cloud. In this chapter, we introduce an efficient and
scalable deep attestation scheme with strong security properties. This work focuses
on the use case of a TPM Rot of Trust, but the idea can be extended to any RoT.
This work was published at ACNS 2022 [2].

3.1 Introduction

In Section 1.2.2 we introduced deep attestation as a means of attesting all layers of
a virtualised infrastructure. The idea is to virtualise the root of trust with a software
implementation managed by the hypervisor. Each virtual component is then given
access to a specific virtual RoT so that it can undergo remote attestation. However, we
also want to verify that a VM and a hypervisor that are attested are actually associated
(i.e., the VM is running on top of the hypervisor). In Section 1.2.2, we also described
two common approaches to providing layer association: single-channel deep attestation
and multi-channel deep attestation. In short, the single channel approach consists
of attesting the hypervisor through the VM attestation, typically the VM will request a
hypervisor attestation embedding its own attestation report. On the other hand, with
multi-channel attestation, the VM and hypervisor are attested completely independently.
The multi-channel approach provides a very effective method of attesting an infrastruc-
ture with many VMs running on a hypervisor, but with no means of verifying the link. In
contrast, single-channel attestation provides strong binding, but scales poorly because
each VM attestation implies a hypervisor attestation. When using inefficient RoTs such
as a TPM, single channel deep attestation becomes unusable in practice.

3.1.1 Towards authorized linked attestation

We take a middle path between single and multi-channel deep attestation to obtain
layer-binding between VMs and hypervisors with reasonable efficiency. Our solution is
simple, yet elegant, using standard cryptography to ensure that a hypervisor’s single
attestation is linkable to any number of VMs managed by it.
Cryptographically, we see this as a new primitive, which we call Authorised Linked
Attestation, built in steps from increasingly stronger primitives. Each of these interme-
diate steps plays a dual role: on one hand, it formalises security guarantees that are
of independent interest for attestation; on the other hand, it provides an intuition of the
guarantees that specific cryptographic primitives can help to achieve.
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The first and fundamental step in our construction is basic attestation. This primitive sim-
ply states whether a component is compromised or not. In our security model, this prop-
erty is assumed to be guaranteed by default when demanding an attestation from a RoT.
Next, authenticated attestation builds on basic attestation by associating parties with
identities. The attestation must not only indicate whether the party is compromised, but
also authenticate the component. We have therefore added a cryptographic component
to basic attestation, which is sufficient to provide the basic functionality required for
multi-channel attestation.
One step further, the linked-attestation primitive, built from authenticated attestation,
will allow two different components to (a) attest their own states; (b) provide auxiliary
material that makes two separate attestations linkable. While this primitive has no
direct parallel in real-world attestation, we use it as a convenient way to split the
security proof of our final result into two: linked-attestation will focus on proving the
fact that two attestations can be securely linked; whereas authorised linked-attestation
models attestation as a protocol, using fresh randomness and a secure channel with
an honest attestation server.
Finally, we add a new party to the system: the attestation server, which acts as a
verifier. We then combine the linked attestation primitive with a unilaterally authenti-
cated authenticated key exchange protocol, which authenticates the attestation server
and allows the attestation itself to remain confidential with respect to a Person-in-
the-Middle (PitM) adversary.

3.1.2 Our contributions

Our work on deep attestation consists of three main contributions.

A cryptographic scheme. Our scheme ensures secure and efficient linked DA. The
hypervisor and VMs each attest only once. However, we also embed a list of public keys
(associated with the VMs managed by the hypervisor) within the hypervisor attestation,
which is established by the root of trust. To authenticate the forwarded keys, they
are integrated into the attestation nonce provided by the attestation server. If the
hypervisor’s attestation verifies, then the attestation server can link that hypervisor with
the (subsequently attesting VMs) which use keys in the forwarded list. If the hypervisor’s
attestation fails, then the public keys cannot be trusted.

Provably secure authorized linked attestation. An important advantage of our
approach is that we have a fully-formalized provable-security guarantee. We use a
composition-based approach, constructing primitives that are increasingly stronger
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out of weaker ones. Our goal is to ultimately obtain authorized linked attestation : a
primitive which allows components to individually attest (to an authorized entity), and
to have their attestations linked.
Authorized linked attestation will have three properties: authorization (only an authorized
server can query an attestation report); indistinguishability (no Person-in-the-Middle
adversary can know even one bit of a report exchanged during a legitimate protocol
with probability significantly higher than 1

2
); and linkability (an attestation server can

detect if two components are not linked).
At the basis of our construction is a yea-or-nay basic attestation scheme, which is
“secure” by assumption. Its functionality is simple: the basic attestation scheme outputs
a faulty attestation whenever a component is compromised, and a correct one for
honest components. In other words, this basic attestation scheme is a compromise-
oracle: when queried it (indirectly) produces a proof of whether a component has
been tampered with or not.
Based on this assumption, we build a sequence of cryptographic mechanisms that add
security against stronger adversaries. A first step is to build authenticated attestation: a
scheme which allows us to authenticate the component that provides the attestation, and
additionally ensures that this component’s attestations always verify prior to corruption,
but fail to verify as soon as compromise occurs. We can think of authenticated attestation
as the minimum provided (and required) by multi-channel attestation.
Then, we consider linked attestation: a scheme that introduces the hypervisor-VM rela-
tionship described above, and permits not only the verification of individual attestations,
but also (publicly) linking attestations. The final scheme is authorized linked attestation
which introduces an authorized server that is the only party able to access an attestation
report and which is responsible for linking attestation together.

Implementation. We provide an implementation of our authorized linked attestation
scheme and create a test environment to measure the performance of the scheme.
We used a regular laptop equipped with a TPM 2.0 (as a root of trust) to create this
environment. We set up an architecture with one hypervisor and multiple VMs. The
VMs use full virtual TPMs as a virtual root of trust. We made over 100 experiments.
This showed that our solution is more efficient than the single channel approach and
adds a negligible computational burden (a hash function computation) compared to
traditional multi-channel DA.
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3.2 Basic Attestation

We start with the basic attestation primitive BA, which is secure by assumption in our
model. We discuss this assumption in more detail in Section 3.2.3. The idea of this basic
building block is to capture the fact that a measurement process should be secure and
be able to collect evidence that reflects the current state of the target of the attestation.
Thus, if the target is compromised, this primitive will always produce an attestation that
does not verify, and vice versa, for an honest party, only attestations that verify will be
produced. In basic attestation, the attestation report is simply the evidence. To denote
an evidence that is not valid, we use the symbol e. Every time basic attestation is run
on a compromised component, it will return this symbol e. On the other hand, a valid
evidence is denoted by a classic attestation report rpt.

3.2.1 Syntax

With this primitive BA we consider a single party P associated with a single bit attribute
γ that indicates whether the party is honest or has been compromised. This attribute
is originally set to 0 to indicate that the party is honest and it is flipped to 1 once the
party has been compromised. If P.γ ever takes the value 1 it can never going back to
0. Additionally, as stated, a compromised party attestation yields the symbol e, while
an honest one yields rpt. The syntax of BA is as follow:
BA.Setup(1λ)→ ppar : On input the security parameter λ this algorithm outputs public

parameters ppar.
BA.Attest(ppar)→ rpt : The attest algorithm, given public parameter ppar, outputs an

attestation report rpt such that rpt ̸= e if P.γ = 0. Otherwise, if P.γ = 1 it outputs a
special symbol e.

BA.Verify(ppar, (rpt, e))→ {0, 1} : This algorithm takes as inputs public parameters
ppar and either an attestation report rpt or an error symbol e.By convention, an
output of 0 means the attestation fails, while if the output is 1, the attestation
succeeds. We require, by construction, that for all ppar : BA.Verify(., e) = 0.

Correctness. We demand correctness: when a non-e report is generated, the latter
will automatically verify. Our basic attestation component thus becomes the minimal
non-cryptographic assumption that we need to make to prove our scheme secure
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Prover P Verifier
Setup phase: BA.Setup(1λ)→ ppar

BA.Attest(ppar)→ rpt
rpt−−→ BA.Verify(ppar, rpt)

→ 0 if P compromised (P.γ = 1)
→ 1 if P uncompromised (P.γ = 0)

Figure 3.1: Basic attestation description with an honestly-generated target. Notice that there is
no authentication involved.

3.2.2 Security

While our primitive is secure by assumption, we can formally define its security. To
do so, we first define the following oracle :

oBA.Attest()→ (rpt ∪ e) : This oracles calls the BA.Attest algorithm for the party P

and returns the result to the adversary A. The challenger G stores the result in a
database DB.

Then we consider the following game:

Game GBA(λ)

ppar← BA.Setup(1λ)
P.γ ← 1
AoBA.Attest()(1λ, ppar)

A wins iff. ∃ rpt ∈ DB | BA.Verify(ppar, rpt) = 1

Figure 3.2: Basic attestation game.

In this game, the challenger sets the compromised bit γ for party P to 1, indicating that
P is compromised. The adversary can query an oracle to get attestations of this party.
The challenger records the outcomes in DB. The adversary wins if there is a report
in DB that is verified correctly. We denote AdvSECBA (A) as the probability of adversary A
winning the game. In our construction, we assume that no adversary can fool a RoT into
thinking a compromised component is in fact intact except with negligible probability.

3.2.3 Discussion

One may wonder at this point what our purpose might be in constructing a security
model for a primitive that is by definition correct and secure. We need that security
model in our reductions: we will use the attestation primitive to build stronger, linked
attestation, and then we will want to make the argument that if an attacker can break
the larger primitive, it will also break the smaller primitive. As the smaller primitive is
secure by design, this is not possible, and hence the larger primitive is also secure. In
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practice, the gap will consist of attackers that are able to fool the RoT into establishing
a valid attestation report for a compromised component.

3.3 Authenticated Attestation

Basic attestation acts as a foolproof way of telling whether a device is compromised or
not. However, the security it provides is very weak. For one thing, it has no authentica-
tion guarantees, so potentially one could use an attestation report that was honestly
generated for an honest component to attest a compromised one. Another problem that
is more subtle concerns the way components are compromised. Because the basic
reports described in the previous section have no timestamp, nor specific freshness, we
cannot take into account adaptive tampering. In the security game, the party generating
the attestation report is either honest or compromised from the beginning. Yet, ideally
we would like a primitive that ensures that a party can start out as honest (and all the
reports generated at that time verify as correct), and later be compromised (and all the
reports generated after that moment will fail). We can do this by deploying cryptographic
solutions (namely a signature along with a nonce).

3.3.1 Syntax and Construction

The new primitive authenticated attestation will consider an environment containing up
to N parties. Similarly to the BA scheme, each party keeps track of the compromise
bit γ. However, parties know a pair of public and secret keys denoted, for each party
P, P.pk (the public key) and P.sk (the secret key).
We construct an authenticated attestation scheme ANA out of basic authentication BA.,
a large set of nonces N ← {0, 1}ℓ (with ℓ chosen as a function of the security param-
eter λ), and an EUF-CMA-secure signature scheme SIG = (SIG.Setup, SIG.KeyGen,
SIG.Sign, SIG.Verify).

ANA.Setup(1λ)→ ppar : This algorithm run BA.Setup(1λ) a number N times, outputting
ppar1, ppar2, ..., pparN. Each time ppari is created, a handle Pi for the party is also
created (it will be the party associated with the instance of BA.Attest run for those
parameters). It sets ppar← (ppar1, ppar2, ..., pparN,N), and outputs this value.

ANA.KeyGen(Pi)→ (Pi.sk,Pi.pk): The key generation algorithm keeps a counter count
(starting from 0), which indicates how many times this algorithm has been run.
If at the time this algorithm is queried count < N , then it runs SIG.KeyGen as a
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black box and outputs the resulting (sk, pk) keys. It sets Pi.sk← sk and Pi.pk← pk.
Party Pi is then initialized with these keys.

ANA.Attest(ppar,P.sk, nonce)→ authRpt ∪ e : On input the public parameters ppar, a
private key P.sk of a party P (which has already been registered), and a value
nonce

$← N , this algorithm first runs rpt ← BA.Attest(ppar), then the algorithm
signs σ ← SIG.Sign(P.sk, rpt|nonce), that is, it signs a concatenation of the nonce
and the obtained attestation report. The output of this algorithm is authRpt ←
(rpt, σ). If the required party or key does not exist, the value e is output by default.
If rpt = e, then we instantiate authRpt = e.

ANA.Verify(ppar,P.pk, nonce, (authRpt ∪ e))→ {0, 1} : On input public parameters ppar,
a public key P.pk of a party P, an auxiliary value nonce ∈ N , this algorithm first
checks if the last input is e; if so, the algorithm outputs 0 by default. Else, the
algorithm parses authRpt = (rpt, σ) (with rpt ̸= e by construction), then runs
b← SIG.Verify(P.pk, rpt, σ) and d← BA.Verify(ppar, rpt). The algorithm outputs
b∧ d as its response. Notably, 1 is output if, and only if, the signature and the basic
attestation verify concomitantly.

Prover P Verifier
Setup phase: ANA.Setup(1λ)→ ppar

ANA.KeyGen→ (P.pk,P.sk)

ANA.Attest(ppar,P.sk, aux)→ (rpt, σ)
authRpt=(rpt,σ)−−−−−−−−−−→ ANA.Verify(ppar,P.pk, aux, (rpt, σ))

→ 0 if P compromised (authRpt = e or σ invalid)
→ 1 if P uncompromised (authRpt ̸= e and σ valid)

Figure 3.3: Authenticated attestation built upon basic attestation.

3.3.2 Security

We formalise the security of the authenticated attestation primitive and show that
our construction actually guarantees requirements assuming that the cryptographic
secret and computation cannot be tampered with, and that there exists a secure basic
attestation scheme BA (i.e., the RoT is secured).
Intuitively, the security we require for this primitive will be that a valid authenticated
attestation report for a party P and fresh auxiliary information (used as nonce) is hard
to forge by an adversary which knows all the public information, can register and
compromise users, and query an attestation oracle that returns a valid attestation report
or e. In particular, in a secure scheme, verification should fail if either the authentication
or the attestation fails. In other words we want our primitive to guarantee that the
evidence is fresh and comes from a legitimate authenticated RoT.
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To provide a formal definition of a secure authenticated attestation scheme we first
define the following oracles :

oANA.Reg()→ (Pi,Pi.pk) : If i ≤ N, it runs (Pi.sk,Pi.pk) ← ANA.KeyGen(Pi). It outputs
Pi.pk to all parties and keeps Pi.sk private, stored in the key attribute of party Pi. A
handle for this party is also returned to A.

oANA.Attest(Pi, aux)→ authRpt ∪ e : This oracle runs ANA.Attest(ppar,Pi.sk, aux) and
returns the outputs. On adversarially chosen input values Pi and aux, the oracle
updates a list Lrpt ← Lrpt ∪ (Pi, aux, authRpt).

oANA.Compromise(Pi)→ OK : This oracle allows an adversary to compromise party Pi,
thus changing Pi.γ to 1.

oANA.Auth(Pi,m)→ σm : This oracle can only be queried for a party whose compromise
bit is 1, and it outputs an EUF-CMA-secure signature keyed with Pi.sk on a
message m. We require that m be outside the range of any basic attestation
scheme. This last oracle reflects the fact that compromised parties can access a
signing function within the TPM.

We consider the following game :

Game GAN(λ)

ppar← ANA.Setup(1λ)
N← 1
(P, aux, authRpt)← AoANA.Reg,oANA.Attest,oANA.Compromise,oANA.Auth(1λ, ppar)

A wins iff. ANA.Verify(ppar,P.pk, aux, authRpt) = 1 ∧ (P, aux, authRpt) /∈ Lrpt

Figure 3.4: Authenticated attestation game.

Definition 3.3.1 (Secure Authenticated Attestation). We say that the authenticated
attestation scheme ANA is secure if for all PPT A, there exists a negligible function negl(.)

such that : Pr[A wins GAN(λ)] ≤ negl(λ).

Theorem 3.3.1 (Secure Authenticated Attestation). The ANA scheme is secure assuming
that (1) the BA scheme is secure (2) the size of N is large and (3) the SIG signature
scheme is EUF-CMA secure. More formally, if the exist an adversary A that breaks
the authenticated attestation game GAN(λ) with advantage AdvSECANA(A) then there exists
adversaries B1 and B2 such that : AdvSECANA(A) ≤ AdvSECBA (B1) + AdvEUF−CMA

SIG (B2)

N
where N is the

number of parties P.

Proof. We give a proof by sequence of games :
G0: The original game.
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G1: This game is defined as the previous one except that the challenger aborts the
game if a compromised component is able to generate a valid attestation report.
Suppose that there exists an adversary B1 that has a non-negligible advantage
AdvSECBA (A) of winning the basic attestation game GBA(λ). This means that there
exists a party P such that P.γ = 1 (i.e., P is compromised) but rpt ∈ DB with
BA.Verify(ppar, rpt) = 1 (note that rpt = e potentially). By the difference lemma we
have : |Pr[A wins G0]− Pr[A wins G1]| ≤ AdvSECBA (A), for B1 the adversary having
the maximal advantage to break basic attestation.

G2: This game is defined as the previous one except that the game aborts if A can
generate a valid signature. We show that : |Pr[A wins G1] − Pr[A wins G2]| =
AdvEUF−CMA

SIG (B2)

N
where AdvEUF−CMA

SIG (B2) if the advantage in the EUF-CMA game and
N the number of parties. The proof is done by reduction. Assume that A can
generate a valid authRpt∗ (i.e., ANA.Verify(ppar,P∗.pk, aux∗, authRpt∗) = 1) with
(P∗.pk, aux∗, authRpt∗) /∈ Lrpt. We then show that there exists adversary B2 using
A as a sub-routine with non-negligible advantage of winning the EUF-CMA game.
Adversary B2 simulates the game of A thus acting as the challenger in the GAN(λ).
The behaviour of B2 is defined as follows :

– receive pk from its own challenger of the EUF-CMA game.
– run the ANA.Setup algorithm to get ppar (and also N).
– randomly select i∗ $← {1, ...,N}. Two cases need to be studied depending on

the i-th query of A:

* case 1 : i ̸= i∗. WhenA calls oracle oANA.Reg() then B2 runs ANA.KeyGen(Pi)

to retrieve (Pi.sk,Pi.pk). B2 sends back Pi.pk to A. When A calls oracle
oANA.Attest() then B2 runs algorithm ANA.Attest (which is possible since
B2 has the corresponding secret key). B2 sends back to A the output of
the algorithm. Note that in this case, the simulation is the same as the
original game since B2 uses the same algorithm of the oracles.

* case 2 : i = i∗. In this case, B2 will inject its own material to use it in
its EUF-CMA game. When A calls oracle oANA.Reg(Pi∗) then B2 simply
return pk (the one of the EUF-CMA game). Note that in this case, B2
does not have access to sk. Thus when A calls oracle oANA.Attest(),
B2 cannot sign the report. Instead, B2 runs BA.Attest(ppari∗) and send
to its challenger the report it get as an answer concatenated with the
nonce rpt|aux. In response, its challenger will send a signed value of
it using sk (as it is possible in the EUF-CMA game) . B2 then forward
this to A. The view of A that is different from the original game in this
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case is the output of the oANA.Auth oracle. The latter runs algorithm
ANA.Attest which generate an attestation report rpt← BA.Attest(ppari∗)

and a signature σ ← SIG.Sign(Pi.sk, (rpt, aux)). In the simulation, B2 has
access to algorithm BA.Attest but the signature scheme is different. Yet,
both signature schemes are EUF-CMA thus their outputs are indistin-
guishable (meaning that A cannot decide from which schemes the output
comes from with non-negligible probability) since the keys have the same
probability distribution. Hence, the simulation of the game by B2 and the
real game are indistinguishable.

– When A return its forgery on query i, B2 parses authRpti as (m∗|aux∗, σ∗).
– Finally B2 returns (m∗|aux∗, σ∗) to its challenger and wins if A forges the i∗

query (meaning that i = i∗).
By combining the results, we have : AdvSECANA(A) = Pr[A wins G0] ≤ AdvSECBA (B1) +
AdvEUF−CMA

SIG (B2)

N
which is negligible.

3.4 Linked Attestation

Authenticated attestation allows the attestation of one (out of many) components, based
on that component’s unique secret key. If we define now parties as being either
VMs or hypervisors, the notion of authenticated attestation suffices to capture the
basic guarantees of multi-channel deep-attestation. However, recall that our goal is to
ultimately allow parties to link their attestations (a hypervisor’s attestation should, e.g.,
be linkable to that of a number of VMs also hosted on that platform).
In this section we describe our next primitive: linked attestation. The latter takes place in
an environment where several parties are registered in a linked way. This corresponds to
a single platform. A first step is platform registration, by which several parties are linked
on the same underlying hardware. Each entity later generates a linkable attestation,
verifiable on its own and linkable with other linkable attestation reports.

3.4.1 Syntax

We now consider multiple parties as before but which can now additionally belong
to various types of components (e.g., VMs or hypervisors). Although our application
scenario is that of linking VM and hypervisor attestations, we make our framework more
generic than that. Instead of just two types of components, we consider linkable sets
S1, S2, ..., SL, which resemble equivalence classes. These sets are defined such that
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any party in one set (say PS1) can produce an attestation that is linked to attestations
produced by parties in sets S2, ..., SL. We write P ⋄ Q to say that two parties are linked.
The relation is reflexive (P ⋄ P), symmetric (if P ⋄ Q, then Q ⋄ P), and transitive (if P ⋄ Q
and Q ⋄ R, then P ⋄ R). An intuitive depiction of these sets appears in Figure 3.5.

Figure 3.5: Linkable sets.

We formalize a linked-attestation scheme LKA as a tuple of algorithms LKA = (LKA.Setup,
LKA.Reg, LKA.Attest, LKA.Verify, LKA.Link), defined for some auxiliary set AUX . By
convention, we allow the use of ∅ to indicate that any of the input or output (sub)sets
might be empty.

LKA.Setup(1λ)→ ppar : On input the security parameter λ, this algorithm outputs public
parameters ppar. This security parameter includes the maximal number of allowed
disjoint linkable sets, which we denote as L.

LKA.Reg(s1, s2, ..., sL)→ {(SK1,PK1), ..., (SKL,PKL)} : This algorithm keeps as state a
number L of sets Si originally set to ∅, and a vector of sets of public keys PK (also
initialized to ∅). On input a number of subsets si (i = 1, 2, ..., L), this algorithm
first checks that ∀i, j, si ∩ Sj = ∅ (else the algorithm outputs ⊥). If the relation
is true, then the algorithm generates for each party Pj ∈ si, (forall j, i) a tuple
of public and private keys Pj.sk,Pj.pk, initializing Pj with those keys. We require
the uniqueness of all the generated public keys. The subsets si are each added
to supersets Si. The algorithm groups the keys of all parties Pj ∈ si in a pair of
private/public key subsets: (SKi,PKi), updating the i-th component PK[i] of PK
as PK[i] ∪ PKi. All parties are given access to the public-key subsets (and more
generally, to PK).

LKA.Attest(ppar,PK,P.sk, (s1, ..., sL), aux)→ (lkRpt ∪ e, lkaux) : on input public param-
eters ppar, the current set of public keys PK, the private key P.sk of some party P ,
subsets si ∈ Si, and an auxiliary value aux ∈ AUX , this algorithm outputs either a
linked report lkRpt or a special failure symbol e, and a different value lkaux (this
last entry could be used to store linkage-related information).
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LKA.Verify(ppar,P.pk, (lkRpt ∪ e), aux, lkaux)→ {0, 1} : On input the public parameters
ppar, a public key P.pk, a linked report (or a failure symbol), as well as auxiliary
values aux and lkaux, this algorithm outputs a verification bit. By convention, 0
means failure and 1 means acceptance of the attestation

LKA.Link(ppar,PK,⨿1, ...,⨿L)→ {0, 1} : On input the public parameters ppar, the set of
public keys PK, and subsets⨿i containing elements of the form (Pj.pk, aux, (lkRpt∪
e), lkaux), this algorithm outputs 1 if the reports in all of the indicated subsets can
be linked (thus also indicating the parties are linked) or 0 otherwise.

The setup algorithm outputs public parameters ppar, including the maximal number L of
sets considered for linking. One can register platforms including subsets of components
of each type: this algorithm generates keys for each party. A linked attestation algorithm
produces a linked report lkRpt and an auxiliary linking value lkaux. Finally, the verification
algorithm checks the attestation in each individual linked attestation report lkRpt and
the linking algorithm outputs 1 if several linked attestations seem to belong to the
same registered platform, and 0 otherwise. The global idea of the linked attestation
scheme is also depicted in Figure 3.6.

Figure 3.6: Linked attestation primitive. The dashed line indicates a platform under the same
registration. In this example, both platforms are composed of two subsets (namely S1 and S2).
There are a total of three attestation report verifications (P1,2, Q1,1, P2,2). The link verification
outputs true when the devices are registered under the same platform and false otherwise

Correctness. The LKA scheme is built upon the ANA scheme. There are two types
of component to consider, VM and hypervisor. When a component is registered on a
platform, its public key is appended in a list (PK1 for VMs, and PK2 for the hypervisor).
The public key of a VM is appended to the report in LKA.Attest and can be retrieved by
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the hypervisor. The latter can link the attestation to a public key via algorithm LKA.Link.
We consider two cases to verify the correctness (1) a VM (not compromised) is not
registered on the platform, and (2) a component (VM or hypervisor) is compromised. For
(1) the attestation will be correct since the component is not compromised, but the linking
process will abort since the public key does not belong to PK1. For (2) if a VM (or the hy-
pervisor) is compromised then the attestation will fail since the authenticated attestation
is supposed to be correct (the ANA.Attest algorithm is executed to generate the report).

3.4.2 Security

The security of linked attestation informally states that an adversary, which has Person-
in-the-Middle capabilities and can compromise devices at will, cannot make it appear
that two devices are linked when they are not, in fact, so.
A significant limitation on the adversary’s capabilities is that compromising a device
will not leak its private keys (which are assumed to be held by a TPM). However, the
adversary will gain limited oracle access to those keys upon compromising the device.
The limitations to those queries follow rules of access to an actual TPM.
As usual we define the security of the primitive by means of a game which in addition
to a security parameter λ will also be parameterized by a set of functions F . We call
those functions permitted key-access functions. The adversaries wins if it able to make
attestation stored in Lrpt for parties registered in different platforms link. However, at this
point the adversary is constrained to a change-one-change-all kind of game: it cannot,
for instance, append an lkaux component of its choice to an honestly-generated lkRpt, nor
vice-versa. In the security game, the adversary registers platforms and can compromise
some of their components. When a component is compromised, the adversary gets
oracle access to a set of permitted functions of the component’s private key. As a result,
the impact of the security proof depends on the function space F . The more functions
the adversary is able to query once it compromises a component, the more security our
primitive is able to provide. However, note that we cannot give the adversary access to
some functions, such as the identity function on the component’s private key.
More formally we define the following oracles :

oLKA.Reg(n1, ..., nL)→ (PK1, ...,PKL) : The linked user-registration oracle creates a
linked platform consisting of ni components of the type indicated by Si. The
challenger first instantiates a counter Ni = 0 for all i; it also instantiates subsets si

as a tuple of ni handles Pi,j , with Ni +1 ≤ j ≤ Ni + ni and then runs the algorithm
LKA.Reg(s1, s2, ..., sL), instantiating the parties with their keys and outputting the
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public keysets to the adversary. The subset consisting of the list of subsets is
added to LReg. We note that this way of registering parties ensures by construction
that no party finds itself in multiple sets, nor on multiple platforms.

oLKA.HAttest(P, (s1, ..., sL), aux)→ (lkRpt ∪ e, lkaux∗) : This oracle first verifies that P.γ =

1. If the condition is false (P is compromised), then this oracle outputs an error sym-
bol⊥ (compromised parties must use the oracle oLKA.CAttest described below). If
the condition is true, then this algorithm runs LKA.Attest(ppar,PK,P.sk, (s1, ..., sL),
aux), and returns the output to the adversary. The tuple (P, (s1, ..., sL), aux, lkRpt,

aux∗) is stored in Lrpt.
oLKA.Compromise() : This oracle allows an adversary to compromise party Pi, thus

changing Pi.γ to 1.
oLKA.CAttest(P, (s1, ..., sL), aux, f)→ (e, aux∗) : This oracle first verifies that P.γ = 1

(else ⊥ is returned). If the condition holds, then this oracle first checks that f ∈ F

and if so, it runs f on P.sk and inputs aux to output aux∗ (i.e., aux∗ ← f(P.sk, aux)).
Then it runs oLKA.HAttest(P, (s1, ..., sL), aux) to obtain lkRpt (the second output is
discarded). Note that by the security of the linked attestation primitive, we will
have that lkRpt = e. The tuple (P, (s1, ..., sL), aux, lkRpt, aux

∗) is added to Lrpt and
(lkRpt, aux∗) is returned to A.

We now consider a game GLK(λ, F ) between adversary A and challenger G. The
challenger begins by running LKA.Setup(1λ), returning ppar to the adversary, and then
it instantiates two lists: a list of parties LReg ← ∅ and a list of linkable attestations
Lrpt ← ∅. The adversary then plays the game by using the oLKA.Reg, oLKA.HAttest,
oLKA.Compromise and oLKA.CAttest oracles adaptively.
At the end of its interaction, A outputs a party P and a tuple of subsets (s̃1, ..., s̃L) with an
index i∗ such that ∀i ̸= i∗, si ← s̃i and si∗ ← s̃i∗ ∪ {P}. In addition the adversary outputs
for every party P ∈ s1 ∪ · · · ∪ sL (parties being indexed as Pi,j ) a tuple (aux, lkRpt, aux∗)

such that (., ., aux, lkRpt, aux∗) ∈ Lrpt. We note this completes output out.
We say the adversary wins if all the following conditions hold simultaneously:

• cond1 : For each si the parties inside this set are all registered i.e., they were
output by oLKA.Reg. In addition P is registered.

• cond2 : There exists at least one party Q ∈ sj such that P and Q were issued from
different oLKA.Reg queries.

• cond3 : By setting ⨿i ← (P.pk, aux, (lkRpt ∪ e), aux∗) and, for k ̸= i, for all Pk,j ∈ sj,
⨿k ← (Pk,j.pk, aux, (lkRptk, j ∪ e), aux∗k,j), it holds that:
LKA.Link(ppar,PK,⨿1, ...,⨿L) = 1.
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In other words, the adversary wins if it is able to make attestations stored in LReg for
parties registered on different platforms (P and Q) link. Note that there are two ways
that an attestation can end up in LReg: either it is issued for an honest component
(and then it should hold that lkRpt ̸= e), or it is issued for a compromised party, for
an adversarially-chosen evaluation of a permitted function f on a secret key (in which
case lkRpt = e). In other words, at this point a compromised component cannot just
bind the output aux∗ from the function evaluation oracle with a different report. The
adversary will gain this ability at the next step (when the freshness aux will no longer
be chosen by the adversary).

Game GLK(λ, F )

ppar← LKA.Setup(1λ)
LReg ← ∅,Lrpt ← ∅
out← AoLKA.Reg,oLKA.HAttest,oLKA.Compromise,oLKA.CAttest(1λ, ppar)

A wins iff. cond1 ∧ cond2 ∧ cond3

Figure 3.7: Linked attestation game.

Definition 3.4.1 (Secure Linked Attestation). We say that a linked attestations scheme
LKA is secured if for all PPT A, there exists a negligible function negl(.) such that :
Pr[A wins GLK(λ, F )] ≤ negl(λ).

3.4.3 Construction

We provide a construction for platforms that have two types of components: virtual
machines and their managing hypervisor. Thus, in our instantiation, L = 2. We use
an authenticated attestation scheme (ANA.Setup, ANA.KeyGen, ANA.Attest, ANA.Verify)
as a black box. The basic construction is depicted in Figure 3.8. During setup, our
linked-attestation scheme first runs ANA.Setup and outputs ppar and L = 2. Note that
by construction ANA.Setup must output a number N, denoting the maximal number of
parties that can be set up. This counter will represent a global maximum to parties
of all types that will exist in our security model.
Following setup, one can register a subset of VMs together with a hypervisor. The
algorithm runs the key-generation algorithm ANA.KeyGen of the underlying authenticated
attestation scheme for each party, independently (note that this also ensures that
the total number of parties remains at most N). Finally, keys are grouped by types
of parties: keys of VMs are output in a set of public keys PK1 and the key of the
hypervisor is output as PK2.
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LKA.Setup(1λ):
ppar′ ← ANA.Setup(1λ)
Return ppar← ppar′

// Attest hypervisor P on platform (s1, s2)
with nonce aux
LKA.Attest(ppar,PK,P.sk, (s1, s2), aux):
Parse PK as PK[1],PK[2]
// PK[1] is the set of all VM pks
Parse PK[1] as PK1,PK2...PK|S1|

// PKi contains the keys of all VMs on platform i

Set lkaux← PKk with k the index of s1 in S1
// lkaux is now the list of all VM keys on that platform
aux∗ ← H(aux||lkaux)
// Embed lkaux into a new attestation nonce
authRpt← ANA.Attest(ppar′,P.sk, aux∗)
lkRpt← authRpt
Return (lkRpt, lkaux)

LKA.Reg(s1, s2): // registers a platform with a set s1 of VMs
and the hypervisor in s2
For each i ∈ {1, 2}:

For each j ∈ si:
(Pj.pk,Pj.sk)← ANA.KeyGen(Pj)

Group all Pj.pk into PKi and all Pj.sk into SKi

Return{(PK1, SK1), (PK2, SK2)}

// Attesting VM P on platform (s1, s2) for nonce aux

LKA.Attest(ppar,PK,P.sk, (s1, s2), aux):
Get P.pk matching P.sk from PK
lkaux← P.pk // The linking information is P’s public key
aux∗ ← H(aux||lkaux) // Embed lkaux into attestation nonce
authRpt← ANA.Attest(ppar′,P.sk, aux∗)
lkRpt← authRpt
Return (lkRpt, lkaux)

LKA.Verify(ppar,P.pk, lkRpt, aux, lkaux):
// Verify attestation quote of party P
aux∗ ← H(aux||lkaux); authRpt← lkRpt
Return ANA.Verify(ppar′,P.pk, authRpt, aux∗)

LKA.Link(ppar,PK,⨿1,⨿2):
// Link VM quotes from ⨿1 and the hypervisor quote from ⨿2

Initialize AUXvm ← ∅
For each (Pj.pk, aux, lkRpt, lkaux) ∈ ⨿1:

Return 0 if LKA.Verify(ppar′,Pj.pk, lkRpt, aux, lkaux) returns 0
Return 0 if lkaux ̸= Pj.pk
// Linking fails if quotes fail to verify or authenticate each VM
Add lkaux to AUXvm // Each lkaux here is a VM public key.

Parse ⨿2 as (Pj.pk, aux, lkRpt, lkaux)
Return 0 if LKA.Verify(ppar′,Pj.pk, lkRpt, aux, lkaux) returns 0
AUXhym ← lkaux // This lkaux is a list of VM public keys.
Return 0 if AUXvm is not a subset of AUXhym

// Linking fails if the hypervisor’s list of PKs does not include all VM keys.
Return 1

Figure 3.8: Our linked attestation scheme for platforms with 2 types of components: VMs (stored
in S1) and hypervisors (stored in S2). Each type of component attests via a different LKA.Attest
algorithm, the main difference between them being that the hypervisor embeds a list of public
keys in its nonce.

The VMs and hypervisor generate linked attestations differently. The hypervisor first
fetches the public keys of all the components registered with it on the same platform. It
computes a new nonce as the hash of two concatenated values: the original auxiliary
value aux and the list of the public keys. The component then runs ANA.Attest on the
public parameters, this new nonce, and its private key, outputting the authenticated
attestation report. By contrast, when a VM attests, it computes a new nonce from the
original auxiliary value aux and (only) its own public key. The authenticated report
obtained as a result is provided as the VM’s linked report.
A VM (or a set of VMs) are considered to be linked to a hypervisor if, and only if, the
following conditions hold simultaneously: (1) the attestations of all the purportedly-linked
parties verify individually (if we run ANA.Verify it returns 1 for each individual attestation);
(2) the public key that was successfully used to verify each of the VMs’ attestation is
part of the auxiliary value lkaux forwarded by the hypervisor.

Theorem 3.4.1 (Secure Linked Attestation). The LKA scheme is secure assuming that
the ANA scheme is secure and that H is collision resistant. More formally, if there exists an
adversary A that breaks the linked attestation game GLK(λ, F ) with advantage AdvSECLKA(A)
then there exists adversaries B1 and B2 such that : AdvSECLKA(A) ≤ 1

N2 (Adv
CR
H (B1) + 2 ·

AdvSECANA(B2)) where N is the number of parties.

Proof. We now prove our construction is secure with respect to the GLK(λ, F ) game :
G0: This is the original game GLK(λ, F ).
G1: We guess parties P, Q output by the adversary in the last part of its game. In other

words, the challenger must draw at random two values between 1 and N, such that
those values correspond to those chosen by the adversaries. We lose a factor 1

N2 .
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G2: We now rule out that H(., lkaux) = (., lkaux′) for any lkaux ≠ lkaux′. Trivially, if
the converse were true,we could break the collision resistance of H with equal
probability and hence we lose a factor of AdvCRH (B1).
Note that now, since parties P and Q are registered on different platforms, since
lkaux keys are unique, and since we have ruled out collisions, any honestly-
generated attestations for P and Q will not link. The adversary’s only hope is to
forge an attestation for either one of those parties.

G3: At this point we rule out the fact that P’s tuple (aux, lkRpt, aux∗) was in fact part of a
tuple (P′, ., aux, lkRpt, aux∗) ∈ Lrpt (with P ≠ P′). If that were so, we could construct
an adversary against the authenticated attestation scheme (since P purports to
be P′). In so doing an important oracle will be the signature oracle oANA.Auth

added artificially in the authenticated attestation primitive; the latter will allow us to
simulate oLKA.CAttest queries. We lose a factor AdvSECANA(A).

G4: We repeat the previous game hop for party Q.
At this point, the adversary can no longer win the game.

3.5 Authorized Linked Attestation

The final step is to move from a primitive to a complete protocol. So far we have
considered attestation as a set of algorithms executed by a verifier and a prover, but we
have not considered how they exchange their outputs. In practice, remote attestation
means exchanging messages over a potentially insecure channel. Our linked attestation
primitive ensures that no adversary, even with access to an attestation oracle, can
forge an attestation, thus having access to the message exchange within the insecure
channel does not change anything. However, the verifier may not want to share its
own attestation report with anyone and may want to control how it can be accessed.
Therefore, we want to ensure that the actual report is only given to authorised parties,
which we call attestation servers.
We will define an authorised linked attestation protocol that allows an attestation server
to act as a verifier in the attestation procedures. The same server will also be the one to
generate the auxiliary values required for the attestation (this provides freshness to the
protocol). The server will furthermore be responsible for linking multiple attestations.
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3.5.1 Syntax

In authorized linked attestation we consider a (single) attestation server S and platforms
consisting of several types of components (as shown for linked attestation). The server
will keep track of an evolving state, which is initially empty. However, as the server starts
to attest various components, at every execution of the authorized attestation protocol,
the server will output a verdict (indicating whether the component’s individual attestation
has failed or succeeded) and may – or may not – update its internal state. Intuitively, the
state is meant to contain the linking information provided by each of the attesting com-
ponents. After a number of attestations have taken place, the server might have enough
information in its state to decide whether some of the components are linked or not.

Parties. As before we consider multiples attesting parties which can be of various type
of components (VM or hypervisor). However we now consider an additional special
party, the server, which has it own specific attributes.

Attesting Parties. Just as in the case of linked attestation, attesting parties can be
various types of components (VM or hypervisor). Each attesting party stores a set of
keys (pk, sk), as well as a compromise bit γ.

Server. The server is a special party which keeps track of the following attributes :
• (pk, sk): a tuple consisting of a public key pk (assumed to be unique and known to

all other parties including the adversary) and a private key sk known only to the
server. We use S.pk to indicate the public key of party S, and S.sk to indicate its
private key.

• S.st: a value called state, which stores tuples of linked attestations which may be
linkable to each other.

Sessions. Parties can now interact with each other in sessions of an AKE protcol
as defined in Section 2.6. The session is run by two party instances, one of the
attesting party and the other, of the attestation server. Party instances keep track of
the following session-specific attributes:

• πi
P.sid: a session identifier, which will be useful in understanding which two party

instances converse together.
• πi

P.pidpk: the public key belonging to this instance’s intended communication
partner.

• πi
P.T: a transcript of messages exchanged throughout a protocol session, in

plaintext. Even if encryption is used at some point, parties append messages to
their transcripts only after decrypting.
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• πi
P.α: this bit is originally set to 0, but can be changed to 1 if this party instance has

accepted its partner as a legitimate entity to run the authorized linked attestation
with.

• πi
P.lst: this local state variable stores instance (and protocol) specific values, such

as encryption keys, randomness, etc.
In addition server instances πj

S keep track of the following attribute, which is the output
of the immediate attestation process taking place:

• verdict: this attribute stores a bit, initially set to 0, which is flipped to 1 if the
attestation server’s instance has accepted the attestation received during that
session.

Partner. We call two instances πi
P and πj

Q partnered if, and only if, the following
conditions hold simultaneously: exactly one of P and Q is in fact the attestation server
S; πi

P.pidpk = Q.pk and πj
Q.pidpk = P.pk; and πi

P.sid = πj
Q.sid.

Syntax. The Authorized Linking Attestation scheme AZA is defined as the tuple of al-
gorithms and protocols AZA = (AZA.Setup, AZA.Reg, AZA.Attest, AZA.Link) described
as follows:

AZA.Setup(1λ)→ (ppar, S.sk, S.pk, S): On input the security parameter λ, this algorithm
outputs public parameters ppar, as well as the server handle S (such that S is
equipped with newly generated keys pk, sk). The value ppar includes the maximal
number of allowed disjoint linkable sets of parties, which we denote as L. The
values ppar, S.pk, and S are public, S.sk remains private. The value S.pk is added
as the first value in the set PK.

AZA.Reg(s1, s2, ..., sL)→ {(SK1,PK1), ..., (SKL,PKL)}: this algorithm keeps as state a
number L of sets Si originally set to ∅, and a vector of sets of public keys PK
(also initialized to ∅). On input a number of subsets si(i = 1, 2, ..., L), this algorithm
first checks that ∀i, j, si ∩ Sj = ∅ (else the algorithm outputs ⊥). If the relation is
true, then the algorithm generates for each party Pj ∈ si, (for all j, i) a tuple of
public and private keys Pj.pk, Pj.sk, initializing Pj with those keys. We require the
uniqueness of all the generated public keys. The subsets si are each added to
greater sets Si. The algorithm groups the keys of all parties Pj ∈ si in a pair of
private/public key subsets: (PKi, SKi), updating the i-th component PK[i] of PK
as PK[i] ∪ PKi. All parties are given access to the public-key subsets (and more
generally, to PK).

AZA.Attest(ppar,PK, πi
P, π

j
Q)→ (verdict, S.st): This protocol is an interaction between

two party oracles, such that exactly one of P, Q is S. The protocol yields a tuple of
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values to the server: verdict and S.st (and no output for the other party). Both party
oracles are assumed to update their attributes accordingly as the protocol unfolds.

AZA.Link(ppar,PK, S.st, s1, ..., sL)→ {0, 1}: Given the public parameters and public key
set, the server’s current state, and a number of subsets of (purportedly-linked)
parties, this algorithm outputs either 0 (the parties are not linked) or 1 (the parties
are linked).

Correctness. We require two types of correctness properties. First, we require that
running the protocol between two honest parties yields a verdict of 1 (accept) on the
side of the attestation server. Secondly, we require that components that are linked
at registration will be viewed as linked by the AZA.Link algorithm. More formally, we
require that schemes AZA = (AZA.Setup, AZA.Reg, AZA.Attest, AZA.Link) be such that:

• For all (ppar, S.sk, S.pk, S) ← AZA.Setup(1λ) and for all parties P ∈ Si for some
1 ≤ i ≤ L, it holds that (verdict, .) = AZA.Attest(ppar,PK, π.

P, π
.
S) (any legitimate

party will successfully attest to the legitimate server).
• For all (ppar, ., ., S) ← AZA.Setup(1λ), for all subsets s̃1, s̃2, ..., s̃L such that there

exist sets si for i = 1, 2, ..., L such that s̃i ⊂ si and AZA.Reg(s1, s2, ..., sL) was called
and did not result in ⊥, it holds that : AZA.Link(ppar,PK, S.st, s̃1, ..., s̃L) = 1 (parties
that are registered together can be linked through the server’s state).

3.5.2 Security

There are three fundamental properties we want AZA schemes to have: an authen-
ticity guarantee for the attestation server (authorization); a confidentiality guarantee
for the contents of the attestation (indistinguishability), and a linkability guarantee for
honestly-behaving components (linking-security). The first notion, authorization, cap-
tures the fact that before reaching an accepting state, a (non-server) party must be
sure that it is speaking to the legitimate server (game GAz(λ, F )). The second notion,
indistinguishability, essentially covers Person-in-the-Middle confidentiality for the attesta-
tion protocol (game GInd(λ, FSign)). The last property, linking-security, refers to the fact
that no PitM adversary with the ability to compromise components can convince an
attestation server that a component is linked to another if that is not the case in reality
(game GLink(λ, F )). Although this last property might seem similar to the security notion
for our linked attestation primitive, there is one important difference between the two:
in linked attestation the adversary has access to essentially two ways to generate an
attestation (depending on whether the component is honest or compromised), whereas
in authorized linked attestation the adversary will have more leeway in combining at-
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testation material across sessions. The stronger adversary in this section will thus
make for a stronger primitive in the end.
The three security games we define are parametrized by a function space F and a
security parameter λ. They start with the challenger running the setup algorithm and
outputting ppar as well as the handle S and its public key S.pk to the adversary. Note
that this will not give the adversary black-box access to S’s attributes: it simply allows
the adversary to later instantiate new attestation protocol sessions for that server. The
adversary will then have access to some, or all of the following oracles :

oAZA.Reg(n1, ..., nL)→ (PK1,PKL) : The authorized linked user-registration oracle cre-
ates a linked platform consisting of ni components of the type indicated by Si.
The challenger first instantiates subsets si as a tuple of ni handles Pi,j , with
1 ≤ j ≤ ni and then runs the algorithm AZA.Reg(s1, s2, ..., sL), instantiating the
parties with their keys and outputting the public keysets to the adversary. The
subset consisting of the list of subsets is added to LReg.

oAZA.NewSession(P,Q)→ πi
P : On input the identity of a target party P and a partnering

party Q, if both entities are correctly registered and exactly one of them is the
server, then this oracle instantiates an instance of P whose partner will be instanti-
ated as pidpk = Q.pk. Note that in order to observe an honest session between
two parties, an adversary would have to create two partnered instances, one of P
and the other of Q.

oAZA.Send(M, πi
P)→ M′ : This oracle simulates sending a message M to an instance

πi
P, and outputs the response M′i of the party instance. If the input message takes

a special value M = prompt and P is the initiator of the protocol (i.e., the first party
to send a message), this will trigger πi

P to output the first message in the protocol.
We note that some messages, when sent, might trigger errors, leading to an output
M′ =⊥. Other messages might trigger the attributes of the party (or instance) to
be modified.

oAZA.RevealState(πi
P)→ lst : On input a valid party instance, this oracle returns the

value stored by the attribute lst of that instance.
oAZA.UseKey(P, f, aux)→ aux′ : On input a compromised party P (not the server), a

function f ∈ F , and an auxiliary input value aux, this oracle evaluates f on P.sk

and aux.
oAZA.Compromise(P)→ OK ∪ ⊥ : On input a registered party P ̸= S, this oracle turns

the party’s compromise bit to 1 and returns OK. If P = S or the party has not been
registered, the output is an error symbol ⊥.
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We now proceed to describe each of the three security experiments we consider for
our authorized linked attestation primitive.

Authorization Game. In the GAz(λ, F ), after the challenger runs the setup algorithm,
the adversary A gets access to all the oracles described above. It ultimately stops with
a stop message. We say A wins if, and only if, there exists an instance πi

P such that
P ̸= S, for which the following conditions hold simultaneously:

• πi
P ends in an accepting state, i.e., πi

P.α = 1;
• There exists no server instance πj

S such that πj
S is partnered with πi

P.
In other words, the adversary wins if it can make a registered party believe it has talked
to the server when this is not the case.

Definition 3.5.1 (Authorization). We say that an authorized attestation scheme pro-
vides authorization if for all PPT A, there exists a negligible function negl(.) such that:
Pr[A wins GAz(λ, F )] ≤ negl(λ).

Linking Game. In GLink(λ, F ), after the challenger runs the setup algorithm, the adver-
sary A gets access to all the oracles above. It ends by outputting a tuple (P, s1, ..., sL)

such that for all 1 ≤ i ≤ L, si ⊂ Si and there exists a unique i∗ such that P ∈ Si∗ and
si∗ = ∅. The challenger sets s̃i ← si for all i ̸= i∗, and s̃i ← P. Then the challenger
evaluates b ← AZA.Link(ppar,PK, S.st, s̃1, ..., s̃L). The adversary is said to win if, and
only if the following conditions hold simultaneously:

• b = 1.
• There exists a party Q and an index j∗ ̸= i∗ such that Q ∈ s̃j∗ and P and Q were

not output by the same oAZA.Reg query.
In other words, for this second game, the adversary has to run several sessions between
(potentially compromised) parties and the (honest) server, thus bringing the server’s
state to a point where linkage can be verified based on that state.

Definition 3.5.2 (Linking). We say that an authorized attestation scheme provides linking
if for all PPTA, there exists a negligible function negl(.) such that : Pr[A wins GLink(λ, F )] ≤
negl(λ).

Indistinguishability Game. Finally, for GInd(λ, FSign), once the challenger has finished
the setup, it also draws a bit b at random. The adversary gets once more access to
the oracles described above. It finally outputs a tuple (πi

P,m0,m1), consisting of a party
instance and two messages, such that: |m0| = |m1| and πi

P.α = 1. The challenger
uses its knowledge of πi

P’s state on input mb (which is m0 or m1 depending on the
challenger’s hidden bit) to simulate outputting a message Mb which corresponds to the
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next protocol message of πi
P as that party would have sent it. Clearly if the protocol

requires messages be sent in plaintext, Mb = mb. The instance πi
P, as well as any of

its partnering instances, are closed and may no longer be used in any oracle. The
adversary may subsequently continue to use oracles at will (except the instances closed
above) and eventually outputs a guess d ∈ {0, 1}. We say the adversary wins if, and
only if, the following conditions hold simultaneously:

• d = b.
• No oAZA.RevealState query was made for either πi

P, nor for any instance πj
S of the

server such that πi
P and πj

S are partnered.

Definition 3.5.3 (Indistinguishability). We say that an authorized attestation scheme
provides indistinguishability if for all PPT A, there exists a negligible function negl(.)

such that : Pr[A wins GInd(λ, FSign)] ≤ negl(λ).

3.5.3 Construction

Our construction of the AZA scheme can be seen in the Figure 3.9. We use an ACCE-
secure AKE protocol, namely TLS. We also assume the existence on an underlying
LKA scheme that we use for the LKA.Setup, LKA.Reg and LKA.Link in a straightforward
manner. However, the LKA.Attest algorithm is no longer a primitive, but a protocol
between two instances of two parties, P and Q. For simplicity of exposition, we assume
that the instance of Q is the server attesting the component identified by P.
The protocol proceeds as follows. First, P and Q execute the TLS protocol, with P

playing the role of the client and Q playing the role of the server. The role of the TLS
protocol is two-fold: first, P authenticates the server, so that they can determine whether
this party is allowed to obtain attestation data. Second, it leads to the establishment
of a secure channel, such that the following messages can be passed on in a secure
manner. Once the traffic key(s) established, the protocol continues as follows. First,
the server uniformly randomly samples a nonce aux, which is embedded in the first
message of the protocol, AttestationRequest. In response, the party P executes the
LKA.Attest algorithm and the output, consisting of a lkRpt and the linkage information
lkaux, is then sent to the server. The server will subsequently update his state.
In order for two components to be linked by the server successfully, the following
conditions have to be met. First, the two components’ attestation must be valid (their
associated verdicts equals 1). Second, the two lkaux must be subsets of each other;
essentially, the key that the VM used as part of its attestation must be found in the
lkaux provided by the hypervisor.
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AZA.Setup(1λ):
ppar← LKA.Setup(1λ)
Create S
(S.pk, S.sk)← SIG.KeyGen(1λ)
Return (ppar, S.pk, S.sk, S)

AZA.Reg(s1, s2):
{(PK1, SK1), (PK2, SK2)} ← LKA.Reg(s1, s2)
Return {(PK1, SK1), (PK2, SK2)}

AZA.Link(ppar,PK, S.st, s1, s2):
Parse S.st as ⨿1,⨿2

Return LKA.Link(ppar,PK,⨿1,⨿2)

AZA.Attest(ppar,PK, πi
P, π

j
S):

Component Server
Establish TLS channel

(lkRpt, lkaux)← LKA.Attest(ppar,PK,P.sk, (s1, s2), aux)
aux←−−−−−−−−−−−−

AttestationRequest
aux

$←− AUX

(lkRpt,lkaux)−−−−−−−−−−−−→
AttestationResponse

verdict← LKA.Verify(ppar,P.pkj, lkRpt, aux, lkaux)

Add (Pj.pk, aux, lkRpt, lkaux) to ⨿i in S.st

Figure 3.9: Our authorized linked attestation scheme for 2 types of components

We note that if the server has at some point accepted the attestation of a component
(thus updating its state to add the linking information), and if later a failed attestation
occurs with respect to that component, the server updates state as follows: it ignores
the linking information provided in the second attestation and it removes prior linking
information provided by that component.

Theorem 3.5.1 (Authorization). Our AZA construction provides authorization assuming
that the AKE protocol provides server authentication. More formally, if there exists an
adversary A that breaks the GAz(λ, F ) with advantage AdvAzAZA(A) then there exists an
adversary B such that : AdvAzAZA(A) ≤ AdvACCE−Auth

AKE (B).

Proof. (sketch) Note that in order to win this game, the adversary must make a party
accept a session with the server, such that no matching server instance exists. This is
against the server authentication property we assume of TLS.

Theorem 3.5.2 (Linking). Our AZA construction provides linking assuming that the AKE

is at least ACCE secure and that LKA is GLK(λ, F ) secure. More formally, is there exists
an adversary A that breaks GLink(λ, F ) with advantage AdvLinkAZA (A) then there exists a
adversaries B1 and B2 such that : AdvLinkAZA (A) ≤ AdvACCE−SC

AKE (B1) + AdvSECLKA(B2).

Proof. (sketch) A key observation for this game is that the adversary cannot impersonate
a server or determine it to provide bad randomness. Instead, the adversary can
compromise components and run TLS sessions on their behalf with the server, or try
to obtain input from honest components instead. We distinguish between two types of
adversary behaviours.
Say A has never queried oAZA.Compromise for some party P. If the adversary prompts
P to run a session, then A will not actually know anything about the messages (so
it cannot misbehave on the quote, the nonce, or anything else). If A runs the TLS
session instead of P, it will learn the channel key, but will not be able to prompt P for the
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quote (since P wants to run TLS and not the attestation protocol, and since A cannot
impersonate the server).
Say A queries oAZA.Compromise for some party P. Then the adversary can run TLS
sessions on behalf of that party and query oAZA.UseKey in an attempt to get information
on the quotes. However, in that case, the attestation of that component fails, except again
if we break linked authentication security. This essentially means that the adversary has
no way to maul honestly generated input to suit its purposes.

Theorem 3.5.3 (Indistinguishability). Our AZA construction provides indistinguishability
assuming that the AKE is (minimally) ACCE secure. More formally, is there exists an
adversary A that breaks GInd(λ, FSign) with advantage AdvIndAZA(A) then there exists an
adversaries B such that : AdvIndAZA(A) ≤ 1

qsess
AdvACCE−SC

AKE (B) where qsess is the number of
sessions.

Proof. (sketch) Like in the proof of authorization, the reduction here is immediate. The
property of sACCE (which is already provided by TLS 1.2, whereas TLS 1.3 gives even
stronger guarantees) implies that messages exchanged across the TLS channel are
secure.

3.6 Implementation

We implemented a proof of concept of our authorized linked attestation scheme. The
implementation consists of three parts, a client for the hypervisor, a client for the Virtual
Machines, and an attestation server written in Python 3. We do not consider the
underlying NFV or cloud infrastructure, since our scheme abstracts those environments
and can be used in any kind deep-attestation scenario. Therefore, any computer
equipped with a TPM 2.0 (which can also be emulated) and which has virtualization
capacities suffices for the purposes of our implementation.

3.6.1 Setup

In what follows we will describe that infrastructure, our implementation, and our results.

The infrastructure. We summarize our testing architecture in Figure 3.10 (note that
some of our tests use more than 2 VMs, up to 55).

Hypervisor. Our hypervisor is a laptop running Ubuntu 20.04.3 (kernel version 5.11.0-
40) with an Intel i7-10875H CPU, 32GB RAM and a STMicroelectronics ST33TPHF2XSPI
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Figure 3.10: Architecture for tests.

TPM. We used KVM to turn this laptop into a hypervisor.

VM. In order to achieve a high attestation performance, we used a full virtual TPM imple-
mentation, using QEMU [38] with libtpms [39] version 0.7 and swtpm [40] version 0.5.
All virtual machines are QEMU virtual machines (version 4.2.1) with 1 cores and 512
MB RAM running Fedora 35 Cloud. The VM as well as the virtual TPM instances are
managed using Vagrant and Vagrant-Libvirt plugin.

Network. The hypervisor, server, and VMs communicate through a private network
created with Vagrant. Thus, connection time is not considered in our tests.

TPM Communications. To communicate with the TPM we used tpm2-tss, tpm2-abrmd
and tpm2-tools from the tpm2-software [41]. Note that the tpm2-tss project implements
the TPM software stack (TSS), which is an API specified by the Trusted Computing
Group to interact with a TPM. The tpm2-abrmd implements the access broker and
resources to manage concurrent access to the TPM and manage memory of the TPM
by swapping in and out of the memory as needed (hardware TPM have limited memory).
tpm2-tools are a set of command-line tools based on TSS, which are used to send
commands to the TPM. We used Python to wrap tpm2-tools commands.

Server. The attestation server is also a virtual machine, with the same characteristics as
those above. This allows us to test our implementation on a single machine. We estab-
lish a secure connection between the client and the server by using Python’s SSL library
and then sending protocol messages as encoded json strings directly into TLS socket.
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3.6.2 Results

We perform three main types of experiments on our setup.

Attestation benchmarks. The first experiment is a comparison of hypervisor attestation
time and VM attestation time. Although both those processes have some (very small)
amount of noise, our values faithfully show the (level of mangnitude of the) difference
between attesting a component through the real (physical) TPM (hypervisor attestation)
and attesting it by using a virtual TPM (VM attestation).
We ran 100 attestations for the hypervisor and 100 attestations for a virtual machine. The
results exhibit significant variability so Table 3.1 presents the minimum, the maximum,
mean and the median value of those 100 trials. As expected, the time required for an
attestation using a hardware TPM is much higher than using a Virtual TPM.

Table 3.1: Hypervisor and VM deep attestation benchmarks

min median mean max
Hypervisor (s) 3.22 5.30 5.68 11.55

VM (s) 0.66 0.97 1.03 1.41

Scaling benchmarks. For our second and third experiments, we wanted to see how
the overall runtime of our scheme evolves with the number of virtual machines that need
to be attested, when the attestation is sequential (second experiment) or parallelized
for the VM attestations (third experiment). In both cases, each experiment run first
executed the attestation of the hypervisor, and then (sequentially or in parallel) the
attestations of a varying number of VMs (up to a maximum of 55). For both experiments
we did 100 runs of the experiment. The median runtime was calculated in each
experiment (sequential or parallel) for each number of VMs, and the results were plotted
in Figure 3.11 (the two lower curves, the middle curve is sequential runtime, while
the bottom curve is parallel runtime).

Comparison to single-channel attestation. We did not implement single-channel
attestation. However, since we implemented hypervisor and VM attestations, we can
theoretically estimate the runtime of single-channel attestation for a varying number of
VMs, which we plot in Figure 3.11 (upper curve). Indeed, a single-channel attestation
process for a single VM includes a VM attestation and a hypervisor attestation. If we
want to run it for 2 VMs, then we need to perform 2 hypervisor attestations and 2 VM
attestations. This cannot be easily parallelized either, because the same TPM has to
run the attestations. This yields a much higher runtime, as depicted in Figure 3.11.
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Figure 3.11: Attestation of multiple VM

Comparison to multi-channel attestation. Although our method follows basic multi-
channel attestation approaches, we do add an extra computation (a hash function
computation) compared to traditional multi-channel attestation. In addition, we require
a little extra memory overhead for both the attestation server and for each platform,
so that the additional attestation keys are stored for each VM. There is also a slight
transmission overhead, since those keys are also sent upon attestation. However, the
transmission overhead is negligible since it only appears for the hypervisor attestation
(which occurs only once).

3.7 Conclusion

In this chapter, we have proposed layer binding in deep attestation without running
into the complexity of single-channel attestation. Our construction achieves the best of
both worlds, with a complexity similar to multi-channel attestation, but with the strong
binding properties of single-channel attestation.
We accompany our construction with a proof-of-concept implementation that clearly
demonstrates the viability and scalability of our solution, especially when VM attes-
tations are run in parallel.
In addition, we are the first to present a full, formal treatment of our new protocol, which
we call authorised linked attestation. Our construction of authorized linked attestation is
modular, building on primitives with progressively stronger properties. Our underlying
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assumption is a primitive called basic attestation. We show that to prove security, the
attestations must be able to reflect the compromise of the component. In addition,
we rely on a collision-resistant hash function, a secure EUF-CMA signature scheme,
and the ACCE security of a TLS protocol.
However, our model (and scheme) does not directly account for other features of virtual
infrastructures, such as privacy CAs, migrating VMs, multiple hypervisors managing
the same VM, or even replacing TPMs. More importantly, this scheme does not take
into account multitenancy, which, as we have seen, is the norm with NFV. This is
the subject of the next chapter.
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IN Section 1.2.2 we reviewed several deep attestation schemes and in Chapter 3
we introduced a new protocol that aims to bring the benefits of both single and multi-
channel deep attestation. However, all of these schemes consider monolithic virtualised
infrastructures, where both the VMs and the hypervisor are controlled by a single entity.
However, ETSI describes use cases for NFV [42] with multi-tenancy. Furthermore, deep
attestation could be of interest in any cloud-like architecture where multi-tenancy is
common, not just in the settings of NFV. In this chapter, we will see how to adapt our
layer linking mechanism in the context of a multi-tenant infrastructure using a TPM as
a root of trust. This work was published at ESORICS 2023 [3].

4.1 Introduction

For this work, we consider the typical multi-tenant architecture depicted in Figure 4.1,
which is equipped with a hardware Trusted Platform Module (TPM) and spawns a virtual
TPM (vTPM) for each VM it manages. VMs can be operated by tenants and one tenant
can have multiple VMs. Every tenant has a dedicated verifier to perform attestation.

Figure 4.1: Multi-tenant architecture where each VNF belongs to a different tenant.

Considering such an infrastructure also implies a slight change in our use case. In
traditional deep attestation, we have the immediate use case of an infrastructure operator
wanting to monitor the state of the infrastructure using remote attestation.
We are now in a similar situation to Keylime [43], [44], a TPM remote attestation solution
for cloud applications that provides system integrity monitoring. Keylime allows to deploy
an agent on each target VM: the agent sends an attestation every few seconds to a
cloud verifier managed by a specific tenant.
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Note 4.1.1: Why TPM?

TPMs are widespread chips but with limited functionalities and computing power.
Hence it is more difficult to meet the challenges of multi-tenancy with a TPM than
with a more flexible RoT (and this is actually the case; our solution can be much
simpler with other RoT). However the ETSI propose in some specifications the
use of TPM in its specification document. In Chapter 5, we will free ourselves from
this constraint. We are also not considering the possibility of modifying the TPM.
Although this is technically possible, it would require updating the specifications
and all TPM, which is a lengthy process.

In such multi-tenant environments, existing protocols do not achieve some of the desired
properties. For example, multi-channel deep attestation enables scaling by reducing
the number of hypervisor attestations to a single attestation. Attestation requests are
accompanied by a nonce in order to ensure the freshness of the attestation: if a single
entity controls all the VMs it can verify the freshness of the single attestation, but
with multiple tenants, each use a different nonce, thus implying the need for multiple
attestations. In addition, in a multi-tenant context, the privacy concern due to attestation
arises both in terms of inter-tenant privacy (i.e. privacy between tenants) and host
privacy (i.e. privacy of the infrastructure). In particular, TPM attestation reveals the
full configuration of the attested machine; in a multi-tenant environment, the host may
wish to keep its configuration secret from some of the tenants.

Note 4.1.2: Why not Keylime?

Our use case is very similar to that of Keylime, a RedHat-backed project that works
efficiently even on very large cloud infrastructures [45]. Unfortunately, Keylime
is limited to VM attestation (rather than linked hypervisor/VM attestation). It also
provides neither tenant privacy, nor hypervisor configuration privacy.

4.1.1 Our contributions

Our work makes a triple contribution.

A new protocol. We propose a primitive called privacy-preserving multi-tenant at-
testation (PP-MTA), which provides attestation, but also layer-binding and privacy:
Inter-tenant privacy (no tenant can learn if other tenants share the same platforms as
the user’s own VMs) and Configuration hiding (the hypervisor attestation convinces a
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tenant that the hypervisor is well-configured without revealing the configuration). These
strong properties are achieved with no modification to the TPM, and rely on ZK-SNARK,
vector-commitment schemes, and secure-channel establishment.

Formal analysis. We formally model and prove the security and privacy of our protocol.
We extend the layer-binding properties defined in Chapter 3 [2] to a multi-tenant environ-
ment, and add definitions for inter-tenant privacy and configuration-hiding. We formally
quantify the privacy of our protocol. The security of our scheme relies on standard
ACCE-secure channels, secure vector commitments, and zero-knowledge succinct non-
interactive arguments of knowledge (ZK-SNARK), but also two new properties: partner-
hiding authenticated key-exchange (AKE) and collision-resistant vector commitments.

Implementation. We provide an implementation of our protocol, with several bench-
marks. Despite relying on ZK-SNARK, known for poor performance, our scheme
remains fast enough for real-world use.

4.1.2 Comparison with Authorized Linked Attestation

The Authorized Linked Attestation scheme of Chapter 3 provides both layer-binding
DA that scales as well as multiple-channel attestation, and requires no modification
of the TPM. Hypervisor attestations also incidentally attest the public keys of the VMs
they manage. As a result, the verifier can link these attestations with those of the VMs.
Unfortunately, this solution does not scale in multi-tenant environments (e.g., 5G and
beyond) for which inter-tenant privacy is required. Moreover, as the scheme builds on
standard DA, the verifier learns, from the attestation report, the current configurations of
the physical machine. This is a privacy risk for the platform owner (e.g., the operator).

4.2 Technical Overview

In this section we give an overview of our solution for DA in multi-tenant environments.
Recall that in a use case such as Keylime, we want to provide linkable attestation in
multi-tenant environments such that the resulting solution is practical (scalable and
efficient), secure, and provides strong privacy for both the tenants and the provider of
the physical infrastructure, and does not require modifications to the TPM.

Solution outline. A naïve application of our scheme presented in Chapter 3 [2] to multi-
tenant scenarios provides layer-linking but not privacy. The result also scales poorly.
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Hypervisor-configuration hiding requires that attestation quotes, signed by a physical
root of trust (TPM), only prove the validity of the PCR-measurement, without revealing
it. The naïve approach of the TPM computing a zero-knowledge proof would require
TPM modifications. This is precisely what we want to avoid. In our solution, this is
achieved by the use of ZK-SNARK.
Moreover, the protocol in Chapter 3 is designed for environments where a single entity
owns the infrastructure and all the VMs. Naïvely reusing that solution in multi-tenant
environments creates a significant bottleneck when multiple tenants request attestations
simultaneously; this could be resolved by batching [46] hypervisor attestations for
multiple tenants. Batching is challenging to achieve simultaneously with inter-tenant
privacy and layer-linking. As layer-linking requires VM attestations to be linked to their
managing hypervisor’s attestation, the latter has to include some binding information to
the VMs it is managing. Yet, in multi-tenant environments such VMs might belong to
distinct users; each user must only verify the binding of its own VMs to the hypervisor.
To bridge that gap, we use vector-commitment schemes to store (in a hidden form)
linking information to VMs hosted on the hypervisor. This allows each tenant to open
some specific positions in that commitment, learning nothing about other positions.

Our solution. We introduce several new elements to the layer-linking DA solution
of Chapter 3. A trivial, but necessary modification is at setup: unlike authorized
linked attestation, we need to account for the ownership, by a tenant, of a VM. In our
infrastructure, tenants will have to use long-term credentials in order to register new VMs.
As VM attestations are independently requested by VM-owners, we can simply use
typical multiple-channel attestation for this step. Our key contribution, however, is a novel
hypervisor-attestation method which is scalable (as it allows for simultaneous attestation
requests to be batched), linkable to VM attestations, and guaranteeing inter-tenant
privacy and hypervisor-configuration hiding.
The hypervisor may receive one or more attestation requests from one or more ten-
ants. Requests are buffered if the TPM is busy. As soon as the TPM is free, the
hypervisor makes an attestation request for the aggregated queries, using a special
nonce computed as follows.
For each tenant, the hypervisor retrieves linking information and concatenates it with
that tenant’s nonces (per each VM). Then it assigns a random position in a vector
commitment to each tenant, places the concatenated linking-values for the tenant at
that position, and commits to the resulting vector1. This is the nonce used in the

1If not all tenants simultaneously request attestations, or if the platform contains less tenants than its
capacity, remaining vector positions are filled with dummy values.
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attestation request.
The unmodified TPM computes and signs a regular attestation quote (revealing the
PCR values). The hypervisor receives the signed quote and computes a ZK-SNARK
confirming its validity without revealing the configuration. Then, the hypervisor computes,
for each tenant, an opening to the vector for its attributed positions. Each tenant can
verify the ZK-SNARK and use the opening information to retrieve its linking information,
thus ensuring layer-linking.

4.3 Model

Our security model applies to the virtualization architecture shown in Figure 4.1. Ten-
ants associated with unique identities T can register a number of virtual machines
VM on a hypervisor H.
Each hypervisor H has a physical root of trust represented by a TPM TPM . We
assume each physical machine (with a unique hypervisor H) upper-bounds the number
of tenants NT it can host, and the number of VMs NVM each tenant can have on
H. Such bounds do exist in practice, usually driven by physical constraints. For
the sake of legibility, we assume universal bounds (for all hypervisors), rather than
local, hypervisor-specific ones.
We call the list of tuples of PCR measurements and accepted values during hypervisor
attestation the configuration of the hypervisor. We assume the existence of a set (of
more than one element) CONF of possible configurations for each hypervisor. In the
quote, the current configuration is represented as the hash of the list of PCRs.

Adversary model. Our threat model features both attestation and privacy adversaries.
Privacy is usually orthogonal to typical security notions in attestation. Attestation seeks
to protect against internal adversaries, with a direct access to the target platform and its
files; however, the privacy we can aim for with respect to insiders is only limited. Our
protocol preserves privacy, but does not create it: in order for privacy to be guaranteed,
we need to ensure first that privacy attackers (such as tenants) only have limited access
to the physical platform. Tenants that share information (or VMs) with another tenants
will lose their privacy. Note that access to the platform can be gained in different ways,
some legitimate (e.g., hypervisor API calls) and some malicious (e.g., side channel).
In our privacy models, the hypervisor and VMs are honest (trusted). Our adversaries
are typically collusions of malicious tenants that can actively send messages during
the protocol, working together with a Dolev-Yao network attacker, which can eavesdrop,
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modify, insert and delete messages.
On the other hand, layer-linking is defined with respect to classical attestation adver-
sary in which the attacker has direct, insider access to the platform. In this model,
the tenant and verifier are trusted but we consider a Dolev-Yao attacker as well as
software adversaries from [47] which can compromise the software of any VM (co-
resident) or hypervisor (system level). However, we rule out hardware adversaries,
including side-channel attacks.

Security/privacy notions. We formally define the privacy properties required for our
protocol and the adversary model in Sections 4.3.2 and 4.3.3. For attestation security we
require an extension of the linking property formalized by [2], adapted to the multi-tenant
setting. In a nutshell, this notion requires that no malicious party (even a malicious
hypervisor) be able to fool a tenant into falsely believing that a VM is hosted by the
hypervisor when in fact it is not. The full formalization of this property is in section 4.3.4.

4.3.1 Syntax

We formally define a new primitive called privacy-preserving multi-tenant attestation (PP-
MTA). It consists of 9 PPT algorithms: PP-MTA= (MTA.Setup, MTA.HSetup, MTA.TKGen,
MTA.VMReg, MTA.HAtt, MTA.VMAtt, MTA.VerHAtt, MTA.VerVMAtt, MTA.Link) as follows:

MTA.Setup(1λ)→ {ppar, spar}: On input a security parameter λ, this algorithm outputs
public parameters ppar (including the bounds NT , NVM , and valid configuration-set
CONF ), and private parameters spar (which may be instantiated to ⊥ if not useful).
The public parameters are input implicitly for every subsequent algorithm.

MTA.HSetup(ppar)→ {H.pk,H.sk,AK.pk,AK.sk,H.Conf,H.state}: This algorithm sets
up the (honest) hypervisor H, by associating it with a public key H.pk, a pri-
vate key H.sk, public- and private- attestation credentials (AK.pk,AK.sk), and a
configuration H.Conf ∈ CONF . The hypervisor “inherits" the universal bounds
NT and NVM from ppar. The hypervisor maintains state H.state related to hosted
tenants and their VMs.

MTA.TKGen(ppar)→ {T .pk, T .sk}: This algorithm generates public and private keys for
a single tenant T . All parties have access to all the public keys. Only the tenant
has access to its private key.

MTA.VMReg(H, T .sk,VMdesc)→ {(VM ,VAK.pk),VAK.sk,H.state} ∪ ⊥: This algorithm
performs the registration, by tenant T , of a VM of description VMdesc on the
machine with hypervisor H. If the tenant’s request exceeds either the hypervisor’s
capacity to host new tenants NT , or its capacity for VMs for this tenant NVM , then

Thibaut JACQUES| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 4.0

79



Chapitre 4 – Attestation in multi-tenant virtualized environment

the algorithm returns ⊥. Otherwise, the hypervisor creates the required VM, for
which it returns a handle VM , as well as a tuple of public/private parameters,
corresponding to the attestation keypair for that VM, as stored by the vTPM:
(VAK.pk,VAK.sk). The algorithm also requires mutual authentication of the tenant
and the hypervisor, enabling H to update its state H.state. If the authentication
fails, the algorithm returns ⊥. Otherwise it returns to the tenant the handle VM

and the public keys and VAK.pk.
MTA.HAtt⟨T (T .sk, nonceT ),H(H.sk,AK.sk,H.state,H.Conf)⟩ → {ATTH,T }: The hypervi-

sor attestation protocol is an interactive algorithm between a tenant T which
takes as input its private key and a fresh nonce nonceT and the hypervisor which
takes as input its long-term credentials H.sk, AK.sk, its current state H.state, its
configuration H.Conf. It outputs an attestation ATTH,T .

MTA.VerHAtt(ATTH,T , nonceT , linkT )→ {0, 1}: Given as input a hypervisor attestation
ATTH,T , a nonce nonceT and linking information linkT , this verification algorithm
outputs 1 if the attestation is valid and 0 otherwise.

MTA.VMAtt⟨VM (VAK.sk), T (T .sk, nonce)⟩ → {ATTVM} ∪ ⊥: The interactive VM attesta-
tion protocol takes place between a tenant (using its key T .sk and a fresh nonce
nonce) and a VM that the tenant owns (associated with its private key VAK.sk). The
output could be ⊥ (typically if the tenant does not own VM ) or a VM attestation
ATTVM .

MTA.VerVMAtt(ATTVM , nonce, link)→ {0, 1}: Given as input a VM attestation ATTVM , a
nonce nonce and linking information link, the VM attestation-verification algorithm
outputs 1 if the attestation is valid and 0 otherwise.

MTA.Link(ATTH,T , nonceT , linkT ,ATTVM , nonce, link)→ {0, 1}: Given as input a tuple
consisting of a hypervisor attestation quote ATTH,T and hypervisor attestation
linking information linkT , and a tuple consisting of a VM attestation quote ATTVM

and VM attestation linking information link, the linking algorithm outputs 1 if the
two attestation are linked and 0 if they are not.

4.3.2 Inter-tenant Privacy

Intuitively, inter-tenant privacy ensures that a malicious, but legitimate tenant cannot tell
whether or not VMs from other tenants are running on the same hypervisor as its own
VMs. In the real-world, tenants might be well-aware that they are sharing resources
with other tenants. However, by considering a much stronger privacy notion, we ensure
that this (and potentially other) information is not leaked by the attestation. This makes
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our protocol usable in all situations, not just those in which some leakage is acceptable.
The definition we provide (and prove for our protocol) only guarantees that leakage is
avoided at the protocol-level: the adversary may have alternative means of knowing
about VMs co-hosted on the same hardware.
Formally, inter-tenant privacy is defined as a game (depicted in Figure 4.2) between a
challenger G and an adversaryA. The challenger runs the setup algorithm MTA.Setup(1λ).
It then sets up a hypervisor H by running MTA.HSetup(ppar). G initiates LH := ∅ and
LC := ∅. The challenger draws a random bit b r← {0, 1}. The adversary, given ppar

and the length of the security parameter (in unary) 1λ, as well as the handle H, can
then use the following oracles:

oHonTRegb({VMDesci}ℓi=1): this oracle depends on bit b. Given as input a set of VM
descriptions VMDesci, this oracle internally runs the key-generation algorithm
MTA.TKGen(ppar), receiving either ⊥ (too many tenants) or a handle T and keys
T .pk, T .sk. The oracle adds T to LH and increments a variable nT (that stores
the number of tenants on that hypervisor) by 1. Assuming that oHonTReg did
not output ⊥: if b = 1, the oracle runs MTA.VMReg(H, T .sk,VMDesci) for each VM
in the input set, obtaining handles VM , keys VAK.pk,VAK.sk, and an updated
hypervisor state H.state, containing tuples of the form (T , VM i, VAK.ski, VAK.pki,
REAL) for each VM. If b = 0, then the VMs are not truly created: instead, the
oracle generates random values VAK.pki for each i = 1, . . . , ℓ, and handles VM i,
updating the hypervisor state with tuples of the form (T ,VM i,VAK.pki,FAKE).
Finally, the oracle outputs the following values to the adversary: T , {VM i}ℓi=1 as
well as keys: T .pk, {VAK.pki}ℓi=1. If ℓ > NVM , the output of MTA.VMReg will be ⊥,
forwarded to the adversary instead of the VM information. The adversary can,
in parallel, use MTA.TKGen algorithm to register malicious tenants: these will be
added by the challenger to LC .

oVMReg(T ,VMDesc): given as input a (registered) tenant T ∈ LH and a VM with
description VMDesc, this oracle internally runs MTA.VMReg(H, T .sk,VMDesc). If the
bound NVM has still not been reached for tenant T then the algorithm outputs
(VM ,VAK.pk) as in the previous oracle. The hypervisor stateH.state is updated. A
malicious tenant can always register a new VM by running the MTA.VMReg algorithm
directly.

oHAttest(T ): given as input a registered tenant T ∈ LH , this oracle simulates running
MTA.HAtt between T and the hypervisor H. The adversary gains a transcript τHAtt
of the protocol run (or ⊥ if e.g., H does not exist or if T has no VMs registered on
H). If the VMs created for this tenant were fake (the bit b picked by the challenger
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is 0), the hypervisor attestation is done over the current configuration and the VMs
currently existing on the machine.

Since the adversary is a collusion of valid tenants, it does not need oracle access to
VM attestations: it can simply run the correct algorithms.

The Inter-tenant Privacy Game GTPriv(λ) :

Game GTPriv(λ)

{ppar, spar} ← MTA.Setup(1λ)
{H.pk,H.sk,HAK.pk,HAK.sk,H.Conf},
H.state← MTA.HSetup(ppar)

b
r← {0, 1}

d← AoHonTRegb(·),oVMReg(·,·),oHAttest(·)(1λ)

A wins iff.: d = b

Figure 4.2: The inter-tenant privacy game.

Definition 4.3.1 (Inter-tenant privacy). A PP-MTA scheme PP-MTA= (MTA.Setup,
MTA.HSetup, MTA.TKGen, MTA.VMReg, MTA.HAtt, MTA.VMAtt, MTA.VerHAtt, MTA.VerVMAtt,
MTA.Link) is (NT , NVM , ϵ)-inter-tenant private if, and only if, for every probabilistic poly-
nomial adversary A, the following holds:

AdvTPrivPP-MTA(A) :=
∣∣∣∣Pr[A wins GTPriv(λ)]−

1

2

∣∣∣∣ ≤ ϵ.

The value AdvTPrivPP-MTA(A) is called the advantage of A against the inter-tenant privacy
of PP-MTA. Asymptotically, we call a PP-MTA scheme inter-tenant private if ϵ is a
negligible function of the security parameter λ.

4.3.3 Hypervisor-Configuration Hiding

Intuitively, hypervisor-configuration ensures that an adversary (which can be a group of
colluding, legitimate tenants) cannot learn the precise configuration of the hypervisor:
just that this configuration is one of potentially many valid configurations. Technically,
the property is formalized using a oChooseConfig oracle, which allows the adversary
to choose two configurations, one of which will be used in fact for attestation. The
adversary’s task is to distinguish between those configurations.
In the hypervisor configuration-hiding game (figure 4.3), the adversary gets access
to the following oracle:
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• oChooseConfigb(H.Conf0,H.Conf1)→ {OK}∪ ⊥: This oracle can only be called
once. Given as input two hypervisor configurations H.Conf0 and H.Conf1, this
oracle checks that H.Conf0 ∈ CONF and H.Conf1 ∈ CONF . It ensure ensure
that H has not yet been set up (e.g., through MTA.HSetup). If either verification
fails, the oracle outputs ⊥. If verification succeeds, the oracle calls MTA.HSetup,
forcing the picked hypervisor configuration H.Conf to be H.Confb.

The Hypervisor Privacy Game GCPriv(λ) :

Game GCPriv(λ)

{ppar, spar} ← MTA.Setup(1λ)

b
r← {0, 1}

d← AoChooseConfigb(·)(1λ)

A wins iff.: d = b

Figure 4.3: The configuration-privacy game.

Definition 4.3.2 (Configuration privacy). A PP-MTA scheme PP-MTA= (MTA.Setup,
MTA.HSetup, MTA.TKGen, MTA.VMReg, MTA.HAtt, MTA.VMAtt, MTA.VerHAtt, MTA.VerVMAtt,
MTA.Link) is ϵ-configurations-private if, and only if, for every probabilistic polynomial
adversary A, the following holds:

AdvCPrivPP-MTA(A) :=
∣∣∣∣Pr[A wins GCPriv(λ)]−

1

2

∣∣∣∣ ≤ ϵ.

The value AdvCPrivPP-MTA(A) is called the advantage of A against the configuration privacy
of PP-MTA. Asymptotically, we call a PP-MTA scheme configuration-private if ϵ is a
negligible function in the security parameter λ.

Limitations. The security definition above is limited, formalizing that an adversary
cannot distinguish between two valid configurations. Yet, clearly, the guarantee pro-
vided by the privacy property depends on the size of the configuration-set CONF
if it is small, then any tenant can guess the hypervisor configuration with a decent
probability (equal to 1

|CONF|).

4.3.4 Linkability Security

The linking property ensures that two components, registered on two different platforms
(later denoted S1 and S2), cannot be linked. For instance, a VM’s attestation is linked
to its hypervisor if both components are on the same platform, while other links from
other platforms cannot be made and should be detected.
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We consider in our model some simplifications which ease the readability; notice that
generalizations can be made:

• Malicious tenant: our adversary is (the only) tenant. So A has external capabilities
with the possibility of registering VM and attesting them (same as a tenant would).
Note that we consider only one tenant in our security game (or equivalently, the
adversary represents all the tenants);

• The setup is made for only two platforms, each including only one hypervisor
and a maximum of NVM VM. Since we consider only one tenant (so NT := 1 for
each platform), there is no need to let the adversary adaptively register VMs or
platforms. However, each position are created for each tenant so only one tenant
would lead to only one position. Thus, the challenger creates "dummy" tenants
(which are not active) to allow more than one position in the vector commitment.

• The adversary does not have a corrupt oracle, all the VMs are already registered
during the setup and accessible to A. In particular, we suppose that hypervisors
are always honest.

The linkability property is formalized through a security game, GLink(λ,NP), played
between a challenger G and an adversary A. The challenger runs the setup al-
gorithm MTA.Setup(1λ), returns ppar to A, then sets up an hypervisor H by running
MTA.HSetup(ppar) on both platforms S1 and S2. Then, G initiates LAtt := ∅ which con-
sists of a list of linkable attestations. The adversary then plays the game using the
following oracles:

• oHAttest(Si)→ (ATTH,T ): this oracle simulates a run of the MTA.HAtt algorithm
between the adversary and the hypervisor H on platform Si for i ∈ {1, 2}, allowing
the adversary to gain a transcript τHAtt of the communication. Notice that this
oracle does not depend on the challenge bit b. The output is stored in LAtt.

• oVMAttest(VM )→ (ATTVM ): this oracle simulates a run of the MTA.VMAtt algo-
rithm on VM . The output is stored in LAtt.

At the end of the game, A outputs a party P such that its attestation is stored in LAtt.
We say that A wins the game if the following conditions hold:

• P is registered on Si for i ∈ {0, 1};
• It exists Q ∈ Sj ̸=i such that its attestation lies in LAtt;
• MTA.Link(P||Q) = 1.

Thus the adversary wins the game if it is able to store two attestation’s component in
LAtt for two components on different platforms. The linkability property ensures that
the probability of winning, for any adversary, is negligible.
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Definition 4.3.3 (Linkability security). A PP-MTA scheme PP-MTA= (MTA.Setup,
MTA.HSetup, MTA.TKGen, MTA.VMReg, MTA.HAtt, MTA.VMAtt, MTA.VerHAtt, MTA.VerVMAtt,
MTA.Link) is (qatt, NP, ϵ)-linkable if, and only if, for every probabilistic polynomial adver-
sary A, the following holds:

AdvLinkPP-MTA(A) := Pr[A wins GLink(λ,NP)] ≤ ϵ.

The value AdvLinkPP-MTA(A) is called the advantage of A against the linkability security of
PP-MTA. Asymptotically, we call a PP-MTA scheme linkable if ϵ is a negligible function
of the security parameter λ.

4.4 Construction

In this section we instantiate the PP-MTA primitive using a signature scheme (SIG.KeyGen,

SIG.Sign, SIG.Verify), a collision-resistant hash function H, a vector commitment
scheme (VCO.Setup, VCO.Com, VCO.Open, VCO.Ver), a ZK-SNARK scheme (SNK.Setup,
SNK.Prove, SNK.Ver), and a secure-channel establishment protocol : (AKE.KGen, AKE.Sce,
AKE.Enc, AKE.Dec).

4.4.1 Setup

We first instantiate the global-setup MTA.Setup and hypervisor-setup MTA.HSetup algo-
rithms, then set up the tenants with long-term parameters.

Global setup. The goal is to instantiate the scheme’s global public and private pa-
rameters: {ppar, spar} ← MTA.Setup(1λ). Two universal bounds are chosen: a maximal
number of tenants per physical machine NT and a maximal number of VMs per hosted
tenant NVM . These bounds are later crucial in avoiding trivial inter-tenant privacy at-
tacks. A set of plausible configurations CONF is chosen for the hypervisor. We set
up the vector commitment and ZK-SNARK:

(pparVCO)← VCO.Setup(1λ, NT )

(CRS, τ)← SNK.Setup(R)

The vector-commitment length is a constant NT . Given the following zero-knowledge
proof:
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SNK{(rpt, σ) : SIG.Verify(AK.pk, rpt, σ, c) == 1 ∧ rpt.H.Conf ∈ CONF}

we fix the statement :

(xZK)← {SIG.Verify(AK.pk, rpt, σ, c) == 1;∧ rpt.H.Conf ∈ CONF}

At the end of the global setup, we set ppar ← (NT , NVM , CONF , pparVCO, CRS, xZK)
and spar ← τ .

Hypervisor setup. We instantiate the algorithm {H.pk,H.sk,H.Conf}← MTA.HSetup(ppar)

as follows. To begin with the hypervisor will require two pairs of keys, one for the AKE
protocol, the other, for attestation, as follows:

(H.pk,H.sk)← AKE.KGen(ppar)

(AK.pk,AK.sk)← SIG.KeyGen(ppar)

The hypervisor then picks uniformly at random a configuration H.Conf r← CONF
and sets H.state = ∅.

Tenant setup. The tenants generate long-term keys {T .pk, T .sk} ← MTA.TKGen(ppar)

which are, in fact, AKE keys:

(T .pk, T .sk)← AKE.KGen(ppar)

4.4.2 Registration

Registration is run by a tenant and a hypervisor, to register a VM of a given description
on the given hypervisor:

{(VM ,VAK.pk,VAK.sk),H.state} ∪ ⊥ ← MTA.VMReg(H, T .sk,VMdesc)

As depicted in Figure 4.4, when a registration request is made, H and T run AKE.Sce

(using their long-term credentials) to establish a secure channel, over which they can
communicate in a confidential and authentic manner. Over this secure channel, T
requests the registration of a VM with description VMdesc. The hypervisor verifies it can
still allow tenants to register a new VM (w.r.t.NVM ). If this is not so, the algorithm aborts.
Otherwise, the hypervisor generates attestation (signature) keys for the newly-registered
VM: (VAK.sk,VAK.pk) ← SIG.KeyGen(ppar). The keys VAK.sk and T .pk will be stored
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Registration

Tenant T Hypervisor VM
AKE.Sce(T ,H)

VMdesc

Check NVM for T
Instantiate VM
(VAK.sk,VAK.pk)← SIG.KeyGen(ppar)

T.pk,VAK.sk

H.state(T .pk).add(VM ,VAK.pk, T )

VM ,VAK.pk

Figure 4.4: Registration, the tenant (successfully) registers a new VM of description VMdesc.

in the vTPM corresponding to the new VM.
Once the VM is created,H updates its internal stateH.state with entries (VM ,VAK.pk, T ).
Still over the secure channel, the hypervisor sends the VM handle VM and public
keys VAK.pk to T .

4.4.3 Hypervisor Attestation

We instantiate this algorithm as {ATTH,T } ← MTA.HAtt⟨T (T .sk, nonceT ),H(H.sk,AK.sk,
H.state,H.Conf⟩). The idea is to attest (in a configuration-hiding way) the hypervisor
and also to embed in that attestation elements that characterise each managed VM.
During hypervisor attestation, the latter retrieves the public attestation-key stored on
each of the vTPMs it manages2. Those values are concatenated with the nonce and
hashed to obtain a new nonce.

Authenticated key-exchange. To start, the hypervisor and tenant establish a mutually
authenticated secure channel, over which all subsequent communication takes place.

Preparation of vector commitment. Multiple tenants (authenticated over a secure
channel) may request attestations simultaneously, each providing a nonce to the hyper-
visor. The hypervisor randomly associates each tenant with an index i ∈ {1, . . . NT }. It
then retrieves the VAK.pk of all the VMs registered by the tenant(s) requesting an attes-
tation and concatenates, for each tenant, the nonce that tenant provided and the VAK.pk

2This idea appears in the authorized linked attestation scheme of Chapter 3 but there the instantiation
consists of simply including a set of public keys into the nonce. This achieves layer-linking but no
inter-tenant privacy. In this approach, the instantiation requires vector commitments and ZK-SNARKs.
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Hypervisor Attestation

Tenant T Hypervisor TPM
AKE.Sce(T ,H)

nonceT

Wait until TPM is available

iT
r← {1, 2, ..., (NT )}

linkT ← H.state(T .pk)
v ← (..., (nonceT |linkT )iT , ...)NT

c, aux← VCO.Com(v)

c

σ ← SIG.Sign(AK.sk, rpt, c)

rpt, σ

πiT ← VCO.Open(c, iT , aux)

wZK ← aSnarkCirc(AK.pk, rpt, σ, c, CONF)
πZK ← SNK.Prove(CRS, R, xZK , wZK)

πZK , πiT , c, iT

ATTH,T ← (πZK , πiT , c, iT )

Figure 4.5: Hypervisor Attestation, only the i-th tenant is represented but we can see the
aggregation of all the nonces through the commitment which allows for a single TPM operation.

of all the VMs the latter owns. The list of VAK.pk per tenant constitutes its linking informa-
tion (link in Figure 4.5). If less than NT tenants request an attestation, empty positions in
the vector are filled with random values, and the commitment is always of constant size.
The vector commitment must be hiding, as tenants should learn no information about
positions they will (later on) be unauthorized to open.
Our scaling approach provides scalability. Say that two or more tenants request hyper-
visor attestations while the TPM is busy. Without nonce-aggregation, those requests
would be treated separately. Instead, aggregation allows the hypervisor to generate
a single attestation that can be provided to all the tenants and still hide everything
except the content relevant to the tenant itself.

Hypervisor attestation. The next step is to obtain an attestation report from the TPM.
This communication is on the physical device (hidden from tenants). The hypervisor
submits to the TPM the commitment c in lieu of an attestation nonce. The TPM
computes an attestation report rpt and a signature σ on it with the private attestation
key AK.sk associated to the hypervisor.

Proof of attestation. The hypervisor, having received the report and signature com-
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putes a proof of ownership of a valid attestation. Note that the attestation report
(and corresponding signature) reveal the configuration of the hypervisor, which we
want to hide from the tenants. Thus, the hypervisor proves that it has a valid attes-
tation from the TPM for a configuration within the set CONF , with respect to nonce
c, i.e., it needs to compute:
SNK{(rpt, σ) : SIG.Verify(AK.pk, rpt, σ, c) == 1∧rpt.H.Conf ∈ CONF}
We can compile this computation into an arithmetic circuit. Then, a ZK-SNARK will
allow the hypervisor to prove it has run this algorithm for some public set CONF , the
nonce c, with respect to AK.pk, and that the algorithm output 1, all this without revealing
the report rpt nor the signature σ.

Algorithm 1 The snark circuit
procedure aSnarkCirc(AK.pk, rpt, σ, c, CONF)

if SIG.Verify(AK.pk, rpt, σ, c) == 1 and rpt.H.Conf ∈ CONF then
return 1

else
return 0

end if
end procedure

Opening. Finally, the hypervisor needs to provide to each tenant its partial vector-
commitment opening (i.e., each tenant can only open the position corresponding to
the index the hypervisor associated with that tenant at the beginning of its attestation).
The hypervisor sets, for each tenant, ATTH,T to contain: the proof of attestation πZK ,
the vector commitment c; the position i on which the tenant is placed; and the opening
information πt for that position.

4.4.4 VM Attestation

This algorithm {ATTVM} ← MTA.VMAtt(VM (VAK.sk,VAK.pk), T (T .sk, nonce)) (Figure 4.6)
generates an attestation report that only the tenant owning the VM can actually see
and verify. The tenant and VM run an AKE protocol to establish a secure channel,
over which T requests an attestation and forwards a nonce. The VM retrieves the
linking information (VAK.pk) and concatenates it with the nonce to obtain a value later
hashed to lkaux. Then, the VM requests a signed report for lkaux and forwards the
response to the tenant over the secure channel.
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Tenant VM vTPM
AKE.Sce(T ,VM )

nonce

link← VAK.pk

lkaux← H(nonce|link)

lkaux

σ ← SIG.Sign(VAK.sk, rpt, lkaux)

rpt, σ

rpt, σ

ATTVM ← (σ, rpt)

Figure 4.6: VM Attestation

4.4.5 Verification

Hypervisor attestation verification. We instantiate the algorithm {0, 1} ← MTA.VerHAtt(

ATTH,T , nonceT , linkT ) as depicted in Figure 4.7. The tenant opens the commitment c at
the relevant index,then checks that it opens to the concatenation of the nonce nonceT

and linking information linkT (if this fails, the algorithm outputs 0). Then the tenant
verifies the SNK proof and outputs 1 if both verifications succeed.

Verification of VM attestation. In this case, the verification is straightforward, as the ten-
ant only retrieves the lkaux value and checks that the signature and received report verify.

MTA.VerHAtt(ATTH,T , nonceT , linkT )→ {0, 1} :

Parse ATTH,T as (πZK , πiT , c, iT )

VCO.Ver((nonceT |linkT ), c, iT , πiT )

SNK.Ver(CRS,R, xZK , πZK)

If all verification pass output 1, otherwise 0

(a) Hypervisor

MTA.VerVMAtt(ATTVM , nonce, link)→ {0, 1} :

Parse ATTVM as (rpt, σ)

lkaux← H(nonce|link)

SIG.Verify(VAK.pk, rpt, σ, lkaux)

If all verifications work output 1, otherwise 0

(b) VM

Figure 4.7: Verification

4.4.6 Linking attestations

The link algorithm {0, 1} ← MTA.Link(ATTH,T , nonceT , linkT , ATTVM , nonce, link) will
attempt to link the hypervisor and the VM attestation given in input. Any party in
possession of the input values can run the linking. However, note that attestation reports
are only received over mutually-authenticated secure channels.
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The party verifying the linking first verifies the two attestations. If both come through,
then the verifier checks that the linking information for the VM is included in the linking
information for the hypervisor.

MTA.Link(ATTH,T , nonceT , linkT ,ATTVM , nonce, link)→ {0, 1}:
MTA.VerHAtt(ATTH,T , nonceT , linkT )

MTA.VerVMAtt(ATTVM , nonce, link)

Check link ∈ linkT

If all verifications work output 1, otherwise 0

4.5 Security Analysis

In this section we show that our construction guarantees inter-tenant privacy, configura-
tion hiding, and layer-linking. To prove that our scheme provides inter-tenant privacy we
first introduce a special property of AKE schemes, namely Parter-hiding, and shows
that TLS 1.3 guarantees in section 4.5.1. In section 4.5.4 we also define a new property
for vector commitment in order to prove the linking security of our construction.

4.5.1 Partner-hiding AKE

Our solution requires secure channels, constructed from AKE schemes. Indeed, con-
sider the VM attestation algorithm from Section 4.4. The tenant and VM use a mutually-
authenticated AKE protocol to establish a secure channel over which attestation data
is sent. This is sufficient to ensure that attestation quotes remain confidential for an
adversary that controls neither the tenant nor the TPM.
However, channel-security is insufficient for inter-tenant privacy, where an adversary
(possibly a collusion of tenants) must be unable to know if another tenant’s VMs exist,
or not, on the same machine as the adversary’s. With regular AKE, this cannot be
guaranteed even with mutual authentication. We require a stronger assumption, which
we dub Partner-Hiding, in which an adversary not in possession of the long-term
credentials of either endpoint cannot learn whether it faces a real or simulated entity
as one endpoint. This property is not trivial to guarantee: some cipher suites of TLS
1.2 are not partner-hiding. TLS 1.3, however, does provide initiator-hiding properties,
which we will put to use in our multi-tenant attestation protocol.

Security game. We consider two-party AKE protocols. The protocol runs in sessions.
Each P is associated with a tuple of long-term parameters (sk, pk) and each instance
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keeps track of the following attributes:
• πi

P.sid: the session identifier of instance πi
P is a concatenation of session-specific

values, which might be public (included in public information, such as the transcript)
or secret. The session identifier is protocol-specific.

• πi
P.pid: the partner identifier of instance πi

P, which must be a party Q ∈ P.
• πi

P.α: the acceptance flag α takes three values: ⊥ (which stands for unset), 0
(reject), and 1 (accept). It models the result of the authentication performed by
πi
P.pid.

• πi
P.k: the session key of instance πi

P, which starts out as equal to a special symbol
⊥, but may take a true value once that key has been computed.

The AKE protocol is run between an initiator (i.e., the party instance that starts the
protocol) and the responder (i.e., the party instance that goes second).
We define Partner-Hiding in terms of an adversary A that is a Person-in-the-Middle.
The security game will, in a nutshell, guarantee that an adversary is unable to tell the
difference between an interaction with a real, uncorrupted party, and an interaction
with a simulator (which only has access to the security parameter, but not to any of
the private keys generated in the game).
In our weak partner-hiding game, the adversary can control honest parties and in-
stances by means of oracles:

• πi
P ← oNewSession(P,Q, role): the (honest) session creation oracle will initiate a

new instance πi
P with partner identifier πi

P.pid = Q, such that πi
P plays the role

designated by role (either initiator or responder) in its session.
• m∗ ← oSend(πi

P,m): the (honest) sending oracle models sending message m to
an already-existent instance πi

P. It is expected that πi
P returns a message m∗,

which is the protocol-specific reply (potentially an error symbol ⊥) as a response.
A special m = Start sent to a instance of an initiator is used to jump-start the
session (thus yielding m∗ as the first message of the actual session).

• k ← oReveal(πi
P): the revelation oracle allows the adversary to learn already-

established session keys k.
• πi

P ← oNewSessionb,role(P,Q): this is the left-or-right version of the oNewSession

oracle above, for which the roles will be restricted according to which notion we
want to guarantee between initiator- and responder-hiding. If b = 0, this oracle
creates an instance of the party P, with partner identifier Q, such that P will have a
role as either the initiator or the responder of the session. On the i-th call to the
oracle oNewSessionb(P, ∗), the created instance will be indexed as πi

P. The oracle
forwards the handle πi

P to the adversary. If b = 1, the oracle call is forwarded to a
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simulator Sim, which is only given the security parameter, but no party information.
• m∗ ← oSendb(π

i
P,m): this left-or-right version of the sending oracle allows the

message m to be either forwarded to πi
P (if b = 0) or to the simulator Sim otherwise.

In both cases the adversary expects a message m∗. As before, a special message
m = Start will jump-start the session.

The security game begins with the setup of all the honest parties P ∈ P. The adversary
receives all the public keys, whereas the challenger keeps track of all the private keys.
The simulator will be given no information at all, apart from the security parameter.
There are two phases to the game. In the learning phase, the adversary will use the
honest session-creation and sending oracles, as well as the session-key revelation
oracle, in order to observe honest sessions and interact with the honest parties.
In the second phase of the game, the adversary gains access only to the left-or-
right instance-creation and sending oracles. We distinguish between the two fol-
lowing notions:

• Initiator-hiding. In this case, the oNewSessionb,role oracle has role set to Initiator.
Hence, in the challenge phase, the adversary will only be able to create new
instances that are protocol initiators.

• Responder-hiding. Conversely, in this case, oNewSessionb,role oracle has role set
to Responder. Hence, in the challenge phase, the adversary will only be able to
create new instances that are protocol responders.

Finally, the adversary will be allowed a final learning phase, identical to the first one.
When the adversary is ready to end the game, it will output a bit d, which will be its
guess for the bit b used by the challenger during the challenge phase.
It should be noted that at the transition to each new phase, all ongoing sessions
are aborted.

Game GInitHide(λ,NP)

Game setup for all P ∈ P with |P| = NP

b
r← {0, 1}

state← AoNewSession(·,·,·),oSend(·,·),oReveal(·)(1λ)

state← AoNewSessionb,Initiator(·,·),oSendb(·,·)(1λ, state)

d← AoNewSession(·,·,·),oSend(·,·),oReveal(·)(1λ)

A wins iff.: d = b

Figure 4.8: The initiator-hiding game.

Definition 4.5.1 (Initiator-Hiding security). Consider an authenticated key-exchange
protocol AKE. This protocol is (NP, qoNewSession, qoNewSessionb,Role , ϵ)-initiator hiding if for any
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PPT adversary A making at most qoNewSession queries to the (learning) oNewSession oracle
and at most qoNewSessionb,Role queries to the (challenge) oNewSessionb,role oracle, if we denote
AdvIHide

AKE (A) :=
∣∣Pr[A wins GInitHide(λ,NP)]− 1

2

∣∣, then it holds that: AdvIHideAKE (A) ≤ ϵ.

The value AdvIHideAKE (A) is the advantage of adversary A. If ϵ is asymptotically negligible
in the security parameter, then we call the authenticated key-exchange protocol initiator-
hiding.

Lemma 4.5.1. The full TLS 1.3 handshake with mutual authentication is initiator-hiding
under the following assumptions: all parties use particular configurations (e.g., groups)
and extensions with equal probability, the protocol uses collision-resistant hash functions,
and the signature scheme is Existentially Unforgeable against Chosen Message Attacks
(EUF-CMA).

Proof (sketch). We first note that previous work [48] proved a slightly-different (and
fundamentally stronger) degree of privacy for the TLS 1.3 full handshake, but only for
handshakes with unilateral authentication.
The simulator we consider is fairly simple. For each call of oNewSessionb,Initiator, the
simulator presents the adversary with an instance handle, which we label πi

P (even if
the simulator himself does not actually know the instance is supposed to belong to P).
Subsequent calls of oSendb will be made to those instances that have been previously
created, and notably:

• For oSendb(·,m = Start) calls, the simulator generates input consistent with the
Client Hello of any client (recall that all configurations and extensions are equally
likely).

• When fed with an oSendb(·,m) call for the server’s first message (Server Hello,
etc.), the simulator follows protocol, aborting if the server’s choice of element or
extension are inconsistent with its own. If all goes well, the simulator computes the
handshake secret and subsequent keys. There is no response for this message
expected from the client, so the simulator also sends no reply m = ∅.

• When fed with an oSendb(·,m) call for the server’s second message (encrypted Cer-
tificate Request, Certificate, CertificateVerify...), the adversary uses the computed
handshake keys to authenticate and decrypt the contents (aborting if AEAD fails).
Then, the simulator proceeds with the verification of the Certificate signatures, and
also the CertificateVerify message. If any of the verifications fail, then the simulator
aborts the session. As before, the server expects no message in response so the
simulator also sends no response.

• For all other messages sent, the simulator uniformly sends no reply, and it aborts
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the session at the end of the server’s final message in its suite of messages 3.
For our proof, we make the following game hops:
G0: the original initiator-privacy game.
G1: the original game, except that we eliminate collisions in the nonce and DH elements

used by instances of honest initiators (in the learning and challenge phases). This
happens except with probability

(qoNewSession+qoNewSessionb,Role
2

)
.

G2: the same as G1, except that we abort if in any two of the sessions created, the
hash over the Client and Server Hellos coincide. As per G1, at least one input is
unique in each session, notably the client’s input. As a result, the two games are
identical except if the content signed in the CertificateVerify message features a
collisions. At this game hop, we lose the advantage of the hash function against
collision-resistance.

G3: this game is identical to G2 except that the adversary wins outright if it can, in the
challenge phase, produce a successful forgery of the server’s CertificateVerify
message (note that in the initiator-privacy game against TLS 1.3, the initiator is
the client; hence, in the challenge phase, the adversary will always play the role
of responder, since it cannot create any responder instances). For the reduction,
at this step we have to first guess which responder the adversary will choose to
impersonate (i.e., which party), in order to inject the challenge key-pair from the
EUF-CMA game into that party. The guess is correct up to 1

NP
. We also note that

the challenger and the reduction have the means of verifying successful forgeries,
as they know all the public keys and are one of the endpoints of the conversation
(and can thus compute handshake keys). The reduction essentially works as
follows:

– The reduction generates keys for NP− 1 parties, but not for the one party that
we denote P∗ which it has guessed will be impersonated by the adversary.

– During the learning phases, the reduction will faithfully be able to simulate
sessions because it owns the private keys of all but the target party (which is
at most one of the endpoints of any created session).

– During the challenge phase, the reduction chooses a bit b and simulates the
challenge phase perfectly, but in addition also verifies each CertificateVerify
message sent to an instance of any party P ̸= P∗ which was created by an
oNewSessionb,Initiator(P,P

∗) query (i.e., P∗ is the expected partner identifier of

3We note that this is a much more limited version of a simulator than we could potentially build. Indeed,
our simulator could continue to handle messages such as the encrypted Server Finished message, but
we choose not to, because this step is not necessary.
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that instance). As soon as a forgery appears, it will be used by the reduction
to win its game.

– If no forgery appears and the adversary A ends its game, the reduction
aborts.

We note that in this case, if the adversary makes no forgery, then there is no
distinction between G2 and G3, while if the adversary produces a forgery, then G3

is distinct from G2 from the point of view of the adversary (but in that case, we
violate the EUF-CMA assumption for the signature scheme).

G4: This game is identical to G3, except that the protocol is no longer TLS 1.3, but
rather, the challenger aborts all initiator challenge sessions (i.e., sessions run
by instances created by oNewSessionb,Initiator queries) by default after the server’s
first pack of messages (so when the client’s Certificate information and Finished
message is expected). As per our last game, we have removed the possibility
that the adversary produces a valid signature in any of the challenge sessions
since those signatures are generated on unique content (as per G2) and thus no
replays from the learning phase is possible. As a result, none of the sessions
created during the challenge phase will proceed further than the verification (of
the CertificateVerify message) by the client. We thus incur no loss of security at
this game hop. Thus, at this point the two worlds (b = 0 and b = 1) are identical
from the point of view of the adversary, since the simulator follows the TLS 1.3
protocol to the letter up to, and including the server’s CertificateVerify message.
The adversary’s winning probability is 1

2
.

4.5.2 Inter-tenant privacy

We examine the inter-tenant privacy provided by our PP-MTA protocol. We give first
the intuition why our scheme guarantees this property, and then formalize the state-
ment into a theorem.

Intuition. In the inter-tenant privacy game, the adversary, which represents one, or
potentially a collusion of malicious tenants, aims to distinguish whether the target
machine, which the adversary’s own VMs are located on, also contains VMs belong-
ing to other tenants or not.
One way the adversary could win is by creating first a VM of its own, and then attempting
to create as many VMs as possible on behalf of another, honest tenant, until the machine
is overwhelmed. We prevent this by enforcing a bound on the maximum number NT of
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tenants, and on the maximum number NVM of VMs per tenant for each machine. We
ensure that the physical machine can host at least NT · NVM VMs.
While the adversary learns no information from requiring attestations from its own VMs,
it could potentially win by attempting to make a VM supposedly belonging to another
tenant provide an attestation. If the VM is truly hosted on the target device, the device is
aware of its existence, its public key, and its relationship with the tenant. If the VM is not
hosted on the device, then the latter has no record of that VM’s supposed public key. As
a result, the mere guarantee of authentication in the AKE protocol does not suffice, and
we need the partner-hiding property. The latter informally guarantees that the adversary
(who does not know the honest tenant’s private key) can never get far enough into the
protocol in order to identify whether that particular VM exists, or not, on the machine.
The final source of potential information for the attacker is the hypervisor attestation pro-
cess. All tenants, honest or malicious, have the right to demand a hypervisor attestation,
which will include linking information to all the VMs present on the device (including the
honest tenant’s). There are three counter-mechanisms we employ against such attacks:

• At setup, the hypervisor sets the (fixed) size of the vector commitment to be NT .
Then when computing a hypervisor attestation, it randomly associates tenants
with indices between 1 to NT . That is to say, regardless of the order in which
the adversary demands the registration of its own and other tenants’ VMs, the
adversary will have equal probability to be associated with any given index.

• The linking information to the VMs (their public keys) is included (in a hidden form)
in a vector commitment. Opening information is provided to each authenticated
tenant, for the index it is associated with. In other words, if the adversary authenti-
cates by using its own credentials, the most it will find will be opening information
linking the attestation to its own VMs. Attempting to impersonate an honest tenant
will not work, as the attestation is sent over a secure channel generated upon the
execution of an AKE protocol (with mutual authentication).

• Finally, note that the security of the channel guarantees that even if the adversary
uses its hypervisor attestation oracle on behalf of a different tenant, the transcript
it receives only contains an encrypted attestation and linking information.

Formalization. We formalize the following security statement for our inter-tenant
privacy scheme.

Theorem 4.5.1 (Inter-tenant privacy). Let PP-MTA be a multi-tenant attestation scheme;
this scheme provides inter-tenant privacy if: the AKE protocol used during VM attestation
is initiator-hiding, the secure-channel establishment protocol used during hypervisor
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attestation is ACCE-secure (providing authentication and secure-channel properties),
and if the vector commitment guarantees the hiding property. More formally, if there
exists an adversary A that breaks the inter-tenant privacy of PP-MTA with advantage
AdvTPrivPP-MTA(A), then there exist adversaries B1, . . . ,B4 such that:

AdvTPrivPP-MTA(A) ≤ AdvIHideAKE (B1) +NT · AdvACCE−Auth
AKE (B2)

+qoHAttest · AdvACCE−SC
AKE (B3)

+qHAttest∗ · AdvVCHideVCO (B4),

where qoHAttest represents the number of queries the adversary makes to the oHAttest

oracle, and qHAttest∗ is the number of honest hypervisor-attestation sessions started by
the adversary (on its own behalf) in its PP-MTA game.

Proof (sketch). The proof will proceed in the following game hops:
G0: The original game.
G1: Identical to G0, but we modify the authenticated key-exchange protocol such that,

whenever the tenant requests the attestation of a VM that it does not own, the
challenger simulates the protocol according to the simulator in the initiator-hiding
game (no knowledge of the private or public keys is necessary). The adversary
can distinguish between games G0 and G1 only with an advantage of at most
AdvIHide

AKE ().
G2: Identical to G1, except that, whenever the adversary attempts a hypervisor attes-

tation on behalf of an honest tenant (so by using the MTA.HAtt algorithm, rather
than the oHAttest oracle), the attestation report is replaced by an error symbol ⊥.
The adversary can only distinguish between the two if the adversary manages
to impersonate an honest tenant. The reduction will first guess which tenant the
attacker will target (losing a factor NT ), hence giving us a loss equalling the second
term of the bound above.

G3: Identical to G2, except that, at the first oHAttest query from the adversary, the
challenger replaces the correct attestation report and linking information by a
message of the same length, but consisting only of 1s. We claim that the adversary
only notices this if it can break the security of the channel over which the report is
sent.

G4 → G2+qoHAttest In each game G2+i, for i ∈ {2, . . . , qoHAttest}, we proceed as in G3 for
the i-th oHAttest query. At each time we lose a term AdvACCE−SC

AKE (B3).
G3+qoHAttest : This game is identical to game G2+qoHAttest

, except that, for the first direct
hypervisor demand from the adversary (i.e., uses of the MTA.HAtt algorithm rather
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than the oHAttest oracle), the challenger now replaces the input for each index
of the vector commitment not corresponding to the adversary’s position by a
random value, ensuring that the resulting value in the commitment is different
from the value it would have had had the challenger behaved normally (this
restricts the adversary’s choice of positions for which the opening is available in
the commitment-hiding game). The adversary cannot distinguish between games
G2+qoHAttest

and G3+qoHAttest is exactly the advantage against commitment-hiding.
G4+qoHAttest → G2+qoHAttest+qHAttest∗ : Proceed to modify, in game G2+qoHAttest+i the vector com-

mitment for the i-th hypervisor attestation demand, for i ∈ {2, 3, . . . qHAttest∗} in the
same way as the previous game. At each time the difference between each two
successive games is the advantage against the vector commitment.

Analysis: At this point, the adversary has no better means than guessing, as the two
worlds will be identical from its point of view, thus yielding the given bound.

Limitations to our guarantee. Our security model and proof hold against a broad
class of attackers but is not universally valid. For instance, if the separation (in terms
of physical resources) between the tenant spaces and the VMs is not correctly set
up, a tenant will naturally be aware of other VMs on the same machine. Moreover,
multiple side-channel attacks are possible, exploiting, for instance, a longer response
time than usual by the TPM (i.e., the TPM was busy on another attestation at that
time). Another avenue of attack would exploit the network, learning, for instance, the
destination of a hypervisor attestation that is not the attacker’s own. Such attacks are
valid and deserve future investigations.

4.5.3 Hypervisor Configuration Privacy

We now delve into the hypervisor configuration-privacy property. We recall that in
multi-tenant environments, an independent entity usually owns the physical machines
hosting the VMs, and as a result, keeping the configuration of the machine private
from the tenants is a worthwhile goal.

Intuition. To begin with, note that the only moment when the configuration-privacy of the
hypervisor is exposed is during hypervisor attestation (which is generated by the physical
TPM). The hypervisor receives a signed report from the TPM (this communication takes
part within the machine itself), then forwards a proof that it is in possession of a signed
report, which is consistent with a configuration H.Conf ∈ CONF . In particular, the
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hypervisor computes (and later sends) SNK{(rpt, σ) : SIG.Verify(AK.sk, rpt, σ, c) == 1

∧ rpt.H.Conf ∈ CONF}.
Our proof is straight-forward: by the zero-knowledge property of the ZK-SNARK, no
information is revealed about rpt and in particular about the configuration of the machine.
In particular, the adversary will have no more than 1

|CONF| probability to distinguish
the actual configuration.

Formalization. We formalize the following security statement for our inter-tenant
privacy scheme.

Theorem 4.5.2 (Configuration privacy). Let PP-MTA be a multi-tenant attestation
scheme; this scheme provides configuration privacy if: the ZK-SNARK is zero-knowledge,
and the set CONF is large (size is exponential in the size of the security parameter).
More formally, if there exists an adversary A that breaks the inter-tenant privacy of
PP-MTA with advantage AdvCPrivPP-MTA(A), then there exists an adversary B such that:
AdvCPrivPP-MTA(A) ≤ qoHAttest · AdvZKNIZK(A) where qoHAttest is the number of queries A makes
to the hypervisor-attestation algorithm.

Proof sketch. We use a hybrid argument, replacing in each game hop the true attesta-
tion rpt by a simulated attestation (using the simulator of the ZK-SNARK). This makes
a total of qoHAttest game hops, in which we lose at each time AdvZKNIZK(B). At the end of
this sequence of games, every true attestation has been replaced with a simulated one,
which does not depend on H.Conf. As a result, the adversary has no better alternative
than to guess the bit b input to the configuration-privacy game.

4.5.4 Collision Resistant Vector Commitment

The goal of a malicious hypervisor could be to find a collision by keeping the values of a
given tenant with its correct index but modifying the other positions to find a collision
with a previous committed vector. Another attack could also occurs if the nonce of
a given tenant matched a previous nonce. In that case, the hypervisor could simply
send the old attestation with the same proof of membership in the vector. Finally, the
malicious hypervisor could also compute a collision which occurs with probability

q

2n+1

for q attestation queries and vector commitment of size n.
We thus define the collision resistance property for vector commitment which will allow
us to avoid the above attacks. Note that this property has not been formalized in
the context of vector commitment and should be also considered as of independent
interest. We propose a security game, GCR(λ) (see Figure 4.9), to define the collision
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resistance of vector commitment. This game is similar to the collision resistance of hash
functions: the challenger computes the setup algorithm to send the public parameters
to A which outputs two (different) vectors. We say that A wins the game if and only
if the commitments are equal.

Game GCR(λ)

{ppar} ← VCO.Setup(1λ, n)

(v, v′)← A(ppar)
A wins iff.: ∃i such that v[i] ̸= v′[i] and
VCO.Com(v) = VCO.Com(v′)

Figure 4.9: The collision resistance game for vector commitments.

Definition 4.5.2 (VCO collision-resistance). We say that VCO is (λ, n)−collision resistant
if for all adversary A, the probability of winning game GCR(λ) is negligible.

Our construction uses Merkle trees, which are collision-resistant as stated by the
following lemma:

Lemma 4.5.2. A VCO scheme, based on binary Merkle Tree, is collision resistant,
assuming that the hash function H is collision resistant.

Proof (sketch). The proof is done by reduction, we suppose that there exists A winning
the collision resistance game for VCO and show that we can construct B, using A as a
subroutine, winning the collision resistance of H.
If such an adversay A exists, then B could simply recompute the Merkle tree of v and
v′ and then, starting from the root of each tree, search for collision (which is linear
complexity) and return the output.

4.5.5 Linkability Security

Our PP-MTA protocol has a linking property, which is stated as the following theorem.

Theorem 4.5.3 (Linkability security). Let PP-MTA be a multi-tenant attestation scheme;
this scheme provides linkability security if: the hash function H and VCO are collision re-
sistant, the SNK is sound, and the signature scheme SIG=(SIG.KeyGen,SIG.Sign,SIG.Verify)
is EUF-CMA. More formally, if there exists an adversary A that breaks the linkability se-
curity of PP-MTA with advantage AdvLinkPP-MTA(A), then there exist adversaries B1, . . . ,B5
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such that:

AdvLinkPP-MTA(A) ≤
1

NP
+ AdvCollH (B1) + AdvCollVCO(B2)

+2 · (NVM · AdvVCBindVCO (B3)

+AdvZKNIZK(B4) + AdvEUF−CMA
Sig (B5))

where qatt is the number of queries A makes to the oHAttest and oVMAttest oracles,
and n is the size of committed vectors.

Intuitively, this theorem states that, in order to link two components that are not on
the same platform, an adversary needs to break at least one assumption. Our model
considers malicious tenants which have (legitimate) access to all the VMs of both
platforms; yet, the only possibility for the adversary to provide attestations that will verify
as being linked (i.e., MTA.Link returns 1) is to forge an attestation from the hypervisor.

Proof (sketch). We give the game hops for our proof.
G0: Initial linkability game GLink(λ,NP).
G1: The challenger guesses parties P and Q outputted by A. There are two platforms

composed each of one hypervisor and NVM VMs. The probability of a correct

guess is
1

4NVM

.

G2: We rule out that lkaux = lkaux′ meaning that H(nonce∥·) = H(nonce′∥·) for nonce ̸=
nonce′. This corresponds to the collision resistance of H.

G3: We ensure the uniqueness of committed vectors by removing collisions. This
corresponds to a factor AdvCollVCO(B2).
At this point, the only way for the adversary to win the game is to forge an
attestation for P or Q. The next games attempt to rule out the fact that A outputs
ATTP (or ATTQ) as an attestation that corresponds to a value stored in LAtt. The
games G4, G5 and G6 ensure that P’s attestation does not correspond to another
one stored in LAtt.

G4: The adversary can try to forge an opening thus making a commitment opens to a
different message than the initial one. This corresponds to violating the position
binding property, thus we loose a factor NVM · AdvVCBindVCO (B3).

G5: This game ensures that the soundness property of the ZK-SNARK holds. If
the proof of the committed vector verifies for other values (e.g., adding a VM
from another platform into link) then the adversary is able to forge a proof. This
corresponds to AdvZKNIZK(B4).

Thibaut JACQUES| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 4.0

102



Chapitre 4 – Attestation in multi-tenant virtualized environment

G6: We ensure that the adversary cannot forge a signature of the report, this corre-
sponds to lose a factor AdvEUF−CMA

Sig (B5).
G7: We repeat games G4, G5 and G6 for party Q. At this point the adversary cannot

win the game.

4.6 Implementation

We provide a proof-of-concept implementation of the scheme described in Section 4.4
in Python, with some parts related to the ZK-SNARK written in Rust. We used this
implementation to design benchmarks and evaluate the performance of the scheme.
Specifically, we focused on the performance of the VM attestation and hypervisor
attestation compared to a traditional attestation. We also demonstrate the scaling
properties of our scheme experimentally.

4.6.1 Implementation and experiment details

In what follows, we describe some of the details of our implementation and tools we
used. We also describe our experimental setup.

TPM libraries. To communicate with the (physical or virtual) TPM, we used the software
provided by tpm2-software community [41], relying on the TPM software stack (TSS),
an API specified by the TCG.

Vector Commitment. We implemented our vector commitment scheme using a binary
Merkle Tree, using the pymerkletools library [49] combined with a basic hash-based
commitment scheme.

SNARK. We used bellperson [50] which implements a preprocessing circuit-specific
crs snark [51] for a rank-1 constraint system (R1CS) over a bls12-281 curve, as well as
several gadgets for circuit design. Additionally we used bellperson-nonnative [52]. a
library to compute arbitrary-precision arithmetic operations inside SNARKs.

SNARK Circuit design. The circuit computes an RSA PKCS#1 v1.5 signature verifica-
tion and set membership verification. We implemented the RSA verification for a 2048-bit
modulus and a fixed exponent of 0x10001. Moreover, the circuit is designed for a nonce
of length 32. Our implementation also assumes that the TPM will use sha256 as its hash
algorithm. Hence, the size of the attestation report is fixed and thus the number of con-
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straints in the circuit only depends on the size of the configuration set. The CRS will only
need to be recomputed for a different size set (if using a circuit-specific-CRS SNARK).

Limitations. Our current implementation is basic and contains no network communica-
tion, as the latter is not necessary for the basic feasibility performance measurements
we aim for here. However, we also provide a demonstration script, which simulates
a use-case scenario into a single process and gives an idea of the flow of the pro-
tocol in a real situation.

Setup. Our tests and benchmarks were carried out on a laptop running Ubuntu
20.04.5 with an Intel i7-10875H CPU (16 cores), 32GB RAM and a STMicroelec-
tronics ST33TPHF2XSPI TPM. The VM attestation benchmarks were ran inside a
KVM/QEMU 4.2.1 VM (running on the same laptop) with virtual TPM provided by
swtpm 0.6.2 (libtpms 0.9).

Experimental method. The Rust part of the code was measured using the Criterion
library [53] which run the function to benchmark 100 times after a warm-up phase, then
compute statistics over these samples. For the Python code we implemented a custom
decorator, which works in a similar fashion and provides statistics over these runs.

4.6.2 Benchmark results

We now present our results. First we compare a traditional attestation with our privacy
preserving hypervisor attestation and we show how our scheme scales with the number
of tenants. This experiment was carried out using a set of possible configuration of
size 128. Hence we provide measurements of the SNARK computation for different
set sizes to show this aspect impacts the performances of our construction. Finally
we provide some results concerning the linking procedure proving that layer linking
is achieved for a nearly negligible cost.

Attestation and scaling. Table 4.10b compares a traditional attestation and our
hypervisor attestation. We can see that the ZK-SNARK adds a significant overhead
but the total time is still low enough (2.4s) for practical use. This is especially true with
a high number of tenants requests (like in 5G and beyond). With a classic sequential
processing of the requests it would take minutes to answer all the tenants whereas in
our case despite having a relatively high base computing time, the attestation scales
very well as depicted on Figure 4.10a.

SNARK. The hypervisor-attestation benchmarks presented above are given for a set
of 128 configurations. That set size directly impacts the number of constraints in
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(a) Scaling (configuration set of size 128).

Attestation
Mean Median

Traditional (s) 0.94 0.94
Hypervisor (s) 2.40 2.40

SNARK (s) 1.46 1.46
Commitment (ms) 9.06 8.98

Verification
Mean Median

Traditional (ms) 2.42 2.36
Hypervisor (ms) 25.06 25.05

SNARK (ms) 25.02 24.99
Commitment (ms) 0.043 0.063

(b) Time to perform attestation

Figure 4.10: Benchmarks

our SNARK circuit. Table 4.1 shows how the setup, prover, and verifier algorithm
performances change with set size.

Table 4.1: Performance variations of the ZK-SNARK in the configuration-set size. Median value
over 100 samples.

Set Size 32 64 128 256 512
Number of constraints 213565 222301 239774 274719 344609

Setup (s) 18.07 18.75 20.04 26.59 31.86
Prover(s) 1.43 1.44 1.46 2.45 2.5

Verifier(ms) 14.93 18.71 24.41 41.70 72.17

Linking. Table 4.2 presents our measurements of the time required for the linking of a
VM and a hypervisor attestation report. Note that the measurements below do not corre-
spond to the full algorithm presented in section 4.4.6 but only include the verification of
the linking information. The linking information inside the hypervisor attestation depends
on the number of VM owned by the tenant, which impacts the overall performance. Even
in spite of such variations, our scheme provides very fast, easy linking.
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Table 4.2: Time to perform linking depending on the number of VM hosted by the hypervisor.

Number of VM 50 100 150
Linking time (µs ) 27.89 56.74 84.40

4.7 Conclusion

In this work, we have proposed a scalable and efficient TPM attestation scheme for
multi-tenant environments. Our scheme does not require any modification of the TPM
or unrealistic trust assumptions (e.g., attestation proxy). It provides strong privacy for
both tenants and the hypervisor, and guarantees layer binding.
Our scheme achieves privacy by relying on vector commitment and ZK-SNARK. The
latter primitive incurs a relatively high overhead, but it remains stable even with a drasti-
cally high number of attestation requests (which is the case in multi-tenant environments
such as 5G) without requiring any TPM modification. Furthermore, if in some cases the
configuration hiding property is not needed but we still have a high number of attestation
requests due to the modularity of our construction, our scheme can still work efficiently
by simply omitting the ZK-SNARK module.
Finally, note that this scheme could be simpler with a more powerful RoT. For example,
consider the configuration privacy property. We have to rely on the expensive ZK-SNARK
because the TPM cannot run an arbitrary algorithm of our choice on the attestation
data. If the TPM were able to do this, configuration privacy could be ensured with a
commit and prove method. Efficient algorithms exist for this commit-and-prove method,
similar to those employed in the next chapter.
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SO far we have envisioned NFV as being similar to a cloud. A provider hosts VNFs
owned and operated by various tenants, and working independently. While this approach
corresponds to real use cases of NFV, operators can also combine multiple VNFs to
provide a complete network service with an entry point and an end point as shown
in Chapter 1. Therefore, instead of looking at individual VNFs, we want to verify the
state of an entire network service by performing the deep attestation of each VNF. A
trivial solution is to simply attest them sequentially. However, we can do better with
collective attestation, as introduced in Section 1.2.4. In this chapter, we show how to
adapt techniques from IoT collective attestation to render them suitable for the deep
attestation of network services. This work has been accepted at NCA 2024 [4].

5.1 Introduction

The context of this work is illustrated in Figure 5.1. We consider a forwarding graph
(FG) consisting of VNFs owned by different entities, which are colour-coded: blue VNFs
are owned by a blue tenant, green VNFs belong to the green tenant, and so on. The
VNF-FG has an entry point (shown on the left) and an end point (shown on the right). In
addition to the owners of the various VNFs, an additional party represented in Figure 5.1
is an operator who manages the VNF-FG (and may also own VNFs and parts of the
NFVI). We consider a fixed network topology ensuring network stability during each
attestation. Although this assumption is unrealistic for IoT swarms, it is reasonable in
the NFV use case, where the VNF-FG must remain online during communication. We
also assume that each VNF and hypervisor are equipped with a root of trust.
In this context, the operator may request the attestation of the entire swarm either
in order to verify the state of the VNF-FG, or as part of a service provided to users
of the forwarding graph. The challenge is to prove that the VNFs of the graph are
in a valid state, but in a way that preserves the privacy of the exact configuration of
each VNF and hypervisor.
To be sure that a forwarding graph is in a valid state, it is important to attest each VNF,
but also the underlying hypervisor, hence the need for deep attestation. However, deep
attestation may not be sufficient, as we also need to ensure that each VNF is running
on the correct hypervisor and has not been moved, hence the need for linking DA.
Finally, as in any multi-tenant environment, we want to preserve the privacy of the
VNF configuration.
Clearly, a naïve solution to providing the attestation of a VNF forwarding graph with
the properties we want is to sequentially attest each VNF using a privacy-preserving
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Figure 5.1: A multi-tenant and multi-domain VNF-FG.

deep attestation scheme. However, this is inefficient in terms of attestation computation
time, attestation verification time, and bandwidth usage. Our goal is to do better by
using collective remote attestation methods while remaining privacy-preserving and
enabling deep attestation with linking.

Our Contribution. To meet these challenges we designed a new protocol D-CRA,
which allows to verify both the valid state of each component in a VNF-FG (VNFs and
hypervisors), and the layer-linking between VNFs and hypervisors. In addition, D-CRA
guarantees an essential privacy property : the hiding of specific state details (i.e., the
configuration) of VNFs and hypervisors in the VNF-FG. All that will be leaked upon
attestation is that the configuration belongs to a set of valid configurations, typically
chosen by the node itself, the tenant, the operator, or the vertical, or even all the entities
together. Configuration hiding is a business must in multi-tenant environments, and also
reinforces Internet openness as recently pointed out by the IETF: “ Allowing clients to
use a variety of software as long as it is protocol-compliant is an essential part of the
IETF development process and the openness of the Internet." [54].
Our protocol relies on the use of spanning trees, which allow nodes to transmit at-
testation requests and collect attestations over a VNF-FG. Each node corresponds
to a component (i.e., VNF or hypervisor), and it must attest to its parent nodes. The
latter verify the attestations and cumulate the results of those verifications into binary
aggregates over all the child nodes. If all the child-node attestations are valid, then
the parent’s aggregate is set to 1; else, it will be set to 0. The use of intermediate
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and unforgeable verification of attestations and propagation through binary aggregates
makes large group attestations efficient.
An important aspect of our scheme, is that node attestations do not actually feature
the node’s current state, but rather a proof, in zero-knowledge, that the state belongs
to a public set of valid states. This configuration-hiding property is guaranteed in our
protocol by the use of zero-knowledge set membership proofs. Another important
contribution of this work is formalizing the privacy and linking properties that collective
remote attestation must achieve and rigorously proving that D-CRA reaches them.
Finally, we empirically evaluate the performance of D-CRA using an implementation
using OMNeT++ [55]. The results show that a VNF-FG attestation time is logarithmic
in the number of involved nodes and the attestation of thousands of nodes does not
exceed 200ms. Thus, our privacy-preserving layer-linking collective-attestation solution
achieves strong privacy while remaining highly competitive in practice.

5.2 Technical Overview

Like the first IoT cRA protocols [22], [23], in our protocol D-CRA, we use a spanning tree
to efficiently attest the nodes of a VNF-FG. Each forwarding-graph will be associated with
a spanning tree that has, at its origin, the point of entry of the VNF-FG (also called a root
node). However, contrarily to previous collective remote attestation approaches (which
can efficiently attest VNFs but omit hypervisors), we consider not only VNFs but also
their associated hypervisors1. Our decision to include hypervisors in the VNF-FG model
emanates from our proposed goal of guaranteeing layer-linking: a strong property, which
ensures that attestation not only provides proof as to the lack of tampering on nodes
such as hypervisors and VNFs, but additionally links VNFs to the hypervisors managing
them. This decision (including hypervisors in the VNF-FGs) does not simply imply a
complication in terms of increasing the size of the forwarding-graph. Indeed, in NFV
structures, hypervisors may manage a number of VNFs and this relationship will need to
be translated to the graph’s structure. Should hypervisors be direct parent-nodes of the
managed VNFs? This might be inefficient, as the structure of the graph will impact the
optimal spanning-tree size and layout. The result is then a strong structural guarantee
of the VNF-FG, which guarantees the deep attestation of the underlying infrastructure.

1Notice that in the ETSI definition of a VNF-FG, the term node corresponds to a VNF. In the rest of
this chapter we will use the term node to refer to either a VNFs or a hypervisors. We also assume that
both VNF and hypervisor are equipped with a Root of Trust (RoT) that can be physical or virtualized.
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Note 5.2.1: Why Tree?

Tree based cRA use a tree to distribute the attestation and to aggregate the
results upon return. This simple and very efficient method (still the most efficient
approach as of today), only works with a static network. In our case, we consider
static network for the time of attestation. In fact, in NFV the VNF-FG remain
unchanged beyond the interval of attestation: as described in Chapter 1, a VNF-
FG is associated with a graph descriptor (stored in the MANO) that fixes the
topology of such a graph in the long run. This allows us to consider a complex one-
time setup, where VNFs and hypervisors are initialised with no need for a dynamic
join or update protocol. Though counter intuitive, this way of using VFN-FG does
not go against the dynamic nature of NFV; indeed, the operator can always add or
remove services by adding and removing VNF-FG.

Keys, configurations, linking. Similarly to spanning tree based IoT collective attes-
tations, we assume that, before attestation can take place, each node of the VNF-FG
is initialized in a trusted way by the operator during an offline phase. Subsequently,
attestation can take place during potentially many online phases. During setup, each
node generates its cryptographic attestation credentials (sk, pk) (the secret key is kept
into the RoT). In addition to non privacy-preserving schemes, we explicitly consider
the notion of node configuration, which essentially specifies the exact setup of the
VNF or hypervisor, and which the owner of the VNF or hypervisor might want to keep
private from neighbouring, potentially semi-trusted nodes. Thus, in addition to the
keypair meant for attestation, each node shares a set confset of potential configurations
rather than the single configuration being actually adopted in practice. Thus, contrary
to the common, non privacy-preserving approach of [22], [23], we require attestation
in VNF-FGs to guarantee configuration-hiding, a privacy property similar to the one
we introduced in Chapter 4. Finally, our scheme will require attestations to be linkable,
like in our two previous schemes. As a result, during setup, each node generates
and transmits its linking information link, which in the case of a VNF will be a single
public key, and in the case of a hypervisor will be a set of public keys corresponding
to the VNFs public keys associated with it. This will enable our scheme to guarantee
layer-linking, a property essential in virtualized infrastructures like multi-tenant VNF-FGs,
but which is not relevant in an IoT context.
VNF-FG attestation. The online phase of our approach is the actual collective remote

attestation protocol, which can be triggered on demand by the operator that uses the
VNF-FG as an underlying support for its services. The operator triggers the computation
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Figure 5.2: VNF-FG to an attestation tree.

of the spanning tree rooted at the entry point of the VNF-FG, over all the forwarding-
graph nodes. Then, the operator can broadcast an attestation request starting from
the root (VNF-FG entry point), which is forwarded by each node to its child nodes. The
response will be forwarded in reverse order, from child to parent nodes and all the way
back to the root. This is illustrated in Figure 5.2.
A basic approach towards remote attestation would enable nodes receiving an attes-
tation request from a parent node to compute an attestation of the node’s current
configuration. If, moreover, layer-linking is required, then that can be achieved by
including linking information by the method we provided in Chapter 3. However, here
we also consider the privacy of node-configurations.
Thus, in our protocol, when a node receives the request req (which includes an attes-
tation nonce), the node’s Root of Trust retrieves the node’s configuration. The RoT
computes and sends an attestation (to the parent node), consisting of 3 elements: (1)
a hiding commitment c of the retrieved configuration; (2) a zero-knowledge proof π
that c is the commitment of a configuration among the set of valid configuration confset,
without revealing the configuration itself; (3) a signature σ over the commitment, the
nonce (received in the request), and the node linking information.
When a node receives an attestation report, it proceeds as follows: it first retrieves the
set of configurations and the linking information associated with the node which sent
the attestation. Then it checks the proof π and signature σ under the expected linking
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information and nonce. When a node has received and verified all the attestations
from its child nodes, it proceeds to the aggregation of its verifications, in a SEDA-like
way [22], which consists of simply setting a single bit to 1 if all the received attestations
successfully verify and 0 otherwise. Finally, it computes and sends a signature over the
aggregate and the nonce (received in the request req), as well as its own attestation
(computed as described earlier), to the parent node. This process is repeated up the
to the root node (the entry point of the VNF-FG).
To summarize, our scheme D-CRA enables (i) to efficiently compute a collective attes-
tation by using a spanning tree and binary aggregation approaches, (ii) to verify the
layer linking properties for VNFs and hypervisors due to sharing linking information at
the offline phase and embedding it within attestations, and (iii) to prove the validity of a
node configuration without sharing it thanks to set membership proofs.

5.3 Model

In this section, we formalize our scheme D-CRA and define the security and privacy
properties that we want to achieve. Table 5.1 provides a summary of the used notations.

5.3.1 Syntax

We define a formal syntax for our privacy preserving collective remote attestation
scheme D-CRA consisting of 10 probabilistic polynomial-time (PPT) algorithms. We
first describe the algorithms of the offline phase, which are used to essentially set up
the VNF-FG nodes. We subsequently focus on the algorithms making up the actual
attestation protocol, which are run in an online phase.
Both in the syntax of our primitive and for the security model, we restrict the choice of
forwarding graph to a set Γ, which essentially rules out disconnected graphs as well
as those containing parallel links between nodes.

Offline Phase This phase consists of four algorithms:
cRA.Setup(1λ,G)→ (ppar,G, TG) : The setup algorithm takes as input the security pa-

rameter λ (in unary), as well as a graph G ∈ Γ. It outputs public parameters ppar,
as well as the graph that was given in input and a spanning tree TG for that graph.
The graph taken in input succinctly abbreviates the structure of the VNF-FG.

cRA.InitVerifier(ppar)→ (skver, pkver) : This algorithm initializes the verifier (the oper-
ator in our case) with a keypair consisting of the private key skver and corresponding
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Table 5.1: Notation.

Generic Parameters
λ Security parameter
ppar Public parameters
G Graph forming the VNF-FG
Γ Set of possible graphs admitted by scheme
TG Set of all the possible spanning for the graph G
n Number of nodes in a graph G

Verifier Parameters
ver Verifier handle
skver Verifier secret key
pkver Verifier public key
stgver Verifier storage

Node Parameters
node Node handle
sk Node secret key
pk Node public key
conf Node current configuration
confset Node list of possible valid configuration
link Node’s current linking information
stg Storage of the node stored in the RoT
pkneib A neighbour’s public key
confsetneib A neighbour’s set of configurations
linkneib A neighbour’s expected linking information

Attestation Parameters
req Attestation request
randreq Request nonce
σreq Request signature
a Attestation report
c Attestation commitment
σa Attestation signature
πa Attestation ZKP
agg Aggregate report
resagg Binary result of aggregation
σagg Aggregate signature

Root Node Parameters
pkroot Root node public key
confsetroot Root node set of valid configurations
linkroot Root node linking information
aroot Root node attestation
aggroot Root node aggregate
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public key pkver.
cRA.InitNode(ppar)→ (pk, sk, confset, link) : This initialization algorithm can be used to

initialize any nodes of graph G (by setting it up as a VNF or hypervisor). The
algorithm creates a keypair for the node and sets its configurations’ set and linking
information.

cRA.InitStg(ppar, (node ∪ ver), (pkneib, confsetneib, linkneib)neib∈N [node,G], pkver)→ stg : The
cRA.InitStg is a potentially interactive algorithm, which allows a node node in the
graph G to be initialized with public parameters associated with their neighbours.
We denote by N [node,G] the set of neighbours of the node node ∈ G. These public
values are used for the verification of future attestations. The verifier also initializes
its storage by getting information of the entry point node in the spanning tree.

Online Phase The attestation process is run through the online interaction of the
following 6 algorithms :
cRA.ReqGen(skver, TG)→ req : This algorithm is used by the verifier (i.e., the operator)

to create an attestation request. It also takes in input the tree description TG
published as part of the public parameters, and outputs a request req, which must
imperatively include an attestation nonce randreq.

cRA.Attest(stg, sk, conf, confset, link, req)→ a ∪ ⊥ : This is the attestation algorithm,
which will either abort, producing an error (if the attestation request req does
not internally verify) or will eventually produce, for a nonce randreq included in an
attestation request req, an attestation report a for a specific node (associated with
the signature key sk). More precisely, if the request verifies, req is propagated
further to the next nodes. In addition, the algorithm takes in input a private key
sk, the node’s current configuration conf, a set of valid configurations confset (it
holds that conf ∈ confset), and some linking information link, as well as the nonce
randreq. The output is an attestation report a. In anticipation of our construction,
notice that this attestation report will provide strong authentication and layer-linking
properties.

cRA.Verify(stg, a, req)→ {0, 1} ∪ ⊥ : The attestation verification allows a node to verify
an attestation for a request req which includes the nonce randreq. The verification
algorithm is stateful and the verifying node uses its internal storage stg2 during
verification to recover all the information needed for the verification process. If
this algorithm outputs a result equal to 1, the verifying node will conclude that the
node acting as the prover (and providing a) is in a valid state (i.e., the node has a

2In the construction we give a concrete example of stg
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valid configuration and correct linking information). By contrast, when the result is
0, the prover node is assumed to have been tampered with (i.e., the node has
an invalid configuration or improper linking information). The algorithm can also
output ⊥ if a node doesn’t answer to its parent before a certain timeout.

cRA.Aggregate(stg, sk, (a1, ..., ai), (agg1, ..., aggj), req)→ agg′ : This algorithm is used to
aggregate a number of attestation reports ai and/or a number of intermediate
aggregates aggj for a common request req including a nonce randreq. It can
aggregate both attestation and already aggregated results.

cRA.AggVerify(stg, agg, req)→ {0, 1} ∪ ⊥ : This algorithm is used to verify if an aggre-
gate is valid for a nonce request req and a node’s storage stg. If the aggregate is
valid (the result of the verification is 1), then every node that has attested so far
is assumed to have been in a valid state. Otherwise, it is assumed that at least
one of the nodes contributing to the aggregate has failed to attest. Similarly to the
attestation verification algorithm, the aggregate verification can output ⊥ if a node
which is expected to send an aggregate fails to do so before a given timeout.

cRA.Link(stgver, aroot, aggroot, req)→ {0, 1} : The linking algorithm is the final algorithm
of the online phase, run by the verifier. It takes in input an aggregate aggroot and
an attestation aroot sent from the root node, along with the attestation request req
(containing the nonce randreq) and the storage of the verifier stgver. If the linking
algorithm outputs 1, every node in the tree is assumed to be in a valid state and
correctly linked to the expected hypervisor/VNFs.

Remark 5.3.1. Notice that in practice the description of the VNF-FG comes from the
NFV MANO (NFV MANagement and Orchestration), and thus the spanning tree of
the graph will be computed honestly, outside the direct control of the verifier (and of
potential adversaries). This will be reflected in our subsequent security games.

5.3.2 Properties

In this section we define the properties that collective remote attestation should guar-
antee. We use our work of Chapter 3, which captured the basic provable-security
properties of deep attestation, and employ a game-based provable-security approach,
in which the adversary A plays a security game against a challenger C. The attacker is
given access to oracles which capture special capabilities such as the corruption of a
VNF, or the choice of a convenient configurations for a particular node. The adversary
can also effectively use any algorithms for which it knows the correct input values.
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Unforgeability

Unforgeability is the basic property expected for an attestation scheme, namely that no
adversary should be able to forge a valid attestation for a node which is in an invalid
state. We extend this idea for a VNF-FG. For an unforgeable collective attestation
scheme no adversary should be able to provide a valid collective attestation that was
not legitimately generated by an honest node. In that case we assume that every node
in the VNF-FG is equipped with a RoT assumed to be incorruptible.

Oracles. We define the following oracles:
• oCorrupt(nodei)→ OK : This oracle allows the adversary to corrupt node nodei.

Corrupt nodes allow the adversary software access to that node, but no access to
the secret key or the state stored in the RoT.

• oReqGen(G)→ req : This oracle takes in input a graph description G, it retrieves the
spanning tree TG generated upon setting up the graph G, then runs as a black-box
the algorithm cRA.ReqGen(skver, TG). The resulting request req is forwarded to the
adversary.

• oAttest(nodei, req)→ a : The adversary can use this oracle to obtain an attes-
tation generated legitimately for node nodei, using the nonce randreq from the
request req. This oracle runs, as a black box, the algorithm cRA.Attest(ski,

confi, confseti, linki, randreq) in order to produce the attestation.
• oAggreg(nodei, (a1, ..., an), (agg1, ..., aggm), req)→ agg ∪ ⊥: The aggregation oracle

can be queried to get an aggregation of attestations (a1, ..., an) and/or potential
aggregates (agg1, ..., aggm) under nonce randreq from request req. The aggre-
gation is performed by node nodei, by running, as a black box, the algorithm
cRA.Aggregate(ski, stgi, (a1, ..., an), (agg1, ..., aggm), rand). Note that, in our scheme,
only certain nodes can verify, and thus aggregate attestations. If the input node is
not one of those nodes, the result provided by this oracle is ⊥.

Security game. We define the game GUF(λ) below.

Definition 5.3.1 (Unforgeability). We say that D-CRA is (n, ϵ)-unforgeable if for any
graph G ∈ Γ on at most n nodes chosen at setup, and for all PPT A playing the
unforgeability game, it holds that:

AdvUFcRA(A) = Pr[A wins GUF(λ)] ≤ ϵ

The value AdvUFcRA(A) is called the advantage of the adversary in winning the unforgeabil-
ity game.
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Game GUF(λ)

(ppar,G, TG)← cRA.Setup(1λ,G)
(skver, pkver)← cRA.InitVerifier(ppar)
stgver ← cRA.InitStg(ppar, ver, (pkroot, confsetroot, linkroot),∅)
∀i ∈ [n] : (pki, ski, confseti, linki)← cRA.InitNode(ppar)

stgi ← cRA.InitStg(ppar, nodei, (pkneibi , confsetneibi , linkneibi)nbneib , pkver)
(agg, a, nodei, req)← AoCorrupt(.),oReqGen(.),oAttest(.),oAggreg(.)(1λ, {pki, confseti, linki}i∈[n])
A wins iff.
- cRA.AggVerify(stgi, agg, req) = 1 or cRA.Verify(stgi, a, req) = 1.
- AND the oAttest and oAggreg oracles have not been queried using the pair
(nodei, randreq) (with (randreq, σ)← req).

Figure 5.3: The cRA unforgeability game

Linking

In Chapter 3 we define linking as a game, in which an adversary must succeed in
convincing a verifier that a VM is managed by a given hypervisor, even though this
is not the case. Here we are aiming for a similar property, adapted to the context
of collective attestation.
In tree-based collective attestation, components such as hypervisors and VMs can be
distant nodes within the tree. We could enforce local verification of linking, enabling
each node to verify the validity of linking of other components. Yet, this would expose
linking information beyond the span of components that are directly related, and require
the transmission of verification elements from each node to all other nodes. Instead,
we prefer to make an implicit local partial verification of linking information through
the attestation verification algorithm and provide an explicit result only at the end of
the attestation process for all the VNF-FG.
The adversary’s goal is to persuade the verifier at the root of the spanning tree in the
VNF of the linking of one specific VNF and hypervisor, which are not in reality associated
with each other. Formally, like is the unforgeability property, we let the challenger set up
the VNF-FG; thus, every node is initialized with the expected linking information, outside
of the adversary’s control. We then give the adversary access to an oracle which allows
it to modify the configuration of the VNF-FG. In addition the adversary is given active
access to the oAttest, oReqGen, and oAggreg oracles defined in Section 5.3.2.
The adversary wins if it is able to provide an attestation and an aggregate which verify
as linkable by the cRA.Link algorithm, in spite of the modification of at least one linking
information (translated into a change in the structure of the original VNF-FG).
In order to distinguish calls to the oAttest and oAggreg oracles for one graph topology or
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another, the challenger keeps track of a database of legitimately generated requests,
obtained by calls to oReqGen. This database, which we denote as DoReqGen consists of
entries of the type (G, req), which essentially list the graph G given in input to oReqGen

and the resulting request req, which includes a nonce randreq.

Oracles. In addition to the oAttest, oReqGen and oAggreg oracles we introduce the
oModG oracle :

• oModG(G, (sk, pk, stg, confset, link)n) : This oracle takes as input a graph description
G ∈ Γ. It can be used to modify the VNF-FG topology according to this graph
description. Such modifications include moving a VNF to a different location within
the graph, removing a VNF, but also adding a VNF. The adversary has full control
over added VNFs and specifies their information as it wants as input to this oracle.
The oracle runs the cRA.InitStg for the new VNFs and only for them, all other
VNF state remain unchanged.

Security game. We define the GLK(λ) as follows :

Game GLK(λ)

(ppar,G, TG)← cRA.Setup(1λ,G)
(skver, pkver)← cRA.InitVerifier(ppar)
stgver ← cRA.InitStg(ppar, ver, (pkroot, confsetroot, linkroot),∅)
∀i ∈ [n] : (pki, ski, confseti, linki)← cRA.InitNode(ppar)

stgi ← cRA.InitStg(ppar, nodei, (pkneibi , confsetneibi , linkneibi)nbneib , pkver)
(aggroot, aroot, req)← AoModG(.),oReqGen(.),oAttest(.),oAggreg(.)(1λ, {pki, confseti, linki}i∈[n])
A wins iff.
- cRA.Link(stgver, aroot, aggroot, req) = 1.
- AND there exists no nonce randreq and no request req such that: randreq ∈ req
- AND (G, req) ∈ DoReqGen with G being the graph input at the start of the game,
- AND aroot and aggroot issued by oAttest and oAggreg on input randreq.

Figure 5.4: The linking game

We define AdvLKcRA(A) to be the probability of adversary A to win the game the GLK(λ).

Definition 5.3.2 (Linkability). We say that D-CRA is (n, ϵ)-linkable if for all original
graphs G ∈ Γ employed at setup, and any PPT A playing the linking game for a modified
graph G on at most n nodes, it holds that:

AdvLKcRA(A) = Pr[A wins GLK(λ)] ≤ ϵ

The value AdvLKcRA(A) is called the advantage of the adversary in winning the linking
game.

Thibaut JACQUES| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 4.0

119



Chapitre 5 – Collective Attestation in NFV

Configuration Hiding

The core idea behind this property is to guarantee that even if all the nodes (VNFs
and hypervisors) of a VNF-FG are compromised except for one honest node, that
honest node’s configuration is indistinguishable to an adversary from all the other
configurations in that node’s (publicly known) configuration set. We give A access to
the oracle oChooseConfb, presented below.

Oracle. Let oChooseConfb be the following oracle :
• oChooseConfb(nodei, conf0, conf1, confset)→ (pki, linki) ∪ ⊥ : This oracle can only

be called once. On input two configurations conf0 and conf1 as well as a config-
uration set confset and a bit b, this oracle checks that both configurations are in
the set of valid configuration confset (conf0 ∈ confset and conf1 ∈ confset). If the
verification fails, the oracle outputs ⊥. Otherwise it initializes the configuration of
the component nodei as confb, sets the configuration set of that node to confset and
then simulates all the other steps of the cRA.InitNode algorithm to obtain a public
and private key for that node, as well as any linking information. The adversary is
given the public key pk and the linking information link.

Security game. Let i∗ denote the index of the node initialized by querying oChooseConfb.
We define the GCHide(λ) game :

Game GCHide(λ)

G ← A
(ppar,G, TG)← cRA.Setup(1λ,G)
b

$← {0, 1}
pkver ∪ {nodei, pki, confseti, linki}i∈[n],i ̸=i∗ ← AoChooseConfb(.)(1λ,G, ppar, TG)
d← AoAttest(.),oAggreg(.)(1λ, ppar,G, pkver ∪ {nodei, pki, confseti, linki}i∈[n],i ̸=i∗)

A wins iff. b = d

Figure 5.5: The configuration-hiding game

Definition 5.3.3 (Configuration Hiding). We say that D-CRA is ϵ-configuration-hiding if
for any PPT A playing the configuration-hiding game, it holds that:

AdvCHidecRA (A) := |Pr[A wins GCHide(λ)]−
1

2
| ≤ ϵ

The value AdvCHidecRA (A) is called the advantage of the adversary in winning the configuration-
hiding game.
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5.4 Construction

In this section we instantiate our scheme D-CRA using a signature scheme SIG =

(SIG.Setup, SIG.KeyGen, SIG.Sign, SIG.Verify), a commitment scheme COM = (COM.Commit,
COM.Verify) and a non-interactive zero-knowledge proof of knowledge NIZK = (NIZK.Setup,
NIZK.Pr, NIZK.Ver). As in Section 5.3.1, we structure the presentation of our instanti-
ation in two phases: the online and the offline phase.

Offline Phase The offline phase corresponds to the initialization of the VNF-FG with
all the parameters needed for the attestation process itself. The verifier and each node
(VNFs as well as the hypervisors) are initialized with a signature key-pair, their expected
sets of configurations and linking information. Then they share such public information
with their neighbours. This is done by running the cRA.InitNode and cRA.InitStg

algorithms for each node (the description of each algorithm is provided below in detail).
After this setup, every node (VNFs and hypervisors) has its storage initialized with
all the information they need to be able to verify their neighbours attestation. We
start by describing the content of this storage and give more information about what
linking information is:

stg = (pkver, (pkneib, confsetneib, linkneib)nbneib) : The storage of every node in the VNF-FG
includes: the verifier public key pkver (used when attestation requests are forwarded,
in order to ensure that nodes only respond to requests legitimately produced by
the verifier), and a table of triples (pkneib, confsetneib, linkneib) (each entry correspond-
ing to a neighbour and featuring the latter’s public key pkneib, its set of possible
configurations confsetneib, and expected linking information linkneib). In addition to
such values, the verifier also contains an entry detailing information related to the
root node (i.e., the entry node of the VNF-FG).

link : The linking information of each node differs depending on whether that node
is a VNF or a hypervisor. In the case of a VNF, the linking information is the
public attestation (signature) key of that VNF (the same as the key generated by
the cRA.InitNode algorithm). For a hypervisor, the linking information is the set
of public attestation keys of all the VNFs the hypervisor is currently managing.
For a compact storage of linking information, the (collision-resistant) hash of the
public keys could be used. This technique is especially useful in the case of
the hypervisor, in order to ensure that the size of the linking information remains
constant in the number of managed VNFs.
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Remark 5.4.1. In our security analysis, we will assume this setup to be done in a
trusted way, both in terms of generating the setup values and communicating them to
the neighbouring nodes. The latter of these assumptions would count as strong in the
case of forwarding graphs consisting of IoT devices, since the latter are highly mobile,
and therefore new forwarding graphs will form in ad-hoc manners at short intervals. By
contrast, in our use case (Virtual Network Functions owned by various infrastructure
providers), VNF-FGs are inherently stable and less likely to change over time. As a
result, an assumption of a trusted setup is less strong and can be achieved in practice
by the use of mutually-authenticated secure channels.

Remark 5.4.2. We furthermore stress that the storage stg is stored into the RoT and
cannot be tampered with in practice.

We proceed to detail the offline-phase algorithms:
cRA.Setup(1λ,G)→ (ppar,G, TG) : The setup algorithm runs the individual setup algo-

rithms of the signature pparSIG ← SIG.Setup(1λ) and the commitment schemes
pparCOM ← COM.Setup(1λ). Given the graph description G of the VNF-FG it com-
putes a spanning tree TG3. Finally the algorithm sets ppar ← (1λ, pparSIG, pparCOM)

and outputs (ppar,G, TG). All subsequent algorithms take ppar in input, even if the
latter is not specifically included in the algorithm parameters.

cRA.InitVerifier(ppar)→ (skver, pkver) : This algorithm initializes the verifier by creat-
ing a signature keypair : (skver, pkver)← SIG.KeyGen(pparSIG).

cRA.InitNode(ppar)→ (pk, sk, confset, link): This algorithm run for every node in the
VNF-FG (both VNFs and the hypervisors). It then sets the linking information
according to the description we gave above, as well as the set of possible
valid configurations confset. Then it generates a signature key-pair (sk, pk) ←
SIG.KeyGen(pparSIG) (these keys will be stored within the RoT of the device) and
run the setup algorithm of the NIZK proof of knowledge, pparNIZK ← NIZK.Setup(1λ).

cRA.InitStg(ppar, (node ∪ ver), (pkneib, confsetneib, linkneib)neib∈N [node,G], pkver)→ stg: Once
every node (including the verifier) is initialized, important public and linking infor-
mation has to be propagated to pertinent other nodes. This information makes
up the storage of the node. Every node receives triplets (pkneib, confsetneib, linkneib)

from each of its neighbours, and stores them into a storage stg as a table. Also
included in the storage is the public key of the verifier. In its own turn, the verifier
initializes its storage with the information of the root node (namely pkroot, confsetroot
and linkroot).

3We reiterate that the spanning tree is computed, in practice, in a distributed and trusted way outside
of the control of the adversary.
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Figure 5.6: The offline phase after setup.

Online Phase The setup phase of the scheme takes place offline and – in our use
case – will be relatively infrequent. Once the VNF-FG and each of its composing nodes
are set up, one can proceed to performing attestation, in an online phase.
Each attestation is produced in response to an attestation request, that was generated
by the verifier (i.e., the operator) through the use of the cRA.ReqGen algorithm. The
request contains an attestation nonce randreq, and is authenticated. Subsequently,
nodes can verify the authentication.
Once the verifier generates the attestation request, the latter is propagated through the
computed spanning tree TG. When the request reaches the leaf nodes of the spanning
tree, the latter retrieve their current configuration conf, run the cRA.Attest algorithm, and
send that result to the parent-nodes. Upon receiving authenticated attestations from their
children, parents verify them by using the cRA.Verify algorithm, then aggregate those
values by using cRA.Aggregate, sending the aggregate further up the tree. Note that
even a valid attestation or aggregate will be deemed invalid if it is computed for the wrong
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nonce (i.e., not the nonce recovered from the attestation request by the verifying node).
Formally, we define attestations and aggregates as follows.

a = (πa, σa, c): An attestation consists of: (1) A commitment c of the true configuration
of the attested node4; (2) a proof πa that the commitment is made with respect to a
configuration value included in a set of valid configurations confset (the attestation
itself does not contain the value of confset, which is in fact contained in the storage
value included in the Root of Trust of neighbouring nodes); (3) a signature σa

over the commitment value c, the linking information link, and a nonce randreq –
retrieved from the attestation request. The random character of randreq is crucial in
preventing replays of old attestations.

agg = (resagg, σagg) : An aggregate contains: (1) A binary value resagg which indicates
if all the prior attestations/aggregates verify as valid (as soon as one aggregate
or attestation verification fails, the binary result returned by the verifier node will
be 0); (2) A signature σagg over the result resagg with the nonce randreq retrieved by
that node from the propagated attestation request.

The successive verification, attestation, aggregation, and forwarding of the attestations
is done in increments, with parents that receive aggregate values additionally verifying
the aggregates by using the cRA.AggVerify algorithm.
Apart from the attestation and/or aggregate verification, the verifier will moreover check
the correct linking between the nodes of the graph. This is done through the cRA.Link

algorithm, which states whether the entire VNF-FG is in the expected state with VNF
running on the expected hypervisor or if at least one node is in an invalid state/has
invalid linking. An overview of how the online-phase algorithms are used is provided
in Figure 5.7.

Remark 5.4.3. Note that some online steps are parallelizable, while others are not.
For instance, nodes can generate attestations as soon as they receive the verifier’s
authenticated attestation request (from which they can extract and use the attestation
nonce). However, parent nodes must first wait for the child nodes to produce their
attestations (and potential aggregates) before aggregating their own attestations to the
chain and sending them on. This dependency between the nodes implies the practical
requirement of a timeout5. If a node does not send its attestation within the time limit,
the node responsible for verifying that node’s attestation/aggregate must assume that

4Note that the commitment is hiding and thus no information can be learned about the configuration
5Timeouts can be exploited by adversaries in several ways, including in order to deny service to

honest entities. While in our current work DoS attacks are out of scope, understanding such limitations
for VNF-FG schemes is viewed as essential future work.
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the node is in an invalid state.

Remark 5.4.4. We note that the attestation-computation, aggregation, and verification
steps of all of the algorithms deployed during the online phase by a node of the VNF-FG
are executed from the Root of Trust (RoT). The only operation that is not assumed to be
trusted is the transmission of that information, allowing an adversary to potentially delay,
jam, or modify communication.

We now describe the cRA.ReqGen, cRA.ReqVer, cRA.Link, cRA.Attest, cRA.Verify,
cRA.Aggregate and cRA.AggVerify algorithms :
cRA.ReqGen(skver, TG)→ req: On input the verifier secret-key skver this algorithm chooses

a random number randreq
$← {0, 1}λ. It computes a signature over that random

value σreq ← SIG.Sign(skver, randreq), then sends an attestation request req consist-
ing of the concatenation (randreq, σreq) to the root node (entry point of the VNF-FG).

cRA.Attest(stg, sk, conf, confset, link, req)→ a ∪ ⊥: attestation takes in input a node’s
storage value stg, the node’s private key sk, the node’s current configuration conf,
configuration set confset, and linking information link, as well as an attestation
request req. Parsing req as (randreq, σreq), the node uses the verifier’s public key
value pkver (included in each node’s storage) to verify the signature SIG.Verify(

pkver, randreq, σreq). If the signature is invalid, the algorithm outputs ⊥ otherwise
the node can produce an attestation. First, the node computes a commitment of
its current configuration c← COM.Commit(conf, r) with some randomness r. Then
it computes the proof πa ← NIZK.Pr({(conf, r) : c ← COM.Commit(conf, r) ∧ conf ∈
confset}) which shows that c is a valid commitment for a value conf contained
in confset without revealing the committed value. The node also signs c σa ←
SIG.Sign(sk, c|link|randreq), by using the node’s private key sk, stored in the RoT.
The signature ensures that the committed value was generated within the Root of
Trust with a fresh commitment-nonce. Note that the signature is computed over
the node’s own linking information (which is the VNF’s public key for a VNF, and
a set of public keys of each of its linked VNFs for a hypervisor). Finally it sets
a = (πa, σa, c) and outputs a.

cRA.Verify(stg, a, req)→ {0, 1} ∪ ⊥: given in input a securely-stored node storage stg,
an attestation a, and the current attestation request req, the verification algorithm
proceeds to verify that both the proof and the signature included in the attestation
are valid. To do so, the node parses the attestation a as (πa, σa, c) and the request
req as (randreq, σreq). There are two cases: either the attestation stems from a node
that is an actual neighbour of the verifying node, or not. In the second case, the
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node will not have the public key pkneib allowing it to verify the attestation – and will
eventually return⊥. In the former case, the verifying node retrieves from its storage
stg the public key pkneib of the attested node, the expected configuration confsetneib,
and the expected linking-information linkneib, and checks that NIZK.Ver(πa) = 1 (i.e.,
the node checks that the commitment c contains a configuration which is in the set
confsetneib). It also verifies that SIG.Verify(pkneib, c |linkneib|randreq, σa) = 1. If every
check passes, then the algorithm outputs 1, otherwise it outputs 0.

cRA.Aggregate(stg, sk, (a1, ..., ai), (agg1, ..., aggj), req)→ agg′: The aggregation algorithm
takes in input a variable number of attestations a and/or a variable number of aggre-
gate values agg under an attestation request req, as well as the node’s storage stg

and private key sk. The algorithm parses req as (randreq, σreq), then verifies every at-
testation cRA.Verify( stg, a, req) and every aggregate cRA.AggVerify(stg, agg, req).
If all the verifications return 1 (valid), the algorithm sets res′agg = 1, otherwise
it sets res′agg = 0. Finally the algorithm computes a signature over the result
σ′
agg = SIG.Sign(sk, res′agg|randreq) and outputs agg′ = (res′agg, σ

′
agg).

cRA.AggVerify(stg, agg, req)→ {0, 1} ∪ ⊥ : This algorithm parses the aggregate attes-
tation agg as (resagg, σagg) and the request req as (randreq, σreq). There are, once
more, two cases: either the aggregate is received from a neighbouring node, or it
is not. In the latter case, the verifying node will not have the information required
to verify the aggregate, and it will output ⊥. Else, if the aggregate is received
from a neighbour, the verifying node retrieves the public key pkneib associated
with the aggregate from its storage and verifies the signature over the result
SIG.Verify(pkneib, resagg|randreq, σagg). If the signature is valid it outputs 1 otherwise
it outputs 0.

cRA.Link(stgver, aroot, aggroot, req)→ {0, 1}: The linking algorithm is run by the verifier
using its storage stgver given the attestation aroot and aggregate aggroot of the root
node. It checks both under the root node public key : cRA.Verify(stgver, aroot, req)
and cRA.AggVerify(stgver, aggroot, req). If both checks succeed, it outputs 1 (and
concludes that the attestation confirms the expected linking of VNFs and hypervi-
sors) otherwise 0.

Remark 5.4.5. In our construction we assume nodes know the location of their neigh-
bours and thus know which public key should be used to verify an attestation or an
aggregate. If the verification requires for a node to iterate through all the public keys
of all of its neighbours to check if any correctly verify, this could be used by an ad-
versary for a DoS attack. In practice, one can require nodes to communicate over a
mutually-authenticated (secure) channel.
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Figure 5.7: The online phase.

5.5 Security Analysis

In this section we prove that the construction presented in Section 5.4 guarantees
the properties defined in Section 5.3.

5.5.1 Configuration Hiding

Theorem 5.5.1. Let cRA be the privacy-preserving collective remote attestation scheme
described in Section 5.4, using a signature scheme SIG = (SIG.Setup, SIG.KeyGen,
SIG.Sign, SIG.Verify), a commitment scheme COM(COM.Commit, COM.Verify) and a non-
inter-active zero-knowledge proof of knowledge NIZK = (NIZK.Setup, NIZK.Pr, NIZK.Ver).
If the commitment scheme is computationally hiding and the NIZK proof is composable
zero-knowledge in the sense of [56], then D-CRA is configuration-hiding. More specifi-
cally, assume that there exists an adversary A winning the configuration-hiding game
(GCHide(λ)) against a graph on n nodes with advantage AdvCHidecRA (A). Then there exist
adversaries (reductions) R1 against the computational-hiding property of COM and R2

against the zero-knowledge property of NIZK winning with advantages AdvHideCOM (R1) and
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respectively AdvCompZK
NIZK (R2), such that:

AdvCHidecRA (A) ≤ n · (AdvHideCOM (R1) + AdvCompZK
NIZK (R2)).

Proof. Recall that in the configuration-hiding game, the adversary’s goal is to learn
which of two chosen configurations is used to initialize a particular, target node. The
adversary in this case controls both the topology of the VNF-FG and most of the nodes
(with the exception of the target node), from which it can request attestations and
aggregates.
The proof proceeds with only 3 intermediate game hops.
G0: The original configuration-hiding game.
G1: In this intermediate game, the challenger chooses randomly an integer i∗ ∈

{1, . . . , n} and outputs it privately at the beginning of the game. If the adver-
sary queries nodei to the oChooseConf oracle, with i ̸= i∗, then the challenger
outputs ⊥ (the game fails). Else, the game is run normally. Clearly, since the
challenger has a probability of 1

n
to guess the adversary’s target node, it holds

that:
AdvCHideG0

(A) ≤ n · AdvCHideG1
(A) .

G2: We modify G1 In G2, the challenger changes the way it answers oAttest queries to
the target node nodei∗. Specifically, instead of generating the challenger consis-
tently replaces the configuration value confb with that of conf0 regardless of the bit
b.This game is indistinguishable from the previous game from the point of view of
the attacker, since we assumed the commitment scheme to be computationally
hiding. Indeed, using a distinguisher between G1 and G2 we can construct a
reduction R1 which aims to break the hiding property of the commitment scheme.
Clearly, the only difference between the two schemes appears for b = 1, when the
adversary is provided a commitment over conf0 rather than a commitment over
conf1. If the distinguisher between G1 and G2 guesses which game it is playing,
then the reduction is also able to distinguish whether the commitment is made
over conf0 or conf1. Hence,

|AdvCHideG1
(A)− AdvCHideG2

(A)| ≤ AdvHideCOM (R1).

G3: In this game hop, the challenger modifies once more its response to oAttest queries.
It employs the simulator of the NIZK proof of knowledge in order to produce the
proofs required in the attestation a produced by the challenge node nodei∗. This
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is indeed possible for composable zero-knowledge, since the simulator requires
in input only the statement and the public parameters required for verification –
which our scheme provides. If an adversary can distinguish between G2 and G3,
then it can distinguish between a real proof (in G2) and a simulated proof (in G3),
and therefore:

|AdvCHideG2
(A)− AdvCHideG3

(A)| ≤ AdvCompZK
NIZK (R2).

In G3, all the values that were computed for the challenge configuration confb are either
identical in both cases (for the commitment), or are simulated without using the exact
configuration in input (NIZK proof of knowledge). Therefore the adversary’s winning
advantage in G3 is 0. This provides the required bound.

5.5.2 Unforgeability

Theorem 5.5.2. Let cRA be the privacy-preserving collective remote attestation scheme
described in Section 5.4, using a signature scheme SIG = (SIG.Setup, SIG.KeyGen,
SIG.Sign, SIG.Verify), a commitment scheme COM(COM.Commit, COM.Verify) and a non-
inter-active zero-knowledge proof of knowledge NIZK = (NIZK.Setup, NIZK.Pr, NIZK.Ver).
If the signature scheme is EUF-CMA, then D-CRA is unforgeable. More specifically,
assume that there exists an adversary A winning the unforgeability game (GUF(λ))
against a graph on n nodes with advantage AdvUFcRA(A). Then there exists an adversary
(reduction)R against the EUF-CMA of the signature scheme SIG winning with advantage
AdvEUF−CMA

SIG (R), such that:

AdvUFcRA(A) ≤ n · AdvEUF−CMA
SIG (R).

Proof. To understand why unforgeability, recall that, in the security game, the adversary
will be required to forge a valid attestation or aggregate on behalf of a node nodei in the
graph, without obtaining the aggregate or attestation from a direct oracle query. Recall
moreover that an attestation is a triple a = (πa, σa, c), in which the second element, σa is
a signature over 3 values: the commitment c, the linking information link, and the random
value randreq in the request req. An aggregate is a tuple consisting of an aggregated
verification bit resagg and a signature σagg over that result and the request nonce randreq.
While the adversary is able to corrupt any node in software, it has no access to the
node’s Root of Trust (and therefore its private keys). Thus, an adversary can only win
the GUF(λ) game if it produces a forgery on one of those two signatures.

Thibaut JACQUES| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 4.0

129



Chapitre 5 – Collective Attestation in NFV

The proof is relatively straight-forward, with a single intermediary game-hop.
G0: The original unforgeability game GUF(λ).
G1: In this game, the challenger chooses randomly an integer i∗ ∈ {1, . . . , n} and

outputs it privately at the beginning of the game. If the adversary’s final output out
is of the type (nodei, ·, ·) with i ≠ i∗, then the challenger outputs ⊥ (the game fails).
Else, the game is run normally. Clearly, since the challenger has a probability of 1

n

to guess the adversary’s target node, it holds that:

AdvUFG0
(A) ≤ n · AdvUFG1

(A) .

We now compute the adversary’s success probability in game G1. Specifically, we
construct a reduction R against the EUF-CMA security of the signature scheme which
wins whenever adversary A wins G1.
The simulation is straight-forward. The reduction R receives from its EUF-CMA chal-
lenger the target public key pk. The reduction has access to a signing oracle, which
takes in input messages m and outputs signatures of the type σ ← SIG.Sign(sk,m). The
goal of R is to eventually output a tuple (m∗, σ∗) such that SIG.Verify(pk,m, σ) = 1 and
m∗ was never queried to the signing oracle.
Once it receives the target public key pk, the reduction R, playing the part of the
challenger in G1, generates all the private and public parameters of all the parties in
the modified GUF(λ) of G1. The sole exception is during the setup of node nodei∗, in
which the challenger instantiates all the node’s private, public, configuration, and linking
parameters, except for that node’s attestation key. Instead, for node nodei∗ , the reduction
injects the public key pk received from its challenger.
For the remainder of the game, the reduction simulates G1 straightforwardly, except for
oAttest and oAggreg queries. In the case of oAttest(nodei∗ , req) queries, the reduction
computes the commitment value c and NIZK proofs of knowledge faithfully, but then has
to produce a valid signature for the concatenations of the concatenation of c, linki∗ , and
the nonce rand extracted from req. In order to do so , it sends the concatenation of those
messages as a message M to its signature oracle and forwards that response as a
signature, together with c and the proof π to A. The procedure is the same for oAggreg.
Finally A outputs a value out which can be parsed as (agg, a, nodei, req). The reduction
verifies the signatures σa in a and σagg in the aggregate agg. If at least one of these
signatures verifies, and it was not produced by the oAttest or oAggreg oracles, then R
outputs that verifying, fresh signature to its challenger. Else, it outputs a random value
as a forgery.
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For the analysis, note that the reduction simulates the game perfectly for A. If the latter
wins, then it is able to output either a verifying and fresh σa or σagg. In that case, however,
R also wins.
As a result AdvUFG1

(A) ≤ AdvEUF-CMA
SIG (R), giving the required bound.

5.5.3 Linking

Theorem 5.5.3. Let cRA be the privacy-preserving collective remote attestation scheme
described in Section 5.4, using a signature scheme SIG = (SIG.Setup, SIG.KeyGen,
SIG.Sign, SIG.Verify), a commitment scheme COM(COM.Commit, COM.Verify) and a non-
inter-active zero-knowledge proof of knowledge NIZK = (NIZK.Setup, NIZK.Pr, NIZK.Ver).
If the signature scheme is EUF-CMA, then D-CRA is unforgeable. More specifically,
assume that there exists an adversary A winning the unforgeability game (GLK(λ))
against a graph on n nodes with advantage AdvLKcRA(A). Then there exist adversaries
(reductions) R1,R2,R3 against the EUF-CMA of the signature scheme SIG winning
with advantage AdvEUF−CMA

SIG (R1), and respectively AdvEUF−CMA
SIG (R2) and AdvEUF−CMA

SIG (R3),
such that:

AdvLKcRA(A) ≤ AdvEUF−CMA
SIG (R1) + n · AdvEUF−CMA

SIG (R2) + AdvEUF−CMA
SIG (R3).

Proof. To understand why this theorem holds, recall that linking is meant to ensure that
graph nodes (representing VNFs and hypervisors) are linked in specific ways in order
to ensure specific functionalities of the VNF-FG. This often-contractual obligation is
violated if, following adversarial intervention, some VNFs are no longer managed by
the expected hypervisor, or a node (VNF or hypervisor) is suppressed. Thus, in the
linking game, the adversary is allowed to modify the original, honestly-chosen graph to
a different, convenient configuration. The adversary’s goal is to ensure that the VNF-FG
still produce a root attestation and aggregate that seem to be correctly linked with
respect to the original, unmodified graph (which models the expected configuration).
Intuitively, the proof of this statement relies on several constructional decisions of
our schemes. A crucial role is played here by the apparently-simplistic structure of
propagated attestation requests (which are sent across the spanning tree of the graph
by the verifier). Two crucial elements play a part here: the fresh randomness selected by
the verifier at each attestation, and the signature of the request. This ensures that on the
one hand, the adversary cannot replay old attestations, obtained for the original graph,
and pass them off as being attestations obtained for the new graph; and on the other
hand, that an adversary cannot forge attestation requests at will for convenient nonces.
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Note moreover that in the security game, we rule out an adversarial victory for a nonce
that was already used for the old graph, as long as the root attestation and aggregates
are yielded by oAttest or oAggreg. This saves us the trouble of an additional game hop
in which we assume that honestly-generated randomness is always unique. In reality,
we would, however, have to ensure that nonces are sizeable, in order to guarantee that
no collusion occurs.
The next crucial construction element we employ is the linking information obtained and
set up in a trusted way, which is additionally authenticated during the transmission of
both attestations and aggregates. This ensures that graph modifications are identified
by nodes along the spanning tree of the graph.
More formally, we prove the statement through the following sequence of game hops.
G0: The original linking game GLK(λ).
G1: We modify the original game. In G1, if the adversary queries oAttest or oAggreg

with an input req which was not issued by oReqGen, the challenger automatically
outputs ⊥ for those two oracles. We claim that this game is indistinguishable from
G0. Indeed, in order for the adversary to be able to tell the difference between
the games, it has to forge a legitimate, fresh attestation request. If this is the
case, then we can construct an EUF-CMA reduction R1 against the signature
scheme employed by the verifier. The reduction injects the target public key
pk received from the challenger in its simulation of the verifier. The challenger
generates the rest of the graph/node parameters honestly and therefore can
perfectly simulate any graph modification, attestation, and aggregation requests.
For its oReqGen responses, the reduction chooses fresh randomness and queries
it to the signature oracle, outputting the response to the adversary. Eventually, the
adversary must output a forgery, which the reduction forwards to its challenger.
Clearly the simulation is perfect and whenever A distinguishes between the two
games, the reduction also wins. This yields the bound:

|AdvLinkG0
(A)− AdvLinkG1

(A)| ≤ AdvEUF−CMA
SIG (R1).

G2: We modify the game once more. In this intermediate game, the challenger aborts
if the adversary uses, in input to oAttest or oAggreg any attestation or aggregate
that was not output by a call to oAttest or oAggreg for the same nonce. This
includes the attestation/aggregate used in the adversary’s ultimate output. Clearly,
this is equivalent to the successful forging of an attestation or aggregate. The
equivalence between G1 and G2 can be proved through a 2-step reduction, akin to
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the unforgeability game: first the challenger needs to guess on behalf of which
node the forgery is made (yielding a security loss of a factor of 1

n
), and then

constructing a reduction against the unforgeability of that node’s signature scheme.
This yields,

|AdvLinkG1
(A)− AdvLinkG2

(A)| ≤ n · AdvEUF−CMA
SIG (R2).

We now analyse the adversary’s winning probability (which is the same as its advantage
in the case of the GLK(λ) security notion). There are two cases.
NO NEW GRAPH In this case, the adversary never modifies a graph via a oModG

oracle query. In this case, the adversary’s only attestations and aggregates stem from
attestation requests for graph G. As per the last hop the adversary’s output must stem
from an oAttest or oAggreg query for the root node, for a valid request (as per our first
game hop). Hence, in this game, there are two options:

• Either the adversary includes a bogus value for the request, not obtained from
oReqGen, in which case the adversary fails, except for a forgery. We can construct
in that case the adversary R3 and simulate the game as in the first game hop.

• Or the adversary includes an honestly-obtained value for req, in which case the
adversary’s win is not counted as legitimate (all three conditions of failure are
true).

AT LEAST ONE NEW GRAPH In this case, the adversary queries oModG at least once.
We divide our analysis in the following sub-cases:

• None of the subsequently-modified graphs G ′ input to oModG differ from the original
graph G. This case is equivalent to the no-new-graph case.

• At least one graph modification is true (the input graph G ′ ̸= G). In this case, the
adversary now owns attestations and aggregates for the new graph as well as for
the old graph. As per the winning conditions, and game G2, the adversary can
only win for a request req such that (G, req) ̸∈ DoReqGen. But, in this case, since
no attestation or aggregate can be forged, the linking information included in the
signatures has to be faithful to whichever graph G∗ for which (G∗, req) ∈ DoReqGen.
In that case, the adversary fails as the new linking will be different from the current
one.

This concludes the proof with the bound provided above.
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5.6 Implementation

We implemented the total of 10 offline and online algorithms of D-CRA in C++ and
simulated D-CRA over a group of nodes (up to 2.5× 105 nodes) using OMNet++ [55].
OMNet++ is a network simulator that can take in input a tree configuration (i.e., the
number of nodes and the arity) then runs a specific protocol, in our case D-CRA, on that
infrastructure. This setup for an easy performance-evaluation for D-CRA over various
tree configurations (as illustrated in Figure 5.8).

PoC platform details. Our tests and benchmarks were carried out on a standard
laptop running Ubuntu 20.04.5 with an Intel i7-10875H CPU (16 cores) and 32GB RAM.
The benchmarks were run using the Cmdenv environment of OMNeT++ 6.0.1.

Cryptographic details. We implemented the zero-knowledge set membership proof
using a simple and efficient protocol due to Camenisch et al.[57] (rendered non-
interactive via the Fiat-Shamir heuristic). The protocol is pairing based, and we used
the BLS 12-381 curve implementation of mcl [58]. For the signature scheme, we
used Libsodium [59] ed25519.

Memory cost. We denote by |confset| the number of element in a configuration set.
After the offline phase of D-CRA, each node stores at least its signing key pair (sk,pk)
(32 and 32 bytes), the public parameter for the proof pparNIZK (864 + 48 ∗ |confset|), the
verifier public key pkver (32 bytes), and for every child node the following tuple: its public
key, its linking information link6 and its associated confset (32+32+48 · |confset|i bytes for
neighbour i). Thus a node must store at least 960+48 · |confset|+

∑n−1
i=1 64+48 · |confset|i

bytes of information for n neighbours.

Online communication cost. A considerable advantage of collective attestation is
that it greatly reduces bandwidth which is critical in an NFV use case. In our scheme
D-CRA, attestation messages are of constant size. Indeed every node sends at most
its own attestation and one aggregate. An attestation is made up of a proof (816
bytes), a commitment (64 bytes) and a signature (64 bytes) whereas an aggregate
is simply one single bit and a signature (64 bytes). Thus we have a total constant
size of 8065 bits so around 1 kilo bytes.

6The linking information is a set of public keys of the linked components. In order to have a constant
size, this can be implemented by the Hash of the public keys set.
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Computational Load per Node. In Table 5.2, we detail the time (in ms) for one
attestation computation and verification, and an ed25519 signature computation and
verification (this will be later considered for the aggregate computation and verification).
In these benchmarks, we used the google benchmark library [60] and set |confset| (the
size of the set of configuration) to 100.

Table 5.2: Time in ms to perform one attestation and one ed25519 signature.

Mean Median
Attestation 1.56 1.55

Attestation Verification 2.38 2.37
Signature 0.023 0.023

Signature Verification 0.057 0.057

In Table 5.3, we compare our result with SEDA [22] one of the first collective remote
IoT remote attestation protocols.

Table 5.3: Time in ms for a single node to compute an attestation report depending on the
number of neighbours n.

D-CRA SEDA
1.64 + 2.437 · (n− 1) 0.6 + 4.4 · (n− 1)

VNF-FG Attestation Performance. In order to evaluate the performance of our
scheme, we set |confset| = 100, the communication time between two neighbour nodes
to 1ms, with variable number of children nodes (for trees that range from 2-ary to 8-ary)
and the tree height. Although they are unlikely to occur in practice, we considered –for
test purposes– complete trees, allowing us to vary the number of nodes up to 2.5× 105.
For each combination, we ran multiple trials and plotted the mean value in Figure 5.8.
These results show that (i) attesting a VNF-FG consisting of thousands of VNFs does
not exceed 200ms and (ii) a VNF-FG attestation time is logarithmic in the number of
nodes, making our scheme D-CRA very efficient and scalable.

5.7 Conclusion

In this Chapter, we proposed a method to attest a large group of VNFs forming a
VNF-FG, while also guaranteeing layer-linking: ensuring that every VNF is linked to
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Figure 5.8: VNF-FG attestation time

the correct hypervisor. More importantly, our protocol preserves the privacy of each
node’s actual configuration through the use of set membership proofs. This renders
our protocol suitable for multi-tenant VNF-FGs in which multiple operators collaborate
in order to provide a full network service.
Our scheme leverages deep-attestation, property-based attestation, and collective re-
mote attestation, and achieves provable, formal privacy and security : unforgeability,
layer-linking, and configuration-hiding. Our proof-of-concept implementation demon-
strates the efficiency of our scheme and demonstrates that privacy can be achieved
without a loss of scalability.
Our protocol currently provides a yes/no verification and linking output: yes, the entire
VNF-FG is in a valid state, no, it is not. A possible extension could identify which devices
failed their attestation. This would involve including, in the aggregates, the identifiers
corresponding to failed attestations/aggregates. However, this would increase bandwidth
costs if attestation fails and could be used by adversaries to cause congestion.
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NETWORK Infrastructures are rapidly evolving from a static to a virtualised and
flexible architecture. While this evolution is necessary in order to meet new demands
and absorb an eve increasing traffic, it raises serious security challenges. Remote
attestation is a potentially powerful tool in this context despite the lack of construction
tailored or even suitable for virtualized networks. In this thesis, we have made several
contributions along this line, and hope that our work will prove usable for practitioners
and seminal in future researchs.

Contributions

Our first contribution is a simple deep attestation protocol (authorized linked attestation),
which can be seen as an improvement on the ETSI multi-channel deep attestation
approach. It remains as efficient as the multi-channel approach but also includes a
linking mechanism, so that a verifier can check that two attestations are linked. In our
case this means that a verifier can check that a VM attestation is linked to a hypervisor
attestation and therefore that the VM is actually running on that hypervisor. From
a cryptographic point of view, linking is achieved by adding some public keys in the
attestation report, which is then signed. The hypervisor includes all the keys of the
currently running VMs, and each VM includes its own public key in the attestation.
The verifier simply checks that there is a match. This approach allows for a modular
suite of formal definitions, which provide gradual properties, including authentication,
authorization, and provable layer-linking. In addition, we demonstrated the practicality
of the protocol through a Proof of Concept implementation, which allowed to attest 50
VMs in less than 8 seconds. This basic protocol provides the best of both worlds : the
parallelizable efficiency of multiple-channel attestation and the layer-linked security of
single-channel attestation. However, it assumes that all the involved entities (i.e., the
hypervisor, the VMs and the verifier) are operated by a single operator.

Our second advanced use case is attesting a multi-tenant infrastructure where a provider
hosts multiple VMs owned by different tenants. The purpose is to enable each tenant
to deep attest its own VMs (i.e., VMs, hypervisor, and layer linking) without leaking
any information about the other tenants. In this context, implementing an efficient
deep attestation mechanism poses more challenges. The straightforward concept of
multiple-channel (i.e., separating VM attestation from hypervisor attestation, where the
hypervisor would only require a single attestation) is not feasible and compromises
the configuration privacy of the hypervisor. Instead, we used a batching approach
to provide a hypervisor attestation to multiple tenants with a single call to the RoT.
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We also had to address privacy concerns. We used an approach where the prover
shows that it has a valid configuration among a set of possible ones, without reveal-
ing which one, to reduce information leakage about the provider hypervisor. This is
possible thanks to zero-knowledge proofs. Linking attestations in a multi-tenant use
case also leaks information about each VM on a hypervisor. We used the hiding
property of vector commitments to avoid any such leakage and obtain tenant privacy.
We defined two novel formal privacy properties (inter-tenant privacy and configuration
hiding) and modified the linking property. To account for multiple tenants our protocol
adheres to these properties. To make our proofs work we had to introduce two new
properties, one for vector commitments (collision resistance) and one for authenticated
key exchange (partner-hiding). This proves that achieving privacy-preserving, linkable
deep attestation for multiple tenant environments is non trivial and requires careful
consideration. We proved that Merkle tree-based vector commitment schemes and TLS
1.3 satisfy collision resistance and partner-hiding, respectively. We also implemented
the protocol, which can handle requests from 500 tenants in 2.5 seconds (given an
incompressible TPM attestation of 1s).

Finally, we focus on a broader use-case: attesting a large infrastructure (called a VNF-
FG) of inter-dependent VNFs, belonging to various entities. This use-case touches
upon the real-world complexity of operating a Telco Cloud which aims to provide whole,
complex network services, rather than just a single VNF. With a single attestation, we
can verify that all the elements that make up a network service are in an appropriate
state. This greatly reduces the network traffic caused by attestation messages. Using
methods borrowed from collective attestation in the context of IoT and techniques from
our two previous schemes, we designed an efficient and privacy-preserving network
service attestation protocol. Likewise, we provided a formal model with proofs and an
implementation with experimental results showing that we can attest a network services
made of 250000 targets in less than 150ms.

Perspectives

Our schemes answer to concrete scenarios of Telco Cloud attestation. However, there
are still questions (both technical and operational) that need to be answered in order
to make remote attestation fully operational in virtualized networks. We end this thesis
by highlighting some interesting research areas to consider as future work.

VM Migration. VM migration allows a VM to move seamlessly from one hypervisor
to another. Live migration even allows VMs to be moved while they are running, with
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Figure 5.9: A summary of our three protocols.

downtime low enough to be unnoticeable to users. This technology is essential to
provide flexibility in NFV environment. Yet, in terms of attestation, migration comes
with certain challenges. There is some work on the subject [61], but it has not yet
been explored in the context of NFV. As we have seen throughout this thesis, privacy is
critical for several NFV use cases. However, most existing protocols start with a mutual
attestation between the source and the destination, which in our case could be operated
by different entities. Therefore, this process needs to be privacy preserving. Another
problem of existing works is that they mostly consider TPM attestation, but other form
of attestation and TEE are valuable in the context of NFV.

Beyond Virtual Machines. All the protocols presented in this work are defined for VNF,
which are in fact virtual machines. However, these protocols might be not usable when
virtualization is not based on virtual machines. We illustrate this problem with the case
of containers which can also be used to package network function (and sometimes
called CNF, for Container Network Function, to distinguish them from VNF). Depending
on the underlying RoT, our protocols can be used transparently whether we are using
VMs or containers, but for others this is not possible. This is particularly the case with
the TPM. TPM attestation is about measuring the boot sequence, but a container does
not boot like a physical machine. With containers, attestation only makes sense using
the Integrity Measurement Architecture (IMA) 7.

References Value Management. Throughout our work, we abstracted the notion
7IMA is a kernel module which allows to extend measurement beyond the kernel.
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of configuration, designing our protocols to be agnostic of the precise state details.
Because we’re focusing on the protocol, we could afford not to look at the details of
configuration. However, in practice we need to define what a validation configuration
is to be able to produce the reference values in order to verify the attestation. We
could wonder whether one could automatically define what are the reference values,
or whether they can be updated automatically when updating the system. Reference
values management has been a recurring problem since the introduction of remote
attestation and there are still no satisfactory solutions.

Standards. Applying attestation implies some form of cooperation between entities
playing various roles (e.g., verifier, attester, etc). Unfortunately, this can be seen as a
major barrier for attestation widespread. But standardising the exchange protocols and
messages formats will enable a shorter time to market. Some works in this direction
are emerging. For example the IETF [62] proposes a format of attestation evidence
but there is still a long way to go.
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Protocoles d’attestation dans les environnements dynamiques

Résumé : La virtualisation des fonctions réseau (NFV) est une approche de la mise en
oeuvre d’un réseau dans laquelle les fonctions réseau sont implémentées sous forme de
logiciels s’exécutant au sein de compartiments virtuels (comme une machine virtuelle ou
un conteneur) plutôt que sous forme de matériel dédié. Il en résulte une architecture de
type cloud où les fonctions réseau virtuelles (VNF) sont gérées sur une plateforme appelée
infrastructure de virtualisation des fonctions de réseau (NFVI).
Le paradigme NFV apporte de la flexibilité supplémentaire au réseau. Les opérateurs
peuvent facilement adapter leur réseau en ajoutant, supprimant, ou déplaçant des VNF
entre les serveurs pour déployer de nouveaux services à la demande. Toutefois, cette
flexibilité s’accompagne de défis en matière de sécurité. L’Institut européen des normes de
télécommunication (ETSI) recommande l’utilisation de l’attestation à distance comme l’un
des outils permettant de sécuriser une telle infrastructure.
Un protocole d’attestation est un protocole cryptographique bipartite dans lequel un prouveur
fournit la preuve d’une ou plusieurs propriétés à un vérificateur. L’attestation approfondie
étend le concept d’attestation à un environnement virtuel, dans lequel l’instance virtuelle
et l’infrastructure sous-jacente sont attestées. Bien que l’attestation à distance, et dans
une moindre mesure, l’attestation approfondie, ne soient pas des techniques nouvelles, les
approches actuelles ne sont pas adaptées aux environnements NFV. Cette thèse introduit
trois schémas d’attestation adaptés au contexte NFV. La sécurité de chacun de ces protocoles
est formellement prouvée. De plus, nous démontrons l’efficacité de ces protocoles à l’aide
d’expérimentations réalisées sur des implémentations.
Un premier schéma formalise le concept d’attestation approfondie, tout en améliorant l’état
de l’art avec une solution qui offre un compromis entre la sécurité et l’efficacité des deux
principales approches existantes. Sur la base de cet élément de base, deux schémas sont
présentés pour répondre à des situations concrètes. Ces schémas prennent en compte
les problèmes de confidentialité qui se posent dans les réseaux virtualisés multi-tenant,
tout en étant efficaces même sur de grandes infrastructures et en conservant les garanties
de sécurité du schéma de base.

Mots clés : Attestation, Attestation approfondie, NFV, Multi-tenant, Respectueux de la vie
privée, Protocoles cryptographiques.



Attestation protocols in dynamic environments

Abstract: Network Functions Virtualisation (NFV) is a networking paradigm where network
functions are implemented as software running inside virtualised instances (such as virtual
machines or containers) rather than on dedicated hardware. This results in a cloud-like
architecture where the virtual network functions (VNFs) are managed on a platform called
the Network Function Virtualisation Infrastructure (NFVI).
The use of NFVs adds more flexibility to the network. Operators can easily adapt their network
by adding, removing, or moving VNFs between servers to scale up or down, or to deploy new
services on demand. However, with this flexibility come security challenges. The European
Telecommunications Standards Institute (ETSI) recommends the use of remote attestation
as one of the tools to secure such an infrastructure.
An attestation protocol is a two-party cryptographic protocol in which a prover provides evi-
dence about one or more properties to a verifier. Deep attestation extends the concept of
attestation to a virtualized environment, where both the virtual instance and the underlying in-
frastructure are attested. Although remote attestation, and to a lesser extent deep attestation,
are not new techniques, current approaches are not suitable for the NFV environment. In this
thesis, we propose three privacy-preserving attestation protocols for the NFV context. We
formally prove the security of our proposals. In addition, we demonstrate the effectiveness
of our protocols with implementations and experimental results.
A first scheme establishes the concept of deep attestation and enhances the current state-of-
the-art by providing a solution that strikes a balance between the security and performance
of the two predominant existing methods. Based on this building block, we introduce two new
schemes that respond to more complex use cases. These schemes take into account the
privacy issues that arise in multi-tenant virtualised networks, while being efficient even on
large infrastructures and maintaining the security guarantees of the basic building block.

Keywords: Attestation, Deep attestation, Collective attestation, NFV, Multi-tenant, Privacy-
preserving, Cryptographic protocols.
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