
HAL Id: tel-04917291
https://theses.hal.science/tel-04917291v1

Submitted on 28 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diversity based exploration for deep reinforcement
learning

Valentin Macé

To cite this version:
Valentin Macé. Diversity based exploration for deep reinforcement learning. Machine Learning [cs.LG].
Sorbonne Université, 2024. English. �NNT : 2024SORUS445�. �tel-04917291�

https://theses.hal.science/tel-04917291v1
https://hal.archives-ouvertes.fr

Sorbonne Université
InstaDeep - BioNTech

Thèse de Doctorat

Spécialité Informatique

présentée par
Valentin Macé

Exploration Fondée sur la Diversité
pour l’Apprentissage par Renforcement Profond

sous la direction d’Olivier Sigaud et Nicolas Perrin-Gilbert.

Soutenue publiquement le 18 octobre 2024 à Paris devant le jury composé de

M. Jean-BaptisteMouret Inria Rapporteur
M. Emmanuel Rachelson ISAE-SUPAERO Rapporteur
M. Cédric Colas Inria & MIT Examinateur
M. Stéphane Doncieux Sorbonne Université & CNRS Examinateur
Mme Sao Mai Nguyen ENSTA Paris Examinatrice
M. Olivier Sigaud Sorbonne Université Directeur de thèse
M. Nicolas Perrin-Gilbert Sorbonne Université & CNRS Co-Directeur de thèse

Institut des Systèmes Intelligents et de Robotique (ISIR),
UMR 7222 Équipe MLIA, 75005, Paris, France

Ecole Doctorale Informatique, Télécommunications et Electronique

Sorbonne University
InstaDeep - BioNTech

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy
in Computer Science

submitted by
Valentin Macé

Diversity Based Exploration
for Deep Reinforcement Learning

under the supervision of Olivier Sigaud and Nicolas Perrin-Gilbert.

Publicly defended on the 18th of October, 2024 in Paris, France, to the doctoral committee

Mr. Jean-BaptisteMouret Inria Thesis Referee
Mr. Emmanuel Rachelson ISAE-SUPAERO Thesis Referee
Mr. Cédric Colas Inria & MIT Thesis Jury
Mr. Stéphane Doncieux Sorbonne Université & CNRS Thesis Jury
Ms. Sao Mai Nguyen ENSTA Paris Thesis Jury
Mr. Olivier Sigaud Sorbonne Université Thesis Supervisor
Mr. Nicolas Perrin-Gilbert Sorbonne Université & CNRS Thesis Co-Supervisor

Institut des Systèmes Intelligents et de Robotique (ISIR),
UMR 7222 Équipe MLIA, 75005, Paris, France

Ecole Doctorale Informatique, Télécommunications et Electronique

Résumé

Cette thèse étudie la famille de méthodes à l’intersection entre l’apprentissage par renforce-
ment profond et les algorithmes évolutionnaires pour résoudre des problèmes où la capacité
d’exploration des algorithmes, notamment leur gestion du dilemme exploration-exploitation,
joue un rôle crucial. Historiquement, les algorithmes d’apprentissage par renforcement pro-
fond sont reconnus comme étant efficients en termes d’efficacité échantillonnale, c’est-à-dire
du nombre d’interactions avec l’environnement qu’ils nécessitent pour résoudre un problème
d’optimisation, mais ont cependant une capacité limitée à explorer l’espace des solutions
possibles, du fait de leurs mécanismes d’exploration simples, souvent basés sur l’ajout de
bruit stochastique dans l’espace d’action. D’un autre côté, les méthodes évolutionnaires, et
plus particulièrement les algorithmes récents issus de la famille qualité-diversité, présentent
une capacité d’exploration supérieure du fait de leurs mécanismes d’exploration axés sur la
diversité des solutions au sein d’une population. Ils sont capables de résoudre des problèmes
d’optimisation où il est nécessaire d’explorer l’espace des solutions de manière intelligente (en
définissant un sous-espace d’intérêt appelé l’espace des comportements), mais sont souvent
coûteux en termes d’interactions avec l’environnement.

La première partie des contributions de la thèse (Chapitre 3) se concentre sur l’élaboration
d’un algorithme, appelé QD-PG pour "Quality-Diversity-Policy-Gradient", permettant de ré-
soudre des problèmes difficiles d’exploration dans des environnements de contrôle continu
(robotique simulée), en se basant sur le cadre algorithmique des méthodes évolutionnaires,
et en ayant pour objectif de le rendre efficient grâce aux méthodes basées sur la descente de
gradient, issues de l’apprentissage par renforcement. Dans une deuxième partie (Chapitre 4),
nous présentons: 1. Un nouvel algorithme de qualité-diversité, appelé MAP-Elites Low-Spread,
qui permet de corriger le biais de variance de l’algorithme MAP-Elites et générer des solu-
tions consistantes et régulières dans l’espace des comportements, 2. Une méthode basée sur
l’apprentissage profond supervisé permettant de distiller une collection de solutions générées
par MAP-Elites Low-Spread dans un réseau de neurones profond unique basé sur l’architecture
Transformer, qui est capable de générer des trajectoires conditionnées sur un comportement
désiré avec haute précision. Enfin, la dernière partie des contributions (Chapitre 5) introduit
un travail en cours, dans lequel nous proposons d’utiliser un modèle basé sur l’architecture
Transformer pour prédire l’état final d’automates cellulaires continus à partir de l’état initial et
sans connaissance des règles qui les régissent. Nous faisons l’hypothèse qu’un tel modèle peut
être employé, entre autres, à détecter automatiquement les patterns intéressants générés par
un algorithme de recherche.

Abstract

This thesis is concerned with the family of methods at the intersection between deep
reinforcement learning and evolutionary algorithms for solving problems where the algorithms
ability to explore, in particular their management of the exploration-exploitation dilemma,
plays a crucial role. Historically, deep reinforcement learning algorithms are recognized as
being efficient in terms of sample efficiency, but have a limited ability to explore the space of
possible solutions, due to their simple exploration mechanisms, often based on the addition
of stochastic noise in the action space. On the other hand, evolutionary methods, and more
particularly recent algorithms from the quality-diversity family, have a superior ability to
explore, due to their exploration mechanisms based on the diversity of solutions within a
population. They are capable of solving optimization problems where it is necessary to explore
the solution space intelligently (by defining a subspace of interest called the behavior space),
but are often costly in terms of interactions with the environment.

The first part of the contributions of this thesis (Chapter 3) focuses on the development of
an hybrid algorithm, called Quality-Diversity-Policy-Gradient (QD-PG), for solving difficult
exploration problems in continuous control environments (simulated robotics), based on the
algorithmic framework of quality-diversity methods, and aiming to make it sample efficient us-
ing gradient-based methods derived from reinforcement learning. In the second part (Chapter
4), we present: 1. A new quality-diversity algorithm, called MAP-Elites Low-Spread, which
corrects the variance bias of the MAP-Elites algorithm and generates constant and regular
solutions in the behavior space, 2. A method based on supervised deep learning for distilling a
collection of solutions generated by MAP-Elites Low-Spread into a single deep neural network
based on the Transformer architecture, which is capable of generating trajectories conditioned
on a desired behavior with high accuracy. Finally, the last contribution part (Chapter 5) in-
troduces a work in progress, where we propose using a Transformer-based model to predict
the final state of continuous cellular automata from an initial state, without prior knowledge
of their governing rules. We hypothesize that this model could be employed to automatically
detect interesting patterns generated by a search algorithm.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Deep Learning . 4
1.3 Evolutionary Algorithms . 6
1.4 Reinforcement Learning . 8
1.5 Hard-Exploration Problems . 9
1.6 Outline and Contributions . 12

2 Background 17
2.1 Deep Learning and Neural Networks . 18
2.2 Quality-Diversity . 24
2.3 Reinforcement Learning . 31
2.4 Software . 41

3 Diversity Policy Gradient for Sample Efficient Quality-Diversity Optimization 45
3.1 Introduction . 46
3.2 Background . 48
3.3 Diversity Policy Gradient . 50
3.4 Related Work . 53
3.5 Methods . 55
3.6 Experiments . 57
3.7 Results . 61
3.8 Conclusion . 66

4 Generating Behavior-Conditioned Trajectories with Decision Transformers 69
4.1 Introduction . 70

Contents

4.2 Related Work . 71
4.3 Problem Statement . 74
4.4 Methods . 79
4.5 Results . 85
4.6 Conclusion . 93

5 Harnessing Deep Learning for Diversity Search in Continuous Cellular Automata 97
5.1 Introduction . 98
5.2 Background . 99
5.3 Methods . 102
5.4 Preliminary Results . 105

6 Conclusion 107

Bibliography 111

List of Figures 122

List of Algorithms 126

List of Tables 127

viii

Chapter 1

Introduction

Any sufficiently advanced technology
is indistinguishable from magic.

Arthur C. Clarke.

In this chapter, we offer a brief and informal overview of the concepts and personal motiva-
tions driving this thesis. We discuss deep learning, evolutionary algorithms, and reinforcement
learning, as well as the problems of interest we seek to tackle. Finally, we outline the structure
and key contributions developed in subsequent chapters.

Contents
1.1 Motivation . 2
1.2 Deep Learning . 4
1.3 Evolutionary Algorithms . 6
1.4 Reinforcement Learning . 8
1.5 Hard-Exploration Problems . 9
1.6 Outline and Contributions . 12

1

Introduction

1.1 Motivation

What makes it possible for a piece of refined rock to distinguish an image of a pedestrian from
that of a road? What makes it possible for a piece of refined rock to make the decision to brake
a car that is about to hit a pedestrian?

Starting from logic circuits implemented — to this day — in silicon, to complex applica-
tions, computer science and computer engineering can be seen as the art of building layers
of abstractions to solve problems increasingly akin to human tasks. As the abstractions grow
and continue to improve, computers provide tools to formulate and tackle problems that were
previously out of reach. Video games, weather forecasts, special effects, business and medical
software, videoconferencing, are just a few of the applications made possible by high-level
abstractions built on the deep and robust stack of software and hardware. For instance, creating
a state-of-the-art video game without relying on high-level programming tools (such as a video
game engine or simply a high-level programming language) would be, if not impossible, at
least unrealistic, although the hardware technically allows it.

There is however an abstraction limit to what classical software (as opposed to AI-based
software) can achieve. Some of the most elaborated classical software tools enable, for example,
the existence of high-security financial systems used worldwide, complex physics simulations
to model the universe from very large to very small scales (Bertschinger, 1998; Feynman, 2018),
the instantaneous connection of people who live far apart — among many other things — but
there is no piece of classical software that can, with human or superhuman accuracy, take
a picture and describe its content; read a book and summarize it; observe the environment
surrounding a car and make sequential decisions to reach the destination safely. In other words,
classical software is unable to incorporate and deal with high-level semantic concepts that are
close to what humans do. It is unable to handle semantic ambiguity with much success, as it
relies on rigid rules that are not learned and that are not suited to grasp the complexity of the
world. To return to the universe simulation example, suppose we obtain a massive amount
of data after running it and, for the sake of argument, that we are looking for very particular
galaxy patterns among the billions of structures generated, such as something resembling a
human face. It would be incredibly difficult, if not impossible, to program classical software to
iterate over the data and automatically detect such a pattern. However, it would be fairly easy
to explain the task to other humans, who in turn have their own limitations — most notably
speed and available brain time. Pushing the argument further, if we are now investigating dark
matter in the universe and looking for a very specific type of galaxy pattern that may or may not
exist, neither classical software nor humans would be of much help in such a situation, because
the semantic concepts that we are investigating are beyond the reach of rigid computation rules,
and beyond what is intuitive for the human mind. These simple examples underline the need

2

1.1 Motivation

for more advanced techniques (or abstractions layers) closing the gap between computers and
real-world complexity.

Machine learning (ML)— its past successes and aspirations— is arguably the best candidate
to bridge this gap, enabling computers to handle tasks previously thought to require human
intelligence. Themain difference between classical software andAI-based software (ormachine-
learning-based software) lies in the fact that the latter is learning-driven, and sees its behavior
defined by a learning phase based on data or interactions with an environment. Machine
Learning can be seen as the ultimate layer of abstraction, building on top of classical software
and allowing computing systems to handle semantic ambiguity across various fields, sometimes
even better than the most skilled humans. In 2012, during the ImageNet Large Scale Visual
Recognition Challenge (Russakovsky, Deng, Su, et al., 2015), for the first time, a convolutional
neural network (CNN) outperformed all other classical systems in an image recognition
competition (Krizhevsky, Sutskever, and Hinton, 2012), marking a turning point in the use of
CNNs for computer vision. In 2016, AlphaGo (Silver, Huang, Maddison, et al., 2016), an agent
trained with deep reinforcement learning, defeated world Go champion Lee Sedol in a five-
game series, winning 4-1. This victory demonstrated the ability of machine learning algorithms
to master complex strategic decision making, and even to demonstrate surprising strategic
creativity, with the now famous move 37. In 2023, ChatGPT, a conversational agent based
on the GPT-4 language model (Achiam, Adler, Agarwal, et al., 2023), has shown exceptional
competence in natural language conversations, surpassing previous systems in terms of fluency,
relevance and consistency. Applications for GPT-4 and ChatGPT include content writing,
question answering, programming assistance, thesis writing1, and many other tasks requiring
a high level of natural language understanding. Perhaps more importantly, recent work has
demonstrated the ability of machine learning systems to understand semantic concepts where
human intuition falls short. In the field of biology, AlphaFold (Jumper, Evans, Pritzel, et al.,
2021; Abramson, Adler, Dunger, et al., 2024) has shown a remarkable understanding of the
protein space, allowing the prediction of three-dimensional proteins from their amino acid
sequences with unprecedented accuracy. Regarding these past accomplishments and future
hopes, computer science may be the closest thing we have to magic — and computer scientists,
to wizards.

Machine learning is a vast field that includes a number of historically important sub-domains.
In this thesis, we essentially build on three of them, which have seen immense progress in
the last decade. First, deep learning (supervised or self-supervised) forms the backbone of
many modern AI systems, leveraging large datasets to train models that are suited for various
tasks such as CNNs (LeCun, Bottou, Bengio, et al., 1998) for vision, or Transformers (Vaswani,
Shazeer, Parmar, et al., 2017) for natural language processing. Second, evolutionary algorithms
(and more specifically quality-diversity algorithms) are a class of optimization techniques

1This is a joke.

3

Introduction

inspired by the process of natural evolution, allowing for the exploration of a diverse set of
solutions and promoting robustness and adaptability in AI systems (Cully, Clune, Tarapore,
et al., 2015). Third, reinforcement learning (RL) is an optimization framework inspired by
the way animals and humans learn through interactions with their environment, aiming to
maximize cumulative rewards or minimize punishments. Recently, RL has found applications
in a variety of fields such as plasma control for nuclear fusion (Degrave, Felici, Buchli, et al.,
2022) or autonomous navigation of stratospheric balloons (Bellemare, Candido, Castro, et al.,
2020). In this thesis, we focus our research efforts on methods at the intersection between deep
neural networks, reinforcement learning and evolutionary algorithms for controlling robots
in simulated environments. We investigate new algorithms that mitigate the respective draw-
backs of aforementioned methods, and we aim to tackle problems that cannot be solved with
traditional evolutionary algorithms or reinforcement learning because they require a tailored
approach to the exploration-exploitation dilemma; we call them hard-exploration problems.

1.2 Deep Learning

Figure 1.1 – High-level view of a trained multilayer perceptron neural network. An input image
representing the hand-written digit "8" is fed to a trained neural network, which is able to
identify it correctly.

Deep learning is the backbone of the post-2010 AI revolution, a transformative period that
arguably continues to this day. Historically, deep learning is (bio)inspired by the idea that a
network of relatively simple atomic structures (artificial neurons) can efficiently abstract and
model complex data. The very first scientific mention of a neural network dates back to 1943
when a neurophysiologist and a logician introduced a mathematical model of neural networks
based on the functioning of the human brain (McCulloch and Pitts, 1943) . They demonstrated
that a network of these simple units, or neurons, could perform any logical function, and also
introduced the concept of weights (synaptic strengths) and thresholds (activation levels),

4

1.2 Deep Learning

which are fundamental components of modern neural networks (see Figure 1.1). The term
"deep" in "deep learning" is attributed to the increased depth, or number of layers, in artificial
neural networks compared to earlier models.

The general framework of deep learning in the context of supervised learning is fairly easy
to understand: a neural network takes an input (usually an array of real numbers) which
represents an image, a sound, a word or any data source that can be represented in numbers,
and performs a sequence of operations to deliver a verdict (the output). Figure 1.1 represents
a simple, fully connected feed forward neural network that takes the image of an hand-written
digit and recognizes it successfully. Each node of the network performs a basic weighted
summation of its inputs followed by an activation function2; these weights typically constitute
the network learnable parameters. Of course, in the beginning, and without any training, there
is no reason for a network of interconnected artificial neurons to produce better results than
pure randomness, the network predictions are random and of no interest. The power of neural
networks lies in the fact that they feature a large number of parameters that can be adjusted
to converge towards a goal. During the training procedure for a given task, which can range
from image classification to stock value prediction, the neural network — or model — is fed
with a large amount of labeled examples and asked to make predictions about these examples.
Then, these predictions are compared with ground truth labels (hence the name "supervised
learning") and the accumulated error of the model is measured. Finally, thanks to mathematical
tools such as automatic differentiation, the parameters of the network are adjusted so as to
minimize the measured error and the procedure is repeated until convergence.

Remark 1.1 (Ground truth labels). In the context of supervised learning, each training example
has a ground truth label associated, which is often predetermined by a human. Other training regimes
exist, such as self supervised learning, where labels are collected automatically. It is important to
note that this difference does not affect the learning algorithm itself but only the data collection part.

In practice, neural network architectures have evolved considerably, becomingmore complex
and adapted to the task on which they are trained. For instance, vision-based systems possess
features capable of capturing translational invariances within an image — a cat in the top-right
corner of an image should be just as well recognized and detected as a cat in the bottom-left
corner —(Krizhevsky, Sutskever, and Hinton, 2012), while language models are built to pay
more or less attention to the different words in a sentence (Vaswani, Shazeer, Parmar, et al.,
2017). Generally, one instance of a trained neural network corresponds to one task3: a model
that has been trained to classify images is unable and unsuited to do other tasks. It is unable

2The activation function helps a neuron decide whether to pass a signal forward, enabling neural networks to
learn and recognize complex patterns in the data.

3This limitation tends to disappear with the arrival of large multitask and multimodal models.

5

Introduction

because its parameters have been trained to perform image classification on a given domain,
and unsuited because its architecture (mainly its input and output layers, which are usually
rigid) are specifically shaped for this task.

Deep neural networks are now everywhere, transforming industries and enhancing daily life
in remarkable ways. In the automotive industry, companies use deep learning for autonomous
driving, enabling cars to navigate and make decisions with minimal human intervention
(Bojarski, Del Testa, Dworakowski, et al., 2016; Bachute and Subhedar, 2021), in finance, they
are used for fraud detection, analyzing vast amounts of transaction data to identify unusual
patterns and prevent fraudulent activities (Jurgovsky, Granitzer, Ziegler, et al., 2018), in
healthcare, deep learning helps medical diagnosis with models that can predict breast cancer
risk from mammograms (McKinney, Sieniek, Godbole, et al., 2020), etc. Interestingly, neural
networks have more to offer than supervised learning applications. Deep neural networks,
which have been proven to be universal function approximators (Hornik, Stinchcombe, and
White, 1989), are also useful when used as representation tools in other ML frameworks, such
as evolutionary algorithms and reinforcement learning.

1.3 Evolutionary Algorithms

Evolutionary algorithms (EAs) are another area of modern artificial intelligence, inspired by
the principles of natural selection and genetics. These algorithms provide robust optimization
techniques that can solve optimization problems by evolving solutions over time. The concept of
evolutionary computation dates back to the 1960s, when pioneers began exploring the potential
of mimicking biological evolution to optimize mathematical functions and solve engineering
problems (Holland, 1992; Fogel, 1998). Some EAs notable successes can be found across various
fields, for instance, they have been employed in the aerospace industry to design innovative
antenna structures for satellites, resulting in more efficient and effective designs compared to
traditional methods (Hornby, Globus, Linden, et al., 2006), these algorithms have also been
used for design optimization to solve real-world aerodynamic problems (Lian, Oyama, and
Liou, 2010), and in robotics, EAs have been used to discover robust and efficient gaits for
articulated robots (Cully, Clune, Tarapore, et al., 2015).

Remark 1.2 (EAs anddeep learning). Evolutionary algorithms are not alternatives or competitors
to deep learning; they solve problems that are different from what deep learning does, and sometimes,
they even use deep neural networks as tools for solution encoding. In this sense, they constitute an
optimization framework that can be compared to other optimization frameworks, such as reinforcement
learning (Chalumeau, Boige, Lim, et al., 2022).

6

1.3 Evolutionary Algorithms

The evolutionary optimization framework generally involves the evolution of a population
of potential solutions to a given problem. These solutions, often represented as arrays of
numbers or other data structures, undergo processes analogous to genetic operations such
as selection, crossover (recombination), and mutation. Initially, at the beginning of an evolu-
tionary algorithm, a population of solutions is randomly generated, then: 1. Each individual
in this population is evaluated against the problem at hand using a fitness function, which
quantifies how well it performs. 2. Once evaluated, a selection mechanism filters solutions
by prioritizing the survival of the fittest individuals, thereby ensuring that better solutions
are more likely to pass their traits to the next generation. 3. Finally, some of the selected solu-
tions are mutated and/or recombined to create the next generation (population) of solutions.

Figure 1.2 – Diagram of a typical
evolutionary algorithm.

Recombination (crossover) operations combine parts of two
or more selected individuals to produce offspring, poten-
tially inheriting the strengths of both parents. Mutation
introduces random changes to individual solutions, promot-
ing diversity and enabling the exploration of the solution
space. This process of evaluation (1), selection (2), muta-
tion and crossover (3) goes on repeatedly (as illustrated in
Figure 1.2) until a termination criterion is met. For example,
one could use EAs to search for an efficient, gas-saving air-
foil with low air resistance using evolutionary algorithms,
starting with a population of random airfoil designs defined
by a set of numbers capturing their shape, then iteratively
testing them in a flying simulator to determine their fitness and applying selection, mutation
and crossover operations until a sufficiently good airfoil is found.

Evolutionary algorithms are useful tools for optimization, they are generally considered
robust — meaning they are not extremely sensitive to the parameters that determine their
functioning —, and said to be black-box optimization algorithms, meaning that they do not
require prior knowledge on the problem at hand: they simply need access to an estimated
fitness of current solutions through evaluation. However, classical EAs typically suffer from
low efficiency: they usually require numerous iterations, and thus many fitness evaluation, to
get satisfactory solutions. Depending on the problem under consideration, access to fitness
evaluation can be computationally expensive. Continuing with the example of airfoil design
optimization, access to an accurate simulator can be difficult, the cost of simulation itself can
be high, and it is not possible to envisage testing in the real world for obvious reasons.

In addition to this drawback, classical EAs are not effective in solving hard-exploration
problems (Lehman and Stanley, 2011a). They are designed to output a single solution to any
given problem and rely on simple exploration mechanisms (mainly mutations) to promote
diversity and explore the space of all possible solutions, which are often insufficient in hard-

7

Introduction

exploration problems. In other words, classical EAs would not have been able to invent the
Fosbury flop to solve the discipline of high jumping. In this thesis, we will focus our efforts
on quality-diversity (QD) algorithms, which are a (more recent) subclass of evolutionary
algorithms aiming a producing a collection of diverse solutions (instead of just one) (Cully
and Demiris, 2017). The structural diversity-seeking mechanisms in QD algorithms allows the
effective exploration of the solution space, often enabling these algorithms to succeed where
conventional EAs fail (Chalumeau, Pierrot, Macé, et al., 2022).

1.4 Reinforcement Learning

Reinforcement learning (RL) is a field within machine learning that focuses on training au-
tonomous agents to take actions in an environment to maximize cumulative reward. RL is
inspired by the behavioral learning processes observed in nature, where organisms learn
to adapt their actions based on the consequences they experience. This approach involves
agents exploring their environment, exploiting their knowledge, and iteratively improving their
decision-making process. As opposed to natural evolution, where changes in organisms are
mainly observed at the species level, reinforcement occurs during the lifetime of an organism,
and modifies its decision making process based on its life experience. Early contributions such
as the law of effect (Thorndike, 1898, 1927), established through study of animal intelligence,
and the operant conditioning framework (Skinner, 1938), which emphasizes the role of rein-
forcement and punishment in shaping behavior, laid the foundations for the development of
modern RL.

Figure 1.3 – Reinforcement learning
fundamental concepts.

The theoretical underpinnings of RL are rooted in
the work of Richard Sutton and Andrew Barto, who
established the fundamental RL concepts of agent, pol-
icy, reward, and environment interaction (Sutton and
Barto, 1998). Figure 1.3 illustrates the fundamental con-
cepts of reinforcement learning with a familiar scene:
An agent (the child) interacts with an environment
(the videogame) by observing the TV screen, which
provides information on the current state of the game,
and by taking actions that will have an impact on the
course of the game. The observation-action loop goes
on and, sometimes, at a frequency that depends on the
environment, a feedback (called the reward) is given
to the agent. In the example of Figure 1.3, the feedback could be a score that increments or
decrements in real-time, providing information about the agent’s performance at each moment
of the game. Generally, the role of reinforcement learning algorithms is to optimize the se-

8

1.5 Hard-Exploration Problems

quential decision-making of the agent (called the policy) in order to maximize the cumulative
reward obtained (i.e., be good at the task at hand). In other words, the goal of an RL algorithm
is to generate a policy — a set of rules that determines what actions the agent should take based
on observations — that maximizes rewards when applied to a given task. To do so, an RL
algorithm uses the data generated by agent-environment interactions, analyzes which actions
(or series of actions) led to positive outcomes (rewards), and which actions led to negative
outcomes. Finally, the policy of the agent is modified to reinforce valuable actions and penalize
detrimental ones. This process of data collection via agent-environment interactions and policy
adjustment is repeated until sufficient performance is achieved.

As with evolutionary methods, reinforcement learning has benefited from the use of deep
neural networks to represent policies4 — leading to the emergence of the term "deep rein-
forcement learning". Deep RL has achieved significant successes across a variety of fields.
Notably, it has been used to train autonomous agents that excel in complex games (Silver,
Hubert, Schrittwieser, et al., 2017; Vinyals, Babuschkin, Czarnecki, et al., 2019), perform object
manipulation tasks with high precision (Levine, Finn, Darrell, et al., 2016), or even optimize
the cooling systems of data centers to reduce energy consumption (Evans, Gao, Anderson,
et al., 2018). RL algorithms are known to be efficient, meaning that they usually require less
interactions with the environment than evolutionary algorithms (Pourchot and Sigaud, 2018).
However, perhaps even more so than evolutionary methods, pure RL algorithms struggle with
hard-exploration problems. They also are less scalable and notoriously more difficult to train
than evolutionary algorithms, being more sensitive to slight variations of their parameters
(Chalumeau, Boige, Lim, et al., 2022).

Remark 1.3 (Policy, solution, agent ...). There is a strong semantic proximity between the terms
"policy" (as used in RL) and "solution" (as used in evolutionary methods). Indeed, when both
families of algorithms use neural networks to solve sequential decision-making problems, these two
terms can be used almost interchangeably. The "agent" (as used in RL) is also close to these two
concepts in this context, with the difference that the agent is the broader entity that encompasses
the learning and decision-making processes, while the policy is a specific part of the agent that
determines its actions. In this work, we will sometimes use these terms interchangeably, depending
on the context.

1.5 Hard-Exploration Problems

Althoughwe focus on simulated robotic environments in this thesis, hard-exploration problems
exist in many areas of our world and are difficult, if not impossible, to solve with traditional

4Policies in RL can be anything that select actions (deterministically or not) given observations: a policy can be
implemented with a set of explicit rules, as well as with a neural network whose operation is opaque to us.

9

Introduction

optimization methods. A famous example of such a problem can be found in the sport of
high jumping. Historically, athletes used jumping techniques such as the scissors jump or the
straddle, which are arguably the most intuitive jumping techniques for a human attempting to
leap over an obstacle. These techniques dominated the discipline for decades, and to many
athletes and sport experts, it was inconceivable that a drastically different, counterintuitive, and
more effective move existed. However in 1968 during the Mexico City Olympics, Dick Fosbury
introduced a revolutionary technique called the Fosbury flop, which involves jumping with the
back to the bar and arching over it with the back facing down. This new move quickly became
the dominant method in high jump, allowing Fosbury to win the goldmedal and enabling other
athletes to clear old records by a significant margin. In essence, the history of high jumping
can be thought of as an optimization process, where athletes trained for decades to marginally
improve over previous records by slightly adapting their jumping technique and muscular
capacities. As with many hard-exploration problem, the discovery of the best solution (to date)
did not come as a marginal improvement over the best existing ones; it required the exploration
of counterintuitive options (Yin, Yang, Van De Panne, et al., 2021).

Figure 1.4 – A canonical hard-exploration problem. From left to right: 1. Picture of the maze
where the agent (larger circle) is rewarded the closer it gets to the exit (smaller circle), 2. Results
of using a classical evolutionary algorithm to solve the problem, most tries (black dots) end up
in dead ends, 3. Results of running an exploration-oriented algorithm, which solves the maze
by focusing on exploration and novelty search. Taken from Lehman and Stanley (2011a).

In the realm of computers, hard-exploration problems can appear in many different forms.
A canonical example of such a problem is that of the maze depicted in Figure 1.4. Here, the
agent (the larger circle) starts in the bottom-left corner of the maze, takes an action at each
timestep to slightly move in any chosen direction, and is rewarded in proportion to its proximity
to the exit (the smaller circle) in the upper-left corner — the closer the better. Naturally, its goal
is to get as close to the exit as quickly as possible to maximize the cumulative reward obtained.
In this example, the agent has no way of knowing there are walls separating it from the exit,
the only information available being its current position in the maze and the reward obtained
after each action taken. In such a maze, a naive agent that optimizes for rewards greedily —
thus displaying insufficient exploration of the environment — will most likely end up running
upward, in the dead-end trap formed by the walls, because it is the fastest way to obtain high
rewards quickly. However, even though this strategy quickly decrease the distance between the

10

1.5 Hard-Exploration Problems

agent and the exit, it cannot lead to the resolution of the maze because of the blocking walls;
the global solution involves first moving away from the exit to get around the walls, and finally
reaching the exit. Middle picture of Figure 1.4 illustrates the results of a classical evolutionary
algorithm on this problem, each attempt to reach the exit from the beginning is represented as
a black dot which indicates the final position of the agent. As expected, all attempts to reach
the exit fail, and most fall into the trap of blindly maximizing the reward by running towards
the walls.

For most classical evolutionary algorithms, exploration capabilities rely on random muta-
tions of the solutions in the population. As their name suggests, these mutations are random
and allow a certain degree of exploration by diversifying the behavior of solutions. However,
these mutations are often insufficient to generate a wide variety of original behaviors, and
when an original (but necessarily suboptimal) behavior appears — a behavior that could serve
as a stepping stone for next generations —, it is often discarded by the selection step, which
filters suboptimal solutions. In reinforcement learning, exploration is ensured by adding ran-
dom noise to the actions chosen by the policy during agent-environment interactions for data
collection. This random noise allows to explore different actions and to not always choose the
one that is considered optimal. Yet, exploration in the action space alone is often insufficient in
complex problems (Amin, Gomrokchi, Satija, et al., 2021) and reinforcement learning is gener-
ally regarded as less effective in hard-exploration problems than its evolutionary counterparts
(Colas, Sigaud, and Oudeyer, 2018).

While exploration is necessary as a tool for optimization, exploration in itself is an interesting
subject of study and is often associated with robustness, surprise, adaptability and serendipity
(Cully, Clune, Tarapore, et al., 2015; Mouret and Clune, 2015). Instead of searching for the
most effective way to accomplish a task, one may want to cover the space of possible ways
to accomplish it; to generate as many different skills without concern for their performance,
sometimes leading to unanticipated solutions (Eysenbach, Gupta, Ibarz, et al., 2018; Lehman,
Clune, Misevic, et al., 2020). The right part in Figure 1.4 depicts the results of Novelty Search
(NS), an exploration-oriented evolutionary algorithm that focuses on producing solutions
different from those already generated without taking performance into consideration, thereby
maximizing diversity within the population of solutions (Lehman and Stanley, 2011a). By
completely ignoring the objective — the exit of the maze and the necessity for the agent to
reach it — and focusing solely on exploration, NS is able to solve the problem and find the
exit, whereas goal-oriented algorithms fail to find it. Following NS, numerous works have
highlighted the benefits of algorithms that dedicate an important part of their operation to
exploration, leading among other things to the emergence of the field of quality-diversity
(Chatzilygeroudis, Cully, Vassiliades, et al., 2021).

11

Introduction

1.6 Outline and Contributions

Summary

• Chapter 2 introduces the technical and theoretical background of the most important
concepts (for this thesis) in supervised learning, evolutionary algorithms and reinforce-
ment learning. We also briefly discuss the software engineering challenges related to the
implementation of our contributions.

• Chapter 3 presents QD-PG, a hybrid quality-diversity reinforcement learning algorithm
that solves challenging exploration problems in a sample efficient manner by leveraging
reinforcement learning policy gradient methods for diversity search. The co-first authors
of the published article onQD-PG (Pierrot, Macé, Chalumeau, et al., 2022) are V.Macé and
T. Pierrot, with equal contributions in terms of formalism, implementation, experiments
andwriting. G. Cideron, A. Flajolet and F. Chalumeau also made significant contributions
to implementation and experiments, and took part in writing. The work was supervised
by K. Beguir, A. Cully, O. Sigaud and N. Perrin-Gilbert.

• Chapter 4 presents the Quality-Diversity Transformer, a unique policy that learns from
all the diverse policies produced by a quality-diversity algorithm, and that is able to
reproduce their respective behavior on demand, with high accuracy and some degree
of generalization. This chapter also proposes a new method to solve the reproducibil-
ity (high-variance) problem of quality-diversity policies in uncertain environments. V.
Macé is the sole first author of the published article related to this work (Macé, Boige,
Chalumeau, et al., 2023), with the most significant contributions in terms of formal-
ism, implementation, experiments and writing. F. Chalumeau and R. Boige contributed
to the implementation, and the work was supervised by T. Pierrot, G. Richard and N.
Perrin-Gilbert.

• Chapter 5 is about a work in progress on the automatic search of singular, diverse and
interesting patterns in continuous cellular automata. We provide early results using a
Transformer-based model to predict continuous cellular automata outcomes and briefly
discuss a method to use this model as the basis of a search algorithm. The work on this
Chapter has been conducted by V. Macé under the supervision of G. Richard and N.
Perrin-Gilbert.

• Chapter 6 briefly summarizes the contributions and results of this thesis but also provides
additional practical details, and a personal and critical point of view on the presented
contributions.

12

1.6 Outline and Contributions

List of publications

First author publications in international conferences with proceedings

• ValentinMacé, Raphaël Boige, Felix Chalumeau, Thomas Pierrot, Guillaume Richard, and
Nicolas Perrin-Gilbert (2023). The quality-diversity transformer: Generating behavior-
conditioned trajectories with decision transformers. In Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1221–1229. Chapter 4 mainly repeats this article.

• Thomas Pierrot*, Valentin Macé*, Felix Chalumeau, Arthur Flajolet, Geoffrey Cideron,
Karim Beguir, Antoine Cully, Olivier Sigaud, and Nicolas Perrin-Gilbert (2022). Diversity
policy gradient for sample efficient quality-diversity optimization. In Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 1075–1083. Chapter 3 mainly repeats
this article.

Collaborations in international conferences or journals with proceedings

• Felix Chalumeau, Raphael Boige, Bryan Lim, Valentin Macé, Maxime Allard, Arthur
Flajolet, Antoine Cully, and Thomas Pierrot (2022). Neuroevolution is a competitive
alternative to reinforcement learning for skill discovery. arXiv preprint arXiv:2210.03516.

• Felix Chalumeau, Bryan Lim, Raphael Boige, Maxime Allard, Luca Grillotti, Manon
Flageat, Valentin Macé, Guillaume Richard, Arthur Flajolet, Thomas Pierrot, et al. (2024).
QDax: A library for quality-diversity and population-based algorithms with hardware
acceleration. Journal of Machine Learning Research 25.108, pp. 1–16. Section 2.4 introduces
the QDax framework.

Workshop collaborations in international conferences or preprints

• Felix Chalumeau, Thomas Pierrot, Valentin Macé, Arthur Flajolet, Karim Beguir, Antoine
Cully, and Nicolas Perrin-Gilbert (2022). Assessing Quality-Diversity Neuro-Evolution
Algorithms Performance in Hard Exploration Problems. arXiv preprint arXiv:2211.13742.

• Thomas Pierrot, Valentin Macé, Jean-Baptiste Sevestre, Louis Monier, Alexandre Laterre,
Nicolas Perrin, Karim Beguir, and Olivier Sigaud (2021). Factored action spaces in deep
reinforcement learning.

Software contributions

github.com/adaptive-intelligent-robotics/QDax
* Authors contributed equally.

13

https://github.com/adaptive-intelligent-robotics/QDax

Introduction

Collaborations conducted before this thesis

• Valentin Macé and Christophe Servan (2019). Using Whole Document Context in Neural
Machine Translation. In Proceedings of the 16th International Conference on Spoken Language
Translation. Hong Kong: Association for Computational Linguistics.

• Bernard Espinasse, Sébastien Fournier, Adrian Chifu, Gaël Guibon, René Azcurra, and
Valentin Mace (2019). On the Use of Dependencies in Relation Classification of Text with
Deep Learning. In International Conference on Computational Linguistics and Intelligent Text
Processing. Springer, pp. 379–391.

14

Chapter 2

Background

I asked myself childish questions
and proceeded to answer them.

Albert Einstein.

This chapter outlines the technical background of the concepts introduced in Chapter 1.
Starting with deep learning and neural networks, we then explore quality-diversity methods
as a subset of evolutionary algorithms for enhanced exploration, and lastly, we discuss the
framework of reinforcement learning. Finally we present the tools that enable training neural
networks.

Contents
2.1 Deep Learning and Neural Networks . 18
2.2 Quality-Diversity . 24
2.3 Reinforcement Learning . 31
2.4 Software . 41

17

Background

2.1 Deep Learning and Neural Networks

In what follows, we present the base components of deep learning and neural networks. We
start with the introduction of the multilayer perceptron (Goodfellow, Bengio, and Courville,
2016), which is the main neural network architecture used throughout this thesis, and then
present the Transformer (Vaswani, Shazeer, Parmar, et al., 2017), a groundbreaking architecture
born of the field of neural machine translation that is now ubiquitous in machine learning.

2.1.1 Multilayer Perceptrons

Multilayer Perceptrons (MLPs) are one of the earliest and most well-known classes of feed-
forward neural networks. Historically, MLPs have been fundamental in the development of
neural network research due to their simplicity and versatility. They have played a crucial role
in supervised learning tasks (classification and regression) although today they tend to be
abandoned in favor of more specific and complex architectures such as CNNs, Transformers or
other hybrid models. An MLP typically consists of one input layer, one or more hidden layers,
and one output layer. Each layer is composed of computational nodes (also called neurons) that
are fully connected to nodes in the next layer. Figure 1.1 provides a high-level representation
of an MLP.

1. Input Layer: The input layer receives the input features of the data. Each neuron in the
input layer represents an input feature.

2. Hidden Layers: The hidden layers perform computations and transformations on the
inputs received from the previous layer. Each neuron in a hidden layer applies a weighted
sum of the inputs followed by a non-linear activation function.

3. Output Layer: The output layer produces the final predictions. The number of neurons
in the output layer corresponds to the number of target classes (for classification) or the
number of output values (for regression).

The operation of an MLP can be described mathematically as follows: Consider an MLP
with one hidden layer. Let x be the input vector, W(1) and b(1) be the weights and biases of the
hidden layer, the output of the hidden layer can be formulated as:

z(1) = W(1)x + b(1)

a(1) = f(z(1)).

Here, z(1) is the linear combination of inputs, and a(1) is the activation of the hidden layer
neurons. The function f is the activation function introducing non-linearity into the model,
allowing it to learn complex patterns. Figure 2.1 illustrates the functioning of a single MLP

18

2.1 Deep Learning and Neural Networks

neuron (left) and plots the rectified linear unit (ReLU) activation function (Nair and Hinton,
2010) (right), which is the activation function mainly used in the remainder of this thesis.

Figure 2.1 – Left: A single MLP node computes its output as a weighted sum of the input (plus
a bias that acts as an additional parameter) and passes the result through a nonlinear activation
function. Right: Example of a nonlinear activation function, the rectified linear unit (ReLU).

Similarly to the hidden layer, the output layer computation can be formulated as:

z(2) = W(2)a(1) + b(2)

y = g(z(2)),

where a(1) is the activation of the previous (hidden) layer, and W(2) and b(2) are the weights
and biases of the output layer. Here, z(2) is the linear combination of hidden layer activations,
and y is the output of the MLP. The function g is the activation function for the output layer,
which varies depending on the task (e.g., softmax for classification or identity for regression).

2.1.2 The Transformer

The Transformer (Vaswani, Shazeer, Parmar, et al., 2017) is a popular model architecture
that was originally designed for natural language processing (NLP) tasks such as language
translation (Devlin, Chang, Lee, et al., 2018), but has since been applied to a variety of other
tasks, including image and speech recognition (Dong, Xu, and Xu, 2018; Dosovitskiy, Beyer,
Kolesnikov, et al., 2020), text generation (Brown, Mann, Ryder, et al., 2020) and sequence
modeling for RL (Chen, Lu, Rajeswaran, et al., 2021). Unlike older architectures that are
used to process sequential data, such as recurrent neural networks (RNNs) or long short-
term memory networks (LSTMs), Transformers rely on self-attention mechanisms to process
input sequences, enabling more efficient parallelization and improved performance. RNNs
and LSTMs process sequential data by maintaining a hidden state that is updated at each
step, inherently limiting their ability to parallelize computations and making them prone
to errors over long sequences. In contrast, Transformers use self-attention to directly model

19

Background

dependencies between all elements of a sequence at once, allowing for better handling of
long-range dependencies and more efficient training.

The Transformer historically consists of an encoder-decoder architecture, with both the
encoder and decoder composed of multiple layers. However, later works show that encoder-
only (resp. decoder-only) architectures are also very effective (Devlin, Chang, Lee, et al.,
2018; Chowdhery, Narang, Devlin, et al., 2023). For the sake of simplicity, and because we
exclusively use decoder-onlymodels in thiswork— to be precise, theGPT architecture (Radford,
Narasimhan, Salimans, et al., 2018) —, let us introduce the Transformer through the lens of a
decoder-only architecture. The decoder-only Transformer keeps the core components of the
original one, but focuses on the decoding part. This design allows the model to predict the next
element (or token) in a sequence, making it particularly effective for autoregressive tasks, i.e.,
tasks that involve generating sequences one element at a time based on previously generated
elements (text completion, for example). A single decoder is usually composed of a stack of
identical layers, each of these identical layers contain three sub-layers:

1. Multi-Head Self-Attention: This sub-layer allows the model to pay attention to different
parts of the input sequence simultaneously. It computes attention scores for each token
in the sequence relative to every other token, enabling the model to capture contextual
relationships.

2. Feed-Forward Neural Network: Following the multi-head self-attention, this sub-layer
consists of a fully connected feed-forward network (similar to an MLP output layer)
applied to each position independently and identically.

3. Layer Normalization and Residual Connections: Each aforementioned sub-layer is
followed by layer normalization, which addresses the internal covariate shift problem
(Ba, Kiros, and Hinton, 2016), and residual connections to ensure stable training and
better gradient flow (see Section 2.1.3).

At the heart of the Transformer architecture is the self-attention mechanism (1), which
computes a weighted sum of input values — the weights being determined by the similarity
between query and key pairs. Self-attention can be described as:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V, (2.1)

whereQ (queries),K (keys) and V (values) are matrices derived from the inputs, and dk is the
dimension of the key vectors. Put simply, to encode a given token x, the attention mechanism
works in three steps: 1. It associates three vectors with each input token (a query vector, a key
vector, and a value vector), 2. The query vector for x is used to compute scores using the key
vectors of every other tokens in the sequence. These scores are computed as the dot product
of the two vectors and capture how much focus to other parts of the sequence is needed to

20

2.1 Deep Learning and Neural Networks

encode x (i.e., taking into account the context) and 3. It multiplies these scores (softmax values)
with their respective value vector and sum up the weighted value vectors, which produces the
encoding vector for x. Since this process is not intrinsically sequential, it can be carried out for
all input tokens in parallel as depicted in Equation 2.1 where queries, keys and values for are
aggregated into matrices (Q,K and V respectively).

In the context of a GPT-like, decoder-only architecture, multi-head self-attention is made
causal by ensuring the prediction for each position depends only on previous inputs. In other
words, when processing a token at position t, the model can only attend to tokens anterior
to t, preventing leftward information flow in the decoder and preserving the auto-regressive
property. To do so, a causal mask is added to Equation 2.1 as:

Attention(Q,K, V) = softmax
(
QKT

√
dk

+M

)
V (2.2)

whereM is the mask that sets the attention scores to−∞ for future positions to ensure causality.
Instead of performing attention a single time, the Transformer makes use of multi-head

attention, allowing the model to jointly attend to information from different representations at
different positions. Multi-head attention works as follows:

MultiHead(Q,K, V) = Concat(head1, . . . ,headh)WO,

where each head is computed as:

headi = Attention(QWQ
i ,KW

K
i , V W V

i),

and whereWQ
i ,WK

i , andW V
i are projection matrices for the i-th head (i.e., learnable matrices

that distinguishes one head from another). WO is the output projection matrix.
Finally, the position-wise feed-forward neural network (2) that follows the masked multi-

head attention mechanism can be described as:

FFN(x) = max(0, xW1 + b1)W2 + b2,

whereW1 andW2 are weight matrices, and b1 and b2 are bias vectors.

Remark 2.1 (Neural network architectures). There is a limited analogy between biological
neural networks and artificial ones, which tends to fade increasingly over time. Artificial neural
networks really are just a succession of simple, (hopefully) differentiable operations: the choice
of their architecture is thus free, and nothing fundamentally changes between the training of a

21

Background

small MLP and that of a large Transformer. See "Deep Learning est mort. Vive Differentiable
Programming!" (LeCun, 2018).

2.1.3 Training Neural Networks

Neural networks are parameterized functions that can be tuned to minimize the error on a
given task. Generally we consider the problem of minimizing a loss function L : Rm → R:

min
θ
L(θ),

where θ represents the learnable parameters of the neural network, for example all weights
W and biases b in the case of the MLP (see 2.1.1). The loss function takes as input the neural
network parameters and returns a scalar which measures the performance of the model on the
task. Common loss functions include Mean Squared Error (MSE) for regression tasks:

L = 1
n

n∑
i=1

(yi − ytrue,i)2,

and Cross-Entropy Loss for classification tasks:

L = − 1
n

n∑
i=1

[ytrue,i log(yi) + (1− ytrue,i) log(1− yi)] ,

where n is the number of samples in the dataset, yi is the predicted value (or predicted
probability for Cross-Entropy) for the i-th sample, and ytrue,i is the true value for the i-th
sample.

Once the model error has been measured, parameters θ need to be adjusted to minimize it.
Backward propagation, commonly known as backpropagation (Rumelhart, Hinton, andWilliams,
1986; LeCun, Bottou, Bengio, et al., 1998), is a fundamental algorithm used for training neural
networks. It allows calculating the gradient of the loss function with respect to parameters, i.e.,
computing the first-order partial derivatives of the loss function with respect to each weight
and bias in the network, denoted as ∂L

∂θ . Using the gradient computed with backpropagation,
the network parameters are adjusted via gradient descent. The update rule is:

θt+1 := θt − α
∂L

∂θt
,

where α is the learning rate: a hyperparameter of the learning algorithm guiding the magni-
tude of adjustments made to θk. This process of computing the model loss and adjusting its

22

2.1 Deep Learning and Neural Networks

parameters by taking a gradient descent step (as illustrated in Figure 2.2) is repeated iteratively
until satisfactory results are obtained or the computational budget is exhausted.

Figure 2.2 – A simple case of gradient descent with only two parameters: θ1 and θ2, in the
case of a perfectly convex loss function (left); a non-convex loss function (right) with a local
minimum (blue dot).

In practice, pure gradient descent using all examples in the dataset to compute the loss is
inefficient and unscalable, because processing large datasets containing massive amounts of
data requires excessive computational resources. A common variant of gradient descent is
Stochastic GradientDescent (SGD) (Robbins andMonro, 1951; Bottou, 2010), which updates the
parameters using only a subset of the training data (a mini-batch) rather than the entire dataset.
SGD makes the optimization process computationally tractable, but also prone to escape local
minima, potentially leading to better solutions in non-convex optimization problems. The
update rule for SGD is:

θ := θ − α∂Lmini-batch
∂θ

,

where Lmini-batch is the loss computed on a mini-batch of the data. Figure 2.2 illustrates gradient
descent in the case of a perfectly convex loss function (left), and a non-convex loss function
(right). SGD guarantees convergence to the global minimum in the convex case. However,
most neural network loss functions are non-convex, and while SGD does not guarantee finding
the global minimum, it often finds a good local minimum due to its stochastic nature.

Remark 2.2 (Local minima and exploration). In some cases, it is already a hard-exploration
problem to escape the local minima of a loss function in supervised learning. Properly tuning the
learning rate and using stochastic gradient descent to explore the loss function landscape may help
to find the global minimum (see Figure 2.2).

Several advanced optimization algorithms build on SGD to improve convergence speed
and robustness, such as momentum based gradient descent (Polyak, 1964), AdaGrad (Duchi,
Hazan, and Singer, 2011), RMSprop (Tieleman and Hinton, 2012) and Adam (Kingma and

23

Background

Ba, 2014). In this thesis we mainly use the Adam optimizer, which combines the advantages
of RMSprop and AdaGrad by computing adaptive learning rates for each parameter from
estimates of first and second moments of the gradients. The parameter update rule is defined
as follows:

θt := θt−1 − α
m̂t√
v̂t + ε

,

where m̂t and v̂t are bias-corrected versions of the first and second moment estimates of the
gradients respectively, defined as:

mt = β1mt−1 + (1− β1)gt

m̂t = mt

1− βt
1
,

and:

vt = β2vt−1 + (1− β2)g2
t

v̂t = vt

1− βt
2
,

where gt is the gradient of the loss function at timestep t, and β1 and β2 are exponential
decay rates for the first and second moment of the gradient, respectively. Intuitively, mt is
an exponentially moving average of past gradients, which acts like momentum. Similarly, vt

is an exponentially moving average of the squared gradients, which captures the variance
(or spread) of the gradients and helps to adapt the learning rate according to how much the
gradients are fluctuating.

2.2 Quality-Diversity

In this section, we present the base formalism for quality-diversity (QD) optimization algo-
rithms. We start with an introduction to the general evolutionary framework, and then explore
quality-diversity.

2.2.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a class of optimization algorithms inspired by the process of
natural selection. They normally operate on a population of potential solutions, and apply the
principles of evaluation, selection, and mutation (and/or crossover) to evolve better solutions
over time. The general functioning of a classical evolutionary algorithm can be formalized as
follows:

24

2.2 Quality-Diversity

1. Initialization: Creation of an initial population P0 containing N random solutions:

P0 = {x1,x2, . . . ,xN}, xi ∈ Rn.

Each individual (or genotype) xi of the population is usually represented as a vector of
parameters and constitutes a candidate solution to the problem. Of course, the parameter
representations depend on the problem being addressed. For instance, they can range
from binary strings that are solutions to a boolean satisfiability problem, to weights and
biases of a neural network.

2. Fitness evaluation: Evaluation of the fitness f(xi) in the environment for each individual
in the population. Here, f maps a solution x to a scalar value, capturing its performance
on the given problem:

f : Rn → R.

3. Selection: Selection of individuals that will be modified through mutation and/or
crossover. Generally, the probability P of selecting an individual is proportional to
its fitness:

S = {xi | P (xi) ∝ f(xi)},

but encouraging diversity by also selecting less effective solutions that present interesting
behaviors is often beneficial.

4. Mutation and crossover: Modification of individuals in S : 1. Randommutations promote
genetic diversity, mutations methods include bit-flip mutation for binary representations
and Gaussian mutation for real-valued representations, 2. Crossover pairs individuals
(parents) from S to produce offspring that inherits parents traits.

crossover(xi,xj)→ {x′
i,x′

j}

mutation(xi)→ x′
i

5. Replacement: Creation of the new population Pt+1 by selecting a combination of existing
individuals from the current population and new offspring:

Pt+1 = {xi | xi ∈ offspring ∪ selected current population}

This approach ensures both the preservation of good solutions from the current popula-
tion and the introduction of new genetic material.

This whole process (from step 2 to 5) is repeated until a termination condition is met. For
instance, termination conditions include reaching a fitness threshold or a maximum number
of iterations. Evolutionary algorithms are considered derivative-free optimization methods,

25

Background

Figure 2.3 – Evolutionary algorithms are derivative-free black-box optimization methods.

meaning they do not involve computing gradients and do not need access to the inner working
of the fitness function. Instead, EAs see the environment— the component that allows solutions
to be tested against the problem to compute fitness — as a black box, relying solely on the
fitness evaluations to guide the search process (as illustrated in Figure 2.3). This particularity
makes EAs useful for optimization problems where the underlying structure of the fitness
function is complex, non-differentiable or unknown.

2.2.2 Quality-Diversity Optimization

A fascinating aspect of nature lies in its ability to produce a large and diverse collection of
organisms that are all high-performing in their niche. By contrast, most evolutionary algorithms
focus on finding a single efficient solution to a given problem, a notable difference that cuts
short the analogy between evolutionary algorithms and natural evolution (Mouret, 2020).
In the real world, although all creatures share the same planet and are part of the same
evolutionary process, they are not all in competition with each other. For example, it does not
make sense to say that butterflies are more efficient than bears because they do not compete
in the same ecological niche. Each of these species has unique characteristics that contribute
to their survival and reproduction. Intuitively, Quality-Diversity (QD) algorithms build on
classical evolutionary methods and aim to reproduce the mechanisms of natural evolution
(Pugh, Soros, and Stanley, 2016; Chatzilygeroudis, Cully, Vassiliades, et al., 2021). While
classical optimization methods focus on finding a single high-performing solution, the role
of QD methods is to cover the range of possible solution types and to return the best solution
for each type, producing a collection1 of solutions rather than a unique one. This process is
sometimes referred to as ”illumination” in opposition to optimization, as the goal of these
algorithms is to reveal (or illuminate) a search space of interest (Mouret and Clune, 2015).

1In the QD literature, this collection is often called the archive, the repertoire or even set of solutions. In this
work we will use these terms interchangeably.

26

2.2 Quality-Diversity

Figure 2.4 – QD algorithms are historically evolutionary algorithms that project a high-
dimensional search space (the space of solution genotypes) into a lower-dimensional space
capturing the solution behaviors. Here, for the sake of simplicity, the behavior space is unidi-
mensional. Taken from Cully and Demiris (2017).

This search space of interest is a cornerstone of QD approaches. For example, one might be
interested in evolving walking robots that differ in their gaits. In this case, a good criterion to
differentiate solutions within a population could be the frequency with which a robot puts its
legs on the ground, the average height of its center of gravity, or any other relevant criterion
that allows for differentiation of solutions in a desired manner. In this example, the goal of a
QD algorithm is to evolve walking robots while spanning the space of gaits (the search space
of interest), returning the best walking robot for each gait niche. In the QD literature, this
search space of interest is often called the behavior space, or behavior descriptor space, or simply
descriptor space. In this thesis, we will use these terms interchangeably, but formally, we say that
a descriptor (or set of descriptors, usually in the form of a real-value vector) is used to capture
the behavior of a solution. Figure 2.4 gives an high-level abstraction of the QD optimization
process: a QD algorithm projects a high-dimensional search space (the space of genotypes
that encode the solutions)2 into a lower dimensional space (the behavior space) defined by
the solution descriptors. The goal of this projection is to create a collection of solutions that
covers the behavior space, and in which the best solution for each part of the behavior space is
retained.

Remark 2.3 (Behavior coverage). Uniform exploration of the genotype space (high-dimensional
search space in Figure 2.4) does not guarantee uniform exploration of the behavior space, otherwise
generating diversity in behavior space would be trivial, requiring nothingmore than random sampling
in genotype space. Instead, it is often the case that the most interesting and diverse solutions in
the behavior space are contained in low-dimensional manifolds embedded in the genotype space
(Rakicevic, Cully, and Kormushev, 2021).

2Up to millions of dimensions in the case where solutions to the problem are deep neural networks, each
parameter of the neural network being a search dimension.

27

Background

More formally, let x ∈ S represent a solution (S being the solution space), B the behavior
space, ξ : S → B the behavior extraction function that maps a solution to its behavior descriptor
ξ(x), and f : S → R the fitness function that maps a solution to its performance f(x). The
objective of a QD algorithm is to find a set (or collection) of solutions X ⊆ S that maximizes:

max
X ⊆S

{∑
x∈X

f(x)
}

subject to X is diverse, (2.3)

where X is considered diverse if the set {ξ(x) | x ∈ X} of unique behavior descriptors of
solutions spans a wide range of values, and where:

∑
x∈X

f(x),

is called the QD score, i.e., the sum of fitnesses of all solutions contained in the collection X .
As stated in Equation 2.3, this score alone is insufficient to measure the overall performance of
a QD algorithm since it can be hacked by finding a single solution with extremely high fitness,
which contradicts the diversity objective. A measure of diversity can be formally expressed as:

Diversity(X) = |{ξ(x) | x ∈ X , ξ(x) unique}| ,

where the set {ξ(x) | x ∈ X , ξ(x) unique} represents the unique behavior descriptors of the
solutions in X , but such a metric only considers the absolute number of different solutions
found by the algorithm, and not the actual coverage of the behavior space. In quality-diversity,
the coverage refers to the proportion of the behavior space that is effectively covered by the
solutions in the collection. To calculate this proportion, it is first necessary to partition the
behavior space, i.e., to divide it into discrete regions (or cells). Let G be a discretiezd grid of the
behavior space B and let Goccupied ⊆ B be the set of grid cells occupied by at least one solution
in X , coverage can be defined as:

Coverage(X) = |Goccupied|
|G|

. (2.4)

Thus, the goal of QD algorithms is to ensure that a wide range of behaviors are covered, while
high-quality solutions are found for as many different behaviors as possible.

The motivation behind quality-diversity is to address complex problem-solving scenarios
where a diverse set of high-quality solutions can provide advantages. For example, in robotics,
having multiple strategies for navigating an environment can enhance robustness and adapt-
ability (Cully, Clune, Tarapore, et al., 2015). In design and creativity tasks, diverse solutions
can inspire innovation and offer a variety of effective approaches to a problem (Gravina, Khalifa,
Liapis, et al., 2019; Fontaine and Nikolaidis, 2021; Sudhakaran, González-Duque, Freiberger,

28

2.2 Quality-Diversity

et al., 2024). Furthermore, aiming for diversity in addition to performance is a convenient
way to avoid local optima and explore the solution space more effectively (Colas, Sigaud, and
Oudeyer, 2018; Colas, Madhavan, Huizinga, et al., 2020).

Figure 2.5 – MAP-Elites produces significantly higher-performing and more diverse solutions
than control algorithms for the pattern recognition task described in Clune, Mouret, and Lipson
(2013). x and y axes represent the arbitrary space of interest to explore, while color indicates
performance. Taken from Mouret and Clune (2015).

Historically, Novelty Search (NS) (Lehman and Stanley, 2011a) is a precursor to Quality-
Diversity algorithms that focuses exclusively on exploring novel behaviors. Instead of opti-
mizing for performance, Novelty Search rewards solutions for exhibiting behaviors that are
different from those seen before. Formally, Novelty Search aims to maximize the novelty score
ρ defined as:

ρ(x) = 1
k

k∑
i=1

distance(ξ(x), ξ(xi)), (2.5)

where xi are the k-nearest neighbors of x in the behavior space. As shown in Figure 1.4, NS
beats traditional evolutionary algorithms to solve the hard-exploration maze without ever
focusing on the actual objective. Interestingly, NS has been shown to asymptotically act like
a uniform random search in the behavior space (Doncieux, Laflaquière, and Coninx, 2019),
an important property that allows diversity-oriented algorithms to explore arbitrary spaces of
interest that cannot be directly explored by random search in the solution (or genotype) space
(see Remark 2.3). In their work, Doncieux, Laflaquière, and Coninx (2019) also introduce the
notion of alignment between the behavior space and the task. They show that performing NS
on a behavior space that is unaligned with the task at hand does not necessarily result in a
uniform exploration of the task space, hence the importance of carefully choosing the behavior
space. For example, returning to the maze problem, if one wants to run Novelty Search to find
the exit of a maze and defines the behavior space as the final position of a robot in the maze,
there is a reasonable chance that the search process ends up exploring the whole task space by
seeking diversity in the behavior space. However, if the behavior space is defined as the final

29

Background

orientation of the robot in the maze (i.e. where is the robot looking at the end of an episode),
behavior space is unaligned with the task, and seeking diversity in the final orientations of the
robot will not result in a good exploration of the task space.

Following the original introduction of Novelty Search, Novelty Search with Local Compe-
tition (NSLC) (Lehman and Stanley, 2011b) can be considered as the first quality-diversity
algorithm. NSLC extends Novelty Search by introducing a local competitionmechanism, where
individuals compete not only based on their novelty but also on their fitness within a local
neighborhood in the behavior space. This approach ensures that diversity is encouraged, and
that solutions also need to perform well relative to their similar neighbors. As in traditional
EAs, NS and NSLC evolve a population of candidate solutions throughout the search process,
but unlike traditional EAs, NS and NSLC also maintain an archive that 1. stores all solutions
from the evolving population that present enough novelty, 2. is used to compute the novelty
score (see Equation 2.5) by comparing new solutions in the population and stored solutions
in the archive, and 3. constitutes the final collection of diverse solutions that is returned by
the algorithm. In NS-based algorithms, the archive is a different and separate object from the
population that only comes into play when calculating the novelty score. It is also continuous,
unstructured and based on the Euclidean distance between solution descriptors, meaning
that it grows as new novel solutions are found without imposing a predefined structure or
partitioning the behavior space.

Algorithm 1MAP-Elites
1: Given Max iteration I , Number of initial solutions G, MAP-Elites archive M
2: iteration_number ← 0
3: while iteration_number < I do ▷Main loop
4: if iteration_number < G then ▷ Initialization
5: x′ ← random_solution()
6: else
7: x← random_selection(M)
8: x′ ← random_genetic_mutation(x)
9: evaluate(x′) ▷ Compute fitness and descriptors

10: if fitness of x′ is higher than the corresponding solution inM then
11: insert(x′,M)
12: iteration_number ← iteration_number + 1

In this thesis, wemainly build on theMulti-dimensional Archive of Phenotypic Elites (MAP-
Elites) (Mouret and Clune, 2015), a pillar algorithm of QD approaches that has been reused and
studied in numerous works (Colas, Madhavan, Huizinga, et al., 2020; Flageat and Cully, 2020;
Fontaine, Togelius, Nikolaidis, et al., 2020; Nilsson andCully, 2021). MAP-Elites chronologically
follows NSLC but differs in several key aspects. Unlike NS-based algorithms, MAP-Elites
defines the archive for storing solutions as a discrete grid (similar to G in Equation 2.4),
dividing the behavior space into discrete cells. Each cell in the grid represents a niche and

30

2.3 Reinforcement Learning

stores a unique solution, considered an elite in this part of the behavior space. In contrast to NS,
the MAP-Elites archive also serves as the population evolved by the search process, making
MAP-Elites a surprisingly simple yet powerful method. The full algorithm is described in
Algorithm 1 and can be summarized as follows: 1. MAP-Elites starts with an empty archive
and a random set of initial solutions that are evaluated and placed into the archive according
to a simple insertion criteria: if the cell corresponding to a solution’s behavior descriptor is
unoccupied, the solution is inserted into that cell. If there is already a solution in this cell,
the new solution will only replace it if it has superior fitness. 2. At every iteration, a set of
existing solutions are randomly selected from the repertoire and mutated to generate new
solutions. 3. These new solutions are then evaluated and inserted into the repertoire using the
same insertion criteria as before. This cycle is repeated until either convergence is reached or a
predetermined number of iterations is completed. Figure 2.5 illustrates the coverage capacity of
MAP-Elites in comparison to a traditional evolutionary algorithm and random sampling of the
solution space. The selection operator of MAP-Elites (2) plays a crucial role in its capacity to
cover the behavior space, Mouret and Clune (2015) show that it helps to promote serendipity
in the search process (i.e. the elite in a given cell often comes from solutions present in distant
regions of the behavior space that has been mutated), an important property that is lost when
the selection is biased towards the solutions that present higher fitnesses.

As shown by Cully and Demiris (2017), there is a wide variety of possible QD algorithms
that can be drawn between the main families of Novelty Search and MAP-Elites, which differ
considering the archive type, selection operator, and considered value for selection. But
importantly, although quality-diversity is historically based on evolutionary methods, it is
not theoretically restrained to them and can qualify any form of optimization that aims to
produce a diverse collection of solutions (Arulkumaran, Cully, and Togelius, 2019), such as
information-theory-augmented RL methods (Eysenbach, Gupta, Ibarz, et al., 2018; Sharma, Gu,
Levine, et al., 2019; Kumar, Kumar, Levine, et al., 2020; Chalumeau, Boige, Lim, et al., 2022).

2.3 Reinforcement Learning

In what follows, we introduce the formalism of reinforcement learning (RL), largely inspired
by Sutton and Barto (2018), whose work is foundational in this field. We start by introducing
the class of problems considered in RL, and then present key RL concepts and algorithms that
we use in this thesis.

2.3.1 Base Formalism

Markov decision processes (MDPs) (Howard, 1960) provide the mathematical framework for
formulating RL problems. An MDP is generally defined by a tuple (S,A,P,R) where:

31

Background

1. State space (S): S is the space of all possible states the environment can be in. A state
st ∈ S contains all information about the environment at timestep t. S can be either
discrete or continuous depending on the problem considered. For example, in a board
game like chess, the state space is discrete as it consists of a finite number of board
configurations. In contrast, in robotic control (which is the main type of environment
used in this thesis), the state space is continuous as it includes parameters like positions
and velocities, which can take any real value.

2. Action space (A): A is the space containing all possible actions the agent can take. At each
timestep, the agent usually choose an action a ∈ A that affects the future environment
state. For example, in a robot navigation task, actions might include moving north, south,
east, or west. As with the state space, A can be continuous or discrete depending on the
task at hand.

3. Transition model (P): P is the transition model that defines the probability distribution
over the next state given the current state and action. P(s′ | s, a) is the probability of
transitioning to state s′ from state s when a is the action taken by the agent. For example,
in a stochastic world, the action taken by the agent may not always give the desired
outcome due to environment uncertainty or noise.

4. Reward function (R): R is the reward function that returns a reward R(s, a, s′) for
transitioning from state s to state s′ via action a. The reward is a feedback given to agent
providing information about the performance of its actions.

A fundamental characteristic of MDPs is that the transition function P is Markovian, meaning
future states of the process only depend on the current state st and action at, and not on the
sequence of events that occurred previously:

P(st+1 | st, at) = P(st+1 | st, at, st−1, at−1, . . . , s0, a0),

for all states st, st+1 and actions at. The Markov property in important for reinforcement learn-
ing as it reduces the complexity of modeling transitions and simplifies practical implementation,
particularly in large —and continuous— state and action spaces. Instead of considering the
entire trajectory of states and actions, only the current state and action are needed. For instance,
a state st containing the position and velocity of a robot is more compact and easier to deal
with than a multiple states st, st−1, . . . , s0 containing only robot positions, from which an agent
would need to infer its current speed. The Markov property is also involved in convergence
and stability guarantees of some RL algorithms such as SARSA and Q-learning and SARSA
(Watkins and Dayan, 1992; Sutton and Barto, 2018). In this thesis, we consider finite-horizon
MDPs, where the agent plays finite episodes in the environment before being reset in a starting
state. Figure 2.6 illustrates the basic operation of reinforcement learning in MDPs: At timestep

32

2.3 Reinforcement Learning

Figure 2.6 – The RL agent-environment interaction loop in a Markov decision process, taken
from Sutton and Barto (2018). The environment provides states and rewards, and the agent
policy chooses actions.

t, the agent receives the state st and reward rt from the environment, generates an action at,
and sends it back to the environment. The environment then computes the next state st+1 and
reward rt+1 using at.

In reinforcement learning, a trajectory τ (or episode) is a finite sequence of states, actions
and rewards that the agent encounters while interacting with the environment from the initial
state s0 to a terminal state sT . Formally, it can be represented as:

τ = (s0, a0, r1, s1, a1, r2, . . . , sT). (2.6)

The return Rt is the total accumulated reward on a trajectory τ from timestep t until the end
of the episode T . Denoting rt the reward as timestep t, the return can be formulated as follows:

Rt(τ) =
T∑

k=t

rk.

In practice, we generally use a discounted version of the return to prioritize immediate rewards
over those received further in the future:

Rt(τ) =
T∑

k=t

γk−trk,

where γ is the discount factor 0 ≤ γ < 1 reducing the value of future rewards. The intuition
behind using a discounted return is to account for the uncertainty of future rewards, ensure
computational tractability (mostly in the case of infinite-horizon MDPs), encourage immediate
feedback and reflect the time preference inherent in many real-world scenarios.

A policy π is a strategy used by the agent to decide the next action a given the current state
s. It can be deterministic:

π(s) = a,

33

Background

or stochastic, where it defines a probability distribution over actions:

π(a | s) = P (At = a | St = s).

The policy plays a central role in RL as it defines the agent behavior. It can be parameterized by
θ, where πθ denotes the policy with parameters θ. In modern RL —as well as in this thesis—,
policies are often implemented as neural networks, allowing to handle high-dimensional state
and actions spaces effectively. For discrete action spaces, the neural network typically outputs
a probability distribution over the possible actions:

πθ(a | s) = softmax(fθ(s)),

where fθ(s) is the output of the model before applying the softmax. For continuous action
spaces, the neural network outputs the parameters of a probability distribution, such as the
mean and standard deviation for a Gaussian distribution, from which actions are sampled:

a ∼ N (µθ(s), σθ(s)),

where µθ(s) and σθ(s) are the mean and standard deviation of the Gaussian distribution output
by the neural network.

The goal of reinforcement learning is to find an optimal policy π∗ that maximizes the expected
return J :

π∗ = arg max
π∈Π

J(π),

with Π denoting the space of policies. The expected return of π is defined as:

J(π) = E
τ∼π

[R0(τ)], (2.7)

where τ ∼ π indicates that trajectories τ are generated by following policy π. In our case,
considering policies as deep neural networks parameterized by θ, this involves iteratively
updating the parameters θ to maximize the expected return. The optimization problem can be
formulated as:

θ∗ = arg max
θ

E
τ∼πθ

[R0(τ)].

2.3.2 Value Functions

In RL, value functions estimate the expected return of states (or state-action pairs) under
a policy π. The state value function V π(s) is the expected return starting from state s and

34

2.3 Reinforcement Learning

following policy π afterwards. Put simply, it captures the value of being in the state s under
the policy π:

V π(s) = E
τ∼π

[Rt(τ) | st = s] . (2.8)

Similarly, the state-action value function Qπ(s, a) is the expected return starting from state s,
taking action a and then following π:

Qπ(s, a) = E
τ∼π

[Rt(τ) | st = s, at = a] .

The Bellman equations (Bellman, 1966) provide a recursive decomposition of value functions,
which is fundamental in many RL problems. For instance, the Bellman expectation equation for
V π(s) derives from Equation 2.8 and expresses the value of s in terms of the value of subsequent
states:

V π(s) = E
τ∼π

[Rt(τ) | st = s]

= E
τ∼π

[rt+1 + γRt+1(τ) | st = s]

=
∑
a∈A

π(a | s)
∑
s′∈S

P(s′ | s, a)
[
rt+1 + γ E

τ∼π

[
Rt+1(τ) | st+1 = s′]]

=
∑
a∈A

π(a | s)
∑
s′∈S

P(s′ | s, a)
[
rt+1 + γV π(s′)

]
. (2.9)

In simple words, Equation 2.9 expresses the value function V π(s) as the probability of choosing
action a given s, the probability of ending in a next state s′ after executing action a, the immediate
reward rt+1 received for doing action a in state s, and the discounted value function of the next
state V π(s′), summed over all a ∈ A and all s′ ∈ S. In a related way, the Bellman expectation
equation provides a recursive definition for the state-action value function Qπ(s, a):

Qπ(s, a) =
∑
s′∈S

P(s′ | s, a)

rt+1 + γ
∑

a′∈A

π(a′ | s′)Qπ(s′, a′)

 .
Finally, the Bellman optimality equations describe the value functions for the optimal policy π∗.
These equations provide a way to find the optimal policy by expressing the value functions
in terms of the best possible actions at each state. The Bellman optimality equation for V ∗(s)
represents the maximum value achievable from state s following the optimal policy:

V ∗(s) = max
a

∑
s′∈S

P(s′ | s, a)[rt+1 + γV ∗(s′)],

35

Background

Figure 2.7 – Backup diagrams for the Bellman optimality equations for V ∗(s) and Q∗(s, a).
Backup diagrams provide intuitive interpretations of Bellman equations, where states are
represented as large empty circles and state-actions pairs as smaller black dots. Arrows denote
the possible scenarios following either a state or a state-action pair.

and the Bellman optimality equation for Q∗(s, a) represents the maximum value achievable by
taking action a in state s and then following π∗:

Q∗(s, a) =
∑
s′∈S

P (s′ | s, a)
[
rt+1 + γmax

a′
Q∗(s′, a′)

]
.

Figure 2.7 provides an illustration for Bellman optimality equations.
The preceding sections explored foundational frameworks of Markov Decision Processes

(MDPs) and value functions as tools for understanding environment dynamics and potential
rewards. The next sections transition to core methodologies that enable an agent to effectively
learn optimal policies and aim to answer the following question: How to learn with reinforce-
ment learning?. These methods build upon the theoretical constructs previously discussed
and introduce approaches for refining and optimizing the agent decision-making process over
time.

2.3.3 Temporal Difference Learning

Temporal difference (TD) (Sutton, 1988) Learning is a central technique in reinforcement learn-
ing aiming at computing increasingly accurate estimations of the value functions. TD-based
algorithms learn optimal policies by updating estimates of the state values (resp. state-action
values) based on the differences between estimated values at successive states. This method
bridges the gap between Monte Carlo methods (Metropolis and Ulam, 1949; Sutton, 1988),
which require the completion of entire episodes to make updates, and dynamic programming
(Bellman, 1952, 1966), which assumes a full knowledge of the environment’s dynamics. TD
learning performs incremental updates after each step of an episode using:

V (s)← V (s) + α[r + γV (s′)− V (s)]. (2.10)

36

2.3 Reinforcement Learning

This formula allows the agent to update its knowledge of the state value based not on the actual
return over the full episode, as in Monte Carlo methods, but on the estimated value of the next
state V (s′). Intuitively, r + γV (s′) in Equation 2.10 represents the target (or in some way, the
label), which is a little closer to the true value of state s than V (s), since it incorporates the true
reward r for the current timestep and relies on estimate V (s′) only for the rest of the trajectory.
Analogously to Equation 2.10, we can derive the TD update for state-action values as:

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]. (2.11)

By continually adapting the estimates of V (s) (resp. Q(s, a)), TD Learning enables the creation
of policies that are incrementally better. Each update provides a more accurate reflection of the
true value of states and actions, which in turn guides the agent to make optimal choices.

Still, even with a perfect knowledge of V (s), the state value function only contains infor-
mation about the expected return from each state under an optimal policy. Ideally, a policy
aiming at maximizing the return chooses actions that are expected to lead to states with high
values. However, V (s) does not specify what these optimal actions are and, more importantly,
the transition function P giving the probability P(s′ | s, a) of transitioning to state s′ from s

when a is the undertaken action is often unknown to the agent, i.e., the agent cannot know
which action leads to the desired next state3. Generally, in model-free RL, learning Q(s, a)
is preferred as it directly informs action selection, bypassing the need for knowledge about
the transition dynamics P . Q-learning and SARSA specifically utilize Q(s, a) to adapt and
refine policies through direct interaction with the environment, enabling learning without a
model of the environment dynamics. Algorithm 2 provides an illustration of the TD-based
SARSA algorithm, where an ε-greedy policy is a policy that takes the best estimated action
with probability 1− ε to force some degree of exploration.

Algorithm 2 SARSA Algorithm
1: Given Total episodes E, Learning rate α, Discount factor γ, Exploration policy (e.g., ε-

greedy)
2: Initialize Q(s, a) arbitrarily for all s ∈ S, a ∈ A(s)
3: for episode = 1 to E do ▷ Loop for each episode
4: Initialize state s
5: Choose a from s using policy derived from Q (e.g., ε-greedy)
6: while state s is not terminal do ▷ Loop for each step of the episode
7: Take action a, observe reward r and next state s′

8: Choose a′ from s′ using policy derived from Q (e.g., ε-greedy)
9: Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] ▷ SARSA update, Equation 2.11

10: s← s′ ▷Move to next state
11: a← a′ ▷Move to next action

3In this thesis, we focus on model-free RL. In model-based RL, where the model of the environment is given or
learned (i.e. the agent knows the transition probabilities P(s′ | s, a)), knowing V (s) is sufficient to learn policies.

37

Background

2.3.4 Policy Gradient Methods

Policy gradient methods are a class of algorithms in reinforcement learning where the policy
is directly optimized through gradient ascent on the expected return. Unlike TD learning
that iteratively updates value estimates to inform policy decisions indirectly, policy gradient
methods deal with the policy function itself, thus offering a more straightforward path to policy
improvement. The policy gradient theorem provides a method to calculate how changes to the
parameters θ of a policy πθ affect the expected return.

To derive the policy gradient, we first need to express the expected return J(πθ) (see
Equation 2.7) in terms of trajectory probabilities. Using the definition of a trajectory from
Equation 2.6, the probability of a trajectory τ under the policy πθ is given by:

P (τ | θ) = µ(s0)
T∏

t=0
πθ(at | st)P(st+1 | st, at), (2.12)

where µ is the initial state distribution, representing the probability of starting in a particular
state s0 when an episode begins. The expected return J(πθ) can then be expressed as:

J(πθ) =
∑

τ

P (τ | θ)R(τ).

To derive the gradient of J(πθ), we use the log-derivative trick, which states that:

∇θP (τ | θ) = P (τ | θ)∇θ logP (τ | θ).

Thus, we can write the gradient of J(πθ) as:

∇θJ(πθ) = ∇θ

∑
τ

P (τ | θ)R(τ)

=
∑

τ

∇θP (τ | θ)R(τ)

=
∑

τ

P (τ | θ)∇θ logP (τ | θ)R(τ). (2.13)

Using the definition of a trajectory probability given in Equation 2.12 and the properties of the
logarithm, logP (τ | θ) can be written as:

logP (τ | θ) = logµ(s0) + log
(

T∏
t=0

πθ(at | st)P(st+1 | st, at)
)

= logµ(s0) +
T∑

t=0
(log πθ(at | st) + logP(st+1 | st, at)) .

38

2.3 Reinforcement Learning

Taking the gradient of logP (τ | θ) with respect to θ gives:

∇θ logP (τ | θ) = ∇θ(logµ(s0)) +
T∑

t=0
(∇θ log πθ(at | st) +∇θ logP(st+1 | st, at))

=
T∑

t=0
∇θ log πθ(at | st), (2.14)

since µ(s0) and P(st+1 | st, at) are independent of θ (their gradients are zero). Combining the
results from Equation 2.13 and Equation 2.14, the policy gradient becomes:

∇θJ(πθ) =
∑

τ

P (τ | θ)
[

T∑
t=0
∇θ log πθ(at | st)

]
R(τ)

= E
τ∼πθ

[
T∑

t=0
∇θ log πθ(at | st)R(τ)

]
. (2.15)

This formulation shows that the gradient of the expected return with respect to the policy
parameters can be expressed as an expectation over trajectories of the sum of the gradients
of the log probabilities of the actions, scaled by the total return of the trajectory. Intuitively,
Equation 2.15 expresses that the way to achieve a higher return is by privileging actions that
are part of high-return trajectories.

Note that the policy gradient is formulated as an expectation, meaning that, in practice, we
can estimate it with a sample mean:

ĝ = 1
|D|

∑
τ∈D

T∑
t=0
∇θ log πθ(at | st)R(τ),

where D is a dataset of trajectories D = {τi}i=1,...,N produced by letting policy πθ act in the
environment. Algorithm 3 illustrates one of the simplest usage of policy gradient in an RL
algorithm to iteratively learn a policy: the REINFORCE algorithm (Williams, 1992).

Algorithm 3 REINFORCE Algorithm
1: Given Total episodes E, Learning rate α, Discount factor γ
2: Initialize policy parameters θ randomly
3: for episode = 1 to E do ▷ Loop for each episode
4: Generate an episode τ = (s0, a0, r1, s1, . . . , sT) under πθ

5: for t = 0 to T − 1 do ▷ Loop for each step of the episode
6: Rt ←

∑T
k=t γ

k−trk ▷ Calculate return from timestep t
7: ∇θJ(πθ)← ∇θ log πθ(at|st)Rt ▷ Gradient of log-prob
8: θ ← θ + α∇θJ(πθ) ▷ Update policy parameters

39

Background

In policy gradient methods, a significant challenge is the high variance of gradient estimates,
which can lead to unstable learning. The return R(τ) is the cumulative reward over an entire
trajectory. Using it directly in the gradient computation can lead to high variance because it
aggregates the effects of all actions taken throughout the trajectory. Even the use of the return
from timestep t (as in Algorithm 3) still involves high variance because it depends on the
particular sequence of events that follow t. This makes the gradient estimate noisy and can slow
down learning. One effective technique to reduce this variance is to use the state-action value
function Qπ(s, a), which captures the expected value over all possible future trajectories, instead
of the return in the gradient computation. By using Qπ(s, a), the policy gradient theorem can
be written as:

∇θJ(πθ) = E
τ∼πθ

[
T∑

t=0
∇θ log πθ(at | st)Qπ(s, a)

]
.

The Q-function usually provides an estimate of the expected return starting from a specific
state s after taking action a. This more localized and robust feedback reduces the noise in the
gradient estimate and focuses on the immediate impact of individual actions.

2.3.5 Actor-Critic Methods

Actor-critic methods are a class of RL algorithms combining the policy gradient approach with
value function approximation. Historically, these methods were developed as an extension
of the policy gradient approach, with foundational ideas introduced by Barto, Sutton, and
Anderson (1983). Actor-critic methods simultaneously optimize both the policy (actor), which
is responsible for updating the policy in the direction suggested by the critic, and the value
function (critic), which evaluates the actions taken by the actor based on the computed value
functions.

Generally, in the actor-critic framework, the actor selects actions according to a policy πθ

and updates its parameters using feedback from the critic following the policy gradient:

∇θJ(πθ) = E
τ∼πθ

[
T∑

t=0
∇θ log πθ(at | st)At

]
,

where At = rt + γV (st+1) − V (st) is the advantage at timestep t. Intuitively, the advantage
captures the relative benefit (or potentially the relative disadvantage) of the chosen action over
the baseline value of the state. On the other side, the critic estimates the value function V (s)
and updates its parameters w to minimize prediction error as follows:

∆w = α(rt + γV (st+1)− V (st))∇wVw(st).

40

2.4 Software

Note that this formulation is similar to TD learning of the value function in Equation 2.10.
In this thesis, we mainly use the TD3 algorithm (Fujimoto, Van Hoof, and Meger, 2018), a

state-of-the-art actor-critic algorithm introduced to tackle the inherent overestimation of action
values observed in standard DDPG (Lillicrap, Hunt, Pritzel, et al., 2015). TD3, or Twin Delayed
Deep Deterministic Policy Gradient, modifies the standard actor-critic architecture as follows:
First, it employs two Q-value estimators —or critics—, Qw1 and Qw2. For each state-action pair
(s, a) both critics output an estimate for the state-action value, and the smaller of the two is
used to determine the target value y as:

y = r + γ min
i=1,2

Qwi(s′, πθ(s′) + ε), (2.16)

where ε is noise added to the action a = πθ(s′) to ensure exploration in the action space. Second,
TD3 update the policy parameters θ less frequently than those of the critic networks (typically
twice less frequently). This delay helps to minimize the risks associated with the propagation
of estimations errors from the critics value function estimate to the policy. Third and last, TD3
encourages policy smoothing by adding noise to the target policy in the calculation of target
state-action values (see ε in Equation 2.16). This noise forces exploration and enhances training
stability, ensuring that the policy is tested against a range of actions around what it believes to
be the best action. This testing confirms whether the surrounding actions are also good, or if
the policy is overfitting to narrow peaks in value estimates.

In TD3, each critic is updated by minimizing the mean squared error between the predicted
state-action value Q(s, a) and the target y from Equation 2.16 as:

∇wi

1
N

N∑
j=1

(yj −Qwi(sj , aj))2.

The actor updates its policy using the policy gradient:

∇θ
1
N

N∑
j=1

Qw(sj , µθ(sj)).

2.4 Software

Software implementation of supervised learning methods (Section 2.1), evolutionary algo-
rithms (Section 2.2), and reinforcement learning (Section 2.3) is almost as important as the
theoretical background that justifies them. For instance, implementing the methods that are
later presented in this thesis (see Chapters 3 and 4) would have been almost impossible — or
would have required much more time or better experimenters — in the pre-2015 era where

41

Background

no machine learning framework existed4 to enable automatic differentiation. The software
underlying experiments in Chapter 3, which introduces an hybrid QD/RL method, was mainly
handmade for the sole purpose of these experiments using PyTorch (Paszke, Gross, Chintala,
et al., 2017) and MPI (Message Passing Interface Forum, 2021), a tool for high-performance
parallel computing.

However, Chapter 4 builds exclusively on the QDax5 research framework(Chalumeau,
Lim, Boige, et al., 2024), a tool to accelerate QD (and also RL) algorithms through hardware
accelerators andmassive parallelization. QDax is fully open-source and based on Jax (Bradbury,
Frostig, Hawkins, et al., 2018), a high-performance machine learning library that combines
the familiarity of NumPy (Harris, Millman, Walt, et al., 2020) with just-in-time compilation,
enabling automatic differentiation and GPU/TPU support, making it extremely efficient for
large-scale numerical computations. Figure 2.8 illustrates the global functioning of QDax,
where simple atomic building blocks are combined to form custom algorithms.

Figure 2.8 – A) Core components, used as building blocks to create optimization experiments.
B) High-level software architecture of QDax. C) Various examples of QD algorithms used for
a variety of tasks and problem settings available in QDax. Taken from Chalumeau, Lim, Boige,
et al. (2024).

4TensorFlow (Martín Abadi, Ashish Agarwal, Paul Barham, et al., 2015), arguably the first deep learning
framework, was released in 2015 and its first version is notoriously known for its difficulty and steep learning curve.

5QDax is the result of a collaboration between InstaDeep and the Imperial College of London, and is the main
work of Felix Chalumeau, Raphaël Boige and Bryan Lim. In the context of this thesis, some contributions have been
made to QDax.

42

2.4 Software

In QDax, the container defines the way the population is stored, the emitter implements
techniques to evolve solutions from the population (such as mutation-based updates, policy-
gradient-based updates, etc.), and the scoring function, analogous to the environment allows the
user to define the optimization problem. QDax includes numerous state-of-the-art QD and RL
baselines, whose implementations have been validated through replications of results from the
literature.

43

Chapter 3

Diversity Policy Gradient for Sample
Efficient Quality-Diversity
Optimization

La pensée ne doit jamais se soumettre,
ni à un dogme, ni à un intérêt, ni a une idée préconçue,
ni à quoi que ce soit, si ce n’est aux faits eux-mêmes;
parce que, pour elle, se soumettre, ce serait cesser d’être.

Henri Poincaré.

This chapter introduces a new algorithm, called QD-PG, which combines the strength of
policy gradient algorithms and quality-diversity methods to produce a collection of diverse and
high-performing neural policies in continuous control environments. The main contribution is
the introduction of a Diversity Policy Gradient (D-PG) exploiting information at the time-step
level to drive policies towards more diversity in a sample-efficient manner.

Contents
3.1 Introduction . 46
3.2 Background . 48
3.3 Diversity Policy Gradient . 50
3.4 Related Work . 53
3.5 Methods . 55
3.6 Experiments . 57
3.7 Results . 61
3.8 Conclusion . 66

45

Diversity Policy Gradient for Sample Efficient Quality-Diversity Optimization

Figure 3.1 – An agent robot is rewarded for running forward as fast as possible. Following
the reward signal without further exploration leads into a trap corresponding to a poor local
minimum. Our method, QD-PG, produces a collection of solutions that are diverse and high-
performing, allowing deeper exploration necessary to solve hard-exploration problems.

3.1 Introduction

The principal advantage of QD approaches resides in their intrinsic capacity to deliver a large
and diverse set of working alternatives when a single solution fails (Cully, Clune, Tarapore,
et al., 2015). By producing a collection of solutions instead of a unique one, QD algorithms
allow to obtain different ways to solve a single problem (see Figure 3.1), leading to greater
robustness, which can help to reduce the reality gap when applied to robotics (Koos, Mouret,
and Doncieux, 2012). Diversity seeking is the core component that allows QD algorithms to
generate large collections of diverse solutions. By encouraging the emergence of novel behaviors
in the population without focusing on performance alone, diversity seeking algorithms explore
regions of the behavior descriptor space that are unreachable in practice for conventional
algorithms (Doncieux, Laflaquière, and Coninx, 2019). Another benefit of QD is its ability
to solve hard exploration problems where the reward signal is sparse or deceptive, and on
which standard optimization techniques are ineffective (Colas, Madhavan, Huizinga, et al.,
2020). This ability can be interpreted as a direct consequence of the structured search for
diversity in the behavior descriptor space. As mentioned in Section 2.2.2, quality-diversity
algorithms build on black-box optimizationmethods such as evolutionary algorithms to evolve a
population of solutions (Cully and Demiris, 2017). Historically, they rely on randommutations
to explore small search spaces but struggle when facing higher-dimensional problems. As
a result, they often scale poorly to problems where neural networks with many parameters
provide state-of-the-art results (Colas, Madhavan, Huizinga, et al., 2020).

Training large and efficient policies that work with continuous actions has been a long-
standing goal in Artificial Intelligence and in particular in robotics. Deep reinforcement learning
(RL), and especially Policy Gradient (PG) methods have proven efficient at training such large

46

3.1 Introduction

policies (Lillicrap, Hunt, Pritzel, et al., 2015; Schulman, Wolski, Dhariwal, et al., 2017; Fujimoto,
Van Hoof, and Meger, 2018; Haarnoja, Zhou, Hartikainen, et al., 2018). One of the keys to this
success lies in the fact that PG methods exploit the structure of the objective function when
the problem can be formalized as an MDP, leading to substantial gains in sample efficiency.
Moreover, they also exploit the analytical structure of the policy when known, which allows the
sample complexity of these methods to be independent of the parameter space dimensionality
(Vemula, Sun, and Bagnell, 2019). In real-world applications, these gains turn out to be critical
when interacting with the environment is expensive.

Although exploration is very important to reach optimal policies, PG methods usually
rely on simple exploration mechanisms, like adding Gaussian noise (Fujimoto, Van Hoof, and
Meger, 2018) or maximizing entropy (Haarnoja, Zhou, Hartikainen, et al., 2018) to explore
the action space, which happens to be insufficient in hard exploration tasks (for instance, the
maze exploration task depicted in Figure 1.4) where the reward signal is sparse or deceptive
(Colas, Sigaud, and Oudeyer, 2018; Nasiriany, Pong, Lin, et al., 2019). Successful attempts
have been made to combine evolutionary methods and reinforcement learning (Khadka and
Tumer, 2018; Pourchot and Sigaud, 2018; Khadka, Majumdar, Miret, et al., 2019) to improve
exploration. However, all these techniques only focus on building high-performing solutions
and do not explicitly encourage diversity within the population. In this regard, they fail when
confronted with hard exploration problems. More recently, Policy Gradient Assisted MAP-
Elites (PGA-ME) (Nilsson and Cully, 2021) was proposed to bring reinforcement learning in
MAP-Elites (Mouret and Clune, 2015) to train neural networks to solve locomotion tasks with
diverse behaviors. PGA-ME makes use of policy gradient to optimize for performance but still
relies on divergent genetic search for exploration, making it struggle on hard exploration tasks.

Figure 3.2 – QD-PG builds on the MAP-Elites framework and leverages reinforcement learning
to derive policy gradient based mutations.

Contributions. In this work, we introduce the idea of a diversity policy gradient (D-PG) that
drives solutions towards more diversity. We show that the D-PG can be used in combination
with the standard policy gradient, dubbed quality policy gradient (Q-PG), to produce high-

47

Diversity Policy Gradient for Sample Efficient Quality-Diversity Optimization

performing and diverse solutions. Our algorithm, called QD-PG, replaces random diversity
search by D-PG, builds on the general framework of MAP-Elites (ME) and PGA-ME, and
demonstrates remarkable sample efficiency brought by off-policy PGmethods. We compareQD-
PG to state-of-the-art policy gradient methods algorithms (including SAC, TD3, RND, AGAC,
DIAYN and PGA-ME), and to several evolutionary methods known as evolution strategies
(ESs) augmented with a diversity objective (namely the NS-ES family (Conti, Madhavan, Such,
et al., 2018) and the ME-ES algorithm (Colas, Madhavan, Huizinga, et al., 2020)) on a set of
hard-exploration continuous control tasks with deceptive reward signal. We show that QD-PG
generates collections of robust and high-performing solutions in hard exploration problems
while standard policy gradient algorithms struggle to produce a single one. QD-PG is several
orders of magnitude more sample efficient than its traditional evolutionary competitors and
outperforms PGA-ME on all benchmarks.

3.2 Background

In this section we briefly introduce the theoretical framework for the problem at hand, and
motivate our choice for the threemethods onwhichwe are buildingQD-PG, namelyMAP-Elites
(Mouret and Clune, 2015), TD3 (Fujimoto, Van Hoof, and Meger, 2018), and PGA-MAP-Elites
(Nilsson and Cully, 2021). For a more detailed description of MAP-Elites and TD3, please refer
to Section 2.2.2 and Section 2.3.5, respectively.

3.2.1 Problem Statement

As presented in Section 2.3.1, we consider Markov Decision Processes (S,A,P,R) where S
is the state space, A the action space, P : S × A → S the dynamics transition function and
R : S × A × S → R the reward function. In the following, γ denotes a discount factor. We
assume that both S and A are continuous and consider a controller, or policy, πθ : S → A, a
neural network parameterized by θ ∈ Θ, which is called a solution to the problem. The fitness
F : Θ → R of a solution measures its performance, defined as the expectation over the sum
of rewards obtained by policy πθ. A solution with high fitness is said to be high-performing.
We introduce a behavior descriptor (BD) space B, a behavior descriptor extraction function
ξ : Θ → B, and define a distance metric ||.||B over B. The diversity of a set of K solutions
{θk}k=1,...,K is defined as d : ΘK → R+:

d ({θk}k=1,...,K) =
K∑

i=1
min
k ̸=i
||ξ(θi), ξ(θk)||B, (3.1)

48

3.2 Background

meaning that a set of solutions is diverse if the solutions are distant with respect to each other
in the sense of ||.||B. Following the objective of the family of quality-diversity algorithms, we
evolve a population of diverse and high-performing solutions.

3.2.2 The MAP-Elites Algorithm

MAP-Elites (see Section 2.2.2 andAlgorithm1 for a detailed introduction) is a simple yet state-of-
the-art QD algorithm that has been successfully applied to awide range of challenging problems
such as robot damage recovery (Cully, Clune, Tarapore, et al., 2015), molecular robotic control
(Cazenille, Bredeche, and Aubert-Kato, 2019) and game design (Alvarez, Dahlskog, Font, et al.,
2019). In MAP-Elites, the behavior descriptor space B is discretized into a grid of cells, also
called niches, with the aim of filling each cell with a high-performing solution. A variant,
called CVTMAP-Elites uses Centroidal Voronoi Tesselation (Vassiliades, Chatzilygeroudis, and
Mouret, 2016) to divide the grid into the desired number of cells. The algorithm starts with an
empty grid and an initial random set ofK solutions that are evaluated and added to the grid
by following simple insertion rules. If the cell corresponding to the behavior descriptors of a
solution is empty, then the solution is added to this cell. If there is already a solution in the cell,
the new solution replaces it only if it has greater fitness. At each iteration, P existing solutions
are sampled uniformly from the grid and randomly mutated to create P new solutions. These
new solutions are then evaluated and added to the grid following the same insertion rules.
This cycle is repeated until convergence or for a given budget of iterations. ME is a compelling
and efficient method, but it suffers from low sample efficiency as it relies on random mutations.

3.2.3 TD3

In opposition to standard evolutionary methods that rely on random updates, RL policy
gradient methods exploit the structure of the MDP to compute efficient performance-driven
updates to improve the policy. Among many policy gradient algorithms, TD3 (Fujimoto, Van
Hoof, and Meger, 2018) shows state-of-the-art performance in environments with continuous
action space and large state space, and relies on the deterministic policy gradient update (Silver,
Lever, Heess, et al., 2014) to train deterministic policies. In most policy gradients methods, a
critic Qπ : S × A → R implemented by a neural network is introduced. The critic evaluates
the expected fitness of policy π when performing an episode starting from a state-action pair
(s, a). The policy is updated to take the actions that will maximise the critic value estimation in
each state. Both the actor and critic have an associated target network and use delayed policy
updates to stabilize the training.

The TD3 algorithm addsmechanisms on top of the deterministic policy gradient update that
were demonstrated to significantly improve performance and stability in practice (Fujimoto,

49

Diversity Policy Gradient for Sample Efficient Quality-Diversity Optimization

Van Hoof, and Meger, 2018). Namely, two critics are used together and the minimum of their
values is used to mitigate overestimation issues. A Gaussian noise is added to the actions
taken by the actor when computing the deterministic policy gradient to enforce smoothness
between similar action values. More details on the TD3 and actor-critic formalism can be found
in Section 2.3.5.

3.2.4 Policy Gradient Assisted MAP-Elites

Policy Gradient Assisted MAP-Elites (PGA-ME) (Nilsson and Cully, 2021) is a recent QD
algorithm designed to evolve populations of neural networks. PGA-ME builds on top of the
ME algorithm and uses policy gradient updates to create a mutation operator that drives the
population towards region of high fitness. Used along genetic mutations, it has shown the
ability to evolve high-performing neural networks policies where ME with genetic mutations
alone failed. For this purpose, PGA-ME introduces a replay buffer that stores all the transitions
experienced by policies from the population during evaluation steps, and an actor-critic couple
that uses those stored transitions for training (following the TD3 method presented in 3.2.3).
The critic is used at each iteration to derive the quality policy gradient estimate for half of the
offspring selected from the ME grid, and is trained with a dedicated actor, called the greedy
policy. This greedy policy is also updated at each iteration by the critic and is added back to
the ME grid, even if its fitness is lower than individuals of similar behavior.

3.3 Diversity Policy Gradient

In this section, we introduce theDiversity PolicyGradient (D-PG),which aims at using time-step
level information in order to mutate policies towards diversity. We characterize the behavior of
policies as a function of the states they visit and define a diversity reward at the time-step-level
that is correlated with the diversity at the episode level. This reward is computed based on
distance of a state compared to the nearest states visited by other controllers in the ME grid.
Maximizing the accumulated diversity rewards induces an increase of the diversity in the
population we are optimizing. The following section provides a mathematical motivation for
this approach.

3.3.1 Mathematical Formulation

In this section, we motivate and formally introduce the D-PG computations. Let us assume that
we have a ME grid containingK solutions (θ1, . . . , θK) and that we sample θ1 from the grid to
evolve it. We aim to update θ1 in a manner that increases the population diversity (defined in

50

3.3 Diversity Policy Gradient

Equation (3.1)). For this purpose, we compute the gradient of the diversity with respect to θ1

and update θ1 in its direction using standard gradient ascent techniques.

Proposition 3.1. The gradient of diversity with respect to θ1 can be written as:
∇θ1d({θk}k=1,...,K) = ∇θ1n(θ1, (θj)2≤j≤J)

where n(θ1, (θj)2≤j≤J) =
J∑

j=2
||ξ(θ1), ξ(θj)||B,

(3.2)

where θ2 is θ1 closest neighbour and (θj) with j = 3, . . . , J are the elements in the population for which
θ1 is the nearest neighbour.

We call n the novelty of θ1 with respect to its nearest neighbor. This proposition means that
we can increase the diversity of the population by increasing the novelty of θ1 with respect to
the solutions for which it is the nearest neighbor. The proof of Proposition 3.1 is as follows:

Proof. (of proposition 3.1) The diversity in Equation 3.1 can be split into three terms: the
distance of θ1 to its nearest neighbor (defined as θ2), the distance of θ1 to the θj for which θ1 is
the nearest neighbor (defined {θj}j=3,...,K

1) and a third term that does not depend on θ1:

d({θk}k=1,...,K) = ||ξ(θ1), ξ(θ2)||B +
J∑

j=3
||ξ(θ1), ξ(θj)||B +M

=
J∑

j=2
||ξ(θ1), ξ(θj)||B +M,

whereM =
∑

i ̸∈{1,...,J} min
k ̸=i
||ξ(θi), ξ(θk)||B does not depend on θ1. Hence, the diversity gradient

with respect to θ1 is:

∇θ1d({θk}k=1,...,K) = ∇θ1

J∑
j=2
||ξ(θ1), ξ(θj)||B,

As the remaining term is precisely defined as the novelty n:

n(θ1, (θj)2≤j≤J) =
J∑

j=2
||ξ(θ1), ξ(θj)||B,

We get the final relation:

∇θ1d({θk}k=1,...,K) = ∇θ1n(θ1, (θj)2≤j≤J).

1Remark: θ2 can appear twice in the list (θj)2≤j≤J

51

Diversity Policy Gradient for Sample Efficient Quality-Diversity Optimization

Under this form, the diversity gradient cannot benefit from the variance reduction methods
in the RL literature to efficiently compute policy gradients (Sutton, McAllester, Singh, et al.,
1999). To this end, we express it as a gradient over the expectation of a sum of scalar quantities
obtained by policy πθ1 at each step when interacting with the environment. We introduce a
novel spaceD, dubbed state descriptor space and a state descriptor extraction functionψ : S → D. We
assume D and B have the same dimension. The notion of state descriptor (which is analogous
to the behavior descriptor but at the timestep level rather than the trajectory level) will be used
in the following to link diversity at the time step level to the diversity at the trajectory level. In
this context, if the following compatibility equation is satisfied:

n(θ1, (θj)2≤j≤J) = Eπθ1

∑
t
n(st, (θj)2≤j≤J)

where n(s, (θj)j=1,...,J) =
J∑

j=1
Eπθj

∑
t
||ψ(s), ψ(st)||D,

(3.3)

then the diversity policy gradient can be computed as:

∇θ1d({θk}k=1,...,K) = ∇θ1Eπθ1

∑
t

n(st, (θj)2≤j≤J). (3.4)

The idea behind Equation 3.3 is to link novelty defined at the solution level to a notion of
novelty defined at the time step level. The information that we use at the time step level is the
current state of the environment, so we describe a solution novelty as the novelty of its visited
state relative to other solutions:

n(θ1, (θj)2≤j≤J) = Eπθ1

∑
t

n(st, (θj)2≤j≤J).

Furthermore, we assume that a state is novel w.r.t. some solutions if it is novel w.r.t. to the
states visited by these solutions:

n(s, (θj)j=1,...,J) =
J∑

j=1
Eπθj

∑
t

||ψ(s), ψ(st)||D.

Finally, by replacing novelty at the solution level in proposition 3.1 by novelty at the state
level from Equation 3.3, we get the formulation of the diversity policy gradient given in
Equation 3.4. The obtained expression corresponds to the classical policy gradient setting
where γ = 1 and where the corresponding reward signal, here dubbed diversity reward, is
computed as rD

t = n(st, (θj) 2≤j≤J). Therefore, this gradient can be computed using any PG
estimation technique replacing the environment reward by the diversity reward rD

t . Equation
(3.3) enforces a relation between B andD and between extraction functions ψ and ξ. In practice,
it may be hard to define the behavior descriptor and state descriptor of a solution that satisfy
this relation while being meaningful to the problem at hand and tractable. Nevertheless, a strict

52

3.4 Related Work

equality is not necessary: a positive correlation between the two hand-sides of the equation is
sufficient for diversity seeking.

3.4 Related Work

Simultaneously maximizing diversity and performance is the central goal of QD methods
(Pugh, Soros, and Stanley, 2016; Cully and Demiris, 2017). Among the various possible combi-
nations offered by the QD framework (Cully and Demiris, 2017), Novelty Search with Local
Competition (NSLC) (Lehman and Stanley, 2011b) and MAP-Elites (Mouret and Clune, 2015)
are the two most popular algorithms. NSLC builds on the Novelty Search (NS) algorithm
(Lehman and Stanley, 2011a) and maintains an unstructured archive of solutions selected for
their local performance while ME uniformly samples individuals from a structured grid that
discretizes the BD space. Although very efficient in small parameter spaces, those methods
struggle to scale to bigger spaces which limits their application to neuroevolution.

3.4.1 Gradients in QD

Algorithms mixing quality-diversity and evolution strategies, dubbed QD-ES, have been devel-
oped with the objective of improving the data-efficiency of the mutations used in QD thanks to
evolution strategies. Algorithms such as NSR-ES and NSRA-ES have been applied to challeng-
ing continuous control environments (Conti, Madhavan, Such, et al., 2018). But, as outlined
by Colas, Madhavan, Huizinga, et al. (2020), they still suffer from poor sample efficiency and
the diversity and environment reward functions can be mixed in a more efficient way. ME-ES
(Colas, Madhavan, Huizinga, et al., 2020) goes one step further in that direction, achieving
a better mix of quality and diversity seeking through the use of a MAP-Elites grid and two
specialized ES populations. Using these methods was shown to be critically more successful
than population-based GA algorithms (Salimans, Ho, Chen, et al., 2017), but they rely on heavy
computation and remain significantly less sample efficient than off-policy deep RL methods, as
they do not leverage the analytical computation of the policy gradient at the time step level.
Differentiable QD (Fontaine and Nikolaidis, 2021) improves data-efficiency in QD with an
efficient search in the descriptor space but does not tackle neuroevolution and is limited to
problems where the fitness and behavior descriptor functions are differentiable, which is not
the case in a majority of robotic control environments.

53

Diversity Policy Gradient for Sample Efficient Quality-Diversity Optimization

3.4.2 Exploration and Diversity in RL

Although very efficient to tackle large state/action space problems, most reinforcement learn-
ing algorithms struggle when facing hard-exploration environments. RL methods generally
seek diversity either in the state space or in the action space. This is the case of algorithms
maintaining a population of RL agents for exploration without an explicit diversity criterion
(Jaderberg, Dalibard, Osindero, et al., 2017) or algorithms explicitly looking for diversity in the
action space rather than in the state space like ARAC (Doan, Mazoure, Durand, et al., 2019),
AGAC (Flet-Berliac, Ferret, Pietquin, et al., 2021), P3S-TD3 (Jung, Park, and Sung, 2020) and
DVD (Parker-Holder, Pacchiano, Choromanski, et al., 2020).

An exception is Curiosity Search (Stanton and Clune, 2016) which defines a notion of intra-
life novelty that is similar to state novelty defined in Section 3.3. Our work is also related to
algorithms using RL mechanisms to search for diversity only, like DIAYN (Eysenbach, Gupta,
Ibarz, et al., 2018) and others (Islam, Ahmed, and Precup, 2019; Lee, Eysenbach, Parisotto,
et al., 2019; Pong, Dalal, Lin, et al., 2019). These methods have proven useful in sparse reward
situations, but they are inherently limitedwhen the reward signal can orient exploration, as they
ignore it. Other works sequentially combine diversity seeking and RL. The GEP-PG algorithm
(Colas, Sigaud, and Oudeyer, 2018) combines a diversity seeking component, namely Goal
Exploration Processes (Forestier, Mollard, and Oudeyer, 2017) and the DDPG RL algorithm
(Lillicrap, Hunt, Pritzel, et al., 2015). This combination of exploration-then-exploitation is also
present in Go-Explore (Ecoffet, Huizinga, Lehman, et al., 2019). These sequential approaches
first look for diverse behaviors before optimizing performance.

3.4.3 Mixing Policy Gradient and Evolution

The fruitful synergy between evolutionary and RL methods has been explored in many recent
methods, notably ERL (Khadka and Tumer, 2018), CERL (Khadka, Majumdar, Miret, et al.,
2019), CEM-RL (Pourchot and Sigaud, 2018) and PGA-ME (Nilsson and Cully, 2021). ERL
and CEM-RL mix evolution strategies and RL to evolve a population of agents to maximize
quality but ignores the diversity of the population.

Policy Gradient Assisted MAP-Elites (PGA-ME) successfully combines QD and RL. This
algorithm scales MAP-Elites to neuroevolution by evolving half of its offspring with a quality
policy gradient update instead of using a genetic mutation alone. Nevertheless, the search
for diversity is only explicitly done with the genetic mutation. Although based on a efficient
crossover strategy (Vassiliades and Mouret, 2018), it remains a divergent search with limited
data-efficiency and ignores the analytical structure of the controller. Despite having been
proven effective in classic locomotion environments, our experiments show that PGA-ME

54

3.5 Methods

struggles on hard-exploration environments with deceptive rewards. QD-PG builds on the
ideas introduced in PGA-ME but replaces the genetic mutation by the diversity policy gradient
introduced in section 3.3. This data-efficient mechanism explicitly using time-step information
to seek diversity helps to scale ME to neuroevolution for hard-exploration tasks. To the best of
our knowledge, QD-PG is the first algorithm optimizing both diversity and performance in
the solution space and in the state space, using a sample-efficient policy gradient computation
method for the latter.

3.5 Methods

Our full algorithm is called QD-PG, its pseudo code is given in Algorithm 4. QD-PG is an
iterative algorithm based on MAP-Elites that replaces random mutations with policy gradient
updates. As we aim to improve sample efficiency by using an off-policy policy gradient method
in a continuous action space, we rely on TD3 to compute policy gradients updates.QD-PG
maintains three permanent structures. On the QD side, a CVT MAP-Elites grid stores the
most novel and performing solutions. On the RL side, a replay buffer contains all transitions
collected when evaluating solutions and an archive A stores all state descriptors obtained so far.
QD-PG starts with an initial population of random solutions, evaluates them and inserts them
into the MAP-Elites grid. At each iteration, solutions are sampled from the grid, copied, and
updated. The updated solutions are then evaluated through one episode in the environment
and inserted into the grid according to the usual insertion rules. Transitions collected during
evaluation are stored in the replay buffer, and state descriptors are stored in the archive A. Note
that these state descriptors are first filtered to avoid insertion in the archive of multiple state
descriptors that are too close to each other.

During the update step, half the population is updated with Q-PG ascent and the other
half with D-PG ascent. The choice of whether an policy is updated for quality or diversity is
random, meaning that it can be updated for quality and later for diversity if selected again. To
justify this design, we show in Section 3.7 that updating consecutively for quality and diversity
outperforms updating based on joint criteria. Both gradients are computed from batches of
transitions sampled from the replay buffer. The Q-PG is computed from the usual environment
rewards (similar to TD3 or PGA-ME) whereas for D-PG, we get "fresh" novelty rewards as:

rD
t =

J∑
j=1
||ψ(st), ψ(sj)||D, (3.5)

where (sj)j=1,...,J are the J nearest neighbors of state st in the archiveA. Diversity rewardsmust
be recomputed at each update because A changes during training. Following Equation (3.3),
diversity rewards should be computed as the sum of the distances between the descriptor of st

55

Diversity Policy Gradient for Sample Efficient Quality-Diversity Optimization

and the descriptors of all the states visited by a list of J solutions. In practice, we consider the
J nearest neighbors of st. This choice simplifies the algorithm, is faster to compute and works
well in practice.

Algorithm 4 QD-PG
1: Given: Sample size N , Total number of stepsmax_steps, Behavior and state descriptor extraction

functions ξ, ψ
2: Initialize: MAP-Elites grid M, state descriptors archive A, Replay Buffer B, N initial actors {πθi

}N
i=1,

2 critics QD
w , QQ

v

3: total_steps← 0
4:
5: // Main loop
6: while total_steps < max_steps do
7: if total_steps > 0 then
8: // Sampling and mutation
9: Sample generation {πθi}N

i=1 from grid M
10: Sample batches of transitions in replay buffer B
11: Compute fresh novelty rewards for half the batches
12: Update half the generation for diversity
13: Update the other half for quality
14: Update diversity and quality critics QD

w and QQ
v

15:
16: // Evaluation and insertion in grid
17: Evaluate the generation and store collected transitions in B
18: Store state descriptors in archive A
19: Update total_steps with the total number of collected steps
20: Add the updated generation to the grid M

TD3 relies on a parameterized critic to reduce the variance of its policy gradient estimate. In
QD-PG, we maintain two parameterized critics QD

w and QQ
v , respectively dubbed diversity and

quality critics. Every time a policy gradient is computed, QD-PG also updates the corresponding
critic. Both critics are trained using transitions from all policies in the population instead of just
one. This particularity empirically helps to avoid local minima in exploration environments,
where a unique policy could get stuck and mislead the values learned by the critic. Critic
parameters are shared among the population (as in CEM Pourchot and Sigaud, 2018), reasons
for doing so come from the fact that diversity is not stationary, as it depends on the current
population. If each policy had its own diversity critic, since an policy may not be selected for a
large number of generations before being selected again, its critic would convey an outdated
picture of the evolving diversity. A side benefit of critic sharing is that both critics become
accurate faster as they combine experience from all policies. Finally, as in TD3, we use pairs of
critics and target critics to fight the overestimation bias.

56

3.6 Experiments

3.6 Experiments

In this section, we first present the simulated environments and experiments that we leverage
to answer the following questions: 1. Can QD-PG produce collections of diverse and high-
performing neural policies and what are the advantages to do so? 2. Is QD-PG more sample
efficient than its evolutionary competitors? 3. How difficult are the considered benchmarks
for classical policy gradients methods? 4. What is the usefulness of the different components
of QD-PG? Finally, we provide further details on the actual implementation of QD-PG and
computational details of our experimental setup.

3.6.1 Environments

We assess QD-PG capabilities in continuous control environments that exhibit high dimensional
observation and action spaces as well as deceptive rewards. The size of the state/action space
makes exploration difficult for genetic algorithms and evolution strategies. Deceptive rewards
creates exploration difficulties particularly challenging for classical RL methods. We consider
three OpenAI Gym environments based on the MuJoCo physics engine that all exhibit strong
deceptive rewards: Point-Maze, Ant-Maze and Ant-Trap. Such environments have also been
widely used in previous works (Frans, Ho, Chen, et al., 2018; Colas, Madhavan, Huizinga, et al.,
2020; Parker-Holder, Pacchiano, Choromanski, et al., 2020; Shi, Li, Zheng, et al., 2020).

Figure 3.3 – Evaluation environments. The state and action spaces in Point-Maze are 2 × 2,
whereas they are 29× 8 in Ant-Maze and 113× 8 in Ant-Trap.

In the Point-Maze environment, an agent represented as a green sphere must find the exit
of the maze depicted in Figure 3.3a, represented as a red sphere. An observation contains
the agent position at time t, and an action corresponds to position increments along the x
and y axes. The reward is expressed as the negative Euclidean distance between the center of
gravity of the agent and the exit center. The trajectory length cannot exceed 200 steps. The
Ant-Maze environment is modified from OpenAI Gym Ant-v2 (Brockman, Cheung, Pettersson,
et al., 2016) and also used in (Frans, Ho, Chen, et al., 2018; Colas, Madhavan, Huizinga, et al.,
2020). In Ant-Maze, a four-legged ant starts in the bottom left of a maze and has to reach a
goal zone located in the lower right part (green area in Figure 3.3b). As in Point-Maze, the

57

Diversity Policy Gradient for Sample Efficient Quality-Diversity Optimization

reward is expressed as the negative Euclidean distance to the center of the goal zone. The
final performance is the maximum reward received during an episode. The environment is
considered solved when an agent obtains a score greater than −10. An episode consists of
3000 time steps, this horizon is three times larger than in usual MuJoCo environments, making
this environment particularly challenging for RL based methods (Vemula, Sun, and Bagnell,
2019). Finally, the Ant-Trap environment also derives from Ant-v2 and is inspired from Colas,
Madhavan, Huizinga, et al. (2020) and Parker-Holder, Pacchiano, Choromanski, et al. (2020).
In Ant-Trap, the four-legged ant initially appears in front of a trap and must bypass it to run as
fast as possible in the forward direction (see Figure 3.3c). As in Ant-v2, the reward is computed
as the ant velocity on the x-axis. The trap consists of three walls forming a dead-end directly in
front of the ant. In this environment, the trajectory length cannot exceed 1000 steps.

In Point-Maze, the state and action spaces are two-dimensional. By contrast, in Ant-Maze
and Ant-Trap, the number of dimensions of their observation spaces are respectively equal to 29
and 113 while the number of dimensions of their action spaces are both equal to 8, making these
two environments much more challenging as they require larger controllers. The Ant-Trap
environment also differs from mazes as it is open-ended, i.e., the space to be explored by the
agent is unlimited, unlike mazes where this space is restricted by the walls. In this case, a
state descriptor corresponds to the ant position that is clipped to remain in a given range. On
the y-axis, this range is defined as three times the width of the trap. On the x-axis, this range
begins slightly behind the starting position of the ant and is large enough to let it accelerate
along this axis.

Figure 3.4 – Gradient maps on Point-Maze and Ant-Maze. Black lines are maze walls, arrows
depict gradient fields and the square indicates the maze exit. Both settings present deceptive
gradients as naively following them leads into a wall.

In all environments, state descriptors ψ(st) are defined as the agent position at time step
t and behavior descriptors ξ(θ) are defined as the agent position at the end of a trajectory.
Therefore, we have B = D = R2, ψ(st) = (xt, yt) and ξ(θ) = (xT , yT) where T is the trajectory
length. We also take ||.||B and ||.||D as Euclidean distances. This choice does not always satisfy
Equation (3.3) but is convenient in practice and led to satisfactory results. The peculiarity of
Ant-Trap lies in the fact that the reward is expressed as the forward velocity of the ant, thus

58

3.6 Experiments

making the descriptors not totally aligned with the task. Figure 3.4 highlights the deceptive
nature of the Point-Maze and the Ant-Maze objective functions by depicting gradient fields in
both environments.

3.6.2 Baselines and Ablations

To answer question 1, we inspect the collection of solutions obtained with QD-PG and try to
adapt to a new objective with a limited budget of 20 evaluations. QD-PG is then compared to
three types of methods. To answer question 2, we compare QD-PG to a family of QD baselines,
namely ME-ES, NSR-ES, NSRA-ES (Colas, Madhavan, Huizinga, et al., 2020). Talbe 3.1 recaps
the properties of all these methods. Then, to answer question 3, we compare QD-PG to a family
of policy gradient baselines. RandomNetwork Distillation (RND) (Burda, Edwards, Storkey, et
al., 2018) and Adversarially Guided Actor Critic (AGAC) (flet-berliac2021adversarially) add
curiosity-driven exploration process to a RL agent. We also compare to the population-based
RL methods CEM-RL, P3S-TD3 and to the closest method to ours, PGA-ME. Finally, to answer
question 4, we propose to investigate the following matters: Can we replace alternating quality
and diversity updates by a single update that optimizes for the sum of both criteria? Are quality
(resp. diversity) gradients updates alone enough to fill the MAP-Elites grid? Consequently,
we consider the following ablations of QD-PG: QD-PG Sum, which computes a gradient to
optimize the sum of the quality and diversity rewards; D-PG, which applies diversity gradients
only; and Q-PG which applies quality gradients only. Note that both D-PG and Q-PG ablations
still use QD selection. For all experiments, we limited the number of seeds to 5 due to limited
compute capabilities. Table 3.1 summarizes the different components present in QD-PG, its
ablations and all baselines.

Table 3.1 – Ablations and baselines summary. Selec. stands for selection. The last column
assesses whether the method optimizes for a collection instead of a single solution.

Algorithm QPG DPG Q Selec. D Selec. Collection

Ab
lat

io
ns QD-PG ✓ ✓ ✓ ✓ ✓

QD-PG Sum ✓ ✓ ✓ ✓ ✓
D-PG X ✓ ✓ ✓ ✓
Q-PG ✓ X ✓ ✓ ✓

PG

SAC ✓ X X X X
TD3 ✓ X X X X
RND ✓ ✓ X X X

CEM-RL ✓ X ✓ X ✓
P3S-TD3 ✓ ✓ X X ✓
AGAC ✓ ✓ X X X
DIAYN X ✓ X X X
PGA-ME ✓ X ✓ ✓ ✓

QD

ME-ES X X ✓ ✓ ✓
NSR-ES X X ✓ ✓ ✓
NSRA-ES X X ✓ ✓ ✓

59

Diversity Policy Gradient for Sample Efficient Quality-Diversity Optimization

3.6.3 Implementation Details

We consider populations of N = 4 actors for the Point-Maze environment and N = 10 actors
for Ant-Maze and Ant-Trap. We use 1 CPU thread per actor and parallelization is implemented
with the Message Passing Interface (MPI) library. Our experiments are run on a standard
computer with 10 CPU cores and 100 GB of RAM, although the maximum RAM consumption
per experiment at any time never exceeds 10GB due to an efficient and centralized management
of the MAP-Elites grid which stores all solutions. An experiment on Point-Maze typically
takes between 2 and 3 hours while an experiment on Ant-Maze or Ant-Trap takes about 2 days.
Note that these durations can vary significantly depending on the type of CPU used. We did
not use any GPU. Computational costs of QD-PG mainly come from backpropagation during
the update of each agent, and to the interaction between agents and the environment. These
costs scale linearly with the population size but, as many other population-based methods,
the structure of QD-PG lends itself very well to parallelization. We leverage this property and
parallelize our implementation to assign one agent per CPU thread. Memory consumption
also scales linearly with the number of agents. To reduce this consumption, we centralize the
MAP-Elites grid on a master worker and distribute data among workers when needed. With
these implementation choices, QD-PG only needs a very accessible computational budget for
all experiments.

Table 3.2 – QD-PG Hyper-parameters: Ant-Maze and Ant-Trap hyper-parameters are identical
and grouped under the Ant column

Parameter PointMaze Ant
TD3
Optimizer SGD SGD
Learning rate 6× 10−3 3× 10−4

Discount factor γ 0.99 0.99
Replay buffer size 106 5× 105

Hidden layers size 64/32 256/256
Activations ReLU ReLU
Minibatch size 256 256
Target smoothing coeff. 0.005 0.005
Delay policy update 2 2
Target update interval 1 1
Gradient steps ratio 4 0.1

State Descriptors Archive
Archive size 10000 10000
Threshold of acceptance 0.0001 0.1
K-nearest neighbors 10 10

MAP-Elites
Nb. of bins per dimension 5 7

60

3.7 Results

In practice, to compute diversity rewards presented from Equation 3.5, we maintain a FIFO
archive A of the state descriptors encountered so far. When a transition (st, at, rt, st+1, ψ(st)) is
stored in the replay buffer, we also add ψ(st) toA. We only add a state descriptor inA if its mean
Euclidean distance to its K nearest neighbors is greater than an acceptance threshold. This
filtering step enables to keep the archive size reasonable and to facilitate the computation of the
K nearest neighbors. The values ofK and of the threshold are given in Table 3.2. When a batch
of transitions is collected during the update phase, we recompute fresh diversity rewards rD

t as
the mean Euclidean distance between the sampled state descriptors ψ(st) and theirK nearest
neighbors in A. These diversity rewards are used in place of standard rewards in sampled
transitions (st, at, r

D
t , st+1, ψ(st)) to compute the diversity policy gradient.

3.7 Results

Figure 3.5 – Performance of QD-PG and baseline algorithms on all environments. Plots present
median bounded by first and third quartiles.

Can QD-PG produce collections of neural policies and what are the advantages to do so?
Table 3.4 and figure 3.5 present QD-PG performances. In all environments, QD-PG manages to
find working solutions that avoid local minima and reach the overall objective. In addition to its
exploration capabilities, QD-PG generates collections of high performing solutions in a single
run. During the Ant-Trap experiment, the final collection of solutions returned by QD-PG
contained, among others, 5 solutions that were within a 10% performance margin from the
best one. As illustrated in Figure 3.1, these policies typically differ in their gaits and preferred
trajectories to circumvent the trap.

Generating a collection of diverse solutions comes with the benefit of having a repertoire of
diverse solutions that can be used as alternatives when the MDP changes (Cully, Clune, Tara-
pore, et al., 2015). To show that QD-PG is more robust than conventional policy gradient meth-
ods and demonstrate the benefit of having a collection of solutions, we propose a fast-adaptation
experiment where the reward signal of the Ant-Maze environment is randomly changed.

61

Diversity Policy Gradient for Sample Efficient Quality-Diversity Optimization

Figure 3.6 – QD-PG produces a collec-
tion of diverse solutions. In Ant-Maze,
even after setting new randomly lo-
cated goals, the ME grid still contains
solutions that are suited for the new
objectives.

We replace the original goal in the bottom right part
of the maze (see Figure 3.6) with a new randomly lo-
cated goal in the maze. Instead of running QD-PG
to optimize for this new objective, we run a Bayesian
optimization process to quickly find a good solution
among the ones already stored in the grid. With a bud-
get of only 20 solutions to be tested during the Bayesian
optimization process, we are able to quickly recover a
good solution for the new objective. We repeat this ex-
periment 100 times, each time with a different random
goal, and obtain an average performance of −10 with
a standard deviation of 9. In other words, 20 interaction episodes (corresponding to 60.000
time steps) suffice for the adaptation process to find a solution that performs well for the new
objective without the need to re-train agents.

Browsing theMAP-Elites grid in an exhaustiveway—instead of relying on Bayesian search—
is another option to find a good solution for a new objective. However, the number of solutions
to be tested with this option increases quadratically w.r.t. the number of meshes used to
discretize the dimensions of the BD space. As shown in Table 3.2, we used a 7× 7 grid to train
QD-PG in the Ant-Maze environment, containing a maximum of 49 solutions. In this setting,
the difference in computation cost between exhaustive search and Bayesian optimization is
negligible. To ensure that fast adaptation scales to finely discretized MAP-Elites grids, we
retrained QD-PG and reproduced this experiment with a 100× 100 grid, containing thousands
of solutions, and obtained an average performance of −9 with a standard deviation of 7 (this
time with a budget of 50 solutions to be tested during the Bayesian search process).

Figure 3.7 maps these 100 fast adaptation experiments to their respective goal location and
performance. In each square, we display the score of the best experiment whose goal was
sampled in this region of the maze. For instance, the square in the top left corner of the map
corresponds to one of the 100 fast adaptation experiments that sampled its goal in this part of
the maze, and obtained a performance of −12 after testing 50 solutions from the MAP-Elites
grid during the Bayesian optimization process. Empty squares correspond to regions of the
maze where no goals were sampled during the 100 experiments.

Is QD-PG more sample efficient than its evolutionary competitors? Table 3.3 compares
QD-PG to deep neuroevolution algorithms with a diversity seeking component (ME-ES, NSR-
ES, NSRA-ES, CEM-RL) in terms of sample efficiency. QD-PG runs on 10 CPU cores for 2
days while its competitors used 1000 CPU cores for the same duration. Nonetheless, QD-PG
matches the asymptotic performance of ME-ES using two orders of magnitude fewer samples,
explaining the lower resource requirements.

62

3.7 Results

Figure 3.7 – Results of the fast-adaptation experiment repeated 100 times in Ant-Maze. In each
square, we display the score of the best experiment whose goal was sampled in this region of
themaze, as several experiments may have goals in the same square. Empty squares correspond
to regions where no goal was sampled during the experiments. The black circle shows the
agent starting position, the black lines represent the walls in Ant-Maze and the green cross
marks the location of the original goal in Ant-Maze.

We see three reasons for the improved sample efficiency of QD-PG: 1) QD-PG leverages
a replay buffer and can re-use each sample several times. 2) QD-PG leverages novelty at the
state level and can exploit all collected transitions to maximize quality and diversity. For
instance, in Ant-Maze, a trajectory brings 3000 samples to QD-PG while standard QD methods
would consider it a unique sample. 3) PG exploits the analytical gradient between the neural
network weights and the resulting policy action distribution and estimates only the impact of
the distribution on the return. By contrast, standard QD methods directly estimate the impact
on the return of randomly modifying the weights.

Table 3.3 – Comparison to evolutionary competitors on Ant-Maze. The Ratio column compares
the sample efficiency of a method to QD-PG.

Algorithm Final Perf. Steps to goal Ratio
QD-PG −1(±7) 8.4e7 1
CEM-RL −26(±0) ∞ ∞
ME-ES −5(±0) 2.4e10 286
NSR-ES −26(±0) ∞ ∞
NSRA-ES −2(±1) 2.1e10 249

How challenging are the considered benchmarks for policy gradients methods? Table 3.4
compares QD-PG to state-of-the-art policy gradient algorithms and validates that classical
policy gradient methods fail to find optimal solutions in deceptive environments. TD3 quickly
converges to local minima of performance resulting from being attracted in dead-ends by the
deceptive gradients. While we may expect SAC to better explore due to entropy regularization,
it also converges to that same local minima. Besides, despite its exploration mechanism based

63

Diversity Policy Gradient for Sample Efficient Quality-Diversity Optimization

on CEM, CEM-RL also quickly converges to local optima in all benchmarks, confirming the need
for a dedicated diversity seeking component. RND, which adds an exploration bonus used as
an intrinsic reward, also demonstrates performances inferior to QD-PG in all environments
but manages to solve Point-Maze. In Ant-Trap, RND extensively explores the BD space but
fails to obtain high returns. Although maintaining diversity into a population of reinforcement
learning agents, AGAC and P3S-TD3 are not able to explore enough of the environments to
solve them, showing some limits of exploration through the action space.

Table 3.4 – Final performance compared to ablations and PG baselines. Performance ismeasured
as the minimum distance to the goal in Ant-Maze (108 steps) and as the episode return in
Point-Maze (106 steps) and Ant-Trap (108 steps).

Algorithm Point-Maze Ant-Maze Ant-Trap
QD-PG −24(±0) −1(±7) 1540(±46)

QD-PG Sum −24(±0) −33(±4) 1013(±0)
D-PG −36(±2) −59(±0) 1014(±0)
Q-PG −128(±0) −59(±0) 1139(±38)

SAC −126(±0) −26(±0) 1075(±7)
TD3 −129(±1) −35(±1) 1131(±4)
RND −102(±4) −31(±1) 1014(±27)

CEM-RL −312(±1) −26(±0) 977(±3)
P3S-TD3 −144(±14) −60(±0) 1173(±4)
AGAC −32(±49) −43(±3) 1113(±8)
DIAYN −96(±14) −47(±4) 949(±34)
PGA-ME −126(±0) −18(±6) 1455(±17)

DIAYN is able to explore in Point-Maze but does not fully explore the environment and
hence does not reach the goal before the end of the 106 steps. DIAYN ensures that its skills
explore states different enough to be discriminated, but once they are, there is no incentive
to further explore. Moreover, DIAYN in Ant-Trap shows a limit of unsupervised learning
methods: Ant-Trap is an example of environment where the behavior descriptor chosen is
not perfectly aligned with the performance measured. As rewards are completely ignored by
DIAYN, the produced controllers have very low fitness.

Figure 3.5 relates performance of QD-PG and PGA-ME along time on Point-Maze, Ant-
Maze, Ant-Trap and shows that QD-PG outperforms the latter both in final performance and
data-efficiency by a significant margin. It was the first time that PGA-ME was assessed in
exploration environments. This definitely confirms that the Genetic mutation used by PGA-ME
struggles in big parameter space while the Diversity Policy Gradient offers a data-efficient
diversity-seeking mechanism to improve the exploration of MAP-Elites in high-dimensional
deceptive environments. We tried QD-PG on the locomotion tasks from the original paper
(Nilsson and Cully, 2021) and found it hard to design state descriptor extractors Ψ such that our
diversity rewards would be strongly correlated with the behavior descriptor ξ used in PGA-ME

64

3.7 Results

(Nilsson and Cully, 2021) in the sense of equation 3.3, showing a limitation of our work. This
leads us to the conclusion that keeping genetic mutations in addition to our diversity policy
gradient could end up in a fruitful and robust synergy. Finally, we observed that the learning
process of QD-PG on Ant-Maze sometimes struggled to start, explaining the high interquartile
distance of performances on Ant-Maze in Figure 3.5).

What is the usefulness of the different components of QD-PG ? The ablation study in
Table 3.4 shows that whenmaximizing quality only, Q-PG fails due to the deceptive nature of the
reward andwhenmaximizing diversity only, D-PG sufficiently explores to solve Point-Maze but
requires more steps and finds lower-performing solutions. When optimizing simultaneously
for quality and diversity, QD-PG Sum fails to learn in Ant-Trap and manages to solve the
task in Ant-Maze but requires more samples than QD-PG. We hypothesize that quality and
diversity rewards may give rise to conflicting gradients. Therefore, both rewards cancel each
other, preventing any learning. This study validates the usefulness of QD-PG components: 1.
optimizing for diversity is required to overcome the deceptive nature of the reward, 2. adding
quality optimization provides better asymptotic performance, 3. it is better to disentangle
quality and diversity updates.

Figure 3.8 – Coverage map of the Point-Maze (left) and Ant-Trap (right) environments for all
ablations. Each dot corresponds to the final position of a policy through the training process.

Figure 3.8 (left) shows coverage maps of the Point-Maze environment obtained with one
representative seed by the different algorithms presented in the ablation study. A dot in the
figure corresponds to the final position of an agent after an episode. The color spectrum
highlights the course of training: policies evaluated early in training are in blue while newer
ones are represented in purple. QD-PG and D-PG almost cover the whole BD space including
the objective. Unsurprisingly, Q-PG and TD3 present very poor coverage maps, both algorithms

65

Diversity Policy Gradient for Sample Efficient Quality-Diversity Optimization

optimize only for quality and the MAP-Elites selection mechanism in Q-PG contributes nothing
in this setting. By contrast, algorithms optimizing for diversity (QD-PG and D-PG) find the
maze exit. However, as shown in Table 3.4, QD-PG which also optimizes for quality, is able to
refine trajectories through the maze and obtains significantly better performance. Figure 3.8
(right) depicts the coverage maps of the Ant-Trap environment by QD-PG and TD3. Only
QD-PG is able to bypass the trap and to cover a large part of the BD space.

3.8 Conclusion

This chapter introducedQD-PG, a hybrid algorithm that builds uponMAP-Elites algorithm and
uses methods inspired from reinforcement learning literature to produce collections of diverse
and high-performing neural policies in a sample-efficient manner. We showed experimentally
that QD-PG creates multiple solutions achieving high returns in continuous control hard-
exploration problems. Although more efficient than genetic mutations, the diversity policy
gradient requires a state descriptor ensuring a correlation between state diversity and global
diversity, which can be difficult to define when the behavior space is more complex.

66

Chapter 4

Generating Behavior-Conditioned
Trajectories with Decision Transformers

An expert is a person who has found out by his own painful experience
all the mistakes that one can make in a very narrow field.

Niels Bohr.

A natural goal induced by the creation of a quality-diversity repertoire is trying to achieve
behaviors on demand, which can be done by running the corresponding policy from the
repertoire. However, in uncertain environments, two problems arise. First, policies can lack
robustness and repeatability, meaning that multiple episodes under slightly different conditions
often result in very different behaviors. Second, due to the discrete nature of the repertoire,
solutions vary discontinuously. In this chapter, we present a new approach to achieve behavior-
conditioned trajectory generation on demand with high accuracy.

Contents
4.1 Introduction . 70
4.2 Related Work . 71
4.3 Problem Statement . 74
4.4 Methods . 79
4.5 Results . 85
4.6 Conclusion . 93

69

Generating Behavior-Conditioned Trajectories with Decision Transformers

Figure 4.1 – High-level view of the Quality-Diversity Transformer pipeline. Our full algorithm
is composed of three distinct and successive parts: 1. Execution of MAP-Elites Low-Spread, our
variation of MAP-Elites that produces stable and consistent policies, 2. Creation of an offline
dataset of trajectories by playing episodes with some of the policies produced by MAP-Elites
Low-Spread, 3. Supervised training of a behavior-conditioned causal Transformer producing
on-demand behaviors with high accuracy.

4.1 Introduction

In many real-world scenarios, it is important to explore the entire solution space and find
diverse efficient solutions that can be used as alternatives in case a single solution fails (Cully,
Clune, Tarapore, et al., 2015). More importantly, reproducing the behavior of a policy with
accuracy and consistency is crucial, as it allows engineers and designers to anticipate possible
failures and mitigate them with backup options. Previous work has shown that QD methods
are suitable for neuroevolution (Rakicevic, Cully, and Kormushev, 2021; Flageat, Lim, Grillotti,
et al., 2022) in complex, uncertain domains such as robotic manipulation and locomotion (Colas,
Madhavan, Huizinga, et al., 2020; Morrison, Corke, and Leitner, 2020; Nilsson and Cully, 2021).
However, they demonstrate important difficulties in producing policies that are consistent in the
behavior space when the initial conditions of an episode change slightly (Flageat, Chalumeau,
and Cully, 2022). For instance, solutions stored in the MAP-Elites grid of QD-PG (see Chapter
3) may have been lucky during the only evaluation episode they played. Since solutions are
stored when they obtain superior fitness than the corresponding solution in the grid, this single
evaluation mechanism encourages high-variance solutions that sometimes outperform more
consistent ones. Still, sometimes is enough to populate a QD repertoire with high-variance
solutions; during the training process, many different solutions are created and evaluated, and
all it takes is one (un)lucky accident per cell of the grid to store a high-variance solution that
will prevent more consistent ones to be retained.

Moving to another topic related to this chapter, recent advances inmachine learning have led
to the emergence of the Transformer (Vaswani, Shazeer, Parmar, et al., 2017) as a powerful and
prevalent model architecture to address various problems, including text generation (Brown,

70

4.2 Related Work

Mann, Ryder, et al., 2020), image processing (Carion, Massa, Synnaeve, et al., 2020; Dosovitskiy,
Beyer, Kolesnikov, et al., 2020) and sequential decision making (Lee, Nachum, Yang, et al.,
2022; Reed, Zolna, Parisotto, et al., 2022). In particular, the Decision Transformer (DT) (Chen,
Lu, Rajeswaran, et al., 2021) performs conditioned sequential decision making in simulated
robotics environments by leveraging supervised learning on datasets of trajectories generated
by reinforcement learning (RL) policies. Unlike other approaches, its specificity is to condition
its decision making process on a desired return to be obtained at the end of an episode. After
an offline training phase, the DT is able to condition on a target return and to play episodes
that achieve this target return with high accuracy, and even to generalize to returns that were
not seen during training.

Contributions: In this work, we experimentally show that MAP-Elites-based algorithms
have considerable difficulty in producing consistent policies in uncertain domains. We introduce
a new metric, the policy spread, which measures the consistency of policies in the BD space and
propose a variant of MAP-Elites, called MAP-Elites Low-Spread (ME-LS), which drives the
search process towards consistent policies by selecting them for their higher fitness and lower
spread. We then introduce the Quality-Diversity Transformer (QDT), a behavior-conditioned
model inspired by the DT that learns to achieve behaviors on demand and leverages supervised
learning on datasets of trajectories generated by repertoires of policies. We run experiments in
simulated robotic environments based on the physics engine Brax (Freeman, Frey, Raichuk,
et al., 2021) and show experimentally that: 1. ME-LS produces repertoires of consistent policies
that replicate their behavior descriptors (BDs) over multiple episodes with varying initial
conditions, 2. The QDT compresses a whole repertoire into a single policy and demonstrates
even better accuracy than ME-LS policies, 3. Finally, the QDT is capable, to a certain extent,
to generalize to unseen behaviors. All the code in this chapter was created using the QDax
framework (Chalumeau, Lim, Boige, et al., 2024).

4.2 Related Work

Several works have investigated the behavior and fitness estimation problem in uncertain
domains. Cully and Demiris (2018) aggregate multiple runs to evaluate a single solution.
They perform insertion in the repertoire based on the average fitness over all episodes and
based on the geometric median of all obtained BDs. Following the terminology introduced
in Flageat, Chalumeau, and Cully (2022), we name this method MAP-Elites-sampling and
remark that, without having been named explicitly, a very similar approach has been used
in Engebraaten, Moen, Yakimenko, et al. (2020). We argue that MAP-Elites-sampling suffers
from two issues: First, its focus is on finding better approximation of the true characteristics of
solutions, rather than directly searching for more robust ones. Second, using the geometric
mean over all BDs can result in a situation where a solution is qualified by a BD that it never

71

Generating Behavior-Conditioned Trajectories with Decision Transformers

actually achieves, which could prevent another, more adequate solution to be inserted in the
repertoire. To support these claims, we include ME-Sampling as a baseline in our experiments.
Deep-Grid (Flageat andCully, 2020) is a variant ofMAP-Elites that employs an archive of similar
previously encountered solutions to estimate the characteristics of a solution. However, Flageat,
Chalumeau, and Cully (2022) show that Deep-Grid fails to find reproducible solutions as
efficiently as MAP-Elites-sampling, and hypothesizes that because the method uses neighbours
in the BD-space to approximate the true characteristics of solutions, it does not perform well in
high dimensional search spaces –which are typical in neuroevolution tasks– where the complex
relation between genotypes and BDs can be confusing for this neighbourhood-basedmechanism.
Adaptive-Sampling (Justesen, Risi, and Mouret, 2019) is a method that discards solutions that
are evaluated too many times outside of their main cells to keep only the most reproducible
solutions. Flageat and Cully (2023) propose an extensive study of the reproducibility problem,
they compare existing methods (including MAP-Elites Sampling, Deep-Grid and Adaptive-
Sampling) and introduce new variations. Still, as opposed to ME-LS, all these methods do
not act directly on insertion but progressively measure the reproducibility of solutions and
eliminate the least reproducible ones.

Algorithm 5 PGA-MAP-Elites
1: Given Max iteration number I , Sample size N , MAP-Elites repertoireM, Replay Buffer B, A critic

network Qv

2: Initialization: Create N random policies {πθi
}N

i=1 ▷ Initialize the system
3: Evaluate and insert them in M
4: iteration_number ← 0
5: while iteration_number < I do ▷Main loop
6: Sample N policies {πθi}i=1,N in repertoireM ▷ Sampling and mutation
7: Mutate half the policies using the TD3 update using Qv

8: Mutate the other half with random genetic mutations
9: ▷ Train the critic
10: Sample batches of transitions in replay buffer B
11: Update the critic Qv using TD3
12: ▷ Evaluation
13: Evaluate each new policy over 1 trajectory and store all transitions in buffer B
14: Compute their fitnesses and BDs
15: ▷ Insertion in repertoire
16: for each new policy do
17: if fitness of new policy is higher than the corresponding policy in M then
18: Insert new policy in M
19: iteration_number ← iteration_number + 1

Policy Gradient Assisted MAP-Elites (PGA-ME) (Nilsson and Cully, 2021) is a state-of-the-
art QD algorithm bridging the gap between evolutionary and policy gradient (PG) methods.
It builds upon MAP-Elites and introduces a variation operator based on policy gradient re-
inforcement learning to optimize for fitness. PGA-MAP-Elites uses a replay buffer to store
the transitions experienced by policies from the population during evaluation steps, and also

72

4.2 Related Work

employs an actor-critic model, using the TD3 algorithm (Fujimoto, Van Hoof, and Meger, 2018)
to train on the stored transitions. The critic is utilized at each iteration to calculate the policy
gradient estimate for half of the offspring selected from the MAP-Elites repertoire. A separate
actor, known as the greedy controller, is also trained with the critic. This greedy controller is
updated at each iteration and added to theMAP-Elites repertoire, even if its fitness is lower than
other individuals with similar behavior. In this work, we replicate all ME-based experiments
and adapt them to PGA-ME to show that the stated problem and our conclusions are still valid
in the presence of PG variations. Algorithm 5 contains the pseudocode for PGA-ME.

The Transformer (Vaswani, Shazeer, Parmar, et al., 2017) is a popular model architecture
that was specifically designed for natural language processing (NLP) tasks such as language
translation (Devlin, Chang, Lee, et al., 2018), but has since been applied to a variety of other
tasks, including image and speech recognition (Dong, Xu, and Xu, 2018; Dosovitskiy, Beyer,
Kolesnikov, et al., 2020), text generation (Brown, Mann, Ryder, et al., 2020) and sequence
modeling for RL (Chen, Lu, Rajeswaran, et al., 2021). The key innovation of the Transformer is
its use of self-attention mechanism, which allows the model to efficiently weigh the importance
of different parts of the input when making predictions, rather than relying solely on the order
of the input as in previous architectures. Authors of the Decision Transformer (DT) (Chen,
Lu, Rajeswaran, et al., 2021) propose a new approach to sequential decision making problems
formalized as reinforcement learning using the Transformer architecture. They train the DT on
collected experience (datasets of trajectories) using a sequence modeling objective —allowing
for a more direct and effective way of performing credit assignment— and show that it matches
or exceeds the performance of state-of-the-art model-free offline RL algorithms. They use a
trajectory representation that allows a causal Transformer based on the GPT architecture (Rad-
ford, Narasimhan, Salimans, et al., 2018) to autoregressively model trajectories using a causal
self-attentionmask. Put simply, the DT predicts actions by paying attention to all prior elements
in a trajectory. With this work, the authors bridge the gap between sequence modeling and
reinforcement learning, proving that sequence modeling can serve as a robust algorithmic
paradigm for sequential decision making.

In line with the Decision Transformer, the Trajectory Transformer (Janner, Li, and Levine,
2021) achieves goal-conditioned trajectory generation in 2D MiniGrid environments, and
authors of Multi-Game Decision Transformers (Lee, Nachum, Yang, et al., 2022) train a single
model that plays up to 46 Atari games with near-human performance. Even more impressively,
GATO (Reed, Zolna, Parisotto, et al., 2022) is a generalist Transformer-based agent tackling
a wide variety of tasks including, among others, real and simulated robotic manipulations.
A point of divergence between these works and ours is the tokenization scheme used: while
they tokenize each dimension of each element given as input to their models, we follow the DT
scheme and directly feed the continuous observations, actions and conditioning BD to the QDT.
This has the advantage of drastically reducing the computing time and resources required as

73

Generating Behavior-Conditioned Trajectories with Decision Transformers

the model itself is smaller and does not grow as a function of the input dimensionality. Finally,
Jegorova, Doncieux, and Hospedales (2020) introduces a behavior-conditioned generative
model which generates parameters of policies that are conditioned to achieve a target behavior.
However, their model is not suited for deep neuroevolution and focuses on generating simple
policies consisting of dozens of parameters.

4.3 Problem Statement

Following Section 2.3.1, we consider sequential decision-making problems expressed asMarkov
Decision Processes (MDPs) defined by (S,A,P,R) where S is the state space, A the action
space, P : S ×A → S the transition function andR : S ×A× S → R the reward function. We
assume that both S and A are continuous and that both P andR are deterministic functions.
Policies πθ : S → A are assumed to be implemented by neural networks parameterized by
θ ∈ Θ, which are called solutions to the problem. We denote by τ[πθ,s] ∈ Ω a trajectory of the
policy πθ starting from the initial state s.

Contrary to previous related works (Nilsson and Cully, 2021; Chalumeau, Boige, Lim, et al.,
2022; Pierrot, Macé, Chalumeau, et al., 2022; Pierrot, Richard, Beguir, et al., 2022) and due to
the fact that we exclusively consider uncertain continuous control environments where the
initial state is randomly sampled, we do not expect a direct mapping from a solution θ to its
fitness nor to its behavior descriptor and rather consider fitnesses and behavior descriptors
of trajectories played by πθ. The fitness function F : Ω → R takes a trajectory τ[πθ,s] as input
and measures its performance, defined as the sum of rewards obtained by policy πθ during
an episode starting from initial state s. It is used to estimate the actual fitness of the solution
θ, which can be theoretically defined as the expected value of the fitness for a given initial
state distribution. We also introduce a behavior descriptor space B and a behavior descriptor
extraction function ξ : Ω→ B that maps a trajectory τ[πθ,s] to its behavior descriptor ξ(τ[πθ,s]).
Assuming that distB is a distance metric over B, we define the spread of K trajectories as the
mean distance between all pairs of behavior descriptors. We use it to estimate the spread of
the solution θ (cf. Equation 4.1), which again can be theoretically defined as the expected
value of the distance between the behavior descriptors of two trajectories for a given initial state
distribution. In most cases, we could also use the standard distance deviation or dispersion,
defined as the mean distance to the mean behavior descriptor, which has better computational
complexity, but requires the definition of the mean behavior descriptor, which is trivial when
they belong to a vector space, but can be difficult in the general case. Furthermore, the difference
in computational complexity has a negligible impact on our method, as we always consider a
limited number of evaluations for each policy.

74

4.3 Problem Statement

ψ (θ) =̂
1≤i<j≤K

distB
(
ξ(τ[πθ,si]), ξ(τ[πθ,sj])

)
, (4.1)

where the states {si}i=1,...,K are randomly initialized.
Put simply, the spread of a solution measures its tendency to obtain different behavior

descriptors when playing multiple episodes with varying initial states. The lower the spread,
the more consistent the policy is in the BD space. Note that in the experiments presented in
chapter, B is a Euclidean space and we use the Euclidean distance over B as distB.

4.3.1 Environments

The set of tasks we study is based on the Brax suite (Freeman, Frey, Raichuk, et al., 2021), a
physics engine for large scale rigid body simulation written in Jax (Bradbury, Frostig, Hawkins,
et al., 2018). It is worth mentioning that all policies used in this work (including the QDT and
policies produced by QD algorithms) are deterministic, thus the stochasticity is only the result
of the variability in the initial states, which are randomly sampled from a Gaussian distribution.

Figure 4.2 – Illustration of the benchmark tasks used in this work, based on the Brax physics
engine.

We evaluate the capacity of our method to perform in continuous control locomotion tasks
that feature substantially distinct behavior spaces, as well as high dimensional observation
and action spaces. In these tasks, the challenge is to move legged robots by applying torques
to their joints via actuators. These types of environments are particularly challenging for
evolutionary algorithms as they typically necessitate a significant number of interactions with
the environment to develop high-performing policies. We follow the terminology introduced
in Chalumeau, Boige, Lim, et al. (2022) to name environments and distinguish between om-
nidirectional and unidirectional environments by providing them with distinct names. All
episodes in both environments have a maximum length of 250 timesteps.

Ant-Omni is an exploration-oriented environment in which a four-legged ant robot must
move on the 2D plane while minimizing the control energy (Flageat, Lim, Grillotti, et al., 2022).
This environment is similar to the popular Ant-Uni environment (Chalumeau, Boige, Lim, et al.,
2022) (as it involves the same articulated ant) but instead of trying to move as fast as possible

75

Generating Behavior-Conditioned Trajectories with Decision Transformers

in a single direction, the goal is to reach any position on the surface. In this environment,
the BD space is defined as the 2D plane and behavior descriptors are 2-dimensional vectors
computed as the x and y positions of a solution at the end of an episode. We chose to restrict
the BD space of Ant-Omni to [−15, 15] on both axes as methods presented in this work tend
to produce solutions within this range. The reward signal is defined as the negative energy
consumption at each timestep and simply ensures that policies are constrained to produce
energy-efficient behaviors. It is worth noting that this environment is primarily intended to
evaluate the exploration abilities of algorithms, as the reward is relatively easy to optimize
—an optimal policy would simply remain static. BD extraction function and fitness function for
the Ant-Omni environment are defined as:

ξ(τ)Ant-Omni = (xT , yT)

F (τ)Ant-Omni = −
T∑

t=1
||at||2

(4.2)

where T is the number of transitions in the trajectory, ||.||2 is the Euclidean norm, at is the action
vector that corresponds to torques applied to the robot joints, and xT and yT the positions of
the robot’s center of gravity on both axes at the end of the trajectory.

Halfcheetah-Uni is a popular benchmark environment in which the agent must run as fast
as possible in the forward direction while maximizing a trade-off between speed and energy
consumption. In this environment, the BD space is defined as all the possible patterns of
movement —or gaits—the bipedal agent can use to run. Behavior descriptors are defined as
the proportion of time each foot of the agent is in contact with the ground. This definition is
commonly used in other related works for tasks of similar nature (Cully, Clune, Tarapore, et al.,
2015; Colas, Madhavan, Huizinga, et al., 2020; Pierrot, Richard, Beguir, et al., 2022). The reward
signal is defined as the forward distance covered between each timestep minus a penalty for
energy consumption. BD extraction function and fitness function for the Halfcheetah-Uni
environment are defined as:

ξ(τ)Halfcheetah-Uni = (1
T

T∑
t=1

ci,t)i=1,2

F (τ)Halfcheetah-Uni =
T∑

t=1

xt−xt−1
∆t

−
T∑

t=1
||at||2

(4.3)

where xt is the position of the robot’s center of gravity at time t along the forward axis and ∆t

the timestep, and ci,t = 1 if leg i is in contact with the ground at time t and 0 otherwise.

4.3.2 The Reproducibility Problem

Uncertain domains such as continuous control environments are known to be challenging
for evolutionary methods. Apart from the fact that these methods are usually less efficient

76

4.3 Problem Statement

when facing high-dimensional search spaces (Colas, Madhavan, Huizinga, et al., 2020), they
also tend to generate policies that exhibit a high degree of variability in their behaviors and
performances (Flageat and Cully, 2020; Flageat, Chalumeau, and Cully, 2022). As a result,
repertoires of solutions generated by QD algorithms have limited re-usability in the sense
that solutions they store rarely replicate the behaviors and performances for which they were
retained. Even though the dynamics of the environment and the policy themselves may be
deterministic, an ideal policy should be robust to varying initial conditions and demonstrate
consistent behaviors and performances, particularly in the context of simulated robotics where
the transfer to real applications is dependent on the robustness of such policies.

Figure 4.3 – Reproducibility problem in Ant-Omni. We select three representative policies from
final repertoires that have been generated by a) MAP-Elites and b) MAP-Elites Low-Spread,
our proposed variant, and play 30 episodes with each policy using slightly varying initial states.
The top row depicts the final BDs obtained by each policy and the bottom row represents
the corresponding entire trajectories in the behavior space. Each color represents a different
random seed (initial condition).

Figure 4.3 illustrates this problem for MAP-Elites in the Ant-Omni environment. It should
be noted that we have made our best effort to select representative policies from the repertoire
and not to cherry pick them. The reproducibility problem is actually twofold: first, it appears
that the policies from the MAP-Elites repertoire exhibit a very high spread in the behavior
space (as defined by Equation 4.1), meaning that a policy is unable to reproduce the results
that were used to insert it in the repertoire. Table 4.4 contains average spread values for MAP-
Elites and PGA-MAP-Elites in both environments. We argue that this pitfall of MAP-Elites
based algorithms comes from the single evaluation scheme being used (see the MAP-Elites
pseudocode in Algorithm 1) which drives the search process towards solutions that show high
variability and that have been lucky during their single evaluation episode. Second, it appears
that not only the MAP-Elites policies display a high spread in the behavior space, but they also
produce inconsistent and irregular trajectories as depicted in the bottom row of Figure 4.3a. We
refer to these trajectories as being irregular because the ant robot does not move steadily from

77

Generating Behavior-Conditioned Trajectories with Decision Transformers

the starting point to its final position, but rather follows a shaky trajectory that often changes
course.

Figure 4.4 – Reproducibility problem in Ant-Omni. Here we reproduce the experiment pro-
posed in Figure 4.3 for a) PGA-MAP-Elites and b) PGA-MAP-Elites Low-Spread.

Similar analyses hold for PGA-ME, Figure 4.4a illustrates the reproducibility problem in
Ant-Omni for PGA-ME. We selected 3 representative policies from a final repertoire produced
by PGA-ME and ran multiple (N = 30) episodes with each policy. Results are similar to ME
policies in that they generate irregular trajectories and demonstrate high spread in the behavior
space even though PGA-ME incorporates a policy-gradient-based mutation operator during its
training process. Finally, we reproduce these experiments and show in Figure 4.5 that the same
observations can be made in Halfcheetah-Uni for both algorithm families: ME and PGA-ME
produce solutions that display high spread in the BD space. For this environment we do not
show whole trajectories as the behavior space is of a different nature and not suitable for such
plots.

Figure 4.5 – Reproducibility problem in Halfcheetah-Uni for a) MAP-Elites, b) MAP-Elites
Low-Spread, c) PGA-MAP-Elites, d) PGA-MAP-Elites Low-Spread.

78

4.4 Methods

In the next section, we propose a new approach that augmentsMAP-Elites based algorithms
with an additional insertion criterion based on the spread computation and show that it solves
both of the above mentioned problems. We later demonstrate that the QDT alone is able to
mitigate these problems but also that the supervised learning phase of the QDT largely benefits
from trajectories that have been generated by steady and consistent policies.

4.4 Methods

In this section we first introduce MAP-Elites Low-Spread and PGA-MAP-Elites Low-Spread,
which are modified versions of MAP-Elites (Mouret and Clune, 2015) and PGA-MAP-Elites
(Nilsson and Cully, 2021), designed to solve the reproducibility problem introduced in Sec-
tion 4.3.2. Then, we present the Quality-Diversity Transformer, a unique model compressing
a repertoire of QD policies, capable of producing desired behaviors on demand thanks to
policy distillation and supevised learning. All algorithms are implemented based on the QDax1
framework (Chalumeau, Lim, Boige, et al., 2024), which provides highly parallelized versions
of many state-of-the-art QD and RL algorithms using the Brax physics engine (Freeman, Frey,
Raichuk, et al., 2021), and allows to create custom algorithms by providing basic building
blocks. The duration of a MAP-Elites (resp. PGA-MAP-Elites) run requiring hundreds of
millions of interactions with the environment does not exceed a few hours on modern GPUs
using QDax.

4.4.1 MAP-Elites Low-Spread

MAP-Elites Low-Spread (ME-LS), our variant of the original MAP-Elites algorithm (ME),
thrives the search process towards solutions that are consistent in the behavior space for
uncertain domains. The full pseudocode is presented in Algorithm 6. ME-LS uses the global
structure of ME except for two aspects. First, solutions are evaluated over multiple episodes
(N = 10) and second, solutions are inserted into the repertoire if they prove to have a higher
fitness and a lower spread than the solutions already contained. More precisely, the overall
operation ofME-LS can be described in 3 principal steps: 1. ME-LS create new solutions through
mutations, 2. It evaluates them over multiple episodes and computes their average fitnesses
and their most frequent BDs2, 3. These new solutions are inserted in the repertoire if they have
better fitness and lower spread than the already stored solutions, or if the corresponding cells
are empty.

1https://github.com/adaptive-intelligent-robotics/QDax
2Since the behavior space is continuous, we consider that two trajectories have the same behavior descriptor if

they both belong to the same cell in the repertoire.

79

Generating Behavior-Conditioned Trajectories with Decision Transformers

Algorithm 6MAP-Elites Low-Spread
1: Given Max iteration number I , Number of initialization solutions G, Number of evaluations per

solution E, MAP-Elites repertoire M
2: iteration_number ← 0
3: while iteration_number < I do ▷Main loop
4: if iteration_number < G then ▷ Initialize by generating G random solutions
5: x′ ← random_solution()
6: else ▷ Sampling and mutation
7: x← random_selection(M)
8: x′ ← random_genetic_mutation(x)
9: Evaluate x′ over E trajectories ▷ Evaluation
10: Compute fitness of x′ as its avg. fitness over E trajectories
11: Compute BD of x′ as its most frequent BD over E trajectories
12: Compute the spread of x′ in the BD space as given by Eq. 4.1
13: if x′ fitness and spread are better than the corresponding solution in M then
14: Insert x′ in M
15: iteration_number ← iteration_number + 1

As shown in Figure 4.3b, the policies generated byME-LS exhibit highly consistent BDs over
30 episodes and regular, steady trajectories in the behavior space. It is clear that the additional
insertion criterion forces solutions to be consistent in the behavior space, and we hypothesize
that this additional constraint indirectly forces the selection process towards solutions that
produce smooth, regular trajectories. Table 4.1 gives the hyperparameters for ME and ME-LS.

Hyperparameter Value
Environment batch size 1000
Policy hidden layers size [256, 256]
Iso sigma 0.005
Line sigma 0.05

Table 4.1 – Hyperparameters forMAP-Elites andMAP-Elites Low-Spread in both environments.

4.4.2 PGA-MAP-Elites Low-Spread

PGA-MAP-Elites Low-Spread (PGA-ME-LS) (see Algorithm 7) is analogous to ME-LS and
simply modifies the PGA-ME algorithm to include an additional constraint over the policies
spread during the insertion phase. Its overall structure is identical to the standard PGA-ME
described in Section 4.2, except for the fact that PGA-ME-LS evaluates solutions over multiples
trajectories and insert new solutions into the repertoire only if they present higher fitnesses and
lower spreads than their corresponding solutions in the repertoire.

Conclusions similar to those of ME-LS can be drawn from Figure 4.4b for PGA-ME-LS,
which does not suffer from the inconsistency problems of PGA-ME and trains policies that

80

4.4 Methods

Algorithm 7 PGA-MAP-Elites Low-Spread
1: Given Max iteration number I , Number of evaluations per solution E, Sample size N , MAP-Elites

repertoireM, Replay Buffer B, A critic network Qv

2: Initialization: Create N random policies {πθi
}N

i=1
3: Evaluate and insert them in M
4: iteration_number ← 0
5: while iteration_number < I do ▷Main loop
6: Sample N policies {πθi}i=1,N in repertoireM ▷ Sampling and mutation
7: Mutate half the policies using the TD3 update using Qv

8: Mutate the other half with random genetic mutations
9: ▷ Train the critic
10: Sample batches of transitions in replay buffer B
11: Update the critic Qv using TD3
12: ▷ Evaluation
13: Evaluate each new policy over E trajectories and store all transitions in buffer B
14: Compute each policy’s fitness as its avg. fitness over the E trajectories
15: Compute each policy’s BD as its most frequent BD over the E trajectories
16: ▷ Insertion in repertoire
17: for each new policy do
18: if fitness and spreadd of new policy are better than the corresponding policy in M then
19: Insert new policy in M
20: iteration_number ← iteration_number + 1

Hyperparameter Value
Environment batch size 1000
Policy learning rate 0.001
Critic learning rate 0.0003
Policy hidden layers size [256, 256]
Critic hidden layers size [256, 256]
Policy noise 0.2
Noise clip 0.5
Discount 0.99
Reward scaling 1.0
Policy gradient proportion 50%
Critic training steps 300
Policy training steps 100
Iso sigma 0.005
Line sigma 0.05

Table 4.2 – Hyperparameters for PGA-MAP-Elites and PGA-MAP-Elites Low-Spread in both
environments.

81

Generating Behavior-Conditioned Trajectories with Decision Transformers

are consistent in the BD space, producing smooth and regular trajectories. Table 4.2 provides
hyperparameters for PGA-ME and PGA-ME-LS.

Full results comparing ME, ME-LS, PGA-ME and PGA-ME-LS are available in Section 4.5.4.
As a quick note, in both environments, the average spread values presented in Table 4.4
indicate that simply performing multiple evaluations to better characterize a solution (as in
ME-Sampling) does not help to increase its consistency in the behavior space. To solve this we
argue that it is preferable to optimize directly for this purpose.

4.4.3 The Quality-Diversity Transformer

This section introduces the Quality-Diversity Transformer (QDT), a model inspired by the
Decision Transformer (Chen, Lu, Rajeswaran, et al., 2021) that autoregressively models trajec-
tories and produces behaviors on-demand by conditioning on a target behavior descriptor, as
shown in Figure 4.6. Although very similar, the Quality-Diversity Transformer differs from the
DT in that it conditions decisions on a target behavior rather than on the return to be obtained
during an episode. Algorithm 8 contains the pseudocode for the QDT model, the supervised
training loop and the evaluation loop.

A key aspect of the model is the trajectory representation used as input:

τ = (BD, O0, A0,BD, O1, A1, ...,BD, OT , AT).

This trajectory structure enables themodel to learn useful patterns and to conditionally generate
actions at evaluation time. It should be noted that, contrary to the Decision Transformer, we
simply use the same conditioning BD at each timestep and do not use a representation analogous
to the return-to-go, which is a dynamic conditioning introduced in Chen, Lu, Rajeswaran, et
al. (2021) to capture the return to be achieved until the end of the episode at any timestep.
We tested it and obtained poorer results. We also tested a version of the QDT where the
conditioning BD appears only once at the beginning of the episode, the intuition being that
the attention mechanism of the Transformer should be able to focus on this element, even if it
appears only once. Results were very similar to those presented in this chapter but marginally
inferior, hence the choice of preferring this representation. We feed trajectories of length 3T
to the QDT, as we have 3 elements at each timestep (one for each modality: conditioning BD,
observation and action). Note that the QDT takes raw continuous inputs from the environment
which are not normalized. We compute embeddings for these elements by learning a linear
layer for each modality, which projects elements to the embedding dimension, followed by
layer normalization (Ba, Kiros, and Hinton, 2016). Timestep embeddings are learned for each
of the T timesteps and added to their corresponding elements. This differs from traditional
positional embeddings used in Transformers as one timestep embedding corresponds to three

82

4.4 Methods

elements. Finally, the trajectory is processed by the Transformer model which predicts one
continuous action vector for each timestep.

Algorithm 8 Quality-Diversity Transformer
1: Given:
2: • Target BD, Observations, Actions: BD, O,A
3: • Causal Transformer model (GPT) Transformer
4: • Embedding layers for each modality: EBD, EO, EA

5: • Timestep embedding layer Et

6: • Linear action prediction layer PredA

7: • Episode length T
8:
9: // QDT model
10: function QDT (BD, O,A, t)
11: timestep_emb = Et(t) ▷ Compute inputs embeddings
12: BD_emb = EBD(BD)+ timestep_emb
13: O_emb = EO(O)+ timestep_emb
14: A_emb = EA(A)+ timestep_emb
15: // Interleave inputs as (BD,O1, A1, ..., BD,OT)
16: inputs_emb = interleave(BD_emb, O_emb, A_emb)
17: hidden_states = Transformer(inputs_emb) ▷ Process inputs with transformer
18: return PredA(hidden_states) ▷ Predict actions
19:
20: // Training loop
21: // Dims: (batch_size, T, dim)
22: for (BD, O,A, t) in dataloader do
23: A_preds = QDT (BD, O,A, t)
24: loss = mean((A_preds−A)2)
25: optimizer.zero_grad(); loss.backward(); optimizer.step()
26:
27: // Evaluation loop (autoregressive generation)
28: BD = generate_target_BD()
29: BD, O,A, t, done = [BD], [env.reset()], [], [1], False
30: while not done do
31: action = QDT (BD, O,A, t)[t] ▷ Sample next action
32: new_O, done = env.step(action)
33: BD = BD + [BD] ▷ Append new elements to sequence
34: O,A, t = O + [new_O], A+ [action], t+ [len(BD)]

During training, we use a dataset of offline trajectories generated by policies from a QD
repertoire and leverage supervised learning to train the QDT over entire trajectories from the
dataset, which is a point of divergence with the Decision Transformer as they use randomized
reduced windows instead of whole trajectories. The prediction head corresponding to the input
token Ot is trained to predict At with mean-squarred error loss as we run our experiments
on continuous action spaces (see Figure 4.1 part 3: "Supervised Learning"). Because of the
trajectory structure and since the model is a causal Transformer (GPT-2 based, Radford, Wu,
Child, et al., 2019), we make forward passes over minibatches of entire trajectories to predict
actions for all timesteps at once and compute the global loss over all timesteps and all trajectories

83

Generating Behavior-Conditioned Trajectories with Decision Transformers

of the minibatch3. Still, the QDT is not allowed to cheat during training because its causal
nature implies that it can only attend to previous inputs at any given timestep; as depicted in
Equation 2.2, the GPT architecture implements a causal attentionmechanismmasking all future
positions to ensure causality. Table 4.3 summarizes QDT hyperparameters for all experiments.

Figure 4.6 – The QDT autoregressively plays an evaluation episode by conditioning on a target
BD. At any given timestep t, the QDT generates an action by looking at all elements of the
trajectory that precede t. The first action A0 is generated given the target BD and the first
observation O0, while the last action AT is generated given the whole trajectory of target BDs,
observations and previously generated actions. Note that the target BD is the same for the
entire trajectory.

To evaluate the QDT, we simply condition it on a target behavior descriptor (BD) and feed
it with the first observation as given by the environment. The model generates the first action,
which is played next in the environment and appended to the trajectory of inputs for the next
inference. We unroll a whole episode in the environment following this procedure andmeasure
the QDT performance by computing the Euclidean distance between the conditioning BD and
the BD actually achieved by the model during the episode. Figure 4.6 depicts an evaluation
episode played by the QDT. In practice, to speed up experiment durations, we parallelize
the evaluation phase over multiple goals at the same time, and conduct these parallelized
evaluations on distributed devices (with varying initial seeds) to obtain averaged metrics for
all goals at once.

Hyperparameter Value
Number of layers 4
Number of attention heads 8
Embedding dimension 256
Nonlinearity function ReLU
Batch size 256
Dropout 0.1
Learning rate 0.0007

Table 4.3 – Hyperparameters for the Quality-Diversity Transformer in both environments.
3This training procedure is logically much faster than using batches of randomly truncated trajectories and

predicting a unique action per trajectory (for the last timestep only).

84

4.5 Results

4.4.4 Dataset Creation

Dataset generation is the second stage of our full pipeline illustrated in Figure 4.1. For this
purpose, we divide the repertoire into large zones (50 for Halfcheetah-Uni, 100 for Ant-Omni)
and select the best policy for each zone. To do so, each candidate policy of a given zone plays a
few evaluation episodes and the policy that most often produces BDs corresponding to the
zone is selected. We thus obtain a total of 50 (resp. 100) selected policies, and make them play
trajectories that are stored into a dataset. Datasets for both environments are constituted of
300, 000 trajectories, or equivalently 75 million transitions, given that each trajectory consists of
250 time steps.

4.5 Results

In this section, we present results for all methods introduced in Section 4.4. First we propose
an accuracy experiment to compare the ability of different methods to accurately produce a
BD on demand, then we assess the generalization capabilities of the QDT. Finally we provide
detailed comparisons of the QD algorithms (ME, PGA-ME, ME-LS and PGA-ME-LS).

4.5.1 QDT Training and Ablations

During the supervised learning process, we periodically evaluate the QDT and report its
average Euclidean distance to target BDs. For each evaluation phase, these target BDs (or goals)
are chosen to be representative of the whole behavior space, as we want to assess the model
capacity to reach all zones of the space with high accuracy. To do so, we compute a centroidal
Voronoi tesselation of the BD space and use each centroid as a conditioning goal for the QDT.
We use 50 and 100 evaluation goals for Halfcheetah-Uni and Ant-Omni respectively, although
these values are arbitrary, we consider that they allow a fair coverage of the BD space in both
cases. We run multiple (N = 10) episodes for each goal and compute the average distance per
goal —which can be visualized as shown in Figure 4.8— as well as the overall average distance
for all goals.

Figure 4.7 plots the overall average distance in both environments for different models
through the training process. In both tasks, we train the models for 100 epochs and perform
evaluation every 5 epochs. Models are named after the QD algorithm that was used to generate
the dataset: QDT(ME-LS) refers to the QDT that is trained on a dataset generated byMAP-Elites
Low-Spread policies, which constitutes our full algorithm as depicted in Figure 4.1. QDT(ME)
is an ablation refering to the QDT that is trained on a dataset generated by MAP-Elites policies,
and so on for PGA-ME and PGA-ME-LS. The QDT(Naive) model corresponds to an ablation

85

Generating Behavior-Conditioned Trajectories with Decision Transformers

Figure 4.7 – Evaluation results of the QDT through the training process (average values and
std ranges on 3 seeds). We evaluate the model over multiple goals (target BDs) covering the
behavior space and report the total average Euclidian distance to these goals. The models
trained on datasets created by Low-Spread methods, whether using ME-LS or PGA-ME-LS,
show significantly better performances.

where we do not apply the dataset creation method described in Section 4.4.4 and simply run
all policies from a ME-LS repertoire to generate the dataset.

Results show that the trend is the same among the two algorithm families (ME and PGA-
ME): Low-Spread based QDTs outperform their vanilla counterparts and achieve significantly
lower average distance to target BDs. We argue that this is the direct result of using more
consistent policies to create the dataset, and we hypothesize that learning to replicate a skill
that has been demonstrated in a steady and accurate manner is inherently easier than learning
to replicate irregular demonstrations, as depicted in Figure 4.4. Lastly, it appears that the
dataset creation method of Section 4.4.4 is crucial to the good performance of the model, whose
QDT(Naive) ablation especially struggles in Halfcheetah-Uni.

4.5.2 Accuracy Experiment

This experiment aims to answer the following question: Which method is more accurate and
consistent in achieving a target behavior? To answer this question, we test the ability of ME,
ME-LS, QDT(ME) and QDT(ME-LS) to achieve target BDs on demand and measure their
consistency and accuracy. Similar to the evaluation method described in Section 4.5.1, we
choose evaluation goals that cover the behavior space and run multiple evaluation episodes
(N = 10) for each goal. For ME and ME-LS, we run the solution of the repertoire which is
closest to each respective goal. For QDT models, we select them according to their best training
epoch (see Figure 4.7) and condition them directly on the goals (target BDs).

Figure 4.8 depicts the average distance per goal for each method. Color indicates whether,
on average over the 10 episodes, we were able to reach the aimed point in the BD space (lighter
is better). Importantly, it should be noted that in Ant-Omni, the robot has a size of roughly 2

86

4.5 Results

Figure 4.8 – Results of the accuracy experiment. This experiment can be described in 2 steps: 1.
We select multiple evaluation goals (target BDs) in the behavior space, 100 and 50 for Ant-Omni
and Halfcheetah-Uni respectively. To get meaningful goals, we simply compute a CVT of the
BD space in which goals are the centers of each zone, 2. For each goal, we play 10 episodes and
plot their average Euclidean distance to the goal. For ME and ME-LS, trajectories are played by
the nearest policy to the goal in the repertoire. For the QDT, we simply condition it on the goal.
Distance is represented by color: lighter is better. The QDT(ME-LS) appears to be the most
accurate method to achieve behaviors on demand.

units of distance and navigates on a plane of 30 units of distance on both axes. We consider
achieving a distance to the target BD ≤ 2 a good performance. Likewise, the BD space of
Halfcheetah-Uni ranges from 0 to 1 on both axes and we consider a distance to the target BD
≤ 0.1 a good performance. In both environments, results show thatME solutions hardly achieve
the targeted behaviors. The QDT(ME) significantly improves over ME policies but is still short
of producing accurate BDs. We hypothesize that the Transformer model helps to generalize on
the data produced byME policies but is still hampered by their irregular trajectories (we discuss
the generalization abilities of the QDT in the next section). Finally, ME-LS and QDT(ME-LS)
both demonstrate high accuracy for almost all goals in both environments.

We show that similar results and conclusions hold for PGA-ME and its variations in Fig-
ure 4.9, which depicts the exact same accuracy experiment. Similarly to results presented in
Figure 4.8, PGA-ME largely fails to achieve target BDs on demand, while the QDT(PGA-ME)
improves over this result. The QDT(PGA-ME-LS) appears to be the most accurate method
to achieve target BDs in both environments, which is consistent with results obtained for the
ME family where the QDT(ME-LS) obtained best results. Importantly, note that all methods
struggle to reach the most outer goals in Ant-Omni, this is due to the fact that no policy –hence
no data– is available for these zones of the BD space as shown in the dataset representation in
upper part of Figure 4.10.

87

Generating Behavior-Conditioned Trajectories with Decision Transformers

Figure 4.9 – Results of the accuracy experiment for PGA-ME and its variants. The experimental
process is strictly identical to that of Figure 4.8. Analogously to results of the MAP-Elites
variants in Figure 4.8, QDT(PGA-ME-LS) appears to be the most accurate method to achieve
behaviors on demand.

Table 4.4 repeats the accuracy experiment over multiple seeds and presents the overall
average distance to goals and the overall average spread for all methods and for both envi-
ronments. In line with the results reported in Figure 4.8, QDTs trained on datasets created
by ME-LS and PGA-ME-LS policies show the best ability to achieve target behaviors while
QDT(ME) and QDT(PGA-ME) confirm their superiority over ME and PGA-ME respectively.
Additionally, we observe that the ME-Sampling baseline significantly improves over ME but is
still far from the performance of ME-LS, particularly in Halfcheetah-Uni where we hypothesize
that the geometric mean BD computation qualifies solutions in BD cells that they never actually
achieve. While the Low-Spread versions clearly outperform their original counterparts in all
comparisons, there is no clear winner between ME and PGA-ME families, neither in their raw
use, nor in the use of their repertoire to train the QDT; PGA-ME-LS and QDT(PGA-ME-LS)
does not clearly outperform ME-LS and QDT(ME-LS), respectively. This suggests that, at least
for the environments and metrics considered, the use of a policy gradient mutation operator —
present in PGA-ME—, does not help to produce more consistent solutions in the BD space.

Importantly, note that QDT models benefit from filtered policies that have been selected for
their consistency as described in Section 4.4.4. As illustrated in Figure 4.7, this step is crucial
and allows the model to train on a dense, consistent dataset for each zone of the BD space. In
other words, it appears that the QDT benefits highly from supervised demonstrations where
the data distribution comes from a reduced set of consistent policies (each of which showing
how to achieve a different and distinct goal), rather than numerous policies overlapping in the
BD space. Overall, during the experimentation process, all the tests undertaken to improve
dataset quality proved to have great impact on the final accuracy of the QDT, as opposed to the

88

4.5 Results

Table 4.4 – Results of the accuracy experiment (described in Figure 4.8). For each environment
and algorithm, we present the average distance over all goals (target BDs) and the overall
average spread. Each experiment is repeated over 5 seeds and reported with average values
and standard deviations.

Method Ant-Omni Halfcheetah-Uni
Avg. dist. Spread Avg. dist. Spread

(×102) (×102)
ME 6.38± .15 3.76± .03 16.33± .47 15.45± .45

PGA-ME 6.39± .14 3.99± .09 17.67± .48 16.00± .81
ME-LS 3.01± .05 2.33± .01 10.01± .47 10.01± .45

PGA-ME-LS 3.13± .04 2.24± .04 10.00± .00 10.67± .50
ME-Sampling 5.10± .19 4.50± .11 15.40± .90 14.12± .95

QDT (ME) 4.64± .10 4.66± .07 12.00± .00 13.00± .00
QDT (PGA-ME) 4.45± .05 4.18± .16 12.00± .00 12.00± .00
QDT (ME-LS) 2.86± .07 1.99± .09 9.09± .32 9.20± .22

QDT (PGA-ME-LS) 3.06± .03 2.32± .06 7.34± .42 8.40± .37

changes made to the model architecture —and model hyperparameters—, which proved to
have much less impact.

4.5.3 Generalization Experiment

Figure 4.10 – Results of the QDT generalization experiment in Ant-Omni. In this experiment we
run accuracy experiments (bottom row) on truncated datasets (top row) which are deprived
of a part of their trajectories. The QDT shows strong interpolation ability on the 50%, 30%
and 10% density datasets and a more limited ability to extrapolate in "Tiles" and "Upper part"
datasets where entire zones of the BD space are deprived of data.

This section aims to understand the generalization abilities of the QDT. Importantly, wewant
to distinguish between interpolation, the model’s ability to generalize between BDs existing
in the dataset, and extrapolation, the model’s ability to reach BDs that are beyond existing

89

Generating Behavior-Conditioned Trajectories with Decision Transformers

examples. To do so, we sparsify datasets generated by ME-LS policies by pruning trajectories
using different pruning schemes and train QDTs on these truncated datasets.

Figure 4.10 presents accuracy results for the Ant-Omni task. The top row shows the different
datasets used in this experiment, color depicts the trajectory density in the BD space, light color
corresponds to a high density zone. The bottom row shows accuracy experiments (similar
to Figure 4.8) for the QDTs trained on the corresponding datasets. The 50%, 30% and 10%
density datasets aim to measure the interpolation capacity of the QDT, while the "Tiles" and
"Upper part" datasets aim to measure its extrapolation capacity. Our model demonstrates
strong interpolation capabilities and is able to achieve behaviors with reasonable accuracy
even in the 30% and 10% density settings. However, its extrapolation capabilities appear more
limited as can be seen in the "Tiles" and "Upper part" settings.

Figure 4.11 – Results of the QDT generalization experiment in Halfcheetah-Uni. The QDT
shows strong interpolation ability on the 50%, and 30% density datasets and a limited ability
to extrapolate in "Tiles" and "Upper part" datasets where entire zones of the BD space are
deprived of data.

Figure 4.11 presents the generalization experiment for the Halfcheetah-Uni environment.
We observe that, even though the QDT demonstrates good accuracy up to the 30% density
setting, it has more difficulties to generalize in this environment, both for interpolation and
extrapolation. We hypothesize that this difference between Ant-Omni and Halfcheetah-Uni
comes from the very different nature of their behavior spaces. After the execution of a QD
algorithm in Ant-Omni, two policies that are close in the BD space often produce similar
full-body trajectories, meaning that they walk on the 2D plane and reach their final positions.
Although these positions happens to be slightly different, both policies usually walk with
similar gaits. In Halfcheetah-Uni, two policies that are close in the BD space can demonstrate
radically different full-body behaviors. As an extreme example, it occurred that we observed
neighboring policies in the BD space, one of which was doing backflips while the other was
running normally. We believe that these gaps in real behaviors prevent effective generalization
for the QDT. Finally, note that in these generalization experiments we simply prune trajectories

90

4.5 Results

from the datasets and do not increase the number of trajectories in preserved zones, which can
affect the model in the sense that it has strictly less data to train on.

4.5.4 QD Algorithms Results

Figure 4.12 – Results of the Quality-Diversity algorithms: MAP-Elites (ME), PGA-MAP-Elites
(PGA-ME) and their Low-Spread variations (ME-LS and PGA-ME-LS) in both environments
over 5 seeds. Coverage indicates the proportion of the behavior space that have been covered
in the repertoire, max fitness reports the best fitness obtained by any solution evaluated so
far and the QD score represents the total sum of fitness across all solutions in the repertoire.
Performances are plotted against the number of interactions with the environment.

Figure 4.12 and Figure 4.13 gather results for the QD algorithms runs, namely MAP-Elites
(ME), PGA-MAP-Elites (PGAME) and their Low-Spread versions (ME-LS and PGAME-LS),
and show their respective coverages, maximum fitnesses, and QD scores in both environments.
In accordance with standard practices in QD research, we add an offset to the fitnesses when
computing the QD score to ensure that it is an increasing function of the coverage. The initial
repertoires, which are identical for all methods, are of size 1024 and are generated using
Centroidal Voronoi Tessellations (Vassiliades, Chatzilygeroudis, and Mouret, 2016).

Results show that the original versions of these algorithms (ME and PGAME) obtain the
best performances over all training metrics by a significant margin. However, it is important to
recall that first, the original versions evaluate each policy only once, contrary to the Low-Spread
versions that do multiple evaluations (usually 10), which strongly promotes accidental policies
that have been lucky over their unique evaluation episode obtaining abnormally high fitnesses
and inaccurate BDs. And second, The Low-Spread versions include an additional insertion
criteria that drives the search process towards policies that are more consistent in the BD space,
leading to fewer insertions in the repertoire —policies have to show higher average fitness and
better consistency than their counterpart in the repertoire to be selected. We argue that these

91

Generating Behavior-Conditioned Trajectories with Decision Transformers

very points are responsible for the difference in coverage and, in fine, in maximum fitness and
QD score. But more importantly, although the original versions present better training metrics,
they remain limited as these metrics do not take into account the actual usefulness of a QD
repertoire and its capacity to deliver accurate and consistent solutions that behave according
to their BDs, as shown in Section 4.3.2 and Figure 4.8. Finally, as shown in Figure 4.12, even
though the Low-Spread versions require several evaluations per solution, their convergence
rate (in terms of number of interactions with the environment) is in fact similar to that of
original methods, resulting in a comparable sample efficiency.

Figure 4.13 – Coverage maps of QD algorithms. Fitness is represented by color; lighter is better.

To determine the actual capabilities of QD repertoires produced by ME, PGA-ME and their
Low-Spread counterparts, we propose a reassessment experiment on Halfcheetah-Uni where
all stored solutions are evaluated again and multiple times. For each algorithm, we take a
final repertoire of policies and test them again over multiple episodes. We insert them into a
new, empty repertoire and report its coverage, max fitness and QD score. Table 4.5 gives the

Table 4.5 – Results of the reassessment experiment in Halfcheetah-Uni. "Initial" columns show
values for the initial repertoire, that is, the repertoire that was used during the algorithm
run. "Recalc." columns refer to values of the new repertoire that contains solutions after
re-evaluation.

Coverage Max Fitness QD Score
(in %) (×106)

Initial Recalc. Initial Recalc. Initial Recalc.
ME 100 43 1226 770 3.05 1.17

ME-LS 100 55 992 730 2.63 1.41
PGAME 100 40 1417 977 3.07 1.10

PGAME-LS 100 53 1194 1073 2.63 1.36

results of the reassessment experiment and show that the performance gap in training metrics

92

4.6 Conclusion

is not representative of the true quality of final repertoires. After re-evaluation, ME-LS and
PGA-ME-LS repertoire obtain better coverages and QD Scores, and comparable maximum
fitnesses to ME and PGA-ME.

4.5.5 QDT Fitness Results

Figure 4.14 reports the performances of all variants of theQDT in terms of fitness forHalfcheetah-
Uni. During evaluation phases of the training process (described in Section 4.5.1), we record the
average fitness obtained for each goal (target BD). The maximum fitness reported in Figure 4.14
simply corresponds to maximum over all goals. To be fair, these results should be compared to
results of the reassessment experiment in Table 4.5 as we want to know what is the maximum
average fitness that we can expect from each method at evaluation time. It appears that the
QDT is able to reproduce the maximum fitnesses of the QD policies that were used to generate
its dataset.

Figure 4.14 – Maximum fitness of the QDT in Halfcheetah-Uni for evaluations during the
training phase (average values and std ranges on 3 seeds). We report the maximum fitness
obtained over all goals. Performances are similar, if not superior, to values reported in the
reassessment experiment in Table 4.5, meaning our model is able to replicate the fitness of QD
policies.

4.6 Conclusion

In this chapter, we presented MAP-Elites Low-Spread, a QD algorithm that allows the neu-
roevolution of diverse and consistent solutions in uncertain domains, and the Quality-Diversity
Transformer, a single policy achieving target behaviors with high accuracy by using behavior-
conditioning. We showed that the QDT benefits from steady trajectories generated by ME-LS
policies and that it is the best option to achieve behaviors on demand while being able, to some
extent, to generalize to unseen zones of the BD space. We believe that an interesting future

93

Generating Behavior-Conditioned Trajectories with Decision Transformers

direction would be to apply the QDT to non-uncertain domains where there is no need to
couple it with a Low-Spread-based QD algorithm, and benefit from its generalization capacities.

Acknowledgements

The work in this chapter was supported by Cloud TPUs from Google’s TPU Research Cloud
(TRC) and has received funding from the European Commission’s Horizon Europe Framework
Program under grant agreement No 101070381 (PILLAR-robots project).

94

Chapter 5

Harnessing Deep Learning for Diversity
Search in Continuous Cellular
Automata

I was born not knowing and have had only
a little time to change that here and there.

Richard Feynman.

This chapter presents a work in progress in which we propose to train a Transformer-CNN
model to imitate continuous cellular automata, and predict patterns generation solely from the
initial state. We argue that leveraging this model in a divergent search algorithm could help
automate the search for unique and interesting patterns.

Contents
5.1 Introduction . 98
5.2 Background . 99
5.3 Methods . 102
5.4 Preliminary Results . 105

97

Harnessing Deep Learning for Diversity Search in Continuous Cellular Automata

Figure 5.1 – Cellular automata are mathematical systems enabling the emergence of complex
structures from simple rules. They can be discrete, as in the Game of Life (a) (Gardner, 1970),
or continuous, as in Flow Lenia (b) (Plantec, Hamon, Etcheverry, et al., 2023).

5.1 Introduction

Cellular automata (CA) (Wolfram and Gad-el-Hak, 2003) have long been a subject of interest
in the study of complex systems, with John Conway’s Game of Life (Gardner, 1970; Berlekamp,
Conway, and Guy, 2004) being the most famous example. A cellular automaton usually
consists of a regular grid of cells, each of which can be in a set of defined states. The initial grid
configuration evolves over discrete timesteps according to simple rules based on the states of
neighboring cells, i.e., the state of a given cell at timestep t+ 1 can be computed using the set
of rules governing the CA, and with respect to neighbor states at timestep t. Apart from being
a mathematical curiosity, cellular automata were initially developed by John Conway with the
intuition that complex systems can emerge through simple rules, his motivation was to create
a mathematical model that could simulate the way complex patterns and structures evolve
in nature. Figure 5.1a provides an illustration of a distinctive pattern in the Game of Life, the
Gosper glider gun, which repeatedly emits the well-known glider patterns. Interestingly enough,
and as a side note, the original Game of Life has been proven Turing complete (Rendell, 2002),
and the Gosper glider gun constitutes the basic building block for all logical gates.

Remark 5.1 (Emergence and intelligent design). Cellular automata provide an early intuition
that simple rules can lead to complex structures, and we can see it unfold before our eyes. Learning
cellular automata brings the benefit of augmenting one’s resilience to intelligent design arguments,
which are common when it comes to explaining new phenomena.

Beyond theoretical computer science, cellular automata have been used in modeling natural
phenomena. For instance, they have been employed to simulate the spread of fires in forest
ecosystems, helping researchers understand and predict wildfire dynamics (Drossel and
Schwabl, 1992). In the study of fluid dynamics, lattice gas automata have been utilized to

98

5.2 Background

model fluid flow at microscopic scales (Frisch, Hasslacher, and Pomeau, 1986). Additionally,
cellular automata have found applications in biological modeling (Ermentrout and Edelstein-
Keshet, 1993).

Building on the classical framework of cellular automata, continuous cellular automata
(Rafler, 2011; Chan, 2018; Mordvintsev, Niklasson, and Randazzo, 2023) extend the concept
to continuous space, time and states. This shift allows for the simulation of more complex
phenomena that are not easily captured by discrete models. Figure 5.1b provides an image of a
simulation in the continuous CA Flow Lenia (Plantec, Hamon, Etcheverry, et al., 2023), where
different patterns emerge, reminiscent of primitive life forms.

In this chapter, we propose a new method to search for interesting patterns in cellular
automata. We train an hybrid Transformer-CNN model (Krizhevsky, Sutskever, and Hinton,
2012; Vaswani, Shazeer, Parmar, et al., 2017) to predict the evolution of a CA simulation from
the initial CA configuration at timestep t = 0 without knowing the rules that govern it, and we
propose to use the error of the trained model to drive the search process of an evolutionary
algorithm towards novelty.

5.2 Background

Although the method introduced in this chapter is intended to be generic and not restricted to
a specific cellular automata, we have opted to use Flow Lenia (Plantec, Hamon, Etcheverry,
et al., 2023) as a support for our experiments, mainly for its ability to generate interesting and
stable patterns due to its main specificity: the mass conservation. In this section, we present
the theoretical background of Flow Lenia, starting with the original Lenia (Chan, 2018).

For the following, let L be the two-dimensional grid Z2 supporting the CA. LetAt : L → SC

be the activations at timestep t, where S is the state space and C the number of channels of
the system. Contrary to the Game of Life, which has only one channel, more complex cellular
automata often feature multiple channels, potentially interacting with one another. Thus, At

i(x)
represents the activation in x ∈ L for channel i at timestep t. Put simply, in discrete CAs, such
as the Game of Life, the activation is the binary state associated to a cell (dead or alive), while in
continuous CAs, this state can take real values.

Lenia: In the original Lenia, which is the base CA Flow Lenia builds on, the state space S
spans the continuous range [0, 1]. An instance of Lenia is characterized by a tuple (K,G,A0),
whereA0 is the initial configuration of activations in the grid, andK is a collection of convolution
kernels such that each kernelKi satisfies

∫
LKi = 1. Kernels are designed with radial symmetry

99

Harnessing Deep Learning for Diversity Search in Continuous Cellular Automata

and consist of concentric Gaussian bumps, defined as:

Ki(x) =
k∑

j=1
bi,j exp

−
(

x
riR
− ai,j

)2

2w2
i,j

 ,
where ai, bi, wi and ri are parameters defining kernel i, k is a parameter defining the num-
ber of rings per kernel, and R is a parameter common to all kernels defining the maximum
neighborhood radius. Each kernel is then defined by 3× k + 1 parameters.

G is a set of growth functions such that Gi : [0, 1] → [−1, 1]. Intuitively, these growth
functions act as the rules of the CA that govern the evolution of patterns during the simulation
for a given location x (see Equation 5.1). In Lenia, growth functions are Gaussian functions
scaled to [−1, 1] defined as:

Gi(x) = 2 exp
(
−(µi − x)2

2σ2
i

)
− 1, (5.1)

where µi and σi are the two parameters of the growth function i. Each pair (Ki, Gi) is connected
to a source channel ci

0 it senses and a target channel ci
1 it influences. This connectivity is

expressed via a square adjacency matrixMC,C as shown:

MC,C =

m11 · · · m1C

...
mC1 · · · mCC

wheremij ∈ N denotes the number of kernels that sense channel i and influence channel j. A
simulation timestep in Lenia consists of two substeps:

1. Compute the growth U t
j at timestep t for channel j given At:

U t
j =

∑
i

hi ·Gi(Ki ∗At
ci

0
)1[ci

1=j], (5.2)

where h ∈ R|K| is a vector weighting the influence of kernel-growth-functions pairs
(Ki, Gi) on the growth.

2. Add a fraction of U t to the current state At and clip the result to get the next state At+dt
i :

At+dt
i =

[
At

i + dt · U t
i

]1
0
.

Flow Lenia: Plantec, Hamon, Etcheverry, et al., 2023 propose to modify Lenia by adding a
constraint on the total mass during the simulation. Flow Lenia ismass conservative, meaning that
the sum of activations (interpreted as mass) across all cells of the grid and for each channels is

100

5.2 Background

constant over time:
∑
x∈L

At
c =

∑
x∈L

At+dt
c , ∀t,∀c ∈ {1, . . . , C}.

In Flow Lenia, U t is interpreted as an affinity map, and the matter contained in the grid At

moves towards higher affinity regions by following the local gradient∇U : L → R2. To calculate
the instantaneous speed of matter at timestep t, the authors define a flow F : L → (R2)C , such
as: F t

i = (1− αt)∇U t
i − αt∇At

Σ

αt(p) = [(At
Σ(p)/ϕA)n]10

where At
Σ(p) =

∑C
i=1A

t
i(p) is the total mass in location p for all channels, and −∇At

Σ is a
diffusion term to avoid concentrating all the matter in very small regions. α : L → [0, 1] weights
the influence of each term such that diffusion dominates in locations where the mass is close to
a critical mass ϕA ∈ R>0. Following authors of Flow Lenia, we mainly set n > 1.

Finally, to compute the next stateAt+dt
i , Flow Lenia moves matter in space following F using

the reintegration tracking method introduced by Moroz (2020). This method can be seen as a
grid-based approximation to particle systems conserving the total mass over time. To calculate
the incoming matter in a cell p ∈ L at timestep t from another cell p′, reintegration tracking
moves the mass contained in p′ to a square distribution D centered on p′′ = p′ + dt · F t(p′) and
computes the proportion of mass arriving from p′ in p as the integral:

Ii(p′, p) =
∫

Ω(p)
D(p′′

i , s)

where Ω(p) is the domain of cell p, and s is an hyperparameter controlling the side length of
the uniform square distribution D, acting as a form of temperature (larger s implies a broader
dispersal of matter from p′). An illustrated and more detailed explanation of reintegration
tracking can be found in Plantec, Hamon, Etcheverry, et al. (2023). The resulting Flow Lenia
update rule for the cell p can be written as:

At+dt
i (p) =

∑
p′∈L

At
i(p′)Ii(p′, p).

In the following experiments, we use hyperparameter ranges identical to those used in the
original paper.

101

Harnessing Deep Learning for Diversity Search in Continuous Cellular Automata

5.3 Methods

One of the major challenges of cellular automata is to find spatially localized patterns (SLPs)
that are interesting and singular compared with the average pattern distributions obtained
during simulations. For instance, in Flow Lenia, most patterns (or creatures) are radially
symmetrical, static and circular in shape. Interesting cases found byPlantec, Hamon, Etcheverry,
et al. (2023) include worm shaped creatures, directed motion, angular motion and navigation
through obstacles, among others. However, finding these interesting cases is often difficult
and tediously carried out by the experimenters because there is no strict definition of what
is considered as interesting, or novel. In this section, we propose a method to automatically
search for interesting patterns in cellular automata, working in two steps: 1. We train an hybrid
Transformer-CNN model, called Flow Lenia Transformer (FLT), learning to predict the future
states of Flow Lenia from the initial state, 2. Then, we propose to use this model in a search
algorithm (such as an evolutionary or QD algorithm) to drive the search process towards novel
and surprising patterns.

In the following, we use an augmented version of Flow Lenia proposed by Plantec, Hamon,
Etcheverry, et al. (2023) allowing to locally embed simulation parameters inside the CA.
Intuitively, this allows for different parts of the same simulation to be governed by different
rules. For instance, matter on a given part of the grid can obey different rules to that present
in other parts, with a granularity identical to that of the activation grid A, meaning that each
position p can be governed by its proper parameters, allowing creatures that might not have
developed under the same set of parameters to be included and interact in the same simulation,
and at the same time. Concretely, a vector of parameters is attached to every cell of the grid,
forming a parameter map P : L → Θ where Θ is the parameter space. Regarding the choice
of parameters to be embedded in P , we follow Plantec, Hamon, Etcheverry, et al. (2023) and
chose to embed h ∈ R|K|, the vector weighting the importance of kernels in Equation 5.2. Thus,
P locally modifies how the affinity map is computed as:

U t
j (p) =

∑
i,k

P t
k(p) ·Gk(Kk ∗At

i)(p).

Of course, these parameter vectors are not static and move along with matter during an episode.
To determine which parameter vector should be retained when several are competing for the
same position p at the next timestep t+ dt, we follow the softmax sampling method (Plantec,
Hamon, Etcheverry, et al., 2023), which samples a parameter vector in the set of incoming ones
with probability proportional to the respective quantities of incoming matter, as:

P
[
P t+dt(p) = P t(x)

]
= exp

(
At(x)I(x, p)

)∑
p′∈L exp (At(p′)I(p′, p)) .

102

5.3 Methods

5.3.1 The Flow Lenia Transformer

The FLT is a GPT-based causal Transformer (Radford, Narasimhan, Salimans, et al., 2018) that
trains on supervised1 datasets of Flow Lenia simulated episodes and learns to predict the future
of an episode simply by knowing its initial state. Following the augmented version of Flow
Lenia presented in Section 5.3, an initial state is composed of the initial grid A0, and the initial
parameter map P 0. Initial patterns inA0 are set with a 40×40 matter patch drawn from uniform
distribution in the center of the grid and no matter elsewhere (as depicted in Figure 5.2), and
parameters in P (i.e. kernels) are also randomly drawn from uniform distribution for every
position corresponding to matter patch and null elsewhere.

To generate the dataset on which the FLT trains, we simply run multiple simulations of
Flow Lenia with varying initial states (i.e. varying initial matter patches and parameter sets).
In practice, to save storage space and simplify the overall training pipeline, we do not create a
single massive dataset prior to training but rather generate smaller datasets on the fly during
each evaluation phase2. Table 5.1 summarizes the Flow Lenia hyperparameter ranges used in
our experiments, these are identical to those used in Plantec, Hamon, Etcheverry, et al. (2023).

Neighborhood Growth functions
R ∈ [2, 25] µ ∈ [0.05, 0.5] *
r ∈ [0.2, 1] * σ ∈ [0.001, 0.2] *
Kernels Flow
h ∈ [0, 1] * s 0.65
a ∈ [0, 1]k * n 2
b ∈ [0, 1]k * dt 0.2

w ∈ [0.01, 0.5]k *

Table 5.1 – FLT dataset generation parameter space. Parameters marked with a * must be
sampled for each kernel-growth function pair.

The architecture of the FLT is very similar to that of the Quality-Diversity Transformer
(QDT) from Chapter 4, except from the fact that input embedding layers and prediction layers
are implemented as CNNs, due to the nature of the inputs to be processed (activation grids
and parameter maps can be thought as images). The use of CNNs both in the input and in the
output layer significantly improves the model’s performances over dense layer baselines.

To train the FLT, we proceed in a similar way to the QDT training and perform inference on
batches of episodes drawn from the dataset. Inference is made for the whole trajectory at once,
since the FLT is also causal and cannot cheat by looking at previous elements in the trajectory.

1Here we could almost say self-supervised training, since we are not limited with the amount of data generated,
and labels are simply activations grids at timestep t + 1, similar to natural language processing techniques.

2We keep all simulation hyperparameters equal (except for embedded parameters in P) to ensure that we train
on the same data distribution overall.

103

Harnessing Deep Learning for Diversity Search in Continuous Cellular Automata

A trajectory τ is constructed as follows:

τ = (A0, P 0, A1, P 1, ..., AT , P T).

At any given timestep t, the FLT takes as input the activation grid At and the parameter map
P t and predicts Ât+1 and P̂ t+1. To train the model, we use a mean squared error (MSE) loss
for both activation grids and parameter maps. The FLT loss over a single episode is given by:

L = 1
T

T∑
t=1

(∥∥∥At − Ât

∥∥∥2

2
+
∥∥∥Pt − P̂t

∥∥∥2

2

)
. (5.3)

To evaluate the Flow Lenia Transformer, we simply generate an initial state (A0, P 0), and
autoregressively unroll a whole episode without further clue for the model. We then compare
the frames produced by the FLT to those of the real episode which started from the same initial
state (A0, P 0). This exercise is difficult because, having no checkpoints throughout the episode,
the model can quickly accumulate errors and deviate widely from ground truth. Figure 5.2
illustrates the evaluation process of the FLT.

Figure 5.2 – Evaluation process of the FLT. The model autoregressively produces an entire
episode based on an initial state made of initial activations A0 and initial parameters map P 0.

5.3.2 Searching for Interesting Patterns

At the time of writing, this part is still a work in progress. Inspired by surprise-driven algorithms for
divergent search (Gravina, Liapis, and Yannakakis, 2016; Yannakakis and Liapis, 2016; Gravina,
Liapis, and Yannakakis, 2018), we propose to use a trained FLT to quantify the magnitude
of surprise caused by new creatures generated in search algorithms (such as evolutionary
algorithms). The central idea of surprise-driven algorithms is to encourage exploration by
focusing on elements that produce results that are unexpected compared to current expectations
(Burda, Edwards, Storkey, et al., 2018). These expectations can be based on predictive models
such as the FLT. When an observation contradicts what was expected, it is marked as surprising,

104

5.4 Preliminary Results

and the search algorithm is encouraged to explore that region of the solution space further.
Perhaps more simply, a surprise-based model could also serve as a passive tool that evaluates
patterns generated by a search algorithm, and stores them for further examination by the
experimenter when the surprise exceeds a certain threshold.

In our case, using the error of the FLT trying to predict the evolution of a Flow Lenia
simulation, either by comparing ÂT to ground truth AT or by considering any other time
window, could help automate the task of finding interesting creatures.

5.4 Preliminary Results

In this section, we present some early results obtained by evaluating the FLT. As mentioned in
Section 5.3.1, the model is evaluated by autoregressively generating whole episodes, starting
from an initial state (A0, P 0). This task is particularly difficult for the model because it has
to predict the evolution of the simulation with only the information contained in the initial
state, and an early error in prediction can lead to an accumulation of errors that is impossible
to correct. Figure 5.3 presents some cherry picked evaluations of the FLT. For each of the three

Figure 5.3 – Evaluation results of the FLT over three different examples, each starting from
different (random) initial states. For each example, the frames represent the ground truth last
activation map (AT) and the predicted last activation map (ÂT).

examples, the ground truth label of the activation grid at the end of the episode is on the left,
while the model prediction is on the right. Although the predictions are highly noisy, we can
see that the model is still able to predict the overall pattern structure emerging at the end of
the episode. In (a), the predicted central pattern resembles the label and also contains the four
small dots —amidst the noise—, in (b) the prediction does have the hollow ring contained
within a larger circle, and in (c) the predicted outer structure of the pattern is square in shape,
as on the ground truth label. These early results, while being far from truly satisfying, are
encouraging regarding the model’s ability to predict the final result of a simulation from a
single initial state.

Figure 5.4 shows chronological results of example (a) from Figure 5.3. As an episode lasts
for 50 timesteps, we provide frames for t = 1, 15, 30, 45 and 50. To better show the pattern

105

Harnessing Deep Learning for Diversity Search in Continuous Cellular Automata

predicted by the FLT, we manually remove the noise, depicting a result we aim to achieve in
the continuation of this work. To a certain degree of accuracy, the FLT is able to predict and

Figure 5.4 – Chronology of labels and predictions over the entire episode from Figure 5.3a.
Prediction frames are denoised manually to better show the central pattern.

reproduce the evolution of the true pattern over time. Note that its capacity to accurately predict
each frame of an episode stems from the nature of the loss given in Equation 5.3, however,
this is not a necessary property for the FLT to be used in a search algorithm, as one may be
interested only in the final state.

Finally, we confirm that ourmodel tends to accumulate error over the course of an evaluation
episode, due to autoregressive prediction. Figure 5.5 gives the MSE per timestep (as given in
Equation 5.3 but without the mean calculation) for all three examples depicted in Figure 5.3.
In all cases, error tends to increase as the episode progresses.

Figure 5.5 – Mean square error per timestep for all three examples (a), (b) and (c) presented
in Figure 5.3, respectively.

106

Chapter 6

Conclusion

Life is this crazy, mystical thing,
and sometimes you just go out like a buster.

Mang0.

There is no point in claiming that this thesis followed a meticulously predetermined plan,
with methods carefully devised to answer a neatly defined initial problem. Research, as many
who have come down this pathwould agree, often takes unexpected turns, andwhat sometimes
seems as a clear goal may evolve into something different. Rather, this thesis studied three main
topics revolving around divergent search (or exploration) through diversity, and proposed
original methods for addressing them. In this final section, we intend to provide details not
mentioned in scientific publications, personal reflections and critical conclusions about each
contribution chapter.

Sample efficient diversity search with reinforcement learning. Chapter 3 presents QD-PG,
a hybrid quality-diversity/policy-gradient algorithm combining the exploration capabilities of
QD methods and the sample efficiency of reinforcement learning methods. QD-PG features
a double exploration mechanism thanks to 1. the structural exploration mechanism from
the MAP-Elites grid and its associated random selection operator, and 2. the diversity policy
gradient, which exploits the estimated gradient of the objective function and the analytical
structure of neural network policies to open the black box and push towards novelty rapidly. In
practice, we like to think of QD-PG as a formula 1, i.e., an algorithm that does its job extremely
well when the right conditions are met, but that performs poorly when these conditions slightly
change —there is a speed bump in the road. QD-PG inherits some of the shortcomings of
policy gradient methods, making it very sensitive to hyperparameter changes, and thus less
robust. In fact, most of the effort invested during its development went into finding a set of
hyperparameters that made it stable in Ant-Omni, whose difficulty as an environment is often
underestimated because the maze —and the 3000 steps time horizon— is disproportionately

107

Conclusion

large when compared to other standard continuous control environments. Finally, the overall
algorithmic structure of QD-PG is arbitrary and has originally been tested with other archive
mechanisms such as a Pareto front (with relatively poorer results), but the idea of a diversity
policy gradient is interesting, original and worth taking up in future work.

Distillation of a repertoire of diverse policies into a unique Transformer. Chapter 4 can
be thought, in some sense, as the next step of the quality-diversity optimization process. We
have produced a repertoire of diverse solutions for a given problem, but now what do we do
with it? In this chapter, we first take a detour to propose a variant of MAP-Elites that produces
solutions not subject to the variance and undesirable behavior of classical MAP-Elites solutions.
ME-LS is a simple yet robust and powerful algorithm producing steady and regular solutions in
the behavior space. We argue that additional evaluations in ME-LS hardly make it less sample
efficient because 1. the algorithm converges roughly as fast as MAP-Elites, and 2. it converges to
values that are closer to the true capabilities of the final repertoire when re-evaluated, whereas
MAP-Elites is unable to reproduce the training performances. In practice, ME-LS and the data
filtering step really are the key components that made the QDT work properly. Indeed, it is the
data quality used for the supervised training phase of the QDT that made all the difference
between an intermediate, relatively imprecise model and an accurate one that is able to cover
the whole behavior space and generalize to some extent. Throughout this work, we found that
the architecture details of the QDT have little importance as long as it makes sense. The use of
a transformer is an obvious choice, given its ability to handle sequential data and the recent
release of the Decision Transformer, but perhaps any other sequential model would have done
the trick. Now starting from a trained QDT—a behavior-conditioned policy that is compact
(more compact than the sum of all policies in the MAP-Elites grid) and versatile— there is
plenty of room to build on top of it in future work, or to incorporate it into more complex
systems.

Learning continuous cellular automata world model with Transformers. Chapter 5
presents an early work around the automatic search for interesting patterns in Flow Lenia. Only
the first part, which involves learning a model of the Flow Lenia world using a Transformer
model, has so far been studied. Preliminary results are encouraging and demonstrate that
predicting the final state of a continuous cellular automaton, only with the initial state and
without knowledge of the rules governing it, seems possible to a certain extent. So far, the most
challenging part about this chapter has been the technical aspects and constraints linked to
compute resources memory and the model size. We hypothesize —and seem to observe— that
largermodels help to predict FlowLenia episodesmore accurately, but infrastructure constraints
has so far obliged us to run this work on 8GB GPUs/TPUs, which can only accommodate
relatively small models. There are several ways around these constraints, such as mixed
precision training and model sharding.

108

Bibliography

Abramson, Josh, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, LindsayWillmore, Andrew J Ballard, Joshua Bambrick, et al. (2024). Accurate
structure prediction of biomolecular interactions with AlphaFold 3. Nature, pp. 1–3.

Achiam, Josh, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. (2023).
Gpt-4 technical report. arXiv preprint arXiv:2303.08774.

Alvarez, Alberto, Steve Dahlskog, Jose Font, and Julian Togelius (2019). Empowering quality di-
versity in dungeon design with interactive constrained MAP-Elites. In 2019 IEEE Conference
on Games (CoG). IEEE, pp. 1–8.

Amin, Susan, Maziar Gomrokchi, Harsh Satija, Herke Van Hoof, and Doina Precup (2021). A
survey of exploration methods in reinforcement learning. arXiv preprint arXiv:2109.00157.

Arulkumaran, Kai, Antoine Cully, and Julian Togelius (2019). Alphastar: An evolutionary
computation perspective. In Proceedings of the genetic and evolutionary computation conference
companion, pp. 314–315.

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E Hinton (2016). Layer normalization. arXiv
preprint arXiv:1607.06450.

Bachute, Mrinal R and Javed M Subhedar (2021). Autonomous driving architectures: insights
of machine learning and deep learning algorithms. Machine Learning with Applications 6,
p. 100164.

Barto, Andrew G, Richard S Sutton, and Charles W Anderson (1983). Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE transactions on systems,
man, and cybernetics 5, pp. 834–846.

Bellemare, Marc G, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado,
Subhodeep Moitra, Sameera S Ponda, and Ziyu Wang (2020). Autonomous navigation of
stratospheric balloons using reinforcement learning. Nature 588.7836, pp. 77–82.

Bellman, Richard (1952). On the theory of dynamic programming. Proceedings of the national
Academy of Sciences 38.8, pp. 716–719.

Bellman, Richard (1966). Dynamic programming. science 153.3731, pp. 34–37.
Berlekamp, Elwyn R, John H Conway, and Richard K Guy (2004). Winning ways for your

mathematical plays, volume 4. AK Peters/CRC Press.
Bertschinger, Edmund (1998). Simulations of structure formation in the universe.Annual Review

of Astronomy and Astrophysics 36.1, pp. 599–654.

111

Bibliography

Bojarski, Mariusz, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. (2016). End to
end learning for self-driving cars. arXiv preprint arXiv:1604.07316.

Bottou, Léon (2010). Large-scale machine learning with stochastic gradient descent. In Proceed-
ings of COMPSTAT’2010: 19th International Conference on Computational StatisticsParis France,
August 22-27, 2010 Keynote, Invited and Contributed Papers. Springer, pp. 177–186.

Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dou-
gal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne,
and Qiao Zhang (2018). JAX: composable transformations of Python+NumPy programs. Ver-
sion 0.3.13.

Brockman, Greg, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba (2016). Openai gym. arXiv preprint arXiv:1606.01540.

Brown, Tom, BenjaminMann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. (2020). Language
models are few-shot learners. Advances in neural information processing systems 33, pp. 1877–
1901.

Burda, Yuri, Harrison Edwards, Amos Storkey, andOleg Klimov (2018). Exploration by random
network distillation. arXiv preprint arXiv:1810.12894.

Carion, Nicolas, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko (2020). End-to-end object detection with transformers. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part I 16. Springer, pp. 213–229.

Cazenille, Leo, Nicolas Bredeche, and Nathanael Aubert-Kato (2019). Exploring Self-
Assembling Behaviors in a Swarm of Bio-micro-robots using Surrogate-AssistedMAP-Elites.
arXiv preprint arXiv:1910.00230.

Chalumeau, Felix, Raphael Boige, Bryan Lim, Valentin Macé, Maxime Allard, Arthur Flajolet,
Antoine Cully, and Thomas Pierrot (2022). Neuroevolution is a competitive alternative to
reinforcement learning for skill discovery. arXiv preprint arXiv:2210.03516.

Chalumeau, Felix, Bryan Lim, Raphael Boige, Maxime Allard, Luca Grillotti, Manon Flageat,
Valentin Macé, Guillaume Richard, Arthur Flajolet, Thomas Pierrot, et al. (2024). QDax: A
library for quality-diversity and population-based algorithms with hardware acceleration.
Journal of Machine Learning Research 25.108, pp. 1–16.

Chalumeau, Felix, Thomas Pierrot, Valentin Macé, Arthur Flajolet, Karim Beguir, Antoine
Cully, and Nicolas Perrin-Gilbert (2022). Assessing Quality-Diversity Neuro-Evolution
Algorithms Performance in Hard Exploration Problems. arXiv preprint arXiv:2211.13742.

Chan, Bert Wang-Chak (2018). Lenia-biology of artificial life. arXiv preprint arXiv:1812.05433.
Chatzilygeroudis, Konstantinos, Antoine Cully, Vassilis Vassiliades, and Jean-Baptiste Mouret

(2021). Quality-diversity optimization: a novel branch of stochastic optimization. In Black
Box Optimization, Machine Learning, and No-Free Lunch Theorems. Springer, pp. 109–135.

Chen, Lili, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch (2021). Decision transformer: Reinforce-
ment learning via sequence modeling. Advances in neural information processing systems 34,
pp. 15084–15097.

112

Bibliography

Chowdhery, Aakanksha, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al.
(2023). Palm: Scaling languagemodelingwith pathways. Journal of Machine Learning Research
24.240, pp. 1–113.

Clune, Jeff, Jean-Baptiste Mouret, and Hod Lipson (2013). The evolutionary origins of modu-
larity. Proceedings of the Royal Society b: Biological sciences 280.1755, p. 20122863.

Colas, Cédric, Vashisht Madhavan, Joost Huizinga, and Jeff Clune (2020). Scaling map-elites
to deep neuroevolution. In Proceedings of the 2020 Genetic and Evolutionary Computation
Conference, pp. 67–75.

Colas, Cédric, Olivier Sigaud, andPierre-YvesOudeyer (2018). GEP-PG:Decoupling exploration
and exploitation in deep reinforcement learning algorithms. In International conference on
machine learning. PMLR, pp. 1039–1048.

Conti, Edoardo, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth Stanley,
and Jeff Clune (2018). Improving exploration in evolution strategies for deep reinforce-
ment learning via a population of novelty-seeking agents. In Advances in neural information
processing systems, pp. 5027–5038.

Cully, Antoine, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret (2015). Robots that can
adapt like animals. Nature 521.7553, pp. 503–507.

Cully, Antoine and Yiannis Demiris (2017). Quality and diversity optimization: A unifying
modular framework. IEEE Transactions on Evolutionary Computation 22.2, pp. 245–259.

Cully, Antoine and Yiannis Demiris (2018). Hierarchical behavioral repertoires with unsu-
pervised descriptors. In Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 69–76.

Degrave, Jonas, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al.
(2022). Magnetic control of tokamak plasmas through deep reinforcement learning. Nature
602.7897, pp. 414–419.

Devlin, Jacob,Ming-Wei Chang, Kenton Lee, andKristina Toutanova (2018). Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Doan, Thang, Bogdan Mazoure, Audrey Durand, Joelle Pineau, and R Devon Hjelm (2019).
Attraction-Repulsion Actor-Critic for Continuous Control Reinforcement Learning. arXiv
preprint arXiv:1909.07543.

Doncieux, Stephane, Alban Laflaquière, and Alexandre Coninx (2019). Novelty search: a
theoretical perspective. In Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 99–106.

Dong, Linhao, Shuang Xu, and Bo Xu (2018). Speech-transformer: a no-recurrence sequence-to-
sequence model for speech recognition. In 2018 IEEE international conference on acoustics,
speech and signal processing (ICASSP). IEEE, pp. 5884–5888.

Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. (2020). An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929.

113

Bibliography

Drossel, Barbara and Franz Schwabl (1992). Self-organized critical forest-fire model. Physical
review letters 69.11, p. 1629.

Duchi, John, Elad Hazan, and Yoram Singer (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research 12.7.

Ecoffet, Adrien, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune (2019). Go-
explore: a new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995.

Engebraaten, Sondre A, Jonas Moen, Oleg A Yakimenko, and Kyrre Glette (2020). A framework
for automatic behavior generation in multi-function swarms. Frontiers in Robotics and AI 7,
p. 579403.

Ermentrout, G Bard and Leah Edelstein-Keshet (1993). Cellular automata approaches to bio-
logical modeling. Journal of theoretical Biology 160.1, pp. 97–133.

Espinasse, Bernard, Sébastien Fournier, Adrian Chifu, Gaël Guibon, René Azcurra, and Valentin
Mace (2019). On the Use of Dependencies in Relation Classification of Text with Deep
Learning. In International Conference on Computational Linguistics and Intelligent Text Processing.
Springer, pp. 379–391.

Evans, Simon, Jim Gao, Dave Anderson, and Sam Rawal (2018). DeepMind AI Reduces Google
Data Centre Cooling Bill by 40%. DeepMind Blog.

Eysenbach, Benjamin, Abhishek Gupta, Julian Ibarz, and Sergey Levine (2018). Diversity is all
you need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070.

Feynman, Richard P (2018). Simulating physics with computers. In Feynman and computation.
CRC Press, pp. 133–153.

Flageat, Manon, Felix Chalumeau, and Antoine Cully (2022). Empirical analysis of PGA-MAP-
Elites for Neuroevolution in Uncertain Domains. ACM Transactions on Evolutionary Learning.

Flageat, Manon and Antoine Cully (2020). Fast and stable MAP-Elites in noisy domains using
deep grids. In Artificial Life Conference Proceedings 32. MIT Press, pp. 273–282.

Flageat, Manon and Antoine Cully (2023). Uncertain Quality-Diversity: Evaluation method-
ology and new methods for Quality-Diversity in Uncertain Domains. arXiv preprint
arXiv:2302.00463.

Flageat, Manon, Bryan Lim, Luca Grillotti, Maxime Allard, Simón C Smith, and Antoine Cully
(2022). Benchmarking Quality-Diversity Algorithms on Neuroevolution for Reinforcement
Learning. arXiv preprint arXiv:2211.02193.

Flet-Berliac, Yannis, Johan Ferret, Olivier Pietquin, Philippe Preux, and Matthieu Geist (2021).
Adversarially guided actor-critic. arXiv preprint arXiv:2102.04376.

Fogel, David B (1998). Artificial intelligence through simulated evolution. Wiley-IEEE Press.
Fontaine, Matthew and Stefanos Nikolaidis (2021). Differentiable quality diversity. Advances in

Neural Information Processing Systems 34, pp. 10040–10052.
Fontaine, Matthew C, Julian Togelius, Stefanos Nikolaidis, and Amy K Hoover (2020). Covari-

ance matrix adaptation for the rapid illumination of behavior space. In Proceedings of the
2020 genetic and evolutionary computation conference, pp. 94–102.

Forestier, Sébastien, YoanMollard, and Pierre-Yves Oudeyer (2017). Intrinsically motivated goal
exploration processes with automatic curriculum learning. arXiv preprint arXiv:1708.02190.

114

Bibliography

Frans, Kevin, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman (2018). Meta learning
shared hierarchies. Proc. of ICLR.

Freeman, CDaniel, Erik Frey, Anton Raichuk, SertanGirgin, IgorMordatch, andOlivier Bachem
(2021). Brax–A Differentiable Physics Engine for Large Scale Rigid Body Simulation. arXiv
preprint arXiv:2106.13281.

Frisch, Uriel, Brosl Hasslacher, and Yves Pomeau (1986). Lattice-gas automata for the Navier-
Stokes equation. Physical review letters 56.14, p. 1505.

Fujimoto, Scott, Herke Van Hoof, and David Meger (2018). Addressing function approximation
error in actor-critic methods. arXiv preprint arXiv:1802.09477.

Gardner, Martin (1970). Mathematical Games: The fantastic combinations of John Conway’s
new solitaire game "life". Scientific American 223.4, pp. 120–123.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep feedforward networks.
Deep learning 1.

Gravina, Daniele, Ahmed Khalifa, Antonios Liapis, Julian Togelius, and Georgios N Yannakakis
(2019). Procedural content generation through quality diversity. In 2019 IEEE Conference on
Games (CoG). IEEE, pp. 1–8.

Gravina, Daniele, Antonios Liapis, and Georgios Yannakakis (2016). Surprise search: Beyond
objectives and novelty. In Proceedings of the Genetic and Evolutionary Computation Conference
2016, pp. 677–684.

Gravina, Daniele, Antonios Liapis, and Georgios N Yannakakis (2018). Quality diversity
through surprise. IEEE Transactions on Evolutionary Computation 23.4, pp. 603–616.

Haarnoja, Tuomas, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. (2018). Soft actor-critic
algorithms and applications. arXiv preprint arXiv:1812.05905.

Harris, Charles R., K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert
Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis
E. Oliphant (2020). Array programming with NumPy. Nature 585.7825, pp. 357–362.

Holland, John H (1992). Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. MIT press.

Hornby, Gregory, Al Globus, Derek Linden, and Jason Lohn (2006). Automated antenna design
with evolutionary algorithms. In Space 2006, p. 7242.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (1989). Multilayer feedforward net-
works are universal approximators. Neural networks 2.5, pp. 359–366.

Howard, Ronald A (1960). Dynamic programming and markov processes.
Islam, Riashat, Zafarali Ahmed, and Doina Precup (2019). Marginalized State Distribution

Entropy Regularization in Policy Optimization. arXiv preprint arXiv:1912.05128.

115

Bibliography

Jaderberg, Max, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. (2017). Population-
based training of neural networks. arXiv preprint arXiv:1711.09846.

Janner, Michael, Qiyang Li, and Sergey Levine (2021). Offline reinforcement learning as one big
sequence modeling problem. Advances in neural information processing systems 34, pp. 1273–
1286.

Jegorova, Marija, Stéphane Doncieux, and TimothyMHospedales (2020). Behavioral repertoire
via generative adversarial policy networks. IEEE Transactions on Cognitive and Developmental
Systems.

Jumper, John, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et
al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596.7873,
pp. 583–589.

Jung, Whiyoung, Giseung Park, and Youngchul Sung (2020). Population-Guided Parallel Policy
Search for Reinforcement Learning. In International Conference on Learning Representations.

Jurgovsky, Johannes, Michael Granitzer, Konstantin Ziegler, Sylvie Calabretto, Pierre-Edouard
Portier, LiyunHe-Guelton, andOlivier Caelen (2018). Sequence classification for credit-card
fraud detection. Expert systems with applications 100, pp. 234–245.

Justesen, Niels, Sebastian Risi, and Jean-Baptiste Mouret (2019). Map-elites for noisy domains
by adaptive sampling. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion, pp. 121–122.

Khadka, Shauharda, Somdeb Majumdar, Santiago Miret, Evren Tumer, Tarek Nassar, Zach
Dwiel, Yinyin Liu, and Kagan Tumer (2019). Collaborative evolutionary reinforcement
learning. arXiv preprint arXiv:1905.00976.

Khadka, Shauharda and Kagan Tumer (2018). Evolution-Guided Policy Gradient in Reinforce-
ment Learning. In Neural Information Processing Systems.

Kingma, Diederik P and Jimmy Ba (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Koos, Sylvain, Jean-Baptiste Mouret, and Stéphane Doncieux (2012). The transferability ap-
proach: Crossing the reality gap in evolutionary robotics. IEEE Transactions on Evolutionary
Computation 17.1, pp. 122–145.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). Imagenet classification with
deep convolutional neural networks. Advances in neural information processing systems 25.

Kumar, Saurabh, Aviral Kumar, Sergey Levine, and Chelsea Finn (2020). One solution is not all
you need: Few-shot extrapolation via structured maxent rl. Advances in Neural Information
Processing Systems 33, pp. 8198–8210.

LeCun, Yann (2018). Deep Learning is Dead. Vive Differentiable Programming! Facebook post,
January 5, 2018. https://www.facebook.com/yann.lecun/posts/10155003011462143.

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86.11, pp. 2278–2324.

Lee, Kuang-Huei, Ofir Nachum, Sherry Yang, Lisa Lee, C. Daniel Freeman, Sergio Guadarrama,
Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, and Igor Mordatch (2022). Multi-

116

Bibliography

Game Decision Transformers. In Advances in Neural Information Processing Systems. Ed. by
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho.

Lee, Lisa, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan
Salakhutdinov (2019). Efficient exploration via state marginal matching. arXiv preprint
arXiv:1906.05274.

Lehman, Joel, Jeff Clune, Dusan Misevic, Christoph Adami, Lee Altenberg, Julie Beaulieu,
Peter J Bentley, Samuel Bernard, Guillaume Beslon, David M Bryson, et al. (2020). The
surprising creativity of digital evolution: A collection of anecdotes from the evolutionary
computation and artificial life research communities. Artificial life 26.2, pp. 274–306.

Lehman, Joel and Kenneth O Stanley (2011a). Abandoning objectives: Evolution through the
search for novelty alone. Evolutionary computation 19.2, pp. 189–223.

Lehman, Joel and Kenneth O Stanley (2011b). Evolving a diversity of virtual creatures through
novelty search and local competition. In Proceedings of the 13th annual conference on Genetic
and evolutionary computation, pp. 211–218.

Levine, Sergey, Chelsea Finn, Trevor Darrell, and Pieter Abbeel (2016). End-to-end training of
deep visuomotor policies. Journal of Machine Learning Research 17.39, pp. 1–40.

Lian, Yongsheng, Akira Oyama, and Meng-Sing Liou (2010). Progress in design optimization
using evolutionary algorithms for aerodynamic problems. Progress in Aerospace Sciences
46.5-6, pp. 199–223.

Lillicrap, Timothy P, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and DaanWierstra (2015). Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971.

Macé, Valentin, Raphaël Boige, Felix Chalumeau, Thomas Pierrot, Guillaume Richard, and
Nicolas Perrin-Gilbert (2023). The quality-diversity transformer: Generating behavior-
conditioned trajectories with decision transformers. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, pp. 1221–1229.

Macé, Valentin and Christophe Servan (2019). Using Whole Document Context in Neural
Machine Translation. In Proceedings of the 16th International Conference on Spoken Language
Translation. Hong Kong: Association for Computational Linguistics.

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg
S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
AndrewHarp, Geoffrey Irving,Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng (2015).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from
tensorflow.org.

McCulloch, Warren S and Walter Pitts (1943). A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics 5, pp. 115–133.

McKinney, Scott Mayer, Marcin Sieniek, Varun Godbole, Jonathan Godwin, Natasha Antropova,
Hutan Ashrafian, Trevor Back, Mary Chesus, Greg S Corrado, Ara Darzi, et al. (2020).

117

Bibliography

International evaluation of an AI system for breast cancer screening.Nature 577.7788, pp. 89–
94.

Message Passing Interface Forum (2021). MPI: A Message-Passing Interface Standard Version 4.0.
Metropolis, Nicholas and Stanislaw Ulam (1949). The monte carlo method. Journal of the

American statistical association 44.247, pp. 335–341.
Mordvintsev, Alexander, Eyvind Niklasson, and Ettore Randazzo (2023). Particle Lenia.

https://google-research.github.io/self-organising-systems/particle-lenia/.
Moroz, Michael (2020). Reintegration Tracking. https://michaelmoroz.github.io/Reintegration-

Tracking/.
Morrison, Douglas, Peter Corke, and Jurgen Leitner (2020). EGAD! an Evolved Grasping

Analysis Dataset for diversity and reproducibility in robotic manipulation. IEEE Robotics
and Automation Letters.

Mouret, Jean-Baptiste (2020). Evolving the behavior of machines: frommicro tomacroevolution.
Iscience 23.11.

Mouret, Jean-Baptiste and Jeff Clune (2015). Illuminating search spaces by mapping elites.
arXiv preprint arXiv:1504.04909.

Nair, Vinod and Geoffrey E Hinton (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning (ICML-10),
pp. 807–814.

Nasiriany, Soroush, Vitchyr H Pong, Steven Lin, and Sergey Levine (2019). Planning with
goal-conditioned policies. arXiv preprint arXiv:1911.08453.

Nilsson, Olle and Antoine Cully (2021). Policy gradient assisted map-elites. In Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 866–875.

Parker-Holder, Jack, Aldo Pacchiano, Krzysztof Choromanski, and Stephen Roberts (2020).
Effective Diversity in Population-Based Reinforcement Learning. In Neural Information
Processing Systems.

Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary De-
Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer (2017). Automatic
differentiation in PyTorch.

Pierrot, Thomas, Valentin Macé, Felix Chalumeau, Arthur Flajolet, Geoffrey Cideron, Karim
Beguir, Antoine Cully, Olivier Sigaud, and Nicolas Perrin-Gilbert (2022). Diversity policy
gradient for sample efficient quality-diversity optimization. In Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1075–1083.

Pierrot, Thomas, Valentin Macé, Jean-Baptiste Sevestre, Louis Monier, Alexandre Laterre,
Nicolas Perrin, Karim Beguir, and Olivier Sigaud (2021). Factored action spaces in deep
reinforcement learning.

Pierrot, Thomas, Guillaume Richard, Karim Beguir, and Antoine Cully (2022). Multi-Objective
Quality Diversity Optimization. arXiv preprint arXiv:2202.03057.

Plantec, Erwan, Gautier Hamon, Mayalen Etcheverry, Pierre-Yves Oudeyer, Clément Moulin-
Frier, and Bert Wang-Chak Chan (2023). Flow-Lenia: Towards open-ended evolution in

118

Bibliography

cellular automata through mass conservation and parameter localization. In Artificial Life
Conference Proceedings 35. Vol. 2023. 1. MIT Press, p. 131.

Polyak, Boris T (1964). Some methods of speeding up the convergence of iteration methods.
Ussr computational mathematics and mathematical physics 4.5, pp. 1–17.

Pong, Vitchyr H, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine
(2019). Skew-fit: State-covering self-supervised reinforcement learning. arXiv preprint
arXiv:1903.03698.

Pourchot, Aloıs and Olivier Sigaud (2018). CEM-RL: Combining evolutionary and gradient-
based methods for policy search. arXiv preprint arXiv:1810.01222.

Pugh, Justin K, Lisa B Soros, and Kenneth O Stanley (2016). Quality diversity: A new frontier
for evolutionary computation. Frontiers in Robotics and AI 3, p. 202845.

Radford, Alec, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. (2018). Improving
language understanding by generative pre-training.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
(2019). Language models are unsupervised multitask learners. OpenAI blog 1.8, p. 9.

Rafler, Stephan (2011). Generalization of Conway’s" Game of Life" to a continuous domain-
SmoothLife. arXiv preprint arXiv:1111.1567.

Rakicevic, Nemanja, Antoine Cully, and Petar Kormushev (2021). Policy manifold search:
Exploring the manifold hypothesis for diversity-based neuroevolution. In Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 901–909.

Reed, Scott, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
(2022). A generalist agent. arXiv preprint arXiv:2205.06175.

Rendell, Paul (2002). Turing universality of the game of life. In Collision-based computing.
Springer, pp. 513–539.

Robbins, Herbert and Sutton Monro (1951). A stochastic approximation method. The annals of
mathematical statistics, pp. 400–407.

Rumelhart, David E, Geoffrey EHinton, and Ronald JWilliams (1986). Learning representations
by back-propagating errors. Nature 323.6088, pp. 533–536.

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. (2015). Imagenet large
scale visual recognition challenge. International journal of computer vision 115, pp. 211–252.

Salimans, Tim, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever (2017). Evolution
strategies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864.

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov (2017). Proxi-
mal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Sharma, Archit, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman (2019).
Dynamics-aware unsupervised discovery of skills. arXiv preprint arXiv:1907.01657.

Shi, Longxiang, Shijian Li, Qian Zheng, Min Yao, and Gang Pan (2020). Efficient Novelty Search
Through Deep Reinforcement Learning. IEEE Access 8, pp. 128809–128818.

119

Bibliography

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature
529.7587, pp. 484–489.

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. (2017). Mas-
tering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv
preprint arXiv:1712.01815.

Silver, David, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller
(2014). Deterministic policy gradient algorithms. In Proceedings of the 30th International
Conference in Machine Learning.

Skinner, BF (1938). The behavior of organisms: an experimental analysis. Appleton-Century.
Stanton, Christopher and Jeff Clune (2016). Curiosity search: producing generalists by encour-

aging individuals to continually explore and acquire skills throughout their lifetime. PloS
one 11.9, e0162235.

Sudhakaran, Shyam, Miguel González-Duque, Matthias Freiberger, Claire Glanois, Elias Na-
jarro, and Sebastian Risi (2024). Mariogpt: Open-ended text2level generation through large
language models. Advances in Neural Information Processing Systems 36.

Sutton, Richard S (1988). Learning to predict by the methods of temporal differences. Machine
learning 3, pp. 9–44.

Sutton, Richard S and Andrew G Barto (1998). Reinforcement Learning: An Introduction.
Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An introduction. MIT

press.
Sutton, Richard S, David A McAllester, Satinder P Singh, Yishay Mansour, et al. (1999). Policy

gradient methods for reinforcement learning with function approximation. In NIPs. Vol. 99.
Citeseer, pp. 1057–1063.

Thorndike, Edward L (1898). Animal intelligence: An experimental study of the associative
processes in animals. The Psychological Review: Monograph Supplements 2.4, p. i.

Thorndike, Edward L (1927). The law of effect. The American journal of psychology 39.1/4, pp. 212–
222.

Tieleman, Tijmen and Geoffrey Hinton (2012). Rmsprop: Divide the gradient by a running av-
erage of its recent magnitude. coursera: Neural networks for machine learning. COURSERA
Neural Networks Mach. Learn 17.

Vassiliades, Vassilis, Konstantinos I. Chatzilygeroudis, and Jean-Baptiste Mouret (2016). Scaling
Up MAP-Elites Using Centroidal Voronoi Tessellations. CoRR abs/1610.05729.

Vassiliades, Vassilis and Jean-Baptiste Mouret (Apr. 2018). Discovering the Elite Hypervolume
by Leveraging Interspecies Correlation. GECCO 2018 - Proceedings of the 2018 Genetic and
Evolutionary Computation Conference, pp. 149–156.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin (2017). Attention is all you need. Advances in neural
information processing systems 30.

120

Bibliography

Vemula, Anirudh, Wen Sun, and J Bagnell (2019). Contrasting exploration in parameter and
action space: A zeroth-order optimization perspective. In The 22nd International Conference
on Artificial Intelligence and Statistics. PMLR, pp. 2926–2935.

Vinyals, Oriol, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. (2019).
Grandmaster level in StarCraft II using multi-agent reinforcement learning.Nature 575.7782,
pp. 350–354.

Watkins, Christopher JCH and Peter Dayan (1992). Q-learning. Machine learning 8, pp. 279–292.
Williams, Ronald J (1992). Simple statistical gradient-following algorithms for connectionist

reinforcement learning.Machine learning 8, pp. 229–256.
Wolfram, Stephen and M Gad-el-Hak (2003). A new kind of science. Appl. Mech. Rev. 56.2,

B18–B19.
Yannakakis, Georgios N and Antonios Liapis (2016). Searching for surprise. In ICCC.
Yin, Zhiqi, Zeshi Yang, Michiel Van De Panne, and KangKang Yin (2021). Discovering diverse

athletic jumping strategies. ACM Transactions on Graphics (TOG) 40.4, pp. 1–17.

121

List of Figures

1.1 High-level view of a trained multilayer perceptron neural network. An input
image representing the hand-written digit "8" is fed to a trained neural network,
which is able to identify it correctly. 4

1.2 Diagram of a typical evolutionary algorithm. 7
1.3 Reinforcement learning fundamental concepts. 8
1.4 A canonical hard-exploration problem. From left to right: 1. Picture of the maze

where the agent (larger circle) is rewarded the closer it gets to the exit (smaller
circle), 2. Results of using a classical evolutionary algorithm to solve the problem,
most tries (black dots) end up in dead ends, 3. Results of running an exploration-
oriented algorithm, which solves the maze by focusing on exploration and
novelty search. Taken from Lehman and Stanley (2011a). 10

2.1 Left: A single MLP node computes its output as a weighted sum of the input
(plus a bias that acts as an additional parameter) and passes the result through a
nonlinear activation function. Right: Example of a nonlinear activation function,
the rectified linear unit (ReLU). 19

2.2 A simple case of gradient descent with only two parameters: θ1 and θ2, in the
case of a perfectly convex loss function (left); a non-convex loss function (right)
with a local minimum (blue dot). 23

2.3 Evolutionary algorithms are derivative-free black-box optimization methods. . 26
2.4 QD algorithms are historically evolutionary algorithms that project a high-

dimensional search space (the space of solution genotypes) into a lower-dimensional
space capturing the solution behaviors. Here, for the sake of simplicity, the be-
havior space is unidimensional. Taken from Cully and Demiris (2017). 27

2.5 MAP-Elites produces significantly higher-performing andmore diverse solutions
than control algorithms for the pattern recognition task described in Clune,
Mouret, and Lipson (2013). x and y axes represent the arbitrary space of interest
to explore, while color indicates performance. Taken from Mouret and Clune
(2015). 29

122

List of Figures

2.6 The RL agent-environment interaction loop in a Markov decision process, taken
from Sutton and Barto (2018). The environment provides states and rewards,
and the agent policy chooses actions. 33

2.7 Backup diagrams for the Bellman optimality equations for V ∗(s) and Q∗(s, a).
Backup diagrams provide intuitive interpretations of Bellman equations, where
states are represented as large empty circles and state-actions pairs as smaller
black dots. Arrows denote the possible scenarios following either a state or a
state-action pair. 36

2.8 A) Core components, used as building blocks to create optimization experi-
ments. B) High-level software architecture of QDax. C) Various examples of QD
algorithms used for a variety of tasks and problem settings available in QDax.
Taken from Chalumeau, Lim, Boige, et al. (2024). 42

3.1 An agent robot is rewarded for running forward as fast as possible. Following
the reward signal without further exploration leads into a trap corresponding to
a poor local minimum. Our method, QD-PG, produces a collection of solutions
that are diverse and high-performing, allowing deeper exploration necessary to
solve hard-exploration problems. 46

3.2 QD-PG builds on the MAP-Elites framework and leverages reinforcement learn-
ing to derive policy gradient based mutations. 47

3.3 Evaluation environments. The state and action spaces in Point-Maze are 2× 2,
whereas they are 29× 8 in Ant-Maze and 113× 8 in Ant-Trap. 57

3.4 Gradient maps on Point-Maze and Ant-Maze. Black lines are maze walls, arrows
depict gradient fields and the square indicates the maze exit. Both settings
present deceptive gradients as naively following them leads into a wall. 58

3.5 Performance of QD-PG and baseline algorithms on all environments. Plots
present median bounded by first and third quartiles. 61

3.6 QD-PG produces a collection of diverse solutions. In Ant-Maze, even after
setting new randomly located goals, the ME grid still contains solutions that are
suited for the new objectives. 62

3.7 Results of the fast-adaptation experiment repeated 100 times in Ant-Maze. In
each square, we display the score of the best experiment whose goal was sampled
in this region of the maze, as several experiments may have goals in the same
square. Empty squares correspond to regionswhere no goal was sampled during
the experiments. The black circle shows the agent starting position, the black
lines represent the walls in Ant-Maze and the green cross marks the location of
the original goal in Ant-Maze. 63

3.8 Coverage map of the Point-Maze (left) and Ant-Trap (right) environments for
all ablations. Each dot corresponds to the final position of a policy through the
training process. 65

123

List of Figures

4.1 High-level view of the Quality-Diversity Transformer pipeline. Our full al-
gorithm is composed of three distinct and successive parts: 1. Execution of
MAP-Elites Low-Spread, our variation of MAP-Elites that produces stable and
consistent policies, 2. Creation of an offline dataset of trajectories by playing
episodes with some of the policies produced by MAP-Elites Low-Spread, 3.
Supervised training of a behavior-conditioned causal Transformer producing
on-demand behaviors with high accuracy. 70

4.2 Illustration of the benchmark tasks used in this work, based on the Brax physics
engine. 75

4.3 Reproducibility problem in Ant-Omni. We select three representative policies
from final repertoires that have been generated by a) MAP-Elites and b) MAP-
Elites Low-Spread, our proposed variant, and play 30 episodes with each policy
using slightly varying initial states. The top row depicts the final BDs obtained by
each policy and the bottom row represents the corresponding entire trajectories
in the behavior space. Each color represents a different random seed (initial
condition). 77

4.4 Reproducibility problem in Ant-Omni. Here we reproduce the experiment
proposed in Figure 4.3 for a) PGA-MAP-Elites and b) PGA-MAP-Elites Low-
Spread. 78

4.5 Reproducibility problem in Halfcheetah-Uni for a) MAP-Elites, b) MAP-Elites
Low-Spread, c) PGA-MAP-Elites, d) PGA-MAP-Elites Low-Spread. 78

4.6 The QDT autoregressively plays an evaluation episode by conditioning on a
target BD. At any given timestep t, the QDT generates an action by looking at all
elements of the trajectory that precede t. The first action A0 is generated given
the target BD and the first observation O0, while the last action AT is generated
given the whole trajectory of target BDs, observations and previously generated
actions. Note that the target BD is the same for the entire trajectory. 84

4.7 Evaluation results of the QDT through the training process (average values and
std ranges on 3 seeds). We evaluate the model over multiple goals (target BDs)
covering the behavior space and report the total average Euclidian distance to
these goals. The models trained on datasets created by Low-Spread methods,
whether using ME-LS or PGA-ME-LS, show significantly better performances. . 86

4.8 Results of the accuracy experiment. This experiment can be described in 2 steps:
1. We select multiple evaluation goals (target BDs) in the behavior space, 100
and 50 for Ant-Omni and Halfcheetah-Uni respectively. To get meaningful goals,
we simply compute a CVT of the BD space in which goals are the centers of each
zone, 2. For each goal, we play 10 episodes and plot their average Euclidean
distance to the goal. For ME and ME-LS, trajectories are played by the nearest
policy to the goal in the repertoire. For the QDT, we simply condition it on
the goal. Distance is represented by color: lighter is better. The QDT(ME-LS)
appears to be the most accurate method to achieve behaviors on demand. . . . 87

124

List of Figures

4.9 Results of the accuracy experiment for PGA-ME and its variants. The experi-
mental process is strictly identical to that of Figure 4.8. Analogously to results
of the MAP-Elites variants in Figure 4.8, QDT(PGA-ME-LS) appears to be the
most accurate method to achieve behaviors on demand. 88

4.10 Results of the QDT generalization experiment in Ant-Omni. In this experiment
we run accuracy experiments (bottom row) on truncated datasets (top row)
which are deprived of a part of their trajectories. The QDT shows strong inter-
polation ability on the 50%, 30% and 10% density datasets and a more limited
ability to extrapolate in "Tiles" and "Upper part" datasets where entire zones of
the BD space are deprived of data. 89

4.11 Results of the QDT generalization experiment in Halfcheetah-Uni. The QDT
shows strong interpolation ability on the 50%, and 30% density datasets and a
limited ability to extrapolate in "Tiles" and "Upper part" datasets where entire
zones of the BD space are deprived of data. 90

4.12 Results of the Quality-Diversity algorithms: MAP-Elites (ME), PGA-MAP-Elites
(PGA-ME) and their Low-Spread variations (ME-LS and PGA-ME-LS) in both
environments over 5 seeds. Coverage indicates the proportion of the behavior
space that have been covered in the repertoire, max fitness reports the best fitness
obtained by any solution evaluated so far and the QD score represents the total
sum of fitness across all solutions in the repertoire. Performances are plotted
against the number of interactions with the environment. 91

4.13 Coverage maps of QD algorithms. Fitness is represented by color; lighter is better. 92
4.14 Maximum fitness of the QDT in Halfcheetah-Uni for evaluations during the

training phase (average values and std ranges on 3 seeds). We report the maxi-
mum fitness obtained over all goals. Performances are similar, if not superior, to
values reported in the reassessment experiment in Table 4.5, meaning our model
is able to replicate the fitness of QD policies. 93

5.1 Cellular automata are mathematical systems enabling the emergence of complex
structures from simple rules. They can be discrete, as in the Game of Life
(a) (Gardner, 1970), or continuous, as in Flow Lenia (b) (Plantec, Hamon,
Etcheverry, et al., 2023). 98

5.2 Evaluation process of the FLT. The model autoregressively produces an entire
episode based on an initial state made of initial activations A0 and initial param-
eters map P 0. 104

5.3 Evaluation results of the FLT over three different examples, each starting from
different (random) initial states. For each example, the frames represent the
ground truth last activation map (AT) and the predicted last activation map
(ÂT). 105

5.4 Chronology of labels and predictions over the entire episode from Figure 5.3a.
Prediction frames are denoised manually to better show the central pattern. . . 106

5.5 Mean square error per timestep for all three examples (a), (b) and (c) presented
in Figure 5.3, respectively. 106

125

List of Algorithms

1 MAP-Elites . 30
2 SARSA Algorithm . 37
3 REINFORCE Algorithm . 39
4 QD-PG . 56
5 PGA-MAP-Elites . 72
6 MAP-Elites Low-Spread . 80
7 PGA-MAP-Elites Low-Spread . 81
8 Quality-Diversity Transformer . 83

126

List of Tables

3.1 Ablations and baselines summary. Selec. stands for selection. The last col-
umn assesses whether the method optimizes for a collection instead of a single
solution. 59

3.2 QD-PG Hyper-parameters: Ant-Maze and Ant-Trap hyper-parameters are iden-
tical and grouped under the Ant column . 60

3.3 Comparison to evolutionary competitors on Ant-Maze. The Ratio column com-
pares the sample efficiency of a method to QD-PG. 63

3.4 Final performance compared to ablations and PG baselines. Performance is
measured as the minimum distance to the goal in Ant-Maze (108 steps) and as
the episode return in Point-Maze (106 steps) and Ant-Trap (108 steps). 64

4.1 Hyperparameters for MAP-Elites and MAP-Elites Low-Spread in both environ-
ments. 80

4.2 Hyperparameters for PGA-MAP-Elites and PGA-MAP-Elites Low-Spread in
both environments. 81

4.3 Hyperparameters for the Quality-Diversity Transformer in both environments. 84
4.4 Results of the accuracy experiment (described in Figure 4.8). For each environ-

ment and algorithm, we present the average distance over all goals (target BDs)
and the overall average spread. Each experiment is repeated over 5 seeds and
reported with average values and standard deviations. 89

4.5 Results of the reassessment experiment in Halfcheetah-Uni. "Initial" columns
show values for the initial repertoire, that is, the repertoire that was used during
the algorithm run. "Recalc." columns refer to values of the new repertoire that
contains solutions after re-evaluation. 92

5.1 FLT dataset generation parameter space. Parameters marked with a * must be
sampled for each kernel-growth function pair. 103

127

Copyright 2021-2024, © Valentin Macé.

131

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Deep Learning
	1.3 Evolutionary Algorithms
	1.4 Reinforcement Learning
	1.5 Hard-Exploration Problems
	1.6 Outline and Contributions

	2 Background
	2.1 Deep Learning and Neural Networks
	2.2 Quality-Diversity
	2.3 Reinforcement Learning
	2.4 Software

	3 Diversity Policy Gradient for Sample Efficient Quality-Diversity Optimization
	3.1 Introduction
	3.2 Background
	3.3 Diversity Policy Gradient
	3.4 Related Work
	3.5 Methods
	3.6 Experiments
	3.7 Results
	3.8 Conclusion

	4 Generating Behavior-Conditioned Trajectories with Decision Transformers
	4.1 Introduction
	4.2 Related Work
	4.3 Problem Statement
	4.4 Methods
	4.5 Results
	4.6 Conclusion

	5 Harnessing Deep Learning for Diversity Search in Continuous Cellular Automata
	5.1 Introduction
	5.2 Background
	5.3 Methods
	5.4 Preliminary Results

	6 Conclusion
	Bibliography
	List of Figures
	List of Algorithms
	List of Tables

