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RÉSUMÉ EN FRANÇAIS

0.1 Introduction

Dans les réseaux de communication distribués, les données sont collectées, compressées, et
transmises depuis des nœuds distants vers un serveur central pour un traitement ultérieur.
Cependant, l’objectif du serveur n’est pas toujours de reconstruire les données originales, mais
plutôt de prendre des décisions à partir des données codées reçues. Dans ce contexte, le Test
d’Hypothèses Distribué se concentre sur le cas particulier de deux sources et vise à effectuer une
prise de décision directement à partir des données compressées, sans passer par une reconstruction
préalable. Comme dans le test d’hypothèses classique, deux types d’erreurs sont pris en compte
pour évaluer les performances : l’erreur de Type I (fausse alarme) et l’erreur de Type II (décision
manquée). Le test d’hypothèses distribué prend en compte une contrainte de débit sur le lien
de communication, et l’objectif est de concevoir un schéma de codage afin de maximiser la
décroissance exponentielle, appelée exposant d’erreur, de la probabilité d’erreur de Type II, tout
en maintenant la probabilité d’erreur de Type I en dessous d’un seuil spécifié. Dans la littérature,
ce problème a principalement été étudié en utlisant la théorie de l’information, et la plupart
des travaux existants analysent les performances des schémas du test d’hypothèses distribué en
supposant des sources independantes et identiquement distribuées (i.i.d.).

Dans la première partie de cette thèse, nous abordons un modèle plus réaliste et général de
sources non-i.i.d. Ce modèle englobe des sources non stationnaires et non ergodiques, reflétant
mieux les scénarios réels par rapport au cas i.i.d. Pour ce modèle général de sources, nous dérivons
des bornes génériques sur l’exposant d’erreur pour le test d’hypothèses distribué à l’aide d’outils
du spectre de l’information. Nous montrons la cohérence de ces bornes avec le cas i.i.d. et les
caractérisons plus précisément pour deux modèles spécifiques de sources : les sources gaussiennes
non-i.i.d., et les sources de type Gilbert-Elliot.

De plus, l’étude du test d’hypothèses distribué ne devrait pas se limiter seulement à l’analyse
des limites théoriques, mais aussi inclure le développement de schémas de codage pratiques pour
ce cadre. Ainsi, dans la deuxième partie de cette thèse, nous développons et implémentons des
schémas de codage pratiques de courte longueur, spécialement conçus pour le test d’hypothèses
distribué, qui n’avaient pas encore été étudiés dans la littérature. Ces schémas de codage sont
basés sur des codes linéaires en blocs et visent des longueurs très courtes, appropriées pour
le test d’hypothèses distribué (moins de 100 bits). En outre, nous fournissons des expressions
analytiques exactes pour les probabilités d’erreurs de Type I et Type II pour chaque schéma de
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codage proposé, offrant ainsi des outils utiles pour la conception optimale future de codes pour
le test d’hypothèses distribué.

Encoder Decoder
RX

Y

H0  H1

Figure 1 – Test d’hpothèses distribué.
Source : © 2023 IEEE. Reproduced with permission from [1].

0.2 Etat de l’art

Dans cette partie, nous passons en revue la littérature existante sur le test d’hypothèses
distribué. Le cas le plus traité est celui d’un encodeur et un centre de décision avec information
adjacente, appelé configuration asymétrique, comme illlustré à la Figure 1. Pour cette configura-
tion, nous présentons les schémas de codage issus de la théorie de l’information et leurs bornes
correspondantes sur les exposants d’erreur atteignables.

Énoncé du Problème

Dans la configuration asymétrique du test d’hypothèses distribué, un encodeur observe une
séquence source Xn et transmet sa version encodée au décodeur disposant d’une information
adjacente Y n. Le décodeur doit décider entre deux hypothèses H0 et H1, avec :

H0 : (X, Y ) ∼ PXY , H1 : (X, Y ) ∼ PX̄Ȳ . (1)

Les probabilités d’erreur de Type-I et de Type-II, αn et βn, sont définies comme suit [17] :

αn = P
[
g(n)

(
f (n) (Xn) , Y n

)
= H1 | H0

]
(2)

βn = P
[
g(n)

(
f (n) (Xn) , Y n)

)
= H0 | H1

]
. (3)

Ici, f (n) and g(n) son respectivement les fonctions d’encodage et de decodage. L’objectif est de
minimiser βn tout en maintenant αn ≤ ϵ, avec un exposant d’erreur défini comme :

θ = lim sup
n→∞

− 1
n

log βn. (4)
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Schéma d’Ahlswede et Csiszár

Ce schéma repose sur la quantification de Xn et l’envoi de son type. L’exposant d’erreur
atteint est donné par [18] :

θAC(R) ≥ D(PX ||PX̄) + sup
PU|X :I(X;U)≤R

D(PUY ||PŪ Ȳ ), (5)

où U − X − Y et U − X̄ − Ȳ forment des chaînes de Markov.
Dans le cas particulier des tests contre l’indépendance (PX̄Ȳ = PXPY ), l’exposant se simplifie

en [18] :
θAC(R) = max

PU|X :I(X;U)≤R
I(U ; Y ). (6)

Schéma de Han

Han améliore ce résultat en incluant le test sur le type conjoint (X, U). L’exposant d’erreur
atteint est donné par [21] :

θHAN (R) ≥ sup
PU|X :

I(X,U)≤R

min
PŨX̃Ỹ ∈PHAN

D
(
PŨX̃Ỹ ∥PŪX̄Ȳ

)
, (7)

avec
PHAN =

{
PŨX̃Ỹ : PŨX̃ = PUX , PŨ Ỹ = PUY

}
. (8)

Schéma de Shimokawa, Han et Amari (SHA)

Le schéma de quantification-binning ou de SHA exploite la corrélation entre Xn et Y n pour
réduire le taux de compression. L’exposant d’erreur obtenu est donné par [22] :

θSHA(R) ≥ sup
PU|X :

I(U ;X|Y )<R<I(U ;X)

min
[

min
PŨX̃Ỹ ∈PSHA(PU|X)

D
(
PŨX̃Ỹ ∥PŪX̄Ȳ

)
+ R − I(U ; X | Y ),

min
PŨX̃Ỹ ∈PHAN

D
(
PŨX̃Ỹ ∥PŪX̄Ȳ

) ]
, (9)

où

PSHA
(
PU |X

)
:=
{
PŨX̃Ỹ :

PŨX̃ = PUX , PỸ = PY , H(Ũ | Ỹ )e ≥ H(U | Y )
}

. (10)

Le schéma de SHA est optimal dans certains cas particuliers, comme le test conditionnel contre
l’indépendance [23].
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Améliorations récentes

Kochman et Wang [25] ont élargi les contraintes sur PU |X , ce qui améliore les performances
du schéma de SHA en considérant plus de distributions possibles. Cependant, Watanabe [24] a
montré des cas spécifiques où le schéma de SHA est sous-optimal.

0.3 Test d’hypothèses distribué pour des modèles de sources
générales non-iid, non-stationnaires, et non-ergodiques

Cette partie traite du test d’hypothèses distribué pour des modèles de sources générales X
et Y, et propose un schéma réalisable fournissant une borne générique sur l’exposant d’erreur
applicable à une large gamme de modèles de sources, pas nécessairement i.i.d. Notre schéma
réalisable s’appuie sur les méthodes du spectre d’information [42] pour traiter des sources
générales. Il fournit une borne inférieure sur l’exposant d’erreur général, qui est relativement
facile à calculer pour des sources i.i.d. et/ou stationnaires gaussiennes.

Modèle de sources générales

Nous adoptons la définition de [42] pour le modèle de sources générales. Les sources X et Y
génèrent deux suites infinies :

{Xn = (X1, X2, · · · , Xn)}∞
n=1 ,

{Yn = (Y1, Y2, · · · , Yn)}∞
n=1 (11)

de variables aléatoires Xn, Yn, chacune de dimension n. De plus, les symboles Xi, Yi prennent
leurs valeurs dans des alphabets X , Y , respectivement. Le modèle de [57] suppose ensuite que les
distributions de probabilités jointes PXnYn sont connues mais quelconques (pas d’hypothèse de
stationnarité ou d’ergodicité).

Test d’hypothèses distribué

Nous définissons maintenant le problème du test d’hypothèses distribué pour le modèle de
sources générales que nous avons présenté précédemment. Nous supposons que la loi jointe du
couple (Xn, Yn) dépend des hypothèses sous-jacentes H0 et H1, définies comme suit :

H0 : (Xn, Yn) ∼ PXnYn , (12)

H1 : (Xn, Yn) ∼ PXnYn . (13)
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Nous rappelons d’abord les définitions des outils de l’"information spectrum" de [42] qui
seront utiles pour notre analyse.

Définitions

Tout d’abord, nous définissons respectivement la lim sup et la lim inf en probabilité d’une
suite de variables aléatoires {Zn}∞

n=1 comme suit [42] :

p − lim sup
n→∞

Zn = inf
{

α | lim
n→+∞

P (Zn > α) = 0
}

p − lim inf
n→∞

Zn = sup
{

α | lim
n→+∞

P (Zn < α) = 0
}

.

Ensuite, l’information mutuelle spectrale supérieure I(X; U), l’information mutuelle spectrale
inférieure I(U; Y), la divergence spectrale inférieure D

(
PUY∥PUY

)
, et la divergence spectrale

supérieure D
(
PUY∥PUY

)
sont respectivement définies comme [42] :

Ī(X; U) = p − lim sup
n→∞

1
n

log
PUn|Xn (Un | Xn)

PUn (Un) , (14)

I(U; Y) = p − lim inf
n→∞

1
n

log
PUn|Yn (Un | Yn)

PUn (Un) , (15)

D
(
PUY∥PUY

)
= p − lim inf

n→∞
1
n

log PUnYn (Un, Yn)
PUnYn (Un, Yn) , (16)

D
(
PUY∥PUY

)
= p − lim sup

n→∞

1
n

log PUnYn (Un, Yn)
PUnYn (Un, Yn) . (17)

Dans le cas i.i.d., on retrouve les définitions classiques de l’information mutuelle et de la divergence.

Exposant d’erreur atteignable pour des sources générales

Dans cette partie, nous présentons notre résultat principal sur l’exposant d’erreur de Type-II
réalisable θ pour les sources générales définies precedement.

Theorem 0.1 L’exposant d’erreur θ suivant est atteignable pour des sources générales définies
par (11) :

θ ≥ min
{

R −
(
I(X; U) − I(U; Y)

)
, D

(
PUY∥PUY

)
+
(
I(X; U) − I(X; U)

) }
,

avec U, variable aléatoire auxiliaire telle que la chaîne de Markov U → X → Y est satisfaite à
la fois sous H0 et sous H1. PUY et PUY sont les distributions jointes de (Un, Yn) sous H0 et
H1, respectivement, et R ≥ I(U; X | Y).
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On remarque que lorsque les sources X,Y et U sont i.i.d., notre exposant d’erreur se résume à
celui trouvé dans [35]. Ceci montre la cohérence de notre analyse.

0.4 Exemple : Sources Gaussiennes

Nous appliquons maintenant le Théorème 0.1 à des modèles de sources Gaussiennes non i.i.d.
mais stationnaires et ergodiques, telles que X ∼ N (0, KX) et Y ∼ N (0, KY), où KX et KY

sont les matrices de covariance de X et Y, respectivement.

Proposition 0.1 Si les sources X et Y sont gaussiennes, stationnaires et ergodiques sous H0 et
H1, l’exposant d’erreur dans le Théorème 0.1 devient :

θ ≥ min
{

R − lim
n→∞

[ 1
n

h (Un | Yn) − 1
n

h (Un | Xn)
]

, lim
n→∞

1
n

D
(
PUnYn∥PUnYn

) }
.

Cette proposition découle de la propriété "strong converse property" [42, Page 48-49]. De plus :

lim
n→∞

1
n

h (Un | Yn) − lim
n→∞

1
n

h (Un | Xn) = lim
n→∞

1
2n

n∑
i=1

log λ
(X|Y )
i + κ

κ
, (18)

lim
n→∞

1
n

D
(
PUnYn∥PUnYn

}
= lim

n→∞
1

2n

log

∣∣∣Σ∣∣∣
|Σ|

− 2n + tr
{

Σ−1Σ
} ]

, (19)

où Σ et Σ sont les matrices de covariance conjointes de U et Y sous H0 et H1, respectivement,
|.| représente un déterminant, et tr(.) représente la trace. Les termes donnés par (18) and (19)
sont obtenus en considérant que la source U est gaussienne de sorte que U = X + Z. Avec
Z ∼ N (0, κIn), indépendant de X et In est la matrice identité de dimension n × n. Les matrices

de covariance Σ et Σ sont alors définies comme Σ =
[

KU KUY

KYU KY

]
et Σ =

[
KU KUY

KYU KY

]
.

On note que les matrices Σ et Σ sont de dimension (2n) × (2n), avec n → ∞ dans les équations
précédentes.

0.4.1 Exemple : Modèle de Gilbet-Elliot (GE)

Dans cette partie, les séquences binaires générées par X et Y sont respectivement notées
{Xk}+∞

k=1 et {Yk}+∞
k=1. Nous supposons que la source X est i.i.d., telle que pour tout k ≥ 1, Xk

suit une distribution de Bernoulli Bern(p). De plus, X et Y sont corrélés tel que :

Yk = Xk ⊕ Zk.

Ici, la source Z, qui génère la séquence binaire {Zk}+∞
k=1, est indépendante de X et suit un

8
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Figure 2 – Test d’hpothèses distribué

modèle GE [65] avec un état caché S. La séquence des états binaires cachés {Sk}+∞
k=1 est telle que

Sk ∈ {G, B} comme illustré à la Figure 2. De plus, chaque symbole Zk prend la valeur 0 ou 1
selon la valeur de l’état caché Sk = s, tel que :

P (Zk = 1 | Sk = s) = ps, s ∈ {G, B},

où pG et pB représentent respectivement les probabilités de transition dans les états G (forte
corrélation) et B (faible corrélation). Les hypothèses H0 et H1 sont définies par :

H0 : (pG, pB), (20)

H1 : (p̄G, p̄B), (21)

où pG, pB et p̄G, p̄B représentent les probabilités de transition dans les états G et B sous les
hypothèses H0 et H1, respectivement.

Nous spécifions ici la borne générale de l’exposant d’erreur donnée dans le Théorème 0.1 pour
les modèles ergodiques de Gilbert-Elliot (GE).

Proposition 0.2 Si les sources X et Y sont corrélées selon le modèle GE sous les hypothèses
H0 et H1, la borne générale de l’exposant d’erreur dans le Théorème 0.1 se réduit à :

θ ≥ sup
PU|X

min
{
R − [Hs (U | Y) − Hs (U | X)] , Ds

(
PUY∥PUY

)}
, (22)

où le sup est pris sur toutes les distributions conditionnelles PU|X satisfaisant la contrainte
R ≥ Is(U; X | Y).
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De plus,
Hs(U|Y) = p− lim

n→∞
1
n

log 1
P (Un|Yn) , (23)

et
Ds(PU,Y||PU,Y) = p− lim

n→∞
1
n

log P (Un, Yn)
P (Un

, Yn)
. (24)

Pour évaluer les termes Hs(U|Y) et Ds(PU,Y||PU,Y), nous avons proposé d’utiliser des estimateurs
pour lesquels, pour une grande valeur de n, nous générons aléatoirement des échantillons
(xn, yn, un) selon le modèle de Gilbet-Elliot. Nous calculons ensuite les probabilités P (un|yn),
P (un), P (un, yn), et P (un, yn) en utlisant un algorithme recursif tel quel le BCJR. Cette
méthodologie est similaire à celle utilisée dans [69] pour évaluer numériquement la capacité d’un
canal de Gilbert-Elliot.

0.5 Schémas pratiques à courte longueur pour le test d’hypo-
thèses distribué

Cette partie traite de la conception de schémas de codage à courte longueur pour le test
d’hypothèses distribué avec des sources binaires. Les preuves d’atteignabilité issues de la théorie de
l’information suggèrent d’envisager des schémas de codage basés uniquement sur la quantification
[21] ou sur des schémas de quantification-binning [22] pour le test d’hypothèses distribué.
Notre implémentation pratique de schémas de codage suit de près l’approche décrite dans
les preuves théoriques en théorie de l’information. Contrairement aux travaux existants, qui
se concentrent sur des séquences très longues (souvent supérieures à 105 bits), cette partie
propose des solutions adaptées à des séquences courtes, où quelques dizaines de bits suffisent
pour une prise de décision correcte. Nous avons donc proposé des implémentations pratiques de
schémas de quantification et de quantification-binning. Ces derniers utilisent des codes linéaires
en blocs binaires à courte longueur, spécifiquement adaptés au problème de prise de décision. Des
expressions analytiques précises des probabilités d’erreur de Type-I et Type-II sont également
dérivées pour la configuration asymétrique, permettant une optimisation et une comparaison des
performances des différents schémas.

Test d’hypothèses distribué pour les sources binaires

Dans ce résumé, nous présentons les résultats des schémas pratiques uniquement pour le cas
asymétrique, comme illustré en Figure 1. Cependant, le cas symétrique est également traité dans
cette thèse. Nous supposons que les n symboles des séquences Xn et Yn sont i.i.d. et générés selon
les variables aléatoires X et Y , respectivement. De plus, X et Y sont distribués conjointement
selon le modèle Y = X ⊕ E, où E est une variable aléatoire binaire indépendante de X, avec
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P (X = 1) = 1/2. Nous notons également p = P(E = 1) avec 0 < p ≤ 1/2. Les deux hypothèses
sont exprimées comme suit : {

H0 : p = p0,

H1 : p = p1.
(25)

Nous supposons, sans perte de généralité, que p0 < p1. Il est important de noter que les
distributions de probabilité de X et Y sont indépendantes de l’hypothèse choisie, étant donné
que P (X = 1) = 1/2.

Schéma de quantification

L’objectif est de concevoir une implémentation pratique d’un schéma de quantification pour
des séquences binaires de courte longueur, basé sur des codes linéaires en blocs. Pour cela, pour
une séquence binaire xn de longueur n, l’encodeur utlise une matrice génératrice Gq d’un code
linéaire en bloc pour produire une séquence quantifiée zm

q tel que :

zm
q = arg min

zm
d(Gqzm, xn), (26)

où d(., .) représente la distance de Hamming. La séquence zm
q est transmise au décodeur avec un

taux R = m/n.

Au décodeur, la séquence quantifiée xn
q = Gqzm

q est reconstruite. Pour décider entre les
hypothèses, on applique le test de Neyman-Pearson suivant :

n∑
i=1

(xq,i ⊕ yi) < λq, (27)

où λq est un seuil déterminé.

Les expressions analytiques exactes pour les probabilités d’erreur de Type-I (α(q)
n ) et de

Type-II (β(q)
n ) pour le schéma de quantification sont exprimées comme suit :

α(q)
n = 1 − 1

N
(q)
0

λq∑
λ=0

d
(q)
max∑

γ=0

n∑
j=0

E(q)
γ Γλ,j,γpj

0(1 − p0)n−j , (28)

β(q)
n = 1

N
(q)
0

λq∑
λ=0

d
(q)
max∑

γ=0

n∑
j=0

E(q)
γ Γλ,j,γpj

1(1 − p1)n−j . (29)

Ici, E
(q)
γ représente le nombre de mots xn de poids de Hamming γ appartenant à la région de

décision C(q)
0 telle que xn

q = 0n. De plus, nous définissons N
(q)
0 =

∑d
(q)
max

γ=0 E
(q)
γ , où d

(q)
max est le poids

de Hamming maximal des mots de code dans la région C(q)
0 .
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Schéma de quantification-binning

Ici, nous proposons une solution pratique pour le schéma de quantification-binning. Comme
précédemment, nous considérons une matrice génératrice Gq de dimensions n × m. Nous utilisons
également une matrice de contrôle de parité Hb de dimensions k × m issue d’un autre code
linéaire en blocs. Après avoir utilisé Gq pour effectuer la quantification binaire, comme décrit
précédemment, l’encodeur utilise la matrice Hb pour calculer :

uk = Hbzm
q . (30)

Le syndrome uk est ensuite transmis au décodeur. Dans ce cas, le taux de codage est donné par
R = k/n.

Au décodeur, pour appliquer le test de Neyman-Pearson, nous identifions d’abord un vecteur
ẑm

q par recherche exhaustive :

ẑm
q = arg min

zm
d(Gqzm, yn) s.t. Hbzm = uk. (31)

Ensuite, le test suivant est appliqué :

n∑
i=1

(x̂q,i ⊕ yi) < λqb, (32)

où x̂n
q = Gqẑm

q , et λqb est un seuil entier.

Les probabilités d’erreur de Type-I (α(qb)
n ) et de Type-II (β(qb)

n ) pour la quantification-binning
sont exprimées comme suit :

α(qb)
n = 1 − PB(p0) − PB̄(p0), (33)

β(qb)
n = PB(p1) + PB̄(p1), (34)

où :

PB(δ) =
min(d(qb)

max,λqb)∑
ν=0

E
(qb)
ν(n
ν

) d
(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

Γν,j,γδj(1 − δ)n−j , (35)

PB̄(δ) =
n∑

i=0


d

(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

Γi,j,wδj(1 − δ)n−j

×

 n∑
t=1

λqb∑
ν=0

E
(qb)
ν(n
ν

) A
(qb)
t Γi,ν,t(n

i

)

 . (36)

Ici, E
(qb)
ν est le nombre de mots yn de poids de Hamming ν appartenant à la région de décision

C(qb)
0 . De plus, {A

(qb)
t }t∈J0,nK répresente le nombre de mots xn

q de poids de Hamming t tels qu’il
existe zm

q satisfaisant xn
q = Gqzn

q et Hbzm
q = 0k.
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Résultats numériques et conclusions

Nos résultats numériques mettent en évidence l’efficacité des schémas de quantification et
de quantification-binning par rapport aux schémas non codés. En outre, ces résultats valident
l’exactitude des probabilités d’erreur analytiques en démontrant leur cohérence avec les simulations
Monte-Carlo.

0.6 Conclusion Générale

Dans cette thèse, nous avons étendu l’étude du test d’hypothèses distribué à des modèles de
sources plus généraux, dépassant les hypothèses classiques d’indépendance et d’identiquement
distribués (i.i.d.). Nous avons analysé les performances du test d’hypothèses distribué pour ces
modèles et dérivé des exposants d’erreur atteignables en proposant un schéma de codage basé
sur l’approche du spectre de l’information, introduite par Han [42]. Contrairement aux schémas
existants pour les sources i.i.d., qui reposent sur la méthode des types, notre approche offre une
borne inférieure générale sur l’exposant d’erreur. Notamment, pour le cas particulier des sources
i.i.d., notre exposant général correspond aux résultats bien établis de [2].

Nous avons ensuite démontré l’applicabilité de notre analyse à divers modèles de sources
d’intérêt, tels que les sources gaussiennes stationnaires et ergodiques, ainsi que le modèle de
Gilbert-Elliot (GE). En particulier, pour le modèle GE, nous avons introduit une méthode efficace
pour estimer l’exposant d’erreur, en utilisant la récursion avant des modèles de Markov cachés.
Les résultats numériques ont permis d’évaluer l’impact des paramètres du modèle sur l’exposant
d’erreur et le compromis entre l’erreur de test et l’erreur de binning.

Nous nous sommes ensuite concentrés sur le développement de schémas de codage pratiques.
Plus précisément, nous avons proposé des implémentations à courte longueur des schémas de
quantification et de quantification-binning, construits à l’aide de codes linéaires en blocs. Pour ces
deux schémas, nous avons abordé la manière d’effectuer le test d’hypothèses dans des scénarios
pratiques. En plus des constructions pratiques, nous avons dérivé des expressions théoriques
des probabilités d’erreur de Type-I et de Type-II pour chaque schéma proposé. Les résultats
numériques ont montré que nos implémentations pratiques offrent des améliorations notables en
termes de performance par rapport aux schémas non codés de référence, où seule une partie des
bits est transmise sans codage.

Enfin, bien que les preuves issues de la théorie de l’information aient constitué une base
pour le développement de nos schémas pratiques, les enseignements tirés de la conception
pratique peuvent fournir des orientations précieuses pour de futurs travaux théoriques sur le test
d’hypothèses distribué, en particulier pour la configuration symétrique. En plus, le travail réalisé
dans cette thèse pourrait servir de base à l’investigation théorique et pratique de schémas de
codage dédiés à des tâches d’apprentissage plus complexes, telles que la classification.
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Chapitre 1

INTRODUCTION

1.1 Background and Motivation

Sensor Event area

Fusion center

Figure 1.1 – Distributed sensors network

In the era of 5G and Beyond 5G technologies, the paradigm of communication systems is
shifting to address emerging challenges and requirements driven by practical concerns, such as
energy consumption and system complexity. One of the key current challenges lies in distributed
communication networks, where the data is not centralized at one location. It is rather collected
in a distributed manner at several locations and gathered at a fusion center for further processing.
As a toy example, we can consider a network of sensors for measuring the temperature at
different locations, as illustrated in Figure 1.1. Due to the energy cost of wireless communication,
each sensor is constrained in its ability to communicate its measurements to the fusion center.
However, given that the sensors observe the same phenomenon, their measurements are often
highly correlated. Distributed source coding [4, 5, 6] is a compression technique that exploits
such correlation to significantly reduce the amount of information that each sensor needs to
transmit to the fusion center.
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1.1.1 Distributed source coding

In distributed source coding, sensors measurements are compressed independently and later
jointly decompressed at the fusion center. This concept was first introduced as an information-
theoretic problem in the seminal work of Slepian and Wolf [7]. A simple setup was considered,
where two sources, X and Y, are encoded independently and decoded jointly. The results of [7]
provide an achievable rate region and show that, asymptotically, separate encoding can achieve
the same performance as joint encoding.

While the initial work in [7] only considered lossless source coding where the sources X and
Y need to be reconstructed exactly, the problem was then extended to many setups. Notably,
Wyner and Ziv [8] considered a lossy version of the asymmetric Slepian-Wolf problem, where
one source, Y, is available at the decoder as side information, and only the source X needs
to be encoded. In such a setup, the decoder reconstructs the source X with the help of this
side information, ensuring that the average distortion does not exceed a specified threshold. An
example of this setup consists of transmitting an image at high quality to a decoder that already
has access to a noisy or lower-quality version of the image. Although the asymmetric setup is
commonly studied in information theory for its apparent simplicity, the symmetric setup becomes
more relevant in practical scenarios where the side information Y is also encoded.

1.1.2 Goal-oriented communications

In the previous distributed source coding problem, the main objective of the fusion center
is to reproduce the original data, mostly focusing on minimizing error probability or distortion
between original and reconstructed data [8, 9]. However, in modern communication systems, the
focus may shift toward addressing a specific task. Especially, in the emerging field of goal-oriented
communications [10, 11, 12], the objective is no longer to only reconstruct the data but rather
to enable the fusion center to apply specific tasks, such as classification, decision-making, or
semantic analysis, directly on the received data. By transmitting only task-relevant information,
this approach reduces the communication rate and may even improve the performance of the
target task. For instance, a fire detector targeting to decide between the presence or absence
of a fire may only need a few bits rather than the full observation to make the decision. In the
same way, in scenarios like image compression for classification purposes [13, 14], the goal is to
transmit only the information necessary for accurate classification, rather than the entire raw
data.

1.1.3 Decision-making over coded data

In this thesis, we focus on the specific case of decision-making, where the objective of the
fusion center is to make decisions directly from the received data. As examples of applications,
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one may consider embedded sensors on the human body for health disease detection, underwater
activity monitoring, traffic jam detection from route planning of autonomous vehicles, or fire
alarm detection [15]. Another relevant example is smart farming systems, where sensors and
drones transmit information in real-time to a server for decision-making regarding resource
management, such as water and fertilizer levels [16]. In information theory, the problem of
decision-making over coded data was formulated as distributed hypothesis testing (DHT) [17].

1.2 Distributed Hypothesis Testing (DHT)

Encoder 1

Encoder 2

Decoder 

Figure 1.2 – Distributed hypothesis testing

The DHT setup focuses on binary hypothesis testing where the decoder aims to distinguish
between two possible hypotheses called null hypothesis denoted by H0 and alternative hypothesis
denoted by H1.

1.2.1 System model

Consider a DHT problem involving two separate terminals, one observing a source X, and
the other a source Y, as illustrated in Figure 1.2. We distinguished two different setups:

1. Symmetric setup: here, both X and Y are encoded at rates R1 and R2, respectively.

2. Asymmetric setup: in this setup, Y is fully available at the decoder, i.e., R2 = ∞, as in
the Wyner-Ziv setup described above [8].

We assume that the sources X and Y follow a joint probability distribution determined by one
of two hypotheses, H0 or H1 [18, 19, 20]. For instance, in the special case of testing against
independence, X and Y are independent under the alternative hypothesis H1. The objective of
the decoder is to decide between H0 and H1.

The performance of DHT is characterized by two error probabilities referred to as Type-I
and Type-II error probabilities, denoted by αn and βn, , where n is the source length. Type-I
error occurs when H1 is chosen while hypothesis H0 is true, whereas Type-II error is when H0 is
selected under hypothesis H1. In this thesis, in order to fully address DHT, we investigate both
information-theoretic performance limits and practical coding schemes for this setup.
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1.2.2 Information-theoretic analysis of DHT

In the information-theoretic framework of DHT, the Type-I error probability must remain
below a prescribed threshold. The requirement for the Type-II error probability is to decay
exponentially to zero, with the decay rate defined as the error exponent [21]. The primary
objective is to determine the achievable error exponent [18, 19].

In the asymmetric case, the DHT problem has been well studied in the literature for i.i.d.
sources. Different achievable coding schemes have been proposed, providing increasingly precise
bounds on the error exponent, as detailed in Chapter 2. Ahlswede and Csiszár introduced
the so-called quantization scheme [18], which provides a lower bound on the error exponent
and is optimal for specific cases such as testing against independence. Han later refined this
scheme, yielding a tighter lower bound [21]. To better exploit source correlation, Shimokawa
et al. introduced the quantize-binning scheme [22], which further reduces the coding rate. The
quantize-binning scheme closely resembles the Wyner-Ziv scheme [8] but is specifically tailored for
hypothesis testing, focusing on the analysis of Type-I and Type-II errors rather than distortion.
Moreover, for a given coding rate, the quantize-binning scheme achieves a tighter error exponent
bound compared to the quantization scheme. However, this scheme is not always optimal, and
its optimality and sub-optimality have been analyzed in several works [23, 2, 24], with further
improvements presented in [25]. The quantize-binning scheme has also been extended to more
complex setups, including discrete memoryless channels [26], multiple-access channels [27], and
two-hop relay networks [28].

While error exponent bounds for DHT have been explored in the asymmetric setup, the
symmetric setup has received significant attention in the specific case of zero-rate compression,
where one or both coding rates asymptotically approach zero [21, 29, 30, 31, 32]. Although
this scenario is not relevant for usual lossless or lossy data compression [7, 8], it has important
applications in statistics [21]. Since no explicit coding scheme is required when considering
zero-rate compression, research has primarily focused on the design of testing schemes [32, 33]
and the characterization of achievable error exponents [21, 29, 30, 31, 32, 33].

1.3 Limitations of Previous Work on DHT

The achievable coding schemes for DHT, described previously, assume that the sources
X and Y generate independent and identically distributed (i.i.d.) pairs of symbols (Xt, Yt),
t ∈ J1, nK[2, 27, 34, 23, 35], or block-i.i.d. vectors (XM

t , YM
t ) [36, 37]. However, i.i.d. and block-

i.i.d. models are often inadequate for capturing the statistics of signals like time series or
videos, which cannot be decomposed into fixed-length independent blocks and are frequently
non-stationary and/or non-ergodic. Additionally, the proofs for achievable error exponents in
these models often rely on the method of types [38], which cannot be applied to non-i.i.d. sources.
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This means that the derived error exponent bounds are also restricted to i.i.d. sources. The
key question is then whether it is possible to develop a more general information-theoretic
analysis that does not rely on assumptions of independence between symbols, stationarity, or
ergodicity. Therefore, the first objective of this thesis is to investigate DHT using a generic
sources model, that is non-i.i.d. and can account for non-stationary and non-ergodic signals,
while still encompassing the i.i.d. models as particular instances.

In addition, while the DHT information-theoretic performance is known in the i.i.d. case,
the problem of designing practical short-length coding schemes for this problem has been by far
less investigated. Some existing works have already introduced practical binary quantizers [39],
binning schemes [4], and quantize-binning schemes [40] for Wyner-Ziv coding, all constructed
with linear block codes. However, these constructions were designed for the purpose of source
reconstruction and typically involve very long source sequences, often exceeding 105 bits. Moreover,
they rely on message-passing algorithms that perform poorly with shorter sequences. In contrast,
DHT inherently deals with short-length sequences, where just a few dozen bits may suffice to
make a correct decision. Notably, no previous work has proposed practical implementation of
the quantization and quantize-binning schemes dedicated to DHT. The construction of efficient
short-length linear block codes is often known to be a challenging problem [41]. Consequently, an
important question arises regarding whether binary quantizers and quantize-binning schemes
are efficient structures for practical short-length DHT. Another relevant challenge lies in how
to perform the hypothesis test, particularly since the strategies proposed in information theory
proofs are not directly implementable in practice. In this thesis, we address all these key points.

1.4 Main contributions

This thesis presents two main contributions, as outlined in the following sections: DHT for
general sources and design of practical short-length coding schemes for DHT.

1.4.1 DHT for general non-i.i.d. sources model

This thesis first investigates DHT using a generic sources model, that is non-i.i.d. and can
account for non-stationary and non-ergodic signals. We investigate the performance of DHT for
these source models, specifically deriving a generic formula for the achievable error exponent.
For this, we propose an information-theoretic coding scheme that achieves a general lower bound
on the error exponent. Our achievability proof is based on the information spectrum approach,
originally introduced by Han in [42].

To validate our general analysis, we show that when applied to the specific case of i.i.d. sources,
our derived error exponent aligns with the well-established results found in [2]. We then extend
the analysis to other source models of interest, including the stationary and ergodic Gaussian
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source model, as well as the Gilbert-Elliot (GE) source model. The GE model is particularly
relevant for practical applications, such as video coding [43], link quality estimation [44], and
packet loss analysis [45], and has not been previously studied in the context of DHT. For this
model, we propose an efficient numerical method to evaluate the error exponent and explore the
impact of different GE model parameters on the error exponent. This provides valuable insights
for the design of practical coding schemes for DHT.

1.4.2 Practical short-length coding schemes for DHT

As a second main contribution, we propose practical quantization and quantize-binning
schemes specifically tailored for DHT in both symmetric and asymmetric setups. Similar to
previous code designs for Wyner-Ziv coding, our schemes are built using binary linear block
codes but are tailored for short block lengths (less than 100 bits). For each proposed scheme,
we first address how to perform the hypothesis test in the practical case. Then, to evaluate
the code performance, we derive exact analytical expressions for the Type-I and Type-II error
probabilities of each scheme. These tools are novel, and enable the optimization and comparison
of the proposed schemes across a broad range of source and code parameters. Our simulation
results demonstrate the superior performance of our schemes compared to the baseline uncoded
schemes.

1.5 Organization of the thesis

The organization of the thesis is as follows. Chapter 2 provides a review of the existing
literature on DHT. Chapter 3 focuses on DHT for the general sources model and presents the
achievable bound for the error exponent. Chapter 4 applies the general error exponent bound to
specific cases, including the stationary and ergodic Gaussian source model and the GE source
model. Chapter 5 introduces practical short-length coding schemes for DHT and evaluates their
performance. Finally, Chapter 6 summarizes the findings and presents some perspectives.
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Chapitre 2

STATE OF THE ART

2.1 Introduction

In this chapter, we review the existing literature on Distributed Hypothesis Testing (DHT).
Section 2.3 begins with a description of the system model involving one encoder and one decision
center with side information, referred to as the asymmetric setup. For this setup, we present the
existing information-theoretic coding schemes and their corresponding achievable error exponent
bounds. Section 2.4 focuses on the symmetric setup of DHT, which involves two encoders. Section
2.5 presents DHT over more complex scenarios including noisy channels and multi-hop networks.

2.2 Notation

The following notation will be used throughout this thesis. The set of integers between 1
and M is denoted by J1, MK. The cardinality of a finite set A and of the range of a function f

are denoted by |A|, and ∥f∥, respectively. Calligraphic letter X represents a finite set. Random
variables are indicated by capital letters, such as X, while their specific realizations are represented
by lowercase letters, like x. The set of probability distributions on X is denoted by P(X). Random
sequences of length n are denoted with bold capital letters Xn = (X1, X2, . . . , Xn), with their
realizations denoted as bold lowercase letters xn. For any µ ≥ 0, the set of all µ-typical sequences
for X is denoted by T n

µ (X).

The Kullback–Leibler divergence between two distributions P and Q is represented by
D(P ||Q). The mutual information between X and Y is denoted by I(X; Y ), and the entropy
of a source X is denoted by H(X). We also denote by I(un; un)e and H(xn)e, the empirical
mutual information between X and Y , and the empirical entropy of a source X, respectively.
Additionally, H2 represents the binary entropy function. The discrete probability distribution of
a Bernoulli random variable is denoted by Bern(p).
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Figure 2.1 – Distributed Hypothesis testing with side information.
Source : © 2017 IEEE. Reproduced with permission from [2].

2.3 Distributed Hypothesis Testing with Side Information (asym-
metric setup)

DHT, first introduced by Berger in [17] and later considered in [18, 21, 22], extends the
Wyner-Ziv setup [8], in which the decoder aims to reconstruct a source within a specified distortion
using side information available only to the decoder. In the DHT setup, the objective of the
decoder shifts to making a decision between two hypotheses.

2.3.1 Information-theoretic formulation of DHT

Consider a two-terminal problem involving an encoder that observes a source sequence Xn and
a decoder that observes a side information sequence Yn, as illustrated in Figure 2.1. The encoder
sends a coded version of Xn while the decoder aims to decide between two hypotheses, H0 and
H1, based on both Yn and the received coded data. Since most of existing works focus on the
independent and identically distributed (i.i.d.) source model, we also assume in this chapter that
the n symbols pair (Xt, Yt) for t ∈ J1, nK, of the sequences Xn and Yn are i.i.d. Moreover, the
joint probability mass function (p.m.f.) of the tuple (X, Y ) depends on the underlying hypotheses
H0 and H1. These hypotheses are defined as

H0 : (X, Y ) ∼ PXY , (2.1)

H1 : (X, Y ) ∼ PX̄Ȳ , (2.2)

where the marginal probability distributions PX and PY do not depend on the hypothesis.
Hypothesis testing against independence [46, 47] is a special case of (3.14) and (3.15), in which
X and Y are assumed to be independent under the alternative hypothesis H1, i.e., PX̄Ȳ = PXPY .

We consider the following usual coding scheme defined in the literature on DHT [19, 35].

Definition 2.1 Given a rate parameter R ≥ 0, consider a sequence (f (n), g(n))n∈N of encoding
and decoding functions, defined for each n ∈ N by

f (n) : X n −→ Mn = J1, MnK, (2.3)

g(n) : Mn × Yn −→ H = {H0, H1}, (2.4)
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where the sequence (Mn)n∈N satisfies

lim sup
n→∞

1
n

log Mn ≤ R. (2.5)

Given that the decoder decides between the hypotheses H0 and H1, we can define two types of
errors: Type-I error probability αn, which occurs when H1 is chosen while hypothesis H0 is true,
and Type-II error probability βn, which occurs when H0 is selected under hypothesis H1 [19, 35].
More formally:

Definition 2.2 The Type-I and Type-II error probabilities, αn and βn, for each n ∈ N, are
defined as

αn = P
[
g(n)

(
f (n) (Xn) , Yn

)
= H1 | H0 is true

]
, (2.6)

βn = P
[
g(n)

(
f (n) (Xn) , Yn

)
= H0 | H1 is true

]
. (2.7)

In DHT setups, it is common to require the Type-I error αn to be below a specified threshold,
while focusing on the exponential decay of the Type-II error βn, which is sometimes called “Stein
regime” [18, 19]. The objective of the information-theoretic analysis is then to characterize the
achievable Type-II error exponent.

Definition 2.3 (Achievability under rate constraints) A Type-II error exponent θ is said
to be achievable for a given R ≥ 0, if for each ϵ > 0 and for a large blocklength n, there exists
a sequence

(
f (n), g(n)

)
n∈N

of encoding and decoding functions such that the Type-I and Type-II
error probabilities αn and βn satisfy

αn ≤ ϵ, (2.8)

and
lim sup

n→∞

1
n

log 1
βn

≥ θ. (2.9)

In the literature, various achievable coding schemes have been proposed to characterize the
achievable error exponent, θ. In the following sections, we present the existing achievable coding
schemes and their corresponding error exponents’ bounds for DHT with side information.

2.3.2 Ahlswede and Csiszár’ scheme

In [18], Ahlswede and Csiszár proposed an achievable scheme in which the encoder transmits
both a quantized version of X and its type (which is sent with zero rate asymptotically) to the
decoder. The decoder then uses the received type and the quantized value of X to perform the
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test with the help of Y . The following theorem provides a lower bound on the achievable error
exponent for this scheme:

Theorem 2.1 ([18, Theorem 5] Ahlswede and Csiszár error exponent) For every R >

0,
θAC(R) ≥ D (PX∥PX̄) + sup

PU|X :
I(X,U)≤R

D (PUY ∥PŪ Ȳ ) , (2.10)

where the Markov chains U − X − Y , and U − X̄ − Ȳ hold.

The proof is provided in [18]. The first term of (2.10) represents the contribution of the type of
X and is equal to 0 when the marginal distribution of X is the same under H0 and H1. The
second one comes from the fact that a lossy description U of X was sent with rate R.

The scheme of [18], although suboptimal in general, is proven to be optimal for the problem
of testing against independence [18]. In this particular case, the error exponent (2.10) simplifies
to:

Theorem 2.2 ([18, Theorem 2] Error exponent when testing against independence)
For every R > 0, when PX̄Ȳ = PX × PY :

θAC(R) = max
PU|X :

I(X,U)≤R
|U|≤|X |+1

I(U ; Y ). (2.11)

Note that, the first term of (2.10) does not appear in (2.11) because it is assumed in [18] that the
marginal distribution of X, PX under H0 is the same as the marginal distribution PX̄ under H1.
In addition, the Kullback-Leibler divergence term of (2.10) simplifies to the mutual information
expression in (2.11).

2.3.3 Han scheme

Han improved upon the quantization scheme of Ahlswede and Csiszár by transmitting both
the quantized version of X (represented by U) and the joint type (which is sent with zero rate
asymptotically) of X and U to the decoder. At the decoder, by using the side information yn

and the received quantized vector un, the decoder decides H0 if (un, xn) and (un, yn) are jointly
typical under H0. This leads to the following lower bound on the achievable error exponent [19].

Theorem 2.3 ( [19, Theorems 2,3] Han lower bound) For every R > 0,

θHAN (R) ≥ sup
PU|X :

I(X,U)≤R

min
PŨX̃Ỹ ∈PHAN

D
(
PŨX̃Ỹ ∥PŪX̄Ȳ

)
, (2.12)

PHAN =
{
PŨX̃Ỹ : PŨX̃ = PUX , PŨ Ỹ = PUY

}
(2.13)
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Here, PHAN represents the set of the all possible joint types PŨX̃Ỹ such that the joint type PŨX̃

coincides with the true distribution PUX under H0, and the joint type PŨ Ỹ coincide with the true
distribution PUY under H0. The detailed proof of (2.12) is provided in [19], using the method of
types [38].

2.3.4 Shimokawa et al. scheme

Later on, Shimokawa et al. [22] proposed a quantize-binning scheme to achieve an error
exponent tighter than (2.12). In this scheme, the encoder quantizes and then bins its observation
xn, and the receiver performs the test directly using the received bin index and the side information
yn. Binning, similar to Slepian-Wolf coding [7], takes advantage of the correlation between the
sources X and Y , thereby reducing the compression rate.

The quantize-binning scheme operates as follows. To construct the codebook, we first generate
2nR′ sequences un randomly generated according to a pre-defined distribution PU |X , and then
distribute them uniformly into 2nR bins, with R < R′. The codebook and the bin assignment
are revealed to the encoder and the decoder. To encode xn, the encoder first quantizes xn by
selecting a codeword un that is jointly typical with xn and sends to the decoder the index of
the bin to which the sequence un belongs. The joint type of (xn, un) is also sent to the decoder,
which requires zero additional rate asymptotically. In the next paragraphs, we will describe the
testing strategy introduced by Shimokawa et al.[22].

The scheme of Shimokawa et al. was later considered by many works [15, 2, 24, 25], where
lower and upper bounds on the error exponents were established. Before discussing the lower
bound achieved by Shimokawa et al., we first present a simple lower bound on the error exponent
from the literature, provided by Katz et al. [2]. Although the result of [2] was obtained long after
the initial work [22], presenting first this result is insightful for understanding the interest of the
achievable coding scheme of Shimokawa et al.

2.3.4.1 Katz and Piantanida lower bound on the error exponent for the quantize-
binning scheme

The bound on the error exponent in [2] is achieved by adopting a simple solution at the
decoder. From the received bin index and side information yn, the decoder goes over all sequences
within the bin. For each sequence un in the bin, the decoder assumes it is the correct one and
decides H0 if (un, yn) is jointly typical [2]. The following lower bound on the error exponent is
achieved from this scheme [2].

Theorem 2.4 ([2, Proposition 4] Simpler bound on the error exponent) For any R >
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0
θKP (R) ≥ sup

PU|X :
I(U ;X|Y )<R<I(U ;X)

min
[
R − [I(X; U) − I(U ; Y )], D (PUY ∥PŪ Ȳ )

]
(2.14)

The proof is provided in [2]. On the right-hand side of (2.14), the first term reflects the binning
error and the second one represents the testing error. The resulting error exponent therefore
corresponds to a trade-off between the two errors due. A precise description of X using U allows
the decoder to perform hypothesis testing with high accuracy. However, this approach results in
a large codebook and larger bins, making the binning error more likely. On the other hand, a low
description leads to a smaller codebook and bins, reducing the risk of binning errors. However,
the retrieved sequence is less effective for hypothesis testing, making the testing error more likely.
This trade-off between the two error events was properly addressed in [2].

2.3.4.2 Shimokawa, Han, and Amari lower bound

The lower bound in (2.14) is simple to compute and was obtained through a straightforward
decoding approach, where H0 is accepted if there exists a pair (un, yn) which is jointly typical
under H0, assuming un is the correct sequence. However, this approach may not be optimal,
as the joint probability PXY between the source X and side information Y depends on the
hypotheses H0 or H1. Therefore, Shimokawa, Han, and Amari (SHA) [22] had introduced a more
refined decoding strategy. Instead of assuming that un is the correct sequence, their scheme
employs minimal empirical entropy check as follows. From the received bin index and the side
information yn, it selects ûn if:

He(ûn|yn) < He(ũn|yn), for all ũn ̸= ûn. (2.15)

It then performs the test by selecting H0 if the extracted sequence ûn and the side information
yn are jointly typical under H0 [22, 23]. This scheme achieves a tighter lower bound on the error
exponent compared to (2.14).

Theorem 2.5 ([20, Theorem 4.3] Shimokawa, Han and Amari (SHA) lower bound)
For any R > 0,

θSHA(R) ≥ sup
PU|X :

I(U ;X|Y )<R<I(U ;X)

min
[

min
PŨX̃Ỹ ∈PSHA(PU|X)

D
(
PŨX̃Ỹ ∥PŪX̄Ȳ

)
+ R − I(U ; X | Y ),

min
PŨX̃Ỹ ∈PHAN

D
(
PŨX̃Ỹ ∥PŪX̄Ȳ

) ]
, (2.16)
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where

PSHA
(
PU |X

)
:=
{
PŨX̃Ỹ :

PŨX̃ = PUX , PỸ = PY , H(Ũ | Ỹ )e ≥ H(U | Y )
}

, (2.17)

In (2.16), the first two terms represent the binning error. Unlike (2.14), the Kullback-Leibler
divergence in the binning error of (2.16) arises from the minimal empirical entropy decoding,
which is absent in (2.14). The third term of (2.16) represents the testing error, which is achieved
by Han’s scheme. It is evident that the lower bound (2.16) is tighter than (2.12). Finally, note
that, in (2.17), H(Ũ | Ỹ )e ≥ H(U | Y ) is equivalent to I(Ũ ; Ỹ )e ≤ I(U ; Y ).

2.3.5 Kochman and Wang improvement

The empirical entropy minimization in the SHA scheme is restricted to PŨX̃Ỹ satisfying
I(Ũ ; Ỹ )e ≤ I(U ; Y ) as shown in (2.17). However, recently, Kochman and Wang have shown that
a better error exponent bound for the quantize-binning scheme can be achieved by replacing the
condition I(Ũ ; Ỹ )e ≤ I(U ; Y ) in (2.17) by I(Ũ ; Ỹ )e ≤ R′, where R′ corresponds to the size of a
bin. This choice enlarges the set of possible empirical distributions compared to (2.17), therefore
potentially reducing the minimization in (2.16) and improving the error exponent. In fact, the
error exponent derived in [25] is the same as the SHA error exponent (2.16), except that in (2.17),
I(U ; Y ) is replaced by R′ (see [25], for more details).

2.3.6 Optimality of SHA scheme

It is worth noting that the quantize-binning scheme is not optimal in general. Rahman and
Wagner have shown in [23] that the error exponent (2.16) is optimal when the side information
Y is replaced by a tuple of sources (Y, Z) such that X and Y are conditionally independent
knowing Z under H1 [23]. More formally, in Fig.2.1, the decoder observes the sequences Yn and
Zn instead of Yn only. Therefore, the hypotheses H0 and H1 are now defined as

H0 : (X, Y, Z) ∼ PXY Z , (2.18)

H1 : (X, Y, Z) ∼ PX̄Ȳ Z̄ = PZPX|ZPY |Z . (2.19)

This problem is the conditional version of the test against independence studied by Ahlswede
and Csiszár [18].

Theorem 2.6 ([23, Theorem 3] Error exponent for testing against conditional independence)
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For any R > 0,

θRW (R) = sup
U :I(U ;X|Z)≤R

U→X→Z
|U|≤|X |+1

I(U ; Y | Z) (2.20)

The proof is provided in [23]. In addition, Rahaman and Wagner provided both inner and outer
bounds for the error exponent of the quantize-binning scheme for the problem of L-encoder
hypothesis testing against conditional independence. In the special case of L = 1, as defined in
(2.18) and (2.19), they established that the inner and outer bounds coincide with (2.20), which
proves that the quantize-binning scheme is optimal for this problem. They also proved that in
this case, the SHA lower bound (2.16) satisfies θSHA(R) ≥ θRW (R), establishing that the SHA
scheme is also optimal in this case.

However, Watanabe provided in [24] an example where the SHA scheme is sub-optimal, which
we now describe in detail.

2.3.7 Sub-optimality of the quantize-binning scheme

In this section, we present the example of [24], which illustrates the sub-optimality of the SHA
scheme in other cases than testing against conditional independence. Let X ∼ Bern

(
1
2

)
, and

Y = X ⊕ E, where E is a binary random variable independent of X, and we denote p = P(E = 1)
with 0 < p ≤ 1/2. The two hypotheses are expressed as:

{
H0 : p = p0,

H1 : p = p1,
(2.21)

with p0 < p1. For this example, Figure 2.2 shows the error exponents of the HAN scheme (2.12)
and the SHA scheme (2.16), as achieved by the critical rate defined by Watanabe in [24]. The
critical rate is the minimum communication rate required to achieve the Stein exponent [24]:

Rcr = inf {R : E(R) = D (PXY ∥QXY )} . (2.22)

Watanabe showed that to attain the Stein exponent, one should take U = X in the quantize-
binning bound, i.e., no quantization is used (see [24, Prop.2]). To achieve (2.22), using Han’s
scheme requires a rate Rcr = I(X; X) = 1 bit. Since (2.16) lies below (2.12) for all R < Rcr, the
SHA scheme has worse performance than the Han scheme.
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Figure 2.2 – Error exponents (2.10) (dashed curves) and (2.16) (plain curves) for U = X for
the values of p = 0.01 (green) and p = 0.1(magenta).

2.4 Distributed Hypothesis Testing with two encoders (Symme-
tric setup)

In the previous sections, we focused on the asymmetric setup of DHT, where the source X

is encoded and the side information Y is fully observed at the decoder. Another relevant setup
of DHT, which is referred to as symmetric setup, is the case where both X and Y are encoded
at rates R1 and R2, respectively. The definitions of the encoding and decoding functions of the
asymmetric setup can be straightforwardly extended to the symmetric setup as follows.

Definition 2.4 Given rate parameters R1 ≥ 0 and R2 ≥ 0, consider a sequence (f (n)
1 , f

(n)
2 , g(n))n∈N

of encoding and decoding functions in the symmetric setup, defined for each blocklenght n ∈ N by

f
(n)
1 : X n −→ Mn = J1, MnK, (2.23)

f
(n)
2 : Yn −→ Nn = J1, NnK, (2.24)

g(n) : Mn × Nn −→ H = {H0, H1}, (2.25)

where the sequence (Mn)n∈N and (Nn)n∈N satisfy

lim sup
n→∞

1
n

log Mn ≤ R1, (2.26)

and
lim sup

n→∞

1
n

log Nn ≤ R2, (2.27)

respectively, and Mn and Nn are the cardinalities of the alphabet sets Mn and Nn, respectively.
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2.4.1 Existing works on the error exponent bounds for the symmetric setup

The primary challenge in the symmetric setup is to determine the optimal error exponent [20].
However, Han [21] provided a lower bound on the achievable error exponent for the quantization
scheme.

Theorem 2.7 ([21, Theorem 6] Han Lower bound for the symmetric setup) For every
R1 > 0, and R2 > 0,

θHAN (R1, R2) ≥ sup
U,V :

I(X,U)≤R1
I(Y,V )≤R2

U→X→Y →V

min
PŨX̃Ỹ Ũ ∈P

D
(
PŨX̃Ỹ Ṽ ∥PŪX̄Ȳ V̄

)
, (2.28)

P =
{
PŨX̃Ỹ : PŨX̃ = PUX , PŨ Ỹ = PUY , PŨ Ṽ = PUV

}
, (2.29)

where Ū , V̄ are the random variables such that Ū → X̄ → Ȳ → V̄ .

The error exponent (2.28) is a generalization of the error exponent (2.12) achieved for the
quantization scheme for the asymmetric setup. The proof is provided in [21].

In the specific case of binary sources, Haim and Kochman [33] utilized the Körner-Marton
decoder [48] to establish error exponents for Type-I and Type-II error probabilities in the
symmetric setup for the binning-only scheme. However, to the best of our knowledge, no previous
work has explicitly determined an achievable error bound for the quantize-binning scheme in the
symmetric setup. The most investigated case for the symmetric setup is the zero-rate hypothesis
testing problem which we now briefly describe.

2.4.2 Zero-rate Hypothesis Testing Problem

The zero-rate hypothesis testing involves the two terminals transmitting their messages to
the decoder at zero rate. More formally, the rate constraints (2.26) and (2.27) satisfy

R1 = 1
n

log Mn → 0, R2 = 1
n

log Nn → 0, (2.30)

asymptotically. The objective of the decoder is still to decide between hypothesis H0 or the
alternative hypothesis H1.

In the case of one-bit data compression where the encoders f
(n)
1 and f

(n)
2 are such that∥∥∥f (n)

1

∥∥∥ =
∥∥∥f (n)

2

∥∥∥ = 2, independently from n, Han established the optimal error exponent for this
setup through a single-letter characterization [21].
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Theorem 2.8 ([21, Theorem 8] Optimal error exponent for one-bit compression)

θHAN (1, 1) ≥ min
PX̃Ỹ :

PX̃=PX

PỸ =PY

D
(
PX̃Ỹ ∥PX̄Ȳ

)
. (2.31)

To achieve (2.31), the encoding functions f
(n)
1 and f

(n)
2 are defined such that f

(n)
1 (xn) = H0 if

xn ∈ T n
µ (X) and f

(n)
1 (xn) = H1, otherwise ; f

(n)
2 (yn) = H0 if yn ∈ T n

µ (Y ) and f
(n)
2 (yn) = H1,

otherwise (see [21] for more details on the proof). Here T n
µ (X) and T n

µ (Y ) are the µ-typical sets
for X and for Y , respectively. In addition, Shalaby and Papamarcou [29] proved that Han’s
exponent (2.31) is tight under the positivity condition PX̄Ȳ > 0, (x, y) ∈ X × Y. Note that the
Type-II error exponent (2.31) is derived with the constraint of αn ≤ ϵ. Han and Kobayashi have
considered the same one-bit compression scheme with an exponential constraint αn ≤ e−nr (
r > 0 ) on the Type-I error probability [30]. They obtained a more general result than (2.31).

In the general case of zero-rate compression, the encoders f
(n)
1 and f

(n)
2 are such that∥∥∥f (n)

1

∥∥∥ = kn, and
∥∥∥f (n)

2

∥∥∥ = hn, such that

kn → ∞, hn → ∞ as n → ∞ (2.32)

but
R1 = 1

n
log kn → 0, R2 = 1

n
log hn → 0. (2.33)

For this setup, Han and Kobayashi established the following optimal error exponent among the
class of all zero-rate testing schemes [30, 31].

Theorem 2.9 ([20, Theorem 5.4]Optimal error exponent for zero-rate compression)
for any r > 0,

θ(0, 0) ≥ min
PX̃Ỹ :

PX̃=PX

PỸ =PY

D(PX̂Ŷ ∥PX̄Ȳ )≤r

D
(
PX̃Ỹ ∥PX̄Ȳ

)
. (2.34)

The error exponent (2.34) is achieved by the following test, as detailed in [30, 32]: after observing
xn and yn, the encoders transmit their respective types. Upon receiving the marginal types
(tx, ty), the decoder calculates the projected relative entropy E(tx × ty||PXY )[32]. If this value is
below a certain threshold r, the decoder outputs H1 ; otherwise, it outputs H0.

Recently, Watanabe addressed the non-asymptotic performance of the zero-rate compression
setup in [32]. He proposed a Neyman-Pearson-like test tailored for short block lengths, which
outperforms the test proposed in [30]. However, the optimality of Watanabe’s test for a given
block length remains an open question.
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2.5 Distributed hypothesis testing in more complex scenarios

DHT has also been extended to various network scenarios. For instance, it was extended to
take into account noisy channels [27, 49], Discrete Memoryless Channels (DMC) [26], Multiple
Access Channels (MACs) [28], and Broadcast channel [50]. In these works, the authors have
developed coding schemes that either combine hypothesis testing and channel coding jointly
or apply them separately. The resulting error exponent in these schemes is characterized by
competing terms coming from hypothesis testing and channel coding [26, 50]. Notably, joint
approaches consistently outperform separation-based methods by achieving higher error exponents
[26]. However, the trade-offs between these competing exponents require further investigation.
Additionally, the complexity of joint hypothesis testing and channel coding schemes must be
carefully evaluated for practical implementation.

Some other works explored DHT with interactive terminals [51, 52]. In these setups, two nodes
can interactively communicate over a noiseless, bidirectional link before one of them performs
hypothesis testing. In this setup, the optimal error exponent for testing against independence
was established in [51]. For more general hypotheses (not only testing against independence),
a new achievable error exponent was provided in [52], which was shown to be optimal, given
that it matches the previously known result of [51] when testing against independence. However,
in these works, the coding scheme used for the interactive hypothesis testing problem is joint
typicality encoding, similar to [18], without using binning techniques. Therefore, the investigation
of quantize-binning schemes for interactive hypothesis testing remains an open question.

Another setup corresponds to DHT with multi-hop network [28, 53, 54, 55, 16], which
has potential applications in the Internet of Things (IoT) and for sensor networks. In this
setup, the transmitter communicates directly with a relay over a noise-free link but cannot
communicate directly with the receiver. Furthermore, DHT under privacy constraints has also
been considered [56].

2.6 Summary and Discussion

This chapter reviewed the literature on DHT. We first presented the asymmetric setup
involving a single sensor and a single decision center with side information. For this setup, we
described achievable coding schemes, including quantization and quantize-binning schemes. The
existing results demonstrate that the quantize-binning scheme achieves a better lower bound on
the error exponent compared to the quantization one. Secondly, we reviewed the DHT in the
symmetric setup involving two encoders transmitting their compressed version at the decoder.

It is important to note that achievable error exponents in all the reviewed works are charac-
terized only for i.i.d. source models. However, i.i.d. models are often inadequate for capturing
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the statistics of signals like time series or videos. Consequently, in Chapter 3, we will investigate
a more general non-i.i.d. models, that can account for non-stationary and non-ergodic signals.

In addition to the information-theoretic analysis of DHT, we will also investigate practical
short-block length coding schemes for DHT. While previous works have introduced practical
binary quantizers, binning schemes, and quantize-binning schemes using linear block codes, these
were primarily designed for Wyner-Ziv coding aimed at source reconstruction, typically requiring
very long source sequences (over 105 bits) [4, 39, 40]. These schemes rely on message-passing
algorithms, which do not perform well for shorter sequences, particularly in DHT. Notably, no
previous work has proposed practical implementation of the quantization and quantize-binning
schemes dedicated to DHT. Therefore, in Chapter 4, we address the practical short-length coding
schemes dedicated to DHT.
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Chapitre 3

DISTRIBUTED HYPOTHESIS TESTING

FOR GENERAL NON-I.I.D. SOURCES

3.1 Introduction

In this chapter, we focus on the asymmetric setup of DHT, which involves an encoder
observing the source X and a decoder observing the side information Y. The source X and the
side information Y generate sequence of random variables Xn and Yn, respectively. Previous
studies typically assume that Xn and Yn are i.i.d. pairs of symbols (Xt, Yt) for t ∈ J1, nK
[17, 18, 22, 27, 34, 23, 2]. Some more complex source models have been investigated in [36, 37],
which assume that the sources Xn and Yn generate pairs of Gaussian vectors (XM

t , YM
t ) for

t ∈ J1, nK, with statistical dependencies within each vector XM
t , YM

t , respectively, and between
the two vectors. However, the models of [36, 37] are block-i.i.d. in the sense that the successive
pairs (XM

t , YM
t ) are assumed to be i.i.d. with t.

Nevertheless, i.i.d. and block-i.i.d. models are often inadequate for capturing the statistics of
signals like time series or videos, which cannot be decomposed into fixed-length independent blocks
and are frequently non-stationary and/or non-ergodic. As a result, the objective of this chapter
is to consider a more general source model that is non-i.i.d. and can account for non-stationary
and non-ergodic signals, while still encompassing the i.i.d. models as particular instances. To
investigate DHT under these conditions, we utilize information spectrum tools, which were first
introduced in [42] and generally provide information theory results that are applicable to a broad
range of source models. It should be noted that information spectrum has been previously used
for hypothesis testing in [57], but only for the encoding of a source X alone, without the use of
side information Y.

Therefore, this chapter addresses DHT using general source models for X and Y, as defined in
[42], and provides an achievability scheme that yields a generic error exponent bound applicable to
a wide range of source models, not necessarily i.i.d. Our achievability scheme utilizes information
spectrum methods [42] to handle general sources. It provides a simple lower bound on the
general error exponent that is relatively straightforward to compute for i.i.d. and/or stationary
Gaussian sources. We show that, when applied to the specific case of i.i.d. sources, our general
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error exponent aligns with the established results from [2], demonstrating the consistency of our
broader analysis.

3.2 General sources model

This section provides definitions for general sources, which are presented in [42] for the
information-theoretic analysis of any source model, not necessarily stationary or ergodic.

3.2.1 Model definition

We define general sources X and Y as two infinite sequences [42]

X = {Xn = (X1, X2, · · · , Xn)}∞
n=1 ,

Y = {Yn = (Y1, Y2, · · · , Yn)}∞
n=1 (3.1)

of n-dimensional random variables Xn, Yn, respectively. Each component random variable Xi, Yi,
i ∈ J1, nK, takes values in a finite source alphabet X , Y , respectively. Next, PXn is the probability
distribution of the length-n vector Xn, and PX = {PXn}∞

n=1 is the collection of all probability
distributions PXn . The same holds for the source Y. In the above definition, we assume that
the sequences X and Y satisfy the consistency condition in the sense that for any integers m, l

such that m < l, the first m components of the sequence Xl are equal to the components of the
sequence Xm [57]. The same holds for the sequence Y.

We now describe two particular cases of the model described in (3.1). The first one consists
of the usual scalar i.i.d. model in which the sequences Xn and Yn come from two i.i.d. sources,
i.e., the successive pairs of symbols (Xn, Yn) are independent and distributed according to the
same joint distribution PXY . The second case still relies on an i.i.d. model but for source vectors.
In this case, the source sequences Xn and Yn are defined as [36, 37]

Xn =
{

XM
t

}n

t=1
, Yn =

{
YM

t

}n

t=1
, (3.2)

where {XM
t }n

t=1 and {YM
t }n

t=1 are sequences of i.i.d. M-dimensional random vectors and the
successive pairs

(
XM

t , YM
t

)
are distributed according to the same joint distribution PXM YM .

The i.i.d. property of the successive M-length vectors simplifies the DHT analysis by enabling
the application of an orthogonal transform, such as the Karhunen-Loève Transform (KLT), to
the independent blocks XM

t and YM
t [36, 37]. Our model described in (3.1) is more general since

it considers infinite sequences without the i.i.d. assumption.

46



Distributed Hypothesis Testing For General non-i.i.d. Sources

3.2.2 Information spectrum terms

In this section, we introduce information spectrum terms that will allow us to investigate
general sources from an information-theoretic analysis. Before introducing these terms, we justify
why conventional definitions of e.g., entropy are not sufficient to address general sources. Consider
a sequence of random variables {Zn}∞

n=1. We are interested in the asymptotic behavior of the
normalized information rate, defined as

− 1
n

log P (Z1, Z2, . . . , Zn). (3.3)

For i.i.d. sources, the joint probability P (Z1, Z2, . . . , Zn) can be expressed as P (Z1, Z2, . . . , Zn) =∏n
i=1 P (Zi). Consequently, the normalized information rate can be expressed as

− 1
n

log P (Z1, Z2, . . . , Zn) = − 1
n

n∑
i=1

log P (Zi). (3.4)

By the Law of Large Numbers, the average − 1
n

∑n
i=1 log P (Zi) converges almost surely to

the expectation E[− log P (Z)], which is the entropy H(Z):

− 1
n

log P (Z1, Z2, . . . , Zn) → H(Z), as n → ∞. (3.5)

This result demonstrates that, for i.i.d. sources, the asymptotic behavior of the normalized
information rate in (3.3) is deterministic and converges to a single value.

However, for general sources, we can not apply the Law of Large Numbers, in addition,
the sequence − 1

n log P (Z1, Z2, . . . , Zn) does not necessarily converge in the classical sense. Non-
stationarity, non-ergodicity, or dependencies within the source can lead to significant fluctuations,
making it challenging to describe the asymptotic behavior of the sequence using a single determi-
nistic value.

To address this, we use information-spectrum terms which characterize the probabilistic
bounds of the sequence. These terms rely on the notions of lim sup and lim inf in probability.
Specifically, we define the spectral inf-entropy rate and spectral sup-entropy rate as

H(X) = p − lim inf
n→∞

1
n

log 1
P (Z1, Z2, . . . , Zn) (3.6)

H(X) = p − lim sup
n→∞

1
n

log 1
P (Z1, Z2, . . . , Zn) , (3.7)

where the lim sup and lim inf in probability of a sequence {Zn}∞
n=1 are, respectively, defined as

47



Distributed Hypothesis Testing For General non-i.i.d. Sources

[42]

p − lim sup
n→∞

Zn = inf
{

α | lim
n→+∞

P (Zn > α) = 0
}

, (3.8)

p − lim inf
n→∞

Zn = sup
{

α | lim
n→+∞

P (Zn < α) = 0
}

. (3.9)

Similarly, the spectral sup-mutual information I(X; U), the spectral inf-mutual information
I(U; Y), the spectral inf-divergence rate D

(
PUY∥PUY

)
, and the spectral sup-divergence rate

D
(
PUY∥PUY

)
are, respectively, defined as [42]

Ī(X; U) = p − lim sup
n→∞

1
n

log
PUn|Xn (Un | Xn)

PUn (Un) , (3.10)

I(U; Y) = p − lim inf
n→∞

1
n

log
PUn|Yn (Un | Yn)

PUn (Un) , (3.11)

D
(
PUY∥PUY

)
= p − lim inf

n→∞
1
n

log PUnYn (Un, Yn)
PUnYn (Un, Yn) , (3.12)

D
(
PUY∥PUY

)
= p − lim sup

n→∞

1
n

log PUnYn (Un, Yn)
PUnYn (Un, Yn) . (3.13)

It is straightforward to show that, for i.i.d. sources U and X, the spectral mutual information terms
in (3.11) and (3.10) converge to the mutual information I(U ; X). Similarity, for i.i.d. sources
U and Y, the spectral divergence terms in (3.13) and (3.12) converge the Kullback-Leibler
divergence D

(
PUY ∥PUY

)
. Next, we define the DHT problem for general sources.

3.3 DHT for general sources

In what follows, we consider that the joint distribution of the sequence pair {(Xn, Yn)}∞
n=1

depends on the underlying hypotheses H0 and H1 defined for a given n ∈ N as

H0 : (Xn, Yn) ∼ PXnYn , (3.14)

H1 : (Xn, Yn) ∼ PXnYn . (3.15)

where the marginal probability distributions PXn and PYn do not depend on the hypothesis.

We consider the following usual coding scheme defined in the literature on DHT [19, 35].

Definition 3.1 Given a rate R ≥ 0, consider a sequence (f (n), g(n))n∈N of encoding and decoding
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functions, defined for each blocklenght n ∈ N, such that

f (n) : X n −→ Mn = J1, MnK, (3.16)

g(n) : Mn × Yn −→ H = {H0, H1}, (3.17)

such that lim supn→∞
1
n log Mn ≤ R, where R is the rate and Mn is the cardinality of the alphabet

set Mn.

Definition 3.2 The Type-I and Type-II error probabilities αn and βn are defined for each n ∈ N
as

αn = P
[
g(n)

(
f (n) (Xn) , Yn

)
= H1 | H0 is true

]
, (3.18)

βn = P
[
g(n)

(
f (n) (Xn) , Yn

)
= H0 | H1 is true

]
. (3.19)

Definition 3.3 A Type-II error exponent θ is said to be achievable for a given R ≥ 0, if for
each ϵ > 0 and for a large blocklength n, there exists a sequence

(
f (n), g(n)

)
n∈N

of encoding and
decoding functions such that the Type-I and Type-II error probabilities αn and βn satisfy

αn ≤ ϵ, (3.20)

and
lim sup

n→∞

1
n

log 1
βn

≥ θ (3.21)

for any ϵ > 0.

In the following, we aim to determine the achievable Type-II error exponent θ for general
sources.

3.4 Error exponent bound for general sources

Theorem 3.1 The following lower bound on the error exponent θ is achievable for general
sources:

θ ≥ sup
PU|X

min
{

R −
(
I(X; U) − I(U; Y)

)
, D

(
PUY∥PUY

)
+
(
I(X; U) − I(X; U)

) }
, (3.22)

where U is an auxiliary random variable with same conditional distribution PUn|Xn = PUn|Xn

under H0 and H1 and such that the Markov chain Un → Xn → Yn is satisfied under both
H0 and H1 for all n. In addition, PUY, and PUY are the collection of the joint distributions
of (Un, Yn) under H0 and H1 respectively. Moreover, the sup is taken over all the conditional
distributions PU|X such that the rate constraint R ≥ I(U; X | Y) is satisfied.
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The proof of Theorem 3.1 is provided in section 3.6.
As expected, we find that our error exponent is consistent with that provided in [2] for

the i.i.d. case. The error exponent (3.22) is the result of a trade-off between the binning error
(the first term in the right-hand side of (3.22)) and the decision error (the remaining term in
the right-hand side of (3.22)), as in the i.i.d. case [23, 2]. This tradeoff does not appear in the
hypothesis testing problem without coding for general sources of [57]. In addition, the decision
error, e.g., the second term in (3.22), not only contains a divergence term that appears in [2] and
related works but also an additional term that is the difference I(X; U) − I(X; U) between the
spectral inf-mutual information and the spectral sup-mutual information of X and U. Especially,
if the term 1

n log PUn|Xn (Un|Xn)
PUn (Un) does not converge in probability, then the two mutual information

terms differ, inducing a penalty in the error exponent. For stationary and ergodic sources, this
term converges and there is no such penalty.

3.5 Discussion

Our general error exponent bound in (3.22) is derived using a coding scheme similar to the
one presented in [2], with several adaptations to accommodate general source models. As a result,
we obtain a bound comparable to that of [2]. The primary advantage of our bound is that it is
simpler to evaluate than the bound of [22]. Indeed, it avoids the minimization over the joint
distribution required in the bound of Shimokawa et al. [22], shown in (2.16). However, it may
not be as tight as the bound by Shimokawa et al., which, although more difficult to evaluate, is
more precise. Consequently, building upon the Shimokawa et al. scheme for general sources is
currently under investigation.

3.6 Proof of Theorem 3.1

We first restate the following lemma from [58], which will be useful in the derivation of Type-I
error probability.

Lemma 3.1 ([58]) Let Zn, Xn, Un, be random sequences which take values in finite sets Zn, X n,
Un, respectively, and satisfy the Markov condition Un → Xn → Zn. Let {Ψn}∞

n=1 be a sequence
of mappings such that Ψn : Zn × Un → {0, 1}, and

lim
n→∞

P (Ψn(Zn, Un) = 1) = 0. (3.23)

Then, ∀ε > 0, there exists a sequence {fn}∞
n=1 of mappings fn : X n → {un

i }M
i=1 ⊂ Un such that

M = ⌈en(I(U;X)+ε)⌉ and
lim

n→∞
P (Ψn(Zn, fn(Xn)) = 1) = 0. (3.24)
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3.6.1 Coding scheme

Random codebook generation: Generate M1 = enr0 sequences un
i randomly according to PUn ,

where PUn is derived from a fixed distribution PUn|Xn . Assign randomly each un
i to one of

M2 = enR bins according to a uniform distribution over J1, M2K. Let B(un
i ) ∈ J1, M2K denote the

index of the bin to which un
i belongs to.

Encoder: Given the sequence xn, the encoder uses a pre-defined mapping fn : X n → {un
i }M1

i=1
to output a certain sequence un

i = fn(xn) and checks if the condition (xn, un
i ) ∈ T

(1)
n is satisfied,

where

T (1)
n =

{
(xn, un) s.t. r0 − ϵ <

1
n

log
PUn|Xn (un | xn)

PUn (un) < r0 + ϵ

}
(3.25)

where r0, r0 ∈ R. If such a sequence is found, the encoder sends the bin index B(un
i ). Otherwise,

it sends an error message.

Decoder: The decoder first looks for a sequence in the bin according to the joint distribution
PUnYn under H0. Given the received bin index and the side information yn, going over the
sequences un in the bin one by one, the decoder checks whether (yn, un) ∈ T

(2)
n with

T (2)
n =

{
(yn, un) s.t. 1

n
log

PUn|Yn (un | yn)
PUn (un) > r

′ − ϵ

}
, (3.26)

with r′ ∈ R. The decoder declares H1 if no such sequence is found in the bin or if it receives an
error message from the encoder. Otherwise, it declares H0 if the sequence un extracted from the
bin belongs to the acceptance region An defined as

An =
{

(yn, un) s.t. 1
n

log PUnYn (un, yn)
PUnYn (un, yn) > S − ϵ

}
, (3.27)

where S ∈ R is the decision threshold ; if otherwise, it declares H1. The sets T
(1)
n , T

(2)
n , and An

can be seen as decision regions depending on threshold values r0, r̄0, r′ and S. It is important to
note that these sets are need to be defined so that the constraint on the Type-I error is satisfied.
Specifically, the parameters r0, r̄0, r′ and S will be chosen such that αn ≤ ϵ, for any ϵ > 0.
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3.6.2 Error probabilities analysis

Type-I error αn: The error events with which the decoder declares H1 under H0 are as follows

E11 =
{
∄un s.t. (Xn, un) ∈ T (1)

n , (Yn, un) ∈ T (2)
n , (Yn, un) ∈ An

}
, (3.28)

E12 =
{

∃u′n ̸= un s.t. B(u′n) = B(un),
(
Yn, u′n) ∈ T (2)

n , but (Yn, u′n) /∈ An

}
. (3.29)

The first event E11 is when there is an error either in the encoding, during debinning, or when
taking the decision. The second event E12 corresponds to a debinning error, where a wrong
sequence is extracted from the bin. By the union-bound, the Type-I error probability αn can be
upper bounded as

αn ≤ P (E11) + P (E12) . (3.30)

Regarding the first error event, for r0 = I(X; U), r0 = I(X; U), and from the definitions of
I(X; U) and I(X; U) in (3.10) and (3.11), we have

lim
n→∞

P
(
(Xn, Un) /∈ T (1)

n

)
= 0.

In addition, according to the definition of I(Y; U) in (3.11), and setting r
′ = I(Y; U), we also

have
lim

n→∞
P
(
(Yn, Un) /∈ T (2)

n

)
= 0. (3.31)

Finally, when S = D
(
PUY∥PUY

)
and from the definition of D

(
PUY∥PUY

)
, we have

lim
n→∞

P ((Yn, Un) /∈ An) = 0.

Thus, by defining

Ψn(xn, yn, un) = (3.32)
0, if (xn, un) ∈ T

(1)
n , (yn, un) ∈ T

(2)
n and

(yn, un) ∈ An,

1, otherwise.

we get that P(Ψn(Xn, Yn, Un) = 1) → 0 as n → ∞. Then, given that Un → Xn → Yn forms a
Markov chain, applying Lemma 3.1 allows to show that there exists a sequence of functions fn

such that P(E11) → 0 as n → ∞.
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Then, the error probability P (E12) can be expressed as

P (E12) ≤
∑
yn

PYn (yn)
∑

u′n:u′n ̸=un

(yn,u′n)∈T (2)
n ∩An

P
(

B(u′n) = B(un)
)

≤
∑
yn

PYn (yn)
∑

u′n:u′n ̸=un

(yn,u′n)∈T (2)
n

e−nR (3.33)

From (3.26), for (yn, u′n) ∈ T
(2)
n we get

PYn (yn) < PYn|Un

(
yn | u′n) e−n(r′−ϵ),

which allows us to write

P (E12) ≤
∑
u′n

∑
yn:(yn,u′n)∈T (2)

n

PYn|Un

(
yn | u′n) e−n(R+r′−ϵ)

≤ e−n(R+r′−r0−ϵ) (3.34)

where enr0 is the number of sequences un in the codebook. Therefore, from the condition
R ≥ r0 − r′ + ϵ = I(X; U) − I(Y; U) + ϵ, we get that P (E21) → 0 as n → ∞.

Type-II error βn: A Type-II error occurs when the decoder declares H0 although H1 is the
true hypothesis. The corresponding error events are:

E21 =
{

∃ũn ̸= un : B(ũn) = B(un),
(
Yn

, ũn
)

∈ T (2)
n , and

(
Yn

, ũn
)

∈ An

}
,

E22 =
{

(Yn
, un) ∈ T (2)

n , (Yn
, un) ∈ An

}
. (3.35)

The first event E21 is a debinning error and the second event E22 is the testing error. By the
union bound, we get

βn ≤ P (E21) + P (E22) . (3.36)

Since the marginal probability distribution PYn does not depend on the hypothesis, the probability
P (E21) can be expressed by following the same steps as for P (E12). Given that r0 = I(X; U)
and r

′ = I(Y; U) , we get

P (E21) ≤ e−n(R−(I(X;U)−I(Y;U))−ε). (3.37)
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Next, the probability P (E22) can be expressed as

P (E22) ≤
∑

(xn,yn)
PXnYn (xn, yn)

∑
un∈J1,M1K,

(xn,un)∈T (1)
n

P
(

(yn, un) ∈ An

)

≤ enr0
∑

(xn,yn)
PXnYn (xn, yn)

∑
un:

(xn,un)∈T (1)
n

(yn,un)∈An

PUn(un)

Since (xn, un) ∈ T
(1)
n ,

PUn(un) < PUn|Xn(un | xn)e−n(r0−ϵ).

In addition, the conditional distributions PUn|Xn and PUn|Xn are the same, and the Markov
chain Un → Xn → Yn is satisfied. Thus, PUn|Xn = PUn|Xn

,Y
n , and

P (E22) ≤ en(r0−r0+ϵ) ∑
un:(yn,un)∈An

PUnYn (un, yn) . (3.38)

For (yn, un) ∈ An, we have

PUnYn (un, yn) < PUnYn (un, yn) e−n(S−ϵ). (3.39)

Combining this with (3.38) gives that

P (E22) ≤ e−n(r0−r0+S−2ϵ) (3.40)

Now, substituting (3.37) and (3.40) into (3.36), with S = D
(
PUY∥PUY

)
, the Type-II error is

upper-bounded as

βn ≤e−n(R−(I(X;U)−I(Y;U))−ϵ) + e−n(I(X;U)−I(X;U)+D(PUY∥PUY)−2ϵ).

Finally, from the definition of the error exponent θ given by (3.21), we show that (3.22) is
achievable, which proves Theorem 3.1.

3.7 Summary and Discussion

In this chapter, we studied DHT for general source models. We presented an achievable coding
scheme that provides a generic error exponent bound applicable to a wide range of sources, not
limited to i.i.d. models. The achievability proof relies on information-spectrum methods [42]. We
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demonstrated that, when applied to the specific case of i.i.d. sources, our general error exponent
aligns with the established results in the i.i.d. case of [2].

However, the obtained bound may not be as tight as the well-known bound by Shimokawa
et al. [22]. Furthermore, recent work by [25] demonstrated an enhancement of the achievable
error exponent presented by Shimokawa et al. [22]. In future work, we aim to incorporate ideas
from the achievable coding scheme of [22] as well as the improvements from [25] into our coding
scheme, which may lead to a tighter general error exponent.

By considering general source models, our goal is to establish an error exponent bound
that is broadly applicable to various source models. Therefore, in the next chapter, we will
apply this general bound to specific source models, such as Gaussian stationary sources and the
Gilbert-Elliot (GE) model. Additionally, we will introduce an efficient method to estimate the
Type-II error exponent for the GE model.
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Chapitre 4

ERROR EXPONENT FOR STATIONARY

AND ERGODIC GAUSSIAN AND

GILBERT-ELLIOT SOURCES MODELS

4.1 Introduction

In the previous chapter, we have derived a generic error exponent bound for general sources,
applicable to a wide range of source models. To show the consistency of our general analysis, and
to progress toward the development of practical DHT coding schemes, it is crucial to investigate
a broader range of source models of interest. In this chapter, we will apply our general error
bound in (3.22) to two specific sources models: the stationary and ergodic Gaussian sources
model, and the Gilbert-Elliot (GE) sources model. The stationary and ergodic Gaussian model is
often used to model various real-world processes. For instance, in subspace techniques for array
signal processing, it is common to assume that both signals and noise are modeled as stationary
and ergodic Gaussian processes [59]. Additionally, i.i.d. and block-i.i.d. Gaussian models have
been considered in the context of DHT, as explored in [60, 61, 62]. For stationary and ergodic
Gaussian source models, not necessarily block-i.i.d., we derive closed-form expressions of the
error exponent using the general bound provided in (3.22).

The GE model finds applications in many domains such as video coding [43], link quality
estimation [44], or packet loss analysis [45]. The GE model has not been previously investigated
in the context of DHT. Since closed-form expressions for the error exponents of the GE model do
not exist, we propose a novel method to evaluate these error exponents, by formulating the terms
involved in the error exponents as estimators. Subsequently, we provide an efficient numerical
method to evaluate these estimators, using forward recursions proposed for Hidden Markov
Models (HMM) in [63]. To provide valuable insights for the design of practical coding schemes for
DHT, we present numerical results that explore: (i) the impact of different GE model parameters
on the error-exponent, and (ii) the tradeoff between the binning error and the testing error.

57



Error exponent for stationary and ergodic Gaussian and Gilbert-Elliot sources models

4.2 Stationary and ergodic Gaussian sources

We first introduce the following notation which will be useful in this chapter. The conditional
differential entropy of X given Y is denoted by h (X | Y). The covariance of a zero-mean random
vector X is denoted by Σx = E[XX†]. The cross-correlation of two zero-mean vectors X and Y
is denoted by Σxy = E

[
XY†

]
. The conditional correlation matrix of X given Y is denoted by

Σx|y = E
[
(X − E[X | Y])(X − E[X | Y])†

]
, which simplifies to Σx|y = Σx − ΣxyΣ−1

y Σyx. The
trace of a covariance matrix Σ is denoted by tr {Σ}. The limit in probability γ of a sequence of
random variables {An}+∞

n=1 is denoted by γ = p− lim
n→∞

An and it verifies

lim
n→∞

P (|An − γ| > ϵ) = 0 (4.1)

for all ϵ > 0.

4.2.1 Definitions

Here, we recall the definitions of two commonly used concepts: stationarity and ergodicity.
These definitions are provided in [64]. Following that, we introduce some useful notations.

Definition 4.1 (Stationarity) Let Z be a source generating a sequence of random variables
{Zn}+∞

n=1. The source Z is stationary if, for all n, L ∈ N and for all (z′
1, . . . , z′

n) ∈ Zn,

P
(
Z1 = z′

1, . . . , Zn = z′
n

)
= P

(
Z1+L = z′

1, . . . , Zn+L = z′
n

)
.

According to this definition, a source is stationary if the probability of any given vector (z′
1, . . . , z′

n)
does not depend on the position at which it is evaluated. In other words, this probability is
independent of the time origin.

Definition 4.2 (Ergodicity) Let Z be a source generating a sequence of random variables
{Zn}+∞

n=−∞. Let fn be a function of the sequence z = {zn}+∞
n=−∞ that depends only on the n

components z1, . . . , zn. We denote by T ℓ an operator such that T ℓz represents the same sequence
shifted by ℓ symbols. The source Z is said to be ergodic if for every integrable function fn,

lim
L→∞

1
L

L∑
ℓ=1

fn

(
T ℓz

)
= EZ [fn(Z)] a.e.

(a.e.: almost everywhere).

According to this definition, a source is ergodic if its statistical characteristics (such as its mean)
are independent of the specific realization, i.e., the particular sequence z being considered.

In the case where sources X and Y are stationary and ergodic Gaussian sources (not necessarily
i.i.d.), the general error exponent bound in (3.22) can be simplified as follows.
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Proposition 4.1 If the sources X and Y are Gaussian, stationary and ergodic under both H0

and H1, the error exponent in (3.22) becomes:

θ ≥ sup
PU|X

min
{

lim
n→∞

R −
[ 1

n
h (Un | Yn) − 1

n
h (Un | Xn)

]
, lim

n→∞
1
n

D
(
PUnYn∥PUnYn

) }
(4.2)

This proposition is due to the strong converse property under the same condition as in [42,
Theorem 1.5.1].

4.2.2 Error exponent for stationary and ergodic Gaussian sources

Let X and Y be two stationary and ergodic sources distributed according to Gaussian
distributions N (µX, KX) and N (µY, KY), with covariance matrices KX and KY, respectively.
The two hypotheses are formulated as

H0 :
(

Xn

Yn

)
∼ N (µXY, K), (4.3)

H1 :
(

Xn

Yn

)
∼ N (µXY, K). (4.4)

In the expressions (4.3) and (4.4), µXY is defined as a block vector [µX, µY]T . In addition, K
and K are the joint covariance matrices of X and Y defined as

K =
[

KX KXY

KYX KY

]
, K =

[
KX KXY

KYX KY

]
. (4.5)

Although not explicit in our notation, we here consider that the vectors µX and µY are of length
n, and that the covariance matrices K and K are of size 2n × 2n, where n will tend to infinity in
the subsequent analysis. We assume that all the matrices KX, KY, KY, KXY, and KXY are
positive-definite. We also denote the conditional covariance matrix of Xn given Yn by

KX|Y = KX − KXYK−1
Y KXY. (4.6)

The eigenvalues of KX|Y are further denoted by λ
(X|Y )
i .

For the hypothesis problem formulated in (4.3) and (4.4), the terms in (4.2) reduce to

lim
n→∞

1
n

h (Un | Yn) − lim
n→∞

1
n

h (Un | Xn) = lim
n→∞

1
2n

n∑
i=1

log λ
(X|Y )
i + κ

κ
, (4.7)
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and

lim
n→∞

1
n

D
(
PUnYn∥PUnYn

}
= lim

n→∞
1

2n

log

∣∣∣Σ∣∣∣
|Σ|

− 2n + (µUY − µUY)T Σ−1 (µUY − µUY) +

tr
{

Σ−1Σ
} ]

, (4.8)

where Σ and Σ are the joint covariance matrices of U and Y under H0 and H1, respectively.

The terms given by (4.7) and (4.8) are obtained by considering that the source U is Gaussian
such that U = X + Z, where Z ∼ N (0, κIn) is independent of X, and In is the identity matrix
of dimension n × n. The covariance matrices Σ and Σ are then defined as

Σ =
[

KU KUY

KYU KY

]
, Σ =

[
KU KUY

KYU KY

]
. (4.9)

We now consider the case where the pair (U, Y) has different covariance matrices, Σ under
H0 and Σ under H1. We also assume that all the Gaussian vectors are zero-centered. We then
define H0 and H1 as

H0 :
(

Xn

Yn

)
∼ N (0, K), (4.10)

H1 :
(

Xn

Yn

)
∼ N (0, K). (4.11)

In this case, it can be shown that the expression (4.7) remains the same, while the expression
(4.8) reduces to

lim
n→∞

1
n

D
(
PUnYn∥PUnYn

}
= lim

n→∞
1

2n

[
log

∣∣∣Σ∣∣∣
|Σ|

− 2n + tr
{

Σ−1Σ
} ]

. (4.12)

Note that the matrices Σ and Σ are of length 2n × 2n, where n tends to infinity. Therefore, to
specify the previous result to some specific Gaussian sources, one needs to study the convergence
of the determinants |Σ| and

∣∣∣Σ∣∣∣, and also of the trace tr
{

Σ−1Σ
}

. These closed-form expressions
demonstrate that our general error exponent bound in (3.22) can be extended to a broader range
of source models. Furthermore, in subspace techniques for array signal processing [59], a relevant
question is on the accuracy of the estimated signal subspace dimension, which inherently leads
to a hypothesis testing problem. In this context, our DHT framework for Gaussian sources could
provide valuable insights.
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G B

Figure 4.1 – Gilbert-Elliot model for the correlation noise Z under hypothesis H0. Under
hypothesis H1, the crossover probabilities become pG and pB, while the parameters g and b
remain the same. Source : © 2023 IEEE. Reproduced with permission from [1].

4.3 Error exponent for Gilbert-Elliot (GE) sources model

The GE model is a non-i.i.d. time-varying binary model which involves a good state (G) and a
bad state (B) [65], as illustrated in Figure 4.1. The transition between these two states is modeled
by a Markov chain, thus accounting for memory in the successive state values. For instance,
in sensor networks, state G (respectively state B) represents high correlation (respectively low
correlation) between sensors measurements.

4.3.1 GE model definition

We consider two correlated sources, X and Y, where X is the source to be encoded, and Y
is the side information available at the decoder. The binary sequences generated by X and Y
are denoted as {Xk}+∞

k=1 and {Yk}+∞
k=1, respectively. We assume that the source X is i.i.d., such

that for all k ≥ 1, Xk follows a Bernoulli distribution Bern(p) with parameter p, constant across
the hypotheses. On the other hand, the source Y is not i.i.d. and its probability distribution
depends on the hypotheses H0 or H1, as described below:

H0 : Yk = Xk ⊕ Zk (4.13)

H1 : Y k = Xk ⊕ Zk. (4.14)

With a slight abuse of notation, we use Y k to denote the side information symbols generated
under H1, to make it clear that they have a different probability distribution than under H0. The
sources Z and Z which generate sequences of binary symbols {Zk}+∞

k=1 and {Zk}+∞
k=1, respectively,

are independent of X and follow GE models described below.

Under H0, the source Z follows a GE model [65] with hidden state S depicted in Figure 4.1.
The sequence output from the binary hidden states {Sk}+∞

k=1 is such that Sk ∈ {G, B}, and it
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follows a Markov model described with the following state transition probabilities:

P (Sk = G | Sk−1 = B) =g, (4.15)

P (Sk = B | Sk−1 = G) =b. (4.16)

Due to the Markov property,

P (Sk|Sk−1, Sk−2 · · · S1) = P (Sk|Sk−1). (4.17)

Each symbol Zk takes value 0 or 1 depending on the hidden state value Sk = s such that

P (Zk = 1 | Sk = G) = pG, (4.18)

P (Zk = 1 | Sk = B) = pB, (4.19)

where pG and pB are crossover probabilities. We often consider that pG < pB, so that the state G
corresponds to high correlation between X and Y while the state B corresponds to low correlation.
In addition, the GE model assumes that

P (Zk|Z1, · · · Zn, S1, · · · Sn) = P (Zk|Sk). (4.20)

Under hypothesis H1, the source Zk also follows a GE model, with the same hidden state S
described by equations (4.15) and (4.16) and same values g and b as under H0. However, the
crossover probabilities differ from those specified by (4.18) and (4.19). They are now denoted by
pG and pB with

P
(
Zk = 1 | Sk = G

)
= pG, (4.21)

P
(
Zk = 1 | Sk = B

)
= pB. (4.22)

4.3.2 Information-spectrum terms for ergodic GE models

The general error exponent bound given in (3.22) relies on information-spectrum terms [42],
which are defined from limits inferior and limits superior in probability. These information
spectrum terms have simplified expressions for the GE model, given that the underlying Markov
chain is ergodic, where ergodic means that it admits a unique stationary distribution as the
sequence length n tends to infinity [66]. The GE model described in Section 4.3.1 is ergodic given
that the conditions 0 < g < 1 and 0 < b < 1 are satisfied [66].

For ergodic GE models for some sources U, Y, U, Y, combining the information-spectrum
definitions from [42] with the convergence proofs from [66] allows us to show that the spectral
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conditional entropy has expression

Hs(U|Y) = p− lim
n→∞

1
n

log 1
P (Un|Yn) , (4.23)

the conditional spectral mutual information between U and X, conditioned on Y has expression

I(Un; Xn | Yn) = p− lim
n→∞

1
n

log
PUn,Xn|Yn(Un, Xn | Yn)

PUn|Yn(Un | Yn)PXn|Yn(Xn | Yn) , (4.24)

and the spectral divergence has expression

Ds(PU,Y||PU,Y) = p− lim
n→∞

1
n

log P (Un, Yn)
P (Un

, Yn)
. (4.25)

4.3.3 Error exponent for the GE model

We now specify the general error exponent bound in (3.22) to ergodic GE models.

Proposition 4.2 If the sources X and Y are correlated given the GE model under both H0 and
H1, the general error exponent in (3.22) reduces to

θ ≥ sup
PU|X

min {θbin, θtest} , (4.26)

where

θbin = R − [Hs (U | Y) − Hs (U | X)] (4.27)

θtest = Ds
(
PUY∥PUY

)
(4.28)

and the sup is taken over all the conditional distributions PU|X such that the rate constraint
R ≥ Is(U; X | Y) is satisfied.

The error exponent in (4.26) arises from a tradeoff between the binning error, denoted by θbin in
(4.27), and the testing error, represented by θtest in (4.28). This tradeoff is achieved through a
quantize-binning scheme, which is used to derive the general bound in (3.22).

The terms θbin and θtest depend on an auxiliary source U which has to satisfy the Markov
chain U → X → Y [67]. In what follows, we assume that this auxiliary source generates a
sequence of symbols {Uk}+∞

k=1 such that

Uk = Xk ⊕ ϕk, (4.29)

where ϕk ∼ Bern (δ), and Xk and ϕk are independent. The parameter δ is key as it addresses the
tradeoff between the binning error and the testing error. Indeed, a small value of δ means that
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the sequence un selected by the encoder will be close to xn, which reduces the testing error. But
this increases the binning error at the same time, as it leads to a larger number of sequences in
each bin in order to meet the rate constraint for a given R.

We choose definition (4.29) for the auxiliary source U because due to the Markov chain, U
needs to be expressed from X which is itself Bernoulli and i.i.d. From this choice of U, the term
Hs(U|X) in (4.27) can be expressed as

Hs(U|X) = −δ log δ − (1 − δ) log(1 − δ), (4.30)

which is the conventional entropy of a Bernoulli source. We leave to future work the investigation
of if (4.29) is the optimal choice for the auxiliary source U. However, since there are no known
analytical expressions for the terms Hs (U | Y) in (4.27) and Ds

(
PUY|PUY

)
in (4.28), we now

describe our numerical evaluation procedure for these terms.

4.3.4 Statistical evaluation of the error exponent for the GE model

This section provides a statistical method to evaluate the error exponent for the GE model
described in Section 4.3.1.

4.3.4.1 Estimators of spectral information-theory terms

Given that the spectral conditional entropy in (4.23) and the spectral divergence in (4.25),
are both defined from a limit in probability, the terms

Ĥs (U | Y) = 1
n

log 1
P (un|yn) , (4.31)

D̂s(U, Y||PU,Y) = −1
n

log P (un, yn)
P (un, yn) , (4.32)

are consistent estimators [68, Section 1.8] of Hs (U | Y) and Ds(PU,Y||PU,Y), respectively. To
evaluate these estimators, we propose to use a large value of n, and to randomly generate samples
(xn, yn, un) according to the GE model described in section 4.3.1, and to the definition of U
in (5.8). We then calculate the probability terms P (un|yn), P (un), P (un, yn), and, P (un, yn)
involved in (4.31) or (4.32), which allows evaluating the previous estimators, and then the error
exponent (4.26).

A similar methodology was employed in [69] to numerically evaluate the capacity of a Gilbert-
Elliot channel, from an estimator defined as the log-probability of certain random vectors. In [69],
the estimator was defined from the notion of information-rate, while here, we rely on the definition
of information spectrum terms. Moreover, since the capacity of a channel only involves computing
the mutual information between the channel input and output, the probability computation
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in [69] is simpler. In this section, we evaluate the probability terms involved in (4.31) and (4.32)
from forward recursions which we now describe.

4.3.4.2 Forward recursions

In this section, we describe the computation of all the probabilities involved in the estimators
(4.31) and (4.32). We first calculate the joint probability p(un, yn) by evaluating for s ∈ {G, B},
α

(u,y)
n (s) = P (un, yn, Sn = s). This probability can be computed efficiently from the HMM

forward recursion described in [63]. This recursion is initialized for s ∈ {G, B} as

α
(u,y)
1 (s) = P (S1 = s) P (y1 | S1 = s) P (u1 | y1, S1 = s) , (4.33)

and then defined for all k ∈ J2, n − 1K as

α
(u,y)
k+1 (s) =

 ∑
s′∈{G,B}

α
(u,y)
k (s′)P

(
Sk+1 = s | Sk = s′) . . .

P (yk+1 | Sk+1 = s) P (uk+1 | yk+1, Sk+1 = s) . (4.34)

We them compute
P (un, yn) =

∑
s∈{G,B}

α(u,y)
n (s). (4.35)

The marginal probability P (yn) can also be evaluated from a forward recursion initialized as

α
(y)
1 (s) = P (S1 = s) P (y1 | S1 = s) , (4.36)

and defined for all k ∈ J2, n − 1K as

α
(y)
k+1(s) =

 ∑
s′∈{G,B}

α
(y)
k (s′)P

(
Sk+1 = s | Sk = s′)P (yk+1 | Sk+1 = s) . (4.37)

Then,
P (yn) =

∑
s∈{G,B}

α(y)
n (s). (4.38)

This allows us to calculate the conditional probability P (un | yn) using the formula

P (un | yn) = P (un, yn)
P (yn) =

∑
s∈{G,B} α

(u,y)
n (s)∑

s∈{G,B} α
(y)
n (s)

. (4.39)

We apply a similar recursion to calculate the joint probability P (ūn | ȳn) which appears in (4.32).
To avoid numerical issues, we compute all the previous terms in log.
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4.3.5 Numerical results

In this section, we aim to numerically evaluate the DHT error exponents with the GE model,
by applying the method described in section 4.3.4. We first investigate the convergence of the
proposed estimators with respect to the sequence length n. Figure 4.2 shows the estimated
spectral information terms as functions of n, for a set of parameters given in the caption of
the figure. We consider a maximum value n = 15000, and represent two types of curves: one
obtained from a single set of source vectors (xn, yn, un), and the other obtained by averaging
over K = 15 realizations of the source vectors. It is clear that averaging improves the estimation
quality, especially for the testing error.

Next, we consider a large value of n = 70000, and investigate the effect of the model parameters
onto the error exponent. First of all, Figure 4.3 shows the two error exponents θbin and θtest as
functions of pG with pB values as a parameter, where pG and pB are the crossover probabilities
under the hypothesis H0. All other parameters are fixed, and indicated in the caption of the
figure. We see that both error exponents decrease as pG and pB increase, due to the fact that
increasing these parameters makes the source closer to uniform. This, in turn, causes H0 and
H1 to become more similar, making it challenging for the decoder to accurately distinguish
between them. In addition, Figure 4.4 shows the two error exponents with respect to a parameter
µ = 1 − b − g. While the binning error only slightly varies with µ, the testing error varies with
large values of µ, especially when b is fixed.

Finally, we aim to investigate the tradeoff between the testing error and the binning error.
Figure 4.5 shows the error exponents θbin and θtest as function of δ, which is the parameter that
defines the auxiliary source U. The other parameters are fixed and indicated in the figure. It is
found that for a small value range of δ, the binning error is smaller than the testing error, and
therefore is a dominating factor of the Type-II error. However, when δ increases, the testing
error tends to become the dominant error event. Finally, as pointed out in [35] for i.i.d. binary
sources, the best tradeoff between the two error events is provided by the value δ at which the
two curves intersect, e.g, δ ≈ 0.25 for this set of parameters.

4.4 Summary and Discussion

In this chapter, we specified our general error exponent bound in (3.22) to the stationary and
ergodic Gaussian sources model and GE sources model. For the Gaussian sources, we derived
closed-form expressions for the error exponent. For the GE model, we introduced an efficient
method to estimate the error exponent, which utilizes the forward recursion of HMMs. Our
numerical results have evaluated the effects of the model parameters onto the error exponent,
as well as the tradeoff between the testing error and the binning error. These insights provide
valuable guidance for the design of practical DHT coding schemes for binary sources, which will
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Figure 4.2 – Estimated spectral information terms as functions of n for pG = 0.05, pB = 0.03,
p̄G = 0.3, p̄B = 0.5, g = 0.001, b = 0.002, p = 0.2, δ = 0.15, R = 0.4. The red and purple curves
are averaged over K = 15 sequence realizations. Source : © 2023 IEEE. Reproduced with permission from [1].

Figure 4.3 – Error exponents as functions of pg, for various values of pb and for p̄G = 0.3,
p̄B = 0.5, g = 0.001, b = 0.002, p = 0.2, δ = 0.001. Source : © 2023 IEEE. Reproduced with permission from [1].

be the focus of the next chapter. Future works will be dedicated to the analysis of more generic
Hidden Markov Models as well as Gauss Markov models. Additionally, it is worth noting that for
the considered source models, the limsup and liminf in probability converge to the same limit.
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Figure 4.4 – Error exponents as functions of µ = 1 − g − b, for p̄G = 0.3, p̄B = 0.5, p = 0.2,
δ = 0.15. Source : © 2023 IEEE. Reproduced with permission from [1].

However, one may consider other source models where the limsup and liminf do not converge to
the same value. An example of such models is the class of mixed sources, which are stationary
but non-ergodic [42]. We leave for future works the investigation of such models.

68



Figure 4.5 – Error exponents as functions of δ for pG = 0.5, pB = 0.3, p̄G = 0.05, p̄B = 0.03,
p = 0.2, R = 0.4. Source : © 2023 IEEE. Reproduced with permission from [1].





Chapitre 5

PRACTICAL SHORT-LENGTH SCHEMES

FOR DISTRIBUTED HYPOTHESIS TESTING

5.1 Introduction

In this chapter, we focus on the design of practical short-length coding schemes for DHT for
binary sources. Achievability proofs presented in Chapters 2 and 3 suggest considering either
quantizer-alone or quantize-binning coding schemes for DHT. Interestingly, these achievability
proofs consider coding schemes similar to what was proposed for the Wyner-Ziv problem ; with
additional mechanisms specific to hypothesis testing. Some existing works have already introduced
practical binary quantizers [39], binning schemes [4], and quantize-binning schemes [40], for
Wyner-Ziv coding, all constructed with linear block codes. However, these constructions were
originally designed with the aim of source reconstruction and typically involve very long source
sequences, often exceeding 105 bits. In addition, the encoding and decoding rely on message-
passing algorithms that perform poorly with shorter sequences. In contrast, DHT inherently deals
with short-length sequences, where just a few dozen bits may suffice to make a correct decision.
Therefore, it is essential to design short-length coding schemes dedicated to DHT. An additional
challenge lies in how to perform the hypothesis test, particularly since the strategies proposed in
information theory proofs, such as minimal entropy checks, are not directly implementable in
practice. In this chapter, we address these key points.

We consider two different setups of the DHT problem. The first setup is the symmetric setup,
where both Xn and Yn are encoded, as illustrated in Figure 5.1. The second setup, referred
to as the asymmetric setup, involves Yn being fully available at the decoder and used as side
information. For both symmetric and asymmetric setups, we begin by analyzing the truncation
scheme, where only a portion of ℓ < n of the bits from the sequences are transmitted without any
coding. This scheme serves as a baseline for performance comparison. Next, we propose practical
implementations of quantization and quantize-binning schemes, both constructed with short-
length binary linear block codes and specifically adapted to the decision-making problem. For
the proposed practical scheme, we also make a parallel with the information-theoretic achievable
coding schemes, emphasizing similarities and differences. The performance of the proposed
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Encoder 1

Encoder 2

Decoder 

Figure 5.1 – Distributed hypothesis testing scheme

schemes will be compared to the baseline truncation scheme. Additionally, in the asymmetric
setup, we derive precise analytical expressions for the Type-I and Type-II error probabilities for
the proposed schemes. These new analytical tools should enable the optimization and comparison
of the proposed practical schemes across a wide range of source and code parameters. Note that
these expressions are derived only for the asymmetric case, which is simpler to handle compared
to the symmetric case.

Our numerical results, reveal the efficiency of the quantize-binning scheme compared to
the quantization and uncoded schemes, particularly when parameters are carefully chosen.
Additionally, these numerical result validate the accuracy of the analytical error probabilities by
demonstrating their consistency with Monte-Carlo simulations.

5.2 Notation

In addition to what was defined in Section 2.2, the following specific notations will be used
throughout this chapter. We use w(xn) to denote the Hamming weight of the vector xn, and
d(xn, yn) to denote the Hamming distance between xn and yn. The binomial coefficient of the
pair of integers (n, k) with k ≤ n is expressed as

(n
k

)
.

5.3 System model

We consider the DHT problem depicted in Figure 5.1, where Xn and Yn are two sequences
of length n. Encoder 1 and Encoder 2 send coded versions of Xn and Yn at rates R1, and R2,
respectively, while the decoder aims to make a decision between two hypotheses H0 and H1,
based on the received coded data. We consider two distinct setups:

1. Symmetric setup: here, both Xn and Yn are encoded at rates R1 and R2, respectively.

2. Asymmetric setup: in this setup, Yn is fully available at the decoder, i.e., R2 = ∞.

In what follows, we focus only on binary sources as a starting point toward developing
practical DHT schemes. This setup allows us to design and analyze practical DHT schemes in a
first simplified setting, which can later be extended to more complex and realistic scenarios.
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5.3.1 DHT for Binary Sources

We assume that the n symbols of the sequences Xn and Yn are i.i.d. realizations of some
random variables X and Y , respectively. Furthermore, X and Y are jointly distributed according
to the model Y = X ⊕ Z, where Z is a binary random variable independent of X, and we denote
p = P(X = 1), and c = P(Z = 1) with 0 < c ≤ 1/2. The two hypotheses are expressed as:

{
H0 : (p = p0, c = c0),
H1 : (p = p1, c = c1).

(5.1)

We assume, without loss of generality, that p0 < p1, and c0 < c1. This model was investigated
from an information-theoretic perspective for instance in [2, 33]. Furthermore, when p0 = p1,
and c1 = 1/2, the problem (5.1) reduces to testing against independence [18]. However, it is
important to note that, in the subsequent analysis, we do not restrict our attention to testing
against independence.

5.3.2 Error exponent for binary DHT

Following the approach used in the information theory definitions in Chapter 3, we define the
encoding functions for binary sources as follows:

f
(n)
1 : {0, 1}n → J1, 2v1K, (5.2)

f
(n)
2 : {0, 1}n → J1, 2v2K, (5.3)

and a decision function
g(n) : J1, 2v2K × J1, 2v2K× → {0, 1} (5.4)

We consider a rate-limited setup in which v1/n ≤ R1, and v2/n ≤ R2.
For given functions (f (n)

1 , f
(n)
2 , g(n)), we define Type-I error probability αn and Type-II error

probability βn as [33]

αn = P
(
g(n)(f (n)

1 (Xn), f
(n)
2 (Yn)) = 1|H0

)
, (5.5)

βn = P
(
g(n)(f (n)

1 (Xn), f
(n)
2 (Yn)) = 0|H1

)
. (5.6)

For a given value ϵ ∈ (0, 1) such that αn < ϵ, Type-II error exponent θ is defined as [33]

lim
n→∞

sup 1
n

log2
1

βn
≥ θ. (5.7)

In Chapter 3, we established a general bound on the error exponent θ, as expressed in equation
(3.22) for the asymmetric setup. This error exponent depends on an auxiliary source U which
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Figure 5.2 – Type-II error probability as function of n

has to satisfy the Markov chain U → X → Y [67]. In what follows, we assume that this auxiliary
source generates a sequence of symbols {Uk}+∞

k=1 such that

Uk = Xk ⊕ ϕk, (5.8)

where ϕk ∼ Bern (δ), and Xk and ϕk are independent. Specifying the error exponent bound in
(3.22) for the hypothesis testing problem defined in (5.1) leads to

θ ≥ sup
δ∈[0,1]

min
{

R − [H2(p0 ∗ δ) − H2(δ)], (5.9)

(p0 ∗ δ) log p0 ∗ δ

p1 ∗ δ
+ (1 − (p0 ∗ δ)) log 1 − (p0 ∗ δ)

1 − (p1 ∗ δ)

}
.

Here, H2 is the binary entropy function, and ∗ is the binary convolution operator defined as
x ∗ y = (1 − x)y + (1 − y)x, with 0 ≤ x, y ≤ 1.

5.3.3 Short-length nature of DHT

While the expression of the error exponent θ in (5.9) provides a scaling law for Type-II
error probability βn, it remains an asymptotic result due to the limit as n tends to infinity in
definition (5.7). Nevertheless, it confirms the intuition that the problem inherently involves short
sequences. For instance, consider parameters p0 = 0.05, p1 = 0.5, δ = 0.1, r = 0.4. In Figure 5.2,
we evaluate the quantity e−nθ for these parameters with n = 100, the result is approximately
10−12, and for n = 50, it yields approximately 10−6. This strongly suggests that practical schemes
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should focus on values of n less than 50. Hence, we now introduce practical coding schemes for
DHT tailored for such short sequence lengths.

5.4 Uncoded schemes

When considering DHT, there is no need to reconstruct all the exact values of the source bits
xn, and yn. Therefore, in this section, we describe two schemes which do not involve any coding.
In the first scheme, called separate scheme, the decision is taken directly at the encoders and then
transmitted to the decoder, which consists of 1 bit of information per decision. The second scheme,
referred to as the truncation scheme, involves the encoders transmitting only the first ℓ < n bits
of their respective sequences, with the decision being made at the decoder. While these schemes
do not constitute novelty in themselves, they serve as baselines for performance comparison with
the proposed practical quantization and quantize-binning schemes in the subsequent sections.
Additionally, the separate scheme achieves a very low transmission rate by making the decision
at the encoders and sending only a single bit to the decoder at the price of a loss in testing
performance. We will compare the performance of the separate and the truncation schemes at
the end of the section.

5.4.1 Separate scheme

When the marginal distributions of Xn or Yn depend on the hypothesis, a test can be
constructed at the encoders based only on their observations. Therefore, the separate scheme we
describe in this section is relevant only when p0 ̸= p1. In this scheme, Encoder 1 and Encoder
2 independently make local decisions based on their respective observations xn and yn. Each
encoder sends only a single bit to inform the decoder of its decision. The decoder then makes
the final decision based on the received bits from the encoders. While this setup may not be
optimal in terms of test, it offers the advantage of achieving very low communication rates by
transmitting just one bit to the decoder.

In this scheme, the encoding functions f
(n)
1 and f

(n)
2 for X and Y , respectively are described

as

f
(n)
1 : {0, 1}n → {0, 1}, (5.10)

f
(n)
2 : {0, 1}n → {0, 1}, (5.11)

and the decision function is given by

g(n) : {0, 1} × {0, 1} → {H0, H1}. (5.12)

The coding rates are given by R1 = R2 = 1/n.
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5.4.1.1 Construction of the encoding functions of the separate scheme

The encoding functions f
(n)
1 and f

(n)
2 in (5.10) and (5.11) are respectively constructed based

on a Neyman-Pearson (NP) test [70] on the observations xn, and yn, respectively. Under certain
constraints α

(x)
n < ϵ, and α

(y)
n < ϵ on Type-I error probabilities for Encoder 1 and Encoder 2,

respectively, the NP lemma [70] states that the following tests at Encoder 1 and Encoder 2:

P1(xn) < µ1P0(xn), (5.13)

P1(yn) < µ2P0(yn), (5.14)

minimize Type-II error probabilities β
(x)
n , and β

(y)
n , respectively, where µ1, and µ1 are threshold

values chosen to satisfy the Type-I error constraints. P0, and P1 are the marginal distributions of
xn (yn) under hypothesis H0 and under hypothesis H1, respectively.

Given that p0 < p1, and c0 < c1 it is shown in [70] that the tests described by (5.13) and
(5.14) are equivalent respectively to the conditions:

w(xn) < λ1, (5.15)

w(yn) < λ2 (5.16)

where λ1 and λ2 ∈ N are integer threshold values chosen so as to satisfy the constraints α
(x)
n < ϵ,

and α
(y)
n < ϵ, respectively.

5.4.1.2 Construction of the decision function of the separate scheme

The decision function g(n) in (5.12) is described as follows. Let us denote b1 = f
(n)
1 (xn) and

b2 = f
(n)
2 (yn) as the 1-bit produced by Encoder 1 and Encoder 2, respectively. Upon receiving b1

and b2, the decoder decides that g(n) (b1, b2) = Hi if b1 = i and b2 = i for i = 0, 1. Otherwise, the
decoder prefers to rely on the decision of Encoder 1. This test is motivated by the fact that Y is
a noisy version of X, and that P(Y = 1) > P(X = 1) under both hypotheses H0 and H1 as given
by (5.1). Other strategies may be considered depending on the assumptions on p0, p1, c0, c1, but
for simplicity, we focus only on this one here.

The next proposition provides analytical expressions of Type-I and Type-II error probabilities
of the separate scheme.

Proposition 5.1 The Type-I and Type-II error probabilities for NP test of the separate scheme
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are given by

αs = 1 −
γs∑

k=0

(
n

k

)
pk

0(1 − p0)n−k, (5.17)

βs =
γs∑

k=0

(
n

k

)
pk

1(1 − p1)n−k, (5.18)

where γs ∈ N is an integer threshold value chosen to satisfy the constraint on the Type-I error of
the NP test:

w(xn) < γs. (5.19)

Proof. For the separate scheme described above, the Type-I error can be evaluated as

αs = P0(b1 = 1, b2 = 1) + P0(b1 = 1, b2 = 0) (5.20)

= P0(b1 = 1)

= P0(w(xn) > γs)

= 1 −
γs∑

k=0
P0(w(xn = k))

= 1 −
γs∑

k=0

(
n

k

)
pk

0(1 − p0)n−k.

This gives (5.17). In (5.20), P0 represents the distribution under hypothesis H0. To obtain (5.18),
we follow the same steps as in (5.20) by replacing p0 by p1, which ends the proof.

The expressions (5.17) and (5.18) are also applicable to the asymmetric setup, where Y serves
as side information at the decoder.

5.4.2 Truncation scheme

In the truncation scheme, the encoders transmit ℓ < n of their observations to the decoder
which proceeds to the decision.

5.4.2.1 Code construction of the truncation scheme

The truncation scheme consists of sending the first ℓ symbols of the source vector xn and yn

at the coding rate R1 = R2 = ℓ/n at the decoder. The decoder can then perform a standard NP
test [70] on the pair (xℓ, yℓ). Under a certain constraint αt

n < ϵ on Type-I error probability for
the truncation scheme, the NP lemma [70] states that the following test:

P1(xℓ, yℓ) < µP0(xℓ, yℓ), (5.21)

77



Practical short-length schemes for distributed hypothesis testing

minimizes Type-II error probability βt
n, where µ is a threshold value chosen to satisfy the Type-I

error constraint. In (5.21), P0 and P1 are the joint probability distributions of (xℓ, yℓ) under
hypothesis H0 and under hypothesis H1, respectively.

5.4.2.2 Theoretical analysis of the truncation scheme

The next proposition provides analytical expressions of Type-I and Type-II error probabilities
of the truncation scheme.

Proposition 5.2 For the truncation scheme, given that p0 < p1 and c0 < c1, the analytical
expressions of Type-I and Type-II errors are given by

αt
n =

∑
(λ,j):

Tλ,j≥τt

(
ℓ

λ

)
pλ

0(1 − p0)ℓ−λ

(
n

j

)
cj

0(1 − c0)ℓ−j (5.22)

βt
n =

∑
(λ,j):

Tλ,j≤τt

(
ℓ

λ

)
pλ

1(1 − p1)n−λ

(
ℓ

j

)
cj

1(1 − c1)ℓ−j (5.23)

where Tλ,j = µ log2
p1(1−p0)
p0(1−p1) + j log2

c1(1−c0)
c0(1−c1) , and τt = log2 µ + n log2

(1−p0)(1−c0)
(1−p1)(1−c1) .

Proof. For the truncation scheme in the symmetric setup, the NP test (5.21) is equivalent to

P1
(
xℓ
)
P1
(
yℓ | xℓ

)
≤ µ P0

(
xℓ
)
P0
(
yℓ | xℓ

)
P1
(
xℓ
)
P1
(
zℓ
)

≤ µ P0
(
xℓ
)
P0
(
zℓ
)
, (5.24)

where zℓ = xℓ ⊕ yℓ. After simplification and passing through the logarithms, given that p0 < p1

and c0 < c1, we obtain

w(xℓ) log2
p1(1 − p0)
p0(1 − p1) + w(zℓ) log2

c1(1 − c0)
c0(1 − c1) ≤ τt, (5.25)

where τt = log2 µ + n log2
(1−p0)(1−c0)
(1−p1)(1−c1) . From (5.25), we remark that the Type-I can be evaluated
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as

αt
n = P0

(
w(xℓ) log2

p1(1 − p0)
p0(1 − p1) + w(zℓ) log2

c1(1 − c0)
c0(1 − c1) ≥ τt

)

=
∑

(λ,j):
Tλ,j≥τt

P0

(
w(xℓ) = λ, w(zℓ) = j)

)
(5.26)

=
∑

(λ,j):
Tλ,j≥τt

P0

(
w(xℓ) = λ

)
P0

(
w(zℓ) = j

)

=
∑

(λ,j):
Tλ,j≥τt

(
ℓ

λ

)
pλ

0(1 − p0)ℓ−λ

(
n

j

)
cj

0(1 − c0)ℓ−j , (5.27)

where Tλ,j = µ log2
p1(1−p0)
p0(1−p1) + j log2

c1(1−c0)
c0(1−c1) . This gives (5.22). Similarly,

βt
n = P1

(
w(xℓ) log2

p1(1 − p0)
p0(1 − p1) + w(zℓ) log2

c1(1 − c0)
c0(1 − c1) ≤ τt

)
,

we can obtain (5.23) by following the same steps, which ends the proof.
The expressions (5.22) and (5.23) for the truncation scheme are also applicable to the

asymmetric setup. The only difference is that in the asymmetric case, there is no need to transmit
anything for Y ; it is fully available at the decoder.

We expect the truncation scheme to be more efficient in terms of testing than the separate
one while necessitating a larger rate ℓ/n. To verify this, we now compare the performance of
both schemes in terms of Type-I and Type-II error probabilities.

5.4.3 Separate scheme versus truncation scheme

In this part, we aim to compare the separate scheme to the truncation scheme. To do this,
we rely on Receiver Operating Characteristic (ROC) curves, a standard tool for evaluating
hypothesis test performance. The ROC curve illustrates the trade-off between the Type-II and
Type-I error probabilities. Each point of the curves is obtained for a different value of the decision
threshold.

In Figure 5.3, we set n = 30, c0 = 0.1, p1 = 0.5 and c1 = 0.35. We then compare the Type-II
versus Type-I performance of the separate scheme (as discussed in Section 5.4.1) and of the
truncation scheme (outlined in Section 5.4.2) for different values on p0. The results show that
the separate scheme outperforms the truncation scheme for small p0. On the other hand, as
p0 increases and approaches p1, the truncation scheme gains an advantage compared to the
separate one. This is because when p0 approaches p1, it becomes very challenging for Encoder 1
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Figure 5.3 – ROC curve for separate scheme compared to truncation scheme.

to distinguish accurately between H0 and H1 only based on its local observations. However, the
truncation scheme exploits the joint information of both encoders to improve decision accuracy.

In conclusion, the separate scheme excels in rate efficiency by transmitting only 1-bit, but its
decision accuracy is compromised when p0 increases and approaches p1. However, the truncation
scheme sacrifices rate efficiency, as encoders transmit truncated data at a rate R1 = R2 = R = ℓ/n,
yet achieve higher decision accuracy through joint decoding when p0 increases.

However, these schemes do not exploit coding. Information-theoretic results suggest that
coding can improve performance for DHT. Therefore, we now turn our focus to code design for
this problem.

5.5 Quantization scheme

In their seminal work [18], Ahlswede and Csiszár introduced the first DHT scheme based only
on a quantizer from the information-theoretic perspective, as discussed in Chapter 2, Section
2.3.2. Here, we present a practical implementation of this scheme for short-length sequences by
utilizing linear block codes.

5.5.1 Code construction of the quantization scheme for the symmetric setup

To practically implement binary quantization for the symmetric setup, we follow the approach
of [71] and consider a generator matrix Gq with dimension n × m of a linear code. For given
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source sequences xn and yn, the encoders produce vectors zm
q,1 and zm

q,2 of length m bits as [72]

zm
q,1 = arg min

zm
d (Gqzm, xn) (5.28)

and
zm

q,2 = arg min
zm

d (Gqzm, yn) . (5.29)

In (5.28), and (5.29), the challenge lies in determining the quantized vectors zm
q,1 and zm

q,2 that
achieve the minimum Hamming distance. In [39, 40], it is proposed to build efficient binary
quantizers using low-density generator matrices (LDGM). LDGM codes were considered so as
to develop a low complexity message-passing algorithm called Bias-Propagation to solve (5.28)
and (5.29). However, the schemes introduced in [39, 40] consider very long codes (more than 105

bits). Here, due to the short-length nature of the problem, we cannot use the Bias-Propagation
algorithm since it leads to an important loss in performance on the considered codes. Instead, we
will solve (5.28) and (5.29) exactly by exhaustive search. Therefore, we consider any generator
matrix Gq, not necessarily obtained from an LDGM code. For example, in our simulations, we
will consider BCH and Reed-Muller codes.

The codewords zm
q,1, and zm

q,2 are then transmitted to the decoder at code rates R1 = R2 = m/n.
The decoder first computes the quantized vectors xn

q = Gqzm
q,1 and yn

q = Gqzm
q,2 and then decides

between H0 and H1 based on the NP test

P1
(
xn

q , yn
q

)
≤ µqP0

(
xn

q , yn
q

)
, (5.30)

where µq is an integer threshold. The test (5.30) is equivalent to

w(xn
q ) log2

p̂1(1 − p̂0)
p̂0(1 − p̂1) + w(vn

q ) log2
ĉ1(1 − ĉ0)
ĉ0(1 − ĉ1) ≤ τq, (5.31)

where τq = log2 µq + n log2
(1−p̂0)(1−ĉ0)
(1−p̂1)(1−ĉ1) , and vq = xq ⊕ yq. In (5.31), (p̂0, ĉ0) and (p̂1, ĉ1) are

estimated values of p, and c, respectively, under H0, and H1 through Monte-Carlo simulations.

Note that computing the joint distribution distributions P0(xn
q , yn

q ) and P1(xn
q , yn

q ) in (5.30) is
not straightforward in the symmetric setup. To facilitate the transition from (5.30) to (5.31), we
introduced the following assumptions. First, given that Y = X ⊕ Z, the conditional probability
P(yn | xn) is given by P(zn), where, xn, yn, and zn = xn ⊕ yn represent the realizations of the
random variables X, Y , and Z, respectively. Therefore, given that xn and zn are the realizations
of i.i.d. random variables X ∼ Bern(p) and Z ∼ Bern(c), respectively, we extend this assumption
to the quantized variables. Specifically, we assume that xn

q and vn
q = xn

q ⊕ yn
q are the realizations

of i.i.d. random variables Xq ∼ Bern(p̂) (with p̂ = p̂0 under H0, and p̂ = p̂1 under H1) and
Vq ∼ Bern(ĉ) (with ĉ = ĉ0 under H0, and ĉ = ĉ1 under H1), with Vq = Xq ⊕ Yq.
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5.5.2 Code construction of the quantization scheme for the asymmetric setup

In the asymmetric setup, the coding scheme is obtained in a straightforward manner from the
previous one. In this case, only xn is quantized and transmitted at rate R1 = m/n, while yn is
available at the decoder. Therefore, the decoder first computes the quantized vector xn

q = Gqzm
q,1.

Then, since by the previous assumptions, P(zm
q,1, yn) = P(xn

q , yn), the NP test (5.30) in the
asymmetric setup reduces to

n∑
i=1

(xq,i ⊕ yi) < λq, (5.32)

where λq is an integer threshold.

5.5.3 Comparison with information-theoretic scheme

We now discuss the construction of this practical scheme compared to the information-
theoretic one of [21]. Our practical implementation of the quantization scheme closely follows the
approach outlined in the information-theoretic proofs [21]. In information theory, the encoder
selects a sequence zn from a generated codebook as a quantized version of xn if (zn, xn) are
jointly typical. In our practical implementation, we use linear codes for quantization, where the
quantized version of xn is the one that minimizes the Hamming distance, as defined in (5.28).
On the decoder side, while the information-theoretic method accepts H0 if zn and yn are jointly
typical under H0, our practical implementation uses the NP test (5.30) to decide between H0

and H1. Since the NP test is known to be optimal in hypothesis testing for the problem stated
in (5.1) [70], we are sure not to lose any performance compared to the information-theoretic
approach. Moreover, the NP test is simple to manipulate for our specific source models.

5.5.4 Theoretical analysis of the quantization scheme

In this section, we provide a theoretical analysis of the practical quantization scheme, for the
asymmetric setup only. As for the separate and truncation coding schemes in Sections 5.4.2 and
5.4.2, we provide exact analytical expressions of the Type-I and Type-II error probabilities of the
proposed scheme for the considered generator matrix Gq. The extension to the symmetric setup
is very complex and is left for future work.

In the NP test (5.32) of the quantization scheme in the asymmetric setup, the decision is made
on the vectors xn

q and yn, with larger dimensions n > ℓ, compared to the baseline truncation
scheme. However, the vector xn

q contains quantization errors with respect to the original xn.
This is why, in what follows, we aim to provide a theoretical analysis to compare the impact of
quantization on decision performance by providing closed-form expressions of the Type-I and
Type-II error probabilities.

We first introduce the following notation related to the considered code with generator
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matrix Gq. Consider the set of integers {E
(q)
γ }

γ∈J0,d
(q)
maxK, where E

(q)
γ is the number of words xn of

Hamming weight γ that belong to the decision region C(q)
0 of xn

q = 0n. In other words, xn ∈ C(q)
0

means that the solution of (5.28) for xn is 0m. We further denote N
(q)
0 =

∑d
(q)
max

γ=0 E
(q)
γ .

Proposition 5.3 For the quantization scheme and a threshold value λq, Type-I and Type-II
error probabilities are given by

α(q)
n = 1 − 1

N
(q)
0

λq∑
λ=0

d
(q)
max∑

γ=0

n∑
j=0

E(q)
γ ∆λ,j,γ

(
n

j

)
cj

0(1 − c0)n−j , (5.33)

β(q)
n = 1

N
(q)
0

λq∑
λ=0

d
(q)
max∑

γ=0

n∑
j=0

E(q)
γ ∆λ,j,γ

(
n

j

)
cj

1(1 − c1)n−j , (5.34)

where
∆λ,j,γ = Γλ,j,γ∑max(λ,j)

i=0
(λ

i

)(n−λ
j−i

) (5.35)

and, for γ = j + λ − 2u and 0 ≤ u ≤ min(λ, j) ≤ n,

Γλ,j,γ =
(

λ

u

)(
n − λ

j − u

)
. (5.36)

Proof. Since by symmetry, the quantizer error probability is independent of the transmitted
codeword [71], we consider the all-zero codeword xn

q = 0. From (5.32), we develop

α(q)
n = 1 −

λq∑
λ=0

P0(w(Yn) = λ) (5.37)

= 1 −
λq∑

λ=0

d
(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

P0(w(Yn) = λ|w(Xn) = γ)

= 1 −
λq∑

λ=0

d
(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

P0(d(Xn, Yn) = j)∆λ,j,γ

= 1 −
λq∑

λ=0

d
(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

(
n

j

)
cj

0(1 − c0)n−j∆λ,j,γ .

This gives (5.33). To obtain (5.34), we remark that β
(q)
n =

∑λq

λ=0 P1(w(Yn) = λ) and follow the
same steps as in (5.37), by replacing c0 by c1, which ends the proof.

These theoretical results are novel and differ from both the information-theoretic analysis of
DHT and existing results in channel coding. Especially, while error probability expressions exist
for linear block codes dedicated to channel coding, such results had not been established for the
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DHT problem. These new analytical allow us to predict decision performance without relying on
Monte-Carlo simulations and facilitate code design by considering parameters such as E

(q)
γ . For

instance, optimizing E
(q)
γ can yield an optimal quantizer for DHT, as explored in [73].

5.6 Quantize-binning scheme

In their seminal work [22], Shimokawa et al. introduced the quantize-binning scheme for
DHT. This scheme leverages the correlation between sources to reduce the compression rate.
Furthermore, for a given compression rate, the quantize-binning scheme achieves lower error
rates compared to the quantization scheme, as discussed in Section 2.3.4. We now introduce a
practical short-length implementation of this scheme by using linear block codes.

5.6.1 Code construction of the quantize-binning scheme for the symmetric
setup

To practically implement the quantize-binning scheme, we consider as before a generator
matrix Gq of size n × m. We also resort to the parity check matrix Hb of size k × m of another
linear block code. In the symmetric setup, given the source vectors xn and yn, the encoders
employ the quantization method described in (5.28) and (5.29) to obtain sequences zm

q,1 and zm
q,2

for xn and yn, respectively. Then, the encoders utilize the parity check matrix Hb of size m × k

from another linear code to compute the syndromes

uk
1 = Hbzm

q,1, (5.38)

and
uk

2 = Hbzm
q,2. (5.39)

The syndromes uk
1 and uk

2 are then transmitted to the decoder at rates R1 = R2 = k/n. At the
decoder, as discussed in Section 5.5, we avoid using message-passing algorithms since they do not
perform well with finite-length sequences. Instead, we opt for an exhaustive search. Therefore,
the decoder first identifies by exhaustive search, vectors ẑm

q,1 and ẑm
q,2 as

ẑm
q,1, ẑm

q,2 = arg min
zm

1 ,zm
2

d (Gqzm
1 , Gqzm

2 ) s.t. Hbzm
1 = uk

1 , and Hbzm
2 = uk

2 . (5.40)

We then compute xn
q,b = Gqẑm

q,1 and yn
q,b = Gẑm

q,2, and, apply the following NP test

P1
(
xn

q,b, yn
q,b

)
≤ µq,bP0

(
xn

q,b, yn
q,b

)
, (5.41)

84



Practical short-length schemes for distributed hypothesis testing

where µq,b is an integer threshold. The NP test (5.41) for the quantize-binning is equivalent to
the following condition

w(xn
q,b) log2

p̂1,b(1 − p̂0,b)
p̂0,b(1 − p̂1,b)

+ w(vn
q,b) log2

ĉ0,b(1 − ĉ0,b)
ĉ0,b(1 − ĉ1,b)

≤ τq,b, (5.42)

where τq,b = log2 µq,b + n log2
(1−p̂0,b)(1−ĉ0,b)
(1−p̂1,b)(1−ĉ1,b) , and vn

q,b = xn
q,b ⊕ yn

q,b. Here p̂0,b, ĉ0,b, p̂1,b, and ĉ1,b

are also estimated through Monte-Carlo Simulations.
As in Section 5.5.1, we note that computing the joint distributions P0

(
xn

q,b, yn
q,b

)
and

P1
(
xn

q,b, yn
q,b

)
in (5.41) for the quantize-binning scheme in the symmetric setup is even more

complex. To facilitate the transition from (5.41) to (5.42), we adopt the same assumptions as
in Section 5.5.1. Specifically, we assume that xn

q,b and vn
q,b = xn

q,b ⊕ yn
q,b are the realizations of

i.i.d. random variables of some vector random variables Xq,b ∼ Bern(p̂b) (with p̂b = p̂0,b under
H0, and p̂b = p̂1,b, under H1), and Vq,b ∼ Bern(ĉb) (with ĉb = ĉ0,b under H0, and ĉb = ĉ1,b, under
H1), with Vq,b = Xq,b ⊕ Yq,b. Here p̂0,b, ĉ0,b, p̂1,b, and ĉ1,b are also estimated through Monte-Carlo
simulations.

5.6.2 Code construction of the quantize-binning scheme for the asymmetric
setup

In the asymmetric case, only xn is quantized and binned as un
1 , and transmitted at rate

R1 = k/n, while yn serves as side information. Therefore, the receiver first identifies by exhaustive
search vector ẑm

1 as
ẑm

1 = arg min
zm

d(Gqzm, yn) s.t. Hbzm = uk
1 . (5.43)

Therefore, in the asymmetric setup, the NP test (5.41), in which yn
q,b is replaced by yn, reduces

to
n∑

i=1
(x̂q,i ⊕ yi) < λqb, (5.44)

where x̂n
q = Gqẑm

1 , and λqb is an integer threshold.

5.6.3 Comparison with information-theoretic scheme

We now discuss the construction of this practical scheme compared to the information-theoretic
one of [22]. As detailed in Section 5.6.2, the practical implementation of the quantization part
closely follows the approach outlined in the information-theoretic proofs. For the binning part,
the information-theoretic method involves random binning, where the quantized vectors are
partitioned into bins randomly, with the number of bins being smaller than the number of
quantized vectors. In contrast, our practical implementation uses syndrome-based binning. For
each quantized vector, we compute a syndrome uk using a parity check matrix of a linear code, as
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formulated in (5.38). In addition, at the decoder side, the information-theoretic approach uses a
minimal entropy check for decoding and decides H0 if the output sequence and the side information
are jointly typical under H0. In our practical implementation, to decide between H0 or H1, we
applied the NP test (5.41), which, by definition is known to be optimal in hypothesis testing
problem [70]. Therefore, we do not lose any performance compared to the information-theoretic
approach which could be more difficult to apply.

5.6.4 Theoretical analysis of the quantize-binning scheme

The NP test for the quantize-binning scheme in the asymmetric setup is also given by (5.44).
The binning allows us to leverage the side information vector yn so as to further reduce the
coding rate. However, it also introduces a binning error which can impact Type-I and Type-II
error probabilities [2]. We now provide exact analytical expressions of Type-I and Type-II error
probabilities for the quantize-binning scheme in the asymmetric setup.

We consider the decision region C(qb)
0 for the all-zero codeword of the quantize-binning scheme.

Especially, a side information vector yn belongs to C(qb)
0 if the solution of (5.43) for this vector

is ẑm
q = 0m. We then define the set of integers {E

(qb)
ν }

ν∈J0,d
(qb)
maxK, where E

(qb)
ν is the number of

words yn of Hamming weight ν that belong to the decision region C(qb)
0 . We also define the set

of integers {A
(qb)
t }t∈J0,nK, where A

(qb)
t is the number of codewords xn

q of Hamming weight t such
that there exists zm

q that satisfies xn
q = Gqzn

q , and Hbzm
q = 0k. As a result, the set {A

(qb)
t }t∈J0,nK

is the code weight distribution of the concatenated code.

Proposition 5.4 For the quantize-binning scheme and for a threshold value λqb, Type-I and
Type-II error probabilities are given by

α(qb)
n = 1 − PB(c0) − PB̄(c0), (5.45)

β(qb)
n = PB(c1) + PB̄(c1), (5.46)

where

PB(δ) =
min(d(qb)

max,λqb)∑
ν=0

E
(qb)
ν(n
ν

) d
(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

Γν,j,γδj(1 − δ)n−j , (5.47)

PB̄(δ) =
n∑

i=0


d

(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

Γi,j,wδj(1 − δ)n−j


 n∑

t=1

λqb∑
ν=0

E
(qb)
ν(n
ν

) A
(qb)
t Γi,ν,t(n

i

)

 . (5.48)

Proof. We consider the all-zero codeword xn
q = 0. Under the hypothesis H0, we express

α(qb)
n = 1 − P0(Ĥ0, B) − P0(Ĥ0, B̄). (5.49)
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In this expression, B is the event that the correct sequence x̂q = xq was retrieved at the
decoder, while B̄ is the event that an incorrect sequence x̂q ̸= xq was output by the decoder.
In addition, Ĥ0 is the event that hypothesis H0 was decided at the decoder. We further denote
PB(p0) = P0(Ĥ0, B) and PB̄(p0) = P0(Ĥ0, B̄). We then express

PB(p0) =
n∑

ν=0
P0(w(Yn) = ν)P0(Ĥ0, B|w(Yn) = ν) (5.50)

=
min(d(qb)

max,λqb)∑
ν=0

P0(w(Yn) = ν)E
(qb)
ν(n
ν

) . (5.51)

Next, by following the same steps as in the proof of Proposition 5.3, we show that

P0(w(Yn) = ν) =
d

(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

Γν,j,γcj
0(1 − c0)n−j , (5.52)

which provides (5.47). We then write

PB̄(p0) =
n∑

i=0
P0(w(Yn) = i)P0(Ĥ0, B̄|w(Yn) = i), (5.53)

where P0(w(Yn) = i) is given by (5.52). Next, we develop

P0(Ĥ0, B̄|w(Yn) = i)

=
n∑

t=1

λqb∑
ν=0

P0(w(X̂n
q ) = t, d(X̂n

q , Yn) = ν|w(Yn) = i) (5.54)

=
n∑

t=1

λqb∑
ν=0

E
(qb)
ν(n
ν

) A
(qb)
t Γi,ν,t(n

i

) . (5.55)

This provides the expression of PB̄(c0) in (5.48). We obtain the expression of β
(qb)
n from the

previous equations by noticing that β
(qb)
n = PB(c1) + PB̄(c1). This ends the proof.

These theoretical results are novel and have been derived only for the asymmetric setup so
far, as extending them to the symmetric setup becomes highly complex and intractable. They
also facilitate the optimization and comparison of the proposed practical schemes across a wide
range of source and code parameters. For instance, optimizing E

(q)
γ , E

(qb)
ν , and A

(qb)
t may lead to

an optimal quantize-binning scheme for DHT, which we leave for future work.
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5.7 Numerical Results

We now compare the different proposed coding schemes. To do this, we rely on ROC curve
to show the Type-II error probability versus the Type-I error probability by varying the decision
threshold for each of the considered coding schemes.

5.7.1 Truncation versus quantization

Here, we evaluate the performance of the quantization scheme against the truncation scheme
for both symmetric and asymmetric setups. We fix c0 = 0.1, c1 = 0.35 and p1 = 0.5. For both
schemes, we evaluate the Type-II error with respect to the Type-I error.

In the symmetric setup, for the quantization (as described in Section 5.5), each encoder
utilizes the BCH (31, 16)-code with minimum distance dmin = 7. As a result, after applying
the quantizer, m = 16 bits are sent to the decoder. Each encoder transmits ℓ = 16 bits in the
truncation scheme. Therefore, we consider for comparison the truncation scheme with ℓ = 16 bits.
Figure 5.4 illustrates the results of Monte-Carlo simulations averaged over 10000 trials, showing
that the quantization scheme outperforms the truncation scheme in the symmetric setup for the
considered values of p0.

Similarly, in the asymmetric setup, we consider the same BCH (31, 16)-code for the quantiza-
tion and the same truncation scheme with ℓ = 16 bits for comparison. The only difference is that
in the asymmetric setup, the BCH code is only used to quantize the observation xn, while yn is
available as side information. In Fig. 5.5, the Monte-Carlo simulations, averaged over 10000 trials,
also reveal that the quantization scheme outperforms the truncation scheme in the asymmetric
setup for the considered values of p0. In addition, we observe that the theoretical Type-I and
Type-II error probabilities are closely consistent with the Monte Carlo results. This is because
the error probability expressions take into account the considered code through the terms E

(q)
γ .

As a result, the theoretical expressions are found to be relevant tools for the DHT code design.

5.7.2 Truncation versus quantize-binning

We now evaluate the performance of the quantize-binning scheme for both symmetric and
asymmetric setups. We set c0 = 0.1, c1 = 0.35 and p1 = 0.5.

In the asymmetric setup, for the quantize-binning scheme (as described in Section 5.6),
we consider the BCH (31, 16)-code for the quantizers, and the Reed-Muller (16, 5) code with
dmin = 8 for the binning part. As a result, each encoder send only k = 8 coded bits to the
receiver. Therefore, for comparison, we consider the truncation scheme with ℓ = 8. Fig. 5.6 shows
the Monte-Carlo simulations, averaged over 10000 trials, for both schemes. We observe that the
quantize-binning scheme performs better than the truncation scheme, despite the fact that both
the quantization and binning process can introduce errors.
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Figure 5.4 – ROC curve for the BCH code (31, 16, 7) used as a quantizer, compared to the
truncation scheme in the symmetric setup.

Figure 5.5 – ROC curve for the BCH code (31, 16, 7) used as a quantizer, compared to the
truncation scheme in the asymmetric setup. Source : © 2024 IEEE. Reproduced with permission from [3].

In the asymmetric setup, only the observation xn is quantized and binned, while yn serves as
side information. We utilise the same BCH (31, 16)-code, Reed-Muller (16, 5) for the quantize-
binning and the same truncation scheme with ℓ = 8 than the symmetric setup. Again, in Fig. 5.7,
the Monte-Carlo simulations show superior performance of the quantize-binning scheme over the
truncation scheme in the asymmetric setup. We also observe that the theoretical Type-I and
Type-II error probabilities are closely consistent with the practical performance.
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Figure 5.6 – ROC curve for the quantize-binning scheme built from the BCH code (31, 16, 7)
for quantization combined with the Reed-Muller code (16, 5, 8) for binning in the symmetric case.

Figure 5.7 – ROC curve for the quantize-binning scheme built from the BCH code (31, 16, 7)
for quantization combined with the Reed-Muller code (16, 5, 8) for binning in the asymmetric
case. Source : © 2024 IEEE. Reproduced with permission from [3].

5.8 Summary and Discussion

In this chapter, we proposed practical short-length coding schemes for binary DHT. We first
analyzed and compared two uncoded schemes for both symmetric and asymmetric setups of DHT.
The first uncoded scheme, known as the separate scheme, involves each encoder independently
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making local decisions based on their observations and transmitting a single bit to the receiver
for the final decision. The second uncoded scheme, referred to as the truncation scheme, involves
transmitting the first ℓ bits of the sources to be encoded. This scheme served as a performance
baseline in our numerical results. The separate scheme is efficient in terms of transmission rate,
sending only 1 bit, but its decision accuracy is compromised when p0 increases. In contrast, the
truncation scheme, while less efficient due to transmitting truncated data at a rate R = ℓ/n,
provides better decision accuracy through joint decoding when p0 increases.

We then introduced two schemes using coding, one built with binary quantizer, and the other
built as a quantize-binning scheme. Both schemes were designed from short linear block codes. For
each considered scheme, in addition to practical constructions, we derived theoretical expressions
of Type-I and Type-II error probabilities in the asymmetric case. Simulation results demonstrated
the superiority of the proposed quantization and quantize-binning schemes compared to the
baseline truncation scheme and also showed the accuracy of the proposed theoretical expressions.
In addition, the performance of the quantize-binning scheme provides more gains in the symmetric
setup compared to the asymmetric setup. This is a notable insight, as the symmetric setup has
received relatively little attention in the DHT literature.

From a practical point of view, future works will include an interleaver design to improve the
performance of the concatenated construction, as well as complexity reduction of the decoders so
as to allow for larger code length to be considered. Another interesting analysis is to compare
our proposed separate scheme in the symmetric case to the Watanabe’s test [32] that is based on
fixed-length coding.
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Chapitre 6

CONCLUSION AND PERSPECTIVES

6.1 Conclusion

In this thesis, we first extended the study of DHT to more general source models, moving
beyond the traditional i.i.d. assumptions. We analyzed the performance of DHT for these models
and derived achievable error exponents. To achieve this, we proposed a coding scheme that
provides a general lower bound on the error exponent. Unlike existing coding schemes for i.i.d.
sources, which rely on the method of types, our proposed scheme is based on the information
spectrum approach introduced by Han [42]. Notably, when applied to the specific case of i.i.d.
sources, our general error exponent aligns with well-established results of [2].

We then demonstrated the applicability of our general analysis to various sources of interest,
including stationary and ergodic Gaussian sources, and the Gilbert-Elliot (GE) sources model.
Particularly, for the GE model, we introduced an efficient method to estimate the error exponent,
which utilizes the forward recursion of HMMs. Our numerical results have evaluated the effects
of the model parameters on the error exponent, as well as the tradeoff between the testing error
and the binning error.

We then focused on the development of practical coding schemes. Specifically, we proposed
short-length implementations of quantization and quantize-binning schemes, both built using
linear block codes. For both schemes, we first addressed how to perform the hypothesis test in
practical scenarios. In addition to practical constructions, we also derived theoretical expressions
of Type-I and Type-II error probabilities for each proposed scheme. Numerical results showed that
our practical implementations exhibited notable performance improvements compared to baseline
uncoded schemes, where only a portion of the bits were transmitted without coding. While
information-theoretic proofs have provided a basis for the development of our practical coding
schemes, insights from the practical design could offer valuable guidance for future theoretical
work on DHT, particularly in the symmetric setup.
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6.2 Perspectives

6.2.1 Information spectrum method

In Chapter 3, we used the information spectrum approach to derive a generic bound on
the error exponent. This bound is applicable to a broad range of source models, extending
beyond the usual i.i.d. assumptions. However, when applied to the i.i.d. source model, our
general error exponent does not achieve the optimal lower bound established by Shimokawa
et al. [22]. Additionally, recent work by Kochman et al. [25] demonstrated an enhancement
of the achievable error exponent presented by Shimokawa et al. As future work, we aim to
incorporate the improvements from [25] into our coding scheme for general sources. Specifically,
in the decoding process, we will explicitly include the minimal entropy check, as in [25], but
adapted to general sources, which may lead to a tighter general error exponent.

The information spectrum approach is a powerful tool for developing a general theory of
information, as emphasized by Han in his book [42]. Although this method has been used in
hypothesis testing before, notably by Han [57], it was applied only to a single source, without
considering distributed setups and coding. In [57], Han’s approach relied on large deviation
theory and on an information-spectrum slicing procedure, which partitions the acceptance region
into subsets of equal width to bound the error exponent. As a perspective for future work,
incorporating the information spectrum slicing method into the coding schemes for DHT is
promising. It might simplify proofs and potentially yield tighter bounds on the error exponent.

6.2.2 Error exponent expressions for specific source models

In Chapter 4, we applied our general bound to two specific source models: the stationary
and ergodic Gaussian sources model, and the GE sources model. For the stationary and ergodic
Gaussian sources models, we derived closed-form expressions. Explicit expressions for the optimal
error exponent in the case of vector Gaussian sources have also been found in works such as
[60, 61, 62]. As a perspective for future work, our derived error exponents can be compared with
those presented in these studies. Furthermore, in subspace techniques for array signal processing
[59], a relevant question is the accuracy of the estimated signal subspace dimension, which
inherently leads to a hypothesis testing problem. Our DHT framework for Gaussian sources could
provide valuable insights in this context.

Regarding the GE model, we provided an efficient numerical method to evaluate the error
exponent, using forward recursions proposed for Hidden Markov Models (HMM) in [63]. Future
works will be dedicated to analyzing more generic Hidden Markov Models and Gauss Markov
models.
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6.2.3 Practical short-length coding schemes and theoretical analysis of short-
length coding regime

The construction of efficient short-length linear block codes is often known to be a challenging
problem [41]. Despite this, in Chapter 5, we introduced two coded schemes: one based on a binary
quantizer and the other utilizing a quantize-binning scheme. Both schemes were constructed using
short linear block codes. In addition to their practical implementations, we derived theoretical
expressions for the Type-I and Type-II error probabilities in the asymmetric case.

Another coding scheme to explore is the truncation-binning scheme, where the first ℓ < n

bits of the sequence xn are selected, followed by applying a parity-check matrix from a linear
block code for the binning step. This scheme can be compared to the quantize-binning scheme.
The advantage of the truncation-binning scheme lies in the fact that the truncation process does
not introduce any coding error, unlike the quantization step in the quantize-binning scheme.
This makes truncation-binning a potentially efficient approach to explore. In addition, future
works will include the design of interleavers to improve the performance of the concatenated
construction. Another important research question is on the complexity reduction of the decoders
to allow for larger code length to be considered. Another interesting study would be to compare
our proposed separate scheme in the symmetric case to Watanabe’s test [32] which is based on
fixed-length coding.

Additionally, the theoretical expressions we derived for both the quantization and quantize-
binning schemes are novel, providing a framework for optimizing and comparing these practical
schemes across various source and code parameters. Future work could focus on optimizing the
parameters such as E

(q)
γ , E

(qb)
ν , and A

(qb)
t to develop optimal quantization and quantize-binning

schemes for DHT. For instance, the work in [73] demonstrates that optimizing E
(q)
γ can lead to

an optimal quantizer for DHT. Extending this optimization approach to the quantize-binning
scheme could be promising. In addition, these theoretical expressions have only been derived
for the asymmetric setup. Therefore, another interesting future work could be to derive these
expressions for the symmetric setup, although this could lead to very complex expressions.

Since our work is just the beginning of designing short-length coding schemes for DHT, another
interesting direction would be to explore the characterization of an optimal error exponent for
finite-block length. This remains a challenging problem and an open question.

6.2.4 Universal coding schemes for Goal-oriented communication

Goal-oriented communication is an evolving field in modern communications, where data
transmission is designed for specific tasks such as training machine learning models, decision-
making, or semantic analysis [10, 11, 12]. In this thesis, we focused on the particular case of
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decision-making, with a special emphasis on DHT. We provided both an information-theoretic
framework and practical short-length coding schemes tailored to DHT.

Another interesting research direction is: can we design a universal coding scheme that would
allow for different learning tasks to be performed on the same compressed data ? To address this,
we first need to establish the theoretical limits of coding schemes designed for specific tasks as
well as develop practical coding schemes tailored to those tasks. By analyzing the theoretical and
practical performance of coding schemes for various tasks, we can potentially identify common
features that could guide the development of universal coding schemes.
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Résumé : Dans les réseaux de 
communication distribués, les données sont 
collectées, compressées, et transmises 
depuis des nœuds distants vers un serveur 
central pour un traitement ultérieur. 
Cependant, l'objectif du serveur n'est pas 
toujours de reconstruire les données 
originales, mais plutôt de prendre des 
décisions à partir des données codées 
reçues. Dans ce contexte, le Test 
d'Hypothèses Distribué se concentre sur le 
cas particulier de deux sources et vise à 
effectuer une prise de décision directement à 
partir des données compressées, sans 
passer par une reconstruction préalable. 
Comme dans le test d'hypothèses classique, 
deux types d'erreurs sont pris en compte pour 
évaluer les performances : l'erreur de Type I 
(fausse alarme) et l'erreur de Type II (décision 
manquée). Le Test d'Hypothèses Distribué  
prend en compte une contrainte de débit sur 
le lien de communication, et l'objectif est de 
concevoir un schéma de codage afin de 
maximiser la décroissance exponentielle, 
appelée exposant d'erreur, de la probabilité 
d'erreur de Type II, tout en maintenant la 
probabilité d'erreur de Type I en dessous d'un 
seuil spécifié. Dans la littérature, ce cadre a 
principalement été étudié sous un angle 
théorique de l'information, et la plupart des 
travaux existants analysent les performances 
des schémas du Test d'Hypothèses Distribué  
en supposant des sources indépendantes et 
identiquement distribuées (i.i.d.). Dans la 
première partie de cette thèse, nous 
abordons un modèle plus réaliste et général 
de sources non-i.i.d. Ce modèle englobe des 
sources non stationnaires et non ergodiques, 
reflétant mieux les scénarios réels par rapport 
au cas i.i.d.  
 
 
 
 
 
 

Nous dérivons des bornes génériques sur 
l'exposant d'erreur pour le Test 
d'Hypothèses Distribué à l'aide d'outils du 
spectre de l'information pour ce modèle 
général de sources. Nous montrons la 
cohérence de ces bornes avec le cas i.i.d. 
et les caractérisons plus précisément pour 
deux modèles spécifiques de sources : les 
sources gaussiennes non-i.i.d., et les 
sources de type Gilbert-Elliot. De plus, 
l'étude du Test d'Hypothèses Distribué ne 
se limite pas à l'analyse des limites 
théoriques de l'information, mais inclut 
aussi le développement de schémas de 
codage pratiques pour ce cadre. Ainsi, 
dans la deuxième partie de cette thèse, 
nous développons et implémentons des 
schémas de codage pratiques de courte 
longueur, spécialement conçus pour le Test 
d'Hypothèses Distribué, qui n'avaient pas 
encore été étudiés dans la littérature. Ces 
schémas de codage sont basés sur des 
codes linéaires en blocs et visent des 
longueurs très courtes, appropriées pour le 
Test d'Hypothèses Distribué (moins de 100 
bits). En outre, nous fournissons des 
expressions analytiques exactes pour les 
probabilités d'erreurs de Type I et Type II 
pour chaque schéma de codage proposé, 
offrant ainsi des outils utiles pour la 
conception optimale future de codes DHT. 
Le travail réalisé dans cette thèse pourrait 
servir de base à l'investigation théorique et 
pratique de schémas de codage dédiés à 
des tâches d'apprentissage plus 
complexes, telles que la classification. 
  



 

 
Title : Error Exponent Bounds and Practical Short-Length Coding Schemes for Distributed Hypothesis 
Testing (DHT) 

Keywords : information theory, distributed hypothesis testing, information spectrum, general sources, error 
exponent, quantization, quantize-binning, linear block codes. 

 

Abstract : In distributed communication 
networks, data is gathered, compressed, and 
transmitted from remote nodes to a central 
server for further processing. However, often, 
the objective of the server is not to reconstruct 
the original data, but rather to make decisions 
based on the received coded data. In this 
context, Distributed Hypothesis Testing (DHT) 
focuses on the particular case of two sources 
and addresses decision-making directly from 
compressed data without prior reconstruction. 
As in conventional hypothesis testing, two 
types of errors are considered for 
performance evaluation: Type-I error (false 
alarm) and Type-II error (missed detection).  
DHT considers a rate-limited communication 
link, and the objective is to design a coding 
scheme so as to maximize the exponential 
decay, termed error exponent, of Type-II error 
probability, while keeping Type-I error 
probability below a specified threshold.  In the 
literature, this setup was mostly investigated 
from an information-theoretic perspective, and  
most existing work analyze the performance 
of DHT schemes under the assumption of 
i.i.d. sources. In the first part of this PhD 
thesis, we address a more realistic and 
general model of non-i.i.d. sources. This 
model encompasses non-stationary and non-
ergodic sources, and better reflects real-world 
scenarios compared to the i.i.d. case.  

We derive generic error exponent DHT bounds 
using information spectrum tools for the 
considered general source model. We show 
the consistency of these bounds with the i.i.d. 
case and further characterize these bounds for 
two specific source models: non-i.i.d. Gaussian 
sources, and Gilbert-Elliot sources. In addition, 
addressing DHT requires not only the 
investigation of information-theoretic limits, but 
also the development of practical coding 
schemes for this setup. Therefore, in the 
second part of this thesis, we develop and 
implement practical short-length coding 
schemes specifically for DHT, which had not 
yet been investigated in the literature. These 
coding schemes are based on linear block 
codes, and they target very short length which 
are appropriate for DHT (less than 100 bits).    
Additionally, we provide tights analytical 
expressions for the Type-I and Type-II error 
probabilities for each proposed coding scheme, 
which provides useful tools for further optimal 
DHT code designs. The work carried out in this 
PhD may serve as a basis for the theoretical 
and practical investigation of coding schemes 
dedicated to more complex learning tasks such 
as classification. 
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