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aCap = aerocytes

AM = alveolar macrophages

ARDS = acute respiratory distress syndrome

ASM = airway smooth muscle cells

Artery EC = artery endothelial cells

ATO =type 0 pneumocytes

AT1 =type | pneumocytes

AT2 =type Il pneumocytes

BALF = broncho-alveolar lavage fluid

BSA = bovine serum albumin

CBCT = cone beam computed tomography

cDC = conventional dendritic cells

COPD = chronic obstructive pulmonary disease

CTGF = connective tissue growth factor

DAMP = damage-associated molecular pattern

DC = dendritic cells

DEG = differentially expressed genes

DPBS = Dulbecco’s phosphate buffered saline

ECM = extracellular matrix



EDTA = ethylenediaminetetraacetic acid

EMT = epithelial to mesenchymal transition

FACS = fluorescence-activated cell sorting

FBS = fetal bovine serum

FDR = false discovery rate

FPRI = fibrose pulmonaire radio-induite

gCap = general capillaries

GEM = gel beads-in-emulsion

GO-BP = gene ontology — biological processes

GRN = gene regulatory network

GSEA = gene set enrichment analysis

h = hour

HCA = human cell atlas

HLCA = human lung cell atlas

HTO = hashtag oligo

IR = irradiated

IL = interleukin

ILD = interstitial lung disease

IM = interstitial macrophages

IMRT = intensity-modulated radiotherapy

IPF = idiopathic pulmonary fibrosis
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LPRI = |ésion pulmonaire radio-induite

LPS = Lipopolysaccharide

Lymphatic EC = lymphatic endothelial cells

M = month

MCA = mouse cell atlas

MMP = matrix metalloproteinase

moDC = non-conventional monocyte-derived dendritic cells

NAC = N-acetylcysteine

NK cells = natural killer cells

NK T cells = natural killer T cells

NSCLC = non-small cell lung cancer

OXPHOS = oxidative phosphorylation

PBS = phosphate-buffered saline

PCA = principal component analysis

PCR = polymerase chain reaction

pDC = plasmacytoid dendritic cells

PDGF = platelet-derived growth factor

PMMA = poly methyl methacrylate

PCR = polymerase chain reaction

RBC = red blood cell

RILI = radiation-induced lung injury
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RIPF = radio-induced pulmonary fibrosis

ROS = reactive oxygen species

RP = radiation pneumonitis

RT = reverse transcription

SARRP = small animal radiation research platform

SASP = senescence-associated secretory phenotype

SBRT = stereotactic body radiation therapy

SCLC = small cell lung cancer

scRNAseq = single cell RNA sequencing

SD = standard deviation

SMC = smooth muscle cells

SRS = stereotactic radiation surgery

TLR = toll-like receptor

TNF = tumor necrosis factor

UMI = unique molecular identifiers

TGFB = transforming growth factor beta

tSNE = t-distributed stochastic neighbor embedding

UMAP = uniform manifold approximation and projection

UMI = unique molecular identifier

V = version

VEGF = vascular endothelial growth factor



Vein EC = vein endothelial cell

VSM = vascular smooth muscle cells
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Le poumon est un organe complexe composé de plusieurs populations cellulaires
spécialisées interagissant entre elles pour remplir sa fonction principale : effectuer les
échanges gazeux entre |'air extérieur et le sang afin d’absorber I'oxygéne qui sera apporté aux
différents tissus et organes du corps, et évacuer les déchets transportés par le sang, composés
principalement de dioxyde de carbone. Ces échanges gazeux sont réalisés par les unités
fonctionnelles des poumons : les alvéoles. Ces derniéres sont composées de cellules
épithéliales, endothéliales, mésenchymateuses et immunitaires qui jouent toutes un role
crucial dans la fonction pulmonaire. Ces différentes populations sont organisées de maniére
spécifique, ce qui permet une surface maximale pour les échanges gazeux, une protection
contre les menaces extérieures, et des interactions intercellulaires entre les différentes
populations. Cependant, en cas de blessure, agression ou maladie, cette organisation peut
étre perturbée et la fonction pulmonaire peut étre compromise. Différents mécanismes de
réparation et de régénération des blessures existent pour que le poumon revienne a un état

d'homéostasie.

Les radiations peuvent causer de telles lésions aux poumons. La réponse a une lésion
pulmonaire radio-induite (LPRI) débute par une étape inflammatoire, avec une implication
importante des cellules immunitaires, notamment des macrophages. Si la réparation de la
blessure échoue, la Iésion peut alors évoluer vers une fibrose pulmonaire radio-induite (FPRI)
avec accumulation de tissus cicatriciels, composés principalement de fibroblastes, de
myofibroblastes et de matrice extracellulaire, avec une destruction de la structure des
alvéoles. Bien que les principaux événements du développement de la fibrose pulmonaire
radio-induite aient été décrits, les événements cellulaires et moléculaires détaillés survenant
au cours de la progression de la maladie restent inconnus. Une meilleure compréhension de
ces processus permettrait de développer des stratégies ou des traitements pour prévenir ou

ralentir le développement de la FPRI.

Dans ce but, nous avons ici quatre objectifs principaux : 1) identifier les principales

altérations cellulaires et moléculaires et leur temporalité affectant trois populations cruciales
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du poumon : les cellules épithéliales, les cellules endothéliales et les macrophages, 2)
identifier les différences dans la réponse du poumon lorsqu'ils sont exposés a une dose
d'irradiation fibrogene ou non fibrogéne, 3) étudier la réponse du poumon humain a la
radiothérapie et la comparer aux évenements observés chez la souris, 4) développer et
donner acces a des atlas et bases de données des réponses des tissus pulmonaires de la souris

et de I'homme aux lésions radiologiques a I’échelle de la cellule unique.

Pour étudier la temporalité des événements conduisant a la fibrose pulmonaire et
|'effet de différentes doses d'irradiation, nous avons utilisé un modeéle murin d'irradiation
thoracique compléte, a dose fibrogéne de 13Gy ou non fibrogene de 10Gy. De plus, nous
avons obtenu des échantillons de lobectomies de six patients souffrant d'une tumeur de
Pancoast. Ces patients ont subi une radiothérapie néoadjuvante six a huit semaines avant
I'intervention chirurgicale. Pour chaque patient, un échantillon a été obtenu d'une région
irradiée du poumon et un témoin d'une région non irradiée du poumon. Ces échantillons ont
été analysés a I'aide de la technologie de séquencage d’ARN de cellule unique (scRNA seq),
un outil permettant une meilleure compréhension de la diversité cellulaire et de la variabilité
du transcriptome des échantillons analysés. Nous avons par la suite utilisé des techniques de
bio-informatique pour analyser les données générées et identifier les différents processus

induits par l'irradiation des tissus sains des poumons.

Dans un premier temps, nous avons observé une importante activité inflammatoire
durant les premiers points de temps post irradiation, avec une production accrue de cytokines
par plusieurs populations immunitaires, Les macrophages semblent jouer un réle important
a différents moments de la réponse a l'irradiation. Juste apreés l'irradiation, des macrophages
interstitiels sont recrutés depuis les monocytes circulants. Au cours des mois suivant la Iésion,
les macrophages alvéolaires développent un profil M2 pro fibrotique, et les macrophages
interstitiels un profil M1 pro inflammatoire. De plus, nous observons une modification du
transcriptome des macrophages alvéolaires apres une irradiation pro- fibrogene vers une

augmentation du métabolique lipidique.

Nous avons ensuite étudié la régénération des populations épithéliales a la suite des
dommages causés par l'irradiation. En effet, I’épithélium pulmonaire (et plus précisément les

pneumocytes de type | et Il) est particulierement vulnérable et susceptible a la destruction
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ou a l'apoptose en cas d'infection ou d'agression. Nous avons identifié un premier processus
de réparation durant les premiéres heures suivant l'irradiation via une dédifférenciation des
pneumocytes de types Il en pneumocytes de type 0, qui ont la capacité de se multiplier et se
redifférencier en pneumocytes de type | ou Il. Lors des points de temps plus tardifs de
Iirradiation, nous observons également un processus direct de transdifférenciation des
pneumocytes de type Il en pneumocytes de type |. Cependant, une forte dose d’irradiation
peut impacter de maniere plus durable le profil des pneumocytes de type Il : en effet, apres
une irradiation fibrogenic, différents éléments indiquent une possible transition épithéliale a
mésenchymateuse de cette population. Les cellules épithéliales montrent également des

signes de senescence en réaction a l'irradiation.

Pour finir, nous avons étudié les cellules endothéliales et les processus de réparation
vasculaire apres irradiation. Les lésions vasculaires en sont une conséquence majeure.
L'irradiation provoque la mort des cellules endothéliales et la désorganisation du réseau
vasculaire, comme cela a été démontré a la fois chez des patients humains et chez des
modeéles murins. Le remplacement de ces cellules et capillaires endothéliaux endommagés
est principalement déclenché par une signalisation pro-angiogénique ainsi que via la
spécialisation des cellules endothéliales en deux états différents : les cellules « tip » et les
cellules « stalk ». Les cellules « tip » développent des filipodes et peuvent migrer, suivant un
gradient extracellulaire de VEGFA. Ces cellules occupent une position dominante dans la
formation du nouveau vaisseau et sont suivies par les cellules « stalk » qui forment les parois
du vaisseau. Apreés irradiation, nous observons une augmentation de la proportion de cellules
d’identité « tip » chez les gCap, la population progénitrice des cellules endothéliales
capillaires. Ces cellules « tip » présentent également un phénotype migratoire accru. Nous
avons de plus montré une conservation de ces processus chez les patients humains ayant subi
une radiothérapie. Enfin, les cellules endothéliales et particulierement les aérocytes
présentent de maniére similaire aux cellules épithéliales des signes de sénescence induite par

I'irradiation.

Dans I’'ensemble, nous sommes convaincus que ces travaux ont considérablement
amélioré notre compréhension des lésions pulmonaires induites par les radiations, jetant
ainsi de solides bases pour de nouvelles recherches sur de nombreuses questions non

résolues. L'utilisation du séquencage d’ARN de cellule unique a fourni un outil puissant pour
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élucider les diverses réponses cellulaires tissulaires normales et les interactions
intercellulaires initiées par les lésions pulmonaires induites par les radiations. De plus, nos
résultats mettent en évidence de nouvelles cibles thérapeutiques potentielles et ouvrent la
voie a une utilisation innovante de médicaments pour lutter contre cet effet secondaire

mortel de la radiothérapie.
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CHAPTER 1
Introduction



1. Physiology of the respiratory system
a) Structure of the lung and the alveoli

The lung is the organ responsible for the gas exchanges between the outside
environment and the blood, with the absorption of oxygen and the release of waste gas, such

as carbon dioxide.

The upper airways are composed of several structures. The nose and the mouth are
the entry and exit point for the air into the respiratory system. The nasal hairs are also the
first filter for the pathogens and particles inhaled with the outside air. The sinuses heat and
humidify the air before its entry into the lower airways. The pharynx and the larynx allow the
air to go between the upper and lower airway and protect the lower airway from

contamination by food or liquids.

The lower respiratory airway starts with the lower part of the larynx and is then
constituted by several structures with diverse functions. The trachea is an elastic and
cartilaginous pipe with a diameter of 1.5 to 2 cm and a length of 10 to 12 cm that starts by
the larynx and ends with the two main bronchi. The trachea transports the air to the lungs
and also heats it and humidifies it. The two main bronchi are the first division of the
respiratory systems and bring the air into the left and the right lungs. They are supported by
cartilage and then further divide into smaller bronchi that bring the air to the different parts
of the lung. The last subdivision of the bronchi gives rise to the bronchioles, smaller tubes of
less than a millimeter in diameter that are not supported anymore by cartilage. The end of
the bronchioles, called the respiratory bronchioles, are the first structure that performs gas
exchanges (Albertine 2016). They can also change in diameter in order to reduce or increase
airflow through processes called bronchodilatation and bronchoconstriction. The terminal
bronchioles secrete a substance called surfactant that allows the bronchioles to expand
during inhalation and prevents them from collapsing during expiration. The bronchioles end
by the alveoli, the functional unit of the lungs that allows most of the gas exchanges (FIGURE
1.1, (Ahmad and Balkhyour 2020)). The alveoli are composed of a unique layer of different

cells that forms a small air sac that allows the gas exchange, with cells producing surfactant,
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immune cells that protect the body against outside threats, and cells performing the gas
exchange (FIGURE 1.2, (Curras Alonso 2021)). The alveoli are highly vascularized: they are
coated with capillaries vessels. On average, human lungs contain 300 to 500 million alveoli,

for a gas exchange surface of 100 to 150 m?2.

These terminal structures are also supported by other tissues. The diaphragm
is the main respiratory muscle that contracts and relaxes to bring the air inside and out of the

lungs. The ribs form a protective cage surrounding the lungs and the heart, protecting it from

outside mechanical threats.

FIGURE 1.1. schematic representation of the human airway and the alveoli
(Ahmad et Balkhyour 2020)

b) Cellular composition

The lungs are composed of various types of cells that participate in its function:
epithelial cells, endothelial cells, mesothelial cells, mesenchymal cells, myeloid cells and
lymphoid cells. Most of them are resident cells that stay in the lung, but circulating immune
cells also interact with the lung cell populations. In physiological conditions, the lungis a lowly

proliferating organ, with a low cell turnover (I. Y. R. Adamson 1985). However, when the lungs
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sustain an injury, it is capable of regeneration. There is not a single stem cell niche that is able
to produce all the different cell types of the lung, but rather some cell types that are able to

proliferate, de-differentiate or re-differentiate (Kotton and Fine 2008).

Club cell

AT2 cell

Fibroblast

Ciliated cell

AT1 cell Alveolar macrophage

Capillary

Pericyte

FIGURE 1.2. schematic representation of the alveolar structure.

The bronchioalveolar duct junction is mainly composed with ciliated cells and club cells and
it leads to the alveolar region. The alveolar compartment is lined with two types of
specialized epithelial cells, the type I pneumocytes (AT1) and type II pneumocytes (AT2)
cells. The capillary endothelial cells are close to the AT1 cells, to form the respiratory
membrane. Fibroblasts and pericytes are found in the stroma region. The alveolar
macrophages are localized in the alveolar space (Alonso 2021).

i.  Epithelial cells

The epithelial cells are in charge of gas exchanges, constitute the alveoli and are the
most abundant cells of the lungs. The type | pneumocytes (AT1 cells) cover 95% of the alveoli
surface (Fujino et al. 2011). They are long, flat cells that allow the passage of the gases
between the air and the blood. They are unable to proliferate or replicate. Most of the rest
of the alveoli is composed of type Il pneumocytes (AT2 cells), smaller cubelike cells. This
population presents several functions: first, they can proliferate and differentiate into AT1
cells, thus they are responsible for the regeneration of both pneumocyte populations in case
of injury or disease. They also secrete surfactant that prevents the collapse of the alveoli and

facilitates the gas exchanges (Castranova et al. 1988). Other epithelial cells, found in the
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terminal bronchioles, perform a support function. The goblet cells are the main secretory cells
of the lung, producing mucus. This is a substance mainly composed of mucin glycoproteins
and it has surfactant properties as well as antibiotic properties and it collects small outside
particles that managed to enter the lungs (Ma, Rubin, and Voynow 2018). The ciliated cells,
as their name suggests, are cells whose apical end is covered with cilia which with their
movement can move the mucus within bronchioles, and evacuate the debris and pathogens
trapped in it. Finally, the basal cells have the ability to proliferate and differentiate into
ciliated or goblet cells, to replace them in case of injury, for example (Tilley et al. 2015). Single
cell RNA sequencing allowed great progresses in the identification and molecular
characterization of the cellular diversity of the different organs in different organisms, notably
thanks to global initiative like the mouse cell atlas (MCA) (R. Wang et al. 2023) or the human
cell atlas (HCA) (Regev et al. 2017). The different lung epithelial subsets can be identified using
their characterized profiles and their expression of described characteristic markers (ANNEXE

|, table 5.1).

Alveolar epithelial type | (AT1) and type Il (AT2) cells are fundamental for the function
of the lungs. However, AT1 cells are fragile and susceptible to destruction or apoptosis upon
infection or aggression (Kuwano 2007). Both new AT1 and AT2 cells can be produced in
physiological or pathological conditions to replace missing cells or repair injured areas. AT2
cells, besides their function as surfactant producer cells, have the ability to de-differentiate
into cells called type 0 pneumocytes (ATO cells). These ATO cells are then able to proliferate
and differentiate into new AT1 or AT2 cells (Kadur Lakshminarasimha Murthy et al. 2022).
This regeneration process allows the maintaining of the alveoli structure and the gas
exchange function of the lungs. The other types of epithelial cells are also able to regenerate.
Basal cells can proliferate and re-differentiate into club cells and ciliated cells. Furthermore,
club cells also have self-renewal abilities and can re-differentiate into ciliated and basal cells

(F. Chen and Fine 2016; Alysandratos, Herriges, and Kotton 2021).

Other cell populations may appear under pathological conditions. This is the case of
the aberrant basaloid cells, that have been described in lungs of patients with idiopathic
pulmonary fibrosis or chronic obstructive pulmonary disease. These cells express only some
of the basal cell markers (Adams et al. 2020) but they overexpress genes involved in epithelial

to mesenchymal transition, cytokine response, senescence, thus they might play a role in
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injury repair (Selman and Pardo 2020). Other studies describe that these aberrant cells can
also be characterized by the expression of the KRT8 markers, and that they might then enter

different states: either senescence or transition to AT1 cells (F. Wang et al. 2023).

A direct type Il to type | pneumocyte trans-differentiation process has also been
described after a LPS injury. After the injury, AT2 cells proliferate to replenish the pneumocyte
pool, then a subset of these cells goes into cell cycle arrest and trans-differentiate. This cell
cycle arrest has been shown to be induced by TGF-f signaling, but it is then inactivated in

order to proceed with the trans-differentiation to AT1 cells (Riemondy et al. 2019).
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ii. ~ Mesenchymal cells

The mesenchymal cells are responsible for the structure of the lungs, forming the

connective tissue and secreting extracellular matrix (ECM).

In physiological conditions, fibroblasts are the most abundant mesenchymal cells.
They sustain the structure of the alveoli and secrete extracellular matrix, which is also crucial
for intercellular communication (White 2015). Different sub-populations of fibroblasts have
been described according to their location in the lung and their proximity to certain
structures. The peri bronchial fibroblasts are located in the walls of the bronchi and other
conducting airways, the adventitial fibroblasts are surrounding the bronchi vascular bundles,

and the alveolar fibroblasts are located near the alveoli (Tsukui et al. 2020) (FIGURE 1.4).
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FIGURE 1.4. schematic representation of the mesenchymal lung cells localization
(Tsukui et al. 2020).

There is a subset of fibroblasts that have a high lipid content that seems to have an

important role in AT2 cells homeostasis (Habiel and Hogaboam 2017). Pericytes are a less
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abundant population located near the small vessels of the lungs and provide them with
mechanical and biochemical support (Garrison et al. 2023). Myofibroblasts are almost absent
during physiological conditions and can derive from fibroblasts or pericytes after injury. They
are involved in wound healing mainly through ECM deposition and restoration of the tissue
barrier integrity (Hung 2020). Furthermore, after injury, myofibroblasts are thought to be able
to de-differentiate back to lipofibroblasts (El Agha et al. 2017).

Smooth muscle cells (SMC) are cells with contractile properties that control the
diameter of the different bronchi, bronchioles and vessels, thus controlling the airflow and
blood pressure (Q. Gu and Lee 2006). They can be divided into airway smooth muscle cells
(ASM) and vascular smooth muscle cells (VSM). ASM seems to have more rapid contraction
velocity than VSM and be more implicated in different pathologies like asthma (Fernandes et

al. 2004).

Mesenchymal cells play a major role in the lung response to injury and regeneration.
Upon acute lung injury, fibroblasts differentiate into activated myofibroblasts. Different
signaling pathways are activated, like the TGF-, mTOR or EGFR. An increased amount of
collagen and ECM is produced to repair the damaged tissues. However, if an excessive amount
of it is produced it can lead to pathologies like idiopathic pulmonary fibrosis (IPF) (Whitsett et
al. 2019). The different lung mesenchymal subsets can be identified using their characterized

profiles and the expression of described characteristic markers (ANNEXE I, table 5.2).

fii. Endothelial cells

Endothelial cells are the cells forming the walls of capillaries that bring the blood in
contact with the alveoli to perform the gas exchanges through the AT1 cells. Capillary
endothelial cells can be subdivided into several subtypes performing distinct functions. The
aerocytes (aCap) are the endothelial cells responsible for the gas exchange. They are large
cells with ramifications in close contact to AT1 cells to present the maximum surface for gas
exchange. They are thought to not be able to proliferate or self-renew. The other type of
capillary endothelial cells is the general capillaries (gCap), they also perform gas exchange but
have also been predicted to be able to proliferate for self-renewal and differentiation to aCap

(Gillich et al. 2020). Other small vessels are in charge of transporting the blood between the
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lung capillaries and the main circulation: the artery endothelial cells (artery EC) form the
vessels that carry the unoxygenated blood from the circulation to the capillaries in contact to
the alveoli, and then the vein endothelial cells (vein EC) form the vessels that carry the
oxygenated blood back to the circulation (Trimm and Red-Horse 2023). Finally, the lymphatic
endothelial cells (lymphatic EC) form the lymphatic vessels that carry lymph out of the lungs
(Lorusso et al. 2015).

During a lung injury, the lung vessels can also be damaged, especially the smaller
capillaries vessels. gCap cells have been described to be able to proliferate and produce new
aCap and gCap cells (Gillich et al. 2020). The process of vessel regeneration is called
angiogenesis. This process involves a complex signaling network involving the reception of
vascular endothelial growth factor (VEGF) molecules (Abhinand et al. 2016). Angiogenesis has
been shown to involve the differentiation of the endothelial cells into two cell states: tip cells

and stalk cells.
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FIGURE 1.5. schematic representation of the tip and stalk cells involvement in
angiogenesis (Pasut et al. 2021)
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Tip cells express the VEGF receptor KDR, therefore are able to receive the VEGF
signaling. Tip cells develop filipodia and can migrate, following an extracellular gradient of
VEGFA and occupy a leading position in the new vessel formation. They are followed by the
stalk cells that divide to form the walls of the growing new vessel (Jakobsson et al. 2010). Tip
cells receive the VEGF signaling, which triggers the expression of several genes including DLL4.
DLL4 acts then as a ligand for the NOTCH receptor expressed by the stalk cells. In stalk cells,
NOTCH activation inhibits the expression VEGFR2 and activates the expression of VEGFR1,
maintaining the stalk cell identity (W. Chen et al. 2019; Pasut et al. 2021; Hellstrom, Phng,
and Gerhardt 2007) (FIGURE 1.5).

The different lung endothelial subsets can be identified using their characterized

profiles and the expression of described characteristic markers (ANNEXE I, table 5.3).

iv. Mesothelial cells

The lung mesothelial cells are part of the pleura, a layer of cells that envelop the lungs,
and they have a role of protection (H. Batra and Antony 2015). The mesothelial cells can be
identified with the expression of Msin, Wt1 and Upk3b in mice or MSLN, UPK3B and WT1 in

human (Travaglini et al. 2020).

v.  Myeloid cells

The myeloid cells are the first responder in the lung, they are crucial for the innate
immune response and the initiation of the adaptative response (Cook and MacDonald 2016;
Zaynagetdinov et al. 2013). Some myeloid cells of the lung are stably present in the tissue, so
they are called resident cells, while others are circulating in the blood and travel through the
lungs within the vessels. Monocytes are immune cells from the innate immune system that
can be circulating or tissue resident (Rodero et al. 2015). They have phagocytosis properties
and can proliferate and differentiate into interstitial macrophages under physiological
conditions, and into alveolar macrophages under pathological conditions (F. Li et al. 2022).
Monocytes can be distinguished between two subtypes: classical monocytes and non-
classical monocytes. Classical monocytes account for 90 percent of monocytes, the rest of the
monocytes being non-classical monocytes and intermediate monocytes sharing features of

both categories. Non classical monocytes derive from classical monocytes and are considered
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the most mature form of monocytes. These two monocyte populations have different roles
in inflammation and injury response. Classical monocytes have been shown to be highly
inflammatory and secrete pro-inflammatory cytokines, whereas non classical monocytes
secrete more anti-inflammatory cytokines and are involved in repair processes (Anbazhagan

et al. 2014).

Interstitial macrophages (IM) are located in the parenchyma of the lung. They are
phagocytic cells, have an antigen-presenting activity and have an important
immunoregulatory role (Schyns, Bureau, and Marichal 2018). In mice, we can distinguish two
subsets of interstitial macrophages based on the structures nearby: the nerve-associated IM
located near nerve bundles, and vessel-associated IM, located close to blood vessels (Ural et

al. 2020).

Alveolar macrophages (AM) also have phagocytosis capabilities, are located in the
alveoli and are the first responders in the lungs against the threats coming with the outside
air. They can be pro-inflammatory or anti-inflammatory and have a role in the clearing of the
infection by secreting factors through processes of efferocytosis. In physiological conditions
the AM compartment can self-renew, but in case of their depletion monocytes can also

differentiate into AM (Hou et al. 2021).

Dendritic cells (DC) are phagocytic and antigen-presenting cells that are mainly
present in the tissues surrounding the blood vessels and pleura (Lambrecht et al. 2001). DC
can be divided into three categories: the conventional DC (cDC), plasmacytoid DC (pDC) and

non-conventional monocyte-derived DC (moDC) (Cook and MacDonald 2016).

Neutrophils are very abundant in the blood stream, but they also exist as resident cells
in certain organs, including the lung. Lung resident neutrophils are part of the innate immune
response through phagocytosis activity. They also regulate inflammation to protect the lungs
frominjury or infection (Bae et al. 2022). Basophils are another agent of the immune response

and can induce inflammation in the lung (Schwartz, Eberle, and Voehringer 2016).

The resident myeloid cells compartment can also be damaged or destroyed
upon injury. In physiological conditions, IM are produced by the differentiation of circulating

monocytes, and resident AM can proliferate and self-renew. However, during injury if there

37



is an important destruction of the AM compartment, circulating monocytes can also

differentiate into new recruited AM (Shi et al. 2021) (FIGURE 1.6).
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FIGURE 1.6. schematic representation of the origin of AM and IM subsets in mice.
Resident AMs, derived from embryo (yolk sac and/or fetal liver), are capable of self-
replicating during homeostasis and challenge in lung. During steady state, the maintenance
of AM pool rarely needs the contribution of bone marrow -derived monocytes, but in the
circumstance of inflammation, monocytes are strongly recruited to areas of inflammatory
alveoli and differentiated into recruited monocyte-derived AMs (Shi et al. 2021).

The different lung myeloid subsets can be identified using their characterized profiles

and the expression of described characteristic markers (ANNEXE I, table 5.4).
vi.  Lymphoid cells

The lymphoid cells are part of the adaptative immune response and play an important
role in the fight against pathogens or threats and in the processes of inflammation. During
lung diseases, T cells are essential for the initiation and the maintaining of inflammation and
the recruitment of other agents of the immune response (Cosio, Majo, and Cosio 2002).
Indeed, T cells, as well as other immune cell types, can secrete chemokines that have a
chemoattractant effect on neutrophils, monocytes or macrophages (Barnes 2016). There are

two main populations of T cells: CD4+ helper T cells and CD8+ cytotoxic T cells (Xiong and

38



Bosselut 2012). The CD4+ T cells express MHC-II genes, they play a support function in the
immune response by activating cells from the innate immune system through cytokine
expression (Luckheeram et al. 2012). The CD8+ T cells are able, upon contact with an antigen,
to activate, proliferate, recognize virus-infected cells, bacteria or cancer cells, and kill them

(N. Zhang and Bevan 2011).

Natural killer cells (NK cells) are mainly involved in the innate immune response
(Hervier et al. 2019), but a subset of lymphoid cells share characteristics of both NK cells and
T cells, called natural killer T cells (NK T cells), and are a bridge between innate and adaptative

immune cells (Hodge and Hodge 2019).

The B cells are part of the adaptative immune system and can differentiate into
memory cells for a faster response to infections. Some B cell subsets are also involved in the
resolution of inflammation (Polverino et al. 2016). We can also distinguish the plasma cells,
which are terminally differentiated antibody-secreting B cells (Kunkel and Butcher 2003). The
different lung lymphoid subsets can be identified using their characterized profiles and the

expression of described characteristic markers (ANNEXE I, table 5.5).
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2. Pathology of the respiratory system
a) Chronic respiratory diseases

In 2017, more than half a million people worldwide were living with a chronic
respiratory disease and it was the third cause of death, with an 18% increase since 1990
(‘Prevalence and Attributable Health Burden of Chronic Respiratory Diseases, 1990-2017: A
Systematic Analysis for the Global Burden of Disease Study 2017’ 2020). Patient living with a
chronic respiratory disease can present a shortness of breath, chronic cough, lack of energy
and endurance. These symptoms are disabling and affect the quality of life. Furthermore,
these patients are more vulnerable to respiratory infections, such as the flu or the COVID 19
virus (Z. He, Zhong, and Guan 2022). The most common chronic respiratory diseases are
chronic obstructive pulmonary disease (COPD), asthma, interstitial lung disease (ILD) and

idiopathic pulmonary fibrosis (IPF).
i.  Chronic obstructive pulmonary disease

COPD is a chronic respiratory disease characterized by the obstruction of the airflow
form the lungs. While the exposure to chemicals like cigarette smoke or the presence of
infections are important factors, the risk of developing COPD is also strongly influenced by
the expression of some genetic variants (Silverman 2020). COPD arises from the abnormal
resolution of airway inflammation caused by long-term chemical exposure. Once this process
starts, it continues even if the exposure to the chemical stops. Different phenomena are
known to be part of the physiopathology of COPD. Oxidative stress elevates during the
development of COPD, mainly due to chemical exposure and oxidant production by immune
cells during inflammation. Indeed, the number of immune cells in the lung is increased in
patients with COPD, particularly for the neutrophils. When activated, these cells produce
cytokines and reactive oxygen species (ROS) which contribute to inflammation. Furthermore,
pulmonary macrophages also become more abundant and release several pro-inflammatory
molecules, such as H,0;, superoxide anion, proteases and growth factors and chemokines, in
addition to the recruitment of leukocytes. These changes are linked with structural changes,
such as the loss of parenchyma, endothelial and epithelial cells, and an increase of smooth
muscle cells (Bourdin et al. 2009). Furthermore, the inflammation and oxidation are self-

sustaining, inducing the secretion of more mucus with an increased expression of the Muc5b
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and Mu5ac genes and the aggregation of more neutrophils, a phenomenon that has been
described to help the reduction of the inflammation by degrading cytokines and chemokines
(Hahn et al. 2019). Neutrophils also express matrix metalloproteinase (MMP) genes and
elastase, leading to remodeling of the airway. The activated macrophages also lead to the
production of cytokines like tumor necrosis factor (TNF)a and different types of interleukins.
In particular, the secretion of interleukin-6 can induce production of oxygens radicals and

elastase, leading to permeabilization and destruction of the lung tissue (Guo et al. 2022).

Different molecular targets and drugs are under investigation along with clinical trials
to try to slow down the development of COPD or cure it. As oxidative stress is one of the main
mechanisms in the development of COPD, several clinical trials have tested N-acetylcysteine
(NAC) to reduce oxidative stress in the lungs of COPD patients. The different clinical trials have
shown that NAC can help improve the airway function, but the results are very variable
between patients and clinical trials. Like oxidative stress, several cytokines are involved in the
development of COPD and are under investigation as a potential druggable target. However,
these promising targets have shown limited results during the different studies and clinical
trials. Different pathways inhibitors are being tested, like TNFa inhibitors, interleukins
inhibitors, MMP inhibitors (Guo et al. 2022). So far, the most efficient target seems to be
NLRP3. The NRLP3 inflammasome is a macromolecular complex sensing cell stress or danger
signals and initiating inflammation and has been shown to be a critical regulator of
inflammation in different lung diseases (Sayan and Mossman 2016). Different in vitro and in
vivo experiments in mice show that the inhibition of NLRP3 leads to decrease of inflammation

without any side effect (Guo et al. 2022).

ii. Asthma

Asthma is the most common chronic disease in developed countries, affecting up to
10% of adults (Barnes 2017). It is characterized by a lung chronic inflammatory disorder
resulting in recurrent episodes of wheezing, chest tightness or coughing. The most common
type of asthma is allergen induced. Non-allergic asthma can be caused by upper airway
infection, gastroesophageal reflux, airborne irritant exposure, cold air or intense emotion
(Padem and Saltoun 2019). Two lung cell types are known to be the main elements involved

in the physiopathology of asthma: epithelial cells and smooth muscle cells. Upon exposure to
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contaminants or asthma triggers, epithelial cells secrete cytokines and interleukins, which
activate various immune cells, such as dendritic cells, basophils or T helper 2 cells.

Furthermore, nerves are also activated by this signaling (Erle and Sheppard 2014).

Several genetic factors have been shown to predispose to allergic asthma: 60 to 80
percent of asthma susceptibility can be explained by genetic variations. Furthermore,
dysregulation of the immune barrier is a crucial factor in the triggering of asthma. A leaky
epithelium leads to faster infiltration of outside particles in the lungs, thus can trigger a more
intense immune reaction. This is one of the reasons why the incidence of asthma has
increased during the last decades: during that period, the presence of chemical and physical
threats polluting the air has increased: microorganisms, diesel, cigarette smoke,
nanoparticles, microplastics or other pollutants. All these elements have been shown to

damage the lung epithelium barrier (Komldsi et al. 2022).

iii.  Interstitial lung diseases

Interstitial lung diseases represent a group of more than 200 diseases (Demedts et al.
2001). They are characterized by a restrictive ventilatory defect due to a reduced distensibility
of the lung parenchyma (Chetta, Marangio, and Olivieri 2004). ILD patients present
inflammation of the lung tissues, and some also develop fibrosis decreasing the efficiency of
the gas exchanges (Wijsenbeek, Suzuki, and Maher 2022). Various factors are known to
increase the susceptibility to developing an ILD. Some patients present genetic
predispositions (Devine and Garcia 2012), but external factors also play an important role. ILD
can be caused by infection, certain drugs, radiation, cigarette smoke or chemical exposure.
However, for the majority of the patients the cause remains unknown (Raghu, Nyberg, and
Morgan 2004). ILD cellular and molecular mechanisms are still not fully understood, however
some key mechanisms have been described. The chronic damage to the lungs leads to AT2
cells presenting an increased activity and proliferation in order to repair the structure of the
alveoli, however failure to repair the injury leads to pulmonary fibrosis (Antoniou et al. 2014;

Guler and Corte 2021).
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iv.  Idiopathic pulmonary fibrosis

Idiopathic pulmonary fibrosis is a severe form of ILD. Like many others respiratory
diseases, the main risk factor is exposure to airborne chemicals like cigarette smoke, dust,
fumes, fibers or other pollutants and particles. Infections, and in particular viral infections are

also an important risks factor for IPF (Phan et al. 2021).

After diagnosis, the median survival is three to five years. On the cellular level, this
disease is characterized by the accumulation of mesenchymal cells (fibroblasts and
myofibroblasts) and an increase in their production of ECM. The activation of these cells
occurs in foci and leads to the formation of scar tissues in different parts of the lung.
Furthermore, other cell types participate in the development of fibrosis during IPF. There is
an accumulation of alveolar macrophages and neutrophils that release cytokines,
interleukins, recruit other immune cells like monocytes, secrete profibrotic agents like
platelet-derived growth factor (PDGF) or transforming growth factor beta (TGFB). Non-
immune cells are also involved in this disease. AT1 cells are damaged during the development
of IPF but are not properly replaced by AT2 cells differentiating to new AT1 cells. Instead,
fibroblasts migrate to these damaged areas, destroying the alveolar structure. Blood vessels
are also damaged early in the disease, before the development of fibrosis. It is mainly the
capillary cells that are affected with a loss of barrier function, a decrease of angiogenic factor

and an increase of anti-angiogenic factors (Bagnato and Harari 2015).

b) Lung cancer

i.  Epidemiology and risk factors

Lung cancer is the leading cause of cancer-related death worldwide (GBD 2017 Disease
and Injury Incidence and Prevalence Collaborators 2018). In 2018, more than two million new
cases of lung cancer were diagnosed. Even if there has been a lot of progress in cancer
treatment possibilities and efficiency during the last decades, the mortality of lung cancer is
still high: the five-year survival is on average 25 percent (Ettinger et al. 2010). However, when
detected early, the outcome improves drastically: the five-year survival rises to 70-85 percent.
Therefore, the current effort is put on prevention, education of public and primary health

care providers, and early screening (Myers and Wallen 2024).
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The incidence of lung cancer varies greatly between regions of the world. In countries
where there is a high incidence of cigarette smoking among the population, there is an
average 20-fold increase in the incidence of lung cancer, and more than 80% of lung cancer
cases in the developed countries are thought to be attributable to cigarette smoking. Other
environmental risk factors include cannabis smocking, asbestos exposure, radon exposure,
air pollution, exposure to arsenic, or inflammation and damages caused by infection. COPD
patients are also at a higher risk of developing lung cancer. Furthermore, men are twice as
likely to suffer from lung cancer than woman. Certain ethnicities present also a higher risk,
like African American, or a lower risk, like Hispanics. Finally, several genes or chromosomal
regions have been shown to be implicated in predisposition of certain patients and families

to develop lung cancer (Thandra et al. 2021).

Lung cancer can be divided into two categories according to the appearance of the
cells with a histopathology analysis: cells from small cell lung cancer (SCLC) are flatter and

smaller than cells in non-small cell lung cancer (NSCLC).

ii. ~ Non-small cell lung cancer

Non-small cell lung cancer is the most frequent form of lung cancer, accounting for 85
percent of the cases (Ettinger et al. 2010). Two main subtypes of NSCLC exist: adenocarcinoma

and squamous cell carcinoma.

Adenocarcinoma accounts for 40 percent of the primary lung cancer, it is the most
frequent subtype (Hutchinson et al. 2019). Its diagnosis requires the presence of neoplastic
gland formation, pneumocyte marker expression in the form of TTF-1 with or without napsin,
or intracytoplasmic mucin (Clark and Alsubait 2024). It has its origin in distal epithelium and
grows following the epithelial wall (P. Hao et al. 2020). Different hypotheses have been made
about the cell population of origin, but the definitive answer remains unclear. Probably,
adenocarcinoma has the ability to start from different progenitor cell populations, and that
can be influenced by the microenvironment or oncogenic drivers (Seguin, Durandy, and Feral
2022). After the primary development in the distal epithelium, lung adenocarcinoma can
spread to the pleura, diaphragm, pericardium, bronchi, and then in more distant locations

like vessels, lymph nodes, or other lobes.
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Squamous cell carcinoma is the other most common type of NSCLC, and it is diagnosed
when there is the presence of keratin producing tumor cells, with histochemistry analysis
which shows expression of p40, p63, CK5 or desmoglein (Clark and Alsubait 2024). In the
development of squamous cell carcinoma, we can also observe intracellular bridging and
squamous pearl structures (W. D. Travis 2011). Approximately half of squamous cell
carcinoma arise from the central region of the lungs, and the other half originates from the

periphery (Sung, Cho, and Lee 2020).

iii. ~ Small cell lung cancer

Small-cell lung cancer accounts for 15 percent of the cases of lung cancer. It is more
aggressive than NSCLC, with patients presenting a poorer prognosis. It presents a high
proliferative rate and a high rate of early metastasis, which are more frequently found in the
lung lymph nodes, other parts of the lung, but also the liver, brain, adrenal glands or
circulating in the blood vessels. Genomic analysis of the tumors showed a high mutational
burden, with inactivation of the tumor suppressing genes TP53 and RB1 in most cases. We
can also observe that 20 percent of the SCLC cases present a combination of SCLC cells and
NSCLC cells, but the presence of these NSCLC cells does not seem to affect the survival rate

of the patients.

iv.  The particularity of the Pancoast tumor

The first case of Pancoast tumors was described in 1838 by Hare (Hare 1838). Then in
1924 Henry K. Pancoast reported several cases of patients with “shadow of growth in extreme
left apex and destruction of posterior portions of left second and third ribs and adjacent

transverse processes” (PANCOAST 1924).

These tumors are also known as superior sulcus tumors and are characterized by their
localization at the apex of the lung, invading the parietal pleura. They can also invade muscles,
ribs, thoracic vertebral bodies, vessels and other surrounding structures, rending them very

complex to treat (Panagopoulos et al. 2014).

Most Pancoast tumors can be classified as NSCLC and affects mainly men over sixty

years old with a history of heavy smocking. They represent three to five percent of all lung
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cancers, thus they are a relatively rare subset. However, due to the localization and the tissue
implication of the tumor, it is a very challenging disease with high mortality: the median

survival time of patients is only 2,6 years.

¢) Treatments possibilities of the pathologies of the respiratory system

The pathologies of the respiratory can be treated in different ways. First, the different
lung cancers are usually treated with a combination of treatment modalities: surgery,

chemotherapy, immunotherapy and radiotherapy.

i.  Surgery

For most of the types of lung cancer, surgery is the first treatment modality if the
cancer is diagnosed at an early stage (before the spread of metastasis). The operation consists
of the resection of the tumor and the surrounding margins in order to remove a maximum of
the tumor mass (Hoy, Lynch, and Beck 2019). However, the latest stages with metastasis are

often consider unresectable and are treated with other modalities.

ii.  Chemotherapy

Chemotherapy is one of the main treatment modalities used for lung cancer, alone or
combined with other therapeutic options. One of the main chemotherapeutic agents used to
this day is Cisplatin, but other molecules like Etoposide, Mitomycin, Ifosfamide are used,
according to the patient situation (Bernhardt and Jalal 2016; Artal Cortés, Calera Urquizu, and
Hernando Cubero 2015). However, numerous tumors develop resistance to
chemotherapeutic agents, requiring the use of other molecules or another treatment

modality (Kim 2016).

iii. ~ Immunotherapy

Recently, immunotherapy approaches have been used to treat lung cancer and have
shown great promises. Specifically, anti-PD1 antibodies have been reported to increase the
proportion of good patient outcome in both first line and second line treatment of tumors
presenting more than fifty percent of PDL1 positive cells (accounting for approximately 30%

of the tumors) (Giroux Leprieur et al. 2017).
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iv.  Targeted treatment options

The cancer is usually tested for different mutations and, in combination with different
treatments, personalized treatment can be implemented according to the tumor’s genetic
profile (Myers and Wallen 2024) For example, in some situations anti-angiogenic agents can

be used (Ang, Tan, and Soo 2015).

v.  Radiotherapy

Radiotherapy can be used to treat cancer in various situations. When the cancer is
detected at an early stage, radiotherapy is often used after surgery (in combination with
chemotherapy or not) to kill the potential remaining cancer cells. For more advanced stages
of cancer, when the surgery is not an option, radiotherapy can be used to reduce the size of
the tumor, therefore alleviating the symptoms and potentially prolongating the life of the
with radiotherapy, possibly in combination with chemotherapy. In the case of the Pancoast
tumor, due to the complexity of the localization of the tumor, a unique protocol has been
implemented. The patient is treated with neoadjuvant chemotherapy and radiotherapy prior
to the surgery, with an average total radiation dose of 60Gy, which is a high dose radiation,
to reduce the complexity of the tumor. The surgery then consists most of the time in a
lobectomy, sometimes a pneumonectomy (Kwong et al. 2005). From the point of view of
research, Pancoast tumors offer a unique opportunity to collect non-tumoral irradiated

human lung tissues.

Different particles are used to deliver radiotherapy: photons, electrons or protons.
The most frequently used are proton and photon, and they can be delivered through different
modalities. The conventional irradiation method uses x-ray films to guide the irradiation
(Pfeiffer et al. 2002). For a more precise targeting of the tumor, it is now possible to use a CT-
scanner to guide the therapy. This method is called 3D conformal radiotherapy (Schlegel
2006). Another advanced irradiation method is the intensity-modulated radiotherapy (IMRT)
that is using 3D mapping with CT scan to delimit the tumor and then with several beams
delivers a maximum intensity of irradiation to the tumor while the surrounding tissues only

receive a low dose of irradiation (Taylor and Powell 2004). Stereotactic Radiation is another

47



method that uses 3D CT scanning to deliver precise high radiation dose to the tumor. It can
be delivered through stereotactic body radiation therapy (SBRT) or stereotactic radiation
surgery (SRS) (C. W. Song et al. 2021). Another possible way to deliver the radiation directly
to the tumor is the use of brachytherapy (or curie therapy). It consists of putting the radiation

source directly in or next to the tumor through surgery (Chargari et al. 2019).

As electrons release their energy close to the surface of the treated tissue, it is often
used to treat superficial tumors, such as skin cancer, but it can also be used intraoperatively

to treat directly the tumor (Petersen et al. 2002).

While radiotherapy is a very efficient tool to control tumor growth and kill cancer cells,
part of the normal tissue also receives a significant dose of irradiation, and some patients

develop normal tissues toxicities to irradiation.

vi.  Treatment of early normal tissue toxicity to irradiation

In the first days/weeks following the radiotherapy, or even during the treatment,
some patients develop signs of normal tissue radiation toxicity, also named radio induced
lung injury (RILI): shortness of breath, coughing, chest pain and other chest or respiratory
symptoms. When these first symptoms appear, the radiotherapy is reduced or suppressed,
antibiotic can be given in case of infection, the patient is also given anti-inflammatory and
drugs to treat the symptoms. If the condition of the patient worsens, the radiotherapy
treatment is stopped, glucocorticoids and antibiotics are administered and according to the
difficulties breathing the patient can be hospitalized with respiratory support (Yan et al.

2022).

vii.  Treatment of late normal tissue toxicity to irradiation

In a small percentage of patients, the symptoms persist and worsen through the
weeks/months following the radiotherapy, and scare tissues appear in the lungs. This late,
chronic and irreversible state of radiation toxicity is called radio induced pulmonary fibrosis
(RIPF). At the state of pulmonary fibrosis, no improvement can be expected, and the life
expectancy of the patient is from a few months to a few years (Mehta 2005). However, several

treatments are being investigated that could alleviate or prevent the development of RIPF.

48



Most of these treatments are similar to the ones used for treatment of IPF. There is clinical
evidence that the administration of statins helps slow the progression of IPF. Different
mechanisms have been proposed to explain this effect, the main theory being the inhibition
of the fibroblast to myofibroblast differentiation (Dolivo et al. 2023). Senolytics shows also
some potential in the treatment of IPF (Merkt et al. 2020). A first clinical study with 14
patients showed the feasibility of the senolytic treatment of IPF patients and some
encouraging first results (Justice et al. 2019). Other clinical trials are ongoing, like the trial
GKT137831 that targets specifically senescent myofibroblasts (Duncan 2023). However, these
treatments are targeting IPF patients, so it might show different outcomes for RIPF patients.
Numerous preclinical studies have been conducted targeting specifically the prevention and
treatment of RIPF. For example, in mice, inhibition of HIF-1o before irradiation inhibits the
development of RIPF (Nam et al. 2021). Others promising druggable targets are the ROS, the
cytokines and chemokines, TGF-B, PDGF or CTGF (H. Jin et al. 2020).
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3. Physiopathology of normal tissue radiation toxicities
a) Models of fibrosis and lung injury in mice

i. Thoracic irradiation model

To study RIPF, it is interesting to use the model of mouse thorax irradiation. Indeed,
mice are a well-studied organism that share a lot of characteristics with humans for the
development of RILI and RIPF. After thoracic irradiation, the lungs of mice go through an acute
inflammation phase that evolves after four to five months post irradiation into an irreversible
pulmonary fibrosis, leading to respiratory failure (E. L. Travis 1980). The use of the mouse
model allows us to follow and study the different stages of RILI and RIPF, in order to

understand the cellular and molecular events that lead to the development of RIPF.
ii. ~ Bleomycin injury model

Bleomycin is a chemotherapeutic drug that can induce pulmonary fibrosis in
experimental animals, making it a widely used model to study the mechanisms of lung fibrosis
and evaluate potential therapies (Gul et al. 2023). It causes DNA damage, leading to lung
injury, inflammation, and subsequent interstitial fibrosis (Miura et al. 2022). The bleomycin
model exhibits histopathological changes similar to those seen in human idiopathic
pulmonary fibrosis, including decrease in the proportion of AT1 cells, proliferation of AT2
cells, vascular endothelial damage, alveolar infiltration, collagen deposition, and interstitial
and pleural fibrosis (Della Latta et al. 2015). While a single intratracheal dose of bleomycin in
C57BL/6 mice can induce acute inflammatory changes, it often does not lead to the
development of chronic fibrosis (Miura et al. 2022). Furthermore, contrary to RIPF, bleomycin
induced fibrosis in mice is reversible. Spontaneous regression of the fibrosis typically occurs

3-4 weeks after the initial intratracheal administration of bleomycin (S. Zhang et al. 2023).
iii.  Lipopolysaccharide injury model

Lipopolysaccharide (LPS)-induced lung injury is one of the most commonly used
rodent models for acute respiratory distress syndrome (ARDS) and mimics the neutrophilic
inflammatory response observed in ARDS patients (Asti et al. 2000). LPS has the ability to

induce the release of numerous inflammatory mediators, including TNF-a, IL-18, IL-6, NO and
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superoxide anions, and can activate the Toll-like receptor 4 (TLR4) signaling pathway, leading
to the activation of NF-kB and MAPK pathways. This results in the accumulation of
inflammatory cells like neutrophils and macrophages in the lungs, increased vascular
permeability, and pulmonary edema (Hu et al. 2017). Additionally, the LPS-induced lung injury
model has been used to study long-term pulmonary functional outcomes and changes in
angiogenic signaling pathways involving VEGF up to 4 weeks after the initial injury (Tsikis et

al. 2022).

b) Biological events implicated in RILI and leading to RIPF

The aim of radiotherapy is to impact and cause death of the cancer cells while sparing
the surrounding healthy tissues. However, there is always toxicity to a certain extent in the
non-tumoral tissues. After lung radiotherapy, 5 to 20 percent of the patients will develop
radiation pneumonitis (RP), an early form of radiation-induced lung injury (RILI) that can
develop hours to days after radiation treatment. The damage responsible for this pathology
has been described to be caused by DNA damage and the generation of ROS. This can cause
inflammation and cell death, destruction of the alveolar structure and the vascular integrity,
the development of a hypoxic environment. This damage can either resolve and heal after
the end of the radiotherapy treatment or worsen and evolve into RIPF during the few months
to years after lung irradiation. RIPF is characterized by the destruction of the alveolar
structure of large portions of the lung and the development of scar tissues compose of
fibroblasts, myofibroblasts and ECM deposition, that thicken the walls of the lungs and limits
the gas exchanges. The development of RILI and RIPF can be followed by CT scanning the
lungs of the patients and looking for changes in density of the lung parenchyma (Giuranno et

al. 2019).

i.  Initial inflammatory response of the lung to a radiation injury

Radiotherapy causes direct cytotoxic effects to the normal lung tissue, leading to the
death of alveolar epithelial and endothelial cells. This disrupts the alveolar barrier function
and increases vascular permeability, allowing the influx of inflammatory cells and fluid into
the alveolar spaces. Cell death also induces a sterile inflammatory response. Within hours to
days after radiation exposure, there is vascular congestion, leukocyte infiltration, and intra-

alveolar edema. This early phase is characterized by the release of pro-inflammatory
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cytokines and mediators such as TNFa, interleukin (IL)-1, and IL-6. These cytokines contribute
to the recruitment and activation of immune cells, including neutrophils and macrophages,

to the site of injury.

Neutrophils are among the first responders to tissue injury, including radiation-
induced damage to the lung. Upon activation, they migrate to the site of injury guided by
chemokines and adhesion molecules. Then they release ROS, proteases, and pro-
inflammatory cytokines, contributing to tissue damage and inflammation. Excessive

neutrophil activation can exacerbate lung injury and promote the development of fibrosis.

Radiation exposure causes the release of damage-associated molecular patterns
(DAMPs) such as HMGB1, cytosolic DNA, and ATP from damaged lung cells. These DAMPs are
recognized by toll-like receptors (TLRs) on macrophages and dendritic cells, leading to their
activation and the production of pro-inflammatory cytokines like TNFa, IL-1, and IL-6 (Dar,
Henson, and Shiao 2019; de Andrade Carvalho and Villar 2018). Macrophages are key
regulators of the inflammatory response and tissue repair processes following radiation-
induced lung injury. Both resident alveolar macrophages and recruited monocyte-derived
macrophages contribute to tissue homeostasis and immune surveillance in the lung. Upon
exposure to radiation-induced damage signals, macrophages become activated and
phagocytose cellular debris, apoptotic cells, and pathogens. Different populations of
macrophages play different roles in the reaction to radiation injury. Activated macrophages
secrete pro-inflammatory cytokines (e.g., TNFa, IL-1, IL-6) and chemokines, recruiting other
immune cells to the site of injury. Other macrophage populations also play a role in resolving
inflammation and promoting tissue repair by producing anti-inflammatory mediators and
growth factors. Globally, macrophage accumulation and activation contribute to the
development of hypoxia, stimulating the production of additional inflammatory,
profibrogenic, and proangiogenic cytokines that can sustain the non-healing tissue response

(Arroyo-Hernandez et al. 2021; Hill 2005).

Other immune cells play a role in the response to radiation injury and inflammation of
the lungs. T cells and B cells are important components of the adaptive immune response to
radiation-induced lung injury. T cells are involved in regulating inflammation, tissue repair,

and fibrosis. Subsets of T cells, such as regulatory T cells, can suppress excessive inflammation
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and promote tissue healing. Dysregulation of lymphocyte responses can influence the
severity and progression of lung injury and fibrosis (Wirsdorfer and Jendrossek 2016).
Radiation can also directly activate NK cells, enhancing their cytotoxic function against
stressed or damaged lung cells. This NK cell activation contributes to the initial inflammatory

response following radiation exposure (Boopathi, Den, and Thangavel 2023).

This initial inflammatory phase, known as radiation-induced pneumonitis, typically
occurs within 1-3 weeks of radiation exposure and is characterized by clinical symptoms like

shortness of breath, dry cough, fever, and chest pain (Hill 2005).

ii. ~ Regeneration of the endothelial compartment

The lung endothelium is highly radiosensitive, and endothelial cell death is an
important initiating event during the early stage of RILI. Furthermore, like for other cell
populations, irradiation causes DNA damage, oxidative stress, and mitochondrial dysfunction
in endothelial cells, leading to even more apoptosis. Radiation exposure upregulates adhesion
molecules on endothelial cells, promoting increased interaction with inflammatory cells and

their trafficking into the lung tissue (Wijerathne et al. 2021).

Irradiation also impairs the barrier function of endothelial cells by disrupting tight and
adherent junctions, resulting in increased vascular permeability and extravasation of proteins
into the lung interstitium. As a consequence, endothelial cell dysfunction impairs
angiogenesis and vascular remodeling required for proper wound healing in irradiated lung

tissue (Korpela and Liu 2014).

Animal studies have shown that targeted protection of lung endothelial cells can
mitigate radiation pneumonitis and fibrosis, highlighting the central role of endothelial

damage in RILI pathogenesis (Rannou et al. 2015).

iii. ~ Regeneration of the epithelial compartment

Radiation-induced lung injury (RILI) has a significant impact on the alveolar epithelial
cells. Radiation exposure causes direct DNA damage and the generation of reactive oxygen
species, which can lead to apoptosis and death of AT1 and AT2 cells. This disrupts the

epithelial-endothelial barrier function and compromises the integrity of the lung tissue (Yan
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et al. 2022). Dysfunction of the epithelial barrier allows for increased permeability, leading to
leakage of fluid, proteins, and inflammatory cells into the lung interstitium and alveolar
spaces. It contributes to the development of pulmonary edema and inflammation. The
release of pro-inflammatory cytokines induces the recruitment and activation of immune
cells, such as neutrophils and macrophages, amplifying the inflammatory response in the

lung.

Furthermore, while the epithelial cells show some ability to recover over time, the
damaged induced by radiation-induced injury to the AT2 cells in particular can prevent full
regeneration as they are the main source of new AT1 and AT2 cells (Kadur Lakshminarasimha

Murthy et al. 2022).

Radiation exposure can also induce epithelial to mesenchymal transition (EMT) in lung
epithelial cells, contributing to tissue remodeling, fibrosis, and metastasis in certain cases.
Transitioned cells lose epithelial markers and gain mesenchymal markers, facilitating their

migration and invasion into the surrounding tissue (Almeida et al. 2013).

iv.  Proliferation of mesenchymal cells and accumulation of extracellular

matrix

Radiation-induced lung injury can have significant effects on mesenchymal cells,
which play key roles in maintaining lung structure and function, as well as in the response to
tissue injury and repair. Radiation exposure can stimulate lung fibroblasts to become
activated and differentiate into myofibroblasts. Myofibroblasts play a central role in the
development of fibrosis, a pathological process characterized by excessive deposition of
collagen and other ECM proteins, leading to tissue scarring and remodeling. Activated
fibroblasts/myofibroblasts contribute to the fibrotic response by proliferating, migrating to
the site of injury, and secreting profibrotic factors such as TGF-p and connective tissue growth
factor (CTGF). Radiation-induced injury alters the composition and organization of the lung
extracellular matrix, which provides structural support to the lung parenchyma and regulates
cellular behavior. Mesenchymal cells, including fibroblasts, myofibroblasts, and pericytes,
participate in remodeling the extracellular matrix by synthesizing and degrading matrix

proteins such as collagen, elastin, and fibronectin. Dysregulated ECM remodeling can
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contribute to tissue stiffness, impaired gas exchange, and aberrant wound healing processes

in the irradiated lung.

Mesenchymal cells can also modulate the inflammatory response to radiation-
induced lung injury by secreting cytokines, chemokines, and other immunomodulatory
factors. Radiation-exposed mesenchymal cells may exhibit altered expression profiles of
inflammatory mediators, influencing the recruitment and activation of immune cells and

contributing to the perpetuation of inflammation and tissue damage (Y. Huang et al. 2017).

v.  Failure of the healing processes and irreversible fibrosis

The initial stage of RILI and the events described above can evolve in two ways. If the
damage is not too extensive, the healing processes are successful, the inflammation is
cleared, and the lungs return to a homeostasis situation. However, if the dose of irradiation
is too high or the tissues are too radiosensitive, the inflammation can persist, and the

conditions evolve to RIPF.

The late stage of radiation-induced pulmonary fibrosis involves a dysregulated wound
healing process leading to excessive deposition of extracellular matrix proteins like collagen
by activated myofibroblasts. Overall, a persistent inflammatory response can be detected in
the lungs affected by RIPF, with recruitment of inflammatory cells like macrophages and
lymphocytes to the irradiated lung tissue. These populations contribute to the release of pro-
fibrotic cytokines and growth factors like TGF-B by inflammatory cells, which stimulate
fibroblast proliferation and differentiation into myofibroblasts. These cells produce excessive
amounts of extracellular matrix proteins, especially collagen, leading to fibrosis and
architectural distortion of the Ilung parenchyma. Furthermore, an impaired re-
epithelialization of damaged alveolar epithelial cells contributes to the failed resolution of the
wound healing process and vascular injury and remodeling also play a role by causing hypoxia

and promoting fibroblast activation (Jarzebska et al. 2021; Hanania et al. 2019).

The end result of this process is the replacement of normal lung parenchyma with
fibrous scar tissue, leading to loss of lung volume, impaired gas exchange, and potential
complications like pulmonary hypertension and respiratory failure. The fibrotic changes are

irreversible (Y. W. Choi et al. 2004).
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Different elements are used to diagnose RIPF. The patients present a persistent dry
cough, shortness of breath, and chest pain, typically developing 6-12 months after completing
radiation therapy to the thoracic region (Y. W. Choi et al. 2004). When a radiotherapy-treated
patient presents some of these symptoms, an assessment is done with imagery. A CT scan a
the chest of a patient suffering from RIPF can show a volume loss of the irradiated lung
parenchyma, parenchymal opacities, traction bronchiectasis, and honeycombing (a specific
radiological pattern seen in advanced pulmonary fibrosis, characterized by the presence of
clustered cystic air spaces with thick, fibrous walls, typically distributed in the peripheral and
subpleural regions of the lungs) (Jarzebska et al. 2021). Other affections also need to be ruled
out in order to confirm the diagnosis of RIPF, like other causes of pulmonary fibrosis,

tuberculosis (if lung apices irradiated) or tumor recurrence.

Initially, these different events were studied with classical experimental methods, like
immunostaining or in vitro experiments. However, these techniques fail to recapitulate the
complexity of the condition, as the lung is a complex organ composed of multiple cell
populations presenting a coordinated response to aggressions or diseases. During the past
years, modern tools have been developed and allow a more complex and detailed
understanding of the lung response to irradiation. Single cell RNA sequencing is particularly
powerful to study the numerous lung population, their complex changes in transcriptome

after irradiation and their interactions with each other.

56



4. Single cell RNA sequencing: experimental method and tools
for analysis

a) Numerous single cell RNA sequencing experimental methods

Different technologies exist to perform single cell RNA sequencing analysis on
samples. Generally, a scRNAseq experiment comprises two steps: single cell isolation and

sequencing.

Single cell isolation can be performed using various techniques. The most commonly
used is the 10X Chromium method, based on a fluidic droplet-based technique. Once the
tissue is dissociated to as single cell suspension, cells are injected into a fluidic system and
each cell is encapsulated with barcoded gel beads and enzyme using partitioning oil. Within
the droplets, the cells are lysed, the barcodes attach to the 3’ polyA end of the mRNA and
then undergo reverse transcription to generate barcoded cDNA, with all the generated cDNA
from one individual cell sharing a common barcode. The cDNA can then be pooled together
to be sequenced. With this method, only the 3’ end of the mRNA is sequenced and only
MRNAs with a polyA end are sequenced. Another widely used method is Smart-seq2. After
the creation of the single cell suspension, the cells are separated into the individual wells of
a plate using a fluorescence-activated cell sorting (FACS) sorter or a specialized machine, with
one cell per well. After that, the process is similar to the 10X Chromium method. However, in
the case of Smart-seq2, the mRNAs are fully sequenced (Picelli et al. 2014). Other techniques
that need less equipment are being developed. For instance, the start-up Scipio developed a
gel-based method called Asteria. After the creation of the single cell suspension, barcode
beads are put into the tube with the cells and each bead will attach to a single cell. The cells
are then diluted into a gel solution that after jellification will physically isolate the cell-bead
pairs from each other. The cells can then be lyzed and the mRNAs are captured by the nearby
bead. They can then be recovered and undergo reverse transcription, amplified and

sequenced.

b) Pre-processing: in silico removal of contaminating mRNA, doublets

ScRNAseq data analysis is a growing field with many new tools being developed

continuously for all the different steps of the analysis workflow.
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After the sequencing of the sample, the first step of the analysis of scRNAseq data is
the demultiplexing of the data, the alignment and the transcript quantification. The
demultiplexing of the data is the attribution of each RNA sequenced to its droplet, and each
droplet sequenced to its sample of origin, using the hashtag oligos (HTO) that were sequenced
with the RNA. The reads are then aligned to the chosen reference genome or transcriptome.
Finally, the expression matrix can be created by counting the number of reads that share both
a unique cell barcode and a unique molecular identifier (UMI), that are assigned to the same
gene. The tools performing these different steps are usually grouped in ready-to-use
pipelines. The pipeline most frequently used for the 10X generated data is Cell Ranger (Zheng
et al. 2017).

Optional steps can then be performed for the pre-processing of the single cell RNA
sequencing data. The most common one is the removal of contaminating mRNA. Indeed,
when the single cell suspension is generated during the experimental phase, some cells die
or are destroyed and release mRNA in the medium. These free mRNA molecules are then
encapsulated with the cells in the droplets and are labelled as belonging to this cell. Tools
have been developed to informatically remove these background reads that add noise to the
data. SoupX (Young and Behjati 2020) is the most frequently used one. This method uses the
content of empty droplets (as determined by cellranger through the EmptyDrops method
(Lun et al. 2019)) that have been sequenced to characterize the profile of the mRNA
contamination of a sample, then determine the percentage of contamination of the data by
the mRNA soup, and finally correct the expression profile of each cell by removing the
ambient mRNA contamination. The ambient mRNA contamination has been estimated to be

approximately five percent.

During the encapsulation process, two cells are sometimes encapsulated in the same
droplet. Therefore, they are labelled and sequenced as one unique cell. There are several
ways to filter out these cells that can perturb the analysis. First, as two cells contain more
mMRNAs than one, a first filter can be applied to remove the cells with the highest number of
mRNAs. Furthermore, the cells presenting markers for several populations in combination
with a high number of mitochondrial genes are also excluded. The value of the threshold is
very dependent on the type of tissue, as the number of transcripts considered “normal” can

vary greatly between tissues. A threshold that can be used is mean + 2SD (standard
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deviations), but it is important to verify that some populations of the experiment don’t
present a lower or higher transcriptional activity, like cancer cells, to avoid deleting them by
accident (AlJanahi, Danielsen, and Dunbar 2018). Tools have also been developed to
automatically remove the doublet cells, like DoubletFinder (McGinnis, Murrow, and Gartner
2019). It first generates simulated doublets by combining cells from different clusters and

then uses these artificial doublets to identify the real ones and remove them.

¢) Quality controls

Different types of quality controls must be performed on single cell RNA sequencing
datain order to obtain reliable results during subsequent analyses. First, the remaining empty
droplets are eliminated by filtering out the cells with a low number of transcripts (usually less
than 20 transcripts). Then, we can also look at the percentage of mitochondrial mRNA per cell
to assess the quality of the cells. Cells expressing a high number of mitochondrial mRNA are
often damaged or dying cells, therefore they are removed (Q. Zhao et al. 2002). Similarly to
the high number of transcripts threshold, “normal” percent of mitochondrial genes depend
on the tissue studied and the population considered, so it is better to set not to stringent
cutoff values and refine them further in the analysis (Allanahi, Danielsen, and Dunbar 2018).
Several methods have recently been developed to automatically perform these quality
controls, like validDrops (Kavaliauskaite and Madsen 2023) or ddqc (Ayshwarya Subramanian
et al. 2022). However, these algorithms can have difficulties with the heterogeneity of

transcriptional profiles of complex tissues like the lung.

d) Visualization of single cell RNA sequencing data

A single cell RNA sequencing data object can be summarized to a table with a very
high dimension (thousands of genes and thousands of cells). Therefore, dimension reduction
techniques are needed to be able to visualize the data in a two-dimensional space. Different

methods have been developed.

One of the first methods used is the t-distributed stochastic neighbor embedding
(tSNE) method (van der Maaten and Hinton 2008). This method is based on the SNE method
(Hinton and Roweis 2002) that converts the high-dimensional Euclidean distances between

data points into conditional probabilities that represent similarities. Then t-SNE added
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symmetry to the matrix and uses a t student distribution to calculate the similarity between

two points (FIGURE 1.7A).

Another method was later developed: the uniform manifold approximation and
projection (UMAP) method (Mclnnes, Healy, and Melville 2020). This algorithm works in two
steps: first, it builds a k-neighbor graph and then computes the low-dimensional
representation. It has been shown to allow a more accurate visualization of the structure of
the data, together with a better separation of the biologically relevant clusters, with a faster
computation time (Becht et al. 2019; Xiang et al. 2021) (FIGURE 1.7B). UMAP is currently the
most widely used dimension reduction algorithm for single cell RNA seq analysis data

visualization.
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FIGURE 1.7. tSNE and UMAP visualization of the scRNA seq data from Curras-
Alonso et al. 2023.

A: tSNE plot of the single cell RNA sequencing data from mice lungs annotated by cell
population; B: UMAP plot of the single cell RNA sequencing data from mice lungs
annotated by cell population.

e) Merging or integration of the single cell RNA sequencing data

When working with single cell RNA sequencing data, there is often more than one
sample, corresponding to different experimental conditions and/or to biological replicates.

Therefore, the different samples need to be gathered in a single object for further analysis.
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There are two ways of grouping the samples into one object: either merging or integration.
The merging of the data will simply put the samples together without modification, while the
integration of the data will correct for an eventual batch effect. Batch effect is the difference
between the data from two different experiments that is not due to biological variability, but
rather to differences between the different experimental setups (like sample handling,
preparation). However, the integration of different samples also masks some of the biological
variability (Argelaguet et al. 2021). Therefore, it is important to integrate data only when the

presence of a batch effect directly compromises the analysis of the data.

i.  Determination of the presence or absence of batch effect

There are several ways to determine whether or not there is batch effect in a dataset.
The simplest way is to merge the data and generate a UMAP plot of the data labeled with the
experiment of origin. If the cells from different experiments (carried out under the same
laboratory conditions) cluster and are mixed together, we can usually conclude that there is
no batch effect. However, if the same cells from different experiments (but carried out under
the same laboratory conditions) are separated, there is likely a strong batch effect in the
dataset, and integration of the data is needed before performing analysis. However, with this
method, if there are no biological replicates or if the biological replicates have been generated
within the same experiment, it can be difficult to distinguish the biological variation and an

eventual batch effect.

Therefore, methods have been developed to quantify batch effect and used to decide
to merge or integrate the data. The kBET method checks if different random groups of cells
present the same distribution of batch labels as the full dataset (Bittner et al. 2019). Another
method, CellMixS, fits a linear model for each gene to determine the variability that can be
explained by either the cell type or the batch (Liitge et al. 2021). These methods can help to

make the decision to integrate or merge the different samples.

ii.  Different integration methods

Different methods for integration of single cell RNA sequencing data exist. The most
frequently used are the methods developed by Seurat in R (Stuart et al. 2019), and Harmony

in Python (Korsunsky et al. 2019). The Seurat method first selects the most variable features
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for each dataset (one dataset per experiment), then identifies anchors from the different
datasets (anchors are two cells coming from different datasets that are predicted to come
from the same cell state), filters, scores, and weighs these anchor correspondences and finally
uses these anchors to produce a corrected data matrix. The Harmony algorithm iteratively
learns a cell-specific linear correction function. For each iteration, the cells are assigned to a
cluster (with favoring of cluster mixing datasets), then the centroid of each cluster is
calculated, the cells for the cluster are corrected to cluster next to the centroid, and a new

iteration is started with this new data matrix.

A comparative analysis of the different integration methods existing for single cell RNA
sequencing data showed that both these methods are very efficient for batch removal, with

an acceptable equilibrium with biological variability conservation (Luecken et al. 2022).

f) Annotation: manual, automatic (different methods)

The annotation of the data is a very critical step in the analysis. Indeed, an incorrect
identification of the different populations will decrease the quality of all the following steps
of the analysis. The first method to annotate the cell populations is to look at the expression
of the known markers in the different cell clusters. A cluster expressing markers specific of a
given population will be assigned to this given identity. This method is effective but can be

time consuming and subject to the interpretation of the person performing the analysis.

That is why automatic annotations tools have been developed. These tools rely on

different methods and require different inputs (Pasquini et al. 2021).

Some automatic annotation tools take as a reference a list of markers characteristic
of the populations that need to be identified. They then use a scoring system to assign the
different cell identities. SCCATCH (Shao et al. 2020) and SCSA (Y. Cao, Wang, and Peng 2020)
are two of the tools that allow such analysis in R. Other algorithms for automatic cell type
annotation based on list of markers exists. For example, CellAssign relies on a probabilistic
Bayesian model (A. W. Zhang et al. 2019). However, the quality of the output of these
methods relies on the quality of the marker list and on the expression of these markers in the
pathological conditions. The expression of some genes can be modified in a non-physiological

condition, therefore degrading the quality of results of this type of automatic annotation.
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To take into account the complexity of the transcriptional profile of the cell
populations, other tools are based on the correlation between the query dataset and a
reference database. Some of these methods use bulk RNA seq data as a database, like SingleR
(Aran et al. 2019). SingleR uses reference datasets of pure cell types sequenced by bulk RNA

seq and performs correlation analysis between the bulk references and the query dataset.

The most recently developed methods are based on supervised classification and
machine learning. The identities of the cell populations are learned on reference objects to
be reapplied on new object that need annotation. Different algorithms can be used:
SingleCellNet is based on a random forest algorithm (Tan and Cahan 2019), OnClass uses a k-
nearest-neighbor algorithm (S. Wang et al. 2019), as well as scClassify (Lin et al. 2020).
However, the accuracy of these methods can suffer from a noisy reference, or technical
differences between the reference and the query data. Finally, we can use deep learning and
transfer learning methods to learn annotation algorithms from the reference. For example,
SuperCT is based on an artificial neural networks algorithm and uses the Mouse Cell Atlas as
areference (Xie et al. 2019), and scArches uses fine tuning and architecture surgery (Lotfollahi

et al. 2022).

To summarize, if the choice of the automatic annotation tool is crucial, the choice of
the reference is even more important: to obtain a quality annotation, the reference needs to
be extensive, contain healthy samples but also samples from individuals affected by different
conditions or diseases, that can be sequenced using different technologies. The reference

needs to be carefully annotated, with precision.

g) Methods for differentially expressed gene analysis

Once the different populations of the object have been annotated, one of the first
analysis that is interesting to perform is the comparison of groups of cells: either by
comparing two cell populations, or by comparing two experimental conditions within one cell
populations. Thus, we can detect the differentially expressed genes (DEG) between two
conditions. Different methods have been developed in that purpose (T. Wang et al. 2019). At
first, the tools developed for bulk RNA sequencing data analysis have been used to analyze
single cell RNA sequencing data, like DESeq (Anders and Huber 2010) or edgeR (Robinson,
McCarthy, and Smyth 2010). However, due to the low capture efficiency of single cell RNA
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sequencing methods, a phenomenon known as “drop-out”, we can observe transcripts highly
expressed in some cells and absent in other, and the data present a high sparsity. So, methods
developed of bulk RNA sequencing data might not work very efficiently. Therefore, new
methods have been developed to consider the particularities of the data. The MAST (Justice
et al. 2019) method has been specifically developed to take into account these drop-out
events, as well as DEsingle (Miao et al. 2018) that uses a zero-inflated negative binomial
regression model to estimate the proportion of drop-out events. Other methods use distance
metrics between the matrices corresponding to the two compared conditions to perform the
differential gene expression analysis, like SigEMD (T. Wang and Nabavi 2018) or EMDomics
(Nabavi et al. 2016).

h) Trajectory analysis

When studying a biological process and how it is influenced by a perturbation (like a
disease or injury), it can be interesting to look at cell differentiation or regeneration. To that
purpose, some tools have been developed to perform trajectory analysis: it is the study of the
connection that different cell populations can have together. When cells are differentiating
into another population, the expression of some genes increases and others decreases.
Trajectory analysis uses this information to link together populations that could be deriving
from one another. Furthermore, with previous knowledge about the cell population of origin,
the cells can be ordered in a pseudo time scale to see the order of events from the cell
population of origin to the terminal cell population. Different tools allow to do this kind of

analysis, like Monocle3 (J. Cao et al. 2019) or Slingshot (Cannoodt, Saelens, and Saeys 2016).

i) RNA velocity analysis

Trajectory analysis can predict relation between cells at a given time (the moment of
the sample collection). However, cells can change state or differentiate in response to a
stimulus, and it can be very informative to investigate these dynamics. RNA velocity is an
analysis method that allows to make prediction on the next state of a cell (La Manno et al.
2018). This tool uses the results of the sequencing of the different mMRNA molecules for the
different genes for each cell. For each mRNA molecule, it looks for the presence or absence
of introns in the mMRNA molecule to determine if the mRNA has already been spliced or not.

It then postulates that it is possible to use the balance between the quantity of spliced and
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unspliced mRNA molecules for a given gene in a given cell to determine if the expression of
this gene is increasing or decreasing. Indeed, if unspliced mRNA molecules of a given gene
accumulate in a cell, it means that the process of RNA splicing did not have time to occur yet,
and all of these newly produced mRNA are the sign of an increasing expression of the gene.
On the contrary, if a cell contains a lot of mature mRNAs for a gene, but only a few unspliced
MRNA, it means that the cell used to express the gene highly, but it is decreasing. This
increasing or decreasing gene expression is calculated for all genes and all individual cells.
With this information, it is possible to predict how the transcriptome of the cells will evolve

in the near future, and therefore if the cells are transitioning to a different state.

The RNA velocity analysis is performed in two steps: first the identification of the
spliced and unspliced mRNAs, and second the prediction of the next state of the cells. There
are different tools that have been developed to perform RNA velocity analysis, and they can
do one or both steps of the analysis. The first package to allow the RNA velocity analysis was
velocyto (La Manno et al. 2018); others have been developed since, like scVelo (Bergen et al.
2020), or cellDancer that uses a deep neural network to predict individual cells kinetics (S. Li

et al. 2024).

j) Gene regulatory network analysis

In the different cells of an organism, genes participate in complex networks of
regulation. Transcription factors are proteins able to bind to specific DNA sequences and
control the transcription of one or several genes, by increasing or decreasing their expression.
Genes encoding for transcription factors can be detected in single cell RNA sequencing data
and used to reconstruct the network of gene regulation through analysis of changes after a
perturbation. That is the purpose of gene regulatory network (GRN) analysis. SCENIC is a
method developed with that objective and consists of three steps. First, a gene correlation
analysis is performed to identify the genes whose expression is correlated with the
transcription factors expression. Then the second step allows the identification of the direct
binding targets. This is done through regulatory motifs analysis: the enriched DNA motives
around the transcription start site of the gene of interest are identified and associated to the
corresponding transcription factors. Finally, a score is computed for each regulon (group of

genes or operons that are regulated by a single regulatory protein or transcription factor) to
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qguantify their activity. These scores can be compared between the different experimental

conditions (Aibar et al. 2017).

k) Intercellular interactions

Intercellular interactions can be predicted using single cell RNA sequencing data, and

several tools have been developed to that purpose (Dimitrov et al. 2022).

These methods rely on the use of curated databases of ligands and receptors. The
results of the analysis can vary greatly with the composition of the databases. So, when
choosing a particular tool, it is important to investigate the process of creation of these
databases. Some tools can consider the interactions between a ligand and a receptor formed
by a complex. Most can differentiate the secreted versus membrane bound ligands and can
predict both autocrine and paracrine interactions. Some of the developed packages also allow

the user to input a custom database of ligand-receptor interactions.

Another difference between the packages used for intercellular communication
prediction is the scoring methods. The tools use the average expression of the ligand in a
given cluster and the proportion of cells from this cluster that express it, and the same
parameters for the expression of a receptor in another cluster, to predict if these two clusters
are likely to interact through this ligand and receptor. Cellchat (S. Jin, Plikus, and Nie 2023)

and CellPhoneDB (Troulé et al. 2023) are the two most widely used tools.

CellChat uses a database of ligand-receptor interactions manually curated from
literature that comprises multi-subunits receptors, soluble and membrane-bound ligands,
agonists, antagonists and co-receptors. For two given cell populations and one given ligand-
receptor pair, an interaction score is calculated with the average expression value of the
ligand by one cell population and the average expression value of the receptor by the other
cell population, as well as the expression of the possible cofactors. Significance of the
interactions is calculated based on a statistical test that randomly permutes the cell

populations labels.

CellPhoneDB uses as well different peer-reviewed databases that they then manually
curated, like Reactome (Jassal et al. 2020), UniProt (UniProt Consortium 2023) and HMRbase

(Rashid et al. 2009), that includes autocrine, paracrine and juxtracrine interactions, with
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receptors that can be heterodimer or homodimer complexes. For a given pair of cell
populations interacting and ligand-receptor, CellphoneDB returns the mean expression of the
interacting partners, and calculates the significance of the interaction by performing random

permutations between the population labels.
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5. Main objectives

Radio-induced pulmonary fibrosis is a progressive, irreversible disease that can occur
as a side effect of thoracic radiotherapy treatment for cancer. It results in fatal respiratory
failure for most patients in the few months to years after the radiotherapy. In order to find
potential treatments to either cure or slow the progression of RIPF, we need a better
understanding of the cellular and molecular events leading to fibrosis. Although some of these
mechanisms have been described, the complexity of the implication of the different lung

populations and molecular pathways remains to be understood.

My PhD supervisors are the first to propose the study of RILI and RIPF using the single
cell RNA sequencing technique. This together with the expertise of my research group in
radiobiology as well as our collaborations in the domain of myeloid cells reaction to radiation
ANNEXE VII) allowed me to conduct my project in a very favorable environment.
Furthermore, the Curie Institute BioinfoHub provided expertise and a place of exchange to

share experience and knowledge in bioinformatic procedures.

This support allowed me to develop my project that aims to gain a better
understanding in the cellular and molecular mechanisms involved in RILI and RIPF, and more
especially to identify the regenerative events involved in lung healing after a radiation injury
and decipher the intercellular communication network changes induced by irradiation. In that
objective, | used a model or full thoracic mouse irradiation with fibrogenic or non-fibrogenic
irradiation dose. We also had access to unique samples of irradiated lung from patients that
underwent radiotherapy prior to surgical resection of one lung lobe. These samples were
analyzed with the help of the single cell RNA sequencing technology, a valuable tool allowing
a better comprehension of the cellular diversity and variability of transcriptome of the

samples analyzed.
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CHAPTER 1]
Material and methods



1. Human samples

Human samples were obtained from patients suffering from Pancoast tumor. This kind
of tumor is defined by its location at the apex of the lung and the invasion of neighboring
tissues. Due to the high complexity of the tumor, the Institut Mutualiste Montsouris (as well
as other hospitals) has devised a treatment protocol in which surgery is preceded by local
radiotherapy. The patients receive neoadjuvant chemotherapy and radiotherapy (40-45Gy
delivered in daily 2Gy fractions, considered sufficient to trigger radio-induced pulmonary
fibrosis). The last session of radiotherapy is received six to eight weeks prior to the surgery
(therefore, after the acute inflammation phase and before the fibrotic phase). The surgery
consists of a lobectomy of the pulmonary lobe containing the tumor. After the surgery, with
the help of the dosimetric CT-scans of the patients, areas in the lobe that received little, or
no irradiation are identified, and control samples are taken. Irradiated samples of non-tumor
tissue are taken from areas closest to the tumor (but avoiding the tumor itself) that received
the highest dose of radiation. Samples of 2 cm3 from each of these regions are immediately
placed in cold 1x phosphate buffered saline (DPBS) (Gibco, 14190-094) and transported on

ice directly to the research lab for single cell dissociation procedures.

These samples were obtained in collaboration with Institut du Thorax (a joint structure
between Institut Curie and Institut Mutualiste Montsouris), as well as Cochin Hospital.

Informed consent was obtained from each patient before the surgery.

2. Mice irradiation

To study the sequence of events that occur during the period preceding the
installation of full radio-induced pulmonary fibrosis, we used a C57BL/6J female mouse model
of lung radiation toxicity. The processes of irradiation, time-resolved fluence measurement,
chemical dosimetry, depth-dose distribution, anesthesia of the mouse, mouse immobilization
and irradiation of mouse thorax were performed by our physicist Sophie Heinrich according
to previous experiments conducted in the lab (Vincent Favaudon et al. 2014; Fouillade et al.

2020). The irradiations were conducted on mice aged 10 to 12 weeks old. To summarize, the
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mice were anesthetized with a nose cone using 2.5% isoflurane in air, without adjunction of
oxygen. Then the mice were installed for irradiation: they were immobilized in a dorsal

position and in a vertical position at a distance of 50cm from the electron source.

Two groups of mice were irradiated using two different irradiators. The first group of
mice is composed of five control non-irradiated mice, mice irradiated at 10Gy and sacrificed
at one, two, three, four or five months post irradiation (one mouse per time point), and mice
irradiated at 17Gy and sacrificed at one, two, three, four or five months post irradiation (two
mice per time point), for a total of twenty mice. These mice were irradiated with the Kinetron
irradiator, and the dose of irradiation was calculated with a dosimetric film at the exit of the
beam, where it enters the lungs. The results of the single cell RNA seq analysis of these mice

have been published (Curras-Alonso et al. 2023) and are presented in the chapter Il 2).

The second group of mice is composed of two control non-irradiated mice, mice
irradiated at 10Gy and sacrificed at one, two, three, four or five months post irradiation (two
mice per time point), and mice irradiated at 13Gy and sacrificed at 24 hours, one, two, three,
four or five months post irradiation (three mice at 24h, two mice per time point for the
months one to four, and one mouse at five months), for a total of twenty-four mice. In
addition, three mice were irradiated at 10Gy and sacrificed nineteen months post irradiation,
at the same time as four age-matching non-irradiated controls. These mice were irradiated
with the new Collimation irradiator, and the dosimetry was performed at entry of the
machine the using a gafchromic film. With this method, the mice irradiated at 13Gy present
a similar evolution (development of fibrosis five months post irradiation) than the mice
irradiated at 17Gy with the Kinetron. The results of the single cell RNA seq analysis of these

mice are presented in the rest of this manuscript.

During the few months following the irradiation, the presence or absence of
pulmonary fibrosis in the mice lung as well as its level, were monitored using three-
dimensional X-ray on the cone beam computed tomography (CBCT) module of the Small
Animal Radiation Research Platform (SARRP, Xstrahl). In order to immobilize the mice for
imaging, 1.5%-2% isoflurane was used. The mice were maintained in vertical upright position
using a poly methyl methacrylate (PMMA) vertical stand. Then a 3D reconstruction of the

images was performed with 1,440 projections using the integrated software Murislice
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(XStrahl). Then, Imagel/FlJl (ImageJ, NIH, Bethesda, MD) was used to reconstruct the slices.
With the imaging of the mice lungs, the level of fibrosis of the mice lungs were determined,

as published previously by the lab (Fouillade et al. 2020).

3. Single cell RNA sequencing data generation

a) Tissue dissociation of the human and mice samples

The tissue dissociation of the mouse and human lung samples were conducted as

described in the thesis of Sandra Curras Alonso (Alonso), a former PhD student of the lab:

“Mice were killed by cervical dislocation and the ribcage was opened to clear the
trachea. Mouse trachea was perfused with 1.5 ml of 50 U/ml dispase (Serlabo, WO-L502100;
Sigma Corning, DLW354235) using a 20G needle, followed by 0.5 ml of 1% agarose (Invitrogen,
15510-027) to block the exit of the dispase. Lungs were resected, minced with a scalpel into
small pieces and added into 3 ml of 1x DPBS MgCl2+ and CaCl2+ (Gibco, 14040-091). Then 320
ul of 25 U/ml elastase (Worthington, LS002292) were added and the suspension was
homogenized and incubated for 30 min (45 min for human samples) at 37°C with orbital
shaking. Enzymatic activity was inhibited with 5 ml of PF10 (1x DPBS containing 10% fetal
bovine serum (FBS)) and 20 ul of 0.5 M ethylenediaminetetraacetic acid (EDTA) pH 8
(Invitrogen, AM9260G). Cell suspension was filtered through 100 um nylon cell strainer (Fisher
Scientific, 22363549), which was rinsed with 5 ml of PF10. This was followed by 37.5 ul of 10
mg/ml DNase | (Sigma, D4527-40KU) treatment and incubation on ice for 3 min. Cell
suspension was filtered again through a 40 um nylon cell strainer (Fisher Scientific, 087711)
and 5 ml of PF10 were added to rinse it. Samples were centrifuged for 6 min at 150 g and 4°C,
pellet was resuspended in red blood cell (RBC) lysis buffer (Roche, 11814389001) and incubated
for 90 s at room temperature before stopping the lysis with 6 ml of PF10. Then, 500 ul of pure
FBS were placed at the bottom of the sample, prior to a final centrifugation for 6 min at 150 g
and 4°C. The pellet was resuspended in 1 ml of 1x DPBS containing 0.02% bovine serum
albumin (BSA) (Sigma, D4527-40KU) and cell counting was done in a Malassez. Finally,
concentration of the samples was adjusted to 1 million cells/ml in 1x DPBS containing 0.02%

BSA.”

b) FACS sorting of the CD45 negative cells of human samples

The samples from one human patient were sorted to enrich the CD45 cells (non-

immune cells) using FACS sorting. The samples were stained using a human anti-CD45
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antibody conjugated to the PE fluorophore (368510) diluted 1/100 in 1 ml of phosphate-
buffered saline (PBS) with 1% FBS and 1% BSA. Sorting was performed at 4°C using a FACS
ARIA sorter (BD Bioscience). A negative sort was performed, allowing us to collect only the
cells not marked by the CD45 antibody. Approximately 200,000 to 1 million cells were sorted
depending on the samples, and the cell suspensions were then centrifuged at 4°C and 150g
for 6 minutes before performing two washes in PBS with 0.02% BSA. Finally, a cell count was
performed to adjust the final cell concentration to 1 million/ml for loading onto the

Chromium chip.

¢) Droplet based single cell RNA sequencing of the mouse and human
samples

To analyze the transcriptome of the human and mouse lung samples, we used the 10x
genomics chromium droplet-based chemistry V3 reagent kit. The samples were loaded into
the Chromium controller (10x Genomics, PN-120237) to capture 6.000 cells. To summarize
the procedure, the individual cells from the single cell suspension of lung are encapsulated in
droplets called gel beads-in-emulsions (GEMs) with barcoded gel beads using a microfluidic
chip. The barcoded gene beads solution contains the reverse transcription (RT) reagents.
After encapsulation, the cells are lysed, the gel beads dissolve and the 3’ end of the RNAs
binds to the poly-dT sequences that coated the gel beads. Then the RNAs undergo reverse
transcription to form cDNA. All cDNA from the same cell shares the same 10X barcode, but
each individual oligo also comprises a unique molecular identifier (UMI), allowing the

distinction between each RNA captured.

After the RT, the droplets are broken and the barcoded cDNAs are purified with silane
magnetic beads. Then the cDNAs are amplified by polymerase chain reaction (PCR), re-

washed and analyzed on a Bioanalyzer (Agilent) for quality control.

Finally, the last step is the preparation of the libraries using a fixed proportion of the
cDNAs. To optimize the cDNA amplicon size by enzymatic fragmentation and size selection.
During the GEM incubation, the read 1 primer sequence is added to the molecules. At this
step, P5, P7, a sample index and the read 2 primer sequence are added via End Repair, A-

tailing, Adaptor Ligation, and PCR. This way, the final libraries contain the P5 and P7 primers
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used in lllumina bridge amplification. Finally, libraries were sequenced using a HiSeq 2500

(Hlumina) or NovaSeq sequencer (lllumina).

4. Single cell RNA sequencing data analysis

a) Cell ranger

After the obtention of the raw sequencing data, the first step was to process the data
with the Cell Ranger pipeline (10X Genomics) version (V) 3.2.0, 6.0.0 or 7.1.0 depending on
the sample (see ANNEXE Il for the human samples and ANNEXE Il for the mouse samples)
and the reference genome mm10-2020-A for the mouse samples or GRCh38-3.0.0 or GRCh38-
2020-A for the human samples (see ANNEXE Il). The Illlumina sequencing bcl2 files were
demultiplexed and mapped on the mm10 mouse reference genome or the GRCh38 human
reference genome. This pipeline creates a count matrix for each sample and performs a first

filtering of the data to identify the empty droplets that were sequenced.

b) Seurat

We analyzed the single cell RNA sequencing data in R V4.3.0 using Seurat V5.0.1 (Y.
Hao et al. 2024). Seurat is an R package that allows the manipulation of the single cell RNA
sequencing data manipulation, and also integrates different analysis tools thanks to the
packages SeuratData V0.2.2.9001, SeuratDisk V0.0.0.9020, SeuratObject V5.0.1 and

SeuratWrappers V0.3.19. The data was loaded in R using the Read10X function.

¢) SoupX

As explained in the introduction, at the encapsulation step of the experimental
generation of the data, cell-free mRNAs are encapsulated with the cells. We used SoupX
V1.6.2 (Young and Behjati 2020) to informatically correct the data for this “mRNA soup”. This
step generates a new corrected count matrix for each sample analyzed that will then be used

for the following analysis.

d) Data pre-processing

The Seurat object was created for each sample using the function CreateSeuratObject.
The mitochondrial genes were identified using the “mt-" prefix for the mouse samples or the

“MT-" prefix for the human samples, and the percentage of mitochondrial transcripts was
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calculated for each cell. A first filtering was then performed to eliminate the cells with more
than 15 percent of mitochondrial mRNA, expressing more than 6000 different genes or less
than 200 transcripts. However, different cell populations can present a very variable profile
of number of transcripts expressed, number of different genes expressed, or percentage of
mitochondrial transcripts expressed. Therefore, we did another round of quality controls
analysis for each cluster, once the different samples are put together. For each cluster, we
eliminated the cells presenting both a high percentage of mitochondrial mMRNA and a small
number of transcripts or different genes expressed. Finally, we eliminated the cells expressing

markers characteristics of different populations, in order to eliminate the remaining doublets.

e) Cell cycle scoring

We identified the phase of the cell cycle the cell is currently in (G1, S or G2-M). This
was done with the method described by Tirosh et al. (2016) and computed by the
AddModuleScore function from the Seurat package. This tool returns a score for the S related
genes and a score for the G2-M related genes, as well as a prediction of the phase of the cell

cycle for each cell.

f) Merging of the mouse samples

As the data from the mouse samples presented no batch effect between the samples
sequenced in different experiments, we choose to just merge the samples in order to retain
a maximum of biological variability. First, all the mouse samples were merged together in one
object. Then we used the SCTransform function (Hafemeister and Satija 2019) to regress the
cell cycle scores and normalize the data. The heterogeneity coming from the difference in the
phase of the cell cycle in the different cells can complicate the identification of the different
cell populations, as the cells can tend to group together based on their phase of the cell cycle
instead of the cell population. Therefore, we corrected the count matrix by regressing the
effect of the cell cycle on the different genes. Then the data was normalized using the

SCTransform method.

On this merged dataset, we performed a dimension reduction analysis using a
principal component analysis (PCA) with a number of principal components of 20. Using this

result, we computed the 20 nearest neighbors for the dataset using the FindNeighbors
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function, and finally we use the FindClusters function to identify different clusters of cells

based on similarities or differences in the transcriptome profile.

g) Cell annotation

We used two different methods to annotate the mouse data and the human data.

For the human data, we performed an automatic annotation of the different cell types
using the ScArches V0.3.5 python package (Lotfollahi et al. 2022). ScArches is a transfer
learning algorithm that has been trained notably on the Human Lung Cell Atlas (HLCA)
database (Sikkema et al. 2023), a dataset of human lung samples that have been carefully
annotated with various levels of precision. We used ScArches to annotate our human samples
one by one. The different identities predicted were then verified using the expression of

known cell population markers described in the introduction.

To annotate the mouse data, we tried several automated annotation methods,
however none of them gave accurate enough results, probably due to the absence of an
extensive database of healthy and disease samples that have been carefully annotated with
all the currently known mouse lung populations. Therefore, we performed a manual
annotation of the object containing the mouse samples merged together, using the
expression of the known markers described in the introduction. In order to identify the
markers characteristic of the different clusters determined by Seurat, we used the
FindAlIMarkers function with a Wilcoxon rank sum test. We obtained a list of genes that have
been calculated to be specific of the different clusters, with the log fold change of the
expression in the cluster compared to all the other cells, the percentage of cells of the cluster
expressing the gene, and the percentage of cells outside of the cluster expressing this gene,
as well as a p-value for the specificity of the marker. With all this information, matched with
the known markers for the main populations, we were able to annotate the clusters. Then for
each population of interest, we extracted the cells of the population and re-did this process

to identify the different sub-populations and cell states.

h) Integration of the human samples

Contrary to the mouse data, we found a marked batch effect between the different

human patients. This could be due to the difference in treatment of the different patients
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and/or the differences between the patients (age, smocking habit, environment differences,
genetic background). Therefore, we chose to integrate the different patients using the
method developed by Seurat (Stuart et al. 2019). First, we grouped the different samples by
patients. For each patient, we normalized the data using the NormalizeData function and we
identified the most variable features for each patient using the FindVariableFeatures
function. Then, we selected the features that are repeatedly variable across patients. Finally,
for the integration itself, we first identified the anchors for integration with the
FindintegrationAnchors and then the IntegrateData function was used to calculate the

integrated matrix that will later be used for further analysis.

i) Differential gene expression analysis and gene set enrichment analysis

To compare different conditions during the analysis (for example compare two cell
states, compare irradiated cells to non-irradiated cells), we performed DEG analysis using the
function FindMarkers and the MAST method (Justice et al. 2019). The adjusted p-value
threshold was set to 0.05. This adjusted p-value was also used to determine significant
changes in expression for different genes of interest. Then, the genes with the highest positive
fold change (= the upregulated genes) or the genes with the lowest negative fold change (=
the downregulates genes) were studied by performing a gene set enrichment analysis (GSEA)
(Aravind Subramanian et al. 2005; Mootha et al. 2003). This allows us to identify the enriched

pathways from different databases in one experimental condition compared to another.

j) Data visualization

In order to visualize the single cell RNA sequencing objects, we performed a dimension
reduction technique specialized in scRNA seq data: the visualization called UMAP method
(Mclnnes, Healy, and Melville 2020). This method produces a 2-dimensional representation
of the scRNA seq data that groups the cells with similar transcriptome profile and separates

the cells with more different transcriptome.

We visualized the expression of the genes of interest using violin plots and the VInPlot
function. The gene expression can also be projected to a UMAP using the FeaturePlot
function. To visualize the expression of several genes in several conditions, we also used dot

plots using the DotPlot function.
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The heatmaps for the plotting of gene expression were created using the
ComplexHeatmap package, that allows clustering of the cells or the genes based on the

similarity of expression of a chosen set of genes (Z. Gu 2022).

To visualize the result of DEGs analysis, we generated volcano plots using the
EnhancedVolcano package (Blighe [2018] 2024). This allowed us to plot the fold changes and

the p-values of the DEG analysis.

Finally, diverse kinds of plots (bar plots, scatter plots, dot plots) were created using

the ggplot2 package (Wickham 2016).

k) Scoring of pathways

In order to estimate the prevalence of a pathway in individual cells under certain
conditions, we used the scoring method provided by Seurat. The different lists of genes
corresponding to the pathways, processes or cell states were found in the GSEA databases or
different publications. The function AddModuleScore calculates and assigns a score for each
cell according to the global expression of the cell of the different genes corresponding to the

pathway of interest. This value can then be plotted using violin plots or feature plots.

The statistical comparison of the score between two conditions is computed using a

Wilcoxon rank sum test.

1) Data analysis

The trajectory analysis was performed using the Monocle3 V1.3.4 (J. Cao et al. 2019).
The intercellular interactions analysis was performed with the CellChat V1.1.3 package (S. Jin,
Plikus, and Nie 2023) or the CellPhoneDB V4.0.0 (Troulé et al. 2023). The gene regulatory

network analysis was performed using the SCENIC V1.3.1 package (Aibar et al. 2017).
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CHAPTER I11
Results part 1



The lung is a complex organ composed of several specialized cell populations
interacting with each other to fulfill its main function: perform the gas exchanges between
the outside air and the blood, to absorb the oxygen that will then be brought to the different
tissues and organs of the body, and evacuate the waste carried by the blood, mainly
composed of carbon dioxide. These gas exchanges are performed by the functional units of
the lungs: the alveoli. These terminal structures of the lung are composed of epithelial,
endothelial, mesenchymal and immune cells that all play a crucial role in the lung function.
These different populations are organized in a specific way that allows a maximum surface
for gas exchanges, protection from outside threats and intercellular interactions. However,
upon injury, this organization can be disrupted, and the lung function can be compromised.
Different mechanisms of injury repair and regeneration exist for the lung to return to a

homeostasis state.

Radiation can cause such an injury to the lungs. RILI starts with an inflammation stage,
with an important involvement of the immune cells, particularly macrophages. If the repair
of the injury is not successful, it can then develop into pulmonary fibrosis with the
accumulation of scar tissues, composed mainly of fibroblasts, myofibroblasts and
extracellular matrix, with a destruction of the structure of the alveoli. While the main events
of the development of radio-induced pulmonary fibrosis have been described, the detailed
cellular and molecular events occurring along the progression of the disease remain
unknown. A better understanding of these processes would help to develop strategies or

treatments to prevent or slow down the development of radio-induced pulmonary fibrosis.

In that mindset, we have here four main objectives: 1) identify the key cellular and
molecular alterations and their temporality affecting three crucial populations of the lung:
epithelial cells, endothelial cells and macrophages, 2) identify the differences in the response
of the lung when exposed to a fibrogenic or a non-fibrogenic dose of irradiation, 3) investigate
which of these events are conserved in the response of human lung to radiotherapy, 4)
develop and provide access to single cell atlases and datasets of the mouse and human lung

tissues responses to radiation injury.
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To study the temporality of the events leading to pulmonary fibrosis and the effect of
different irradiation doses, we used a mouse model of full thoracic irradiation, at fibrogenic
13Gy dose or non fibrogenic 10Gy dose. After a 13Gy irradiation, all the mice developed
pulmonary fibrosis four to five months post irradiation, while 10Gy irradiated mice did not
develop pulmonary fibrosis. Samples were collected each month, one to five months post

irradiation (FIGURE 3.1). The details about the different samples can be found in ANNEXE III.

xWOO> W

QW<~I
h =hour
M =month

FIGURE 3.1. mouse model used for the analysis of radio-induced pulmonary fibrosis.
Collection of 24 time-series mouse samples from full thorax irradiated mice from 24h (24
hours post irradiation) to SM (5 months post irradiation).

Samples were analyzed using the droplet-based single-cell RNA sequencing method

developed by 10X genomics with the V3 protocol.
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1. Single cell atlas of the mouse lung response to irradiation
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FIGURE 3.2. identification of the different cell populations of the mouse lung.

A: UMAP plot of the single cell RNA sequencing data of the samples from the lungs of 24
mice (123.147 cells), after merging, with the different lung cell populations annotated; B:
expression of the canonical markers by the different lung populations; C: Bar plot of the
proportion of the different cell populations at the different time points after a 10Gy
irradiation (one month-1M to five months-5M post irradiation); D: Bar plot of the proportion
of the different cell populations at the different time points after a 13Gy irradiation (one

month-1M to five months-5M post irradiat

ion), IR = irradiated
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To study the temporality of the events leading to radio toxicity and pulmonary fibrosis,
we chose to use a full thoracic irradiation mouse model. As stated above, mice were either
irradiated at 10Gy (non fibrogenic dose) or 13Gy (fibrogenic dose), and two non-irradiated
mice served as a control. The twenty-four mice were sacrificed at different time points post
irradiation (one to five months post irradiation), and the lungs were taken for single cell RNA
sequencing analysis. The data obtained were processed with cellranger (Zheng et al. 2017).
The different samples were then processed with SoupX (Young and Behjati 2020) for removal
of the contaminating mRNA. Then quality controls were performed with filtration of the cells
with high mitochondrial content (more than 20% of mitochondrial mRNA, more than 6000
different features expressed, less than 200 different features expressed). All the samples
were merged into one Seurat object. As we saw no batch effect between the different
experiments, we chose not to integrate the data to preserve a maximum of biological
variability. Finally, the different cell populations were annotated using the expression of well-

known canonical markers (Travaglini et al. 2020), (FIGURE 3.2A,B).

Then, we analyzed the proportion of the different cell populations and their evolution
at the different time points after a 10Gy (FIGURE 3.2C) or a 13Gy (FIGURE 3.2D) irradiation.
Contrary to what was expected, the proportion of the mesenchymal population does not
present any change during the fibrotic stage (four to five months post 13Gy irradiation). This
could be due to the difficulties of dissociation of the extracellular matrix embedded
mesenchymal cells. This issue underlines the necessity to be careful when interpreting the

changes in population proportions in single cell RNA sequencing experiments.

Furthermore, we observe a drop in the proportion of endothelial cells after irradiation,
confirming the observations made for the human samples. Remarkably, 24 hours after a 13Gy
irradiation there is an important increase in the proportion of epithelial cells that is consistent

within the three replicates.

However, due to dissociation bias (either due to difficulties of dissociation of tissues
with high content of extracellular matrix, or destruction of more fragile cell populations), it is
difficult to draw strong conclusions from the analysis of cell populations proportions.
Therefore, we focused the next analysis on the changes of transcriptome of the different cell

populations after irradiation. More precisely, we will focus on several populations that have
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been shown to experience major changes during the development of pulmonary fibrosis: the

endothelial cells, epithelial cells and macrophages.

Some of the results of these transcriptomic changes happening after irradiation have
been published in April 2023 in Nature Communication in the following publication (Curras-

Alonso et al. 2023) (see ANNEXE IV for the supplementary figures).

In the following publication, we described several populations and how they are
affected by irradiation. The samples analyzed are from a previous experiment with mice

irradiated using the Kinetron irradiator (see chapter Il 2) for more precisions).
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Radiation Induced Lung Injury (RILI) is one of the main limiting factors of

thorax irradiation, which can induce acute pneumonitis as well as pulmonary
fibrosis, the latter being a life-threatening condition. The order of cellular and
molecular events in the progression towards fibrosis is key to the physio-
pathogenesis of the disease, yet their coordination in space and time remains
largely unexplored. Here, we present an interactive murine single cell atlas of
the lung response to irradiation, generated from C57BL6/) female mice. This
tool opens the door for exploration of the spatio-temporal dynamics of the
mechanisms that lead to radiation-induced pulmonary fibrosis. It depicts with

unprecedented detail cell type-specific radiation-induced responses asso-
ciated with either lung regeneration or the failure thereof. A better under-
standing of the mechanisms leading to lung fibrosis will help finding new
therapeutic options that could improve patients’ quality of life.

Radiation therapy is one of the main therapeutic options used to
treat thoracic cancers. Nevertheless, the lung is a sensitive organ to
ionizing radiation (IR) which makes it the main dose-limiting organ
in the thorax'?. Radiation-induced lung injury (RILI) results in both
early and late molecular and cellular toxicities, some of them irre-
versible, impacting the quality of life of patients. IR induces DNA
damage and oxidative stress, followed by inflammation and tissue
reorganization, which may be resolved into regeneration and regain
of organ function. However, depending on the total dose as well as
patient sensitivity, radio-induced pneumonitis may evolve toward
radiation-induced pulmonary fibrosis (RIPF), characterized by
fibroblast and myofibroblast proliferation, excessive extracellular
matrix (ECM) deposition, bronchiolization, and honeycomb cyst
formation, leading to disruption of gas exchange and progressive
organ failure**,

The mechanisms that determine success or failure of tissue
regeneration after irradiation are not well understood. At the cellular
level, pro-fibrogenic doses of irradiation trigger apoptosis, senes-
cence, cytokine secretion, as well as cell transitions likely affecting
multiple cell compartments. Single-cell technologies have provided
powerful tools to untangle the complex cellular heterogeneity of
organs such as the lung, an exceptional challenge in the respiratory
field. In the past years, the Lung Biological Network of the Human Cell
Atlas (HCA) has emerged with the objective of establishing a complete
atlas of the healthy human lung, collecting data on molecular pheno-
types of different cell types, cell transitions as well as their location all
along the airways. In addition, LungMAP has gathered scRNA-seq
datasets to provide a collaborative and open-access comprehensive
molecular atlas of the healthy developing lung’. In parallel, other
consortia have gathered efforts to build the Lung Disease Cell Atlas
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(e.g., the IPF cell atlas®’, the COVID cell atlas®, the COPD cell atlas’) to
better describe lung cell and tissue responses associated with disease.
Such efforts have allowed to build an integrated cell atlas of the human
lung in health and disease'®. Nevertheless, to date, no single cell-based
efforts have been aimed at studying RIPF. Understandably, progresses
in that direction face major obstacles, in particular, due to very limited
access to specimens from irradiated human lungs. In this context, well-
characterized mouse models of RIPF, which recapitulate major fea-
tures of the disease progression in the human (namely, an early period
of inflammation, irreversibly followed by fibrosis and death) carry high
information value.

The purpose of this work is to provide a whole organ single-cell
atlas spanning the evolution over time towards pulmonary fibrosis,
from the early response and the inflammatory phase to the end-point
fibrotic process. This communication illustrates the potential of the
information provided by this atlas by focusing on representative cell
types from the different cell compartments: epithelial (AT2 cells),
mesenchymal (fibroblasts and myofibroblasts), myeloid (AMs and
IMs), and endothelial (aCap and gCap) cells. We have combined single-
cell RNA sequencing (scRNA-seq) with single-molecule fluorescence
in situ hybridization (smFISH) to confirm specific findings and have
analyzed using computational tools the dynamics in cell-cell commu-
nications to pinpoint biologically meaningful interactions that might
be involved in the evolution of RIPF.

Results

Cellular composition dynamics after lung irradiation

To study the impact of radiation therapy in the lung, we performed
scRNA-seq using the 10x Chromium Controller V3 technology of dis-
sociated lungs from non-irradiated mice (control) and from mice 1, 2,
3, 4, and 5 months after fibrogenic (17 Gy) and non-fibrogenic (10 Gy)
doses of IR". We used 5 age-matched, non-IR mice as control, 5 mice
after 10 Gy thorax IR (one mouse per time point from 1 to 5 months)
and 10 mice after 17 Gy thorax IR (two mice per time point from 1 to
5 months) (Fig. 1a). Each mouse lung was enzymatically and mechani-
cally dissociated into a single cell suspension that was then loaded into
the 10x microfluidic system.

A total of 102,869 cells were obtained, from which 22,378 belon-
ged to the healthy mice, 26,360 to the IR,pg, mice and 54,131 to the
IR176y mice. UMAP visualization after merging the total dataset or per
condition displayed similar distributions of cells into clusters, both in
the control and in the two IR conditions over time, which indicated the
absence of obvious batch effects due to sample processing or
sequencing, thus underlining the reproducibility of the single cell
experimental procedure and analysis (Fig. 1b, Supplementary
Fig. 1a-c).

We used cell type-specific markers from recently published
scRNA-seq datasets™ ™ to annotate major populations. This resulted in
the identification of 18 main cell types (Fig. 1b, c): non-immune cells,
which comprise 4 epithelial cell populations (AT2 cells, ATI cells, club
cells, and ciliated cells), 3 mesenchymal cell clusters (fibroblasts,
smooth muscle cells -SMC- and mesotheliocytes), 1 endothelial cell
-EC- cluster and several clusters of immune cells, which include 7
myeloid compartments (monocytes, alveolar macrophages -AM-,
interstitial macrophages -IM-, dendritic cells -DC-, plasmacytoid den-
dritic cells -pDC-, neutrophils and basophils) and 3 lymphoid com-
partments (T cells, natural killer -NK- cells and B cells). We also
identified subpopulations of proliferating DC, AM, and T cells.

As a first approach to the study of RIPF, we sought to detect
changes in cell proportions affecting the different compartments after
irradiation. These results, illustrated in Fig. 1 and Supplementary Fig. 1,
pointed to changes in the proportions of immune cells, which tended
to increase after 10 Gy or 17 Gy irradiation, e.g., alveolar macrophages
(Supplementary Fig. 1d), and of epithelial cells, which tended to pro-
gressively decrease, in particular after 17 Gy irradiation (Fig. 1d;

Supplementary Fig. 1e). Similar observations were made concerning
the endothelial compartment (Fig. 1d; Supplementary Fig. 1f). However
interesting, extreme caution should be exerted when interpreting such
results as they can be easily biased due, for instance, to the relative
efficiency in tissue dissociation (in particular under fibrotic condi-
tions). Also, given the limits imposed by the technology in the number
of cells analyzed per sample, changes in the numbers of one cell
compartment will necessarily affect the calculated proportions in
other compartments. Taking these considerations into account, in the
following sections we coupled scRNA-seq analyses with smFISH
experiments to obtain independent confirmation of changes in cell
proportions affecting AT2 cells, macrophages, endothelial cells, and
fibroblasts.

Transcriptomic dynamics in AT2 cells point to transdifferentia-
tion in response to fibrogenic irradiation

AT2 cells play an important role in the lung as they secrete surfactants
that maintain surface tension and prevent alveolus collapse. They are
also key elements in lung homeostasis because of their stem cell
capacity and ability to differentiate into ATI1 cells, the latter being
responsible for air exchange. In agreement with the detected decrease
in the proportion of epithelial cells, the total number of AT2 cells per
sample was decreased in all samples after IR. AT2 cells represented
12,6% (SD 3,92%) in the control mice. This proportion decreases after
IR10Gy but it is more progressive and pronounced after IR7¢y (Fig. 2a,
Supplementary Fig. 2a). We validated this observation in smFISH
experiments where NI, IRjogy, and [R;7qy lung tissue sections were
probed against Lamp3, a robust and specific marker for AT2 cells
(Supplementary Fig. 2b). As shown in (Fig. 2b, ¢, Supplementary
Fig. 2c), there is indeed a significant decrease in the AT2 cell propor-
tion in the 17 Gy condition after 5 months. Interestingly, the volume of
the AT2 cells, which was estimated based on the distribution of Lamp3
smFISH signal in the cytoplasm of these cells (see Methods), showed a
significant increase in this particular condition, while it was not altered
after IR5M;oqy (Fig. 2¢), suggesting possible significant changes in the
genetic program exclusively associated with pro-fibrogenic IR.

The distribution of the irradiated samples within the AT2 cells
cluster did not entirely overlap with the control samples (Supple-
mentary Fig. 2a), suggesting IR-induced transcriptional changes. Dif-
ferentially expressed genes (DEG) analysis revealed qualitative and
quantitative differences in the transcriptional response to IR;7¢, and to
IRiogy (Fig. 2d). After IR17Gy, the number of upregulated genes
increased steadily up to 5M. In comparison, the response to IRy was
a transient one, reaching a peak after 3 months post-IR and decreasing
afterwards (Fig. 2d). Amongst the genes differentially expressed by
irradiated AT2 cells there were genes typically involved in Epithelial-
Mesenchymal transition (EMT) (e.g., Serpine2, Tgfbr2, Col6a2, Col4al,
Col4a2, Colgaltl, Egfl6)”. To better characterize EMT dynamics in AT2
cells after IR, we selected 31 EMT-associated genes that were sig-
nificantly upregulated after IR5M;;g, and followed their expression
from 1 to 5 months after 10 and 17 Gy IR (Supplementary Fig. 2h).
Interestingly, while all these genes were only slightly and transiently
upregulated after IR;qg,, they only showed strong upregulation at 4
and 5 months after IRz, (Supplementary Fig. 2h-j), that is, during the
fibrogenic phase. Whether EMT in AT2 cells directly contributes to
RIPF or constitutes a secondary response to the pro-fibrotic micro-
environment remains to be determined.

Another look at the list of deregulated genes after a pro-fibrogenic
dose revealed a number of genes known to be specific markers of
ATl cells (e.g., Akap5, Agp5). This observation suggested that, similar to
what has been described in response to other types of injuries'®, AT2
cells may undergo transdifferentiation towards ATI in response to IR.
To further explore this possibility, we analyzed the expression of the
30 genes composing the AT2>ATI1 transdifferentiation signature.
Strikingly, 1M after 17 Gy irradiation, 30% of these genes are
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(image provided by 10x Genomics). b UMAP visualization of 102,869 cells from 20
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upregulated, a proportion that increases progressively over the fol-
lowing months, reaching 63,3% at 5M after IRy, (Supplementary
Fig. 2d). This observation lends support to the assumption that a
process of AT2>ATI transdifferentiation occurs progressively after
IR7gy reaching its strongest expression when fibrosis is already
declared (Fig. 2e, Supplementary Fig. 2d). In contrast, when a
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non-fibrogenic dose is given (IRyogy), such transdifferentiation appears
to be limited both in strength (26.7% of the genes) and time, reaching
its maximum at 3 months after IR0, (Fig. 2e, Supplementary Fig. 2d).

More precisely, we observed a particular subpopulation of AT2
cells that showed the highest transdifferentiation score, the cluster 3
(Fig. 2f,g). This cluster was characterized by the expression of Krt8
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Fig. 2 | Cellular and molecular changes in the AT2 cells during RILI reveal a
transdifferentiation profile after fibrogenic doses of IR. a Dynamics in the pro-
portion of the AT2 cells in the NI (n =5) and at the different time points after IRjocy
(n=1) and IRz (n=2). Error bar refers to the standard deviation of the data.

b Automatic Lamp3 mRNA (orange) detection with Big-FISH in NI, IRSM;o¢y, and
IR5My6y lung tissue sections. Inset top panel shows an AT2 cell; inset bottom panel
shows the convex hull of a cluster of mRNA spots. Scale bars, 10 um.

¢ Quantification and cell volume estimation of the Lamp3+ cells in NI, IRSM,c,, and
IR5My7¢y lung tissue sections. To compare two groups, the P value was computed
with the Mann-Whitney-Wilcoxon test (two-sided test) from scipy (n/s, adjusted
p value >0.05; *, adjusted p value <0.05; **, adjusted p value <0.01; ***, adjusted

p value <0.001; ***, adjusted p value <0.0001). Each dot represents one analyzed
image. Each color per time point represents a different biological replicate (NI n=3;
IR5M oGy 11 = 3; IRSMy76y 1 = 5). d Dynamics in the significantly upregulated genes in
the AT2 cells compared to the NI samples at the different time points after IR;ogy
and IRy;cy. e Violin plot showing the single cell score calculated based on the
transdifferentiation expressed genes in the AT2 cells. f UMAP visualization of the
different AT2 cell subpopulations. g Violin plot showing the single cell score cal-
culated based on the transdifferentiation expressed genes in the different AT2 cell
subpopulations. h UMAP visualization of the expression of Kr8. i Violin plot of Krt8
expression in the AT2 cells cluster three in the NI samples and at the different time
points after IRyocy and IRy7cy.

(Fig. 2h), which was mainly upregulated 5 months after 17 Gy irradia-
tion (Fig. 2i). Previous studies have demonstrated the existence of an
alveolar epithelial Krt& + transitional stem cell state that derives from
activated AT2 cells and differentiates into AT1 cells", suggesting that
the cluster 3 may transdifferentiate towards ATI cells. To address this
hypothesis, we performed a trajectory analysis using AT2 and AT1 cells
which shows the connection between these two epithelial populations
of the alveolus (Supplementary Fig. 2e). Moreover, the pseudotime
analysis using the transdifferentiation-associated genes to order the
cells suggests that AT2 cells differentiate towards AT1 cells (Supple-
mentary Fig. 2f). To identify specific regulatory factors, we ran SCENIC
on the AT2 subset (Supplementary Fig. 2g). This regulatory network
analysis showed the activation of four transcription factors at 4 and
5 months post irradiation: Stati, Stat3, Irf7, and Xbpl. Interestingly,
Statl and Stat3 have previously been shown to be activated during the
development of idiopathic pulmonary fibrosis'.

Overall, these results indicate that there is a progressive loss of
AT2 cells only after a fibrogenic irradiation dose and that this loss is
associated with progressive and profound changes in the tran-
scriptome landscape pointing to physiopathogenic transdifferentia-
tion processes.

Fibrogenic irradiation triggers a strong ECM genes response in
fibroblasts

Lung fibroblasts are crucial for maintaining the integrity of the
alveolar structure and play key roles in the response to injury
through proliferation and remodeling of surrounding tissue. Spe-
cific analysis of the fibroblast compartment from all lung samples
allowed us to distinguish 3 different sub-populations (Fig. 3a): two
different matrix fibroblasts, one ColI3al-positive (Coll3al+, Tcf21+)
and one Coll4al-positive (Coll4al+, Pil6+, Meg3+)", and one sub-
population of myofibroblasts (Hhip+, Cdhll+, Pdgfrb+)>'"**" (Sup-
plementary Fig. 3a). Surprisingly, most fibroblasts obtained
5 months after fibrogenic irradiation clustered with the latter
(Fig. 3a, b) and represented over 80% of all fibroblasts in these
samples (Fig. 3¢). The analysis of the dynamics affecting fibroblasts
subpopulations after irradiation indicated that the proportion of
myofibroblasts increased dramatically 4 and 5 months after 17 Gy
irradiation in detriment of both types of matrix fibroblasts (Fig. 3c).
This observation was unexpected since lungs appeared to be quite
fibrotic when processed, especially after 5M post-17Gy irradiation.
To corroborate this information, we performed smFISH using a
probe to detect Pdfgra, a general marker for fibroblasts (Supple-
mentary Fig. 3b). As shown in Fig. 3d, e, the number of fibroblasts
detected per field of view is significantly higher 5 months after
irradiation which is in striking contrast to the numbers inferred
from the scRNA-seq analyses. This observation suggests a bias in the
cell composition after the dissociation of injured lungs, in particular
under fibrogenic conditions. On the other hand, a smFISH analysis
using probes to detect Hhip, a specific marker for myofibroblasts,
also indicated a higher proportion of these cells detected per field
of view 5 months after fibrogenic irradiation (Fig. 3d, e). Finally, a
small number of fibroblasts appeared to co-express both Pdfgra and

Hhip, and this number appeared to increase 5 months after irra-
diation (0.4% in NI to 2.8% IR5Mjocy and to 4.2% IR5M;7cy).

Despite the detected bias in cell composition at late time points
revealed by smFISH, we attempted a fibroblast DEG analysis between
samples. This analysis indicates that the number of differentially
upregulated genes increases steadily after 17 Gy irradiation (Supple-
mentary Fig. 3c¢). As predicted, the transcriptomic response of fibro-
blasts to irradiation comprises genes known to impact ECM
deposition, which were significantly upregulated in all three com-
partments (Fig. 3f, Supplementary Fig. 3d). None of these ECM genes
were significantly upregulated 4 and 5M after [R;ocy, Supporting the
notion that this is part of the toxic response of fibroblasts specifically
associated to lung fibrosis.

Specific macrophage compartments display either proin-
flammatory or profibrotic profiles after IRI7Gy

Analysis of the 11,678 macrophages from NI, IRyp6y and IRz, samples
at different time points identified two main macrophages populations
(Fig. 4a, b): alveolar macrophages (AM), characterized by the expres-
sion of Chil3 and Plet1 (Supplementary Fig. 4a) and interstitial macro-
phages (IM), which shows high levels of expression of Ciga and Cigh
(Supplementary Fig. 4a). Further analysis showed that IMs could be
subdivided in three different subsets; the first subset is characterized
by the expression of Folr2, Ccl8 and Cd163 (called here IM_C1), the
second subset expresses H2-DMa, ZmyndI15 or Cd63 (IM_C2), and the
third subset shows high levels of expression of Ccr2 and $100a4
(IM_C3) (Fig. 4a, Supplementary Fig. 4a). Similarly, AMs were dis-
tributed into 2 different subpopulations: one characterized by the
expression of Krt19, Fabpl and Krt79 (here called AM_C1) and the other
one characterized by high levels of Chil3, Wfdc2I and Ctsd (AM_C2)
(Fig. 4a, Supplementary Fig. 4a). Macrophages from all samples were
not homogenously distributed in these subpopulations. For instance,
the AM_C2 subpopulation was particularly enriched in AMs obtained
5 months after 17 Gy irradiation (Fig. 4b). This alveolar macrophage
subpopulation appeared almost exclusively after irradiation and was
already strongly reinforced at 4 months after 17 Gy (Fig. 4c¢) reaching
72-78% of the total AMs. The changes that affected the proportions of
IMs after irradiation were more subtle, although a relative increase in
IM_C3 is noticeable 4 and 5 months after 17 Gy irradiation (from 11.4%
in the NI to 38.6% in the IR3M) (Fig. 4c). Furthermore, an increase in the
numbers of both AMs and IMs was confirmed in the lungs by smFISH
5 months post-17Gy while this is not the case after 10 Gy irradiation
(Fig. 4d, e, Supplementary Fig. 4c).

DEG analysis of IMs showed an upregulation of markers known to
define the macrophage M1 activated state (e.g., Ccr2, Statl)™ >, as well
as high levels of proinflammatory cytokines and chemokines (e.g.,
NfkbI) mainly after IR;76y, and to a lesser extent after IRyocy (Fig. 4f).
Moreover, the upregulation of these inflammatory genes seemed to
specifically occur within the IM_C3 cluster (Fig. 4f, h). These results
suggest the emergence of a pro-inflammatory M1 population of IM
during the fibrogenic phase at 4 and 5M after IR;;¢y (Fig. 4f). Similar
DEG analysis of the AMs showed the upregulation of genes related to a
profibrotic response (e.g., Lpl), as well as other markers known to be
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characteristic of the macrophage M2 activated phenotype (e.g.,
Tgm2)*, along with Th2 cytokines receptors (e.g., ll4ra) (Fig. 4g, i) and
genes that have been related to foam cells (e.g., Cd63, Nr1h3, Abcgl)
(Supplementary Fig. 4d). These profibrotic markers were over-
expressed in the AM_C2 subpopulation, which was specifically enri-
ched after IR, and became predominant 4-5 months after 17 Gy

irradiation, suggesting particular toxic role conditions under pro-
fibrotic conditions.

Strikingly, this specific transcriptional change of AM from AM_C1
to AM_C2 is accompanied by morphological changes detected in
smFISH: the estimated volume of the AMs is increased 5 months after
IRi7cy (from 459 pm® to 925 pm?’), while it remains constant after
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Fig. 3 | Myofibroblasts contribute to the ECM deposition after IRy;gy. a UMAP
visualization of 3488 cells from the different fibroblast subpopulations annotated
by cell type. b UMAP visualization of NI (n=5), IRSM;pcy (n=1) and IRSMyzcy (n=2)
fibroblasts annotated by time point. ¢ Dynamics in the proportion of the fibroblast
subpopulations at the different time points after IRyoy and IRy7g,. d Automatic

Pdgfra (red) and Hhip (green) mRNA detection with Big-FISH in NI, IRSMyog,, and
IR5My76y lung tissue sections. Scale bars, 10 um. e Quantification of the Pdgfra+,

Hhip+ and Pdgfra+ Hhip+ cells in the NI, IR5Myocy and IR5Myz¢, lung tissue sections.

To compare two groups, the P value was computed with the
Mann-Whitney-Wilcoxon test (two-sided test) from scipy (n/s, adjusted p value
>0.05; *, adjusted p value <0.05; **, adjusted p value <0.01; ***, adjusted p value
<0.001; ****, adjusted p value <0.0001). Each dot represents one analyzed image.
Each color per time point represents a different biological replicate (NI n=3;
IR5Myo6y 1= 3; IRSMy7c, 1 =5). f Violin plot showing the single cell score calculated
based on the ECM expressed genes in the myofibroblasts, fibroblasts Col13al, and
fibroblasts Coll4al.
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Fig. 4 | Proinflammatory and profibrotic profile of alveolar and interstitial
macrophages after fibrogenic doses of IR. a UMAP visualization of 11,678 cells
from the different IM and AM subpopulations annotated by cell type. b UMAP
visualization of NI (n =5), IRSMyg¢y (n =1) and IRSMy7¢,y (7 =2) IM and AM annotated
by time point. ¢ Dynamics in the proportion of the IM and AM subpopulations at the
different time points after IR oy and IRy d Automatic C3arl (orange) and Chil3
(orange) mRNA detection with Big-FISH in NI, IRSM;o¢y and IR5Myzy lung tissue
sections. Scale bars, 10 um. e Quantification of the C3arl+and Chil3+ cells in the NI,
IR5MygGy, and IR5My7.y lung tissue sections. To compare two groups, the P value
was computed with the Mann-Whitney-Wilcoxon test (two-sided test) from scipy
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(n/s, adjusted p value >0.05; *, adjusted p value <0.05; **, adjusted p value <0.01; **,
adjusted p value <0.001; ****, adjusted p value <0.0001). Each dot represents one
analyzed image. Each color per time point represents a different biological repli-
cate (NI n=3; IR5Mgcy n=3; IR5SMyz¢, n=5). f Violin plot showing the single cell
score calculated based on the M1 signature in the different IM subpopulations.

g Violin plot showing the single cell score calculated based on the M2 signature in
the different AM subpopulations. h Violin plots of M1 genes expression in the
different IM subpopulations. i Violin plots of M2 genes expression in the different
AM subpopulations.

IR5Migcy (Supplementary Fig. 4d). Moreover, the spatial distribution
of AMs showed major changes in IR5M;;¢,. While in the NI control and
IR5Myg6y lungs individual AMs are localized within the alveolar com-
partment, enlarged AMs are gathered in clusters in the fibrotic tissue
5 months after IRj7g, (Supplementary Fig. 4d).

Endothelial cells (ECs) undergo strong transcriptomic changes
specifically after fibrogenic doses of IR

Precise annotation of 6,482 ECs from the NI, IR;ogy, and IR;76, samples
led to the identification of 5 main compartments: lymphatic ECs, artery
ECs, vein ECs, gCap and aCap (Fig. 5a, b). These compartments were
defined by the expression of markers already described in the litera-
ture (Supplementary Fig. 5a): Efnb2 and FbinS5 for artery ECs; Nr2f2 and
Vaf for vein ECs; Mmrnl, Fxydé, and Fgi2 for lymphatic ECs, gCaps
were defined by the expression of Ptprb and Gpihbpl, and aCap by the
expression of Fibin, Car4, Apln, Tmcc2, and Prx. Examination of the
evolution in the proportions of the different endothelial populations
after IR revealed a progressive decrease in the proportion of gCap over

time after IR7qy (from 55,8% in the NI to 17,3% at IRSM), together with
an increase in the proportion of aCap (from 17.9% to 41.6%) (Fig. 5c).
Interestingly, this event is not as pronounced in mice irradiated at
IRiocy-

Changes in cell proportions were validated by smFISH experi-
ments that combined Pecaml, a canonical marker for endothelial
cells, with either Apin, for the identification of aCap, or with Ptprb,
which is expressed in all ECs except aCap and lymphatic ECs (Sup-
plementary Fig. 5a, b). On the one hand, co-staining of NI and IRSM
samples did not show any significant change in the proportion of
Pecam1I+ Ptprb+ cells 5 months after 10 Gy and 17 Gy IR (Fig. 5d, e).
On the other hand, we could observe an increase in the proportion
of aCap (Pecaml + Apiln +) 5 months after IR, both at 10 and 17 Gy
(Fig. 5d, e). Moreover, immunohistochemistry of NI and IR5M;7¢,
lung tissue samples with an Apln antibody confirmed this increase in
aCap cells after radiation injury (Supplementary Fig. 5c). Therefore,
these results confirm the increase in the aCap population observed
by scRNA-seq.
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DEG analysis of irradiated capillary ECs versus control revealed
avery strong gene deregulation induced at 5 M after 17 Gy while the
5M response induced by 10 Gy was quite limited (Supplementary
Fig. 5d). When we looked for signatures, the 17 Gy irradiation
response in gCap was associated with a large deregulation of genes
involved in endothelial to mesenchymal transition (EndoMT) (e.g.,

-4

f EMT score in gCap
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Col4a2, Col4al). We generated an EndoMT single-cell score based
on the 200 genes of the EMT signature in the GSEA and observed a
progressive increase of the score in the months following IR;7¢y,
reaching its maximum 5 M post-IR (Fig. 5f). On the contrary, after
IR0y there was an initial increase up to 3M post-IR and a con-
secutive decrease back to the NI levels (Fig. 5f). The EndoMT
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Fig. 5| Characterization of the ECs after radiation injury. a UMAP visualization of
6482 cells from the different EC subpopulations annotated by cell type. b UMAP
visualization of NI (n=5), IRSMyocy (n=1) and IRSMy7c, (n=2) ECs annotated by
time point. ¢ Dynamics in the proportion of the EC subpopulations at the different
time points after IRyocy and IRy d Automatic Pecami (red), Ptprb (green), and
Apin (green) mRNA detection with Big-FISH in NI, IRSM;ogy, and IR5Myc, lung
tissue sections. Scale bars, 10 um. e Quantification of the Pecam1i + Ptprb + and
Pecami + Apln + cells in the NI, IRSMyoc, and IRSMyzc, lung tissue sections. To

compare two groups, the P value was computed with the Mann-Whitney-Wilcoxon
test (two-sided test) from scipy (n/s, adjusted p value >0.05; %, adjusted p value
<0.05; **, adjusted p value <0.01; ***, adjusted p value <0.001; ***, adjusted p value
<0.0001). Each dot represents one analyzed image. Each color per time point
represents a different biological replicate (NI n=3; IRSMyggy 11 =3; IRSMyz6y, n=3).
f Violin plot showing the single cell score calculated based on the EMT signature
from the GSEA in the gCap at the different time points after IR;og, and IRy5g,.

signature appears to be more robust in the gCap compartment than
in the aCap (Supplementary Fig. 5e, f).

Cell-cell interaction analysis underlines the importance of the
collagen pathway in the evolution of RIPF

To predict which cellular alterations could be more directly implicated
in the development of RIPF, we investigated the evolution of potential
cell-cell communications in response to irradiation. We used CellChat™*
to pinpoint, based on the scRNA-seq data and the expression of ligands
and receptors, cell types that could be interacting at a specific
moment. First, we determined the number of potential existing inter-
actions in the different conditions. This approach indicated an increase
in cell-cell communications after IR, this increase being higher after
17 Gy than 10 Gy (Supplementary Fig. 6a). The analysis of the state of
communication between major cellular compartments showed that
the interactions between mesenchymal cells and endothelial cells
increased over time, in particular at the latest time points (3M, 4 M,
and 5M) after IRy compared to NI (Supplementary Fig. 6b) and to
IR0y (Fig. 6a).

Further refinement of this analysis suggested an increased com-
munication between, on one side, fibroblasts Coll4al and myofibro-
blasts (acting as sources), and, on the other side, gCap cells (being the
target) (Fig. 6b). Supplementary Fig. 6c illustrates the relative force of
the registered changes affecting interactions between different cell
compartments. Pathway communication analysis from fibroblasts
Coll4al and myofibroblasts to gCap identified multiple pathways that
were increased 5 months after IRz, compared to IRy (Fig. 6¢) (e.g.,
Collagen, Fnl, Angptl, Vegf). We further focused on the study of the
collagen pathway as it shows a progressive increase in strength after
3 M in both mesenchymal cell types (Supplementary Fig. 6d). Next, we
identified specific pairs of ligands and receptors that were increased
after IR;7y and absent in Nl and IR0y at the latest time points after IR.
This analysis revealed the ligands Collal and CollaZ to be upregulated
in fibroblasts ColI4al and myofibroblasts and the receptor /tga3 to be
upregulated in the gCap (Fig. 6d, Supplementary Fig. 6e). These ana-
lyses support the role of the collagen pathway, more concretely
through Collal-ltga3 and CollaZ-ftga3 interactions connecting
mesenchymal cells (matrix fibroblasts and myofibroblasts) to capillary
endothelial cells (gCap) during the development of RIPF (Fig. 6e).

An interactive web-based interface to study lung responses to
irradiation

This work describes some of the key features occurring after
radiation injury in the lung at the cellular and molecular level.
Nevertheless, due to a large amount of generated data, not all the
cell types were described, nor all the molecular alterations that
occur during fibrogenesis were studied. For this reason, we have
built a dedicated website that is accessible to the scientific com-
munity, so that anyone can explore our murine single-cell atlas of
the lung response to radiation injury and use it for their own
research (Supplementary Fig. 7). This open-access website (https://
lustra.shinyapps.io/Murine_RIPF_Atlas/), built using the R package
ShinyCell”, allows the investigation of all the different lung cell
populations, as well as the changes in gene expression after the
different time points and doses of IR.

The website offers a UMAP visualization of the data in which the
different metadata parameters can be represented, e.g., the main cell
compartments (epithelial, myeloid, mesenchymal, lymphoid, and
endothelial cells), the 21 described cell types (Fig. 7a) as well as 31
precise sub-cell types, the different conditions (Ctrl, IRIM;qgy,
IR2M10cy, IR3Mi0cy, IR4Miocy, IRSMiocy, IRIMzy, IRZMyzcy, IR3My7cy,
IR4M;7y, IRSMy5¢,), the different time points (Ctrl, 1M, 2M, 3M, 4M,
5M) and the dose of IR (NI, 10 Gy, 17 Gy). Moreover, this first Metadata
vs GeneExpr tab allows the users to visualize both cell metadata and
gene expression side-by-side on low-dimensional representations
(Fig. 7b), which allows a direct search of the expression of different
genes in the different cell compartments. Moreover, the visualization
of two cell metadata or two gene expressions side by side on low
dimensional representations is also possible with the Metadata vs
Metadata and GeneExpr vs GeneExpr tabs respectively.

This site also allows a straightforward exploration of the differ-
ences in cell proportions using the Proportion plot tab, in which the
proportions of the main cell compartments, the different cell types
(Fig. 7c), and sub cell types along the different conditions (i.e., differ-
ent time points and doses of IR) can be examined. Another interesting
feature that this tool offers is the visualization of the co-expression of
two different genes in a single UMAP representation—Gene coexpres-
sion tab—(Fig. 7d), providing also the number and percentage of cells
that express both, none, or only one of the genes. In addition, four
different visualization methods are available to study the gene
expression: Violin plot (Fig. 7e), boxplot, bubble plot (Fig. 7f), and
heatmap (Violinplot/Boxplot tab and Bubbleplot/Heatmap tab), which
allow the comparison of the expression of genes along the different
conditions, thus, providing insightful information about radiation-
induced fibrosis. These multiple options allow a wide range of meth-
ods for data visualization that can be adapted to the user’s needs.

In conclusion, this web-based interface presents a rich dataset
that permits the scientific community to investigate the response of
the lung to radiation injury for their features of interest with no need of
previous bioinformatic knowledge. Raw data is also available at
GSE211713 for deeper analysis.

Discussion

We have built a murine single-cell atlas illustrating the early and late
responses of the lung to radiation. The dataset contains more than
100,000 cells from 20 different lungs from non-irradiated as well as
IRj0cy and IRy76, mice. Cell type annotations based on published
studies identify the 21 main lung cell populations already described
using scRNA-seq approaches™*, This study revealed, in each lung
population, the progressive transcriptional changes occurring in the
months following radiation injury from the acute inflammatory phase
to the development of pulmonary fibrosis after exposure to fibro-
genic dose of radiation. The comparison of the molecular alterations
induced by a non-fibrogenic (IR;ocy) versus a fibrogenic dose (IRy7cy)
allowed to uncover the physiopathological features of radiation
injury in the lung.

This time-course single-cell RNA-seq analysis reproduced the
classical features of pulmonary fibrosis such as the loss of AT2 cells,
the expansion of myofibroblasts as well as the accumulation
of foamy macrophages fostering a pro-inflammatory environment® %,
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In particular, the pro-fibrotic AM subcluster that we identified under
fibrogenic conditions (AM_C2 in our data) may share similarities with a
transitional profibrotic macrophage subgroup found in diseased mice
using the bleomycin-induced-lung injury model®. These transitional
macrophages showed an expression profile intermediate between
monocyte-derived macrophages and AM that are localized in the

s —] ot
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fibrotic niche. Moreover, the pro-fibrotic AM expresses genes that
have been related to a “foam” phenotype, which corresponds to lipid-
laden polarized M2 macrophages that accumulate oxidized phospho-
lipids. These foamy macrophages have been found in different mouse
models of lung-induced injury as well as in patients with fibrotic lung
diseases®. Interestingly, our spatial smFISH analysis in lung tissue after

|(2023)14:2445

10

94



Article

Fig. 6 | Cell-cell interaction analysis between the different lung cell populations
after different time points and doses of IR. a Circle plot showing the differential
number of interactions between IRocy and IRy in the main cellular compart-
ments at 3M, 4 M, and 5 M post-IR: mesenchymal, endothelial, epithelia, myeloid
and lymphoid. Red (or blue) colored edges represent increased (or decreased)
signaling in the IR;7cy compared to the IRogy. b Heatmap showing the differential
number of interactions between IRy, and IRy in the endothelial and
mesenchymal subpopulations at 3 M, 4 M, and 5 M post-IR. Red (or blue) represents
increased (or decreased) signaling in the IRy7cy compared to the IRio,. The top-
colored bar plot represents the sum of column of values displayed in the heatmap

(incoming signaling). The right-colored bar plot represents the sum of row of values
(outgoing signaling). ¢ Bar graph showing significant signaling pathways ranked
based on differences in the overall information flow within the inferred networks
between IR5M,q¢, and IR5M,;¢, from the Fibroblasts Coll4al and Myofibroblasts
(sources) to the gCap (targets). The top signaling pathways colored red are enri-
ched after IRSMyggy, and the ones colored green were enriched after IRSMyscy.

d Increased signaling ligand-receptor pairs of the Collagen pathway in IRy, and
IRy76, compared to Nlat 3M, 4 M, and 5 M after IR. e Schematic drawing of the
intercellular communication between fibroblasts and myofibroblasts with the gCap
through the collagen pathway.

radiation injury indicates that these foamy macrophages tend to
aggregate in fibrotic foci with an increased cell volume and a high level
of endogenous fluorescence. These observations corroborate with
data from other groups showing that clusters of M2 macrophages are
detected after IR, contribute to fibrosis development, and are con-
trolled by adenosine signaling®*°.

Concomitantly to the bronchiolization and the destruction of
alveoli observed during fibrosis development, the progressive
disappearance of AT2 is associated with profound changes in the
transcriptome of remaining AT2 cells. Apart from an increased
expression of genes associated with EMT, we identified, among
the AT2 population after IR, an upregulation of AT1 marker genes,
suggesting that AT2 cells are differentiating into AT1 cells.
Detailed analysis confirmed an enrichment in Krt8+ transitional
AT2 cells, known to support alveolar regeneration”. The fact that
AT2 cells are known to give rise to AT1 cells®® and that, after
lipopolysaccharide (LPS)-induced lung injury, AT2 cells activate a
similar transdifferentiation program'® indicate that a common
regenerative process is activated after IR to restore normal
alveolar architecture and lung function. Considering that the
transdifferentiation program is turned off in the months follow-
ing exposure to a nonfibrogenic dose of radiation whereas, after a
fibrogenic dose, AT2 cells maintain and reinforce this transdif-
ferentiation program, it is tempting to speculate that failure to
differentiate into functional ATI1 cells leads to AT2 cells exhaus-
tion, contributing to alveoli destruction and fibrosis develop-
ment. However, more in-depth analysis of AT2 after radiation
injury is required to demonstrate a direct physiopathological
implication in fibrosis development after IR.

Endothelial cells are particularly affected by radiation®. Our
single-cell RNA-seq analysis showed that endothelial cells activate an
EndoMT program in the months following exposure to radiation. It is
known that EndoMT participates in many human fibrotic disorders®
and a previous study identified hypoxia and TGFp as EndoMT inducers
after radiation injury®, It has been suggested by Hashimoto and col-
leagues that endothelial cells can give rise to myofibroblasts in the
mouse model of pulmonary fibrosis induced by bleomycin®™. Inter-
estingly, cell-cell communication analysis after radiation injury poin-
ted to increased signaling between endothelial cells and stromal cells,
particularly myofibroblasts. These results support the idea that radia-
tion triggers EndoMT phenotype coupled to increased interactions
with myofibroblasts, suggesting that endothelial cells may contribute
as a source in the expansion of myofibroblasts during the development
of RIPF.

In summary, this study describes the transcriptional changes
occurring at the single-cell level in the lung in the months following
radiation injury. This large and comprehensive dataset provides a
starting resource to explore and characterize molecular mechan-
isms underlying the different physiological and pathological
steps occurring after IR (e.g., from acute wound healing to fibrosis
development). To facilitate data visualization and interrogation,
a user-friendly web-based interface is accessible to the
scientific community without the need for specific computational
skills.

Methods

Mice and ethics statement

Studies were performed in accordance with the recommendations of
the European Community (2010/63/UE) for the care and use of
laboratory animals. Experimental procedures were specifically
approved by the ethics committee of the Institut Curie CEEA-IC #118
(Authorization number APAFIS#5479-201605271 0291841 given by the
National Authority) in compliance with the international guidelines.
Females C57BL/6 ] mice purchased from Charles River Laboratories at
the age of 6 weeks were housed in Institut Curie animal facilities.

Radiation injury

Here, the classical C57BL/6]) female mouse model of lung radiation
toxicities were used”. Collimation, time-resolved fluence measure-
ment, chemical dosimetry, depth-dose distribution, anesthesia of the
mouse, mouse immobilization, and irradiation of mouse thorax were
carried out as previously described***. Briefly, mice were anesthetized
with a nose cone using 2.5% isoflurane in air, without adjunction of
oxygen, immobilized in a dorsal position, and set in a vertical position
at 500 mm of the electron source. Then, mice were exposed to bilat-
eral thorax irradiation with a dose of 10 or 17 Gy at the age of
10-12 weeks using the 4.5-MeV linear electron accelerator facility
(Kinetron).

In order to determine the level of pulmonary fibrosis in mice, the
lung was imaged with three-dimensional X-ray on the cone beam
computed tomography (CBCT) module of the Small Animal Radiation
Research Platform (SARRP, Xstrahl). 1.5-2% isoflurane was used to
anesthetize the mice, which were maintained on a PMMA vertical stand
in the vertical upright position. The 3D reconstruction of the images
was calculated from 1,440 projections using the integrated software
Murislice (XStrahl). Then, ImageJ/FUI (ImageJ, NIH, Bethesda, MD) was
used to reconstruct the slices. This analysis allowed to determine the
level of fibrosis of the mice. Further details can be found in ref. 42.

Lung tissue dissociation

Mice were killed by cervical dislocation and the ribcage was opened
to clear the trachea. Mouse trachea was perfused with 1.5 ml of 50 U/
ml dispase (Serlabo, WO-LS02100; Sigma Corning, DLW354235)
using a 20 G needle, followed by 0.5 ml of 1% agarose (Invitrogen,
15510-027) to block the exit of the dispase. Lungs were resected,
minced with a scalpel into small pieces, and added into 3 ml of 1x
DPBS MgCI* and CaCI* (Gibco, 14040-091). Then 320 l of 25 U/ml
elastase (Worthington, L5002292) were added and the suspension
was homogenized and incubated for 30 min at 37 °C with orbital
shaking. Enzymatic activity was inhibited with 5 ml of PF10 (1x DPBS
containing 10% fetal bovine serum (FBS)) and 20 ul of 0,5M EDTA
pH 8 (Invitrogen, AM9260G). Cell suspension was filtered through
100 um nylon cell strainer (Fisher Scientific, 22363549), which was
rinsed with 5 ml of PF10. This was followed by 37.5 ul of 10 mg/ml
DNase | (Sigma, D4527-40KU) treatment and incubation on ice for
3 min. Cell suspension was filtered again through a 40 pm nylon cell
strainer (Fisher Scientific, 087711) and 5 ml of PF10 were added to
rinse it. Samples were centrifuged for 6 min at 150 g and 4 °C, pellet
was resuspended in red blood cell (RBC) lysis buffer (Roche,
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Fig. 7 | Web-based interface for the murine single-cell atlas of the lung
response to radiation injury. a UMAP visualization of 102,869 cells from 20 dif-
ferent samples (5 NI; 5 IR0y, one per time point; 10 IR,7g,, two per time point)
annotated by cell type. b UMAP visualization of the expression of Lamp3.

¢ Dynamics in cell proportions of the main cell types across the NI and IR

conditions at the different time points and doses. d UMAP visualization of the
expression of Lamp3 (red), Crip2 (blue), and the co-expression of both (pink).
e Violin plot of Crip2 expression in the AT2 cells in the NI samples and at the
different time points after IRiocy and IRyzcy. f DotPlot of the expression of the
marker genes used to identify the main 5 cell compartments.

11814389001) and incubated for 90s at room temperature (RT)
before stopping the lysis with 6 ml of PF10. Then, 500 pl of pure FBS
were placed at the bottom of the sample, prior to a final cen-
trifugation for 6 min at 150 x g and 4 °C. The pellet was resuspended

in 1ml of 1x DPBS containing 0.02% bovine serum albumin (BSA)
(Sigma, D4527-40KU), and cell counting was done in a Malassez.
Finally, concentration of the samples was adjusted to 1 million cells/
ml in 1x DPBS containing 0,02% BSA.
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Droplet based scRNA-seq (10x GENOMICS)

Single-cell 3-RNA-Seq samples were prepared using single cell V3.1
reagent kit and loaded in the Chromium Controller according to
standard manufacturer protocol (10x Genomics, PN-120237) to cap-
ture 6,000 cells. Briefly, dissociated lung single cells are encapsulated
in nanodroplets (GEMs) using a microfluidic device. These GEMs are
generated combining barcoded single cell 3 V3.1 gel beads, a master
mix that contains the reverse transcription (RT) reagents, the single
cells, and partitioning oil onto the Chromium Next GEM Chip. After cell
lysis, RNAs are captured on the gel beads coated with oligos containing
an oligo-dTTT, unique molecular identifiers (UMIs) and a specific
barcode.

Incubation of the GEMs produces barcoded, full-length cDNA
from poly-A mRNA. After reverse transcription, GEMs are broken and
cDNAs are purified with silane magnetic beads. Then, barcoded full-
length cDNA is amplified by PCR to generate enough material for
library construction. Amplified cDNA is purified again, and cDNA
quality control was assessed by capillary electrophoresis (Bioanalyzer,
Agilent) before the preparation of the libraries.

Finally, libraries are prepared using a fixed proportion of the
total cDNA. Enzymatic fragmentation and size selection are used to
optimize the cDNA amplicon size. During the GEM incubation, the
read 1 primer sequence is added to the molecules. At this step, PS5,
P7, a sample index, and the read 2 primer sequence are added via
End Repair, A-tailing, Adaptor Ligation, and PCR. This way, the final
libraries contain the P5 and P7 primers used in [llumina bridge
amplification. Finally, libraries were sequenced on a NovaSeq
sequencer (lllumina). Each measurement comes from independent
NI, [Riggy, Or IRy76y mice.

scRNA-seq data analysis

First, raw sequencing was processed using the 3.0.2 Cell ranger pipe-
line (10x Genomics). Briefly, lllumina sequencing files (bcl2) were
demultiplexed and mapped onto the mm10 reference genome. This
allows the creation of a count matrix table for each of the samples.
Then, the count matrices were individually loaded in R (4.0.5) and
analyzed using Seurat package v4.0.1".

In order to remove the contamination from the “soup” of cell-free
RNAs, we used SoupX*. This tool is able to remove ambient RNA
contamination from droplet-based scRNA-seq experiments. Briefly,
first SoupX estimates the mRNA expression profile from empty dro-
plets. Then it estimates the contamination fraction and the fraction of
UMIs originating from the background in each cell. Finally, it corrects
the expression of each cell using the ambient mRNA expression profile
and estimated contamination.

SoupX matrices were imported in Seurat, and a Seurat object was
created for each of the samples with the function CreateSeuratObject.
Samples were merged and the object was normalized using the
SCTransform normalization function, a normalization and variance
stabilization method using regularized negative binomial regression*’.
Then, PCA was performed and the first 20 PCs were selected (based on
inspection of PC elbow plot) as input for RunUMAP function for
dimension reduction and visualization with the Uniform Manifold
Approximation and Projection (UMAP) dimensional reduction
technique®®. Finally, cells were clustered with the functions Find-
Neighbors and FindClusters, based on the default Seurat parameters
with resolution parameter set to 0.8. In a first step, we performed
general QC: gene counts matrices were filtered and cells with nCounts
<200 and nFeatures >6000 RNA molecules sequenced, as well as
percentage of mitochondrial genes >15% were removed. In a second
step, each cell population was cleaned in more details by removing the
cells that presented a high percentage of mitochondrial genes, a low
nCounts, or that expressed markers characteristic of other cell types,
which suggests the presence of doublets. All quality controls are pre-
sent on the web interface.

Then, cell-type marker genes for each cluster were identified
using the function FindAllMarkers of Seurat. Cell clusters were named
based on cell type-specific markers from recently published scRNA-seq
datasets”™, For each of the analyzed clusters, we performed differ-
ential expression analysis using the function FindMarkers with the
MAST package (two-sided test), which identifies differentially expres-
sed genes between two groups of cells using a hurdle model tailored to
scRNA-seq data*’. We studied the genes with a logFC threshold of >1 or
<-1 and an adjusted p-value threshold of <0.05 using the Gene Set
Enrichment Analysis (GSEA) computational method, which defines if a
set of genes shows statistically significant, concordant differences
between two states.

Violin plots and Heatmaps were generated with Seurat for specific
significant differentially expressed genes. To calculate the single cell
data score, first a dataset corresponding to a cell state or biological
process is chosen. Then, the table of expression of these genes by each
cell is extracted. For each gene, the expression data is centered and
normalized. Finally, for each cell, we computed the mean of the cen-
tered normalized gene expression. This gave us an expression score
for each cell which was then plotted with UMAP. The trajectory analysis
of the ATI and AT2 cells was performed using Monocle 3*. The
pseudotime analysis of the AT1 and AT2 cells was done with Monocle
2", where the marker genes of the AT2 cluster 3 were used to order
the cells. The gene regulatory network analysis was constructed on the
AT2 using SCENIC*’, Lastly, all cell-cell interactions analysis were done
using CellChat™,

Mouse lung tissue processing for smFISH

Mice were injected with a mix of 100 mg/kg ketamine and 10 mg/kg
xylazine and we waited for the mice to be fully asleep. Then, the
ribcage was opened, the heart was perfused with 10 ml of cold 1x PBS
pH 7.4 (Invitrogen, AM9624) and it was resected just after the perfu-
sion was finished. Then, the mouse trachea was perfused with cold 4%
paraformaldehyde (PFA) (Euromedex, 15714-S) until the lungs were
fully expanded with no air left inside. The trachea was closed with a
thread to avoid PFA leakage. The lungs were resected out of the ribc-
age and kept in a falcon with cold 4% PFA overnight (o/n) under
rotation at 4 °C. After fixation, the 5 lobes were separated and kept
individually in cold 1x PBS containing 30% sucrose (Sigma, $7903)
during 6 h under rotation at 4 °C. Lobes were rinsed in cold 1x PBS and
pre-embedded in cold 50% optimal cutting temperature (OCT) com-
pound (VWR, 411243) diluted in 1x PBS during 30 min under rotation at
4°C. Finally, each lobe was embedded in square embedding molds
(VWR, POLS18646ACODE45) containing OCT, frozen in dry ice during
20 min and stored at —80 °C.

smFISH probes design and preparation
The design of smFISH probes was performed with the R-package
Oligostan®'. For a given target mRNA, Oligostan outputs a list con-
taining all the potential probe sequences fulfilling these requirements:
length between 26 nt and 32 nt, score around AGs;;-¢ value of 90%,
minimal distance between probes of 2 nt, GC percentage between 40
and 60%, 5 different criteria for probe composition (nucleotide com-
position in A<28%, no AAAA stacks, C nucleotide composition
between 22 and 28 %, no CCCC stacks in any six consecutive nucleo-
tides in the first 12 positions and no 4 nonconsecutive C in any 6
consecutive nucleotides in the first 12 positions). To each RNA-specific
sequence, a shared readout sequence (FLAP Y, 27 nt) was added, and
probes with the highest scores were selected. To obtain a good smFISH
signal, around 30 probes per RNA were used (Lamp3 (31), Chil3 (32),
C3arl (32), Pdgfra (32), Hhip (32), Pecaml (32), Ptprb (32), Apin (32),
Fibin (28), Prx (32), Tmcc2 (29))°.

For visualization, we used secondary probes carrying two fluor-
ophores (either Cy3 or Cy5) on both ends through 5" and 3° amino
modifications: FLAP Y-Cy3 (/5Cy3/AA TGC ATG TCG ACG AGG TCC
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GAG TGT AA/3Cy3Sp/) and FLAP Y-CyS5 (/5Cy5/AA TGC ATG TCG ACG
AGG TCC GAG TGT AA/3Cy5Sp/).

smFISH primary probes and secondary probes (fluorescent FLAP
probes) were produced and bought from Integrated DNA Technolo-
gies (IDT). Primary probes are delivered frozen in 96-well plates at a
final concentration of 100 uM in Tris-EDTA pH 8.0 (TE) buffer. An
equimolar mixture of the primary probes was prepared per set of
probes and diluted to 20 uM in TE buffer pH 8 (Invitrogen, AM9849).
Secondary fluorescent FLAP probes are delivered lyophilized. They
were resuspended in TE buffer at a final concentration of 100 uM.
Primary and secondary probe stocks were stored at —20 °C.

smFISH on lung tissue sections

OCT-embedded mouse lung lobes were cut into 16 um tissue sections
in a cryostat (Leica CM 1950) and mounted in previously cleaned and
coated coverslips. Briefly, extensive cleaning was achieved by washing
the coverslips (Menzel-Glaser, 20 x 20, #1) three times in ethanol
(VWR, 20821.310), acetone (Honeywell, 32201), and water. Then, they
were sonicated in 1M KOH (Honeywell, 06005) in H,0, rinsed with
water and dried in an oven at 70 °C for 10 min. For tissue attachment,
coverslips were then coated with 2% (3-aminopropyl)triethoxysilane
(APTS) (Sigma, A3648-100ML) in H,O for 2 min and rinsed with water
twice. Finally, the coating was activated in the oven at 70 °C for 60 min.
Coverslips with lung tissue sections were placed into 6 well plates,
fixed with cold 4% PFA for 15 min at 4 °C, washed twice with cold 1x
PBS, and kept in 70% ethanol at 4 °C o/n.

smFISH probes were generated by pre-hybridizing the primary
probes with the secondary FLAP Y (FLAP Y-Cy3 or FLAP Y-Cy5) probes
in a PCR machine. Briefly, a mix containing 40 pmol of the primary
probes, 50 pmol of the FLAP Y probe, 1x NEBuffer 3 (BioLabs, B7003S)
and ultra-pure water was incubated in a thermocycler for 3 min at
85°C, 3min at 65°C and 5min at 25°C. The hybridization mix was
prepared by mixing 2 ul of the smFISH probes and 98 ul of hybridiza-
tion buffer (100 mg/ml dextran sulfate (Sigma, D8906-10G) and 10%
deionized formamide (Invitrogen, AM9342) in 2x SSC (Invitrogen,
AM9763)) per sample. Hybridization buffer can be prepared in
advance and frozen in aliquots. These aliquots were thaw and heated
to 100 °C for 5min, and let cool to RT. In case of co-staining, 96 pl of
hybridization buffer was mixed with 2 pl of primary probes hybridized
to FLAP Y-Cy3 and 2 ul of primary probes hybridized to FLAP Y-Cy5.

For the hybridization of the smFISH probes in the tissue, first
tissue sections were re-hydrated twice with washing buffer I (WBI) (2x
SSC) for 3 min at RT, followed by a last incubation in washing buffer Il
(WBII) (10% deionized formamide in 2x SSC) for 3 min at RT. The
hybridization of the smFISH probes in the lung tissue sections was
carried out in a hybridization chamber. Here, the tissue sections were
placed upside-down onto a 100 ul droplet of the hybridization mix and
incubated at 37 °C o/n.

To finish, tissue sections were washed three times: first in pre-
heated WBII at 37 °C for 30 min, second in WBII containing 0.05 pg/ul
DAPI (Sigma, D9542-1MG) at 37 °C for 30 min, and third in 1x PBS for
5 min at RT. Samples were mounted in SlowFade Diamonds (Invitrogen
#536963) and stored at 4 °C until image acquisition.

Image acquisition

For each sample, 54 three-dimensional image stacks were captured
with an interval of 0.3 um (total of 16.2 um) on a widefield microscope
(Upright Widefield Apotome Zeiss) equipped with a 63 x 1.4 numerical
aperture (NA) objective and a CCD camera (CoolSNAP HQ2) and
controlled with ZEN microscope software (ZEISS Microscopy). Three
lasers were used to excite DAPI (excitation time 40 ms) and smFISH
probes labeled with Cy3 (excitation time 300 ms) and Cy5 (excitation
time 300 ms). When acquiring tiles with a 5x5 FOV, 16 three-
dimensional image stacks were captured with an interval of 0.3 pm
(total of 4.8 um).

Image analysis
Image analysis and result generation are performed automatically with
a provided command line script performing the steps described next.

Nuclei were automatically segmented with Cellpose™ and RNA
detection was performed with FISH quant v.2*°. Points detected in
several channels at the same location were considered to be the result
of auto-fluorescence and therefore removed.

Custom written Python scripts were used to determine the cell-
type of a nucleus. Importantly, marker genes were chosen such that
each cell type is identified with only one marker gene. First, RNAs of
each gene were clustered with the algorithms OPTICS and DBSCAN* in
their implementation in scikit-learn (https://scikit-learn.org/). We used
the following functions and parameters:

sklearn.cluster.OPTICS is used to determine the core
points and ordering. Parameters are min_sample=4 and min_

cluster size=4.
sklearn.cluster.cluster optics dbscan is used for the

clustering, with the parameters obtained in the previous step. The
parameter eps was manually adjusted for each gene to account for
differences in the expression levels. Other parameters are left to
their default value.

The next step consisted in assigning the detected RNA clusters to
the individual cells (or nuclei, as there is no cytoplasmic marker). For
this, we calculated the convex hull for each individual cell with
Delaunay tessellation (using spatial.Delaunay from scipy). In order to
assign a convex hull to a nucleus, we required that there was at least an
overlap of K %, where K was set individually for different cell types (20
to 55%) to account for different cell morphologies. Non-assigned
convex hulls were removed from the analysis (this typically happened
when nuclei were not present in the image). The proportion of positive
cells for a specific cell type marker in an image was calculated as the
number of positive nuclei of this marker over the total number of
nuclei segmented in the image. To compare two groups (ex NI vs
IR5M), the P value was computed with the Mann-Whitney-Wilcoxon
test (two-sided test) from scipy (*P<0.05; *P<0.01; **P<0.001,
P < (0.0001). Cell volume was estimated as the volume of the convex
hull associated to a nucleus (Fig. 2b). If a point cloud contained several
nuclei (for instance for neighboring cells of the same type), the average
cell volume per nuclei was calculated. For the violin plots, each inde-
pendent NI, IR;qgy, or IRy76, mice are represented with different colors,
and dots of the same color represent different analyzed images from
the same mouse sample.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The scRNA-seq datasets generated during the current study have
been deposited in the Gene Expression Omnibus (GEO) repository,
with the accession code GSE211713. Processed data can be explored
through an interactive web interface (https://lustra.shinyapps.io/
Murine_RIPF_Atlas/). Source data are provided with this paper.

Code availability

We make the full image analysis Python code available on the following
Github page https://github.com/tdefa/cell type_calling 2channels and
on Zenodo https://zenodo.org/record/7360791 (https://doi.org/10.
5281/zenodo.7360791). Other codes are available from the authors
upon kind request.
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Later during my PhD, | performed a deeper analysis of the phenomena described in

the publication above, as well as described new ones, using a new group of mice irradiated

with the new Collimation irradiator (see chapter Il 2) for more precisions).

3. Processus of inflammation induced by irradiation

a) Immune cells in the healthy mouse lung

Immune cells are the main actor of the response to outside threat and the maintaining

and clearing of inflammation.
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FIGURE 3.3. identification of the different immune cell population in the non-
irradiated control mouse lung.
A: UMAP plot of the different immune cell populations (2 samples, 5.243 cell); B:
Expression of the markers used for the identification of the immune cell populations; C:
Proportion of the different immune cell populations in the non-irradiated mouse lung.

We identified different populations of immune cells from the lymphoid and myeloid

lineages in the lungs of non-irradiated mice (FIGURE 3.3A): The B cells, T cells, NK cells, NK T
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cells, neutrophils, dendritic cells, monocytes, two different populations of interstitial
macrophages (the nerve IM and the vessel IM), and alveolar macrophages. These populations
have been identified using markers described in the literature (FIGURE 3.3B). Contrary to the

IM, the AM form one homogenous population.

The main immune population detected is the B cells, accounting for 43 percent of the
pool of immune cells. Altogether, lymphoid cells represent 75 percent of the immune cells we
detected in the lungs of non-irradiated cells. The other 25 percent are the myeloid cells:
mainly monocytes and macrophages, with also neutrophils and dendritic cells. Most of the

IM are nerve IM, but a few cells were also identified as vessel IM (FIGURE 3.3C).

b) Upregulation of inflammatory pathways in the immune populations after
irradiation in mouse lungs
Inflammation is a major process in the initial reaction of the lung to irradiation and
the development of pulmonary fibrosis. Therefore, we investigated the changes in
transcriptome of the main immune populations of the lung. First, we identified in the T cells
an upregulation of oxidative phosphorylation, the MAPK signaling, oxidative stress and TGFf3
signaling after both a 10Gy and a 13Gy irradiation. Other upregulated pathways are specific
to the 13Gy condition: the p53 signaling pathway and the IL-5 signaling pathway (FIGURE
3.4A). Similarly, in B cells, most of the pathways are upregulated after both a 10Gy and a 13Gy
irradiation: oxidative phosphorylation, WNT, IL5, TGF signaling pathways. There doesn’t
seem to be upregulation of pathways specific to a 13Gy irradiation (FIGURE 3.4B). Dendritic
cells exhibit less changes post irradiation, with fewer pathways upregulated, the main one
being oxidative phosphorylation (FIGURE 3.4C). Finally, in the neutrophils, several signaling
pathways are upregulated after both 10Gy and 13Gy irradiation: several interleukins signaling
pathways, the TGF[3 signaling pathway. Interestingly, the IFNy signaling pathway and oxidative
phosphorylation are specifically upregulated after a 13Gy irradiation (FIGURE 3.4D).

As expected, these different immune populations show an upregulation of diverse
pathways related to inflammation, like interleukins or TGF[. Furthermore, all four
populations present an upregulation of oxidative phosphorylation, a process that has been
shown to be induced by irradiation and that is an indicator of possible mitochondrial damage

(Yin et al. 2019).
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FIGURE 3.4. pathways upregulated in the different immune populations after
irradiation: inflammation, oxidative phosphorylation, cytokines

Pathways (from the GSEA WikiPathways database) significantly upregulated (false
discovery rate (FDR) adjusted p-value < 0.05) compared to controls at the different time
points post irradiation in A: T cells, B: B cells, C: dendritic cells, D: neutrophils.

¢) M1 or M2 activated phenotypes of the macrophages after irradiation

Distinct types of macrophages have been shown to play different roles during the

development of radio-induced pulmonary fibrosis: M1-activated macrophages promote
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inflammation, whereas M2-activated macrophages present a pro-fibrotic activity (Ying, Fang,
and Chen 2021). Therefore, we investigated the profile of the macrophages in our model of
mouse full thoracic irradiation (Curras-Alonso et al. 2023). We found a sub population of
alveolar macrophages appearing in the latest months after a fibrogenic dose of irradiation
that expresses genes characteristic of the M2 activated macrophages state. Similarly, the
interstitial macrophages become M1-activated four to five months post irradiation. So, in our
model, interstitial macrophages seem to have a pro-inflammatory activity, whereas alveolar
macrophages present a pro-fibrotic activity. These results are presented in the publication

displayed in chapter Il 2).

d) Identification of different sub populations of macrophages

To better characterize the different populations of macrophages, we investigated how
they are affected by irradiation injury and the changes they experience during the healing

mechanisms and the processes leading to pulmonary fibrosis.

We can identify the classical macrophage lung cell populations: the alveolar
macrophages and the interstitial macrophages (FIGURE 3.5A) using well known markers
(FIGURE 3.5C) (Travaglini et al. 2020). Furthermore, the interstitial macrophage population
can be sub-divided in three populations: nerve-associated interstitial macrophages
expressing H2-Aa H2-Abl Lgals3 and Cd81, vessel-associated interstitial macrophages
expressing Prg4 and Tgfb2, and an intermediate population composed of cells expressing
markers characteristics of both interstitial macrophages and monocytes (FIGURE 3.5B, D).
The intermediate monocyte — interstitial macrophages are mainly present 24 hours after a
13Gy irradiation. We can make the hypothesis that they are part of the early healing
processes, during which the monocytes are able to differentiate into interstitial macrophages
to replenish the pool of this population (Shi et al. 2021). However, due to the lack of samples
irradiated at 10Gy at the same time point, it is not possible to determine whether this process
is specific for pro-fibrotic condition. The other two populations of interstitial macrophages

present a stable proportion after 10Gy and 17Gy irradiation (FIGURE 3.5F,G).
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FIGURE 3.5. identification of the different macrophage populations in the mouse lung
before and after irradiation.

A: UMAP plot of the different lung macrophage and monocyte populations (24 samples,
17.517 cells); B: UMAP plot of the different lung macrophage and monocyte sub
populations; C: Expression of the markers used for the identification of the alveolar
macrophages, interstitial macrophages and monocytes; D: Expression of the markers used
for the identification of the sub populations of interstitial macrophages; E: Expression of
markers characteristics of the sub populations of alveolar macrophages determined using the
function FindAllMarkers; F: Bar plot of the proportion of the different macrophage and
monocyte populations at the different time points after a 10Gy irradiation; G: Bar plot of the
proportion of the different macrophage and monocyte populations at the different time points
after a 13Gy irradiation.




Finally, the alveolar macrophages can also be divided into four sub-populations. Each
sub-population appears to be specific to a timepoint post irradiation and/or an intensity of
irradiation (FIGURE 3.5F,G): the AM healthy are mainly found in the controls, the AM 24h are
only found in the samples 24h post irradiation, the AM IR are found across all irradiated
samples but not in the controls, and finally the AM fibrotic are only found in the samples five
months post 13Gy irradiation. Using the function FindAllMarkers from Seurat, different

markers characteristics of these populations were determined (FIGURE 3.5E).

e) Interstitial macrophages regeneration

We had a closer look at the intermediate monocyte and IM population. With a
trajectory analysis, we identified a single trajectory line connecting the interstitial

macrophages and monocytes, going through this intermediate population (FIGURE 3.6A).

A B
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@ IM nerve
Monocyte
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FIGURE 3.6. a potential recruitment of interstitial macrophages from monocytes 24
hours post irradiation

A: trajectory analysis of the IM and monocytes in the samples taken 24 hours after irradiation
(3 samples, 1.122 cells); B: pseudo-time analysis of the IM and monocytes in the samples
taken 24 hours after irradiation with the AT2 cells as the population of origin; C: RNA
velocity analysis of the IM and monocytes in the samples taken 24 hours after irradiation

Furthermore, when placing the origin of the pseudo-time in the monocytes, we find
the nerve-associated interstitial macrophages at the end of the pseudo-time (FIGURE 3.6B).
Finally, the RNA velocity analysis shows cells velocities going from the monocytes to the
intermediate population and from this population to the nerve interstitial macrophages

(FIGURE 3.6C). Therefore, we can hypothesize that after irradiation there is a recruitment of
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circulating monocytes that will differentiate into interstitial macrophages, particularly during
the early response to irradiation, since the intermediate monocytes-IM population is mainly

present at 24h post irradiation (FIGURE 3.6G).

f) Increased catabolism and lipid metabolism in alveolar macrophages after
irradiation

Then, we investigated the differences between the subsets of alveolar macrophages

detected in different conditions after irradiation. We computed the different markers specific

to each sub cluster of alveolar macrophages and ran a GSEA analysis to identify the biological

processes (from the gene ontology database GO-BP) enriched in the different subsets after

irradiation.

First, in the population that appears one day after irradiation, there is an upregulation
of the cellular response to stress and of the processes of regulation of programmed cell death
(FIGURE 3.7A). One month after a 10Gy or 13Gy irradiation, the proportion of alveolar
macrophages in the lung is divided by three compared to the control samples (FIGURE
3.7B,C). This observation strongly suggests that alveolar macrophages undergo strong acute
damage after irradiation, which triggers the removal of a significant proportion of the alveolar
macrophage pool. In both in the mice that underwent a 10Gy and 13Gy irradiation, the
proportion of alveolar macrophages is restored to a control level at two months post
irradiation. However, at five months post 13Gy irradiation the proportion of alveolar
macrophages increase by 7-fold while in the case of a 10Gy irradiation it remains close to the

control.
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FIGURE 3.7. increase of cell death and lipid metabolism in the different populations
of alveolar macrophages after irradiation.

A: Top 10 GO-BP enriched significantly upregulated (FDR adjusted p-value < 0.05)
pathways in the AM early IR cluster; B: proportion of AM in the lungs after a 10Gy
irradiation; C: proportion of AM in the lungs after a 13Gy irradiation; D: Top 10 GO-BP
enriched significantly upregulated (FDR adjusted p-value < 0.05) pathways in the AM IR
cluster; E: Top 10 GO-BP enriched significantly upregulated (FDR adjusted p-value < 0.05)
pathways in the AM fibrotic cluster. Pathways for A, D and E are ranked by the number of
genes in the pathway upregulated.

We also identified a population of alveolar macrophages specific of irradiated samples
that have not reached the state of fibrosis (five months post 13Gy irradiation). There is in
these samples a similar increase in cellular response to stress, but with the addition of

increased catabolic and catalytic activity (FIGURE 3.7D). It has been shown that alveolar
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macrophages have high catabolic potential, especially concerning lipid catabolism. In
homeostasis, one of the functions of alveolar macrophages is the clearing of pulmonary
surfactant. When exposed to an increased quantity of lipids in pathological conditions,
alveolar macrophages can become activated and increase their catabolic activity (Wculek et
al. 2022). Models of bleomycin and silica injury in mice have shown accumulation of some
phospholipids in broncho-alveolar lavage fluids (BALF) (Milad and Morissette 2021). This
could explain the increased catabolism of alveolar macrophages after irradiation. This
tendency is even increased at the stage of fibrosis: the alveolar macrophages population
specific of the four to five months post 13Gy irradiation timepoints still show these increased
catabolic processes as well as lipid metabolisms processes (FIGURE 3.7E). This increased in
lipid metabolism is characteristic of the foamy macrophages, a state of macrophages that
have been described in several diseases, like tuberculosis (Russell et al. 2009), spinal cord

injury (Kong et al. 2020) or atherosclerosis (Yu et al. 2013).

In order to gain a better understanding of the mechanisms driving the differences
between the different populations of alveolar macrophages (FIGURE 3.8A) after the different
conditions of irradiation, we performed a gene regulatory network analysis (FIGURE 3.8B).
This allowed us to identify the main regulators responsible for the difference in transcriptome
of the different AM populations. The main transcription factor expressed in the AM healthy
population is Nfia, known to be involved in myeloid cell differentiation (L. Chen et al. 2020).
In the AM IR, there is an upregulation of the activity of the transcription factor Nfkb1, a key
regulator of inflammatory response (S. Batra, Balamayooran, and Sahoo 2011), which is
consistent with the observations already made in macrophages and other populations in
reaction to irradiation. Interestingly, the AM 24h presents a strong activity of transcription
factors not found in other populations, like Xbp1, involved in inflammation by promoting the

expression of genes like 116 and Tnf (S.-M. Park, Kang, and So 2021).

Finally, many transcription factors present a high activity in the AM fibrotic, specific of
five months post 13Gy irradiation. Stat1 has already been shown to be upregulated in the AM
after radiation exposure of the lungs (J. Chen et al. 2016). Similarly, Fosl2 expressing
macrophages has been shown to contribute to the development of fibrosis, notably by
secreting collagen (Ucero et al. 2019). These results show the pro-fibrotic and pro-

inflammatory profiles of the AM during the latest stages of fibrosis.
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FIGURE 3.8. gene regulatory network analysis of the alveolar macrophages

A: DimPlot of the different populations of alveolar macrophage (AM) identified according
to the irradiated conditions where they appear (24 samples, 5.237 cells); B: gene regulatory
network analysis of the different populations of AM. In parenthesis, the number of genes
regulated by the transcription factor.

g) Late changes in phenotype in the macrophages after a RILI

Finally, radio-induced lung injury does not lead to radio induced pulmonary fibrosis
for all patients, however it has been shown that patients treated with radiotherapy can suffer
from side effects like reduced pulmonary function years after the treatment (Miller et al.
2003). These late side effects have not been studied extensively and can impact the quality
of life of former radiotherapy patients. Therefore, in order to gain a better understanding of
the late cellular and molecular events occurring after a non fibrogenic dose of irradiation, we
analyzed with single cell RNA sequencing lungs from mice nineteen months post 10Gy

irradiation, as well as age matching controls.

The macrophages are important players of the wound healing process and the
maintaining or clearing of inflammation. In the different samples collected after a 10Gy
irradiation, as well as in the young and old control mice lungs, we were able to identify the
monocytes, alveolar macrophages and interstitial macrophages (FIGURE 3.9A). However, the
samples nineteen months post 10Gy irradiation show a difference in the proportion of the
different populations compared to the others irradiated samples or the controls. Indeed,
there is in these samples a low percentage of monocytes (five times less than the average of
the other samples), and an important increase in the proportion of alveolar macrophages

(two to three times more than the other samples) (FIGURE 3.9B).
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FIGURE 3.9. alveolar macrophages nineteen months post irradiation present a foamy
phenotype.

A. UMAP plot of the lung alveolar macrophages, interstitial macrophages and monocytes in
the samples after a 10Gy irradiation (19 samples, 13.369 cells); B: Bar plot of the proportion
of the different lung alveolar macrophages, interstitial macrophages and monocytes at the
different time points after a 10Gy irradiation; C: number of genes related to biological lipid
processes significantly upregulated in the alveolar macrophages nineteen months post
irradiation compared to the old controls (23 months old mice); D: expression of Sppl in the
alveolar macrophages in the different samples post 10Gy irradiation

Furthermore, these alveolar macrophages nineteen months post irradiation present a
similar upregulation of lipidic processes (compared to the old control mice) as the samples

after a 13Gy irradiation (FIGURE 3.9C), therefore they might also be “foamy macrophages’

and contribute to the maintaining of inflammation. They also show a significant upregulation
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of Spp1 compared to old controls, one of the described markers of m2-like profibrotic alveolar

macrophages (Willemsen and de Winther 2020) (FIGURE 3.9D).
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4. Regeneration of the epithelial cells: early bipotent progenitor
and late processus of transdifferentiation

The lung epithelium is fundamental for the lung to perform its function. It constitutes
the surface of gas exchanges between the outside air and the blood. Furthermore, the
epithelium contains cells that secrete surfactant, allowing the lungs not to collapse, evacuate
the debris and participate in the primary immune response. However, the AT1 cells, the cells
that are in charge of the gas exchanges, are fragile and susceptible to destruction or apoptosis
upon infection or aggression (Kuwano 2007). Therefore, it is interesting to study their fate

after irradiation injury and their potential regeneration.

a) Identification of the epithelial population in healthy mouse lungs
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FIGURE 3.10. identification of the different epithelial cell population in the non-
irradiated control mouse lung.

A: UMAP plot of the different epithelial cell populations (2 samples, 1.169 cells); B:
Expression of the markers used for the identification of the epithelial cell populations; C:
Proportion of the different epithelial cell populations in the non-irradiated mouse lung.
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Using single cell RNA sequencing, we were able to identify in the non-irradiated mouse
lungs the main epithelial cells populations: AT1 cells, AT2 cells, AT2 Lyz1 positive cells, ciliated

cells and club cells (FIGURE 3.10A), using markers described in the literature (FIGURE 3.10B).

The most abundant population we detected are the AT2 cells, accounting for 71
percent of the epithelial cells (AT2 cells + AT2 Lyz1 positive cells). The other populations

appear to be equally represented in the lungs of non-irradiated control mice.

b) The late AT2 response to irradiation: AT2 to AT1 transdifferentiation

We first identified a Krt8+ AT2 cells population expressing genes characteristics of AT2
to AT1 differentiation, so that presents the capacities to regenerate the AT1 population
(Riemondy et al. 2019; Curras-Alonso et al. 2023). This AT2 to AT1 transdifferentiation
signature was found to be mainly upregulated four to five months post irradiation in a small
Krt8+ AT2 cells population. These results are presented in the publication displayed in chapter

1 2).

¢) The ATO cells, a population involved in the early regeneration of the lung
epithelium

In order to investigate more deeply this regeneration potential of the mouse
epithelium after an irradiation injury, we used the new mouse samples that were irradiated
with the Collimation irradiator, with samples sequenced 24 hours post 13Gy full thorax
irradiation. In addition to the classical AT1 and AT2 populations, we were able to identify a
Lyz1+ AT2 population that has been shown to be mouse specific (Hurskainen et al. 2021), and
the Sftpb+ Scgblal+ Scgb3a2+ ATO population (FIGURE 3.11A,B). The ATO population has
been recently described and has been shown to derive from AT2 cells after irradiation and act
as a bipotent progenitor that can differentiate into AT1 cells or back to AT2 cells (Kadur

Lakshminarasimha Murthy et al. 2022).

The analysis of the cell cycle score of the different epithelial cells populations shows
that the ATO cells present the highest S phase score and G-2M phases score (FIGURE 3.11C),
which is another argument for the involvement of the ATO cells in the regeneration of the

lung epithelium after an irradiation injury. Furthermore, this ATO population appears as an

114



early response, as they are specific of the 24 hours post irradiation timepoint, when they

represent more than half of the epithelial cells (FIGURE 3.11D).
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FIGURE 3.11. identification of the ATO cells, an epithelial cell progenitor population
involved in the early lung response to injury.

A: UMAP plot of the different lung pneumocyte populations 24h post irradiation (3 samples,
4.165 cells); B: expression of the markers used to identify the pneumocyte populations 24
hours post irradiation; C: Cell cycle phase scores: S score and G2-M score for the cells of
the different pneumocyte populations 24 hours post irradiation; D: Bar plot of the proportion

of the different pneumocyte populations at the different time points after a 10Gy or 13Gy
irradiation.

With a trajectory analysis of the samples 24h after a 13Gy irradiation, we can predict
a connection between the AT2 cells and the ATO cells, and then another one between the ATO
cells and the AT1 cells (FIGURE 3.12A). Furthermore, if we place the origin of the node of

origin in the AT2 cells, the pseudo time analysis predicts an order of the populations of 1) AT2

cells, 2) ATO cells and 3) AT1 cells (FIGURE 3.12B).

115



AT2 Lyz1

pseudotime

UMAP 2
o
)
UMAP 2

10
UMAP 1

UMAP 1

FIGURE 3.12. prediction of the differentiation of AT2 to ATO0, then to AT1 early after
irradiation injury.

A: trajectory analysis of the AT2, AT1 and ATO cells in the samples taken 24 hours after
irradiation (3 samples, 4165 cells); B: pseudo-time analysis of the AT2, AT1 and ATO cells
in the samples taken 24 hours after irradiation with the AT2 cells as the population of origin.

To study the potential mechanisms involved in these transitions, we studied
the gene regulatory network (GRN) of the different pneumocytes populations. First, the AT1
cells do not show a change in the activity of the different regulons after a 10Gy irradiation
compared to the non-irradiated control (FIGURE 3.13A). However, after a 13Gy irradiation,
there is an increase in some regulons starting at one month post irradiation, notably Xbp1, a
transcription factor shown to be involved in the induction of cytokines production (Ribeiro
and Lubamba 2017). Other regulons became upregulated during the late stage of fibrosis after
a 13Gy irradiation. The ATO cells express a different set of transcription factors (FIGURE 3.13B)
not found in the other pneumocytes populations, like Cebpb and Atf3, two transcription
factors promoting epithelial cell proliferation (Hsueh, Kuo, and Chen 2013). Finally, the AT2
cells display similar regulons activity after a 10Gy or a 13Gy irradiation (FIGURE 3.13C).
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FIGURE 3.13. gene regulatory network analysis of the AT1, AT2 and ATO cells after
irradiation.

Gene regulatory network analysis with of the different pneumocytes populations. Red means
a high activity of the transcription factor, and green a low activity. A: analysis of the AT1
cells; B: analysis of the ATO cells; C: analysis of the AT2 cells.

d) Epithelial to mesenchymal transition induced by alveolar macrophages

We identified a TGFB1-TGFBR2 interaction, specifically received by the AT2 cells in the
early time points (24 hours and one month) or late time point (five months) post 13Gy
irradiation, and not after a 10Gy irradiation. This TGFB1 signaling appears to be sent by the
AM at 24h post irradiation as well as by radiation-specific AM during the fibrotic state (FIGURE
3.14A). This intercellular interaction has been shown to induce endothelial to mesenchymal
transition (EMT) in various contexts, including fibrosis (Nagaraja and Nagarajan 2018).
Furthermore, the result of a clustering based on the expression of EMT markers in AT2 cells

(FIGURE 3.14B) shows a reduced expression of EMT suppressors genes or genes

117



downregulated by EMT in the samples after a 13Gy irradiation, and particularly the samples
five months post 13Gy irradiation. Indeed, in the top left panel of the heatmap in FIGURE
3.14B, we see a lower expression of 1d2 (Wen et al. 2018), Cadm1 (Sawada et al. 2020), Ppib
(Sun et al. 2021), Gjal (James et al. 2018), Sdc1 (Kumar-Singh et al. 2021) and Cdh1 (Aban et
al. 2021) compared to the others panels more enriched in non-irradiated cells and 10Gy

irradiated cells.
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FIGURE 3.14. increase of the EMT-inducing TGFB1-TGFBR2 interaction between the
AM and AT?2 cells after irradiation.

A: TGFB1-TGFBR2 interaction received by the AT2 cells and sent by the different alveolar
macrophage sub populations; B: heatmap of expression of EMT markers (from the Hallmark
database) by the AT2 cells. Only markers expressed in at least 20% of AT2 cells were kept;
C: expression of Cdhl by the AT2 cells (upper panel), and fold change of the comparison
with the non-irradiated control, all the conditions being significantly downregulated
compared to non-irradiated (lower panel).

For example, the expression of E-cadherin (Cdh1) in AT2 cells is significantly decreased

after irradiation (FIGURE 3.14C). The decrease in expression of E-cadherin by epithelial cells
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is an early sign of EMT. This decrease is more important after a 13Gy irradiation than after a
10Gy irradiation, especially at one month and five months post irradiation. Therefore, we can
make the hypothesis that a radiation induced subpopulation of AM contributes to the
observed EMT-like process in AT2 at late stages of RIPF. AM could also be involved in the
induction of an EMT-like state in AT2 at earlier stages post-irradiation. However, it is possible

that these transitions serve different purposes (regeneration versus survival).
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5. Regeneration of the endothelial cells: pro-angiogenic

signaling

a) lIdentification of the different endothelial population in non-irradiated

samples

Endothelial cells can be subdivided in different populations that we identified in the

non-irradiated mouse lungs.

- .!t“
* o o
§ EC artery. . 'y-s#=
¢ =2 .
i AR A
£ 5. .0
) °l EC lymphatic T R LY
g
2 EC vein gCap
-5
L
acap TR
-10 %—%t
-15 10 -5 0 5
umap_1
aCap
gCap
EC_lymphatic
EC_vein
EC_artery

EC lymphatic
EC vein
EC artery . .

gCap

aCap

Percent Expressed
-0

.25

® 50

® 75

@ 00

Average Expression

1
0

=1

Kit

Kdr
Gpihbp1
Cxcl12

Ager

Tip score

Pcsk5

Vegfc
Prss23
Flt4
Ccl21a

Prox1

Lyvel
Serpine2

Stalk score

aCap
gCap
EC artery

EC lymphatic

EC vein

EC vein

EC artery
aCap
gCap

EC lymphatic

mouse lungs.

mouse endothelial cells.

FIGURE 3.15. identification of the endothelial cells populations in the non-irradiated

A: UMAP visualization of the different mouse endothelial cell subpopulations annotated by
sub cell type (2 samples, 1.499 cells); B: Expression of the markers used for the
identification of the endothelial cell populations; C: Proportion of the different epithelial cell
populations in the non-irradiated mouse lung; D: tip and stalk score in the non-irradiated
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Endothelial vessels are composed of the endothelial vein cells, the endothelial artery
cells and the endothelial lymphatic cells. Furthermore, we identified two populations of
capillary cells: the aerocytes or aCap, in charge of the gas exchanges, and the general capillary
cells or gCap, that act as progenitors (FIGURE 3.15A). These different populations were
identified using markers described in the literature (FIGURE 3.15B). In the non-irradiated lung
samples, the main EC subtypes identified are the gCap, accounting for 64% of EC and the aCap
accounting for 18% (FIGURE 3.15C).

Two endothelial cell states have been described to be involved in vessel growth and
repair, physiologically and after injury: tip and stalk cells. As described in the introduction, tip
cells present motility properties and take the lead of the sprouting of the new vessel, while
stalk cells proliferate behind and build the walls of the new vessel. The tip or stalk status can

be evaluated using a score based on markers found un the literature (FIGURE 3.15D).

b) Vascular damage and repair after a radiation induced lung injury

Vascular damage is a major consequence of lung irradiation. Irradiation causes death
of endothelial cells, disorganization of the vascular network, as it has been shown in both
human patients and mouse models (Venkatesulu et al. 2018). The replacement of these
damaged endothelial cells and vessels is mostly triggered by pro-angiogenic signaling (Boussat

et al. 2000).

Angiogenesis is the physiological process through which new blood vessels form from
pre-existing vessels. This process is crucial for growth, development, and wound healing. It
involves the proliferation, migration, and differentiation of endothelial cells, which line the
interior surface of blood vessels. Pro-angiogenic signaling is essential for re-establishing an
adequate blood supply to the damaged tissue, ensuring the delivery of oxygen and nutrients
necessary for tissue repair and regeneration. Endothelial cells play a pivotal role in
angiogenesis, responding to pro-angiogenic signals such as VEGF by proliferating, migrating,

repairing damaged endothelial vessels and forming new capillary networks.

Therefore, we studied here the pro-angiogenic molecular and cellular mechanisms
triggered by radiation injury in the lungs. We identified the different populations of

endothelial cells in the different conditions and time points post irradiation (FIGURE 3.16A),
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using markers described in the literature (FIGURE 3.16B). After either a 10Gy or a 13Gy
irradiation there is an increase in the proportion of aCap, mainly at three months post 10Gy
or 13Gy irradiation (FIGURE 3.16C). Finally, the decrease in the proportion of gCaps is similar
after a 10Gy irradiation and a 13Gy irradiation (FIGURE 3.16D).
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FIGURE 3.16. decrease of the proportion of gCap cells in mouse lungs after
irradiation.

A: UMAP visualization of the different mouse endothelial cell subpopulations annotated by
sub cell type (24 samples, 11.091 cells); B: DotPlot of the markers used for the identification
of the different endothelial cell populations; C: proportion of aCaps among the endothelial
cells in the non-irradiated samples and one to five months post 10Gy or 13Gy irradiation;
D: proportion of gCaps among the endothelial cells in the non-irradiated samples and one to
five months post irradiation a 10Gy or 13Gy irradiation.

The tip and stalk identities were then assessed using a score of the expression of lists
of markers of tip and stalk cells published (W. Chen et al. 2019). The score levels are presented
in FIGURE 3.17A. The tip score is significantly upregulated for all conditions, with a higher fold
change five months post 13Gy irradiation. On the contrary, the stalk score is downregulated

compared to irradiation in all the time points after a 10Gy irradiation, and one to three
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months post 13Gy irradiation. In the end, at the time point when we see the development of
fibrosis (five months post 13Gy irradiation), the stalk score is increased and upregulated
compared to the control. These results suggest that irradiated gCap cells respond to the

increase in pro-angiogenic signaling by acquiring “tip”-like characteristics.
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FIGURE 3.17. increase of the tip and stalk identity of the gCap cells in mouse
irradiated lungs.

A: Violin plots of the tip and stalk scores in the gCaps, black lines represent the median;
stars represent the p-value of the wilcox test compared to the non-irradiated (n.s.: non-
significant, *: p-value < 0.05, **: p-value < 0.01, ***: p-value < 0.001); B: heatmap of the
expression of the different tip and stalk markers used for the score calculation of the panel
A of this figure.

However, as tip and stalk cells are dynamic cell states, it can be difficult to quantify

exactly the quantity of tip or stalk cells at each point after irradiation. Indeed, the tip or stalk
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identity is defined by the upregulation of an ensemble of genes, rather than just one marker

(FIGURE 3.17B).

¢) Populations sending VEGFA signaling

The main interaction that has been shown to trigger angiogenesis-related processes
is the VEGFA-VEGFR2 (also known as KDR) interaction. Therefore, we used CellphoneDB to
predict which cell populations are sending this signaling to the gCap, the endothelial cell
populations that have been described as the progenitor for the capillary cells (Gillich et al.
2020). Overall, the main sources of the VEFGA signaling received by the gCaps through the
VEGFR2 receptor are predicted to be the artery endothelial cells, the AT2 cells, the fibroblasts

Col13al+ as well as an autocrine pathway (FIGURE 3.18).
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FIGURE 3.18. AT2 cells, fibroblasts and endothelial cells are the main sources of the
VEGFA signaling received by the gCap cells
VEGFA-KDR interaction received by the gCap and sent by different cell populations.

Furthermore, although this signaling is present both after a 10Gy irradiation and a
13Gy irradiation, it disappears at five months post 10Gy irradiation. We can make the
hypothesis that the vascular repair has been completed a few months after a 10Gy irradiation,
while the signaling persists five months after a fibrogenic dose, suggesting that pro-
angiogenic activities are associated with the fibrotic state. Whether these activities directly
participate in the fibrotic process or are just a consequence of tissue remodeling remains to

be demonstrated.
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d) Late pro-angiogenic signaling of endothelial cells after RILI healing

In order to understand the late consequences of a healed RILI, we analyzed the
different endothelial cells populations nineteen months post a 10Gy irradiation and via
clustering of the endothelial cells we identified a population of gCaps that is only present in
this specific condition (FIGURE 3.19A,B), and not in any other 10Gy irradiated samples or in

the old non irradiated lungs.
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FIGURE 3.19. identification of a gCap population specific of the mice nineteen months
post 10Gy irradiation.

A. UMAP plot of the different lung endothelial cell populations (19 samples, 8.867 cells);
B: Bar plot of the proportion of the different endothelial cell populations at the different time
points after a 10Gy irradiation; C: significantly upregulated (FDR adjusted p-value < 0.05)
Hallmark pathways in the gCap IR old population compared to the classical gCap
population.

Then, we compared this gCap IR old cells with the classical gCap population and
identified an upregulation of different inflammation and stress related pathways: TNFo
signaling, IL2 STATS signaling and IFNy signaling. Furthermore, there is also an upregulation
of genes involved in hypoxia response (FIGURE 3.19C), suggesting abnormalities in the

capillary network, or a possible perturbation of the AT1-aCap function, maybe through tissue
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disorganization and loss of contact between the partners. Therefore, we investigated the
evolution of the pro-angiogenic signaling in the endothelial cells, and more specifically gCaps,

in the lungs from old mice, nineteen months post irradiation or non-irradiated.

During the early time points post 10Gy irradiation (one to five months) we see an
increase, regarding the non-irradiated control, in the proportion of gCap tip cells. However,
this increase is two-fold lower than in the mice irradiated at 13Gy. Regarding the proportion
of gCap among the endothelial cells, the 10Gy irradiation triggers a decrease one to five
months post irradiation. However, the proportion of gCap does not recover nineteen months
post irradiation (FIGURE 3.20B), while the aCap proportion returns to a level comparable to
the one found in non-irradiated young and old mice (FIGURE 3.20A). Furthermore, nineteen
months post irradiation we still see an increased tip score after irradiation compared to the

old control (FIGURE 3.20C).
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FIGURE 3.20. analysis of the dynamics of the tip, stalk and senescent endothelial cells
in the old mice irradiated or non-irradiated.

A: proportion of mouse aCap among the endothelial cells in the non-irradiated samples and
one to nineteen months post irradiation, with each dot representing replicate; B: proportion
of mouse gCap among the endothelial cells in the non-irradiated samples and one to nineteen
months post irradiation, with each dot representing replicate; C: tip score in the old gCap,

stars represent the p-value of the wilcox test compared to the non-irradiated (***: p-value <
0.001)
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Even if mice irradiated with a 10Gy dose recover after an early phase of pneumonitis
and present a normal lifespan, we can still see an impact of the radiation on the endothelial
cells nineteen months after the treatment. This could have long term implication on the
health and quality of life of the patients that underwent radiotherapy, and it could be

interesting to study the impact of radiotherapy decades after the treatment.
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6. Processes of RIPF induced senescence

Senescence has been described in the progression of RIPF, mainly in AT2 cells,
macrophages and fibroblasts (Y. He et al. 2019; Su et al. 2021). Senescence can be an
advantage in the fight against cancer, as senescence induces cell cycle arrest thus can prevent
cancer cells to proliferate (Jha et al. 2024). However, senescent cells secrete pro-
inflammatory cytokines and other molecules, called senescence-associated secretory
phenotype (SASP) (W. Huang et al. 2022). Therefore, if senescent cells accumulate, they can
lead to a pro-inflammatory environment either in the tumor itself, promoting tumor growth,
or in the surrounding tissues in response to irradiation. We investigate here the presence and

particularities of senescence in the different lung populations after irradiation.

a) Senescence of the AT1 and AT2 cells after irradiation

As stated previously, the last stage of RIPF is characterized by the irreversible
destruction of the alveolar structure (Wynn 2011). Therefore, we wondered if there could be
an impairment of the epithelial cells repair processes. It has already been published that AT2
cells express the senescence marker p21 after high dose of irradiation (Citrin et al. 2013), and

during fibrosis (Chung et al. 2021) but never using single cell RNA sequencing.

In our model, after irradiation, there is a significant increase of the expression of p21
in the AT1 only five months post 13Gy irradiation (FIGURE 3.21A). Similarly, this population
presents an increase of a score representing a global expression of SASP associated genes
only after a 13Gy irradiation, with a maximum fold change compared to control five months
post 13Gy irradiation (FIGURE 3.21B). This is the time point during which the lungs are
fibrotic, with a disorganization of the lung architecture and loss of the alveoli structure
(Knudsen, Ruppert, and Ochs 2017). We can make the hypothesis that the late AT1
senescence phenotype might be the consequence of the loss of the epithelial-endothelial

contact with the aCap.

On the contrary, in the AT2 cells the increase starts as soon as 24 hours post 13Gy
irradiation or one month post 10Gy irradiation (FIGURE 3.21A), with also a SASP score
significantly upregulated compared to irradiation for all time points except four months post

10Gy irradiation and two months post 13Gy irradiation (FIGURE 3.21B). This consistent
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increase after irradiation is the sign of a global response of this population, however it is not

restricted to fibrogenic condition, therefore it is difficult to evaluate the consequences of this

process.
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FIGURE 3.21. expression of senescence marker by the epithelial cells after irradiation
injury.

A: expression of p21 by the AT1, AT2 and AT2 Lyzl1 cells at the different timepoints poste
10Gy or 13Gy irradiation (24 samples). *** indicates a significant upregulation of
expression compared to the control with an adjusted p-value of the MAST test inferior to
0.001; B: score based on the reactome senescence associated secretory phenotype (SASP)
dataset in the AT1 or in the AT2 cells, stars represent the p-value of the wilcox test compared
to the non-irradiated (n.s.: non-significant, *: p-value < 0.05, **: p-value < 0.01, ***: p-
value < 0.001, >*: p-value < 0.05 downregulated compared to control)
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b) Senescence of the myeloid cells

Senescence has been detected in RIPF in macrophages and these processes have been

shown to be detrimental during the development of RIPF (Su et al. 2021).
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FIGURE 3.22. expression of senescence markers by the macrophages after irradiation
injury.

A: SASP score based on the GO-PB positive regulation of cellular senescence dataset in the
AM; B: SASP score based on the positive regulation of cellular senescence dataset in the
IM, stars represent the p-value of the wilcox test compared to the non-irradiated (n.s.: non-
significant, *: p-value < 0.05, **: p-value < 0.01, ***: p-value < 0.001, >: downregulated
compared to control); C: p21 expression by the AM; D: p21 expression by the IM; E:
Mmp12 expression by the AM; F: Mmp12 expression by the IM, stars represent the adjusted
p-value of the MAST test compared to the non-irradiated (n.s.: non-significant, *: p-value <
0.05, **: p-value < 0.01, ***: p-value <0.001, >: downregulated compared to control).
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Therefore, we investigated the presence or not of senescence in our model, and the
temporality of it. First, a score of positive regulation of cellular senescence showed some
mixed results in the AM. The score was significantly increased one month post 10Gy
irradiation and 24h, one- and five-months post 13Gy irradiation, and downregulated or non-
significant for the rest of the time points (FIGURE 3.22A). Similarly, in the IM compartment,
there was a significant upregulation of the senescence score 24h, one- and five-months post
13Gy irradiation (FIGURE 3.22B). Therefore, there seemed to be two waves of radiation
induced senescence in the macrophages: one during the first weeks after irradiation, and one
at the latest timepoint of fibrosis. The expression of other senescence markers follows a
similar temporality: p21 (FIGURE 3.22C,D) and Mmp12 (FIGURE 3.22E,F), a pro-fibrotic SASP

matrix metalloproteinase (Su et al. 2021; Freitas-Rodriguez, Folgueras, and Lépez-Otin 2017).

¢) Senescence of the endothelial cells

Endothelial cells are a vulnerable population that sustains damages induced by
irradiation as demonstrated above. Therefore, we investigated the presence of radiation-
induced senescence. First, we identified that p16, a classical marker of senescence (Rayess,
Wang, and Srivatsan 2012) is expressed in the endothelial cells only after irradiation, and
specifically in the aCap (FIGURE 3.23A). Indeed, there is a tendency of increase of expression
of p16 during the latest time points after irradiation, however this increase is not significant
(FIGURE 3.23B). We then computed a SASP score accounting for the global expression of
senescence genes by the aCap. We found an initial significant increase of the score one-two
month post 10Gy irradiation and 24 hours-one month post 13Gy irradiation, with then a
return to levels comparable to controls and a final significant increase of the score five months
post 10Gy or 13Gy irradiation, with a higher fold change compared to controls after a 13Gy
irradiation (FIGURE 3.23C).

Previously, we made the hypothesis that a loss of contact between aCaps and AT1
cells due to alveolar structure destruction might be one of the reasons for the senescence of
AT1 cells. Considering these results, it might also participate in the senescence of the aCaps
after irradiation. However, this explanation cannot account for the senescence observed in
the aCap at the earlier timepoints or after a 10Gy irradiation, therefore there are probably

other processes involved in the induction of this phenotype.
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Density expression of p16 in endothelial cells
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FIGURE 3.23. radiation-induced endothelial cell senescence.

A: density plot of the expression of p16 in endothelial cells in non-irradiated samples, 10Gy
irradiated samples or 13Gy irradiated samples; B: violin plots of p16 expression in the non-
irradiated post a 10Gy or 13Gy irradiation in aCaps; C: SASP score based on the reactome
senescence associated secretory phenotype dataset in the aCap, stars represent the p-value
of the wilcox test compared to the non-irradiated (n.s.: non-significant, *: p-value < 0.05,

*%: p-value < 0.01

, ¥**: p-value < 0.001).
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We then investigated whether this SASP phenotype persisted in the long term after a
10Gy irradiation. The expression of p16 in the samples nineteen months post 10Gy irradiation

was significantly upregulated compared to both the age-matching control mice and the young

control mice (FIGURE 3.24A).
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FIGURE 3.24. long term senescence of the aerocytes after irradiation.

A: violin plots of pl6 expression in the non-irradiated and one to nineteen months post
irradiation mouse aCaps, stars represent the p-value of the MAST test compared to the non-
irradiated (n.s.: non-significant, *: p-value <0.05, **: p-value <0.01, ***: p-value <0.001).;
B: SASP score based on the reactome senescence associated secretory phenotype dataset in
the aCap, stars represent the p-value of the wilcox test compared to the non-irradiated (n.s.:
non-significant, *: p-value < 0.05, **: p-value < 0.01, ***: p-value < 0.001).

Indeed, the expression of p16 is significantly upregulated in the samples nineteen
months post 10Gy irradiation compared to both the young and old non-irradiated controls
(FIGURE 3.24A). Furthermore, the SASP score is upregulated in the irradiated sample
compared to both controls. Interestingly, there is also a significant upregulation of the score
in the old control compared to the young control (FIGURE 3.24B). Senescence has been
shown to be a hallmark of aging (McHugh and Gil 2017), thus we can make the hypothesis

that, in the long term, irradiation accelerates the aging processes.
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As presented above, endothelial cells repair processes are activated after a radiation-
induced lung injury, in response to the damage done to the micro-vasculature. We must
verify that similar processes can be observed in humans, to determine to which extent the

mouse model is clinically significant.

Therefore, during the next chapter, | will present the analysis of single cell RNA
sequencing data from irradiated human lungs, starting with the endothelial repair processes

triggered by pro-angiogenic signaling.
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CHAPTER 1V — Results partll

To achieve these objectives, we chose to use the single cell RNA sequencing

technology. We obtained samples from lobectomies from patients suffering from Pancoast
tumor. These patients underwent neoadjuvant radiotherapy six to eight weeks prior to
surgery. From each patient, one sample was obtained from an irradiated region of the lung
and one control from a non-irradiated region of the lung (FIGURE 4.1). The details about the

different samples can be found in ANNEXE II.

Irradiated
lung sample

Non irradiated
lung sample

FIGURE 4.1. models used for the analysis of radio-induced pulmonary fibrosis.
Collection of the non-tumoral human lung samples from Pancoast patients.
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1. Single cell analysis of the human lung response to irradiation

As explained above, we obtained irradiated and non-irradiated samples from 6
patients who underwent neoadjuvant radiotherapy six to eight weeks prior to surgery. The
control and irradiated samples from one of the patients were sorted to enrich the CD45
negative cells (the non-immune cells). Indeed, in non-sorted samples, we can see an elevated
level of inflammation in the lungs of the patients as revealed by an overwhelming proportion
of immune cells. The samples from the other five patients were sequenced entirely. This data
set constitutes a unique resource for the study and the understanding of the cellular and

molecular mechanisms of radio-induced injury in human lung tissue.

A B
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FIGURE 4.2. integration of the data from the six patients.

A: UMAP plot of the single cell RNA sequencing data of the samples from the lungs of the
six patients, after merging; B: UMAP plot of the single cell RNA sequencing data of the
samples from the lungs of the six patients, after integrating.

After sequencing, the data was processed with 10X Genomics Cell Ranger. One Seurat
object for each patient was created and processed with SoupX (Young and Behjati 2020) for

removal of the contaminating mRNA. Then quality controls were performed with filtration of
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the cells with high mitochondrial content (more than 20% of mitochondrial mMRNA, more than
6000 different features expressed, less than 200 different features expressed). The cell
populations for each patient object were then annotated using the transfer learning tool
scArches (Lotfollahi et al. 2022), and the HLCA (Sikkema et al. 2023) as a reference. Finally,
the different objects were merged together to form a Seurat object containing the data from
all six patients. When we merged the data from the different patients, we noticed an
important batch effect (FIGURE 4.2A). Therefore, we chose to integrate the different patients
together using the Seurat package for integration (Y. Hao et al. 2024) to correct for the batch
effect (FIGURE 4.2B).

We were able to identify in the samples from human lungs the different lung cell
populations: epithelial cells, endothelial cells, mesenchymal cells, myeloid cells and lymphoid
cells (FIGURE 4.3A). These different cell populations can also be identified by the expression
of canonical markers (FIGURE 4.3B), (Travaglini et al. 2020; Zilionis et al. 2019). Thus, this

dataset allows us to analyze the human lung response to irradiation at the single cell level.
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FIGURE 4.3. identification of the different cell populations of the human lung.
A: UMAP with the different lung cell populations annotated (12 samples, 77.048 cells); B:
expression of the canonical markers by the different lung populations.

First, we analyzed the proportion of the different main cell populations before and
after irradiation in the fully sequenced samples (FIGURE 4.4). We can notice the high
variability between the different patients, especially in the proportion of immune cells.
However, we can still make some observations. There is a decrease in the proportion of
epithelial and endothelial cells after irradiation. This is coherent with the already shown
vulnerability of these populations to irradiation (Trott, Herrmann, and Kasper 2004; Fuks et

al. 1994).
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Proportion of the cell populations in the human
lungs inirradiated and non irradiated samples
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FIGURE 4.4. increase of the proportion of immune cells and decrease of the
proportions of epithelial and endothelial cells after irradiation.

Bar plot of the mean percentage of the different cell populations before and after irradiation,
each dot representing a different sample
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2. Regeneration of the endothelial cells: processus of
angiogenesis

a) Vascular damage and repair after a radiation induced lung injury

Vascular damage is a major consequence of lung irradiation. Irradiation causes death
of endothelial cells, disorganization of the vascular network, as it has been shown in both
human patients and mouse models (Venkatesulu et al. 2018). Pro-angiogenic signaling has

been shown to promote vascular repair and capillary growth (Pecoraro et al. 2021).

Pro-angiogenic signaling promotes the sprouting of vessels and can occur in different
situations, such as during embryonic development or in response to an injury. This process is
crucial for growth, development, and wound healing. It involves the proliferation, migration,
and differentiation of endothelial cells, which line the interior surface of blood vessels.
Angiogenesis is essential for re-establishing an adequate blood supply to the damaged tissue,
ensuring the delivery of oxygen and nutrients necessary for tissue repair and regeneration.
Endothelial cells play a pivotal role in angiogenesis, responding to pro-angiogenic signals such

as VEGF by proliferating, migrating, and forming new capillary networks.

Therefore, we studied here the molecular and cellular mechanisms triggered by

radiation injury in the human lungs.
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b) Non-tumor human lung irradiation during radiotherapy triggers a
pro-angiogenic signaling (publication)

Non-tumor lung irradiation during radiotherapy
triggers a pro-angiogenic signaling
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Abstract

Radiotherapy is one of the main therapeutic options for the treatment of different types
of lung cancer. However, radiotherapy can cause severe side effects to the normal tissue, from
mild pneumonitis to irreversible and deadly pulmonary fibrosis. The mechanisms leading to
this condition remain unclear although the lung microvasculature has been shown to be highly
radiosensitive.

We obtained irradiated and non-irradiated non-tumor lung tissues samples from six
Pancoast patients that underwent radiotherapy prior to surgery. Samples were analyzed through
single cell RNA sequencing and paired irradiated and non-irradiated samples were compared.

We detected in irradiated samples a significant increase of VEGFA/VEFR2 signaling
that atfected most lung cell compartments. We also detected the emergence of Tip cells, an
endothelial cell population responsible for endothelial cell migration at the leading edge of
angiogenesis. In addition, we identified a sub-population of alveolar macrophages expressing
FLT1+, a receptor for VEGFA, in irradiated lung samples. FLT1+ AM have been predicted to
interact with tip cells through the pro-angiogenic interaction IL1B-IL1R. The analysis of single
cell RNA sequencing data from a model of mouse radiation-induced pulmonary fibrosis also
revealed the presence of tip cells during the inflammatory phase, at a time that may correspond
to the one examined in the human samples.

We believe that this study has significantly advanced our understanding of how non-
tumoral lung tissue responds to radiation, particularly in terms of microvasculature repair and
regeneration. By unraveling these mechanisms, we aim to deepen our comprehension of the
processes behind radiation-induced lung injury, which could ultimately lead to the
development of new treatments to combat this side effect of radiotherapy.



Abbreviations

aCap = aerocyte

AM = alveolar macrophage

ATI1 = type | epithelial cells

AT2 = type 11 epithelial cells

DC = dendritic cell

EC = endothelial cells

gCap = general capillary

HLCA = human lung cell atlas

IM = interstitial macrophage

NK = natural killer cell

IR = irradiated

NI = non irradiated

RIPF = radio induced pulmonary fibrosis
RILI = radio induced lung injury

scRNA seq = single cell RNA sequencing
SMC = smooth muscle cell



Introduction

Lung cancer is the leading cause of cancer-related death worldwide[1]. Most of the
patients treated for this disease undergo radiation therapy. However, the lung is a sensitive
organ to radiation[ 2], therefore the treatment is often limited by dose of irradiation that the lung
can sustain. Radiation of healthy lungs induces damage, radio-induced lung imjury (RILI),
involving DNA damages[2] and oxidative stress[3], leading to inflammation and processes of
wound healing in the lung tissues[4]. In some patients, this early toxicity can evolve into a
chronic condition called radio-induced pulmonary fibrosis (RIPF)[5].

RIPF is the result of failed tissue regeneration atter RILI and the replacement of normal
tissue by scar due to excessive deposition of extracellular matrix, proliferation of fibroblasts
|6], disruption of the alveolar structure and vascular damages[7]. These changes prevent gas

exchange and lung function, leading to respiratory failure and death[5]. There is for the moment
no efficient treatment to cure or even stabilize RIPF[R].

Even if some of the molecular and cellular events that occur in RILI and that lead to
RILF have been described| 9|, the detail of the mechanisms and processes leading to fibrosis is
not fully understood. Furthermore, most of what is known about RIPF comes from a model of
total thoracic irradiation in the mouse[10], mostly because access to fresh human irradiated
lung samples remain exceedingly rare.

Here we describe for the first time the effect of radiation injury on human lungs using
a single cell RNAseq approach. We collected samples from patients suffering from Pancoast
tumor and who underwent radiotherapy previously to a total lobectomy[11].



Material and methods

Human samples availability

Freshly resected lung human samples were obtained from six patients undergoing upper
lobectomy of a Pancoast tumor who had previously received a neoadjuvant radiotherapy (40-
45 Gy delivered by daily 2 Gy/fraction, considered sufficient to trigger pulmonary fibrosis).
Accessibility to the dosimetric computerized tomography (CT)-scans of the patients allowed
us to determine a region in the lobe far away from the tumor that did not receive any radiation
(NI) and a region next to the tumor that received the highest dose of radiation (IR). A sample
of 2 em3 from each of these regions was resected and immediately placed in cold 1x phosphate
buffered saline and transported on ice directly to the research lab for single cell dissociation
procedure (fig. 1a). Accessibility to human samples was achieved in collaboration with Institut
du Thorax and Cochin Hospital. Informed consent was obtained from each patient before the
surgery.

Lung tissue dissociation

The human lung tissues dissociation was conducted using the protocol previously
described | 12], with an incubation of the suspension with elastase for 45 min.

Droplet based single cell RNA-seq (10X GENOMICS)

Single cell suspensions were analyzed with the droplet based single cell RNA-seq method
proposed by 10X GENOMICS using the protocol previously described|12].

scRNA seq data analysis

Raw sequencing data were processed using the CellRanger pipeline (version 3.1.0, 6.0.0
or 7.1.0). Count matrices were analvzed using the Seurat package V5.0.1[13]. For each sample,
SoupX[14] was used to remove contamination by ambient RNA. The objects from individual
patients were annotated using ScArches|15] and the Human Lung Cell Atlas as a reference|16].
Then the Seurat objects of the different patients were integrated using the Seurat method (fig.
1h).



Results

The response of the human lung to radiation is characterized by the
activation of pro-angiogenic pathways in many cell compartments.

First, we compared the transcriptomic profiles of the different lung populations in the
IR and NI areas. We found an upregulation of numerous genes in the IR area of the lung,
especially in certain populations (Fig 1c) including immune cells (500 to 3 300 overexpressed
genes), endothelial cells (EC) (1.500 genes) and type I epithelial (AT2) cells {2.800 genes).
We next analyzed the signaling pathways that were stimulated in the irradiated area. Strikingly,
the strongest pathway upregulated across most cell populations was the VEGFA-VEGFR2
signaling pathway, known to be part of the vascular repair/regeneration pathway as well as the
classic anglogenesis process|17].

To further dissect this prevalent pro-angiogenic signaling, we looked in different cell
compartments at the level of expression of major ligands (VEGFA and VEGFB) and their
receptors (FLT1 and KDE). Under normal (non-irradiated) conditions, epithelial cells (mostly
ATIY), endothelial cells (EC), interstitial macrophages (IM) and mastocytes appeared to be the
main sources of VEGFA, while alveolar macrophages (AM), smooth muscle cells (SMC) and
dendritic cells {DC) appeared to be the main sources of VEGFB (fig. 2a). Upon irradiation, the
percentages of cells expressing the VEGFA gene increased in AT1, IM, fibroblasts and SMC,
while for VEGFB, the most important increases were seen in AM, B cells, fibroblasts and AT1
cells (fig. 2b). The expression of receptors KDR and FLT1 was largely prevalent in the
different types of ECs (fig. 2¢), and this expression increased upon irradiation, especially in
aCap (aerocytes) and gCap (general capillary cells) for KDR and in aCap and arterial ECs for
FLTI1 (fig. 2d). A low percentage of dendritic cells, neutrophils and AM was also as expressing
FLTI and this percentage increased upon irradiation (fig. 2e-d). This observation is interesting,
since a FLT1+ AM population has been shown to play an important role in some processes
during angiogenesis| 18]. Together, these results point to a stimulation of the pro-angiogenic
signaling that target both lung capillary EC subsets, aCap and gCap. As the gCap have been
described as the progenitor population of the endothelial capillary cells compartment[19], we
will focus the following analysis on this cell type.

Lung gCap ECs display gene expression patterns compatible with a Tip
phenotvpe.

To better apprehend the consequences of an increase in the pro-angiogenic signaling
pathway in response to radiation, we further focused our analyses on the different subsets of
EC (Fig. 3a) (supplementary fig. 3a). Since the expressions of either KDR or FLT1 have been
shown to be characteristic of two cell states involved in angiogenesis (tip and stalk cells,
respectively), we defined two different scores, “tip” and “stalk”™, using multiple markers
described to be associated with either of these states[20]. We found a significant increase of
the tip score in gCaps in irradiated lung areas, when compared to non-irradiated areas, that was
concomitant with a significant decrease of the stalk score. These results suggest that irradiated
gCap cells respond to the increase in pro-angiogenic signaling by acquiring “tip™-like
characteristics. We then performed a DEG analysis by comparing gCap cells KDR positive



versus KDR nepative. We found an over expression of genes associated with cell motility (fig.
3¢). Furthermore, there is in the IR area a correlation of expression of several motility related
genes with the expression of KDR. For instance, CAV] promotes EC polarization and
movement|21] and ROBO4 is involved in filopodia formation in EC[22] (supplementary fig.
3a). Together, these results support the 1dea that in response to irradiation, lung gCap cells gain
“tip”-like properties that may play a key role in the vascular regeneration process.

Alveolar macrophages (AM) display a pro-angiogenic signature in response
to radiation.

When looking at the expression of the angiogenic factors in the different cell
populations, we identified a FLT1-positive population amongst resident macrophapges. FLT1-
positive macrophages have been shown to be crucial for an efficient angiogenesis in the
lungs| 18]. On the other hand, it has been showed that the expression of FLT1 by circulating
monocytes is sufficient to attract them to the sites of VEGFA expression and stimulate their
migration to the tissue| 18, 23], Analysis of our data show that there is an increase of FLTI
expression specifically in AM in response to radiation (fig. 4a-b). Next, we examined the level
of expression of ITGAM, a characteristic marker of recruited AM [24]. This marker is
expressed by most of the FLTl-positive AM macrophages (supplementary fig. 4a),
suggesting that they may have been recruited from the circulation. Since such macrophages are
thought to interact with ECs and support angiogenesis, we perform an intercellular interaction
analysis to identify potential signhals received by the gCap tip cells. This analysis revealed a
potential IL-1b-mediated interaction between the FLT1-positive AM and gCaps. Indeed, we
observe a significant increase of IL-1b expression after irradiation amongst the FLT1-positive
AM, but not in the FLT1 negative AM (fig. 4¢).

S¢c RNA-seq analyses in a mouse model of RIFP reveal similar pro-
angiogenic responses triggered by radiation.

We have previously published a mouse lung cell atlas of responses to radiation [12].
Given our observations in human lungs described above, we sought to verify whether similar
phenomena were occurring in the irradiated mouse lung. In this model, samples were analyzed
every month after either a single pro-fibrotic dose {17Gy) or a non-fibrogenic single dose
(10Gy). We extracted the information corresponding to ECs from the whole data and annotated
the different sub-populations using specific markers[19] (fig. Sa). We identified in the mouse
the same EC populations identified in the human lungs, with the addition of a Serpine2 positive
population that is only observed during the fibrotic phase. We found an increase in the
proportion of gCap cells KDR positive starting two months after irradiation after both a 106Gy
and a 170Gy irradiation (fig. Sb). Furthermore, after a 100Gy irradiation, this percentage starts to
decrease again at four months post irradiation, while it increases until five months post a 17Gy
irradiation. Similarly, the tip score in the gCap increases as soon as one month post irradiation
and continue until five months after the 17Gy irradiation (fig. 5¢). Contrary to what is observed
in human patients after radiotherapy, we observe a slight increase of the stalk score after a
100Gy irradiation, starting at three months post irradiation. Finally, a 100Gy irradiation triggers
an initial decrease of stalk score one month post irradiation, then the score increases at three



months post irradiation and decrease again to reach levels similar to controls at five months
post irradiation.

We then investigated the motility phenotype described for the human KDR positive
gCap. The comparison of gCaps KDR-positive versus KDR-negative cells from 106Gy
irradiated samples showed the upregulation of 31 motility-related genes, while the cells from
17Gy irradiated samples showed only 26 motility-related genes upregulated.



Discussion

Radiotherapy triggers microvasculature damapge to the healthy tissues[25], and a
functioning vasculature is crucial for the proper function of the lungs. Therefore, we studied
the mechanisms of vascular repairs and angiogenesis in the human after radiotherapy. The main
trigger of pro-angiogenic signaling is the VEGFA-KDR interaction|26] and the VEGFA-FLTI
and VEGFB-FLTI interactions|23]. A high percentage of EC express FLTI, a receptor that
seems 1o have a complex role in angiogenesis. Indeed, it has a ten times higher affinity for
VEGFA than KDR, but its kinase activity is ten times lower. Therefore, it has been thought to
be a negative regulator of angiogenesis by trapping the VEGFA ligand[23|. However, studies
have shown that expression of FLT1 by the EC is necessary for an efficient angiopenesis. In
Flt] deficient mice the sprouting of new vessels is compromised|27). Therefore, the expression
of FLT1 by the EC is not incompatible with processes of angiogenesis. However, KDR remains
the main receptor able to trigger an angiogenesis response in EC[28].

The gCap, that are thought to function as a capillary progenitor in both homeostasis
and disease, seems to be among the main angiogenic signaling populations, along with the
aCap. An increased proportion of gCap expresses KDR afier irradiation. KDR also a marker
characteristic for tip cells. The tip cells are specialized in processes of sprouting and
ramification. Therefore, this process could be increased in IR area in order to repair the
damages to the vasculature. Tip cells develop filipodia and are able to migrate, following the
extracellular gradient of VEGFA. Tip cells occupy a leading position in the new vessel
formation and are followed by the stalk cells that divide to form the walls of the new vessel|29].
Tip cells receive the VEGF signaling, which triggers the expression of several genes including
DLL4. DLL4 acts then as a ligand for the NOTCH receptor expressed by the stalk cells. In
response in stalk cells, NOTCH activation affects the expression of the VEGF receptors,
forming a VEGF-VEGFR-DLL4-NOTCH-VEGFR feedback loop|20, 30].

Angiogenesis appears to be increased by radiotherapy, and more EC appears to be able
to recerve it. This signaling could trigger a change in the balance of the cell states involved in
angiogenesis that we observe, with an increase of tip cells. Furthermore, these tip cells present
a phenotype of cell motility that could allow them to explore the environment through filopodia
formation and to increase the ramification of the new vessels to restore the vascular network.
Finally, we identified in the IR human lung area a population of alveolar macrophages that
have been described to be crucial for angiogenesis. Therefore, it could play an important role
in the wound healing and repair processes occurring after a RILL

Furthermore, a subset of macrophages presents as FLT1 positive and thus are also able
to receive the angiogenic signaling. These macrophages also express IL-1, a behavior that has
been shown when stimulated by LPS, that is enough to induce angiopenesis in Matrigel
plugs|31]. Furthermore, the inactivation of IL-1b in the supernatant of these macrophages is
enough to impair this angiogenesis[31].

Overall, we are confident that this work contributed to advance the knowledge about
the response of the non-tumoral lung to irradiation, especially concerning the mechanisms of
microvasculature repair and regeneration. The deciphering of theses mechanisms participates



into the effort to gain a better understanding of the events involved in radiation induced lung
injury and could contribute to the discovery of new therapeutic options to fight this side effect
of radiotherapy.
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Figure 1. Upregulation of angiogenesis in the irradiated human lung
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Figure 1. Angiogenesis signaling s upregulated in the rradiated human lung

A: dosimetric CT-scan of a patient who received radiation therapy at Institut Curie and surgery at IV faollowing a Pancoast
tumor, surgical sample [6-8 weeks post radiotherapy), schematic representation of the location of the irradiated and non-
irradizted non -tumaoral samples from the Pancoast patients and UMAP visualization of 77.048 cells from six patients with
33.328 cells from the NI samples and 43.7 20 celis from the IR samples | annotated by cell type; B: DotPlot of the expresson

of characteriztic markers of the different lung populations; C: number of genes significantly upregulated In the irradiated
area of the lung compared to the irradiated in the different lung populations; D: results of the gene et enrichment anakysis

of the upregulated genes in the IR area compared to the M| area, main pathways from the WikiPathways database.




Figure 2. An increase after irradiation in angiogenic ligands and receptors in

different cell types
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A vialin plots of VEGFA (left panel) and VEGFB (right panel) expression in the non-rFradiated area in the different lung

Figure 2. Angiogenic ligands and receptors show an increased expression after irradiation in different cell types

-irradiated area, with each dot

representing a patient; E: schematic representation of the increase in VEGF-VEGFR signaling in the Fradiated area

populations, sorted by intensity of expression; B: percentage of cells expressing VEGFA (left panel) or VEGF (right panel) in
compared to the non-irradiated area.

the Fradated or non-irradiated area, with each dot representing a patient; C: viokin plots of KDR (left panel) and FLT1 {right
parel) expression in the non-irradiated area in the different lung populations, sceteb by intensity of expression; D:

percentage of cells expressing KDR (left panel} or FLT1 {right parel) in the irradated or non




Figure 3. Irradiation induces pro-angiogenesis processes in gCaps
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Figure 3. Irradiation induces pro-angiopeness processes in glaps
A UMAP visualization of 3.648 cells from the different endathelial cell subpopulations annotated by sub cell type, by the
patient of originand by the area (irandiated or non-irradiated) of orgin; B: violin plot of the stalk and tip cells scores

calculated based on the kst of markers for these two cell states, the black line represents the median; C: valcano plot
representation of the DEG anabysis of the gCaps KDR positive versus the gCaps KDR negative (ganes overexpressed in

the gCaps KDR positive have a positive fold change). The genas named are the genes related to cell motility {from the GOPB




Figure 3. Supplemetary
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Figure 3. Supplemetary

A: DotPlot of the expression of characteristic markers of the different endothelial cell sub populations in human; B:
FeaturePlot representing the coexpression of KDR and CAVI (left panel) or ROBOW (right panel) in the gCap irradiated cells.

Pink calls are coexpressing the genes and percentage of cells co-expressing KDR and CAV1 [left panel) or ROBO4 (right
panel] in the non-irradiated or irradiated areas.




Figure 4. Radiation induces FLT1+ macrophages secreting IL1 signaling

Human macrophages B FLT1 expression Percentage of AM cells expressing
L . FLT1 in Nl and IR samples
Interstitial oo
"3 macrophages _
5 el O 3 ) = 19
L] i i
. 31- L2 E
: -]
= - 5
Alveclar macrophages W E
11 1 - d‘} ‘-_c‘F"!
5 o 5 n 7
umap,_1 4 i Itlenkl H
i M i
IL1-related interactions
C received by gCap tip cells IL-1B expression in FLT1+ and FLT1- AM
Ll
g 'g Differencial
E AN FLTLS . Intaraction steergth =
£ " 3¢
24 N 2 &
BE AMFATL- = B lln
BB &
5§ 1
& g
|:.-

FLT1+ AM FLT1- ARA

1A= LT rocs pl o
118 — i1 receptar
[L1RM = W1 receptor

Figure 4. Alveolar macrophages receive and send VEGF signaling after wradiation

A UM AP visualization of 14.168 cells freen the different macrophage subpopulations annotated by sub cell type (4.159 calls
from the NI area and 7.009 from the IR area); B: violin plots of FLT1 expression in the non-irradiated and irradiated area in
the interstitial and alveolar macrophages and percentage of FLT1 positive alveolar macrophages in non-rradiated and
irradiated area, each dot representing a patient; T DotPlot of the IL-1 related intercellular interactions received by the
glLap tip cells and sent by the alveslar macrophages FLT1 positive or negative and violin plots of IL-1 alpha expression in the

non-irradiated and irradiated area in the FLT1 positive or FLTL negative alveolar macrophages.




Figure 4. Supplemetary
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Figure 4. Supplemetary
A; vinlin plot of ITGAM expression in the FLT1 positive alveolar macrophages.




Figure 5. Dynamic of angiogenesis processes in mouse irradiated lungs
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Figure 5. Arglogenesis processes evolve during the months post irradiation in mouse lungs

A UMAP visualization of 4.958 cells from the different mouse endothelial cell subpopulations annotated by sub cell type;
B: proportion KDR+ cells among the gCaps, in the control mice or after a 106Gy or 170Gy irradiation; C: violin plot of the stalk
and tip cells scores calculated based on the list of markers for these two cell states, the black line representing the median;
D: volcano plot representation of the DEG analyss of the gCaps KDR positive versus the gCaps KDR negative (genes
overexpressed in the gCaps KDR positive have a positive fold change) in the 100y irradiated gCaps (left panel) or the 17Gy
irradiated pCaps (right panel]. The genes named are the genes related to cell motility (from the GOPB cell maotility mouse

gene list).




Figure 5. Supplemetary
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Figure 5. Supplemetary
A: DotPlot of the expression of characteristic markers of the different endothelial cell sub populations in mice.




3. Processes of inflammation induced by radiotherapy in non-
tumoral lung tissue

a) Identification of the different immune cell populations in the human
lung

The use of single cell RNA sequencing allowed us to identify the different immune
populations in both the irradiated and non-irradiated human lung: the B cells, T cells, NK cells
and NK-T cells, neutrophils, dendritic cells, alveolar macrophages and interstitial
macrophages. All of these populations were present in both the irradiated and non-irradiated
samples (FIGURE 4.5A,B). The different cell types were identified using markers from
literature (Travaglini et al. 2020) (FIGURE 4.6A). We can observe some differences in the
proportion of the different immune populations in the irradiated and non-irradiated samples:
an increase in the proportion of NK-T cells, dendritic cells and alveolar macrophages, and a

decrease in the proportion of NK cells and neutrophils (FIGURE 4.6B,C).
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FIGURE 4.5. immune cells in the non-irradiated and irradiated human lung.

A: UMAP visualization of the cells from the different human immune cell subpopulations
annotated by sub cell type in the non-irradiated human samples (6 samples, 21.527 cells);
B: UMAP visualization of the cells from the different human immune cell subpopulations
annotated by sub cell type in the irradiated human samples (6 samples, 34.467 cells).
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FIGURE 4.6. markers and proportion of the immune cell in the non-irradiated and
irradiated human lung.

A: Expression of the markers used for the identification of the immune cell populations; B:
Proportion of the different immune cell populations in the non-irradiated human lung; C:
Proportion of the different immune cell populations in the irradiated human lung.

b) Upregulation of different pathway in the irradiated human lung

We identified various pathways upregulated in the immune cells from irradiated
human samples compared to the non-irradiated samples. Similarly to the mouse samples,
several inflammation related pathways are upregulated: the IL-24 signaling pathway in most
immune cell populations and other interleukin signaling pathways in diverse immune

populations, the MAPK and chemokine signaling pathway (FIGURE 4.7).
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FIGURE 4.7. overview of overexpressed pathways in human immune cells after
irradiation.

GSEA WikiPathways significantly upregulated (FDR adjusted p-value < 0.05) in irradiated
samples compared to non-irradiated samples in the different immune cell populations.

Furthermore, as in the mouse samples, we also found upregulated several pathways
related to oxidative phosphorylation (OXPHOS) and mitochondrial functioning (FIGURE 4.7).
Several studies have demonstrated the presence of mitochondrial dysfunction and changes
in mitochondrial gene expression in several models of radiation induced fibrosis (Yin et al.
2019; Livingston et al. 2020). In the case of liver radiation induced fibrosis, it has been shown
that mitochondrial dysfunction contributes to the development of fibrosis (Melin et al. 2022),

therefore it could be interesting to investigate this process in lungs.
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¢) Macrophages

As shown previously with the mouse data analysis, macrophages play an important
role in the lung’s reaction to irradiation. Therefore, we investigated the possible changes in

the human macrophages in the irradiated samples compared to the non-irradiated samples.
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FIGURE 4.8. proliferation of the alveolar macrophages in the irradiated and non-
irradiated human lungs.

A: UMAP visualization of human macrophages (12 patients, 11.168 cells); B FeaturePlot of
the expression of MKI67 by the macrophages; C: proportion of proliferating alveolar
macrophages among the total alveolar macrophages; D: RNA velocity analysis with scvelo
of the irradiated and non-irradiated macrophages.
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As in mice, we were able to identify the two macrophage populations: the interstitial

macrophages and the alveolar macrophages (FIGURE 4.8A). Furthermore, a distinct
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population of alveolar macrophages express a proliferation marker: MKI67 (FIGURE 4.8B).
Therefore, we labelled this population “proliferating alveolar macrophages”. The proportion
of alveolar macrophages that are proliferating in irradiated samples does not seem to be
different than in non-irradiated samples (FIGURE 4.8C). However, an RNA velocity analysis
showed more connections between the non-proliferating and proliferating alveolar
macrophages in the non-irradiated samples than in the irradiated samples (FIGURE 4.8D).
With this result, we can make the hypothesis that the replenishment of the alveolar

macrophage population might be impaired after irradiation.
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4. Regeneration of the epithelial cells after an irradiation injury

a) Identification of the different epithelial cell populations in the human lung
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FIGURE 4.9. epithelial cells in the non-irradiated and irradiated human lung.

A: UMAP visualization of the cells from the different human epithelial cell subpopulations
annotated by sub cell type (12 samples, 11.348 cells); B: Expression of the markers used for
the identification of the epithelial populations; C: Proportion of the different epithelial
populations in the non-irradiated human lung; D: Proportion of the different epithelial cell

populations in the irradiated human lung.
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As for the other cell compartments, we were able to identify the different epithelial
cells population in the human lungs using single cell RNA sequencing: the ciliated cells, basal
cells, secretory cells and the two pneumocytes populations, the AT1 and AT2 cells (FIGURE
4.9A). These populations were identified using markers described in the literature (Travaglini
et al. 2020; Kadur Lakshminarasimha Murthy et al. 2022) (FIGURE 4.9B). We didn’t detect any
important changes in proportion of the epithelial cells in the irradiated samples compared to
the non-irradiated samples. The AT2 cells are the majority of the population, followed by the

AT1 cells and the other epithelial cell types (FIGURE 4.9C,D).

b) A shift in the pneumocytes transcriptome

Over expressed processes by AT1 cells Over expressed processes by AT2 cells
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FIGURE 4.10. enrichment of hypoxia and EMT related pathways in the different AT1
and AT2 cells.

A: Top 10 HALLMARK pathways significantly upregulated (FDR adjusted p-value < 0.05)
(ranked by the number of genes in the pathway upregulated) in the AT1 from the irradiated
samples compared to the non-irradiated samples; B: Top 10 HALLMARK pathways
upregulated (ranked by the number of genes in the pathway upregulated) in the AT2 from
the irradiated samples compared to the non-irradiated samples

We then analyzed the differences between the irradiated and non-irradiated

conditions for the two pneumocytes populations. In the AT1 cells, we see different pathways
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upregulated indicating of damages to the population and a remodeling of the environment:
apoptosis, epithelial to mesenchymal transition, response to hypoxia that could indicate a
loss of contact with the aCap and p53, a marker of senescence (Zhou et al. 2022) (FIGURE
4.10A). Similar pathways are upregulated in the irradiated samples in the AT2 cells: the TNFa

signaling pathway, apoptosis and EMT (FIGURE 4.10B).
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CHAPTER Y
Discussion



The side effects of radiotherapy on healthy tissues are complex and many of the
mechanisms leading to RILI and RIPF remain to be understood. Through the use of single cell
RNA sequencing analysis, we gained new insights in the processes occurring in the different
lung cell populations leading to fibrosis after an irradiation of healthy lung tissues. In this
work, the focus was put mainly on epithelial cells, fibroblasts, macrophages and endothelial
cells (FIGURE 5.1) as these populations has been shown to be particularly affected by
irradiation and play an important part in the development or radiation induced pulmonary

fibrosis (Ding, Jian Li, and Sun 2013; I. Y. Adamson and Bowden 1983).

These populations were studied using an extensive dataset of 34 single cell RNA seq
samples from irradiated and control mice of 123.147 cells, with the addition of 37.292 cells
from 6 irradiated and control samples from twenty-three-month-old mice. The comparison
of the effect of non-fibrogenic (10Gy) and fibrogenic (13Gy) doses allowed us to compare the
effect of irradiation on the lungs to the events leading to radiation-induced pulmonary

fibrosis.

Furthermore, through the analysis of single cell RNA seq of non-irradiated and
irradiated non tumoral lungs samples data from 6 patients and 77.048 cells, we were able to

gain unique insight in the mechanisms of human lung response to irradiation.
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1. Impairment of the epithelial cell functions

Different processes are affecting the epithelial cells in reaction to irradiation. First, in
the first hours after irradiation, a new population of epithelial cells appears: the ATO cells.
This population is characterized by the co-expression of the genes Sftpb, Scgblal and
Scgb3a2 and is thought to be derived from the AT2 cells through a “dedifferentiating” process
(Kadur Lakshminarasimha Murthy et al. 2022). This ATO population then acts as a progenitor
population that can proliferate and differentiate to new AT1 and AT2 cells to restore the
damage alveoli epithelium. During the weeks and months following irradiation, another
process participates in the restoration of the population of AT1 cells: the transdifferentiation
of AT2 cells to AT1 cells (Riemondy et al. 2019). It is the direct transformation of AT2 cells to
AT1 cells, and we observe an increase of this process in the AT2 cells populations during the
months leading to fibrosis after a 13Gy irradiation, but not a 10Gy irradiation. However, as
after a 13Gy irradiation there is not a recovery of the lung and alveoli structure, the

transdifferentiation might not allow an efficient reconstruction of the alveoli epithelium.

Finally, we observe processes of epithelial to mesenchymal transition (EMT) in the AT2
cells mainly after 13Gy irradiation and we identified two alveolar macrophages sub
populations as the potential populations triggering this process through the TGFB1-TGFBR2
interaction. EMT has been shown to be central in the pathogenesis of fibrosis development,
and part of the myofibroblast population is demonstrated to be of epithelial origin (Willis,
duBois, and Borok 2006). Finally, activated macrophages seem to promote these processes

(H.-R. Park, Jo, and Jung 2019).

The epithelial population has been shown to be a major driver in the development of
lung fibrosis in the context of idiopathic pulmonary fibrosis (Selman and Pardo 2020; 2006),
through diverse processes. Notably, an important AT2 cell death has been observed, in
reaction to endoplasmic reticulum stress or mitochondrial dysfunction. Furthermore, in the

context of IPF, AT2 cells present impaired renewal and progenitor capacity (Parimon et al.

of p21, but not p16. The observations made in the other studies were mainly done in the

context of idiopathic pulmonary fibrosis (Yao et al. 2021), and one study using X-ray mouse
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thoracic irradiation (Citrin et al. 2013). The epithelial cell senescence induced by electron
irradiation could present with a different phenotype than the senescence observed in IPF

patients or in X-ray irradiated mice.

All these mechanisms participate in the loss of structure of the alveoli and a loss of

function of the lungs in the terminal stages of fibrosis (Z. Chen, Wu, and Ning 2019).

2. Crucial role of the different subtypes of lung macrophages

The macrophages also play an important role in events leading to RIPF. Early after
irradiation, the damaged interstitial macrophage compartment is replenished through
differentiation of circulating macrophages, mainly into nerve interstitial macrophages. The
transcriptome profile of the alveolar macrophages is as well affected by irradiation: different
sub populations appear at different time points post irradiation and develop a “foamy”
phenotype, characterized by the expression of genes involved in the lipidic metabolism and
implicated in various diseases (Kong et al. 2020; Russell et al. 2009; Yu et al. 2013). We found
this phenotype after both a fibrogenic and non fibrogenic dose of irradiation, but it is
increased during the timepoints where we observe the development of fibrosis. Indeed, it has
been shown that these foamy macrophages present a possible pro-fibrotic role in the context
of atherosclerosis (Thomas et al. 2015). Furthermore, in the context of tuberculosis, it has
been shown that the accumulation of lipid droplet and the increase of cholesterol content in
alveolar macrophages can lead to apoptosis and necrosis of this population, releasing toxins
in the tissues and participating in a chronic pro-inflammatory feedback loop (Russell et al.
2009; S. N. et al. 2019). However, other evidence shows a possible protective role of foamy
macrophages in smocking-induced emphysema (Hirama et al. 2007), underlining the already
demonstrated ambivalent role of macrophages in the development of pulmonary fibrosis

(Yang et al. 2023).

Recent studies have also highlighted the role of senescent macrophages in RIPF.
Irradiation has been shown to induce cellular senescence in macrophages, leading to an
increased expression of senescence-associated secretory phenotype genes (Su et al. 2021).
These factors contribute to a pro-fibrotic environment by promoting inflammation and ECM

remodelling, thereby facilitating the progression of fibrosis. The presence of senescent
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macrophages in the lung tissue post-radiation suggests that they may serve as a therapeutic

target for preventing or treating RIPF.

In this work, we showed the more important change in transcriptome of the alveolar
macrophages compared to the interstitial macrophages. However, a study showed that
depletion of alveolar macrophages didn’t allow any improvement in the development of
radiation induced pulmonary fibrosis, whereas the depletion of interstitial macrophages in
mice blocked the development of fibrosis (Meziani et al. 2018). More needs to be done to

understand these apparently contradictory results.

3. Damages and changes of the endothelial cells in response to
irradiation

Finally, endothelial cells present major alterations after irradiation and undergo
extensive regeneration mechanisms, mainly through pro angiogenic signaling. These
processes start shortly after irradiation through changes in the proportion of two endothelial
capillaries cell states: the tip cells and stalk cells. These sub-populations are activated by the
reception of VEGF signaling. Furthermore, the VEGFA secretion in the sites of vascular
damages triggers the recruitment of a particular population of circulating FLT1 expressing
alveolar macrophages that also triggers angiogenesis through a IL1B-IL1 receptor interaction.
However, four to five months after irradiation the endothelial capillary cells express markers
of senescence that could indicate replicative exhaustion and failure to regenerate a proper
microvasculature and participating into the improper healing of the lung after a RILI, leading
to RIPF. Overall, these findings support the demonstrated role of the vasculature in the
development of radiation induced pulmonary fibrosis, with a loss of capillary and a
permeabilization of the micro vasculature (Engelbrecht, Kooistra, and Knipe 2022;

Caporarello and Ligresti 2023).

Furthermore, it has been shown that endothelial cells can undergo endothelial-to-
mesenchymal transition, similarly as epithelial cells, where they lose their endothelial identity
and acquire characteristics typical of mesenchymal cells. This transition has been shown to
contribute significantly to the accumulation of fibroblasts and extracellular matrix in the lungs

(W. Zhao et al. 2023). A study with a bleomycin-induced fibrosis model indicated that
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approximately 16% of fibroblasts in fibrotic lung tissues originated from endothelial cells
through endothelial-to-mesenchymal transition (Hashimoto et al. 2010). These processes
need to be further investigated and could be potential therapeutic targets, as the maintaining

of the endothelial barrier and network is crucial for lung function.

4. Spatial context of the changes induced by irradiation

The lung is a complex tissue composed of different cell populations interacting with
each other. Therefore, it is important to put back the finding of this study in the context of
the tissue. We already described several intercellular interactions between different cell
populations of the lung and their possible consequences. The interactions between alveolar
macrophages and epithelial cells have been shown to trigger epithelial to mesenchymal
transition (Nagaraja and Nagarajan 2018). We also identified an interaction sent by the FLT1
positive alveolar macrophages and received by the gCap tip cells that participates in the

induction of pro-angiogenic signaling.

Another couple of populations that are of great relevance for the function of the lungs
are the aerocytes and AT1 cells. Indeed, in normal conditions, these two populations are in
close contact with each other to perform the function of the lungs: the gas exchanges
between the blood and the outside air (L. Song et al. 2024). After irradiation, we observe a
disorganization and a collapse of the structure of the alveoli (Knudsen, Ruppert, and Ochs
2017). Therefore, we can make the hypothesis that there might be a loss of contact between
the two populations. At the late stages after irradiation, during fibrosis, we observe evidence
of senescence in both aerocytes and AT1 cells. This senescence could be a consequence of
the disruption of the lung tissue, the inflammatory context, or possibly replicative
senescence. However, the loss of contact between the aerocytes and the AT1 cells could also
partly be a consequence of the senescence of the populations: it has been shown that the
presence of senescent cells can disrupt tight junctions and disorganize monolayers of cells
(Krouwer et al. 2012). Like many other processes occurring during the development of
radiation-induced pulmonary fibrosis, it is a difficult task to determine if a particular event is
a cause or a consequence. In order to identify potential treatments, it is important to
elucidate the sequential activation of the distinct pathways and how they are spatially

connected to each other.
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CHAPTER VI
Perspectives



CHAPTER VI — Perspectives

All the results presented in this study are based on the analysis of single cell RNA
sequencing data. While this type of analysis is a great way to obtain a better understanding
of the complexity of a tissue and its response to a stimulus using a low number of samples,
the results obtained need to be validated using other methods: in vivo or in vitro experiments,
FACS. Therefore, we plan to perform these experiments in order to verify the previous

conclusions made during this thesis.

1. Study of the spatial context of the changes induced by
irradiation

First, we will use the spatial transcriptomics technique Xenium from 10X Genomics to
analyze the spatial changes induced by irradiation to the human lungs from Pancoast patients

we already analyzed with single cell RNA sequencing.

Furthermore, we are in collaboration with a research group in Institut Pasteur to
develop an in-house sequential single molecular FISH method called autoFISH (FIGURE 5.2)
that we are planning to use to map the human and mouse lungs and the structural changes

triggered by radiotherapy or irradiation.
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FIGURE 6.1. principle of the autoFISH method

The first step of autoFISH is the overnight hybridization of the primary probes for all

the genes of interest. The probes are composed of a segment specific to the mRNA of the
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gene and binding to it, and of a gene-specific segment. This first step is followed by several
rounds of hybridization, imaging and stripping allowing the analysis of two targets per round.
During each round, the secondary gene specific probe partly hybridizes with the gene-specific
segment and partly with a readout fluorescent probe. The tissue is then images, and stripping
probes are used to remove the secondary probes before the next round. This innovative
method will allow us to image the presence of mRNAs of the different cell population markers,
as well as cell states markers. Furthermore, we will be able to validate the predicted
intercellular communications by analyzing the position of the partners of the communication
as well as the expression of the ligands and receptors. The computational analysis of the
results of the autoFISH is challenging, especially the cell segmentation. Indeed, the cells of
the lungs present various shapes that can be very difficult to delimitate. Therefore, as part of

our collaboration with Institut Pasteur, a new computational method called ComSeg was

2. Lineage tracing study of the endothelial cells

Endothelial cells appear to have a decisive role in the regeneration of the lung and the
development of pulmonary fibrosis. In order to precise the fate of the progenitor gCap cells
and study the origin of the senescent aCap cells, we are developing mouse models of aCap
(Apln Cre) and gCap (Aplnr Cre). This will allow us to perform lineage tracing analysis and
obtain an unprecedented understanding of the role of the different populations of

endothelial cells in the development of RIPF.

3. Senescence and the use of senolytiques

As we saw in this study, regenerative processes and its dysfunction play a major role
in the failure to heal properly after a RILI, leading to pulmonary fibrosis. The single cell RNA
sequencing data from both the epithelial cells and the endothelial cells indicated the possible
presence of senescence at the stage of pulmonary fibrosis. These two populations play a
major role in the proper functioning of the lungs, and senescence could have a great impact
on their functioning. Senescence is characterized by a cell cycle arrest and metabolic changes
including the secretion in the cell environment of pro-inflammatory cytokines and other

molecules, called senescence-associated secretory phenotype (SASP) (W. Huang et al. 2022).
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Senescence can be a defense mechanism against tumor cells, to prevent their proliferation
and accumulation. Senescent cells have also been shown to play a role in physiological
condition, and elimination of p16 high cells reduces the lifespan of mice (Grosse et al. 2020).
However, in some pathological cases, senescence can be detrimental. Secretion of SASP by
senescent cells can induce the neighboring cells to turn senescent as well. In this manner,

senescence can spread across the tissue and impair the normal functioning of the organ.

Senescence can be cause by different processes. Telomeres are protective caps at the
ends of chromosomes that shorten with each cell division. When telomeres become critically
short, it triggers a DNA damage response and senescence. Various forms of DNA damage,
such as double-strand breaks, can activate the DNA damage response pathways and induce
senescence as a protective mechanism against propagating damaged cells. Excessive
production of ROS or deficiencies in antioxidant defences can cause oxidative damage to
cellular components, including DNA, leading to senescence. Changes in chromatin structure
and epigenetic modifications, such as DNA methylation and histone modifications, can
contribute to the induction of senescence through the pl16-RB pathway. Impaired
mitochondrial function and increased mitochondrial oxidative stress can trigger senescence
through various mechanisms, including DNA damage and metabolic dysregulation. Chronic
inflammation and the associated secretion of pro-inflammatory cytokines can promote

cellular senescence, particularly in the context of aging and age-related diseases.

These causes often interact and reinforce each other, creating a complex network of
signaling pathways that ultimately lead to a global senescence of the tissue. This seems to be
the case of RIPF, with diverse mechanisms leading to senescence and failure to heal the RILI.
Therefore, one of the possibilities to prevent RIPF is the use of senolytics, a class of drugs that
selectively eliminate senescent cells (Kirkland and Tchkonia 2020). This is currently under
investigation in the context of IPF and various studies present positive results. A first human
open label pilot study involving fourteen patients suffering from IPF treated with a
combination of two senolytic drugs (dasatinib and quercetin) showed an alleviation of the
respiratory symptoms (Justice et al. 2019). Other studies have shown the potential of
senolytics in the context of IPF (Lee et al. 2024; de Godoy, Macedo, and Gambero 2024;

Lehmann et al. 2017). A few studies using a mouse model of ionizing thoracic radiation also
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effect of senolytics on the development of RIPF is still poorly understood and was never
studied using scRNAseq. Therefore, we plan to test the administration of senolytics to mice
at various time points before, after or at the moment of irradiation, in order to determine the
most efficient moment for the administration of the drugs, as well as perform scRNAseq
experiment on irradiated mice treated with senolytics in order to obtain a better

understanding of the mechanisms of fibrosis alleviation after administration of senolytics.

4. The use of FLASH radiotherapy to spare the healthy tissues

Another possibility for the reduction of radiotherapy side effects is the use of
innovative radiotherapy modality. The FLASH radiotherapy method is one of them, and was
developed by Vincent Favaudon in my research group (V. Favaudon, Fouillade, and Vozenin
2015; Fouillade et al. 2020). FLASH radiotherapy delivers radiation at ultra-high dose rates,
typically greater than 40 Gy/s, to treat tumors, with the entire radiation dose delivered in less
than 200 milliseconds. FLASH radiotherapy treatment shows reduced radiation-induced
toxicity in healthy tissues with the same tumoral control as conventional radiotherapy.
Preclinical studies have shown that FLASH radiotherapy can control tumors while minimizing
normal tissue toxicity compared to CONV radiotherapy. This effect has been shown in
different organisms (mouse, cat, dog, pig, zebrafish) and different organs (lung, skin, brain,
gut) (Limoli and Vozenin 2023) and the first results on human patients are very promising
(Bourhis et al. 2019). Currently, the mechanisms of radioprotection of FLASH are under
investigation in my research group, using a similar approach as the one presented in this
manuscript with single cell RNA sequencing data analysis of mice irradiated with the FLASH
radiotherapy method, at several time points post irradiation, and with the study of irradiated

lung slices from human and mice (Dubail et al. 2023).

5. Tutorials for single cell RNA sequencing data analysis

This project allowed us to gain a better understanding of the complex mechanisms of
lung response to radiation injury and development of radiation induced pulmonary fibrosis,
thanks to the use of single cell RNA sequencing data analysis. This method is very effective to

decipher the events occurring in complex tissues composed of numerous cell types and
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states. However, it can be difficult to start the analysis of this very complex data. Therefore, |
wrote tutorials for the analysis of single cell RNA sequencing data for beginners that can be
found in ANNEXE V. They should allow more people to exploit the full potential of single cell

RNA sequencing.

6. Conclusion

Overall, we are confident that this work has significantly advanced our understanding
of radiation-induced lung injuries, laying a strong foundation for further investigation into
many unresolved questions. The application of single-cell RNA sequencing has provided a
powerful tool for elucidating the diverse normal tissue cellular responses and intercellular
interactions initiated by radiation-induced lung injury. Furthermore, our findings highlight
potential new therapeutic targets and pave the way for innovative drug use to combat this

deadly radiotherapy side effect.
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ANNEXE I — Markers used for the
identification of the lung populations.

TABLE 1 — markers used for the identification of the lung epithelial cells populations.

Basal cells

KRTS, KRT14, TP63,
DAPLI

Krt5, Trp63, Dapll

Cell type Markers human Markers mouse Reference
ATI AGER, PDPN, CLIC5 | Ager, Clib5, Pdpn
AT2 SFTPB, SFTPC, Sftpc, Mucl, Etv5
SFTPD
Club cells g\c{gé, SCGB3A2, Scgb3a2, Cyp2f2, Cckar (Travaglini et al.
Goblet cells MUCS5B, MUCS5AC, Tff2, Muc5b, Spdef 2020)
SPDEF
Ciliated cells FOXIJ1, TUBBI, TP73 | Foxjl, Ccdc78, Fam183b

Aberrant TP63, KRT17,
basaloid cells LAMB3, LAMC2 (Adams et al.
2020)
ATO SFTPB, SFTPC, Sftpb, Sftpc, Scgb3a2
SCGB3A2 (Kadur
Secretory cells | SFTPB, SCGB3A2, Sftpb, Scgb3a2, Scgblal . .
SCGBIAI Lakshminarasimh

a Murthy et al.
2022)
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TABLE 2 — markers used for the identification of the lung mesenchymal cells populations.

muscle cells

TAGLN, DES, LGR6

Smooth muscle
cells

Acta2, Cnnl, Tagln

Cell type Markers human Markers mouse Reference

Fibroblasts COL1A1, PDGFRA Pdgfra

Myofibroblasts | COL1A1, PDGFRA, Wifl, Fgfl8, Aspn
ELN, ACTA2

Adventitial Serpinfl, Pil16, Entpd2

fibroblasts

Alveolar Fgfrd, Slc7al0, Slc38a5

fibroblasts

Pericytes Trpc6, Higd1b, Vin (Travaglini et al.

Pericytes CSPG4, TRPCo, 2020)
PDGFRB

Vascular smooth | CNN1, ACTA2,

muscle cells TAGLN, RGS5

Airway smooth | CNNI1, ACTA2,

PLIN2, APOE

Peribronchial Fgf8, Hhip (Tsukui et al.
fibroblasts 2020)
Lipofibroblasts | COL1A1, PDGFRA, (Travaglini et al.

2020), (Liu et al.
2021)
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TABLE 3 — markers used for the identification of the lung endothelial cells populations.

Cell type Markers human Markers mouse Reference
aCap SOSTDCI1, EDNRB, Car4, Ednrb, Fibin
HPGD
gCap FCN3, EDN1, SLC6A4 | Gpihbpl, Pvalp, Cd93,
Ptprb o
. Gillich et al.
Vein EC CPE, PTGDS, C7, Nr2f2, Vwf (2020)
PLAIA
Artery EC CXCL12, GJAS5, DKK2 | Gja5, Bmx, Vwf
Lymphatic EC CCL21, TFF3, Pdpn, Prox1
MMRNI1
Tip cells ADM, ANKRDd37, CIQTNF6, | Adm, Ankrd37, Clqtnf6, CldnS,
CLDNS, COL4A1, COL4A2, Col4al, Col4a2, Cotll, DIl4,
COTL1, DLL4, EDNRB, Ednrb, Fscnl, Gpihbpl, Hspg2,
FSCN1, GPIHBP1, HSPG2, Igtbp3, Inhbb, Jup, Kcne3, Kenj8,
IGFBP3, INHBB, JUP, Lama4, Lambl, Lxn, Marcksl1,
KCNE3, KCNJ8, LAMAA4, Mcam, Mest, N4 bp3, Nid2,
LAMBI, LXN, MARCKSLI, Notch4, Plod1, Plxnd1, Pmepal,
MCAM, MEST, N4 BP3, Ptn, Ramp3, Rbp1, Rgce, Rhoc,
NID2, NOTCH4, PLODI, Trp53ill, Unc3B, Kdr, Flt4
PLXNDI, PMEPAI1, PTN,
RAMP3, RBP1, RGCC, RHOC, (W. Chen et al.
TRP53ILL, UNC5B, KDR, 2019)
FLT4
Stalk cells ACKRI1, AQP1, CIQTNF9, Ackrl, Agpl, Clqtnf9, Cd36,
CD36, CSRP2, EHD4, FBLNS, | Csrp2, Ehd4, Fbin5, Hspbl,
HSPBI, LIGP1, IL6ST, JAM2, | Ligpl, Il6st, Jam2, Lgals3, Lrgl,
LGALS3, LRGI1, MEOX2, Meox2, Plscr2, Sdpr, Selp,
PLSCR2, SDPR, SELP, Spint2, Tgfbi, Tgm2, Tmem176a,
SPINT2, TGFBI, TGM2, Tmem176b, Tmem252, Tspan7,
TMEM176A, TMEM176B, Fltl, Vwf
TMEM252, TSPAN7, FLTI,
VWF
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TABLE 4 — markers used for the identification of the lung myeloid cells populations.

Cell type Markers human Markers mouse Reference
Conventional CDIC, CD141 Cd45, Cd8, Cd4, Cd11b | (Cook and
DC MacDonald 2016;
Merad et al.
2013)

Plasmacytoid LILRB4, IRFS, Siglech, Cd300c, Klk1
DC LILRA4
Monocyte MHCII, CLEC9A, MHCII, Cd24a, Clec9a,
derived DC LAMP3, CDI1C, PLD4 | Sirpa, Itgam
Classical CD14, SI00A8 Cdl14, F13al, Ly6c2
monocytes (Travaglini et al.
Non classical S100A8, CD16 Emr4, Itgax, Treml4 2020)
monocytes
Macrophage MARCO, MSRI1,

MRC1
Neutrophils S100A8, S1I00A9, Retnlg, S100a8, S100a9

IFITM2, FCGR3B
AM CYP27A1, MARCO, Marco, Msrl, Mcrl

FABP4 (Sikkema et al.
IM F13A1, FOLR2 MHCII, Clqga, Trem2 2023)
Resident AM Siglec-F, Cdllc (Shi et al. 2021)
Recruited AM Cdl1b
Vesse} Lyvel, Prg4, Tgtb2 (Ural et al. 2020;
associated IM Gibbings et al
Nerve MHCII 2017) ’
associated IM
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TABLE 5 — markers used for the identification of the lung lymphoid cells populations.

Cell type Markers human Markers mouse Reference
B cells CD79A, CD24, Cd79a, Cd19, Ms4al
MS4A1, CDI19
Plasma cells CD79A, CD27, Cd79a, Cd27, Slamf7
SLAMEF7
T cells CD3E CD3e, Lck (Travaglini et al
CD8+ T cells CD8, GZMH Cd8e 2020) & ’
CD4+ T cells CD4 Cd4
NK cells KLRDI1, NKG7, Klrbla, Tyrobp, Gzma
TYROBP
Basophils MS4A2, CPA3, Cpa3, Ms4a2, Mcpt8
TPSABI1
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TABLE 6 — metadata of the human samples sequenced.

SAMPLE SEXE AGE IR SORTED CONDITION NUMBER CELLRANGER REFERENCE
NAME STATUS OF VERSION GENOME
CELLS
PATIENT1_NI M 64 NI NO Pancoast_NI 4833 3.1.0 GRCh38-3.0.0
PATIENT1_IR M 64 IR NO Pancoast_IR 3675 3.1.0 GRCh38-3.0.0
PATIENT2_NI M 61 NI NO Pancoast_NI 6184 3.1.0 GRCh38-3.0.0
PATIENT2_IR M 61 IR NO Pancoast_IR 5881 3.1.0 GRCh38-3.0.0
PATIENT3_NI M 53 NI CD45neg Pancoast_NI 1984 3.1.0 GRCh38-3.0.0
PATIENT3_IR M 53 IR CD45neg Pancoast_IR 1479 3.1.0 GRCh38-3.0.0
PATIENT4_NI M 42 NI NO Pancoast_NI 5894 6.0.0 GRCh38-2020-A
PATIENT4_IR M 42 IR NO Pancoast_IR 25175 6.0.0 GRCh38-2020-A
PATIENT5_NI M 42 NI NO Pancoast_NI 3376 7.1.0 GRCh38-2020-A
PATIENTS_IR M 42 IR NO Pancoast_IR 1876 7.1.0 GRCh38-2020-A
PATIENT6_NI F 75 NI NO Pancoast_NI 11057 7.1.0 GRCh38-2020-A
PATIENT6_IR F 75 IR NO Pancoast_IR 5634 7.1.0 GRCh38-2020-A
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TABLE 7 — metadata of the mouse samples sequenced.

SAMPLE NAME EXPERIMENT IR TIME CONDITION NUMBER CELLRANGER

DOSE POINT OF VERSION

CELLS

NIL_YOUNG_1 M51 NI NI NI 4241 7.1.0
NIL_YOUNG_2 M51 NI NI NI 4062 7.1.0
IR_CONV_10GY_1M_1 M48  10Gy 1M IR_CONV_10Gy_1M 5673 7.1.0
IR_CONV_10GY_1M_2 M48  10Gy 1M IR_CONV_10Gy_1M 4622 7.1.0
IR_CONV_10GY_2M_1 M46  10Gy 2M  IR_CONV_10Gy_2M 3947 7.1.0
IR_CONV_10GY_2M_2 M46  10Gy 2M  IR_CONV_10Gy_2M 5003 7.1.0
IR_CONV_10GY_3M_1 M47  10Gy 3M  IR_CONV_10Gy_3M 8105 7.1.0
IR_CONV_10GY_3M_2 M47  10Gy 3M IR_CONV_10Gy_3M 3901 7.1.0
IR_CONV_10GY_4M_1 M45  10Gy 4M  |IR_CONV_10Gy_4M 4508 7.1.0
IR_CONV_10GY_4M_2 M45  10Gy 4M  IR_CONV_10Gy_4M 4383 7.1.0
IR_CONV_10GY_5M_1 M51 10Gy 5M IR_CONV_10Gy_5M 4284 7.1.0
IR_CONV_10GY_5M_2 M51 10Gy 5M IR_CONV_10Gy_5M 7802 7.1.0
IR_CONV_13GY_24H_1 M42  13Gy 24H IR_CONV_13Gy_24H 6599 6.0.0
IR_CONV_13GY_24H_2 M42  13Gy 24H |IR_CONV_13Gy_24H 7215 6.0.0
IR_CONV_13GY_24H_3 M42  13Gy 24H |IR_CONV_13Gy_24H 4991 6.0.0
IR_CONV_13GY_1M_1 M48  13Gy 1M IR_CONV_13Gy_1M 4527 7.1.0
IR_CONV_13GY_1M_2 M48  13Gy 1M IR_CONV_13Gy_1M 3587 7.1.0
IR_CONV_13GY_2M_1 M46  13Gy 2M  IR_CONV_13Gy_2M 5984 7.1.0
IR_CONV_13GY_2M 2 M46  13Gy 2M  IR_CONV_13Gy_2M 6285 7.1.0
IR_CONV_13GY_3M_1 M47  13Gy 3M IR_CONV_13Gy_3M 5846 7.1.0
IR_CONV_13GY_3M_2 M47  13Gy 3M IR_CONV_13Gy_3M 4424 7.1.0
IR_CONV_13GY 4M_1 M44  13Gy 4M  IR_CONV_13Gy_4M 4622 7.1.0
IR_CONV_13GY_4M_2 M44  13Gy 4M  |IR_CONV_13Gy_4M 3805 7.1.0
IR_CONV_13GY_5M_1 M41 13Gy 5M IR_CONV_13Gy_5M 4731 6.0.0
NI_OLD_1 M37 NI 19M NI_19M 5578 6.0.0
NI_OLD_2 M37 NI 19M NI_19M 5754 6.0.0
NI_OLD_3 M43 NI 26M NI_26M 2550 7.1.0
NI_OLD_4 M43 NI 26M NI_26M 3274 7.1.0
IR_CONV_10GY_19M_1 M37 10Gy 19M [R_CONV_10Gy_19M 5073 6.0.0
IR_CONV_10GY_19M_2 M37 10Gy 19M [R_CONV_10Gy_19M 6579 6.0.0
IR_CONV_10GY_19M 3 M37 10Gy 19M [R_CONV_10Gy_19M 8484 6.0.0
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ANNEXE IV — An interactive murine
single-cell atlas of the lung responses to
irradiation injury (publication) —
supplementary figures.

An interactive murine single-cell atlas of the lung responses to radiation injury
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Supplementary Figure 1. Single-cell data visualization of the NI and IR lungs and cell type specific
markers identification. UMAP visualization from a 5 NI samples alone (22,378 cells), b 5 NI samples
and 5 IR10sy samples from 1 to 5M (one sample per time point) (26,360 cells) and ¢ 5 NI samples and
10 IR176y samples from 1 to 5M (two samples per time point) (54,131 cells). UMAP visualization of Chil3
d, Lamp3 e and Cdh5 f expression in the NI samples and the different time points from 1 to 5 months

after IRisy (N =1) and IR17gy (N=2).
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Supplementary Figure 2. Cellular and molecular characterization of AT2 cells. a UMAP visualization
of the 5,550 NI (n = 5), IRwsy (n = 1) and IR176, (n = 2) AT2 cells annotated by time point. b UMAP
visualization of the expression of Lamp3. ¢ Lamp3 (white) staining in lung tissue sections from NI (n =
3), IR5M g6y (n = 3) and IR5M376, (n = 5) mice. Sections were counterstained with DAPI (blue). Images
are shown as a maximum intensity projection (16 z-stacks, 5 um). Images were acquired using the tiles
tool (5x5) on an apotome microscope with a 63X objective. Yellow arrows point at AT2 cells. Scale
bars, 50 um. d Heatmap of the expression of transdifferentiation related genes in the AT2 cells across
the different samples. e Monocle trajectory analysis of the AT2 and AT1 clusters. f Monocle
pseudotime analysis of the AT2 and AT1 cells using the marker genes of the transdifferentiating AT2
cluster 3 to order the cells. g Gene Regulatory network analysis of the AT2 cells in the NI samples and
3, 4 and 5 months after IRisy and IR176y. h Heatmap of the expression of EMT genes in the AT2 cells
across the different samples. i Violin plot showing the single cell score calculated based on the EMT
expressed genes in the AT2 cells. j Violin plots of EMT genes expression in the AT2 cells in the NI
samples and at the different time points after IR, and IR176,. (n/s, adjusted p-value > 0.05; *,
adjusted p-value < 0.05; **, adjusted p-value < 0.01; ***, adjusted p-value < 0.001; ****, adjusted p-
value < 0.0001).
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Supplementary Figure 3. Molecular characterization of the mesenchymal cells. a DotPlot of the
expression of the marker genes used to identify the fibroblasts subpopulations: Cof13al and Tcf21 for
Col13al+ fibroblasts; Col14al, Pi16 and Meg3 for Col14al+ fibroblasts; Hhip, Cdh11 and Pdgfrb for
myofibroblasts. b UMAP visualization of the expression of Pdgfra and Hhip. ¢ Dynamics in the
significantly upregulated genes in the fibroblast subpopulations compared to the NI samples at the
different time points after IR10Gy and IR17Gy. d Heatmap of the expression of ECM related genes in
the fibroblast subpopulations across the different samples.
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Supplementary Figure 4. Cellular and molecular characterization of the alveolar and interstitial
macrophages. a DotPlot of the expression of the marker genes used to identify the different IM and
AM subpopulations. b UMAP visualization of the expression of C3ar1 and Chif3. ¢ Chil3 staining in lung
tissue sections from NI, IREMigey and IR5Mi76y mice. Left column: sections were counterstained with
DAPI (blue). Images are shown as a maximum intensity projection (16 z-stacks, 5 pm). Images were
acquired using the tiles tool (5x5) on an apotome microscope with a 63X objective. Yellow arrows
point at AM. Scale bars, 50 um. Right column: automatic Chi/3 mRNA detection with Big-FISH. Scale
bars, 10 pm. Cell and nuclei volume estimation of the Chil3+ cells in NI, IRSM1osy and IRSMi7ay lung
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tissue sections. To compare two groups, the P-value was computed with the Mann—Whitney—
Wilcoxon test (two-sided test) from scipy (n/s, adjusted p-value > 0.05; *, adjusted p-value < 0.05; **,
adjusted p-value < 0.01; ***, adjusted p-value < 0.001; ****, adjusted p-value < 0.0001). Each dot
represents one analyzed image. Each color per time point represents a different biological replicate

(NI'n =3; IR5Mjggy n = 3; IR5M176, N = 5). d Violin plots of foam genes expression in the different AM
subpopulations.
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Supplementary Figure 5. Molecular profile of the different endothelial cell sub-compartments. a
DotPlot of the expression of the marker genes used to identify the different EC subpopulations. b
UMAP visualization of the expression of Pecam1, ApIn and Ptprb. ¢ Inmunchistochemistry staining in
NI (n = 3) and IR5Mi7ey (n = 3) lung tissue sections using an anti-Apln antibody (red). Scale bars, 50 um.
d Dynamics in the significantly upregulated genes in the aCap and gCap compared to the NI samples
at the different time points after IR10sy and IR176,. Percentage of the significantly upregulated EMT

genes at the different time points after IR1cy € and IR17, f in the aCap and gCap.
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Supplementary Figure 6. Cell Chat interaction analysis of the major cell compartments. a Mean
number of interactions in the NI samples (n=5 mice lungs were pulled together for the analysis) and
the 3M, 4M and 5M IR1o6y (n=3 mice lung) and IR176y (N=6 mice lung; 2 samples per time point were
pulled together for the analysis) samples. Error bars refer to the standard deviation of the data. b
Circle plot showing the differential number of interactions between IR106y and NI and IRz, and NI in
the main cellular compartments at 3M, 4M and 5M post-IR: mesenchymal, endothelial, epithelia,
myeloid and lymphoid. Red (or blue) colored edges represent increased (or decreased) signaling in the
IR compared to the NI. ¢ Heatmap showing the differential number of interactions between IR10y and
IR17gy in all the different lung subpopulations at 3M, 4M and 5M post-IR. Red (or blue) represents
increased (or decreased) signaling in the IRi76y compared to the IRiosy. The top-colored bar plot
represents the sum of column of values displayed in the heatmap (incoming signaling). The right
colored bar plot represents the sum of row of values (outgoing signaling). d Dynamics of the relative
information flow of the Collagen pathway from 3 to 5 months post-IR from the Fibroblasts Col14al
and Myofibroblasts to the gCap. e Gene expression distribution of signaling genes related to the
Collagen pathway in the NI samples and 3M, 4M and 5M after IR10sy and IR176y: Collal and Colla2
ligands in Fibroblasts Col14a1 and Myofibroblasts; /tga3 receptor in gCap.
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Supplementary Figure 7. Interactive Mouse Radio-induced Pulmonary Fibrosis Atlas webpage.
Outline of the homepage of the interactive webpage containing the open-access transcriptomic data
for all the scientific community. Bottom left image is an artistic view of the alveolus realized by Sandra
Curras-Alonso. The website has been designed by Sophie Heinrich using the ShinyCell package.
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ANNEXE V — Tutorials to start in
single cell RNA seq data analysis.

Single cell RNA sequencing data analysis can be challenging at first, with the variety of
tools and methods that exist. Therefore, | wrote tutorials for beginners to more easily start
the analysis, with the different steps, why they are done, what are some of the alternatives
and links to additional resources to better understand the different scripts. These tutorials
were shared through the Bioinfo-Hub of Curie Institute, a grouping of the Institute
bioinformaticians that aims to share and mutualize knowledge and experience on

bioinformatic and biostatistics.

1) Pre-processing of the data

2) Merging of several samples

3) Integration of several samples to correct batch effect
4) Cell populations identification

5) Visualization and simple analysis

6) Trajectory analysis with Monocle3
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Tutorial 1 : 1st step of preprocessing

Juliette SOULIER

4/16/2024

This document is presenting the fist step of preprocessing of 10X chromium single cell RNA sequencing data.
10X chromium provides a fluidic droplet based single cell RNA sequencing method. This tutorial presents
the analysis of 10X single cell RNA seq samples sequenced with Illumina and after cellranger alignment,
filtering, barcode counting, and UMI counting.

Some part of the code of this tutorial needs to be adjusted to your data before running it (for example to
indicate the folder where you stored the data). This will be indicated in bold.

Download the data

Before starting the analysis, the fist thing to do is download your data. This can be done in several ways: you
may already have your own data, or you can download it from a database, like the gene expression omnibus
(GEO) database. You can find here the data from the paper published by Curras-Alonso et al. (2023, Nature
Communication) about the lung responses to radiation injury in mice. For this tutorial, we will be using the
samples Ctrl_1, IR_17Gy_5M_1 and IR_17Gy_5M__2: we will analyse one sample from non irradiated
mouse lungs, and two duplicate samples from mice that have been irradiated at 17Gy in the full thorax, the
samples were taken five months post irradiation. For each sample, you need to retrieve the barcodes.tsv. gz,
count__matriz.mtzr.gz and genes.tsv.gz files.

Install the necessary packages

Packages are collection of tools created for specific analysis. To process single cell RNA sequencing data, we
will need to use some of them. First the packages need to be installed. This only needs to be done one for
a given computer.

Seurat package

Seurat is a popular R tool to perform quality controls and data exploration on single cell RNA sequencing
data. It is also usefull to install SeuratWrappers, a useful package enabling the use of different packages
with Seurat objects, and SeuratData, another support package for Seurat.

remotes::install_github("satijalab/seurat", "seuratb", quiet = TRUE)
remotes: :install_github("satijalab/seurat-wrappers", "seuratbh", quiet = TRUE)
remotes::install_github("satijalab/seurat-data", "seurath", quiet = TRUE)



SoupX package

SoupX is used to remove contaminating mRNA coming from mRNA floating in the medium and encapsulated
with cells during the preparation of the samples.

install.packages('SoupX')

scran package

scran implements some analysis methods for single cell RNA sequencing analysis, for example assignment
of cell cycle phase, detection of highly variable and significantly correlated genes, identification of marker
genes. . .

if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager"
BiocManager: :install("scran"

Load the necessary packages

At the beginning of a new session, you need to load the packages you want to use, to have access to the
functions stored in these packages.

library(Seurat)
library(scran)

choosing of the working directory

The working directory is the directory were you data are stored, where the results will be saved. You can
choose it at the beggining of each script. Replace the path by the path of your workind firectory in
your computer.

setwd("/Users/labo/Desktop/Tutos_scRNA_seq_R")

Load the data

Now you have everything to start the preprocessing of your single cell RNA sequencing data. The steps
described in this tutorial needs to be done for each sample you want to analyse, one sample at a time. Fist
vou need to upload your data in R. To do so you need to put the path of the filtered feature bc_matriz
folder of the sample you want to analyse. This folder contains the three files : barcodes.tsv.gz, features.tsv.gz
and matriz.mtz.gz (the files must be named like that). Replace the path in the Read10X function by
the path of the filtered_feature bc_matrix folder in your computer.

data <- ReadlOX(data.dir = "data_example/Ctrl_1/filtered_feature_bc_matrix")



SoupX filtering

This is an optional steps that will not be run on the data of this tutorial. During the dissociation and the
preparation of the sample, before the encapsulation in droplets, some cells die and release their cytoplasmic
content in the medium. Therefore when the cells are encapsulated some floating mRNA from dead cells are
also encapsulated and are labelled like belonging to this cell. SoupX uses the content of the empty droplets
to infer the composition of the “soup” and computationally remove it from all the droplets.

First SoupX requires to create a Seurat object and perform clustering of the data.

#library (SoupX)

#srat <- CreateSeuratObject(counts = data)

#srat[["percent.mt"]] <- PercentageFeatureSet(srat, pattern = ""mt-")
#srat <- SCTransform(srat, vars.to.regress = "percent.mt", verbose = T)

#srat <- RunPCA(srat, npcs = 20, verbose = T)

#srat <- RunUMAP(srat, reduction = "pca”, dims = 1:20)
#srat <- FindNeighbors(srat, reduction = "pca”, dims = 1:20)
#srat <- FindClusters(srat, resolution = 0.5)

Then you can run the actual SoupX part. As SoupX decontamination is based on the analysis of the empty
droplets, it needs to take as an input both filtered feature bc matriz and raw_feature bc__matric folders.
To do so, you need to put the parent folder containing both of the filtered feature__bc matriz
and raw_feature be _matriz folders in the argument of the load10X function.

#sc <- loadl0X("data_exzample/Ctri_1")
#sc <- setClusters(sc, srat@active.ident)

One parameter that can be adjusted is the contamination fraction. By default it is set to 0.3, which means
that we consider that 30% of the sequenced mRNA are contaminating mRNA from the soup.

#sc <- setContaminationFraction(sc, 0.3)
#genes_{C_SoupX <- rouwnames (head(sc$soupProfilelorder(sc$soupProfilefest,decreasing=TRUE),],n=20))
#data <- adjustCounts(sc)

#print (genes_Q{C_SoupX)

genes  QC _SoupX will give you the most highly expressed genes in the calculated soup. The adjusted counts
after the removal of the soup are stored in the out object and that is what we will be using for the next parts
of this analysis.

Creation of the Seurat object

Now that the soup contamination has been filtered out, we can create the final Seurat object. The min.cells
argument determine the minimum number of cells a gene must be expressed in to be kept in the data. The
min.features argument allows to exclude cells with few mRNA molecules sequenced to remove the empty
droplets from the object.

seurat <- CreateSeuratObject(counts = data, min.cells = 3, min.features = 200)



Definition of the metadata

Defining the metadata of the sample analyzed is a very important step. First, you need to put a unique
identifier (here orig.ident) to be able to distinguish every sample from each other when all the samples will
be put together in one object.

Then you can put information about the experimental conditions, for example the dataset, project, experi-
ment, singlecell wversion, sexe. ..

Furthermore, during the analysis of the data it can be useful to regroup the data according to certain criteria,
like the time point after treatment, the genotype, the type of treatment... If you want to analyse these
elements (example genotype, IRstatus, IRdose, timepoint, sorted).

Finally, it can be useful to have a name that regroups all these information to be able to group the duplicates.
Here we stored this information in the condition metadata item.

The names, the number and the content of the metadata information must be adapted
to your sample. To add a new metadata item, you can follow this example : seu-
rat$metadata_ slot_ name <- “information__about_ sample”

seurat$orig.ident <- "Ctrl_ 1"
seurat$IRstatus <- "NI"
seurat$condition <- "Ctrl"

Calculation of the percentage of mitochondrial genes per cell

The name of all the mitochondrial genes in mouse starts by mi-. This line of code calculates for each cell
the percentage of transcripts that are from mithochondrial genes. If this tutorial is done with human
samples, mi- needs to be replaced by -MT.

seurat[["percent.mt"]] <- PercentageFeatureSet(seurat, pattern = "“mt-")

Filter out the cells with a high percentage of mitochondrial genes

A high percentage of mitochondrial genes in a cell is an indicator of apoptotic, stressed and low-quality
cells. Therefore we filter out the cells with the highest percentage of mitochondrial genes. Here we set the
threshold to the mean of percentage of mitochondrial genes 4+ two standard deviation, but it can also be
set to a fixed number (example 20%).

max.mt <- mean(seurat$percent.mt) + 2*sd(seurat$percent.mt)
seurat <- subset(seurat, subset = percent.mt <= max.mt)

Normalization of the data

A lot of technical factors can affect the data, for example the sequencing depth, the number of molecules
detected in each cells... To remove the technical variability we perform normalization of the data. Here we
choose the SC Transform normalization, but other methods can be used.



seurat <- SCTransform(seurat, vars.to.regress = "percent.mt", verbose = T)

Dimension reduction

A single cell RNA sequencing dataset is an object with a very important number of dimensions. In order
to compute the visualisation, the cluster calculation, we need to work with a lower number of dimensions.
To do so, the function RunPCA is used to run the principal component analysis. The number of principal
component (here set to 20) can be adjusted.

seurat <- RunPCA(seurat, npcs = 20, verbose = T)

An elbow plot can then be used to verify that the number of principal component chosen recapitulates most
of the variability of the dataset.

ElbowPlot (seurat, ndims = 20, reduction = "pca")
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Visualization coordiates calculation

As explained above, a single cell RNA sequencing dataset is an object with a very important number of
dimensions. We often visualize the data in two dimensions, so we need to calculate the coordinates of each
cell in this two-dimension space in order to find the best way to recapitulate the similarities and differences



between the transcriptional profiles of the cells. Various methods can be used to do that. Here we use
UMAP, but methods like t-SNE are also often used.

seurat <- RunUMAP(seurat, reduction = "pca", dims = 1:20)

Clusters calculation

A very important point of the analysis is the calculation of the clusters. With the FindNeighbors and
FindClusters, Seurat classifies the cells in several groups based on their similarities. This will be used later
to identify the different cell types.

seurat <- FindNeighbors(seurat, reduction
seurat <- FindClusters(seurat, resolution

"pca", dims = 1:20)
0.5)

seurat

## An object of class Seurat

## 37338 features across 6751 samples within 2 assays

## Active assay: SCT (18137 features, 3000 variable features)
## 3 layers present: counts, data, scale.data

## 1 other assay present: RNA

## 2 dimensional reductions calculated: pca, umap

Assignation of cell cycle scores

Finally, we use a set of genes provided by Seurat to identify the phase of the cell cycle for each cell.
s.genes <- cc.genes$s.genes

g2m.genes <- cc.genes$g2m.genes
seurat <- CellCycleScoring(seurat, s.features = s.genes, g2m.features = g2m.genes)

DimPlot(seurat, reduction = "umap", label = F, group.by = "Phase")
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In this plot, each dot represents one cell, and the cells are colored according to their phase in the cell cycle.

Saving of the preprocessed sample

The first step of preprocessing is over, now you can save your sample in a chosen folder and process
another sample, or go to the next part of the analysis.

saveRDS(seurat, "processed_objects/Ctrl_1.rds")

Preprocessing of the other samples

This process needs to be repeated for the other samples that you wish to analyse. Here, we will repeat it for
the IR _17Gy 5M 1 and IR 17Gy 5M 2 samples.

First, the IR_17Gy_5M 1 sample:

data <- Readl0X(data.dir = "data_example/IR_17Gy_5M_1/filtered_feature_bc_matrix")
seurat <- CreateSeuratObject(counts = data, min.cells = 3, min.features = 200)

seurat$orig.ident <- "IR_17Gy_5M_1"
seurat$IRstatus <- "IR_17Gy"
seurat$condition <- "IR_17Gy_5M"



seurat[["percent.mt"]] <- PercentageFeatureSet(seurat, pattern = "“mt-")

max.mt
seurat

seurat

seurat
seurat
seurat
seurat

<- mean(seurat$percent.mt) + 2*sd(seurat$percent.mt)
<- subset(seurat, subset = percent.mt <= max.mt)

<- SCTransform(seurat, vars.to.regress = "percent.mt", verbose =

<- RunPCA(seurat, npcs = 20, verbose = T)

<- RunUMAP(seurat, reduction = "pca", dims = 1:20)

<- FindNeighbors(seurat, reduction = "pca", dims = 1:20)
<- FindClusters(seurat, resolution = 0.5)

s.genes <- cc.genes$s.genes
g2m.genes <- cc.genes$g2m.genes

seurat

<- CellCycleScoring(seurat, s.features = s.genes, g2m.features =

DimPlot (seurat, reduction = "umap", label = F, group.by = "Phase")
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saveRDS (seurat, "processed_objects/IR_17Gy_5M_1.rds")

Then, the IR_17Gy_5M 2 sample:
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data <- Readl0X(data.dir = "data_example/IR_17Gy_5M_2/filtered_feature_bc_matrix")
seurat <- CreateSeuratObject(counts = data, min.cells = 3, min.features

200)



seurat$orig.ident <- "IR_17Gy_5M_2"
seurat$IRstatus <- "IR_17Gy"
seurat$condition <- "IR_17Gy_5M"

seurat [["percent.mt"]] <- PercentageFeatureSet(seurat, pattern = ""mt-")
max.mt <- mean(seurat$percent.mt) + 2*sd(seurat$percent.mt)
seurat <- subset(seurat, subset = percent.mt <= max.mt)

seurat <- SCTramnsform(seurat, vars.to.regress = "percent.mt", verbose = T)

seurat <- RunPCA(seurat, npcs = 20, verbose = T)

seurat <- RunUMAP(seurat, reduction = "pca", dims = 1:20)
seurat <- FindNeighbors(seurat, reduction = "pca", dims = 1:20)
seurat <- FindClusters(seurat, resolution = 0.5)

s.genes <- cc.genes$s.genes
g2m.genes <- cc.genes$g2m.genes

seurat <- CellCycleScoring(seurat, s.features = s.genes, g2m.features = g2m.genes)

DimPlot (seurat, reduction = "umap", label = F, group.by = "Phase")
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saveRDS(seurat, "processed_objects/IR_17Gy_bM_2.rds")
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Tutorial 2 : 2nd step of preprocessing: merging

Juliette SOULIER

4/16/2024

Now that the data from the samples you want to analyse has been pre processed, the next step is to group
them together in one object to be able to compare them. There are two ways to do that: merge the data or
integrate the data.

« Merge the data consists in only group the different samples in one object without doing any correction.
It is usually the one to use if the experimental conditions for all the samples are very similar (same
sequencing technique, same protocol, same strain of mice. .. ). It preserves all the biological differences
but doesn’t correct for batch effect.

o Integrate the data consists in doing corrections for a batch effect due to experimental differences
(samples processed in two different laboratories, different version of reagent used...). It allows to
analyse together samples from the literature, or processed differently but can erase some biologically
relevant processes.

Usually the samples are first merged, and if some batch effect is seen the analysis is redone by integrating
the samples.
This tutorial will present how to merge samples, and the tutorial 3 will present how to integrate them.

Load the necessary package

library(Seurat)

Load the samples

The first step is to load all the preprocessed samples from the tutorial 1. In the argument of the readRDS
functions, put the paths to your preprocessed samples. You can add or remove samples if you
need to.

setwd("/Users/labo/Desktop/Tutos_scRNA_seq_R")

samplel <- readRDS{"processed_objects/Ctrl_1.rds")
sample2 <- readRDS("processed_objects/IR_17Gy_5M_1.rds")
sample3 <- readRDS("processed_objects/IR_17Gy_EM_2.rds")



Merge the samples into one object

Then you can merge all of these samples into one object. The first sample goes into the first argument,
and then the others in the y argument. In the add.cell.ids you need to put the unique identifier
of each of your samples. And then you can name your project as you want.

lung merged <- merge(samplel, y = c(sample2, sample3),
add.cell.ids = c("Ctrl_1", "IR_17Gy_5M_1", "IR_17Gy 5M_2"), project = "RIPF")
lung _merged[["RNA"]] <- JoinLayers(lung_merged[["RNA"]])

Calculation of the percentage of mitochondrial genes per cell

The name of all the mitochondrial genes in mouse starts by mi-. This line of code calculates for each cell
the percentage of transcripts that are from mithochondrial genes. If this tutorial is done with human
samples, mit- needs to be replaced by -MT.

lung_merged <- PercentageFeatureSet(lung merged, pattern = ""mt-", col.name = "percent.mt")

Regression of the cell cycle score

Cells that cycle can be driven to cluster together because of the expression of cell cycling genes. To avoid
this, we use SCTransform to regress the expression of the cell cycle genes.

lung_merged$CC.Difference <- lung_merged$S.Score - lung_merged$G2M.Score
lung_merged <- SCTransform(lung_merged, vars.to.regress = c("CC.Difference", "percent.mt"), verbose = T

Calculating the UMAP coordinates and clusters

Then the PCA, UMAP coordinates for visualization and division into clusters are recalculated taking into
account, the data from all the samples.

In the FindClusters function, the resolution parameter allows to choose for a number more or less important
of clusters. Use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities.

lung_merged <- RunPCA(lung merged, npcs = 20, verbose = T)

lung_merged <- RunUMAP(lung merged, reduction = "pca", dims = 1:20)
lung_merged <- FindNeighbors(lung_merged, reduction = "pca", dims = 1:20)
lung_merged <- FindClusters(lung_merged, resolution = 0.7)
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Saving of the merged object

The second step of preprocessing is over, now you can save your object in a chosen folder. Then you
can try the tutorial 3 to integrate vour data, or go directly to the tutorial 4 to perform the cell type labeling
of the clusters.

saveRDS(lung_merged, "processed_cbjects/Seurat_object_merged.rds")



Tutorial 3 : 2nd step of preprocessing: integrating

Juliette SOULIER

4/16/2024

This tutorial will explain you how to integrate a Seurat object. This step needs to be done only if you
observe batch effect in your object, because it can erase some biologically relevant processes.

Install the necessary packages

patchwork package
patchwork is used to combine separate plots in the same graphic.

install.packages('patchwork')

Load the necessary packages

library(Seurat)
library(SeuratData)
library(patchwork)

Load the samples

The first step is to load the merged object generated with the tutorial 2. In the argument of the
readRDS function, put the path to your merged object. Then in order to integrate the samples
you need to split RNA layer (layers can store raw, un-normalized counts (layer=*‘counts’), normalized data
(layer="‘data’), or z-scored /variance-stabilized data (layer=‘scale.data’)). Here, we split the layers by samples
individually. You need to choose to split the layers according to the metadata element you think
is responsible for the batch effect. For example, you can split by the samples generated in
different experiment. This is done in the f argument of the split function.

setwd (" /Users/labo/Desktop/Tutos_scRNA_seq_R")
lung_merged <- readRDS('"processed_objects/Seurat_object_merged.rds")

lung merged[["RNA"]] <- split(lung _merged[["RNA"]], f = lung_merged$orig.ident)



Integration of the samples into one object

First you need to perform a normalization and identify the variable features.

DefaultAssay(lung_merged) <- "RNA"

lung_merged <- NormalizeData(lung_merged)

lung _merged <- FindVariableFeatures(lung_merged)

lung _merged <- ScaleData(lung_merged)

lung_merged <- RunPCA(lung_merged)

lung_merged <- FindNeighbors(lung_merged, dims = 1:30, reduction = "pca')

lung _merged <- FindClusters(lung_merged, resolution = 2, cluster.name = "unintegrated_clusters")

Then the IntegrateLayers performs several steps. First it selects the features that are repeatedly variable
across datasets for integration. And then it performs the integration of the data. Using the ** argument,
you can choose the method of integration that you want to use. The full Seuratb integration vignette with
the different integration methods can be find here.

lung_integrated <- IntegrateLlayers(

object = lung_merged, method = CCAIntegration,
orig.reduction = "pca", new.reduction = "integrated.cca",
verbose = FALSE

Finally, we re-join the layers together

lung_integrated[["RNA"]] <- JoinLayers(lung_integrated[["RNA"]])

Calculating the UMAP coordinates and clusters

Then the PCA, UMAP coordinates for visualization and division into clusters are recalculated taking into
account the data from all the samples.

In the FindClusters function, the resolution parameter allows to choose for a number more or less important
of clusters. Use a value above (below) 1.0 if you want to obtain a larger (smaller) number of
communities.

lung_integrated <- RunPCA(lung_integrated, verbose = FALSE)

lung_integrated <- RunUMAP(lung_integrated, reduction = dims = 1:30)
lung_integrated <- FindNeighbors(lung_integrated, reduction = "pca", dims =
lung_integrated <- FindClusters(lung_integrated, resolution = 0.5)

llpcau .

1:20)
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You can check if the batch effect seems to be corrected by ploting the different samples or conditions in a
UMAP.



orig.ident

n&f
101
c;_| ® Ctrl_1
T 0 ~ ® IR_17Gy 5M_1
E ) i :& “‘3 ® IR _17Gy 5M 2
—10-
&

-10 0 10
umap_1

Saving of the integrated object

The second step of preprocessing is over, now you can save your object in a chosen folder. Then you
can go to the tutorial 4 to perform the cell type labeling of the clusters.

saveRDS(lung_integrated, "processed_objects/Seurat_object_integrated.rds")



Tutorial 4 : cell type labeling of the clusters and cleaning of the
object

Juliette SOULIER

4/16/2024

The identification of the cellular composition of an object is a crucial and delicate part of the analysis. Tt will
affect the results of all the analysis that will follow. Therefore it is very important to be meticulous with this
step. To identify the cell types we use known markers from the literature. There are more and more papers
describing and recapitulating cell type identification markers for different organs and organisms. Here we
will use the example of the lung in mice samples.

Here the manual method of single cell RNA sequencing data annotation is described. Methods of automatic
annotation also exists. However, for the automatic annotation to work properly, you need to find the right
algorithm and, more importantly, an extensive single cell RNA sequencing database carefully annotated with
all the cell types that you wish to identify. This can be challenging, there is always the need to verify the
expression of the known canonical markers to check the proper annotation of the data.

Install the necessary package

geplot2 package
geplot2 is a package allowing plot customization.

install.packages('ggplot2')

Load the necessary packages

library(Seurat)
library(ggplot2)

Load the object

The first step is to load the merged object generated with the tutorial 2 or the integrated object generated
with the tutorial 3. For this example we will work with the merged object. In the argument of the
readRDS function, put the path to your merged or integrated object.

setwd("/Users/labo/Desktop/Tutos_scRNA_seq_R")
lung_merged <- readRDS('"processed_objects/Seurat_object_merged.rds")



Quality controls of the clusters

Some clusters can group cells of poor quality, it is important to remove them or they will affect the analysis.
A cluster is considered of poor quality when most of its cells present high percent.mt and low nCount_ RNA
/ nFeature_ RNA. nFeature_ RNA is the number of genes with at least one mRNA sequenced in the cell,
nCount_ RNA it the number of mRNA sequenced in the cell and percent.mt is the percentage of mitochondrial
genes over the total number of genes.

VlnPlot (lung_merged, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"))

nFeature_RNA nCount_RNA percent.mt
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Here the cluster 24 high percent.mt and low nCount RNA and nFeature RNA, so we choose to keep all of
them.

Removal of the low quality clusters

If during the previous step there were some low quality clusters, we need to remove them from the data and
recalculate the clusters and UMAP coordinates (if not, skip this step). Here we will remove the cluster 24.

First the function subset allows to extract some clusters from the object. Here we remove the cluster 24
from your object:

lung _merged <- subset(lung merged, idents = c("24"), invert = TRUE)

The invert = TRUFE means that we keep all the clusters except that the ones in the idents parameter. If
invert is set to FALSE, the subset function will keep only the clusters specified in the parameter ident.



Then you need to redo the UMAP coordinates and cluster calculation, and retest the quality of the newly
calculated clusters.

lung merged <- RunPCA(lung_merged, npcs = 20, verbose = T)

lung_merged <- RunUMAP(lung_merged, reduction = "pca", dims = 1:20)
lung_merged <- FindNeighbors(lung_merged, reduction = "pca", dims = 1:20)

lung merged <- FindClusters(lung_merged, resolution = 0.7)

VlnPlot (lung_merged, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"))
If there are still low quality clusters in the new object, this step can be repeated several times.

To divide the cells into more clusters, the resolution parameter of the FindClusters can be increased (or
decreased to divide the cells into less clusters).

Identification by calcul of the markers

Then, we can visualize the object and the clusters.
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The Seurat function FindAllMarkers allows the identification of the genes that are the most specific of each
cluster. This is very helpful to identify the identity of the clusters. This function returns a table that can
then be saved to work on the identification with it. In the argument of the write.csv function, put
the path of the folder where you want to save the marker table.



DefaultAssay(lung_merged) <- "SCT"

Idents (lung_merged) <- "seurat_clusters"

table_markers <- FindAllMarkers(lung merged, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25, m
write.csv(table_markers, "results_analysis/Markers_lung merged_SCT.csv")

X p_val avg log2FC pct.l pct.2 p_val adj cluster gene
Cd79a 0 6.376864 0.992 0.042 0 0 Cd79a
Ebfl 0 5911433  0.969 0.043 0 0 Ebfl
Cd79b 0 5796725 0.943 0.055 0 0 Cd79b
Ly6d 0 4.665536  0.947 0.059 0 0 Ly6d
Ms4al 0 6.579055 0.864 0.020 0 0 Msdal
Bankl 0 5.914312 0.800 0.025 0 0 Bankl
Ighd 0 6.237278 0.792  0.021 0 0 Ighd
Femr 0 6.479551 0.766 0.016 0 0  Femr
Igle3 0 3.206417 0.760 0.030 0 0 Igle3
Mef2c 0 3.791679 0.882 0.160 0 0 Mef2c
H2-DMb2 0 4.104860 0.769  0.056 0 0  H2-DMb2
Igle2 0 4.057703 0.744 0.034 0 0 TIgle2
Cd3Tr 0 3.205517 0.925 0.258 0 0 Cd37
Ighm 0 1.136586 0.979 0.332 0 0 Ighm
Gm31243 0 6.286738 0.658 0.012 0 0 Gm31243

This is the first lines of the result of the FindAllMarkers function. In the lines there are the genes found to
be characteristic of the different clusters. Then the different columns give several information about these
genes:

e p_val —> p-value not adjusted for multiple test correction

o avg log2FC —> Average log2 fold change. Positive values indicate that the gene is more highly
expressed in the cluster

+ pct.l —> The percentage of cells where the gene is detected in the cluster
» pct.2 —> The percentage of cells where the gene is detected on average in the other clusters

e« p_val adj —> Adjusted p-value, based on bonferroni correction using all genes in the dataset, used
to determine significance

« cluster —> Identity of the cluster. Here it is just a number as the clusters haven’t been identified yet
e gene —> Ensembl gene ID
Here we see that the genes Cd79b and Msdal are specific of cluster 0, and these genes are markers of B cells

type. So the cluster 0 is composed of B cells.
By doing the same analysis for all the clusters we can annotate the identity of all the cells of the object.

Identification by ploting of the markers

To identify the identity of the different clusters, we can also plot the expression of specific markers for each
cell type of the organ, in each Seurat cluster. First we need to choose the markers. Here is a list of markers
of the lung cell types :



markers <- c( "Pdgfra", #Fibroblasts
"Myh11", "Actal2", #Smooth muscle cells

"Ager", "Rtkn2", #AT1

"Lamp3", #AT2

"Tppp3", "Foxjl", #cildated cells
RS GEbIa2EnE M chble K el bllcellil's

"Chil3", "Krt79", #alwveolar macrophages
"C3arl", #interstitial macrophages

"Pecaml", #endothelial cells

"Cd6s8", "Plac8", #monocytes
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"3100a8", "S100a9", #neutrophils
"Nkg7", "Gzma", #natural killer cells
"Upklb", "Msln", #mesotheliocyte

"Alas2", "Bpgm", #erythrocytes
'‘Mcpt8', 'Cpa3', 'Fcerla', #basophils
'Pf4', 'Itga2b', #platelets

"Mki67", "Top2a" #proliferating

Then to have the expression of these genes in all of the clusters in one plot, we use the Dotplot function:

plot <- DotPlot(lung merged, features = markers)
plot + theme(axis.text.x = element_text(angle = 90))
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A large dot indicates that a high proportion of the cells of the cluster express a given gene, and a dark blue
dot indicates a high mean expression of a given gene by the cells of the cluster.
If we look again at the cluster 0, it expresses the B cells markers Cd79b and Msdal.

Assignation of the cell types

Now that we identified the cell types corresponding to the different clusters, we need to save this information
in the object, by first renaming the idents and then create a new metadata slot with the cell identity. Change
the number of clusters according to what you have and assign them according to the cell types
that you identified.

lung_merged_named <- RenameIdents(lung_merged,
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lung_merged_named®meta.data$cell_ID <- Idents(lung_merged_named)

DimPlot (lung_merged_named, label = T, label.size = 4.5, group.by = "cell_ID", raster = F) + NoLegend()

cell_ID




Quality controls and cleaning of the cell types

At the beginning of this tutorial, we had a first look at the quality controls indicators. However, different
populations can show very different ranges of normal percentage of mitochondrial genes expresses, number
of transcripts expressed and number of different genes expressed. Therefore, to obtain a cleaner dataset, we
can re-perform these quality controls and cleaning for each of the cell types identified.

We will see here the procedure on the example of the B cells. The first step is to extract population of
interest. The subseting of an object can be done on a number of parameters:

« a metadata entry (for example a cell types, or only some samples)
e the nFeature. RNA, nCount_RNA or percent.mi parameters
¢ the expression of a choosen gene

Here we will extract the B cells. Before that, we need to specify the location of the information in the
metadata. In our case it is located in the cell ID metadata slot.

Idents(lung_merged_named) <- "cell ID"
object_B_cells <- subset(lung_merged_named, idents = c("B_cells"), invert = FALSE)

The parameter invert = FALSE means that we keep only the clusters specified in the parameter idents.
If invert is set to TRUE, the subset function will keep all the clusters except that the ones in the idents
parameter.

Then you need to redo the UMAP coordinates and cluster calculation.
object_B_cells <- RunPCA(object_B_cells, npcs = 20, verbose = T)
object_B_cells <- RunUMAP(object_B_cells, reduction = "pca", dims = 1:20)

object_B_cells <- FindNeighbors(object_B_cells, reduction = "pca", dims = 1:20)
object_B_cells <- FindClusters(object_B_cells, resolution = 0.5)

This cell type object is now divided in several clusters.

DimPlot(object_B_cells, label = T, label.size = 6, raster = F) + NoLegend()
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First, we plot the expression of the markers for the different populations. If a cluster express markers non
specific of B cells, it is probably a cluster constituted of doublets (two cells encapsulated and sequenced
together as one).

plot <- DotPlot(object_B_cells, features = markers)
plot + theme(axis.text.x = element_text(angle = 90))
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Here we can see that the clusters 4 and 7 don’t express any specific markers, they probably contains low

quality cells.

‘We can then plot the percent.mt, nCount_RNA and nFeature_ RNA to check the quality of the different

clusters.

VlnPlot (object_B_cells, features

c("nFeature_RNA",

10

"nCount_RNA", "percent.mt"))
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With this plot, we can confirm that the clusters 4 and 7 are low quality cells. They present a very high
number of transcripts. Furthermore, the clutser 8 shows a twice as high percentage of mitochondrial genes
than the other populations, with a low number of genes and transcripts expressed. Therefore, we will remove
these cells from the object. To do that, we need the list of cells constituting these clusters.

B_cells_to_remove <- subset(object_B_cells, idents = c("4", "7", "8"), invert = FALSE)
cells_to_remove <- colnames(B_cells_to_remove)

We can then remove this list of cells from the main object. We use the parameter invert = TRUFE to specify
that we want to keep all the cells except the list of low quality cells.

lung_merged_cleaned <- subset(lung_merged_named, cells = cells_to_remove, invert = TRUE)

This processed needs to be done for all the cell population in order to obtain quality results in the following
analysis. Then, we redo the UMAP coordinates and cluster calculation.

lung_merged_cleaned <- RunPCA(lung_merged_cleaned, npcs = 20, verbose = T)
lung merged_cleaned <- RunUMAP(lung merged_cleaned, reduction = "pca", dims = 1:20)

lung_merged_cleaned <- FindNeighbors(lung_merged_cleaned, reduction = "pca", dims = 1:20)
lung_merged_cleaned <- FindClusters(lung merged_cleaned, resolution = 0.5)

DimPlot (lung_merged_cleaned, label = T, label.size = 6, raster = F, group.by = "cell _ID") + NoLegend()
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Identification of the different sub populations

If you are interested in the study of a specific cell population, you may want to annotate this population
more precisely, with sup populations or cell states. In order to do so, the population is first extracted with
the subset function. Then the calculation of the UMAP coordinates and cluster are redone. You can then
reanotate this sub object using the same procedure as the main object.

Saving of the named and cleaned object

The cell type labeling is over, now you can save your object in a chosen folder.

saveRDS(lung_merged_cleaned, "processed_objects/Seurat_object_named.rds")
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Tutorial 5 : visualization and differentially expressed genes analysis

Juliette SOULIER

4/16/2024

This tutorial explains the basis of the analysis of single cell RNA seq data, with visualization, comparison
of different samples/conditions/cell types. ..

Install the necessary package

EnhancedVolcano package
EnhancedVolcano is a package to make customizable Volcano plots.
if (!requireNamespace('BiocManager', quietly = TRUE))

install.packages('BiocManager')
BiocManager: :install('EnhancedVolcano')

Load the necessary packages

library(Seurat)
library(ggplot2)
library(EnhancedVolcano)

Load the object

The first step is to load the named object generated with the tutorial 4. In the argument of the readRDS
function, put the path to your named object.

setwd("/Users/labo/Desktop/Tutos_scRNA_seq_R")
lung_merged <- readRDS("processed_objects/Seurat_object_named.rds")

Visualisation of the data and meta data

Single cell data has usually thousands of dimensions, and to visualize it we need to have it plot on a two-
dimensoins space. To do so we use the previously calculated reduction of dimensions, and the UMAP
algorithm. One dot represent one cells, and the cells are distributed according to their similarities and
differences of transcriptome.



You can choose to visualize different meta data parameters (argument group.by) or produce separated plots
for different modalities (argument split.by).

cell_ID

10 1
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Visualisation of the gene expression
Another useful information to visualize is the gene expression. This can be done in several ways :

« FeaturePlot: plots the gene expression directly on the UMAP. The plots also be separated according
to a modality, and it is also possible to plot the co-expression of two genes.
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e VInPlot: draws a violin plot of single cell data. It can be gene expression, but also quality controls for
example. Like for the UMAP plot, one dot represents one cell, and the violin shape represent a density

of cells.
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nFeature RNA is the number of genes with at least one mRNA sequenced in the cell, nCount_RNA it the
number of mRNA sequenced in the cell and percent.mt is the percentage of mitochondrial genes over the
total number of genes.

¢ Cell type proportion

The proportion of the cell types in the different samples can be very interesting to study. However this
result needs to be analysed with precautions as it can be biased by technical issues, such as the dissociation
process.

param.1 <- "orig.ident"

pazam' 2 <=8 Ecaltl b

Idents (lung_merged) <- param.1

cells_per_cluster_and_batch <- as.matrix(table(lung_mergedOmeta.datal[param.1]], lung merged@meta.datal
cells_per_cluster <- as.matrix(table(lung_mergedCmeta.datal[param.1]]))

colnames(cells_per_cluster) <- "Total"

nb.cells <- t(cbind(cells_per_cluster_and_batch, cells_per_cluster))

Ctrl 1 IR 17Gy 5M_1 IR _17Gy 5M 2

B_ cells 568 982 1665
T cells 1507 1088 1263
AM 399 594 1264
Netrophils 234 614 570
EC 634 492 189
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Ctrl_1 IR_17Gy_5M_1 IR_17Gy_5M_2

Fibroblasts 376 525 123
AT2 855 142 16
M 223 506 731
NK T cells 92 298 494
DC 311 487 514
Monocytes 114 169 367
Ciliated  cells 352 161 92
NK cells 235 144 95
Club_ cells 219 42 43
AT1 34 133 91
SMC 7 86 94
28 9 20 37
Total 6669 6483 7648

» Analysis of differentially expressed genes (DEG)

The aim of a DEG analysis is to identify the genes differentially expressed between two conditions. The
comparison can be between two cell types, two experimental conditions... First you need to specify the
meta data slot where are stored your two conditions. Then the control compartment is put in the ident. !
argument, and the other one in the ident.2 argument.

Idents (lung_merged) <- "condition"
DEG_NI_IR <- FindMarkers(lung merged, ident.l = "IR_17Gy_5M", ident.2 = "Ctrl", logfc.threshold = 0.1,

p_val avg log2FC pct.l pet.2 p val adj

Sftpc 0 -4.282583  0.380 0.989 0
Sppl 0 5.253038 0.728 0.194 0
Igke 0 1.285935 0.802 0.280 0
Sftpal 0 -3.623271  0.116 0.574 0
Chr2 0 -3.611625 0.095 0.507 0
Sftpb 0 -3.920021  0.060  0.358 0
mt-Nd4l 0 -1.385142  0.462 0.747 0
Cyp2f2 0 -2.748017 0.062 0.325 0
Widc2 0 -1.895722  0.160 0.422 0
Scgh3a2 0 -2.452463 0.141  0.395 0
Tgha 0 5168471 0.261  0.009 0
Gm10076 0 -1.200278  0.602 0.849 0
Cxcllb 0 -3.586534 0.048 0.287 0
Atplbl 0 -2.716969 0.086 0.320 0
Selenbp1 0 -2.726413  0.073  0.296 0

This is the fist lines of the result of the FindMarkers function.

e p_val —> p-value not adjusted for multiple test correction

e avg log2FC —> Average log2 fold change. Positive values indicate that the gene is more highly ex-
pressed in the ident.1 compartment

e pct.l —> The percentage of cells where the gene is detected in the ident.1 compartment

« pct.2 —> The percentage of cells where the gene is detected on average in the ident.2 compartment

11



« p_val adj > Adjusted p-value, based on bonferroni correction using all genes in the dataset, used to
determine significance
» row names —> Ensembl gene ID
The upregulated and downregulated genes can then be analysed with GSEA.

« Visualization of DEG results: Volcano plot

DEG results can be visualized with a volcano plot. The package EnhancedVolcano is a package to make
customizable Volcano plots, the github page proposes many layout options.

## Warning: One or more p-values is 0. Converting to 107-1 * current lowest
## non-zero p-value...

## Warning: ggrepel: 1705 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

Volcano plot

EnhancedVolcano
i:lghaSpm
' Jghain

NS
Log, FC

p-value
p—value and log, FC

-5 0 5 10
Log» fold change

total = 11494 variables

« Analysis of different sub populations

A lot of times, it is much more convenient to work on a subset of the object that contains all the samples
and cell types. For example, if you are interested in a specific cell types, it is easier to subset it in order to
study it in details and investigate sub populations.

All the visualization and further analysis can be then performed on this population.
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Tutorial 6 : trajectory analysis with Monocle3

Juliette SOULIER

4/16/2024

A trajectory analysis is a way to predict a possible transition from a cell state to another or from a cell state
to another. Monocled is a tool that allows to perform trajectory analysis on single cell RNA sequencing
data.

Install the necessary package

Monocle3 package and its dependencies

if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager: :install(version = "3.14")

BiocManager: :install(c('BiocGenerics', 'DelayedArray', 'DelayedMatrixStats',
'limma', 'lme4', 'S4Vectors', 'SingleCellExperiment’,
'SummarizedExperiment', 'batchelor', 'HDF5Array',
bterral oo sERib))

install.packages("devtools")

devtools: :install_github('cole-trapnell-lab/monocle3')

Load the necessary packages

library(monocle3)
library(Seurat)
library(SeuratWrappers)
library(patchwork)

Load the object

The first step is to load the merged object generated with the tutorial 2 or the integrated object generated
with the tutorial 3. For this example we will work with the merged object. In the argument of the
readRDS function, put the path to your merged or integrated object.

setwd("/Users/labo/Desktop/Tutos_scRNA_seq_R")
lung merged <- readRDS("processed_objects/Seurat_object_named.rds")



Subset the object

Trajectory analysis aims to predict a possible transition from a cell population to another. Therefore it
is more efficient to perform this analysis of a subset of the cell populations of interest. Here, we take the
example if the monocytes and interstitial macrophages.

Idents(lung_merged) <- '"cell ID"
object_monocyte_IM <- subset(lung _merged, idents = c("Monocytes", "IM"), invert = FALSE)

object_monocyte_IM <- RunPCA(object_monocyte_IM, npcs = 20, verbose = T)
object_monocyte_IM <- RunUMAP(object_monocyte_IM, reduction = "pca", dims = 1:20)
object_monocyte_IM <- FindNeighbors(object_monocyte_IM, reduction = "pca", dims = 1:20)
object_monocyte_IM <- FindClusters(object_monocyte_IM, resolution = 0.7)

cell_ID
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Convert the object

The Seurat object need to be converted to a cell data_ set object in order to be processed by Monocle3.

cds <- as.cell_data_set(object_monocyte_IM)
cds <- cluster_cells(cds)



Learn the trajectory graph

The object is then ready to commute the trajectory analysis.

cds <- learn_graph(cds)

Plot the trajectory graph

The trajectory can then be plot on the data.

plot_cells(cds,
i@y @iy 57 2 Tezill gt
label_groups_by_cluster=T,
label leaves=FALSE,
label _branch_points=FALSE)

10 1 'Mi#

UMAP 2

UMAP 1

Order and plot the cells in pseudotime

With prior biological knowledge, it is possible to specify the origin point of the trajectory (= the cell type
of origin) in order to perform a pseudotime analysis.



cds <- order_cells{(cds) #open interactive graphical user interface for selecting one or more root nodes

This pseudotime can also be plot on the data.

plot_cells(cds,
color_cells_by = "pseudotime",
label_cell_groups=FALSE,
label_leaves=FALSE,
label _branch_points=FALSE,
graph_label_size=1.5)

Other options for plotting can be found in the Monocle3 website.
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Introduction
Copyright ©The authors 2021. For ~ Recent developments in single-cell technologies, and particularly single cell RNA sequencing
reproduction rights and (scRNA-seq), have provided invaluable tools to decipher complex biological systems like the lung. In the
gg::;:z;g::@ioe::::t.org respiratory system, scCRNA-seq analyses have led to the discovery of new cell types, such as ionocytes, as

well as to a refined classification of the cells composing the lung [1-4]. Profiling of more than 300000
cells from patients suffering lung pathologies, such as idiopathic pulmonary fibrosis (IPF), has allowed to
identify new sub-populations of aberrant basal and endothelial cells that are specific to IPF [5].
Furthermore, collective efforts such as the Human Cell Atlas, aiming at characterising all cells in the
human body at the molecular and spatial levels, have flagged the lung as a priority organ [6]. Ongoing
efforts are now directed towards the development of spatial transcriptomic techniques allowing
identification of cell localisation and description of prevailing cell-cell interactions in the organ in order to
define a physiological cell atlas. Although technologies able to sequence in situ the transcriptome of
individual cells are rapidly emerging, they still lack the resolution required to depict the extreme cell
heterogeneity that characterises the anatomy of the lung. This article will present an overview of the
different spatial transcriptomic methodologies that could be applied to the lung, as well as their potential
impact for respiratory research and medicine.
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One goal, different methodologies

The central goal of spatial transcriptomics is to depict the transcriptome landscape at the single cell level in
native histological tissue sections. Two orthogonal techniques to study transcription at the cellular level
have been firmly established during the last decade. First, scRNA-seq provides, from a cell suspension,
access to an unbiased view of the transcriptome of each sequenced cell. Computational analysis permits the
identification of different cell types present along with information on their respective transcriptome.
Although scRNA-seq analysis provides key information to understand transcriptional alterations, it lacks
sensitivity and, most importantly, loses spatial context due to the experimentally required cell dissociation.
Second, conventional (single molecule) fluorescence in situ hybridisation (smFISH) detects RNA
expression by direct hybridisation of fluorescently labelled probes on tissue sections. This allows the
quantitative measurement of RNA expression with high sensitivity and specificity at the single cell level in
their native spatial context, but not on the scale of the entire transcriptome [7, 8].

Recent developments further substantially improved these techniques, and innovative combinations of
several approaches, such as multiplexing and amplification, provide an even deeper view. Here, we provide
a brief overview of some of the recent milestone developments in spatial transcriptomics reached by either

https://doi.org/10.1183/13993003.04314-2020 Eur Respir J 2021; 58: 2004314
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improving approach or by implementing innovative combinations. Benefits and limitations of the different
spatial transcriptomic methodologies are summarised in table 1.

scRNA-seq combined with hybridisation-based approaches

Computational analysis of scRNA-seq data allows the identification of distinct cell types present using
published canonical markers. The analysis also allows identification of other cell-specific mRNA markers,
usually 2-3, for each cell type, that could be used in hybridisation. Next, a set of cell type-specific probes
is designed, labelled and hybridised on tissue sections using smFISH protocols (see below), and imaged by
either wide-field or confocal microscopy to identify individual mRNAs [9].

The list of classic cell type-specific markers has been considerably enriched by information obtained in
scRNA-seq, thus allowing extensive characterisation of cell types in some organs, such as the brain [10].
However, imaging the required number of markers in tissue remains particularly challenging and multiple
factors (i.e. low expression level, high background due to off-target hybridisation or high tissue
autofluorescence) can degrade signal quality. To circumvent these issues, different approaches, which may
be combined, aim to: 1) amplify the actual RNA signal [11-15]; 2) increase the specificity of the probes
and thus reduce off-target binding and background [16]; and/or 3) remove autofluorescence by tissue
clearing [17, 18].

To reliably detect different cell types, several tens to hundreds of mRNA species have to be detected on
the same histological sections. Nevertheless, the number of mRNA species that can be detected in
conventional smFISH is limited by the number of spectrally resolved fluorophores, usually 3-4. To
circumvent this limitation, sequential rounds of hybridisation are performed on microscopes equipped with
microfluidic devices that allow, with adequate software, to fully automate imaging and buffer exchange.

TABLE 1 Comparison of the different spatial transcriptomic methodologies

Hybridisation-based methods High throughput In situ sequencing methods
strategies
Techniques + seqFISH * seqFISH+ « In situ sequencing for RNA
« osmFISH « MERFISH » FISSEQ
+ HCR* + ExSeq
« smHCR* + STARmap
« ClampFISH" « Slide-seq/slide-seqv2
+ SABER" « HDST
« PLISH* « Visium (10XGenomics)
« SCRINSHOT"
« RNAscope” (Bio-Techne)
Imaging + Widefield (osmFISH, ClampFISH, SABER, « Widefield (MERFISH) -« Widefield (Visium)
requirements SCRINSHOT, RNAscope) » Confocal (segFISH+)  « Confocal (FISSEQ, STARmap, Slide-seq/
+ Confocal (HCR, smHCR, PLISH) Slide-seqV2, ExSeq)
*» Super-resolution (seqFISH)
Benefits + High sensitivity + High throughput (up  + High throughput
+ Cellular resolution to 10 000 + Untargeted approach
* Low cost transcripts) * De novo identification of spatial patterns
+ High sensitivity
« Cellular resolution
» Untargeted
approach
Limitations + Low throughput (2-35 transcripts) * Technically * Low sensitivity
« Targeted approach challenging * Low spatial resolution
« Time consuming « High level of image * High cost
analysis
+ Intermediate cost
Applications in  + PLISH: comparison of AT2 distribution of NA « In situ sequencing for RNA: spatial mapping of 34
the lung idiopathic pulmonary fibrosis versus control immune markers in granulomas present in
samples, automated cell type identification Mycobacterium tuberculosis-infected lungs

+ SCRINSHOT: spatial mapping of tracheal cell

types

*: with fluorescent signal amplification.
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For instance, in the cyclic-ouroboros smFISH method, three sets of probes targeting three different mRNAs
are hybridised on a tissue section. After imaging, probes are stripped using high formamide concentration.
Next, three new probe sets are hybridised on the same section, imaged and stripped, allowing the number
of targets to linearly increase with the number of hybridisation rounds [10]. Computational analysis then
uses probabilistic models to infer the cell types in the images when compared to the expression levels
measured in previously obtained scRNA-seq.

Multiplexing strategies for hybridisation-based approaches

To increase the number of transcripts that can be detected in RNA FISH, more complex strategies using
specific encoding strategies have been developed in the recent years. Here, a given mRNA is not uniquely
identified with a single hybridisation but with a unique barcode established over several hybridisation
rounds. This permits several species to be targeted simultaneously in each round. The mRNA expression is
then computationally inferred, often with error-correction strategies being included in the encoding
schemes. Among these approaches are Multiplexed Error-Robust FISH (MERFISH) and seqFISH, which
have been improved over several iterations [17, 19, 20]. For instance, with seqFISH+, 10000 different
mRNAs can be imaged in brain sections, allowing precise cell type identification and molecular
characterisation in their spatial organisation [21].

In situ sequencing strategies

These approaches aim to perform sequencing directly on histological tissue sections. Methods such as
FISSEQ (fluorescent in situ sequencing) and STARmap (spatially resolved transcript amplicon readout
mapping) reverse transcribe the mRNAs within cells and amplify them before sequencing [22-24]. Other
approaches, such as Slide-seq/Slide-seqV2 and HDST (high definition spatial transcriptomic) analysis, use
coverslips or slides coated with barcoded oligo(dT) to capture mRNAs from tissue sections while
recording their position at the same time [25-28]. After next generation sequencing, decoding of the
barcodes allows visualisation of expression patterns of mRNAs present on the slide. A recent approach,
ExSeq, combines spatial expansion of the biological sample with RNA sequencing, permitting highly
multiplexed mapping of RNAs in tissue sections [29]. Compared to the hybridisation-based approach that
targets a relatively limited group of markers with high sensitivity, the unbiased approach of
sequencing-based methodologies should theoretically depict the whole transcriptome landscape of every
cell in the tissue and thus it holds great promise. However, some limitations still need to be overcome,
such as the lack of sensitivity and the fact that the spatial resolution does not classically reach the single
cell level.

Altogether, spatial transcriptomic methodologies have the potential to lead to an unprecedented
understanding of tissue architecture and physiology. However, these technologies remain challenging and
researchers need to evaluate what fits best their needs in terms of resolution and throughput (table 1).

Spatial transcriptomics in the lung and future applications

Three spatially resolved transcriptomic studies have been performed in the lung so far. First, PLISH
(proximity ligation in situ hybridisation) is a FISH-based approach relying on probes that act after a
ligation step as a template for signal amplification. This allows to achieve high specificity, high sensitivity
and high signal-to-noise ratio [30]. The PLISH protocol works on cryo-preserved as well as formalin-fixed
paraffin-embedded human tissues and can be combined with classical immunostaining, making it suitable
for clinical studies and diagnosis. As a proof of concept, PLISH was used to compare the spatial
distribution of AT2 cells in control and IPF human lung tissue. In addition, the authors demonstrated that
images from iterative staining for classical markers of epithelial cells (e.g. AT1, AT2, club cells) and
macrophages fed into a dedicated analysis pipeline allowed an automated mapping of these cells onto the
histological lung section.

Second, SCRINSHOT (single cell resolution in situ hybridisation on tissues) is validated in different
organs, including the respiratory tract [31]. It uses padlock probes, which have complementary arms to the
target mRNA sequence and a common backbone. After hybridisation, padlock probes are ligated using the
SplintR ligase to create circular single-stranded DNA molecules that serve as a template for amplification.
Staining and analysis of 29 markers by SCRINSHOT allowed mapping of the distinct epithelial cells
present in the tracheal epithelium, including the recently discovered ionocytes [1, 2]. In the distal airways
and alveoli, 15 markers were used to robustly identify macrophages and epithelial cells, such as AT1 and
AT?2 cells, as well as club and neuroendocrine cells.

Third, Carow et al. [32] used an in situ sequencing technique to localise 34 immune transcripts in lung
tissue infected by Mycobacterium tuberculosis. Briefly, RNAs present in the lung section are reverse
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transcribed and padlock DNA probes specific to the targeted transcripts are hybridised. A ligation step
allows the circularisation of the probes required for the amplification and then, the amplified products are
subjected to sequencing. Here, spatial transcriptomics allowed mapping of immune cells that characterise
tuberculosis granulomas.

The spatial transcriptomics field has evolved very rapidly in recent years. With community-driven efforts
such as Tabula Muris and The Human Cell Atlas that prioritise the respiratory system [6, 33, 34], lung cell
classification is being refined and molecular markers for each cell type are now available from lung
scRNA-seq datasets. Analysis of these cell type-specific markers with spatial transcriptomics will allow a
better characterisation of the physiological interactions between cell types as well as their alterations in
respiratory diseases, providing key insights in the understanding of their physiopathology.

In clinical practice, spatial transcriptomics, with an effort to standardise methods and create automated
analysis pipelines, may eventually provide a useful complementary tool to analyse molecular markers or
spatial patterns specific of lung pathologies on histological sections.

This article has been revised according to the correction published in the February 2023 issue of the European
Respiratory Journal.
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Recent progress in image-based spatial RNA profiling enables to spatially resolve tens to hundreds of
distinct RNA species with high spatial resolution. It presents new avenues for comprehending tissue
organization. In this context, the ability to assign detected RNA transcripts to individual cells is crucial
for downstream analyses, such as in-situ cell type calling. Yet, accurate cell segmentation can be
challenging in tissue data, in particular in the absence of a high-quality membrane marker. To address
this issue, we introduce ComSeg, a segmentation algorithm that operates directly on single RNA
positions and that does not come with implicit or explicit priors on cell shape. ComSeg is applicable in
complex tissues with arbitrary cell shapes. Through comprehensive evaluations on simulated and
experimental datasets, we show that ComSeg outperforms existing state-of-the-art methods for in-
situ single-cell RNA profiling and in-situ cell type calling. ComSeg is available as a documented and
open source pip package at https://github.com/fish-quant/ComSeg.

Understanding the spatial organization of tissues at the single-cell level is
crucial to study disease and development'~*. Molecular profiling of single
cells in their spatial context allows us to infer cell states and cell types,
cell-cell interactions, and cell-fate decision-making', as well as the study of
the overall tissue architecture, under normal and diseased conditions,
leading to the definition of spatial domains and disease signatures’.

Spatial transcriptomics denotes a large panel of technologies that allow
to measure gene expression and to retrieve the spatial positions of the
mRNA molecules. These methods can largely be divided into two groups:
sequencing-based”’ and imaging-based”"’

spatial transcriptomics (SST and IST, respectively). The former mea-
sures the entire transcriptome, but has a lower spatial resolution, while the
latter relies on measuring a subset of genes at high resolution. Such a subset
consists of pre-defined marker genes that are specific for the cell states or
types of interest. Since IST captures only a subset of the transcriptome, we
will refer to these approaches as RNA profiling. These imaging-based
approaches are variants of single-molecule fluorescence in situ hybridiza-
tion (smFISH) methodologies and can detect RNAs with single-molecule
sensitivity with high spatial resolution, several orders of magnitude below
the scale of a single cell. A typical dataset consists of 2D or 3D point clouds of
the imaged RNA species. One challenge in the analysis of these data is the

correct assignment of each RNA to its cell of origin. Indeed, in contrast to
single-cell RNA sequencing (scRNA-seq), the information on which RNA
molecules belong to the same cell has to be inferred from the image. This
assignment is crucial, as it impacts cell type identification and, thus, the
major aspect of the analysis we would like to perform.

One frequently used approach to perform this assignment is to seg-
ment the cells from additional channels employing markers for cell and
nucleus segmentation. RNAs are then assigned to the cells based on their
spatial positions with respect to this segmentation. Such stainings typically
encompass labeling of the nucleus with DAPI, cellular staining with one or
more cell membrane dyes, or labeling all RNAs as a proxy for the
C)mlplasm"””. However, cell membrane staining is often not an optiorlﬁ‘”,
Besides, staining can be technically complex', and may not work equally
well for the entire tissue, thus leading to inhomogeneous cell segmentation
and cell type calling accuracy. Further, the boundaries of individual cells can
be challenging to segment, especially for tissue with complex 3D cellular
morphologies.

More recently, several computational approaches have been presented
to detect individual cells in the images and establish their RNA profile
without relying on a dedicated cell marker. These methods rely only on the
RNA positions and in some cases a DAPI stain, to regroup RNAs according

'Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006 Paris, France. ZInstitut Curie, PSL University, 75005 Paris, France. “INSERM, U900,
75005 Paris, France. “Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, F-75015 Paris, France. ®Institut Pasteur, Université Paris Cité, Photonic
Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), F-75015 Paris, France. *Institut Curie, Inserm U1021-CNRS UMR 3347,
University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, Cedex, France. "Institute of Cell Biology (Cancer Research), University Hospital
Essen, Essen, Germany. ><Je-mail: fmueller@pasteur.fr; Thomas.Walter@minesparis.psl.eu

Communications Biology | (2024)7:823 1



https://doi.org/10.1038/s42003-024-06480-3

Article

to local transcription profiles. Such RNA point clouds can then act as an
approximation for cell shape, by establishing a hull that encompasses all
RNAs that were deemed to belong together' . Methods like pciSeq'® and
Baysor"” leverage statistical models to group RNAs. pciSeq segments cells to
match external scRINA-seq datasets and Baysor divides RNAs into spatially
homogeneous areas. Recently, deep-learning approaches were proposed.
JSTA' and BIDCell' train a cell membrane segmentation model exploiting
nuclei segmentation and external scRNA-seq while SCS trains a membrane
segmentation transformer network using solely nuclei segmentation as
input. While these approaches hold great promise for the analysis of spatial
RNA profiling data, their use is limited by implicit priors on cell shape'**®
leading to low performance in complex tissues, requirement of additional
scRNA-seq data'*"” or manual annotations which are scarce and error-
prone'®" (see Table 1).

While there already exist methods for spatial RNA profiling, these
methods usually come with requirements that are not always met in prac-
tice. For instance, some methods require a high RNA density, which often
implies a large panel of marker genes. However, while current commercial
spatial RNA profiling approaches provide hundreds of marker genes, they
remain extremely costly, and for many questions, fewer marker genes will be
sufficient, which can be probed with simpler custom-built solutions™*".
Furthermore, most methods'*'® implicitly assume convex or even round cell
shapes. In contrast, the cell shapes in some tissues can be complex and often
deviate from such simple shapes. Approaches relying on strong assumptions
on cell shape are, therefore, suboptimal for many of these tissue types. Lastly,
some methods require parallel scRNA-seq data'®", which in practice is not
always readily available, so ideally the use of such information should be
only optional.

To alleviate these issues, we propose a method named ComSeg
ComSeg uses as input only the coordinates of the RNA molecules and the
nucleus positions obtained with staining such as DAPL. ComSeg then
groups RNAs with similar expression profiles aided by these landmarks. It
does not require scRN A-seq data or cytoplasmic markers, nor does it make
implicit use of any prior assumptions regarding cell morphology. Instead,
the method describes RNA point clouds as graphs weighted by gene co-
expression and relies on graph community detection. Our method is easy to
apply by design as it does not require complex machine learning model
training. Furthermore, we provide the tool as an open-source Python
package (https://github.com/fish-quant/ComSeg) with extensive doc-
umentation: https://comseg.readthedocs.io, compatible with the scverse
environment™. To facilitate the application of ComSeg on large datasets, we
ensured its compatibility with SOPA™, as documented on https://comseg.
readthedocs.io.

Development of such analysis approaches requires annotated ground
truth to assess their performance. Experimental ground truth can be
obtained in some cases by employing membrane markers, from which the
cytoplasmic membrane might be segmented with deep neural networks or
manual annotation™. However, the ground truth quality is affected by the
heterogeneity of the staining quality which may be low on complex and
dense tissue"”. Furthermore, experimental data does not permit a more
systematic exploration of parameters such as the expression level or cell
morphology. Hence, similarly to previous studies'*"’, we address the lack of
high-quality ground truth by generating simulated data, allowing us to
control the complexity of the input data. We developed SimTissue (https://
github.com/tdefa/SimTissue), an open-source Python simulation package
to reproduce in silico fluorescent-based spatial transcriptomic experiments.

We used the SimTissue framework to validate ComSeg on simulated
data with increasing complexity in terms of RNA abundance, the number of
marker genes, and tissue morphology. ComSeg outperforms other methods
in terms of the Jaccard index for RNA -cell association in most of the tested
scenarios. We also validated ComSeg on an in-house experimental dataset
of mouse lung tissue imaged with smFISH and human embryonic lung
tissue” imaged with HyBISSL‘", On these experimental data, ComSeg esti-
mates accurate RNA profiles that match established scRNA-seq datasets.
Finally, we benchmark ComSeg on two MERFISH® datasets with cell
membrane staining, the mouse ileum dataset'” and a human breast cancer
dataset from VizGen from the MERSCOPE FFPE Human Immuno-
Oncology Data Release. We leverage areas with high-quality membrane
staining to obtain segmentation ground truth. Overall, the shape-agnostic
approach of ComSeg demonstrates notable efficacy for complex tissue
composed of cells with non-convex shapes.

Results

ComSeg overview

Here we present ComSeg, a graph-based method to perform cell segmen-
tation from spatial RNA profiling data. The method operates directly on
RNA point clouds and leverages nuclear staining to increase segmentation
quality. For this, we define a KNN graph, where each RNA molecule is a
node and where edges are weighted according to the co-expression score of
the corresponding genes. Instead of relying on external data to compute
these co-expression weights, we leverage the input images by estimating the
local gene expression vector in a close environment of each RNA molecule
(see Material and Methods). We then detect groups of RNA molecules with
similar gene expression in their local environment, by the use of a modified
version of the Louvain community detection method”. Our community
detection method can leverage spatial landmarks like DAPI segmentation as
prior knowledge. Lastly, we group the detected RNA communities with
similar expression profiles using the Leiden algorithm™ and obtain a tran-
scriptomic domain map at the tissue scale. To obtain single-cell RNA
profiles, we exploit the nucleus position concurrently with the tran-
scriptomic domain map. An overview of the method is displayed in Fig. la.

State-of-the-art methods for cell segmentation

We benchmarked ComSeg against methods that can be used in an
equivalent setting i.e., single-cell spatial RN A profiling approaches requiring
no external dataset. As a first baseline, we calculated the Watershed
transformation® as this method is often used for RN A-nuclei association in
tissue™"". This method effectively calculates a Voronoi tessellation with the
nuclear regions as markers with an additional distance constraint, and is
thus equivalent to assigning RNA transcripts to their nearest nucleus. The
method, hence, perfectly works for convex cells of homogeneous size if all
nuclei are detected, but may fail otherwise. Second, we benchmarked
Baysor”, a cell marker-free segmentation method optimizing the joint
likelihood of transcriptional composition and prior cell morphology. It is
particularly suited for cases where only nuclear staining or weak cytoplasmic
staining are available. Baysor uses an elliptic function as cell shape prior. We
also applied a method leveraging external scRNA-seq data, pciSeq”, a
Bayesian model leveraging prior scRNA-Seq data to estimate a probability of
cell assignment for each read. Given the observed RNA spot configuration,
the method performs cell assignment to match known transcriptomic
profiles from scRNA-seq. Hence, it also simultaneously assigns each cell to
a cell type. Leveraging prior knowledge may help pciSeq avoid wrong

Table 1 | Characteristics of existing methods for spatial RNA profiling

Watershed pciSeq'® JSTA" SSAM* Baysor'® BIDCell*® Scs™ ComSeg
Convex shape prior Yes Yes Yes No Yes Yes No No
Require external scRNA-seq dataset No Yes Yes No No Yes No No
Require nucleus positions Yes Yes Yes No No Yes Yes Yes
Single-cell profiling Yes Yes Yes No Yes Yes Yes Yes
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Fig. 1| Overview of the method and simulated and experimental data. a Overview of the ComSeg method. b 3D lung tissue simulation with 34 marker genes represented by
different colors. ¢ Mouse Lung tissue from our in-house dataset with six marker genes represented by different colors.

RNA-cell assignment. However, pciSeq implicitly uses a spherical cell shape
prior that may hinder its application on complex tissue. Finally, we
benchmarked our method against SCS"”, a recently published deep-
learning-based method primarily designed for Stereo-seq data, but also

applicable to IST data. The method trains transformers to predict, for each
transcriptomic spot measurement, the direction to the nucleus it belongs to.

All of these methods require hyperparameter tuning. For the Water-
shed method, we had to set the maximum distance parameter to avoid the
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incorrect assignment of RNA to nuclei that were too distant. This maximum
distance parameter had to be optimized to account for differences in tissue
complexity and cell density. For pciSeq and Baysor, we kept the default
settings for all experiments, with the exception of the scaling parameter for
Baysor, which was automatically set using prior nucleus segmentation. For
the analysis of the mouse ileum with Baysor, we used the compartment-
specific gene list provided"” as additional parameters. SCS was trained over
100 epochs with a bin size of 15 pixels for all the experiments. Lastly, the
mean cell size parameter of ComSeg was manually adjusted for each dataset.
More details regarding hyperparameter settings of the benchmarked
methods can be found in Supplementary Note 1.

Benchmark on simulation of lung tissue

To benchmark the methods on challenging data, we first turned to simu-
lations mimicking lung tissue (see Methods). Here, cells have complex
shapes in 3D, and airways add empty space devoid of any transcripts.
Moreover, we also simulated some cells without nuclei, which can occur in
tissue sections. Further, we sampled real expression profiles from our recent
scRNA-seq data™. We simulated 34 cell-type marker genes selected with the
NS-forest algorithm™. This marker list enabled us to classify 19 different cell
types present in lung tissues with an accuracy of 0.88 for cell type calling
when having a perfect RNA assignment to cells (Methods).

To quantitatively compare the different methods, we implemented
different metrics (see Methods). We assessed the quality of the RNA-cell
assignment with the mean Jaccard index per cell, which is calculated for the
RNA positions.

The ultimate goal of all the methods is to obtain a gene expression
vector for each cell. In this context, not all types of RNA-cell association
errors are equivalent. If a cell misses some RNAs, it may still be possible to
accurately assess its RN A profile, similar to cell type classification in scRNA-
seq, where only a fraction of all RNAs are sequenced. However, if some
RNAs are wrongly associated with a cell, this can create a mixed expression
profile resulting in incorrect cell type classification. We thus reported the
mean percentage of wrongly associated RNA per cell (WA) and the mean
percentage of missing RNA per cell (MS) separately. Lastly, we assessed cell
type calling accuracy by comparing each method’s results to the ground
truth cell type defined by scRNA-seq data. To classify cell types, we com-
puted the cosine distance between predicted cell expression vectors derived
from images and the scRNA-seq cell type cluster centroid (see Methods).

Examples of RNA-cell assignment from the different approaches on
lung tissue simulation are shown in Fig. 2a. ComSeg outperforms Baysor,
pciSeq, SCS, and the Watershed algorithm with a Jaccard index of 0.57
against 0.30, 0.33, 0.21, and 0.50 for Baysor, pciSeq, SCS, and Watershed,
respectively (Fig. 2b, left panel). The lower Jaccard index of SCS could be
attributed to its original design for sequencing-based data with access to the
complete transcriptome, whereas in our case, we only simulate a limited
number of markers. Furthermore, SCS does not utilize the 3D information
provided by the simulation and the spatial resolution must be reduced to
accommodate SCS to image data. A closer look at the results reveals that the
type of error is not the same for the four models. Baysor, SCS and pciSeq
have a high percentage (more than 50%) of missing RNA per cell (Fig. 2c,
right panel) while Watershed has a very low (15%) mean percentage of
missing RNA per cell. This is not surprising, as the Watershed computes a
Voronoi tessellation and hence assigns all RN As except those that are very
far from nuclei. Watershed, SCS, and pciSeq have a higher mean percentage
of wrongly associated RNA per cell (about 40%), while it is low for Baysor
and ComSeg (roughly 20% on average) (Fig. 2c, left panel).

Next, we compared the estimated expression profiles from the simu-
lated images to the known, underlying scRNA-seq ground truth, by per-
forming cell type calling. Here, ComSeg reaches 74% accuracy, compared to
60, 62, 35, and 62% for Watershed, pciSeq, SCS, and Baysor respectively
(Fig. 2b, right panel). The higher accuracy of ComSeg for cell-type calling
can be explained by the lower misassociation error rate (Fig. 2c, left panel).
Of note, the best cell type calling accuracy that could be achieved is 88%,
which is thus the value that would be reached if all RNAs were correctly

assigned to the cell they belong to. This value is not 100% because the
selected marker genes do not perfectly recapitulate the full transcriptomic
profiles. On the other hand, we observe that cell-type calling is heavily
impacted by wrong RNA assignments.

In conclusion, ComSeg performs better in terms of RNA-cell asso-
ciation and substantially improves downstream tasks like cell type calling on
lung tissue simulation compared to the current state-of-the-art. In view of
these results, we next turned in Supplementary Note 2 to simulations with a
simpler tissue geometry, in order to better understand the limitations of each
method.

Application to experimental data without cell membrane staining
We applied ComSeg to two different experimental lung datasets with solely
nuclei staining, and each with a specific challenge for the analysis. The first
dataset was created in-house. In this experiment, we visualized 6 different
marker genes in 3D mouse lung tissue. Our approach has a very high RNA
detection efficiency, but many cells display no RNA transcripts as only a
subset of cell types is targeted. The second dataset is from a recent study of
human embryonic lung mapping 147 genes in 2D”. The HybISS approach
used for this dataset has alower capture rate" but enables the visualization of
many more genes.

For such experimental data, no ground truth is available. In tissue with
complex morphology such as lung, having no ground truth makes it par-
ticularly challenging to assess the method’s quality. An existing validation
strategy is based on the gene expression correlation between the overlap
region provided by different methods and the non-overlapping regions'>"’.
However, this validation does not compare with respect to a ground truth.
Errors in existing methods could thus be propagated to the next generation
of methods. Moreover, the method implicitly assumes a homogeneous
spatial distribution of RN As, including for the nuclear region. In the absence
of direct access to ground truth for these imaging datasets, we chose to
leverage available scRNA-seq datasets obtained from identical organ sam-
ples. These scRNA-seq datasets serve as a means to assess the consistency of
single-cell spatial RNA profiling. As for simulations, we calculate the cosine
distance between cell expression vectors derived from images and the
nearest scRNA-seq cluster centroid. Consequently, the cosine distance
between single-cell RNA profiles from the image dataset and scRNA-seq
clusters serves as a surrogate measure for the quality of single-cell spatial
RNA profiling.

Similarly to what we did with simulations, we applied SCS, Baysor,
pciSeq, Watershed and, ComSeg on the 3D mouse lung tissue dataset
(Fig. 3a) and on the 2D embryonic lung tissue dataset.

On mouse lung tissue, ComSeg identifies more cells than the other
tested methods, for which an RNA profile can be assigned (Supplementary
Fig. 3). We obtain similar results for human embryonic lung tissue (Sup-
plementary Fig. 3) where ComSeg also detects more cells than the four other
methods we tested. We took into account only cells with more than five
RN As. Importantly, the number of cells with matching expression profiles
in the scRNA-seq data is higher for ComSeg both for mouse (Fig. 3b) and
human lung tissue (Fig. 3c) at the different cosine distance thresholds.

In summary, ComSeg detects more cells than other methods, and our
analysis revealed that the RN A profiles measured in the segmented cells also
better fit external datasets, thus suggesting better segmentation quality.

Application to experimental data with cell membrane staining
In order to investigate the performance of experimental data, we applied
ComSeg to two publicly available MERFISH datasets, containing both DAPI
and membrane staining. While the cell membrane staining does not cover
all cells, it provides a valuable ground truth in some parts of the image.
The first dataset comprises a mouse ileum tissue section measuring
400 x 600 um" with 241 genes. This dataset presents challenges, as mouse
ileum is known to contain RNAs with preferential intracellular distributions
(Fig. 4a and Supplementary Fig. 4). The authors of this dataset leveraged a
pan-cell-type cell surface marker to visualize the cell membrane. However,
this surface marker tends to work more effectively in specific locations and
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Fig. 2 | Benchmarking on simulated lung tissue. a 3D lung simulation and RNA
assignment of the different models. The ground truth takes into account only cells
with a nucleus. b Performance metrics of the benchmarked models with the mean
Jaccard index per cell and cell type calling accuracy, the red line is the maximum
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cell types, as evidenced in Fig. 4a, where the membrane staining is more
pronounced on the tissue periphery.

In addition, we applied the benchmarked methods to another MER-
FISH dataset featuring human breast cancer tissue. This dataset is part of the
publicly released MERSCOPE FFPE Human Immuno-Oncology Data
Release by the Vizgen company. It encompasses 550 genes spatially
resolved over a section of approximately 10 mm x 8 mm. For the purpose of
this study, we analyzed a 2D subsection measuring 1900 x 970 pum.
Similarly to the previous dataset, it includes nuclei staining and membrane
staining.

These two datasets exhibit partial membrane staining, which we used
as annotated ground truth to evaluate the performance of the benchmarked
method. To ensure a substantial number of annotated cells, we automated
the annotation process as follows: first, we independently segmented the
nuclei and the cell membrane using Cellpose™. Then we defined as ground
truth the cells containing exactly one nucleus, thus removing cell segmen-
tation errors likely to correspond to artifacts (e.g., visual patterns in the
image that Cellpose erroneously detected as cells) and segmentation errors
due to low-quality membrane stain, resulting in multiple nuclei per cell (e.g.,
by missing the separating membrane). As a result, we obtained a
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high-confidence ground truth segmentation map (see Methods for details).
The ground truth segmentation maps used in this study, as well as the
corresponding segmentation map from the benchmarked methods, can be
found at (https://zenodo.org/records/11237477). An example of the anno-
tations generated using this process is depicted in Fig. 4a.

We used these high-confidence datasets to evaluate the performance
of the benchmarked methods. We first associated each annotated cell with
its best match from each benchmarked method (Fig. 4b). Subsequently, we
calculated the Jaccard index on the RNA set. On the mouse ileum dataset,

Watershed and ComSeg performed slightly better than pciSeq and Baysor
with a Jaccard index of around 0.4 against 0.36 and 0.31 for Baysor and
pciSeq (Fig. 4c). In the breast cancer dataset, Baysor, pciSeq, Watershed,
and ComSeg yvield comparable Jaccard index, around 0.5 (Fig. 4d). Across
both datasets, SCS exhibited a lower Jaccard index than the other methods,
potentially due to the fewer resolved RNA species compared to the original
study and the need for SCS to lower spatial resolution to be applied to IST
data. Besides, the Jaccard index metric can hide disparities in terms of
segmentation error as shown in the simulation section.
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In summary, this last section shows that ComSeg can handle datasets
with a high number of genes and with RNA with preferential intracellular
distribution like in the mouse ileum dataset (Supplementary Fig. 4).

Discussion

Imaging-based spatial RNA profiling methods provide RNA point cloud
coordinates without information about the cell of origin of each molecule.
Still, it is essential to correctly assign RNAs to cells to perform downstream

tasks at the single-cell level such as cell type calling or inference of cell
interaction. In this study, we present a method called ComSeg, a graph-
based method operating directly on the RNA coordinates and nucleus
positions. In addition, ComSeg is cell shape agnostic which makes it par-
ticularly useful for complex tissues, where cell shape convexity cannot be
assumed. As such, ComSeg is a flexible method able to handle various
situations, demonstrating good performances even in challenging experi-
mental settings.

Communications Biology | (2024)7:823

298



https://doi.org/10.1038/s42003-024-06480-3

Article

In order to compare ComSeg to other methods, we have developed a
simulation framework (SimTissue) that provides tissue architectures which
are generated from real images and are therefore reasonably realistic. Our
simulation environment also encompasses simple geometric shapes which
are ideally suited to study failure modes and limitations of algorithms thanks
to the simplified geometry. Indeed, quality assessment is a critical aspect of
segmentation, but actually difficult to perform. So far, there are no manually
annotated ground truth datasets for imaging-based spatial RNA profiling. In
this study, we use an automated workflow to create ground-truth data for
cells with high-quality membrane stains. However, considering solely these
cells for assessing spatial RN A profiling performance could introduce bias as
membrane staining may work more effectively in specific locations of the
tissue or only for certain cell types. Comparison to a consensus is an option
that has been adopted by several authors'*'”. We argue that this can lead to
the propagation of systematic errors. For instance, all competing methods
rely on shape priors that are not always met in complex tissues. A com-
parison to the consensus would not be able to reveal such systematic errors.
Furthermore, in most cases, the consensus region will contain the nuclear
region, and it is possible that the expression profile measured in the nuclear
region is different from peripheral regions in the cell.

We found that most methods have difficulties with non-convex shapes
and large differences in gene expression density. Our simulations suggest
that error rates in cell-type calling are non-negligible: as much as 26% of cell-
type assignments are erroneous because of segmentation errors when using
previously published methods. ComSeg outperforms competing methods
by a large margin on complex tissues. However, even with ComSeg, cell
classification errors due to wrong segmentations amount to 14%, thus
suggesting that the development of novel segmentation methods remains an
important topic for imaging-based spatial RNA profiling data. Besides, as
the number of methods and datasets continues to increase, finding optimal
parameters for each of them to obtain fair comparison becomes increasingly
challenging. We believe that independent benchmark studies for spatial
RNA profiling data would be beneficial for the community.

Beyond these benchmark results, ComSeg has several other compelling
aspects that make it interesting for the scientific community. First, it does
not require membrane stainings. Indeed, existing membrane stainings are
highly variable and not very robust. Moreover, they are inhomogeneous and
can, therefore, lead to spatial biases in cell-type calling accuracies. In this
context, methods like ComSeg, directly operating on RNA point clouds,
complement cell membrane staining-based approaches like Cellpose, in
cases where cell membrane staining is unfeasible, e.g., in regions of low
staining quality or for certain cell types. Second, ComSeg does not require
external datasets, such as scRNA-seq, which makes it also applicable in
small-scale studies, where such data is not available. Moreover, ComSeg
does not rely on annotated data, which is very tedious and sometimes
impossible to provide. Its modular structure makes it easy to tailor ComSeg
to particularities in the datasets. Lastly, ComSeg demands only basic desktop
computational resources and exhibits reasonable runtime and memory
requirements (see Supplementary Table 1).

One of the limitations of ComSeg is that it is dependent on the choice of
cell type marker genes. The model may fail if the spatially resolved RNA
species are not discriminative of cell type or cell state. A potential
improvement of ComSeg would be to incorporate in the model several
landmark stainings. Another potential enhancement could be to include
more spatial information in the clustering of the RNA communities
expression profiles. In ComSeg, RNA communities with similar expression
profiles are grouped into clusters using the Leiden algorithm which
leverages solely expression profiles. However recent clustering methods for
spatial transcriptomic were proposed leveraging both spatial information
and expression proﬁle'“"‘“. For instance, if an RNA community with a given
transcriptomic profile is erroneously linked to another profile, this mistake
could potentially be corrected by taking neighboring profiles into account.
For instance, if the RNA community is surrounded by other communities
from the same correct transcriptomic profile, a wrong assignment could be
avoided. Finally, ComSeg relies on the position of single RNA molecules

which prevents its application on sequencing-based spatial transcriptomic
data with low spatial resolution. Indeed, the edge weights are defined with
gene co-expression as similarity metrics. Applying ComSeg on sequencing-
based data with low spatial resolution would require defining an expression
vector similarity metric between binned spots which might be an interesting
extension. Finally, ComSeg could, in principle, be used on sequencing-based
data if the spatial resolution is close to IST, such as Stereo—seq1 3

Altogether, we believe that this model will be of great interest to the
community and has the potential to overcome current shortcomings in cell
segmentation and cell type calling from spatial RNA profiling data. To
facilitate the use of ComSeg, we have made it available as an open-source
and documented Python package: https://github.com/fish-quant/ComSeg.
We also make the simulation framework SimTissue (https://github.com/
tdefa/SimTissue) available to the community, which might help researchers
in the future to benchmark their methods.

Material and methods
Description of ComSeg algorithm
We assume that we have for each cell its centroid. In practice, this cell
centroid is inferred from the nuclear stain, which are available in virtually all
IST datasets. ComSeg associates the detected RNA molecules with their
corresponding cell centroid. It leverages a k-nearest neighbor (KNN) graph,
where the nodes are the detected RNAs. The method can be decomposed
into five steps:

1. Computation of a proximity-weighted expression matrix

2. Construction of KNN graph weighted by co-expression
. Graph community detection using the cell nucleus.
. Cell segmentation-free in situ clustering of communities
. Final RNA assignment

G o W

The only hyper-parameters exposed to the user are the mean cell
diameter D and the maximum cell radius R,,,. The numerical values of
these hyper-parameters are detailed in Supplementary Note 1.

Proximity-weighted expression matrix

ComSeg leverages gene co-expression information. In principle, co-
expression information can originate from parallel scRNA-seq data or
from other published resources. However, such external datasets are not
always available for the biological system under study. Hence, we estimate
co-expression using only the spatial arrangements of detected RNA mole-
cules in the image. For this, we leverage the spatial correlation between the
different RNA species molecules as a proxy for gene co-expression.

For each RNA position x, we define a local proximity-weighted
expression vector (PE) V(x). For this, we consider a maximum of K =40
neighbors y, positioned at a maximal distance of Rpy=D/ 2 from x. A subset
of these neighbors are transcripts of the gene g. We thus define a local
expression score of gene g in proximity of x:

Vg(x) = 2"ysKI\J'I\’(xJ.gene(y):g (RPE —llx— y]l)/RPE (1)

We note that each transcript at position y is weighted by a score that
linearly decreases between x and the circle around x with radius Rpg. The
underlying idea is that close transcripts should contribute more to the local
expression estimation.

Thelocal proximity-weighted expression vector V(x) is then defined as:

V() = [V (), Veal®), ..oy V()] @)

Of note, the proposed PE are similar to the Neighborhood Composi-
tion Vectors proposed in ref. 15 with the difference that it weights RNA
positions by a distance score, such that closer RNAs contribute more than
RN As that are far.

By stacking the V(x) for all positions x, we get a proximity-weighted
expression matrix V € [R™*Ns where N, is the number of detected RNA
and N, the number of marker genes. From this, we can finally compute the
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co-expression matrix W e RNe*Ne, where each element w, j is the Pearson
correlation of the columns of V corresponding to the expression of genes i
and j:

W = Corr(V; Vj) (3)

The computation of these co-expression values is implemented by the
Python class ComSegDataset of our package. Of note, the co-expressions
could alternatively be computed from external data, e.g., from single-cell
RNA sequencing data.

KNN graph weighted by co-expression
Our algorithm operates on a weighted KNN graph, where the RNA mole-
cules (across all genes) are the nodes (K = 10 and the max edge distance Ryn
between molecules is set to D/4) and the weights are the estimated co-
expression values w;; defined in (3): edges between RNA molecules from
strongly co-expressed genes obtain a large weight, while RNA molecules
from genes that are not co-expressed are assigned a small weight. The
rationale is that RNAs from co-expressed genes are likely to belong to the
same cell, while RNA molecules from genes that are usually not expressed
together are more likely to belong to different cells.

It is worth mentioning that we opted to keep the value of K fixed at
K =10. Indeed, modifying this parameter has a negligible impact on per-
formance, as illustrated in Supplementary Fig. 5.

Graph community detection algorithm

In the previous section, we generated a graph strongly connecting RNA
nodes that are likely to belong to the same cell. Now, our objective is to
partition this graph into sets of RN As belonging to the same cells. To achieve
this, we developed a modified version of the Louvain method” for com-
munity detection so it can accommodate prior knowledge given by nuclei
segmentation or other landmarks.

The original Louvain algorithm is a widely used method to partition a
graph into sets of strongly connected nodes. These strongly connected sets
of nodes are called communities. The algorithm optimizes a metric of graph
structure called the modularity, noted Q. Q is the sum of the differences
between intra-community weights and their expected value in a randomly
rewired graph. Q can be expressed as a sum over the edges (1,v) of the graph.

1 k.k,
Q=B [wg“_gv - E} 8(C,,C,) (4)

Where g, and g, are the gene index of the RNA nodes uand v. w, , is the
corresponding weight from the co-expression matrix W. k,, is the degree of
node udefinedask, = X, w, . ,misthe sum of the weights in the network
m= %Zu.vwgu‘g.. and the function ¢ is 1 if the nodes u and v belong to the
same community C (ie., C, = C,) and 0 otherwise.

This method iterates two elementary phases: in the first step, mod-
ularity Q is greedily optimized. For this, we start from an initialization where
each node is assigned to its own community. Nodes are then moved in a
random order to neighboring communities to greedily maximize mod-
ularity. This first step stops when no node move improves the modularity Q.
The randomness of this phase has a negligible effect on the final ComSeg
output as studied in Supplementary Note 3.

In the second step, a new aggregated network is built where commu-
nities found in the first step become nodes. Edge weights between those new
nodes are calculated as the sum of the edge weights between the identified
communities. We can then re-apply the first step on this aggregated network
until there is no modularity gain.

When applying the Louvain method, we only consider positively
weighted edges as negatively co-expressed genes are not likely to belong to
the same cell. Besides, in order to introduce prior knowledge in the form of
landmark segmentation, we modify the method as follows: before running
the community detection method, RNA nodes inside the same segmented
nucleus or chosen cell landmark are merged together into one node, which

we refer to as “cell nodes”. When we apply the Louvain method, different cell
nodes cannot be merged together. During the first step of local moving of
nodes, nodes take the cell label of the community they are assigned to.

Of note, in most cases, nuclear staining is available, and this therefore
represents the most frequent use case. However, the landmarks can also
originate from other stainings (such as membrane staining).

The input graph strongly connects RN As that are likely to belong to the
same cell. Hence the resulting community partitions of RNAs are supposed
to form sets of RNAs belonging to only one cell. In contrast, a cell might
contain several communities.

The graph construction and partitioning are implemented in the
Python class ComSegGraph of our Python package.

Cell segmentation-free in situ clustering
In the previous step, we split our graph into communities of RNAs that are
supposed to belong to the same cell. Hence, while a cell can be composed of
several RNA communities, we assume that each community does not
extend beyond cytoplasmic boundaries. This mimics the mechanism of
superpixel segmentation in computer vision®.
To ease the identification of RNA communities that may belong to the
same cell, we first identify communities that have similar RNA profiles.
We associate with each community C of RN A, an expression vector V.

Ve= é):xeCV(x) (5)

where V(x) are proximity-weighted expression vectors (PE) computed as
defined above. Summing the PE of each RNA node in the community helps
to capture the local transcriptomic information missing in the global co-
expression matrix W. Hence, each community is associated with a
community expression vector Vi composed of co-expressed genes at the
global scale but also containing the local transcriptomic information of the
cell it belongs to.

Then, similarly to what is commonly done in scRNA-seq analysis*, we
cluster our set of community expression vectors V using optionally PCA for
dimensionality reduction (depending on the number of marker genes) and
the modularity-based algorithm Leiden™. It defines community clusters {L,}
that exhibit similar expression profiles. Each community (and each member
x) thus receives a community profile label L, However, we do not cluster
community expression vectors of less than three RNAs as they might be too
small to reliably capture their local transcriptomic neighborhood. We assign
to these small communities the majority label of the K nearest neighbors.

This step thus provides a map of RNAs labeled with their community
profile label L;. We refer to this map of labeled RNAs as the transcriptomic
domain map. The in situ clustering step is implemented in the class InSi-
tuClustering of our Python package.

Of note, previous studies have utilized KNN graphs to investigate
transcriptomic similarity* . These studies aimed to identify similarities in
gene expression profiles between individual cells or groups of cells (spots).
However, our method differs from these approaches in that we seek to
uncover similarities between groups of RNA molecules that are not cells but
represent subsets of cells.

Final RNA assignment
In the final step, the goal is to associate the RN As with the cell they belong to.
First, we add a centroid node, a node that does not correspond to an RNA
molecule. If the landmarks contain nuclear staining, this centroid node is the
centroid of the nucleus, all nuclear RNAs are merged into this node, and the
centroid node gets the community profile L; of the nuclear RNAs. In case
there is no nuclear RNA, the community profile of the centroid is defined as
the majority profile among the K nearest neighbors (K= 15, R=D/ 2). In
case there is no nuclear staining, the centroid node can be defined based on
other landmarks (e.g., the maximum distance function of a cellular land-
mark). Cell centroid nodes are required to estimate the single-cell RNA
profiles.

Once every cell centroid is associated with a community profile L;, we
can finally estimate the single-cell RNA profiles. We associate each cell
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centroid of label L, to their nearest RNAs of the same label. We employ the
geodesic distances between cell centroids and RNA nodes. The geodesic
distance is the graph’s shortest path distance between the centroids and RNA
nodes and is computed with the Dijkstra algorithm". We apply the Dijkstra
algorithm with Euclidean distance weight on the edges. Besides, when an
RNA node’s geodesic distance to its nearest centroid is superior to a chosen
maximum cell radius R,y the RNA molecule is not associated with any cell.
Using the geodesic distance helps to better estimate the cell size of non-convex
cells when applying the cell radius Ry, cut-off. Moreover, geodesic distance
accommodates potential lacunar spaces within the tissue when calculating the
centroid-RNA distance.

In summary, our method treats RNA positions as nodes in a graph with
edges weighted by co-expression. This permits an accurate separation of
cells with different expression profiles without the need for explicit cell
segmentation. Our method can further use landmarks, such as nuclei, to
initiate community detection in spatial RN A graphs. In the absence of clear
differences in expression profiles, cells will then be separated based on RNA-
centroid distance in the graph.

Our method does not use an explicit cell shape prior other than mean
cell diameter D and maximal cell radius Ry, as the goal is to make this
method suitable for tissues harboring arbitrary cell shapes. Furthermore,
ComSeg is not based on machine learning, and does therefore not need
annotated data or time-consuming learning steps; which simplifies its
application and interpretability.

Simulation Python package
In order to validate our method and perform quantitative benchmarks
against other approaches, we designed a simulation framework Sim Tissue
capable of creating ground-truth data with tunable complexity for tissue
morphology, cell type compositions, and marker-gene expression levels.
Our simulation framework can be divided into two steps:
1. Simulation of tissue morphology.
2. Simulation of RNA composition and spatial distribution.

SimTissue is implemented in Python and available at https://github.
com/tdefa/SimTissue and documented at https://simtissue.readthedocs.io.

Simulation of tissue morphology

Our framework offers two possible simulation scenarios. In the first sce-
nario, we consider regular geometric patterns. While these are not realistic
scenarios, they are well suited to point to potential problems and limitations
of the algorithms. They can thus be seen as a purely methodological test
scenario, Examples include the checkerboard arrangement or the simula-
tion of clamped L-shapes with random nuclei positions.

In the second scenario, we consider more realistic tissue simulations.
For this, SimTissue takes as input segmented nuclei from experimental data.
These segmentation masks can often be generated easily from DAPI or
other nuclei stainings and are widely used for image-based spatial tran-
scriptomic experiments**. Individual cytoplasms are defined by growing
cells from segmented nuclei. Each cell grows at a random speed to add
irregularity to the cell size. Still, some organs, such as lung tissue, contain
lacunar space without cells. Therefore, optional masks can be added to
indicate these lacunar spaces where cells cannot grow into.

In experimental data, the tissue section is cut at an arbitrary location
and some nuclei are removed from the rest of the cell. It is, hence, possible to
simulate cells without nuclei to better mimic experimental fluorescent-
based experiments.

Simulation of RNA composition and spatial distribution

Once the nuclei positions and cell shapes are simulated, we have to simulate
the RNA composition and distribution within each cell. RNA expression
levels can either be set as constant or be directly sampled from experimental
measures, e.g. from scRNA-seq data. When sampling profiles from scRNA-
seq, we sample for each simulated cell an expression profile of a single cell
from scRNA-seq, then multiply the number of RNAs by a factor. Here, we

choose a factor of 3 as the fraction of mRNA transcripts captured per cell in
scRNA-seq data can reach 30% (depending on reagent chemistry)* while
the capture rate of smFISH experiment is close to 100%". Finally, RNA
molecules are randomly positioned in the available space of the cell with a
uniform spatial distribution.

In summary, SimTissue allows to simulate experiments of incremental
complexity. The full control over the ground truth and the difficulty of the
segmentation task aims to understand the limitations of the benchmarked

methods.

Simulations in this article

Regular pattern simulations. We simulated 2D square grids (15 pm x
15 pm) and nested L-shape patterns (four squares of 15 um x 15 pm).

The pixel size is 0.150 pm and thus similar to the pixel size obtained with a

60x objective. Nuclei are spheres of 3.75 pm rays. Nuclei are in the center

of the cell for square cell shape. For an L-shaped cell, the nucleus is

randomly positioned in the center of one of the four squares composing

the L-shaped cell.

Lungtissue simulations. We simulated 3D mouse lung tissue leveraging
experimental FISH data from ref. 33. The original data were composed of
images of 112 pm x 150 pm in XY and 15 um in Z with a DAPI staining
and a Cy3 fluorescent channel. The original pixel size is 0.103 x 0.103 pm
and the Z spacing is 0.300 pm. The positions of the nuclei in our simu-
lation are the positions of the segmented nuclei in the original images.
The nuclei were segmented with Cellpose™ on DAPI staining.

Next, we identified the space occupied by cells by thresholding the Cy3
FISH signal (first quintile of the Cy3 distribution). Individual cytoplasms
were defined by growing cells with random irregular speed from segmented
nuclei inside the allowed space. Random growth speed allows to add
irregularity in the cell size. Finally, we removed 20% of nuclei in our
simulation to simulate nuclei missed during sample preparation, as
explained above.

We used alist of 34 cell-type marker genes with the objective to classify
19 different cell types present in mouse lung tissue. The list of marker genes
was selected using the NS-forest algorithm™ on our external scRNA-seq
dataset of mouse lung tissue”. Then, we associated each individual cyto-
plasm with an expression vector sampled from our scRNA-seq dataset so
that all the RNA profiles in our simulation are taken from real experimental
data. This dataset can be found at https://zenodo.org/records/10172316.

Statistics and reproducibility

We benchmark ComSeg against pciSeq'®, Baysor'’, SCS", and Watershed
method on both simulation and experimental data, These are among the
frequently cited and most widely used methods today if membrane markers
are absent. The hyperparameter setting of the benchmarked methods can be
found in the Supplementary Note 1. The details of the metrics and datasets
that were used are described in the following sections.

Benchmarking on simulations
To assess the RNA profiling quality we compute the mean Jaccard index as
follows:

For each cell ¢, J. = “;{(‘U ‘;“7“ where X_ is the ground truth set of RNAs
associated with the cell ¢ (ground truth) and Y is the set of RNAs predicted
as associated with the cell ¢. The final mean Jaccard index per cell is:

1
= —3 6
= ©

For each cell ¢, we compute the percentage of wrongly associated RNA
WA, as follows (False Discovery Rate):

wa, =YX )
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We compute the percentage of missing RNA MS, (False Negative Rate)
per cell as follows:

(8)

To perform cell type calling from the cell expression vector from
Baysor, Watershed, SCS, and Comseg, we first normalize the count matrix
from both scRNA-seq and from RNA-cell association using the scTrans-
form normalization”’. Then we compute the cosine distance between the cell
expression vector and the cell type median centroid defined in the reference
scRNA-seq data from®. Cells are classified into their nearest cell type cluster
in terms of cosine distance. For lung tissue simulation, we also employ this
cell-type calling method on the ground truth expression vector of each cell to
assess the maximum accuracy achievable with the 34 selected markers.
Conversely, to previously cited methods, pciSeq performs cell type classi-
fication and RNA-nuclei association simultaneously. For this reason, the cell
type classification described here was not applied to pciSeq.

Experimental evaluation

We applied the benchmarked methods on two datasets of lung tissue. The
first one exhibits 6 different marker genes in 3D mouse lung tissue acquired
with a home-built sequential smFISH system. This mouse lung tissue was
irradiated with 17 gy 5 months prior to mouse sacrifice as described in
ref. 33. The second dataset was acquired with HybISS™, consisting of a
human embryonic lung and 147 genes in 2D*". In both cases, we perform a
nucleus segmentation with Cellpose™ and use this segmentation as initi-
alization in our benchmark.

Reference scRNA-seq cluster

As we do not have ground truth for all experimental data, we leverage
scRNA-seq to check the consistency of the single-cell spatial RNA profiles
obtained from images. We argue that it should be possible to match the
spatial profiles obtained from images to the scRNA-seq data, and that the
percentage of cells that can be matched is thus a quality metric for the
segmentation method.

Reference clusters from scRNA-seq for mouse lung tissue

We re-cluster our single-cell data™ using only the six mapped genes and cells
from the same condition (ie., 5 months after irradiation with 17 gy). The
final clustering is composed of five different clusters.

Reference clusters from scRNA-seq for embryonic lung tissue
In the original study”, the authors applied pciSeq to perform single-cell
spatial RNA profiling. Their final expression matrix provided in the study
displays 89 genes over the 147 genes map in the HyBISS data. We also keep
the same subset of 89 genes for evaluation. We use the same reference
scRNA-seq dataset and clustering annotation as provided by the authors.

Matching in situ single-cell RNA profile and scRNA-seq
As for simulation, we normalize both scRNA-seq data and the count
expression matrix from spatially resolved RNA profiling data with
scTransform”. Many methods exist to match single-cell spatial tran-
scriptomic data and scRNA-seq"’. We chose to leverage the cosine distance
as it is robust with respect to different capture rates among the two
modalities.

Each cell expression vector was matched to the closest median centroid
cluster from scRNA-seq. The cosine distance acts as a proxy for the
matching quality.

Automatic generation of ground truth for high-quality

staining area

We segment the nuclei and the cell using Cellpose 2.0"”°. We manually fine-
tuned the Cellpose models with the provided human-in-the-loop GUI
except for the nuclei human breast cancer dataset where we kept the default

cellpose nuclei model. Specifically, in the human breast cancer dataset, we
segmented cells based on the third cellbound marker across three different
available. For the cells in the mouse ileum dataset, we kept the fine-tuned
Cellpose segmentation proposed in the original publication. After seg-
mentation, we identified cells with exactly one nucleus. However, in dense
tissue areas, cells might mistakenly include a few pixels from another nearby
nucleus due to segmentation inaccuracies. In order to be robust with
respect to this kind of variations, we assigned a nucleus to a cytoplasmic
region if there was an overlap of at least 20-pixel width between them. The
final list of cells containing exactly one nucleus is then employed to generate
the ground truth, as these cells are likely to correspond to high-quality
staining areas.

To compute the Jaccard index on the generated ground truth mask, we
associate each cell from the ground truth with the predicted cell with the
most molecules in common. We then apply the formula described in (6).

Ethics statement

For the generation of the in-house mouse lung tissue dataset displayed in
Fig. 3: studies were performed in accordance with the recommendations of
the European Community (2010/63/UE) for the care and use of laboratory
animals. Experimental procedures were specifically approved by the ethics
committee of the Institut Curie CEEA-IC #118 (Authorization number
APAFIS#5479-201605271 0291841 given by the National Authority) in
compliance with the international guidelines. Females C57BL/6] mice
purchased from Charles River Laboratories at the age of 6 weeks were
housed in Institut Curie animal facilities.

Data availability

The simulated dataset of lung tissue can be downloaded from Zenodo
(https://zenodo.org/records/10172316). The generated ground truth of the
two MerFISH datasets and the corresponding segmentation results from
our benchmark are available at https://zenodo.org/records/11237477. Our
in-house mouse dataset is available at https://zenodo.org/records/11068509.

Code availability

ComSeg is available at https://github.com/fish-quant/ComSeg. The imple-
mentation code of SimTissue is available at https:/github.com/tdefa/
SimTissue. Scripts to reproduce the benchmark are available also on github
https://github.com/tdefa/script_Benchmark and also available at this
Zenodo repository™: https://doi.org/10.5281/zenodo.11505979.

Received: 6 December 2023; Accepted: 20 June 2024,
Published online: 06 July 2024

References

1. Larsson, L., Frisén, J. & Lundeberg, J. Spatially resolved
transcriptomics adds a new dimension to genomics. Nat. Methods 18,
15-18 (2021).

2. Xiaowei, Z. Spatially resolved single-cell genomics and
transcriptomics by imaging. Nat. Methods 18, 15-18 (2021).

3. Seferbekova, Z., Lomakin, A., Yates, L. R. & Gerstung, M. Spatial
biology of cancer evolution. Nat. Rev. Genet. 24, 295-313 (2023).

4. Palla,G., Fischer,D. S., Regev, A. & Theis, F. J. Spatial components of
molecular tissue biology. Nat. Biotechnol. 40, 308-318 (2022).

5.  Lomakin, A. et al. Spatial genomics maps the structure, nature and
evolution of cancer clones. Nature 611, 594-602 (2022).

6. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse
organogenesis using DNA nanoball-patterned arrays. Cell 185,
1777-1792.e21 (2022).

7. Rao, A, Barkley, D., Franga, G. S. & Yanai, |. Exploring tissue
architecture using spatial transcriptomics. Nature 596,

211-220 (2021).

8. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X.
Spatially resolved, highly multiplexed RNA profiling in single cells.
Science 348, aaa6090 (2015).

Communications Biology | (2024)7:823

11

302



https://doi.org/10.1038/s42003-024-06480-3

Article

9.

10.

14,

12.

13.

14.

15.

16.

17

18.

19.

20.

21

22.

23.

24,

25.

26.

2.

28.

29.

30.

31.

32.

33.

Eng, C. H. L. et al. Transcriptome-scale super-resolved imaging in
tissues by RNA seqFISH + . Nature 568, 235-239 (2019).

Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue
and cells. Nat. Methods 10, 857-860 (2013).

Codeluppi, S. et al. Spatial organization of the somatosensory cortex
revealed by osmFISH. Nat. Methods 15, 932-935 (2018).

Moffitt, J. R. et al. Molecular, spatial, and functional single-cell
profiling of the hypothalamic preoptic region. Science 362,
eaau5324 (2018).

Salas, S. M. et al. Optimizing Xenium In Situ data utility by quality
assessment and best practice analysis workflows. Preprint at bioRxiv
https://doi.org/10.1101/2023.02.13.528102 (2023).

Wei, X. et al. Single-cell Stereo-seq reveals induced progenitor cells
involved in axolotl brain regeneration. Science 377, eabp9444
(2022).

Petukhov, V. et al. Cell segmentation in imaging-based spatial
transcriptomics. Nat. Biotechnol. 40, 345-354 (2022).

Qian, X. et al. Probabilistic cell typing enables fine mapping of closely
related cell types in situ. Nat. Methods 17, 101-106 (2020).

Littman, R. et al. Joint cell segmentation and cell type annotation for
spatial transcriptomics. Mol. Syst. Biol. 17, e10108 (2021).

Fu, X. et al. BIDCell: Biologically-informed self-supervised learning for
segmentation of subcellular spatial transcriptomics data. Nat.
Commun. 15, 509 (2024).

Chen, H., Li, D. & Bar-Joseph, Z. SCS: cell segmentation for high-
resolution spatial transcriptomics. Nat. Methods 20,

1237-1243 (2023).

Mateo, L. J., Sinnott-Armstrong, N. & Boettiger, A. N. Tracing DNA
paths and RNA profiles in cultured cells and tissues with ORCA. Nat.
Protoc. 16, 1647-1713 (2021).

Moffitt, J. R. & Zhuang, X. RNA imaging with multiplexed error-robust
fluorescence in situ hybridization (MERFISH). Methods Enzymol. 572,
1-49 (2016).

Virshup, I. et al. The scverse project provides a computational
ecosystem for single-cell omics data analysis. Nat. Biotechnol. 41,
604-606 (2023).

Blampey, Q. et al. Sopa: a technology-invariant pipeline for analyses
of image-based spatial omics. Nat. Commun. 15, 4981 (2024).
Greenwald, N. F. et al. Whole-cell segmentation of tissue images with
human-level performance using large-scale dataannotation and deep
leaming. Nat. Biotechnol. 40, 555-565 (2022).

Sountoulidis, A. et al. A topographic atlas defines developmental
origins of cell heterogeneity in the human embryonic lung. Nat. Cell
Biol. 25, 351-365 (2023).

Gyllborg, D. et al. Hybridization-based in situ sequencing (HyblSS) for
spatially resolved transcriptomics in human and mouse brain tissue.
Nucleic Acids Res. 48, E112 (2020).

Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast
unfolding of communities in large networks. J. Stat. Mech. Theory
Exp. 2008, P10008 (2008).

Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden:
guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
Beucher, S. & Lantuéjoul, C. Use of watersheds in contour
detection.http://cmm.ensmp.fr/~beucher/publi/watershed.

pdf (1979).

Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of
single cells reveals spatial organization of cells in the mouse
hippocampus. Neuron 92, 342-357 (2016).

Wang, X. et al. Three-dimensional intact-tissue sequencing of single-
cell transcriptional states. Science 361, eaat5691 (2018).

Park, J. et al. Cell segmentation-free inference of cell types fromin situ
transcriptomics data. Nat. Commun. 12, 3545 (2021).
Curras-Alonso, S. et al. An interactive murine single-cell atlas of
the lung responses to radiation injury. Nat. Commun. 14, 2445
(2023).

34. Aevermann, B. et al. A machine learning method for the discovery of
minimum marker gene combinations for cell type identification from
single-cell RNA sequencing. Genome Res. 31, 1767-1780 (2021).

35. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a
generalist algorithm for cellular segmentation. Nat. Method’s 18,
100-106 (2021).

36. Teng,H.,Yuan,Y.&Bar-Joseph, Z. Clustering spatial transcriptomics
data. Bioinformatics 38, 997-1004 (2022).

37. Avesani, S. et al. Stardust: improving spatial transcriptomics data
analysis through space-aware modularity optimization-based
clustering. Gigascience 11, giac075 (2022).

38. Newman, M. &Girvan, M. Finding and evaluating community structure
in networks. Phys. Rev. E. 69, 026113 (2003).

39. Achanta, R. et al. SLIC superpixels compared to state-of-the-art
superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34,
2274-2281(2012).

40. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell
gene expression data analysis. Genome Biol. 19, 15 (2018).

41. Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for
spatial transcriptomics data with graph neural networks. Nat.
Comput. Sci. 2, 399-408 (2022).

42. Long, Y. et al. Spatially informed clustering, integration, and
deconvolution of spatial transcriptomics with GraphST. Nat.
Commun. 14, 1155 (2023).

43. Hu, J.etal. SpaGCN:integrating gene expression, spatial locationand
histology to identify spatial domains and spatially variable genes by
graph convolutional network. Nat. Methods 18, 1342-1351 (2021).

44. Dijkstra, E. W. A note on two problems in connexion with graphs.
Numer. Math. 1, 269-271 (1959).

45. Zheng, G. X.Y. et al. Massively parallel digital transcriptional profiling
of single cells. Nat. Commun. 8, 14049 (2017).

46. Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A.
An introduction to spatial transcriptomics for biomedical research.
Genome Med. 14, 68 (2022).

47. Hafemeister, C. & Satija, R. Normalization and variance stabilization of
single-cell RNA-seq data using regularized negative binomial
regression. Genome Biol. 20, 296 (2019).

48. Miller, B.F., Huang, F., Atta, L., Sahoo, A. & Fan, J. Reference-free cell
type deconvolution of multi-cellular pixel-resolution spatially resolved
transcriptomics data. Nat. Commun. 13, 2339 (2022).

49. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own
model. Nat. Methods 19, 1634-1641 (2022).

50. Thomas, D. Scripts to reproduce the benchmark of ComSeg. Zenodo
https://doi.org/10.5281/zenodo.11505979 (2024).

Acknowledgements

This work has received financial support through the Agence Nationale de la
Recherche (ANR) for grants (LUSTRA, reference ANR-19-CE14-0015-04 to
J.-AL.-V, C.F, F.Mu., and T.W.) and (TRANSFACT, reference ANR-19-
CE12-0007-02, to F.Mu. and T.W.). F.Mu. and C.W. acknowledge funding by
Institut Pasteur. Furthermore, this work was supported by the French
government underthe management of Agence Nationale de laRecherche as
part of the “Investissements d’avenir” program, reference ANR- 19-P3IA-
0001 (PRAIRIE 3IA Institute). S.C.-A. and J.-A.L.-V. also received support
from La Ligue Contre Le cancer. S.C.-A. and M.A. were recipients of PhD
fellowships from the European Union’s Horizon 2020 research and innova-
tion program under the Marie Sklodowska-Curie grant agreement No
666003 and No 847718 respectively. H.L. is the recipient of a PhD fellowship
from the International Student program from Paris-Saclay University. J.S. is
the recipient of a PhD fellowship from the French Ministry of Education,
research and Industry.

Author contributions
T.D., F.Ma, F.Mu, and T.W. designed and developed the method ComSeg
and carried out the computational analysis. H.L., M.A., J.S., S.C.-A,, C.W.,

Communications Biology | (2024)7:823

12

303



https://doi.org/10.1038/s42003-024-06480-3

Article

J.-A.L.-V., and C.F. performed the experimental studies for the in-house
dataset. T.D., F.Ma, F.Mu, and T.W. participated in the writing of the paper.
F.Mu and T.W. supervised the work. All the co-authors contributed to the
data discussion.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-06480-3.

Correspondence and requests for materials should be addressed to
Florian Mueller or Thomas Walter.

Peer review information Communications Biology thanks Viktor Petukhov,
Xun Xu and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. Primary Handling Editors: Ruby Yun-Ju Huang and
Manuel Breuer. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Communications Biology | (2024)7:823

13

304



Supplementary Note 1: Hyper-parameter setting of benchmarked
methods

ComSeg

We apply ComSeg with mean cell diameter D = 10pm and Rmax = 15um in checkerboard
simulation (Sim 1-2-3-4) and increase to Rmm = 40pm in Sim 5 while keeping the same value
for D.

We set D = 15um and Rmax = 30pm in lung tissue simulation. We use D = 20pum and

R = 40pm on mouse lung tissue and D = 40 pixels and Rmax = 50 pixels on embryonic

max

lung tissue. For the Mouse ilieum dataset we use D = 10umand Rmux = 8um . For the Breast

cancer dataset we use D = Sumand Rmax = 12pum.

Baysor:

We apply Baysor by incorporating nucleus segmentation mask priors and let Baysor estimate

the scale parameter automatically. All other parameters were left as default. In addition, for the
mouse ileum dataset, we kept the original parameters set by the authors including a
compartment specific gene list as parameter, and we added the nuclei segmentation mask
priors.
Baysor does not perform RNA-nucleus assignment but groups RNAs into cells without referring
to the given nucleus segmentation index of the prior segmentation mask. On simulated
datasets, in order to compare Baysor to other methods for RNA-nucleus assignment, we
associated each predicted cell index by Baysor with a nucleus segmentation index from the
provided segmentation mask ground truth. To that end, each predicted cell index by Baysor was
associated with the nucleus index from the ground truth with the most molecules in common.

pciSeq

We apply pciSeq on geometric simulation using simulated scRNA-seq data containing the
simulated RNA profiles. In lung tissue simulations, we use the same scRNA-seq dataset as the
one sampled to simulate RNA profiles. All other parameters were left as default. We use the
version 0.0.46 of the pciSeq Python PyPI package. We use maximum projection to apply pciSeq
to 3D data as pciSeq is only designed for 2D.

For the MERFISH human breast cancer and MERFISH mouse ileum datasets, inspired by the
original publication of the MERFISH mouse ileum dataset’, we use the RNA in the nuclei as
reference scRNA-seq data.
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Watershed

We apply Watershed by taking as input the inverse distance map from segmented nuclei. In
lung simulation, as a mask, we use the inferred cytoplasm from the Cy3 signal. Otherwise, we
use the Watershed on the inverse distance map with a maximum distance from the nucleus of 2
pm on mouse lung tissue, of 16 pixels for embryonic lung tissue and of 8 um on the MERFISH
human breast cancer and MERFISH mouse lleum datasets. The mask helps to prevent the
misassignment of RNA to nuclei too far apart and was adapted to the tissues density and
complexity

SCS

We use the SCS code released by the author (https://github.com/chenhcs/SCS/) as well as their
training parameter display in their example (100 epoch and a learning rate of 0.001). To adapt
SCS to image based spatial transcriptome data we use a binning of 15 pixels. Like Baysor,
SCS does not perform RNA-nucleus assignment but groups RNAs into cells. Hence we use the
same method as for Baysor to assess performance. We use a crop of 3000x3000 for the mouse
ileum dataset and crop of 9000x9000 for the human lung and merfish breast cancer dataset. For
all datasets we use Cellpose’ to segment the nuclei instead of the originally proposed
watershed.

Supplementary note 2 : Validation on simple simulations of
regular patterns

In this section we aim to better understand the strengths and limitations of each benchmarked
method. To this end, for validation and benchmarking, we generated five types of simulated
datasets of gradually increasing complexity and specific cases.

To study the effect of the different possible expression profiles without any cell shape
complexity, we simulate a checkerboard. This is a similar cell size scale to what we can observe
in mouse tissue®*. To test the effect of non-convex shapes, we also simulate L-shaped cells
(see Methods). Each simulated set contains 10 images of 110 cells except the last one
containing 144 cells per image.

1) Simulation 1 (Sim 1). Variation of expression level: The objective of this simulation is
to benchmark the methods when markers have the same expression level versus the
case where one marker is sparsely expressed. We started by simulating only two cell
types expressing one marker each, A and B. We fixed the number of transcripts for the
first cell type to A=100, while we set the number of transcripts for the second to B=100
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2)

3)

4)

9)

(Sim1a) or B=10 (Sim1b) in two runs (Supplementary Figure 1a, left panels). For this
geometry, the Watershed performs a perfect assignment, as the nuclei are centered and
the cell shapes are convex. Besides, in the simple case where the two markers are
equally expressed, Baysor and ComSeg have also a Jaccard index close to 1 whereas
pciSeq has a Jaccard index below 0.8. In fact, pciSeq only assigns RNAs in the close
neighborhood of the nucleus and with a spherical shape prior. These missed RNAs are
penalized by the Jaccard index.

When the expression of the second cell type becomes sparse (B=10), the performance
of all methods leveraging RNA spatial distribution, Baysor, pciSeq and ComSeg drops.
Still, ComSeg performs better in terms of Jaccard index (over 0.8, Supplementary Figure
1b, center left panel) and cell type accuracy (of 0.99, Supplementary Figure 2) than
Baysor and pciSeq. This result can be attributed to the utilization of a cell shape prior by
Baysor and pciSeq in RNA assignment. When expression becomes sparse, Baysor and
pciSeq may not find RNA point clouds matching their shape prior. Finally, the shape
agnostic strategy of ComSeg appears to be more adapted for sparse input.

Simulation 2 (Sim 2). Shared marker genes: In the subsequent simulation, we aimed
to investigate the impact of shared marker genes across diverse cell types. To achieve
this, we categorized three distinct cell types: cell type A, with 100 RNAs from gene A;
cell type B, with 100 RNAs from gene B; and cell type C with 100 RNAs from gene A and
gene B (Supplementary Figure 1a, center right panel). In this case pciSeq and Baysor
have slightly better performance in terms of Jaccard index than ComSeg
(Supplementary Figure 1b, center right panel). Still, all models get an almost perfect cell
type calling (Supplementary Figure 2). Without surprise, Watershed obtains perfect
RNA-nuclei assignment due to the simplicity of the tissue geometry.

Simulation 3 (Sim 3). Experimental expression profile: In this simulation, we sample
RNA profiles from experimental data. We simulate 34 marker genes as described above
for lung tissue simulation (Supplementary Figure 1a, right panel). On real RNA profiles,
ComSeg has a better Jaccard index than Baysor and pciSeq. As the cell shapes are still
convex, Watershed gets a Jaccard index of 1 (Supplementary Figure 1b, right panel).
Simulation 4 (Sim 4). Experimental expression profile with missing nuclei:

In this simulation, a scenario akin to the previous one was replicated, where some nuclei
were intentionally omitted to simulate conditions akin to experimental data (
Supplementary Figure 1c, left panel). Specifically, 20% of the cells were simulated
without nuclei, mirroring situations encountered in tissue experiments. Remarkably,
under these conditions, ComSeg continued to exhibit a superior Jaccard index
compared to both Baysor and pciSeq (Supplementary Figure 1e, left panel). As
expected, the Watershed method cannot cope with missing nuclei, as the method uses
nuclei as seeds. As a consequence, accuracy in cell type identification drops as
compared to other models (Supplementary Figure 1f, left panel). A visual representation
of the benchmarked methods RNA assignments can be found in Supplementary Figure
1c.

Simulation 5 (Sim 5). Experimental expression profile with missing nuclei and L
shape:
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Lastly we also add cells with an L-shape to test non-convex examples (Supplementary
Figure 1d, left panel). In this case, ComSeg outperforms other models for the Jaccard
index confirming that it is designed to deal with irregular non-convex cell shape.
Conversely, Watershed has a very low Jaccard index because it cannot cope with
non-convex shapes by construction (Supplementary Figure 1e). Also, Baysor and pciSeq
are underperforming in accurately identifying the L-shaped cells owing to their inherently
convex cell shape assumptions. As a consequence, ComSeg also exhibits superior cell
type calling performances in this more complex case as compared to all other methods
(Supplementary Figure 1f). A visual representation of the RNA assignments generated
by all models can be found in Supplementary Figure 1d.

In summary, all methodologies encounter difficulties as cell shapes and RNA profiles become
increasingly complex and as marker expression becomes sparse. Notably, Watershed proves to
be an optimal choice for cells with convex shapes. PciSeq and Baysor, while capable of
estimating valid single-cell spatial RNA profiles in terms of cell type calling, exhibit limitations in
capturing a substantial portion of transcripts. Moreover, the disparity in RNA-cell assignment
performance between ComSeg and the other benchmarked methods widens notably as cell
shapes and expression patterns grow in complexity.

Supplementary Note 3 : Influence of initialization seed on
ComSeg

ComSeg employs random initialization within the Louvain method when computing the
communities and the Leiden method when clustering the {VC}. To evaluate the impact of the

random initialization, we executed the algorithm 50 times on the lung simulation and compared
the mean Jaccard index per cell for each run with a different random initialization
(Supplementary Figure 6). The standard deviation of the mean Jaccard index per cell is less
than 0.002, demonstrating the negligible influence of the initialization seed.

Similarly, we compute the Rand index between the RNA assignments over 10 runs on
Supplementary Figure 7. This analysis shows that the Rand index between pairs of runs is
stable with a value of approx 0.96, indicating that 96% of the RNA are grouped into a similar
way across different initializations.

Supplementary figures
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Supplementary Figure 1 : Simulations and results on regular patterns. a Examples of
simulation where all cells have a nucleus. From left to right: Sim 1 with variation of
expression level, Sim 2 with share marker genes, Sim 3 with experimental RNA profiles
with 34 markers. b Mean Jaccard index per cell for Sim 1-2-3. ¢ Example of Sim 4 with
experimental RNA profiles with 34 markers and the corresponding RNA-cell assignment
for the benchmarked methods. d Example of Sim 5 akin to Sim 4 but with L-shaped cells
and the corresponding RNA-cell assignment for the benchmarked methods. f Mean
Jaccard index per cell for sim 4 and 5. e Cell type calling accuracy for Sim 4 and Sim 5.
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Supplementary Figure 2: Cell type calling accuracy on checkerboard cell for the Sim 1
with different levels of expressions, Sim 2 with share markers and sim 3 with 34 marker
genes with RNA profiles sample from scRNA-seq.
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Number of detected cells
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Supplementary Figure 3 : Number of cells associated with an RNA profile (more
than 5 RNAs) in the mouse lung tissue dataset (right) and in the Human
embryonic lung tissue dataset (Left) for the tested method.
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Example of a genes with preferential intra-cellular spatial distribution.

ComSeg RNA-cell assignment

Colors represent RNA species Color spots represent cells.
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Supplementary Figure 4 : Example of genes with non uniform intracellular spatial distribution
in the mouse ileum dataset. All the rows display the membrane staining in gray. The first row of
images shows plots with all the genes. The second, third and fourth rows show only results with
the gene Apob, Neat1 and Slc5a1 respectively displaying preferential intra-cellular spatial
distribution.
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Accuracy for different K values for the KNN graph on lung simulation
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Supplementary Figure 5: Performance of ComSeg with different K values for generating the
KNN graph on lung simulation. We measure the cell type calling accuracy (a) and the Jaccard
index (b).
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Mean Jaccard index over 50 initialisations on lung simulated
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Supplementary Figure 6: The mean Jaccard index per cell obtained for 50 different
random initializations of ComSeg on our simulated dataset of lung tissue. The blue line is
the mean of all the Jaccard index obtained for 50 different random initializations.
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Rand index between runs over 10 initialisations
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Supplementary Figure 7: Each spot corresponds to the rand index between two
different initializations of ComSeg on the simulated dataset. The color of the spots
correspond to the run taken as reference. The rand index can be interpreted here as the
proportion of RNA in the same cell for the pair compared runs.
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Supplementary Tables

Supplementary table 1 : Runtime and memory usage analysis for different methods

on the mouse ileum dataset. Experiments were done on a laptop with a 16 cores CPU Intel(R)
Core(TM) i9-10885H CPU @ 2.40GHz and with a GPU Quadro T2000 with 4Go of memory. The
memory requirement was measured with the memory_profiler pip package.

ComSeg Watershed pciSeq Baysor SCS*
Memory 1,34Go 0,52Go 2,83Go 8,38Go 6.32go
requirement
Time 29 minutes 1 minutes 3 minutes 29 minutes 51 minutes
GPU No No No No Yes

*for SCS, we divided SCS into crops of 3000x3000 pixels so the training fits our laptop memory

and GPU.
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La radiothérapie est I'un des traitements principaux du cancer du poumon.
Cependant, les tissus entourant la tumeur recoivent également une dose d’irradiation.
Certains patients ont en réaction une pneumopathie qui peut se compliquer pour les cas les
plus graves en fibrose pulmonaire. Cette maladie présente une évolution progressive,
irréversible et mortelle en raison des tissus cicatriciels se développant dans les poumons et
empéchant la respiration. Le but de mon projet est d’étudier les mécanismes encore mal
connus de cette maladie en utilisant une technologie permettant d’analyser la réponse de
chaque cellule a la radiothérapie. En utilisant des échantillons provenant de patients ayant
subi une radiothérapie et également de modeéles de souris, nous avons permis I'avancée des
connaissances des processus cellulaires et moléculaires impliqués dans la fibrose pulmonaire
radio-induite. L'optique étant de trouver des traitements afin d’améliorer la qualité de vie des

patients.
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Radiotherapy is one of the main treatments for lung cancer. However, the tissues
surrounding the tumor also receive a dose of radiation. Some patients in reaction have a
pneumonia, which for the most serious cases can complicate to pulmonary fibrosis. This
disease has a progressive, irreversible and fatal evolution due to the scar tissue developing in
the lungs and preventing breathing. The aim of my project is to study the still poorly
understood mechanisms of this disease by using a technology that allow the analysis of the
response of each individual cell to radiotherapy. By using samples from patients who
underwent radiotherapy and also from mouse models, we have advanced knowledge of the
cellular and molecular processes involved in radiation-induced pulmonary fibrosis. The aim is

to find treatments to improve the quality of life of patients.
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La radiothérapie est I’une des principales options thérapeutiques pour le traitement du
cancer thoracique, y compris le cancer du poumon, premiére cause de mortalité par cancer dans le
monde. Cependant, cing a vingt pour cent des patients qui subissent une radiothérapie souffriront
de toxicités pulmonaires liées aux radiations, allant de la pneumopathie a I’irréversible fibrose
pulmonaire radio-induite (FPRI). La FPRI se caractérise par une destruction progressive et
irréversible de la structure des alvéoles, ainsi que par un dépot de collagéne. Ce développement de
tissu cicatriciel altére la fonction normale du poumon : les échanges gazeux entre 1’air et le sang,
et I’évacuation des déchets gazeux, conduisant a une insuffisance respiratoire et finalement a la
mort. Certains des principaux événements moléculaires et cellulaires survenant au cours du
développement de cette pathologie ont été décrits, mais les mécanismes détaillés et leur temporalité
restent largement inconnus. Par conséquent, 1’objectif de mon projet est de mieux comprendre les
événements cellulaires et moléculaires précis induits par les radiations, du stade initial de la
pneumopathie au stade terminal de la fibrose pulmonaire.

L'utilisation du séquencage d'ARN de cellules uniques (scRNA seq) nous a permis de
décrire avec des détails inédits les processus induits par l'irradiation au sein des tissus non tumoraux
et I'interaction entre les différentes populations cellulaires, ainsi que la dynamique de ces processus.
Dans un premier temps, nous avons utilis¢ un modele murin pour comparer l'effet d'une dose
d'irradiation fibrogéne ou non fibrogene et analyser la séquence temporelle du développement des
événements apres l'irradiation. Nous avons observé 1'initiation de divers processus d'inflammation
et de réparation de différentes populations (cellules endothéliales, épithéliales et myéloides) de
maniére similaire aprés une dose d'irradiation fibrogéne ou non fibrogéne : régénération des
pneumocytes par dédifférenciation des pneumocytes de type II ou transdifférenciation,
signalisation pro-angiogénique induisant des processus de réparation de la microvasculature,
différenciation des monocytes en macrophages interstitiels. Cependant, trois mois apres
l'irradiation, les souris irradiées avec une dose non fibrogéne guérissent, tandis que les souris
irradiées avec une dose fibrogene entrent dans une inflammation chronique, présentent un
changement dans le phénotype des fibroblastes qui se différencient en myofibroblastes et
produisent une matrice extracellulaire, induisent une transition épithéliale vers mésenchymateuse
des pneumocytes.

De plus, ce projet présente la premiere analyse scRNA seq d'échantillons de tissus
pulmonaires non tumoraux de patients ayant subi une radiothérapie pour un cancer du poumon. Les
résultats ont mis en évidence l'activation importante de la signalisation pro-angiogénique par
l'irradiation dans les tissus pulmonaires non tumoraux et nous ont permis de décrire certains des
processus de réparation de la microvasculature, a travers différents états cellulaires endothéliaux
tels que les cellules « tip » et « stalk », avec une communication intercellulaire importante avec un
sous-type spécifique de macrophages alvéolaires recrutés depuis la circulation.

Ce travail a permis de mieux comprendre les mécanismes conduisant a la FPRI, avec un
apercu unique de la réponse pulmonaire du patient a la radiothérapie. De plus, la disponibilité des
données temporelles de souris et des données humaines pourrait faciliter d’autres études. Dans
I’ensemble, mon projet a participé a 1’effort visant a accroitre les connaissances sur la
physiopathologie de la fibrose pulmonaire radio-induite afin de trouver des options thérapeutiques
pour prévenir, arréter le développement ou traiter I’évolution de cet effet secondaire mortel de la
radiothérapie.

Mots clés : Fibrose pulmonaire radio induite, Séquengage d'ARN de cellule unique,
Analyses bioinformatiques
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Radiotherapy is one of the main therapeutic options for thoracic cancer treatment,
including lung cancer, the first cause of cancer-related death worldwide. However, five to
twenty percent of the patients that undergo radiotherapy will suffer from lung radiation
toxicities, from pneumonitis to irreversible radiation induced pulmonary fibrosis (RIPF). RIPF
is characterized by a progressive and irreversible destruction of the alveoli structure, along
with collagen deposition. This scar tissue development impairs the normal function of the
lung: the gas exchanges between the air and the blood, and the evacuation of gaseous waste,
leading to pulmonary failure and ultimately death. Some of the main molecular and cellular
events occurring during the development of this pathology have been described, however
the detailed mechanisms and their temporality remain largely unknown. Therefore, the
objective of my project is to gain a better understanding of the precise cellular and molecular
events induced by radiation, from the initial stage of pneumonitis to end-stage pulmonary
fibrosis.

The use of single cell RNA sequencing (scRNA seq) allowed us to describe with
unprecedented details the processes induced by irradiation in the non-tumoral tissue and the
interplay between the different cell populations, as well as the dynamics of these processes.
First, we used a mouse model to compare the effect of a fibrogenic dose of irradiation or a
non fibrogenic dose of irradiation and the temporal sequence of events development after
irradiation. We observed the initiation of various processes of inflammation and repair of
different populations (endothelial, epithelial and myeloid cells) in a similar way after either a
fibrogenic or non-fibrogenic dose of irradiation: regeneration of the pneumocytes through a
dedifferentiation of the type Il pneumocytes or transdifferentiation, pro-angiogenic signaling
inducing processes of microvasculature repair, monocyte differentiation to interstitial
macrophages. However, three months post irradiation, the mice irradiated at a non-
fibrogenic dose recover, whereases the mice irradiated at a fibrogenic dose enter chronic
inflammation, present a shift in the phenotype of fibroblasts that differentiate into
myofibroblasts and produced extracellular matrix, induce epithelial to mesenchymal
transition of the pneumocytes.

Furthermore, this project presents the first scRNA seq analysis of non-tumoral lung
tissue samples from patients who underwent radiotherapy for lung cancer. The results
highlighted the important activation of pro-angiogenic signaling by irradiation in non-tumoral
lung tissue and allowed us to describe some of the repair processes of the micro-vasculature,
through different endothelial cell states such as the tip and stalk cells, with important
intercellular communication with a specific subtype of recruited alveolar macrophages.

This work provided a better understanding of the mechanisms leading to RIPF, with
unique insight about the patient's lung response to radiotherapy. Furthermore, the
availability of both the mouse temporal dataset and the human dataset could facilitate
further studies. Overall, my project participated in the effort increase knowledge on the
physiopathology or radiation-induced pulmonary fibrosis in order to find therapeutic options
to prevent, stop the development or treat the advancement of this deadly side effect of
radiotherapy.

Keywords: Radio-induced pulmonary fibrosis, Single cell RNA sequencing,
Bioinformatic analysis
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