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Abstract

In this thesis, we study the geometry of typical hyperbolic 3-manifolds, as their vol-
ume goes to infinity. To do so, we consider a model for random hyperbolic 3-manifolds,
called random triangulations. These are compact manifolds with boundary constructed by
randomly gluing truncated tetrahedra along their faces.

We prove that, as the volume tends to infinity, their length spectrum converge in
distribution to a Poisson point process on R>0, with computable intensity λ. We also
study the systole, that is, the first element of the length spectrum. More precisely, we
show that the limit, as the volume tends to infinity, of the expected value of the systole
of these manifolds exists, and we give a closed formula of it. Moreover, we compute a
numerical approximation of this value.

The general idea behind the proofs is to understand the combinatorics of the complex
made of truncated tetrahedra, and then infer from these its geometric properties. These
combinatorial properties are (almost all) contained in the dual graph of the complex.
Hence, most of the arguments in these proofs combine results coming from hyperbolic
geometry, random graph theory, and probability theory.

Keywords

Hyperbolic geometry, random 3-manifolds, length spectrum, systole, random regular graphs,
Poisson point process.
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Résumé

Dans cette thèse, nous étudions la géométrie des variétés tridimensionnelles (3-variétés)
hyperboliques typiques, lorsque leur volume tend vers l’infini. Pour cela, nous considérons
un modèle de 3-variétés hyperboliques aléatoires, appelé triangulations aléatoires. Il s’agit
des variétés compactes à bord construites en collant aléatoirement des tétraèdres tronqués
le long de leurs faces.

Nous prouvons que, lorsque le volume tend vers l’infini, leur spectre des longueurs
converge en distribution vers un processus ponctuel de Poisson sur R>0, d’intensité cal-
culable λ. Nous étudions également la systole, c’est-à-dire, le premier élément du spectre
des longueurs. Plus précisément, nous montrons que la limite, lorsque le volume tend vers
l’infini, de l’espérance de la systole de ces variétés existe, et nous en donnons une formule
fermée. De plus, nous calculons une approximation numérique de cette valeur.

L’idée générale derrière les preuves est de comprendre la combinatoire du complexe
composé de tétraèdres tronqués, et ensuite d’en déduire ses propriétés géométriques. Ces
propriétés combinatoires sont (presque toutes) contenues dans le graphe dual du complexe.
Ainsi, la plupart des arguments dans ces preuves combinent des résultats provenant de la
géométrie hyperbolique, de la théorie des graphes aléatoires et de la théorie des probabilités.

Mots-clés

Géométrie hyperbolique, variétés tridimensionnelles aléatoires, spectre des longueurs, sys-
tole, graphes réguliers aléatoires, processus de Poisson.
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Introduction

Perelman’s proof of Thurston’s geometrisation conjecture [Thu82, Per02, Per03], to-
gether with other important results such as the surface subgroup theorem [KM12], the
virtual Haken theorem [Ago13] or the ending lamination theorem [Min10,BCM12], led to
remarkable progress in the study of hyperbolic 3-manifolds.

Even so, there are still plenty of open questions in the field. Many of them are about the
behaviour of geometric invariants of these manifolds -such as the lengths of their geodesics
or the spectral gap- as their complexity grow (see for instance [MT23, Conjecture 1.5]).

The thing is that, similar to what happens in the two dimensional case, the class of
hyperbolic 3-manifolds is the "wildest" class among all geometric 3-manifolds. That is, it
contains manifolds with very different features: some with special symmetries, algebraic
properties, some highly connected (or disconnected), etc. Therefore, it is very hard to prove
results about their geometric properties that are true for all of them. A natural approach,
then, is to set aside a small set of "degenerate manifolds", and try to find properties, or
behaviours, that are verified for "most" of hyperbolic 3-manifolds. We refer to these as
typical properties, and to the set of manifolds verifying them, typical manifolds.

In this thesis, we aim to (partially) answer the following question:

Q: What is the geometry of a typical hyperbolic 3-manifold of large volume?

More precisely, we are interested in the typical behaviour of two geometric invariants:
the length spectrum and the systole. This question is addressed by using a probabilistic
approach, that is explained next.

Probabilistic approach

A way of tackling problems concerning asymptotic, extremal or typical behaviours is
by using probabilistic techniques. Actually, it is only in a probabilistic context where the
latter makes mathematical sense. This method has been proven to be very successful in
areas like graph theory, and more recently also in hyperbolic geometry.

15



16 INTRODUCTION

In our case, this probabilistic approach consists in the study of random manifolds. A
way to think about them is to consider a parameterized class of manifolds, and put a
probability measure on this parameter space. As one can deduce from this description,
there isn’t a canonical way of defining random manifolds. Hence, we need to consider a
model.

Several models of random hyperbolic surfaces were developed by Mirzakhani [Mir13],
Brooks-Makover [BM04], Guth-Parlier-Youg [GPY11], Budzinski-Curien-Petri [BCP21]
and Magee-Naud-Puder [MNP22]. Together with this, there has been an extensive re-
search on the study of typical an extremal properties of these surfaces (see for instance
[GPY11,LMW16,BCP21,BM04,MNP22,Mir13,HM23,AM23,LW23,WX22,Mon22,Liu22,
Pet17,MP19]).

In the case of 3 dimensions, there are three well known models: random Heegaard
splittings, random mapping tori -both introduced by Dunfield and Thurston [DT06]- and
random triangulations -introduced by Petri and Raimbault [PR22].

The former model is probably the most studied one, and is obtained from a Heegaard
splitting, that is, by gluing together two copies of a handlebody Hg of genus g along a
"random" orientation preserving diffeomorphism f of the boundary ∂Hg = Σ (see Figure
1). Since the manifold depends only on the isotopy class of f , it is well defined for the
mapping class [f ] ∈ Mod(Σ). Thus, a random Heegard splitting is one such that the
mapping class is taken at random by doing a random walk in the mapping class group
Mod(Σ). Note, that this model samples only manifolds of bounded Heegaard genus.

Figure 1: Gluing of two copies of a handlebody along a diffeomorphism f

Considerable work has been done in the study of geometric invariants of this model, such
as the spectrum of the Laplacian [HV22], the growth of the diameter and injectivity radius
[FSV22], or that of their volume [Via21] -providing an answer to the volume conjecture of
Dunfield and Thurston [DT06, Conjecture 2.11]-. These often used combinatorial models
similar to those that are behind the proof of the ending lamination conjecture [Min10,
BCM12].

The model of random 3-manifolds we work on is the model of random triangulations
[PR22]. In this model, a random 3-manifoldMn is constructed by randomly gluing together
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n truncated tetrahedra along their hexagonal faces, resulting in a compact, oriented 3-
manifold with boundary (see Figure 2). By Moise [Moi52], one has that, as n tends to
infinity, every compact 3-manifold with boundary gets sampled by this model.

Figure 2: A truncated tetrahedron

Moreover, it turns out that asymptotically almost surely (a.a.s) these manifolds are hy-
perbolic (Theorem 2.1.3, by Petri-Raimbault), which makes it a suitable model for studying
properties of hyperbolic 3-manifolds.

In this manuscript, we study the following two geometric invariants of hyperbolic 3-
manifolds built under this model: the primitive length spectrum, and the systole.

The primitive length spectrum

A geodesic is a curve that locally minimises the distance. A closed geodesic is called
primitive if it travels along its image exactly once. Given a hyperbolic manifold M , the
primitive length spectrum is the (multi-)set of lengths of all primitive closed geodesics.

Related work

The study of lengths of (primitive) closed geodesics on hyperbolic manifolds has been
a topic of interest for a long time. Specially in dimension two, there is a large literature
on this topic, which can be found, for instance, in [Bus92].

One of the first results regarding counting of curves was due to Huber and Selberg
[Hub61], which proved the well known prime geodesic theorem. This result states that
the number of primitive closed geodesics of length at most some number L in a hyper-
bolic surface is asymptotic to eL/L as L tends to infinity. This result was generalised
for finite-volume hyperbolic n-manifolds by Sarnak [Sar83] and compact negatively curved
manifolds by Margulis in this thesis [Mar04], constituting one of the firsts results on this
topic in higher dimensions. Some time later, Mirzakhani [Mir08,Mir07] made a significant
breakthrough on the counting of (simple and non-simple) closed geodesics on hyperbolic
surfaces of length up to L, for L→∞, work that has continued to be developed by several
authors, among them [ES23,ES22].
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Another natural question that has been studied is the multiplicity of the elements
in the spectrum. The prime geodesic theorem also provided an exponential bound on
the multiplicity of a length. On the other hand, Randol [Ran80] proved that the length
spectrum of any compact hyperbolic surface has unbounded multiplicities. I dimension 3,
an analogous result was proved by Masters [Mas00].

There has also been work done on the marked length spectrum. For instance, it was
proved by Otal [Ota90] that this invariant, in contrast with the length spectrum, does de-
termine a surface with any non-constant negatively curved metric up to isometry. In higher
dimensions, this question has been addressed, for instance, by [Ham99,GL19]. However,
it still remains open for general negatively curved metrics.

Now, in the case of random surfaces, the length spectrum has also been studied. Puder-
Zimhoni [PZ24] proved a Poisson approximation theorem for the length spectrum of random
surfaces under the random cover model. Petri [Pet17] gave also a similar result in the
Brooks-Makover model. In the Weil-Petterson model, various results regarding closed
geodesics have been shown in [MP19,Liu22,MT22,NWX23].

For random 3-manifolds, however, much less in known. We highlight the study of short
curves in the random mapping tori model by Taylor-Sisto [ST19] and in the Heegaard
splitting model by Feller-Sisto-Viaggi [FSV22].

Contribution

In this manuscript we study the typical behaviour of the length spectrum of a ran-
dom hyperbolic 3-manifold Mn of large volume, constructed with the model of random
triangulations. The first main result of this manuscript is:

Theorem A ( [RS23]). As n → ∞, the primitive length spectrum of a random compact
hyperbolic 3-manifold with boundary Mn converges in distribution to a Poisson point process
(PPP) on R>0, of computable intensity λ.

This λ is an atomic measure that is supported on the length spectrum of PSL(2, Z[i]).
It will be properly defined later in the text. The theorem, then, gives a concrete charac-
terisation of the behaviour of the length spectrum of these random hyperbolic 3-manifolds
Mn. Moreover, since the distribution of a Poisson random variable has an explicit formula,
and we have an explicit expression for its mean, this result also tells us that it is possible
to compute -with the help of a computer- the limits of the probability that a measurable
subset [a, b] ⊂ R>0 contains k points, for any k ∈ N and a, b > 0 fixed.

Structure and ideas of the proof

The structure of the proof of Theorem A has some common points with the one of The-
orem 2.1.3 by Petri-Raimbault, regarding the hyperbolicity of the manifolds Mn. There,
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they first construct a specific model of non-compact hyperbolic manifolds -made out of a
gluing of hyperbolic ideal right-angled octahedra- named Yn, and observe that these can
be transformed to the manifolds Mn via Dehn filling. Then, they prove that after this
compactification process, the resulting manifolds Mn are still hyperbolic, using as main
tools Andreev’s theorem [RHD07] and Theorem 3.2.3, by Futer-Purcell-Schleimer.

The point here is that the geometry of these non-compact random manifolds Yn is much
better understood -by construction of the manifolds and their hyperbolic metric- than the
one of the manifolds Mn, so it is easier to study their geometric properties.

Therefore, in order to prove Theorem A regarding the length spectrum of Mn, we will
follow a similar strategy: first, we will prove the result for these manifolds Yn, and then we
will see that after the Dehn filling, the result is still true for the compactified manifolds,
that is, the Mn.

The main idea behind the proof of this first part is to translate the problem of counting
closed geodesics in Yn to the problem of counting certain cycles in the dual graph of
this complex, which is a random 4-regular graph (see Figure 3). Then, the asymptotic
behaviour of the expected number of these cycles is given by Theorem 3.1.2, using the
method of moments. To prove this part it is also essential a technical result concerning
the growth of the translation length in terms of the word length of the cycles in the graph
(Proposition 3.1.3).

Figure 3: Homotopy of a curve into the dual graph.

On the other hand, the second part of the proof of Theorem A comes down to showing
two points: the first and principal, is that the length of the curves after the Dehn fillings
of the cusps stays roughtly the same (given by Proposition 3.2.1). For this, we’ll rely as
well on Andreev’s theorem and Futer-Purcell-Schleimer, although in a different way as
in Petri-Raimbault’s proof. And secondly, that closed geodesics don’t collapse after the
compactification (given by Lemma 3.2.4). Both results -as well as some other statements
in the thesis- are proved to hold asymptotically almost surely (a.a.s), which means with
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probability tending to 1 as n→∞.

Finally, we note that one could also try to carry out a proof for this result using the
Chen–Stein method for Poisson approximation [AGG89,BC05] -instead of the method of
moments- which might provide explicit errors terms in the approximation.

The systole

The systole of a hyperbolic n-manifold M is the length of the shortest geodesic of M .
It constitutes one of the simplest geometric invariants of M, yet gives very rich information
about the manifold. Indeed, it is related to many other of its geometric properties, like
the volume [Gro83], the diameter [Bav96, BDP23], the kissing number [Par13, BP22], or
the Cheeger constant [Bro92].

Related work

The study of systolic geometry started in 1949 with Loewner, who proved an inequality
for the systole of the 2-torus in terms of its area [Pu52]. This was followed by Pu, who
stated a similar inequality for the real projective plane [Pu52]. Some years later, Gromov
gave one of the most well known results in the area [Gro83]; he proved an upper-bound on
the 1-systole of essential n-manifolds (such as hyperbolic manifolds) in terms only of their
volume, for all n ≥ 2.

Over the years, there has been extensive research on the behavior of the systole of
hyperbolic manifolds. It is known, for instance, that the infimum of the systole of any
closed hyperbolic n-manifold with vol(M)≤ v is zero for v large enough if n = 2, 3, and
tends to zero as v → ∞ for n ≥ 4 [Ago06, BT11]. Nonetheless, the behaviour of the
maximum of this value as the volume grow, is still unknown for any n ≥ 2. Thus, many
results in the field are about finding sharper lower and upper bounds of it, and examples
of manifolds with large systole.

Up to now, the best upper-bound for dimensions 4 and above comes from a simple
volume growth argument [Bus92]. For surfaces, a better one coming from the injectiv-
ity radius was found by Bavard [Bav96], which was only improved recently by Fourtier
Bourque-Petri [BP22] by linear programming techniques. Using this same approach, the
upper-bound was also improved in dimension 3 by Bonifacio-Mazac-Pal [BMP23]. In all
cases, the bound has logarithmic growth.

As for lower-bounds, Brooks [Bro88] and Buser-Sarnak [BS94] prove the existence of
sequences of closed hyperbolic surfaces (Sk)k with genus increasing in k and sys(Sk) ≥
4
3 log(gk) + O(1), using arithmetic constructions. This was generalised later on by Katz-
Schapps-Vishne [KSV07] for other classes of surfaces and 3-manifolds, and by Murillo
[Mur19] for n-manifolds, with similar methods. In dimension 2 there are also combinatorial



21

constructions which provide examples of surfaces with logarithmic systoles; these are given
by Petri-Walker [PW18] and Liu-Petri [LP24], the latter using probabilistic techniques.

Finally, the systole has also been studied in some models of random 3-manifolds. Feller-
Sisto-Viaggi [FSV22] found an upper bound to the decay rate of the length of the shortest
geodesic of a 3-manifold under the model of random Heegaard splittings. A similar result
was proven for the model of random mapping tori by Taylor-Sisto [ST19].

Contribution

The second and third main results of this thesis are about the asymptotic behaviour
of the expected value of the systole of random hyperbolic 3-manifolds Mn, built using the
model of random triangulations. These answer a question posed in [PR22, Question 3].

The first proves the existence of the limit, as n → ∞, of the expected value of the
systole of the model of compact hyperbolic 3-manifolds with boundary Mn, by giving an
explicit (and computable) expression of it.

Theorem B ( [RS24]). Let {li}i≥1 be the ordered set of all possible translation lengths
coming from (classes of) words [w] ∈ W. Then,

lim
n→∞

E[sys(Mn)] =

∞∑
i=1

( ∏
[w]∈Wli−1

exp

(
|[w]|

2|w|3|w|

))(
1−

∏
[w]∈Wli

\Wli−1

exp

(
|[w]|

2|w|3|w|

))
· li.

Here W corresponds to a collection of matrices in SL(2,Z[i]). The precise definition
can be found in Section 4.1.

The third main result, Proposition C, completes the answer to the question by com-
puting a sharp numerical approximation of this value.

Proposition C ( [RS24]). We have:

lim
n→∞

E(sys(Mn)) = 2.56033312683887522062± 2.95489 · 10−16.

Structure and ideas of the proofs

The general strategy of the proof of Theorem B follows the same two big steps as the
one for Theorem A.

Thus, first, we compute the limit of the expected value for the model of hyperbolic
manifolds Yn. To get here the expression of the expected value, we again translate the
study of the number of closed geodesics of certain lengths in Yn to the study of their
corresponding cycles in the dual graph GYn , and rely on our Theorem 3.1.2. Nevertheless,
to prove the result, we need also to make sure that we can swap the limit and the infinite
sum given by the expected value. For that, we apply the dominated convergence theorem,
using mainly graph theory tools such as Corollary 1.3.2, by McKay-Wormald-Wysocka.
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The second part of the proof consists, as before, on seeing that the result applies also to
the compactified manifolds Mn. For that, we prove that the contribution to the expected
value of a set of "bad" manifolds -in which the systole could degenerate- goes to zero
as n → ∞. The study of these potential "bad" manifolds relies heavily on the proof of
Proposition 3.2.1, and uses results coming from both graph theory, like Corollary 1.3.2 or
Bordenave’s Lemma 1.3.4, and hyperbolic geometry, like Theorem 3.2.3 by Futer-Purcell-
Schleimer.

The argument for finding the numerical value of Proposition C also goes in two steps.
Indeed, we divide the infinite sum corresponding to the expected value in two terms: a
computable part and an error term, that we bound. Thus, the first sum is computed
with a Sage program, showed later in the text. For the error term, we carefully study
the probabilities appearing, and use Theorem 3.1.2 together with some computational
data to obtain the bound. The main difficulty that we encounter -which differentiates it
from the two dimensional case [Pet17]- is that there is not a natural way of ordering the
lengths li from the information given by the cycles. This makes the computation much less
straightforward.

Organization

The thesis is divided into 5 chapters. Here it is an outline of their content:

• Chapter 1: In this chapter, we give an overview of the mathematical background that
is involved in the thesis. It has three sections, containing mathematical notions on
hyperbolic geometry, probability theory and random graph theory correspondingly.

• Chapter 2: Here we present the models of random 3-manifolds we use for our results.
We start by explaining the main model of interest, the model of randon triangulations,
and we state some known properties of these random manifolds. Then, we describe
another model of random 3-manifolds, that plays an auxiliary role in the proofs of
both Theorems A and B, and end by describing the relation between the two.

• Chapter 3: This chapter is based on the article [RS23]. It contains the proof of
Theorem A. There are two big sections, corresponding to the two general steps of
the proof explained above.

• Chapter 4: This chapter is extracted from the article [RS24]. It has three sections;
the firsts two contain (the two steps of) the proof of Theorem B, and the last one
the proof of Proposition C.

• Chapter 5: We conclude the thesis by giving some future research directions, which
emerge after the work presented in the manuscript.



Chapter 1

Background

The topic of this thesis connects mainly three domains of mathematics: hyperbolic
geometry, probability theory and graph theory. Hence, in this chapter, we will recall some
basic notions used later in the text, of all three domains.

1.1 Hyperbolic geometry

Much of the content in this section is based on the books of Martelli [Mar16] and
Marden [Mar07]. These contain a more complete explanation of all the following notions,
in case the reader is interested in more details.

A hyperbolic n-manifold M is a complete n-dimensional Riemannian manifold with con-
stant sectional curvature equal to −1. The first, most elementary example of a hyperbolic
manifold is the hyperbolic n-space Hn. This constitutes the unique (up to isometry) sim-
ply connected hyperbolic n-manifold. Thus, another way to define a hyperbolic n-manifold
is to say that it is a complete Riemannian manifold that locally looks like (or more pre-
cisely, is locally isometric to) Hn. In this thesis, we will be interested in three-dimensional
hyperbolic manifolds, that is, when n = 3.

A way of thinking of H3 is by considering a model. Here we present two models, which
are the ones that will appear in the rest of the manuscript.

• The Upper half-space model :

H3 = {(x, y, z) ∈ R3 : z > 0}

with the metric:

ds2 =
dx2 + dy2 + dz2

z2
. Figure 1.1: Geodesics in the upper half-space

model H3 (blue).

23
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• The Poincaré ball model :

B3 = {(x, y, z) ∈ R3 : x2+y2+z2 < 1}

with the metric:

ds2 =
4(dx2 + dy2 + dz2)

(1− (x2 + y2 + z2))2
.

Figure 1.2: Geodesics in the Poincaré
ball model B3 (blue).

Now that we have introduced H3, we have that any other orientable hyperbolic 3-
manifold can be obtained as a quotient H3/Γ, where Γ is a discrete, torsion-free subgroup
(Kleinian group) of Isom+(H3), the group of orientation-preserving isometries of H3. This
group, for n = 2, 3 is particularly nice, since it is isomorphic to a well known group of
matrices. In our case,

Isom+(H3) ≃ PSL(2,C) = {M ∈M2×2(C) : det(M) = 1}/{±Id2}.

The action of this group on the boundary of H3 -∂H3 = C ∪ {∞} = Ĉ- under the upper
half-space model H3 is given by Möbius transformations [MT98, Theorem 1.8]:[

a b

c d

]
· z = az + b

cz + d
.

This action has an extension to an isometry on H3, by decomposing the previous map into
composition of two reflections on circles C1 and C2 in Ĉ. Indeed, these circles define two
hemispheres H1 and H2 in H3. Then, each reflection on Ci has a unique extension to H3

as a reflection in the hemisphere spanned by the circle. The Möbius transformation, then,
acts on H3 by composition of these reflections in the hemispheres.

Moreover, every isometry of H3 can be seen as the extension of a conformal map from
Ĉ to itself, since it must send hemispheres orthogonal to Ĉ to hemispheres orthogonal to Ĉ,
and so circles in Ĉ to circles in Ĉ. We can, in fact, classify the types of isometries of H3 by
looking at the behaviour of this conformal map in the boundary: either it fixes two points
in ∂H3 and none in H3 (in which case the isometry is called loxodromic or hyperbolic), it
fixes one point in ∂H3 and none in H3 (parabolic), or it fixes no point in ∂H3 and at least
one in H3 (elliptic). The type of isometry they represent is determined by the trace of the
element in PSL(2,C). For more information, see [Mar07, Chapter 1].

Remark 1. If we consider hyperbolic manifolds M with totally geodesic boundary, the
definition is slightly different: they are quotients of closed convex subsets of H3 by discrete,
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torsion-free subgroups Γ < Isom+(H3). Thus, the interior of these manifolds is locally
isometric to H3, and the boundary locally isometric to a half-space in H3. This boundary
∂M is a hyperbolic surface without boundary.

1.1.1 Coxeter polyhedra

Interesting examples of hyperbolic manifolds can be built using Coxeter polyhedra.
Recall that a finite polyhedron in Hn is the convex hull of finitely many points in Hn∪∂Hn.
Then, a Coxeter polyhedron P in Hn is a polyhedron in Hn in which the dihedral angle of
every codimension-two faces divides π. The dihedral angles can be computed by considering
the two planes spanned by the corresponding faces, and taking the normal vectors at the
point where the planes intersect. These two vectors define an angle, which equals the
dihedral angle between the faces. Some examples of finite Coxeter polyhedra in H3 are the
ideal dodecahedron (with dihedral angles π

3 ), or the ideal regular right-angled octahedron
(with dihedral angles π

2 ) showed in Figure 1.3.

Figure 1.3: Ideal right-angled regular octahedron in B3.

The reflections along the facets of a finite Coxeter polyhedron P generate a discrete
isometry group. These groups are called reflection groups. Each of these reflection groups
Γ contains, by Selberg’s Lemma, a torsion-free subgroup Γ′ of finite index k. Then, the
quotient

M = Hn/Γ′

is a hyperbolic manifold, tessellated with k copies of P.

1.1.2 Curves

A closed curve γ in a manifold M is a smooth map γ : S1 → M . It is said to be
simple if it doens’t intersect itself. We say that two closed curves γ1, γ2 on M are freely
homotopic if there exists a continuous map f : S1 × S1 →M such that f ↾{0}×S1= γ1 and
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f ↾{1}×S1= γ2. This is an equivalence relation. In this manuscript, we will generally be
looking at free-homotopy classes of these curves, that will be denoted by [γ].

Let M = Hn/Γ be now a hyperbolic manifold. We say that a curve is homotopically
trivial if it is homotopic to a point, and peripheral if it is homotopic to a cusp in M -a
hyperbolic manifold Hn/Γ′, where Γ′ < Γ is a subgroup of parabolic isometries of H3 (see
Section 1.1.5 for more details).

A standard fact in hyperbolic geometry, highly relevant for our purposes, is the follow-
ing:

Proposition 1.1.1 ( [Mar16], Proposition 4.1.13). Let M be a complete hyperbolic mani-
fold of dimension n ≥ 2, and γ a non-homotopically trivial and non-peripheral closed curve
in M . Then, there exists a unique closed geodesic in the free homotopy class of γ, which
minimises the length in the homotopy class.

We know, on the other hand, that there is a one-to-one correspondence between the free
homotopy classes of closed curves in M = Hn/Γ, and the conjugacy classes in Γ [Mar16,
Section 4.1.5]. Thus, given the nice description of Isom+(H3), one can obtain information
about the (homotopy classes of) curves [γ] on a hyperbolic 3-manifold M by studying the
matrices lying in the corresponding conjugacy classes [Mγ ]. For instance, we can compute
the length of the closed geodesic in the homotopy class by looking the traces of the matrices.
This length is exactly the translation length of [Mγ ], that is, the distance between p and
Mγ(p) for any p ∈ axis(Mγ) -the geodesic line in H3 preserved by the isometry. This is
given by:

lγ(Mγ) = 2Re
[
arcosh

(
trace([Mγ ])

2

)]
. (1.1)

Closed curves are interesting objects to study as they contain important information about
the geometry of the manifold. For instance, their lengths determine the Laplacian spectrum
or the volume of the manifold.

There are two geometric invariants directly related to them, which constitute the ob-
jects of study in this thesis: the length spectrum and the systole.

1.1.3 The length spectrum

The length spectrum is the (multi-)set of lengths of all closed geodesics of a hyperbolic
manifold M . This set is a discrete and countable set of R+. This follows from Proposition
1.1.1.

A closed geodesic is called primitive if it travels along its image exactly once. One can
consider then the primitive length spectrum, which is the set of lengths of primitive closed
geodesics. Since every closed geodesic can be expressed uniquely as a power of a primitive
closed geodesic, we see that the latter completely determines the general length spectrum.
This is the set that will be studied in Chapter 3.
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1.1.4 The systole

The systole of a hyperbolic manifold M is length of the shortest closed geodesic in M .
Hence, it is the first element of the primitive length spectrum.

The term "systole" is also used to refer to the geodesics realising the shortest length.
In this text, however, we’ll take the first definition.

We recall here the classical upper bound on the systole coming from the volume growth,
as will be used later on.

Lemma 1.1.2. Let M be a closed hyperbolic manifold of dimension n ≥ 2. Then, there
exists a constant cn > 0 such that

sys(M) ≤ 2

n− 1
log(vol(M)) + cn.

Proof. For any point p ∈M , let B(p, sys(M)/2) denote the open ball of center p and radius
sys(M)/2). We want to show first that this ball is isometric to an open ball in Hn.

We argue by contradiction: suppose it is not isometric. This means that the supremal
radius r > 0 for which an open ball of center p and this radius is isometric to an open ball
in Hn is smaller than sys(M)/2.

Consider then two geodesic segments γ, γ′ of length this radius r > 0, going from the
point p to some point q ∈ M . We see that the composition γ−1 ◦ γ′ is a geodesic loop of
length 2r < sys(M). Moreover, it is non-contractible, as otherwise its lift in Hn would be
a geodesic bigon, but these don’t exist. We have found then a non-contractible geodesic
closed curve in M with length smaller than the systole. This gives us a contradiction, by
definition of systole.

Now that we know this, let p̃ ∈ Hn be a lift of the point p, and consider the open ball
B(p̃, sys(M)/2) ⊂ Hn of center p̃ and radius sys(M/2). We have that:

vol(B(p̃, sys(M)/2)) = vol(B(p, sys(M)/2)).

On the other hand, the volume of an open ball in M is smaller than the volume of the
whole manifold M . Hence, we get:

vol(B(p̃, sys(M)/2)) ≤ vol(M).

Finally, if we compute the expression on the left, we obtain:

vol(B(p̃, sys(M)/2)) = vol(Sn−1) ·
∫ sys(M/2)

0
sinhn−1(t)dt ≤ vol(M),

which implies the lemma.

This invariant will be studied in Chapter 4.
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1.1.5 Thick-thin decomposition

In this manuscript, we consider manifolds with finite volume. However, we deal with
both compact and non-compact ones. For all of them, we have the so-called Thick-thin
decomposition for hyperbolic manifolds, a consequence of Margulis’ lemma that enables us
to understand much better the topology of these manifolds.

In general lines, this decomposition divides the manifolds into two parts: a compact
one, and another with very simple topology. To define these more precisely, we need the
notion of injectivity radius.

Let M be a hyperbolic manifold, and x ∈ M . The injectivity radius, denoted by
injrad(x), is defined as:

injrad(x) = sup{r > 0 : B(x, r) ⊂M is isometric to a ball in Hn}

=
1

2
inf{len(γ) : γ is a geodesic loop based at x}.

where a geodesic loop γx in M based at x is a smooth map γx : [0, 1] → M that is a
geodesic, and such that γx(0) = γx(1) = x.

Then, for ϵ > 0, the ϵ-thick and ϵ-thin parts of M correspond to:

M≥ϵ = {x ∈M : injrad(x) ≥ ϵ/2}, M<ϵ = {x ∈M : injrad(x) < ϵ/2}.

Then, the thick-thin decomposition theorem states the following:

Theorem 1.1.3 (Margulis). There exists a universal constant ϵn > 0 (the Margulis con-
stant), depending only on the dimension n of the manifold, such that for any 0 < ϵ < ϵn,
the ϵ-thin part of any orientable hyperbolic n-manifold M consists of R-tubes around short
geodesics (Margulis tubes), and truncated cusps. On the other hand, the ϵ-thick part is a
compact hyperbolic manifold.

Figure 1.4: Thick-thin decomposition of a non compact hyperbolic surface.

Let’s describe more precisely the geometry of these two components forming the ϵ-thin
part.

Tubes. An infinite tube is a hyperbolic manifold M = Hn/Γ, where Γ = ⟨φ⟩ is an
infinite cyclic group generated by a hyperbolic element φ on Hn with axis I and translation
length d > 0.
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Given a point p ∈ I, the Dirichlet domain D(p) of Γ, that is, the set:

D(p) = {q ∈ Hn : dHn(p, q) ≤ dHn(p, φ(q))}

is the space lying between two hyperplanes orthogonal to I at distance d/2 [Mar16, Section
4.1.2]. Thus, the infinite tube M is obtained from D(p) by identifying the two hyperplanes
along φ. The axis I projects in M onto a closed geodesic α of length d, called the core
geodesic of the tube.

Now, an R-tube is obtained by the quotient NR(I)/Γ, where NR(I) is the closed neigh-
bourhood of I of radius R (see Figure 1.5). Thus, it is the R-neighbourhood of the core
geodesic α. For n = 3 these R-tubes are diffeomorphic to S1 × D2 (a solid torus).

Figure 1.5: Section of a R-neighbourhood of the vertical axis I in H3, intersected by two
orthogonal planes at distance d/2 (left). R-tube around the core geodesic α (right).

Cusps. A cusp is a hyperbolic manifold Hn/Γ, where Γ is a discrete group generated
by parabolic elements of Hn fixing a point at infinity.

Indeed, let Γ < Isom(Rn−1) be a non-trivial discrete group of Euclidean isometries
acting freely on Rn−1. Then, the quotient M = Rn−1/Γ is a flat (n − 1)-manifold. If
we consider the upper half-space model of Hn, every element of Γ acts as a parabolic
transformation on Hn preserving the vertical coordinate. Thus, Γ can be seen as a discrete
group of parabolic transformations of Hn fixing the point ∞. The quotient Hn/Γ is then
diffeomorphic to M×R>0 [Mar16, Section 4.1.3]. Every cusp comes from this construction.

Then, a truncated cusp is the quotient of a horoball, that is, the set

{(z, t) ∈ Hn : t ≥ a > 0}

in the upper half-space of Hn, by a discrete group of Euclidean translations Γ preserving the
vertical coordinate (see Figure 1.6). This is diffeomorphic to the portion N =M × [a,∞),
a > 0, bounded by the Euclidean manifold M × a.

For our case of interest, n = 3 and Γ < Isom+(R2), we have that either Γ ∼= Z -in
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which case the cusp is called of rank one- or Γ ∼= Z2 -the cusp being called of rank two. In
the first case, a truncated cusp is then diffeomorphic to S1 ×R× [a,∞), a > 0, and in the
second it is diffeomorphic to T2 × [a,∞), a > 0.

Figure 1.6: A fundamental domain in H3 of a rank two truncated cusp.

1.1.6 Hyperbolic Dehn filling

A Dehn filling is an operation particular to three dimensional geometry, used to modify
3-manifolds. Consider first a 3-manifold M with boundary made of tori T1, . . . , Tk. Then, a
Dehn filling on M is the operation of attaching solid tori to its torus boundary components
Ti, along diffeomorphisms ψ : ∂D × S1 → Ti. Each of the meridians ∂D × {t} of the
solid tori is sent to some simple closed curve γi in Ti. The choice of these free homotopy
classes of curves [γi] -called the slopes- determines, up to homeomorphism, the Dehn filling
procedure. Figure 1.7 shows an example.

Figure 1.7: Dehn filling
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This operation enables us, in particular, to construct compact hyperbolic manifolds
from non-compact ones. Indeed, every rank-2 cusped hyperbolic 3-manifold can be thought
as the interior of a compact manifold with toroidal boundary. Then, by doing the procedure
above, one obtains a new manifold, which "most likely" will be hyperbolic. This was made
precise by Thurston, in his Hyperbolic Dehn filling theorem [Thu82, Theorem 2.6]:

Theorem 1.1.4 (Hyperbolic Dehn filling theorem). Let M be a finite-volume orientable
hyperbolic 3-manifold. Then, except for finitely many Dehn fillings on each boundary com-
ponent, all other Dehn fillings of M admit a finite-volume hyperbolic structure.

A Dehn filling operation can also be done on manifolds with rank-1 cusps. In this
case, the procedure is done with solid cylinders, which are attached, via diffeomorphims,
to cylinders which are part of the boundary components of the 3-manifold. In contrast
with the rank-2 case, here there is only one possible slope to take (see Figure 1.8), and so
the Dehn filling is already determined.

Figure 1.8: The unique slope [γ] in a cylinder.

1.1.7 Mostow-Prasad rigidity

We end this section by giving a result that differentiates considerably the geometry of
hyperbolic 3-manifolds with respect to dimension 2:

Theorem 1.1.5 (Mostow-Prasad rigidity theorem). Let M1 and M2 be two complete,
finite-volume hyperbolic manifolds of dimension n ≥ 3. Then, any isomorphism f :

π1(M1)→ π1(M2) between their fundamental groups is induced by a unique isometry from
M1 to M2.

This theorem tells us essentially that if a manifold of dimension n ≥ 3 admits a complete
finite-volume hyperbolic structure, this is unique up to isometry. Thus, the geometry of
a closed hyperbolic 3-manifold is a topological invariant, and so geometric properties such
as the ones we’ve just introduced, depend only on the topology of the manifold.



32 CHAPTER 1

1.2 Probability theory

The notions on probability theory contained in this section can be found generally in
the lectures of any probability course. A good source for more information is also Bollobás’
book [Bol01].

A probability space is a triple (Ω,F ,P), where Ω is the sample space -a non-empty set-,
F is a σ-algebra -a set of subsets of Ω that is closed under complements and countable
unions and in which Ω ∈ F - and P is a probability measure -a measure that is countably
additive and such that P(Ω) = 1.

A probability space is discrete if the σ-algebra F is just the set of all subsets of Ω

(of cardinal 2Ω), where Ω is finite or countable. In this case, the probability measure P
is defined by the probability of its singletons {w}, for w ∈ Ω. This is the space in which
we will work. For simplicity, we will write (Ω,P) when referring to the probability space.
Thus, the rest of the concepts of this section will concern this case.

A discrete random variable is a real-valued function X : Ω → R taking finitely or
countably many values a1, a2, . . .. In this case, its expected value (or first moment) is
defined as:

E(X) =
∞∑
i=1

ai · P[X = ai],

provided that the sum is absolutely convergent in the infinite case. In general for n ∈ N,
we define the nth moment of X as E[Xn]. There exists also the nth-factorial moment of
X, which is defined as:

E[(X)n] = E[X(X − 1)(X − 2) · · · (X − n+ 1)].

Related to this, there is also the variance of X, which can be written as Var(X) = E[X2]−
E[X]2.

One of the most classical inequalities concerning the expected value is Markov’s in-
equality, which states the following:

Theorem 1.2.1 (Markov’s inequality). Let X be a non-negative random variable such that
E[X] is well defined, and a > 0. Then,

P[X ≥ a] ≤ E[X]

a
.

Despite its simple statement, it a very powerful tool, as it enables to find a bound on
the probability only in terms of the expected value, which is sometimes easier to determine.
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1.2.1 Probability distributions

Given a discrete random variable X, its probability distribution is given by the prob-
abilities of each of its values. In this manuscript, we will be speaking about two types of
probability distributions: the (discrete) uniform distribution and the Poisson distribution.
Let’s define them.

The discrete uniform distribution is a symmetric probability distribution in which every
possible outcome has equal probability. Thus, here Ω is a finite set, and P : 2Ω → [0, 1] is
defined by:

P[A] =
|A|
|Ω|

, for all A ⊂ Ω.

We write that X ∼ U(Ω).
On the other hand, a random variable X : Ω→ N is said to have a Poisson distribution

with parameter λ > 0 if:

P[X = k] =
e−λλk

k!
, for all k ∈ N.

We note it by X ∼ Pois(λ). We recall also some of its properties:

• E[X] = Var(X) = λ.

• E[(X)r] = E[X(X − 1) · · · (X − r + 1)] = λr.

• If Xi ∼ Pois(λi) for i = 1, . . . , n are independent r.v, then the r.v Y =
∑n

i=1Xi ∼
Pois(

∑n
i=1 λi).

1.2.2 Convergence

Given a sequence of random variables (Xn)n∈N, we can ask what can we say about
its limiting behaviour. There are different notions of convergence of random variables,
capturing different properties about the sequence. Here we will present two: convergence
in distribution and almost sure convergence.

Let (Xn)n∈N be a sequence of random variables, and X another random variable. For
our purposes, it is enough to consider N-valued random variables.

Then, we say that (Xn)n∈N converges in distribution to X if:

lim
n→∞

P[Xn = a] = P[X = a],

for any a ∈ N. We denote it by Xn
d−→ X as n → ∞. This definition can be extended

analogously to random vectors.
On the other hand, suppose that (Xn)n∈N and X are both defined in the same probabil-

ity space (Ω,P). Then, we say that (Xn)n∈N converges almost surely to X if the sequence
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of numbers (Xn(w))n∈N converges to X(w) for almost all w ∈ Ω, that is,

P[{w ∈ Ω : lim
n→∞

Xn(w) = X(w)}] = 1.

We denote it by Xn
a.s.−−→ X as n→∞. This notion of convergence implies convergence in

distribution.

1.2.3 Method of moments

The method of moments is one of the most classical methods in probability theory
to prove convergence in distribution. For this to work, we need to apply it to random
variables whose distribution is determined by its moments. We say that the distribution
of a random variable X is determined by its moments if X has finite moments -that is,
E[Xn] <∞ for all n ∈ N-, and any other random variable with the same moments as X has
the same distribution. Since this definition is hard to verify, one can alternatively look at
the moment generating function E[etX ]. Indeed, a sufficient condition for the distribution
of X to be determined by its moments is that E[etX ] < ∞ where t ∈ (−a, a), for some
a > 0. This is for instance true if X is Poisson or normally distributed.

Given a sequence (Xn)n∈N that verifies this, the method of moments asserts that, if
for every k fixed, we are able to estimate the factorial moments E[(Xn)k], then we can
conclude that (Xn)n∈N converges in distribution to some random variable [Bol01, Section
1.4].

We will be interested in applying this method to random vectors, for proving conver-
gence to a Poisson distribution. Note that this method is specially convenient for this, as
the factorial moments of a Poisson random variable have a very simple expression. Thus,
we state the version of the result particular to this case.

Theorem 1.2.2 ( [JLuR00], Theorem 6.10). Let {(X1
n, . . . , X

m
n )}n∈N be vectors of random

variables, where m ≥ 1 is fixed. If λ1, . . . , λm ≥ 0 are such that, as n→∞,

E[(X1
n)k1 · · · (Xm

n )km ]→ λk11 · · ·λ
km
m

for every k1, . . . , km ≥ 0, then (X1
n, . . . , X

m
n )

d−→ (Z1, . . . , Zm), where:

• For each i = 1, . . . ,m, Zi is a Poisson random variable with parameter λi.

• For all 1 ≤ i, j ≤ m, i ̸= j, the random variables Zi and Zj are independent.

The expectations E[(X1
n)k1 · · · (Xm

n )km ] are usually called the joint factorial moments
of the random vector (X1

n, . . . , X
m
n ), which appear only in the multivariate case of the

theorem.
This method is often used for counting variables of the form SI =

∑
a∈A 1a, where 1a

are indicator variables. Here (SI)k counts the number of ordered k-tuples of elements such
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that 1a = 1, and so the kth-factorial moment of SI has the expression:

E[(SI)k] =
∑

∀a1,...,ak
ai ̸=aj

E[1a1 · · ·1ak ] =
∑

∀a1,...,ak
ai ̸=aj

P[1a1 = . . . = 1ak = 1].

This will be very useful for our case later on in Chapter 3.

1.2.4 Poisson point process

We finish this section by giving the definition of a Poisson point process, a mathemat-
ical object that will play an important role when studying the length spectrum. More
information about this can be found in [Kin93, Chapter 2].

There exist different mathematical interpretations of a point process -such as a random
counting measure or a random set. In our case, we follow the second one.

Let (E,µ) be a measurable space. A Poisson point process S on E with intensity µ is
a random countable subset of E which satisfies the following two properties:

• For any A countable subset of E, we define the random variable NA as the number
of points lying in S ∩A, that is,

NA = #{S ∩A}.

Then, NA is Poisson distributed with parameter µ(A).

• For any A1, . . . , At pairwise-disjoint countable subsets of E, the vector

(NA1 , . . . , NAt)

is a vector of independent random variables.

Such processes exist under the following condition on the measure µ:

Theorem 1.2.3 ( [LP18], Theorem 3.6). Let µ be an s-finite measure on E, that is, a
measure that can be written as a countable sum of finite measures µn, n ∈ N:

µ =
∞∑
n=1

µn, µn(E) <∞.

Then there exists a Poisson process on E with intensity measure µ.

The simplest example of Poisson point process is the one where the measure µ is given
by the product of a non-negative constant and the area or volume of the region. The
constant is usually known as both the intensity or rate. This is called a homogeneuos
Poisson point process. When considered it on the positive half-line, this can be interpreted
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as a counting process. In our case, however, µ will be an atomic measure. This case is an
example of what is usually called a general Poisson point process.

1.3 Random regular graphs

In this section we will talk about the theory of random graphs. Much of this is extracted
from [JLuR00].

Here we’re interested in a particular kind of random graphs: random regular graphs.
In general, a graph is said to be regular if every vertex has the same degree, that is, the
same number of edges incident to it. A regular graph with vertices of degree d is usually
called a d-regular graph. Let Ωd

n be the set of all d-regular graphs on n vertices, for n > d

and dn even. Then, a random d-regular graph G(n, d) is a random graph (Ωd
n,P) where P

is the uniform distribution over Ωd
n.

It is not practical, however, to work with this definition, since we don’t know a simple
formula for the total number of d-regular graphs on n vertices. Thus, a way to construct
such graphs is by using the so-called configuration model.

1.3.1 Configuration model

The configuration model is a method for generating random graphs of fixed degree
sequence, which consists on the following two steps: let (di)i≥1 be a sequence of n positive
integers, for n ∈ N, such that

∑
i di is even. Now, let V be a set on n vertices. Then,

1. We assign a degree di to each vertex vi ∈ V , i = 1, . . . , n. This is represented by di
half-edges, incident to vi.

2. We pair two half-edges uniformly at random and join them with an edge. We repeat
the same procedure until all half-edges are paired. We call a configuration a partition
of the set of half-edges.

In the case where di = d for all i = 1, . . . , n, one obtains a random d-regular graph. Figure
1.9 shows an example.

Figure 1.9: Pairing of half-edges (d = 4).
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The total number of possible configurations in this case is:

N (dn) =

(
dn
2

)(
dn−2

2

)
. . .
(
2
2

)
(2n)!

= (dn− 1)!!.

On the other hand, if we fix k independent (vertex disjoint) edges, there are:

Nk(dn) =

(
dn−2k

2

)(
dn−2k−2

2

)
. . .
(
2
2

)
(2n− k)!

= (dn− 2k − 1)!!

configurations containing these k edges.

The random d-regular graphs obtained with this method might have loops or multiple
edges. We can, however, condition it to be simple -that is, without loops or multiple edges.
This conditioning won’t affect the properties of the graph that are true with asymptotic
probability one. In other words, any property P holding asymptotically almost surely
(a.a.s) for G(n, d) -that is P[G(n, d) has P ] → 1 as n → ∞)- will also hold a.a.s for the
conditioned graph.

Indeed, the probability that G(n, d) is simple, as n→∞, tends to:

P[G(n, d) is simple]→ exp

(
− d2 − 1

4

)
> 0.

Since d is fixed, we hence obtain:

P[G(n, d) has P | G(n, d) is simple]

≤ P[G(n, d) has P ]
P[G(n, d) is simple]

n→∞−−−→ 1.

Moreover, it turns out that, after conditioning it on being simple, the resulting random
d-regular graph is, as n → ∞, uniformly distributed over the set of all simple random
d-regular graphs on n vertices [Wor99, Section 2.7].

1.3.2 Distribution of short cycles

Given a random d-regular graph, a natural question to ask is what is the distribution
of the number of different types of sub-graphs on G(n, d), as n grows.

It is known, for instance, that if H is a fixed graph with more edges than vertices, the
expected number of subgraphs isomorphic to H tends to 0 as n→∞ [Bol80].

We will be interested in cycles: the closed paths in which only the first and last vertices
are equal. A well known result related to this question was given by Bollobás [Bol80], who
showed the following about the distribution of short cycles on G(n, d). Let Xk,n be the
random variable counting the number of cycles of length k in G(n, d), for k ∈ N. Then,
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Theorem 1.3.1 ( [Bol80], Theorem 2). As n→∞, the random variables X1,n, . . . , Xk,n,
converge in distribution to some random variables X1, . . . , Xk, where:

• Each Xi is Poisson distributed with parameter λi =
(d−1)i

2i , i = 1, . . . k.

• The random variables X1, . . . , Xk are mutually independent.

Remark 2. Among all short cycles, there is one that has special interest, called the girth of
the graph. This is the cycle with the shortest length. One could think of it as an analogue,
in the case of graphs, of the systole in systolic geometry.

The main tool in the proof of Theorem 1.3.1 is the method of moments (see Section
1.2.3). A more recent tool to study the distribution of subgraphs in the context of random
regular graph was introduced by McKay [McK81]. This is called the switching method.

The most basic version of the method is given by simple switchings. Given a pairing
of vertices P -that is, a subset of pairs of vertices- we define a simple switching to be the
replacement of two pairs {p1, p2}, {p3, p4} by {p1, p3}, {p2, p4} or {p1, p4}, {p2, p3}. This,
consequently, induces a switching of the corresponding edges in the graph. Figure 1.10
shows an example.

Figure 1.10: Simple switching

This method enabled, for instance, to generalise Theorem 1.3.1 for d (the degree) and
k (the size of the cycle) increasing with n [MWW04, Theorem 1]. This result from McKay-
Wormald-Wysocka yield, in turn, the following one concerning the girth of these graphs:

Corollary 1.3.2 ( [MWW04], Corollary 1). For (d− 1)2g−1 = o(n), the probability that a
random d-regular graph has girth greater than g ≥ 3 is

exp

(
−

g∑
r=3

(d− 1)r

2r
+ o(1)

)
,

as n→∞.

This result will appear in several arguments on Chapter 4.
Others properties of random regular graphs have been studied by different authors,

such as Wormald [Wor99] or Bollobás [Bol01]. We finish by highlighting one regarding its
connectivity, due to both independently:
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Theorem 1.3.3 ( [Bol01], [Wor81]). Let d ≥ 3. Then,

P[G(n, d) is connected ]→ 1, as n→∞.

1.3.3 Tangle-free graphs

To end the section, we present a notion introduced first by Friedman [Fri08], and
redefined later by Bordenave [Bor20] to provide a new proof of Friedman’s theorem [Fri08]
regarding the spectral gap of the Laplacian on large regular graphs. This property will
play an important role in several proofs of this manuscript.

We say that a graph G is tangle-free if it contains at most one cycle (loops and multiple
edges included). Similarly, G is l-tangle-free if every neighbourhood of radius l inG contains
at most one cycle. Otherwise, we say that G is tangled or l-tangled.

Recall that a neighbourhood of radius l in a graph
G is the subgraph spanned by the vertices at dis-
tance (in the graph) at most l from some fixed
vertex (see Figure 1.11).

Figure 1.11: Neighbourhood of
radius 3 around v (green).

Bordenave [Bor20] proved that a random d-regular graph is l-tangle-free if l is not to
large. More precisely,

Theorem 1.3.4 ( [Bor20], Lemma 9). Let d ≥ 3, and G(n, d) be a random d-regular graph
on n vertices generated by the configuration model. Then,

P[ G(n, d) is l-tangle-free ] = 1−O
((d− 1)4l

n

)
.
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Chapter 2

The model of random 3-manifolds

In this chapter we define the two models of random hyperbolic 3-manifolds used for
our results in this thesis, and we state some of their properties. Then, we describe the
geometric relation between the two models.

2.1 The model Mn

In this section, we explain the probabilistic model of random triangulations for 3-
manifolds. The manifolds obtained with this model will be the objects of study in this
manuscript, and will be denoted by Mn.

The model is an analogue in three dimensions of Brooks and Makover’s model for
random surfaces [BM04].

The general idea is to construct manifolds by randomly gluing polyhedra together along
their faces. In dimension two, the polygon taken to do this procedure is the two-simplex,
that is, the triangle, which are then glued along their edges. Thus, it seems a priori that
the natural choice for creating this complex in dimension 3 would be the 3-simplex, i.e., the
tetrahedron. However, as shown by Dunfield and Thurston [DT06], with this polyhedron,
the procedure fails: as the number of tetrahedra grows, the result won’t typically be a
manifold.

Proposition 2.1.1 (Dunfield-Thurston). Let Tn be the complex made of a random gluing
of n tetrahedra along their faces. Then, as n→∞,

P[Tn is a manifold ]→ 0.

Proof. Suppose that Tn is homeomorphic to a 3-manifold. This means that every point in
Tn has a neighbourhood homeomorphic to R3. In particular, the neighbourhoods around
the vertices of the complex need to be homeomorphic to balls, hence their links are spheres.

We observe that the triangulation of the complex yields a triangulation of these spheres.

41
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Let (Vs, Es, Fs) denote the triangulation of a sphere, where Vs, Es and Fs are the sets of
vertices, edges and faces, which satisfy |Fs| = 2

3 |Es|. We know also that:

χ(S2) = |Vs| − |Es|+ |Fs| = |Vs| −
1

3
|Es| = 2.

Using these two relations, we see that the average degree of a vertex in a triangulation of
a sphere needs to be less than 6. Indeed, this can be written as:

1

|Vs|
∑
v∈Vs

deg(v) =
2|Es|
|Vs|

=
6|Vs| − 12

|Vs|
< 6

as |Vs| > 0. This, in turn, implies that the number of vertices with degree ≤ 6 is at least
1/7 the total number of vertices in the sphere. We prove it: let Ss denote the set of vertices
in Vs with degree ≤ 6, and Sc

s its complementary. We argue by contradiction. Suppose
that |Ss| < |Vs|/7 (and so |Sc

s| > 6|Vs|/7). Then,

6|Vs| >
∑
v∈Vs

deg(v) =
∑
v∈Ss

deg(v) +
∑
v∈Sc

s

deg(v)

≥ |Ss|+
6|Vs|
7

7 = |Ss|+ 6|Vs|,

which gives a contradiction, since |Ss| needs to be bigger than 0 for the average degree to
be less than 6. This remains true when considering the set of all vertices of all triangulated
spheres V : the average degree of a vertex in this set is less than 6, and so the number of
vertices with degree ≤ 6 is at least 1/7 the total number of vertices.

Now, since vertices in the triangulation of the spheres correspond (2 to 1) to edges in
Tn, we get that the average number of tetrahedra incident to an edge in Tn is equal to the
average degree of a vertex in the triangulated spheres, and so in particular, less than 6.
This implies then, that the number of edges in Tn with less that 6 tetrahedra around them
is at least |V |/7.

This set V is a multiple of the number of tetrahedra. Indeed, since Tn is made of n
tetrahedra glued along their 4 faces each, we have that the total number of faces of Tn is
2n. These faces correspond (1 to 3) to the total number of edges E of the triangulated
spheres. Hence, using the previous Euler characteristic computation, we obtain then that:

|V | > 1

3
|E| = 2n.

Therefore, Tn has at least 2n
7 edges with fewer than 6 tetrahedra around them.

If we look at the dual graph of the complex, we see that an edge with k tetrahedra
around it gives a cycle of length k in this graph. Thus, the previous observation tells us
that there are at least 2n

7 distinct cycles of length less than 6. However, the dual graph
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of Tn is a random 4-regular graph. Therefore, by Bollobás’ theorem 1.3.1, we obtain that
the expected value of the number of cycles of length less than 6 converges to a constant,
as n → ∞. Therefore, by Markov’s inequality 1.2.1, the probability that this dual graph
has at least 2n

7 distinct cycles of length less than 6 tends to 0 as n→∞.

This problem can be solved, however, by truncating the tetrahedra at their vertices
(see Figure 2.1). Then, the complex we obtain by gluing n of these polytopes along their
hexagonal faces, namely Nn, is a random compact 3-manifold with boundary.

The random aspect of the construction comes from the gluing. The 4n hexagonal
faces are partitioned into pairs uniformly at random, and for each pair, one of the three
cyclic-order-reversing gluings is also chosen uniformly at random.

Figure 2.1: A truncated tetrahedron. The orange faces are the boundary faces, and the
white ones the interior faces. Nn is obtained by gluing these polyhedra along the interior
(hexagonal) faces.

More formally, the combinatorics of this model go as follows. We start by considering
n tetrahedra. This will be glued randomly along their faces in pairs, through one of the
three orientation reversing euclidean isometries. This gluing is described in the following
way:

1. We label the n tetrahedra, that is, we assign to every vertex of these n tetrahedra a
unique label in {1, 2, · · · , 4n}.
We denote the face given by the vertices v1, v2, v3 ∈ {1, 2, · · · , 4n} by a cycle (v1 v2 v3).
The order of the vertices in the cycle determines at the same time an orientation on
the face.

2. We partition these 4n faces into 2n pairs, uniformly at random. We denote this
partition by ρn = (ρ

(i)
n )2ni=1, where ρ(i)n = {(v1 v2 v3), (w1 w2 w3)}.

3. For each pair of faces ρ(i)n , we choose, again uniformly at random, one of the three
cyclic-order-reversing pairings between the vertices. We denote the pairings by ϑn =

(ϑ
(i)
n )2ni=1, where ϑ(i)n = {(v1 v2 v3), (ϑ(i)n (v1) = w1 ϑ

(i)
n (v2) = w2 ϑ

(i)
n (v3) = w3)}.
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4. We identify each pair of faces wρ(i)n using the pairing of its vertices described by ϑin,
for every i = 1, . . . , 2n.

Let Tn denote the resulting tetrahedral complex. Then, the manifold Nn we presented
above is obtained by truncating Tn at the vertices.

One can deduce from classical work by Moise [Moi52] that every compact orientable
3-manifold with boundary can be obtained with this construction. In other words, every
such manifold gets, as n goes to infinity, sampled by this model.

Furthermore, we can obtain random closed manifolds from Nn: it suffices to take two
disjoint copies of Nn and glue their boundaries together using the identity map. Note,
however, that these will have additional symmetries, hence do not represent "typical"
closed 3-manifolds. The resulting random manifold will be denoted by DNn.

The dual graph of the complex Nn, that is, the graph obtained by considering a vertex
in each tetrahedron of Nn and joining them with an edge whenever they have a face in
common, is a random 4-regular graph. The construction of this graph follows exactly the
one described by the configuration model, a model for random regular graphs presented in
Section 1.3.1. For any path p of length k > 0 in this graph, we define a labelling of p, a
k-tuple of pairs:

((ρ(1)n , ϑ(1)n ), . . . , (ρ(k)n , ϑ(k)n )) (2.1)

where each ρ
(i)
n denoted a pairing between two faces (and so two half-edges), and ϑ

(i)
n

denoted the pairing between the vertices of the two corresponding faces in the octahedra,
describing the orientation on the pairing of these half-edges. We denote by Labp the set of
all labellings the path p can have as a set of all possible k-tuples of pairs of the form (2.1).
These labellings will play a role in the proof of Theorem 3.1.2.

We recall that, in this model, the expected number of loops and multi-edges converge
to Poisson random variables with parameters 3

2 and 9
4 respectively. Thus, for any property

P that holds a.a.s. for Nn (i.e, P[Nn has P ] → 1 as n → ∞) also does for the manifold
conditioned on its dual graph being simple. Therefore, we will condition our manifold Nn

on not having any loops or multi-edges in the dual graph of the tetrahedral complex. This
manifold will be the one denoted by Mn.

2.1.1 Properties

Several topological and geometric properties ofMn were studied by Petri and Raimbault
in [PR22]. These are collected in the following two results.

The first concerns the topology of Mn. Before stating it, we recall that the Heegaard
genus of a compact oriented 3-manifold is the minimal genus of the splitting surface in a
Heegaard splitting of that manifold.
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Theorem 2.1.2 ( [PR22], Theorem 1.1). (a) We have:

lim
n→∞

P[Mn is connected and has a single boundary component ] = 1.

(b) The genus g(∂Mn) of the boundary of Mn satisfies

lim
n→∞

P[n− θ(n) ≤ g(∂Mn) ≤ n+ 1] = 1,

for any function θ : N→ R that grows super-logarithmically.

(c) Let DMn denote the double of Mn along its boundary and g(DMn) its Heegaard
genus. Then,

lim
n→∞

P[n− θ(n) ≤ g(DMn) ≤ n+ θ(n)] = 1,

for any function θ : N→ R that grows super-logarithmically.

(d) The Betti numbers b1(Mn) and b1(Mn, ∂Mn) satisfy:

lim
n→∞

P[b1(Mn, ∂Mn) ≤ θ(n)] = 1, lim
n→∞

P[|b1(Mn)− n| ≤ θ(n)] = 1,

for any function θ : N→ R that grows super-logarithmically.

The second one contains some geometric properties of these manifolds.

Theorem 2.1.3 ( [PR22], Theorem 1.2). We have

lim
n→∞

P[Mn carries a hyperbolic metric with totally geodesic boundary] = 1.

This metric has the following properties:

(a) The hyperbolic volume vol(Mn) of Mn satisfies:

lim
n→∞

P
[
vol(Mn)

n · vO
∈ [1− ϵ, 1 + ϵ]

]
= 1,

for any ϵ > 0, where vO denotes the volume of the regular right-angled ideal hyperbolic
octahedron.

(b) There exists a constant cλ > 0 so that the first discrete Laplacian eigenvalue λ1(Mn)

of Mn satisfies
lim
n→∞

P[λ1(Mn) > cλ] = 1.

(c) There exists a constant cd > 0 such that the diameter diam(Mn) of Mn satisfies

lim
n→∞

P[diam(Mn) < cd log(vol(Mn))] = 1.
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(d) There exists a constant cs > 0 such that the systole sys(Mn) of Mn satisfies

lim
n→∞

P[sys(Mn) > cs] = 1.

(e) For every ϵ > 0, we have

lim
n→∞

P
[
1− ϵ
4n

< sys(DMn) <
1

n1−ϵ

]
= 1.

The same holds for the minimal length among arcs in Mn that are homotopically
non-trivial relative to ∂Mn.

The fact that these manifolds admit a hyperbolic metric is a fundamental feature for
our further study. Mostow’s rigidity theorem (Theorem 1.1.5) tells us then that this metric
is unique up to isometry. This implies, in particular, that geometric invariants of Mn like
the length spectrum or the systole become topological invariants, and so can be understood
from the combinatorics of the gluing.

Remark 3. The condition that the dual graph of Mn is simple is needed for the proof of
the hyperbolicity of Mn.

2.2 The model Yn

Here we describe the details of a model of random non-compact hyperbolic 3-manifolds.
As mentioned before, this model appears in the proof of hyperbolicity of Mn, and plays
an auxiliary but necessary role in the proofs of both Theorem A and Theorem B. The
manifolds constructed under this model will be denoted by Yn.

The building block for the topological random model Mn was a truncated tetrahedron.
Now, observe that if we contract the edges joining the triangular faces of a truncated
tetrahedron, we get an octahedron (see Figures 2.2 and 2.3). This will be the building
block for Yn.
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Figure 2.2: A truncated tetrahedron. Figure 2.3: The octahedron resulting from
contracting the blue edges of Figure 2

Now, the gluing procedure is very similar to the one described above. We consider
initially n ∈ N copies of a regular octahedron. Then,

1. For each octahedron Oi, i = 1, . . . , n, we attribute to its vertices a unique label in
{ai, bi, ci, di, ei, f i}.
We denote the face given by the vertices v1, v2, v3 ∈ {ai, . . . , f i} by a cycle (v1 v2 v3).
The order of the vertices in the cycle determines at the same time an orientation on
the face.

2. We consider four non-adjacent faces in each Oi, and we partition these 4n faces into
2n pairs, uniformly at random. We denote this partition by ρn = (ρ

(i)
n )2ni=1, where

ρ
(i)
n = {(v1 v2 v3), (w1 w2 w3)}.

3. For each pair of faces ρ(i)n , we choose, again uniformly at random, one of the three
cyclic-order-reversing pairings between the vertices. We denote the pairings by ϑn =

(ϑ
(i)
n )2ni=1, where ϑ(i)n = {(v1 v2 v3), (ϑ(i)n (v1) = w1 ϑ

(i)
n (v2) = w2 ϑ

(i)
N (v3) = w3)}.

4. We identify each pair of faces ρ(i)n using the pairing of its vertices described by ϑin,
for every i = 1, . . . , 2n.

With this procedure, we obtain an octahedral complex. Now, when taking out the ver-
tices, this complex results into an oriented non-compact 3-manifold with boundary, which
admits a hyperbolic metric. Indeed, we can endow each octahedron with the unique (up to
isometry) hyperbolic metric of an ideal right-angled regular octahedron (see Figure 1.3).
Now, the faces of the octahedra are ideal hyperbolic triangles, and, given a pairing of the
vertices of any two faces, there exists a unique isometry between the two ideal hyperbolic
triangles respecting this pairing. Thus, by gluing them through these isometries, the hyper-
bolic metric extends nicely to the whole complex. Therefore, after endowing all octahedra
in the complex with this hyperbolic metric, we obtain a complete finite-volume hyperbolic
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3-manifold with totally geodesic boundary. We will denote this by Xn, following the same
notation as in [PR22].

The dual graph of the complex Xn, is, as for Mn, a random 4-regular graph. In the
same way, we can condition Xn on not having loops or bigons in its dual graph. This is
the manifold Yn with which we will work.

By construction, Yn is hyperbolic. We record this information in the following lemma:

Lemma 2.2.1. The manifold Yn carries a complete hyperbolic metric of finite volume with
totally geodesic boundary.

The probability space (Ωn,Pn) associated to this model is the following: we define Ωn

to be the finite set of all possibilities of ρn and ϑn, and we choose Pn to be the uniform
probability measure on Ωn. We have that:

|Ωn| =
(
4n
2

)(
4n−2

2

)
. . .
(
2
2

)
(2n)!

· 32n = (4n− 1)!! 32n,

and so the probability of having one specific configuration is:

P({a certain partition ρn and pairing ϑn}) =
1

|Ωn|
.

2.2.1 From Yn to Mn

We end the chapter by describing how one can recover the original model Mn from the
Yn just described.

This process is done by Dehn filling. Recall that a Dehn filling is a standard operation
in three dimensional geometry used to construct compact hyperbolic manifolds from cusped
ones. A description of the usual procedure can be found in Section 1.1.6.

In this case, we do a Dehn filling that goes as follows. We have, from [PR22], that
the boundary of Yn is a random hyperbolic surface S with cusps. Now, if we remove a
horospherical neighbourhood of each cusp -obtained by intersecting the ideal polyhedron
with a small horosphere- we obtain a compact manifold with boundary (see Figure 2.4).
This boundary consists on S from which we have removed some linked pairs of disks,
forming some open cylinders. Then, we do the following: in each cylinder, we glue a solid
cylinder D × [0, 1] along its boundary. Note that in this case, the slope is determined,
and so the Dehn filling as well. The result is a compact manifold M whose boundary is a
compact surface S.
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Figure 2.4: Cusp neighbourhood in Yn (blue).

The manifolds M obtained by this procedure have the same distribution as the Mn

presented in Section 2.1. Hence, we can, and will, think of Mn as the Dehn fillings of Yn.

Remark 4. This approach has also been worked on in other papers, although for other
purposes. See, for instance, [CFMP07].
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Chapter 3

The length spectrum

The content of this chapter is adapted from [RS23]. We will study the length spec-
trum of random hyperbolic 3-manifolds under the model of random triangulations. More
precisely, we prove:

Theorem A. As n → ∞, the primitive length spectrum of a random compact hyperbolic
3-manifold with boundary Mn converges in distribution to a Poisson point process (PPP)
on R>0, of computable intensity λ.

As mentioned before, the proof goes in two big steps: first, we prove the result for the
model of non-compact random hyperbolic 3-manifolds Yn -described in Section 2.2-, and
then we show that it still holds after the Dehn filling of these manifolds, that is, for the
manifolds Mn.

3.1 Proof step 1: the length spectrum of Yn

In this section, we explain first how the combinatorics of the model Yn gives us infor-
mation about its curves. For that, we look at the dual graph of the complex, and study
the distribution of its cycles (see Theorem 3.1.2). Using this, we then prove a version of
Theorem A for these manifolds, which we reformulate as shown next.

We encode the length spectrum of Yn by the following counting function: for any
0 ≤ a < b, we define:

C[a,b](Yn) := #{non-oriented primitive closed geodesics of length ∈ [a, b] on Yn},

where C[a,b](Yn) : Ωn → R is a random variable, since Yn is a random manifold. Then, we
prove the following statement, equivalent to the convergence to a PPP.

Theorem 3.1.1. For any finite collection of disjoint intervals [a1, b1], . . . , [at, bt] ⊂ R≥0 ,
the random vector (C[a1,b1](Yn), . . . , C[at,bt](Yn)) converges jointly in distribution, as n →

51
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∞, to a vector of independent random variables

(C[a1,b1], . . . , C[at,bt]),

where ∀i = 1, . . . , t, C[ai,bi] is Poisson distributed with parameter λ = λ([ai, bi]) > 0.

3.1.1 Geometry of Yn

Recall that, by construction, the manifold Yn is hyperbolic (Lemma 2.2.1). Thus, we
can use the following standard facts from hyperbolic geometry -presented in Section 1.1.2-
to help us study its length spectrum.

First, we have that every element in the set of free homotopy classes of closed curves in
Yn that is neither trivial or homotopic to a cusp, is represented by a unique closed geodesic
(Proposition 1.1.1).

Moreover, as it has totally geodesic boundary, we can write Yn as a quotient C/Γ,
where C is a convex domain of H3 and Γ is a discrete torsion-free subgroup of orientation
preserving isometries of H3. It is known that Isom+(H3) ∼= PSL(2,C), so we can think of Γ
as a subgroup of PSL(2,C). Then, we have that there is a bijection between the conjugacy
classes in Γ and the free homotopy classes of closed curves [Mar16, Section 4.1.5]. This
means that, given a closed curve γ, it corresponds to a conjugacy class [Mγ ] in PSL(2,C).

An important thing about this fact is that from [Mγ ] one can compute the length of the
corresponding geodesic in the homotopy class of γ. This length is exactly the translation
length of [Mγ ], that is, the distance between p and Mγ(p) for any p ∈ axis(Mγ) - the
geodesic line in H3 preserved by the isometry -. This is given by:

lγ(Mγ) = 2Re

[
arcosh

(
trace([Mγ ])

2

)]
. (1.1)

The first goal is, then, to try to describe precisely this class [Mγ ] of Γ. For that, we
will look at the dual graph of Yn.

3.1.2 From curves to paths

The dual graph of Yn encodes part of the combinatorics of the complex. To completely
determine it, we need to include in it the orientation-reversing gluings of the pair of faces
corresponding to the pair of half-edges. Then, from this "enriched" graph, that will be
denoted by GYn , we can get information about the length of the curves of the manifold
Yn. Ultimately, we will see that the distribution of the number of closed curves of a fixed
length in Yn can be studied by looking at the distribution of the number of certain closed
paths in GYn .

Let us start by showing how curves in Yn and paths in GYn are related. A first and
essential observation is that any curve in Yn can be homotoped to a path on the dual graph.
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This homotopy can be done as follows: we cut the curve into pieces, each one corresponding
to the part of the curve that enters and leaves exactly once some octahedron along two of
the four non-adjacent faces. Then, if this part of the curve enters and leaves through the
same face, we homotope it to the middle point of the face. Otherwise, we homotope the
entry and exit points to the center of the faces, and all the remaining part of the curve to
the graph. Figure 3.1 shows an example.

Once this process is done, we remove the possible backtracking from the graph, i.e, we
remove the edges through which the path goes and turns back in the opposite direction
after reaching some vertex. The resulting path is what we call the reduced path. From now
on, these are the paths we will consider.

Figure 3.1: Homotopy of a curve into the dual graph.

Thus, in order to describe a closed curve γ, we can analyse its reduced path in the dual
graph along the octahedra involved.

3.1.3 From paths to words

A closed path of some length k ∈ N on this enriched 4-regular graph mentioned in the
previous section, can be described by picking a midpoint of an edge as a starting point,
and giving a sequence of "movements"

(w1Θ1, w2Θ2, . . . , wkΘk),

that return to this starting point. Each wi indicates which of the three incoming edges at
the i-th vertex the path takes, and Θi describes in which of the 3 possible cyclic-order-
reversing orientations the two faces of the octahedra are glued. We will call each of the
elements of the form wiΘi a letter, and the concatenation of movements describing the
path a word. This will be denoted by:

w = w1Θ1 · w2Θ2 · . . . · wkΘk.
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In general, the length of a word -that is, the number of letters- will be denoted by |w|.

In order to determine the word associated to a path in the graph (and so to a curve in
the manifold), we do the following: we fix a vertex of each face where the curve enters an
octahedron (intuitively, the reader can think that the fixed vertex is the one lying above
us when entering the octahedron through the face the curves traverses). Then, once we
enter this octahedron, there are three possible directions the path can take corresponding
to the three remaining non-adjacent faces. Among these faces, there is only one which
is incident to the fixed vertex. If the path traverses this face, then we will say that it is
going straight, and we will denote the correspoding wi by "S". On the other hand, if the
path goes through the other two non-adjacent faces, we will say that it is either turning
left -in which case wi is denoted by "L"- or turning right -in which case wi is denoted by
"R". The choice between these two is determined by the fixed vertex: if, when following
an inwards orientation of the incoming face, the vertex next to the fixed one is the vertex
common to both faces, we will say that the path is turning rigth. On the other hand, if,
when following an outwards orientation of the incoming face, the vertex next to the fixed
one is the common vertex, then we will say that the path is turning left.

On the other hand, the corresponding Θi, for i = 1, . . . , |w|, is determined by the choice
of the fixed vertices in the ith and (i+1)th octahedra the curves traverses, denoted by Oi

and Oi+1. Suppose first that the face in Oi where the curves exits, which is glued to the
face of Oi+1 where the curve enters, is the one incident to the fixed vertex of Oi -that is,
wi = S. Then, we have three posibilities for Θi:

• The fixed vertices in Oi and Oi+1 coincide: then the gluing is said to be the identity.

• The fixed vertex of Oi+1 is the next one starting from the one of Oi, when following
an inwards orientation in the face of Oi+1: then we say these are glued with one twist
-which we denote by θ-.

• The fixed vertex of Oi+1 is second one starting from the one of Oi, when following
an inwards orientation in the face in Oi+1: then we say that these are glued with two
twists - which we denote by θ2.

In the case where the face of Oi+1 is glued to a face in Oi non-incident to the fixed point
of this octahedron -that is, wi = R or wi = L-, we have an almost analogous description.
In this case, however, we define the gluing to be the identity when the fixed vertex of Oi+1

is glued to the vertex opposite to the fixed vertex of Oi. Figure 3.2 shows and example a
word.
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Figure 3.2: A closed curve in the octahedral complex. If we start at the orange octahedron,
an element w describing this curve could be w = RθSLθ2.

Note, however, that when assigning a word to a curve according to the above process,
we have made some choices. More precisely, we choose:

A) A fixed vertex in each incoming face of the octahedra the curve traverses.

B) A starting octahedron, and a direction of travel.

Changing any of these parameters gives rise to a different word, yet it still describes
the same curve. Hence, to each path, we actually associate an equivalence class of words
defined by these parameters, that we describe next.

Equivalence of words

Let’s define more precisely this notion of equivalence class of words, and how these
words change when modifying any of the previous choices. Let W denote the words w
formed with the letters {S, Sθ, Sθ2, R,Rθ,Rθ2, L, Lθ, Lθ2}. We will refer to this set as the
alphabet.

A) We focus first on the case when we change the fixed vertices in the incoming faces of
the octahedra the curve traverses: given a face (v1 v2 v3), we have 3 possible choices
for the vertex we want to fix. Hence, for a curve going through k octahedra, there
will be 3k possible choices, each of them yielding a different word, but describing the
same curve. In particular, for every change of fix vertex in some octahedron Oi that
respects an inwards orientation of the face, the word changes as follows:

⋄ The orientation Θi−1 of the gluing of Oi−1 and Oi does one twist, i.e, gets mul-
tiplied by θ (here we set θ3 = Id).
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⋄ The direction of the movement in Oi changes following the cyclic order (R S L).

⋄ The orientation Θi of the gluing of Oi and Oi+1 does one twist, i.e, gets multiplied
by θ.

For example, if consider the word w = w1Θ1·w2Θ2 = S·Rθ, the 32 = 9 words describing
the same curve while changing the fixed vertices in O1 and O2 (or equivalently the
orientation of the gluings Θ1 and Θ2) are:

O2 \ O1 0 1 2

0 SRθ LθRθ2 Rθ2R

1 SθSθ2 Lθ2S RSθ

2 Sθ2L LLθ RθLθ2

where 0, 1 and 2 denote the number of permutations of the fixed vertex with respect
to the original word, respecting an inwards orientation of each incoming face.

B) Now, we consider what happens if we change the starting octahedron and/or the
direction of travel. Again, changing any of these parameters will gives us new words
for the same curve. Thus, we will say that two words w,w‘ ∈W are also equivalent if
either:

⋄ w′ is a cyclic permutation of w (noting that wiΘi is a single block).
For instance, if w = w1Θ1 · w2Θ2 = SRθ, there would be one cyclic permutation
w′ = RθS.

⋄ w′ is a cyclic permutation of w∗, where w∗ is the word obtained by reading w

backwards, and changing the orientation Θi of each letter wiΘi into the orienta-
tion Θi−1 of the previous one. In other words, if w = w1Θ1 ·w2Θ2 · . . . ·w|w|Θ|w|,
then

w∗ = w|w|Θ|w|−1 · w|w|−1Θ|w|−2 · . . . · w2Θ1 · w1Θ|w|.

Following the previous example, the word w∗ of w = w1Θ1 · w2Θ2 = SRθ is
w∗ = RSθ, so the w′ given by these transformations would be: {RSθ, SθR}.

With all, we consider the following:

Definition 5. If a word w′ can be obtained from w by any of the transformations described
above, then we say that w and w′ are equivalent, and write w′ ∼ w. The equivalence class
of a word w ∈W is then formed by all words w′ ∼ w. We denote it by [w].
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3.1.4 From words to Möbius transformations

In this section, we will see how the (classes of) words that we have just defined can be
realised as orientation preserving isometries of H3.

Indeed, these movements constituting a word take on a geometrical meaning when
translating our picture to the hyperbolic space. That is, by assigning ideal coordinates
in H3 to the first octahedron, and placing the next ones with the information given by
the word. Each of its elements, then, corresponds to the mapping of one face of an ideal
octahedron -that corresponds to an ideal triangle- to some other of its non adjacent faces.
These actions are orientation preserving isometries of H3. And, as mentioned before, these
can be identified with elements of PSL(2,C). This group acts on the boundary of the
upper half-space model by Möbius transformations [MT98, Theorem 1.8]:[

a b

c d

]
· z = az + b

cz + d
.

Therefore, these movements on the graph correspond to some Möbius transformations
on the hyperbolic 3-space, that send a triple of points -realising a face- to another triple
in some cyclic order.

In practise, to simplify the computation of the Möbius transformation corresponding to
a word w, we do the following procedure: we put every octahedron the curves goes through
in the standard position (see Figure 3.3), and we look for the Möbius transformations that
sends the triple of points (0, i,∞) to the triple of points realising the face of the next
octahedron, in a specific order.

Figure 3.3: Ideal regular octahedron in the upper half-space model H3 (left) and its topo-
logical image (right).

These Möbius transformations:

Sθj , Rθj , Lθj : H3 → H3, j = 0, 1, 2,
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are described by the following matrices in PSL(2,C):

S =

(
1 1

0 1

)
R =

(
−1 i

i− 1 i

)
L =

(
i i

i+ 1 1

)
θ =

(
0 i

i 1

)
.

As there are three possible directions and orientations at each step, we have nine
possible isometries:

Sθ0 = S =

(
1 1

0 1

)
Sθ =

(
i i+ 1

i 1

)
Sθ2 =

(
i− 1 i

i 0

)

Rθ0 = R =

(
−1 i

i− 1 i

)
Rθ =

(
1 0

1 1

)
Rθ2 =

(
0 i

i i+ 1

)

Lθ0 = L =

(
i i

i+ 1 1

)
Lθ =

(
−1 i− 1

−i i

)
Lθ2 =

(
i+ 1 1

1 1− i

)
.

All these transformations are either parabolic or hyperbolic. More precisely, for each
direction, there is one parabolic element - S, Rθ and Lθ2 - and two hyperbolic ones.

The Möbius transformation corresponding to a word w is then the product of the
corresponding matrices. This is again an element of PSL(2,C), and so an orientation
preserving isometry of H3. The resulting group element w describes the path -and hence
the corresponding curve in the manifold- taking the initial face to the last one the curve
traverses. These group elements are the Mγ referred to in Section 3.1.1.

The previous formula (1.1) gives us then a precise relation between the length of closed
geodesics and their (class of) words. Thus, in order to study C[a,b](Yn), we will need to find
the (classes of) words that correspond to (homotopy classes of) closed curves on Yn. Then,
by counting the number of homotopy classes of curves corresponding to each of these [w],
we will have insight on the number of closed geodesics of bounded length ∈ [a, b].

We will see next that this argument can be indeed carried out substituting the counting
of homotopy classes of curves by the counting of certain paths in GYn .

3.1.5 Distribution of cycles

We’re interested in counting closed geodesics in Yn. One can see that these can be
contracted into non-homotopic closed paths in the dual graph. This one-to-one correspon-
dence between free homotopy classes of closed curves in the manifold Yn and closed paths
in GYn , is due to the fact that the octahedral complex deformation retracts onto the graph.
Hence, any two closed curves in Yn will be homotopic if and only if their representatives
in the dual graph are so.

Therefore, in order to count homotopy classes of curves, we can count closed paths in
the dual graph. From now on, we will adopt the following terminology: we will call any



3.1. PROOF STEP 1: THE LENGTH SPECTRUM OF Yn 59

closed path a circuit, and a simple closed path a cycle. Also, we will denote by [w]-cycle a
cycle that is described by a word w ∈ [w]. On the other hand, we will also say that a curve
γ is described by [w] if a word corresponding to its path in the dual graph GYn belongs to
[w].

It might happen that some simple closed curves in Yn are homotopic to non-simple
circuits in the graph. However, as it is explained later in Remark 6, the number of circuits
of bounded length in the graph that are not cycles goes asymptotically almost surely to 0
as n tends to infinity. This tells us, then, that it is enough for our purpose to study the
number of cycles in GYn . With this in mind, we consider the random variable:

Zn,[w] : Ωn → N, n ∈ N, [w] ∈ W :=W/ ∼,

defined as

Zn,[w](ω) := #{cycles γ on GYn : γ is described by [w]}.

We prove the following about the asymptotic behaviour of Zn,[w]:

Theorem 3.1.2. Consider a finite set S of equivalence classes of words in W. Then, as
n→∞,

Zn,[w] → Z[w] in distribution for all [w] ∈ S,

where:

• Z[w] : N→ N is a Poisson distributed random variable with parameter λ[w] =
|[w]|

3|w|2|w|
for all [w] ∈ S.

• The random variables Z[w] and Z[w′] are independent for all [w], [w′] ∈ S with [w] ̸=
[w′].

The proof of this result follows the same structure as the proof of Bollobás’ theorem
on the asymptotic number of cycles in a random regular graph (Theorem 1.3.1). The
argument is based on a version of the method of moments, which consists on the following:
let Xn,1, . . . , Xn,k be random variables, for k ∈ N. We define the variables (Xn,i)m as
(Xn,i)m = Xn,i(Xn,i − 1) · · · (Xn,i − m + 1). Then, if λ1, . . . , λn ≥ 0 are such that, as
n→∞,

E[(Xn,1)m1 · · · (Xn,k)mk
]→ λm1

1 · · ·λ
mk
k ,

for every m1, . . . ,mk ≥ 0, we have that (Xn,1, . . . , Xn,k)
d−→ (X1, . . . , Xk), where the Xi are

independent Poisson random variables of parameter λi (for more, see Section 1.2.3).

Proof. Take as random variables the Zn,[w] and consider, for all n ∈ N and [w] ∈ S:

(Zn,[w])m[w]
= Zn,[w] · (Zn,[w] − 1) · . . . · (Zn,[w] −m[w] + 1),
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where m[w] ∈ N. Then, we prove that ∃ (λ[w])[w]∈S , with λ[w] ∈ R, such that as n→∞,

E

[ ∏
[w]∈S

(Zn,[w])m[w]

]
→

∏
[w]∈S

λ
m[w]

[w] for all (m[w])[w]∈S ∈ N|S|,

where λ[w] =
|[w]|

2|w|3|w| for all [w] ∈ S.

We start with the first moment: E[Zn,[w]]. We denote by Lab[w] the set of all labellings
of a [w]-cycle, that is the set of all possible |w|-tuples of pairs of the form (2.1).

Then, we can write this expectation as:

E[Zn,[w]] =
∑

l∈Lab[w]

E[1{the labelling l appears in GYn}]

=
∑

l∈Lab[w]

P[{the labelling l appears in GYn}] = an,[w] · pn,[w],

where an,[w] denotes the number of possible labellings a [w]-cycle can have, and pn,[w] the
probability that an element of Ωn contains a given set of |w| pairs of half-edges, together
with their corresponding orientations. Note that here we’ve used that Zn,[w] counts only
cycles.

To count an,[w], we will fix first a starting vertex and a direction. Since there are 2
possible directions in a cycle, and |w| possible starting vertices, we will be counting in fact
2|w|an,[w]. We will also be using the notation an,w to refer to the number of labellings of
a specific cycle w.

To start, we pick a representative w of a [w]-cycle:

w = w1Θ1 · w2Θ2 · . . . · w|w|Θ|w|,

where each wiΘi, i = 1, . . . , |w|, is a letter in the alphabet. Note that the choice of
representative fixes the choices of the fix vertices in each octahedron explained in Section
3.1.3. Now, we look at the number of labellings the [w]-cycle can have as a directed cycle
described by w, with starting vertex v1. This cycle can be described by picking an initial
half-edge x1 adjacent to v1, and giving a list:

{((w1x1, x2),Θ1), ((w2x2, x3),Θ2), . . . , ((w|w|x|w|, x1),Θ|w|)},

where xi is a half-edge of vi, wixi is the half-edge on the left of xi if wi = L, on the right
of xi if wi = R, and in front of xi if wi = S, and Θi is the orientation of the gluing of the
half-edges wixi and xi+1, for every i = 1, . . . , |w| (see Figure 3.4).
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Figure 3.4: Half-edges of vi

Taking into account that there are n vertices to choose from (we consider n octahedra),
and that in every vertex we have 4 possibilities for xi, we have, for a specific cycle w:

2|w|an,w = 4|w|n(n− 1)(n− 2) . . . (n− |w|+ 1).

Note, however, that the previous lists depend on the representative w, and so we get
a different set of labellings each time we change representative. Hence, to obtain the
total number of possible labellings of a [w]-cycle -that is, an,[w]- we need to multiply the
expression above by the number of elements in the equivalent class [w]. Like this, we finally
obtain that:

an,[w] =
|[w]|
2|w|

4|w|n(n− 1)(n− 2) . . . (n− |w|+ 1).

Now we compute pn,[w]. We have that the total number of possible partitions of the
set of half-edges -of cardinal 4n- into pairs is:

N (4n) =

(
4n
2

)(
4n−2

2

)
. . .
(
2
2

)
(2n)!

= (4n− 1)!!.

Moreover, if we fix k independent (vertex disjoint) edges, there are:

Nk(4n) =

(
4n−2k

2

)(
4n−2k−2

2

)
. . .
(
2
2

)
(2n− k)!

= (4n− 2k − 1)!!

configurations containing these k edges.

However, in our case, we also need to consider the 3 possible orientations in every join
of two half edges. With this, pn,[w] is given by:

pn,[w] =
32n−|w|(4n− 2|w| − 1)!!

32n(4n− 1)!!
=

1

3|w|(4n− 1)(4n− 3) . . . (4n− 2|w|+ 1)
.
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All together, it yields:

E[Zn,[w]] =
|[w]|
2|w|

4|w|n(n− 1)(n− 2) . . . (n− |w|+ 1)

3|w|(4n− 1)(4n− 3) . . . (4n− 2|w|+ 1)

∼ |[w]|
2|w|

4|w|n|w|

3|w|(4n)|w| −→
|[w]|

2|w|3|w| as n→∞.

Now, we go on to the second factorial moment. (Zn,[w])2 counts the number of ordered
pairs of distinct [w]-cycles. These two may or may not intersect, so we can split (Zn,[w])2

as:
(Zn,[w])2 = Y ′

n,[w] + Y ′′
n,[w],

where Y ′
n,[w] counts the number of ordered pairs of vertex disjoint [w]-cycles, and Y ′′

n,[w] the
number of ordered pairs of intersecting [w]-cycles.

The expectation of Y ′
n,[w] can be computed using a similar argument as for E[Zn,[w]].

As before, we write E[Y ′
n,[w]] as:

E[Y ′
n,[w]] = a′n,[w] · p

′
n,[w]

where a′n,[w] counts the number of label·lings of an ordered pair of distinct non-intersecting
[w]-cycles, and p′n,[w] is the probability that an element of Ωn contains a given pair of
disjoint sets, each of them containing |w| pairs of half-edges.

In order to count a′n,[w] we fix again a direction and a starting vertex in each [w]-cycle.
Thus, we will be counting 4|w|2an,[w]. In the same way,

4|w|2a′n,w = 42|w|n(n− 1)(n− 2) . . . (n− 2|w|+ 1),

and considering all the representatives of [w] for each cycle, we obtain:

a′n,[w] =
|[w]|2

(2|w|)2
42|w|n(n− 1)(n− 2) . . . (n− 2|w|+ 1).

As for p′n,[w], we observe that:

p′n,[w] = pn,[w] · pn−|w|,[w].

Therefore,

E[Y ′
n,[w]] = a′n,[w] · p

′
n,[w] ∼

(
|[w]|
2|w|

)2 42|w|n2|w|

32|w|(4n)2|w| −→
(
|[w]|

2|w|3|w|

)2

as n→∞.

Now let’s study E[Y ′′
n,[w]]. Y

′′
n,[w] counts the pair of [w]-cycles that have at least one common

vertex. Note that these can be seen also as a connected (by the common vertices and edges)
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multi-graph P which has more than one cycle. Each of these P , then, will have more edges
than vertices by construction. Expressing E[Y ′′

n,[w]] as in the previous cases, i.e,

E[Y ′′
n,[w]] = a′′n,[w] · p

′′
n,[w],

we observe that the number a′′n,[w] is of the order O(n#vertices) and p′′n,[w] depends only on
the pairs of half-edges, so it is of the order O(n−#edges). Therefore,

E[Y ′′
n,[w]] = O(n#vertices · n−#edges) = O(n−1).

All in all, we obtain that:

lim
n→∞

E[(Zn,[w])2] =

(
|[w]|

2|w|3|w|

)2

.

As shown in [Bol80, Theorem 2], the same argument applies for any factorial moment

E[(Zn,[w])m], m ∈ N, and for any joint factorial moment E
[∏

[w]∈S(Zn,[w])m[w]

]
. In this

case, we consider the number of sequences of
∑

[w]∈S m[w] distinct [w]-cycles. We split them
into the sum of intersecting and non-intersecting, and by the same reasoning as before:

lim
n→∞

E
[ ∏
[w]∈S

(Zn,[w])m[w]

]
=
∏

[w]∈S

(
|[w]|

2|w|3|w|

)m[w]

.

By the method of moments, this implies that the random variables (Zn,[w])[w]∈S converge
in distribution, as n → ∞, to independent Poisson random variables Z[w], with mean
λ[w] =

|[w]|
2|w|3|w| for all [w] ∈ S.

Remark 6. The same argument that is used to prove that the expected value of Y ′′
n,[w] is of

the order O(n−1) works to show that asymptotically there won’t be any circuits of bounded
length that are not cycles in the dual graph: such circuits have more edges than vertices, and
so the expected number of copies of them is of the order: O(n#vertices ·n−#edges) = O(n−1).

3.1.6 Proof of Theorem 3.1.1

Now that we have Theorem 3.1.2, we can re-state and prove Theorem 3.1.1 as will
follow next.

Recall thatW was the set of all words with letters in {S, Sθ, Sθ2, R,Rθ,Rθ2, L, Lθ, Lθ2},
and |w| denoted the length of a word w ∈ W , being the number of letters in it. On the
other hand, we denoted by W =W/ ∼ the set of equivalence classes of words in W . From
this, we define:

W[a,b] := {[w] ∈ W : |w| > 2, |tr([w])| > 2 and 2Re
[
arcosh

( tr([w])
2

)]
∈ [a, b]}.
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This is a finite set, consequence of the following result.

Proposition 3.1.3. Let w ∈W be any hyperbolic word formed by the letters {S, Sθ, Sθ2,
R,Rθ,Rθ2, L, Lθ, Lθ2} of word length |w| = r > 0. Then, there exists a constant J(r) > 0

satisfying that:

⋄ J(r) is strictly increasing,

⋄ J(r)
log(r) → 1 as r →∞,

such that the translation length of the geodesic γ corresponding to the equivalence class of
w is bounded below by J(r), that is,

lγ(w) ≥ J(r).

Proof. Let P be the plane in H3 spanned by the triple {0, i,∞}, and d(w) be the distance
in the upper half-space of H3 between the planes P and w(P ), given by:

d(w) = min
(x1,y1)∈P

(x2,y2)∈w(P )

{d((x1, y1), (x2, y2))} (3.1)

= min
(x1,y1)∈P

(x2,y2)∈w(P )

{
arcosh

(
1 +

(x2 − x1)2 + (y2 − y1)2

2y1y2

)}
. (3.2)

We will refer to this function as the w-distance.
We start by considering some number J(r) > 0. Then, there are two possibilities, that

d(w) ≥ J(r) or that d(w) < J(r). From the study of each case, we aim to optimise this
constant, while making it a valid lower-bound in any of these two initial cases.

As mentioned above, we have these two possible scenarios:

• d(w) ≥ J(r): We show that lγ(w) ≥ d(w). For this, it is enough to see that the axis
of the isometry runs through the planes spanned by the transformation.

To do so, we first observe the following: Let P denote the plane described by {0, i,∞},
and consider the partition H3\P = H1 ⊔H2, where H2 contains all points in H3 with
positive first component. Then, as described in Figure 3.5, for any of the 9 isometries
M ∈ {Sθi, Rθi, Lθi, i = 0, 1, 2}, we have

M(H2) ⊂ H2.

From this, one infers that for any isometry w product of the previous matrices, we get:

w(M(H2)) ⊂ w(H2).

This means that every time we add a transformation M to our word, the half-space
spanned by this new isometry is contained in the previous one. This tells us, in
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particular, that the attracting fix point of the axis in any hyperbolic transformation
w -sending the initial plane P to w(P )- has to be lie inside w(H2), and the repulsive
fix point then, needs to be in H1. Therefore, the axis intersects both P and w(P ), as
well as all the planes spanned by all shorter words of w.

Hence, by definition of the function w-distance, it’s clear that:

d(w) = d(P,w(P )) ≤ lγ(w).

Since we had d(w) ≥ J(r), we obtain that lγ(w) ≥ J(r).

• d(w) < J(r): We can find a representative of [w] in the form:

w = Ss1(Rθ)s2(Lθ2)s3 · . . . · Ssm−2(Rθ)sm−1(Lθ2)smθt, (3.3)

where si ∈ N ∪ {0} for i = 1, . . . ,m, s1 + · · · + sm = r and t ∈ {0, 1, 2}. Indeed,
we can choose the fixed vertices in each octahedron in a way that the orientations of
the gluings Θi, for i = 1, . . . , |w| − 1, are the ones appearing in the parabolic letters
{S,Rθ, Lθ2}. With this, the only gluing that is determined is the one between the last
and first faces, which can be any of the three possibilities {Id, θ, θ2}. We suppose then
that w is of this form.

Now, we have the following: any hyperbolic word w of two letters spanning a plane of
empty intersection with P is at w-distance d(w) = arcosh(3) from it. Indeed, one can
check by explicit computation that these words can be reduced, by equivalence, to the
list:

L0 = {SRθ,RθS,RθLθ2, Lθ2Rθ, SLθ2, Lθ2S},

which span all possible different planes (see Figure 3.5), all of them at w-distance
d(w) = arcosh(3).

Since we have, from above, that for any word w ∈W , w = w1 · · ·wn:

w(H2 ⊔ P ) ⊂ w1 · · ·wn−1(H2 ⊔ P ) ⊂ w1 · · ·wn−2(H2 ⊔ P ) ⊂ · · · ⊂ H2 ⊔ P,

we get that the geodesic realising the w-distance between P to w(P ) intersects the
intermediary planes in some point. The segment from P to these points will be then,
larger or equal than the distance between the planes, by definition of distance. There-
fore, any word w containing at least k words w1, . . . , wk ∈ L0 disjointly, will have
w-distance:

d(w) ≥
k∑

i=1

d(wi) = k arcosh(3).
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Figure 3.5: View from "infinity" in the upper half-space model of H3: the circles in blue
represent the hemispheres spanned by the letters of the alphabet, and the ones in grey the
hemispheres spanned by all the words in L0.

Equivalently and relying it to our case, if d(w) ≤ J(r) = k arcosh(3), this tells us that
w contains at most J(r)

arcosh(3) disjoint words of the previous type. This fact gives us
then an upper bound on the number of si’s in w:

m = nºsi ≤ 2 · nº disjoint hyp. words of two letters + 1

≤ 2J(r)

arcosh(3)
+ 1.

Since w is of length r, by the pigeonhole principle, we obtain that there exists at least
a si such that

si ≥
⌈
r

m

⌉
≥
⌈

r
2J(r)

arcosh(3) + 1

⌉
=

⌈
arcosh(3)r

2J(r) + arcosh(3)

⌉
.

Let Kr =

⌈
arcosh(3)r

2J(r)+arcosh(3)

⌉
. Since there is at least a si ≥ Kr and the words we consider

are of the form (3.3), one can deduce that the word w has as a sub-word one of the
followings wKr :

wKr ∈ {SKrRθ, (Rθ)KrS, (Rθ)KrLθ2, (Lθ2)KrRθ, SKrLθ2, (Lθ2)KrS}.

All of these words have w-distance d(wKr) = arcosh(2Kr+1) (by direct computation).
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Therefore, since lγ(w) ≥ d(w) ≥ d(w̃), for w̃ in the previous list, we obtain:

lγ(w) ≥ arcosh(2Kr + 1) ≥ arcosh

(
2

(
arcosh(3)r

2J(r) + arcosh(3)

)
+ 1

)
.

Hence, in general, we have:

lγ(w) ≥ d(w) ≥ min

{
J(r), arcosh

(
2

(
arcosh(3)r

2J(r) + arcosh(3)

)
+ 1

)}
.

This bound is optimised whenever J(r) = arcosh

(
2

(
arcosh(3)r

2J(r)+arcosh(3)

)
+1

)
. Thus, we define

the function

J : R>0 −→ R>0

r 7−→ J(r)

implicitly by J(r) = arcosh

(
2

(
arcosh(3)r

2J(r)+arcosh(3)

)
+ 1

)
.

It rests to prove that this function is increasing: we can re-write it as

(cosh(J(r))− 1)(2J(r) + arcosh(3)) = 2 arcosh(3)r (3.4)

Since arcosh(3) > 0 and r > 0, both sides of the equation are positive. Then, for
0 < r1 < r2, we have that arcosh(3)r1 < arcosh(3)r2, which implies:

1

2
(cosh(J(r1))− 1)(2J(r1) + arcosh(3)) <

1

2
(cosh(J(r2))− 1)(2J(r2) + arcosh(3)).

Since both components of the product are positive, this means that either:

⋄ (2J(r1) + arcosh(3)) < (2J(r2) + arcosh(3)): yielding that J(r1) < J(r2).

⋄ (cosh(J(r1)) − 1) < (cosh(J(r2)) − 1): giving also J(r1) < J(r2) as cosh(x) is an
increasing function.

As a final observation, we see that J(r) has a logarithmic behaviour in the limit, that
is, J(r)

log(r) → 1 as r →∞.

Indeed, looking at the equality (3.4), we note that J(r) coincides with a branch Wk

of the Lambert W -function for some k ∈ Z, that is, J(r) = Wk(2 arcosh(3)r). Recall
that the Lambert W -function is the multivariate inverse of f(w) = wew, where ew is
the exponential function and w is any complex number. In other words, is the function
satisfying the relation z =Wk(z)e

Wk(z) for some integer k. In particular, since r > 0, and
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both r and J(r) are real numbers, J(r) is the principal branch, that is,

J(r) =W0(2 arcosh(3)r).

Now, one has that, for large values or r, this function W0(r) is asymptotic to ln(r) −
ln(ln(r)) + o(1). In our case,

W0(2 arcosh(3)r) = ln(2 arcosh(3)r)− ln(ln(2 arcosh(3)r)) + o(1)

= ln(r) + ln(2 arcosh(3))− ln(ln(2 arcosh(3)r)) + o(1).

Therefore, we get

lim
r→∞

J(r)

ln(r)
=

ln(r) + ln(2 arcosh(3))− ln(ln(2 arcosh(3)r)) + o(1)

ln(r)
= 1.

Note that, although this lower bound may not be the sharpest possible, here we cannot
use the growth of the traces or the w-distance to control the growth of the length, as it
was possible in the two-dimensional case of this model (see [Pet17]). Indeed, the traces are
complex numbers so they don’t have a natural ordering, and there exists the possibility
that their absolute value decreases whenever we add a letter to a word. In the same way,
it is neither true that the translation length grows whenever the w-distance d(w) does so.
For example, for w = RLRR, we have:

d(w) = 2.63 and lγ(w) = 3.47,

while if we add one more letter w′ = RLRRL, we get:

d(w′) = 3.26 and lγ(w) = 3.33.

After having proved this, we get to our main point. For a, b ≥ 0, C[a,b](Yn) denoted the
number of non-oriented primitive closed geodesics of length ∈ [a, b] on Yn. Also,

W[a,b] = {[w] ∈ W : |w| > 2, |tr([w])| > 2 and 2Re
[
arcosh

( tr([w])
2

)]
∈ [a, b]}.

When a = 0, W[0,b] will be written as Wb. Then, we prove:

Theorem 3.1.1. For any finite collection of disjoint intervals [a1, b1], . . . , [at, bt] ⊂ R≥0 ,
the random vector (C[a1,b1](Yn), . . . , C[at,bt](Yn)) converges jointly in distribution, as n →
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∞, to a vector of independent random variables

(C[a1,b1], . . . , C[at,bt]),

where for all i = 1, . . . , t, C[ai,bi] is Poisson distributed with parameter

λ =
∑

[w]∈W[ai,bi]

λ[w].

Proof. For simplicity, we will consider the interval [0, l], and denote C[0,l](Yn) by Cl(Yn).
We can write Cl(Yn) as:

Cl(Yn) =
∑

[w]∈Wl

Zn,[w] +
∑

[w]∈Wl

Z ′
n,[w],

where Z ′
n,[w] denote the number of circuits of GYn described by [w] ∈ Wl that are not

cycles.

Notice that the right-hand side is a sum of two finite sums of independent random
variables Zn,[w] and Z ′

n,[w] respectively. On the one hand, since we have seen that the
expected number of copies of any non-simple circuit in GYn of bounded length tends to 0
as n→∞, the second summand will vanish in the limit. Indeed, we have that:

lim
n→∞

E
[ ∑
[w]∈Wl

Z ′
n,[w]

]
= lim

n→∞

∑
[w]∈Wl

E[Z ′
n,[w]] =

∑
[w]∈Wl

lim
n→∞

E[Z ′
n,[w]] = 0.

For the other summand, we apply Theorem 3.1.2. All in all, we obtain that:

Cl(Yn)
d−→

∑
[w]∈Wl

Z[w] = Cl.

Since each Z[w] is Poisson distributed with parameter λ[w] = |[w]|
2|w|3|w| , and they are all

independent of each other, we obtain that the random variable Cl is Poisson distributed
with parameter λ =

∑
[w]∈Wl

λ[w]. Finally, as none of the [w] ∈ W can belong to any two
W[a,b], W[c,d] for [a, b], [c, d] disjoint intervals, one concludes that for any finite collection
(C[a1,b1](Yn), . . . , C[at,bt](Yn)), the corresponding random variables (C[a1,b1], . . . , C[at,bt]) are
independent.

3.2 Proof step 2: the length spectrum of Mn

In Section 2.2.1, we explain how Mn is obtained from the intermediary Yn by Dehn
filling. In this section, we finish the proof of Theorem A by showing that, after this
compactification procedure, the result obtained in Section 3.1.6 still holds, that is:
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Theorem A. As n→∞, the length spectrum of a random compact hyperbolic 3-manifold
with boundary Mn converges in distribution to a Poisson point process (PPP) on R>0 of
intensity λ, where for any a, b ≥ 0,

λ([a, b]) =
∑

[w]∈W[a,b]

λ[w].

In order to prove this, we need to see that the number of closed geodesics of some
bounded length stays asymptotically the same after the Dehn filling. This comes down to
checking mainly two things: first, that the length of the curves doesn’t change "too much"
after the compactification; and second, that they do not collapse into a point, or into each
other -that is, that any two short closed geodesics that weren’t homotopic in Yn, don’t
become homotopic after the filling of the cusps-. We treat these cases in two separate
subsections.

3.2.1 Change in length of closed geodesics

We start proving the first and main point.

Proposition 3.2.1. Let lmax > 0. For every ϵ > 0, the following holds a.a.s as n → ∞:
for every closed geodesic γ in Mn with length l(γ) ≤ lmax, there exists a closed geodesic γ′

in Yn such that the image of γ′ is homotopic to γ, and

1

1 + ϵ
l(γ) ≤ l(γ′) ≤ (1 + ϵ)l(γ).

Like in [PR22], we’ll control the change in geometry when doing the Dehn filling of the
cusps separately in three steps. First, we will deal with "small" cusps, that is, with cusps
made of few octahedra around them, and apply Andreev’s theorem [RHD07] to make sure
the length doesn’t change "too much". Then, we’ll treat the "medium" and "large" cusps,
in two separate steps, using a result of Futer-Purcell-Schleimer (Theorem 3.2.3), stated
later in the proof.

We set some notation beforehand, recalling as well previous objects that will appear.
We start by specifying the different types of cusps. We define the combinatorial length of
a cusp as the number of octahedra forming it. Then,
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Cusps of Yn Notation Description

Small c1, . . . , cs Of combinatorial length up to 1
8 log3(n)

Medium cs+1, . . . , cm Of combinatorial length between 1
8 log3(n) and n1/4

Large cm+1, . . . , ct Of combinatorial length bigger than n1/4

With this, we distinguish the following manifolds and their parts.

Models Description

Yn Hyperbolic 3-manifold constructed in Section 2.2 conditioned on not
having loops or bigons in its dual graph

Yn,1 Union of all octahedra of Yn incident to a small cusp
Yn,2 Complement of Yn,1 in Yn

Kn Manifold obtained from Yn by filling the small cusps
Kn,1 Union of all octahedra of Kn incident to a medium cusp
Kn,2 Complement of Kn,1 in Kn

DKn Double of Kn

Zn Manifold obtained from Kn by filling the medium cusps
DZn Double of Zn

Mn Manifold obtained from Zn by filling the large cusps, homeomorphic to
the Mn described in Section 2.1

DMn Double of Mn

We think of Yn ⊂ Kn ⊂ Zn ⊂Mn.

Proof of Proposition 3.2.1.

Filling small cusps. Let O1, . . . , Ok be the octahedra in contained in Yn,1. The Dehn
filling procedure for compactifying small cusps consisted on the following: we consider an
octahedron on which one vertex has been replaced by an edge. By Andreev’s theorem
[RHD07], this new polyhedron, denoted by Pl, can be endowed with the structure of an
hyperbolic polyhedron with right angles at all edges except the created one, which has
angle 2π/l. Then, the Dehn filling consists in changing each of the octahedron incident
to a small cusp -that is, the O1, . . . , Ok- by a copy of the polyhedron Pl, in a way that
the egde with angle 2π/l is the one substituing the ideal vertex shared by the octahedra
around the cusp. Figure 3.6 shows the resulting polyhedron Ql. On the other hand, all
the octahedra in Yn,2 remain intact. For more details, see [PR22, Section 3.2].
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Figure 3.6: The polyhedron Ql. The red edge is the one with angle 2π/l, where l = 6 in
this example.

So, to control the change in geometry when doing this procedure, we use, more precisely,
a consequence of Andreev’s theorem. Let ϕ1 : Yn → Kn denote the inclusion map between
those manifolds. As stated in [PR22], this gives the following result:

Lemma 3.2.2 ( [PR22], Lemma 3.6). There exists J0 > 0 such that the following holds
for any ϵ > 0 below the Margulis constant for H3, and any δ > 0: with probability at least
1− δ in the model Yn for n large enough, we have:

1. The ϵ-thick part of the image of Yn,1 in Kn under ϕ1 is J0-bilipschitz to that of Yn,1,

2. The image of Yn,2 in Kn under ϕ1 is isometric to Yn,2.

As Yn ⊂ Kn ⊂ Zn, the same lemma holds in particular for the manifold Zn, considering
the map ϕ2 : Kn → Zn.

So, let γ be a closed geodesic in Kn. The goal is to find a closed geodesic γ′ in Yn of
length "close" to that of γ, and such that after compactification, it belongs to the same
homotopy class as γ.

We look at the preimage γ̃ of γ in Yn under the map ϕ1. This curve γ̃ is a closed curve,
but is not necessarily a geodesic in general. We have the following cases:

• The curve γ̃ lies entirely in Yn,2: by the second point of Lemma 3.2.2, its length will be
exactly the same as the one of γ. Here, then, γ̃ is also a geodesic in Yn. Thus, we take
γ̃ to be γ′.



3.2. PROOF STEP 2: THE LENGTH SPECTRUM OF Mn 73

• The curve γ̃ lies partly in Yn,1: in this case, γ̃ is a priori not a geodesic. To handle this
case, we use the notion of tangle-freeness for graphs. We recall here its definition, for
more see Section 1.3.3.

Definition 7. A multigraph G is tangle-free if it contains at most one cycle (including
loops and multiple edges). G is l-tangle-free if every neighbourhood of radius l in H
contains at most one cycle. Otherwise, we say that G is tangled or l-tangled.

Now, it was proved by Bordenave [Bor20] that random 4-regular graphs -so in particular
GYn- are l-tangle free, for l > 0 not too large. More precisely,

Lemma 1.3.4 (Bordenave). Let d ≥ 3, and Gd be a random d-regular graph on n

vertices generated by the configuration model. Then,

P[ Gd is l-tangle-free ] = 1−O
((d− 1)4l

n

)
.

Using this property, we argue as follows: we have that γ̃ is homotopic to a cycle in the
dual graph GYn . As the curve lies in some part of Yn,1, its cycle intersects with the one
representing the parabolic element that goes around a small cusp in Yn,1. On the other
hand, since l(γ) < lmax, by Proposition 3.1.3 we deduce that the part of the cycle in
GYn corresponding to the part of γ̃ lying in Yn,2 has length bounded above by K < lmax.
Therefore, we can find two cycles in GYn inside a ball of diameter less or equal than
K + 1

8 log3(n).

Nevertheless, we know that the dual graph GYn is l-tangle free for l < 1
4 log3(n) (Lemma

1.3.4), which means that as n → ∞, there won’t be more than one cycle in any neigh-
bourhood of this radius w.h.p. This tells us, therefore, that a.a.s this case will not
occur.

Filling medium cusps. Now, let γ be a closed geodesic in Zn. A priori Lemma 3.2.2
from [PR22] can also be applied. So, as before, we consider its preimage γ̃ in Kn under
the inclusion map ϕ2 : Kn → Zn, and treat two possible scenarios:

• The curve γ̃ lies entirely in Kn,2: by the second point of Lemma 3.2.2, its length will be
exactly the same as the one of γ. Thus, γ̃ is a geodesic in Kn, and so we set γ̃ to be γ′.

• The curve γ̃ lies partly in Kn,1: in this case, γ̃ is a priori not a geodesic. Lemma 3.2.2
tells us that the part lying in Kn,2 will remain exactly of the same length as in γ. On the
other hand, we also have that the ϵ-thick part of the image of Kn,1 in Zn is J0-bilipschitz
to that of Kn,1, for some J0 > 0. However, this bilipschitz constant can be arbitrarily
large, so we don’t get explicit control on the change in length.
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Therefore, for the case of medium cusps, to find this geodesic γ′ we’ll use the result of
Futer-Purcell-Schleimer stated after the following preliminary notions.

Definition 8. Let N be a hyperbolic 3-manifold with rank-two cusps C1, . . . , Ct. Consider
a slope sj for each cusp torus ∂Cj. Then, the normalized length of sj is

Lj = L(sj) =
l(sj)√

area(∂Cj)
,

where l(sj) is the length of a geodesic representative of sj on ∂Cj.

Let s = (s1, . . . , st) be the vector of all slopes. We define the total normalized length
L = L(s) via the formula

1

L2
=

t∑
j=1

1

L2
j

.

Remark 9. Since the cusps in Zn are of rank 1, there is only one possible slope to choose
on each of them to do the Dehn filling. Moreover, in our case, the total normalized length
of this slope is proportional to the square root of the combinatorial length of the cusp.
Indeed, every cusp is contained in a certain union of octahedra. In each of the cusps,
we fix a sufficiently small horosphere -that is, so that it is still isometric to a cylinder-.
This horosphere intersects with each of the octahedron incident to the cusp in a square (see
Figure 2.4). Theses squares around the cusp have then a certain fixed area a0 (the same
for all of them). On the other hand, taking the induced euclidean metric on the horosphere,
we fix a geodesic representative. The intersection of this geodesic with each square is also
of a certain fixed length l0. As such, the total area of this cylinder created by the squares
around the cusp, is equal to a0 ·#{octahedra incident to the cusp}. On the other hand, the
total length l of the geodesic around it is equal to l0 · #{octahedra incident to the cusp}.
Hence, the total normalised length L of the cusp, defined as L = l/

√
area(cylinder), is a

square root of the number of octahedra around the cusp, its combinatorial length.

Finally, given a hyperbolic manifold with rank 2 cusps, and its Dehn filling, we recall
that a cone-deformation between them consists of a family of singular hyperbolic metrics
on the filled manifolds, where the singularities lie along the core curves of the attached
solid tori. The metrics on discs perpendicular to the core curves have a single cone point at
the curve, with a cone angle α, which is constant along each curve. Hyperbolic manifolds
with these structures are called hyperbolic cone-manifolds. We can think of the complete
structure as the case of cone angle 0, and if the deformation reaches cone angles 2π on
each curve, we obtain a smooth hyperbolic structure on the filled manifold. For more
information, see [HK08,FPS22].

Once all this defined, we have, by Futer-Purcell-Schleimer, the following:
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Theorem 3.2.3 ( [FPS22], Theorem 9.30). Fix 0 < ϵ ≤ log 3. Let M be a finite-volume
hyperbolic 3-manifold and Σ a geodesic link in M . Let N = M − Σ. Suppose that in the
complete structure on N =M − Σ, the total length of the meridians of Σ satisfies:

L2 ≥ 2π · 6771 cosh (0.6ϵ+ 0.1475)5

ϵ5
+ 11.7.

Then there is a cone-deformation Mt connecting the complete hyperbolic metric g0 on
N -with cone-singularities of angle 0- to the complete hyperbolic metric g4π2 on M -of
cone-singularieties of angle 2π. Furthermore, the cone deformation gives a natural identity
map id : (M − Σ, g0)→ (M − Σ, g4π2), such that id and id−1 restrict to:

id ↾N≥ϵ : N≥ϵ ↪−→M≥ ϵ
1.2 , id ↾M≥ϵ :M≥ϵ ↪−→ N≥ ϵ

1.2 ,

that are J-bilipschitz inclusions for

J = exp

(
11.35l

e5/2

)
and l ≤ 2π

L2 − 11.7
.

For convenience of the following arguments, we consider as our cusped manifold the
double of the manifold Kn, -hence N = DKn- which is a non-compact manifold without
boundary. Then, cusp neighbourhoods correspond to (thickened) tori, which get replaced
by solid tori after compactification. The resulting manifold will beDZn (which corresponds
to M in the notation of the theorem). Thus, Σ here corresponds to the cores of the Dehn
filling solid tori. The slopes of these Dehn fillings are already determined in our case, since
there is only one way of gluing a solid torus in the doubled manifold so that it corresponds
to the Dehn fillings of the rank-1 cusps on both sides of the manifold. With this, the
cores become geodesics, and so we take Margulis tubes around them. We recall that a
Margulis tube of radius r > 0 is a tubular neighbourhood of a closed geodesic α. Its radius
r denotes the distance between the core geodesic of the tube α and its boundary. In a
hyperbolic 3-manifold, it’s diffeomorphic to a solid torus, while in H3, it lifts to an infinite
solid cylinder around an infinite geodesic (see Section 1.1.5 for more details). We’ll denote
it by Tr(α).

Another important comment is that, when considering the doubles DKn, DZn new
closed geodesics appear. However, our asymptotics only concern closed geodesics lying in
one of the copies of the single manifolds, so we will only consider these.

As a final remark, note that in order to satisfy the condition of the theorem, we will
compactify the medium cusps individually one by one, and apply the previous result at
each step, that is, with L = Lj , for j = s + 1, . . . ,m. Although that could make the
bilipschitz constants accumulate, this will not occur as the medium cusps don’t intersect
a.a.s. The proof of this claim is at the end of the section (Claim 1).
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So, let ϵ > 0 be some number arbitrarily small. For the compactification of each
medium cusp, we take a Margulis tube Tr(ϵ)(α), where r(ϵ) is taken to be the radius which
separates the ϵ-thin and ϵ-thick part of DZn. In this way, after the filling of all of them,
we get that DZ<ϵ

n = ⊔mj=1Tr(ϵ)(αj), corresponding to small and medium cusps.

Note that the only closed geodesics that lie on DZ<ϵ
n are the core geodesics αj . Indeed,

these Margulis tubes are solid tori, so their fundamental groups are isomorphic to Z. In
each of them, then, there is only one free-homotopy class of closed curves -form by the core
curve and its powers- in which the αj is the geodesic representative. On the other hand,
we must recall that we are interested only in closed geodesics lying in one copy of Zn, in
which these core geodesics don’t exist. Therefore, they can be dismissed for our argument.

This yields, then, that the only geodesics object of study are either the ones lying in
the ϵ-thick part of DZn, or the ones having a part inside some Margulis tube corresponding
to a medium cusp.

For the first case, we can use directly Theorem 3.2.3. This gives us a bilipschitz inclusion
between DZ≥ϵ

n and DK
≥ ϵ

1.2
n , from which we obtain that the length of the preimage γ̃ ∈

DKn of the closed geodesic γ ∈ DZn under this bilipschitz map might increase at most by
a factor Jϵ,L ∈ (1, 1.0005). Thus, if take as γ′ the geodesic in the homotopy class of γ̃ in
DKn, we obtain:

l(γ′) ≤ l(γ̃) ≤ Jϵ,L · l(γ).

On the other hand, if we measure now the length of the image of γ′ in the metric DZn

under the bilipschitz inclusion, we have, by this same result, that its length may increase
by at most Jϵ,L. As γ is the geodesic in the homotopy class of the image of γ′ in DZn, we
obtain:

1

Jϵ,L
· l(γ) ≤ l(γ′),

where, in both inequalities, Jϵ,L → 1 as n → ∞, by definition of the biliptchitz constant
given in Theorem 3.2.3.

Finally, let’s study the second case. Let γ ∈ DZn such that it lies partly in some
Margulis tube Tr(ϵ)(αj), corresponding to a medium cusp. We will see that this curve
cannot be in the "very thin" part of DZn.

For this, we take 0 < δ < ϵ such that:

arcosh

(
ϵ√

7.256δ

)
− 0.0424 > lmax.

We consider also the nested Margulis tube Tr(δ)(αj) of radius r(δ) > 0 around the core
curve αj , which contains the δ-thin part of DZn around this core geodesic (see Figure 3.7).

Now, suppose that γ enters the δ-thin part of that manifold. Since it lies only partly in
the ϵ-thin part onDZn, that means it has to exit both Tr(δ)(αj) and Tr(ϵ)(αj) at some point.
Therefore, its length needs to be larger than twice the distance between the boundaries of
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Figure 3.7: Nested Margulis tubes of radius r(ϵ) and r(δ) around the core geodesic α.

the two tubes.

Theorem 1.1 from Futer-Purcell-Schleimer [FPS19] gives lower and upper bounds on
the distance between these two nested Margulis tubes, provided that the length of the
core geodesic is smaller than δ. Thus, in order to be able to apply it, we first check this
condition. Using [FPS22, Corollary 6.13], we have that the length of the core curve αj is
bounded by:

l(αj) <
2π

L2 − 28.78
,

where L is the total normalized length of the compactified cusp. Since here we’re dealing
with medium cusps, we have that L ≥

√
1
8 log3(n). Hence,

l(αj) ≤
2π

1
8 log3(n)− 28.78

<
16π

log3(n)
,

which is less that δ for n large enough. Therefore, we can apply [FPS19, Theorem 1.1],
that yields:

d(∂Tr(δ)(αj), ∂Tr(ϵ)(αj)) ≥ arcosh

(
ϵ√

7.256δ

)
− 0.0424 > lmax.

This leads to a contradiction, since for γ to enter into any of the smallest tubes Tr(δ)(αj),
for j = s+1, . . . ,m, its length needed to be larger than twice that distance, yet the length
of the curve γ is bounded by lmax. Therefore, we conclude that asymptotically as n→∞,
γ won’t enter the δ-thin part of DZn.

We can apply, consequently, the bilipschitz equivalences from Futer-Purcell-Schleimer
(Theorem 3.2.3) to the δ-thick part of DZn. In the same way as before, by taking as γ′

the geodesic in the homotopy class of the preimage of γ in DKn under the bilipschitz map,
we get:

1

Jδ,L
· l(γ) ≤ l(γ′) ≤ Jδ,L · l(γ),
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where Jδ,L → 1 as n→∞.
After the filling of all medium cusps, we obtain then that the length of γ′ will be

bounded by the length of γ times some product of bilipschitz constants, all tending to 1
as n→∞.

Filling large cusps. Finally for this step, we rely entirely on the previously mentioned result
of Futer-Purcell-Schleimer.

The structure of the argument is exactly like in the case for medium cusps. Thus, as
before, we take as our cusped manifold N the double of Zn, DZn. Equally, the compact-
ification process consists of taking out a horospherical neighbourhood of each cusp, and
filling it by gluing a Margulis tube. This time, however, the procedure is done for all cusps
at once, as we don’t have the certainty that large cusps are not incident to each other.
Then, the resulting manifold, made of the ϵ-thick part of DZn, for some ϵ > 0 -which is
compact- and the Margulis tubes attached along the boundary, is a reasonable model for
the compact manifold DMn (which corresponds to M in the statement of the theorem).

The only condition we need to check to apply Theorem 3.2.3, is that, in this case,
the total normalized length is still big enough to verify the condition of the statement.
This fails if there are "many" large cusps. However, this will not occur a.s.s. Indeed,
by [PR22, Theorem 2.4], we have that the expected number of cusps in Yn is equal to
1
2 log(n) +O(1), as n→∞. Hence, if we denote by Cl the number of large cusps in DYn,
using Markov’s inequality we have that:

P[Cl ≥ Kn1/4, K ∈ (0, 1)] ≤ E[Cl]

Kn1/4
→ 0, as n→∞.

Thus, like before, the two same cases for the position of γ in DMn appear, and following
the same argument, we get that there is a closed geodesic γ′ in DZn such that their lengths
differ by a multiplicative constant that tends to 1 as n→∞.

All in all, we obtain that for any closed geodesic γ in Mn of uniformly bounded length,
we can find a closed geodesic γ′ in Yn such that its length varies from the one of γ by at
most some product of bilipschitz constants that tend to 1 as n → ∞. Hence, this gives
Proposition 3.2.1.

Before moving into the next point, let’s prove the remaining claim, stated before:

Claim 1. Medium cusps don’t intersect each other a.a.s. Consequently, when compactifying
them one by one, the bilipschitz constants won’t accumulate.

Proof. Following the same notation as in [PR22], we denote by EKL the number of pairs
of edges of size ≤ K and ≤ L -that is, that are incident to less than K and L tetrahedra
respectively- and that are both incident to a common tetrahedron in the model Mn. Then,
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Theorem 2.4 (d) from [PR22] claims that, for any K,L = o(n1/3), the expected value of
EKL tends to zero, as n → ∞. In this setting, having an edge of size k implies having a
cusp of length k, as there are k glued tetrahedra around it. Thus, the result tells us that the
expected number of pairs of intersecting cusps of lengths ≤ C = o(n1/3) is asymptotically
negligible.

This fact, in particular, assures that the bilipschitz constants resulting at each step will
not accumulate for the following: when applying Futer-Purcell-Schleimer’s result (Theorem
3.2.3) to each medium cusp, the bilipschitz equivalence will apply only in the corresponding
part of Kn1 , which is not incident to any other. Then, outside each compactified cusp (i.e
in Kn2) the isometry given by Lemma 3.2.2 from [PR22] will still hold.

3.2.2 Non-homotopy of closed geodesics

Once we have this equivalence on the lengths, it rests to rule out the only setback that
could arise: the possibility that closed geodesics after compactification are homotopically
trivial, or get homotoped into one another. Hence, we prove now our second main point.

Lemma 3.2.4. Let lmax > 0, and ϕ : Yn → Mn denote the inclusion map between those
manifolds. A.a.s as n→∞, the images in Mn of any two non-homotopic closed geodesics
in Yn -of lengths bounded by lmax- are also non-homotopic, neither homotopically trivial.

Proof. We show first that, a.a.s, the image in Mn of a closed geodesic in Yn is not ho-
motopically trivial. Observe that for a short geodesic to be homotopically trivial after
the compactification, it needs to go around at least two small cusps in Yn. Indeed, if a
geodesic homotopic to a point in Mn goes around a single cusp, this would imply that,
pre-compactification, it is homotopic to the cusp. But since it is a hyperbolic element, this
cannot occur. On the other hand, both the cusps and the distance between them have to
be of length < lmax, since the geodesic is so.

If we look, then, at the path in the dual graph of Yn that this potentially homotopically
trivial geodesic does, we see that it is a concatenation of cycles at uniformly bounded
distance. Having this would imply that GYn is l-tangled, for l ≤ 1

8 log3(n). However, we
know by Bordenave’s Lemma 1.3.4 that this probability tends to 0 as n→∞. Therefore,
we can conclude that a.a.s as n→∞, closed geodesics of this bounded length don’t become
homotopically trivial after the compactification.

Now, to treat the case of geodesics becomic homotopic to one another, we’ll consider the
doubled manifolds DYn and DMn, and we will denote by ψ : DYn → DMn the inclusion
map between them, satisfying: ψ ↾Yn= ϕ. As before, we argue by contradiction. Suppose
there exists a set An ∈ Ωn with limn→∞ P(An) > 0, for which the model DYn verifies the
following: there exist two non-homotopic closed geodesics γ1 and γ2 in DYn, such that
their images ψ(γ1) and ψ(γ2) in DMn are homotopic to some other closed geodesic γ, of
smaller length l > 0 (or analogously, that one of them is homotopic to the other).
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We take, then, the cover of DMn corresponding to that geodesic, that is, we consider:

H3/⟨γ⟩,

where ⟨γ⟩ is an infinite cyclic subgroup of the fundamental group of DMn, generated by
the loxodromic transformation γ. This is diffeomorphic to S1 × R2, that is, a solid torus
(see Figure 3.8).

Figure 3.8: The curves γ̃ (red) and ψ̃(γ1), ψ̃(γ2) (blue) in the cover H3/⟨γ⟩.

We lift now the two curves ψ(γ1) and ψ(γ2) to the cover. Since ψ(γ1) and ψ(γ2) are
homotopic to γ, their lifts ψ̃(γ1) and ψ̃(γ2) in this cover will also contract into γ̃. On the
other hand, we know, by Proposition 3.2.1, that the lengths of the images in DMn, and
hence also of the lifts, are very close to those in DYn.

Now, since the geometry of this cover "flares out", that is, the radius of the solid torus
grows exponentially fast, this implies that these curves cannot be too far from γ̃, or at
least, they need to be at bounded distance from it. Thus, if we denote by D1 the distance
from γ̃ to ψ̃(γ1), and D2 the distance from γ̃ to ψ̃(γ2), we have:

d(ψ̃(γ2), ψ̃(γ2)) ≤ d(ψ̃(γ1), γ̃) + d(γ̃, ψ̃(γ2)) ≤ D1 +D2 = D.

We have obtained, then, that in the cover, the two curves ψ̃(γ1) and ψ̃(γ2) are at
bounded distance D from each other. But since distances in DMn are equal to distances
in H3/⟨γ⟩, this yields that ψ(γ1) and ψ(γ2) are also at bounded distance in DMn. And in
particular, so are their paths in the dual graph GDMn .

However, drawing on graph theory tools, we have that in a random regular graph, the
probability that there are two closed paths of lengths l1 and l2 at bounded distance d > 0

apart, tends to 0 as the number of vertices goes to infinity [BM04, Lemma 5.5]. This, then,
leads to a contradiction, proving that a.a.s this homotopy will not occur.
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3.2.3 Theorem A

Finally, with both Proposition 3.2.1 and Lemma 3.2.4, we are ready to prove our main
result. For simplicity of the argument, we will use the same equivalent reformulation of
the theorem as for Theorem 3.1.1.

Theorem A. For any finite collection of disjoint intervals [a1, b1], . . . , [at, bt] ⊂ R≥0, the
random vector (C[a1,b1](Mn), . . . , C[at,bt](Mn)) converges jointly in distribution, as n→∞,
to a vector of independent random variables

(C[a1,b1], . . . , C[at,bt]),

where for all i = 1, . . . , t, C[ai,bi] is Poisson distributed with parameter

λ =
∑

[w]∈W[ai,bi]

λ[w].

Proof. Proposition 3.2.1 states that the lengths in Yn and Mn are comparable, for n large
enough. This, together with Lemma 3.2.4 yields that the number of short closed geodesics
in Yn stays asymptotically the same after compactification. More precisely, given any
a, b ≥ 0, the bounds obtained in the same Proposition 3.2.1 imply that, for every ϵ > 0,

C[(1+ϵ)a, b
(1+ϵ)

](Yn) ≤ C[a,b](Mn) ≤ C[ a
(1+ϵ)

,(1+ϵ)b](Yn).

Since by Theorem 3.1.1, C[a,b](Yn) converge to a Poisson distributed random variable
of parameter λ =

∑
[w]∈W[a,b]

λ[w] as n → ∞, we can conclude from the inequality above
that the same asymptotic distribution of closed geodesics holds for the compact manifold
Mn. Moreover, again as a consequence of Theorem 3.1.1, for any finite collection of disjoint
intervals, these limiting random variables are independent.



82 CHAPTER 3



Chapter 4

The systole

The content of this chapter is adapted from [RS24]. Here, we address a question posed
in [PR22] about the systole of random hyperbolic 3-manifolds under the model of random
triangulations.

We prove, on the one hand, the existence of the limit of the expected value of the
systole of these manifolds, as their volume goes to infinity. This corresponds to Theorem
B. Before stating it, we first recall some notation. Given l > 0, let:

Wl = {[w] ∈ W : |w| > 2, |tr([w])| > 2 and 2Re
[
arcosh

( tr([w])
2

)]
∈ [0, l]}.

Then,

Theorem B. Let {li}i≥1 be the ordered set of all possible translation lengths coming from
(classes of) words [w] ∈ W. Then,

lim
n→∞

E[sys(Mn)] =
∞∑
i=1

( ∏
[w]∈Wli−1

exp

(
|[w]|

2|w|3|w|

))(
1−

∏
[w]∈Wli

\Wli−1

exp

(
|[w]|

2|w|3|w|

))
· li.

Moreover, we compute a sharp numerical approximation of this value. This is given by
Proposition C, the last main result of the manuscript.

Proposition C. We have:

lim
n→∞

E(sys(Mn)) = 2.56033312683887522062± 2.95489 · 10−16.

For the proof of Theorem B, we follow the same general strategy as before: we compute
first the limit of the expected value for the model of hyperbolic manifold Yn, and we see
then that the result applies also to the compactified manifolds Mn. This is done in the two
first sections of this chapter. Finally, the last section is devoted to the proof of Proposition
C.

83



84 CHAPTER 4

4.1 The systole of Yn

The aim of this section is to prove that we can write:

lim
n→∞

E[sys(Yn)] =
∞∑
i=1

( ∏
[w]∈Wli−1

exp

(
|[w]|

2|w|3|w|

))(
1−

∏
[w]∈Wli

\Wli−1

exp

(
|[w]|

2|w|3|w|

))
· li.

(4.1)
By definition of systole, if Yn has systole l > 0, it means that there is at least one closed

geodesic of length l > 0 in Yn, and no other closed geodesic smaller than this. Hence, in
order to have insight on its expected value, we would need to know the number of geodesics
of each possible length.

Using the relation (1.1) between the traces of the classes of words and the lengths of
their corresponding geodesics, we can translate this counting to the counting of cycles in
the dual graph GYn corresponding to each class of words [w], as it was done for the study
of the length spectrum in the previous chapter. Then, we have Theorem 3.1.2 from Section
3.1.5, which gives us the asymptotic distribution of these random variables. We recall its
statement here, as we will refer to it several times: let

Zn,[w] : Ωn → N, n ∈ N, [w] ∈ W :=W/ ∼,

defined as
Zn,[w](ω) := #{cycles γ on GYn : γ is described by [w]}.

Then,

Theorem 3.1.2. Consider a finite set S of equivalence classes of words in W. Then, as
n→∞,

Zn,[w] → Z[w] in distribution for all [w] ∈ S,

where:

• Z[w] : N→ N is a Poisson distributed random variable with parameter λ[w] =
|[w]|

3|w|2|w|
for all [w] ∈ S.

• The random variables Z[w] and Z[w′] are independent for all [w], [w′] ∈ S with [w] ̸=
[w′].

We can now write down an expression for the expected value of the systole of Yn in
terms of these random variables as follows:

E[sys(Yn)] =
∞∑
i=1

P
[

∄ geodesics of length l < li, and
∃ at least one geodesic of length li in Yn

]
li (4.2)

=
∞∑
i=1

P
[

Zn,[w] = 0 for all [w] ∈ Wli−1
, and

Zn,[w] > 0 for some [w] ∈ Wli \Wli−1

]
li, (4.3)
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where the sequence {li}i≥1 is the ordered set of all possible translation lengths coming
from (classes of) words [w] ∈ W, obtained using (1.1), and l0 = 0.

Thanks to Theorem 3.1.2, we can compute the point-wise limits of these probabil-
ities. Indeed, let Ai

n denote the latter event, that is, Ai
n = {Zn,[w] = 0 for all [w] ∈

Wli−1
, and Zn,[w] > 0 for some [w] ∈ Wli \Wli−1

}, for i ≥ 1. We have:

Proposition 4.1.1. Let {li}i≥1 be the ordered set of all possible translation lengths coming
from (classes of) words [w] ∈ W, and l0 = 0. Then, for every i ≥ 1,

lim
n→∞

P
[
Ai

n

]
=

( ∏
[w]∈Wli−1

exp

(
|[w]|

2|w|3|w|

))(
1−

∏
[w]∈Wli

\Wli−1

exp

(
|[w]|

2|w|3|w|

))
.

Proof. In Proposition 3.1.3 from Section 3.1.6, we proved that the number of classes of
words [w] ∈ Wli \ Wli−1

, for any i ≥ 1, is finite. Hence, we can use Theorem 3.1.2 which,
together with the independence of the random variables, gives:

lim
n→∞

P
[
Ai

n

]
=

( ∏
[w]∈Wli−1

P[Z[w] = 0]

)(
1−

∏
[w]∈Wli

\Wli−1

P[Z[w] = 0]

)

=

( ∏
[w]∈Wli−1

exp

(
|[w]|

2|w|3|w|

))(
1−

∏
[w]∈Wli

\Wli−1

exp

(
|[w]|

2|w|3|w|

))
.

Therefore, up to checking that we can switch the limit and the infinite sum in (4.2),
this would allow us to obtain a precise computable expression of the expected value of the
systole of the manifolds Yn.

4.1.1 Convergence

Let us show that we can indeed swap the limit and the infinite sum appearing in the
expression (4.2) of the expected systole, so that we can apply Proposition 4.1.1, and obtain
the equality (4.1).

For this, we will use the dominated convergence theorem. A first naive observation is
that:

P
[
Ai

n

]
= P

[
Zn,[w] = 0 for all [w] ∈ Wli−1

, and
Zn,[w] > 0 for some [w] ∈ Wli \Wli−1

]
≤ P[Zn,[w] = 0 for all [w] ∈ Wli−1

].

We look then for a uniform upper bound for the latter. By definition of the random vari-
able Zn,[w], this tells us that there are no words whose length of the corresponding geodesic
is in [0, li−1]. This condition implies, in turn, a lower bound on the combinatorial length
of the word. Indeed, if w = M1 · · ·Mk, where Mi ∈ {S,R,L, Sθ,Rθ, Lθ, Sθ2, Rθ2, Lθ2},
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using the sub-multiplicity property of the operator norm, we have:

∥w∥∞ = ∥M1 · · ·Mk∥∞ ≤ ∥M1∥∞ · · · ∥Mk∥∞ ≤ ( sup
1≤i≤k

∥Mi∥∞)k = (1 +
√
2)k.

In particular, the absolute value of every coefficient of w is bounded by (1 +
√
2)k. Hence,

|tr(w)| ≤ 2(1 +
√
2)k.

Since we have that the length of the geodesic corresponding to w is expressed as:

lγ(w) = 2Re

[
arcosh

(
trace([w])

2

)]
= 2 log

( ∣∣∣∣∣tr(w)2
+

√(tr(w)
2

)2
− 1

∣∣∣∣∣
)
,

using the inequality above, we obtain that:

lγ(w) ≤ k · 2 log
(3
2
(1 +

√
2)
)
.

Hence, if we have that lγ(w) > li−1 for all w ∈ GYn , we can bound the probability above
by:

P
[
GYn contains no essential cycles of length ≤

⌊
li−1

2 log(32(1 +
√
2))

⌋]
,

where an essential cycle in GYn refers to a cycle representing a curve in the manifold that
is non-homotopic to a cusp or a point. As a note, the word essential refers often to curves
that are also non-homotopic to a boundary component, but in our case we allow this.

If we denote by τn the minimum length of an essential cycle in GYn , this is equivalent
to:

P
[
τn >

⌊
li−1

2 log(32(1 +
√
2))

⌋]
.

Now, to get the uniform bound on this, we use a version of the following result by
McKay-Wormald-Wysocka:

Corollary 1.3.2. For (d − 1)2g−1 = o(n), the probability that a random d-regular graph
has girth greater than g ≥ 3 is

exp

(
−

g∑
r=3

(d− 1)r

2r
+ o(1)

)
,

as n→∞.

This follows from a more general result (see [MWW04, Theorem 1]). The result is very
close to what we need, but cannot be applied as is. Note that τn does not consider cycles
that correspond to parabolic elements in the manifold Yn. However, these are included
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in the result above. Hence, to get a bound for our case, we need to take out a factor
corresponding to the possible number of parabolic elements appearing as cycles in the
graph.

One of the steps of the proof of Corollary 1.3.2 is to compute the ratio between the set
of d-regular graph on n vertices with fixed numbers m1, . . . ,mt of cycles of certain lengths
c1, . . . , ct, and the set of those with at most R1, . . . , Rt cycles of these lengths c1, . . . , ct,
where mi ≤ Ri, i = 1, . . . , t and the Ri are growing in n. For this, they use the switching
method (see Section 1.3.2). More precisely, they count the average number of ways of
applying a (forward and backward) switching to a graph to get from one set to the other.

By construction of the words w one has that:

#{words w ∈W of |w| = r corresponding to parabolic elements}
#{words w ∈W of |w| = r}

=
1

3r
.

Indeed, since there are 9 matrices to choose from at each step, we can create 9r possible
words of length r > 0. On the other hand, since classes of words differentiate by trace
(up to sign), there exists one class of words representing the parabolic elements, of which
w = Sr is a representative. By definition of equivalence class, the cardinal of this class is
3r.

Hence, we deduce that the average number of cycles of length r > 0 in GYn corre-
sponding to essential curves is at most

(
1 − 1

3r

)
the average number of cycles of length r

in the graph. This needs to be taken into account in the proof of [MWW04, Theorem 1]
when counting the average ways of applying a backward switching, to make sure that the
new created cycles are essential. With that in mind, together with some small changes
in notation, the rest of the argument of [MWW04, Theorem 1] follows step by step. We
record the statement for our particular case as it will be used later on.

Corollary 4.1.2. For 32g−1 = o(n), the probability that GYn has no essential cycle of
combinatorial length smaller or equal than g ≥ 3 is less or equal than

exp

(
−

g∑
r=3

3r

2r

(
1− 1

3r

)
+ o(1)

)
,

as n→∞.

We use this to bound the probability above. One observation is that
⌊

li−1

2 log( 3
2
(1+

√
2))

⌋
is

only greater that 3 from some length lk on. However, the number of terms for which this
value is less than 3 is finite. Hence, for these values of li, we can bound the term (4.2) by:

P
[
Ai

n

]
· li ≤ P

[
τn >

⌊
li−1

2 log(32(1 +
√
2))

⌋]
lk ≤ lk.

On the other hand, we note that Corollary 4.1.2 can be directly applied only when



88 CHAPTER 4

g =

⌊
li−1

2 log( 3
2
(1+

√
2))

⌋
≤ (12 + o(1)) log3(n). For those values of li ≥ lk+1, we have:

P
[
Ai

n

]
· li ≤ P

[
τn >

⌊
li−1

2 log(32(1 +
√
2))

⌋]
· li

≤ exp

(
−

⌊ li−1

2 log( 32 (1+
√
2))

⌋∑
r=3

3r

2r

(
1− 1

3r

)
+K

)
· li

= exp

(
−

⌊
li−1

2 log( 32 (1+
√
2))

⌋
∑
r=3

3r +K ′

2r

)
· li

≤ exp

(
− 3

⌊
li−1

2 log( 32 (1+
√
2))

⌋
+K ′

2

⌊
li−1

2 log( 3
2
(1+

√
2))

⌋ )
· li,

for some K,K ′ > 0 independent of n.
Now, for all li such that the previous condition is no longer satisfied, we use the fol-

lowing. We refer here to an octahedral hyperbolic manifold a hyperbolic manifold built
following the same procedure as Yn, but in which the gluing is deterministic.

Lemma 4.1.3. Let Xn be an octahedral hyperbolic manifold made of n octahedra. Then, its
dual graph GXn always has an essential cycle of combinatorial length ≤ 4⌈log2(n+1

4 )⌉+ 1.

Proof. We pick any vertex v of GXn , and consider the four vertices neighbours to v. We
argue by contradiction: suppose that there doesn’t exist any essential cycle starting at any
of these four vertices of length up to k = 4⌈log2(n+1

4 )⌉+ 1.
Now, we consider the paths starting at any of these four vertices that are of the form:

w = w1 · · ·wt, with wi ∈ {SRθ, SLθ2}, for i = 1, . . . , t, t ∈ N.

Note that SRθ and SLθ2 are both two-letter words (we don’t count θ or θ2 as letters)
that correspond to essential paths, and so their contatenation also form an essential path.
Hence, all the paths described by the previous words are essential.

Since, up to combintorial length k, these paths don’t form an essential cycle, we have
that the number of octahedra they go through after t steps is 4 · 2t, for any t ≤ k−1

4 .
Equivalently, if B(v, 2t) denotes a ball in GXn of radius 2t ≤ k−1

2 around v, the number of
vertices in B(v, 2t) forming these paths is 4 · 2t.

However, if we take t = k−1
4 = ⌈log2(n+1

4 )⌉, the previous fact tells us that the number
of vertices forming these paths would be:

4 · 2⌈log2(
n+1
4

)⌉ > n,



4.1. THE SYSTOLE OF Yn 89

where n is the total number of vertices. This gives us a contradiction, implying that there
is at least two paths w, w′ of this form that have the same endpoint.

Now, if w and w′ have the same starting vertex, then their contatenation w · w̄′ -where
w̄′ denotes the backwards word of w′- forms a cycle. Since the backwards word w̄ of an
essential path w is an essential path, and both w and w′ are essential ones, we obtain that
w · w̄′ is an essential cycle of length at most 4⌈log2(n+1

4 )⌉. On the other hand, if w and
w′ have different starting vertex, we know that both paths are connected to v. Thus, the
path given by w · w̄′ · w̃, where w̃ ∈ {S,Rθ, Lθ2} forms a cycle. Since adding a letter to
an essential path gives us an essential path, we conclude that w · w̄′ · w̃ forms an essential
cycle of length at most 4⌈log2(n+1

4 )⌉+ 1.

Using this lemma, it is clear that for the li such that g =

⌊
li−1

2 log( 3
2
(1+

√
2))

⌋
≥ 4⌈log2(n+1

4 )⌉+
1,

P
[
τn >

⌊
li−1

2 log(32(1 +
√
2))

⌋]
= 0.

Finally, for the li’s such that (12 + o(1)) log3(n) ≤
⌊

li−1

2 log( 3
2
(1+

√
2))

⌋
≤ 4⌈log2(n+1

4 )⌉+ 1,

we observe that the ratio:⌊
li−1

2 log( 3
2
(1+

√
2))

⌋
(12 + o(1)) log3(n)

≤ 13 + o(1) ≤ C ⇒

⌊
li−1

2 log( 3
2
(1+

√
2))

⌋
C

≤
(
1

2
+ o(1)

)
log3(n).

Therefore, using Corollary 4.1.2, we obtain:

P
[
Ai

n

]
· li ≤ P

[
τn >

⌊
li−1

2 log(32(1 +
√
2))

⌋]
li

≤ P
[
τn >

⌊
li−1

2 log( 3
2
(1+

√
2))

⌋
C

]
li

≤ exp

(
− 3

⌊
li−1

2 log( 32 (1+
√
2))

⌋
C +K ′′

2
C

⌊
li−1

2 log( 3
2
(1+

√
2))

⌋ )
· li,

for some C,K ′′ > 0 independent of n.

All in all, we get, for all values of li, the following upper-bound:
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Lemma 4.1.4. We have, for all i ≥ 1:

P
[
Ai

n

]
≤ exp

(
− 3

⌊
li−1

2 log( 32 (1+
√

2))

⌋
C +K

2
C

⌊
li−1

2 log( 3
2
(1+

√
2))

⌋ )
,

for some C,K > 0 independent of n.

To complete the argument, we need now a lower and an upper bound on the lengths.
For that, we have the following lemma:

Lemma 4.1.5. Let lk, k ≥ 1, be the kth-entry of {li}i≥1, the ordered set of all translation
lengths coming from (classes of) words [w] ∈ W. Then, for k large enough, we have that:

K1 · log(k) < lk < K2 · log(k + 3),

for some 0 < K1 <
1
2 and K2 ≥ 2.

Proof. We start with the upper bound. Consider the words of the form wk = Sk+1Rθ, for
k ≥ 1. They correspond to hyperbolic elements, so the translation lengths related to them
are strictly positive. More precisely, one can compute that tr(Sk+1Rθ) = k + 3, for any
k ≥ 1. Hence, the translation lengths of the geodesics γ corresponding their equivalence
classes [wk] are given by:

l′k = lγ(wk) = 2 arcosh

(
k + 3

2

)
< 2 log(k + 3).

Since the list of lengths {l′k}k≥1 derived from them form a subset of {li}i≥1, we obtain
that:

lk ≤ l′k < 2 log(k + 3), for all k ≥ 1.

Now, the argument for the lower bound relies on the following observation: we have
that the group Γ generated by the 9 matrices presented in Section 3.1.2 is a subgroup of
PSL(2,Z[i]). This is a lattice of PSL(2,C), so by the Prime geodesic theorem for hyperbolic
manifolds [Sar83, Theorem 5.1], we know that the number of primitive closed geodesics of
length up to some number L in H3/PSL(2,Z[i]) is asymptotic to:

#{[γ] ∈ PSL(2,Z[i]) primitive : l(γ) < L} ∼ e2L

2L
.

That implies in particular that there are, asymptotically, at most exponentially many
translation lengths up to L in the length spectrum of this manifold.

Now, since the set {li}i≥1 is a subset of it -as it contains only the lengths coming form
the matrices in Γ-, this tells us also that there are at most exponentially many lengths up
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to L in {li}i≥1. Let {l1, · · · , lk} be this set of translations lengths smaller than L. Then,
the previous condition translates into:

k < e2lk

for k large enough. From this we deduce that lk > K1 · log(k), for some 0 < K1 <
1
2 .

All in all, summing over i ≥ 1, and denoting by B = log(32(1 +
√
2)), we obtain by

Lemma 4.1.4 and Lemma 4.1.5:

∞∑
i=1

P
[
Ai

n

]
· li =

k∑
i=1

P
[
Ai

n

]
· li +

∞∑
i=k+1

P
[
Ai

n

]
· li

≤ klk + 2
∞∑

i=k+1

exp

(
−

1
C

⌊
li−1
2B

⌋∑
r=3

3r +K

2r

)
· log(i+ 3)

≤ klk + 2

∞∑
i=k+1

exp

(
− 3

1
C

⌊
li−1
2B

⌋
+K

2
C

⌊
li−1

2B

⌋ )
· log(i+ 3)

≤ klk + 2
∞∑

i=k+1

exp

(
− 3

1
C
⌊ log(i−1)

4B
⌋ +K

2
C ⌊

log(i+2)
B ⌋

)
· log(i+ 3),

where the latter is a convergent sum. Therefore, we can apply the dominated convergence
theorem. This enables us to use Proposition 4.1.1, and so obtain the expression (4.1) for
the limit of E[sys(Yn)]. The remaining step is then to see that a.a.s, this is also a valid
expression for E[sys(Mn)]. We approach this in the next section.

4.2 The systole of Mn

The goal of this section is to prove that the contribution to the expected value of a set
of possible "bad" manifolds Bn arised from the compactification process is asymptotically
negligible. In this way, we can conclude that the expected value of the systole computed
in the previous section holds a.a.s for the manifolds Mn.

Recall that the manifolds Mn are obtained from a Dehn filling procedure on the mani-
folds Yn. This compactification process is done in three steps. The first one deals with the
"small" cusps, that is, cusps made of few octahedra around them, and uses a consequence of
Andreev’s theorem (Lemma 3.2.2 from [PR22]) to control the change in geometry. Then,
the "medium" and "large" cusps are treated in two separate steps. In these cases, the
main tool that assures enough control is Theorem 3.2.3 by Futer-Purcell-Schleimer. The
complete argument can be found in Section 3.2. We recall here, nonetheless, the notation
appearing in this chapter.
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Cusps of Yn Description

Small Of combinatorial length up to 1
8 log3(n)

Medium Of combinatorial length between 1
8 log3(n) and n1/4

Large Of combinatorial length bigger than n1/4

Under these definitions, we consider the following manifolds.

Models Description

Yn Non-compact hyperbolic 3-manifolds with totally geodesic boundary
obtained from a gluing of octahedra, and conditioned on not having
loops or bigons in its dual graph, described in Section 2.2

Kn Manifold obtained from Yn by filling the small cusps
DKn Double of Kn

Mn Manifold obtained from Kn by filling the medium and large cusps
homeomorphic to the Mn described in Section 2.1

DMn Double of Mn

Finally, recall that Yn ⊂ Kn ⊂ Mn, and ϕ : Yn → Mn denoted the inclusion map
between these manifolds. This is the map we will refer to from now on, so the notation ϕ
will be often omitted.

Let us start by defining the set Bn. Informally, this set is formed either by those
manifolds whose geometry get distorted in the compactification process, or by the ones
whose topological construction yields a degenerated systole. More precisely, this translates
into the following subsets:

Bn = Bn
(1) ∪Bn

(2) ∪Bn
(3),

where:

• Bn
(1) =

{
w ∈ Ωn :

∃ a closed geodesic γ ∈Mn(w), l(γ) < C log(log(n))

s.t. ∀γ′ closed geodesic in Yn(w), s.t. ϕ(γ′) is homotopic to γ :
l(γ)
l(γ′) /∈ [1− ϵ, 1 + ϵ], for some ϵ > 0

}
.

• Bn
(2) =

{
w ∈ Ωn :

∃ a closed geodesic γ ∈ Yn(w), l(γ) < C log(log(n))

s.t. γ becomes homotopically trivial in Mn(w)

}
.

• Bn
(3) = {w ∈ Ωn : sys(Mn(w)) ≥ C log(log(n))}.

Here 0 < C < 1
20 is a fixed constant. Now, we can express the expected value of the
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systole of Mn in a general way as follows:

E[sys(Mn)] =
∑
w∈Ωn

P[w] sys(Mn(w))

=
∑

w∈Ωn\Bn

P[w] sys(Mn(w)) +
∑
w∈Bn

P[w] sys(Mn(w)) = En
(1) + En

(2).

Remark 10. Note that there is a positive probability that the manifold Mn is not hyperbolic,
even if it’s small (Theorem 2.1.3 from Petri-Raimbault). Hence, for these elements w ∈ Ωn,
we set sys(Mn(w)) = 0.

Thus, we want to prove that for this set of "bad" manifolds Bn, the following happens:

Proposition 4.2.1.

lim
n→∞

En
(2) = lim

n→∞

∑
w∈Bn

P[w] sys(Mn(w)) = 0.

For this, we show that the limit of the sum under these sets Bn
(1), Bn

(2) and Bn
(3)

vanishes. We separate the proof into four different lemmas, the first studying the term
sys(Mn(w)), and the rest the sum for each subset.

Lemma 4.2.2. Let w ∈ Ωn. Then,

sys(Mn(w)) = O(log(n)).

Proof. By [PR22], we know that the boundary of Mn(w) is a random closed hyperbolic
surface Sn(w) of genus g ≥ 2. By the Gauss-Bonnet theorem, its area is given by:

area(Sn(w)) = −2πχ = 4π(g − 1).

Now, this surface is built out of 4n triangles. Hence, by a simple Euler characteristic
computation, we see that its genus has to be less than n. With this, using the inequality
for the systole given by the area growth (see Lemma 1.1.2), we get:

sys(Sn(w)) ≤ 2 log(area(Sn(w))) +K ≤ 2 log(4π(n− 1)) = O(log(n)).

Since the curves lying in Sn(w) are part of the length spectrum of Mn, this is in turn an
upper bound for sys(Mn(w)), that is,

sys(Mn(w)) ≤ sys(Sn(w)) = O(log(n)).
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Lemma 4.2.3.
lim
n→∞

∑
w∈Bn

(1)

P[w] sys(Mn(w)) = 0.

Proof. We bound the probability P[Bn
(1)]. As mentioned before, the control on the geom-

etry -and therefore on the lengths of the curves- when doing the Dehn filling of the cusps
relies on Lemma 3.2.2 and Theorem 3.2.3.

From Lemma 3.2.2, one has bilipschitz equivalences between the thick parts of Yn and
Kn. However, these bilipschitz constants may not be sufficiently small, or may accumulate
if the cusps are very close to each other. On the other hand, Theorem 3.2.3 by Futer-
Purcell-Schleimer gives bilipschitz equivalences between the thick parts of Kn and Mn,
provided that the total normalized length of the cusps L satisfies:

L2 ≥ 2π · 6771 cosh (0.6δ + 0.1475)5

δ5
+ 11.7. (4.4)

We observe that this won’t be verified if Mn has many large cusps, or if medium cusps are
incident to each other. Moreover, as before, there are some geometric conditions that, even
if the theorem is applicable, may cause the bilitpschitz constants to degenerate. Indeed,
this might occur if geodesics enter the δ-thin parts of the manifold Mn -where the theorem
doesn’t give any control.

Hence, since we can only assure that the length comparison is good enough when
avoiding these cases, we define Bn

(1) to be the set of manifolds for which any of the above
occurs, that is, in which:

• Small and medium cusps are incident.

• Yn(w) has many large cusps.

• Geodesics of length ≤ C log(log(n) enter the δ-thin parts of the manifold Mn(w), for
some small δ(n) > 0.

• There exists a closed geodesic ≤ C log(log(n) in Mn(w) such that every preimage in
Yn(w) goes into octahedra incident to small cusps.

Then, outside this set, using the same arguments as in Proposition 3.2.1 from Section 3.2.1,
we can conclude that the lengths pre and post compactification are comparable. In fact,
the proof that follows gives an effective version of Proposition 3.2.1 for curves of lengths
up to C log(log(n)), as opposed to curves of uniformly bounded length.

Let’s study the first case, that is, the probability that small and medium cusps are
incident. Let Ic denote the number of pairs of small or medium incident cusps. By Claim
1 (Section 3.2.1), we know that the expected number pairs of intersecting cusps of lengths
exactly k, l ≤ C = o(n1/3) is o(n−2/3). Thus, summing over all possible values of k and l
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-that go up to o(n1/4) by definition of medium cusps-, gives that E[Ic] = o(n−1/6). Using
Markov’s inequality (Theorem 1.2.1), we obtain, then:

P[Ic ≥ 1] ≤ E[Ic]
1

= o

(
1

n1/6

)
.

We analyze the next point: if Yn(w) has many large cusps. We have, by [PR22, Theorem
2.4 (a)], that the expected number of cusps is 1

2 log(n) + O(1). So, by denoting as Cl the
number of large cusps in Yn(w), and applying Markov’s inequality here again, we obtain:

P[Cl ≥ Kn1/4, K ∈ (0, 1)] ≤ E[Cl]

Kn1/4
= O

(
log(n)

n1/4

)
.

We deal now with the third case: if γ enters the "very thin" part of the manifold Mn.
Here, we can suppose that the previous bullet points don’t occur a.a.s. Also, note that it is
enough to study this event in the thin parts of the compactified medium and large cusps,
as we will deal with the components corresponding to the small cusps in the next case.

We will show that closed geodesics of the length we consider don’t enter the thin part
at all. For this, we consider the double of the manifold resulting from the compactification
of the small cusps, DKn. This new manifold has medium and large cusps, that are then
filled with solid cylinders. Then, we consider Margulis tubes of roughly the same area, so
that the final manifold models the geometry of the hyperbolic metric in DMn.

Now, let γ be a closed geodesic in the compactified manifold DMn, lying only in one
copy of Mn, and let δ = 1

log(n)1/10
. Consider also the Margulis tubes Tr(δ)(α) of radius

r(δ) > 0 around a core curve α, which contains the δ-thin part of DMn around this core
geodesic. Suppose that γ enters the δ-thin part of that manifold. That means, then, that
it also enters another nested Margulis tube Tr(ϵ)(α), for some fixed ϵ > δ but small enough
so that the ϵ-thin part of the manifold is indeed still isometric to a standard Margulis tube.
On the other hand, since γ is a geodesic lying in one copy of Mn, we know that it cannot
be entirely in the ϵ-thin part. Therefore, its length needs to be at least twice the distance
between the boundaries of the two tubes.

Now, we would like to use the bounds on this distance given by Futer-Purcell-Schleimer
in [FPS19, Theorem 1.1]. For that, we need to check that the length of the core curve α
we’re considering is less than δ. Recall that the Margulis tube around α corresponded,
pre-compactification, to a cusp neighbourhood around a medium or large cusp. Since these
have total normalized length L ≥

√
1
8 log3(n), we get, by [FPS22, Corollary 6.13], that the

length of the core curve α is bounded by:

l(α) <
2π

L2 − 28.78
≤ 2π

1
8 log3(n)− 28.78

<
16π

log3(n)
,

which is indeed less that δ when n is large enough. Therefore, using now [FPS19, Theorem



96 CHAPTER 4

1.1], we obtain that the distance between the boundary torii is bounded below by:

d(∂Tr(δ)(α), ∂Tr(ϵ)(α)) ≥ arcosh

(
ϵ√

7.256δ

)
− 0.0424

> arcosh

(
ϵ√

7.256 1
log(n)1/10

)

> log

(
ϵ log(n)1/20√

7.256

)
> log

(
ϵ√

7.256

)
+

1

20
log(log(n)).

This implies, then, that the length of γ would need to be strictly bigger than 1
10 log(log(n))

to be able to enter the δ-thin part around α. However, we are considering geodesics of
length less than C log(log(n)), where C < 1

20 . Therefore, this yields that, for n big enough,
γ doesn’t enter the δ-thin parts corresponding to filled medium and large cusps.

A last remark is that it is enough to study this case for this value of δ, that is, outside
the δ-thin part, the length of the curve is already controlled. Indeed, even if δ is tending to
0 as n→∞, the condition (4.4) on the total normalized length is still satisfied. Therefore
Futer-Purcell-Schleimer’s result (Theorem 3.2.3) applies, and gives a bilipschitz equivalence
between the δ-thick parts of both manifolds, with bilipschitz constant tending to 1 as
n→∞.

Finally, we study the last case. We suppose here again that the previous cases don’t
occur a.a.s. So, let γ be some closed geodesic in Mn, and γ̃ a preimage in Yn, and suppose
that γ̃ enters into an octahedron incident to a small cusp. Then, we have that the cycles
in the dual graph GYn corresponding to this curve and the parabolic element that goes
around the cusp intersect. On the other hand, since the δ-thick parts of Mn and Kn are
bilipschitz with bilipschitz constant tending to 1, using the isometry given by Lemma 3.2.2,
we can deduce that the length of the part of γ̃ lying outside the octahedra incident to the
small cusp is of length less than l(γ) < C log(log(n)).

Hence, using now Proposition 3.1.3 from Section 3.1.6, we have that the part of the
cycle in GYn corresponding to the part of γ̃ that is outside the octahedra incident to the
cusp, has length bounded above by log(n)C < 1

8 log3(n) for n large enough. Therefore, we
have found two cycles in GYn that lie inside a ball of diameter ≤ 1

8 log3(n) + log(n)C from
some common vertex. That would imply then that GYn is l-tangled for l ≤ 1

8 log3(n), and
n large enough. However, by Lemma 1.3.4 from Bordenave, we have:

P
[
GYn is

1

8
log3(n)-tangled

]
= O

(3 1
2
log3(n)

n

)
≈ O

( 1

n1/2

)
.

A similar argument works if the preimage γ̃ enters into octahedra incident to different
small cusps (which could happen if the small cusps are close to each other). This would
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imply, then, that in the dual graph GYn we can find two cycles of combinatorial length
< 1

8 log3(n) at distance < C log(log(n)), yielding that GYn is l-tangled for l ≤ 1
8 log3(n).

However, as shown above, the probability that this happens tends to zero as n→∞.

All together, we have that:

P[B(1)
n ] ≤ P[ GYn is

1

8
log(n)-tangled ] + P[Cl > Kn1/4] + P[Ic ≥ 1]

≤ O
( 1

n1/2

)
+O

(
log(n)

n1/4

)
+ o

(
1

n1/6

)
≤ O

( 1

n1/6

)
.

Therefore,

∑
w∈Bn

(1)

P[w] sys(Mn(w)) ≤ P[Bn
(1)] max

w∈Bn
(1)
{sys(Mn(w))} ≤ O

( 1

n1/6
· log(n)

)
,

which tends to 0 as n→∞.

Lemma 4.2.4.
lim
n→∞

∑
w∈Bn

(2)

P[w] sys(Mn(w)) = 0.

Proof. Note that for a short geodesic to be homotopically trivial after the compactification,
it needs to go around at least two small cusps in Yn. Indeed, there might exist geodesics -for
instance corresponding to words of the form w = Skθ- that go around one cusp. However,
if they were to be homotopic to a point in Mn, that would imply that, pre-compactification,
they are homotopic to the cusp. But they are hyperbolic elements, so this cannot happen.
On the other hand, both the cusps and the distance between them have to be of length
< C log(log(n)), since the geodesic is so.

If we look at the paths that these potentially homotopically trivial geodesics do in the
dual graph of Yn, we see that they are concatenations of cycles, such as Figure 4.1.

Figure 4.1: Paths in GYn of homotopically trivial curves.

But having paths like that would imply that GYn is l-tangled, for l ≤ 1
8 log3(n). Hence,
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again by Bordenave’s Lemma 1.3.4, we get that:

P[Bn
(2)] ≤ P[ GYn is

1

8
log3(n)-tangled ] = O

( 1

n1/2

)
.

Therefore,

∑
w∈Bn

(2)

P[w] sys(Mn(w)) ≤ O
( 1

n1/2
· log(n)

)
→ 0, as n→∞.

Lemma 4.2.5.
lim
n→∞

∑
w∈Bn

(3)

P[w] sys(Mn(w)) = 0.

Proof. For simplicity, here we can suppose that the length of short geodesics don’t change
when doing the Dehn filling, that is, that w /∈ Bn

(1) and w /∈ Bn
(2). Like this, the set

Bn
(3) can be also defined as:

Bn
(3) = {w ∈ Ωn : sys(Yn(w)) > C ′ log(log(n)), for C ′ ∈ (0, 1)}.

This condition, in turn, can be translated into a condition on the length of paths in
GYn . More precisely, if the translation length of all closed geodesics in Yn is larger than
C ′ log(log(n)), this implies that all corresponding closed paths have combinatorial length
larger than C′ log(log(n))

2 log( 3
2
(1+

√
2))
≥ ⌊C ′′ log(log(n))⌋, for C ′′ ∈ (0, 1). Hence, the probability of the

event Bn
(3) is bounded by:

P[w ∈ Ωn : GYn contains no essential cycles of lengths ∈ {3, . . . , ⌊C ′′ log(log(n))⌋}].

For this, we use again Corollary 4.1.2. This gives us:

P[Bn
(3)] ≤ exp

(
−

⌊C′′ log(log(n))⌋∑
r=3

3r

2r

(
1− 1

3r

)
+ o(1)

)
≤ K exp

(
− 3⌊C

′′ log(log(n))⌋ − 1

2⌊C ′′ log(log(n))⌋

)
for some K > 0,

≤ O
(
exp

(
− 3⌊log(log(n))⌋

⌊log(log(n))⌋
))
.

Therefore, ∑
w∈Bn

(3)

P[w] sys(Mn(w)) ≤ O

(
1

e
3⌊log(log(n))⌋
⌊log(log(n))⌋

· log(n)

)
,

which goes to 0 as n→∞.
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With all this, we are ready to prove Proposition 4.2.1.

Proof of Proposition 4.2.1. Having studied the three cases, we obtain:∑
w∈Bn

P[w] sys(Mn(w)) ≤ P[Bn] max
w∈Bn

{sys(Mn(w))}

≤ (P[Bn
(1)] + P[Bn

(2)] + P[Bn
(3)]) max

w∈Bn

{sys(Mn(w))}

≤ O
(

1

n1/6

)
O
(
log(n)

)
,

which tends to 0 as n→∞.

Now, this, together with Proposition 4.1.1, enables to prove what we aimed for:

Theorem B. Let {li}i≥1 be the ordered set of all possible translation lengths coming from
(classes of) words [w] ∈ W. Then,

lim
n→∞

E[sys(Mn)] =
∞∑
i=1

( ∏
[w]∈Wli−1

exp

(
|[w]|

2|w|3|w|

))(
1−

∏
[w]∈Wli

\Wli−1

exp

(
|[w]|

2|w|3|w|

))
· li.

Proof. Using Proposition 4.1.1, we proved in Section 4.1.1 that the right hand side of the
equality is a valid expression for the limit of the expected systole of Yn.

On the other hand, Proposition 4.2.1 implies that, as n→∞,

E(sys(Mn)) =
∑

w∈Ωn\Bn

P[w] sys(Mn(w)).

Since Bn was exactly the set of manifolds for which the compactification process could
degenerate the length of their curves, for all w ∈ Ωn \Bn, we have that, ∀ϵ > 0:

1

1 + ϵ
lim
n→∞

E(sys(Yn)) ≤ lim
n→∞

E(sys(Mn)) ≤ (1 + ϵ) lim
n→∞

E(sys(Yn)).

Therefore, all combined, we obtain the expression we are looking for.

4.3 A numerical value

Since we have a formula for the limit of E(sys(Mn)), we can try to compute a numerical
value of it. The problem is, that the list of ordered lengths li is hard to determine, and
the program for computing the sets Wli \Wli−1

for all i ≥ 1 is computationally very slow.
Indeed, even though the lengths can be computed using formula (1.1), this equality de-

pends on the trace of some class of words, which corresponds to a complex number. Hence,
we cannot order lengths by trace, as these don’t have a natural ordering. This fact differ-
entiates it from the two dimensional case [Pet17], making the computation much harder.



100 CHAPTER 4

One could consider, then, taking the w-distance (defined in the proof of Proposition 3.1.3,
and recalled in Section 4.3.1) to get the ordered list. However, that doesn’t completely
work either, as it is not true that the translation length increases whenever this w-distance
does so. Another natural parameter for this is the combinatorial length of the words. In
this case, it does exists a coarse comparison between word length and geometric length
(given by our Proposition 3.1.3) which would enable us, a priori, to obtain this ordered
list of lengths. However, the bound that this gives is too big to make it computationally
feasible. These obstacles also make it less evident to get a complete list of words of length
less that li, for every i ≥ 1.

On top of it, the complexity of the computation to check whether two words belong to
the same equivalent class grows exponentially on the length of the word. Thus, computing
the classes of words belonging to Wli \ Wli−1

is numerically doable only when i is very
small.

Hence, to get an approximated value for the limit, we do the following: we compute the
first terms of the sum, for which the lengths and the sets Wli \ Wli−1

can be determined,
and then we give an upper-bound for the rest of the sum. To overcome the aforementioned
constraints related to the ordered list of lengths, here we mix different techniques - using
the w-distance in some cases, and the structure of the alphabet matrices in others- that
allow us to compute more efficiently an ordered list of sufficient lengths to obtain a good
approximation.

In order to simplify the formulas, we define some notation. For all i ≥ 1, let:

pi = lim
n→∞

P[Ai
n] =

( ∏
[w]∈Wli−1

exp

(
|[w]|

2|w|3|w|

))(
1−

∏
[w]∈Wli

\Wli−1

exp

(
|[w]|

2|w|3|w|

))
.

Then, we can write:

lim
n→∞

E(sys(Mn)) =
k∑

i=1

pi · li +
∞∑

i=k+1

pi · li = Sc + Se,

where Sc represents the computable part of the sum, and Se the error term. We study
them separately in the next two subsections.

4.3.1 The program for Sc

To compute the finite sum Sc =
∑k

i=1 pi · li, we need to know the first k values of
{li}i≥1, and the (classes of) words that correspond to each of these lengths.

For that, we start by computing all words of translation length less than some number
D > 0. As mentioned before, this is not completely straightforward. To do so, we will
(partly) use the w-distance, which we recall next.

Let P be the plane determined by the triple {0, i,∞}, and w ∈ W . Then, the w-
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distance, denoted by d(w), is the distance in the upper half-space of H3 between the
planes P and w(P ). This is given by:

d(w) = min
(x1,y1)∈P

(x2,y2)∈w(P )

{d((x1, y1), (x2, y2))} (3.1)

= min
(x1,y1)∈P

(x2,y2)∈w(P )

{
arcosh

(
1 +

(x2 − x1)2 + (y2 − y1)2

2y1y2

)}
.

Thus, we first compute the list of words of d(w) < D. This can be easily done as the
w-distance increases whenever the combinatorial length of the word does. The reason is
that the plane spanned by the larger word is contained in the half-space spanned by the
smaller one (Proposition 3.1.3, from Section 3.1.6). This implies also that the w-distance
corresponding to some word w is always less or equal than the translation length of the
curve related to it, that is,

d(w) ≤ lγ(w), for any word w ∈W.

From this last observation, we can deduce that the list L of words of d(w) < D contains
all words of translation length less than D. Indeed, for any word w such that d(w) > D,
we would have D < d(w) ≤ lγ(w). Hence, the remaining step to get the initial list is to
filter the words in L by computing their translation length.

This procedure, however, fails for certain words. More precisely, for those corresponding
to parabolic elements with an extra twist when gluing the faces of the octahedra, for
instance w = SSSθ. These now correspond to hyperbolic elements, so their translation
length is positive, but their w-distance is always zero. Hence, we need another way to see
when we need to stop considering them. For that, we compute directly their translation
length, and rely on the following lemma:

Lemma 4.3.1. Let lγ(w) denote the translation length of a closed geodesic γ ∈ Yn corre-
sponding to a class of words [w] ∈ W. Then, for all k ≥ 3, we have:

lγ(S
kθ) < lγ(S

k+1θ)

lγ(S
kθ2) < lγ(S

k+1θ2).

Proof. One can compute that the traces of the words in [Skθ] are equal to ±(ki+ 1), and
hence those of [Sk+1θ] are ±((k + 1)i+ 1), for every k ≥ 1. Now, recall that:

lγ(S
kθ) = 2Re

[
arcosh

(
ki+ 1

2

)]
= 2Re

[
log

(
ki+ 1

2
+

√(ki+ 1

2

)2
− 1

)]
= 2 log

( ∣∣∣∣∣ki+ 1

2
+

√(ki+ 1

2

)2
− 1

∣∣∣∣∣
)
.
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Thus, to see that the translation length of this class of words increases, it is sufficient
to see that the absolute value of this complex number z inside the log does so. We know
that |z| =

√
Re(z)2 + Im(z)2, where:

Re(z) =
1

2
+ Re

(√
2ki− k2 + 3

4

)
=

1

2
+

(
1

2

4
√
k4 + 70k2 + 9 · sin

(1
2
arctan(

8k

k2 + 3
)
))

Im(z) =
k

2
+ Im

(√
2ki− k2 + 3

4

)
=
k

2
+

(
1

2

4
√
k4 + 70k2 + 9 · cos

(1
2
arctan(

8k

k2 + 3
)
))

.

By computing their squares, and summing them, we get:

|z|2 = Re(z)2 + Im(z)2

=
k2 + 1

4
+

1

4

√
k4 + 70k2 + 9

+
1

2

4
√
k4 + 70k2 + 9

(
sin
(1
2
arctan(

8k

k2 + 3
)
)
+ k cos

(1
2
arctan(

8k

k2 + 3
)
))

.

The first line of the expression is clearly increasing in k, for k ≥ 3. For the second line, con-
sider f(k) = sin

(
1
2 arctan(

8k
k2+3

)
)
+k cos

(
1
2 arctan(

8k
k2+3

)
)
. Since 0 < sin(12 arctan(

8k
k2+3

) <

0.55 and 0.83 < cos(12 arctan(
8k

k2+3
) < 1 for all k ≥ 3, f(k) is a positive function. Now, if

we compute its derivative, we have that:

f ′(k) =
4k(k2 − 3) sin(12 arctan(

8k
(k2+3)

)) + (k4 + 66k2 + 21) cos(12 arctan(
8k

(k2+3)
))

k4 + 70k2 + 9
> 0.

As the product and composition of positive increasing functions is positive and increasing,
we finally obtain that |z| =

√
Re(z)2 + Im(z)2 is increasing in k, which is what we wanted.

For the class [Skθ2], an analogous argument works: the traces of words in [Skθ2] are
equal to ±(ki − 1), and hence those of [Sk+1θ2] are ±((k + 1)i − 1), for every k ≥ 1. We
get, then, the same expressions for the real and imaginary parts, so the rest follows from
above.

This tells us, then, that once one of these words have translation length bigger than
D, we can stop checking the larger ones of that same form.

Joining these two procedures, we obtain the complete list of words of translation length
less than D. This process is carried out by a Sage program, of which this is a pseudo code.



4.3. A NUMERICAL VALUE 103

Algorithm 1 Computes the list of words of translation length less than D
1: procedure Trans. length(D)
2: Set list tocheckhyp ▷ of hyp. words that we need to check at each step
3: Set list validhyp ▷ of words from tocheckhyp that have w-distance < D
4: Set list tocheckpar ▷ of parab. words with twists that we need to check at each

step
5: Set list validpar ▷ of words from tocheckpar that have tr. length < D
6: Set list valid ▷ of all words of tr. length < D
7: Set list tracew ▷ of traces of all words from valid

8:

9: Initial case:
10: tocheckhyp ← 3-tuples of indices from {0, 1, 2}
11: for each tuple in tocheckhyp do
12: if tuple is a parabolic word then
13: w2, w3← Matrices corresponding to tuple, with one and two twists
14: l2← translation length corresponding to w2
15: if l2 is less than D then
16: SAVE PAR(valid, validpar, tracew, tuple, w2)

17: l3← translation length corresponding to w3
18: if l3 is less than D then
19: SAVE PAR(valid, validpar, tracew, tuple, w3)

20: else
21: w ← Matrix corresponding to tuple
22: d← w-distance from P = {0, i,∞} to w(P )
23: if d is less than D then
24: validhyp ← tuple
25: l← translation length corresponding to w
26: if l is less than D then
27: SAVE(valid, tracew, tuple, w)

28: w2, w3← Matrices corresponding to tuple, with one and two twists
29: l2← translation length corresponding to w2
30: if l2 is less than D then
31: SAVE(valid, tracew, tuple, w2)

32: l3← translation length corresponding to w3
33: if l3 is less than D then
34: SAVE(valid, tracew, tuple, w3)
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Algorithm 1 Computes the list of words of translation length less than D
35: procedure Trans. length(D)
36:

37: Iterative case:
38: n=3
39: while lists validhyp or validpar are non-empty do
40: tocheckhyp ← empty the list
41: tocheckhyp ← (n+1)-tuples of indices from validhyp and {0, 1, 2}
42: tocheckpar ← (n+1)-tuples of indices from validpar by repeating 1st index
43: validhyp ← empty the list
44: validpar ← empty the list
45:

46: for each tuple in tocheckhyp do
47: w ← Matrix corresponding to tuple
48: d← w-distance from P = {0, i,∞} to w(P )
49: if d is less than D then
50: validhyp ← tuple
51: l← translation length corresponding to w
52: if l is less than D then
53: SAVE(valid, tracew, tuple, w)

54: w2, w3← Matrices corresponding to tuple, with one and two twists
55: l2← translation length corresponding to w2
56: if l2 is less than D then
57: SAVE(valid, tracew, tuple, w2)

58: l3← translation length corresponding to w3
59: if l3 is less than D then
60: SAVE(valid, tracew, tuple, w3)

61:

62: for each tuple in tocheckpar do
63: wp ← Matrix corresponding to tuple
64: lp ← translation length corresponding to wp

65: if lp is less than D then
66: SAVE PAR(valid, validpar tracew, tuple, wp)

67: n← n+ 1

68:

69: length← length of list valid
70: return valid, length, tracew ▷ returns the list of all valid words, its length, and

the list of their traces



4.3. A NUMERICAL VALUE 105

Algorithm 2 Arranges and saves the valid words coming from parabolics
procedure Save par(valid, validpar, tracew, tuple, w)

2: tc← change indices of tuple to 9 matrix system
validpar ← tc

4: valid← tc

tracew ← trace of w

Algorithm 3 Arranges and saves the valid words
procedure Save(valid, tracew, tuple, w)

2: tc← change indices of tuple to 9 matrix system
valid← tc

4: tracew ← trace of w

As a note, we can think of this program in a more geometric way: when computing
all words of w-distance less that D, we are constructing a polyhedron made of octahedra
which contains all paths w whose w-distance d(w) with respect to some initial face P is
less than D.

Once we have this list of words of translation length < D, we group them in classes
of words -by analysing, for each one, the conditions that define the equivalence class-, and
compute the cardinals of each class. On the other hand, we compute the complete list
of translation lengths that appear up to the number D. These lists give us, then, all the
information we need to compute Sc.

Taking D = 4.6, we obtain a list of 31 lengths, and a value of Sc:

Sc =
31∑
i=1

pi · li = 2.56033312683887522062 . . .

4.3.2 The error term Se

In order to bound the sum Se, we subdivide it into blocks, and bound each of these,
that is,

Se =

∞∑
i=32

pi · li =
∑

i:li∈(l31,⌈l32⌉)

pi · li +

∞∑
k=⌈l32⌉

∑
i:li∈[k,k+1)

pi · li.

Observe that in these sums, the lengths li can be bounded by ⌈l32⌉ and k+1 respectively,
which are natural numbers. To get a sharper bound on the error term, then, we decrease
the growth in the sum over k by defining:

τ(li) := 2 cosh
( li
2

)
,
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and re-writing the previous expression as:

Se =
∑

i:τ(li)∈(τ(l32),⌈τ(l32)⌉)

pi · li +

∞∑
k=⌈τ(l32)⌉

∑
i:τ(li)∈[k,k+1)

pi · li =: A+B.

The term A can be bounded by:

A ≤ 2 arcosh
(⌈τ(l32)⌉

2

)
lim
n→∞

P[Zn,[w] = 0, ∀ [w] ∈ W : τ(lγ(w)) < τ(l32)]

= 2 arcosh
(⌈τ(l32)⌉

2

)
lim
n→∞

P[Zn,[w] = 0, ∀ [w] ∈ Wl31 ] = 2.9220 · 10−16.

where the probability can be found using the computation for Sc.

Now, let’s study B. As before, we have that:

B ≤
∞∑

k=⌈τ(l32)⌉

2 arcosh
(k + 1

2

)
lim
n→∞

P[Zn,[w] = 0, ∀ [w] ∈ W : τ(lγ(w)) < k].

Denote by q[0,k) = P[Zn,[w] = 0, ∀ [w] ∈ W : τ(lγ(w)) < k]. We can decompose q[0,k) as:

q[0,k) = q[0,τ(l32)) · q[τ(l32),k).

The first factor corresponds to the same probability as in A, so we can compute it. Like
this, we get:

B ≤ e−
112
3

∞∑
k=⌈τ(l32)⌉

2 arcosh
(k + 1

2

)
lim
n→∞

P[Zn,[w] = 0, ∀[w] ∈ W : τ(lγ(w)) ∈ [τ(l32), k)].

To get a sharper bound, we study the first term B1 (when k = ⌈τ(l32)⌉) separately. Using
computational data, we have that the probability:

P[Zn,[w] = 0, ∀ [w] ∈ W : τ(lγ(w)) ∈ [τ(l32), ⌈τ(l32)⌉)]

can be bounded above by:
P[Zn,[w] = 0, for [w] ∈ Λ],

where:

Λ =

{
[S10θ], [S10θ2], [S2(Lθ2)2Sθ], [S2(Lθ)2Sθ], [S2(Lθ2)2Rθ],

[S2(Rθ)2Lθ2], [S3(Lθ2)2Rθ2], [S3(Rθ)2Lθ], [S3(Sθ)2R], [S3(Sθ2)2L]

}
.

Each of these classes of words have λ[w] =
1
2 , so by Theorem 4.1.1 we have that, as
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n→∞, this probability is exactly e−5. Hence, the first term is bounded by:

B1 ≤ e−
112
3 2 arcosh

(⌈τ(l32)⌉+ 1

2

)
e−5 = e−

112
3 2 arcosh(6)e−5 = 2.04164 · 10−18.

Finally, we deal with the remaining term, that is:

B2 = e−
112
3

∞∑
k=⌈τ(l32)⌉+1

2 arcosh
(k + 1

2

)
lim
n→∞

P[Zn,[w] = 0, ∀ [w] ∈ W : τ(lγ(w)) ∈ [τ(l32), k)].

Similarly as before, we argue that this probability above can be bounded by:

P[Zn,[w] = 0, for [w] ∈ {Λ ∪ [Sr−3Rθ], r ∈ (⌈τ(l32)⌉, k]}].

Indeed, one can compute that τ(l([Sk−3Rθ])) = tr([Sk−3Rθ]) = k − 1, which verifies the
condition: τ(lγ(w)) ∈ [τ(l32), k). On the other hand, it is not hard to see that |[Sk−1Rθ]| =
3k2k. Therefore, we have that:

P[Zn,[w] = 0, for [w] ∈ {Λ ∪ [Sr−3Rθ], r ∈ (⌈τ(l32)⌉, k]} ≤ e−5 · e⌈τ(l32)⌉−k.

Hence, B2 can be bounded by:

B2 ≤ 2e−
112
3 e−5e⌈τ(l32)⌉

∞∑
k=⌈τ(l32)⌉+1

arcosh
(k + 1

2

)
e−k

= 2e−
112
3 e6

∞∑
k=12

arcosh
(k + 1

2

)
e−k ≃ 1.24718 · 10−18.

All together, we have that the error term Se is bounded by:

Se = A+B ≤ A+B1 +B2 ≤ 2.95489 · 10−16.

Joining the values obtained for Sc and Se, we finally obtain:

Proposition C.

2.56033312683887522062 ≤ lim
n→∞

E(sys(Mn)) ≤ 2.56033312683887522062+2.95489 ·10−16.
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Chapter 5

Future directions

In this thesis, we’ve tried to shed some light on the question of what a typical hyperbolic
3-manifold looks like, by giving a characterisation of the typical behaviour of two of its
geometric invariants, the length spectrum and the systole. Nonetheless, as mentioned at
the beginning of this manuscript, there is still a lot to know about this class of 3-manifolds.

In this last chapter, we present different future directions, some of which arise from the
work presented above. We’ve divided them into two types of questions.

Geometric questions

A natural continuation of my work would be to study the ortholength spectrum of
the manifolds under this model of random triangulations. The ortholength spectrum of
a hyperbolic manifold with totally geodesic boundary is the (multi)-set of lengths of the
geodesic arcs whose endpoints are orthogonal to the boundary. This appears in Basmajian’s
famous identity [Bas93], and has been recently studied, for example, in [MM23, BB22].
In the case of the random 3-manifold Mn, Petri and Raimbault gave a bound on the
shortest element of its ortholength spectrum, using Basmajian’s tubular neighbourhood
theorem [Bas94]. It would be interesting to understand the whole spectrum.

Another geometric invariant, closely related to the length spectrum, is the Laplacian
spectrum. This contains a lot of geometric information on the given manifold. The first non-
zero eigenvalue λ1 (also known as the spectral gap) is of particular interest as it measures
the connectivity of a hyperbolic manifold. Concerning it, we could ask, for instance, what
the maximal spectral gap for the doubled manifolds DMn is. This is planned to be joint
work with my PhD advisor Bram Petri, by adapting some ideas from Hide-Magee [HM23]
and Bordenave–Collins [BC19]. Another interesting problem to approach would be to try
to prove effective convergence of the spectral measure of a random 3-manifold towards that
of its Benjamini–Schramm limit, using the relation between the Laplacian and the length
spectrum given by the Selberg trace formula.

Finally, a -probably much harder, but- stimulating question is that of finding other
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models of hyperbolic 3-manifolds, preferably without boundary.

Combinatorial questions

There are also many interesting questions about the combinatorics of the polyhedral
complex.

For instance, as stated in [PR22], one could ask the question of Poisson-Dirichlet
distribution for edges. This question has already been addressed for random surfaces made
out of gluing of polygons [BCP19,Gam06,CP16]. Hence, one could try to follow the same
line of argument.

To end, it would be also intriguing to look for universality properties of this model of
random triangulations. That is, to see whether there are some properties of the resulting
random cell complex that stay equal if we change the polyhedron with which we do this
combinatorial construction.
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