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RÉSUMÉ EN FRANÇAIS

Contexte

Héritage de la première moitié du xxe siècle et en particulier de la Seconde Guerre mondiale
[1], la technologie du radar s’est largement développée et se décline désormais dans de nom-
breuses applications. En effet, les systèmes radars sont utilisés aussi bien pour la surveillance
météorologique, que le contrôle du trafic aérien ou encore la surveillance spatiale [2]. Ainsi, et
comme toutes les technologies, le radar doit évoluer pour faire face à diverses problématiques.

Parmi ces problématiques, on retrouve notamment la congestion du spectre électromagné-
tique [3]. En effet, les applications du radar étant multiples, il occupe une partie non négligeable
du spectre électromagnétique. De plus, cette ressource est également utilisée par d’autres ser-
vices, comme ceux de communications ou encore de diffusions audiovisuelles par exemple. Le
spectre électromagnétique se retrouve donc fortement encombré et la situation ne fait qu’empirer
avec les années, le nombre d’utilisateurs et les besoins en bande des différents services ne cessant
d’augmenter. Cela conduit à une cohabitation nécessaire au sein des bandes spectrales, tout en
atténuant les interférences. À cela s’ajoute le besoin intemporel d’améliorer, ou du moins de
maintenir, les performances des radars.

Les difficultés mentionnées ci-dessus nécessitent la création et l’optimisation de nouvelles
formes d’ondes radar. Généralement regroupée sous l’appellation diversité des formes d’ondes
[4], la recherche de nouvelles formes d’ondes pour les applications radar est un vaste sujet de
recherche. En effet, la diversité des formes d’ondes peut englober aussi bien la conception de
systèmes joint radar-communications [5], que la recherche de formes d’ondes valables pour des
utilisations MIMO (Multiple Input Multiple Output) [6] ou encore les approches biomimétiques,
sujet de cette thèse.

Le biomimétisme consiste à s’inspirer du vivant pour trouver des solutions technologiques
à nos problématiques. Dans le domaine des formes d’ondes, les chauves-souris ont commencé
leurs recherches quelques millions d’années avant nous afin de perfectionner une fascinante ca-
pacité : l’écholocation. En émettant des signaux ultrasonores, elles sont capables de naviguer et
de chasser dans des environnements variés, qu’il s’agisse de milieux ouverts ou complètement
encombrés, et ce, sans se gêner entre elles [7]. Le catalogue des formes d’ondes existantes parmi
les différentes espèces de chauves-souris en fait un exemple remarquable d’adaptation et une
source d’inspiration. L’analogie flagrante avec le radar a d’ailleurs fait de l’écholocation une
source d’étude pour des applications en radar et sonar [8][9][10].
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L’objectif de cette thèse est donc d’étudier les formes d’ondes des chauves-souris afin de
proposer une forme d’onde bio-inspirée adaptée pour des applications radars.

Organisation de la thèse

Cette thèse est divisée en six chapitres. Le chapitre 1 introduit la thèse, son contexte et les
contributions apportées.

Avec le chapitre 2, les bases du monde du radar sont introduites et expliquées afin de com-
prendre les travaux présentés. S’ensuit une description du monde des chauves-souris permettant
de comprendre le principe d’écholocation et d’introduire les références sur le sujet.

Le chapitre 3 est dédié à l’objectif principal de cette thèse : la proposition d’une forme d’onde
bio-inspirée. Après introduction de notre forme d’onde bio-inspirée, une étude et des discussions
sur ses capacités par rapport au traitement radar et d’autres formes d’ondes existantes sont
présentées. L’analyse de données réelles vient clôturer le chapitre.

La viabilité de la forme d’onde bio-inspirée ainsi validée, le chapitre 4 présente deux cas
d’utilisation de cette dernière. Le premier exemple d’application, décrit l’apport de la forme
d’onde bio-inspirée dans un cadre multistatique, en réponse au problème de gestion du spectre.
Le second exemple est un travail exploratoire sur l’estimation de l’effet Doppler grâce à la forme
d’onde bio-inspirée et un traitement lui aussi bio-inspiré.

Le chapitre 5 expose un travail supplémentaire sur un algorithme de détection de change-
ment. Initialement proposé pour l’analyse des signaux de chauves-souris, l’algorithme du CuSum
(Cumulative Sum en anglais, pour somme cumulative) a été dérivé pour la détection de signaux
radars inconnus.

Enfin, le chapitre 6 conclut ce manuscrit et présente des pistes pour de futures recherches.

Synthèse des Travaux

Les Bases du Radar

Pour comprendre ce qui suit, qu’il s’agisse de ce résumé ou du manuscrit dans son entièreté,
le principe du radar doit être compris. Un radar, acronyme en anglais de RAdio Detection And
Ranging, est un système qui transmet des ondes électromagnétiques afin de détecter et localiser
des cibles. Le signal transmis, s(t), se propage à la vitesse de la lumière dans l’espace jusqu’à
ce qu’il soit réfléchi par une cible. Le signal réfléchi, r(t), correspondant à une version bruitée,
atténuée et retardée du signal original, s(t), est analysé par le radar afin de déterminer la distance
de la cible, R, ou encore sa vitesse grâce à l’effet Doppler1, νd. Le schéma présenté en figure 1
illustre ce principe.

1. L’effet Doppler traduit la différence entre la fréquence reçue et la fréquence émise.
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Résumé en Français

Figure 1: Principe du radar.

Les signaux envoyés par un radar sont appelés des formes d’ondes. Dans cette thèse, la forme
d’onde bio-inspirée proposée est comparée à deux autres formes d’ondes couramment utilisées
dans le domaine du radar. La première est le chirp [11], la forme d’onde la plus utilisée en radar.
Elle est décrite comme une modulation linéaire de fréquence avec une amplitude constante et un
spectre relativement plat. La seconde forme d’onde est la modulation de fréquence hyperbolique
(désignée par l’acronyme HFM pour Hyperbolic Frequency Modulated). Cette dernière, souvent
utilisée pour décrire les signaux de chauves-souris [8], désigne des formes d’ondes hyperboliques
et présentant donc une certaine courbure dans leur fréquence instantanée. Les figures 2(a) et
2(b) permettent de visualiser les deux signaux présentés.

(a) Chirp. (b) HFM.

Figure 2: Exemples de formes d’ondes radar classiques : a) le chirp et b) HFM. Les impulsions
ont une durée T = 10µs et une largeur de bande B = 100MHz. Sur chaque sous-figure, le
graphe de gauche représente le spectre (représentation en fonction des fréquences), tandis que
celui de droite montre un spectrogramme (une représentation Temps-Fréquence). La fréquence
d’échantillonnage est de Fs = 500MHz.
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Un radar transmettant plus d’une impulsion, on considère ce qui s’appelle un train d’impul-
sions. Chaque signal est alors séparé du suivant par une durée, Tr, appelée la Période de Répéti-
tion des Impulsions (PRI). Afin d’analyser le train d’impulsions réfléchis, le traitement du signal
en radar passe d’abord par une compression d’impulsion en retard (ou distance, les deux étant
liés comme montré au chapitre 2). Pour réaliser cette compression, le filtre adapté (Matched
Filter en anglais) est souvent utilisé [11]. Le filtre adapté est apprécié car il maximise le rap-
port signal à bruit de la cible (ou SNR pour Signal-To-Noise Ratio en anglais)2. Le signal de
référence est donc corrélé avec le signal reçu pour mesurer la similarité entre les deux signaux. Le
filtre adapté permet ainsi de déterminer le retard entre les deux et ainsi la distance de la cible.
La compression Doppler par transformée de Fourier permet ensuite de déterminer la fréquence
Doppler de la cible et sa vitesse. En combinant ces compressions, on obtient alors des cartes
retard-Doppler (ou distance-Doppler), comme celle donnée en figure 3.

Figure 3: Sortie du traitement retard-Doppler pour deux cibles simulées avec un train
d’impulsions composé de chirp. Une cible est statique à un retard de τ = 20µs, tandis que
la seconde est mobile, à un retard de τ = 50µs et présente un doppler de νd = 1kHz.

Les Chauves-souris et l’Écholocation

Les chauves-souris et leur capacité d’écholocation sont au cœur de cette thèse. Ces mam-
mifères capables de voler ont en effet acquis la capacité de naviguer en utilisant des ondes
ultrasonores. Ce sonar biologique fonctionne en émettant des signaux sonores à haute fréquence
entre 20kHz et 100kHz, voire plus, à travers la bouche ou le nez selon les espèces. À l’image du
radar et comme le montre le schéma en figure 4, les chauves-souris analysent les signaux reçus
pour s’orienter mais surtout pour chasser.

2. Le rapport signal à bruit est le rapport entre la puissance du signal et celle du bruit, souvent exprimé en
décibels (dB). Il indique la qualité du signal étudié. Plus le SNR est bas, plus le signal est altéré par le bruit et
inversement.
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Résumé en Français

Figure 4: Schéma illustratif du principe d’écholocation.

Ce qui rend l’écholocation encore plus intéressante dans notre cas, c’est la diversité des formes
d’ondes observées chez les chauves-souris. Tout d’abord, les signaux utilisés par les chauves-
souris peuvent être classés en deux types : les signaux à bande étroite et les signaux à large
bande [12][13]. D’une part, les formes d’ondes à bande étroite désignent soit des signaux à
fréquence quasi constante (QCF pour Quasi-Constant Frequency) avec une légère modulation
de fréquence, soit des signaux à fréquence constante (CF pour Constant Frequency) avec des
portions de quelques kHz modulées en fréquence au début et à la fin. D’autre part, les signaux à
large bande désignent les signaux avec des modulations décroissantes de fréquence et une grande
largeur de bande (FM pour Frequency Modulated). La figure 5 résume ces différentes catégories.

Figure 5: Catégories principales des signaux d’écholocation (extrait de [13], CC BY-NC-SA 3.0).

Chaque espèce dispose donc de son propre langage, adapté à son environnement, sa méthode
de chasse et à ses proies favorites [7]. Qui plus est, les chauves-souris possèdent un contrôle
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remarquable de leurs paramètres d’émission. Elles peuvent en effet faire varier la durée, la largeur
de bande, la durée entre les impulsions et même la courbure de la fréquence instantanée de leurs
formes d’ondes. Cette flexibilité est particulièrement visible lorsqu’elles chassent, comme illustré
sur les schémas de la figure 6. Il s’agit d’exemples de séquence de chasse pour deux espèces
de chauves-souris différentes, où trois phases peuvent être délimitées. La première, la phase de
recherche, correspond à la période durant laquelle la chauve-souris scanne son environnement à
la recherche d’une proie potentielle. Dès qu’une cible a été détectée, la chauve-souris passe en
phase d’approche. Les paramètres d’émission sont alors modifiés pour éviter toute superposition
entre signaux émis et reçus, en diminuant lentement l’intervalle entre les impulsions et leur
durée. Enfin, la phase terminale, souvent appelée buzz final, précède la capture, réussie ou non.

Figure 6: Séquence de chasse d’une chauve-souris émettant a) des signaux FM et b) une autre
émettant des signaux CF (extrait de [13], CC BY-NC-SA 3.0).

Afin de trouver la forme d’onde bio-inspirée capable de correctement mimer les signaux de
chauves-souris, une analyse de la littérature et de signaux réels a été menée. La figure 7 montre
le spectrogramme d’un des signaux étudiés, une séquence de chasse d’une espèce spécifique
de chauve-souris : la noctule commune (Nyctalus noctula). On remarque donc sur la figure 7,

Figure 7: Authentique séquence de chasse de Nyctalus noctula [14]. Le train d’impulsions com-
prend 25 impulsions échantillonnées à 250kHz.
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les phases de chasse ainsi que la flexibilité dans la création des impulsions mentionnées plus
haut. Cette chauve-souris insectivore a pour habitude de chasser en milieu ouvert en émettant
des signaux à bande relativement étroite et de durée assez longue, entre 8 et 25ms [7]. Après
détection d’une proie potentielle, les impulsions deviennent plutôt large bande, balayant de
manière décroissante une bande d’environ 40kHz [7][15]. Une impulsion contient souvent deux à
trois harmoniques, le premier étant le plus énergétique.

Une étude préliminaire de ces signaux a permis d’en extraire les paramètres temporels et
fréquentiels, puis de les approximer avec la fonction mathématique la plus appropriée. C’est ainsi
que la fonction exponentielle-2 décroissante, désignée par la fonction de Parsons dans la suite,
a été proposée pour décrire les signaux de chauves-souris. Étudiée avec sept autres fonctions
mathématiques dans [16] pour identifier les espèces de chauves-souris selon leurs signaux, cette
fonction était l’une des meilleures pour représenter les formes d’ondes de chauves-souris. La
fonction de Parsons décrit la fréquence instantanée et le signal transmis avec les équations
suivantes :

f(t) = f0
f0 − af1

[
(f0 − f1)

(
af1
f0

) t
T

+ (1 − a)f1

]
, (1)

u(t) = 1√
T

Rect
{
t

T

}
e

2iπf0
f0−af1

[
λβ

t
T +(1−a)f1t

]
, (2)

où λ = (f0−f1)T
ln(β) et β = af1

f0
avec f0 la fréquence de début, f1 la fréquence de fin et T la durée

d’impulsion. Le terme Rect
{
t
T

}
est la fonction porte définie par

Rect{t} =
{

1 pour − 1
2 ≤ t ≤ 1

2
0 sinon

. (3)

La particularité de la fonction de Parsons réside dans le paramètre a, qui permet d’ajuster
la courbure hyperbolique du signal. Ce paramètre de décroissance s’accompagne de certaines
conditions (on considère f0 > f1) [16] :

a = 0, la courbe temps-fréquence décrit une composante verticale modulée fréquentielle-
ment suivie d’une composante à fréquence constante.

a < f0
f1

, le balayage fréquentiel est convexe et approxime un chirp quand a se rapproche
du rapport f0

f1
.

a > f0
f1

, le balayage fréquentiel est concave.

La figure 8 illustre le comportement de la fonction de Parsons selon les différentes conditions
citées. Ainsi, la fonction de Parsons permet, via le paramètre a, de définir une infinité de formes
d’ondes à paramètres temporels et fréquentiels fixés. De plus, une étude d’ajustement de courbe
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a permis de reproduire synthétiquement les signaux de la noctule commune avec la fonction de
Parsons, et ce avec un fort degré de précision.

Figure 8: Fréquences instantanées de fonctions de Parsons avec différentes courbures (f0
f1

= 3
avec f0 = 60kHz, f1 = 20kHz et T = 20ms).

Forme d’Onde Bio-inspirée et Radar

La fonction de Parsons se retrouve ainsi propulsée comme candidate potentielle pour être
une forme d’onde bio-inspirée en vue d’application radar. Mais pour cela, il a fallu évaluer sa
réponse au traitement radar classique ainsi que ses performances.

La première étape a consisté dans la comparaison des sorties du filtre adapté pour la fonction
de Parsons, le chirp et la fonction HFM. La figure 9(a) permet d’observer les différentes sorties et
ainsi de noter que les fonctions hyperboliques, aussi bien les formes d’ondes de Parsons que HFM,
ont, de manière générale, des niveaux de lobes secondaires plus élevés. Le lobe principal apparaît
également plus large. Ce résultat est connu, notamment dans la littérature liée aux chauves-
souris, et est attribué à la présence plus ou moins forte d’une portion à fréquence constante
selon la courbure du signal. Pour ces mammifères volants, les modulations constantes sont plus
adaptées à la détection et à l’estimation du Doppler, alors que les modulations fréquentielles
sont, elles, nécessaires pour une estimation précise de la distance [17][18]. Néanmoins, on peut
noter la flexibilité de la fonction de Parsons en réponse au filtre adapté. Le paramètre a permet
donc une certaine adaptabilité comparable à celle des chauves-souris.

Concernant le niveau des lobes secondaires, cela peut poser problème dans un cadre radar,
notamment en présence de cibles avec une faible réponse qui pourraient ainsi être masquées
par une cible plus forte. Dans une telle situation, il est possible d’utiliser le filtre désadapté
(ou MMF pour MisMatched Filter en anglais)[19]. Ce filtre s’obtient en résolvant un problème
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d’optimisation qui, dans notre cas, consiste à réduire le niveau des lobes secondaires. Une fois le
filtre calculé, la figure 9(b) est obtenue. Le niveau des lobes secondaires pour chacune des formes
d’ondes a ainsi été diminué, la fonction de Parsons pouvant même obtenir des niveaux similaires
à ceux du chirp. Une perte de 2dB est toutefois observable au niveau du lobe principal mais elle
est simplement due à l’une des conditions à respecter pour résoudre le problème d’optimisation.
Les détails sont disponibles dans les chapitres 2 et 3.

(a) Sortie de filtre adapté. (b) Sortie de filtre désadapté.

Figure 9: Sortie de compression d’impulsion en utilisant a) le filtre adapté et b) le filtre désadapté
(T = 50µs, B = 100MHz).

L’étape suivante de cette étude a été d’évaluer la fonction d’ambiguïté de notre forme d’onde
bio-inspirée. La fonction d’ambiguïté, notée χ(τ, νd), est un autre outil classique en radar qui
permet de quantifier l’impact de la vitesse d’une cible et donc du Doppler sur la sortie du filtre
adapté pour une forme d’onde donnée. Elle est fonction du retard, τ , et du Doppler, νd. Les
formules théoriques de la fonction d’ambiguïté pour le chirp et la fonction HFM sont disponibles
dans la littérature [11][20]. Concernant la fonction de Parsons, les calculs ont donc été menés
pour fournir la fonction d’ambiguïté théorique. L’équation finale est la suivante :

χ(τ, νd) = 1
ln β e

−2iπf0
f0−af1

(1−a)f1τ
[(
β
T−τ
T

)α2+1
E−α2

(
−α1β

T−τ
T

)
− E−α2(−α1)

]
. (4)

où λ = (f0−f1)T
ln(β) , β = af1

f0
, α1 = 2iπf0

f0−af1
λ
(
1 − β

τ
T

)
et α2 = 2iπνd T

lnβ − 1. La fonction Eα(z) =
zα−1 ∫∞

z
e−t

tα dt représente la fonction exponentielle intégrale complexe et est définie pour a, z ∈
C, z ̸= 0 [21]. Les calculs théoriques ont été validés par simulation et il a été observé que la
tolérance au Doppler de la fonction de Parsons peut être contrôlée via le paramètre a. Encore
une fois, les détails des calculs sont présentés dans le chapitre 3 avec des figures illustrant les
résultats.
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La fonction d’ambiguïté ainsi introduite, le lien peut être fait avec les bornes de Cramér-Rao
(ou CLRB pour Cramér-Rao Lower Bounds en anglais)[22]. Ces bornes définissent une limite
inférieure sur la variance d’un estimateur non biaisé. En d’autres termes, cela permet d’évaluer
la précision sur l’estimation du retard et du Doppler avec une forme d’onde donnée. Les bornes
de Cramér-Rao sont dérivées de la matrice d’information de Fisher [22][23], comme suit :

CRLB(τ) = − JAF (2, 2)
SNR det(JAF ) , (5)

CRLB(νd) = − JAF (1, 1)
SNR det(JAF ) , (6)

où SNR représente le rapport signal à bruit et JAF est la matrice de la dérivée seconde de la
norme carrée de la fonction d’ambiguïté décrite comme :

JAF =

∂2|χ(τ,νd)|2
∂τ2

∂2|χ(τ,νd)|2
∂τ∂νd

∂2|χ(τ,νd)|2
∂νd∂τ

∂2|χ(τ,νd)|2
∂ν2
d

∣∣∣∣∣∣
τ,νd=0

(7)

Comme pour la fonction d’ambiguïté, les bornes du chirp et de la fonction HFM sont fournies
dans la littérature [20][22] et les calculs pour la fonction de Parsons ont donc été effectués en
suivant la logique décrite dans [20]. Détaillés dans le chapitre 3, ils permettent de définir la
matrice suivante :

JAF, Parsons =



8π2f2
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]



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
τ,νd=0

(8)

Les bornes ainsi calculées, des simulations de Monte-Carlo ont été effectuées pour valider le
comportement à un SNR ≥ 15dB. La racine de l’erreur quadratique moyenne (ou RMSE pour
Root Mean Square Error en anglais) sur l’estimation du retard avec le filtre adapté a donc été
mesurée pour les différentes formes d’ondes. Les résultats présentés sur la figure 10 montrent les
bornes de Cramér-Rao en pointillés, accompagnées des erreurs mesurées. La précision observée
est visiblement proche des bornes pour chaque forme d’onde à fort SNR. De plus, les capacités
d’estimation de la fonction de Parsons sont très satisfaisantes et peuvent même s’approcher de
celles du chirp. La flexibilité de la forme d’onde bio-inspirée est également encore observable
dans la différence entre bornes selon la valeur du paramètre a. D’autres bornes peuvent être
considérées pour compléter l’étude et valider le comportement des mesures pour des SNR ≤
15dB, telle que la borne de Ziv-Zakai [24]. Pour plus d’informations, se référer au chapitre 3.
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Figure 10: CLRB et RMSE sur le retard τ , pour un train d’impulsion en fonction du SNR
(T = 50µs, B = 100MHz, Tr = 10T , Np = 10 impulsions).

Afin de compléter l’étude de validité de la forme d’onde bio-inspirée en tant que forme
d’onde radar, une étude expérimentale a été menée. Le radar HYCAM [25][26], situé à l’ONERA
Palaiseau, a été utilisé pour émettre des signaux réels afin de traquer des avions quittant
l’aéroport d’Orly. L’exemple étudié dans ce manuscrit concerne un Airbus A320 quittant Orly le
31 Mai 2024. Des signaux entremêlés, trois fonctions de Parsons et un chirp servant de référence,
ont été envoyés successivement avec les paramètres présentés dans la table 1.

Paramètres Value
Largeur de bande B 20MHz

Fréquence d’échantillonnage Fs 25MHz
Durée d’impulsion T 5µs
Durée interpulse Tp 50µs

PRI Tr 200µs
Paramètre a [0.01, 0.1, 1]

Table 1: Paramètres d’émission.

Après traitement des données, les cartes distance-Doppler (Range-Doppler en anglais) comme
celles présentées sur les figures 11(a) à 11(d) sont obtenues. Il est alors possible de suivre la tra-
jectoire de l’avion à l’aide des différentes formes d’ondes et la fonction de Parsons se montre très
efficace. Les mêmes résultats ont été obtenus en utilisant le filtre désadapté pour la compression
distance afin de réduire le niveau des lobes secondaires pour les données avec les fonctions de
Parsons.
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(a) Chirp. (b) Parsons a = 0.01.

(c) Parsons a = 0.1. (d) Parsons a = 1.

Figure 11: Cartes distance-Doppler de l’avion pour les différentes formes d’ondes et un traitement
distance par filtre adapté (MF).

Cadre d’Application Radar

Une fois la forme d’onde bio-inspirée validée en tant que forme d’onde radar potentielle, son
implémentation dans deux cadres précis d’applications radar a été étudiée.

Le premier cas répond directement à la problématique de gestion de spectre en considérant
une application multistatique. Dans le cas d’un système radar multistatique, plusieurs radars
opèrent dans une zone de couverture partagée et, qui plus est, sur la même bande de fréquence
dans le cadre étudié. En conséquence, chaque radar doit composer avec les signaux directs et
réfléchis des voisins, compliquant la réception et nécessitant la mitigation des interférences.
L’objectif avec la fonction de Parsons était d’augmenter la diversité de formes d’ondes et la
complexité d’un système multistatique initialement prévu pour trois radars/formes d’ondes [6].
La figure 12 présente l’environnement simulé dans lequel deux fonctions de Parsons ont été
ajoutées.
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Figure 12: Environnement multistatique simulé vu à travers les fréquences instantanées des
formes d’ondes considérées (B = 100MHz, T = 50µs).

Afin de vérifier l’implémentation de la forme d’onde bio-inspirée, le niveau d’isolation a été
évalué. Ce niveau d’isolation reflète le niveau d’interférence observé dans les corrélations entre les
différents signaux. Les résultats ont montré que la fonction de Parsons offrait d’excellents niveaux
d’isolation et était donc valide dans un cadre multistatique. L’utilisation du filtre désadapté
a également été testée pour gérer le niveau de lobes secondaires sans pour autant impacter
négativement le niveau d’isolation.

Dans un second travail exploratoire, la fonction de Parsons a été utilisée pour estimer le
Doppler dans les signaux reçus. Pour ce faire, le récepteur Spectrogram Correlation And Trans-
formation (SCAT) [27] a été implémenté. Il s’agit d’un modèle monaural (relatif à une oreille)
du système auditif d’une chauve-souris capable de reproduire le traitement réalisé par cette
dernière. L’objectif était donc de combiner une forme d’onde bio-inspirée et un traitement bio-
inspiré afin de profiter du caractère hyperbolique de ces signaux pour estimer le Doppler d’une
cible, à l’image de ce que font certaines espèces de chauves-souris [17][28]. Les premiers résultats
sont intéressants, car, avec l’utilisation d’une banque de filtres (l’une des composantes du modèle
SCAT), il est possible d’analyser le spectre reçu pour voir les différences avec le spectre émis et
d’extraire une information Doppler. Ce travail n’en étant qu’à ses débuts, de plus amples études
sont néanmoins nécessaires.

Un Algorithme de Détection de Changement : le CuSum

Présenté au chapitre 5, l’algorithme de somme cumulative (CuSum) désigne un algorithme
de détection de changement très apprécié dans la littérature pour sa simplicité et sa vitesse
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de traitement [29][30]. Dans cette thèse, l’algorithme a initialement été adapté pour isoler les
impulsions dans les signaux de chasses réels de chauves-souris et s’est révélé très efficace. Compte
tenu des résultats obtenus et du peu de littérature sur son utilisation dans le domaine radar,
un développement de l’algorithme pour des applications radar a été effectué. L’algorithme a
donc été réadapté et amélioré pour la détection de signaux radar inconnus. L’objectif consiste à
détecter le début et la fin d’impulsions inconnues, ce qui pourrait être profitable pour l’analyse
de bandes spectrales d’intérêt afin de connaître l’occupation. Cela s’inscrit dans la problématique
de gestion de spectre.

Pour comprendre le principe de l’algorithme, considérons un signal contenant des impulsions
noyées dans du bruit. L’objectif du CuSum est d’identifier les moments où la probabilité de
distribution de notre signal change en observant les changements dans la moyenne et la variance
du signal en question. Deux hypothèses sont alors possibles :

H0 : Seul le bruit est présent.

H1 : Le signal est présent.

Chacune de ces hypothèses peut être associée à un modèle statistique. L’algorithme effectue
alors une somme des rapports de vraisemblance instantanée liés aux probabilités des modèles
choisis et aux paramètres estimés à partir du signal (moyenne et variance). L’utilisation de
seuils permet ensuite de déterminer le début et la fin des impulsions présentes dans le signal. Le
résultat classique obtenu avec le CuSum dans le cadre de la thèse est illustré en figure 13.

Figure 13: Exemple de sortie du CuSum pour une impulsion. Les paramètres τi et ηi représentent
respectivement les instants associés à un point de changement et les seuils utilisés pour les valider.
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La majeure partie des travaux sur le CuSum présentés dans cette thèse ont été effectués
en considérant un modèle de distribution Rayleigh-Rice [31][32]. Des analyses sur des données
simulées mais également réelles ont permis de montrer l’efficacité de l’algorithme en terme de
détection et d’extraction de paramètres. Une limite a toutefois été mise en exergue notamment
avec des signaux réels assez encombrés où l’algorithme peine à séparer les signaux d’intérêt.
Des premiers travaux pour résoudre ce problème sont mentionnés en appendice D. Une version
améliorée de l’algorithme a aussi été proposée afin de corriger un biais sur un des estimateurs
utilisés. La distribution de Rayleigh-Rice étant également utilisée en imagerie médicale, la lit-
térature sur le sujet [33] a permis de corriger le biais sur l’estimateur de notre algorithme et
ainsi d’augmenter les performances de détection/estimation à faible SNR.

Conclusion

Conclusions

L’objectif de cette thèse était de proposer une forme d’onde bio-inspirée en vue d’applications
radar. Cette recherche de forme d’onde s’inscrivait également dans un contexte de congestion
du spectre électromagnétique.

Après une étude de l’écholocation des chauves-souris et de la création de leurs signaux, une
solution a été proposée pour imiter de manière effective leurs formes d’ondes grâce à la fonction
de Parsons. La flexibilité obtenue avec le paramètre a permet de recréer avec une certaine
précision certains signaux de chauves-souris et de valider le côté bio-inspirée du projet.

Cette nouvelle forme d’onde bio-inspirée a bien sûr été évaluée vis-à-vis de ses capacités
radar. Le traitement radar classique combiné à une analyse comparative avec d’autres formes
d’ondes radars ont validé le potentiel de la fonction de Parsons en tant que forme d’onde radar.
La fonction d’ambiguïté et les bornes de Cramér-Rao ont été calculées pour cette fonction. Que
ce soit sur données simulées comme réelles, la fonction de Parsons a ainsi montré de notables
capacités de précision en estimation distance et une certaine efficacité pour des applications
radar. De plus, l’application de la fonction de Parsons dans un cadre multistatique s’est montrée
appropriée au vu des résultats de simulations. La forme d’onde bio-inspirée ainsi proposée peut
être considérée comme une solution à la problématique de gestion du spectre électromagnétique,
tout en maintenant des performances radars appréciables. En supplément, un traitement bio-
inspiré a été brièvement étudié pour estimer le Doppler grâce à la fonction de Parsons.

Concernant un résultat subsidiaire, le CuSum, un algorithme de détection de changement,
a été implémenté. Initialement choisi et adapté pour la segmentation des signaux de chauves-
souris, les résultats intéressants obtenus avec l’algorithme ont amené à une étude approfondie
du CuSum en vue d’applications radars, notamment pour la détection de signaux inconnus. Ses
performances ont ainsi été évaluées à travers des simulations et des essais sur signaux réels. Le
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CuSum permet ainsi d’identifier le début et la fin d’impulsions radars inconnues.

Perspectives

Les perspectives après cette thèse sont nombreuses, en voici donc une liste non exhaustive.

L’étude de l’impact des harmoniques présents dans les signaux de chauves-souris. Ces
harmoniques pourraient effectivement servir dans le rejet du clutter [34] ou la suppression
d’ambiguïté [35].

L’étude de la modulation d’amplitude. Les radars ne sont pas encore adaptés pour une
telle modulation mais cela pourrait peut-être avoir un intérêt pour la reconnaissance de
cible, à l’image de ce que font les chauves-souris.

Approfondir les approches cognitives. Acquérir le contrôle des paramètres d’émission en
temps réel qui caractérise les séquences de chasse des chauves-souris pourrait être avan-
tageux dans certains cas. En particulier, comprendre comment leur cerveau traite l’infor-
mation et améliorer le SCAT [27] permettrait d’autres approches pour le traitement du
signal.

L’optimisation de la forme d’onde bio-inspirée. La fonction de Parsons est loin d’être
l’unique solution, des améliorations sont possibles que ce soit vis-à-vis du niveau de lobes
secondaires ou même de sa définition mathématique. Le choix du paramètre a pourrait
également être optimisé selon la situation, rejoignant ainsi le point précédent.

Concernant le CuSum, les travaux sont loin d’être terminés. Les limitations observées avec
les signaux congestionnés à faible SNR ont montré que d’autres versions de l’algorithme
sont à explorer, comme la version Temps-Fréquence. Les définitions des seuils ou encore le
choix des modèles de distributions nécessitent également des recherches approfondies.
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Chapter 1

INTRODUCTION

1.1 Context and Objectives

Legacy of the first half of the 20th century and particularly of the Second World War [1], radar
technology has since been extensively developed and extended to various areas of application.
In fact, the use of radar systems ranges from weather monitoring, air traffic control, automotive
safety to space monitoring and, of course, surveillance for defence and security. Nevertheless,
radar, like any technology, is not immune to the need to evolve in order to face issues on several
aspects.

One of the main problematic encountered by the radar community in the past decades con-
cerns the electromagnetic spectrum congestion [3]. Radar, with its wide range of applications,
occupies a non-negligible part of the electromagnetic spectrum. Yet this resource is also the play-
ground for communications or radio and television broadcasting. The electromagnetic spectrum
is thus highly congested and the situation is not improving over the years, as the number of users
is increasing along with the need for greater bandwidth for each of these services. This leads
to an inevitable cohabitation within frequency bands, which implies either the mitigation of
interference or solutions to coexist. Another timeless challenge is the constant desire to improve
the performances of radar systems, including a greater resolution, a better clutter rejection, an
improved radar coverage or Doppler estimation.

The aforementioned issues highlight the necessity to design and optimise new radar wave-
forms. Generically called waveform diversity [4], the investigation of new radar waveforms has
been a broad research topic in recent years. It can cover the search for cooperative and multifunc-
tional systems such as joint radar-communication systems [5], the design of valuable waveforms
at fixed parameters for Multiple Input Multiple Output (MIMO) applications [6] or biomimicry,
the latter being the focus of this thesis.

Biomimicry is synonymous with Nature, and the complex world of waveform design has been
effectively studied for millions of years by bats to build their fascinating ability of echolocation.
By emitting sophisticated ultrasonic sounds, bats are able to navigate and hunt in various
environments, from open to highly cluttered spaces, without interfering with each others [7]. The
catalogue of their waveforms is a remarkable example of adaptation and a source of inspiration.
Because the analogy between radar and bats is quite obvious, bat echolocation has often been
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Chapter 1 – Introduction

studied for radar and sonar applications [8][9][10].
The objective of this thesis is thus to study bat waveforms in order to propose a bio-inspired

waveform design for radar applications along with the appropriate processing.

1.2 Contributions

The term ’biomimicry’ literally stands for imitation of life1. In order to accurately replicate
bat waveforms, the study of their signals and their parameters of emission was the first step. The
goal was to understand how bats design their waveform to correctly adapt to their environment
but also their hunting behaviour. The literature about bat echolocation is extensive and the
paths to begin the thesis were as numerous as interesting. After a comprehensive review of
the literature, we narrowed down the possibilities to finally find a valuable strategy to mimic
bat waveforms. This involved deriving a mathematical function from the literature on bats and
subsequently proposing the waveform for radar applications.

Obviously, this approach is not self-sufficient and the preliminary bibliography work for
the search of a waveform led to its radar performance assessment. A comparison was made
between the bio-inspired waveform and classical radar waveforms with the usual radar processing.
In particular, the Ambiguity Function and Cramér-Rao Lower Bounds associated to the new
waveform have been calculated in order to evaluate its accuracy in terms of delay and Doppler
estimation, which appeared rather satisfying. Beyond simulations, the bio-inspired waveform
was tested in a real experiment to check its true capabilities and the newly acquired flexibility
in waveform design.

The next step of this research was to insert the bio-inspired waveform into a concrete radar
framework with the objective of asserting its potential as a radar waveform. A first study on a
multistatic application has thus been carried out. The objective was to observe the behaviour of
the bio-inspired waveform in such a framework and to validate its use to broaden the waveform
diversity. Therefore, the waveform was confronted with an already investigated set of waveforms.
The isolation level between the bio-inspired function and the other waveforms as well as the
Doppler mismatch loss were then evaluated.

Because the objectives of the thesis were both the proposition of a waveform and its process-
ing, a bio-inspired processing known in bat literature has also been studied. This supplementary
work thus concerned the implementation of the waveform together with the right processing,
both bio-inspired, in order to realise Doppler estimation.

The final result presented in this thesis is an additional work derived from the preliminary
investigation on bat waveforms. It is an adaptation of a well-known change point detection algo-
rithm: the Cumulative Sum (CuSum) algorithm. Firstly implemented as a tool to help separate

1. For the distinguished Hellenist βίος=bios for life and μίμησις=mimesis for imitation.
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pulses in real bat signal, the algorithm attracted our attention for many reasons. The literature
regarding its application in the radar domain was scarce and the possibilities for unknown radar
signal detection were really interesting. Therefore, the algorithm has been implemented and
enhanced to detect unknown radar signals.

1.3 Thesis Layout

This thesis is divided into six chapters.
Chapter 1 has already begun and is almost finished (keep going, it gets better), since it is

the classic introduction and the overall presentation of the thesis.
Following this introduction, Chapter 2 starts with an overview of the world of radar for

beginners. It describes the fundamentals needed to clearly understand the work pursued during
the thesis in the radar domain. Because this thesis is about biomimicry, the second part of the
chapter 2 is thus dedicated to the other important half of this work: bats. In a similar logic, the
objective is to understand the basics behind the bat echolocation, and to review the literature
(or at least a part), which supports this work.

Chapter 3 is devoted to the main goal of this thesis: the proposition of a bio-inspired wave-
form. Where does it come from? what are its advantages?... many questions that may find an
answer in this chapter. The initial section of this chapter contains discussions about the capa-
bilities of the novel bio-inspired waveform and comparisons with other radar waveforms. The
calculation of the bio-inspired waveform Ambiguity Function and its Cramér-Rao Lower Bounds
enrich the discussion. It is followed by actual experimental measurements of the bio-inspired
waveform.

The bio-inspired waveform described and analysed, Chapter 4 presents two cases of study.
Firstly, the proposed bio-inspired waveform is implemented in a concrete multistatic radar frame-
work and observations are made to check if it can widen the radar waveform diversity. A second
section describes an adapted processing technique, which is bio-inspired itself, implemented to
estimate the Doppler effect thanks to our bio-inspired waveform. It validates the use of the novel
bio-inspired waveform as a radar waveform.

Chapter 5 presents a supplementary work. A change point detection algorithm, initially used
to study bat signals at the beginning of this thesis, is derived in order to detect unknown radar
signals.

Finally, the conclusion of this thesis is presented in Chapter 6, along with a glimpse into
potential future works.

3



Chapter 1 – Introduction
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Chapter 2

RADAR AND BATS FOR BEGINNERS

Welcome to both the apprentice and the master in this introductory and informative chapter
about radar and bats. It does not matter if you are unaware of the specificities of bats or if
you wish to check your knowledge about radar processing, this chapter will describe all the
fundamentals needed to clearly understand the work pursued in this thesis. The first section
introduces the world of radar with a clear definition of the basic principles behind this technology.
It is followed by a description of the classical waveforms transmitted by the radar along with
the overall signal processing used to extract the information of interest. The second part of the
chapter then brings you into the world of bats, to the discovery of these cute little mammals and
their fascinating echolocation ability. After a brief introduction to the basis of the echolocation,
the subject of this thesis, their waveforms will be presented. A documented analysis of their
sonar capacities and their biological processing is provided before concluding this introductory
chapter on both radar and bats.

2.1 The World of Radar

2.1.1 Generalities and Basic Principles

RAdio Detection And Ranging, commonly referred to as RADAR, designates a system that
transmits electromagnetic waves in order to detect and localise targets by processing the back-
scattered signal. Radar is complementary to optical sensors because it can process information
about a target under circumstances where optical imaging reaches its limits. Indeed, radar can
see through the darkness of the night, adverse weather conditions like fog or rain, and at very
long distances. The story behind the development of the radar technology is often reduced to the
research prior and during the World War II, but the idea of radar detection can be traced back to
the late 19th century and the early 20th century. Demonstrations and experiments conducted at
this time showed the potential of an electromagnetic system, later on called radar [2]. Nowadays,
the technological advances have allowed such an evolution that radar systems are ubiquitous.
In fact, even though the first radar that comes to mind is often the one that sentences you to a
fine for speeding, they can have many uses as shown in the following non-exhaustive list [2]:

Ground-based radar [36] devoted to the detection of airborne and spaceborne targets but
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Chapter 2 – Radar and Bats for Beginners

also missiles in a battle field, or vehicles.

Air traffic control [37] to monitor air navigation, to provide information to pilots, to prevent
collisions or to support landing manoeuvres.

Embedded radar [38], which can be found in aircrafts, ships or satellites with various
purposes (weather monitoring, surveillance, navigation, ...).

Automotive radar [39] to assist drivers as parking aid or collision avoidance system.

Through-the-wall [40] and around-the-corner [41][42] radars for the detection and locali-
sation of static or moving targets behind solid walls and in complex urban environment.

The history of radar put aside, let’s try to better understand how this technology works. To
help the comprehension, the scheme in figure 2.1 illustrates the following description.

Figure 2.1: Overview of the radar framework.

Firstly, the radar sends an electromagnetic wave s(t) through an antenna. This signal is often
a narrow band-pass signal [11] described by the equation

s(t) = u(t)e2iπfct. (2.1)

It is composed of a baseband signal u(t) and the carrier signal, which shifts the baseband
component at a carrier frequency fc used to transmit the signal in the desired electromagnetic
band. Then, the emitted signal will propagate through space with a velocity equal to the speed
of light c ≈ 3 × 108 m.s-1 until it encounters a potential target at a distance R, the target range,
as illustrated with the plane in the scheme 2.1. The signal is then reflected back to the radar to
be further processed. The received signal, denoted by r(t), corresponds to a noisy, attenuated
and delayed version of the original signal, s(t), expressed as follows:

r(t) = Aru(t− τ(t))e2iπfc(t−τ(t)) + w(t), (2.2)
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2.1. The World of Radar

where w(t) is an additive white Gaussian noise, while τ(t) represents the target delay and Ar is
the target amplitude. The returning echo can be used to determine the position and the velocity
of the target. The delay τ(t) is in fact the time needed for the signal to travel the two-way
path between the radar and the target. However, it depends on time as it is influenced by the
relative motion between the radar and the target, which has a radial velocity vr. For a target
with constant radial velocity, this delay can be expressed with a first order approximation as

τ(t) = τ0 + 2vr
c
t, (2.3)

where τ0 is the initial delay corresponding to [11]

τ0 = 2R0
c
, (2.4)

with R0 the initial range. Note that the factor 2 is due to the fact that the signal travels the
distance twice. The delay τ(t) thus described can be assimilated to a contraction/dilatation of
the back-scattered signal, which affects both the baseband and the carrier part of the signal.
When injected in (2.2), the received signal becomes

r(t) = Aru

(
t− 2vr

c
t− τ0

)
e2iπfc(t− 2vr

c
t−τ0) + w(t)

= Aru

((
1 − 2vr

c

)
t− τ0

)
e2iπfcte−2iπfc( 2vr

c )te−2iπfcτ0 + w(t). (2.5)

Because the radial velocity vr is assumed much smaller than the speed of light, the impact of
the delay on the baseband signal is generally neglected [11]. The factor

(
1 − 2vr

c

)
causes a time

contraction/dilatation in the time domain, but as the ratio 2vr
c << 1, it is considered negligible

on the duration of the pulse in many radar applications and the delay can be reduced to the
definition (2.4). However, the impact of vr on the carrier signal is not negligible and causes a
Doppler shift νd given by

νd = −2vr
c
fc. (2.6)

The received signal can finally be approximated as

r(t) = Aru(t− τ0)e2iπfc(t−τ0)e2iπνdt + w(t). (2.7)

The first objective of the radar is to process the returning signal in order to conclude about
the target presence. Thanks to the delay and Doppler shift information, the range and velocity
of the target can then be extracted or at least estimated with the right processing. But before
describing the classic radar processing, the next section will consider the radar waveforms used
to convey these information.
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Chapter 2 – Radar and Bats for Beginners

2.1.2 Radar Waveforms

The major topic of this thesis being the study of radar waveforms, this section is dedicated
to classic radar waveforms. Each will be described by the corresponding baseband signal, u(t),
written as

u(t) =
Rect

{
t
T

}
√
T

eiφ(t), (2.8)

where T is the pulse duration and φ(t) is the phase. The term Rect
{
t
T

}
is the rectangular

function defined by

Rect{t} =
{

1 for − 1
2 ≤ t ≤ 1

2
0 otherwise

. (2.9)

The Instantaneous Frequency (IF), f(t), which represents the evolution of the frequency as
function of time t, will also be provided. It is obtained by deriving the phase of the baseband
signal

f(t) = 1
2π

dφ(t)
dt

. (2.10)

One of the first signal to be considered is the chirp, which is the most widely used waveform in
radar systems. It is defined as a Linear Frequency Modulation (LFM) with a constant amplitude
and a relatively flat spectrum. Its instantaneous frequency and the transmitted signal are given
by [11]

f(t) = f0 + 2γt, where γ = −B
2T , (2.11)

u(t) =
Rect

{
t
T

}
√
T

e2iπf0te2iπγt2 , (2.12)

where B is the bandwidth and f0 is the starting frequency. Figure 2.2(a) gives an example of a
chirp following this definition, where the linear behaviour is clearly visible along with the flat
spectrum.

Another radar waveform examined in this thesis is the Hyperbolic Frequency Modulated
(HFM) signal. It has often been used to describe bat signals [8] due to its hyperbolic behaviour,
which resembles the curvature of the bat signals. Moreover, its Doppler tolerance in sonar but
also in radar detecting high-velocity targets with large time-bandwidth product [43][44] has
frequently been investigated. The instantaneous frequency and the resulting transmitted signal
of the HFM are expressed as

f(t) = f0
1 + κt

, where κ = f0 − f1
f1T

, (2.13)

s(t) = 1√
T

Rect
{
t

T

}
e2iπαh ln(1+kt), (2.14)
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where f0 and f1 represent respectively the starting and ending frequencies and αh = f0
κ . The

figure 2.2(b) illustrates the behaviour of this function.

(a) Chirp. (b) HFM.

Figure 2.2: Example of classical radar waveforms with a duration of T = 10µs and a bandwidth
of B = 100MHz. For both subfigures, the left plot displays the spectrum (representation as
function of the frequencies), while the right plot is the spectrogram (Time-Frequency response).
The sampling frequency is of Fs = 500MHz.

2.1.3 Radar Processing

The previous sections have described basic radar concepts and illustrated two of the most
common radar waveforms. Nevertheless, one question remains: what about the processing of the
received information and particularly, how to deal with the delay τ and Doppler information νd
recapitulated in figure 2.3?

Figure 2.3: Illustrative scheme of the information received with a radar illuminating two distinct
targets with a chirp. The two reflected signals, r1(t) and r2(t), are received with different delays,
τ and τ ′, and the second one presents a Doppler shift, νd, due to the radial velocity of the target.
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The Matched Filter

The following discussion focuses exclusively on the delay, with the Doppler information
addressed subsequently in the context of range-Doppler processing. After receiving the back-
scattered signal, the analysis in the radar framework is often provided by the matched filter
(MF). In radar processing, the matched filter is appreciated as it maximises the Signal-to-Noise
Ratio (SNR)1 at the target delay [11], hence enabling the detection and localisation of a potential
target. In other words, for a target with delay τ0, it maximises the ratio between the signal energy
and the noise energy as follows:

τ̂ = arg max
τ

|
∫
R u(t− τ0)h(τ − t)dt|2

E
[
|
∫
Rw(t)h(τ − t)dt|2

] , (2.15)

where h is a filter and E[.] the expectation operator. It can be demonstrated that for a white
noise, the solution to this optimisation problem is the matched filter [11]

h(t) = Cu∗(−t), (2.16)

where C is an arbitrary constant, generally equal to 1. Note that as u∗(−t) is not causal, a
shifted version u∗(T − t), where T is the pulse duration, is generally considered instead in
practice. Moreover, the MF being defined, it now has to be applied for the different possible
delays. Therefore, the output of the matched filter can be seen as the convolution of the received
signal with this optimal filter, which for a noiseless signal is also the autocorrelation of the
waveform. In the hypothesis where no Doppler shifts are observed, the output compressed signal
y can be written as

y(τ) = (r ∗ h)(τ)

= Ar

∫ +∞

−∞
u(t− τ0)h(τ − t)dt+

∫ +∞

−∞
w(t)h(τ − t)dt

= Ar

∫ +∞

−∞
u(t− τ0)u∗(t− τ)dt+

∫ +∞

−∞
w(t)u∗(t− τ)dt. (2.17)

From the Cauchy-Schwarz inequality, the first integral is maximum for τ = τ0. Figure 2.4(a)
gives an example of the output of the matched filter for τ0 = 0 in the case of a chirp, while figure
2.4(b) emphasises the particularities of such output with a zoom. The MF output is centred at
τ0 = 0. The first particularity to be mentioned is the difference between the mainlobe and the
sidelobes. The mainlobe corresponds to the higher peak of the compression output and indicates

1. The Signal-to-Noise Ratio (SNR) is the ratio between the signal power and the noise power often expressed
in decibels (dB). It indicates the quality of the studied signal in the discussions here. The lower the SNR, the
more corrupted by noise is the signal and inversely.

10



2.1. The World of Radar

where the target lies, whereas the sidelobes designate all the remaining lobes of the compression
output.

(a) Auto-correlation of a chirp pulse. (b) Highlights of the MF output particularities.

Figure 2.4: Matched filter output for a noiseless chirp (T = 10µs, B = 100MHz) with no delay.

Furthermore, two common criteria on the sidelobes behaviour can be defined [5]. On one
hand, the Integrated Sidelobe Ratio (ISLR) is described as the ratio of the energy of all the
sidelobes, the blue region in figure 2.4(b), to the energy of the mainlobe. It indicates the minimum
level under which targets of the same level could mask a target with a weaker response. On the
other hand, the Peak-to-Sidelobe Level Ratio (PSLR) is identified as the ratio between the
energy of the first highest sidelobe and the energy of the mainlobe. It provides indication on
the possible masking of a weak target by close and stronger targets. For the chirp, the values
of ISLR and PSLR are commonly of −10dB and −13.5dB. The width of the mainlobe is also
of significance, as it impacts the range resolution. The range resolution determines the ability
to resolve close targets with identical levels. Therefore, the thinner the mainlobe, the easier is
the target discrimination. As a reference, the chirp usually has a mainlobe width defined as the
inverse of the bandwidth at −3dB,

∆τ = 1
B
. (2.18)

This leads to a range resolution defined by the next equation:

∆R = c

2B . (2.19)

The range resolution issue is depicted in figures 2.5(a) and 2.5(b), where targets are separated
respectively by a relative delay greater and lower than the range resolution. In the first case,
the targets can be resolved, whereas in the second case it is impossible to discriminate the two
targets due to the merging of the mainlobes.

It is common use to perform matched filtering to maximise the target Signal-to-Noise Ratio
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(a) The targets are resolved. (b) The targets are not resolved.

Figure 2.5: Two-target discrimination situation with a chirp (T = 10µs, B = 100MHz).

[11] and thus to determine the range of a target. However, the MF has a downside as it creates
high sidelobes which can mask the main lobe of a weak target response as illustrated in figure
2.6(a). One can apply a weighting window to the signal, such as the Hamming window [4], to
reduce sidelobes level at the expense of the mainlobe broadening and thus a degradation of
targets discrimination capacities. This windowing is depicted in figure 2.6(b) for a chirp. The
ISLR and the PSLR have successfully been reduced to −32dB and −43dB. However, this is
followed by a broadening of the mainlobe by a factor of 1.5 (measured 3dB below the peak of
the mainlobe). Another solution to mitigate these sidelobes is the use of a Mismatched Filter
(MMF) [19] described in the next paragraph.

(a) Weak target masking. (b) MF output for a chirp and a Hamming-weighted
chirp.

Figure 2.6: The sidelobes problematic with the MF for a chirp (T = 10µs, B = 100MHz).
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The Mismatched Filter

The MMF can be defined as the solution of a minimisation problem [19]. Consider a signal,
s, of N samples defined by

s = [s1 s2 ... sN ]T , (2.20)

where .T is the transpose operator. We note q the MMF of length Kq ≥ N . The range compres-
sion that the received signal undergoes with this filter is expressed by [19]

y = Λ∗
q(s)q,



y1
...
...
...
...
...
...

yKq+N−1



=



sN 0 · · · · · · 0
... . . . . . . ...

s2 · · · sN
. . . ...

s1
. . . ... . . . 0

0 . . . s2 · · · sN
... . . . s1

. . . ...
... . . . . . . s2

0 · · · · · · 0 s1





q1
...
...
...
qKq


, (2.21)

where Λq is a convolution matrix of size (Kq + N − 1) × Kq. If the filter is chosen as q = s,
then the classic MF is obtained2. The goal with the MMF is to optimise a criterion other than
the SNR. Several options are possible. The most common one is the optimisation of the PSLR,
but the MMF can also optimise criteria such as the ISLR. In the first case, the MMF tries
to minimise the ratio between the energy of the first highest sidelobe and the energy of the
mainlobe. In the second case, the MMF aims to minimise the ratio between the energy of all the
sidelobes to the energy of the mainlobe. Both options lead to the objective function defined by

fobj(q) = ||Fy||2p, (2.22)

where F is a diagonal matrix of ones except for some zero values which correspond to the
mainlobe positions, and ||.||2p defines the lp norm of a vector. For the PSLR criterion, p = ∞,
which means that only the largest sidelobe is taken into account, while for the ISLR criterion,
p = 2, in order to get the total energy of the sidelobes. For the ISLR objective, the optimisation

2. The MF is obtained with q = s instead of q = s∗ as in (2.16) due to the presence of the conjugate transpose
on the convolution matrix, Λq, in (2.21).
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problem to be solved writes [19]:

min
q

||Fy||22,

s.t. sHq = sHs,
(2.23)

where the constraint is added to discard the trivial null solution and .H is the Hermitian trans-
pose or conjugate transpose. For the ISLR criterion, this minimisation problem has an analytic
solution obtained by applying the method of Lagrange multipliers [19]. It is expressed as

q(s,MΛ) = (sHs)M−1
Λ s

sHM−1
Λ s

, (2.24)

where MΛ = ΛT
q (s)FΛ∗

q(s). Note that this analytical solution provides an optimal sidelobe level
but comes with an uncontrolled Loss-in-Processing Gain (LPG). The LPG is defined as the
ratio between the SNR obtained with the MMF and the optimal SNR obtained with the MF,
expressed in dB:

LPG = 10 log10

(
|qHs|2

(qHq)(sHs)

)
≤ 0. (2.25)

In order to mitigate such a loss, a second constraint can be added to the minimisation prob-
lem [19]:

min
q

||Fy||22, (2.26a)

s.t. sHq = sHs, (2.26b)

qHq ≤ 10
βq
10 sHs, (2.26c)

where βq is a positive constant. It can be checked that in (2.26), βq represents an upper bound
for the LPG. Indeed:

LPG = 10 log10

(
|qHs|2

(qHq)(sHs)

)
= 10 log10

(
sHs
qHq

)
≤ βq, (2.27)

where the second equality results from (2.26b) and the inequality from (2.26c). Figures 2.7(a)
and 2.7(b) illustrate the improvement made on the PSLR and ISLR for a chirp with the MMF
compared to a classic MF. In figure 2.7(a), the PSLR has been reduced to −64.9dB, while the
ISLR is now of −33.8dB. In figure 2.7(b), the optimisation of the ISLR gives an improved ratio
of −24.8dB with a PSLR of −26.8dB with the controlled LPG. In comparison, the MMF with
uncontrolled LPG gives an ISLR and a PSLR of −26.5dB and −29.1dB respectively, which seems
better at first sight but comes with a non-negligible LPG of −18dB. With such a loss, the target
could be masked or simply missed at detection, hence the constraint (2.26c). It can be noted
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that the MMF induces an increase of the mainlobe by a factor of 1.5 for the PSLR optimisation
and 1.2 for the ISLR optimisation with the actual settings.

(a) Optimisation of the PSLR. (b) Optimisation of the ISLR.

Figure 2.7: MF and MMF output for a chirp (T = 10µs, B = 100MHz). The PSLR is optimised
in the left figure, while the ISLR is optimised in the right one (Kq = N = 5001 samples,
βq = 2dB for both filters). Zoom on the mainlobe are added to illustrate the LPG effect for the
ISLR optimisation with controlled (2.26) and uncontrolled (2.24) LPG.

The Ambiguity Function

Previously, the target was assumed to be stationary, and only the delay was subjected to
investigation. But as mentioned earlier, the received signal is affected by the radial velocity, vr,
between the target and the radar. This causes a Doppler shift, νd, which hinders the response
of the matched filter optimised for the zero-Doppler case. To take the Doppler effect into con-
sideration, it is possible to make use of another fundamental tool in the processing of radar
signals: the Ambiguity Function (AF). The AF enables the analysis of the impact of the target
velocity on the output of the matched filter for a given waveform. The Ambiguity Function thus
represents the time-frequency response of the matched filter for a received signal with delay τ

and Doppler νd. It is defined as [11]

χ(τ, νd) =
∫ +∞

−∞
u(t)u∗(t+ τ)e2iπνdtdt. (2.28)

Figures 2.8 and 2.9 give an example for the chirp and the HFM waveforms with the zero-Delay
and zero-Doppler cuts associated. In each case, the zero-Doppler cut, χ(τ, 0), is equivalent to the
definition of the matched filter (2.17). Concerning the sign of the Doppler frequency, a positive
Doppler is synonymous of an approaching target, whereas a negative Doppler indicates a target
moving away.
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A comparison of figures 2.8 and 2.9 reveals a clear correlation between the behaviour of the
ambiguity function and the considered waveform. In the case of a chirp, the appreciated target
detection capacity at every possible delay and Doppler comes with a delay-Doppler coupling
marked by the diagonal ridge in figure 2.8. For a given Doppler shift, the peak response is
shifted from its true delay value [11]. This ridge can be modelled by the following equation:

τshift = νd
2γ . (2.29)

The chirp is therefore characterised as robust to the Doppler effect or in other words, as Doppler
tolerant [11]. Compared to the linear behaviour of the chirp AF, the AF for the HFM has more
of a bow tie pattern, as the sidelobe level increases with the Doppler. Furthermore, the mainlobe
peak height observes a tendency to decrease. Therefore, the HFM waveform appears less robust
to Doppler at narrowband due to this behaviour. Nevertheless, it can be demonstrated (see
Appendix A) that in a wideband3 situation, the HFM waveform becomes Doppler invariant
[43][44], which is optimal for applications where the targets present relatively high velocity.

Figure 2.8: Example of the Ambiguity Function of a chirp (T = 10µs, B = 100MHz). The upper
plot is the zero-Doppler cut, while the left plot is the zero-Delay cut.

In light of the aforementioned discussion, the Ambiguity Function assumes great importance
in characterising the suitability of a given waveform for radar application. However, while the
AF enable the analysis of the Doppler effect on a considered waveform, it does not assist in

3. In contrast to the narrowband case, the wideband hypothesis suggests a large time-bandwidth product
BT . Under this assumption, the Doppler effect is no longer regarded as a simple frequency shift but rather as a
compression or expansion of the transmitted signal.
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retrieving the Doppler shift νd, and thus the velocity of a specific target. This issue is addressed
in the next paragraph with the final radar processing technique to be examined in order to
become the perfect little radarist.

Figure 2.9: Example of the Ambiguity Function of a HFM waveform (T = 10µs, B = 100MHz).
The upper plot is the zero-Doppler cut, while the left plot is the zero-Delay cut.

The Range-Doppler Processing

In order to enhance the Doppler resolution, a radar does not transmit only one pulse but
periodically transmits, with a certain Pulse Repetition Interval (PRI) Tr, repeated identical
pulses. This leads to a coherent train of Np pulses expressed by

uNp(t) = 1√
Np

Np−1∑
n=0

u(t− nTr). (2.30)

Figure 2.10 illustrates this repeated emission scheme with a sequence of chirp pulses. The re-
sulting improved Doppler resolution is given by [11]

∆νd = 1
NpTr

. (2.31)

Nevertheless, the associated Pulse Repetition Frequency (PRF), the inverse of the PRI, must
be chosen wisely to avoid range ambiguity. If the PRF is too large, the echo of a pulse n might
arrive after or in between the transmission of the next pulse n + 1, leading to a target that
appears closer than it actually is. Such an error in localisation can be avoided if the desired
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Figure 2.10: Representative scheme of a chirp pulse train.

delay\range values are less than the delay\range ambiguity, which are expressed as

τambig = Tr or Rambig = cTr
2 = c

2PRF . (2.32)

Similarly, ambiguities can occur along the Doppler axis at interval defined by

νambig = PRF. (2.33)

With train pulses, the Range-Doppler processing can then be applied on the received signals in
order to extract the position and velocity of a target. By considering a target at delay τ0 with
a Doppler ν0, the received pulse train is

r(t) = Ar

Np−1∑
n=0

u(t− τ0 − nTr)e2iπν0t + w(t). (2.34)

A common assumption is that the Doppler has a minimal impact on the phase during the
duration of a simple pulse and this will only shift the phase of the signal from one pulse to the
next [45]. Therefore, it is possible to write e2iπν0t ≈ e2iπν0nTr for t ∈ [nTr, nTr +T ]. According to
this hypothesis, the first step of the Range-Doppler processing consists in applying the matched
filter for each pulse n of the train to obtain the range compression as expressed below:

y(τ) = Ar

Np−1∑
n=0

e2iπν0nTr
∫ +∞

−∞
u(t− τ0)u∗(t− τ)dt+

Np−1∑
n=0

∫ +∞

−∞
w(t)u∗(t− τ)dt. (2.35)

The second step enables to determine the target Doppler shift by testing all possible hypotheses
of νd, which yields a computation similar to the ambiguity function. This output can be written
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as

y(τ, νd) = Ar

Np−1∑
n=0

e−2iπ(νd−ν0)nTr
∫ +∞

−∞
u(t− τ0)u∗(t− τ)dt+ wRD(τ, νd), (2.36)

where wRD represents the filtered white noise at the output of the Range-Doppler processing.
Obviously, the maximum of this function is attained for the pair (τ, νd) = (τ0, ν0). The output
of such processing is shown in figure 2.11 for two targets with a pulse train of Np = 100 chirps
with a duration of T = 10µs, a bandwidth of B = 100MHz and a PRI of Tr = 10T .

Figure 2.11: Output of the Range-Doppler processing for two simulated targets with a chirp
pulse train. One target is stationary at a delay of τ = 20µs, while the second is at a delay of
τ = 50µs with a Doppler of νd = 1kHz.

2.2 The World of Bats

Because the dual work of this thesis requires to have knowledge on both radar and bats, the
following section deals with this little mammal and their exceptional ability: the echolocation.

2.2.1 Introduction to Bats and Echolocation

Bats of the order Chiroptera4 are mammals just like us. One main difference, which sets
them apart from the other mammals is that they learned to fly by their own. Bats represent a
fifth of the 6,500 known mammal species with more than 1,300 bat species worldwide [46] and
are the second largest order of mammals, after the rodents. As shown in figure 2.12 by Professor
Batty, bats have adapted to most of the terrestrial habitats and climatic zones, while exploiting
a great variety of food sources, including insects and other arthropods, small vertebrates, fruits,
leaves, nectar, flowers, pollen, and even blood (do not worry, only 3 species are known to be

4. For the distinguished Hellenist, κειρ=kheir for the hand and πτέρον=pterón for wings.
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hematophagous, and they have no taste for human blood). Consequently, they play a huge
ecological role, acting as predators and regulating insect populations, as efficient pollinators,
and as prey for larger predators, such as owls.

Figure 2.12: The worldwide distribution of bat species and their diet explained by Professor
Batty. Bats can be found in the green areas.

Beyond their dietary habits, another noteworthy aspect of bats is their incredible capacity to
navigate using ultrasonic sounds. This biological sonar, often referred to as echolocation, consists
of emitting high-frequency signals in the range of 20kHz to 100kHz and above, waiting for the
returning echoes to detect, characterise and localise the reflecting objects. For bats, this system
is used for orientation in space but also for hunting preys and feeding themselves as shown with
Batty looking for a (Batty-)meal5 in figure 2.13. The logic is similar to the one explained in
figure 2.1 for the radar case, but this time the emitted and received signals are sound waves.

Insectivorous bats are capable of consuming their own body weight in
insects each night, which can represent thousands of insects. They play
an important role in regulating insect populations, including disease-
carrying pests like mosquitoes. Additionally, some bats are also effective
pollinators and without them, certain varieties of tropical fruits, such
as bananas, mangoes, and agave would not exist [46]. The protection of
bats is thus of primary importance.

Ecology & Conservation

5. credits for this joke: Abigael Taylor.
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Figure 2.13: Overview of the echolocation hunting framework.

To realise such a task, bats generate ultrasonic vocalisations within the larynx through
the use of vocal chords adapted for the generation of such frequencies [47][48]. Subsequently,
the sound is emitted through their own biological "antenna". In some species, this "antenna"
is nothing else than their mouth, whereas in others the ultrasounds are emitted through the
nostrils, thanks to a lance-shaped nose, the noseleaf, characteristic of bats belonging to the
Phyllostomidae, Hipposideridae and Rhinolophidae families. This distinction at the emission
is illustrated in figures 2.14(a) and 2.14(b) with two pictures of representative species for each
"antenna". Finally, the returning echo is received by the ear and processed by the whole auditory
system [49], which translates the delay to distance. The strength of the echo indicates the size
of the prey, while the Doppler effect measures its speed.

(a) Portrait of Nyctalus Noctula by Mnolf, Photo
taken in Rum, Austria, CC BY-SA 3.0 [50].

(b) Portrait of Rhinolophus ferrumequinum by Prof.
emeritus Hans Schneider (Geyersberg), CC BY-SA
3.0 [51].

Figure 2.14: Example of species with different "antennas". The common noctule, on the left, emits
ultrasounds through its mouth, whereas the greater horseshoe bat emits through its noseleaf.
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As a consequence, and in the light of the aforementioned scheme in figure 2.1, the analogy
with radar should be evident, were it not for the fact that for them, echolocation is the result of
millions of years of biological evolution. The echolocation (and bats of course) is the keystone
of this thesis and the next paragraphs will try to portray the major and essentials aspects of
this biological sonar. The following information should make it clear why the study of bats and
echolocation is appealing for radar applications.

Contrary to a common belief, bats
are not blind! They can in fact
quite well see in the dark using
their eyes and not only their ears.
Moreover, some bats are either
unable to echolocate or have a
lingual-based biosonar system, as
observed in the Egyptian fruit bat
[52]. In such cases, bats can rely
on their sense of smell and vision.

Did you know ?

2.2.2 Bats Waveforms

Given that both radar and bats emit frequency modulated waveforms, which is the basis of
this thesis, it is of particular interest to study the waveforms of bats. The following discussion
will demonstrate that radar have much to learn in this domain.

First of all, echolocation calls can be divided into two types of signals: narrowband and
broadband waveforms [12][13]. On one hand, narrowband components describe either quasi-
constant frequency (QCF) signals with little frequency modulated segments of only a few kHz
between the onset and end of the signal (shallow modulation) or long constant frequency (CF)
elements with slight portions of frequency modulation of a few kHz at the beginning and end
of the pulse. On the other hand, broadband signals comprise a downward frequency modulated
(FM) waveform of a large bandwidth (steep modulation). A classification of these signals can
be made according to their bandwidth. For narrowband signals, the most prominent harmonic
sweeps over less than half an octave6, whereas in broadband signals, it covers more than half an
octave [12]. Figure 2.15 summarises the main categories of bat echolocation pulses.

6. In acoustics, an octave is the interval between one musical pitch and another at twice the frequency. For
example, a note with a frequency of 440Hz is one octave above at 880Hz and one octave below at 220Hz.
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Figure 2.15: Main categories of bat echolocation pulses (From [13], CC BY-NC-SA 3.0).

The diversity of waveforms observed among bats appears to be significant, as each species
has adapted to several factors and has thus developed its own waveform. First, each species has
its own foraging mode, with some bats capable of catching prey in the air (aerial mode), others
gleaning their food from solid surfaces (gleaning mode) and some engaged in fishing (trawling
mode) [7][12]. This adaptation is thus directly linked to their diet. Moreover, each species is
confronted with different hunting environments and therefore different clutter conditions [7].
Bats hunting in open spaces will not be bothered by clutter but require a long-range detection
of prey. They will use relatively long (8 to 25ms) shallowly frequency modulated signals for
detection. By approaching buildings, in the vicinity of forest edges or above water, other species
must contend with a background-cluttered space, the edge spaces. Echolocation signals in this
configuration are shorter, 3 to 10ms in average and can be more steeply modulated. Finally,
some bats evolve in highly cluttered spaces, called the narrow spaces, such as forests [7]. Various
species use a flutter detecting method by sending long CF-FM signals, while others can use FM
signals for active or passive gleaning. In passive gleaning, bats rely on prey generated cues and
echolocation only serves to guide the approach to the prey site [7].

Besides an extraordinary adaptation, bats also possess an excellent control over their emis-
sion parameters. They are capable of rapidly varying the pulse duration, the bandwidth, the
interpulse duration, and the curvature of their waveforms. This flexibility is particularly evident
when foraging, as illustrated by the schemes in figures 2.16. These are examples of hunting
echolocation sequences from two bats with different kinds of waveforms, which can be divided
into three phases. The initial phase, which is the search phase, is characterised by the bat probing
its environment and searching for a potential prey. Then comes the approach phase as soon as a
prey is detected. The emission parameters are modified in order to avoid overlap between out-
going and returning signals by slowly decreasing the interval between pulses and by decreasing
their durations. Finally, the terminal phase, often called the terminal buzz, marks the conclusion
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of the sequence and precedes the capture, which may or may not be successful.

Figure 2.16: Echolocation sequence of a FM (a) and CF (b) bats emitted during prey pursuit
(From [13], CC BY-NC-SA 3.0).

2.2.3 Bats Processing

The waveforms and the global mechanism of echolocation being described, one might wonder
how bats process the delay and Doppler information like it was described for radar. The acuity
of the bat echolocation has been evaluated on repeated occasions, with numerous articles on
the subject [53][54]. Moreover, the complexity of the bat auditory system could be the subject
of a thesis in itself. To correctly apprehend how bats translate the information contained in
echoes, a brief overview of the auditory pathway will be given, accompanied by a model of the
auditory computations. The Spectrogram Correlation And Transformation receiver (SCAT) is
a computational model of the bat auditory system, which was proposed by Saillant [27]. It is
constituted of three blocks: the cochlear, temporal and spectral blocks. The SCAT represents a
monaural (relative to one ear) version of the auditory system and underlying neural response
in FM bats (based on a particular species, Eptesicus fuscus, also known as big brown bat). It
simulates the auditory reception and processing of bats and could provide an insightful first look
at the bat processing.

The Reception

The mammalian ear presented in figure 2.17 is composed of three distinct parts: the outer,
middle and inner ears. The first two will not be discussed here, but they play an important
role in localising the direction of a sound source and especially in transmitting the sound to
the inner ear [13]. The latter one, the inner ear, comprises the semicircular canals, which are
responsible for dynamic balance, and the cochlea, which is responsible for the sense of hearing.
The cochlea is a sophisticated sound receiver and frequency analyser composed of three canal
ducts in parallel [13]. Sound waves propagate from the base to the apex of this spiral-shaped
organ according to their frequency content. The lower the frequency the further it travels within
the cochlea. It is responsible for converting the sound and its frequency content into an electrical
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Figure 2.17: Anatomical point of view of Batty’s ear.

Figure 2.18: Overview of the cochlear block and its output as modelled by the SCAT. But-
terworth filter hyperbolically spaced are implemented and the envelope-smoothing process is
skipped in this case.

signal, which is transmitted to the auditory nerve cells. The signal is thus broken up into parallel
frequency bands, which in a signal processing framework would be equivalent to a filter bank.
This is precisely how the cochlea is modelled in the SCAT thanks to parallel band-pass filters
arranged according to the tonotopic7 organisation of bats cochlea (in other words, the spatial
arrangement of how sounds of different frequency are processed in the brain). As evidenced
by the different versions of the SCAT, the implemented filters are various, with Butterworth
filters in [27] or gammatone filters in [55] for example. At the filter level, the signal undergoes
an envelope-smoothing process [27] to simulate bat neural responses. It is often implemented
thanks to a rectifier followed by a low-pass filter [27][55] or an amplitude extractor as in [10]. The
output of this cochlear block corresponds to a spectrogram-like format of the waveform as shown

7. For the distinguished Hellenist, τονος=tono for frequency and τοπος=topos for place.
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in figure 2.18, which can be further analysed thanks to the central auditory system. The linear
appearance at the output of the cochlear block is due to the spacing of the filter channels, which
respect the hyperbolic frequency scale of the bat’s cochlea and its waveform in this example. The
filters spacing is also a tunable parameter often chosen as linear or hyperbolic in the literature.
For complementary information and precise implementation examples, the SCAT version in [55]
and [10] are highly recommended.

The Temporal Processing

To accurately determine the range of its prey, a bat will compare the echoes to its own
emission. This stage can be explained by the temporal block from the SCAT also designated as
the spectrogram correlation block [27]. This block represents the delay-tuned neurons responsible
for target ranging in the auditory system of bats. The response is based on the cochlear output
and estimates the time delay between a call and the received echo. This is achieved through a
set of tapped delay lines that implement a cross-correlation-like function between the call and
the received echo. It produces a "dechirping" of the signal by adding the right delays between
the signal and its echo to each frequency channel. The activity in each filter channels is then
summed up and followed by a peak detection or threshold detection to decide where lies the
target. In summary, bats perform a matched filter of their own kind to localise a potential target.
The scheme in figure 2.19 depicts the neural response and the result of the bat matched filter.

Figure 2.19: Descriptive scheme of the temporal block mechanism.
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The Spectral Processing

The final block of the SCAT is the spectral block or spectrogram transformation block [27],
which is designed for the extraction of the fine structure of the target in the presence of highly
overlapping echoes. It completes the temporal block when the delay between high overlapping
echoes can not be resolved. To achieve such a task, the spectral block analyses each target
detected by the temporal block. When echoes overlap, it creates peculiar interference patterns,
called glints in [55] and in bat biological processing. These interference patterns can be detected
by observing the suppression or amplification of the power of the output of some filters channel
in the cochlear output. Again, the processing of such patterns also has different implementations
according to the SCAT version, with inverse cosine transformation in [27] or an inversion of the
frequency spacing of interference to find the glint delay in [55] for example.

In summary, the auditory processing in bats can be described as follows: the cochlea de-
composes the signal into parallel frequency channels and feeds them to the nervous system.
The central auditory system then performs a kind of cross-correlation to localise the target. Of
course, there are much more information extracted in the processing but this first approach is
sufficient for the subject of this thesis. A computational model of this system, the SCAT, can
be declined in various forms and there are some discussions about its different blocks and their
implementation [56], but in the overall this model helps understanding how bats process a part
of the information necessary to catch their prey.

What about the Doppler?

In the same way radar signals are prone to Doppler effect, bats have to deal with this
phenomenon too. Some preys, such as flying insects, exhibit a characteristic Doppler signature
due to their wing-beat frequencies [57]. Moreover, bats flight also induces Doppler effect, which
results in their signal being Doppler shifted. In response, a majority of species belonging to
the CF bats family, such as the horseshoe bat presented earlier in figure 2.14(b), dispose of a
compensation mechanism. By emitting CF-FM signals like the one presented in figure 2.20, bats
like the horseshoe bat can compensate for the flight-induced Doppler shift. By lowering their
call frequency, they keep the echo frequency within the best frequency range for the bat hearing,
the auditory fovea [58]. They are also able to detect and classify fluttering insects based on
amplitude and frequency modulations caused by their movements

With regard to FM bats, their signals are more Doppler tolerant, which means that they are
less affected by the Doppler effect [13]. However, the range-Doppler coupling can be argued to
be a source of error in bat echolocation, as underlined in [59]. A variety of strategies is employed
by FM bats to counteract this coupling and in particular the control of their different emission
parameters have a strong influence on their success. Besides pulse design, the hypothesis of a
Linear Error Correction system (LEC) has been formulated in [60], which could help bat being
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tolerant to Doppler shifts by compensating the altered received signals in the frequency domain.
Other research [28] has indicated that FM bats could have the same capacity as CF bats, to
discriminate flying insects, thanks to the Doppler effect, after receiving different echoes from
stationary and fluttering parts of the prey [57][17].

Spectrogram of pulse 1

Rhinolophus ferrumequinum
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Figure 2.20: Pulse of a greater horseshoe bat [61].

Harmonics and Amplitude Modulation

One may have notice in the previous figure, that the pulse of the greater horseshoe bat
exhibits a harmonic structure. In other words, the emitted sound is composed of three har-
monics, each with a distinct energy level. The lowest frequency harmonic is often designated
as the fundamental, while the other are harmonics, whose frequencies are integer multiples of
the fundamental. In the case of the greater horseshoe bat, the second harmonic, at 83kHz here,
is prominent, whereas in a majority of bat species, it will be the fundamental. The number
of harmonics depends on the species and the emission. A pulse may be composed of a single
fundamental or the combination of two to even four harmonics, as observed in the case of the
mustached bat [62]. The purpose of these harmonics is still under debate and many hypotheses
have been investigated. The use of harmonics could help in the differentiation of targets from
the clutter [34]. This assumptions has even been studied for radar application in spaceborne
radar for geophysical exploration [35]. Another possibility is that harmonics help bats in dis-
tinguishing their calls from those of conspecifics (members of the same species) and subspecies
[63]. Furthermore, the neuronal activity at the reception may also be linked to harmonics, as
evidenced in [62], where the combinations of harmonics influenced the neuronal response.

Another aspect of bat signals is the amplitude modulation. Figures 2.21(a) and 2.21(b) show
the oscillogram of pulses from the common noctule and the greater horseshoe bat, where the
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amplitude modulation is clearly visible in both cases. Bats are able to control the amplitude of
their signal as one of the numerous emission parameters. The glints, mentioned earlier in the
auditory processing, not only consists of frequency modulations but also of amplitude modula-
tions. The wing movements of insects can induce changes in the amplitude modulation of the
returning signal, which can be informative on the insect species. Moreover, foraging bats can
analyse the returned intensity to determine the target characteristics like its size [13].

(a) Pulse of a common noctule [14]. (b) Pulse of a greater horseshoe bat [61].

Figure 2.21: Example of the amplitude modulation observable in bat echolocation with real
signals.

2.3 Conclusion

This introductory chapter comes to an end. The first section is fundamental but obviously
a naive first approach to the concept of radar. It is evident that a comprehensive understand-
ing of radar systems necessitates a more nuanced approach that encompasses a multitude of
functions. Moreover, the scene covered by the radar, which can be more or less complex (build-
ings, vegetation,...), the wave propagation theory or the radar signature of targets are among
the various parameters to be taken into account. Nevertheless, the basis given here should help
to understand the radar concept and lay the foundation for the rest of the thesis. Concerning
the bats, the same observation could be made because a mere introduction is not sufficient to
explore everything researchers have found until now. Their extraordinary capacities do not stop
at their waveforms and the neural process behind the auditory system is a complex mechanism
still investigated. However, this should help to understand why their waveforms are of interest
for radar and for this thesis. Therefore, reproducing bats waveform and capacities will be the
focus of the next chapter.
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Chapter 3

FROM BATS TO RADAR

Now that the basics have been established, the relationship between the echolocation and
the radar should be clearer. The main objective of this thesis is now to be addressed, namely the
proposal of a bio-inspired radar waveform. First, the study of a range of authentic bat signals
is conducted in order to better understand their emission parameters and the manner in which
they construct their signals. In conjunction with the extensive existing literature on bats, a new
bio-inspired function capable of reproducing bat signals can then be introduced: the Parsons
waveform. Afterwards, its capabilities as a radar function are evaluated through the application
of classical radar processing techniques presented earlier like the matched filter. Throughout this
chapter, the performance of the Parsons waveform are assessed, notably through the Cramér-
Rao Lower Bounds (CLRB) computation, in comparison with the radar waveforms presented
in the introductory chapter, thereby highlighting the advantages and drawbacks of the latter.
Finally, real measurements are analysed to observe the true functional abilities of the bat-inspired
waveform.

3.1 Becoming a Bat

3.1.1 Listen to the Bats

The introductory section on bat waveforms (section 2.2.2) provided an insight into the variety
of waveforms observed in the bat repertoire. This diversity highlights the complexity of designing
an appropriate function to accurately mimic bat waveforms. In this context, the initial step to-
wards a bio-inspired function is to analyse authentic bat signals in conjunction with the relevant
literature. The waveforms used by bats for foraging are of particular interest in the present case
of study, and especially the frequency modulated signals. Compared to continuous frequency
modulated signals, the flexibility of frequency modulated bat signals appears very attractive.
For this very reason, three real bat hunting sequences from three different species, presented
in figures 3.1(a) to 3.1(c), have been examined. The first one, in figure 3.1(a), is emitted by a
representative of the species Nyctalus noctula, also known as the common noctule. This is an
insectivorous bat that forages predominantly in open spaces by emitting curvilinear narrowband
and shallowly modulated search signals with quite long duration ranging from 8 to 25ms [7].
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(a) Nyctalus noctula hunting sequence [14].

(b) Pipistrellus pipistrellus hunting sequence [64].

(c) Pipistrellus pygmaeus hunting sequence [65].

Figure 3.1: Spectrogram of authentic hunting sequences from three different bat species recorded
in Germany by Raimund Specht [14][64][65]. The pulse trains are sampled at 250kHz and contain
respectively 25, 40 and 26 pulses.
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Following the detection of a prey, the signals becomes more broadband, usually sweeping down
from 60 to 20kHz with a decreasing duration and pulse interval [7][15]. The calls frequently
contain two to three harmonics, with the first being the most energetic. The second pulse train,
in figure 3.1(b), and the third pulse train, in figure 3.1(c), are hunting sequences emitted by two
bats of the genus1 Pipistrellus. The Pipistrellus pipistrellus, or common pipistrelle, and the Pip-
istrellus Pygmaeus, or soprano pipistrelle, are two species belonging to the edge space guild [7]
that emit frequency-modulated signals to hunt insects. These cryptic species2 of pipistrelle can
be differentiated by the end frequency of their emission [67]. In fact, their search-phase signals
are 3 to 5ms in duration and exhibit a first harmonic that sweeps down from approximately
110kHz to 45kHz for the common pipistrelle and 55kHz for the soprano pipistrelle [68][69]. A
second harmonic can also be observed.

The three presented pulse trains being hunting sequences, the approach and terminal buzz
phases evoked in figure 2.16 in the preceding chapter can be distinguished. Due to a lack of
information, the detection may have occurred before the recording started, thus preventing us
from the observation of a complete search phase. Nevertheless, the analysis of the temporal and
frequency parameters described below may indicate that the first two or three pulses for the
common noctule in figure 3.1(a) and pipistrelle soprano in figure 3.1(c) could be search signals.
The analysis of these hunting sequences highlighted the incredible control that bats have over
their emission parameters, as already mentioned in the introductory chapter. Whether it is the
pulse duration, the bandwidth, the Pulse Repetition Interval (PRI) or the curvature of their
waveforms, bats are able to adapt their calls in a very short amount of time, one second or even
half a second in these examples. Figures 3.2(a) and 3.2(b) illustrate this ability by displaying
the first and thirteenth pulses of the common noctule pulse train.

Being able to emulate synthetic versions of these signals required a comprehensive analysis
of the natural hunting sequences and the extraction of their emission parameters. This study
was divided into three stages. The initial phase consisted in the isolation of each pulse to better
extract the temporal and frequency parameters. In order to obtain the most accurate estimation
of the onset and end of each pulse, a change point detection algorithm, known as the Cumulative
Sum (CuSum) [29], was computed. It allowed the hunting sequences to be sliced with highly
satisfactory results, hence giving access to the duration and the PRI of each pulses. The CuSum
algorithm computation will be investigated in Chapter 5. For our bats, the CuSum algorithm
facilitates a precise analysis of each pulses, by detecting the onset and end of each signal. It
gives access to the temporal parameters, but the bandwidth, comprising the starting and ending
frequencies, remains to be estimated. The second stage of the analysis is then to separate the
harmonics and to determine their Instantaneous Frequencies (IF). To realise this separation,

1. taxonomic rank regrouping species with several similar characteristics [66]. E.g. Panthera leo, the lion, and
Panthera onca, the jaguar, are two species within the genus Panthera.

2. defines species known to be distinct but that can not be reliably distinguished by morphology.

33



Chapter 3 – From Bats to Radar

(a) Search phase pulse. (b) Feeding buzz pulse.

Figure 3.2: Spectrogram of the first and thirteenth pulse of the Nyctalus noctula hunting sequence
[14]. The pulse duration is greatly reduced as the bat approaches a target while the bandwidth
broadens. The PRI, which can be observed in figures 3.1(a) to 3.1(c), decreases as well. Moreover,
the quasi-constant frequency portion is eliminated to get a more linearly frequency modulated
signal. This indicates the switch between the Doppler and target characteristics estimation
process and the will to improve the range resolution.

the Fourier Synchrosqueezed Transform (FSST) [70], a frequency reallocation technique, has
been computed and combined with an algorithm for the extraction of maximum energy ridges
from a time-frequency matrix. This processing technique, detailed in the appendix B, enables to
retrieve the harmonics among a single pulse and to separate them for analysis. The results are
illustrated in figures 3.3(a) and 3.3(b), where the two harmonics of the first pulse in the common
noctule pulse train are isolated. It should be noted that once isolated, the CuSum can be also
computed on the second harmonic to extract its onset and end, given that its duration is often
shorter than that of the first harmonic. The red vertical lines indicate the temporal estimation
of the onset and end for each harmonic made with the CuSum. The extraction of bat signal
parameters can then be used for their synthesis.

3.1.2 A Function to Mimic them all

Understanding how bat signals are constructed and being able to reproduce them are of
interest in the context of this thesis, as well as in the field of biology, where it can contribute to
the classification of species. This was the aim of the authors of [16], where eight mathematical
parametric functions, including the HFM function, were studied to approximate the frequency-
time course of echolocation calls from diverse bat species. The objective was to identify species
according to their emission parameters and the shape of their echolocation calls. Among the
considered functions, the exponential-2 decay, henceforth referred to as the Parsons function
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(a) First harmonic. (b) Second harmonic.

Figure 3.3: Result of the harmonic isolation through the application of the FSST and a ridge
extraction algorithm on the first pulse of the common noctule signal [14]. The IF of each harmonic
is superimposed with black lines.

(in reference to the author’s name [16]), appeared as a promising candidate for a bio-inspired
waveform. Indeed, this function was identified as one of the best to fit signals from several bat
species [16], particularly the three species presented earlier. The corresponding instantaneous
frequency3 and the transmitted signal are defined by

f(t) = f0
f0 − af1

[
(f0 − f1)

(
af1
f0

) t
T

+ (1 − a)f1

]
, (3.1)

u(t) = 1√
T

Rect
{
t

T

}
e

2iπf0
f0−af1

[
λβ

t
T +(1−a)f1t

]
, (3.2)

where λ = (f0−f1)T
ln(β) and β = af1

f0
with f0 the starting frequency, f1 the ending frequency and T

the pulse duration. The particularity of the Parsons function resides in the parameter a, which
enables the adjustment of the hyperbolic curvature. This decay parameter comes with certain
conditions when considering f0 > f1 [16]:

a = 0, the time-frequency course describes a vertical frequency-modulated component
followed by a constant-frequency component.

a < f0
f1

the sweep is convex and approximates a chirp when a gets closer to the ratio f0
f1

.

a > f0
f1

the sweep is concave.

Figure 3.4 illustrates the behaviour of the Parsons function regarding these different con-
ditions. It should be noted that decreasing sweeps (f0 > f1) are considered in this example.

3. In order to ensure that the equation is dimensionally homogeneous, the exponent t, as defined in [16], is
replaced by the ratio t

T
.
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The last two conditions on a are inverted with increasing sweeps (f0 < f1). Therefore, this
parameter a enables the Parsons function to compose countless waveforms at a fixed duration
and bandwidth.

Figure 3.4: Instantaneous frequencies of Parsons functions with varying curvatures (f0
f1

= 3 with
f0 = 60kHz, f1 = 20kHz and T = 20ms).

By employing a curve-fitting approach, the Parsons waveform can then be used to mimic
the authentic signals presented in the preceding paragraphs, as investigated in [16]. The Root-
Mean-Square Error (RMSE) between the instantaneous frequencies of the previously extracted
harmonics (figures 3.3(a) and 3.3(b)) and those obtained with the Parsons function when a is
varying can be minimised to identify the values of a for which the Parsons function provides the
more accurate approximation of the real IF. As a reminder, the RMSE is defined as the square
root of the Mean Square Error (MSE), where X̂ is an estimator of a parameter X:

RMSE =
√
E((X̂ −X)2). (3.3)

This approach is depicted with an example on the first pulse of the common noctule. Figure
3.5(a) displays the RMSEs obtained for the instantaneous frequencies of each harmonic as a
function of the parameter a. The minimal values obtained for each harmonic thus correspond to
the optimal parameter value a, and, by extension, to the Parsons function that best describes
each harmonic. The results are presented in figure 3.5(b) with the approximated harmonics.
The black vertical lines represent the estimated onset and end of each harmonic computed with
the CuSum, which define the starting and ending frequencies. Consequently, each harmonic can
be replicated by a Parsons function, which enables the complete emulation of bat signals. The
original pulse from the common noctule, represented once more in figure 3.5(c), is therefore
recreated in figure 3.5(d) by combining the Parsons functions representing each harmonic. To
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enhance visualisation and provide a more accurate representation of the reality, the synthetic
version presents an amplitude modulation (see appendix C) similar to that of the real pulse in
figure 3.5(c). It should be noted that the third harmonic discernible in figure 3.5(c) has not been
analysed, given its insufficient energy level.

(a) RMSEs results. (b) Fitting results.

(c) First pulse from the common noctule [14]. (d) Synthetic version of the first pulse.

Figure 3.5: The mimicking of bat signals achieved with the Parsons function.

Obviously, results were demonstrated with a single pulse of the common noctule. However,
the process has also been validated with several pulses from the common noctule and the two
other species. It showed that the Parsons waveform enables to mimic bat waveforms with a
high degree of accuracy as evidenced in [16]. The bio-inspiration aspect of the research is thus
completed but the question remains as to whether the bio-inspired waveform is effective for
radar applications.
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3.2 First Steps as a Radar Waveform

3.2.1 The Parsons Waveform: a Function with Curves

The Parsons waveform has been identified as a promising potential bio-inspired radar wave-
form. However, in the section 2.1.2, the HFM function was presented as the classical bat-inspired
radar waveform [8]. To tell the major difference between the two functions, one has to examine
the curvature of the instantaneous frequency in relation to the emission parameters, taking into
account the desired bat-like plasticity. Concerning the HFM function, this has been investigated
in [20] and it was demonstrated that the hyperbolic curvature of the HFM function depends on
its temporal and frequency parameters, especially the ending frequency, f1. Figure 3.6(a) shows
the impact of f1 on the curvature of the instantaneous frequency for the HFM waveform. This
renders the HFM function less flexible than the bat’s capacities. Besides, the approximation of
bat calls by the HFM function was deemed inadequate in [16]. In contrast, the Parsons function
disposes of the parameter a, which, as explained above, allows to change its curvature at a fixed
duration and bandwidth. This therefore offers an additional degree of flexibility in the waveform
design in comparison to the HFM function. Moreover, as evidenced by the findings in [16] and
the preceding analysis, the Parsons waveform design is more closely aligned with the capabilities
of bats. Figure 3.6(b) depicts this plasticity by comparing Parsons function with the chirp and
the HFM function at various values of a. Despite its capacity to accurately represent bat wave-
forms, the suitability of the Parsons function as a radar waveform requires further investigation.

(a) Change in curvature as a function of f1 for the
HFM function (T = 25µs, B = 20MHz).

(b) Instantaneous frequencies of Parsons functions
with varying curvatures (T = 50µs, B = 100MHz).

Figure 3.6: Comparisons between the flexibility of the HFM and Parson functions.
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3.2.2 Behaviour towards Classical Radar Processing

All along this section, the response of the Parsons, the HFM and the Chirp waveforms
to classical radar processing are compared. The objective is to investigate the capacity of the
Parsons function as a radar waveform.

MF and MMF

The first step of this analysis concerns the response of the Parsons waveform to the matched
filter. Figure 3.7 illustrates the output of the matched filter for different Parsons functions. The
primary observation is that, compared to the chirp, the hyperbolic waveforms (Parsons and
HFM) exhibit noticeable higher sidelobe levels. The mainlobe also appears to broaden as the
curvature of the signal increases, with the HFM mainlobe and its sidelobes becoming almost
indistinguishable in this example. This expansion of the mainlobe is linked to the quasi-constant
frequency behaviour of the signal. In fact, the instantaneous frequencies, represented in figure
3.6(b), which exhibit a notable curvature, sweep over a narrow bandwidth for approximately
half or more of the signal duration. This result, frequently described in bat-related literature,
is attributed to the fact that quasi-constant frequency modulated signals are more appropriate
for detection solely rather than precise ranging [18]. Moreover, the combination of CF and FM
signals could be an advantage with the first modulation for target/velocity detection and the
second one for target range resolution [17]. This is typically the kind of signals used by the
greater horseshoe bats for example (see figure 2.20). It is also noteworthy that the Parsons
function displays considerable flexibility in its response to the matched filter, depending on the

Figure 3.7: Comparison of auto-correlations between the Chirp, HFM and Parsons waveforms
(T = 50µs, B = 100MHz).
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value of the parameter a. The output approaches that of a chirp as a increases towards the ratio
f0
f1

. The Parsons waveform allows for quite precise control of the matched filter response and the
sidelobe levels through the parameter a. The Parsons function thus offers an adaptability that
is comparable to that observed in bat signals.

Nevertheless, the high sidelobe level associated with the curvature of the Parsons waveform
could be problematic for radar applications, as it could mask targets with weak responses. This
is where the MisMatched Filter (MMF) enters the field as a possible solution for sidelobes
mitigation. The MMF of each waveform has been calculated to optimise the ISLR and figures
3.8(a) displays the MMF outputs in comparison to the previous MF responses. The result for

(a) MMF outputs. (b) Close-up on the Mainlobes.

Figure 3.8: Behaviour comparison between the Chirp, HFM and Parsons waveforms processed
by the MMF for the optimisation of the ISLR (T = 50µs, B = 100MHz, Kq = N = 25, 001
samples, βq = 2dB). The legend is the same for both figures but not displayed in the second one
for a better readability.

the chirp has already been discussed in section 2.1.3 and can be compared with the MMFs
of the Parsons and HFM functions. For both hyperbolic functions, the MMF can be readily
calculated. The ISLRs and PSLRs values have been measured for a fixed mainlobe width (equals
to 2Fs

B = 10 samples here and represented with the black vertical lines in figure 3.8(b)) to ensure
the comparison between the MF and MMF outputs. The values are presented in the Table
3.1. As a first observation, the relatively high sidelobe level linked to the curvature can be
effectively mitigated by the MMF for both the Parsons and the HFM waveforms. Regarding the
mainlobe width, the Parsons waveform with a = 1 and the chirp suffer a broadening by a factor
of 1.1 and 1.2, respectively. In contrast, the HFM and Parsons (a = 0.1) waveforms exhibit a
narrower mainlobe by a factor of 0.7 and 0.9, respectively. This can be explained by comparing
the spectrum of the waveforms and their MMFs presented in the figure 3.9. The initial mainlobe
width linked to the quasi-constant frequency behaviour of the more curved functions (HFM and
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Parsons with a = 0.1) is narrower because the spectrum of the MMF is flattened, resulting in
a rounded spectrum and a reduction in the impact of the quasi-constant frequency component.
For the chirp and Parsons (a = 1) waveforms, the opposite logic can be applied as their spectrum
becomes more rounded. Overall, the Parsons waveforms present an improved behaviour with a
mismatched filter, as the sidelobe levels are reduced to a level approaching that of a chirp.

si MF-ISLR [dB] MMF-ISLR
[dB] MF-PSLR [dB] MMF-PSLR

[dB]
Chirp -9.7 -15.1 -13.3 -26.2
HFM 2.4 -5.4 -21.7 -18.9

Parsons
a = 0.1 4.5 -7 -5 -17.1

Parsons
a = 1 -2.6 -15 -8.7 -24.9

Table 3.1: ISLRs and PSLRs calculated from the MF and MMF outputs of the different wave-
forms. The positive values obtained for the ISLRs of the HFM and the first Parsons waveforms
are due to the sidelobes energy being superior to that of the mainlobe.

Figure 3.9: Comparison between the spectrum of the presented waveforms and the spectrum of
their MMFs (T = 50µs, B = 100MHz).

Ambiguity Function

Logically, the next step in the study of the Parsons waveform is to investigate the impact of
the Doppler on the output of the MF by looking at its Ambiguity Function (AF). The AF of
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the Parsons waveform can be written as

χ(τ, νd) =
∫ +∞

−∞
u(t)u∗(t+ τ)e2iπνdtdt,

= 1
T

∫ T−τ

0
e

2iπf0
f0−af1

[
λβ

t
T +(1−a)f1t

]
e

−2iπf0
f0−af1

[
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t+τ
T +(1−a)f1(t+τ)

]
e2iπνdtdt,

= 1
T
e

−2iπf0
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(1−a)f1τ
∫ T−τ

0
e

2iπf0
f0−af1

λ

(
1−β

τ
T

)
β
t
T

e2iπνdtdt. (3.4)

The integral is solved for τ > 0 by considering the symmetry property of the AF:

|χ(−τ,−νd)| = |χ(τ, νd)|. (3.5)

The change of variable x = β
t
T can help pursue the calculations. If t varies from 0 to T − τ then

x goes from 1 to β
T−τ
T . Moreover, by using the equality eb ln(y) = yb, the following derivation

dx
dt = lnβ

T β
t
T is obtained. Therefore, the ambiguity function becomes
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We define the following parameters

α1 = 2iπf0
f0 − af1

λ
(
1 − β

τ
T

)
, (3.7)

α2 = 2iπνd
T

ln β − 1, (3.8)

such that the integral part of (3.6) becomes

I =
∫ β

T−τ
T

1
eα1xxα2dx. (3.9)

Again, a change of variable is operated. Let u = −α1x, so x = − u
α1

and du
dx = −α1, the integral

then writes as

I =
∫ −α1β

T−τ
T

−α1
e−u

(
− u

α1

)α2 du

−α1
=
(

− 1
α1

)α2+1 ∫ −α1β
T−τ
T

−α1
e−uuα2du. (3.10)

According to the definition of an upper incomplete gamma function given by [21]

Γ(αΓ, u) =
∫ ∞

u
e−ttαΓ−1dt, (3.11)
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then
I =

(
− 1
α1

)α2+1 (
Γ
(
α2 + 1,−α1β

T−τ
T

)
− Γ(α2 + 1,−α1)

)
. (3.12)

Note that the upper incomplete gamma function is known to be holomorphic4 with respect to
both u and αΓ, for all αΓ and u ̸= 0 [71][72]. The following step is based on the relation between
the incomplete gamma function and the generalised exponential integral [21], which writes

E−α2(−α1x) = (−α1x)−α2−1Γ(α2 + 1,−α1x). (3.13)

The integral can then be solved using the generalised exponential integral by writing

I =
(
β
T−τ
T

)α2+1
E−α2

(
−α1β

T−τ
T

)
− E−α2(−α1), (3.14)

and the ambiguity function for the Parsons waveform is thus expressed by

χ(τ, νd) = 1
ln β e

−2iπf0
f0−af1

(1−a)f1τ
[(
β
T−τ
T

)α2+1
E−α2

(
−α1β

T−τ
T

)
− E−α2(−α1)

]
. (3.15)

It is important to note that with this equation, the delay cut at τ = 0 can not be obtained as
the exponential integral definition excludes the origin and α1 = 0 under this condition. This is
consistent with the fact that the upper incomplete gamma function is defined for u ̸= 0 as stated
earlier. Nevertheless, the mathematical definition obtained for the ambiguity function can still
be verified for τ ̸= 0 as illustrated in figures 3.10(a) and 3.10(b). Figure 3.10(a) gives the Doppler
cut obtained with the theoretical formula (orange dashes) compared to the autocorrelation of
the Parsons function with a = 1 (blue solid line). The results show an almost perfect agreement
between the theory and the simulations, as the RMSE is less than 0.6dB for τ ∈

[
0, T2

]
and

increases to 3.5dB for τ ∈ [0, T ]. The same result can be observed in figure 3.10(b), where the
range cut is shown for νd = 20kHz.

Figures 3.11(a) to 3.11(d) display the Ambiguity Functions for the chirp, the HFM waveform
and two Parsons functions (a = 0.1 and a = 1). The superiority of the chirp, in terms of Doppler
tolerance, is evident based on the increased sidelobe levels observed in the response of the HFM
and the Parsons function, which gives this peculiar "bow tie" aspect, with wings that are more or
less shrunk depending on the curvature. Nevertheless, Figures 3.11(c) and 3.11(d) demonstrate
that the Doppler tolerance of the Parsons function can be controlled by the parameter a. The
Parsons waveform, due to its increased agility compared to the HFM waveform, offers new
possibilities in waveform design but its performance still needs to be evaluated. The AF is the
basis for assessing the capacity of a waveform in a radar context. To this end, it can be used to
calculate the Cramér-Rao Lower Bounds (CLRB) presented hereafter.

4. designates a complex-valued function of one or more complex variables, which is complex differentiable in
a neighbourhood of each point in its domain.
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(a) νd = 0. (b) νd = 20kHz.

Figure 3.10: Doppler cut of the AF for the Parsons waveform (T = 50µs, B = 100MHz, a = 1).

(a) AF of a chirp. (b) AF of a HFM waveform.

(c) AF of a Parsons function (a = 0.1). (d) AF of a Parsons function (a = 1).

Figure 3.11: Ambiguity Functions of various waveforms (T = 50µs, B = 100MHz).
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3.2.3 The Cramér-Rao Lower Bat Bound

Mathematical formulation

The Cramér-Rao Lower Bound define a lower bound on the variance of an unbiased estimator.
In the case of radar waveforms, it is relevant to evaluate the accuracy of the joint-estimator of
delay τ and Doppler νd. These bounds are derived from the Fisher Information matrix [22][23]
as

CRLB(τ) = − JAF (2, 2)
SNR det(JAF ) , (3.16)

CRLB(νd) = − JAF (1, 1)
SNR det(JAF ) , (3.17)

where SNR represents the Signal-to-Noise Ratio and JAF is the matrix of the second order
derivatives of the squared amplitude of the AF that can be written as follows:

JAF =

∂2|χ(τ,νd)|2
∂τ2
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∂τ∂νd
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(3.18)

To calculate the elements of JAF , the following equations can be calculated [20][22]:
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The detailed calculations of CLRB for the chirp and the HFM are not discussed in this manuscript
but can be found in [20]. Their respective JAF matrices are still given in Appendix D. This sec-
tion focuses on the calculation of the CLRB for the Parsons function following the same logic
as the one proposed in [20] and described below. Let

u(t) = e
2iπf0
f0−af1

[
λβ

t
T +(1−a)f1t

]
, (3.23)

The Ambiguity Function of the Parsons waveform can be written as

χ(τ, νd) = 1
T

∫ T−τ

0
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}
u(t)Rect

{
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}
u(t+ τ)e2iπνdtdt. (3.24)
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The first stage consists in deriving eq. (3.24) with respect to νd

∂χ(τ, νd)
∂νd

= 1
T

∫ T−τ

0
u(t)u∗(t+ τ)2iπte2iπνdtdt, (3.25)
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Therefore, evaluating these derivatives for (τ, νd) = (0, 0) gives
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By observing that χ∗(τ, νd)|τ,νd=0 = 1 and by replacing eq. (3.27) and (3.28) in eq. (3.22), a first
element of the JAF matrix is obtained as
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Because the derivatives of the ambiguity function with respect to νd do not depend on the
waveform design, the previous result is the same for any type of waveform with unit energy and
rectangular amplitude modulation. The derivatives of the AF with respect to τ are obtained by
applying the chain rule ∂f(u)
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∂x , leading to
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The first order derivative with respect to τ is obtained by the following equation (Proof in
Appendix D)
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and by inserting eq. (3.23) and (3.30) in (3.32), we get
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Concerning the second order derivative with respect to τ , it can be written as (Proof in Appendix
D)

∂2χ(τ, νd)
∂τ2 = 1

T

∫ T−τ

0
u(t)∂

2u∗(t+ τ)
∂τ2 e2iπνdtdt− 1

T
u(T − τ) ∂u

∗(t+ τ)
∂τ

∣∣∣∣
t=T−τ

e2iπνd(T−τ)

− 1
T
u∗(T )∂u(T − τ)e2iπνd(T−τ)

∂τ

= c′ − a′ − b′, (3.34)

where a′, b′ and c′ evaluated at (τ, νd) = (0, 0) give respectively

a′|τ,νd=0 = −2iπf0
T (f0 − af1)

[
λ

ln(β)
T

β + (1 − a)f1

]
, (3.35)

b′|τ,νd=0 = −2iπf0
T (f0 − af1)

[
λ

ln(β)
T

β + (1 − a)f1

]
, (3.36)

c′|τ,νd=0 = −2iπf0
T (f0 − af1)

[
λ

ln(β)
T

(β − 1)
]

− 4π2f2
0

T (f0 − af1)2

[
λ2 ln(β)

2T (β2 − 1) + (1 − a)2f2
1T + 2λ(β − 1)(1 − a)f1

]
. (3.37)

Therefore, eq. (3.34) writes

∂2χ(τ, νd)
∂τ2

∣∣∣∣∣
τ,νd=0

= − 4π2f2
0

T (f0 − af1)2

[
λ2 ln(β)

2T (β2 − 1) + (1 − a)2f2
1T + 2λ(β − 1)(1 − a)f1

]

+ 2iπf0
T (f0 − af1)

[
λ

ln(β)
T

(β + 1) + 2(1 − a)f1

]
, (3.38)

Then, equation (3.19) leads to

∂2|χ(τ, νd)|2
∂τ2

∣∣∣∣∣
τ,νd=0

= − 8π2f2
0

T (f0 − af1)2

[
λ2 ln(β)

2T (β2 − 1) + (1 − a)2f2
1T + 2λ(β − 1)(1 − a)f1

]

+ 8π2f2
0

T 2(f0 − af1)2 [λ(β − 1) + (1 − a)f1T ]2 + 2
T 2

= 8π2f2
0

T 2(f0 − af1)2λ
2(β − 1)

[
β − 1 − ln(β)

2 (β + 1)
]

+ 2
T 2 . (3.39)
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Because the anti-diagonal terms in eq. (3.20) and (3.21) are equal, only the calculation of eq.
(3.20) is detailed. The second order derivative of the AF with respect to νd and τ can be easily
derived from eq. (3.32) which gives

∂2χ(τ, νd)
∂τ∂νd

= 1
T

∫ T−τ

0
u(t)∂u

∗(t+ τ)
∂τ

2iπte2iπνdtdt− 1
T
u(T − τ)u∗(T )2iπ(T − τ)e2iπνd(T−τ).

(3.40)
Then,

∂2χ(τ, νd)
∂τ∂νd

∣∣∣∣∣
τ,νd=0

= 4π2f0
T (f0 − af1)

∫ T

0
t

[
λ ln(β)
T

β
t
T + (1 − a)f1

]
dt− 2iπ

= 4π2f0
(f0 − af1)

[
λβ − λ

ln(β)(β − 1) + T (1 − a)f1
2

]
− 2iπ. (3.41)

From eq. (3.27), (3.33) and (3.41), the anti-diagonal terms can be written as

∂2|χ(τ, νd)|2
∂τ∂νd

∣∣∣∣∣
τ,νd=0

= ∂2|χ(τ, νd)|2
∂νd∂τ
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= 4π2f0
(f0 − af1)

[
2λβ −

( 2
ln(β) + 1

)
(β − 1)λ

]
. (3.42)

Finally, the matrix (3.43) is obtained from eq.(3.29), (3.39) and (3.42) for the Parsons waveform:

JAF, Parsons =



8π2f2
0λ
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]
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2
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]



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
τ,νd=0

(3.43)
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Simulation Analysis

The matrix JAF, Parsons provides access to the CLRB defined in eq. (3.16) and (3.17) for the
Parsons waveform. Nevertheless, the comparison with the linear chirp for a unique pulse with
rectangular amplitude is not possible due to the coupling between delay and Doppler [20] leading
to undefined CLRB. They can still be estimated if we consider a decoupling by calculating the
following expressions [22]

CRLB(τ) = − 1
SNR JAF (1, 1) , (3.44)

CRLB(νd) = − 1
SNR JAF (2, 2) . (3.45)

Since JAF (2, 2) is independent of the waveform, the CLRB over Doppler in a single pulse config-
uration are equal and are thus not displayed. Figure 3.12 displays the corresponding CLRB for
the different waveforms considered in this study. The resulting lower bounds of Parsons wave-
forms for different values of the parameter a are satisfactory for radar purpose, as they match
the capacity of the chirp. The flexibility of the Parsons function is once again visible in the
manner in which the CLRB change according to the curvature. These CLRB are close to that
of a HFM waveform (a = 0.01) or akin to a chirp (a = 3.12).

Figure 3.12: CLRB for delay τ for a unique pulse as a function of SNR for various waveforms.

To validate the CLRB calculation, Monte-Carlo simulations have been computed with the
chirp, the HFM function and different Parsons waveforms. The simulations were realised with
105 runs for varying SNR in the range [0, 30]dB, where the Root-Mean-Square Error (RMSE)
over the estimated delay was computed with the Matched Filter (MF). Figure 3.13 illustrates
the results with the CLRB plotted as dashed lines and the RMSE for the different waveforms
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as solid lines. For all the waveforms, the observed precision is close to their respective CLRB
for SNR larger than 15dB. Moreover, the estimation capacities for the Parsons function are still
verified and quite satisfying because the curvature of the function (parameter a) is linked to
the accuracy in delay estimation. The Parsons function flexibility offers better or similar results
compared to the HFM function at fixed temporal and frequency parameters and can compete
with the chirp in terms of performances.

Figure 3.13: CLRB and RMSE for delay τ , for a single pulse and Monte-Carlo simulations results
with different waveforms as function of the SNR.

The calculation of CLRB can be extended to the case of a pulse train. The calculations in
[20] show that for a given Pulse Repetition Interval, Tr, and a train of Np pulses, the matrix of
the second derivatives of the squared amplitude of the ambiguity function can be written as

JAF,Np =


∂2|χ(τ,νd)|2

∂τ2
∂2|χ(τ,νd)|2
∂τ∂νd

∂2|χ(τ,νd)|2
∂νd∂τ

∂2|χ(τ,νd)|2
∂ν2
d

− 2
3π

2T 2
r (N2

p − 1)


∣∣∣∣∣∣∣∣∣
τ,νd=0

(33)

The CLRB over the delay τ are thus calculated and plotted in figure 3.14 along with the RMSE
obtained with Monte-Carlo simulations. The results are quite similar to the uncoupled estimation
seen before.

In order to complete the description, the Ziv-Zakai bound of the chirp is also plotted along
with the A Priori and Sampling Bounds [24]. The A Priori bound represents an upper bound
for low SNR equal to T 2

12 and it is linked to the fact that the peak output of the MF can be
anywhere in the noisy signal response. The Sampling Bound indicates a lower bound established
with respect to the sampling frequency 1

12F 2
s

. In this case Fs = 2GHz, in order to obtain a clear
result at high SNRs. The Ziv-Zakai Bound is defined to provide a better representation of the
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Figure 3.14: CLRB and RMSE for delay τ , for pulse train of various waveforms as function of
the SNR (Tr = 10T , Np = 10).

feasible precision at every SNR, by combining the behaviour of the A Priori upper bound at low
SNR and the behaviour of the CLRB at high SNR [24].

With the CLRB, the radar capacities of the Parsons function in terms of estimation have
been assessed and the results are quite satisfying, as the Parsons function have similar accuracy
with the chirp, while its flexibility offers an advantage.

3.3 Real Data Experiments

In this section, real tests with the Parsons function are analysed to complement the simu-
lations. Thanks to the ONERA facilities and the radar HYCAM, it has been possible to emit
Parsons waveforms with varying curvatures and to observe the real behaviour of the bio-inspired
function.

3.3.1 Experiment Framework

To begin with, let’s present HYCAM and the experiment parameters. HYCAM is a ground-
based radar from the ONERA [25][26] that operates in the S-band (2 to 4 GHz). Figure 3.15(a)
portrays HYCAM with its two antennas mounted on a turret, as it stands over the ONERA
Palaiseau. Due to its geographical position and the rotating turret, its two antennas, a transmit
antenna and a receive antenna, are able to track targets over a large region. This radar is
employed in a variety of radar projects and serves as a robust testbed for the experimentation
of novel radar concepts that require real data, as it is the case in this thesis.

In the present, HYCAM was used for the transmission of intertwined waveforms, as those
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presented in figure 3.15(b). Three distinct Parsons functions with varying parameter a and a
chirp are successively emitted in order to track the trajectory of aircrafts departing from Orly
airport. Two sets of parameters summarised in the Table 3.2 were employed. Each waveform
lasts T = 5µs and is separated from the next waveform by an interpulse of Tp = 50µs. It follows
that the same waveform is repeated every Tr = 200µs. The analysis of a set of data is presented
to assess the real capacities of the Parsons waveform.

(a) HYCAM with its antennas in horizon-
tal position https://www.onera.fr/en/
demr-research-units.

(b) Example of the waveforms transmitted with
HYCAM (B = 20MHz).

Figure 3.15: Conditions of the real experiments. The interpulse in the right figure is not repre-
sentative of the true parameter to ensure a better visualisation.

Parameters Value
Bandwidth B [2, 20]MHz

Sampling frequency Fs [5, 25]MHz
Pulse duration T 5µs

Interpulse Tp 50µs
PRI Tr 200µs

Parsons parameter a [0.01, 0.1, 1]

Table 3.2: Emission parameters.

3.3.2 Data Processing

The data analysed here concerned the tracking of an Airbus A-320 (HEX code 440128)
departing from Orly airport on 31st May 2024. The plane trajectory, together with the position
of HYCAM, is illustrated in figure 3.16. The aircraft was illuminated for a period of two minutes
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3.3. Real Data Experiments

Figure 3.16: Trajectory of the Airbus A-320 (Hex code 440128) in red with the position of
HYCAM and Orly. Image obtained with Google Earth Pro.

with the different waveforms having a bandwidth of B = 20MHz. This implies that at least
600, 000 pulses were emitted for each waveform.

To correctly process the received data, two major parameters have to be considered. Firstly
and because the waveforms are intertwined, the reception of a single specific waveform is only
possible for a duration of 50µs, which implies a range ambiguity of 7, 5km. Secondly, the transmit
and receive antennas are situated in close proximity to one another, which induces a coupling
effect. In other words, the initial T = 5µs of the reception period corresponds to the emitted
signal and must be ignored. In order to ensure a good readability of the data, the first 10µs
are ignored. The suppression of the polluting coupling results in a blind distance of 1, 5km,
which does not impede the study since the aircraft progresses at greater distances. In light of
the aforementioned considerations, the received signals and their spectrum can be illustrated in
figures 3.17(a) to 3.17(d). These figures display oscillograms of the received normalised amplitude
and spectrum for one of the Parsons waveforms and the chirp. For comparison, the reference
signal is also plotted particularly in regard to the obtained spectrum. The typical hyperbolic
and rectangular behaviour of both waveforms are clearly distinguishable.

The signal processing that follows is the range compression followed by Doppler processing,
which yields the Range-Doppler map described in the introductory chapter (section 2.1.3). This is
conducted with either the matched filter (MF) or the mismatched filter (MMF). The parameters
employed for the computation of the MMFs are Kq = N = 1250 samples and βq = 2dB. An
example of each output is illustrated in figures 3.18(a) and 3.18(b) for a Parsons waveform, with
the target located at 6.1km. It is evident that the Range-Doppler maps exhibit high responses
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(a) Parsons (a = 0.01). (b) Parsons (a = 0.01).

(c) Chirp. (d) Chirp.

Figure 3.17: Received data for the Airbus A-320 with two of the emitted waveforms.

in the zero-Doppler region, which can be attributed to the environmental clutter. This responses
linked to trees, buildings and even the rain can hinder the detection of the target. To enhance
the readability of the Range-Doppler maps, an Extensive Cancellation Algorithm (ECA) [73]
can be implemented. This performs a projection of the range-compressed data onto a subspace
that is orthogonal to the disturbance subspace, which in this case is the Doppler region around
the zero-Doppler. The problem can be written as

Ω̂ = arg min
Ω

||y − XΩ||2, (3.46)

where X is a matrix of size Np ×Nνd that combines the Doppler hypotheses to be rejected and
the range compressed data are denoted y. The values of Np and Nνd correspond to the number of
pulses and the number of rejected Doppler hypotheses, respectively. The solution of the problem
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(3.46) is given by
Ω̂ = (XHX)−1XHy. (3.47)

Therefore, the range compressed data after clutter rejection can be expressed as

yeca = y − X(XHX)−1XHy. (3.48)

Thanks to the ECA, the Range-Doppler maps presented in figures 3.19(a) and 3.19(b) are
obtained. The target response is more clearly visualised, while the clutter has been effectively
rejected. The sidelobes no longer spread in the Doppler axis compared to the figures 3.18(a) and
3.18(b).

(a) Parsons MF. (b) Parsons MMF.

Figure 3.18: Range-Doppler maps of the aircraft for a Parsons waveform (a = 0.01).

(a) Parsons MF. (b) Parsons MMF.

Figure 3.19: Range-Doppler maps of the aircraft for a Parsons waveform (a = 0.01) after clutter
rejection.
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3.3.3 Data Analysis

Now that the data have been processed correctly, the actual response of the Parsons waveform
can be evaluated. Figures 3.20(a) to 3.20(d) illustrate the Range-Doppler maps obtained for each
waveform with a zoom on the target of interest. As in the previous analysis, the response of the

(a) Chirp. (b) Parsons a = 0.01.

(c) Parsons a = 0.1. (d) Parsons a = 1.

Figure 3.20: Range-Doppler maps of the aircraft for the different waveforms after clutter rejec-
tion.

Parsons waveform depends on the parameter a. A pronounced curvature induces a broadening
of the mainlobe, as evidenced in figure 3.20(b). In fact, the target signature is more spread
out along the range axis compared to the others. Nevertheless, the target is clearly detected
with each of the waveforms. Regarding the sidelobes behaviour, the calculation of the MMF
for each Parsons waveform yields the figures 3.21(a) to 3.21(c). The three new Range-Doppler
maps related to the Parsons waveforms exhibit improved sidelobe levels and a target response
close to that of a chirp. The corresponding range profiles are provided in figures 3.22(a), 3.22(b)
and 3.22(c) with the chirp response plotted for comparison. Taking into account the different
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figures and the results obtained, the behaviour of the Parsons waveform thus observed is in
accordance with the simulations. The matched filter and the Range-Doppler processing outputs
are both linked to the curvature of the waveform and the setting of the parameter a, but both
can be improved with the MMF. Moreover, the capacity in terms of delay estimation given by
the CLRB is also verified.

(a) Parsons a = 0.01. (b) Parsons a = 0.1.

(c) Parsons a = 1.

Figure 3.21: Range-Doppler maps of the aircraft computed with the MMF for the Parsons
waveforms after clutter rejection.

An interesting result that can be observed when the plane is progressing, leaving the radar
behind him, is the Doppler signature of one of its reactor. Illustrated in figure 3.23(a), there
is a second peak observable in the negative Doppler values of the Doppler profile obtained at
the estimated range of the target. This can also be distinguished in the Range-Doppler map in
figure 3.23(b).
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(a) Parsons a = 0.01. (b) Parsons a = 0.1.

(c) Parsons a = 1.

Figure 3.22: Range cut of the aircraft response for the Parsons waveforms.

(a) Doppler profile at the target range. (b) Range-Doppler map.

Figure 3.23: Observation of the response linked to the reactor of the aircraft.
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3.4 Conclusion

In this chapter, the path to a bat-inspired radar began with an understanding of bat signal
design, thanks to the study of authentic bat hunting sequences. This led to the introduction
of a bio-inspired waveform capable of mimicking such signals: The Parsons waveform. This
function approaches the flexibility observed in bat waveform design thanks to the parameter
a, which drives the curvature of the instantaneous frequency sweep. Its radar capacities were
then investigated and in comparisons with the chirp and the HFM, the Parsons waveform has
nothing to envy to the classical radar waveforms. In fact, the bio-inspired function showed a
valuable potential as a radar waveform with significant performances illustrated with the CLRB
along with different simulations as well as real experiments using the classical radar processing
techniques.
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Chapter 4

THE PARSONS WAVEFORM IN A RADAR

FRAMEWORK

Now that the capacity to create our own bat-inspired signal is within our grasp, the plasticity
of the Parsons waveform can be implemented in a concrete radar framework. This is precisely
the aim of this chapter, which describes two cases of bio-inspired radar applications. The first
one implements the bio-inspired waveform in order to address one of the main challenges for
the radar community: the spectrum management. The application of the Parsons function in
a multistatic framework is presented, accompanied by evidence asserting its efficiency in such
a configuration. A second use of the Parsons waveform is then investigated, by combining it
with a SCAT adapted to radar. The underlying objective is to estimate the Doppler shift at the
reception in order to compensate it and correct the delay misestimation.

4.1 MultisBatic Application

4.1.1 The Multistatic Principle

The first chapter introduced how a single radar works (see chapter 2), but what if you
consider several (two or more) radars operating, whether in a transmitting or receiving mode,
within a shared area of coverage and separated by large distances when compared to the an-
tenna sizes, as illustrated in figure 4.1? This defines a multistatic radar system according to
the IEEE Standard Radar Definitions [74]. Compared to a monostatic configuration (co-located
transmitter and receiver) or a bistatic configuration (transmitter and receiver separated by a
distance), a multistatic radar system allows for the observation of targets from multiple differ-
ent transmitter-receiver pairs [75]. These different point of views of a singular target facilitate
enhanced target recognition. Another advantage with such a configuration is the improvement
in terms of resolution and parameter estimation [75]. Nevertheless, in a multistatic layout, the
received signal for each radar becomes more complex because it combines the response of the
target to several transmitted signals. Consequently, interference mitigation represents a major
challenge in the design of transmitted waveforms for a multistatic framework. The objective is to
minimise the impact of one radar on another through a careful waveform design. In addition, the
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Figure 4.1: Scheme of a multistatic radar configuration. Each radar emits a distinct signal, which
is then reflected back by the target in varying directions. Consequently, each arrow represents a
back-scattered signal, which complicates the reception for each radar.

increasing spectral congestion, coupled with the necessity for enhanced or at least maintained
capabilities, such as a finer resolution, drive the radar community to find innovative solutions in
order to efficiently use the available spectral resources [3], and represent additional constraints
for multistatic radar system design.

Waveform diversity is one of the study axis largely exploited in the past years to address
the aforementioned issues [4]. In particular, the design of waveforms is of great interest for
multistatic configuration and multi-beam radar systems. The primary objective in these cases
is to identify radar waveforms with valuable autocorrelation properties, which allows the con-
trol of the sidelobe level. Additionally, it is essential to ensure good orthogonality between the
different considered waveforms to allow multiple systems to operate simultaneously without mu-
tual negative impact. Concerning the orthogonality requirement and the reduction of mutual
interferences, a number of options are available, such as Time-Division Multiplexing (TDM),
Frequency-Division Multiplexing (FDM) or Code-Division Multiplexing (CDM), each with its
advantages and disadvantages [76]. FDM involves a multi-band functioning, which definitely
does not address the issue of spectrum congestion. In TDM, each radar emits alternatively its
own waveform, thus avoiding overlap between transmissions. As a consequence, the capabilities
of the radar antennas are not fully used [76]. Regarding CDM, the Doppler intolerance is fre-
quently highlighted and investigated [77][78]. A different approach is to use existing waveforms
while widening the waveform diversity by adjusting temporal and frequency parameters. This
axis is explored in [6], where the author evaluates the orthogonality and Doppler tolerance of
different sets of Piecewise Linear Frequency Modulated (PLFM) waveforms.

In order to pursue the biomimicry track and in light of its demonstrated value as a radar
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waveform, the Parsons waveform and its flexibility could potentially benefit a multistatic con-
figuration. In particular, the aim of this section is to transmit several signals within the same
frequency band, while maintaining satisfying radar performance. The performance of systems
transmitting the proposed waveform or different chirp-based waveforms is assessed by measur-
ing the isolation level to assure the orthogonality between waveforms, Doppler tolerance and
sidelobe levels. Afterwards, improvements in the sidelobe levels of the considered waveforms
are discussed with the application of the mismatched filter and its influence on the isolation
properties and Doppler tolerance.

4.1.2 A Simulated Multistatic Environment

To evaluate the efficacy of the Parsons function in a multistatic environment, its use in
conjunction with different chirp modulations is observed. The considered chirps are issued from
[6], where the author compared several sets of PLFM waveforms triplets, or in other words,
combinations of LFM subchirps. The objective was to incorporate at least two Parsons wave-
forms to enhanced the waveform diversity, and therefore the number of available transmitters,
while maintaining the radar performance. The studied configuration corresponds to the first set
presented in [6], where an up-chirp, a down-chirp and a combination of up- and down-chirp
were confronted. All the waveforms share the same pulse duration, T = 50µs, and the same
bandwidth, B = 100MHz, which results in a constant time-bandwidth product of BT = 5000.
The sampling frequency is set to Fs = 300MHz. Note that the starting frequency, f0, is 110MHz.
Figure 4.2 illustrates the frequency evolution for the up-down-chirp, up-chirp, down-chirp, Par-
sons down- and up-sweep, which are often designated respectively by the following symbols ∧,
⧸, ⧹, and in the remainder of this section for ease of reading.

The Parsons function appears as a promising candidate for such a configuration, as it com-
bines the hyperbolic modulation properties [20] with a greater flexibility. A visible benefit for a
multistatic configuration, is the existence of several different Parsons waveforms within the same
bandwidth and duration thanks to the parameter a. This offers a certain degree of adaptability
to a variety of configurations. However, the known disadvantages discussed in the chapter 3 of
such a frequency modulation are the relatively high sidelobe levels linked to the curvature of
the instantaneous frequency and a lower Doppler tolerance in narrowband processing compared
to a linear modulation (chirp) [20]. The implementation of the Parsons function should not be
detrimental to the radar capabilities by causing the masking of low-energy targets or misestima-
tion of target range due to Doppler shifts. In order to optimise the response of the bio-inspired
waveform, the mismatched filter presented in chapter 2 could be a potential solution to mitigate
the sidelobe level and improve target detection.

The following study thus consists of evaluating the isolation between the different waveform
pairs, the Doppler tolerance of the Parsons function and the effect of the mismatched filter on
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the sidelobe level but also regarding the isolation.

Figure 4.2: The simulated multistatic environment through the instantaneous frequencies of the
considered waveforms (B = 100MHz, T = 50µs) [79].

4.1.3 Radar Processing and Evaluation

Mismatched Filter Parameters

The MMF has already been described in the introductory chapter (see section 2.1.3), but let
us recall that the optimisation problem under study writes

min
q

||Fy||22,

s.t. sHq = sHs,

qHq ≤ 10
βq
10 sHs.

(4.1)

The parameters of the problem are set as follows: the filter length is Kq = N (where N is the
length of the signal) and the Loss-in-Processing Gain (LPG) is fixed to βq = 2dB. Regarding
the filter length, it has been demonstrated that selecting Kq > 3N does not necessarily improve
the performance and is linked to increased computational time [80].

The MMF problem stated in (4.1) is convex and can be solved efficiently with the adapted
software such as the CVX toolbox, a Matlab package [81]. Because the optimisation procedure
is iterative, the computation can become costly for increasing problem size [19]. Even though
the computation can be done offline, an algorithm based on a primal-dual approach [5] is used
to calculate the MMFs in order to improve the computational time, when optimising the ISL
criterion. For instance, for N = 1501 samples, computation takes in average a few seconds,
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whereas a conventional convex solver like the CVX toolbox, can take up to 45 minutes to
provide the same results.

Performance Metrics

Since the beginning of this section, the terms orthogonality and isolation have been mentioned
and may require a brief explanation. When working in a multistatic environment with multiple
transmissions in a shared bandwidth, orthogonality or quasi-orthogonality among waveforms is
strongly advised. The principle of orthogonality between two waveforms indicates how much
they correlate with each other. Let us consider the cross-correlation function of two signals si
and sj

χi,j(τ, νd) =
∫
s∗
i (t)sj(t+ τ)e2iπνdtdt. (4.2)

The isolation Ii,j between si and sj is defined as the ratio between the peak of the amplitude of
the autocorrelation function and the cross-ambiguity function [6]

Ii,j(τ, νd) =
∣∣∣∣∣ χi,i(0, 0)
χi,j(τ, νd)

∣∣∣∣∣ =
∣∣∣∣∣ χj,j(0, 0)
χj,i(−τ, νd)

∣∣∣∣∣ . (4.3)

The minimum isolation level is then

Imini,j = |χi,i(0, 0)|
maxτ,νd |χi,j(τ, νd)|

. (4.4)

This level provides an insight on how an echo from a target illuminated by a transmitter j will
interfere with another transmitter i. The lower the isolation level is, the closer to orthogonality
the waveforms are. The figure 4.3(a) plots the auto-correlation of the up-chirp and the figure
4.3(b), its cross-correlation with the down-chirp. In this configuration the isolation level is Imin =
37.44dB.

Another useful metric when considering targets with a certain velocity is the filter mismatch
loss due to the Doppler shift, which can be evaluated as [6]

Mi(νd) = maxτ |χi,i(τ, νd)|
|χi,i(0, 0)| . (4.5)

This feature measures the loss in decibels that can be observed in the output of the MF or
the MMF. It is generally degraded when considering orthogonal waveforms obtained with phase
coding and constant for the chirp.
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(a) Auto-correlation of a chirp. (b) Cross-correlation of an up- and down-chirp.

Figure 4.3: Auto-correlation (left) and cross-correlation of up- and down-chirps (T = 50µs,
B = 100MHz). Here, isolation corresponds to the maximum cross-correlation.

4.1.4 Simulation Results

The Isolation Level

To begin with, the orthogonality of the set of waveforms presented in figure 4.2 is evaluated
through the isolation level of each pair of waveforms. With regard to the Parsons function,
notice in Figure 4.2 that the parameters a shown for both the up- and down-sweep have been
set to optimise the isolation level with respect to the other functions. Parameters are selected to
favour the isolation between both Parsons waveforms and the up-down-chirp pairs with a desired
isolation level close to 30dB and the objective not to reduce the isolation between Parsons and
chirp waveforms with slopes of the same sign too much.

Figure 4.4(a) illustrates the process for selecting the parameters a, with the isolation level
plotted as a function of the parameter a for the different waveforms cross-correlated with the
Parsons down-sweep. This figure shows that the pairs ⧹- and ∧- are more critically impacted
by the choice of a. Indeed, the closer a gets to the ratio f0

f1
= 11, the closer the Parsons

down-sweep is to a down-chirp. Consequently, the degree of isolation level decreases as the two
waveforms become increasingly correlated. Concerning the ∧- pair, the behaviour of the Parsons
waveform implies a more subtle response. When a is low, which implies a pronounced curvature,
the initial portion of the Parsons down-sweep correlates more with the initial part of the down-
chirp component because the two waveforms share a number of intersection points in the time-
frequency-space. The phenomenon is illustrated in figure 4.4(b). For a visual representation, the
aforementioned intersection points are illustrated with the Parsons up-sweep and the up-chirp
component of the up-down chirp signal as the problem is symmetric. It is then visible that the
portion until 10µs will correlate in this case. As the Parsons waveform approaches a chirp, the
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whole signal becomes more linear and correlates less with this portion of the up-down chirp as
the number of intersection points decreases. The explanations presented in this paragraph can
also be applied to the Parsons up-sweep as the results are analogous.

(a) Isolation level as function of a between the Par-
sons down-sweep and other waveforms [79].

(b) Instantaneous frequencies of Parsons waveform
and the up-down-chirp.

Figure 4.4: (a) Evolution of the isolation level between a Parsons function and other chirp-based
waveforms (B = 100MHz, T = 50µs). (b) Illustration of the cross-correlation behaviour of ∧ −
and ∧ − pairs.

Table 4.1 provides a summary of the isolation levels Ii,j obtained with each pair of waveforms
(si, sj). A result given in [82] and verified in [6] showed that the isolation level improves with
the time-bandwidth product BT but also that up- and down-chirps exhibited the best isolation
performance. The second assertion remains true for the Parsons up- and down-sweep, as the
isolation between them is 38.27dB, but is also preserved for Parsons and chirp waveforms with
opposed slopes, their isolation values being of 36.74dB and 37.4dB. Figure 4.5(a) shows the
cross-correlations output for the Parsons down-sweep. Signals with opposite frequency rates
exhibit a relatively flat cross-correlation, hence a higher isolation level. It is then observable
that the highest cross-correlation values, i.e. the lowest isolation levels, are effectively due to
the down-chirp portion (for the blue curve) or the entire signal (yellow curve) sweeping with a
decreasing rate, similar to the Parsons down-sweep.

Obviously, Parsons and chirp waveforms sweeping in the same way exhibit lower isolation
levels, which could be improved (> 20dB) by considering a higher time-bandwidth [82]. This
is supported by the figure 4.5(b), which depicts the evolution of the isolation level of this two
pairs of waveforms as a function of the parameter a and the time-bandwidth product BT . In
Figure 4.5(b), the pulse duration T is varied from 10µs to 100µs with a fixed bandwidth of
B = 100MHz, which gives a BT varying between 103 and 104. The pair ⧹ − in particular
shows a strong link with the time-bandwidth product for relatively low values of a. Note that
the light blue and yellow lines in Figure 4.4(a) can be extracted from the top and bottom
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si sj Ii,j [dB] Iqi,j [dB] Ii,qj [dB]
∧ ⧸ 32.13 30.09 33.02
∧ ⧹ 32.13 30.09 33.02
∧ 30 29.45 30.90
∧ 29.96 25.01 31.73
⧸ ⧹ 37.44 37.79 37.79
⧸ 36.74 38.21 37.21
⧸ 17.19 15.95 15.94
⧹ 18.09 17.05 17.03
⧹ 37.4 38.05 37.66

38.27 37.22 37.67

Table 4.1: Isolation levels for different pair of waveforms. The third column represents the iso-
lation level between a pair (si, sj). The fourth and fifth columns account respectively for the
isolation level between the pair (qi, sj) and (si, qj), where qi and qj are the MMF of the corre-
sponding waveform [79].

surfaces respectively for BT = 5000. Overall, the isolation level investigation is encouraging and
the Parsons function exhibits valuable orthogonality properties regarding chirp waveforms, thus
confirming its application as an additional option for waveform diversity.

The MMF and its Contributions

The hyperbolic behaviour of the Parsons function leads to high sidelobe levels, as illustrated
earlier in Figure 3.7. Therefore, the use of the MMF could be of interest, should the orthogonal-
ity be sufficiently preserved. The isolation levels obtained using the MMF, calculated for each
waveform, are provided in Table 4.1. The fourth column indicates the isolation level, Iqi,j , be-
tween the MMF of one waveform, qi, and a second waveform, sj (j ̸= i), whereas the fifth column
indicates the isolation level, Ii,qj , between the first waveform, si, and the MMF of the second
waveform, qj . The variations of isolation levels between the first and the two other columns
can be attributed to the redistribution of energy within the spectrum of the computed MMFs.
Figures 4.6(a) and 4.6(b) depict the spectrum of the waveforms used in this investigation and
of their MMFs spectra respectively. It is then noticeable that the energy distribution of each
waveform has been modified, which may influence the cross-correlations. This will have a negli-
gible impact on the isolation level of waveforms with opposite frequency rates as confirmed by
the values given in Table 4.1. In contrast, it can also increase the energy coupling in the time-
frequency domain like for the pair ∧− , where approximately 5dB are lost with the MMF of the
up-down chirp. Indeed, the spectrum of this MMF is close to the one of the Parsons up-sweep. It
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(a) Cross-correlation output for the Parsons down-
sweep with different waveforms.

(b) Isolation level as function of BT and a [79].

Figure 4.5: (a) Isolation levels summarised in Table 4.1 for the Parsons down-sweep. (b) Isolation
level for two pair of waveforms ∧ − and ⧹ − for varying BT and a (B = 100MHz, T ∈
[10; 100]µs, a ∈]0; 11[).

may be important to consider these results when computing the MMF of a waveform. However,
the results are encouraging as the variations between Ii,j and Iqi,j or Ii,qj are on average only
1dB. This indicates that the MMF manages to preserve the orthogonality of the set.

(a) Waveforms spectrum. (b) MMFs spectrum.

Figure 4.6: Comparison between the spectrum of the investigated waveforms and the spectrum
of their MMFs.

The primary objective of the MMF, namely the sidelobe level reduction, is then to be inves-
tigated. Table 4.2 gives the ISLR and PSLR values obtained with the matched and mismatched
filters for each waveform. These results demonstrate that for the Parsons function, the MMF
yields promising results at a level quite similar to that obtained for the chirp. Figure 4.7 il-
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Figure 4.7: Outputs of the Matched Filter and Mismatched Filter minimising the ISL criterion
for the Parsons down-sweep (a = 3.12). A zoom on the mainlobe illustrates the widening of the
mainlobe operated with the MMF (LPG compensated) [79].

lustrates these improvements for the Parsons down-sweep with a zoom on the mainlobe. The
LPG is compensated in the zoom to better appreciate the difference in width. The resolution
degradation is by a factor of 1.3 measured 3dB below the mainlobe peak.

si ISLRi [dB] ISLRq0i
[dB] PSLRi [dB] PSLRq0i

[dB]
∧ -1.84 -3.61 -13.7 -21.52
⧸ -9.7 -13.02 -13.7 -32.21
⧹ -9.7 -13.02 -13.7 -32.21

-6.54 -13.01 -11.45 -31.88
-7.34 -13.02 -12.32 -32.01

Table 4.2: ISLRs and PSLRs calculated from the MF and MMF outputs of the different wave-
forms [79].

The possibility of designing the MMF to optimise both autocorrelation and cross-correlation
properties has been studied but the performance were not sufficient compared to the optimisation
of the autocorrelation alone. In fact, this result has been documented in [19] for mismatched
filters applied to MIMO radar. If two signals, si and sj , are considered, the problem (4.1) could
be written as follows:

min
q

||Fyi,i||22 + ||Iyi,j||22,

s.t. si
Hq = si

Hsi,

qHq ≤ 10
βq
10 si

Hsi,

(4.6)
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where yi,j = Λ∗
q(sj)q and I is the identity matrix. The PSLRs obtained from this optimisation

problem are considerably lower than those achieved through a simple optimisation (4.1). For
instance, optimising the MMF for an up-chirp and its cross-correlation with the Parsons up-
sweep yields a PSLR = 21.49dB, which is a loss of 10.72dB compared to the PSLR in Table
4.2. Moreover, the gain in isolation is only of 1.48dB. This has been verified for all the possible
waveform pairs shown in this set, and would be an unsuitable approach in any case.

The Doppler Tolerance

The next objective of the study is to examine the influence of the Doppler effect on the
Parsons function. The linear chirp is appreciated for its Doppler tolerance at narrowband fre-
quencies, whereas the hyperbolic chirp is less tolerant [20]. Figure 4.8(a) shows the Doppler
mismatch loss experienced by the up-down chirp, the up-chirp and the Parsons down-sweep
(∧,⧸, ) for Doppler varying from 0 to 160kHz (only positive Doppler values are plotted, but
the behaviour is symmetrical). The solid lines correspond to the outputs of the MF and the
dashed lines correspond to the outputs of the MMF. With regard to the chirp waveforms, the
Doppler mismatch loss has already been documented in [6] but it is visible that with the MMF,
apart from the 2dB LPG, the behaviour remains globally similar and the mismatch loss is still
valuable. For the Parsons function, the MMF can mitigate the Doppler mismatch effect at high
Doppler. This is due to the narrowing of the mainlobe achieved by the mismatched filter, as can
be seen in Figure 4.8(b). Moreover, the mismatch loss observed for both the MF and MMF of
the Parsons down-sweep are better than the mismatch loss obtained with ∧ for a large range
of Doppler. Note that the Parsons up-sweep (a = 0.036) gives similar results. The ripple effect
discernible in figure 4.8(a) for each mismatch loss is attributable to the sampling frequency. As
the Doppler induces a delay shift in the correlation output, the maximum is likewise shifted and
may fall between two sampling points.

4.1.5 Discussion

The above observations demonstrate the potential of bio-inspired waveforms for radar appli-
cations and in particular for multistatic configurations. The orthogonality between the Parsons
function and other waveforms has been validated through significant isolation level. Although
the Parsons function is a hyperbolic-like modulation and therefore less Doppler tolerant than
the usual chirp, it offers a control of its tolerance and isolation level thanks to the parameter
a. It is thus more flexible than the classic HFM function, especially in a fixed bandwidth con-
figuration, and has valuable capabilities, comparable to those of the chirp. The implementation
of the MMF has once again demonstrated its value for the Parsons waveform. It reduces the
sidelobe level, hence increasing the target detection, while maintaining the orthogonality of the
evaluated waveforms set. On the Doppler side, compared to the up-down chirp, the Parsons
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(a) Doppler Mismatch Loss for different waveforms
as function of Doppler.

(b) MFs and MFFs outputs for a Parsons down-
sweep (a = 3.12) in different Doppler configura-
tions.

Figure 4.8: Doppler mismatch loss results with different waveforms of the set. The Parsons up-
sweep and the down-chirp ( and ⧹) are not represented but the results are similar to that of
their inverted versions [79].

waveform still demonstrated a much higher resilience to Doppler mismatch loss. Moreover, the
MMF may help mitigating this loss on certain range of Doppler. The difficulty when facing
Doppler with a hyperbolic-like function such as the Parsons function (or the HFM) is to handle
the Continuous Frequency (CF) component as stated in Chapter III. In fact, a hyperbolic-like
function can be seen as the sum of a Frequency Modulated (FM) component and a CF second
part. The latter is more predominant as the curvature of the frequency modulation increases,
masking the FM response and thus affecting the output of the MF or the MMF. This effect was
discussed in [59] and it was shown that a filter bank model like the Spectrogram Correlation
And Transformation receiver (SCAT) [27] could be more robust to this CF component.
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4.2 Doppler Estimation

In addition to the classical radar processing techniques employed thus far, is it possible
that the combination of a waveform and a processing method both bio-inspired may offer new
perspectives for radar? The idea here is to combine the Parsons waveform with a bio-inspired
processing approach for a Doppler estimation application. Still related to bat, the SCAT (Spec-
trogram Correlation and Transformation receiver) [27] can take advantage of the hyperbolic
behaviour of the Parsons function to estimate the Doppler of a target, thereby correcting range
misestimation. This section presents an exploratory work based on this hypothesis, together
with simulations to support the discussion.

4.2.1 The Concept

The SCAT, a computational model of the bat auditory system, and the ability of bats to
estimate Doppler were introduced in the first chapter (sections 2.2.3 and 2.2.3). In particular, it
is known that bats using constant frequency signals are able to sense the Doppler shift induced
by their flight and the fluttering targets. Concerning the Parsons function, it has been shown
that the curvature emphasises the effect of the constant frequency portion of the signal. Driven
by the parameter a, a strong curvature produces QCF signals where the quasi-constant frequency
portion of the signal hinders the MF output. Instead of relying only on the delay estimation,
mostly linked to the frequency modulated part of the waveform, the Parsons waveform may be
of interest for Doppler estimation. In the same way that FM bats, such as the common noctule,
use QCF search signals to detect and estimate the Doppler of a potential target [18], the Parsons
function may offer the same capabilities for radar. Using the cochlear block of the SCAT, the
sensitivity around the constant frequency component in strongly hyperbolic Parsons waveform
could be useful for evaluating the Doppler of targets. This can help discriminate between target
and clutter and correct for the misestimation of delay.

As a reminder, the cochlear block of the SCAT mimics the cochlea (hence the name) thanks to
a bank of M parallel band-pass filters with centre frequencies fi, i = 0, ...,M −1 and bandwidth
Bi usually arranged in a linear or hyperbolic scale. For this study, M = 2001 Butterworth filters
are considered each with a bandwidth of Bi = 1MHz. The filters are hyperbolically spaced
between 10 and 110MHz, which means that the centre periods of the filters are linearly spaced.
Figure 4.9(a) represents the obtained filter bank, where the hyperbolic spacing of the filters can
be observed. The output of the cochlear block is similar to that of a spectrogram as outlined
in figure 4.9(b). The SCAT is often computed for its ranging performances and its ability to
resolve close targets [27][55]. A radar version has even been documented in [10], nevertheless,
the Doppler information is not often investigated. In response, the fine frequency segmentation
offered by the hyperbolic spacing in the cochlear filter bank could be used as an advantage, since
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(a) Cochlear filter bank. (b) Output of the Cochlear block.

Figure 4.9: Illustration of the hyperbolically arranged filters in the cochlear block (one tenth of
the filters are represented for clarity). The output of the cochlear block is given for a Parsons
waveform (B = 100MHz, T = 50µs and a = 0.1) and its echo delayed by τ = 50µs.

the frequency region related to the CF component should be more sensitive to Doppler. The
spectrum obtained with the cochlear block can be observed in figure 4.10(a) and compared with
the classic spectrum obtained with a fast Fourier transform in figure 4.10(b). In both cases, the
maximum energy is obtained around the end frequency, which thus appears to be more sensitive
to the Doppler shift. The hyperbolic behaviour typical of the Parsons waveform is preserved
within the cochlear block and the resulting spectrum. Moreover, such an observation would not
be possible with the flat spectrum of a chirp.

(a) Cochlear block spectrum. (b) Spectrum of the emitted signal.

Figure 4.10: Comparison between the cochlear spectrum and the Fourier spectrum. The output
of the cochlear block is given for a Parsons waveform (B = 100MHz, T = 50µs and a = 0.1) and
its echo delayed by τ = 50µs.
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Two Doppler estimators are thus evaluated based on the cochlear spectrum behaviour. Figure
4.11 depicts the process with an overview of the estimators along with a noisy version to visualise
the impact of noise. The first estimator ν̂d,1 estimates the frequency offset between the two signals
by observing the difference in the first couple of frequency to get the same amplitude level in
both spectrum.

ν̂d,1 = arg min
νd

||S(f, 0) − S(f, νd)||2, (4.7)

where S designates a spectrum. In the example illustrated in figure 4.11, the difference is mea-
sured at an amplitude close to 0.6. The second estimator ν̂d,2 estimates the Doppler from the
difference between the magnitude peak in the spectrum of the original signal and its echo.

ν̂d,2 = arg max
f

|S(f, 0)| − arg max
f

|S(f, νd)|. (4.8)

Figure 4.11: Doppler estimators based on the cochlear spectrum of a signal and its echo.

4.2.2 Simulations and Results

In order to evaluate the Doppler estimation with the bio-inspired waveform and the cochlear
block, Monte-Carlo simulations have been computed at varying SNR with 500 trials each. Two
Parsons function with a duration of T = 50µs and a bandwidth of B = 100MHz are being
compared. The first one is close to a chirp with an almost linear behaviour (a = 3.12) and the
second Parsons function has a more pronounced curvature (a = 0.1).

The resulting estimations are plotted in figure 4.12(a) for the two Parsons waveforms with
a = 3.12 in solid lines and a = 0.1 in dashed lines. The true Doppler is νd = 70kHz. First
observations, the more curved or hyperbolic the waveform, the more precise is the estimation of
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Doppler at low SNRs. This comes from the fact that the energy of the signal is concentrated in
the final frequency portion, which is less drown in the noise as the curvature of the instantaneous
frequency increases. For the Parsons waveform with a = 3.12, it seems that the estimator ν̂d,1
is better than the second estimator ν̂d,2 at lower values of SNR (<20dB). This could be linked
to its spectrum, because with a = 3.12, the instantaneous frequency is more linear and thus the
QCF component does not have a sufficient energy to assure a valuable estimation. Concerning
the other waveform, the results appears inverted for SNR<0dB. This observations is confirmed
in figure 4.12(b), where the RMSE on the Doppler estimation is plotted. Overall, the Doppler
estimation is valuable as we can approach an error close or inferior to 1kHz.

(a) Doppler estimates as function of the SNR. (b) RMSE on the Doppler estimates as function of
the SNR.

(c) RMSE on the corrected delay with two Parsons
waveforms for varying SNR.

Figure 4.12: Results of the Monte-Carlo simulations for the Doppler estimation. The true Doppler
is νd = 70kHz.

This Doppler estimation not only provides an information on the target velocity but can also
help to reduce the error in the delay estimation. The figure 4.12(c) illustrates the RMSE on the
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delay estimation for the MF before (green colour plot) and after correction with the estimated
Doppler. Again the two Parsons waveforms and their estimators are compared. The given results
show a clear improvement in the delay estimation. Note that for the second estimator for a = 0.1,
the line stops at 25dB because the error is null and the plot scale is set to logarithmic. Overall,
the simulations show a real possibility in a Doppler estimator based on the Parsons function
and the SCAT.

4.3 Conclusion

This concludes the chapter on the application of the Parsons waveform in different radar
frameworks. The multistatic use of the Parsons waveform shows that biomimicry has the po-
tential to contribute significantly to the solution of the spectrum management challenge, while
offering a concrete application of the Parsons signal. Although, we are a long way from the
capacity of bats to evolve by hundreds in close vicinity, the Parsons waveform can increase the
waveforms diversity and thus the number of users. The next step would be to test it in real con-
ditions to check the reliability of the results. Furthermore, the capabilities of the bat-inspired
waveform are really significant, particularly when combined with known radar processing like
the Mismatched Filter, which confirms the results of the previous chapter. On another note, the
combination with a bio-inspired processing like the SCAT could be really valuable to use the
Parsons function to its full potential. In fact, the Doppler estimation investigated could reduce
the error in delay estimation. Moreover, this would be another step towards a bat-inspired radar
system. Obviously, further research is needed and only real tests can validate the hypothesis
observed here, but the simulations showed an interesting potential.
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Chapter 5

THE CUSUM: AN ALGORITHM TO

DETECT THE PRESENCE OF AN

UNKNOWN SIGNAL

As promised, the final chapter is entirely dedicated to the Cumulative Sum (CuSum) algo-
rithm. Introduced in the Chapter 3, the extraction of pulses within bat echolocation signal led
to the implementation of this particular change point detection algorithm. Initially computed
for this preliminary study on bat signals, the results obtained were sufficiently satisfying and
promising to justify extending the application of the CuSum algorithm to radar purposes. This
chapter details the motivation behind the choice of the CuSum as an algorithm for the detection
of unknown radar signals. The mathematical and statistical background are then furnished to
finally appreciate the functioning of the CuSum. The explanations of its operational principle,
and applications to both simulated and real data are thus presented.

5.1 Story of an Algorithm

5.1.1 CuSum begins

As previously stated in the Chapter 3, the analysis of bat waveforms required the examination
of their signals, in particular hunting sequence as the one displayed in figure 5.1. Doing such
a study with only a visual approximation based on spectrograms and extracted instantaneous
frequencies worked in the first place but this remained a coarse approximations. Also, this
task would deserve being automated. Therefore, the necessity arose for an algorithm capable
of extracting pulse-by-pulse bat signals in order to correctly retrieve temporal and frequency
parameters and to facilitate the analysis. Hence, appears the great saviour: the CuSum algorithm.

The initial inspiration came from the work of Cobos in [83]. In this paper, the author at-
tempts to detect and spatially localise an acoustic source of interest using a Wireless Acoustic
Sensor Networks (WASN) and the CuSum algorithm. But what does this algorithm represent?
The Cumulative Sum algorithm, or logically abbreviated to CuSum, was firstly introduced by
Page [29]. It is among the most commonly used algorithms in change point detection theory,
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Figure 5.1: Example of a real hunting sequence from Nyctalus Noctula [14]. This illustrates
the kind of signal that have been investigated and the need to extract each pulse for relevant
parameters estimation.

where the objective is to identify one or several abrupt changes1 in the intrinsic characteristics
of a considered object [30]. Such a goal can be encountered in several fields of application, in-
cluding industrial monitoring, the prediction of natural catastrophic events (such as earthquakes
and tsunami) and, in the present case, signal processing and pattern recognition. However, the
elementary problem of change point detection is the detection of a single change point, while in
the studied situation, given that all signals have a beginning and an end, the algorithm must
find the onset and the end of a pulse in order to perform a complete detection. A comprehen-
sive explanation of the algorithm and its generalisation to our problem will be provided in the
statistical section later on.

For now, keep in mind that, the CuSum algorithm tries to differentiate between portions of
the signal containing noise only and those with a signal of interest, namely a pulse. A preliminary,
naive and simple implementation of the algorithm has been computed in accordance with the
approach outlined in [83] to detect the onsets and ends of isolated pulses in bat signals. At
this stage, the detection was conducted on the filtered envelope of pulses that had already been
roughly extracted, which means that the detection was simplified. With this first implementation,
the CuSum algorithm showed an interesting efficiency to detect and facilitate the extraction of
unknown pulses without preliminary information on the signal. Moreover, its simplicity and
processing speed appeared attractive for further investigation. Figure 5.2 illustrates the result
obtained with an ulterior version of the algorithm, where the first pulses of the hunting sequence
previously presented are now detected.

Because the literature about the application of this algorithm to signal detection in radar
processing is scarce, the idea came to investigate the use of this algorithm in this framework.
The objective is then the detection of unknown signals, which means without prior knowledge,

1. As Basseville observed in [30], abrupt changes do not designate changes with large magnitude. On the
contrary, in the change point detection theory, the objective is typically to identify small changes.
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Figure 5.2: Example of a real hunting sequence from Nyctalus Noctula [14] where the first pulses
are detected and can be extracted thanks to the CuSum algorithm (for the sake of clarity, the
subsequent detections are not shown in this illustration). The black vertical lines represent the
estimated onset and end of each pulse.

using a single antenna, and the estimation of the Time of Arrival (TOA) but also the emission
parameters such as the duration or bandwidth with the change point detection logic.

5.1.2 CuSum and Radar

To better understand the motivations behind this desire to further investigate the CuSum
algorithm for radar applications, note that the growing number of users and applications, com-
bined with the implementation of new types of waveforms (what a coincidence...) has led to an
increase need for tools that can effectively detect and recognise a range of signals with unknown
parameters in the presence of noise. In this context, the ability to accurately and rapidly localise
and identify a received signal is often a crucial requirement. Concerning radar applications, the
detection of unknown signals can help provide countermeasures, avoid interference and localise
potential threats and hostile emissions.

For known signals, a matched filter is typically used. However, it requires prior knowledge of
the transmitted signal. In the case of unknown signals, alternative methods must thus be consid-
ered, and there are numerous possibilities. The most traditional approach is the energy detection
[84]. Usually, a network of antennas is also a good way to detect and localise signals of inter-
est [85]. Recently, the combination of time-frequency methods (Short-Time Fourier Transform,
Wigner-Ville Distribution or Continuous Wavelet Transform) with machine learning has been
expanding. Time-frequency methods offer the advantage of dissociating superimposed signals
in time by studying their two-dimensional versions. It also helps to concentrate the energy of
the signals embedded in noise. The main idea proposed in [86][87] is the construction of a mask
around the detected component using time-frequency methods while the recognition is processed
by a convolutional neural network. Nevertheless, these methods can potentially encounter reso-
lution issues, which may impair the accuracy of the parameter estimations. In the present case,
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and following the results obtained from the study of bat signals, the CuSum algorithm appeared
as attractive in terms of simplicity, efficiency and processing speed for a detection framework.
It will be demonstrated that the logic behind the algorithm is very intuitive and the resultant
detection is of quality. Besides, the detection speed of the CuSum in a multiple change point
detection case is optimal [88].

The principle of the CuSum investigation in this chapter is to apprehend the detection of
an unknown signal as a change point detection problem. In the context of radar applications,
change detection is mostly encountered when attempting to detect modifications in a time-series
of Synthetic Aperture Radar (SAR) images. For instance, in [89], the author used the Cumulative
Sum algorithm as a detection method for deforestation monitoring to counter cloud cover loss. As
a method based on statistics, the CuSum is designed to detect any type of variation that impacts
the trend of a time-series and thereby it is less affected by seasonal variability of vegetation and
cloud cover. Similarly, the CuSum has been employed to detect non-stationarity in the clutter,
which, when combined with machine learning can help updating the emission parameters of
a radar system and improve the target detection [90][91]. Concerning Cognitive Radio, the
CuSum algorithm can find some applications as a spectrum sensing tool [92]. Additionally, the
CuSum has been used in maritime [93] or aerial [94] manoeuvre detection. Nevertheless, these
applications refer to geospatial applications rather than signal detection methods. More recently,
the CuSum algorithm has been proposed to assist in distinguishing the Pulse Repetition Interval
(PRI) variations and work modes for Multi-Function Radars (MFRs) [95] but in the context of
radar signal detection, the available literature on this subject is scarce. It thus appeared that
the application of a CuSum algorithm to the detection of unknown signals seemed appealing
and could represent a novel and innovative contribution to the literature in this field.

5.2 Behind the Sum

Now that the objective is clearly defined, the (why so) serious part is about to begin: the de-
scription of the implementation of the algorithm. How does it work ? What are the mathematics
and statistics behind the CuSum ? All relevant information will be presented in the subsequent
paragraphs and in the referenced literature.

5.2.1 Statistical Framework

The goal of the CuSum algorithm is to identify moments when the probability distribution of
a time-series changes. Therefore, the algorithm searches for changes in mean or variance in the
signal. To begin, let us consider the elementary problem of change point detection: the detection
of a single change point, which in our case corresponds to the search for the onset of a signal.
Later, it is easily generalised to the detection of several successive change points. Statistically,
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the received data may be modelled as a discrete process x[n], n ∈ J0, NK, with a given probability
density function (PDF), p(x[n], θ), θ being a deterministic parameter vector with two possible
values, θ0 and θ1, corresponding to the two possible hypotheses

H0 : θ = θ0, Only observation noise is present.

H1 : θ = θ1, The signal is present.

Under each hypothesis, the joint probability density functions on the N + 1 samples write as

px|H0 =
N∏
n=0

p(x[n], θ0), (5.1)

px|H1 =
τ−1∏
n=0

p(x[n], θ0)
N∏
n=τ

p(x[n], θ1), (5.2)

where τ ∈ J0, N − 1K is the sought change point. This configuration means that for n < τ , the
samples contain noise only. Following the detection theory and the Neyman-Pearson theorem,
the Log-Likelihood Ratio (LLR) test, ∆χ, is the test that maximises the probability of detection
[96], thus optimal to decide between the two hypotheses with a comparison to a threshold η:

∆χ = ln
(
px|H1

px|H0

)
H1
≷
H0
η. (5.3)

Due to the impossibility of computing this LLR because θ0, θ1 and τ are unknown, a Generalised
Log-Likelihood Ratio (GLLR) is defined by taking the Maximum-Likelihood estimates of each
unknown (ML estimates). Let θ̂0 and θ̂1 be the ML estimates of θ0 and θ1 under H0 and H1

hypotheses respectively for fixed τ . The ML estimate τ̂ of τ is then the value maximising the
likelihood p(x0:N−1|τ, θ̂0, θ̂1), where x0:N−1 = (x0, x1, ..., xN−1). It can be checked that the GLLR
writes

g[N ] =
N∑
n=τ̂

ln
(
p(x[n], θ̂1)
p(x[n], θ̂0)

)
. (5.4)

Let the Instantaneous LLR (ILLR) at time n be defined by

s[n] = ln
(
p(x[n], θ̂1)
p(x[n], θ̂0)

)
. (5.5)

According to [29], the Cumulative Sum of s from 0 to N is then

g[N ] =
N∑
n=0

s[n] − min
1≤τ̂≤N

τ̂−1∑
n=0

s[n]. (5.6)
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The previous equation indicates that the algorithm tries to find a minimum in the sum from
which the next samples will have a sufficient change in slope. The decision function being com-
pared to a positive threshold η, it can be written [30]

g[N ] = max(g[N − 1] + s[N ], 0). (5.7)

This is the basis of the CuSum algorithm and figure 5.3 illustrates the behaviour of the CuSum
for the detection of a single change point.

Figure 5.3: Example of the CuSum result for the detection of a single change point located at
τ = 100.

5.2.2 Signal Distribution in the Radar Framework

The sum behind the algorithm thus described, the signal distribution and the different PDF
models are described along with the calculation of their ILLR. The objective is to understand how
the signal behave accordingly to the CuSum hypotheses and to choose the best corresponding
distribution.

As stated before, the hypothesis H0 describes portions with noise only and the hypothesis
H1, the portions containing signal of interest embedded in noise. Usually, noise is described as
a random variable following a complex-valued normal distribution with zero mean µ0 = 0 and
a known variance E[|x[n]|2] = σ2

0 corresponding to the noise power. Its density is given by:

p(x[n], θ0) = 1
πσ2

0
e

−|x[n]|2

σ2
0 . (5.8)

Concerning the signal, a familiar approach in a radar framework would be to consider the signal
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as an unknown but deterministic variable. In that case, we assume that, in the presence of noise,
the signal follows a Gaussian probability density function with a certain unknown mean µ1,
where µ1 is the noise-free signal, and a variance σ2

1 = σ2
0 (meaning that the variance only comes

from the noise):

p(x[n], θ1) = 1
πσ2

0
e

−|x[n]−µ1|2

σ2
0 . (5.9)

After estimation of µ̂1 = x[n], the GLLR defined with respect to the deterministic approach
leads to a classical energy detection scheme where (5.5) becomes:

s[n] = |x[n]|2
σ2

0
. (5.10)

Obviously, the Cumulative Sum using this ILLR would be constantly increasing as n increases,
leading to difficulties finding the change points with the ML estimates τ̂ . The deterministic
approach alone is thus not appropriate to correctly compute the CuSum. A solution could be
to use a slope detection, another detection algorithm with the disadvantage of being time-
consuming when used to find several change points because of the number of hypotheses to be
tested [97]. A second strategy could be to use the Akaike Information Criterion (AIC) [98], which
adds a penalty to the log-likelihood of the deterministic ILLR. The classical energy detection
scheme (5.10) then becomes:

s[n] = 2 |x[n]|2
σ2

0
− 2C. (5.11)

Here, C = 2 is the AIC penalty, corresponding to the number of parameters of our model (real
and imaginary part of the signal). The detection of the onset of a chirp is considered. Figure
5.4 illustrates the CuSum results for the deterministic case with or without the AIC penalty
term. As expected, the non-penalised deterministic case results in an ever-increasing CuSum
value. This behaviour, compared to that presented earlier in figure 5.3, prevents the detection
of a local minimum (here assumed to occur at τ = 1000). For high enough SNR, the AIC
penalty enables the CuSum to exhibit a strong change of slope along with the possibility to
determine a minimum. Nevertheless, the detection is nearly impossible at low SNR because the
AIC penalty is not sufficient. Hence, even with the AIC penalty, the deterministic model leads
to an unsatisfying test statistic, thus another approach has to be considered. From now on, the
signal is modelled as a random variable, with independent and identically distributed (iid)
samples. Obviously, it is difficult to assume a particular distribution for every possible signal,
in particular when looking for unknown signals and the task becomes even more difficult when
several signals with various parameters are mixed together.

Because the data are complex-valued time series and the variable considered in the CuSum
is the magnitude r = |x| =

√
Re(x)2 + Im(x)2 (see Appendix E.1), the choice has been made
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Figure 5.4: CuSum outputs for the deterministic case without (top) and with (bottom) the AIC
penalty for the detection of the beginning of a chirp located at τ = 1000 samples. The left
column represents a low SNR case, while the right column depicts a high SNR case.

to consider the Rayleigh-Rice (RR) distribution. This choice is driven by the fact that the
RR distribution model is often associated with complex signals embedded in Gaussian noise
[32]. Under H1, where the data contain both the signal of interest and the polluting noise, the
Rice distribution [31] seems to be a judicious choice. In particular, noisy complex signals with
constant amplitude2 ν write x[n] = νeiφ[n] + w[n] with the phase φ[n] ∼ U [0, 2π] and the noise
w[n] ∼ CN (0, σ2

0), leading to r[n] = |x[n]| ∼ Rice
(
ν,

σ2
0

2

)
. Its density is given by:

p(r[n], θ1) = 2r[n]
σ2

0
e

−(r2[n]+ν2)
σ2

0 I0

(2r[n]ν
σ2

0

)
, (5.12)

where I0 is the zeroth order modified Bessel function. On the other hand under H0, where the
data contain only noise (ν = 0), the signal is Rayleigh distributed, r[n] ∼ Rayleigh

(
σ2

0
2

)
. Its

PDF writes as

p(r[n], θ0) = 2r[n]
σ2

0
e

−r2[n]
σ2

0 . (5.13)

Then, from (5.5), the ILLR becomes

s[n] = −ν2

σ2
0

+ ln
(
I0

(2r[n]ν
σ2

0

))
. (5.14)

Justification and explanations about the Rice and Rayleigh distributions particularities are
available in the appendices E.2 and E.3.

2. This assumption is true for a wide variety of radar signals, such as chirp or phase codes.
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Another option has been found in the literature, in the case where no particular distribution
is assumed, Tartakovsky in [99] proposed a more general ILLR of linear-quadratic form. Letting
y[n] = |x[n]|−µ0

σ0
denote the centred scaled observation at time n, with µ0 and σ0 the mean and

variance in the H0 hypothesis, the ILLR in [99] writes

s[n] = C1y
2[n] + C2y[n] − C3, (5.15)

where
C1 = 1 − q2

σ

2 , C2 = δq2
σ, C3 = δ2q2

σ

2 − ln qσ, (5.16)

with qσ = σ0
σ1

, δ = µ1−µ0
σ0

. Obviously, µ1 and σ1 are the mean and variance in the H1 hypothesis.

5.3 Everything has a Beginning and an End

5.3.1 The CuSum Logic for Pulse Detection

The previous chapter described the mathematical and statistical background behind the
CuSum. As precise as the theory can be, an illustrative example would be very welcome to
really understand what happens in practice. This paragraph thus explains how the CuSum
operates, with a focus on our specific case of application, to complete the recent underlying
statistical knowledge.

The main objective of the algorithm is to detect and extract unknown signals. The signal
in our investigation, whether it is bats or radar signals, is characterised by an onset and an
end, which logically induces that the extracted parameters concern both endpoints. Page [29]
and later Basseville [30] described a two-sided CuSum algorithm made to detect a positive or
negative change in θ. This results in the consideration of an alternative hypothesis, designated
as H2, and the termination of the algorithm upon the identification of either H1 or H2. Our
case of investigation is a bit different since the objective is to detect the switch back and forth
between H0 (parts with noise only) and H1 (parts where a signal is present). In other words, the
onset of a signal is identified by the transition from H0 to H1, while the inverse is synonymous
with the end of a signal. Detecting the end of a signal can simply be seen as the opposite
problem presented in equation (5.7) and the search for a maximum followed by a decreasing
slope, signifying a return to the H0 hypothesis.

A picture is worth a thousand words, therefore consider a pulse train composed of 10 pulses
of the signal displayed in figure 5.5. The Pulse Repetition Interval is set to Tr = 10T , with T

being the pulse duration. The CuSum algorithm is computed to detect the 10 pulses.
The output of the algorithm is presented in figure 5.6(a) with a zoom-in view of one pulse

detection in figure 5.6(b) to show the behaviour of the algorithm during the threshold crossing.
Logically (and because it was set like this) the CuSum begins with the search of an onset. The
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Figure 5.5: Spectrogram of a Parsons waveform (B = 10MHz, T = 25µs and a = 5.10−3).

(a) CuSum result on a pulse train with 10 pulses. (b) Behaviour of the CuSum around one pulse.

Figure 5.6: CuSum output on a pulse train (SNR= 0dB).

algorithm computes the sum until it crosses a threshold, ηmin, synonymous with a registered
change point (a minimum), at time τmin, associated with the potential beginning of a signal.
Note that the term used is potential because at this point the detection can be either accurate
or erroneous. In both cases, the algorithm switches to the search of the end (maximum), at time
τmax, of this potential signal. If the onset detection was correct, like presented in figure 5.6(b),
the sum should increase linearly until a point where a maximum is reached. If this maximum is,
in fact, the end of the signal, the sum should then decrease until it reaches a certain threshold,
ηmax, below the maximum reached to validate the new change point. The sum is then reset to
zero and the algorithm starts a new onset search. On contrary, if the onset detection was a false
positive, the sum will still be calculated according to equation (5.6), but it will not exhibit a
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sufficiently increasing behaviour because it is a pure noise part. Therefore, the algorithm will
find a maximum rather quickly, or the sum will be automatically reset to zero, as in equation
(5.7). The search for an onset resumes and the algorithm follows this pattern until the end of
the studied signal.

5.3.2 Thresholds settings

The CuSum algorithm and its behaviour are now clearer, but one last point remains: the
threshold settings in order to be able to take a decision about the minima and maxima. Deciding
how to set them is always a challenging task. A preliminary implementation with constant
thresholds showed that it was not adapted to our situation. This is due to the fact that the
CuSum has to identify two different change points, the start and the end of a pulse, which are
associated with a minimum and a maximum. Therefore, two thresholds based on the estimation
of the noise in the signal and adapted to the search for a minimum or a maximum have been
implemented.

First, the minimum threshold set up is presented. Because it is linked to the detection of the
onset, the underlying desire is to avoid false detection. It is synonymous with false alarm, which
means validating the hypothesis H1 while still being under the hypothesis H0. This threshold
must thus be sufficiently high to avoid false alarms, but not too much to avoid missed detection.
The threshold is designed to be an Empirical Constant Threshold (EC-Threshold), inspired
by the definition given in [100]. Because the false alarms occur during the H0 hypothesis, the
minimum threshold is therefore linked to the noise behaviour under this hypothesis. Considering
the parameters of the studied signal, σ2

0 and ν, along with the chosen distribution models (RR
or Tartakovsky), the CuSum algorithm is computed for L simulated noise series of M samples:

gji = max(gji−1 + sji , 0), where j ∈ J1, LK and i ∈ J1,MK. (5.17)

Then the maximum or local score of each series, mj = max gj , is saved and the threshold is set
as

ηmin = q1−Mα[mj
1≤j≤L], (5.18)

where α is the false alarm rate and q1−Mα represents the quantile3 of order (1−Mα). According
to this equation, the threshold, ηmin, is the value such that the cumulative distribution function
of the maximum series mj

1≤j≤L is P (mj
1≤j≤L ≤ ηmin) = 1 −Mα. In other words, the probability

that a local score mj
1≤j≤L will take a value less than or equal to ηmin is of (1 − Mα). It is

important to note that α can not exceed 1
M in that case [100]. The false alarm rate α will be

defined in the next section with the corresponding performance indicators. Figures 5.7(a) and

3. In statistics and probability, quantiles are values dividing the range of a probability distribution (or sorted
observations) into continuous intervals with equal probabilities.
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5.7(b) give an example of the setting of threshold ηmin with L = 100 noise series of M = 10, 000
samples and a false alarm rate α = 10−5 (left) and α = 5.10−5 (right). With regard to the
preceding explanation, the threshold in figure 5.7(a) is set such that the probability that a
maximum simulated value is less than or equal to ηmin is of 90%. In figure 5.7(b), this probability
decreases to 50%. Obviously, the higher the false alarm rate is, the more false alarms you get
due to a lower threshold.

(a) α = 10−5. (b) α = 5.10−5.

Figure 5.7: Minimum threshold setting for two values of α.

Once the onset has been identified, the detection is complete when the end is identified
thanks to a second threshold. This threshold must be set high enough to avoid abruptly cutting
a pulse into pieces, but not too much in order to find a potential end and keep going on the
search for other pulses. Since the maximum is associated with the end of a pulse, what follows
is supposedly only noise. Under the hypothesis H0, it can be demonstrated, by calculating the
CuSum with equation (5.6), that the sum g[N ] constantly decreases, following a linear behaviour.
It is therefore possible to describe the typical CuSum output related to noise only by a slope
factor aw. Again, thanks to the L simulated noise series of M samples, the CuSum algorithm is
computed according to equation (5.6). For each noise series, a slope factor aw,j can be evaluated.
Figure 5.8 gives an example of this slope estimation with the CuSum output for a noise series
j ∈ J1, LK with M = 10, 000 samples. Once a slope factor has been estimated for each noise
series, the average slope factor aw can be calculated. The maximum threshold, linked to the
detection of the end of a signal, can then be obtained by multiplying this average slope factor
by K samples. The choice of K will be shown to have an impact on the mean delay for the end
detection.

ηmax = Kaw. (5.19)
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Figure 5.8: Linear approximation of the CuSum output under the noise only hypothesis (H0).

5.3.3 Performance indicators

To assess the performance of the CuSum algorithm and to characterise its response, some
indicators issued from the CuSum literature [30] need to be defined.

First of all, the False Alarm Rate (FAR), α, has already been mentioned in the definition of
the minimum threshold. It represents the ratio between the number of false alarms (number of
false detections or false positives) and the total number of alarms or detections. If the algorithm
is well designed, the measured FAR, α̂, should tend towards α. Directly related to the FAR is
the Mean Time Between False Alarms (MTBFA), which is the average time before the first false
alarm or between false alarms4. It is given by

MTBFA = 1
α
. (5.20)

The impact of the thresholds can also be measured thanks to a Mean Delay for Detection Dd.
Firstly, when searching for a possible onset, the CuSum can easily find an instant τ̂ corresponding
to a local minimum in the sum, but it needs some time to confirm this minimum as a possible
onset. This delay, which corresponds to the Mean Delay for detection, designated as Dd,start,
represents the duration over which the algorithm tries to find a value exceeding the threshold
ηmin. If no other minimum is found along the computation, the instant τ̂+nd where the threshold
is exceeded confirms the instant τ̂ as a change point and Dd,start = nd. Figures 5.9(a) and 5.9(b)
illustrate the minimum threshold in action with a case of false alarm and a true detection. The
algorithm is searching for Parsons waveforms similar to the one presented in figure 5.5. The

4. In [30], the Mean Time Between False Alarms and the Mean Time Before First Alarm are considered to be
the same.
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thresholds are set with L = 100 simulated noise series of M = 10, 000 samples according to a
false alarm rate of α = 5.10−5 and a threshold multiplier of K = 200 samples. In each figure the
first red vertical line situates the instant τ̂ and the second one the instant τ̂ + nd corresponding
to the instant of validation. In the false onset detection, τ̂ = 86, 708 and the algorithm validates
the estimation after a delay of nd = 29 samples. In the correct detection case, the onset is
estimated at τ̂ = 125, 000 with a confirmation delayed of nd = 28 samples.

(a) False alarm. (b) True detection.

Figure 5.9: Minimum threshold application in the case of a false alarm and a true detection.

The same logic can be applied with the maximum threshold, this time by computing Dd,end.
The figure 5.10 illustrates this case on a correct end identification. In the case of false alarms,
the sum will usually be reset to zero before it reaches the maximum threshold. Concerning this
example, the algorithm needs nd = 206 samples to validate τ̂ = 137, 456.

Figure 5.10: Maximum threshold application in the case of a true detection.
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Last but not least, the Root Mean Square Error (RMSE) (see equation (3.3) for the math-
ematical definition) is an efficient indicator to evaluate the estimation of the pulse duration T ,
the PRI and also the time delay for pulse onset and end.

5.4 CuSum at Work

The CuSum algorithm thus detailed, its implementation on both simulated and real data is
documented in the following paragraphs.

5.4.1 Simulations

For the simulation part, consider pulse trains of Np = 20 temporally disjoint Chirp or Parsons
pulses with unit amplitude and the following sets of parameters. The singular parameters are
inspired from our dear bats, two bat species in particular, Nyctalus Noctula (first set) and
Pipistrellus Pipistrellus (second set).
• Bandwidth B1 = 26.73MHz or B2 = 68.96MHz,
• Pulse duration T1 = 19.66µs or T2 = 2.56µs,
• Pulse Repetition Interval Tr = 10Ti, i ∈ [1, 2],
• Parsons curvature parameter a1 = 4.10−3 or a2 = 3.78.10−2.

Figure 5.11: Spectrograms of a Chirp and a Parsons pulse with the first set of parameters
(B1 = 26, 73MHz and T1 = 19, 66µs).

Figure 5.11 shows the kind of pulses used in the simulations that the CuSum algorithm is
tasked with identifying within a noisy recording. The algorithm has been tested for varying
SNRs (0 to 30dB with 100 simulations at each SNR), for the different configurations described
above. The simulations were conducted for the Rayleigh-Rice (RR) and the Tartakovsky (Tart.)
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distribution models with the two sets of parameters. The CuSum was computed for a false alarm
rate α = 5×10−5 and thresholds set from L = 100 noise series of M = 10, 000 samples, with K =
200 samples for the maximum threshold definition. The sampling frequency is Fs = 500MHz.

Figure 5.12(a) illustrates that the measured FAR is close to the desired α for the Chirp
and Parsons pulse trains with the first set of parameters. Nevertheless, α̂ always exceeds the
implemented FAR α for this set of parameters. This observation has been investigated through
Monte-Carlo simulations, with 100 trials conducted using the same parameters but this time
as function of α (SNR fixed at 20dB). Figure 5.12(b) displays the results, where it can be
observed that the estimated FAR has effectively a tendency to exceed the tolerated α starting
from a certain value (approximately α = 0.4 for the first set). This result is linked to the EC-
Threshold, which, as explained in [100], gives the lowest detection delay but always exceeds
the implemented α. In the case of the Parsons pulse train with the second set of parameters,

(a) Estimated FAR as function of the SNR. (b) Estimated FAR as function of α (SNR= 20dB).

Figure 5.12: Results of the Monte-Carlo simulations for the estimated FAR α̂.

the deviations are more pronounced. In this instance, the measured FAR is lower, which is not
erroneous, but rather an underestimation due to the insufficient number of samples, which is
almost eight times less samples than the number of samples obtained for the pulse trains with
the first set of parameters. This can be explained by the MTBFA. As said in the previous
section, according to [100] the MTBFA is the inverse of α. Therefore, in our case, a false alarm
should occur on average every 20,000 samples. With the second set of parameters, there are only
11,556 samples between consecutive pulses. In consequence, the noise portions are insufficiently
long for the CuSum to make a detection mistake, particularly at high SNR, and the false alarm
rate α is not calibrated for this set of parameters. To obtain a FAR similar to that obtained
with the first set, α should be set higher. Besides the false detections, the number of missed
detections is also measured. The results indicate that at very low SNR (< 5dB), the algorithm
may miss a few pulses from time to time. Nevertheless, the average number of missed detections
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is approximately zero, which demonstrates the excellent performance of the CuSum algorithm.
The only extreme value obtained with the Tartakovsky model and the second set of parameters
(green dashed line in figure 5.12(a)) is due to an increase in the number of false alarms, which
goes hand in hand with more missed detections (10 in average). This is due to the Tartakovsky
model being less adapted to low SNR as the sum becomes increasingly linear similarly to the
deterministic model in figure 5.4.

The next performance indicator to be evaluated is the mean decision delay, Dd, for the
detection of the onset and end points of a pulse, shown in figures 5.13(a) and 5.13(b) respectively.
For a better visualisation, the y-axis is on a logarithmic scale. It can be observed that it does

(a) Mean decision delay for start detection. (b) Mean decision delay for end detection.

Figure 5.13: Results of the Monte-Carlo simulations for the mean delays of detection as a function
of the SNR.

not matter whether a RR distribution or an unknown signal distribution with the Tartakovsky
model is considered. While there may be a small advantage for the RR distribution at very
low SNR, the two distributions yield similar results overall. Looking at the evolution of these
mean decision times, it can be seen that the higher the SNR, the shorter the mean decision
time to detect the onset of a signal. As the noise has less and less impact on the signal, the
CuSum value increases faster after the beginning of a pulse, rapidly exceeding the threshold.
On the contrary, the mean time decision for the end detection increases due to the threshold
definition. Defined by equation (5.19), at high SNR, the algorithm requires the K samples to
reach the maximum threshold and make a decision. Consequently, the mean time decision is
pushed towards K

Fs
= 4 × 10−7s in the presented simulations. The selection of K is therefore of

significance in order to correctly estimate the end (and thus the duration) of a signal. In this
case, the value of the parameter K was set constant at K = 200 samples for every SNR, but
it could be adapted as the noise impact is estimated with the slope factor. The mean decision
time could thus be corrected according to the SNR. Another interesting aspect could be to have
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a sufficiently large K, which involves a longer mean time decision for the end detection, but
ensures that the end of the signal is caught.

The last indicator checked is the RMSE on the pulse duration, which requires a correct
estimation of both the onset and the end of a pulse. Here again, it is visible in figure 5.14
that the distribution does not play a significant role. Moreover, the algorithm demonstrates
satisfactory overall accuracy for each type of pulse train. Regarding the PRI, similar results are
obtained which demonstrates the capacity of the CuSum algorithm to correctly retrieve every
temporal features of unknown signals.

Figure 5.14: Results of the Monte-Carlo simulations for the RMSE as a function of the SNR.

To conclude on these simulations, the CuSum algorithm shows a valuable efficiency in terms
of detection and parameter extraction. The results pointed out that the correct detection and
estimation of the onset and the end of a pulse are strongly dependent on the allowed false alarm
rate α and the number K of samples before making a decision regarding the end of the signal.
Because the post processing can easily get rid of the false alarms by assuming a minimal duration
for the detected pulses, the false alarm rate could be set higher compared to the value chosen
here even if it induced more false alarms. The temporal features extraction of signals without
any prior knowledge are really accurate, while being promptly computed. This confirmed the
motivations to apply the CuSum in the detection of unknown radar signals.
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5.4.2 Real Data

The CuSum showed its capacities on simulated signals but does it perform as well when
confronted with real signals?

Chirps everywhere The first real signal to be examined is a series of 13 pulse trains, each
comprising 10 up- or down-chirps (with the exception of the final train, which contains only 9
pulses), exhibiting a range of parameters outlined in the Table 5.1 below. It should be noted that
the bandwidth is either positive or negative in order to indicate the frequency sweep behaviour
and thus the type of chirp (up or down respectively). This signal is a record of a HF radar signal
prior to propagation and is thus almost free of noise, as it originates from a closed loop at the
emission5. Figure 5.15 displays an extract of this signal, representing pulses 8 to 13 from the
first two pulse trains.

Pulse train T [ms] PRI [ms] B [kHz]
1 4.8 19.1 41.9
2 3.8 15 -35.8
3 3.5 14.2 20.8
4 4.6 18.2 40.5
5 3.5 13.9 -37.5
6 4.1 16.5 43.5
7 4.3 17.1 29.8
8 4.4 17.5 -29.9
9 4.5 18.2 -17
10 3.5 14.1 -30.3
11 3.6 14.6 31.7
12 3.3 13.3 -32.5
13 4.5 17.9 19.7

Table 5.1: Parameters of the pulse trains. Figure 5.15: Spectrogram of pulses 8 to 13.

Monte-Carlo simulations have been conducted for varying SNRs (SNR∈ J0, 30KdB with 100
trials each), with the objective of evaluating the behaviour of the CuSum with such a signal. The
parameters remain unchanged from the previous simulation, with α = 5 × 10−5 and thresholds
set from L = 100 noise series of M = 10, 000 samples, with K = 200 for the maximum threshold.
The sampling frequency is Fs = 100kHz and the Rayleigh-Rice distribution model is applied.

The initial observation concerns the FAR plotted in figure 5.16(a). The results seem to be
analogous to those presented in the previous simulations, particularly with regard to the second
set of parameters. Once again, the PRI are too short to get a substantial number of false alarms
at high SNR. Nevertheless, the presented results and others obtained with a higher threshold

5. The emitted signal is stored in a closed loop for subsequent analysis, in case there are any differences
between the desired emission and the actual emission.
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(α = 5.10−3) yields the same capacity to detect the pulse of interest. The false alarm rate does
not impair the CuSum in its detection process. Regarding the measured pulse duration for each
pulse train, the RMSEs presented in figure 5.16(b) yield satisfying results. This is consistent with
an accurate estimation of the onsets and ends of each pulse. Each pulse train is thus correctly
retrieved and analysed thanks to the CuSum. A similar observation can be made about the
RMSEs of the PRIs. Let remark that the signal presents almost three seconds of silence before

(a) FAR. (b) RMSE for the pulse duration.

(c) Mean delay for start detection. (d) Mean delay for start detection.

Figure 5.16: Results of the Monte-Carlo simulations with various performance indicators as
function of the SNR for the 13 real pulse trains.

the first impulsion, which impact the estimation of the mean at high SNR. This misestimation
of the distribution parameters at the beginning of the computation causes an offset in the
detection of onsets and ends of a few samples. Rejecting these three seconds can improve the
RMSEs results, however the parameter estimators bias pointed out here will be addressed in
the next section. Lastly, the mean delay for detection of both onset and end are presented in
figures 5.16(c) and 5.16(d). These figures demonstrate consistency with the observations made
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on simulated data, exhibiting the same behaviours and quick decision time overall. With regard
to the end detection, again the limit of K = 200 samples is reached for all of the pulse trains
(KFs = 2 × 10−3s).

This first real signal gives convincing results and shows that the CuSum algorithm has
real capacities to detect signals embedded in noise, hence enabling a quite accurate parameters
estimation. Nevertheless, this real signal is still too "clean" to really trouble the CuSum algorithm
and to highlight its limits.

Congested radar signals The next radar signals are more complex. The figures 5.17(a),
5.17(b) and 5.17(c) display three different versions of pulse trains emitted by the Nostradamus
radar6 and received by the ROS radar7. These signals have interacted with the ionosphere and

(a) First signal. (b) Second signal.

(c) Third signal.

Figure 5.17: Spectrograms of NOSTRA-ROS radar signals received at different moment of the
day.

6. Over The Horizon (OTH) radar with the ability to detect targets at very long range.
7. Surface Wave Radar (SWR) set up to monitor the Mediterranean sea.
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the pulse trains are mixed with unknown interfering continuous frequencies at the reception. The
sampling frequency is of Fs = 125kHz. From figure 5.17(a) to figure 5.17(c), the signals become
increasingly polluted, thereby rendering the detection of radar signals challenging. Each signal
is a succession of chirp pulse trains with various parameters as investigated earlier. However,
the true TOA are not available and the objective here is solely the detection of pulses.

For the first signal, the CuSum algorithm has nearly no difficulties to retrieve the onset and
end of pulses. Figures 5.18(a) and 5.18(b) illustrate this outcome for one second of the whole
data set. The peculiar saw-tooth pattern exhibited by the CuSum is clearly visible in figure
5.18(b), which indicates the detection of the pulses. Nevertheless, it is possible that during a
part of the signal, the CuSum may show a stairs-like behaviour. This is due to the incapacity
to identify the end of a detected pulse before the next pulse onset. This result can be explained
by the higher energy level of the constant frequency component around CF = −42kHz, which
then becomes preponderant for the CuSum. A second run on this portion is sufficient to detect
the missing pulses. Another solution could be to lower the maximum threshold to detect the
missing pulses. This highlights a first limitation of our algorithm: considering the whole signal
for parameters estimation smooths the overall behaviour and hinders the algorithm capacities
as demonstrated. This motivates the design of a windowed CuSum presented later on.

(a) Part of the first signal with the detected pulses. (b) CuSum output.

Figure 5.18: Results of the CuSum algorithm on the first signal.

The remaining two signals present a more challenging scenario due to the presence of constant
frequencies that interfere with the reception. Their energy is such that the CuSum may fail
to detect the relevant chirps. One potential solution is to initially filter the data in order to
"clean" them. This phenomenon can be observed in the second signal in figures 5.19(a) and
5.19(b), where only the frequency band of interest has been kept, thus facilitating the CuSum
computation. Concerning the third signal, the constant frequencies are polluting the frequency
band of interest and can not be filtered out as easily. This analysis shows another limitation
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of the CuSum algorithm when confronted with congested signal data. A potential solution has
been quickly explored with a 2D-version of the CuSum and could be further investigated (see
Appendices E.4).

(a) Second signal filtered. (b) CuSum output.

Figure 5.19: Results of the CuSum algorithm on the second filtered signal.

The CuSum algorithm demonstrates valuable and interesting results on both simulated and
real data sets. It is evident that the threshold settings is of primary importance to ensure
an accurate detection. However, the last observations showed that the actual version of the
algorithm encounters limitations when facing congested signals. Another crucial aspect not yet
discussed is the significant loss of results at very low SNR. Indeed, the detection results are
really impacted at very low SNR and this could be somewhat improved by carefully looking at
the parameters estimators used in the CuSum computations.

5.5 A Bias in the Estimator

The estimation of the signal distribution parameters are essential for the proper functioning
of the CuSum algorithm. Unfortunately, some estimators proposed in the literature, in our case
for the parameter ν, the amplitude of the signal, may be biased thus degrading the capacity
of the CuSum. The following investigation describe these biased approaches and alternative
solutions inspired from the Magnetic Resonance Imaging (MRI) literature.

5.5.1 Empirical estimator

To compute the CuSum, it is necessary to estimate the distribution parameters ν and σ2
0

2 .
These parameters can be linked to the theoretical Rice distribution parameters, whose theoretical
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mean r̄ and variance σ2
r are given by [32]

r̄ = e
−ν2

2σ2
0

√
πσ2

0
4

[(
1 + ν2

σ2
0

)
I0

(
ν2

2σ2
0

)
+ ν2

σ2
0
I1

(
ν2

2σ2
0

)]
, (5.21)

σ2
r = ⟨M2⟩ − r̄2 = σ2

0 + ν2 − r̄2, (5.22)

where Ik is the k-th order modified Bessel function, r̄ = ⟨M⟩ and ⟨M2⟩ = σ2
0 + ν2 are the first

and second moment of the Rice distribution. In an initial work [101], these parameters were
obtained by computing the empirical mean, ˆ̄r, and variance, σ̂2

r , of the observed signal. It can
be argued that these estimators are justified at high SNR, given that the Rice distribution is
very similar to a Gaussian distribution [32] (see Appendix E.3). However as SNR decreases, the
Rice distribution strongly deviates from a Gaussian distribution. The average value r̄ defined
in (5.21) and estimated by ˆ̄r no longer coincides with the sought amplitude ν of the signal
anymore, leading to biased parameter estimators and degraded detection results that our initial
work did not take into account [101]. The objective of the next paragraphs is to compare different
estimators to reduce the mentioned bias and to improve the estimation at low SNR.

5.5.2 Alternative estimators

In the MRI literature (see eg.[33][102]), the Rayleigh-Rice distribution is also often considered
and is known to face the problem of biased estimators. To rectify this bias, a first alternative
estimator was proposed in [102] where ν̂ was obtained via the following relation:

ν̂1 =

√
ˆ̄r2 − σ2

0
2 . (5.23)

This relation is derived from the behaviour of the Rice distribution at high SNR [102]. Nev-
ertheless, this new estimator is shown later to overestimate the true amplitude at low SNR.
Moreover, this estimator needs a prior estimation of the noise variance. Therefore, the authors
of [33] proposed an alternative approach based solely on the computation of the mean r̄ and the
variance σ2

r known as the Koay inversion technique. Consider the definition of the Rice variance
given in equation (5.22). It is possible, by substituting Θ2 = 2ν2

σ2
0

and factoring out σ2
0

2 , to write

σ2
r = ⟨M2⟩ − r̄2 = ξ(Θ)σ

2
0

2 , (5.24)

where the correction factor, ξ(Θ), can then be expressed by

ξ(Θ) = 2 + Θ2 − e− Θ2
2
π

2

[(
1 + Θ2

2

)
I0

(
Θ2

4

)
+ Θ2

2 I1

(
Θ2

4

)]2

. (5.25)
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Assuming that by the method of moments the mean and variance of the magnitude are easily
estimated, a fixed point formula of Θ can be obtain. From the relation between variances (5.24),
the correction factor can also be expressed as

ξ(Θ) = 2 + Θ2 − 2r̄2

σ2
0
. (5.26)

Replacing σ2
0 by 2σ2

r
ξ(Θ) , the fixed point formula is obtained:

Θ =

√√√√ξ(Θ)
[
1 +

ˆ̄r2

σ̂2
r

]
− 2 = h(Θ). (5.27)

By looking for the convergence of |h(Θ) − Θ| to 0, the fixed point formula has a unique solution
Θ̂ that can be found as long as the following inequality is verified

ˆ̄r2

σ̂2
r

≥ π

4 − π
. (5.28)

This lower bound derives from the limit at very low SNR, where the Rice distribution approx-
imates a Rayleigh distribution with parameter σ2

0
2 and the theoretical mean and variance then

become

r̄ =

√
σ2

0π

4 , (5.29)

σ2
r = σ2

0

(
1 − π

4

)
. (5.30)

This tendency is illustrated later on with yellow dashes in Figure 5.20. Finally, when Θ̂ is found
and the correction factor is determined, a new estimator of the amplitude ν with reduced bias
can be estimated by manipulating equation (5.26), leading to

ν̂2 =

√
ˆ̄r2 + (ξ(Θ̂) − 2)σ

2
0

2 , (5.31)

or

ν̂3 =

√√√√ˆ̄r2 +
(

1 − 2
ξ(Θ̂)

)
σ̂2
r , (5.32)

depending whether the noise variance σ2
0 is known or not. Note that the estimation of σ2

0 can
be done afterwards with equation (5.31) if ν̂3 has been calculated.
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Figure 5.20: Estimation of the amplitude ν as a function of the SNR = 10 log10

(
ν2

σ2
0

)
(MC= 100

simulations).

5.5.3 Comparison of the estimators

Monte-Carlo (MC) simulations were computed for varying SNR with 100 trials at each
SNR in order to observe the behaviour of the different estimators. Figure 5.20 presents the
performances of the estimators of ν described above in the case of a unit amplitude chirp
corrupted by noise. The dark blue line represents the estimated mean ˆ̄r of the magnitude while
the theoretical value (5.21) is shown in red dashes. The black dashes represent the signal unit
amplitude and the bias of the empirical mean at low SNR is therefore visible.

The first alternative estimator (5.23) is represented in cyan in Figure 5.20 and, as mentioned
earlier, it offers a proper estimation for SNR > 10dB but is still limited at lower SNRs. The
estimates (5.31) and (5.32) are respectively represented by the purple and green lines. It is
evident that at low SNR, both estimators provide highly accurate results as long as the Rice
and Rayleigh distributions stay differentiated and the lower bound mentioned before is not
attained (SNR < −10dB). The fact that (5.23) approximates the estimator obtained with (5.31)
or (5.32) can be explained by the limit of the correction factor ξ at high SNR which tends to 1.
The Table 5.2 summarises the bias measurement of the different considered estimators for some
SNRs varying from −5dB to 25dB.

Another way to look at the improvement made with the new estimator is to consider the
Kolmogorov-Smirnov test (KS test) [104], which measures the distance between the empirical
distribution function Fn(r) of the signal and the Cumulative Distribution Function Fν̂,σ̂2

0
(r)

(CDF) of a hypothetical distribution

Dn = sup |Fn(r) − Fν̂,σ̂2
0
(r)|. (5.33)

104



5.5. A Bias in the Estimator

SNR −5dB 5dB 15dB 25dB
ˆ̄r 8.2 × 10−1 8.4 × 10−2 7.8 × 10−3 7.2 × 10−4

Estimate ν̂1 (5.23) 3.1 × 10−1 8.2 × 10−3 1.1 × 10−4 7 × 10−5

Estimate ν̂2 (5.31) 2.6 × 10−4 3.7 × 10−4 1.7 × 10−4 7.1 × 10−5

Estimate ν̂3 (5.32) 9.1 × 10−4 1.2 × 10−4 2 × 10−4 1.1 × 10−4

Table 5.2: Bias evolution of the estimators of ν [103].

The closer the hypothetical distribution is to the empirical distribution, the smaller the distance.
Figure 5.21 gives a glimpse on the improvement made with the new estimator. Again in dark
blue, the bias in the empirical estimator ˆ̄r reverberates in the KS test. On the contrary, the
robust estimators (purple and green lines) achieve a perfect fit with a Rice distribution visible
in red dashes.

Figure 5.21: KS test for different estimates of amplitude (MC= 100 simulations).

The first observations show that the new estimators (5.31) and (5.32) are more robust and the
latter one is even independent of the prior estimation of the noise variance. In the next section,
the CuSum algorithm is tested with this new estimator to improve the detection performance
at low SNR.

5.5.4 Improved CuSum

With a more robust estimator, the CuSum also needs to evolve. Compared to the ver-
sion implemented and documented before, the CuSum algorithm in the following section is a
Windowed-CuSum. Instead of estimating the distributions parameters over the whole signal, the
estimation is done on a sliding window. The new estimator is thus calculated on each window
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and the CuSum is computed with the evaluated parameters at each instant. The comparison
with previous results from section 5.4 illustrates the improvements made at low SNR.

Simulated data The enhanced windowed version of the CuSum consists in evaluating the
mean r̄ and variance σ2

r of the magnitude with a window centred around the considered sample.
The algorithm estimates Θ to calculate the correction factor and to achieve reduced bias in the
estimation of the amplitude ν. The CuSum was computed over a pulse train composed of 20
chirps with a duration of T1 = 19.66µs, a bandwidth of B1 = 26.73MHz and a Pulse Repetition
Interval of Tr = 10T1. Noise was added to evaluate the results with Monte-Carlo simulations
(100 iterations) for SNR varying from −10 to 10dB and window size varying from 0.5T1 to 1.5T1.
With such a configuration, the improved CuSum was able to detect the 20 pulses until −6dB
with a decreasing efficiency until −10dB whereas the previous CuSum version [101] missed every
detection below −3dB. Parameters such as the duration T1 or PRI were accurately evaluated
(Root Mean Square Error of the order of 10−5 to 10−6s) even at low SNR. The thresholds setting
follows the methodology described in [101] with a false alarm rate α = 5 × 10−5.

Real data The sequence of 13 pulse trains introduced in section 5.4.2 is again considered to
illustrate the improvement achieved at very low SNR. Noise is added to the originally high SNR
signal to get a low SNR (−3dB) and the first CuSum version [101] is compared to the enhanced
version of this paper. It appears in Figure 5.22(a), that the first CuSum version may fail to
detect some pulses and may be inaccurate regarding the onset and ending of detected pulses.
Figure 5.22(b) illustrates the improvement achieved by the new estimator on the same portion
of the signal. While some inaccuracies remain, the detection is overall better.

(a) Detection of pulses with the CuSum version in
[101].

(b) Detection of pulses with the more robust esti-
mator (5.32).

Figure 5.22: Illustration of the improvements made with the enhanced CuSum algorithm com-
pared to previous work in [101].
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Monte-Carlo simulations (100 iterations) were also conducted to observe the effect of window
size. Figure 5.23 illustrates the number of missed detection against SNR with the previous and
improved CuSum versions with two different windows. If the new estimator once again shows
improvement at low SNR, its quality depends on both the window size and the SNR. The large
window (10ms) seems better at low SNR than the shorter window (5ms) but should be avoided
at higher SNR: a window that is too large can not accurately estimate the noise portion at high
SNR which hinders the CuSum algorithm to have successive minima and maxima associated to
the onset and end of pulses, causing the missed detection. The false alarm rate in this case is
α = 9 × 10−5.

Figure 5.23: Number of missed detection with different window sizes (ws) as function of SNR
(MC= 100 simulations) [103].

5.6 Conclusion

This concludes the chapter about the CuSum algorithm. The statistical approach brought
by the change point detection framework and the CuSum algorithm has been really rewarding
for the unknown signal detection problem. It can be a useful tool for segmenting data involving
sounds generated by animals, where transmitted waveforms are not well known at the receiver
side. In a radar context, the CuSum algorithm demonstrates interesting capacities in retrieving
the onsets and ends of unknown radar signals without prior knowledge. The underlying principles
(signal distribution, thresholds, performance indicators,etc) have been investigated and improved
(parameters estimator) to propose an efficient radar CuSum approach.
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Chapter 6

CONCLUSION

6.1 Conclusion

The time has come to conclude three years of research on bio-inspired waveforms and their
radar processing.

In order to address this issue, bats have been the primary focus of this work. The initial
objective was to understand the manner in which bats construct their signals and to attempt to
replicate them. This constituted a first approach to signal processing from both an acoustic and
a biological point of view. An effective potential solution to mimic bat waveforms has been found
in the Parsons function. Its flexibility, made possible with the single parameter a, enabled the
mimicking of bat waveforms with a high degree of accuracy, thereby fulfilling the bio-inspired
component of the project.

Obviously, the new waveform was directly put into test for radar applications through the
evaluation of its capacities. The classical radar processing combined to a comparative analysis
with known radar waveforms validated the potential of the Parsons function as a radar waveform.
The ambiguity function and the Cramér-Rao Lower Bounds were calculated for this specific
function. From simulations to real experiments, the Parsons function thus showed noteworthy
precision capacities in estimation and a tangible efficiency in radar applications. Moreover, the
application of the Parsons function in a multistatic radar framework proved to be efficient
according to the simulations results. The bio-inspired waveform thus proposed can be considered
as one solution to the spectrum management problematic, while maintaining valuable radar
performance. In addition, a bio-inspired processing has also been briefly investigated to propose
a Doppler estimation scheme adapted to the Parsons waveform.

Beside the bio-inspired waveform investigation, a change-point detection algorithm has been
implemented. The algorithm, named CuSum, was initially chosen and adapted for the straight-
forward segmentation of the authentic bat sequences studied at the beginning of the thesis. Its
capabilities were such that it was further studied for potential applications in a radar frame-
work. While remaining in the domain of waveform analysis, it has been decided to apply the
CuSum algorithm for the detection of unknown radar signals embedded in noise. To assess its
performance, simulations and real signals were fed to the algorithm and the retrieval of the onset
and end of unknown waveforms has been performed.
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As a final conclusion, the Parsons function, a bat-inspired waveform, has been proposed for
radar applications and proved its efficiency as a potential radar waveforms. Moreover, both the
classical and bio-inspired processing are compatible with the bio-inspired waveform. Future work
and research will now decide the fate of the Parsons function as a radar waveform.

6.2 Perspectives

In contrast with the title of the section 5.3 in the previous chapter, the research on bio-
inspired radar and sonar is still in progress. The work presented in this thesis represents only a
fragment of the research conducted in the field of bio-inspiration. The following points provide a
non-exhaustive list of future studies that could complement and extend the scope of this thesis.

First of all, the impact of harmonics in a radar framework could be investigated. Section
2.2.3 introduced the use of harmonics in bat signals, and the literature on the subject indicates
that these harmonics exert a significant influence on the capacities of bats. It may notably be
used for clutter rejection [34] and ambiguities removal [35]. In addition, the ambiguity function
and the Cramér-Rao Lower Bounds calculations may be of interest for such configurations.

The amplitude modulation also offers a valuable area of research, although radar systems
are not yet particularly designed for such modulation. The amplitude modulation of emitted
and received waveforms could be beneficial for target recognition, as it is for bats.

Another important factor to understand in the context of biomimicry is the brain and its
functioning. As stated in [8], enhancing our comprehension of the mammalian brain, and in this
case the bat brain, may inspire future research. In particular, the SCAT may be improved or
the relationship between harmonics and their processing could be entirely understood. This is
closely linked to the understanding of the different mammalian sensors for cognitive approach.
Being able to vary the parameters of emission in a manner similar to that observed in bats
during foraging could be highly advantageous for adaptation of the emission over time and for
specific targets.

Regarding the proposed bio-inspired waveform in this thesis, further research could be carried
on. The optimisation of the function could be investigated to better apprehend the sidelobe level
with a solution other than the MMF. The Doppler mismatch loss evaluated in the multistatic
configuration could be also better apprehended. The design of other functions is of course not
to be put aside. For instance, it may be interesting to look at a polynomial approach or to
use wavelets to design different bio-inspired functions. The use of the Parsons function for the
multistatic configuration could be tested with real experiments to complement the simulations
that have already been presented.

Regarding the CuSum algorithm, the research is still in progress. The limitations encoun-
tered with congested signals and very low SNR encourage further studies, like the 2D-CuSum
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version presented in appendix E.4. Moreover, the threshold settings and the statistical back-
ground selected in this thesis could be put into question. For example, in situations where the
Rayleigh-Rice distribution model is not valid, what would be the appropriate distribution model?
Alternative approaches to threshold settings could be explored, in particular regarding the new
windowed version presented in section 5.5.4.

To conclude this thesis and with respect to the ideas developed in this last chapter, I per-
sonally think that the following quote outlines perfectly the disguised advice a bat could give to
a researcher on the bio-inspired radar.

“You think darkness is your ally. But you merely adopted the dark. I was born in it.
Formed by it...”, Bane from the Dark Knight Rises.

Figure 6.1: Batman logo made of Parsons waveforms.
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Appendix A

DOPPLER INVARIANCE

More details are available for instance in the original paper from Yang and Sarkar [105].
Consider the wideband case, then a target with a relative movement with respect to the radar
induces a time-delay in the returning signal along with a Doppler compression (or expansion)
of the originally transmitted waveform. The returning signal can then be written as

r(t) = √
ηdu[ηd(t− τ)], (A.1)

where u(t) is the transmitted waveform, τ the delay and ηd the Doppler factor defined by

ηd = c− vr
c+ vr

, (A.2)

where c is the velocity of the signal and vr the relative velocity between the target and the radar.
Taking the example of the chirp, the returning signal becomes:

r(t) =
Rect

{
t
T

}
√
T

√
ηde

2iπηdf0(t−τ)e2iπγ(ηd(t−τ))2
, (A.3)

and the derived instantaneous frequency is then

fd(t) = ηdf0 + 2γη2
d(t− τ). (A.4)

According to [105], a Doppler invariant waveform should satisfies the following equation

f(t) = fd(t− t0), (A.5)

where t0 is a constant time shift and f(t) is the instantaneous frequency of the original waveform.
Therefore for the chirp:

f0 + 2γt = ηdf0 + 2γη2
d(t− τ − t0) ⇒ t0 = f0(ηd − 1) + 2γt(η2

d − 1)
2γη2

d

− τ. (A.6)
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The above equation indicates that for a chirp, t0 is a function of time and the chirp is thus not
Doppler invariant. In the case of a HFM waveform, the derived instantaneous frequency is

fd(t) = f0ηd
1 + κηd(t− τ) . (A.7)

The criterion then becomes

f0
1 + κt

= f0ηd
1 + κηd(t− τ − t0) ⇒ t0 = 1 − ηd

κηd
− τ. (A.8)

In this case, t0 is a constant under the hypothesis that vr is constant. This means that the HFM
waveform is Doppler invariant.
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Appendix B

FSST AND RIDGES EXTRACTION

The analysis of bat signals, besides the need to extract each pulse thanks to the CuSum, also
required the separation of each harmonic within a single pulse. In order to retrieve these harmon-
ics, the Fourier Synchrosqueezed Transform (FSST) has been used in combination with a ridge
extraction algorithm. Initially introduced for wavelet analysis [106][107], the synchrosqueezed
transform is a frequency reallocation technique capable of extracting the harmonic components
of a given signal. Based on the time-frequency space, like the spectrogram often used in this
manuscript, it was then extended to the Fourier space [70]. The goal of the FSST is to "squeeze"
the values in order to concentrate them around curves of instantaneous frequency, thereby
providing a concentrated representation of multi-component signals. Moreover, this function
is invertible, which allows for the reconstruction of each identified component. The following
mathematical explanations of the FSST are derived from [70] and [108], where further detailed
demonstrations are available. The signal under consideration can be expressed as a sum of KH

harmonic components

f(t) =
KH∑
k=1

fk(t) =
KH∑
k=1

Ak(t)e2iπφk(t), (B.1)

where Ak(t) and φk(t) represent the signal amplitude and phase for each harmonic. The deriva-
tives of the phases φk(t) corresponds to instantaneous frequencies. As the FSST is based on
the Short-Time Fourier Transform (STFT), it computes the following transform of the signal
through a sliding window g

V g
f (t, η) =

∫
R
f(τ)g(τ − t)e−2iπη(τ−t)dτ. (B.2)

This is the STFT with a modulation factor e2iπηt [70]. The FSST is then defined by

Tf (t, w) = 1
g(0)

∫
R
V g
f (t, η)δ(w − ŵf (t, η))dη, (B.3)

where δ is the Dirac function and ŵf (η, t) is the local IF described by

ŵf (t, η) = 1
2iπ

∂tV
g
f (t, η)

V g
f (t, η) . (B.4)
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(a) Original bat pulse [14]. (b) Output of the FSST with the extracted ridges.

Figure B.1: Results of the FSST process to separate two harmonics.

The operator ∂t is the partial derivative with respect to t.
Combined with a penalised forward-backward greedy algorithm for the retrieval of the ob-

tained ridges, the harmonics can be extracted using the inverse FSST. All of the aforementioned
operations are available in the Signal Processing Toolbox from Matlab [109] with the function
fsst, ifsst and tfridge. The outcome of this analysis is illustrated in figure B.1(b) in comparison
to the original spectrogram of a bat pulse in figure B.1(a). The energy has been concentrated
around the two harmonics, hence emphasising the related ridges. The retrieval of these ridges is
presented in figures 3.3(a) and 3.3(b).
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Appendix C

AMPLITUDE MODULATION AND GMM

Beyond the frequency modulation investigated in this thesis, the amplitude modulation has
also been subject to a brief study. In order to replicate bat signals, both forms of modulation
are to be taken into account. To recreate the amplitude modulation observed in authentic bat
signals, a Gaussian Mixture Model (GMM) has been implemented.

Inspired from the work in [110] for speaker identification, the objective is to approximate
the envelope of bat signals with a sum of MG weighted Gaussian distributions. The Gaussian
Mixture is given by

p(x|λ) =
MG∑
i=1

pibi(x), (C.1)

where x is the envelope vector from a bat signal in our case, bi(x) are the component probability
densities and pi are the mixture weights. The Gaussian mixture parameters are the mixture
weights, the means and variances collectively represented by λ = {pi, µi, σ2

i } with i = 1, ...,MG.
To estimate the best parameters, λ, for the GMM, a Maximum-Likelihood (ML) estimation is
computed. For a sequence of TG training vectors, X = {x1, ..., xTG}, the likelihood writes

p(X|λ) =
TG∏
t=1

p(xt|λ). (C.2)

Because direct computation is not feasible, the Expectation-Maximisation (EM) algorithm is
employed in order to iteratively estimate the ML parameters. An initial model, designated as
λ, is set to estimate a new model, λ̂, such that p(X|λ̂) ≥ p(X|λ). The new model replaces the
initial model and the process is repeated until convergence is achieved. During each iteration,
the mixture weights, the means, and the variances are calculated according to the following
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formulas:

p̂i = 1
TG

TG∑
t=1

p(i|xt, λ), (C.3)

µ̂i =
∑TG
t=1 p(i|xt, λ)xt∑TG
t=1 p(i|xt, λ)

, (C.4)

σ̂2
i =

∑TG
t=1 p(i|xt, λ)x2

t∑TG
t=1 p(i|xt, λ)

− µ̂2
i . (C.5)

Once the correct mixture has been obtained, results analogous to those presented in figures
C.1(a) and C.1(b) may be achieved. In this example, the envelope of the first harmonic of the
common noctule pulse illustrated in figure 3.2(a) is approximated thanks to a GMM of MG = 10
components. Note that the synthetic envelope has been scaled to match the amplitude of the
real one, hence the difference in amplitude between the two figures.

(a) GMM output. (b) Comparison between envelopes.

Figure C.1: Approximation of a real bat envelope [14] with a GMM.
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Appendix D

CRLB ADDITIONAL RESSOURCES

This appendix furnishes details and results concerning the section 3.2.3, originally issued
from [20].

Chirp - CRLB Matrix

JAF, chirp =


−2

3π
2γ2T 2 + 2

T 2
2
3π

2γT 2

2
3π

2γT 2 −2
3π

2T 2


∣∣∣∣∣∣∣∣
τ,νd=0

(D.1)

HFM - CRLB Matrix

JAF, HFM =



−8π2α2
hκ

2

(1+κT )
8π2αh
T

(
T − ln(1+κT )

κ

)
+8π2α2

h ln2(1+κT )+2
T 2 −4π2αh ln(1 + κT )

8π2αh
T

(
T − ln(1+κT )

κ

)
−2

3π
2T 2

−4π2αh ln(1 + κT )



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
τ,νd=0

(D.2)

Proof of the derivatives with respect to τ

∂χ(τ, νd)
∂τ

= 1
T

∫ ∞

−∞
u(t)Rect

{
t

T

}
∂u∗(t+ τ)Rect

{
t+τ
T

}
∂τ

e2iπνdtdt, (D.3)

with

∂u∗(t+ τ)Rect
{
t+τ
T

}
∂τ

= ∂u∗(t+ τ)
∂τ

Rect
{
t+ τ

T

}
+ u∗(t+ τ)[δ(t+ τ) − δ(t− T + τ)]. (D.4)
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Then

∂χ(τ, νd)
∂τ

= 1
T

∫ ∞

−∞
u(t)Rect

{
t

T

}[
∂u∗(t+ τ)

∂τ
Rect

{
t+ τ

T

}
+ u∗(t+ τ)[δ(t+ τ) − δ(t− T + τ)]

]
e2iπνdtdt, (D.5)

which gives

∂χ(τ, νd)
∂τ

= 1
T

∫ T−τ

0
u(t)∂u

∗(t+ τ)
∂τ

e2iπνdtdt− 1
T
u(T − τ)u∗(T )e2iπνd(T−τ). (D.6)

This result comes from the Dirac functions when evaluated at t = 0 and t = T − τ respectively.
The second derivatives with respect to τ writes as

∂2χ(τ, νd)
∂τ2 = 1

T

∫ T−τ

0
u(t)∂

2u∗(t+ τ)
∂τ2 e2iπνdtdt

− 1
T
u(T − τ) ∂u

∗(t+ τ)
∂τ

∣∣∣∣
t=T−τ

e2iπνd(T−τ)

− 1
T
u∗(T )∂u(T − τ)e2iπνd(T−τ)

∂τ
,

= c′ − a′ − b′, (D.7)

with

a′ = 1
T
u(T − τ) ∂u

∗(t+ τ)
∂τ

∣∣∣∣
t=T−τ

e2iπνd(T−τ), (D.8)

b′ = 1
T
u∗(T )∂u(T − τ)e2iπνd(T−τ)

∂τ
, (D.9)

c′ = 1
T

∫ T−τ

0
u(t)∂

2u∗(t+ τ)
∂τ2 e2iπνdtdt. (D.10)
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Appendix E

CUSUM APPENDICES

E.1 Complex Signal Distribution

At a given time, the considered signal can be described as

x = reiφ = Re(x) + i.Im(x), (E.1)

where Re(x) = r cosφ and Im(x) = r sinφ and the phase φ ∼ U [0, 2π]. In [91], it is shown that
the distribution of a circular complex signal depends only on the distribution of its amplitude r:

p(x) = p(Re(x), Im(x))

= p(r, φ)|Jr,φ|−1

= 1
2πp(r)

1
r
. (E.2)

The matrix |Jr,φ| is the determinant of the Jacobian matrix used for the polar-Cartesian coor-
dinates transformation and defined as

|J(r, φ)| =
∣∣∣∣∣cosφ −r sinφ
sinφ r cosφ

∣∣∣∣∣ = r. (E.3)

E.2 Noise Distribution

The CuSum algorithm considers the modulus of the received signal. Then, in the pres-
ence of a Gaussian circular noise where both the real and imaginary parts follow a normal
distribution N (0, σ

2
0

2 ), the noise variable r = |x| =
√
Re(x)2 + Im(x)2 is Rayleigh distributed

(r ∼ Rayleigh(σ
2
0

2 )) and its probability density function is given by:

p

(
r
∣∣∣σ2

0
2

)
= 2r
σ2

0
e

−r2

σ2
0 . (E.4)
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The corresponding CDF can be written

FRayleigh

(
r
∣∣∣σ2

0
2

)
= 1 − e

− r2
σ2

0 . (E.5)

The subsequent graphs are obtained using a noise vector with a variance of σ2
0 = 0.1 (SNR=

10dB). The KS test of the magnitude r under the Rayleigh hypothesis is plotted in figure E.1(a)
along with its histogram in figure E.1(b). The KS test gives a distance of approximately 1.6×10−3

which consolidates the idea that the noise follows a Rayleigh distribution.

(a) Empirical and simulated CDF for a noise vector. (b) Noise amplitude distribution.

Figure E.1: Verification of the compatibility between a Rayleigh distribution and a noise vector
distribution.

The figure E.2 illustrates the results of the KS test for Monte-Carlo simulation (10,000 trials)
for the real and imaginary parts with Gaussian distributions and for the magnitude with Rayleigh
distribution. The dotted black lines represent the mean values of the mentioned results. Overall,
the choice of the Rayleigh distribution for the pure noise component of a signal is validated
through this simulations.

The variance and mean for a variable following a Rayleigh distribution of parameter σ2
0

2 are
given by:

r̄ =

√
σ2

0π

4 , (E.6)

σ2
r = σ2

0

(
1 − π

4

)
. (E.7)
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Figure E.2: Monte-Carlo simulation for a noise vector. Results of the KS tests for real part,
imaginary part and magnitude.

E.3 Noisy Signal Distribution

A classic distribution to describe a noisy signal is the Rice distribution, named after its cre-
ator [31]. It is well explained in [32] with several references to applications (radar signals analysis,
optical metrology, etc.). In the case of a signal embedded in noise, the real and imaginary parts
of the noisy signal are assumed to be distributed according to normal independent distributions
N
(
ν cosφ, σ

2
0

2

)
and N

(
ν sinφ, σ

2
0

2

)
respectively. The following mathematical development can

be found in [111] and completes the example given by Rice [31] where only the real part is
distorted. Consider a circular Gaussian variable, y = yr + iyi, observed in the presence of Gaus-
sian circular noise, w = wr + iwi. The notations .r and .i represent respectively the real and
imaginary parts of a considered variable in this discussion. The noisy signal is then described by
the equation x = y+w = xr + ixi = (yr +wr) + i(yi +wi). The PDFs for xr and xi are given by

p

(
xr,i
∣∣∣σ2

0
2

)
= 1√

πσ2
0

e
−

(yr,i−xr,i)
2

σ2
0 . (E.8)

In our case r = |x| =
√

(yr + wr)2 + (yi + wi)2 =
√

(ν cosφ+ wr)2 + (ν sinφ+ wi)2, where
ν and φ are the amplitude and phase of the noiseless signal. Then, conditional to (ν, φ), the
distribution of x writes

p

(
xr, xi|ν, φ,

σ2
0

2

)
= 1
πσ2

0
e

− (ν cosφ−xr)2

σ2
0 e

− (ν sinφ−xi)
2

σ2
0 , (E.9)
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and in polar coordinates

p

(
r, ψ|ν, φ, σ

2
0

2

)
= 1
πσ2

0
e

− (ν cosφ−r cosψ)2

σ2
0 e

− (ν sinφ−r sinψ)2

σ2
0 J(r, ψ), (E.10)

where ψ is the phase of the noisy signal. The determinant of the Jacobian matrix is

|J(r, ψ)| =
∣∣∣∣∣cosψ −r sinψ
sinψ r cosψ

∣∣∣∣∣ = r. (E.11)

Integrating over a full ψ cycle, the PDF becomes

p

(
r|ν, φ, σ

2
0

2

)
= r

πσ2
0

∫ 2π

0
e

− (ν2+r2−2νr cos(ψ−φ))
σ2

0 dψ, (E.12)

where φ is a constant unaffected by the noise, which can be dismissed as the integration is done
over a full cycle. Combined with the zeroth order modified Bessel function of the first kind

I0(z) = 1
2π

∫ 2π

0
ez cos(ψ)dψ, (E.13)

the Rice PDF with parameters ν and σ2
0

2 is obtained as

p

(
r|ν, σ

2
0

2

)
= 2r
σ2

0
e

− (ν2+r2)
σ2

0 I0

(2νr
σ2

0

)
. (E.14)

The Rician mean and variance for a variable with parameters (ν, σ2) are expressed by the
following formulas [32]:

r̄ =

√
πσ2

2 L1/2

(
−ν2

2σ2

)
, (E.15)

σ2
r = 2σ2 + ν2 − πσ2

2 L2
1/2

(
−ν2

2σ2

)
, (E.16)

where L1/2(z) = e
z
2
[
(1 − z)I0(−z

2 ) − zI1(−z
2 )
]

is the Laguerre polynomial.

Since statistics are a small world, the Rice distribution is closely related to the Gaussian and
Rayleigh distributions. In the following paragraphs, the SNR can be defined as the ratio ν

σ , and
it is known that for small values ( SNR= ν

σ << 1) the Rice distribution is approximated by a
Rayleigh distribution since the noise predominates over the signal of interest (ν tends to zero).
On the contrary, the higher the SNR (>> 1) the closer the Rice distribution is to a Gaussian
distribution. In the following discussions, a noisy chirp pulse (T = 25µs, B = 10MHz) with a
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constant magnitude ν = 1 is considered.

I want to be a Rayleigh distribution At low SNR, the noise has the high ground on the
signal (It’s over Anakin!) and the amplitude of the signal can be neglected (ν ≃ 0), which gives
I0(z) z−→0−−−→ 1. Therefore, the Rice distribution can be approximated by a Rayleigh distribution

p(r|σ2) = r

σ2 e
− r2

2σ2 . (E.17)

I want to be a Gaussian distribution On the other hand, high SNRs lead to a Gaussian
approximation of the Rice distribution. The value rν

σ2 is becoming large and an asymptotic
expansion of the Rice distribution is given by [21]:

Iα(z) = ez√
2πz

[
1 − 4α2 − 1

8z + (4α2 − 1)(4α2 − 9)
2!(8z)2 − (4α2 − 1)(4α2 − 9)(4α2 − 25)

3!(8z)3 + ...

]
.

(E.18)
Therefore, the PDF of the Rice distribution becomes

p(r|ν, σ2) = r

σ2 e
− (ν2+r2)

2σ2
e
νr
σ2√

2π νr
σ2

[
1 + 1

8 νr
σ2

+ 9
2!(8 νr

σ2 )2 − 225
3!(8 νr

σ2 )3 + ...

]
, (E.19)

→ 1√
2πσ2

e− (ν+r)2

2σ2

√
r

ν
, as rν

σ2 −→ ∞. (E.20)

Moreover, when the sample r is concentrated around ν (|r − ν| < σ), then
√

r
ν ≈ 1, hence,

the Gaussian distribution.
The two limit behaviour limits described here are illustrated in figure E.3. The KS tests for

a chirp embedded in noise have been computed at varying SNR to check the distribution closer
to that of the samples. It is then observable that the Rice distribution is clearly adapted to
describe the distribution of a noisy signal at every SNR. Moreover, the Gaussian approximation
at high SNR and the Rayleigh behaviour at low SNR are also verified as the corresponding KS
curves draw near the one of the Rice distribution at the expected SNR.
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Figure E.3: Illustration of the behaviour of the Rice distribution as function of the SNR with
KS tests (Monte-Carlo simulation with 1000 trials).

E.4 Towards a 2D-CuSum?

The investigation of real data showed that the CuSum algorithm has its limitation when con-
fronted with congested signals like the one presented in figure E.4(a). A possible solution was
thus explored through the examination of a two-dimensional version of the CuSum algorithm.
Instead of computing the CuSum on the time series, the idea was to conduct the detection in
the time-frequency space. This idea is further developed in this appendix on the signal pre-
sented in figure E.4(a). The Fourier Synchrosqueezed Transform (FSST) combined with the
ridge extraction algorithm is applied in order to filter the prominent constant frequencies in a
manner similar to that employed for bat signals when extracting the harmonics. Figures E.4(a)
to E.4(c) illustrate the process. The energy of the constant frequencies being variable, the com-
putation presents jumps in frequency and between ridges in figure E.4(b) because the maximum
energy location changes. The ridges corresponding to the constant frequencies thus detected,
their removal in the original signal can be done, which gives the filtered signal in figure E.4(c).

The objective is then to detect with the CuSum on the frequency axis at each instant t to
obtain a result like in figure E.5(a), where an extract of the signal in figure E.4(c) is processed. A
post-processing of the obtained detection can lead to a more accurate detection of the pulses like
in figure E.5(b). This is an exploratory study that requires further investigation for application
on congested signal analysis.
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(a) Congested signal. (b) FSST result.

(c) Congested signal with the removed ridges.

Figure E.4: FSST processing of the third NOSTRA-ROS signal in order to extract the polluting
constant frequencies.

(a) Time-Frequency detection. (b) Improved temporal detection.

Figure E.5: Illustration of the 2D-CuSum results.
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Titre : Formes d’onde et traitements bio-inspirés

Mot clés : biomimétisme, chauve-souris, écholocation, Forme d’onde, traitement radar.

Résumé : Cette thèse aborde le sujet de la
diversité des formes d’onde afin d’apporter
des réponses aux problématiques radar ac-
tuelles, telles que la congestion croissante du
spectre électromagnétique ou encore le be-
soin constant de performances améliorées (ou
du moins maintenues). En étudiant le principe
d’écholocation utilisé par les chauves-souris
et leurs formes d’onde, les potentiels atouts de
ces signaux innés sont mis en exergue. Une
forme d’onde bio-inspirée, la forme d’onde de
Parsons, capable d’imiter la construction des
signaux de chauves-souris avec une certaine
flexibilité, a ainsi été proposée pour des ap-
plications radar. Tout au long de la thèse, la
comparaison est faite entre la fonction de Par-
sons et des formes d’ondes radar classiques

(le chirp et la fonction hyperbolique) afin de
mesurer le potentiel de cette forme d’onde
bio-inspirée. En outre, ses réponses au trai-
tement radar classique sont étudiées. En par-
ticulier, les bornes de Cramér-Rao ont été cal-
culées pour quantifier l’efficacité de la forme
d’onde dans l’estimation du délai et du Dop-
pler. Des discussions sur des données simu-
lées et réelles ont permis de valider la fonc-
tion de Parsons en tant que potentielle nou-
velle forme d’onde radar. Pour aller plus loin,
son implémentation dans des applications ra-
dar concrètes est étudiée. Enfin, à la suite
de l’étude initiale sur les signaux de chauves-
souris, un algorithme de détection de change-
ment, le CuSum, est adapté et développé pour
la détection de signaux radar inconnus.

Title: Bio-inspired waveforms and processing

Keywords: biomimicry, bat, echolocation, waveform, radar processing.

Abstract: This thesis addresses the issue
of waveform diversity to answer current chal-
lenges in radar, such as the increasing spec-
tral congestion or the need for improved (or
at least maintained) capabilities. By studying
the echolocation of bats and their waveforms,
the potential assets of such innate waveforms
have been highlighted. A bio-inspired wave-
form, the Parsons waveform, which is capa-
ble of mimicking the design of bat waveforms
with a notable flexibility, has thus been pro-
posed for use in radar applications. All along
this thesis, the comparison is made between
the Parsons function and classical radar wave-
forms (the chirp and the hyperbolic frequency
modulation) in order to assess the potential of

the bio-inspired waveform. In addition, its re-
sponses to traditional radar processing have
been studied. In particular, the Cramér-Rao
lower bounds have been calculated to quan-
tify the efficiency of the waveform in estimating
delay and Doppler. Discussions on both simu-
lated and real data have enabled the validation
of the Parsons bio-inspired function as a po-
tential new radar waveform. To further investi-
gate this, its implementation in concrete radar
applications is studied. Finally, following an ini-
tial study of bat signals, a change-point detec-
tion algorithm, namely the CuSum, is derived
and developed for the detection of unknown
radar signals.
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