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Notations

Measure theory
P(X ) Space of probability measures on a space X
M+(X) Space of finite nonnegative Borel measures on a space X
U(µ, ν) Set of admissible couplings, whose marginals are µ and ν

X
All weighted objects, including weighted (metric) space,
metric-measure space, measure network, weighted matrix,
measure hypernetwork, sample-feature space, are written in italic

# Push-forward operator

π#1, π#2
First and second marginal distributions of measures π, respectively
i.e., if π ∈M+(X × Y ), then π#1(x) =

∫
Y dπ(x, y) and π#2(y) =

∫
X dπ(x, y)

µ⊗ ν Product measure between two measures µ and ν
⇀ Weak convergence
m(µ) Mass of measure µ
∆n Set of histograms of n bins, i.e., ∆n := {p ∈ Rn>0 : ∑i pi = 1}

Linear algebra
X Matrix in discrete setting, or space in continuous setting

⊗ Tensor-matrix multiplication: given a 4D-tensor L and a matrix P ,
the matrix L⊗ P is defined by (L⊗ P )ij = ∑

k,l LijklPkl
⊕ Sum defined by (f ⊕ g)(x, y) = f(x) + g(y)
� Element-wise multiplication
〈·, ·〉 Scalar product
[n] Set of the first n positive integers, i.e., [n] := {1, ..., n}
1d d-dimensional vector of ones in Rd

Acronym
OT, UOT Balanced and Unbalanced Optimal Transport
GW, UGW Balanced and Unbalanced Gromov-Wasserstein
FGW, FUGW Fused Balanced and Unbalanced Gromov-Wasserstein
COOT, UCOOT Balanced and Unbalanced Co-Optimal Transport
AGW Augmented Gromov-Wasserstein
MMOT Multi-marginal Optimal Transport
KL Kullback-Leibler divergence
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Chapter 1

Introduction

1.1 Why and how optimal transport? . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.1 Optimal transport for probability measures . . . . . . . . . . . . . . . . . 7
1.1.2 Optimal transport across spaces and beyond probability measures . . . . 8

1.2 Thesis outlines and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Why and how optimal transport?

In the recent years, the unprecedented versatility of optimal transport (OT) has gone far
beyond the original formulation of Monge (1781) on the least effort problem, and the seminal
work of Kantorovich (1942). From a high-level perspective, we can conceptually describe the
OT as a principled approach to compare weighted objects (i.e., sets equipped with certain
measures), namely graphs (Nikolentzos, Meladianos, and Vazirgiannis, 2017), texts (Kusner
et al., 2015), images (Arjovsky, Chintala, and Bottou, 2017), persistence diagrams (Edelsbrunner,
Letscher, and Zomorodian, 2002), or tabular data (Redko et al., 2020), while providing a way to
align their elements in many situations.

1.1.1 Optimal transport for probability measures

The most fundamental application of OT, featured by the Wasserstein distance, is on the
comparison of probability measures. Needless to say, this task is ubiquitous in statistical learning.
A classic example is the maximum likelihood estimation, which is asymptotically equivalent to
finding an empirical model "closest" to the true one, in terms of Kullback-Leibler divergence.

Giving the long history of development of statistics and probability theory, there are countless
choices of divergences existing in the literature 1: Kullback-Leibler divergence, total variation
and Euclidean distance to name a few. But what distinguishes Wasserstein distance from them
in practice? First, as opposed to many popular divergences, it allows to compare probability
measures with non-overlapped supports. This is because it is not based on bin-by-bin comparison,
but rather on all pairwise relations across the supports captured by the distance function. As
a result, the Wasserstein distance can characterize the weak convergence, which proves to be

1. For a comprehensive and up-to-date taxonomy of divergences, see https://franknielsen.github.io/
Divergence/Poster-Distances.pdf.
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particularly useful, for example, in training generative adversarial networks (Arjovsky, Chintala,
and Bottou, 2017). Second, as for many OT-based divergences, the resulting OT plan contains
meaningful information on the correspondances between samples, and has found important
applications, namely in domain adaptation (Courty et al., 2016) and genomics (Schiebinger
et al., 2019). Broadly speaking, the OT plan can 1) be used to estimate the barycentric mapping
(Courty et al., 2016; Ferradans et al., 2014), which can be seen as the projection of the source
data onto the target domain, or 2) provide the label predictions on the target domain in the
classification problem, without the need of training a classifier (Redko et al., 2019).

The success of Wasserstein distance, or more generally OT, can also be found in computer
graphics (Bonneel and Digne, 2023; Bonneel, Peyré, and Cuturi, 2016; Solomon et al., 2015),
dictionary learning (Rolet, Cuturi, and Peyré, 2016), supervised machine learning (Frogner et al.,
2015) and natural language processing (Kusner et al., 2015), to name a few.

1.1.2 Optimal transport across spaces and beyond probability measures

By definition, Wasserstein distance requires that the probability measures must live in
a common probability space. This is equivalent to comparing two probability spaces whose
supports lie in the same underlying (typically metric) space. In other words, we implicitly assume
that 1) it is always feasible to compute the inter-domain distance, which also happens to be
the only ingredient we need to calculate the Wasserstein distance, and 2) the measures must
have unit mass, due to the marginal constraints. To what extent can we relax these assumptions?

Can we handle finite nonnegative measures? Yes, for example, by replacing the hard
marginal constraints by soft penalties. This gives rise to the celebrated Unbalanced Optimal
Transport, first proposed by Benamou (2003). However, in practice, a much more popular
alternative is due to the works of Frogner et al. (2015) and Liero, Mielke, and Savaré (2018).

Can the supports lie in different (also known as, incomparable) spaces? Yes, the
comparison between two incomparable spaces is still feasible, though indirectly. A natural
approach is to project them onto a sufficiently rich common space, so that it is possible to
calculate the Wasserstein distance between their embeddings. This leads to a whole family of
distances originated from the Gromov-Hausdorff distance. The most famous member in this
class is the Gromov-Wasserstein (GW) distance (Mémoli, 2007, 2011b). We also note that
direct comparison is still possible, for example, in the discrete setting. More precisely, Redko
et al. (2020) take a radically different perspective to exploit the input data, by considering the
pairwise differences between the coordinates of samples across spaces and learning simultaneously
the sample and feature alignments. The corresponding distance, called Co-Optimal transport,
provides a principled approach to compare weighted matrices.
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How can we integrate extra information into OT? A natural solution is to optimize
a linear combination of the OT’s objective function and a term which takes into account the
prior knowledge. This simple strategy usually works well in practice and has been used, namely
to compare the weighted labelled graphs (Vayer et al., 2019a), or to incorporate the mutual
information when the inter and intra-domain distances are informative (Chuang, Jegelka, and
Alvarez-Melis, 2023), or in semi-supervised domain adaptation, where the alignments between
some labelled source and target samples are available (Courty et al., 2016; Gu et al., 2022).

1.2 Thesis outlines and contributions

My broad research interest lie in the intersection of research directions addressed by the
aforementioned questions, with major focus on the incomparable spaces. In particular, this thesis
titled Optimal transport for transfer learning across domains has several main objectives.

1. Given the discrete nature of Co-Optimal transport, it is natural to study its continuous
extension, which may serve as the first step towards further analysis on the numerical,
and potentially, statistical properties. Given the close connection between COOT and GW
distance, understanding one may shed light on understanding the other. This objective is
addressed in Chapters 3 and 4.

2. Merging techniques from different branches in OT allows to have the best of many worlds,
thus can provide efficient solutions to problems arised from real-world applications. This
strategy has been successfully used, for example in the unbalanced GW (Séjourné, Vialard,
and Peyré, 2021b) and the fused GW (Vayer et al., 2019a). This objective is addressed in
Chapters 4 to 6.

3. It is desirable to further unlock the potential applicability of COOT on across-domain
matching. From a practical perspective, COOT brings two distinct advantages: the access to
the feature correspondances and a novel approach to exploit the data. To give an example,
COOT offers unique opportunity to perform genomic feature alignments in single-cell
multi-omics, which do not exist for GW or other OT-based divergences. This objective is
addressed in Chapters 4 and 6.

Our contributions are in line with these objectives and summarized in the next paragraphs. Last
but not least, during his PhD, the author has also contributed to the open-source packages,
namely Python Optimal Transport, available at https://pythonot.github.io/, and Fused
Unbalanced Gromov-Wasserstein, available at https://github.com/alexisthual/fugw.

Chapter 2 : Technical background on optimal transport The purpose of this chapter
is to provide relevant mathematical and numerical background on OT. In particular, we focus
on the intuition and motivation of the core starting points of this thesis, notably the balanced
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and unbalanced OT, and the GW distance. Second, we spend much effort on their algorithmic
and implementation details, which are not always discussed in the literature. We also provide a
review on some variations of OT, coming mostly from the machine learning community. This
may serve as a supplement to the excellent reference on computational OT of Peyré and Cuturi
(2019) and to the informative tutorial of Séjourné, Peyré, and Vialard (2022) on how to used
unbalanced transport in machine learning.

Chapter 3: Contributions to Co-Optimal Transport In this chapter, we present two
contributions to the study of COOT. The first one is based on our unpublished working paper on
continuous COOT in November 2020 and bears similarity with two concurrent works. The first
one is the hypergraph COOT (Chowdhury et al., 2023) published in December 2021. Their work
and ours are based on the same mathematical framework of Chowdhury and Mémoli (2019), thus
result in the same metric property. Apart from that, they pursue different research objectives,
where COOT is used to explore the categorical properties of the space of measure hypernetworks.
By contrast, we consider continuous COOT as the first step towards the analysis of entropic
approximation, unbalanced extension and sample complexity.

Our study on the entropic COOT also shares some resemblance to the approximation error of
entropic GW in the paper of Zhang et al. (2022a) published in December 2022. Their analysis and
ours use the block approximation technique (Carlier et al., 2017) to quantify the approximation
error. In particular, our result can be immediately extended to the GW setting. However, we
consider different assumptions on the measure networks, which result in different upper bound of
the approximation error.

The second contribution is based on (Tran et al., 2021) and published in NeuRIPS Workshop
in Optimal Transport and Machine Learning (OTML 2021). The motivating idea is that, COOT
can be reformulated as a multi-marginal OT problem under the additional factorization constraint.
We generalize this observation and consider the factored multi-marginal OT problem and its
factorization relaxation via Kullback-Leibler divergence. Such relaxation not only enjoys nice
interpolation properties, but also can be easily approximated, thanks to the Difference-of-Convex
algorithm. Despite high computational cost incurred by the cost tensor, it can provide decent
estimation of the COOT and GW distance.

• Factored couplings in multi-marginal optimal transport via difference of convex program-
ming.Quang Huy Tran, Hicham Janati, Ievgen Redko, Rémi Flamary and Nicolas Courty.
NeurIPS Workshop on Optimal Transport and Machine Learning, 2021.

Chapter 4: Unbalanced Co-Optimal Transport We present the unbalanced extension of
COOT in the continuous setting. We show that our formulation is a well-defined optimization
problem. More importantly, it guaratees the provable robustness to outliers, which is not the case
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for COOT. As a byproduct, this result can be extended immediately to GW and unbalanced GW.
The proposed method also shows favorable performance in unsupervised heterogeneous domain
adaptation and single-cell multi-omics tasks. For the latter, in the unbalanced scenarios, the
feature coupling allows to efficiently recover the alignments between genes, when the across-domain
cells have different number of genomic features.

This chapter is based on (Tran et al., 2023) and has been accepted at the AAAI Conference on
Artificial Intelligence (AAAI 2023). The implementation of Unbalanced COOT will be integrated
into the next release of Python Optimal Transport package (Flamary et al., 2021).

• Unbalanced Co-Optimal Transport. Quang Huy Tran, Hicham Janati, Nicolas Courty,
Rémi Flamary, Ievgen Redko, Pinar Demetci and Ritambhara Singh. AAAI Conference on
Artificial Intelligence, 2023.

Chapter 5: Fused Unbalanced Gromov-Wasserstein We present an OT-based method
for inter-subject alignment on the brain data, denoted as Fused Unbalanced Gromov-Wasserstein
(FUGW). It allows to align cortical surfaces based on the similarity of their functional signatures
in response to a variety of stimulation settings, while penalizing large deformations of individual
topographic organization. We demonstrate that FUGW is well-suited for whole-brain landmark-
free alignment. The unbalanced feature allows to deal with the fact that functional areas vary
in size across subjects. Our results show that FUGW matching significantly increases between-
subject correlation of activity for independent functional data, and leads to more precise mapping
at the group level. The proposed method also allows to learn better barycenters (also known as
brain templates), comparing to other anatomical alignment approaches.

This chapter is based on (Thual et al., 2022) and has been accepted at the Neural Information
Processing Systems (NeurIPS 2022). It is a collaborative work with MIND team at INRIA Saclay.
The main contribution of the author is on the formulation of the mathematical framework and
the implementation of the algorithms.

• Aligning individual brains with Fused Unbalanced Gromov-Wasserstein. Alexis Thual∗,
Quang Huy Tran∗, Tatiana Zemskova, Nicolas Courty, Rémi Flamary, Stanislas Dehaene
and Bertrand Thirion. Neural Information Processing Systems (NeurIPS), 2022.

Chapter 6: Breaking isometric ties and introducing priors in Gromov-Wasserstein
distance It is known that GW distance is invariant under isometric transformations. However,
not all of them are born equal. For example, digits 6 and 9 are isomorphic in GW sense, but they
clearly represent different labels. We propose a simple, yet efficient variation of GW distance,
called Augmented Gromov-Wasserstein (AGW) divergence, which partially addresses the above
isssue. More precisely, AGW learns simultaneously the sample and feature couplings by linearly
combining the objective functions of GW distance and COOT. We show that such combination
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results in much less isometries than GW distance. More importantly, the strong performance of
AGW in our experiments indicates that these invariants appear to be relevant and meaningful.
Furthermore, the information on the feature correspondances also proves to be particularly useful
in the single-cell multi-omics integration tasks.

This chapter is based on (Demetci et al., 2024) and has been accepted at the International
Conference on Artificial Intelligence and Statistics (AISTATS 2024). It is a collaborative work
with Ievgen Redko (Huawei), Pinar Demetci (Broad Institute) and Ritambhara Singh (Brown
University). The main contribution of the author is on the theoritical analysis of the proposed
method. In particular, despite its simplicity, the study of the isometries induced by AGW requires
very different techniques to those of GW distance.

• Breaking isometric ties and introducing priors in Gromov-Wasserstein distance. Pinar
Demetci, Quang Huy Tran, Ievgen Redko and Ritambhara Singh. International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), 2024.
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In this chapter, we provide relevant technical background to three problems: balanced optimal
transport (OT), unbalanced OT and Gromov-Wasserstein distance. The general structure for
each topic includes the motivation, the theoritical and numerical aspects. In particular, we focus
on the numerics, which are not usually discussed in the OT literature. By contrast, we only
briefly present the theory since it has already been well-studied and can be found in many prior
works, which will be precised during the discussion of each topic.

We start with the balanced OT, which compares probability measures whose supports live in
the same underlying space. Then, we study two important extensions of this problem. The first
one is based on the relaxation of the hard marginal constraints, which results in the unbalanced
OT. The second generalization considers the situation where the supports of the probability
measures lie in incomparable spaces. This leads to the Gromov-Wasserstein distance, whose
origin comes from the Gromov-Hausdorff distance adapted to the Wasserstein distance.
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Chapter 2. Technical background on optimal transport

2.1 From Wasserstein distance

2.1.1 Balanced Optimal Transport

We present two viewpoints on the motivation of the OT problem: the Monge problem serves
as the historical starting point and the Hausdorff distance later provides the intuition of the
Gromov-Wasserstein distance. Then, we introduce some important theoritical properties of the
Wasserstein distance, which are widely used in machine learning applications. Finally, we discuss
in details the algorithmic and practical aspects of the entropic approximation of the OT distance.

Motivation

Relation with Monge’s problem The original OT problem was first formulated by Monge
(1781). From a mathematical viewpoint, it aims at transporting all the mass from one probability
distribution to the other, so that the displacement cost is minimized. Typically, this cost is
measured by a distance function which takes supports of the probability measures as inputs.
Transporting from one probability measure µ to the other one ν is equivalent to finding a map T
such that ν = T#µ. We follow Santambrogio (2015) and define the Monge’s problem as follows.

Definition 2.1.1 (Push-forward measure). Let X,Y be two measurable spaces. Given a probability
measure µ on X and a measurable map T : X → Y , we call T#µ ∈ P(Y ) the push-forward
measure of µ by T , defined by T#µ(E) = µ(T−1(E)), for every E ⊂ Y . Equivalently, for every
measurable bounded function ϕ : Y → R, we have

∫
Y ϕ dT#µ =

∫
X ϕ ◦ T dµ. We also say T is a

transport map from µ to ν.

Definition 2.1.2 (Monge’s problem). Let X,Y be two complete and separable metric spaces.
Given two probability measures µ ∈ P(X), ν ∈ P(Y ) and a measurable cost function c : X × Y →
R ∪ {∞}, we define the Monge’s problem as

MOT(µ, ν) = inf
T∈T (µ,ν)

∫
X
c(x, T (x)) dµ(x), (2.1)

where T (µ, ν) := {T : X → Y measurable such that T#µ = ν} is the set of transport
maps from µ to ν. Despite the natural interpretation, the Monge’s formulation has some major
drawbacks. First, its objective function is nonconvex, thus brings much difficulty to the theoretical
analysis and numerical optimization. Second, the transport map may not exist. For example, if
the supports of µ and ν are finite such that |supp(µ)| > |supp(ν)|, then the set T (µ, ν) is empty
because any transport map must be surjective. Even when it exists, there is no guarantee that
the infimum can be attained. Last but not least, the Monge’s problem is asymmetric, in the
sense that MOT(µ, ν) 6= MOT(ν, µ).

Instead of enforcing one-to-one relation, we can allow one-to-many alignment, meaning that
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2.1. From Wasserstein distance

the mass transported by a source point can be splitted to various target points. Formally, we
consider the set of admissible couplings (or transport plans) defined as

U(µ, ν) := {π ∈ P(X × Y ) : π#1 = µ, π#2 = ν}, (2.2)

where π#1 =
∫
Y dπ(·, y) and π#2 =

∫
X dπ(x, ·) are the marginal distributions of the measure π.

Clearly, T (µ, ν) ⊂ U(µ, ν), since for any transport map T (if exists), we have (Id, T )#µ ∈ U(µ, ν).
Now, we are ready to define the relaxation of the Monge problem, known as the Kantorovich’s
problem (Kantorovich, 1942).

Definition 2.1.3 (Kantorovich’s problem). Let X,Y be two compact metric spaces. Given
µ ∈ P(X), ν ∈ P(Y ) and c : X × Y → R ∪ {∞}, the Kantorovich’s problem is the following
optimization problem

OT(µ, ν) = inf
π∈U(µ,ν)

∫
X×Y

c(x, y) dπ(x, y). (2.3)

Throughout this thesis, we refer Problem (2.3) to as the OT problem. When c(x, y) = dp(x, y),
for p ≥ 1 and d is the (common) metric on the metric spaces X and Y , we obtain the famous
Wasserstein distance of order p (Villani, 2003) defined as

W p
p (µ, ν) = inf

π∈U(µ,ν)

∫
X×Y

dp(x, y) dπ(x, y). (2.4)

Since T (µ, ν) ⊂ U(µ, ν), we have MOT(µ, ν) ≥ OT(µ, ν). Equality may hold, for example in the
cases of the celebrated Brenier’s theorem (Brenier, 1987) and the Birkhoff-von-Neumann theorem
(Birkhoff, 1946) for continuous and discrete measures, respectively.

Relation with Hausdorff distance So far, we have seen the derivation of the OT from the
Monge’s problem. Now, we present another approach based on the Hausdorff distance. Most
materials are inspired from (Mémoli, 2011b).

Given a compact metric space (Z, d), we denote C(Z) the collection of all compact subsets of
Z. The Hausdorff distance between X,Y ∈ C(Z) is defined as

d
(Z,d)
H (X,Y ) := max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)
}
, (2.5)

where the distance between a point to a subset of a metric space is defined by d(x, Y ) :=
infy∈Y d(x, y). It is known that d(Z,d)

H is a proper metric on C(Z) (see for example, Proposition
7.3.3 in (Burago, Burago, and Ivanov, 2001)).

Definition 2.1.4 (Correspondance). Given two non-empty sets X and Y , a subset R ⊂ X × Y
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Chapter 2. Technical background on optimal transport

Figure 2.1 – Example of correspondance R between two sets X = {x1, x2, x3, x4} and Y =
{y1, y2, y3, y4}. Here, R = {(x1, y1), (x1, y3), (x2, y2), (x3, y2), (x4, y3), (x4, y4)}.

is a correspondance between X and Y if and only if

• For every x ∈ X, there exists y ∈ Y such that (x, y) ∈ R.

• For every y ∈ Y , there exists x ∈ X such that (x, y) ∈ R.

An example of correspondance is illustrated in Figure 2.1. When X and Y are finite with
cardinals m and n, respectively, then all correspondances can be constructed as follows: choose
a matrix M ∈ {0, 1}m×n such that every row and column contains at least a value 1, then the
correspondance can be defined as R := {(xi, yj) ∈ X × Y : Mij = 1}. In particular, if X and Y
are disjoint, then R corresponds to a bipartite graph in which every edge has uniform weight of
one. In this case, there is an intimate relation between the correspondance and the transportation
plan in OT 1. First, both describe the alignments between X and Y . Second, the transport plan
can also be seen as a flow in a bipartite graph, where the source nodes must be connected to all
target nodes via weighted edges. Denote R(X,Y ) the collection of all correspondances between
X and Y , then by Proposition 2.1 in (Mémoli, 2011b), we have

d
(Z,d)
H (X,Y ) = inf

R∈R(X,Y )
sup

(x,y)∈R
d(x, y) = inf

R∈R(X,Y )
||d||L∞(R). (2.6)

Suppose that we equip each compact subset in C(Z) with a Borel probability measure and consider
the collection of such "weighted spaces" Cw(Z) := {(X,µX) : supp(µX) = X and X ∈ C(Z)}.
Given the similarity discussed above, one can replace the correspondance by the admissible
coupling and obtain the Wasserstein distance

WZ,∞
(
(X,µX), (Y, µY )

)
:= inf

π∈U(µX ,µY )
sup

(x,y)∈R(π)
d(x, y) = inf

π∈U(µX ,µY )
||d||L∞(R(π)), (2.7)

where R(π) := supp(π) the support of the measure π. Note that, by Lemma 2.2 in (Mémoli,
2011b), for any π ∈ U(µX , µY ), we have R(π) ∈ R(supp(µX), supp(µY )), thus d(Z,d)

H ≤ WZ,∞.

1. More discussion on the bipartite-graph viewpoint of OT can be found in Chapter 8 in (Brualdi, 2006) or
Chapter 3.4 in (Peyré and Cuturi, 2019).
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By replacing the supremum norm with the Lp-norm, we recover the p-Wasserstein distance

WZ,p

(
(X,µX), (Y, µY )

)
= inf

π∈U(µX ,µY )
||d||Lp(X×Y,π). (2.8)

To conclude, Diagram 2.2 summarizes the process of transforming the Hausdorff distance into the
p-Wasserstein distance, when the compact metric space is equipped with a probability measure.
As we will see in Section 2.2, this process is particularly useful when extending to the setting of
metric measure space.

Figure 2.2 – "W" indicates the Wassersteinization process defined by replacing the optimization
over the correspondances by over the admissible couplings. "Lp" indicates the Lp-ization process
defined by replacing the supremum norm by the Lp-norm.

Theory

Since the seminal work of Kantorovich (1942), the theory of OT has been profoundly
developped in the last decades. Different theoretical aspects with different level of generality
(from compact metric space to Polish space) are covered in various excellent references, (Ambrosio,
Gigli, and Savaré, 2005; Santambrogio, 2015; Villani, 2003, 2009), to name a few. This list is
by no means exhaustive or representative. In this thesis, we only present some basic and useful
properties of OT, which have much impact in machine learning.

Existence of solution, metric and weak convergence properties The existence of min-
imizer of the Kantorovich problem is guaranteed, for example when the cost is lower semi-
continuous and bounded below (Theorem 4.1 in (Villani, 2009)). Note that, apart from the classic
choice of cost function c = dp as in the Wasserstein distance, there are other alternatives, for
example, the Bregman divergence (Guo et al., 2021), or even the Wasserstein distance (Huizing,
Cantini, and Peyré, 2022).

The Wasserstein distance defines a metric on the space of probability measures with finite
moments of order p ≥ 1 (Theorem 7.3 in (Villani, 2003)) and characterizes the weak convergence:
for any p ≥ 1, we have µn ⇀ µ if and only if Wp(µn, µ)→ 0 (Theorem 7.12 in (Villani, 2003)).
This topological property also holds for the integral probability metric (Müller, 1997), but not for
other popular statistical divergences, namely the Kullback-Leibler divergence, the total variation,
or the Hellinger distance 2.

2. More detailed comparison amongst divergences can be found in (Gibbs and Su, 2002).
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Duality theory Given the convexity of the OT problem, another very powerful property is
the duality theorem, which asserts that the strong duality holds. More precisely, if X,Y are
compact metric spaces and the cost c is continuous, then by Theorem 1.46 in (Santambrogio,
2015), one has

OT(µ, ν) = sup
(f,g)∈Cb(X)×Cb(Y )

f⊕g≤c

∫
X
fdµ+

∫
Y
gdν, (2.9)

where Cb(X), Cb(Y ) denote the space of bounded continuous functions on X,Y , respectively.
Strong duality still holds in a much more general setting (see Theorem 5.10 in (Villani, 2009)).
The theory of duality plays a crucial role, not only in theoritical study, but also in practical
applications. In particular, it is at the heart of some exact solvers for the discrete OT problem
(see Section 3 in (Peyré and Cuturi, 2019)). In the case of Wasserstein distance, the duality theory
allows to deduce other reformulations of the primal problem, which have recently attracted much
interest in machine learning. We now discuss two particular important applications.

2-Wasserstein distance Under mild assumptions on the probability measures, thanks to the
duality and Brenier’s theorems (Brenier, 1987), Theorem 2.9 in (Villani, 2003) states that the
2-Wasserstein distance can be rewritten as the optimization of convex functions. This result has
been used to estimate the Wasserstein distance (Chartrand and Wohlberg, 2009; Korotin et al.,
2019; Makkuva et al., 2020; Taghvaei and Jalali, 2019), where the functional is parametrized by
an input convex neural network (Amos, Xu, and Kolter, 2017).

1-Wasserstein distance An important application of the duality theory is the 1-Wasserstein
distance (also known as Earth mover’s distance). Its dual problem 3 is a reformulation of the
primal problem as the maximization over all 1-Lipschitz functionals, which can be parametrized
by neural networks. In practice, the 1-Wasserstein distance has been successfully used in the
training of generative adversarial networks (GAN) (Goodfellow et al., 2014), thanks to the seminal
work of Arjovsky, Chintala, and Bottou (2017) on Wasserstein GAN (WGAN). There have
been various extensions and improvements of WGAN, for example smoothed WGAN (Sanjabi
et al., 2018), WGAN-GP (Gulrajani et al., 2017), WGAN-LP (Petzka et al., 2018), Sobolev-GAN
(Mroueh et al., 2017). It is also the motivation for other OT-based GAN methods, namely
Sinkhorn divergence-GAN (Genevay, Peyre, and Cuturi, 2018), OT-GAN (Salimans et al., 2018).
Interestingly, WGAN also finds its connections with the Minkowski and Alexandrov problems
in convex geometry (Lei et al., 2019), and with the soft-margin formulation of Support Vector
Machine (Jolicoeur-Martineau and Mitliagkas, 2019).

3. Also known as the Kantorovich-Rubinstein duality, see Remark 6.5 in (Villani, 2009). More discussion on the
1-Wasserstein distance can be found in Chapter 6 in (Peyré and Cuturi, 2019).
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Approximation and algorithm

In discrete setting, the OT formulation is a linear program. An example of exact solver 4

is the interior point method (Orlin, 1988). It requires the complexity of O(n3 logn), which is
computationally prohibitive in many applications. There exist some approaches to overcome this
limitation 5. For example, the mini-batch approach (Fatras et al., 2020; Sommerfeld et al., 2019)
considers multiple resamplings of the data and uses the average of distances computed in the
mini-batches as an estimation of the true OT distance. The "sliced" method (Bonneel et al., 2015;
Rabin et al., 2012) develops an alternative metric called Sliced Wasserstein distance. It relies on
the fact that computing the 1-D Wasserstein distance boils down to sorting the point values,
which operates with a complexity of O(n logn). Using the framework from statistical physics,
Koehl, Delarue, and Orland (2019) approximate the OT distance by the free energy evaluated at
sufficiently small temperature. From a more mathematical viewpoint, this idea is based on the
interesting relation between the minimum and the logsumexp operation, where informally, one
has that: min f(x) = limβ→+∞− 1

β log
∫
e−βf(x)dx.

Entropic OT problem In this thesis, we focus on the line of works on the discrete entropic
approximation 6 defined by: for ε > 0,

OTε(µ, ν) = inf
P∈U(µ,ν)

〈C,P 〉+ ε KL(P |µ⊗ ν). (2.10)

In the OT literature, the entropic regularization can sometimes be referred to the case where
the regularizer is the negative entropy defined by H(P ) = ∑

i,j Pij(logPij − 1). However, since
KL(P |µ ⊗ ν) = H(P ) −H(µ) −H(ν), for any P ∈ U(µ, ν), the two regularized problems are
equivalent, up to a constant. Interestingly, the entropic OT is an even older problem than the
unregularized one. It was already studied in the early 30’s by Schrödinger (1932), under the
name static Schrodinger bridge problem. The entropic OT problem has attracted much attention
to the machine learning community thanks to the seminal work of Cuturi (2013).

Note that, the entropic regularization introduces bias, in the sense that OTε(µ, µ) 6= 0, for
any ε > 0. This issue can be easily overcome by considering the Sinkhorn divergence 7 (Feydy
et al., 2019; Ramdas, Trillos, and Cuturi, 2017) defined by

SDε(µ, ν) = OTε(µ, ν)− 1
2 [OTε(µ, µ) + OTε(ν, ν)] . (2.11)

4. See also Chapter 3 in (Peyré and Cuturi, 2019) for a more detailed discussion on classic algorithms and
Section 2.1 in (Pele and Werman, 2009) for an overview on computational complexity

5. See Section 3 in (Bonneel and Digne, 2023) for an overview on the numerical solvers.
6. For a mathematical introduction in the general setting, interested readers may consult the lecture note of

Nutz (2022).
7. This divergence is implemented very efficiently in the Geomloss package (Feydy et al., 2019).
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Not only being unbiased, the Sinkhorn divergence also enjoys favorable topological, statistical
and interpolation properties (Feydy et al., 2019; Genevay et al., 2019). In particular, if the ground
cost is the squared l2-norm, then it is a good proxy for the squared 2-Wasserstein distance. More
precisely, under mild conditions on µ and ν, one has that |SDε(µ, ν)−W 2

2 (µ, ν)| = O(ε2) (Chizat
et al., 2020).

Properties The entropic OT has many interesting properties. First, it is a good and scalable
approximation of OT distance, where the approximation error can be quantified in some settings
(Genevay et al., 2019; Luise et al., 2018). Moreover, the convergence behaviors of minimum and
minimizer are also well understood (Carlier et al., 2017; Léonard, 2012) and the convergence
rate exists in some practical situations (Cominetti and Martín, 1994; Genevay et al., 2019; Weed,
2018). Second, since entropic OT is a convex problem, strong duality holds and one has that

OTε(µ, ν) = sup
f∈Rm

g∈Rn

〈f, µ〉+ 〈g, ν〉 − ε
〈

exp
(
f ⊕ g − C

ε

)
, µ⊗ ν

〉
. (2.12)

Arguably, this is the most important premise in the study of the entropic approximation, which
allows to develop and analyze many Sinkhorn-based algorithms. In particular, Genevay et al.
(2019) use the dual problem to show that entropic OT has better sample complexity than
unregularized OT, though it fixes the bottleneck in the sample size by introducing a new one in
the regularization. This issue can be mitigated, for example when the probability measures are
sub-Gaussian (Mena and Niles-Weed, 2019). Entropic OT is also known for its metric property
(Sanjabi et al., 2018), joint convexity and smoothness with respect to the inputs (Luise et al.,
2018).

Algorithm To solve the dual problem (2.12), we are interested in the deterministic approach,
where the most popular solver is the Sinkhorn algorithm (Sinkhorn and Knopp, 1967) 8. Denote
K = e−C/ε the kernel matrix. Then, from the first-order optimality conditions of the dual
problem, the iterates read

u(t+1) = µ

Kv(t) and v(t+1) = ν

KTu(t+1) . (2.13)

This algorithm is very easy to implement and available in the Python Optimal Transport (Flamary
et al., 2021) and OTT-JAX (Cuturi et al., 2022) packages. It is well known that it converges
globally to the optimal dual vectors of the dual problem (Sinkhorn and Knopp, 1967), at a linear
rate in variation semi-norm (Franklin and Lorenz, 1989). The OT plan then can be retrieved

8. Also known as matrix scaling algorithm. For the historical perspective, see Remark 4.5 in (Peyré and Cuturi,
2019).
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from the optimal solution (u, v) by P = (µ ⊗ ν) � (u ⊗ v) �K, where � is the element-wise
multiplication.

Discussion on Sinkhorn algorithm The Sinkhorn algorithm has two key advantages. First,
since the iterates only require vector-matrix multiplication, they can be seamlessly parallerized.
One can further speed up the computation, for example, by exploiting the structure of the kernel
matrix 9. Second, it is enough to store only the dual vectors (which costs O(n) in memory)
because the OT plan (which costs O(n2) in memory) can be easily queried on demand.

However, the Sinkhorn algorithm suffers from the small regularization. First, if the number of
iterations is not sufficiently large, the algorithm may fail to converge and the resulting transport
plan can be inadmissible. To circumvent this issue, one can apply the rounding algorithm
(Altschuler, Weed, and Rigollet, 2017), which adjusts the coordinates of the coupling matrix until
the marginal constraints are met. While being admissible, the rounded transport plan may not
be the solution of the entropic OT problem.

Second, when ε is close to 0, the quick saturation of the kernel exp−C/ε to the zero matrix
may result in the numerical error triggered by the division by zero. Moreover, the entries of the
scaling vectors u, v may become very large, thus cause the numerical instability. To avoid these
issues, the implementation in the log-domain is usually recommended at the cost of slowing down
the algorithm, due to the logsumexp operation. More precisely, the log-domain iterates read

1. f (t+1) = logµ− log∑j exp
(
g

(t)
j −

C·,j
ε

)
.

2. g(t+1) = log ν − log∑i exp
(
f

(t+1)
i − Ci,·

ε

)
.

However, even for small regularization, one can still implement with matrix-vector multiplication
by additionally employing the redundant parametrization trick (Chizat et al., 2018a; Schmitzer,
2019) to control the magnitude of the scaling vectors u, v.

Third, the initialization of dual vectors is important. Under the absence of prior knowledge,
the most popular practice is to initialize with the zero vectors, which usually leads to poor
convergence behavior for very small regularization. One can use the ε-scaling scheme (Schmitzer,
2019) 10, whose idea is simple: we fix a decreasing sequence of regularizations converging to ε,
then successively use the solution of the previous problem to initialize the next one. However,
this can be very costly due to the amount of subproblems, while not necessarily ensuring the
convergence to the true minimizer of the entropic OT problem. Recently, Thornton and Cuturi
(2023) leverage the fact that the dual vectors in unregularized OT problem can admit closed-form
expressions for 1D-OT and Gaussian measures, and propose to use them as initialization. They
empirically show that this practice can result in much less iterations, thus significantly speed up

9. See Section 4.3 in (Peyré and Cuturi, 2019) and the excellent thesis of Feydy (2020) for more implementation
details.
10. This strategy is very efficiently exploited and implemented in the Geomloss package (Feydy et al., 2019)
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Regularizer Reference
Convex regularizer (Marino and Gerolin, 2020)
Strongly convex regularizer
(negative entropy, square 2-norm, group lasso)

(Dessein, Papadakis, and Rouas, 2016)
(Blondel, Seguy, and Rolet, 2018)

Class-based regularizer
(group lasso, Laplacian) (Courty et al., 2016)

Sparse-promoting regularizer
(group lasso, weighted 1-norm) (Lindbäck, Wang, and Johansson, 2023)

Sparsity-constraint regularizer (Liu, Puigcerver, and Blondel, 2022)
Csiszár divergence (Terjék and González-Sánchez, 2022)

Square 2-norm
(Roberts et al., 2017)
(Blondel, Seguy, and Rolet, 2018)
(Lorenz, Manns, and Meyer, 2021)

Tsallis q-entropy (Muzellec et al., 2017)
Deformed q-entropy (Bao and Sakaue, 2022)

Table 2.1 – Classes of regularizers in regularized OT problem.

and improve the convergence of the Sinkhorn algorithm.

Summary We conclude the discussion on balanced OT with some remarks. First, despite the
prohibitive theoretical complexity, efficient implementation of exact solver for unregularized OT
exists (Flamary et al., 2021), and can work well on datasets of size up to O(104).

Second, the recent improvements on the Sinkhorn algorithm, namely the over-relaxation
method (Lehmann et al., 2020; Thibault et al., 2021), the screening strategy (Alaya et al., 2019),
or the greedy approach (Altschuler, Weed, and Rigollet, 2017; Kostic, Salzo, and Pontil, 2021;
Lin et al., 2020), usually focus on careful manipulation of the iterates. There are also gradient-
based solvers for the entropic OT, notably the adaptive primal-dual accelerated mirror descent
(Dvurechensky, Gasnikov, and Kroshnin, 2018; Lin, Ho, and Jordan, 2022), or the stochastic
gradient descent (Abid and Gower, 2018; Genevay et al., 2016; Seguy et al., 2018).

Last, while entropy is the most popular and well-studied regularizer, there exist other
alternatives summarized in Table 2.1, which allow to integrate the prior knowledge on the data,
or the structure of the transport matrix.

2.1.2 Unbalanced Optimal Transport

Formulation and properties

Recall that the balanced OT enforces hard constraints on the marginal distributions of the
OT plan. These constraints lead to two main disadvantages. First, imbalanced datasets where
samples are re-weighted cannot be accurately compared. Second, mass transportation must be
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exhaustive in the sense that, outliers, if any, must be matched regardless of the cost they induce.
To circumvent these limitations, a straightforward solution is to control the difference between

the marginal distributions of the transportation plan and the data by some discrepancy measure.
This gives rise to the unbalanced OT (UOT), which was first proposed by Benamou (2003).
The theoretical and numerical aspects of this relaxation have been studied extensively (Chizat
et al., 2018a,b; Liero, Mielke, and Savaré, 2018; Pham et al., 2020) and have been gaining
increasing attention in the machine learning community, with wide-range applications, namely in
domain adaptation (Fatras et al., 2021), generative adversarial networks (Balaji, Chellappa, and
Feizi, 2020; Yang and Uhler, 2019), dynamic tracking (Lee, Bertrand, and Rozell, 2019), crowd
counting (Ma et al., 2021), neuroscience (Bazeille et al., 2019a; Janati et al., 2019) or modeling
cell developmental trajectories (Schiebinger et al., 2019). Unbalanced OT and its variants are
usually sought for their known robustness to outliers (Balaji, Chellappa, and Feizi, 2020; Fatras
et al., 2021; Le et al., 2021; Mukherjee et al., 2021; Nietert, Goldfeld, and Cummings, 2022).

Formulation To define the UOT problem, let us start with the Csiszár divergence (Csiszár,
1963). Given an entropy function ϕ : R>0 → [0,∞] (i.e., it is convex, positive and lower
semi-continuous such that ϕ(1) = 0), we define the recession constant ϕ′∞ ∈ R ∪ {∞} as

ϕ′∞ = lim
x→∞

ϕ(x)
x

. (2.14)

DenoteM+(S) the set of finite nonnegative Radon measures on a Hausdorff topological space S.
The Csiszár divergence (or ϕ-divergence) between two measures µ and ν inM+(S) is defined as

Dϕ(µ|ν) =
∫
S
ϕ
(dµ
dν

)
dν + ϕ′∞

∫
S
dµ⊥, (2.15)

where, by Lebesgue decomposition, we have µ = dµ
dν ν + µ⊥. It is jointly convex, positive and

weakly lower-semicontinuous (Liero, Mielke, and Savaré, 2018). The analysis of some Csiszár
divergences can be found in (Séjourné et al., 2019). Here, we are mostly interested in two following
special cases:
• The Kullback-Leibler (KL) divergence defined by

KL(µ|ν) =


∫ dµ
dν log dµ

dν −
∫
dµ+

∫
dν, if µ� ν

∞, otherwise.
(2.16)

corresponds to ϕ(x) = x log x− x+ 1.
• The indicator divergence ι=(µ|ν) is equal to 0 if µ = ν and +∞ otherwise. Its entropy

function is ϕ = ι{1}, where the indicator function ιC of a convex set C is defined by ιC(x)
is equal to 0 if x ∈ C and +∞ otherwise. This divergence results in the balanced OT.
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Given a proper lower semicontinuous cost function c : X × Y → [0,∞] and for ρ1, ρ2 ≥ 0, the
UOT cost between two measures µ ∈M+(X) and ν ∈M+(Y ) is defined by

UOTρ(µ, ν) = inf
π∈M+(X×Y )

∫
c dπ + ρ1Dϕ1(π#1|µ) + ρ2Dϕ2(π#2|ν). (2.17)

Properties Under mild conditions of the ground cost and entropy functions, the UOT problem
always admits a solution (Theorem 3.3 in (Liero, Mielke, and Savaré, 2018)). Similar to the
balanced case, UOT also enjoys the metric properties, duality theory and dynamic formulation,
to name a few. For a more complete treatment on the theory of UOT, readers are invited to
see the seminal works of Chizat et al. (2018b) and Liero, Mielke, and Savaré (2018), and the
reference therein. The case where Dϕ1 = Dϕ2 = KL is also of our special interest, since it allows
to show that the UOT is robust to outliers.

Proposition 2.1.1 (Generalization of Lemma 1 in (Fatras et al., 2021)). Let µ, µo be two
nonnegative finite Borel measures with disjoint compact supports E,Eo, respectively. For α ∈ [0, 1],
denote µ̃ = αµ+ (1−α)µo the noisy measure. Then, for any nonnegative finite Borel measures ν
with compact support F , we have

OT(µ̃, ν) ≥ (1− α) inf
(x,y)∈Eo×F

c(x, y), (2.18)

whereas

UOTρ(µ̃, ν) ≤ αUOTρ(µ, ν) + (1− α)M
(

1− exp
(
−K
M

))
, (2.19)

where K =
∫
c(x, y) dµo(x)dν(y) and M = ρ1m(µo) + ρ2m(ν). Here, m(µ) denotes the mass of

measure µ.

Proof. For any π ∈ U(µ̃, ν), we have∫
(E∪Eo)×Y

c(x, y)dπ(x, y) ≥
∫
Eo×F

c(x, y)dπ(x, y) ≥ min
(x,y)∈Eo×F

c(x, y)
∫
Eo×F

dπ(x, y) (2.20)

= min
(x,y)∈Eo×F

c(x, y)
∫
Eo

dπ#1(x) = (1− α) min
(x,y)∈Eo×F

c(x, y). (2.21)

Taking the infimum over U(µ̃, ν), we obtain the upper bound of OT. The lower bound on UOT
follows immediately from the proof of Lemma 1.1 in (Fatras et al., 2021). �

Inequality (2.19) indicates that the behavior of the outliers is always controlled in UOT.
Thanks to the marginal relaxation, if the outlier is too impactful, its impact will quickly saturate
to 0, meaning that it receives no mass from other points. By contrast, this is not the case for
balanced OT, since every point (including outliers) must be aligned regardless of its cost, due to
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the marginal constraints. The right-hand side of Inequality (2.18) can be made arbitrarily large
by taking outliers "far" enough from the clean data.

Optimization and algorithm

In general, given any differentiable divergence and regularizer, since Problem (2.41) is a bound-
constrained minimization problem, it can be solved with the L-BFGS-B algorithm (Byrd et al.,
1995; Zhu et al., 1997). When Dϕ1 = Dϕ2 = KL, the unregularized UOT can be approximated
with entropic regularization. The main advantages of this approach include well-understood
convergence analysis (Chizat et al., 2018a), statistical properties (Séjourné et al., 2019), GPU-
friendly implementation, strong convexity and smoothness coming from the dual problem, making
it a suitable training loss for neural networks.

It is important to note that, in the OT literature, the entropic regularization can be referred
to two different regularizers: the negative entropy (Chizat et al., 2018a; Frogner et al., 2015) and
the KL divergence (Séjourné et al., 2019). We cover both cases by considering a more general
formulation: given the hyperparameters ρ1, ρ2 ≥ 0, ε > 0, the cost matrix C ∈ Rm×n and the
positive measures µ ∈ Rm>0, ν ∈ Rn>0, γ ∈ Rm×n>0 , we want to solve the problem

UOTε,ρ = min
P∈Rm×n

≥0

〈C,P 〉+ ρ1KL(P#1|µ) + ρ2KL(P#2|ν) + εKL(P |γ). (2.22)

Denote m(Q) = ∑
i,j Qij the mass of measure Q. Observe that

〈C,P 〉+ εKL(P |γ) = ε

∑
i,j

Pij logPij −
∑
i,j

Pij

(
log γij −

Cij
ε

)
−
∑
i,j

Pij +
∑
i,j

γij

 (2.23)

= ε KL
(
P
∣∣∣ exp

(
−C − log γ

ε

))
+ ε

[
m(γ)−m

(
γ � e−C/ε

)]
, (2.24)

where � is the element-wise multiplication between two matrices and the exponential operation is
also element-wise. Now, the ambiguity of the entropic regularizer is naturally handled in Problem
(2.22). More precisely, the KL divergence corresponds to γ = µ⊗ ν, whereas the negative entropy
corresponds to γ = 1m×n, since KL(P |1m×n) = 〈P, logP 〉 −m(P ) +mn = H(P ) +mn.

An interesting property of Problem (2.22), which does not exist in the balanced OT or
for other Csiszár divergences, is that the minimum can be expressed as a linear function of
minimizer. This is a special case of the following result.

Definition 2.1.5 (Bregman divergence). Suppose ϕ : E → R is a strictly convex and continuously
differentiable function, where E = dom(ϕ) is a closed convex set in Rd. Then, the Bregman
divergence Dϕ : E × E → R≥0 is defined as Dϕ(x, y) = ϕ(x)− ϕ(y)− 〈∇ϕ(y), x− y〉.
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Corollary 2.1.1. Let Dϕ1 , Dϕ2 and Dϕ be three Bregman divergences whose domains are in
Rm,Rn and Rm×n, respectively. Denote dom = {P ∈ dom(ϕ) : P#1 ∈ dom(ϕ1), P#2 ∈ dom(ϕ2)}.
Given two matrices C ∈ Rm×n, γ ∈ dom(ϕ) and two vectors µ1 ∈ dom(ϕ1), µ2 ∈ dom(ϕ2),
consider the following regularized UOT problem: for ρ1, ρ2, ε ≥ 0,

UOTε,ρ = inf
P∈E

〈C,P 〉+ ρ1Dϕ1(P#1|µ1) + ρ2Dϕ2(P#2|µ2) + εDϕ(P |γ), (2.25)

where the constraint set E ⊂ dom satisfies: for any P ∈ E and t ∈ R, if tP ∈ dom, then tP ∈ E.
Suppose Problem (2.25) admits a solution P ∗, then we have

UOTε,ρ =
2∑

k=1
ρk
[
〈∇ϕk(µk), µk〉 − ϕk(µk)

]
+ ε

[
〈∇ϕ(γ), γ〉 − ϕ(γ)

]

+
2∑

k=1
ρk ϕk(P ∗#k)−

∂ϕk(tP ∗#k)
∂t

∣∣∣∣
t=1

)
+ ε ϕ(P ∗)− ∂ϕ(tP ∗)

∂t

∣∣∣∣
t=1

)
.

(2.26)

We are interested in two following Bregman divergences.

1. If Dψ is the squared l2-norm, then ψ(tP ) = t2ψ(P ). So, 〈∇ψ(q), q〉 − ψ(q) = ψ(q) and
(p)− ∂ψ(tp)

∂t

∣∣∣
t=1

= −ψ(p).

2. If Dψ is the KL divergence 11, then ψ(tP ) = t ψ(P ) + t log t m(P )− t+ 1. So, 〈∇ψ(q), q〉 −
(q) = m(q)− 1 and ψ(p)− ∂ψ(tp)

∂t

∣∣∣
t=1

= 1−m(p).

We note that Corollary 2.1.1 is a generalization of Lemma 4 in (Pham et al., 2020). In particular,
in case of Problem (2.22), we have

UOTε,ρ = ρ1m(µ) + ρ2m(ν) + εm(γ)− (ρ1 + ρ2 + ε) m(P ∗). (2.27)

This relation proves to be particularly helpful when studying the computational complexity of
Sinkhorn algorithm (Pham et al., 2020). Given the flexible structure of the set C, Corollary 2.1.1
has a broad range of applications, including the unregularized UOT (i.e., ε = 0) and other
unbalanced divergences, namely the squared l2-regularized UOT (2.37) (see Corollary 2.1.3), the
unbalanced Gromov-Wasserstein (see Equation (2.84)) and the unbalanced Co-Optimal Transport
(see Equation (4.2)). Even more interestingly, these examples share a common trait, that is, the
minimum is a polynomial of the minimiser, whose coefficients depend only on the input measures
(i.e., µ, ν, γ) and hyperparameters (i.e., ρ1, ρ2, ε), but not the cost C. We provide the justification
of these claims in Appendix 8.1.1.

Now, we discuss some existing approaches to solve Problem (2.22).

11. KL divergence is also the only divergence which belongs to both Csiszár and Bregman families (Jiao et al.,
2014).
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Algorithm 1 Sinkhorn algorithm for Problem (2.22).
1: Input: cost matrix C ∈ Rm×n, measures µ ∈ Rm>0, ν ∈ Rn>0, γ ∈ Rm×n>0 , regularization ε > 0,

relaxation parameters ρ1, ρ2 > 0.
2: for t = 1, . . . , T do
3: f

(t+1)
i ← ρ1

ρ1+ε Sminµi,γi,·
ε (Ci,· − g(t)), for i ∈ [m].

4: g
(t+1)
j ← ρ2

ρ2+ε Sminνj ,γ·,j
ε (C·,j − f (t+1)), for j ∈ [n].

5: end for
6: Output: pair of dual vectors (f (T ), g(T )).

Sinkhorn algorithm The Sinkhorn algorithm can be extended easily to the entropic UOT. 12

The (strict) convexity of the primal problem ensures that duality holds, thanks to the Fenchel-
Rockafellar duality theorem. In particular, The dual problem of Problem (2.22) is equivalent
to

sup
f∈Rm

g∈Rn

−ρ1

〈
exp

(
− f
ρ1

)
, µ

〉
− ρ2

〈
exp

(
− g

ρ2

)
, ν

〉
− ε

〈
exp

(
f ⊕ g − C

ε

)
, γ

〉
. (2.28)

Similar to the balanced case, the OT plan can be retrieved from the optimal solution (f∗, g∗) by

P ∗ = γ � exp
(
f∗ ⊕ g∗ − C

ε

)
. (2.29)

Note that, when ρ1, ρ2 →∞, we have −ρ1
〈

exp
(
− f
ρ1

)
, µ
〉
→ 〈f, µ〉 and −ρ2

〈
exp

(
− g
ρ2

)
, ν
〉
→

〈g, µ〉. So, we recover the dual problem of the entropic balanced OT. When ε → 0, we have
ε
〈

exp
(
f⊕g−C

ε

)
, γ
〉
converges to the constraint f ⊕ g ≤ C, which corresponds to the dual

problem of the unregularized UOT problem.
Similar to the balanced case, the log-domain Sinkhorn algorithm 1 applied to the dual problem

(2.28) consists in alternatively updating the dual vectors. Here, the generalized softmin operator is
defined by Sminνj ,γ·,j

ε (f) = ε
(
log νj − log〈γ·,j , e−f/ε〉

)
, for j ∈ [n]. In particular, when γ = µ⊗ ν,

we recover the softmin operator (Séjourné et al., 2019) defined by Sminµε (f) = −ε log〈µ, e−f/ε〉.
More generally, the Sinkhorn algorithm is applicable to all Csiszár divergences, as long as the
regularizer is the KL divergence (see Definition 3 in (Séjourné et al., 2019)). We leave the
convergence analysis to the discussion of the next method. In practice, the Sinkhorn algorithm
also suffers from slow convergence for small regularization and can be accelerated using similar
workarounds in the balanced setting.

12. When the regularizer is the negative entropy, the Sinkhorn algorithm is also called scaling algorithm (Chizat
et al., 2018a).
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Translation Invariant Sinkhorn (TI-Sinkhorn) Recall that, in the entropic balanced OT,
due to the linear structure in the objective function of the dual problem, if (f, g) is the optimal
solution, then so is (f + λ, g − λ), for every λ ∈ R. However, this translation invariant (TI)
property no longer holds for the unbalanced counterpart. As observed by Séjourné, Vialard,
and Peyré (2021a), this is problematic because the convergence of dual vectors depends on the
translation (since the iterates do), thus is sensitive to initialization. Moreover, it becomes very
slow when the regularization is too small relative to the relaxation (ε� ρ). This issue can be
mitigated by considering the optimization problem

Hε(f, g) := sup
λ∈R

Fε(f + λ, g − λ), (2.30)

where Fε is the objective function of the dual problem (2.28). By Proposition 2 in (Séjourné,
Vialard, and Peyré, 2021a), the optimality happens when

λ∗(f, g) = ρ1ρ2
ρ1 + ρ2

log 〈µ, e
−f/ρ1〉

〈ν, e−g/ρ2〉
. (2.31)

By construction, Hε is TI. Not only Hε and Fε have the same maximum, but also the their
maximizers are related by the equation (f, g) = (f + λ∗(f, g), g − λ∗(f, g)). The details of the
TI-Sinkhorn algorithm applied to Problem (2.22) can be found in Algorithm 2.

To analyze the convergence of TI-Sinkhorn, we introduce two norms: the supremum norm
||f ||∞ = maxi |fi| and the Hilbert pseudo-norm ||f ||∗ = 1

2 (maxi fi −mini fi). Denote κε(µ) the
contraction rate of the softmin operator Sminµε for the norm ||f ||∗, meaning that

||Sminµε (C − f1)− Sminµε (C − f2)||∗ ≤ κε(µ) ||f1 − f2||∗. (2.32)

The convergence of Sinkhorn and TI-Sinkhorn algorithms when γ = µ⊗ ν is summarized in the
following result.

Proposition 2.1.2 (Theorem 1 in (Séjourné, Vialard, and Peyré, 2021a)). Denote (f∗, g∗) the
optimal solution of the dual problem (2.28). Given initialization f0, suppose (f (t), g(t)), (f (t)

, g(t))
are the iterates of the Sinkhorn and TI-Sinkhorn algorithms at iteration t, respectively. Denote
κ =

(
1 + ε

ρ1

)−1 (
1 + ε

ρ2

)−1
and κ = κε(µ)κε(ν)κ. Then, for Sinkhorn algorithm, we have

||f (t) − f∗||∞ + ||g(t) − g∗||∞ ≤ 2κt||f (0) − f∗||∗. (2.33)

whereas for TI-Sinkhorn algorithm,

||f (t) − f∗||∞ + ||g(t) − g∗||∞ ≤ 2κt||f (0) − f∗||∗. (2.34)

28

Optimal transport for transfer learning across spaces Quang huy Tran 2024



2.1. From Wasserstein distance

Algorithm 2 TI-Sinkhorn algorithm for Problem (2.22).
1: Input: cost matrix C ∈ Rm×n, measures µ ∈ Rm>0, ν ∈ Rn>0, γ ∈ Rm×n>0 , regularization ε > 0,

relaxation parameters ρ1, ρ2 > 0.
2: Calculate kij = ε

ε+ρi

ρj

ρ1+ρ2
, for i, j ∈ {1, 2}, and ξij = kij

1−kij
, for i 6= j.

3: for t = 1, . . . , T do
4: fi

ρ1
ρ1+ε Sminµi,γi,·

ε (Ci,· − g(t))− k11 Sminνρ2(g(t)), for i ∈ [m].
5: f (t+1) ← f + ξ12 Sminµρ1(f).
6: gj

ρ2
ρ2+ε Sminνj ,γ·,j

ε (C·,j − f (t+1))− k22 Sminµρ1(f (t+1)), for j ∈ [n].
7: g(t+1) ← g + ξ21 Sminνρ2(g).
8: end for
9: Calculate λ∗ = λ∗(f (T ), g(T )) using Equation (2.31).
10: Output: pair of dual vectors (f (T ) + λ∗, g(T ) − λ∗).

Algorithm 3 Variant of TI-Sinkhorn algorithm for Problem (2.22).
1: Input: cost matrix C ∈ Rm×n, measures µ ∈ Rm>0, ν ∈ Rn>0, γ ∈ Rm×n>0 , regularization ε > 0,

relaxation parameters ρ1, ρ2 > 0.
2: for t = 1, . . . , T do
3: f

(t+1)
i

ρ1
ρ1+ε Sminµi,γi,·

ε (Ci,· − g(t))− λ(t), for i ∈ [m].
4: g

(t+1)
j

ρ2
ρ2+ε Sminνj ,γ·,j

ε (C·,j − f (t+1)) + λ(t), for j ∈ [n].
5: λ(t+1) = λ∗(f (t+1), g(t+1)) using Equation (2.31).
6: end for
7: Output: pair of dual vectors (f (T ), g(T )).

In other words, TI-Sinkhorn improves the convergence rate of Sinkhorn by a factor of
κε(µ)κε(ν). However, when ε� ρ, not only κ ≈ 1, but also empirically κε(µ)κε(ν) ≈ 1. For this
reason, despite the acceleration over Sinkhorn, TI-Sinkhorn still suffers from small regularization
and remains slow in such situation.

Séjourné, Vialard, and Peyré (2021a) also propose a variant of TI-Sinkhorn, whose details
can be found in Algorithm 3. The idea is to directly apply alternative optimization scheme to
the problem supf,g,λ Fε(f + λ, g − λ), which guarantees the convergence to a stationary point
(P.Tseng, 2001). In practice, we observe that both TI algorithms work comparatively well.

Majorization-minimization algorithm Interestingly, Problem (2.22) can also be reformu-
lated as a nonnegative penalized linear regression problem (Chapel et al., 2021), whose objective
function comprises of a linear term and a KL divergence as penalization. Moreover, since the
KL divergence is a Bregman divergence, one can apply the majorization-minimization (MM)
approach (see, for example (Hunter and Lange, 2004; Sun, Babu, and Palomar, 2017)) and obtain
a closed-form update of the transport plan, without the need of invoking the dual vectors to
reconstruct the coupling, as in the Sinkhorn-based methods. Following (Chapel et al., 2021), the
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MM iterate of Problem (2.22) reads

P (t+1) =


 µ

P
(t)
#1

λ1

⊗

 ν

P
(t)
#2

λ2
� (P (t))λ1+λ2 � γr � exp

(
−C
ρ

)
(2.35)

= (P (t))λ1+λ2

(P (t)
#1)λ1 ⊗ (P (t)

#2)λ2
�
(
µλ1 ⊗ νλ2

)
� γr � exp

(
−C
ρ

)
, (2.36)

where ρ = ρ1 + ρ2 + ε and λi = ρi
ρ and r = ε

ρ . Here, the division and exponential operations are
element-wise. We also remark that, the unregularized UOT (ε = 0) is naturally handled by MM
algorithm, whereas the Sinkhorn-based algorithms are only applicable to the regularized UOT.
However, unlike its competitors, the MM algorithm does not work in the balanced (ρ1 = ρ2 =∞)
and semi-relaxed (either ρ1 =∞ or ρ2 =∞) OT settings.

Another example of the Bregman divergence is the squared l2-norm, where Dϕ(p, q) := ||p−q||2
2 ,

with ϕ(x) = ||x||2
2 . Interestingly, the MM iterates can also be computed explicitly in this case.

Corollary 2.1.2 (Generalization of Equation 7 in (Chapel et al., 2021)). For µ ∈ Rm, ν ∈ Rn

and γ ∈ Rm×n, consider the problem

UOTε,ρ = min
P∈Rm×n

≥0

〈C,P 〉+ ρ1
||P#1 − µ||2

2 + ρ2
||P#2 − ν||2

2 + ε
||P − γ||2

2 . (2.37)

Then, the update reads

P (t+1) = max
(
0, (ρ1µ)⊕ (ρ2ν) + εγ − C

)
� P (t)

(ρ1P
(t)
#1)⊕ (ρ2P

(t)
#2) + εP (t)

, (2.38)

where the max and division operations are element-wise.

There are two interesting features of the squared l2-norm. First, thanks to the max operation,
the iterate matrix can be made sparse from the very first iteration, which further accelerates the
matrix operations. Second, thanks to Corollary 2.1.1, the minimum of Problem (2.37) can be
expressed as a quadratic function of its minimizer.

Corollary 2.1.3. Denote P ∗ the solution of Problem (2.37). Then

UOTε,ρ = 1
2
(
ρ1||µ||2 + ρ2||ν||2 + ε||γ||2

)
− 1

2
(
ρ1||P ∗#1||2〉+ ρ2||P ∗#2||2〉+ ε||P ∗||2〉

)
. (2.39)

To conclude, MM is a very appealing alternative to the Sinkhorn-based algorithms, especially
when the regularization is too small. However, when the relaxation is too large relative to the
regularization and the magnitude of the cost matrix, MM may converge very slowly if the
initialization is not carefully chosen. To see this, suppose that ρ1 � ||C||∞ and ρ1 � ε. Then,
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exp(−C/λ) ≈ 1m×n and r ≈ 0. So,

P (t+1) ≈


 µ

P
(t)
#1

λ1

⊗

 ν

P
(t)
#2

λ2
� P (t). (2.40)

If one initializes with the solution of the balanced OT problem, i.e., P (0)
#1 = µ and P (0)

#2 = ν, then
P (1) ≈ P (0). By induction, we obtain P (t+1) ≈ P (t), meaning that the convergence is very slow.

Regarding the case of squared l2-norm, one needs to carefully choose the hyperparameters,
so that the matrix max

(
0, (ρ1µ)⊕ (ρ2ν) + εγ − C

)
is neither too dense (thus fails to achieve

sparsity), nor too sparse (thus may incur division error). For this reason, the tuning may be
quite troublesome.

Discussion We can consider a more general UOT formulation: given a cost matrix C ∈ Rm×n,
the positive measures µ ∈ Rm>0, ν ∈ Rn>0 and γ ∈ Rm×n>0 , the parameters ρ1, ρ2, ε ≥ 0, we want to
solve

min
P∈Rm×n

≥0

〈C,P 〉+ ρ1D(P#1|µ) + ρ2D(P#2|ν) + εR(P ), (2.41)

whereD is a certain divergence (for example, Csiszár or Bregman divergence) andR is a regularizer.
Table 2.2 summarizes some choices of divergences and regularizers, with the corresponding related
works.

Divergence Regularizer Reference

Csiszár divergence N/A (Liero, Mielke, and Savaré, 2018)
(Chizat et al., 2018b)

Csiszár divergence Negative entropy
(Frogner et al., 2015)
(Chizat et al., 2018a)
(Lee, Bertrand, and Rozell, 2019)

Csiszár divergence KL divergence (Séjourné et al., 2019)
KL divergence Square 2-norm (Nguyen et al., 2022)
Maximum mean discrepancy N/A (Manupriya, Nath, and Jawanpuria, 2023)
Bregman divergence Bregman divergence (Chapel et al., 2021)
Smooth divergence N/A (Blondel, Seguy, and Rolet, 2018)
Convex conjugate of
co-finite Bregman function N/A (Sonthalia and Gilbert, 2020)

Table 2.2 – Summary of choices of divergences and regularizers for Problem (2.41). The case
N/A (not available) corresponds to the unregularized problem (i.e., ε = 0).
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2.2 To Gromov-Wasserstein distance and beyond

2.2.1 Problem statement

When the source and target data do not live in the same underlying space, it is no longer
possible to compute the inter-space distance. Such situations are ubiquitous in practice. For
example, images in source and target domains may have different resolutions. Even if they are
vectorized by the last layers of neural networks, it is not unusual to have the embeddings of
different dimensions. Even worse, in graph, such vectorial embedding of the node does not even
exist (though it can be learned), and only within-domain similarity matrix is available.

In this section, we present a metric which can be used to compare incomparable spaces,
termed Gromov-Wasserstein (GW) distance introduced by Mémoli (2007, 2011b) 13. It allows
to handle a more general object called metric-measure space, instead of just probability measure,
as in the Wasserstein distance. The GW distance is not only theoretically sound (Mémoli, 2011b;
Sturm, 2012), but also computationally tractable. For this reason, it has been used extensively
in practice, for example in graph (Chowdhury and Needham, 2021; Vayer et al., 2019a; Vincent-
Cuaz et al., 2021; Xu, Luo, and Carin, 2019; Xu et al., 2019), computational biology (Demetci
et al., 2020), comparing kernel matrices (Peyré, Cuturi, and Solomon, 2016), correspondance
alignment (Solomon et al., 2016), heterogeneous domain adaptation (Yan et al., 2018), or machine
translation (Alvarez-Melis and Jaakkola, 2018), clustering and data visualization (Ryner and
Karlsson, 2022).

While GW distance is of major interest in this thesis, as a byproduct, we also discuss
other related metrics on the space of incomparable spaces. This is beneficial, not only for the
understanding of the underlying motivation, but also for a better grasp of a bigger picture on
this research direction.

2.2.2 Motivation

A very natural idea to compare incomparable spaces is to appropriately transform them, so
that their resulting embeddings are comparable. Typically, one can project one onto the other
(known as extrinsic comparison), or project both onto a sufficiently rich, common metric space
(known as intrinsic comparison). The choice of transformation is also of crucial importance. For
distance-based methods and applications, especially when working with images or 3D-objects,
the projection should preserve as much geometric information amongst objects as possible.
Moreover, it should be able to handle the usual invariants exhibited in the data, for example,
rotation, translation, reflection. To this extent, we are interested in the class of distance-preserve

13. Historically, the name "Gromov-Wasserstein distance" has several meanings. In the terrific book of Villani
(2009), it is a synonym for the Lp-transportation distance. In (Mémoli, 2011a), Facundo Mémoli used it to refer
to two other distances, including the now-standard one, which is popularized by the work of the same author
(Mémoli, 2011b).
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transformations, which will show great interest in the study of metrics in the space of incomparable
spaces.

Definition 2.2.1 (Metric measure space (Gromov, 1999)). A metric measure space (mm-space)
X is a triplet (X, dX , µX), where

• (X, dX) is a compact metric space.

• µX is a Borel probability measure and has full support, that is supp(µX) = X.

In other words, we focus on essentially the same objects as in the Wasserstein distance,
except that the metric is no longer shared across spaces but must be specified for each individual
space. As we will see, the relation between Wasserstein and Hausdorff distances presented in
Section 2.1.1 becomes very handy as it gives us a natural extension to the setting of mm-space.
First, we introduce the Gromov-Hausdorff (GH) distance proposed by Gromov (1981). While we
are mostly inspired by Chapter 4 in (Mémoli, 2011b), we perform a more thorough literature
review, including the most recent development and applications of the GH-based distances in the
OT and machine learning literature.

Definition 2.2.2 (Admissible distance). Given two compact metric spaces (X, dX) and (Y, dY ),
we denote D(dX , dY ) the set of all pseudo-metrics on the disjoint union X ∪Y , such that for any
d ∈ D(dX , dY ), we have d = dX on X2, and d = dY on Y 2. Any metric in D(dX , dY ) is called
an admissible distance on X ∪ Y .

The GH distance between two arbitrary compact metric spaces (X, dX) and (Y, dY ) (not
necessarily living in the same underlying space) is defined by

GH((X, dX), (Y, dY )) := inf
d∈D(dX ,dY )

d
(X∪Y,d)
H (X,Y ), (2.42)

The idea of the GH distance is to, first, construct a "union" metric space as a common underlying
space, in which the Hausdorff distance between two component metric spaces can be calculated.
Then, amongst these admissible "union" metric spaces, identify the one which corresponds to the
smallest Hausdorff distance. It is well known that the GH distance defines a metric on the space
of compact metric spaces, up to isometry (Burago, Burago, and Ivanov, 2001; Gromov, 1999).
Interestingly, it also admits many equivalent reformulations and we will see that each of them
gives rise to different distances in the space of mm-spaces, including the aforementioned GW
distance. Let us first introduce the following useful notions.

Definition 2.2.3 (Pullback). Given four sets X1, X2, Y1 and Y2, and three functions cX :
X1 ×X2 → R, ϕ1 : Y1 → X1 and ϕ2 : Y2 → X2, the pullback of cX by (ϕ1, ϕ2) is the function
(ϕ1, ϕ2)∗cX : Y1 × Y2 → R defined by (ϕ1, ϕ2)∗cX(y1, y2) := cX(ϕ1(y1), ϕ2(y2)). If ϕ1 = ϕ2 = ϕ

(then Y1 = Y2 and X1 = X2), then we simply write ϕ∗cX := (ϕ,ϕ)∗cX .
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Definition 2.2.4 (Isometric embedding). Given two metric spaces (X, dX) and (Y, dY ), the
map ϕ : X → Y is an isometric embedding if and only if dX = ϕ∗dY on X2. An isometry is a
surjective isometric embedding (i.e., ϕ(X) = Y ).

Clearly, any isometric embedding is necessarily injective, so an isometry is bijective. Moreover,
it can be shown that ϕ∗dY defines a metric if and only if ϕ is injective. By relaxing the strict
preservation of distance, where dX = O(ϕ∗dY ), one obtains the approximate embedding (Matousek,
2013). This object has already been studied since the 80’s, whose notable examples include
the famous Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss, 1984) and Bourgain’s
embedding theorem (Bourgain, 1985).

Now, we will briefly discuss some distances betweeen mm-spaces, whose origins come from
different reformulations of GH distance.

Lp-transportation distance By combining Formulation (2.42) and Equation (2.6), we have,

GH((X, dX), (Y, dY )) = inf
d,R

sup
(x,y)∈R

d(x, y) = inf
d,R
||d||L∞(R), (2.43)

where the infimum is taken over all R ∈ R(X,Y ) and d ∈ D(dX , dY ). Now, we can immediately
extend Formulation (2.43) to the mm-space setting, using the Wassersteinization and Lp-ization
processes in Figure 2.2. This results in the Lp-transportation distance (Sturm, 2006): for 1 ≤
p <∞,

Dp(X ,Y) := inf
d,π

(∫
X×Y

d(x, y)pdπ(x, y)
)1/p

= inf
d,π
||d||Lp(π), (2.44)

and for p =∞,

D∞(X ,Y) := inf
d,π

sup
(x,y)∈R(π)

d(x, y) = inf
d,π
||d||L∞(R(π)), (2.45)

where the infimum is taken over all π ∈ U(µX , µY ) and d ∈ D(dX , dY ). This distance can also be
obtained from a more popular definition of the GH distance, also due to Gromov (1999)

GH((X, dX), (Y, dY )) = inf
Z,f,g

dZH(f(X), g(Y )), (2.46)

where the infimum is taken over all metric spaces (Z, d) and isometric embeddings f : X → Z and
g : Y → Z. It can be shown that Formulations (2.42) and (2.46) are equivalent (see Appendix
8.1.2). Intuitively, Formulation (2.46) implies that the GH distance can be alternatively obtained
by projecting the two original metric spaces onto a common metric one, where the Hausdorff
distance between the two embeddings can be computed. Moreover, each projection map must
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also preserve the within-space distance.
Thanks to Lemma 3.3 in (Sturm, 2006), we can adapt the idea of Formulation (2.46) to the

setting of mm-space by replacing the Hausdorff distance with the Wasserstein distance, and
obtain the equivalent form of the Lp-transportation distance

Dp(X ,Y) = inf
Z,f,g

WZ,p

(
(f(X), f#µX

), (g(Y ), g#µY
)
)
, (2.47)

for 1 ≤ p <∞ and

D∞(X ,Y) = inf
Z,f,g

WZ,∞
(
(f(X), f#µX

), (g(Y ), g#µY
)
)
, (2.48)

where the infimum is taken over all metric spaces (Z, d) with measurable isometric embeddings
f : X → Z and g : Y → Z.

To the best of our knowledge, despite the well-established theory, the Lp-transportation
distance has not yet found any applications in practice, due to the computational intractability of
the optimization problem that it encodes. In the OT and machine learning literature, there exist
other works which also rely on this idea of projecting onto a common space. For example, Alaya
et al. (2022) study a variant of Formulation (2.47) called Sub-Embedding Robust Wasserstein, or
Paty and Cuturi (2019) propose the subspace robust Wasserstein projection, which projects onto
a Grassmannian manifold, or Cai and Lim (2022) use orthogonal transformations to project one
space onto the other.

Gromov-Wasserstein distance For notational convenience, given two metric spaces (X, dX)
and (Y, dY ), we define the function |dX − dY | : (X × Y )× (X × Y )→ R≥0 by

|dX − dY |((x1, y1), (x2, y2)) :=
∣∣dX(x1, x2)− dY (y1, y2)

∣∣. (2.49)

Now, due to Theorem 7.3.25 in (Burago, Burago, and Ivanov, 2001),

GH((X, dX), (Y, dY )) = 1
2 inf

R
sup

(x1,y1)∈R
(x2,y2)∈R

∣∣dX(x1, x2)− dY (y1, y2)
∣∣ (2.50)

= 1
2 inf

R
||dX − dY ||L∞(R×R), (2.51)
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where the infimum is taken over all R ∈ R(X,Y ). By replacing the correspondance with the
admissible coupling, we obtain the GW distance (Mémoli, 2007, 2011b): for 1 ≤ p <∞,

GWp(X ,Y) := inf
π∈U(µX ,µY )

||dX − dY ||Lp(π⊗π) (2.52)

= inf
π∈U(µX ,µY )

(∫∫
|dX(x1, x2)− dY (y1, y2)|p dπ(x1, y1) dπ(x2, y2)

)1/p
, (2.53)

and for p =∞,

GW∞(X ,Y) := inf
π∈U(µX ,µY )

||dX − dY ||L∞(R(π)×R(π)) (2.54)

= inf
π∈U(µX ,µY )

sup
(x1,y1)∈R(π)
(x2,y2)∈R(π)

∣∣dX(x1, x2)− dY (y1, y2)
∣∣. (2.55)

Thanks to Theorem 5.1 in (Mémoli, 2011a), we have the following relation between the GW
and Lp-transportation distance: GW∞ = D∞ and GWp ≤ Dp, for any p ≥ 1. While bearing
some similarity with Formulation (2.43), the optimization problem in GW distance is much more
feasibility to solve in practice. In particular, the maximization over the set of admissible distances
in Formulation (2.43) incurs an additional variable, which is difficult to optimize.

Bi-directional Gromov-Monge Thanks to Theorem 2.1 in (Kalton and Ostrovskii, 1999),
for bounded metric spaces, we have

GH((X, dX), (Y, dY )) := 1
2 inf
f :X→Y
g:Y→X

sup
(x1,x2)∈X2

(y1,y2)∈Y 2

(xi,yi)∈G(f,g)

∣∣dX(x1, x2)− dY (y1, y2)
∣∣ (2.56)

= 1
2 inf
f :X→Y
g:Y→X

max
{

∆∞(f,X),∆∞(g, Y ),∆∞(f, g,X, Y )
}
. (2.57)

Here, the infimum is taken over all arbitrary maps f and g, and

• The union of graphs is defined by: G(f, g) := {(x, f(x)), x ∈ X} ∪ {(g(y), y), y ∈ Y }.

• The first term is defined by

∆∞(f,X) := sup
(x1,x2)∈X2

|dX(x1, x2)− dY (f(x1), f(x2))| (2.58)

= ||dX − f∗dY ||L∞(X2). (2.59)
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• The second term is defined by

∆∞(g, Y ) := sup
(y1,y2)∈Y 2

|dX(g(y1), g(y2))− dY (y1, y2)| (2.60)

= ||g∗dX − dY ||L∞(Y 2). (2.61)

• The last term is defined by

∆∞(f, g,X, Y ) := sup
(x,y)∈X×Y

|dX(x, g(y))− dY (f(x), y)| (2.62)

= ||(IdX , g)∗dX − (f, IdY )∗dY ||L∞(X×Y ). (2.63)

The second equality holds, due to Remark 2 in (Mémoli and Sapiro, 2005). Interested readers can
find more discussion on the practical use of Formulation (2.56) in Remark 4.5 in (Mémoli, 2011a).
Recently, Zhang et al. (2022b) adapt this fourth formulation to the mm-space and propose the
bi-directional Gromov-Monge (BGM) distance defined as

BGMp(X ,Y) = inf
f∈T (µX ,µY )
g∈T (µY ,µX)

∆p(f,X) + ∆p(g, Y ) + ∆p(f, g,X, Y ), (2.64)

where

• ∆p(f,X) = ||dX − f∗dY ||Lp(X2,µX⊗µX).

• ∆p(g, Y ) = ||g∗dX − dY ||Lp(Y 2,µY ⊗µY ).

• ∆p(f, g,X, Y ) = ||(IdX , g)∗dX − (f, IdY )∗dY ||Lp(X×Y,µX⊗µY ).

Since this formulation requires learning two transport maps which push from one distribution to
the other, it shares some similarity with the cycle generative adversarial networks (Kim et al.,
2017; Zhu et al., 2017), where one trains two transport maps which are roughly inverse to each
other. Another concurrent variant of BGM is proposed by Hur, Guo, and Liang (2021), where
they consider the reversible Gromov-Monge (RGM) distance

RGM2(X ,Y) = inf
(f,g)∈I(µX ,µY )

∆2(f, g,X, Y ), (2.65)

where I(µX , µY ) := {(f, g) : (g, IdY )#µY = (IdX , f)#µX}. We note that the constraints in
RGM and BGM are related but not equivalent. In particular, as remarked in (Hur, Guo, and
Liang, 2021), the equality (g, IdY )#µY = (IdX , f)#µX implies that f#µX = µY and g#µY = µX ,
but the reverse does not hold. In case of measure networks (Chowdhury and Mémoli, 2019),
Proposition 1 in (Hur, Guo, and Liang, 2021) asserts that RGMp ≥ GWp, for every p ≥ 1.

To conclude, apart from the above metrics induced by the GH distance, there exist other
alternatives for comparing mm-spaces. For example, by relying on the idea of Formulation (2.46),
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one can use the Gromov-Hausdorff-Prokhorov distance (Villani, 2009) and its variants (Abraham,
Delmas, and Hoscheit, 2013; Miermont, 2009)

GHP(X ,Y) = inf
Z,f,g

dZH(f(X), g(Y )) + dP (f#µX , g#µY ), (2.66)

where dP is the Prokhorov distance. The Prokhorov distance can also be replaced by, for example
by the Wasserstein distance, which results in the Gromov-Hausdorff-Wasserstein distance (Villani,
2009). However, from the practical perspective, amongst all competitors, the GW distance
still remains the most popular and attracting, given its well-established theory, computational
feasibility, strong performance and handy OT plan.

2.2.3 Properties of GW distance

Isomorphism between mm-spaces Isomorphism is a central concept in the study of GW
distance between the mm-spaces. Two mm-spaces are isomorphic if and only if there exists a
measure-preserving isometry from one mm-space to the other. Notable examples of isomorphism
include orthogonal transformations, for example rotation, translation and relection. It can be
shown that the GW distance defines a metric on the space of mm-spaces, up to isomorphism
(Mémoli, 2007; Sturm, 2012). Note that, this metric property still holds for other GH-based
metrics, namely the RGM and Lp-transport distances (Hur, Guo, and Liang, 2021; Sturm, 2006).
Unlike the GW distance, the Wasserstein distance is not invariant to orthogonal transformations.
However, in Euclidean space, by additionally searching over the space of linear operators with
bounded Schatten l2-norm, one can recover the GW from the Wasserstein distance (Alvarez-Melis,
Jegelka, and Jaakkola, 2019).

Isomorphism between measure networks By definition, the mm-space is a separable
metric space. In particular, the distance is a measurable function. In practice, the distance
matrix may represent the pairwise dissimilarity rather than similarity, or not even necessarily be
symmetric, typically in a directed graph. Thus, the notion of distance in the mm-space can be
relaxed and replaced with an appropriate measurable function, which results in a more generalized
space, for example measure network (Chowdhury and Mémoli, 2019), or gauged measure space
(Sturm, 2012). In the sequel, we focus on the measure network (Chowdhury and Mémoli, 2019),
or simply network, if there is no risk of ambiguity.

Definition 2.2.5 (Measure network). A network is a triplet X = (X, cX , µX), where X is a
Polish space equipped with the Borel probability measure µX and cX is a bounded measurable
function on X2.

We also assume that µX has full support, i.e., supp(µX) = X. Unlike the mm-space, to
characterize the equivalence class of networks, we need to introduce some forms of isomorphism.
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First, let us start with a useful concept in (Mémoli and Needham, 2022b).

Definition 2.2.6 (Mass splitting). A network Z = (Z, cZ , µZ) is a mass splitting of a network
X = (X, cX , µX) if there exists a measure-preserving map ϕ : Z → X such that the pullback
equality cX = ϕ∗cZ holds µZ ⊗ µZ-almost everywhere. We denote MS(X ) the set of all mass
splittings of X .

Clearly, X ∈ MS(X ), so MS(X ) is always non-empty. Now, we define three forms of isomor-
phism.

Definition 2.2.7 (Isomorphism). Two measure networks are

1. strongly isomorphic if there exists a bijective measure-preserving map from one network
to the other such that the pullback equality holds everywhere.

2. semi-strongly isomorphic if one is the mass splitting of the other and vice versa.

3. weakly isomorphic if they have a common mass splitting.

There are several immediate observations from this definition.

1. Definition 2.2.7 can be easily adapted to the mm-space setting. In this case, by Lemma
1.10 in (Sturm, 2012), the three forms are equivalent.

2. The strong isomorphism is a very strict condition. First, it is not difficult to see that strong
isomorphism implies semi-strong isomorphism and semi-strong isomorphism implies weak
isomorphism. By Remark 2 in (Chowdhury and Mémoli, 2019), the reverse may not hold
in general. Second, it requires the pullback equality to hold everywhere, rather than only
almost-everywhere.

3. To the best of our knowledge, the semi-strong isomorphism has never been discussed in the
literature. However, it can be useful to characterize the Gromov-Monge distance.

Similar to the Wasserstein distance, a Monge version of the GW distance, known as Gromov-Monge
(GM) distance, is defined as

GM(X ,Y) = inf
ϕ∈T (µX ,µY )

||cX − ϕ∗cY ||Lp(X2,µX⊗µX), (2.67)

where, recall that T (µ, ν) is the set of transport maps from µ to ν. The GM distance suffers
the same limitations as the Monge’s problem, notably the existence of the transport map and
the asymmetry of the metric. It is easy to see that Z is a mass splitting of X if and only if
GM(Z,X ) = 0. The equality between GM and GW distances has also attracted much interest
in the mathematics community, see (Mémoli and Needham, 2022a) for a comprehensive and
up-to-date review.

The following result is very handy as it allows us to flexibly switch between the GW and GM
distances.
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Corollary 2.2.1 (Theorem 14 in (Mémoli and Needham, 2022b)). Let X and Y be two measure
networks, then

GW(X ,Y) = inf
Z∈MS(X )

GM(Z,Y) = inf
Z∈MS(Y)

GM(Z,X ). (2.68)

Moreover, the infima are always attained: there exist two measure networks Zx ∈ MS(X ) and
Zy ∈ MS(Y) such that GW(X ,Y) = GM(Zx,Y) = GM(Zy,X ).

Proposition 2.2.1 (Relations of GW and GM with isomorphism). Let X and Y be two measure
networks.

1. X and Y are weakly isomorphic if and only if GW(X ,Y) = 0.

2. X and Y are semi-strongly isomorphic if and only if GM(X ,Y) = GM(Y,X ) = 0.

Proof. If X and Y are weakly isormorphic, then there exists a common mass splitting Z of X
and Y , which means GM(Z,Y) = 0. By Corollary 2.2.1, GW(X ,Y) = GM(Z,Y) = 0. Conversely,
if GW(X ,Y) = 0, then by Corollary 2.2.1, there exists Z ∈ MS(X ) such that GM(Z,Y) = 0.
But this means Z ∈ MS(Y). We conclude that X and Y are weakly isormorphic since Z is the
common mass splitting. The equivalence between semi-strong isormorphism and GM follows
immediately from the definition. �

Proposition 2.2.1 allows us to characterize the equivalence classes of GW distance in the
setting of networks. More precisely,

Proposition 2.2.2 (Theorems 2.3 and 2.4 in (Chowdhury and Mémoli, 2019)). GW distance
defines a metric on the space of networks, up to weak isomorphism.

Corollary 2.2.2 (Relation between weak isomorphism and mass splitting).

1. If Z is a mass splitting of X , then X and Z are weakly isomorphic (since Z is the common
mass splitting).

2. If two networks are weakly isomorphic, then so are their mass splittings.

Proof. If Z is a mass splitting of X , then Z is the common mass splitting. So, X and Z are
weakly isomorphic.

If X and Y are weakly isomorphic, then they have a common mass splitting Z. By Proposi-
tion 2.2.1, we have GW(X ,Z) = GW(Y,Z) = 0. Now, suppose X ′ ∈ MS(X ) and Y ′ ∈ MS(Y),
then GW(X ,X ′) = GW(Y,Y ′) = 0. By triangle inequality, we deduce that GW(X ′,Z) =
GW(Y ′,Z) = 0. So, Z is the common mass splitting of X ′ and Y ′, meaning that they are weakly
isomorphic. �
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2.2.4 Optimization and algorithm

Given two matrices (not necessarily symmetric) Cx ∈ Rm×m, Cy ∈ Rn×n and two histograms
µX ∈ ∆m, µY ∈ ∆n, the discrete GW problem reads

min
P∈U(µ,ν)

∑
i,j,k,l

|Cxik − C
y
jl|
p PijPkl. (2.69)

For convenience, we write ∑i,j,k,l |Cxik − C
y
jl|p PijPkl = 〈C ⊗ P, P 〉, where the 4D-tensor cost

C = |Cx − Cy|p is defined by Cijkl = (Cxik − Cyjl)p. Intuitively, the Wasserstein distance to
linear assignment problem is the same as the GW distance to quadratic assignment problem
(QAP) (Koopmans and Beckmann, 1957), where the permutation matrix is replaced by a doubly
stochastic one. While the QAP is known to be NP-hard, introducing more flexibility to the
alignment matrix does not necessarily ease the optimization. Furthermore, the computational
complexity of the 4D-tensor cost is prohibitive in most applications. For these reasons, the current
approach to solve the discrete GW usually consists of an efficient approximation technique and
additional structures on the cost tensor. In this section, we discuss both components in more
details.

Structure of the cost tensor

To handle the cost tensor, an efficient, yet easy-to-implement strategy is to make it as
decomposable as possible. Given its form C = |Cx − Cy|p, the decomposability can be achieved
by choosing p = 2. To see this, let us recall the following results.

Lemma 2.2.1 (Generalization of Proposition 1 in (Peyré, Cuturi, and Solomon, 2016)). Denote
⊕ the Kronecker sum. For any matrix M , we write M�2 := M �M , where � is the element-wise
multiplication. Given A ∈ Rn1×d1 , B ∈ Rn2×d2 and P ∈ Rd1×d2 , we define |A−B|2⊗P ∈ Rn1×n2

by (|A−B|2 ⊗ P )ij = ∑
k,l |Aik −Bjl|2Pkl. Then, |A−B|2 ⊗ P = A�2P#1 ⊕B�2P#2 − 2APBT .

In particular, in the case of GW distance, for any P ∈ U(µX , µY ), we have

〈|Cx − Cy|2 ⊗ P, P 〉 = 〈(Cx)�2µX , µX〉+ 〈(Cy)�2µY , µY 〉 − 2〈CxP (Cy)T , P 〉, (2.70)

where 〈(Cx)�2µX , µX〉+ 〈(Cy)�2µY , µY 〉 is a constant independent of P and has computational
cost of O(m2 + n2). The cost of computing CxP (Cy)T is O(m2n+ n2m). So, the overall compu-
tational complexity is reduced from O(m2n2) to O(m2n+ n2m). Moreover, if the input matrices
Cx, Cy are factorizable, then this cost can be even further reduced, for both constant term and
CxP (Cy)T . For example, the squared distance matrix is factorizable, thanks to two lemmas
below in (Scetbon, Peyré, and Cuturi, 2021).
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Lemma 2.2.2 (Exact low-rank factorization of squared distance matrix). If A = (a1, ..., am) ∈
Rm×d and B = (b1, ..., bn) ∈ Rn×d, then the matrix D ∈ Rm×n defined by Dij = ||ai − bj ||22
can be decomposed as D = DaD

T
b , where Da = (A�21d, 1m,−

√
2A) ∈ Rm×(d+2) and Db =

(1n, B�21d,
√

2B) ∈ Rn×(d+2).

Lemma 2.2.3 (Element-wise square trick for factorizable matrix). For x ∈ Rd, define ϕ(x) =
vec(xxT ) ∈ Rd2 . Suppose A = BCT , where B ∈ Rm×d and C ∈ Rn×d. By writing B as [b1, ..., bm]T

and C as [c1, ..., cn]T , define B̃ = [ϕ(b1), ..., ϕ(bm)]T ∈ Rm×d2 and C̃ = [ϕ(c1), ..., ϕ(cn)]T ∈ Rn×d2 .
Then A�2 = B̃C̃T . In particular, A�2 is also factorizable and has rank d2. In PyTorch, B̃ can be
calculated by: torch.einsum("ij,ik->ijk", B, B).reshape(B.shape[0], B.shape[1]**2).

We deduce that, if Cx = DxD
T
x , (Cx)�2 = D̃xD̃

T
x and Cy = DyD

T
y , (Cy)�2 = D̃yD̃

T
y , with

Dx ∈ Rm×dx , D̃x ∈ Rm×d2
x , Dy ∈ Rn×dy and D̃y ∈ Rn×d2

y are low-rank matrices with dx � m and
dy � n, we have

〈|Cx − Cy|2 ⊗ P, P 〉 = (Cx)�2P#1 ⊕ (Cy)�2P#2 − 2CxP (Cy)T (2.71)

= µTXD̃xD̃
T
x µX + µTY D̃yD̃

T
y µY − 2〈DxD

T
x PDyD

T
y , P 〉. (2.72)

Comparing to Equation (2.70), the computational costs are now much cheaper, where for the
constant term, it is O(md2

x + nd2
y), and for CxP (Cy)T , it is O(mn(dx + dy) + (m+ n)dxdy). If

the distance matrix is not factorizable, one can consider the low-rank approximation, whose
implementation details can be found in (Scetbon, Cuturi, and Peyré, 2021).

We also stress that, exploiting the decomposability is not the only way to reduce the
computational complexity. For an overview of more complicated strategies, interested readers
may consult Table 1 in (Mengyu Li and Meng, 2023) and the reference therein.

Approximation technique

The common principle behind many current methods for solving the GW problem is the
linearization of the objective function, so that each iteration boils down to solving a (possibly
regularized) OT problem. However, given the nonconvex nature of the GW problem, they also
share a common limitation, where only local, but not global convergence is guaranteed. In what
follows, we briefly discuss several solvers using this principle. We note that, however, in some
particular situations, it is still possible to achieve the global convergence. For example, when
p = 2 and Cx, Cy are squared Euclidean distance, Ryner, Kronqvist, and Karlsson (2023) propose
to apply the cutting-plane method to a tractable relaxation of the GW problem and show that
this algorithm converges to the global optimum of the GW problem.

1. Condition gradient descent Vayer et al. (2019a) directly estimate the GW problem by
using the Frank-Wolfe algorithm, also known as condition gradient descent (Frank and Wolfe,
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1956; Jaggi, 2013). More precisely, each iteration requires solving an unregularized OT problem,
whose cost C ⊗ P (t) is the gradient involving the previous OT plan, then interpolating betweeen
the newly acquired OT plan and the previous one using a certain line search strategy. Since the
objective function is nonconvex, the Frank-Wolfe algorithm only guarantees the convergence to a
local stationary point (Lacoste-Julien, 2016).

2. Projected gradient descent Similar to the Wasserstein distance, one can also approximate
the GW distance with entropic regularization.

min
P∈U(µX ,µY )

〈C ⊗ P, P 〉+ εKL(P |γ), (2.73)

for some relevant reference histogram γ ∈ Rm×n>0 , for example, γ = 1m×n corresponds to using the
negative entropy as regularizer. To solve this regularized problem, Peyré, Cuturi, and Solomon
(2016) and Solomon et al. (2016) propose to use projected gradient descent, where each iteration
boils down to solving an entropic OT problem. More precisely,

Lemma 2.2.4 (Generalization of Proposition 2 in (Peyré, Cuturi, and Solomon, 2016)). Given
a matrix M ∈ Rm×n, consider the following entropic (fused) GW problem

min
P∈U(µX ,µY )

〈C ⊗ P, P 〉+ 〈M,P 〉+ εKL(P |γ). (2.74)

Then, the PGD iteration reads: for any learning rate η > 0,

P (t+1) = argmin
P∈U(µX ,µY )

η 〈C ⊗ P (t) +M,P 〉+ εKL
(
P
∣∣γη � (P (t))1−η

)
. (2.75)

As observed in (Peyré and Cuturi, 2019), η = 1 usually works well in practice, where the
sequence (P (t))t converges empirically. However, the theoretical convergence analysis remains
unexplored. As a side note, adding regularization to the GW distance also incurs bias, similar
to the entropic OT. Inspired by the Sinkhorn divergence, Bunne et al. (2019) apply the same
strategy to debiase the entropic GW, but there is no theoritical guarantee with their approach.

3. (Inexact) Bregman proximal point Inspired by the work of Xie et al. (2020) on Inexact
Proximal Optimal Transport, Xu, Luo, and Carin (2019) and Xu et al. (2019) propose to apply
the Bregman proximal point (BPP) method to the GW problem, where at each iteration, we
solve

min
P∈U(µX ,µY )

〈C ⊗ P, P 〉+ η KL(P |P (t)). (2.76)
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This is nothing but the entropic GW problem presented in the second approach, thus can be
solved with the PGD algorithm. The resulting sequence only guarantees that every limit point is
a stationary point (Xu et al., 2019).

4. Block coordinate descent Apart from using entropic regularization, one can also consider
the following problem

min
P,Q∈U(µX ,µY )

〈C ⊗ P,Q〉. (2.77)

Clearly, this is a lower bound of the GW distance since we no longer require two couplings to
be equal. The bound can become the equality, for example, when p = 2 and Cx, Cy are the
Euclidean distances. This means that dropping the equality constraint does not change the
minimum nor the minimizer. More discussion on such situations can be found in Section 3.1. In
these cases, we can apply the block coordinate descent (BCD) algorithm, where in each iteration,
we alternatively fix one coupling and solve the OT problem with respect to the other. Since the
objective function is smooth, this algorithm can only guarantee the convergence to a stationary
point (P.Tseng, 2001). This lower-bound strategy can also be easily extended to the general
problem (2.74), where it is enough to rewrite the objective function as

min
P,Q∈U(µX ,µY )

P=Q

〈C ⊗ P,Q〉+ 1
2〈M,P 〉+ 1

2〈M,Q〉+ ε

2KL(P |γ) + ε

2KL(Q|γ). (2.78)

Moreover, one can ignore the equality constraint without impacting the minimum, under exactly
the same conditions as in Problem (2.77).

5. Bregman alternating projected gradient Another way to use the lower bound is in (Li
et al., 2022).

min
(P,Q)∈C1×C2

P=Q

〈C ⊗ P,Q〉, (2.79)

where C1 = {P ≥ 0 : P#1 = µX} and C2 = {Q ≥ 0 : Q#2 = µY }, They propose to use the
Bregman alternating projected gradient (BAPG), whose iterates read: for a given learning rate
η > 0,

1. P (t+1) = argminP∈C1〈C ⊗Q(t), P 〉+ ηKL(P |Q(t)).
2. Q(t+1) = argminQ∈C2〈C ⊗ P (t+1), Q〉+ ηKL(Q|P (t+1)).

However, BAPG has two main drawbacks: it only converges asymptotically to a critical point
and the iterates do not necessarily satisfy the marginal constraints. To overcome these issues, the
authors propose the hybrid Bregman Projected Gradient (hBPG), which consists of initializing
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with the solution of the entropic GW problem, then applying the BPP method discuss previously.
Local linear convergence result is also established for hBPG.

6. Saddle point approximation Similar to (Koehl, Delarue, and Orland, 2019), Koehl,
Delarue, and Orland (2023) use the framework from statistical physics and approximate the
GW distance by the limit of a decreasing sequence of free energies. Rougly speaking, at each
iteration, this boils down to iteratively estimating the free energy by using the saddle point
approximation. Formally, we fix a increasing sequence of inverse temperatures (βt)t converging
to +∞. At the iteration t, set Q(0) = P (t−1). Then, for k ≥ 1, run the following iterative scheme
until convergence.

1. Calculate the new OT cost C(k) = C ⊗Q(k).

2. Solve the non-linear system of equations for u ∈ Rm and v ∈ Rn.
n∑
j=1

ϕ
(
βt(u+ vj + C

(k)
·,j )

)
= µX .

m∑
i=1

ϕ
(
βt(ui + v + C

(k)
i,· )

)
= µY .

(2.80)

3. Compute Q(k+1) = ϕ
(
βt(u⊕ v + C(k))

)
.

Finally, set P (t) = Q(k) and repeat the procedure. Here ϕ(x) = e−x

e−x−1 + 1
x , for x 6= 0 and

ϕ(0) = 1/2. In theory, while the GW distance is known to be the limit of the free energy when
the temperature tends to 0+, the convergence analysis of this algorithm remains unexplored.

2.2.5 Beyond GW distance

Fused GW distance Structured data is an object made of two components: structure and
feature information, is ubiquitous in practical situations. Typical examples include attributed
graph, whose node is assigned with a label, or cortical surface whose vertice is associated to a
vectorial representation of the functional activation map, or in supervised learning, the dataset is
a set of example-label pairs. By construction, neither GW nor Wasserstein distance is designed
to handle this kind of data. Vayer et al. (2019a) propose a simple, yet efficient method called
Fused GW (FGW) distance, which is able to take into account both types of information. It
is convenient to cast structured data as an attributed graph X = (Cx, F x, µX), where Cx is
the similarity matrix, F x is the set of features associated to the nodes and µX is the histogram
assigned to the nodes. Given two attributed graphs X = (Cx, F x, µX) and Y = (Cy, F y, µY ), for
α ∈ [0, 1], we define

FGWα(X ,Y) = inf
P∈U(µX ,µY )

(1− α)〈C ⊗ P, P 〉+ α〈M,P 〉, (2.81)
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where the 4D-tensor cost C is usually of the form C = |Cx − Cy|p as in the GW distance, The
matrix M usually represents the pairwise similarity amongst features, typically Mij = ||ai− bj ||p,
where ai ∈ F x and bj ∈ F y. Note that, the presence of feature information indicates that the
measure-preserving isometries for structure information needs to be also feature-preserving. The
structure of the objective function allows FGW to interpolate between the OT and GW distances,
depending on the asymptotic behavior of α (Vayer et al., 2019a).

Any solver for GW can be easily applied to the FGW. Instead of using predefined feature, it
is also possible to learn it simultaneously with the alignment matrix, for example in (Xu et al.,
2019). It can also be easily integrated into many OT-based divergences, for example low-rank
GW (Scetbon, Peyré, and Cuturi, 2021), Keypoint-guided OT (Gu et al., 2022), Information-
maximizing OT (Chuang, Jegelka, and Alvarez-Melis, 2023), fused unbalanced GW (Thual
et al., 2022). In supervised learning, the main idea of FGW is also shared in other OT-based
divergences, for example the OT Dataset distance between datasets (Alvarez-Melis and Fusi,
2020), Joint-distribution OT (Courty et al., 2017), or Transportation Lp distance (Thorpe et al.,
2017).

Marginal relaxation in GW distance Inspired by the recent interest and development
on UOT (Liero, Mielke, and Savaré, 2018), the GH-based distances between mm-spaces can
be extended to the unbalanced setting. More precisely, given two mm-spaces X = (X, dX , µX)
and Y = (Y, dY , µY ), Ponti and Mondino (2020) study the unbalanced extension of the Lp-
transportation distance called Sturm-Entropic-Transport distance, defined as

DET(X ,Y) = inf
Z,f,g

UWZ,p

(
(f(X), f#µX), (g(Y ), g#µY )

)
, (2.82)

where the infimum is taken over all complete and separable metric spaces Z and isometric
embeddings f : X → Z and g : Y → Z.

To compare compact mm-spaces, Séjourné, Vialard, and Peyré (2021b) propose the unbalanced
GW (UGW) divergence: given two relaxation parameters λ1, λ2 > 0 and two Csizar divergences
Dϕ1 , Dϕ2 , they define

UGWλ(X ,Y) = inf
π∈M+(X×Y )

∫
|dX − dY |pdπdπ + λ1D

⊗2
ϕ1 (π#1|µX) + λ2D

⊗2
ϕ2 (π#2|µY ). (2.83)

Here, D⊗2
ϕ denotes the quadratic divergence D⊗2

ϕ (µ|ν) := Dϕ(µ ⊗ µ|ν ⊗ ν). This structure of
product measures is particularly useful in the study of theoretical and practical properties of
UGW, namely the existence of solution, the relation with conic formulation (Séjourné, Vialard,
and Peyré, 2021b) and the robustness to outliers (Tran et al., 2023). Moreover, thanks to
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Corollary 2.1.1, when Dϕ1 , Dϕ2 are KL divergences, we have

UGWλ(X ,Y) = λ1 m(µX)2 + λ2 m(µY )2 − (λ1 + λ2) m(π∗)2, (2.84)

meaning that the minimum is a quadratic function of the minimizer.
Zhang et al. (2022b) introduce the unbalanced bi-directional Gromov-Monge divergence

defined as: for λx, λy > 0,

UBGMλ(X ,Y) = inf
f :X→Y
g:Y→X

∆p(f, g,X, Y ) + λxDϕx(g#µY |µX) + λyDϕy (f#µX |µY ), (2.85)

whereDϕx andDϕy are divergences onM+
1 (X) andM+

1 (Y ), respectively. Here, the authors define
a divergence D onM+

1 (Z) as a function D :M+
1 (Z)×M+

1 (Z)→ R≥0 such that D(P |Q) = 0 if
and only if P = Q. In particular, when µX and µY are probability measures and Dϕx , Dϕy are
maximum mean discrepancies, the convergence rate of the empirical measures can be computed.

Other unbalanced extensions of the GW distance include the semi-relaxed GW divergence
(Vincent-Cuaz et al., 2022), where only one marginal is relaxed, or the partial GW (Chapel,
Alaya, and Gasso, 2020) motivated by the partial OT (Caffarelli and McCann, 2010; Figalli,
2010), where the mass of the transport plan is bounded above. We note that both divergences can
be obtained from UGW, by choosing appropriate relaxation parameters and divergences. Another
alternative is the outlier-robust GW (RGW) (Kong et al., 2023). It combines GW distance with
the marginal relaxation of UOT from (Liero, Mielke, and Savaré, 2018) and the KL relaxations
as constraints from (Balaji, Chellappa, and Feizi, 2020), though the authors do not give proper
credits to these prior works. Similar to UGW, RGW also enjoys provable robustness property
and shows strong performance in various graph learning tasks, where outliers present.
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This chapter presents two contributions to the CO-Optimal Transport (COOT). The first one is
summarized in (Tran et al., 2021), which studies a relaxation of COOT via multi-marginal OT
(MMOT). It unifies several popular OT methods under its umbrella by promoting structural
information on the coupling. We show that incorporating such information into MMOT results
in an instance of a difference of convex (DC) programming problem allowing us to solve it
numerically. Despite high computational cost, the solutions provided by DC optimization are
usually as qualitative as those obtained using available optimization schemes.

The second contribution is on the continuous COOT and its entropic approximation. We
consider a generalization of measure network called measure hypernetwork and show that
continuous COOT can be used to compare such objects. We then study the convergence behavior
of the entropic approximation of COOT under the framework of finite-dimensional measure
network. In particular, we can quantify the approximation error of entropic COOT and easily
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extend this analysis to the GW distance.

3.1 Background on discrete CO-Optimal Transport

In many practical applications, the tabular data are usually expressed as a matrix whose rows
represent samples and columns represent features. In general, the usual OT-based divergences,
notably the Wasserstein and GW distances, mostly make use of the pairwise distances, either
within or across domains, to construct the cost matrix or tensor. This approach has two
consequences. First, only sample correspondences are of interest, By contrast, one completely
discards the feature alignments, which can be also interpretable, for example, in single-cell
multi-omics tasks (Demetci et al., 2022b). 1. Second, the distance averages out the features, thus
incurs information loss. This can be problematic in the high-dimensional setting, where the
Euclidean distance is usually not a good metric (see for example, (Aggarwal, Hinneburg, and
Keim, 2001), or Theorem 3.1.1 and Remark 3.1.2 in (Vershynin, 2018)) 2.

One way to overcome these limitations is to use the Co-Optimal Transport (COOT) (Redko
et al., 2020), which learns simultaneously the sample and feature alignments. In what follows,
we denote by ∆n = {p ∈ Rn>0 : ∑n

i=1 pi = 1} the simplex histogram with n bins. We call
X = (X,µX1 , µX2 ) a weighted matrix defined by a triplet comprised of a matrix X ∈ Rnx×dx

equipped with the histograms µX1 ∈ ∆nx and µX2 ∈ ∆dx on its rows and columns, respectively. For
p ≥ 1, we define the COOT between two weighted matrices X = (X,µX1 , µX2 ) and Y = (Y, µY1 , µY2 )
as

COOT(X ,Y) := inf
P∈U(µX

1 ,µ
Y
1 )

Q∈U(µX
2 ,µ

Y
2 )

∑
i,j,k,l

(Xij − Ykl)pPikQjl. (3.1)

By Proposition 1 in (Redko et al., 2020), if the weights are uniforms, then COOT defines a
distance on the space of weighted matrices, up to permutation of the matrix coordinates. We
note that the formulation (3.1) can be easily extended to the multi-coupling setting, for example,
in (Kerdoncuff et al., 2022).

From the perspective of matrix-comparison, COOT provides a principled way to compare any
two arbitrary-size matrices. By contrast, this is not the case for many other existing divergences,
whose applicability is summarized in Table 3.1.

1. In case of Wasserstein distance, there is no interest of feature correspondences because intuitively, they are
equivalent to the identity matrix. However, it is no longer clear how to identify the such matching in the GW
setting.

2. For more informative discussion, see https://stats.stackexchange.com/questions/99171/
why-is-euclidean-distance-not-a-good-metric-in-high-dimensions.

49

Optimal transport for transfer learning across spaces Quang huy Tran 2024

https://stats.stackexchange.com/questions/99171/why-is-euclidean-distance-not-a-good-metric-in-high-dimensions
https://stats.stackexchange.com/questions/99171/why-is-euclidean-distance-not-a-good-metric-in-high-dimensions


Chapter 3. Contributions to CO-Optimal Transport

Divergences Input matrices Requirement on histograms
Matrix norms Same-size matrices Not applicable

OT, UOT, SW Matrices with the same
number of columns Only requires histogram on rows

GW, FGW, UGW, SGW Square matrices Histograms on rows and columns
must be the same

COOT Arbitrary-size matrices Any histograms on rows and columns

Table 3.1 – Applicablility of some popular divergences. COOT is much more flexible than other
OT-based divergences. UOT and UGW are the unbalaced OT and unbalaced GW divergence,
respectively. FGW is the Fused GW divergence. SW and SGW denote the sliced Wasserstein
(Bonneel et al., 2015; Rabin et al., 2012) and sliced GW (Vayer et al., 2019b) distances.

Co-Optimal Transport as lower bound of GW distance Under the framework of discrete
GW, where the inputs are similarity matrices, for simplicity, we write X = (Cx, µX), where
Cx is the similarity matrix and µX is the sample histogram. Now, the GW distance can be
reformulated as

GW(X ,Y) = inf
P,Q∈U(µX ,µY )

P=Q

∑
i,j,k,l

(Cxij − C
y
kl)

pPikQjl, (3.2)

meaning that we optimize with respect to two independent couplings under the additional
constraint that they must be equal. If it is relaxed, then one recovers the COOT distance between
X and Y. We also stress that COOT should not be confused with the third lower bound of the
GW distance (Mémoli, 2007, 2011b) defined as

TLB(X ,Y) := inf
Q∈U(µX ,µY )

(
inf

P∈U(µX ,µY )

∑
i,j,k,l

(Cxij − C
y
kl)

pPik
)
Qjl. (3.3)

In particular, we have GW(X ,Y) ≥ COOT(X ,Y) ≥ TLB(X ,Y).
If the inputs are the Euclidean, or squared Euclidean distances, then equality holds between

COOT and GW distances (Redko et al., 2020; Séjourné, Vialard, and Peyré, 2021b). These results
are based on the prior works of Konno (1976) and Maron and Lipman (2018) and summarized in
the folllowing proposition.

Definition 3.1.1. A square matrix A ∈ Rn×n is conditionally negative semi-definite (CND) if
it is symmetric and for any c ∈ Rn such that

∑
i ci = 0, we have cTAc ≤ 0.

Proposition 3.1.1. For p = 2, suppose that Cx and Cy are of the forms: Cxij = fi+fj +Aij and
Cykl = gk+gl+Bkl, where f, g are vectors in Rm,Rn, respectively, and the matrices A,B are CND.
Then GW(X ,Y) = COOT(X ,Y). Furthermore, if (P ∗1 , P ∗2 ) is a solution of the COOT problem,
then P ∗1 and P ∗2 are two solutions of the GW problem. In particular, if the semi-definiteness is
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replaced by the definiteness, then P ∗1 = P ∗2 .

In particular, if the similarity matrices is CND, then one can safely remove the equality
constraint without changing the minimum. Thus, Proposition 3.1.1 justifies the rationale behind
the alternative minimization procedure for GW distance presented in Section 2.2.4.

3.2 Continuous Co-Optimal Transport

In this section, we present our unpublished work on the continuous COOT and its entropic
approximation. We will mostly follow the terminology and concepts proposed by Chowdhury
et al. (2023).

3.2.1 Formulation and preliminary results

As already seen in discrete GW problem (3.2), by rewriting a measure network X = (X, cX , µX)
as X̃ =

(
(X1, µ

X
1 ), (X2, µ

X
2 ), cX

)
, with X1 = X2 = X and µX1 = µX2 = µX , one can reformulate

the GW problem as

inf
π1,π2

∫
X1×Y1

∫
X2×Y2

∣∣cX(x1, x2)− cY (y1, y2)
∣∣p dπ1(x1, y1) dπ2(x2, y2).

subject to: πk ∈ U(µXk , µYk ),∀k = 1, 2,

π1 = π2.

(3.4)

When the equality constraint on the two couplings is relaxed, we can allow that either X1 6= X2

or Y1 6= Y2. The interest of such situation can be found, for example, in heterogenous domain
adaptation, where X1 and Y1 represent the "sample" spaces in the source and target domains,
respectively, and X2 and Y2 represent the "feature" spaces in the source and target domains,
respectively. As a result, the corresponding "sample" and "feature" couplings are also different in
their natures.

Definition 3.2.1 (Measure hypernetwork (Chowdhury et al., 2023)). Suppose (X1, µ
X
1 ) and

(X2, µ
X
2 ) are two Polish measure spaces, and cX is a bounded measurable function on X1 ×X2.

We call the triplet X =
(
(X1, µ

X
1 ), (X2, µ

X
2 ), cX

)
a measure hypernetwork. We also say cX is

the interaction between X1 and X2.

Without risk of confusion, when X1 = X2 = X and µX1 = µX2 = µX , we use interchangeably
"measure hypernetwork" and "measure network" in the context of GW (Chowdhury and Mémoli,
2019). When X1 and X2 are finite spaces (so µX1 and µX2 are histograms), we call X a finite
measure hypernetwork. For convenience, we also refer the index 1 as "sample" and 2 as "feature",
for example, X1 is the sample space, π2 is the feature coupling.
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Definition 3.2.2 (COOT distance between measure hypernetworks (Chowdhury et al., 2023)).
For p ≥ 1, the COOT distance between two measure hypernetworks X and Y is defined as

COOT(X ,Y) = inf
π1∈U(µX

1 ,µ
Y
1 )

π2∈U(µX
2 ,µ

Y
2 )

∫∫ ∣∣cX(x1, x2)− cY (y1, y2)
∣∣p dπ1(x1, y1) dπ2(x2, y2). (3.5)

It is not difficult to see that Definition 3.2.2 generalizes the discrete COOT (Redko et al.,
2020). In practice, the input data is usually expressed as matrix, whose rows represent samples
and columns represent features. In this case, the interaction value is precisely the coordinate of
the data matrix. Meanwhile, the sample and feature spaces are unknown and have little interest
and importance.

First, we can show that the COOT problem (3.5) is well defined.

Proposition 3.2.1 (Lemma 35 in (Chowdhury et al., 2023)). The COOT problem always admits
a minimizer.

We provide the proof in Appendix 8.2.2. While the proofs of our result and of Lemma 35
in (Chowdhury et al., 2023) use the same proof technique of Theorem 2.2 in (Chowdhury and
Mémoli, 2019), ours is slightly different. More precisely, we exploit a different reformulation of
COOT, where it can be rewritten as a multi-marginal OT problem with additional factorization
constraint on the coupling. Later, we will see that, this observation also allows to establish the
convergence result of entropic COOT.

3.2.2 Metric properties

The framework on the GW isomorphism presented in Section 2.2.3 can be extended immedi-
ately to the COOT setting. In particular, while our presentation is different to that of Chowdhury
et al. (2023), we still come up with the same metric properties.

Definition 3.2.3 (Relaxed mass splitting). A measure hypernetwork Z is a relaxed mass
splitting (RMS) of a measure hypernetwork X if there exist two measure-preserving maps
ϕk : Zk → Xk, for k = 1, 2, such that the pullback equality cZ = (ϕ1, ϕ2)∗cX holds µZ1 ⊗ µZ2 -
almost everywhere in Z1×Z2. We denote MS(X ) the set of all mass splittings of X . This pair of
maps (ϕ1, ϕ2) is also called basic weak isomorphism in (Chowdhury et al., 2023).

We denote RMS(X ) the set of all relaxed mass splittings of X . Clearly, X ∈ RMS(X ), so
RMS(X ) is not empty. In particular, for measure networks, if Z ∈ MS(X ), then Z ∈ RMS(X ),
meaning that MS(X ) ⊂ RMS(X ). Now, we can define the isomorphism between the measure
hypernetworks as follows.

Definition 3.2.4 (COOT-isomorphism). Two measure hypernetworks are
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1. strongly isomorphic if there exist two bijective measure-preserving map from one hyper-
network to the other such that the pullback equality holds everywhere.

2. semi-strongly isomorphic if one is the RMS of the other and vice versa.

3. weakly isomorphic if they have a common RMS.

This is an immediate relaxation of the GW isomorphism. In particular, in case of measure
networks, isomorphism in GW sense implies COOT isormorphism. The following result summarizes
the relations amongst the three types of COOT isomorphism.

Corollary 3.2.1. Given two measure hypernetworks X and Y. Consider three statements

(1) X and Y are strongly isomorphism.

(2) X and Y are semi-strongly isomorphism.

(3) X and Y are weakly isomorphism.

Then, the following relations hold

1. (1) =⇒ (2) =⇒ (3).

2. If X and Y are finite, then (2) =⇒ (1).

3. If X and Y are finite such that |Xk| = |Yk| and µXk , µ
Y
k are uniform distributions, for

k = 1, 2, then (3) =⇒ (2). This means all three forms are equivalent.

Now, we can characterize the weak isomorphism by

Proposition 3.2.2. Two measure hypernetworks X and Y are COOT-weakly isomorphic if and
only if COOT(X ,Y) = 0.

Proposition 3.2.3 (Theorem 1 in (Chowdhury et al., 2023)). COOT1/p defines a metric on the
space of measure hypernetworks, up to COOT-weak isomorphism.

3.2.3 Entropic regularization and approximation error

Similar to the Wasserstein and GW distances, one can approximate the COOT with entropic
regularization. In this thesis, we are interested in the following formulation of entropic COOT:
for ε > 0,

COOTε(X ,Y) = inf
π1∈U(µX

1 ,µ
Y
1 )

π2∈U(µX
2 ,µ

Y
2 )

∫∫ ∣∣cX(x1, x2)− cY (y1, y2)
∣∣p dπ1(x1, y1) dπ2(x2, y2) (3.6)

+ ε KL
(
π1 ⊗ π2|(µX1 ⊗ µY1 )⊗ (µX2 ⊗ µY2 )

)
. (3.7)

Note that, this structure of the KL divergence term is particularly handy to prove all results
related to the entropic COOT. It also bears similarity with the quadratic divergence (Séjourné,
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Vialard, and Peyré, 2021b) defined by KL⊗2(µ, ν) := KL(µ⊗ µ|ν ⊗ ν), which is used to define
the unbalanced GW divergence. Note that, in the balanced setting, the joint penalization in
terms of KL divergence is in fact equivalent to the independent KL-penalization. More precisely,
given any πk ∈ U(µXk , µYk ), for k = 1, 2, we have

KL
(
π1 ⊗ π2|(µX1 ⊗ µY1 )⊗ (µX2 ⊗ µY2 )

)
= KL(π1|µX1 ⊗ µY1 ) + KL(π2|µX2 ⊗ µY2 ). (3.8)

In practice, since the couplings may not have the same nature (for example, when working
directly with the input data, rather than via the similarity matrix), they can be penalized by
different values of regularization.

Proposition 3.2.4. The entropic COOT problem always admits a minimizer.

One major practical interest of entropic COOT is that, for sufficiently small regulariza-
tion, it provides a good proxy for unregularized COOT. Now, we establish the bound for the
approximation error in the setting of finite-dimensional measure network.

Proposition 3.2.5. Given two measure networks X = (X,µX , cX) and Y = (Y, µY , cY ), where
X is bounded subset of Rdx and Y is a bounded subset of Rdy . Denote d = max{dx, dy} and D =
max{diam(X), diam(Y )}. Suppose there exists two constants L, q > 0 such that |cX(x1, x2)| ≤
L||x1 − x2||q, for every (x1, x2) ∈ X2, and |cY (y1, y2)| ≤ L||y1 − y2||q, for every (y1, y2) ∈ Y 2.
Then, the approximation error between the p-COOT distance and its entropic approximation can
be quantified as follows.

COOTε(X ,Y)− COOT(X ,Y) ≤ 4dε
pq

+ 4dε
pq

log
((2D)pqLpdqpq

4dε
)
. (3.9)

This bound is similar to the one in Wasserstein setting (Genevay et al., 2019). This is due to
the fact that the entropic COOT can be reformulated as a variant of multi-marginal OT problem,
thus the block approximation technique (Carlier et al., 2017) can be applied.

Let us consider two special cases of Proposition 3.2.5.
• When p = 2 and cX , cY are Euclidean distances (i.e., q = 1), the upper bound becomes

2dε+ 2dε log
(

2D2L2

ε

)
.

• When p = 2 and cX , cY are squared Euclidean distances (i.e., q = 2), the upper bound
becomes dε+ dε log

(
16D4L2d

ε

)
.

In both situations, the dependence of the bound on the maximal distance D between points
within each space (even only at logarithmic scale) and on the dimension d indicates that either
high dimensional space, or large intra-space distance (for example, due to outliers) may negatively
impact the approximation error. On the other hand, by comparing these two bounds, we deduce
that if log

(4dε
L2
)
≤ 1, then the squared Euclidean distances generates a provably better (smaller)

upper bound.
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With little modification of the proof, exactly the same upper bound in Proposition 3.2.5
holds for GW distance. We note that Zhang et al. (2022a) also establish a similar O(ε log ε)-
approximation error between the unregularized and entropic GW, but they rely on different
assumptions to ours. In particular, their result only holds for 2-GW distance, when the distance
function is the squared-Euclidean norm. By contrast, Proposition 3.2.5 holds for any p-GW
distance and any Lq-norm as distance function.

3.3 Factored couplings in Multi-marginal Optimal Transport via
Difference of Convex programming

3.3.1 Introduction

Broadly speaking, the classic OT problem provides a principled approach for transporting one
probability distribution onto another following the principle of the least effort. Such a problem,
and the distance on the space of probability distributions derived from it, arise in many areas
of machine learning (ML) including generative modeling, transfer learning and information
retrieval, where OT has been successfully applied. A natural extension of classic OT, in which the
admissible transport plan can have more than two prescribed marginal distributions, is called the
multi-marginal optimal transport (MMOT) (Gangbo and Swiech, 1998). The latter has several
attractive properties: it enjoys a duality theory (Kellerer, 1984) and finds connections with the
probabilistic graphical models (Haasler et al., 2020) and the Wasserstein barycenter problem
(Agueh and Carlier, 2011) used for data averaging. While being less popular than the classic
OT with two marginals, MMOT is a very useful framework on its own with some notable recent
applications in generative adversarial networks (Cao et al., 2019), clustering (Mi and Bento,
2020) and domain adaptation (He et al., 2019; Hui et al., 2018), to name a few.

The recent success of OT in ML is often attributed to the entropic regularization (Cuturi,
2013) where the authors imposed a constraint on the coupling matrix forcing it to be closer to
the independent coupling given by the rank-one product of the marginals. Such a constraint
leads to the appearance of the strongly convex entropy term in the objective function and allows
the entropic OT problem to be solved efficiently using simple Sinkhorn-Knopp matrix balancing
algorithm. In addition to this, it was also noticed that structural constraints on the coupling and
cost matrices allow to reduce the high computational cost and sample complexity of the classic
OT problem (Forrow et al., 2019; Genevay et al., 2019; Lin, Azabou, and Dyer, 2021; Scetbon,
Cuturi, and Peyré, 2021). However, none of these works considered a much more challenging
case of doing so in a multi-marginal setting. On the other hand, while the work of Haasler et al.
(2020) considers the MMOT problem in which the cost tensor induced by a graphical structure,
it does not naturally promote the factorizability of transportation plans.
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Contributions In this work, we define and study a general MMOT problem with structural
penalization on the coupling matrix. We start by showing that a such formulation includes several
popular OT methods as special cases and allows to gain deeper insights into them. We further
consider a relaxed problem where the hard constraint is replaced by a regularization term and
show that it leads to an instance of the difference of convex programming problem. A numerical
study of the solutions obtained when solving the latter in cases of interest highlights their
competitive performance when compared to solutions provided by the optimization strategies
used previously.

3.3.2 Preliminary knowledge

Notations. In the discrete setting, the Kullback-Leibler divergence between two positive
vectors p, q ∈ Rn>0 is defined as KL(p|q) = ∑

i pi log pi
qi
−
∑
i pi +∑

i qi, with the convention that
0 log 0 = 0.

In what follows, given an integer N ≥ 1, for any positive integers a1, ..., aN , we call P ∈
Ra1×...×aN a N -D tensor. In particular, a 1-D tensor is a vector and 2-D tensor is a matrix. A
tensor is a probability tensor if its entries are nonnegative and the sum of all entries is 1. Given
N probability vectors µ1, ..., µN , we write µ = (µn)Nn=1 and µ⊗ := µ1⊗ ...⊗µN . We denote Σ the
set of N -D probability tensors and U(µ) ⊂ Σ the set of nonnegative tensors whose N marginal
distributions are µ1, ..., µN . In this case, any coupling in U(µ) is said to be admissible.

Multi-marginal OT problem. Given a collection of N probability vectors µ = (µn ∈ Ran)Nn=1
and a N -D cost tensor C ∈ Ra1×...×aN , the MMOT problem reads

MMOT(µ) = inf
P∈U(µ)

〈C,P 〉.

In practice, such a formulation is intractable to optimize in a discrete setting as it results in a
linear program where the number of constraints grows exponentially in N . A more tractable
strategy for solving MMOT is to consider the following entropic regularization problem

inf
P∈U(µ)

〈C,P 〉+ εKL(P |µ⊗). (3.10)

which can be solved using Sinkhorn’s algorithm (Benamou et al., 2014). We refer the interested
reader to Appendix 8.2.3 for algorithmic details.

3.3.3 Factored Multi-marginal Optimal Transport

In this section, we first define a factored MMOT (F-MMOT) problem where we seek to
promote a structure on the optimal coupling given such as a factorization into a tensor product.
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Interestingly, such a formulation can be shown to include several other OT problems as special
cases. Then, we introduce a relaxed version called MMOT-DC where the factorization constraint
is smoothly promoted through a Kullback-Leibler penalty.

Motivation

Before a formal statement of our problem, we first give a couple of motivating examples
showing why and when structural constraints on the coupling matrix can be beneficial. To this
end, first note that a trivial example of the usefulness of such constraints in OT is the famous
entropic regularization. Indeed, while most of the works define the latter by adding negative
entropy of the coupling to the classic OT objective function directly, the original idea was to
constraint the sought coupling to remain close (to some extent) to a rank-one product of the two
marginal distributions. The appearance of negative entropy in the final objective function is then
only a byproduct of such constraint due to the decomposition of the KL divergence into a sum of
three terms with two of them being constant. Below we give two more examples of real-world
applications related to MMOT problem where a certain decomposition imposed on the coupling
tensor can be desirable.

Multi-source multi-target translation. A popular task in computer vision is to match
images across different domains in order to perform the so-called image translation. Such tasks
are often tackled within the GAN framework where one source domain from which the translation
is performed, is matched with multiple target domains modeled using generators. While MMOT
was applied in this context by Cao et al. (2019) when only one source was considered, its
application in a multi-source setting may benefit from structural constraints on the coupling
tensor incorporating the human prior on what target domains each source domain should be
matched to.

Multi-task reinforcement learning. In this application, the goal is to learn individual
policies for a set of agents while taking into account the similarities between them and hoping
that the latter will improve the individual policies. A common approach is to consider an objective
function consisting of two terms where the first term is concerned with learning individual policies,
while the second forces a consensus between them. Similar to the example considered above,
MMOT problem was used to promote the consensus across different agents’ policies in (Cohen,
Kumar, and Deisenroth, 2021), even though such a consensus could have benefited from a prior
regarding the semantic relationships between the learned tasks.

Factored MMOT and its relaxation

We start by giving several definitions used in the following parts of this section.
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Definition 3.3.1 (Tuple partition). Given two integers N ≥ M ≥ 2, a sequence of tuples
T = (Tm)Mm=1, is called a tuple partition of the N-tuple (1, ..., N) if the tuples T1, ..., TM are
nonempty and disjoint, and their concatenation in this order gives (1, ..., N).

Here, we implicitly take into account the order of the tuple, which is not the case for the
partition of the set [N ]. If there exists a tuple in T which contains only one element, then we say
T is degenerate.

Definition 3.3.2 (Marginal tensor). Given a tensor P ∈ Ra1×...×aN and a tuple partition
T = (Tm)Mm=1, we call P#Tm its Tm-marginal tensor, by summing P over all dimensions not in
Tm. We write P#T = P#T1 ⊗ ...⊗ P#TM

∈ Ra1×...×aN the tensor product of its marginal tensors.

For example, for M = N = 2, we have T1 = (1) and T2 = (2). So, given a matrix P ∈ Ra1×a2 ,
its marginal tensors P#T1 and P#T2 are simply vectors in Ra1 and Ra2 , respectively, defined by
(P#T1)i = ∑

j Pij and (P#T2)j = ∑
i Pij for (i, j) ∈ [a1]× [a2]. The tensor product P#T ∈ Ra1×a2

is then defined by (P#T )ij = (P#T1)i(P#T2)j . Clearly, if P is a probability tensor, then so are its
marginal tensors and tensor product.

Suppose Tm = (p, ..., q) for some m ∈ [M ] and 1 ≤ p ≤ q ≤ N . We denote ΣTm the set
of probability tensors in Rap×...×aq and UTm ⊂ ΣTm the set of probability tensors in Rap×...×aq

whose rth-marginal vector is µr, for every r = p, ..., q. We also define µ⊗Tm
:= µp ⊗ ...⊗ µq.

Definition 3.3.3 (Factored MMOT). Given a collection of histograms µ = (µn)Nn=1 and a tuple
partition T = (Tm)Mm=1, we consider the following OT problem

F-MMOT(T , µ) = inf
P∈UT

〈C,P 〉, (3.11)

where UT ⊂ U(µ) is the set of admissible couplings which can be factorized as a tensor product
of M component probability tensors in ΣT1 , ...,ΣTM

.

Several remarks are in order here. First, one should note that the partition considered above
is in general not degenerate meaning that the decomposition can involve tensors of an arbitrary
order < N . Second, the decomposition in this setting depicts the prior knowledge regarding the
tuples of measures which should be independent: the couplings for the measures from different
tuples will be degenerate and the optimal coupling tensor will be reconstructed from couplings of
each tuple separately. Third, suppose the partition (Tm)Mm=1 is not degenerate and M = 2, i.e.
the tensor is factorized as product of two tensors, Problem (3.11) is equivalent to a variation of
low non-negative rank OT problem (see Appendix 8.2.3).

As for the existence of the solution to this problem, we have that UT is compact because it
is a close subset of the compact set U(µ), which implies that Problem (3.11) always admits a
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solution. Furthermore, observe that

UT = {P ∈ U(µ) : P = P1 ⊗ ...⊗ PM ,where Pm ∈ ΣTm ,∀m = 1, ...,M}

= {P ∈ Σ : P = P1 ⊗ ...⊗ PM ,where Pm ∈ UTm , ∀m = 1, ...,M}.
(3.12)

Thus, the problem F-MMOT can be rewritten as

F-MMOT(T , µ) = inf
Pm∈UTm
∀m=1,...,M

〈C,P1 ⊗ ...⊗ PM 〉. (3.13)

So, if T1, ..., TM are 2-tuples and two marginal distributions corresponding to each UTm are
identical and uniform, then by Birkhoff’s theorem (Birkhoff, 1946), Problem (3.11) admits an
optimal solution in which each component tensor Pm is a permutation matrix.

Two special cases. When N = 4 and M = 2 with T1 = (1, 2) and T2 = (3, 4), Problem
(3.11) becomes the CO-Optimal transport (COOT), where the two component tensors are known
as sample and feature couplings. If furthermore, a1 = a3, a2 = a4, and µ1 = µ3, µ2 = µ4, it
becomes a lower bound of the discrete Gromov-Wasserstein (GW) distance. This means that our
formulation can be seen as a generalization of several OT formulations.

Observe that if a probability tensor P can be factorized as a tensor product of probability
tensors, i.e. P = P1 ⊗ ...⊗ PM , then each Pm is also the Tm-marginal tensor of P . In this case,
we have P = P#T . This prompts us to consider the following relaxation of factored MMOT,
where the hard constraint UT is replaced by a regularization term.

Definition 3.3.4 (Relaxed Factored MMOT). Given ε ≥ 0, a collection of measures µ and a
tuple partition T , we define the following problem:

MMOT-DCε(T , µ) = inf
P∈U(µ)

〈C,P 〉+ εKL(P |P#T ). (3.14)

From the exposition above, one can guess that this relaxation is reminiscent of the entropic
regularization in MMOT and coincides with it when M = N . As such, it also recovers the
classical entropic OT. One should note that the choice of the KL divergence is not arbitrary and
its advantage will become clear when it comes to the algorithm. A special case of Problem (3.14)
is when M = N , we recover the entropic-regularized MMOT problem.

After having defined the two optimization problems, we now set on exploring their theoretical
properties.
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3.3.4 Theoretical properties

Intuitively, the relaxed problem is expected to allow for solutions with a lower value of the
final objective function. We formally prove the validity of this intuition below.

Proposition 3.3.1 (Preliminary properties). Given a collection of histograms µ and a tuple
partition T ,

1. For every ε ≥ 0, we have MMOT(µ) ≤ MMOT-DCε(T , µ) ≤ F-MMOT(T , µ).
2. For every ε > 0,MMOT-DCε(T , µ) = 0 if and only if F-MMOT(T , µ) = 0.

An interesting property of MMOT-DC is that it interpolates between MMOT and F-MMOT.
Informally, for very large ε, the KL divergence term dominates, so the optimal transport plans
tend to be factorizable. On the other hand, for very small ε, the KL divergence term becomes
negligible and we approach MMOT. The result below formalizes this intuition.

Proposition 3.3.2 (Interpolation between MMOT and F-MMOT). For any tuple partition T
and for ε > 0, let Pε be a minimiser of the problem MMOT-DCε(T , µ).

1. When ε → ∞, one has MMOT-DCε(T , µ) → F-MMOT(T , µ). In this case, any cluster
point of the sequence of minimisers (Pε)ε is a minimiser of F-MMOT(T , µ).

2. When ε→ 0, then MMOT-DCε(T , µ)→ MMOT(µ). In this case, any cluster point of the
sequence of minimisers (Pε)ε is a minimiser of MMOT(µ).

3.3.5 Numerical solution

We now turn to the computational aspect of Problem (3.14). First, note that for any tuple
partition T = (Tm)Mm=1 and probability tensor P , the KL divergence term can be decomposed as

KL(P |P#T ) = KL(P |µ⊗)−
m∑
m=1

KLm(P ), (3.15)

where the function KLm defined by KLm(P ) := KL(P#Tm |µ⊗Tm
) is continuous and convex with

respect to P . Now, Problem (3.14) becomes

MMOT-DCε(T , µ) = inf
P∈U(µ)

〈C,P 〉+ εKL(P |µ⊗)− ε
m∑
m=1

KLm(P ). (3.16)

This is nothing but a Difference of Convex (DC) programming problem (which explains the name
MMOT-DC), thanks to the convexity of the set U(µ) and the KL divergence. Thus, it can be
solved by the classic DC algorithm 3 (Pham and Bernoussi, 1986; Pham and Le, 1997) as follows:
at the iteration t,

3. The DC algorithm is very closely related to Convex-concave procedure, majorization-minimization algorithm,
Successive Linear Approximation. See (Le and Pham, 2018) for more details.
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Algorithm 4 DC algorithm for Problem (3.14).
Input. Cost tensor C, tuple partition (Tm)Mm=1, collection of histograms µ = (µn)Nn=1, hyperpa-
rameter ε > 0, initialization P (0), tuple of initial dual vectors for the Sinkhorn step (f (0)

1 , ..., f
(0)
N ).

Output. Tensor P ∈ U(µ).
While not converge

1. Gradient step: compute the gradient of the convex term G(t) =
M∑
m=1
∇PKLm(P (t)).

2. Sinkhorn step: solve

P (t+1) = argmin
P∈U(µ)

〈C − εG(t), P 〉+ εKL(P |µ⊗), (3.18)

using the Sinkhorn algorithm 8, with the tuple of initial dual vectors (f (0)
1 , ..., f

(0)
N ).

1. Calculate G(t) ∈ ∂(∑M
m=1 KLm)(P (t)).

2. Solve P (t+1) ∈ argminP∈U(µ)〈C − εG(t), P 〉+ εKL(P |µ⊗).

This algorithm is very easy to implement. Indeed, the second step is an entropic-regularized
MMOT problem, which admits a unique solution, thanks to the strict convexity of the objective
function. Such solution can be found by the Sinkhorn algorithm 8. In the first step, the gradient
can be calculated explicitly. For the sake of simplicity, we illustrate the calculation in a simple
case, where M = 2 and N = 4 with T1 and T2 are two 2-tuples. The function KL1 + KL2 is
continuous, so G(t) = ∇P (KL1 + KL2)(P (t)). Given a 4-D probability tensor P , we have

∂(KL1 + KL2)
∂Pi,j,k,l

= log
(∑

k,l Pi,j,k,l

(µ1)i(µ2)j

)
+ log

(∑
i,j Pi,j,k,l

(µ3)k(µ4)l

)
. (3.17)

The complete DC algorithm for Problem (3.16) can be found in Algorithm 4.

3.3.6 Experimental evaluation

In this section, we illustrate the use of MMOT-DC on simulated data. Rather than performing
experiments in full generality, we choose the setting where N = 4 and M = 2 with T1 = (1, 2)
and T2 = (3, 4), so that we can compare MMOT-DC with other popular solvers of COOT
and GW distance. Given two matrices X and Y , we always consider the 4-D cost tensor C,
where Ci,j,k,l = |Xi,k − Yj,l|2. On the other hand, we are not interested in the 4-D minimiser of
MMOT-DC, but only in its two T1, T2-marginal matrices.

Solving COOT on a toy example. We generate a random matrix X ∈ R30×25, whose
entries are drawn independently from the uniform distribution on the interval [0, 1). We equip
the rows and columns of X with two discrete uniform distributions on [30] and [25]. We fix two
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True permutation on samples
Recovered by MMOT-DC with 

 = 0.0001, loss = 8.7e-06
Recovered by MMOT-DC with 

 = 1, loss = 8.6e-06

True permutation on features

Figure 3.1 – Couplings generated by COOT and MMOT-DC on the matrix recovering task.

permutation matrices Qs ∈ R30×30 (called sample permutation) and Qf ∈ R25×25 (called feature
permutation), then calculate Y = QsXQf . We also equip the rows and columns of Y with two
discrete uniform distributions on [30] and [25].

It is not difficult to see that COOT(X,Y ) = 0 because (Qs, Qf ) is a solution. As COOT is a
special case of F-MMOT, we see that MMOT-DCε(T , µ) = 0, for every ε > 0, by Proposition 3.3.1.
In this experiment, we will check if marginalizing the minimizer of MMOT-DC allows us to
recover the permutation matrices Qs and Qf . As can be seen from Figure 3.1, MMOT-DC can
recover the permutation positions, for various values of ε. On the other hand, it can not recover
the true sparse permutation matrices because the Sinkhorn algorithm applied to the MMOT
problem implicitly results in a dense tensor, thus having dense marginal matrices. For this reason,
the loss only remains very close to zero, but never exactly. We also plot, with some abuse of
notation, the histograms of the difference between the (1, 3), (1, 4), (2, 3), (2, 4)-marginal matrices
of MMOT-DC and their corresponding counterparts from F-MMOT. In this example, in theory,
as the optimal tensor P of F-MMOT can be factorized as P = P#T1 ⊗ P#T2 = Qs ⊗ Qf , it is
immediate to see that P#(1,3) = P#(1,4) = P#(2,3) = P#(2,4) ∈ R30×25 are uniform matrices whose
entries are 1

750 .

Quality of the MMOT-DC solutions. Now, we consider the situation where the true
matching between two matrices is not known in advance and investigate the quality of the
solutions returned by MMOT-DC to solve the COOT and GW problems. This means that we
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Figure 3.2 – Histograms of difference between true independent marginal matrices and their
approximations. We see that the marginal matrices obtained by Algorithm 4 approximate well
the theoretical uniform matrices.

will look at the COOT loss 〈C,Qs ⊗Qf 〉, where the smaller the loss, the better when using both
exact COOT and GW solvers and our relaxation.

We generate two random matrices X ∈ R20×3 and Y ∈ R30×2, whose entries are drawn
independently from the uniform distribution on the interval [0, 1). Then we calculate two
corresponding squared Euclidean distance matrices of size 20 and 30. Their rows and columns are
equipped with the discrete uniform distributions. In this case, Redko et al. (2020) show that the
COOT loss coincides with the GW distance, and the Block Coordinate Descent (BCD) algorithm
used to approximate COOT is equivalent to the Frank-Wolfe algorithm (Frank and Wolfe, 1956)
used to solve the GW distance.

We compare four solvers:

1. The Frank-Wolfe algorithm to solve the GW distance (GW-FW).

2. The projected gradient algorithm to solve the entropic GW distance (Peyré, Cuturi,
and Solomon, 2016) (EGW-PGD). We choose the regularization parameter from the
set {0.0008, 0.0016, 0.0032, 0.0064, 0.0128, 0.0256} and pick the one which corresponds to
smallest COOT loss.

3. The Block Coordinate Descent algorithm to approximate the entropic COOT (Redko et al.,
2020) (EGW-BCD), where two additional KL divergences corresponding to two couplings
are introduced.
The regularization parameters are tuned from the set {0, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1},
where 0 means that there is no regularization term for the corresponding coupling and we
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GW-FW EGW-PGD EGW-BCD MMOT-DC
0.0829 (± 0.0354) 0.0786 (± 0.0347) 0.0804 (± 0.0353) 0.0822 (± 0.0364)

Table 3.2 – Average and standard deviation of COOT loss of the solvers. MMOT-DC is competitive
to other solvers, except for EGW-PGD and EGW-BCD.
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Figure 3.3 – Scatter plots of MMOT-DC versus other solvers. In all three plots, the points tend
to concentrate around the line y = x, which indicates the comparable performance of MMOT-DC.
On the other hand, the top-right plot shows the clear superiority of EGW-PGD.

pick the pair corresponding to the smallest COOT loss.

4. Algorithm 4 to solve the MMOT-DC. We tune ε ∈ {1, 1.4, 1.8, 2.2, 2.6} and we pick the
one which corresponds to smallest COOT loss.

For GW-FW and EGW-PGD, we use the implementation from the Python Optimal Transport
package (Flamary et al., 2021).

Given two random matrices, we record the COOT loss corresponding to the solution generated
by each method. We simulate this process 70 times and compare their overall performance. We
can see in Table 3.2 the average value and standard deviation and the comparison for the values
of the loss between the different algorithms in Figure 3.3. The performance is quite similar across
methods with a slight advantage for EGW-PGD. This is in itself a very interesting result that has
never been noted, to the best of our knowledge: the reason that the entropic version of GW can
provide better solution than solving the exact problem, may be due to the "convexification" of
the problem, thanks to the entropic regularization. Our approach is also interestingly better than
the exact GW-FW, which illustrates that the relaxation might help in finding better solutions
despite the non-convexity of the problem.

An empirical variation. Intuitively, for sufficiently large ε, the minimisation of the KL
divergence is prioritised over the linear term in the objective function of the MMOT-DC problem,
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which implies that the optimal tensor P ∗ is "close" to its corresponding tensor product P ∗#T . So,
instead of calculating the gradient at P , one may calculate at P#T . In this case, the gradient
reads

M∑
m=1
∇PKLm(P#T ) = log P#T1

µ⊗T1
⊕ ...⊕ log P#Tm

µ⊗Tm

, (3.19)

where ⊕ represents the tensor sum operator between two arbitrary-size tensors: (A⊕B)i,j :=
Ai +Bj , where with some abuse of notation, i or j can be understood as a tuple of indices. Thus,
we avoid storing the N -D gradient tensor (as in the Algorithm 4) and only need to store M
smaller-size tensors. Not only saving the memory, this variation also seems to be empirically
competitive with the original Algorithm 4, if not sometimes better, in terms of COOT loss. The
underlying reason might be related to the approximate DCA scheme (Vo, 2015), where one
replaces both steps in each DC iteration by their approximation. We leave the formal theoretical
justification of this variation to the future work. We call this variation MMOT-DC-v1 and use
the same setup as in Experiment 3.3.6.
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Figure 3.4 – Scatter plots of MMOT-DC-v1 versus other solvers. In all three plots, the points
tend to concentrate around the line y = x, which indicates the comparable performance of
MMOT-DC-v1. On the other hand, the top-right plot shows the clear superiority of EGW-PGD.

MMOT-DC MMOT-DC-v1
0.0822 (± 0.0364) 0.0820 (± 0.0361)

Table 3.3 – Average and standard deviation of COOT loss of MMOT-DC and MMOT-DC-v1.
The performance of the two algorithms is very similar.
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3.3.7 Discussion

In this section, we present a novel relaxation of the factorized MMOT problem called MMOT-
DC. More precisely, we replace the hard constraint on factorization constraint by a smooth
regularization term. The resulting problem not only enjoys an interpolation property between
MMOT and factorized MMOT, but also is a DC problem, which can be solved easily by the
DC algorithm. We illustrate the use of MMOT-DC the via some simulated experiments and
show that it is competitive with the existing popular solvers of COOT and GW distance. One
limitation of the current DC algorithm is that, it is not scalable because it requires storing a
full-size tensor in the gradient step computation. Thus, future work may focus on more efficiently
designed algorithms, in terms of both time and memory footprint. Moreover, incorporating
additional structure on the cost tensor may also be computationally and practically beneficial.
From a theoretical viewpoint, it is also interesting to study the extension of MMOT-DC to the
continuous setting, which can potentially allow us to further understand the connection between
GW distance and COOT.
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This chapter summarizes the results from the paper (Tran et al., 2023) and addresses the
unbalaced extension of Co-Optimal transport. Optimal transport (OT) compares probability
distributions by computing a meaningful alignment between their samples. Co-optimal transport
(COOT) takes this comparison further by inferring an alignment between features as well. While
this approach leads to better alignments and generalizes both OT and Gromov-Wasserstein dis-
tances, we provide a theoretical result showing that it is sensitive to outliers that are omnipresent
in real-world data. This prompts us to propose unbalanced COOT for which we provably show its
robustness to noise in the compared datasets. To the best of our knowledge, this is the first such
result for OT methods in incomparable spaces. With this result in hand, we provide empirical
evidence of this robustness for the challenging tasks of heterogeneous domain adaptation with
and without varying proportions of classes and simultaneous alignment of samples and features
across single-cell measurements.

4.1 Introduction

The last decade has witnessed many successful applications of optimal transport (OT)
(Kantorovich, 1942; Monge, 1781) in machine learning, namely in domain adaptation (Courty
et al., 2016), generative adversarial networks (Arjovsky, Chintala, and Bottou, 2017), classification
(Frogner et al., 2015), dictionary learning (Rolet, Cuturi, and Peyré, 2016), semi-supervised
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learning (Solomon et al., 2014). When the supports of the probability measures lie in the same
ground metric space, it is natural to use the distance defined by the metric to induce the cost,
which leads to the famous Wasserstein distance (Villani, 2003). When they do not, one can rely
on the idea of Gromov-Hausdorff distance (Gromov, 1981) and its equivalent reformulations
(Burago, Burago, and Ivanov, 2001; Gromov, 1999; Kalton and Ostrovskii, 1999), and adapt them
to the setting of metric measure spaces (Gromov, 1999). This results in, for example, the Gromov-
Wasserstein (GW) distance (Mémoli, 2007, 2011b; Sturm, 2012), which has been widely used in
many applications, namely in shape matching (Mémoli, 2011b), comparing kernel matrices (Peyré,
Cuturi, and Solomon, 2016), graphs (Vayer et al., 2019a; Xu, Luo, and Carin, 2019; Xu et al.,
2019), computational biology (Demetci et al., 2022a), heterogeneous domain adaptation (Yan
et al., 2018), correspondence alignment (Solomon et al., 2016), machine translation (Alvarez-Melis
and Jaakkola, 2018).

By construction, the GW distance can only provide the sample alignment that best preserves
the intrinsic geometry of the distributions and, as such, compares square pairwise relationship
matrices. The CO-Optimal transport (COOT) (Chowdhury et al., 2023; Redko et al., 2020)
goes beyond these limits by simultaneously learning two independent (feature and sample)
correspondences, and thus provides greater flexibility over the GW distance in terms of usage
and interpretability. First, it allows us to measure similarity between arbitrary-size matrices. An
interesting use case is, for instance, on tabular data, which are usually expressed as a matrix
whose rows represent samples and columns represent features. For the GW distance, the similarity
or distance matrix (or any square matrix derived from the data) must be calculated in advance
and the effect of the individual variables is lost during this computation. On the other hand,
COOT can bypass this step as it can use either the tabular data directly or the similarity matrices
as inputs. Second, COOT provides both sample and feature correspondences. These feature
correspondences are also interpretable and allow to recover relations between the features of two
different datasets even when they do not lie in the same space.

Similar to classical OT, COOT enforces hard constraints on the marginal distributions both
between samples and features. These constraints lead to two main limitations: (1) unbalanced
datasets where samples or features cannot be accurately matched; (2) mass transportation must
be exhaustive: outliers, if any, must be matched regardless of the cost they induce. To circumvent
these limitations, we propose to relax the mass preservation constraints in the COOT distance
and study a broadly applicable and general OT framework that includes several well-studied
cases presented in Table 4.1.

Related work. To relax the OT marginal constraints, a straightforward solution is to control
the difference between the marginal distributions of the transportation plan and the data by
some discrepancy measure, e.g., Kullback-Leibler divergence. In classical OT, this gives rise
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Across spaces Sample alignment Feature alignment Robust to outliers
OT 7 3 7 7(Fatras et al., 2021)
UOT 7 3 7 3(Fatras et al., 2021)
GW 3 3 7 7(Prop. 4.3.1)
UGW 3 3 7 3(Thm. 4.3.1)
COOT 3 3 3 7(Prop. 4.3.1)
UCOOT 3 3 3 3(Thm. 4.3.1)

Table 4.1 – Properties of different OT formulations generalized by UCOOT. The proposed
UCOOT is not only able to learn informative feature alignments, but also robust to outliers.

to the unbalanced OT (UOT), which was first proposed by Benamou (2003). The theoretical
and numerical aspects of this extension have been studied extensively (Chizat et al., 2018a,b;
Liero, Mielke, and Savaré, 2018; Pham et al., 2020) and are gaining increasing attention in
the machine learning community, with wide-range applications, namely in domain adaptation
(Fatras et al., 2021), generative adversarial networks (Balaji, Chellappa, and Feizi, 2020; Yang
and Uhler, 2019), dynamic tracking (Lee, Bertrand, and Rozell, 2019), crowd counting (Ma et al.,
2021), neuroscience (Bazeille et al., 2019a; Janati et al., 2019) or modeling cell developmental
trajectories (Schiebinger et al., 2019).

Unbalanced OT and its variants are usually sought for their known robustness to outliers
(Balaji, Chellappa, and Feizi, 2020; Fatras et al., 2021; Mukherjee et al., 2021). This appealing
property goes beyond classical OT. For instance, to compare signed and non-negative measures in
incomparable spaces, unbalanced OT (Liero, Mielke, and Savaré, 2018) can be blended with the
Lp-transportation distance (Sturm, 2006), which leads to the Sturm-Entropic-Transport distance
(Ponti and Mondino, 2020), or with the GW distance, which gives rise to the unbalanced GW
(UGW) distance (Séjourné, Vialard, and Peyré, 2021b). Also motivated by the unbalanced OT,
Zhang et al. (2022b) proposed a relaxation of the bidirectional Gromov-Monge distance called
unbalanced bidirectional Gromov-Monge divergence.

Contributions. In this work, we introduce an unbalanced extension of COOT called “Unbal-
anced CO-Optimal transport” (UCOOT). UCOOT – defined for both discrete and continuous
data – is a general framework that encompasses all the OT variants displayed in Table 4.1. Our
main contribution is to show that UCOOT is provably robust to both samples and features
outliers, while its balanced counterpart can be made arbitrarily large with strong enough pertur-
bations. To the best of our knowledge, this is the first time such a general robustness result is
established for OT across different spaces. Our theoretical findings are showcased in unsupervised
heterogeneous domain adaptation and single-cell multi-omic data alignment, demonstrating a
very competitive performance.
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4.2 From COOT to Unbalanced Co-Optimal Transport

The ultimate goal behind the CO-Optimal Transport (COOT) framework is the simultaneous
alignment of samples and features to allow for comparisons across spaces of different dimensions.
In this section, we discuss OT formulations including OT, UOT, GW, UGW and COOT, then
introduce the proposed UCOOT and show how the aforementioned distances fall into our
framework.

From sample alignment to sample-feature alignment. Let (Xs
1 , µ

s
1) and (Xs

2 , µ
s
2) be a

pair of compact measure spaces such that Xs
1 and Xs

2 belong to some common metric space
(E , d). Classical optimal transport infers one alignment (or joint distribution) πs ∈M+(Xs

1 ×Xs
2)

with marginals (πs#1, π
s
#2) close to (µs1, µs2) according to some appropriate divergence D such

that the cost
∫
c(x1, x2) dπs(x1, x2) + D(πs#1|µs1) + D(πs#2|µs2) is minimal. For instance, in

balanced (resp. unbalanced) OT, D corresponds to the indicator divergence (resp. KL divergence
or TV). To define a generalized OT beyond one single alignment, we must first introduce a
new pair of measure spaces (Xf

1 , µ
f
1) and (Xf

2 , µ
f
2). Intuitively, the two transport plans that

must be inferred: πs across samples and πf across features, must minimize a cost of the form∫∫
c((xs1, x

f
1), (xs2, x

f
2)) dπs(xs1, xs2) dπf (xf1 , x

f
2) where c((xs1, x

f
1), (xs2, x

f
2)) is the joint cost of

aligning the sample-feature pairs (xs1, x
f
1) and (xs2, x

f
2).

However, unlike OT, there is no underlying ambient metric space in which comparisons
between these pairs are straightforward. Thus, we consider a simplified cost of the form:
c((xs1, x

f
1), (xs2, x

f
2)) = |ξ1(xs1, x

f
1) − ξ2(xs2, x

f
2)|p, for p ≥ 1 and some scalar functions ξ1, ξ2 that

define the sample-feature interactions. A similar definition was adopted by Chowdhury et al.
(2023) to extend COOT to the continuous setting in the context of hypergraphs. Formally, our
general formulation takes pairs of sample-feature spaces defined as follows.

Definition 4.2.1 (Sample-feature space). Let (Xs, µs) and (Xf , µf ) be compact Polish measure
spaces, where µf ∈ M+(Xf ) and µs ∈ M+(Xs). Let ξ be a scalar integrable function in
Lp(Xs ×Xf , µs ⊗ µf ). We call the triplet X = ((Xs, µs), (Xf , µf ), ξ) a sample-feature space and
ξ is called an interaction.

Definition 4.2.2 (Generalized COOT). Given two divergences D1 and D2, we define the gener-
alized COOT of order p between X1 = ((Xs

1 , µ
s
1), (Xf

1 , µ
f
1), ξ1) and X2 = ((Xs

2 , µ
s
2), (Xf

2 , µ
f
2), ξ2)

by:

inf
πs∈M+(Xs

1×X
s
2)

πf∈M+(Xf
1×X

f
2 )

m(πs)=m(πf )

∫∫
|ξ1(xs1, x

f
1)− ξ2(xs2, x

f
2)|p dπs dπf︸ ︷︷ ︸

transport cost of sample-feature pairs

+
2∑

k=1
ρkDk(πs#k ⊗ π

f
#k|µ

s
k ⊗ µ

f
k)︸ ︷︷ ︸

mass destruction / creation penalty

,
(4.1)

for ρ1, ρ2 > 0 and p ≥ 1.
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As the multiplicative nature between πs and πf leads to an invariance by the scaling map
α 7→ (απs, 1

απ
f ), for α > 0, we further impose the equal mass constraint m(πs) = m(πf ).

It is worth mentioning that Formulation (4.1) is not the only way to relax the marginal
constraints. For example, instead of Dk(πs#k ⊗ π

f
#k|µsk ⊗ µ

f
k), one can consider Dk(πs#k|µsk) +

Dk(πf#k|µ
f
k), or Ds(πs#1⊗ πs#2|µs1⊗µs2), for some divergence Ds. However, amongst these choices,

ours is the only one which can be recast as a variation of the unbalanced OT problem. This allows
us to leverage the known techniques in unbalanced OT to justify the theoritical and practical
properties, namely Proposition 4.2.1 and Theorem 4.3.1 below.

Note that the problem above is very general and can, with some additional constraints, recover
exact OT, UOT, GW, UGW, COOT (see Table 4.2). In particular, if the measures (µs1, µs2) and
(µf1 , µ

f
2) are probability measures, then setting D1 = D2 = ι= leads to the COOT problem first

introduced in the discrete case in (Redko et al., 2020) and recently generalized to the continuous
setting in (Chowdhury et al., 2023) 1. In this work, we relax the hard constraints and consider a
more flexible formulation with the KL divergence:

Definition 4.2.3 (UCOOT). We define Unbalanced COOT (UCOOT) as in Equation (4.1) with
D1 = D2 = KL. We write UCOOTρ(X1,X2) to indicate the UCOOT between two sample-feature
spaces X1 and X2, for a given pair of hyperparameters ρ = (ρ1, ρ2).

While various properties of the divergences Dk have been extensively studied in the context
of unbalanced OT by several authors (Chizat, 2017; Frogner et al., 2015), the concept of sample-
feature interaction requires more clarification. Let us consider some simple examples. In the
discrete case, we consider n observations of d features represented by matrix A ∈ Rn×d. In
this case, the space Xs (resp. Xf ) is not explicitly known but can be characterized by the
finite set [n] (resp. [d]), up to an isomorphism. Assuming that all samples (resp. features) are
equally important, the discrete empirical measures can be given by uniform weights µs = 1n

n

(resp. µf = 1d
d ). The most natural sample-feature interaction ξ is simply the index function

ξ(i, j) = Aij . In the continuous case, we assume that data stream from a continuous random
variable a ∼ µs ∈ P(Rd) for which an interaction function can be ξ(a, j) = aj .

Proposition 4.2.1. For any D1, D2 ∈ {ι=,KL}, Problem (4.2.2) (in Equation (4.1)) admits a
minimizer.

Remark 4.2.1. The existence of minimizer shown in Proposition 4.2.1 can be extended to a larger
family of Csiszár divergences (Csiszár, 1963). A general proof is given in the Appendix.

Relation between UCOOT and COOT. When µsk and µ
f
k are probability measures, for k =

1, 2, then UCOOTρ(X1,X2) ≤ COOT(X1,X2), for any ρ1, ρ2 > 0. Moreover, UCOOTρ(X1,X2) =

1. Note that, Chowdhury et al. (2023) consider bounded measurable functions on the Polish measure space,
whereas we work with integrable functions on the compact Polish measure space.
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Shape of inputs Coupling constraint Scalar function Divergence
OT d1 = d2 πf = Id1 = Id2 ξ(i, j) = Aij ι=
GW n1 = d1, n2 = d2 πf = πs ξ(i, j) = dist(Ai., Aj.) ι=
COOT – – ξ(i, j) = Aij ι=
semi-d. COOT – – ξ(a, j) = aj ι=
UCOOT – – ξ(i, j) = Aij KL

Table 4.2 – Conditions under which different OT formulations fall within the generalized framework
of Definition 4.2.2. “semi-d” refers to “semi-discrete” setting, where µs is a continuous probability
and µd = 1d/d. Here, Id is the identity matrix in Rd.

0 if and only if COOT(X1,X2) = 0. In particular, suppose that X1 and X2 are two finite sample-
feature spaces such that (Xs

1 , X
s
2) and (Xf

1 , X
f
2 ) have the same cardinality and are equipped with

the uniform measures µs1 = µs2, µ
f
1 = µf2 . Then UCOOTρ(X1,X2) = 0 if and only if there exist

perfect alignments between rows (samples) and between columns (features) of the interaction
matrices ξ1 and ξ2.

Relation between UCOOT and its solution. As a consequence of Corollary 2.1.1, UCOOT
is a bilinear function of its minimizers, thanks to the property of the KL divergence. More precisely,
if (πs∗, π

f
∗ ) is the equal-mass solution, then we have

UCOOTρ(X1,X2) =
∑
k=1,2

ρk m(µsk) m(µfk)− (ρ1 + ρ2) m(πs∗)m(πf∗ ). (4.2)

Interestingly, this equation depends only on the measures and hyperparameters. There is no
dependency on the interactions because they have been fully captured in the masses of the
optimal sample and feature couplings.

4.3 Robustness of Unbalanced Co-Optimal Transport

When discussing the concept of robustness, outliers are often considered as samples not
following the underlying distribution of the data. In our general context of sample-feature
alignments, we consider a pair (xs, xf ) ∈ Xs×Xf to be an outlier if the magnitude of |ξ(xs, xf )|
is abnormally larger than other interactions between Xs and Xf . As a result, such outliers lead to
abnormally large transportation costs |ξ1 − ξ2|. To study the robustness of COOT and UCOOT,
we consider an outlier scenario where the marginal data distributions are contaminated by some
additive noise distribution.

Assumption 4.3.1. Consider two sample-feature spaces X1 and X2. Let εs (resp. εf ) be a
probability measure with compact support Os (resp. Of ). For a ∈ {s, f}, define the noisy
distribution µ̃a = αaµ

a + (1 − αa)εa, where αa ∈ [0, 1]. We assume that ξ1 is defined on
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(Xs
1∪Os)×(Xf

1 ∪Of ) and that ξ1, ξ2 are continuous on their supports. We denote the contaminated
sample-feature space by X̃1 = ((Xs

1 ∪Os, µ̃s1), (Xf
1 ∪Of , µ̃

f
1), ξ1). Finally, we define some useful

minimal and maximal costs:

∆0 := min
xs

1∈O
s,xf

1∈O
f

xs
2∈X

s
2 ,x

f
2∈X

f
2

|ξ1(xs1, x
f
1)− ξ2(xs2, x

f
2)|p

∆∞ := max
xs

1∈X
s
1∪O

s,xf
1∈X

f
1 ∪O

f

xs
2∈X

s
2 ,x

f
2∈X

f
2

|ξ1(xs1, x
f
1)− ξ2(xs2, x

f
2)|p .

(4.3)

Here, ∆0 accounts for the minimal deviation of the cost between the outliers and target support,
while ∆∞ is the maximal deviation between the contaminated source and the target.

The exact marginal constraints of COOT enforce conservation of mass. Thus, outliers must
be transported no matter how large their transportation costs are. This intuition is captured by
the following result.

Proposition 4.3.1 (COOT is sensitive to outliers). Consider X̃1,X2 as defined in Assump-
tion 4.3.1. Then

COOT(X̃1,X2) ≥ (1− αs)(1− αf )∆0. (4.4)

Whenever the outlier proportion (1 − αs)(1 − αf ) is positive, COOT increases with the
distance between the supports of the outliers and those of the clean data. Thus, the right hand
side of Proposition 4.3.1 can be made arbitrarily large by taking outliers far from the supports of
the clean data.

We can now state our main theoretical contribution. Relaxing the marginal constraints leads
to a loss that saturates as outliers get further from the data:

Theorem 4.3.1 (UCOOT is robust to outliers). Consider two sample-feature spaces X̃1,X2 as
defined in Assumption 4.3.1. Let δ := 2(ρ1 + ρ2)(1−αsαf ) and K = M + 1

MUCOOT(X1,X2) + δ,
where M = m(πs) = m(πf ) is the transported mass between clean data. Then:

UCOOT(X̃1,X2) ≤ αsαfUCOOT(X1,X2) + δM

[
1− exp

(
−∆∞(1 +M) +K

δM

)]
. (4.5)

The proof of Theorem 4.3.1 is provided in the Appendix and inspired from (Fatras et al.,
2021), but in a much more general setting: (1) it covers both sample and feature outliers and
(2) considers a noise distribution instead of a Dirac. Note that the bound in Proposition 4.3.1
indicates that outliers can make COOT arbitrary large, while UCOOT is upper bounded and
discards the mass of outliers with high transportation cost.
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Figure 4.1 – Sensitivity of COOT and
UCOOT under the presence of outliers.

This is well illustrated in Figure 4.1, where we sim-
ulate outliers by adding a perturbation to a row of the
interaction matrix. More precisely, we first generate a
matrix A ∈ R20×15 by Aij = cos( i

20π) + cos( j15π). Then,
we replace its last row by τ115, for τ ≥ 0. Figure 4.1
depicts COOT and UCOOT between A and its modified
version as a function of τ . The higher the value of τ , the
more likely that the last row contains the interaction
of outliers. Consequently, as τ increases, so does COOT
but at a much higher pace, whereas UCOOT remains
stable.

It should be noted that, with minimal adaptation, Theorem 4.3.1 also holds for the unbalanced
GW (UGW) distance. This provides a theoretical explanation of the empirical observation in
(Séjourné, Vialard, and Peyré, 2021b) that unlike GW, the UGW distance is also robust to
outliers.

4.4 Optimization algorithm and complexity

Solving COOT-type problems, in general, is not trivial. As highlighted in (Redko et al., 2020),
the balanced case corresponds to a convex relaxation of the bilinear assignment problem, which
seeks the pair of permutations minimizing the transport cost. Here we argue that relaxing the
marginal constraints makes the problem easier in two different aspects: (1) the obtained problem
is easier to solve through a sequence of GPU friendly iterations; (2) regularization leads to lower
alignment costs and thus better local minima. In this section, we first describe how to compute
UCOOT in practice.

Optimization strategy We consider two tabular datasets A ∈ Rn1×d1 and B ∈ Rn2×d2 . Let
uk be the uniform histogram over sample-feature pairs: uk := 1

nkdk
1nk
⊗ 1dk

, for k = 1, 2. For
the sake of simplicity, we assume uniform weights over both samples and features. Computing
UCOOT can be done using block-coordinate descent (BCD) both with and without entropy
regularization. More precisely, given a hyperparameter ε ≥ 0, discrete UCOOT can be written
as:

min
πs,πf

m(πs)=m(πf )

∑
i,j,k,l

(Aik −Bjl)2πsijπ
f
kl + ρ1KL(πs1n1 ⊗ πf1d1 |u1)

+ ρ2KL(πs>1n2 ⊗ πf
>1d2 |u2) + εKL(πs ⊗ πf |µs1 ⊗ µs2 ⊗ µ

f
1 ⊗ µ

f
2).

(4.6)

The only difference between ε = 0 and ε > 0 lies in the inner-loop algorithm used to update one
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Algorithm 5 BCD algorithm to solve UCOOT
Input: A ∈ Rn1,d1 , B ∈ Rn2,d2 , ρ1, ρ2, ε
Initialize πs and πf
repeat
Update πs using Sinkhorn or MM
Rescale πs =

√
m(πf )
m(πs)π

s

Update πs using Sinkhorn or MM
Rescale πf =

√
m(πs)
m(πf )π

f

until convergence

of transport plans (πs, πf ) while the other one remains fixed. For ε = 0, we use the Majorization-
Minimization (MM) algorithm (Chapel et al., 2021), which leads to a multiplicative update on
the transport plan. For ε > 0, updating each transport plan boils down to an entropic UOT
problem, which can be solved efficiently using the unbalanced variant of Sinkhorn’s algorithm
(Chizat et al., 2018a). The main benefit of entropy regularization is to reduce the number of
variables from (n1×n2) + (d1× d2) to n1 +n2 + d1 + d2. Moreover, by taking ε sufficiently small,
we can recover solutions close to those in the non-entropic case. We formalize this claim in the
following result.

Proposition 4.4.1. Let (πsε, πfε ) be an equal-mass solution of the problem UCOOTρ,ε(X1,X2).
Denote µs = µs1 ⊗ µs2 and µf = µf1 ⊗ µ

f
2 .

1. When ε→∞, we have πsε ⇀
√

m(µf )
m(µs)µ

s and πfε ⇀
√

m(µs)
m(µf )µ

f .

2. When ε→ 0, we have

(a) UCOOTρ,ε(X1,X2) → UCOOTρ(X1,X2) and m(πsε) → m(πs∗), for any equal-mass
solution (πs∗, π

f
∗ ) of the unregularized problem.

(b) Any cluster point (π̂s, π̂f ) of the sequence (πsε, πfε )ε is an equal-mass solution of the
unregularized problem. Furthermore,

KL(π̂s ⊗ π̂f |µs ⊗ µf ) = min
(πs,πf )

KL(πs ⊗ πf |µs ⊗ µf ), (4.7)

where the infimum is taken over all solutions of the unregularized problem.

4.5 Experiments

4.5.1 Illustration and interpretation on MNIST images

We illustrate the robustness of UCOOT and its ability to learn meaningful feature alignments
under the presence of both sample and feature outliers in the MNIST dataset. We introduce
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Figure 4.2 – Example illustrating the feature alignment πf learned by UCOOT and its robustness
to outliers. (a) Visualization of 4 random samples from both datasets. The added Gaussian noise
only affects the first 10 columns of the images and is different across images. (b) The barycentric
mapping (see Appendix for details) defined by UCOOT learns the transformation defined by ϕσ
while disregarding non-informative features. (c) Alignments across samples from X and Y . We
contaminated the target Y with 50 sample outliers (images with uniform entries in [0, 1]). A very
small amount of noise is sufficient to derail COOT. Unlike COOT, UCOOT does not transport
any outlier sample. Accuracy is computed as the percentage of mass within the block-diagonal
structure.

the feature outliers by applying a handcrafted transformation ϕσ that performs a zero-padding
(shift), a 45° rotation, a resize to (28, 34) and adds Gaussian noise N (0, σ2) entries to the first
10 columns of the image.

Figure 4.2 (a) shows some examples of original and transformed images. We randomly sample
100 images per class (1000 total) from X = MNIST and Y = ϕσ(MNIST). Regarding the sample
outliers, we add 50 random images with uniform entries in [0, 1] to the target data Y . We then
compute the optimal COOT and UCOOT alignments shown in Figure 4.2 (b) and (c). The
flexibility of UCOOT with respect to mass transportation allows it to completely disregard: (1)
noisy and uninformative pixels (features), which are all given the same weight as depicted by (b);
(2) all the sample outliers of which none are transported as shown by the last blank column of
the alignment (c). Moreover, notice how the color-coded input image is transformed according to
the transformation ϕσ despite the fact that no spatial information is provided in the OT problem.
On the other hand, a very small perturbation (σ = 0.01) is enough for the sample alignment
given by COOT to lose its block-diagonal dominant structure (class information is lost), while
the UCOOT alignment remains unscathed.
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Figure 4.3 – Robustness of UCOOT vs.
COOT on MNIST example, at different
noise levels.

One may wonder whether the performance of
UCOOT would still hold for different values of σ. Fig-
ure 4.3 answers this question positively. For σ > 0, we
compute the average accuracy (defined by the percent-
age of mass within the block-diagonal structure) over
20 different runs. The performance of COOT not only
degrades with noisier outliers but is also unstable. By
contrast, the accuracy of UCOOT remains almost con-
stant regardless of the level of noise.

4.5.2 Heterogeneous Domain Adaptation

We now investigate the application of discrete UCOOT in semi-supervised and unsupervised
Heterogeneous Domain Adaptation (HDA). It is a particularly difficult problem where one aims
to predict classes on unlabeled data using labeled data lying in a different space. OT methods
across spaces have recently shown good performance on such tasks, in particular using GW
distance (Yan et al., 2018) and COOT (Redko et al., 2020).

Datasets and experimental setup. We consider the Caltech-Office dataset (Saenko et al.,
2010) containing three domains: Amazon (A) (1123 images), Caltech-256 (C) (958 images)
and Webcam (W) (295 images) with 10 overlapping classes amongst them. The image in each
domain is representated by the output of the second last layer in the Google Net (Szegedy et al.,
2015) and Caffe Net (Jia et al., 2014) neural network architectures, which results in 4096 and
1024-dimensional vectors, respectively (thus ds = 4096, dt = 1024). We compare 4 OT-based
methods: GW, COOT, UGW, and UCOOT. For the semi-supervised HDA task, we additionally
use k-NN, with k = 3 as baseline method, which corresponds to the situation where there is no
adaptation. The hyper-parameters for each method are validated on a unique pair of datasets
(W→W), then fixed for all other pairs in order to provide truly unsupervised HDA generalization.

We follow the same experimental setup as in (Redko et al., 2020). For each pair of domains,
we randomly choose 20 samples per class (thus ns = nt = 200) and perform adaptation from
CaffeNet to GoogleNet features, then calculate the accuracy of the generated predictions on
the target domain using OT label propagation (Redko et al., 2019). This technique uses the
OT plan to estimate the amount of mass transported from each class (since the sources are
labeled) to a given target sample. The predicted class corresponds to the one which contains the
most mass. We repeat this process 10 times and calculate the average and standard deviation
of the performance. In both source and target domains, we assign uniform sample and feature
distributions.

In the semi-supervised HDA task, we incorporate the prior knowledge on the target labels by
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Domains GW UGW COOT UCOOT
C → C 16.25 (± 7.54) 10.85 (± 2.13) 36.40 (± 12.94) 44.05 (± 19.33)
C → A 12.95 (± 7.74) 11.60 (± 4.86) 28.30 (± 11.78) 31.90 (± 7.43)
C → W 18.95 (± 9.43) 14.15 (± 3.98) 19.55 (± 14.51) 28.55 (± 6.60)
A → C 16.40 (± 8.99) 10.25 (± 5.66) 41.80 (± 14.81) 39.15 (± 17.98)
A → A 14.75 (± 15.20) 20.20 (± 6.45) 57.90 (± 16.84) 42.45 (± 15.47)
A → W 14.55 (± 8.83) 20.65 (± 4.13) 42.10 (± 7.80) 48.55 (± 13.06)
W → C 20.65 (± 11.90) 14.20 (± 5.13) 8.60 (± 6.56) 69.80 (± 14.91)
W → A 17.00 (± 9.75) 7.10 (± 2.45) 16.65 (± 10.01) 30.55 (± 10.09)
W → W 19.30 (± 11.87) 24.40 (± 3.28) 75.30 (± 3.26) 51.50 (± 20.51)
Average 16.76 (± 10.14) 14.82 (± 4.23) 36.29 (± 10.95) 42.94 (± 13.93)

Table 4.3 – Unsupervised HDA from CaffeNet to GoogleNet.

adding an additional cost matrix to the training of sample coupling, so that a source sample will
be penalized if it transfers mass to the target samples in the different classes. More precisely,
we introduce the masked target label ỹ(t) ∈ Rnt defined by randomly keeping ñt ∈ {1, 3, 5}
samples in each class in the target label y(t) and masking all other labels in y(t) by −1. Then the
additional cost M ∈ Rns×nt between y(s) and ỹ(t) is defined by

Mij =

0, if y(s)
i = ỹ

(t)
j , or ỹ(t)

j = −1

v, otherwise.
(4.8)

Here, v > 0 is a fixed value and we choose v = 100 in this experiment.
Once the sample coupling P is learned, the label propagation works as follows: suppose the

labels contain K different classes, we apply the one-hot encoding to the source label y(s) to obtain
D(s) ∈ RK×ns where D(s)

ki = 1{y(s)
i =k}. The label proportions on the target data are estimated

by: L = D(s)P ∈ RK×nt . Then the prediction can be generated by choosing the label with the
highest proportion, i.e. ŷ(t)

j = arg maxk Lkj . Note that, while the prediction is performed on the
whole target samples, only those whose labels are masked as −1 during the training, are used
in the calculation of accuracy. For the k-NN only, we train a classifier on the labelled target
samples, then perform prediction on the unlabelled ones.

HDA results. The means and standard deviations of the accuracy on target data are reported
in Table 4.3 for all the methods and all pairs of datasets. We observe that, thanks to its robustness,
UCOOT outperforms COOT on 7 out of 9 dataset pairs, with higher average accuracy but
also slightly larger variance. This is because of the difficulty of the unsupervised HDA problem
and the instability present in all methods. In particular, GW-based approaches perform very
poorly. This may be due to the fact that the pre-trained models contain meaningful but a
very high-dimensional vectorial representation of the image. Thus, using the Euclidean distance
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matrices as inputs not only causes information loss but also is less relevant (see for example,
(Aggarwal, Hinneburg, and Keim, 2001), or Theorem 3.1.1 and Remark 3.1.2 in (Vershynin,
2018)).

However, under the presence of labelled target samples, Table 4.4 shows that the advantage
of UCOOT diminishes significantly, as the level of certainty increases. In this case, both COOT
and UCOOT are also much more stable but UCOOT is somewhat more volatile than COOT.

Robustness to target shift. We also illustrate the robustness of UCOOT to a change in
class proportions, also known as target shift.
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Figure 4.4 – Robustness to class pro-
portion change for increasing TV on
the class marginals.

More precisely, we simulate a change in proportion
only in the source domain by selecting 20p samples per
class for 4 amongst 10 classes with p decreasing from
p = 1 to p = 0.2. In this configuration, the classes in
the source domain are imbalanced and the unlabeled
HDA problem becomes more difficult. We report the
performance of all the methods as a function of the Total
Variation (TV) between the class marginal distributions
on one pair of datasets in Figure 4.4. We can see that
UCOOT is quite robust to change in class proportions,
while COOT experiences a sharp decrease in accuracy when the class distributions become more
imbalanced.

4.5.3 Single-cell multi-omics alignment

Finally, we present a real-world application of UCOOT for the alignment of single-cell
measurements. Recent advances in single-cell sequencing technologies allow biologists to measure
a variety of cellular features at the single-cell resolution, such as expression levels of genes and
epigenomic changes in the genome (Buenrostro et al., 2015; Chen, Lake, and Zhang, 2019a),
or the abundance of surface proteins (Stoeckius et al., 2017). These multiple measurements
produce single-cell multi-omics datasets. These datasets measuring different biological phenomena
at the single-cell resolution allow scientists to study how the cellular processes are regulated,
leading to finer cell variations during development and diseases. However, it is hard to obtain
multiple types of measurements from the same individual cells due to experimental limitations.
Therefore, many single-cell multi-omics datasets have disparate measurements from different sets
of cells. As a result, computational methods are required to align the cells and the features of
the different measurements to learn the relationships between them that help with data analysis
and integration. Multiple tools (Cao, Hong, and Wan, 2021; Hao et al., 2021; Liu et al., 2019a),
including GW (Cao, Hong, and Wan, 2021; Demetci et al., 2022a) and UGW (Demetci et al.,
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(a) Balanced scenario: aligning matching features
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Figure 4.5 – Feature alignments on the single-cell multi-omics dataset of COOT and UCOOT
between antibodies (surface proteins) and their matching genes (that encode them). (a) The
features are sorted such that the correct alignment would yield a diagonal matrix. (b) Only five
of the correct gene matches are kept (the last five genes from (a) are excluded). (c) Alignments
between the ten antibodies and the top 50 most variable genes, including the matching genes.
For (b) and (c), the diagonal within the dashed square highlights the correct matches. Overall,
UCOOT gives better feature alignments.

2021) based methods, have shown good performance for cell-to-cell alignments. However, aligning
both samples and features is a more challenging and critical task that GW and UGW-based
methods cannot address Here we provide an application of UCOOT to simultaneously align the
samples and features in a single-cell multi-omics dataset.

Dataset For demonstration, we choose a dataset generated by the CITE-seq experiment
(Stoeckius et al., 2017), which simultaneously measures gene expression and antibody (or surface
protein) abundance in single cells. From this dataset, we use 1000 human peripheral blood cells,
which have ten antibodies and 17,014 genes profiled. We selected this specific dataset as we
know the ground-truth correspondences on both the samples (i.e., cells) and the features (i.e.,
genes and their encoded antibodies), thus allowing us to quantify and compare the alignment
performance of UCOOT and COOT. As done previously (Cao, Hong, and Wan, 2021; Demetci
et al., 2022a; Liu et al., 2019a), we quantify the cell alignment performance by calculating the
fraction of cells closer than the true match (FOSCTTM) of each cell in the dataset and averaging
it across all cells. This metric quantifies alignment error, so lower values are more desirable. The

80

Optimal transport for transfer learning across spaces Quang huy Tran 2024



4.5. Experiments

feature alignments are measured by calculating the accuracy of correct matching.

Hyperparameter tuning Hyperparameters were tuned using grid search. For both COOT
and UCOOT, we considered the following range for the entropic regularization coefficients εf , εs ∈
{1e− 5, 5e− 5, 1e− 5, 5e− 4, ..., 0.1, 0.5}. For the mass relaxation coefficients ρ1, ρ2 in UCOOT,
the following range was considered ρ1, ρ2 ∈ {1e − 3, 5e − 3, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}.
Each combination of hyperparameters were run on three randomly chosen subsets of the dataset
that included 30% of the samples and the hyperparameter combinations that on average yielded
the highest feature matches and lowest FOSCTTM were picked for the experiments on the full
dataset.

Results in balanced scenarios First, we select and align the same number of samples and
features across the two datasets. For this, we subset the gene expression domain with the ten
genes that match to the ten antibodies they express. Original data contains the same number of
cells across domains since both domains are simultaneously measured in the same single-cells.
We observe that both UCOOT and COOT can correctly align features (Figure 4.5 (a)) and the
cells across the two measurements. However, UCOOT gives better performance, as demonstrated
by a lower FOCSTTM score (0.0062 vs 0.0127) for cells. Both COOT and UCOOT recover the
diagonal for matching features (100% accuracy), but UCOOT recovers the exact matching, likely
due to its robustness to noise, whereas COOT assigns weights to other features as well.

Results in unbalanced scenarios Next, we perform alignment with an unequal number of
features. This setting is more likely to occur for real-world single-cell datasets as different features
are measured. In the first simple scenario, we align the ten antibodies with only a subset (five)
of their matching genes. As visualized in Figure 4.5 (b), COOT struggles to find the correct
feature alignments (60% accuracy), which would lie in the diagonal of the highlighted square
(dashed lines). However, the relaxation of the mass conservation constraint in UCOOT allows it
to shrink the mass of antibodies that lack matches in the gene expression domain, leading do
higher accuracy (100% accuracy).

Next, we align the ten antibodies with the 50 most variable genes in the dataset, including
their matching genes. This alignment task is the most realistic scenario, as single-cell multi-omics
data consists of high-dimensional datasets with a different number of features for different mea-
surements. Therefore, biologists focus their analyses on the reduced set of most variable features
(e.g. genes). It is also the most computationally challenging case among all our experiments
on this dataset. Hence, we provide sample-level supervision to both methods by giving a cost
penalization matrix based on the correct sample alignments to the sample alignment computation.
We see in Figure 4.5(c) that in comparison to COOT (50% accuracy), UCOOT recovers more of
the correct feature alignments (70% accuracy), and yields fewer redundant alignments. Note that
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UCOOT avoids incorrect mappings by locally shrinking the mass of the features or samples that
lack correspondences. This avoids subsequent incorrect downstream analysis of the integration
results. This property can also help users to discover rare cell types by observing the extent of
mass relaxation per cell or prune uninformative features in the single-cell datasets.

Lastly, we also consider the case of unequal number of samples across the two measurements.
This case is common in real world single-cell multi-omics datasets that are not simultaneously
measured. Demetci et al. (2021) have shown that single-cell alignment methods that do not
account for this mismatch yield poor alignment results. Therefore, we downsample the number of
cells in one of the domains by 25% and perform alignment with the full set of cells in the other
domain. We compute the FOSCTTM score for all cells that have a true match in the dataset and
report the average values. UCOOT continues to yield a low FOSCTTM score (0.0081 compared
to 0.0062 in the balanced scenario), while COOT shows a larger drop in performance (0.1342
compared to 0.0127 in the balanced scenario).

4.6 Discussion

In this work, we present an extension of COOT called unbalanced COOT, where the hard
constraint on the marginal distributions is replaced by a soft control via the KL divergence.
The resulting problem not only benefits from the flexibility of COOT but also enjoys the
provable robustness property under the presence of outliers, which is not the case for COOT.
The experimental results confirm our findings, yielding a very competitive performance in the
unsupervised HDA task, as well as meaningful feature couplings for the single-cell multi-omics
alignment. Also, while UCOOT introduces additional hyper-parameters, domain knowledge
can help narrow down the range of feasible values, thus reducing the time and computational
cost of the tuning process. Further investigation should be carried out to fully understand
and assess the observed efficiency of UCOOT in real-world applications, and also explore the
possibilities of UCOOT in more diverse applicative settings, including its use as a loss in deep
learning architectures. Lastly, from a theoretical perspective, statistical properties such as sample
complexity or stability analysis are needed to better understand the intricate relations between
the two sample and feature couplings.
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Domains Baseline GW UGW COOT UCOOT
ñt = 1

C → C 28.32 (± 6.28) 35.37 (± 8.85) 29.21 (± 6.54) 87.37 (± 2.90) 85.00 (± 2.03)
C → A 25.32 (± 9.61) 31.47 (± 8.76) 26.84 (± 7.93) 85.42 (± 6.21) 85.79 (± 6.19)
C → W 30.05 (± 5.90) 42.53 (± 6.31) 40.47 (± 8.32) 64.68 (± 7.88) 67.00 (± 8.80)
A → C 39.63 (± 7.21) 36.11 (± 8.04) 29.47 (± 5.50) 80.74 (± 9.87) 84.11 (± 8.34)
A → A 42.21 (± 7.60) 37.84 (± 16.34) 39.11 (± 11.56) 93.42 (± 1.32) 93.58 (± 1.12)
A → W 36.21 (± 9.45) 43.58 (± 3.75) 52.21 (± 8.26) 91.63 (± 2.57) 90.37 (± 6.51)
W → C 30.16 (± 7.22) 40.68 (± 8.11) 32.63 (± 7.70) 78.84 (± 4.24) 79.05 (± 3.81)
W → A 31.89 (± 6.55) 42.37 (± 7.35) 26.26 (± 4.67) 95.84 (± 2.51) 89.37 (± 11.34)
W → W 24.16 (± 6.79) 43.89 (± 4.64) 44.00 (± 5.10) 96.58 (± 5.54) 98.00 (± 2.04)

Average 32.57 (± 7.72) 39.32 (± 8.02) 35.58 (± 7.29) 86.06 (± 4.78) 85.81 (± 5.58)

ñt = 3
C → C 65.82 (± 4.28) 39.41 (± 9.83) 45.41 (± 5.56) 87.18 (± 2.05) 87.76 (± 2.10)
C → A 68.06 (± 5.89) 46.24 (± 10.45) 54.94 (± 7.29) 86.94 (± 3.18) 85.53 (± 3.13)
C → W 69.94 (± 4.92) 44.12 (± 4.99) 52.71 (± 6.25) 83.76 (± 2.22) 83.41 (± 5.60)
A → C 82.88 (± 4.44) 51.29 (± 3.71) 48.71 (± 6.10) 90.12 (± 1.76) 90.18 (± 3.18)
A → A 81.88 (± 4.13) 84.41 (± 4.69) 74.00 (± 6.73) 93.59 (± 1.91) 94.65 (± 1.69)
A → W 84.76 (± 2.91) 57.76 (± 9.23) 59.35 (± 4.20) 93.82 (± 1.75) 93.59 (± 1.40)
W → C 83.06 (± 4.75) 51.94 (± 8.68) 58.24 (± 2.44) 95.76 (± 2.17) 92.71 (± 6.19)
W → A 82.12 (± 3.69) 66.41 (± 10.75) 69.53 (± 5.62) 97.12 (± 0.61) 97.71 (± 0.61)
W → W 80.41 (± 3.56) 66.82 (± 3.26) 69.06 (± 5.39) 99.24 (± 0.75) 99.41 (± 0.53)

Average 77.18 (± 3.91) 56.49 (± 7.29) 59.11 (± 5.51) 91.95 (± 1.82) 91.66 (± 2.71)

ñt = 5
C → C 71.60 (± 4.12) 50.67 (± 3.78) 53.07 (± 4.68) 86.07 (± 2.36) 87.53 (± 2.09)
C → A 73.80 (± 3.14) 62.80 (± 5.16) 64.87 (± 3.78) 86.40 (± 2.62) 86.60 (± 2.72)
C → W 72.53 (± 4.13) 57.27 (± 2.74) 57.07 (± 4.08) 88.20 (± 2.07) 85.13 (± 4.28)
A → C 86.20 (± 3.07) 52.07 (± 3.16) 50.67 (± 4.32) 91.47 (± 2.12) 93.87 (± 1.81)
A → A 88.73 (± 2.66) 71.93 (± 5.50) 74.80 (± 7.84) 93.53 (± 1.71) 94.13 (± 1.54)
A → W 88.80 (± 2.60) 67.47 (± 5.26) 66.07 (± 5.66) 93.13 (± 2.19) 93.13 (± 1.79)
W → C 91.33 (± 2.49) 59.33 (± 4.15) 54.73 (± 3.68) 95.87 (± 1.63) 95.47 (± 1.90)
W → A 90.93 (± 3.40) 68.13 (± 4.01) 70.53 (± 3.71) 97.53 (± 1.27) 98.73 (± 0.63)
W → W 91.47 (± 3.40) 68.67 (± 3.71) 72.93 (± 3.17) 99.40 (± 0.63) 99.40 (± 0.47)
Average 83.84 (± 3.43) 62.04 (± 4.16) 62.75 (± 4.55) 92.40 (± 1.84) 92.67 (± 1.91)

Table 4.4 – Semi-supervised HDA from CaffeNet to GoogleNet, for different values of ñt.
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This chapter presents the results from (Thual et al., 2022) and addresses the applications
of unbalanced extension of fused Gromov-Wasserstein in human brains alignments. Individual
brains vary in both anatomy and functional organization, even within a given species. Inter-
individual variability is a major impediment when trying to draw generalizable conclusions
from neuroimaging data collected on groups of subjects. Current co-registration procedures
rely on limited data, and thus lead to very coarse inter-subject alignments. In this work, we
present a novel method for inter-subject alignment based on Optimal Transport, denoted as
Fused Unbalanced Gromov-Wasserstein (FUGW). The method aligns cortical surfaces based
on the similarity of their functional signatures in response to a variety of stimulation settings,
while penalizing large deformations of individual topographic organization. We demonstrate that
FUGW is well-suited for whole-brain landmark-free alignment. The unbalanced feature allows
to deal with the fact that functional areas vary in size across subjects. Our results show that
FUGW alignment significantly increases between-subject correlation of activity for independent
functional data, and leads to more precise mapping at the group level.
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5.1 Introduction

The availability of millimeter or sub-millimeter anatomical or functional brain images has
opened new horizons to neuroscience, namely that of mapping cognition in the human brain and
detecting markers of diseases. Yet this endeavour has stumbled on the roadblock of inter-individual
variability: while the overall organization of the human brain is largely invariant, two different
brains (even from monozygotic twins (Pizzagalli et al., 2020)) may differ at the scale of centimeters
in shape, folding pattern, and functional responses. The problem is further complicated by the
fact that functional images are noisy, due to imaging limitations and behavioral differences
across individuals that cannot be easily overcome. The status quo of the field is thus to rely
on anatomy-based inter-individual alignment that approximately matches the outline of the
brain (Avants et al., 2008) as well as its large-scale cortical folding patterns (Dale, Fischl, and
Sereno, 1999; Fischl, 2012). Existing algorithms thus coarsely match anatomical features with
diffeomorphic transformations, by warping individual data to a simplified template brain. Such
methods lose much of the original individual detail and blur the functional information that can
be measured in brain regions (see Figure 5.1).
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Figure 5.1 –High variability in human anatomies and functional MRI responses across
subjects In this experiment contrasting areas of the brain which respond to mathematical tasks
against other that don’t, we observe great variability in locations and strength of brain activations
across subjects (row 1). The classical approach consists in wrapping this data to a common
surface template (row 2), where they can be averaged, often resulting in loss of individual details
and detection power. These images were generated using Nilearn software (Abraham et al., 2014).

In order to improve upon the current situation, a number of challenges have to be addressed:
(i) There exists no template brain with functional information, which by construction renders
any cortical matching method blind to function. This is unfortunate, since functional information
is arguably the most accessible marker to identify cortical regions and their boundaries (Glasser
et al., 2016). (ii) When comparing two brains – coming from individuals or from a template – it
is unclear what regularity should be imposed on the matching (Van Essen et al., 2012). While

85

Optimal transport for transfer learning across spaces Quang huy Tran 2024



Chapter 5. Fused Unbalanced Gromov-Wasserstein

it is traditional in medical imaging to impose diffeomorphicity (Avants et al., 2008), such a
constrain does not match the frequent observation that brain regions vary across individuals
in their fine-grained functional organization (Glasser et al., 2016; Schneider et al., 2019). (iii)
Beyond the problem of aligning human brains, it is an even greater challenge to systematically
compare functional brain organization in two different species, such as humans and macaques
(Eichert et al., 2020; Mars et al., 2018; Neubert et al., 2014; Xu et al., 2020). Such inter-species
comparisons introduce a more extreme form of variability in the correspondence model.

Related work Several attempts have been made to constrain the brain alignment process
by using functional information. The first one consists in introducing functional maps into
the diffeomorphic framework and search for a smooth transformation that matches functional
information (Robinson et al., 2014; Sabuncu et al., 2010; Yeo et al., 2010), the most popular
framework being arguably Multimodal Surface Matching (MSM) (Glasser et al., 2016; Robinson
et al., 2014).

A second family of less constrained functional alignment approaches have been proposed,
based on heuristics, by matching information in small, possibly overlapping, cortical patches
(Bazeille et al., 2021; Haxby et al., 2011; Tavor et al., 2016). This popular framework has been
called hyperalignment (Guntupalli et al., 2016; Haxby et al., 2011), or shared response models
(Chen et al., 2015). Yet these approaches lack a principled framework and cannot be considered
to solve the matching problem at scale. Neither do they allow to estimate a group-level template
properly (Al-Wasity et al., 2020).

An alternative functional alignment framework has followed another path (Gramfort, Peyré,
and Cuturi, 2015), considering functional signal as a three-dimensional distribution, and minimiz-
ing the transport cost. However, this framework imposes unnatural constraints of non-negativity
of the signal and only works for one-dimensional contrasts, so that it cannot be used to learn
multi-dimensional anatomo-functional structures. An important limitation of the latter two
families of methods is that they operate on a fixed spatial context (mesh or voxel grid), and thus
cannot be used on heterogeneous meshes such as between two individual human anatomies or,
worse, between a monkey brain and a human brain.

Contributions Following (Bazeille et al., 2019b), we use the Wasserstein distance between
source and target functional signals – consisting of contrast maps acquired with fMRI – to
compute brain alignments. We contribute two notable extensions of this framework: (i) a Gromov-
Wasserstein (GW) term to preserve global anatomical structure – this term introduces an
anatomical penalization against improbably distant anatomical matches, yet without imposing
diffeomorphic regularity – as well as (ii) an unbalanced correspondence that allows mappings from
one brain to another to be incomplete, for instance because some functional areas are larger in some
individuals than in others, or may simply be absent. We show that this approach successfully
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addresses the challenging case of different cortical meshes, and that derived brain activity
templates are sharper than those obtained with standard anatomical alignment approaches.

5.2 Methods

Optimal Transport yields a natural framework to address the alignment problem, as it seeks
to derive a plan – a coupling – that can be seen as a soft assignment matrix between cortical
areas of a source and target individual. As discussed previously, there is a need for a functional
alignment method that respects the rich geometric structure of the anatomical features, hence
the Wasserstein distance alone is not sufficient. By construction, the GW distance (Mémoli, 2007,
2011b) can help preserve the global geometry underlying the signal. The more recent fused GW
distance (Vayer et al., 2019a) goes one step further by making it possible to integrate functional
data simultaneously with anatomical information.

5.2.1 Fused Unbalanced Gromov-Wasserstein

We leverage (Séjourné, Vialard, and Peyré, 2021b; Vayer et al., 2019a) to present a new
objective function which interpolates between a loss preserving the global geometry of the
underlying mesh structure and a loss aligning source and target features, while simultaneously
allowing not to transport some parts of the source and target distributions. We provide an
open-source solver that minimizes this loss 1.

Formulation We denote F s ∈ Rn×c the matrix of features per vertex for the source subject.
In the proposed application, they correspond to c functional activation maps, sampled on a mesh
with n vertices representing the source subject’s cortical surface. Let Ds ∈ Rn×n+ be the matrix
of pairwise geodesic distances 2 between vertices of the source mesh. Moreover, we assign the
distribution ws ∈ Rn+ on the source vertices. Comparably, we define F t ∈ Rp×c, Dt ∈ Rp×p+ and
wt ∈ Rp+ for the target subject, whose individual anatomy is represented by a mesh comprising
p vertices. Eventually, ws and wt set the transportable mass per vertex, which, without prior
knowledge, we choose to be uniform for the source and target vertices respectively: ws , ( 1

n , ...,
1
n),

wt , (1
p , ...,

1
p).

Given a tuple of hyper-parameters θ , (ρ, α, ε), where ρ, ε ∈ R+ and α ∈ [0, 1], for any

1. https://github.com/alexisthual/fugw provides a PyTorch (Paszke et al., 2019) solver with a scikit-learn
(Pedregosa et al., 2011) compatible API

2. We compute geodesic distances using https://github.com/the-virtual-brain/tvb-gdist
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Chapter 5. Fused Unbalanced Gromov-Wasserstein

coupling P ∈ Rn×p≥0 , we define the fused unbalanced Gromov-Wasserstein loss as

Lθ(P ) = (1− α)
∑
i,j

||F si − F tj ||22Pij︸ ︷︷ ︸
Wasserstein loss LW(P )

+α
∑
i,j,k,l

|Ds
ik −Dt

jl|2PijPkl︸ ︷︷ ︸
Gromov-Wasserstein loss LGW(P )

+ ρ
[
KL(P#1 ⊗ P#1|ws ⊗ ws) + KL(P#2 ⊗ P#2|wt ⊗ wt)

]
︸ ︷︷ ︸

Marginal constraints LU(P )

+ε E(P )︸ ︷︷ ︸
Entropy

(5.1)

where LW(P ) matches vertices with similar features, LGW(P ) penalizes changes in geometry
and LU(P ) fosters matching all parts of the source and target distributions. Throughout this
paper, we refer to relaxing the hard marginal constraints of the underlying OT problem into soft
ones as unbalancing. Here, P#1 , (∑j Pi,j)0≤i<n denotes the first marginal distribution of P ,
and P#2 , (∑i Pi,j)0≤j<p the second marginal distribution of P . The notation ⊗ represents the
Kronecker product between two vectors or two matrices. KL(·|·) denotes the Kullback Leibler
divergence, which is a typical choice to measure the discrepancy between two measures in
the context of unbalanced optimal transport (Liero, Mielke, and Savaré, 2018). The last term
E(P ) , KL

(
P ⊗ P |(ws ⊗ wt)⊗ (ws ⊗ wt)

)
is mainly introduced for computational purposes, as

it helps accelerate the approximation scheme of the optimisation problem. Typically, it is used in
combination with a small value of ε, so that the impact of other terms is not diluted. On the
other hand, the parameters α and ρ offer control over two other aspects of the problem: while
α realizes a trade-off between the impact of different features and different geometries in the
resulting alignment, ρ controls the amount of mass transported by penalizing configurations such
that the marginal distributions of the transportation plan P are far from the prior weights ws

and wt. This potentially helps adapting the size of areas where either the signal or the geometry
differs too much between source and target.

Eventually, we define X s , (F s, Ds, ws) and X t , (F t, Dt, wt), and seek to derive an optimal
coupling P ∈ Rn×p≥0 minimizing

FUGW(X s,X t) , inf
P∈Rn×p

≥0

Lθ(P ). (5.2)

This can be seen as a natural combination of the fused GW (Vayer et al., 2019a) and the
unbalanced GW (Séjourné, Vialard, and Peyré, 2021b) distances. To the best of our knowledge,
it has never been considered in the literature.

Toy example illustrating the unbalancing property As exemplified in Figure 5.1, brain
responses elicited by the same stimulus vary greatly between individuals. Figure 5.2 illustrates
a similar yet simplified version of this problem, where the goal is to align two different signals
supported on the same spherical meshes. In this example, for each of the n = p = 3200 vertices,

88

Optimal transport for transfer learning across spaces Quang huy Tran 2024



5.2. Methods

A B

Source 
features

Target 
features

Source features 
transported on target

Source Target
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(ρ = 100)
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(ρ = 1)
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Figure 5.2 – Unbalancing helps accounting for idiosyncrasies of the source and target
signals When trying to align the source and target signals (Panel A), the classical balanced
setup (Panel B, top row) transports all parts of the source signal even if they have no counterpart
in the target signal. In the unbalanced setup (Panel B, bottom row), less source-only signal is
transported: in particular, less mass is transported from the source’s small blob onto the target
(Panel B, middle column).

the feature is simply a scalar. On the source mesh, the signal is constituted of two von Mises
density functions that differ by their concentration (large and small), while on the target mesh,
only the large one is present, but at a different location. We use the optimal coupling matrix
P obtained from Equation (5.2) to transport the source signal on the target mesh. As shown
in Figure 5.2.B, the parameter ρ allows to control the mass transferred from source to target.
When ρ = 100, we approach the solution of the fused GW problem. Consequently, we observe
the second mode on the target when transporting the source signal. When the mass control is
weaker (ρ = 1), the smaller blob is partly removed because it has no counterpart in the target
configuration, making the transport ill-posed.

5.2.2 Optimization

Estimating the unbalanced Gromov Wasserstein loss is numerically sensitive to initialization,
due to the non-convexity of the problem. Therefore, FUGW is also a priori non-convex, and
comparably difficult to estimate. Consequently, following (Séjourné, Vialard, and Peyré, 2021b),
we instead compute a lower bound which is formulated as a bi-convex problem that relies on the
joint estimation of two couplings.

FUGW(X s,X t) = inf
P,Q∈Rn×p

≥0
P=Q

Lθ(P,Q) ≥ inf
P,Q∈Rn×p

≥0
m(P )=m(Q)

Lθ(P,Q) , LB-FUGW(X s,X t), (5.3)
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where m(P ) = ∑
i,j Pi,j denotes the mass of P and

Lθ(P,Q) , (1− α) LW(P,Q) + α LGW(P,Q) + ρ LU(P,Q) + ε E(P,Q), (5.4)

where
• C ,

(
||F si − F tj ||22

)
i,j
∈ R2

+ (feature cost matrix)

• G ,
(
|Ds

i,j −Dt
k,l|
)
i,j,k,l

∈ R4
+ (geometry cost tensor)

• LW(P,Q) , 〈C, P+Q
2 〉 = 1

2(∑i,j Ci,jPi,j +∑
i,j Ci,jQi,j) (Wasserstein)

• LGW(P,Q) , 〈G,P ⊗Q〉 = ∑
i,j,k,lGi,j,k,lPi,jQk,l (Gromov-Wasserstein)

• LU(P,Q) , KL
(
P#1 ⊗Q#1|ws ⊗ ws

)
+ KL

(
P#2 ⊗Q#2|wt ⊗ wt

)
(unbalancing)

• E(P,Q) , KL
(
P ⊗Q|(ws ⊗ wt)⊗ (ws ⊗ wt)

)
(entropy)

In particular, we have Lθ(P, P ) = Lθ(P ), which is the objective function of FUGW introduced in
Equation (5.1). It is difficult to study when equality holds between FUGW and its lower bound.
Here, we attempt to understand the potential gap between them. First, let us introduce the
following problem

F̃UGW(X s,X t) = inf
(P,Q)∈E

Lθ(P,Q), (5.5)

where E = {P,Q ∈ Rn×p≥0 : P#1 = Q#1, P#2 = Q#2} is the set of pairs of transportation plans
whose corresponding marginal distributions are equal. Clearly, we have

LB-FUGW(X s,X t) ≤ F̃UGW(X s,X t) ≤ FUGW(X s,X t). (5.6)

This inequality indicates that the difference between FUGW and LB-FUGW might be potentially
large. However, this gap can be tightened under the conditions in Proposition 3.1.1.

Corollary 5.2.1. If the distances Ds and Dt are of the forms: Ds
ij = fi + fj + Aij and

Dt
kl = gk + gl +Bkl, where f, g are vectors in Rn,Rp, respectively, and the matrices A,B are both

conditionally negative semi-definite, then we have FUGW(X s,X t) = F̃UGW(X s,X t).

In our experiments, while the geodesic distances do not necessarily meet these conditions,
we still observe that the two couplings of LB-FUGW are numerically equal. So it is enough to
choose, for example, the first one, as alignment between source and target signals.

The lower bound of FUGW (5.3) involves solving a minimization problem with respect to
two independent couplings. Using a Block-Coordinate Descent (BCD) scheme, we fix a coupling
and minimize with respect to the other. This allows us to always be dealing with linear problems
instead of a quadratic one. Eventually, each BCD iteration consists in alternatively solving two
entropic unbalanced OT problems, whose solutions can be approximated using the Sinkhorn
algorithm (Séjourné et al., 2019).
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Algorithm 6 LB-FUGW barycenter for Problem (5.7)
1: Input: (X s)s∈S , ρ, α, ε.
2: Output: Individual couplings (P s,B)s∈S , barycenter XB.
3: Initialize: FB = Ik; DB = 0k.
4: while XB = (FB, DB, wB) has not converged do
5: Draw S̃ subset of S.
6: for s ∈ S̃ do
7: Align: P s,B ← LB-FUGW(X s,XB, ρ, α, ε). {Fixed XB}
8: end for
9: Update FB, DB: {Fixed P s,B}

FB = 1
|S̃|

∑
s∈S̃

diag

 1
P s,B#2

 (P s,B)>F s and DB = 1
|S̃|

∑
s∈S̃

(P s,B)>DsP s,B

P s,B#2 (P s,B#2 )>
.

10: end while

5.2.3 Barycenters

Barycenters represent common patterns across samples. Their role is instrumental in identify-
ing a unique target for aligning a given group of individuals. As seen in Figure 5.1, the vertex-wise
group average does not usually provide well-contrasted maps. Inspired by the success of the GW
distance when estimating the barycenter of structured objects (Peyré, Cuturi, and Solomon,
2016; Vayer et al., 2019a), we use FUGW to find the barycenter (FB, DB) ∈ Rk×c × Rk×k of all
subjects s ∈ S, as well as the corresponding couplings P s,B from each subject to the barycenter.
More precisely, we solve

XB = (FB, DB, w
B) ∈ argmin

X

∑
s∈S

FUGW(X s,X ), (5.7)

where we set the weights wB to be the uniform distribution. By construction, the resulting
barycenter benefits from the advantages of FUGW, i.e. equilibrium between geometry-preserving
and feature-matching properties, while not forcing hard marginal constraints. The FUGW
barycenter is estimated using a Block-Coordinate Descent (BCD) algorithm that consists in
alternatively (i) minimizing the OT plans P s,B for each FUGW computation in (5.7) with fixed
XB and (ii) updating the barycenter XB through a closed form with fixed P s,B . See Algorithm 6
for more details. The first step simply uses the previously introduced solver. The second one
takes advantage of the fact that the objective function introduced in (5.3) is differentiable in FB

and DB, and the two couplings of LB-FUGW are numerically equal. This yields a closed form
for FB and DB, as a function of P s,B and X s. We note that, during the barycenter estimation,
the weight wB is always fixed as uniform distribution.
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5.3 Numerical experiments

We design three experiments to assess the performance of FUGW. In Experiments 1 and 2,
we are interested in assessing if aligning pairs of individuals with FUGW increases correlation
between subjects compared to a baseline correlation. We also compare the ensuing gains with
those obtained when using the competing method MSM (Robinson et al., 2018, 2014) to align
subjects. In Experiment 3, we derive a barycenter of individuals and assess its ability to capture
fine-grained details compared to classical methods.

Dataset In all three experiments, we leverage data from the Individual Brain Charting dataset
(Pinho et al., 2018). It is a longitudinal study on 12 human subjects, comprising 400 fMRI
maps per subject collected on a wide variety of stimuli (motor, visual, auditory, theory of mind,
language, mathematics, emotions, and more), movie-watching data, T1-weighted maps, as well
as other features such as retinotopy which we don’t use in this work. We leverage these 400 fMRI
maps. The training, validation and test sets respectively comprise 326, 43 and 30 contrast maps
acquired for each individual of the dataset. Tasks and MRI sessions differ between each of the
sets.

Baseline alignment correlation For each pair of individuals (s, t) under study, and for each
fMRI contrast c in the test set, we compute the Pearson correlation corr(F s·,c, F t·,c) after these
maps have been projected onto a common surface anatomy (in this case, fsaverage5 mesh).
Throughout this work, such computations are made for each hemisphere separately.

Experiment 1 - Aligning pairs of humans with the same anatomy For each pair (s, t)
under study, we derive an alignment P s,t ∈ Rn×p using FUGW on a set of training features.
In this experiment, source and target data lie on the same anatomical mesh (fsaverage5 ), and
n = p = 10240 for each hemisphere. Since each hemisphere’s mesh is connected, we align one
hemisphere at a time.

Computed couplings are used to align contrast maps of a the validation set from the source
subject onto the target subject. Indeed, one can define φs→t : X ∈ Rn×q 7→

(
(P s,t)TX

)
� P s,t#2 ∈

Rp×q where � represents the element-wise division. φs→t transports any matrix of features from
the source mesh to the target mesh. We measure the Pearson correlation corr

(
φs→t(F s), F t

)
between each aligned source and target maps.

We run a similar experiment for MSM and compute the correlation gain induced on a test set
by FUGW and MSM respectively. For both models, we selected the hyper-parameters maximizing
correlation gain on a validation set. In the case of FUGW, in addition to gains in correlation,
hyper-parameter selection was influenced by three other metrics that help us assess the relevance
of computed couplings:
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Transported mass For each vertex i of the source subject, we compute ∑
0≤j<p

P s,ti,j .

Vertex displacement Taking advantage of the fact that the source and target anatomies are
the same, we define D = Ds = Dt and compute for each vertex i of the source subject
the quantity ∑j P

s,t
i,j ·Di,j/

∑
j P

s,t
i,j , which measures the average geodesic distance on the

cortical sheet between vertex i and the vertices of the target it has been matched with.

Vertex spread Large values of ε increase the entropy of derived couplings. To quantify this
effect, and because we don’t want the matching to be too blurry, we assess how much a
vertex was spread. Considering P̃i = P s,ti /

∑
j P

s,t
i,j ∈ Rp as a probability measure on target

vertices, we estimate the anatomical variance of this measure by sampling q pairs (jq, kq)
of P̃i and computing their average geodesic distance 1

q

∑
jq ,kq

Djq ,kq .

Experiment 2 - Aligning pairs of humans with individual anatomies We perform
a second alignment experiment, this time using individual meshes instead of an anatomical
template. Importantly, in this case, there is no possibility to compare FUGW with baseline
methods, since those cannot handle this case. However, individual meshes are significantly larger
than the common anatomical template used in Experiment 1 (n ≈ m ≈ 160k vs. 10k previously),
resulting in couplings too large to fit on GPUs – for reference, a coupling of size 10k × 10k already
weights 400Mo on disk. We thus reduce the size of the source and target data by clustering
them into 10k small connected clusters using Ward’s algorithm (Thirion et al., 2014).

Experiment 3 - Comparing FUGW barycenters with usual group analysis Since it is
very difficult to estimate the barycentric mesh, we force it to be equal to the fsaverage5 template.
Empirically, this we force the distance matrix DB to be equal to that of fsaverage5, and only
estimate the functional barycenter FB. We initialize it with the mean of (F s)s∈S and derive FB

and (P s,B)s∈S from Problem (5.7). Then, for a given stimulus c, we compute its projection onto
the barycenter for each subject. We use these projections to compute two maps of interest: (i)
MB,c the mean of projected contrast maps across subjects and (ii) TB,c the t-statistic (for each
vertex) of projected maps. We compare these two maps with their unaligned counterparts M0,c

and T0,c respectively. The first map helps us to qualitatively evaluate the precision of FUGW
MB,c ,

1
|S|

∑
s∈S

φs→t(F s·,c) TB,c , t-statistic
((
φs→t(F s·,c)

)
s∈S

)
M0,c ,

1
|S|

∑
s∈S

F s·,c T0,c , t-statistic
(
(F s·,c)s∈S

)
alignments and barycenter. The second one is classically used to infer the existence of areas of
the brain that respond to specific stimuli. We assess whether FUGW helps find the same clusters
of vertices. Eventually, we quantify the number of vertices significantly activated or deactivated
with and without alignment respectively.

93

Optimal transport for transfer learning across spaces Quang huy Tran 2024



Chapter 5. Fused Unbalanced Gromov-Wasserstein

5.4 Results

5.4.1 Experiment 1 - Template anatomy

Aligning subjects on a fixed mesh We set α = 0.5, ρ = 1 and ε = 10−3. Pearson correlation
between source and target contrast maps is systematically and significantly increased when
aligned using FUGW, as illustrated in Figure 5.3 where correlation grows by almost 40% from
0.258 to 0.356.

Figure 5.3 – Comparison of gains in correlation after inter-subject alignment For each
pair of source and target subjects of the dataset, we compute the average Pearson correlation
between 30 test contrasts, leading to the (baseline) correspondence score, and compare it with
that of the same contrast maps aligned with either MSM (left) or FUGW (right). Correlation
gains are much better for FUGW.

Hyper-parameters selection Hyper-parameters used to obtain these results were chosen
after running a grid search on α, ε and ρ and evaluating it on the validation dataset. Computation
took about 100 hours using 4 Tesla V100-DGXS-32GB GPUs. More precisely, it takes about 4
minutes to compute one coupling between a source and target 10k-vertex hemisphere on a single
GPU, when the solver was set to run 10 BCD and 400 Sinkhorn iterations. In comparison, MSM
takes about the same time on Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz CPUs. Results are
reported in Figure 5.4 and provide multiple insights concerning FUGW.

Firstly, without anatomical constraint (α = 0), source vertices can be matched with target
vertices that are arbitrarily far on the cortical sheet. Even though this can significantly increase
correlation, it also results in very high vertex displacement values (up to 100mm). Such couplings
are not anatomically plausible. Secondly, without functional information (α = 1), couplings
recover a nearly flawless matching between source and target meshes, so that, when ε = 10−5 (ie
when we force couplings to find single-vertex-to-single-vertex matches), vertex displacement and
spread are close to 0 and correlation is unchanged. Fusing both constraints (0 < α < 1) yields
the largest gains in correlation while allowing to compute anatomically plausible reorganizations
the cortical sheet between subjects.

The impact of ρ (controlling marginal penalizations) on correlation seems modest, with a
slight tendency of increased correlation in unbalanced problems (low ρ).
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Finally, it is worth noting that a relatively wide range of α and ρ yield comparable gains.
The fact that FUGW performance is weakly sensitive to hyper-parameters makes it a good
off-the-shelf tool for neuroscientists who wish to derive inter-individual alignments. However, ε is
of dramatic importance in computed results and should be chosen carefully. Vertex spread is a
useful metric to choose sensible values of ε; for human data one might consider that it should
not exceed 20mm.
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Figure 5.4 – Exploring hyper-parameter space to find relevant couplings Given a trans-
port plan aligning a source and target subject, we evaluate how much this coupling (left) improves
correlation between unseen contrast maps of the two subjects, (center left) actually transports
data, (center right) moves vertices far from their original location on the cortical surface and
(right) spreads vertices on the cortical sheet. We seek plans that maximize correlation gain, while
keeping spread and displacement low enough.

Mass redistribution in unbalanced couplings Unbalanced couplings provide additional
information about how functional areas might differ in size between pairs of individuals. This is
illustrated in Figure 5.5, where we observe variation in size of the auditory area between a given
pair of individuals. This feature is indeed captured by the difference of mass between subjects
(although the displayed contrast was not part of the training set).
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sub-07 (source) sub-09 (target)

A Bz-score %

fMRI contrast maps
transported mass (%)

source vs target

Figure 5.5 – Transported mass indicates areas which have to be resized between
subjects (Panel A) We show a contrast map from the test set which displays areas showing
stronger activation during auditory tasks versus equivalent visual tasks. It shows much more
anterior activations on the target subject compared to the source subject. This is consistent with
the observation that more mass is present in anterior auditory areas of the source subject than
in the target subject (Panel B).

Figure 5.6 – Correlation between pairs of subjects is significantly better after align-
ment on individual anatomies than after projecting subjects onto a common anatom-
ical template

5.4.2 Experiment 2 - Individual anatomies

As shown in Figure 5.6, we obtain correlation gains which are comparable to that of Experiment
1 (about 35% gain) while working on individual meshes. This tends to show that FUGW can
compute meaningful alignments between pairs of individuals without the use of an anatomical
template, which helps bridge most conceptual impediments listed in Section 5.1. Moreover, this
opens the way for computation of simple statistics in cohorts of individuals in the absence of a
template. Indeed, one can pick an individual of the cohort and use it as a reference subject on
which to transport all other individuals. We give an example in Figure 5.7, showing that FUGW
correctly preserved idiosyncrasies of each subject while transporting their functional signal in an
anatomically sound way.
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Figure 5.7 – Transporting individual maps onto a reference subject FUGW can help
bridge the absence of template anatomies and derive pairs of alignments such that all individuals
of the cohort are comparable. We display a map taken from the test set contrasting areas activated
during mathematical reasoning against areas activated for other stimuli of the protocol.

5.4.3 Experiment 3 - Barycenter

In the absence of a proper metric to quantify the correctness of a barycenter, we first qualita-
tively compare the functional templates obtained with and without alignment. In Figure 5.8.A,
we do so using brain maps taken from the test set. We can see that the barycenter obtained
with FUGW yields sharper contrasts and more fine-grained details than the barycenter obtained
by per-vertex averaging. We also display in Figure 5.8.B the result of a one-sample test for the
same contrast, which can readily be used for inference. The one-sample test map obtained after
alignment to the FUGW template exhibits the same supra-threshold clusters as the original
approach, but also some additional spots which were likely lost due to inter-subject variability
in the fsaverage5 space. This approach is thus very useful to increase power in group inference.
We quantify this result by counting the number of supra-threshold vertices with and without
alignment for each contrast map of the test set. Our alignment method significantly finds more
such vertices of interest, as shown in Figure 5.8.C.

5.5 Discussion

FUGW can derive meaningful couplings between pairs of subjects without the need of a
pre-existing anatomical template. It is well-suited to computing barycenters of individuals, even
for small cohorts.

In addition, we have shown clear evidence that FUGW yields gains that cannot be achieved
by traditional diffeomorphic registration methods. These methods impose very strong constraints
to the displacement field, that may prevent reaching optimal configurations. More deeply, this
finding suggests that brain comparison ultimately requires lifting hard regularity constraints on
the alignment models, and that two human brains differ by more than a simple continuous surface
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Figure 5.8 – FUGW barycenter yields much finer-grained maps than group averages
We study the same statistical map as in Figure 5.1, which contrasts areas of the brain involved
in mathematical reasoning. A. These complex maps projected onto the barycenter and averaged
show more specific activation patterns than simple group averages, especially in cortical areas
exhibiting more variability, such as the prefrontal cortex. B. Deriving a t-test on aligned maps
captures the same clusters as the classical approach (plain green circles), but also new clusters in
areas where inter-subject variability is high (dotted black circles). Peak t-statistics are also higher
with FUGW. C. Ratio of number of activated vertices (|t-statistic| ≥ 4) with versus without
alignment for each map of the test set. Our method finds significantly more of such vertices
(p-value = 3 · 10−4).

deformation. However, current results have not shown a strong correlation gain of unbalanced
OT compared to balanced OT, likely because the cohort under study is too small. Leveraging
datasets such as HCP (Van Essen et al., 2013) with a larger number of subjects will help lower
the standard error on correlation gain estimates. In this work, we decided to rely on a predefined
anatomical template (fsaverage5 ) to derive functional barycenters. It would be interesting to
investigate whether more representative anatomical templates can be learned during the process.
This would in particular help to customize templates to different populations or species.

Additionally, using an entropic solver introduces a new hyper-parameter ε that has a strong
effect, but is hard to interpret. Future work may replace the Sinkhorn algorithm (Séjourné et al.,
2019) used here by the majorization-minimization one (Chapel, Alaya, and Gasso, 2020), which
does not require entropic smoothing. This solution can yield sparse couplings while being orders
of magnitude faster, which will prove useful when computing barycenters on large cohorts.

Finally, we plan to make use of FUGW to derive alignments between human and non-human
primates without anatomical priors. Indeed, the understanding of given brain mechanisms will
benefit from more detailed invasive measurements made on other species only if brains can be
matched across species; moreover, this raises the question of features that make the human brain
unique, by identifying patterns that have no counterpart in other species. By maximizing the
functional alignment between areas, but also allowing for some regions to be massively shrunk or
downright absent in one species relative to the other, the present tool could shed an objective
light on the important issue of whether and how the language-related areas of the human cortical
sheet map onto the architecture of non-human primate brains.
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This chapter presents the results from (Demetci et al., 2024) and address the problem of
incorporating priors into Gromov-Wasserstein (GW) distance. GW distance has many applications
in machine learning due to its ability to compare measures across metric spaces and its invariance
to isometric transformations. However, in certain applications, this invariant property can be
too flexible, thus undesirable. Moreover, the GW distance solely considers pairwise sample
similarities in input datasets, disregarding the raw feature representations. We propose a new
optimal transport formulation, called Augmented Gromov-Wasserstein (AGW), that allows for
some control over the level of rigidity to transformations. It also incorporates feature alignments,
enabling us to better leverage prior knowledge on the input data for improved performance. We
present theoretical insights into the proposed method. We then demonstrate its usefulness for
single-cell multi-omic alignment tasks and heterogeneous domain adaptation in machine learning.
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Chapter 6. Breaking isometric ties and introducing priors in Gromov-Wasserstein
distance

6.1 Introduction

Optimal transport (OT) theory provides a fundamental tool for comparing and aligning
probability measures omnipresent in machine learning (ML) tasks. Following the least effort
principle, OT and its associated metrics offer many attractive properties that other divergences,
such as the popular Kullback-Leibler or Jensen-Shannon divergences, lack. For instance, OT
borrows key geometric properties of the underlying “ground” space on which the distributions are
defined (Villani, 2003) and enjoys non-vanishing gradients when measures have disjoint support
(Arjovsky, Chintala, and Bottou, 2017). OT theory has also been extended to a much more
challenging case of probability measures supported on different metric-measure spaces. In this
scenario, the Gromov-Wasserstein (GW) distance seeks an optimal matching between points in
the supports of the considered distributions that will minimize the distortion of intra-domain
distances upon such matching.

Since its proposal by Mémoli (2011b) and further extensions by Peyré, Cuturi, and Solomon
(2016), GW has been successfully used in a wide range of applications, including domain adaptation
(Yan et al., 2018), computational biology (Cang and Nie, 2020; Cao et al., 2022; Cao, Hong,
and Wan, 2021; Demetci et al., 2020, 2022a; Nitzan et al., 2019; Zeira et al., 2022), generative
modeling (Bunne et al., 2019), and reinforcement learning (Nakagawa et al., 2022).

Limitations of prior work Successful applications of GW distance are often attributed to its
invariance to distance-preserving transformations (also called “isometries”) of the input domains.
Since GW considers only intra-domain distances, it is naturally invariant to any transformation
that does not alter them. While this is a blessing in many applications, for example, comparing
graphs with the unknown ordering of nodes, it may become a curse when one has to choose
the “right” isometry among many that yield the same GW distance. How could one break such
ties while keeping the attractive properties of the GW distance? This question remains to be
addressed in the field.

Additionally, GW distances are often used in tasks where one may have some a priori
knowledge about the mapping between the two considered spaces. For example, in single-cell
applications, mapping a group of cells in similar tissues across species helps understand the
evolutionarily conserved and diverging cell types and functions (Kriebel and Welch, 2022). When
performed using OT, this cross-species cell mapping may benefit from the knowledge about an
overlapping set of orthologous genes 1. GW formulation does not offer any straightforward way
to incorporate this knowledge, which may lead to suboptimal performance.

1. Genes in two different species that originated from a common ancestor and largely maintained their function
and sequence during speciation
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Figure 6.1 – Aligning digits from MNIST and USPS datasets. (A) Confusion matrices of GW,
AGW with α = 0.5 and COOT. (*) denote pair alignments ; (B) Feature coupling Q of AGW
compared to COOT; (C) Illustration of a case from where GW’s and COOT’s invariants
are detrimental for obtaining a meaningful comparison, while AGW remains informative. (D)
Example showing improved digit alignment with feature-level supervision that restricts reflections
(E) Feature coupling recovered by AGW (α = 0.5) in the supervised setting of (D).

Our contributions In this chapter, we introduce a new OT formulation that addresses the
drawbacks of the GW distance mentioned above. We summarize our contributions as follows:

1. We propose Augmented Gromov-Wasserstein (AGW), a new formulation that leverages
both pairwise sample similarities in input datasets and their raw data representations;

2. We demonstrate that AGW allows for better control over the isometric transformations of
the GW distance and helps break isometric ties;

3. We show that AGW can incorporate prior knowledge to guide how the two metric spaces
should be compared, which improves object comparisons;

4. We provide a theoretical analysis of the properties of the proposed formulation and examples
that concretely illustrate its unique features;

5. Our empirical results show that AGW outperforms previously proposed cross-domain OT
methods in several downstream tasks and tends to converge in fewer iterations than GW.
We first focus on real-world applications in computational biology, namely the single-cell
data integration tasks. Then, we also illustrate its generalizability to the heterogeneous
domain adaptation in ML.

6.2 Augmented Gromov-Wasserstein

Here, we start by outlining the motivation for our proposed formulation, highlighting the dif-
ferent properties of GW distance and COOT. Then, we detail our AGW method that interpolates

101

Optimal transport for transfer learning across spaces Quang huy Tran 2024



Chapter 6. Breaking isometric ties and introducing priors in Gromov-Wasserstein
distance

between the two, followed by a theoretical study of its properties.

6.2.1 Motivation

Invariants of GW GW distance remains unchanged under isometric transformations of the
input data. This property has contributed much to the popularity of GW distance, as isometries
naturally appear in many applications. However, not all isometries are equally desirable. For
instance, a rotation of the handwritten digit 6 seen as a discrete measure can lead to its slight
variation for small angles or to a digit 9 when the angle is close to 180 degrees. In both cases,
however, the GW distance remains unchanged, making it insufficient to distinguish the two digits
apart.

Invariants of COOT Unlike GW, COOT has fewer degrees of freedom in terms of invariance
to global isometric transformations as it is limited to permutations of rows and columns of the
two matrices, and not all isometric transformations can be achieved via such permutations.

Additionally, COOT is strictly positive for any two datasets of different sizes either in
terms of features or samples, making it much more restrictive than GW. It thus provides a
fine-grained control when comparing complex objects, yet it lacks the robustness of GW to
frequently encountered transformations between the two datasets. Further, unlike GW, it is
invariant to local isometries that can be achieved via permutations of a subset of features.

6.2.2 AGW formulation

Given the above discussion on the invariants of COOT and GW distance, interpolating
between them will restrict each other’s invariants. Additionally, interpolating with COOT is a
natural way to introduce raw feature alignments in GW, which allows for leveraging priors on
them. We call this interpolation Augmented GW (AGW). Recall that a weighted matrix is
the triplet X = (X,µX1 , µX2 ), where X ∈ Rnx×dx , µX1 ∈ ∆nx and µX2 ∈ ∆dx . Given α ∈ [0, 1], we
define the AGW between two weighted matrices X and Y as

AGWα(X ,Y) := min
P∈U(µX

1 ,µ
Y
1 )

Q∈U(µX
2 ,µ

Y
2 )

α 〈L(Cx, Cy)⊗ P, P 〉+ (1− α) 〈L(X,Y )⊗ P,Q〉, (6.1)

where

• 〈L(Cx, Cy) ⊗ P, P 〉 = ∑
i,j,k,l (Cxik − Cyjl)2PijPkl is the objective function of the GW

distance. Here, the matrices Cx ∈ Rnx×nx and Cy ∈ Rny×ny contain the intra-domain
pairwise distances between the rows of X and Y , respectively.

• 〈L(X,Y )⊗ P,Q〉 = ∑
i,j,k,l (Xik − Yjl)2PijQkl is the objective function of the COOT.
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The AGW problem always admits a solution. Indeed, as the objective function is continuous
and the sets of admissible couplings are compact, the existence of minimum and minimizer is
guaranteed.

When α = 1, we recover the GW distance, whereas α = 0 corresponds to the COOT. Our
interpolation offers several important benefits. First, COOT term ensures that AGW will take
different values for any two isometries whenever dx 6= dy. Intuitively, AGW’s value will then
depend on how “far” a given isometry is from a permutation of rows and columns of the inputs.
Thus, we restrict a broad class of (infinitely many) transformations that GW cannot distinguish
and we tell them apart by assessing whether they can be approximately obtained by simply
swapping 1D elements in input matrices.

Second, combining the objective functions of COOT and GW distance allows us to effectively
influence the optimization of P by introducing priors on feature matchings through Q and vice
versa. This can be achieved by penalizing the costs of matching certain features in the COOT
term to influence the optimization of Q. This prior knowledge guides how the two metric spaces
should be compared and improves empirical performance. These key properties explain our
choice of calling it “augmented”: we equip GW distance with an ability to provide finer-grained
object comparisons by breaking isometric ties and/or guiding the matching using available prior
knowledge.

Illustrations We illustrate AGW’s properties on a task of aligning handwritten digits from
MNIST (LeCun, Cortes, and Burges, 2010) (28×28 pixels) and USPS datasets (16×16 pixels)
(Hull, 1994) in Figure 6.1, where AGW with α = 0.5 outperforms both GW and COOT in
alignment accuracy (Panel A). The black asterisks show the digit pairs that most benefit from
AGW interpolation, which are 6− 2 for GW and 3− 5 for COOT. Panel C visualizes examples
from these digit pairs that are misaligned by GW and COOT but not by AGW. 2. Here, we
observe that 6-2 misalignment by GW is likely because one is a close reflection of the other
across the y-axis. Similarly, COOT mismatches 3 and 5 as one can obtain 3 from 5 by a local
permutation of the upper half of the pixels. Panel B visualizes the feature couplings obtained
by AGW (on the left) and COOT (on the right). The feature coupling by COOT confirms that
COOT allows for a reflection across the y-axis on the upper half of the image but not on the
lower half. With AGW, both of these misalignments improve, likely because (1) the correct
feature alignments in the lower half of the images prevent 6 and 2 from being matched and (2)
GW distance is non-zero for 5-3 matches since the transformation is not applied to the whole
image. In Panels D and E, we also show that providing supervision on feature alignments to
restrict local reflections further improves AGW’s performance.

Similar improvement can be seen for aligning cells (samples) for two different single-cell

2. Here, we define “aligned pairs” as pairs of digits with the highest coupling probabilities.
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Algorithm 7 BCD algorithm to solve AGW
1: Initialize P ∗ and Q∗.
2: repeat
3: Calculate LQ = L(X,Y )⊗ P ∗.
4: For fixed P , solve the OT problem: Q∗ ∈ argminQ∈U(µX

2 ,µ
Y
2 )〈LQ, Q〉.

5: Calculate LP = L(X,Y )⊗Q∗.
6: For fixed Q, solve the fused GW problem:

P ∗ ∈ argmin
P∈U(µX

1 ,µ
Y
1 )
α 〈L(DX , DY )⊗ P, P 〉+ (1− α)〈LP , P 〉. (6.2)

7: until convergence

measurements (features) (Chen, Lake, and Zhang, 2019b) in Figure S2. Panel A shows that
AGW consistently maps the 4 cell types in the data better than GW (a popular method for this
task (Cao et al., 2022; Cao, Hong, and Wan, 2021; Demetci et al., 2020, 2022a)) over 50 random
subsampling of cells. The 2D projection of alignments in Panel B shows that GW sometimes
completely swaps the cell type clusters when they have a similar number of cells, whereas AGW
is more robust to this phenomenon.

Optimization For simplicity, suppose nx = ny = n and dx = dy = d. With the squared loss
in both GW and COOT terms, the computational trick by Peyré, Cuturi, and Solomon (2016)
can be applied, which reduces the complexity of AGW from O(n4 + n2d2) to O(n3 + dn2 + nd2).
For optimization, we use the block coordinate descent (BCD) algorithm, where we alternatively
fix one coupling and minimize AGW with respect to the other (Algorithm 7). Each iteration
then consists of solving two OT problems. To further accelerate the optimization, entropic
regularization (Cuturi, 2013) can be used on either P , Q, or both. In practice, we rely on the
built-in functions of the Python Optimal Transport package (Flamary et al., 2021).

6.2.3 Theoretical analysis

Preliminary results Intuitively, we expect that AGW interpolates between GW and COOT
and shares similar properties with Fused Gromov-Wasserstein (FGW) distance (Vayer et al.,
2019a), namely the relaxed triangle inequality (since COOT and GW distances are both metrics).
The following result summarizes these observations, whose proofs are presented in Appendix
8.5.1.

Proposition 6.2.1. For α ∈ [0, 1],

1. Given two weighted matrices X and Y, when α → 0 (or 1), one has AGWα(X ,Y) →
COOT(X ,Y) (or GW(X ,Y)).
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2. AGW satisfies the relaxed triangle inequality: for any weighted matrices X ,Y and Z, one
has AGWα(X ,Y) ≤ 2

(
AGWα(X ,Z) + AGWα(Z,Y)

)
.

Invariants of AGW A more intriguing question is about the invariants that AGW exhibits.
We denote Od and Pd the sets of orthogonal and permutation matrices of size d, respectively.
Given a matrix X ∈ Rn×d, we assume that

Assumption 6.2.1. X is full-rank and has exactly min(n, d) distinct singular values.

The full-rank assumption is not uncommon in the machine learning literature (Kawaguchi,
2016) and can be easily met in practice. Additionally, not only the Hermitian matrices with
repeated eigenvalues are rare (see page 56 in (Tao, 2012)), but we can even show that

Corollary 6.2.1. The set of Hermitian matrices with repeated eigenvalues has zero Lebesgue
measure.

Since the singular values of X are determined by the symmetric matrix XXT , Corollary 6.2.1
assures that it is reasonable to exclude all symmetric matrices with repeated eigenvalues. With
these, we present:

Theorem 6.2.1. Given two weighted matrices X and Y.

1. If µX1 = µY1 and Y is obtained by permuting columns of X via the permutation σc (so
µY2 = (σc)#µ

X
2 ), then AGWα(X ,Y) = 0.

2. Suppose X ∈ Rn×d, where n ≥ d, satisfies Assumption 6.2.1. For any 0 < α < 1,
if AGWα(X ,Y) = 0, then there exist a symmetric orthogonal matrix O ∈ Od and a
permutation matrix P ∈ Pd such that Y = XOP .

Despite the simplicity of the interpolation structure, the invariants induced by AGW present
novel and non-trivial challenges for theoretical analysis. While sharing basic invariants, such
as feature swaps, AGW covers much fewer isometries than GW distance. Similar to COOT,
AGW only has at most finitely many, whereas GW has infinitely many isometries. Under mild
conditions, when AGW vanishes, only transformations with a particular structure (compositions
of a permutation and a symmetric orthogonal transformation) are eligible. Given the superior
empirical performance of AGW over GW and COOT, such isometries appear meaningful and
relevant in real-world tasks.

Weak invariant to translation While enjoying the interpolation and metric properties, AGW
does not inherit the invariant to the translation of the GW distance. However, we find that it
satisfies a relaxed version of this invariant defined as follows.
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Definition 6.2.1. We call D = infπ∈U F (π,X, Y ), where X,Y are input data and U is a set
of feasible couplings and F is a real-valued functional, an OT-based divergence. Then D is
weakly invariant to translation if for every a, b ∈ R, we have infπ∈U F (π,X + a, Y + b) =
infπ∈U F (π,X, Y ) + c, for some constant C depending on a, b,X, Y and U .

Here, we denote the translation of X as X + a, whose elements are of the form Xij + a.
Intuitively, an OT-based divergence is weakly invariant to translation if only the optimal transport
plan is preserved under translation, but not necessarily the divergence itself. In practice, we would
argue that the ability to preserve the optimal plan under translation is much more important
than preserving the distance itself. In other words, the translation only shifts the minimum but
has no impact on the optimization procedure, meaning that the minimizer remains unchanged.
This is indeed the case of AGW.

Proposition 6.2.2. For any α ∈ [0, 1], AGW is weakly invariant to translation.

6.2.4 Related work

Most related to our work is the Fused Gromov-Wasserstein (FGW) distance (Vayer et al.,
2019a) that compares structured objects. Its objective function is a convex combination of
the GW term defined based on the pairwise intra-domain distances and the Wasserstein term
defined over additional features that live in the same space for both input matrices. Despite the
resemblance to FGW, AGW fundamentally differs from it in several ways. Firstly, AGW uses
explicit control over the invariants of GW to provide more meaningful cross-domain matchings.
No other OT-based metric in the literature (including FGW) leverages a similar idea. As such,
Theorem 6.2.1 is the first result of its kind aiming at characterizing the invariances resulting
from such interpolation.

Secondly, FGW is mostly used for structured objects endowed with additional information
living in the same space, for example, two graphs where each node may be colored by a specific
color (“additional” feature). On the other hand, AGW can be used on empirical measures defined
for any set of objects across domains, including ones from different dimensional spaces, and
requires no additional information.

Finally, the notion of feature space in FGW does not have the same meaning as in AGW.
The feature space in FGW is associated with the sample space, whereas in AGW (and also in
COOT), the two spaces are independent. Each element of the former is associated with a point
in the sample space. By contrast, the features in AGW are precisely the coordinates of a point,
in addition to its representation in the original and dissimilarity-induced spaces.

106

Optimal transport for transfer learning across spaces Quang huy Tran 2024



6.3. Experimental evaluations

Simulation 1 Simulation 2 Simulation 3 Simulated RNA-seq scGEM SNARE-seq CITE-seq
(300x1000,
300x2000)

(300x1000,
300x2000)

(300x1000,
300x2000)

(5000x50,
5000x500)

(177x28,
177x34)

(1047x1000,
1047x3000)

(1000x25,
1000x24)

AGW 0.0730 0.0041 0.0082 0.0 0.183 0.132 0.091
GW 0.0866 0.0216 0.0084 7.1e-5 0.198 0.150 0.121
COOT 0.0752 0.0041 0.0088 0.0 0.206 0.153 0.132
UGW 0.0838 0.0522 0.0105 0.096 0.161 0.140 0.116
UCOOT 0.0850 0.0081 0.0122 0.115 0.181 0.188 0.127
bindSC N/A N/A N/A 3.8e-4 N/A 0.242 0.144

Table 6.1 – Single-cell alignment error, as quantified by the average ‘fraction of samples
closer than true match’ (FOSCTTM) metric (lower values are better). For each dataset, the size
of the two domains they contain are expression in the format (number of samples x number of
features) in the second row.
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Figure 6.2 – Feature alignments for the CITE-seq dataset. Green boxes indicate where we expect
matches (a notion of “ground-truth”) based on domain knowledge.

6.3 Experimental evaluations

We apply AGW to the single-cell multi-omics alignment and heterogeneous domain adaptation
tasks. Overall, we aim to empirically answer: (1) Does tightening invariances improve upon GW’s
performance in tasks where it has been previously used? (2) Does prior knowledge introduced in
AGW help in obtaining better cross-domain matchings?

Baselines We pick other cross-domain OT methods as baselines, namely COOT, GW, and their
unbalanced counterparts, UCOOT (Tran et al., 2023) and UGW (Séjourné, Vialard, and Peyré,
2021b). Note that we leave extending AGW to unbalanced scenarios for future work. We consider
entropic regularization for all methods on both sample and (when applicable) feature couplings.
We keep the hyperparameter values considered for all regularization coefficients consistent across
all methods. We report the results of the best-performing hyperparameter combination after
tuning on a validation set for each method in each experiment.
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6.3.1 Integrating single-cell multi-omics datasets

Integrating data from different single-cell sequencing experiments is an important biological
task for which OT has proven useful (Cao et al., 2022; Cao, Hong, and Wan, 2021; Demetci et al.,
2020). Single-cell experiments measure various genomic features at the individual cell resolution.
Jointly studying these can give scientists insight into the mechanisms regulating cells. However,
experimentally combining multiple types of measurements for the same cell is challenging for
most combinations. Scientists rely on the computational integration of multi-modal data taken on
different but related cells (e.g., by cell type or tissue) to study the relationships and interactions
between different aspects of the genome.

We particularly focus on this task for two reasons. First, GW is used as a state-of-the-art
method for this task (Cao et al., 2022; Cao, Hong, and Wan, 2021; Demetci et al., 2022a), so it is
important to see if AGW improves upon it. Second, several single-cell benchmark datasets provide
ground-truth matchings on the feature- and the sample-level alignments. This information allows
us to assess the effect of guiding cross-domain matching with partial or full prior knowledge of
these relationships.

Single-cell alignment We follow the first GW application in this domain (Demetci et al., 2020)
and align samples (i.e., cells) of simulated and real-world datasets from different measurement
types. We have ground-truth information on cell-cell alignments for all datasets, which we only
use for benchmarking. We demonstrate in Table 6.1 that AGW consistently yields higher quality
cell alignments (with lower alignment error) compared to the state-of-the-art baselines, including
GW, COOT, and their unbalanced counterparts.

We include bindSC as an additional baseline, which performs bi-order canonical correlation
analysis to align single-cell datasets. Unlike other single-cell alignment methods, it internally
computes a feature correlation matrix that users can extract. So, we include it as a baseline to
compare its feature alignment performance against AGW in the next section. However, bindSC
usage is limited to a few measurement types as it requires an input matrix that relates features
across domains to bring the datasets into the same space at initialization. We do not have this
information for most datasets, thus the “N/A” entries in Table 6.1.

Aligning genomic features AGW augments GW formulation with a feature coupling matrix.
Therefore, we jointly align features and see whether AGW reveals relevant biological relationships.
All current single-cell alignment methods only align samples (i.e., cells), except for bindSC as
discussed above.

Among the real-world datasets in Table 6.1, CITE-seq (Stoeckius et al., 2017) is the only one
with ground-truth information on feature correspondences. This dataset has paired single-cell
measurements on the abundance levels of 25 antibodies and activity (i.e., “expression”) levels of
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A → A A → C A → W C → A C → C C → W W → A W → C W → W
AGW 93.1±1.6 68.3±14.1 79.8±3.5 55.4±7.1 76.4±5.6 57.7±14.3 60.1±9.1 60.9±13.3 97.3±0.9
GW 86.2±2.3 64.1±6.2 77.6±11.1 53.0±13.2 81.9±10.5 53.5±15.9 50.4±22.1 54.3±14.7 92.5±2.6
COOT 50.3±15.9 35.0±6.4 39.8±14.5 40.8±15.8 33.5±10.7 37.5±10.4 44.3±14.0 27.4±10.2 57.9±13.4
UGW 90.6±6.5 67.2±12.7 75.4±3.1 56.3±14.6 69.2±8.7 51.2±13.1 66.7±9.9 58.4±4.7 94.7±1.5
UCOOT 65.4±2.1 44.6±3.8 36.4±1.2 55.1±8.6 52.1±3.8 41.8±14.9 63.2±4.0 59.7±6.3 80.3±2.1

Table 6.2 – Heterogeneous domain adaptation results (unsupervised). Best results
are bolded, and second-bests are underlined. For AGW, the α values used are respectively
0.6, 0.9, 0.7, 0.9, 0.3, 0.8, 0.7, 0.2, 0.6.

genes, including the genes that encode these 25 antibodies. So, we first present unsupervised
feature alignment results on the CITE-seq dataset. We compare our feature alignments with
bindSC, COOT, and UCOOT in Figure 6.2. The entries in the feature alignment matrices are
arranged such that the “ground-truth” correspondences lie in the diagonal, marked by green
squares. While AGW correctly assigns 19 out of 25 antibodies to their encoding genes with
the highest alignment probability, this number is 16 for UCOOT, 15 for COOT and 13 for
bindSC (which yields correlation coefficients instead of alignment probabilities). Additionally,
the OT methods yield more sparse alignments thanks to the “least effort” requirement in their
formulation.

Leveraging prior knowledge Finally, we show the advantage of providing priors by aligning
a multi-species gene expression dataset containing measurements from the adult mouse prefrontal
cortex (Bhattacherjee et al., 2019) and pallium of bearded lizard (Tosches et al., 2018). Since
measurements come from two different species, the feature space (i.e., genes) differs, and there is
no 1-1 correspondence between the samples (i.e., cells). However, there is a shared subset within
the features, i.e., orthologous genes that descend from a common ancestor and maintain similar
biological functions in both species. We also have domain knowledge on cells that belong to
similar cell types across the two species. Thus, we expect AGW to recover these relationships.

Figure 6.3A visualizes the cell-type alignment probabilities yielded by AGW when full
supervision is provided on the 10, 816 orthologous genes. The green boxes indicate alignment
between similar types of cells. This matrix is obtained by averaging the sample alignment matrix
(i.e., cell-cell alignments) into cell-type groups. We observe that AGW yields biologically plausible
alignments, as all the six cell types that have a natural match across the two species are correctly
matched. We also show in Figure 6.3B that providing supervision on one alignment level (e.g.,
features) improves the quality on the other alignment level (e.g., samples).
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Figure 6.3 – Aligning cross-species dataset. A. AGW’s cell-type alignments. B. Providing
supervision on one level of alignment (e.g., features) boosts alignments on the other. Standard
errors computed over 10 random runs. Dashed line indicates the sample alignment performance
of GW and bindSC (orthologous gene used in input).

6.3.2 Heterogeneous domain adaptation

Finally, we demonstrate the generalizability of our approach on a popular ML task, hetero-
geneous domain adaptation, where COOT and GW were previously successfully used. Domain
adaptation (DA) refers to the problem in which a classifier learned on one domain (called
source) can generalize to the other (called target). Here, we apply AGW to unsupervised and
semi-supervised heterogeneous DA (HDA) tasks, where the source and target samples live in
different spaces, and we have as few as zero labeled target samples.

Datasets and experimental setup We follow the experimental setup by Redko et al. (2020)
and use source-target pairs from the Caltech-Office dataset (Saenko et al., 2010). We consider all
pairs between three domains: Amazon (A), Caltech-256 (C), and Webcam (W), whose images
are embeddings from the second last layer in the GoogleNet (Szegedy et al., 2015) (vectors in
R4096) and CaffeNet (Jia et al., 2014) (vectors in R1024) neural network architectures.

In semi-supervised settings, we incorporate prior knowledge on a few target labels by adding
an extra cost matrix to the training of sample coupling, so that a source sample will be penalized
if it transfers mass to the target samples from different classes. Once the sample coupling P is
learned, we obtain the final prediction using label propagation: ŷt = argmaxk Lk·, where L = DsP

and Ds denotes one-hot encodings of the source labels ys.
All hyperparameters are tuned on a validation set based on accuracy. We evaluate AGW

against GW and COOT on source-target pairs from the Caltech-Office dataset (Saenko et al.,
2010) by considering all pairs between the three domains: Amazon (A), Caltech-256 (C), and
Webcam (W), similarly to (Redko et al., 2020). We randomly choose 20 samples per class and
perform adaptation from CaffeNet to GoogleNet and repeat it 10 times. We report the average
performance of each method along with the standard deviation. Differently than (Redko et al.,
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2020), we (1) unit normalize the dataset prior to alignment as we empirically found it to boost
all methods’ average performance compared to using unnormalized datasets, (2) use cosine
distances when defining intra-domain distance matrices for GW and AGW, as we found them
to perform better than Euclidean distances, and (3) report results after hyperparameter tuning
methods for each pair of datasets. Specifically, for each pair of (A)-(C), (A)-(W), etc, we sweep a
hyperparameter grid over 5 runs of random sampling, choose the best-performing combination,
and run 10 runs of random sampling to report results.

For all methods that allow for entropic regularization, we consider their version with no
entropic regularization (either on the sample-level alignments, feature-level alignments, or both),
along with various levels of regularization. For entropic regularization over sample alignments,
we consider ε1 ∈ [5e− 4, 1e− 3, 5e− 3, 1e− 2, 5e− 2, 0.1]. For entropic regularization over feature
alignments in COOT and AGW, we consider ε2 ∈ [5e− 4, 1e− 3, 5e− 3, 1e− 2, 5e− 2, 0.1]. As
the interpolation coefficient of AGW, we consider α ∈ [0.1, 0.2, ..., 0.9].

Results Table 6.2 presents the performance of each method averaged across ten runs in the
unsupervised setting, where AGW yields favorable results in 6 out of 9 cases. In two cases, UGW,
and in one case, UCOOT, outperform AGW despite the lower performance of their balanced
counterparts. In these cases, unbalanced formulations prove beneficial, and support extending
AGW to unbalanced scenarios as future work.

6.4 Discussion

We present Augmented Gromov-Wasserstein (AGW), a new OT-based divergence for incom-
parable spaces. It interpolates between GW and CO-Optimal transport and allows to narrow
down the choices of isometries induced by GW, while efficiently exploiting the prior knowledge on
the input data. We study its basic properties and empirically show that such restrictions result
in better performance for single-cell multi-omic alignment tasks and transfer learning. Future
work will focus on refining the theoretical analysis of the AGW invariants to better understand
their performance in practice. We will also extend AGW to the unbalanced and/or continuous
setting, and other tasks where feature supervision by domain experts may be incorporated in
OT framework.
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7.1 Contributions

The central motivation of this thesis is on the comparison between incomparable spaces. In
particular, our work lies at the intersection of various extensions of OT, namely the marginal
relaxation, the comparison between weighted objects, and the integration of prior knowledge.
Our contributions can be organized in two main axes.

On the methodology side, we aimed to understand a few popular practices in the usage
of divergences between incomparable spaces. First, in Section 3.2, we justify how entropic
regularization can be used to approximate the GW distance and COOT. Then in Chapter 4, we
show that the marginal constraints are tightly related to the impact of outliers. In particular,
relaxing them with penalization via the Kullback-Leibler divergence allows for being very robust,
whereas respecting them as in COOT and GW distance also paves the way for outliers to distort
the minimum and mislead the alignments.

On the applications side, our proposed methods address the questions arised from real-world
applications. In Chapter 5, we present the effectiveness of fused unbalanced GW in neuroscience,
where we showcase how it can be used to align human cortical surfaces and learn better brain
templates than the standard anatomical alignment approaches. In computational biology, we
tackle different problematics in the integration of single-cell multi-omics data, including how
to account for outliers (Chapter 4) and how to better exploit the input data (Chapter 6). In
particular, we illustrate how the proposed variations of COOT are still able to correctly recover
the relationships amongst genomic features, while providing meaningful cell correspondances
between the multi-omics datasets and even outperforming many other OT-based competitors.
These variations also show strong performance in the heterogeneous domain adaptation tasks,
especially in the unsupervised setting.
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7.2 Perspectives

From the methodology perspective, we discuss some remaining follow-ups left to explore from
our work.

An alternative solver for unbalanced OT problem The core engine of many unbalanced
OT-based methods, notably (fused) unbalanced GW and unbalanced COOT, relies on a solver
for the unbalanced OT problem. As discussed in Section 2.1.2, there are few options. The de
facto Sinkhorn-based algorithms (Séjourné et al., 2019; Séjourné, Vialard, and Peyré, 2021a)
usually converges slowly for small regularization, while the Majorization-Minimization (MM)
method (Chapel et al., 2021) suffers the same limitation for large marginal relaxation.

One possible alternative is the inexact Bregman Proximal Point (BPP) scheme, which is
first applied to the balanced OT problem by Xie et al. (2020), known as Inexact Proximal OT
(IPOT). Interestingly, this scheme can be easily extended to the unbalanced setting as follows.
Denote F the objective function of the regularized unbalanced OT problem (2.22). For fixed
learning rate η > 0, at iteration t, we solve

P (t+1) ≈ argmin
P∈Rm×n

≥0

F (P ) + η KL(P |P (t)), (7.1)

or equivalently,

P (t+1) ≈ argmin
P∈Rm×n

≥0

〈
C − η log P

(t)

γ
, P

〉
+ ρ1KL(P#1|µ) + ρ2KL(P#2|ν) + (ε+ η)KL(P |γ).

(7.2)

The right-hand side of Equation (7.2) is nothing but an entropic UOT problem with modified
cost and regularization. Thus, any solvers discussed in Section 2.1.2 can be used. Similar to IPOT,
even as few as one Sinkhorn iteration may work in practice, meaning that the corresponding
inexact solution may still empirically converge to the true minimizer of the UOT problem.

This inexact BPP scheme has two very appealing features. First, it is flexible and versatile
since it can handle both balanced, semi-relaxed (which MM cannot), and unregularized (which
Sinkhorn-based family cannot) settings.

Second, the presence of learning rate η increases the level of regularization in the inner entropic
UOT subproblem, thus brings two important benefits. The first one is on the reduction of number
of iterations: the larger the regularization, the faster the Sinkhorn algorithm converges. As a
consequence, running only a few iterations is usually enough to obtain a decent approximation of
the true solution. The second advantage is on the acceleration per BPP iteration. In practice,
when the regularization is not too small, one can ignore the log-domain implementation and
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employ the one with direct vector-matrix multiplication, without any concern about the numerical
overflow issue. As a result, this allows to speed up the calculation of the iterates.

However, despite the simplicity, it appears to be difficult to study the convergence of this
inexact scheme. In particular, while it is an immediate extension of the work of Xie et al. (2020) on
the balanced OT, their proof techniques of the convergence can not be adapted to the unbalanced
setting. This is because they rely on the property of the set of admissible couplings, which is not
available in the UOT. Moreover, their assumptions and conditions are also not trivial to verify in
practice, thus the convergence results are mostly of theoretical interest.

Perspectives on GW distance One potential application of MMOT-DC introduced in
Section 3.3 is on the study of the sample complexity of GW distance. More precisely, given two
measure networks X = (X, cX , µX) and Y = (Y, cY , µY ), we want to quantify the convergence
rate of |GW(X ,Y) − GW(Xn,Yn)|. Note that, Zhang et al., 2022a have also established the
convergence rate for the case of 2-GW distance, in which the similarity is measured by squared
Euclidean distance. The advantage of the approach via MMOT-DC, would be able to handle any
conditionally negative semi-definite kernel.

The idea is as follows: by Proposition 3.1.1, COOT and GW distance are equivalent 1. So,
we can replace GW distance by COOT. Next, we extend MMOT-DC to the continuous setting.
In the same spirit as Proposition 3.3.2, we expect that the interpolation property still holds,
notably MMOT-DC converges to COOT as regularization tends to the infinity. Thanks to the
Difference-of-Convex algorithm discussed in Section 3.3.5, we can linearize the MMOT-DC and
obtain an entropic MMOT problem, which has two advantages. First, the technique used to
study the sample complexity of entropic OT in (Genevay et al., 2019) can be extended to the
multi-marginal setting. Second, this entropic problem can approximate COOT. Overall, the
sample complexity of GW distance roughly boils down to that of an entropic MMOT problem.

Perspectives on Augmented Gromov-Wasserstein (AGW) While AGW has shown
favorable performance over many other OT-based divergences, its isometries are still far from
being fully understood. In particular, while we are able to explore the structure of some isometries
via the singular-value decomposition, there are still some open questions.

1. What is the intuition behinds the isometries induced by AGW? To what extent are they
"better" than those of GW distance?

2. Our analysis is only restricted to the case where n ≥ d, meaning that the high-dimensional
setting remains staying in the dark.

3. We can only establish the necessary conditions. But are they also sufficient?

1. Note that one needs to properly extend Proposition 3.1.1 to the continuous setting (of measure networks).
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4. Given the discrete nature of AGW, it is natural the consider the continuous extension. In
this case, what are the characteristics of its isometries?

In conclusion, we hope that this thesis contributes to the theory and practice of optimal
transport for incomparable spaces, and that it will invite more applications of optimal trans-
port in the interdisciplinary domains, including but not limited to computational biology and
neuroscience.
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8.1 Appendix of Chapter 2

8.1.1 Proofs related to Unbalanced Optimal Transport

Proof of Corollary 2.1.2. Following (Chapel et al., 2021), we can write Problem (2.37) as

min
t∈Rmn
≥0
〈c, t〉+ ||Mt− y||22

2 , (8.1)

where t = vec(P ), c = vec(C) are the vectorizations of P,C, respectively. Here,

• M = (ρ1/2
1 MT

r , ρ
1/2
2 MT

c , ε
1/2Imn)T ∈ R(m+n+mn)×(mn).

• y = (ρ1/2
1 µT , ρ

1/2
2 νT , ε1/2vec(γ)T )T ∈ Rm+n+mn.
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• Mr = numpy.repeat(numpy.eye(n),m) ∈ Rn×mn.

• Mc = [Im, ..., Im] = numpy.tile(numpy.eye(m),n) ∈ Rm×mn.

See Appendix A in (Chapel et al., 2021) for more details of Mr,Mc. Remark that if A ∈ Rm×n

and B ∈ Rm×p, then

(A,B)
(
AT

BT

)
= AAT +BBT . (8.2)

Following Equation 23 in (Chapel et al., 2021), for i ∈ [mn],

t
(k+1)
i = t

(k)
i

max
{
0, (MT y)i − ci

}
(MTMt(k))i

. (8.3)

Now, we convert the vector t back to the transport plan. More precisely, mat(MT y) = (ρ1µ)⊕
(ρ2ν)+εγ, where matrization is the inverse operation of vectorization. Since,MTM = ρ1M

T
r Mr+

ρ2M
T
c Mc + εImn, we obtain mat(MTMt(k)) = (ρ1P

(k)
#1 ) ⊕ (ρ2P

(k)
#2 ) + εP (k). The result then

follows. �

Proof of Corollary 2.1.1. We follow the same proof technique of Lemma 4 in (Pham et al., 2020).
Given a Bregman divergence Dψ, for any t ∈ R such that tp ∈ dom(ψ), we have

Dψ(tp|q) = ψ(tp)− ψ(q)− 〈∇ψ(q), tp− q〉 (8.4)

= ψ(tp)− ψ(q)−
[
t〈∇ψ(q), p− q〉+ (t− 1)〈∇ψ(q), q〉

]
(8.5)

= ψ(tp)− ψ(q) + t
[
Dψ(p|q) + ψ(q)− ψ(p)

]
− (t− 1)〈∇ψ(q), q〉 (8.6)

= tDψ(p|q) +
[
ψ(tp)− tψ(p)

]
+ (t− 1)

[
ψ(q)− 〈∇ψ(q), q〉

]
. (8.7)

Denote g the objective function of Problem (2.25). We have,

g(tP ) = tg(P ) +
( 2∑
k=1

ρk
[
ϕk(tP#k)− tϕk(P#k)

]
+ ε

[
ϕ(tP )− tϕ(P )

])
︸ ︷︷ ︸

A(t)

(8.8)

+ (t− 1)
( 2∑
k=1

ρk
[
ϕk(µk)− 〈∇ϕk(µk), µk〉

]
+ ε

[
ϕ(γ)− 〈∇ϕ(γ), γ〉

])
︸ ︷︷ ︸

B

(8.9)

= tg(P ) +A(t) + (t− 1)B. (8.10)

For any minimizer P ∗ ∈ E, denote E∗ = {t ∈ R : tP ∗ ∈ E}. Clearly, E∗ is not empty since
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1 ∈ E∗. Since P ∗ is a (global) minimizer, we have ∂g(tP ∗)
∂t

∣∣∣
t=1

= 0, or equivalently,

g(P ∗) = −B − ∂A(t)
∂t

∣∣∣∣
t=1

(8.11)

=
2∑

k=1
ρk
[
〈∇ϕk(µk), µk〉 − ϕk(µk)

]
+ ε

[
〈∇ϕ(γ), γ〉 − ϕ(γ)

]
(8.12)

+
2∑

k=1
ρk

(
ϕk(P ∗#k)−

∂ϕk(tP ∗#k)
∂t

∣∣∣∣
t=1

)
+ ε

(
ϕ(P ∗)− ∂ϕ(tP ∗)

∂t

∣∣∣∣
t=1

)
. (8.13)

The result then follows. �

Corollary 8.1.1. Equations (2.37), (2.84) and (4.2) are consequences of Corollary 2.1.1.

Proof of Corollary 8.1.1. Equation (2.37) on the squared l2-regularized UOT follows immediately
from Corollary 2.1.1, where Dϕ, Dϕ1 and Dϕ2 are the half squared Euclidean norm, and E =
Rm×n≥0 . When Dϕ, Dϕ1 and Dϕ2 are the KL divergence, Equation (2.84) on unbalanced Gromov-
Wasserstein and Equation (4.2) on unbalanced Co-Optimal Transport can be justified in exactly
the same manner. For this reason, we only show how to derive the relation in Equation (4.2).
Recall that, from the proof of Proposition 8.3.1, Problem (8.101) can be rewritten as

UCOOTρ(X1,X2) = inf
π∈Euco

∫
S
|ξ1 − ξ2|pdπ +

∑
k=1,2

ρkDφk
(π#k|µk), (8.14)

where µk = µsk ⊗ µ
f
k , for k = 1, 2, and

Euco = {π ∈M+(S)|π = πs ⊗ πf , πs ∈M+(Xs
1 ×Xs

2), πf ∈M+(Xf
1 ×X

f
2 )} (8.15)

is the set of factorizable plans inM+(S). Now, clearly, for any t > 0, if π ∈ Euco, then tπ ∈ Euco.
So, Corollary 2.1.1 can be applied and we deduce that, if π∗ = πs∗ ⊗ π

f
∗ is the solution of Problem

(8.14), then

UCOOTρ(X1,X2) =
2∑

k=1
ρkm(µk)− (ρ1 + ρ2)m(π∗) (8.16)

=
2∑

k=1
ρkm(µsk)m(µfk)− (ρ1 + ρ2)m(πs∗)m(πf∗ ). (8.17)

The result then follows. �
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8.1.2 Proofs related to Gromov-Wasserstein distance

Corollary 8.1.2. The formulations (2.42) and (2.46) of the Gromov-Hausdorff distance are
equivalent.

Proof of Corollary 8.1.2. In the formulation (2.46), by choosing identity mappings (which are
clearly isometric embeddings) f = IdX and g = IdY , and Z = X ∪Y equipped with an admissible
distance d, we have

GH((X, dX), (Y, dY )) ≤ d(Z,d)
H (X,Y ) (8.18)

As this is true for any d ∈ D(dX , dY ), we have GH((X, dX), (Y, dY )) ≤ infd d(X∪Y,d)
H (X,Y ). For

the reverse direction, given any isometries f : X → X ′ and g : Y → Y ′ with X ′, Y ′ ⊂ (Z, dZ) (we
call (X ′, Y ′) a metric coupling (Villani, 2009)), one can define a distance d on X ∪ Y (as shown
in Proposition 27.1 in (Villani, 2009)). Then,

d
(Z,dZ)
H (f(X), g(Y )) = max(sup

y∈Y
dZ(g(y), f(X)), sup

x∈X
dZ(f(x), g(Y )))

= max(sup
y∈Y

d(y,X), sup
x∈X

d(x, Y ))

= d
(X∪Y,d)
H (X,Y ) ≥ inf

d′
d

(X∪Y,d′)
H (X,Y )

(8.19)

We deduce that GH((X, dX), (Y, dY )) ≥ infd d(X∪Y,d)
H (X,Y ), thus equality holds. �

Proof of Lemma 2.2.4. Denote F (P ) = 〈C ⊗ P, P 〉+ 〈M,P 〉+ εKL(P |γ). Then ∇F (P ) = C ⊗
P +M + ε log P

γ . The PGD iterate reads: for τ > 0,

P (t+1) = projKL
U(µx,µy)

(
P (t) � e−τ∇F (P (t))

)
, (8.20)

where projKL
U(µx,µy)(K) = argminP∈U(µx,µy)−ε〈logK,P 〉+ εH(P ). Denote η = τε. We have

logK = log
(
P (t) � e−τ∇F (P (t))

)
(8.21)

= logP (t) − τ(C ⊗ P (t) +M)− τε log P
(t)

γ
(8.22)

= −τ(C ⊗ P (t) +M) + log
(
γη � (P (t))1−η

)
. (8.23)

We deduce that

− ε〈logK,P 〉+ εH(P ) (8.24)

= η〈C ⊗ P (t) +M,P 〉 − ε〈P, log
(
γη � (P (t))1−η

)
〉+ εH(P ) (8.25)

= η〈C ⊗ P (t) +M,P 〉+ εKL
(
P
∣∣γη � (P (t))1−η

)
−m

(
γη � (P (t))1−η

)
, (8.26)
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where m(Q) = ∑
i,j Qij is the mass of measure Q. The result then follows. �

8.2 Appendix of Chapter 3

8.2.1 Proofs related to Discrete Co-Optimal Transport

Proof of Proposition 3.1.1. For any P,Q ∈ U(µX , µY ), we have

∑
i,j,k,l

(Cxik − C
y
jl)

2PijQkl = µTX(Cx)�2mux + µTY (Cy)�2µy − 2
∑
i,j,k,l

CxikC
y
jlPijQkl (8.27)

= µTX(Cx)�2mux + µTY (Cy)�2µy − 2tr(CxQCyP T ). (8.28)

Let (P,Q) and P̂ be the solutions of the COOT and GW problems, respectively. As COOT(X ,Y) ≤
GW(X ,Y), we have tr(CxQCyP T ) ≥ tr(CxP̂CyP̂ T ) ≥ tr(CxQCyQT ), where the second inequal-
ity is due to the suboptimality of Q with respect to the GW problem. Given the form of
Cx and Cy, we can further simplify this inequality as tr(AQBP T ) ≥ tr(AQBQT ). Similarly,
tr(AQBP T ) ≥ tr(APBP T ). So,

0 ≤ 2tr(AQBP T )− tr(AQBQT )− tr(APBP T ) (8.29)

= tr
(
AQB(P −Q)T

)
− tr

(
A(P −Q)BP T

)
(8.30)

= vec(QT )(B ⊗K A)vec(P −Q)− vec(P )T (B ⊗K A)vec(P −Q) (8.31)

= −vec(P −Q)T (B ⊗K A)vec(P −Q), (8.32)

where ⊗K denotes the Kronecker product. Now, we recall Theorem 1 in (Maron and Lipman,
2018).

Lemma 8.2.1. If the matrices A ∈ Rm×m and B ∈ Rn×n are CND, then vec(X)T (B ⊗K
A)vec(X) ≥ 0, for every X ∈ lin(DS), where lin(DS) = {X ∈ Rm×n : X1n = 0, XT 1m = 0}.

As P,Q ∈ U(µX , µY ), we have P −Q ∈ lin(DS). So, by Lemma 8.2.1, Inequality (8.29) is
in fact an equality, which then implies that, tr(AQBP T ) = tr(AQBQT ) = tr(APBP T ). We
conclude that P and Q are two solutions of the GW problem and the equality between COOT
and GW holds. When semi-definiteness is replaced by definiteness, Inequality (8.29) becomes an
equality if and only if P = Q. �

8.2.2 Proofs related to Continuous Co-Optimal Transport

Proof of Proposition 3.2.1. Denote S = X1 × Y1 × X2 × Y2. For convenience, we also write
|cX − cY |p(x1, y1, x2, y2) := |cX(x1, x2)− cY (y1, y2)|p. Now, the COOT problem can be rewritten
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as
COOT(X ,Y) = inf

π∈Eco

∫
S
|cX − cY |p dπ, (8.33)

where the set
Eco = {π ∈ P(S) : π = π1 ⊗ π2, where πk ∈ U(µXk , µYk )}, (8.34)

contains the factorizable multi-marginal transport plans. Now, Lemmas 8.2.3 and 8.2.4 below
imply that Problem (8.33) always admits a minimizer. �

Lemma 8.2.2. Countable product of Polish spaces is also a Polish space.

Proof of Lemma 8.2.2. First, the countable product of completely metrizable spaces is also
completely metrizable (see for example, Proposition 1.4 in (Dominique, 2020))

Second, we show that countable product of seperable spaces is also seperable. Given a sequence
of seperable spaces (Xk)k, let Dk be a countable dense subset of Xk. For each k, we fix a point
xk ∈ Xk. For each integer j ≥ 1, define

D̃j =
j∏

k=1
Dk ×

∏
k>j

{xk} and D̃ = ∪jD̃j . (8.35)

Then clearly D̃j is countable, for every j ≥ 1, which implies D̃ is also countable. To show
that D̃ is dense, every neighborhood E of (x1, ..., xk, ...) (after reindexing) is of the form E =∏j
k=1Ok ×

∏
k>j{xk}, for some integer j ≥ 1 and Ok ⊂ Xk is a neighborhood of xk. As Dk is

dense in Xk, we have Ok ∩Dk 6= ∅, thus E ∩ D̃ 6= ∅. It follows that D̃ is dense in ∏kXk. This
concludes that the countable product of Polish spaces is also a Polish space. �

Lemma 8.2.3. If Xk and Yk are Polish spaces, for every k = 1, 2, then Eco is non-empty and
weakly compact in P(S).

Proof of Lemma 8.2.3. Clearly, (µX1 ⊗ µY1 ) ⊗ (µX2 ⊗ µY2 ) ∈ Eco, so Eco is not empty. We recall
that U(µX1 , µY1 , µX2 , µY2 ) is the set of admissible couplings whose four marginals are µX1 , µY1 , µX2
and µY2 . First, observe that Eco ⊂ U(µX1 , µY1 , µX2 , µY2 ). Indeed, given πk ∈ U(µXk , µYk ), for k = 1, 2
and denote π = π1 ⊗ π2 ∈ Eco. Then, for every i, k ∈ {1, 2} and i 6= k, we have(∫

Xi×Yi

dπi

)∫
Yk

dπk = dµXk . (8.36)

Other marginal distributions can be calculated in a similar manner and we conclude that
π ∈ U(µX1 , µY1 , µX2 , µY2 ).

As a direct generalization of Lemma 4.4 in (Villani, 2009), U(µX1 , µY1 , µX2 , µY2 ) is weakly
compact in P(S). Thus, to show the compactness of Eco, it is enough to show that Eco is a
weakly closed subset of U(µX1 , µY1 , µX2 , µY2 ). Take a sequence (π(n))n ⊂ Eco such that π(n) ⇀ π ∈
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U(µX1 , µY1 , µX2 , µY2 ) (due to its compactness), we need to show that π ∈ Eco. As (π(n))n ⊂ Eco,
there exist two sequences (π(n)

1 )n ⊂ U(µX1 , µY1 ) and (π(n)
2 )n ⊂ U(µX2 , µY2 ) such that π(n) =

π
(n)
1 ⊗ π(n)

2 .
For each k = 1, 2, due to the compactness of U(µXk , µYk ) in P(Xk×Yk) (Lemma 4.4 in (Villani,

2009)), we can extract a converging subsequence π(n(k)
i )

k ⇀ πk ∈ U(µXk , µYk ), when i → ∞. By
applying Theorem 2.8 in (Billingsley, 1999) on the Polish space S (thanks to Lemma 8.2.2), we
have π(n(1)

i )
1 ⊗ π(n(2)

i )
2 ⇀ π1 ⊗ π2 ∈ Eco, when i→∞. This implies π = π1 ⊗ π2, thus π ∈ Eco. �

Lemma 8.2.4. If cX and cY are bounded measurable functions, then the functional F : π →( ∫
S |cX − cY |p dπ

)1/p
is continuous on Eco.

Proof of Lemma 8.2.4. It is enough to show that F is continuous on U(µX1 , µY1 , µX2 , µY2 ). To do
this, we adapt the proof of Lemma 11 in (Chowdhury and Mémoli, 2019) by showing that there
exists a sequence of continuous functions converging uniformly to F .

As Cb is dense in Lp (by applying Proposition 7.9 in (Folland, 1999) on Polish spaces
endowed with finite measures), there exist two sequences of bounded continuous functions
(c(n)
X )n ⊂ Lp(X,µX) and (c(n)

Y )n ⊂ Lp(Y, µY ) such that ||cX − c(n)
X ||Lp(X,µX) ≤ 1/n and ||cY −

c
(n)
Y ||Lp(Y,µY ) ≤ 1/n.

For each n ∈ N, define Fn : U(µX1 , µY1 , µX2 , µY2 )→ R≥0 by Fn(π) = ||c(n)
X − c

(n)
Y ||Lp(S,π).

The compactness of U(µX1 , µY1 , µX2 , µY2 ) implies that, for every π ∈ U(µX1 , µY1 , µX2 , µY2 ), there
exists a sequence (π(m))m ⊂ U(µX1 , µY1 , µX2 , µY2 ) such that π(m) ⇀ π. In particular, as |c(n)

X −
c

(n)
Y |p ∈ Cb(S), we have

lim
m→∞

Fn(π(m)) = lim
m→∞

( ∫
S
|c(n)
X − c

(n)
Y |

p dπ(m)
)1/p

=
( ∫

S
|c(n)
X − c

(n)
Y |

p dπ
)1/p

= Fn(π). (8.37)

We deduce that Fn is sequentially continuous, thus continuous (by Remark 5.1.1 in (Ambrosio,
Gigli, and Savaré, 2005)). Now, for any π ∈ U(µX1 , µY1 , µX2 , µY2 ), we have

|Fn(π)− F (π)| =
∣∣∣||c(n)

X − c
(n)
Y ||Lp(S,π) − ||cX − cY ||Lp(S,π)

∣∣∣
≤ ||c(n)

X − c
(n)
Y − (cX − cY )||Lp(S,π)

≤ ||c(n)
X − cX ||Lp(S,π) + ||c(n)

Y − cY ||Lp(S,π)

= ||c(n)
X − cX ||Lp(X,µX) + ||c(n)

Y − cY ||Lp(Y,µY )

≤ 2/n.

(8.38)

The first inequality follows from a consequence of Minkowski’s inequality:
∣∣∣||f || − ||g||∣∣∣ ≤ ||f − g||.

The second inequality is the Minkowski’s inequality. This implies that Fn converges uniformly to
F , thus F is continuous. �

122

Optimal transport for transfer learning across spaces Quang huy Tran 2024



8.2. Appendix of Chapter 3

Before proving the isomorphism and metric properties of COOT, let us first introduce the
Monge’s formulation of COOT.

M-COOT(X ,Y) = inf
T1∈T (µX

1 ,µ
Y
1 )

T2∈T (µX
2 ,µ

Y
2 )

∫∫ ∣∣∣cX(x1, x2)− cY
(
T1(x1), T2(x2)

)∣∣∣p dµX1 (x1) dµX2 (x2), (8.39)

where recall that T (µXk , µYk ) = {T : Xk → Yk such that T#µ
X
k = µYk }, for k = 1, 2. It is not

difficult to see that, M-COOT(X ,Y) = 0 if and only if X ∈ RMS(Y). Similar to the GW and
Gromov-Monge distances, we have

Corollary 8.2.1. Let X and Y be two measure hypernetworks, then

COOT(X ,Y) = inf
Z∈RMS(X )

M-COOT(Z,Y) = inf
Z∈RMS(Y)

M-COOT(Z,X ). (8.40)

Moreover, the infima are always attained: there exist two measure hypernetworks Zx ∈ RMS(X )
and Zy ∈ RMS(Y) such that COOT(X ,Y) = M-COOT(Zx,Y) = M-COOT(Zy,X ).

The proof is adapted directly from that of Theorem 14 in (Mémoli and Needham, 2022b).
For self-contained purpose, we provide the complete proof here.

Proof of Corollary 8.2.1. Let (π∗1, π∗2) be a solution of the problem COOT(X ,Y). For k = 1, 2,
define the space Zk = Xk × Yk equipped with the probability measure µZk = π∗k ∈ U(µXk , µYk ).
Define the projection map PXk

: Zk → Xk by PXk
(x, y) = x and denote cZ = (PX1 , PX2)∗cX .

Clearly, the measure hypernetwork Z := ((Z1, µ
Z
1 ), (Z2, µ

Z
2 ), cZ) is a RMS of X . For k = 1, 2,

consider the canonical projection map PYk
: Zk → Yk defined by PYk

(x, y) = y, then PYk
is a

transport map from µZk to µYk . Now, as (PXk
, PYk

)#µ
Z
k = (PXk

, PYk
)#π

∗
k = π∗k, for k = 1, 2, we

have

M-COOT(Z,Y) ≤
∫
Z1×Z2

∣∣cZ − (PY1 , PY2)∗cY
∣∣p dµZ1 dµZ2 (8.41)

=
∫
Z1×Z2

∣∣(PX1 , PX2)∗cX − (PY1 , PY2)∗cY
∣∣p dµZ1 dµZ2 (8.42)

=
∫
S
|cX − cY |p d(PX1 , PY1)#µ

Z
1 d(PX2 , PY2)#µ

Z
2 (8.43)

=
∫
S
|cX − cY |p dπ∗1 dπ∗2 (8.44)

= COOT(X ,Y), (8.45)

and consequently,
COOT(X ,Y) ≥ inf

Z∈RMS(X )
M-COOT(Z,Y). (8.46)

For the reverse direction, let Z be a RMS of X . Then, there exist two transport maps fk : Zk →
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Xk, for k = 1, 2 such that cZ = (f1, f2)∗cX , for µZ1 ⊗ µZ2 -almost everywhere. The inequality
(8.46) implies that we can safely exclude every Z ∈ RMS(X ) with M-COOT(Z,Y) = ∞ and
consider only those with M-COOT(Z,Y) < ∞. In this case, there always exists a transport
map gk from µZk to µYk , for each k = 1, 2. If we define the map (fk, gk) : Zk → Xk × Yk by
(fk, gk)(zk) = (fk(zk), gk(zk)), then (fk, gk)#µZ

k
∈ U(µXk , µYk ), for any k = 1, 2. Now,

COOT(X ,Y) ≤
∫
S
|cX − cY |p d(f1, g1)#µ

Z
1 d(f2, g2)#µ

Z
2 (8.47)

=
∫
Z1×Z2

|(f1, f2)∗cX − (g1, g2)∗cY |p dµZ1 dµZ2 (8.48)

=
∫
Z1×Z2

|cZ − (g1, g2)∗cY |p dµZ1 dµZ2 . (8.49)

As this is true for any Z ∈ RMS(X ) and any corresponding pair of transport maps (g1, g2), we
have

COOT(X ,Y) ≤ inf
Z∈RMS(X )

M-COOT(Z,Y). (8.50)

The equality then follows. Moreover, the first part of the proof also shows us how to construct a
minimizer Zx ∈ RMS(X ) such that COOT(X ,Y) = M-COOT(Zx,Y). Similarly, we have

COOT(Y,X ) = inf
Z∈RMS(Y)

M-COOT(Z,X ). (8.51)

By the symmetry of COOT, we deduce that

inf
Z∈RMS(X )

M-COOT(Z,Y) = inf
Z∈RMS(Y)

M-COOT(Z,X ), (8.52)

and there exists Zy ∈ RMS(Y) such that COOT(X ,Y) = M-COOT(Zy,X ). �

Proof of Corollary 3.2.1. Let us first prove the following simple lemma.

Lemma 8.2.5. Let f : X → Y be a surjective map. If X and Y are finite and have the same
cardinal, then f is bijective.

Proof. Suppose |X| = |Y | = n. As f is surjective, for each y ∈ Y , the set X(y) := {x ∈ X :
f(x) = y} is not empty, i.e., |X(y)| ≥ 1. Clearly, ∪yX(y) ⊂ X and X(y) ∩X(y′) = ∅, for any
y 6= y′. Thus |X| ≥ | ∪y X(y)| = ∑

y |X(y)| ≥ n. We deduce that |X(y)| = 1, for every y ∈ Y ,
thus f is bijective. �

Now,

1. Clearly, strong isomorphism implies semi-strong isomorphism. Suppose X and Y are semi-
strongly isomorphic, then X is a common RMS of X and Y, meaning that X and Y are
weakly isomorphic.
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2. Let X and Y be two finite measure hypernetworks. Suppose semi-strong isomorphism
holds, then there exist four transport maps fk : Xk → Yk and gk : Yk → Xk such that
(fk)#µ

X
k = µYk and (gk)#µ

Y
k = µXk , for k = 1, 2, and two pullback equalities hold everywhere.

As a transport map is necessarily surjective, we must have |Yk| ≥ |Xk| and |Xk| ≥ |Yk|,
thus |Yk| = |Xk|. By Lemma 8.2.5, we deduce that fk (and gk) are bijective. The strong
isomorphism then follows.

3. By Proposition 3.2.2, the weak isomorphism implies COOT(X ,Y) = 0. By Proposition 1 in
(Redko et al., 2020), there exist two permutations (thus Borel measurable bijections) σk :
Xk → Yk, for k = 1, 2, such that cX(i1, i2) = cY (σ1(i1), σ2(i2)), for every (i1, i2) ∈ X1×X2.
Furthermore, for every j ∈ Yk, there exists a unique i ∈ Xk such that j = σk(i). Thus, by
hypothesis, we have

µYk (j) = 1
|Yk|

= 1
|Xk|

= µXk (i) =
∑

i′:σk(i′)=j
µXk (i′), (8.53)

which means (σk)#µ
X
k = µYk . So X is a RMS of Y. Similarly, Y is also a RMS of X . The

semi-strong isomorphism then follows.

�

Proof of Proposition 3.2.2. Suppose two measure hypernetworks X and Y are weakly isomorphic,
then there exists a measure hypernetwork Z∗ which is a common RMS of X and Y . In particular,
M-COOT(Z∗,Y) = 0. By Corollary 8.2.1, we deduce that

COOT(X ,Y) = inf
Z∈RMS(X )

M-COOT(Z,Y) = 0. (8.54)

Now, suppose COOT(X ,Y) = 0, then by Corollary 8.2.1, there exists Z∗ ∈ RMS(X ) such that
M-COOT(Z∗,Y) = 0. But this also means Z∗ is a RMS of Y. We conclude that X and Y are
weakly isomorphic. �

Proof of Proposition 3.2.3. The proof of this result can be found in (Chowdhury et al., 2023).
However, we still provide our proof here (slightly different but based on the same techniques).

For clarity, given three measure hypernetworks X ,Y and Z, we denote Sxy = ∏2
k=1Xk ×

Yk, Syz = ∏2
k=1 Yk × Zk, Sxz = ∏2

k=1Xk × Zk and Sxyz = ∏2
k=1Xk × Yk × Zk.

1. The positiveness is trivial. By Proposition 3.2.2, COOT(X ,Y) = 0 if and only if X and Y
are weakly isomorphic.

2. To show the symmetry, for each k = 1, 2, we define the bijection fk : Xk × Yk → Yk ×Xk

by fk(xk, yk) = (yk, xk). Then, for any πk ∈ U(µXk , µYk ), where k = 1, 2, we have (fk)#πk ∈
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U(µYk , µXk ) and

COOT(X ,Y) = inf
πk∈U(µX

k ,µ
Y
k )

∀k=1,2

∫
Sxy

|cX − cY |p dπ1 dπ2

= inf
πk∈U(µX

k ,µ
Y
k )

∀k=1,2

∫
Syx

|cY − cX |p d(f1)#π1 d(f2)#π2

= inf
γk∈U(µY

k ,µ
X
k )

∀k=1,2

∫
Syx

|cY − cX |p dγ1 dγ2

= COOT(Y,X ).

(8.55)

3. Now, we show the triangle inequality. Let (π(Y Z)
1 , π

(Y Z)
2 ) and (π(XZ)

1 , π
(XZ)
2 ) be the optimal

couplings which minimize COOT(Y,Z) and COOT(X ,Z), respectively, where π(Y Z)
k and

π
(XZ)
k are in U(µYk , µZk ) and U(µXk , µZk ), respectively, for every k = 1, 2.

For each k = 1, 2, by the glueing lemma (Lemma 7.6 in (Villani, 2003)), there exists a
probability measure σk ∈ P(Xk×Yk×Zk) such that (PXkYk

)#σk = π
(XY )
k and (PXkYk

)#σk =
π

(Y Z)
k . Here, we define the projection maps

• PXk
: Xk × Yk × Zk → Xk, where PXk

(x, y, z) = x.

• PXkYk
: Xk × Yk × Zk → Xk × Yk, where PXkYk

(x, y, z) = (x, y).

• PX1Z1X2Z2 : Sxyz → Sxz, where PX1Z1X2Z2(x1, y1, z1, x2, y2, z2) = (x1, z1, x2, z2).

and all other projection maps are defined similarly. It follows that (PXk
)#σk = µXk and

(PZk
)#σk = µZk , thus (PXkZk

)#σk ∈ U(µXk , µZk ). Furthermore, one also has (PX1Z1X2Z2)#σ =
(PX1Z1)#σ1 ⊗ (PX2Z2)#σ2, where σ = σ1 ⊗ σ2. Indeed, for any function φ ∈ Cb(Sxz), we
have ∫

Sxz

φ d(PX1Z1X2Z2)#σ =
∫
Sxyz

(φ ◦ PX1Z1X2Z2) dσ

=
∫
Sxyz

(PX1Z1 , PX2Z2)∗φ dσ1 dσ2

=
∫
Sxz

φ d(PX1Z1)#σ1 d(PX2Z2)#σ2.

(8.56)
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Here, with slight abuse of notation, we write φ(x1, y1, x2, y2) = φ
(
(x1, y1), (x2, y2)

)
. Now,

COOT(X ,Z)1/p

≤
( ∫

Sxz

|cX − cZ |p d(PX1Z1)#σ1 d(PX2Z2)#σ2
)1/p

=
( ∫

Sxz

|cX − cZ |p d(PX1Z1X2Z2)#σ
)1/p

=
( ∫

Sxyz

(
|cX − cZ |p ◦ PX1Z1X2Z2

)
dσ
)1/p

≤
( ∫

Sxyz

(
|cX − cY |p ◦ PX1Y1X2Y2

)
dσ
)1/p

+
( ∫

Sxyz

(
|cY − cZ |p ◦ PY1Z1Y2Z2

)
dσ
)1/p

=
( ∫

Sxy

|cX − cY |p d(PX1Y1X2Y2)#σ
)1/p

+
( ∫

Syz

|cY − cZ |p d(PY1Z1Y2Z2)#σ
)1/p

=
( ∫

Sxy

|cX − cY |p d(PX1Y1)#σ1 d(PX2Y2)#σ2
)1/p

+
( ∫

Syz

|cY − cZ |p d(PY1Z1)#σ1 d(PY2Z2)#σ2
)1/p

=
( ∫

Sxy

|cX − cY |p dπ(XY )
1 dπ

(XY )
2

)1/p
+
( ∫

Syz

|cY − cZ |p dπ(Y Z)
1 dπ

(Y Z)
2

)1/p

= COOT(X ,Y)1/p + COOT(Y,Z)1/p.

(8.57)

The first inequality is due to the sub-optimality of ((PX1Z1)#σ1, (PX2Z2)#σ2). The second
one is the Minkowski inequality and the fact that: |cX(x1, x2)− cY (y1, y2)| ≤ |cX(x1, x2)−
cZ(z1, z2)|+ |cZ(z1, z2)− cY (y1, y2)|, or more compactly

|cX − cZ | ◦ PX1Z1X2Z2 ≤ |cX − cY | ◦ PX1Y1X2Y2 + |cY − cZ | ◦ PY1Z1Y2Z2 . (8.58)

�

Recall that

Eco = {π ∈ P(S) : π = π1 ⊗ π2, where πk ∈ U(µXk , µYk )}. (8.59)

First, observe that if π ∈ Eco is a solution of COOT, then for any γ ∈ Eco, one has

0 ≤ COOTε(X ,Y)− COOT(X ,Y)

≤
(∫

S
|cX − cY |p dγ −

∫
S
|cX − cY |p dπ

)
+ εKL(γ|µ1 ⊗ µ2).

(8.60)

The idea is to choose γ ∈ Eco such that, for small ε, the quantity inside the bracket can be
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arbitrarily small (but still positive, due to the optimality of π), and the KL divergence is always
controlled, so that it does not blow up too fast. To do so, we extend the block approximation
technique (Carlier et al., 2017) to the multi-marginal case.

Definition 8.2.1. (Block approximation) Given an integer K ≥ 2 and p ≥ 1. For each k =
1, ...,K, let µk ∈ P(Rnk), for some integer nk ≥ 1, be a probability measure. For each tuple
of integers ak = (a(1)

k , ..., a
(nk)
k ) ∈ Znk , we define the unit hypercube Qak

= [a(1)
k , a

(1)
k + 1[×...×

[a(nk)
k , a

(nk)
k +1[⊂ Rnk and for ∆ > 0, we denote Q∆

ak
= [∆a(1)

k ,∆(a(1)
k +1)[×...×[∆a(nk)

k ,∆(a(nk)
k +

1)[⊂ Rnk the rescaled hypercube by ∆ of Qak
. For each π ∈ P(∏k Rnk), we define its block

approximation at scale ∆ by

π∆ :=
∑

ak∈Znk

k=1,...,K

π
( K∏
k=1

Q∆
ak

)(
⊗Kk=1 µ

∆
k

)
, (8.61)

where, for every Borel set Ek ⊂ Rnk , µ∆
k is the restriction of µk on Q∆

ak
defined by

µ∆
k (Ek) :=


µk(Ek∩Q∆

ak
)

µk(Q∆
ak

) , if µk(Q∆
ak

) > 0

0 , otherwise.
(8.62)

It is not difficult to see that block approximation of a product measure is also a product
measure. Indeed, it is enough to consider the case K = 2. Suppose that π = π1 ⊗ π2, then for
any ∆ > 0,

π∆ =
∑
a1,a2

π1(Q∆
a1) π2(Q∆

a2) µ∆
1 ⊗ µ∆

2 =
(∑
a1

π1(Q∆
a1) µ∆

1

)
⊗
(∑
a2

π2(Q∆
a2) µ∆

2

)
. (8.63)

Also, if a coupling is admissible, then so is its block approximation. More precisely, by Proposition
2.10 in (Carlier et al., 2017), for any π ∈ U(µ1, ..., µK) and ∆ > 0, we have π∆ ∈ U(µ1, ..., µK).

Proof of Proposition 3.2.5. This is an adaptation from the proof of quantitative bound between
OT and regularized OT in (Genevay et al., 2019). Let π∗ ∈ Eco be a solution of COOT and
denote π∆ its block approximation at scale ∆ > 0. Clearly, π∆ ∈ Eco. Denote µ = µX ⊗ µY . The
sub-optimality of π∆ implies

0 ≤ COOTε(X ,Y)− COOT(X ,Y) (8.64)

≤ 〈π∆, |cX − cY |p〉 − 〈π∗, |cX − cY |p〉+ εKL(π∆|µ⊗ µ). (8.65)
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Now, using the fact that |x− y| ≤ max(x, y), for every x, y ≥ 0, and for any i, j,

sup
(x1,x2)∈Q∆

ij

|cX(x1, x2)| ≤ L sup
(x1,x2)∈Q∆

ij

||x1 − x2||q ≤ L(∆d1/p
x )q, (8.66)

we deduce that

〈π∆, |cX − cY |p〉 − 〈π∗, |cX − cY |p〉 ≤ sup
i,j,k,l

sup
(x1,x2)∈Q∆

ij

(y1,y2)∈Q∆
kl

|cX(x1, x2)− cY (y1, y2)|p (8.67)

≤ max
{

sup
(x1,x2)∈Q∆

ij

|cX(x1, x2)|p, sup
(y1,y2)∈Q∆

kl

|cY (y1, y2)|p
}

(8.68)

≤ max
{
Lp(∆d1/p

x )pq, Lp(∆d1/p
y )pq

}
(8.69)

= Lp∆pqdq. (8.70)

Following the proof of Theorem 1 in (Genevay et al., 2019), we obtain the bound for the KL
term

KL(π∆|µ⊗ µ) ≤ 2(dx + dy) log(2D
∆ ) ≤ 4d log(2D

∆ ). (8.71)

So, we have

〈π∆, |cX − cY |p〉 − 〈π∗, |cX − cY |p〉+ εKL(π∆|µ⊗ µ) ≤ Lp∆pqdq + 4dε log(2D
∆ ). (8.72)

The RHS is a convex function of ∆, thus admits a minimizer ∆pq = 4dε
Lpdqpq , thus

〈π∆, |cX − cY |p〉 − 〈π∗, |cX − cY |p〉+ εKL(π∆|µ⊗ µ) ≤ 4dε
pq

+ 4dε
pq

log
((2D)pqLpdqpq

4dε
)
. (8.73)

The result then follows. �

8.2.3 Proofs related to MMOT-DC

Derivation of the Sinkhorn algorithm in entropic MMOT. The corresponding entropic
dual problem of the primal problem (3.10) reads

sup
fn∈Ran

N∑
n=1
〈fn, µn〉 − ε

∑
i1,...,iN

exp
(∑

n(fn)in − Ci1,...,iN
ε

)
+ ε. (8.74)
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Algorithm 8 Sinkhorn algorithm for the entropic MMOT problem (3.10) from (Benamou et al.,
2014).
Input. Histograms µ1, ..., µN , hyperparameter ε > 0, cost tensor C and tuple of initial dual
vectors (f (0)

1 , ...f
(0)
N ).

Output. Optimal transport plan P and tuple of dual vectors (f1, ...fN ) (optional).
1. While not converge: for n = 1, ..., N ,

f (t+1)
n = ε logµn − ε log

∑
i−n

[
exp

(∑
j<n(f (t+1)

j )ij +∑
j>n(f (t)

j )ij − C·,i−n

ε

)]
. (8.79)

2. Return tensor P , where for in ∈ [an], with n ∈ [N ],

Pi1,...,iN = exp
(∑

n(fn)in − Ci1,...,iN
ε

)
. (8.80)

For each n ∈ [N ] and in ∈ [an], the first order optimality condition reads

0 = (µn)in − exp
((fn)in

ε

)∑
i−n

exp
(∑

j 6=n(fj)ij − Ci1,...,iN
ε

)
, (8.75)

where, with some abuse of notation, we write i−n = (i1, ..., in−1, in+1, ..., iN ). Or, equivalently

(fn)in = ε log(µn)in − ε log
∑
i−n

exp
(∑

j 6=n(fj)ij − Ci1,...,iN
ε

)
, (8.76)

or a more compact form

fn = ε logµn − ε log
∑
i−n

exp
(∑

j 6=n(fj)ij − C·,i−n

ε

)
. (8.77)

Using the primal-dual relation, we obtain the minimizer of the primal problem (3.10) by

Pi1,...,iN = exp
(∑

n(fn)in − Ci1,...,iN
ε

)
, (8.78)

for in ∈ [an], with n ∈ [N ]. Similar to the entropic OT, the Sinkhorn algorithm 8 is also usually
implemented in log-domain to avoid numerical instability.

F-MMOT of two components (i.e., M = 2) is a variation of low nonnegative rank
OT. For the sake of notational ease, we only consider the simplest case, where N = 4 and
M = 2 with T1 = (1, 2) and T2 = (3, 4). However, the same argument still holds in the general
case. First, we define three reshaping operations.
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• Vectorization: concatenates rows of a matrix into a vector.

vec : Rm×n → Rmn, (8.81)

where each element Ai,j of the matrix A ∈ Rm×n is mapped to a unique element b(i−1)n+j

of the vector b ∈ Rmn, with Ai,j = b(i−1)n+j , for i = 1, ...,m and j = 1, ..., n. Conversely,
each element bk is mapped to a unique element Ak//n,n−k%n, for every k = 1, ...,mn. Here,
k//n and k%n are the quotient and the remainder of the division of k by n, respectively,
i.e., if k = qn+ r, with 0 ≤ r < n, then k//n = q and k%n = r.

• Matrization: transforms a 4D tensor to a 2D tensor (matrix) by vectorizing the first two
and the last two dimensions of the tensor.

mat : Rn1×n2×n3×n4 → R(n1n2)×(n3n4), (8.82)

where, similar to the vectorization, each element Pi,j,k,l of the tensor P ∈ Rn1×n2×n3×n4

is mapped to a unique element A(i−1)n2+j,(k−1)n4+l of the matrix A ∈ R(n1n2)×(n3n4), with
Pi,j,k,l = A(i−1)n2+j,(k−1)n4+l.

• Concatenation: stacks vertically two equal-column matrices.

conv :Rm×d × Rn×d → R(m+n)×d(
(u1, ..., um), (v1, ..., vn)

)
→ (u1, ..., um, v1, ..., vn)T .

(8.83)

Or, stacks horizontally two equal-row matrices

conh :Rn×p × Rn×q → Rn×(p+q)(
(u1, ..., up), (v1, ..., vq)

)
→ (u1, ..., up, v1, ..., vq).

(8.84)

Lemma 8.2.6. For any 4-D tensor P ∈ Rn1×n2×n3×n4, denote π its matrization. We have,

vec
(∑
k,l

P·,·,k,l
)

=
n3n4∑
n=1

π·,n = π1n3n4 , (8.85)

where 1n is the vector of ones in Rn.

Proof. For (i, j) ∈ [n1]× [n2], we have

vec
(∑
k,l

P·,·,k,l
)

(i−1)n2+j
=
∑
k,l

Pi,j,k,l =
∑
k,l

π(i−1)n2+j,(k−1)n4+l =
n3n4∑
n=1

π(i−1)n2+j,n. (8.86)

The result then follows. �
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Now, let (ei)n1n2
i=1 be the standard basis vectors of R(n1n2), i.e., (ei)k = 1{i=k}. For each P ∈ U(µ),

denote π its matrisation, then by Lemma 8.2.6, we have, for i ∈ [n1],

(µ1)i =
∑
j

∑
k,l

Pi,j,k,l =
n2∑
j=1

n3n4∑
n=1

π(i−1)n2+j,n, (8.87)

which can be recast in matrix form as AT1 π1n3n4 = µ1, where the matrix A1 = conh(v1, ..., vn1) ∈
R(n1n2)×n1 , with vi ∈ R(n1n2), where vi = ∑in2

j=(i−1)n2+1 ej , with i ∈ [n1]. Similarly, A2π1n3n4 =
µ2, where the matrix A2 = conh(In2 , ..., In2) ∈ Rn2×(n1n2), where In ∈ Rn×n is the identity
matrix. Both conditions can be compactly written as AT12π1n3n4 = µ12, where the matrix
A12 = conh(A1, A

T
2 ) ∈ R(n1n2)×(n1+n2) and µ12 = conv(µ1, µ2) ∈ R(n1+n2). Note that µ12 is not a

probability because its mass is 2. The matrix A12 has exactly 2n1n2 ones and the rest are zeros.
An example of A12 is shown in Figure 8.1.

Similarly, for A34 and µ34 defined in the same way as A12 and µ12, respectively, we establish the
equality AT34π

T 1n1n2 = µ34. As a side remark, both matrices AT12 and AT34 are totally unimodular,
meaning that every square submatrix has determinant −1, 0, or 1. To handle the factorization

1
1
1
0
0

0
0
0
1
1

0 1

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

Figure 8.1 – An example of the matrix A12 when n1 = 2 and n2 = 3.
constraint, first we recall the following concept.

Definition 8.2.2. Given a nonnegative matrix A, we define its nonnegative rank by

rank+(A) := min
{
r ≥ 1 : A =

r∑
i=1

Mi, where rank(Mi) = 1,Mi ≥ 0,∀i
}
. (8.88)

By convention, zero matrix has zero (thus nonnegative) rank.

So, the constraint P = P1 ⊗ P2 is equivalent to mat(P ) = vec(P1)vec(P2)T . By Lemma 2.1
in (Cohen and Rothblum, 1993), rank+(A) = 1 if and only if there exist two nonnegative vectors
u, v such that A = uvT . Thus, the factorization constraint is equivalent to rank+

(
mat(P )

)
= 1.
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Denote L = mat(C) and M = n1n2, N = n3n4. Now, Problem (3.11) can be rewritten as

min
Q∈RM×N

≥0

〈L,Q〉 (8.89)

such that AT12Q1N = µ12 (8.90)

AT34Q
T 1M = µ34 (8.91)

rank+(Q) = 1, (8.92)

which is a variation of the low nonnegative rank OT problem studied in (Scetbon, Cuturi, and
Peyré, 2021).

Proof of Proposition 3.3.1. The inequality MMOT(µ) ≤ MMOT-DCε(T , µ) follows from the
positivity of the KL divergence. On the other hand,

F-MMOT(T , µ) = inf
P∈UT

〈C,P 〉+ εKL(P |P#T ), (8.93)

because KL(P |P#T ) = 0, for every P ∈ UT . As UT ⊂ U(µ), we have MMOT-DCε(T , µ) ≤
F-MMOT(T , µ).

Now, if F-MMOT(T , µ) = 0, then MMOT-DCε(T , µ) = 0. Conversely, if MMOT-DCε(T , µ) =
0, for ε > 0, then there exists P ∗ ∈ U(µ) such that 〈C,P ∗〉 = 0 and P ∗ = P ∗#T . Thus 〈C,P ∗#T 〉 = 0,
which means F-MMOT(T , µ) = 0. �

Proof of Proposition 3.3.2. The function ε → MMOT-DCε(T , µ) is increasing on R≥0 and
bounded, thus admits a finite limit L ≤ F-MMOT(T , µ), when ε → ∞, and a finite limit
l ≥ MMOT(µ), when ε→ 0.

Let Pε be a solution of the problem MMOT-DCε(T , µ). As U(µ) is compact, when either ε→ 0
or ε→∞, one can extract a converging subsequence (after reindexing) (Pεk

)k → P̃ ∈ U(µ), when
either εk → 0 or εk →∞. Thus, the convergence of the marginal distributions is also guaranteed,
i.e (Pεk

)#Tm → P̃#Tm ∈ UTm , for every m ∈ [M ], which implies that Pεk
− (Pεk

)#T → P̃ − P̃#T .
When ε→ 0, let P ∗ be a solution of the problem MMOT(µ). Then,

〈C,P ∗〉 ≤ 〈C,Pε〉+ εKL(Pε|(Pε)#T ) ≤ 〈C,P ∗〉+ εKL(P ∗|P ∗#T ). (8.94)

By the sandwich theorem, when ε → 0, we have MMOT-DCε(T , µ) → 〈C,P ∗〉 = MMOT(µ).
Furthermore, as

0 ≤ 〈C,Pεk
〉 − 〈C,P ∗〉 ≤ εkKL(P ∗|P ∗#T ), (8.95)

when εk → 0, it follows that 〈C, P̃ 〉 = 〈C,P ∗〉. So P̃ is a solution of the problem MMOT(µ). We
conclude that any cluster point of the sequence of minimizers of MMOT-DCε(T , µ) when ε→ 0
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is a minimizer of MMOT(µ). As a byproduct, since

KL(P ∗|P ∗#T )−KL(Pεk
|(Pεk

)#T ) ≥ 〈C,Pεk
〉 − 〈C,P ∗〉
εk

≥ 0, (8.96)

we also deduce that KL(P̃ |P̃#T ) ≤ KL(P ∗|P ∗#T ) (so the cluster point P̃ has minimal "mutual
information").

On the other hand, when ε→∞, for µ⊗N = µ1 ⊗ ...⊗ µN , one has

〈C, µ⊗N 〉+ ε× 0 ≥ 〈C,Pε〉+ εKL(Pε|(Pε)#T ) ≥ εKL(Pε|(Pε)#T ). (8.97)

Thus,
0 ≤ KL(Pε|(Pε)#T ) ≤ 1

ε
〈C, µ⊗N 〉 → 0, when ε→∞, (8.98)

which means KL(Pε|(Pε)#T ) → 0, when ε → ∞. In particular, when εk → ∞, we have
KL(Pεk

|(Pεk
)#T )→ 0. We deduce that KL(P̃ |P̃#T ) = 0, which implies P̃ = P̃#T .

Now, as MMOT-DCε(T , µ) ≥ 〈C,Pε〉, when ε → ∞, we have L ≥ 〈C, P̃ 〉 = 〈C, P̃#T 〉 ≥
F-MMOT(T , µ). Thus L = 〈C, P̃ 〉 = F-MMOT(T , µ), i.e. MMOT-DCε(T , µ)→ F-MMOT(T , µ)
when ε→∞. In this case, we also have that any cluster point of the sequence of minimizers of
MMOT-DCε(T , µ) is a minimizer of F-MMOT(T , µ). �

8.3 Appendix of Chapter 4

For later convenience, we define the function |ξ1 − ξ2|p : (Xs
1 ×Xs

2)× (Xf
1 ×X

f
2 )→ R≥0 by

|ξ1 − ξ2|p
(
(xs1, xs2), (xf1 , x

f
2)
)

:= |ξ1(xs1, x
f
1)− ξ2(xs2, x

f
2)|p, (8.99)

and write the objective function of generalized COOT as

Fρ(πs, πf ) =
∫∫
|ξ1 − ξ2|pdπsdπf +

2∑
k=1

ρkDk(πs#k ⊗ π
f
#k|µ

s
k ⊗ µ

f
k). (8.100)

The generalized COOT now reads compactly as

inf
πs∈M+(Xs

1×X
s
2)

πf∈M+(Xf
1×X

f
2 )

m(πs)=m(πf )

Fρ(πs, πf ) (8.101)

8.3.1 Proofs related to the properties of UCOOT

Claim 8.3.1. When Dk = ι= and µsk, µ
f
k are probability measures, for k = 1, 2, then we recover

COOT from generalized COOT.
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Proof of Claim 8.3.1. Under the above assumptions, the generalized COOT problem becomes

inf
πs∈M+(Xs

1×X
s
2)

πf∈M+(Xf
1×X

f
2 )

∫∫
|ξ1 − ξ2|pdπsdπf

subject to πs#1 ⊗ π
f
#1 = µs1 ⊗ µ

f
1 (C1)

πs#2 ⊗ π
f
#2 = µs2 ⊗ µ

f
2 (C2)

m(πs) = m(πf ) (C3) .

(8.102)

As m(π) = m(π#1) = m(π#2), for any measure π, and µsk, µ
f
k are probability measures, for

k = 1, 2, one has m(πs)m(πf ) = 1, thus m(πs) = m(πf ) = 1. Now, the constraint C1 implies
that

∫
Xs

1
dπs#1dπf#1 =

∫
Xs

1
dµs1dµf1 . Thus, π

f
#1 = µf1 . Similarly, we have πs#k = µsk and πf#k = µfk ,

for any k = 1, 2. We conclude that πf ∈ U(µf1 , µ
f
2) and πs ∈ U(µs1, µs2), and we obtain the COOT

problem. �

We will prove a more general version of Proposition 4.2.1.

Proposition 8.3.1 (Existence of minimizer). Denote S := (Xs
1 ×Xs

2)× (Xf
1 ×X

f
2 ). Problem

(8.101) admits a minimizer if at least one of the following conditions hold:

1. The entropy functions φ1 and φ2 are superlinear, i.e., (φ1)′∞ = (φ2)′∞ =∞.

2. The function |ξ1−ξ2|p has compact sublevels in S and infS |ξ1−ξ2|p+ρ1(φ1)′∞+ρ2(φ2)′∞ > 0.

Proof of Proposition 8.3.1. We adapt the proof of Theorem 3.3 in (Liero, Mielke, and Savaré,
2018) and of Proposition 3 in (Séjourné, Vialard, and Peyré, 2021b). For convenience, we write
µ1 = µs1 ⊗ µ

f
1 and µ2 = µs2 ⊗ µ

f
2 . For each pair (πs, πf ), denote π = πs ⊗ πf . It can be shown

that π#k := (P
Xs

k
×Xf

k
)#π = (PXs

k
)#π

s ⊗ (P
Xf

k
)#π

f = πs#k ⊗ π
f
#k, for k = 1, 2. Indeed, for any

function φ ∈ Cb(Xs
k ×X

f
k ), we have∫

Xs
k
×Xf

k

φ d(P
Xs

k
Xf

k
)#π =

∫
S

(φ ◦ P
Xs

k
Xf

k
) dπ

=
∫
S
φ(xsk, x

f
k) dπs(xs1, xs2) dπf (xf1 , x

f
2)

=
∫
Xs

k
×Xf

k

φ dπs#k dπf#k.

(8.103)

Thus, Problem (8.101) can be rewritten as

UCOOTρ(X1,X2) = inf
π∈Euco

∫
S
|ξ1 − ξ2|pdπ +

∑
k=1,2

ρkDφk
(π#k|µk), (8.104)
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where

Euco = {π ∈M+(S)|π = πs ⊗ πf , πs ∈M+(Xs
1 ×Xs

2), πf ∈M+(Xf
1 ×X

f
2 )}. (8.105)

Define
L(π) :=

∫
S
|ξ1 − ξ2|pdπ +

∑
k=1,2

ρkDφk
(π#k|µk). (8.106)

By Jensen’s inequality, we have

L(π) ≥ m(π) inf
S
|ξ1 − ξ2|p +

∑
k=1,2

ρkm(µk)φk
(m(π#k)
m(µk)

)
= m(π)

[
inf
S
|ξ1 − ξ2|p +

∑
k=1,2

ρk
m(µk)
m(π) φk

( m(π)
m(µk)

)]
,

(8.107)

where, in the last equality, we use the relation m(π) = m(π#k), for k = 1, 2. It follows from the
assumption that L is coercive. So, L(π)→∞ when m(π)→∞.

Clearly infEuco L < ∞ because L
(
(µs1 ⊗ µs2) ⊗ (µf1 ⊗ µf2)

)
< ∞. Let (πn)n ⊂ Euco be a

minimizing sequence, meaning that L(πn) → infEuco L. Such sequence is necessarily bounded
(otherwise, there exists a subsequence (πnk

)nk
with m(πnk

)→∞ and the coercivity of L implies
L(πnk

)→∞, which is absurd). Suppose m(πn) ≤M , for some M > 0. By Tychonoff’s theorem,
as Xs

k and Xf
k are compact spaces, so is the product space S. Thus, by Banach-Alaoglu theorem,

the ball BM = {π ∈M+(S) : m(π) ≤M} is weakly compact inM+(S).
Consider the set Euco = Euco ∩ BM , then clearly (πn)n ⊂ Euco. We will show that there

exists a converging subsequence of (πn)n, whose limit is in Euco, thus Euco is weakly compact.
Indeed, by definition of Euco, there exist two sequences (πsn)n and (πfn)n such that πn = πsn ⊗ πfn.
We can assume furthermore that m(πsn) = m(πfn) =

√
m(πn) ≤

√
M . As m(πsn) and m(πfn) are

bounded, by reapplying Banach-Alaoglu theorem, one can extract two converging subsequences
(after reindexing) πsn ⇀ πs ∈ M+(Xs

1 × Xs
2) and πfn ⇀ πf ∈ M+(Xf

1 × X
f
2 ), with m(πs) =

m(πf ) ≤
√
M . An immediate extension of Theorem 2.8 in (Billingsley, 1999) to the convergence

of the products of bounded positive measures implies πsn ⊗ πfn ⇀ πs ⊗ πf ∈ Euco.
Now, the lower semicontinuity of L implies that infEuco L ≥ L(πs ⊗ πf ), thus L(πs ⊗ πf ) =

infEuco L and (πs, πf ) is a solution of Problem (8.101). �

Claim 8.3.2. Suppose that X1 and X2 are two finite sample-feature spaces such that (Xs
1 , X

s
2)

and (Xf
1 , X

f
2 ) have the same cardinality and are equipped with the uniform measures µs1 = µs2,

µf1 = µf2 . Then UCOOTρ(X1,X2) = 0 if and only if there exist perfect alignments between rows
(samples) and between columns (features) of the interaction matrices ξ1 and ξ2.

Proof. Without loss of generality, we can assume that µsk and µfk are discrete uniform probability
distributions, for k = 1, 2. By Proposition 1 in (Redko et al., 2020), under the assumptions on X1
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and X2, we have COOT(X1,X2) = 0 if and only if there exist perfect alignments between rows
(samples) and between columns (features) of the interaction matrices ξ1 and ξ2. So, it is enough
to prove that UCOOTρ(X1,X2) = 0 if and only if COOT(X1,X2) = 0.

Let (πs, πf ) be a pair of equal-mass couplings such that UCOOTρ(X1,X2) = 0. It follows
that πs#k ⊗ π

f
#k = µsk ⊗ µ

f
k , for k = 1, 2. Consequently, m(πs)m(πf ) = m(µs1)m(µf1) = 1, so

m(πs) = m(πf ) = 1. Now, we have
∫
Xs

k
dπs#k dπf#k =

∫
Xs

k
dµsk dµfk , or equivalently, πf#k = µfk .

Similarly, πs#k = µsk, meaning that πs ∈ U(µs1, µs2) and πf ∈ U(µf1 , µ
f
2). Thus, COOT(X1,X2) =

UCOOTρ(X1,X2) = 0.
For the other direction, suppose that COOT(X1,X2) = 0. Let (πs, πf ) be a pair of couplings

such that COOT(X1,X2) = 0. As πs ∈ U(µs1, µs2) and πf ∈ U(µf1 , µ
f
2), one has COOT(X1,X2) =

Fρ(πs, πf ) ≥ UCOOTρ(X1,X2) ≥ 0, for every ρ1, ρ2 > 0. So, UCOOTρ(X1,X2) = 0. �

8.3.2 Robustness of UCOOT and sensitivity of COOT

First, we recall our assumptions.

Assumption 8.3.1. Consider two sample-feature spaces X1 and X2. Let εs (resp. εf ) be a
probability measure with compact support Os (resp. Of ). For a ∈ {s, f}, define the noisy
distribution µ̃a = αaµ

a + (1 − αa)εa, where αa ∈ [0, 1]. We assume that ξ1 is defined on
(Xs

1∪Os)×(Xf
1 ∪Of ) and that ξ1, ξ2 are continuous on their supports. We denote the contaminated

sample-feature space by X̃1 = ((Xs
1 ∪Os, µ̃s1), (X f1 ∪Of , µ̃

f
1), ξ1). Finally, we define some useful

minimal and maximal costs:
∆0 = min

xs
1∈O

s,xf
1∈O

f

xs
2∈X

s
2 ,x

f
2∈X

f
2

|ξ1(xs1, x
f
1)− ξ2(xs2, x

f
2)|p

∆∞ = max
xs

1∈X
s
1∪O

s,xf
1∈X

f
1 ∪O

f

xs
2∈X

s
2 ,x

f
2∈X

f
2

|ξ1(xs1, x
f
1)− ξ2(xs2, x

f
2)|p .

For convenience, we write C = |ξ1 − ξ2|p and S̃ := (Xs
1 ∪Os)×Xs

2 × (Xf
1 ∪Of )×Xf

2 .

Proof of Proposition 4.3.1. Consider a pair of feasible alignments (πs, πf ). Since C is non-
negative, taking the COOT integral over a smaller set leads to the lower bound:∫

S̃
Cdπsdπf ≥

∫
Os×X s

2×Of×X f
2

Cdπsdπf

≥ ∆0

∫
Os×X s

2×Of×X f
2

dπsdπf

= ∆0

∫
Os×Of

dπs#1dπf#1

≥ (1− αs)(1− αf )∆0,

(8.108)
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where the last inequality follows from the marginal constraints. �

Let us first recall the following lemma.

Lemma 8.3.1. Let ϕ : t ∈ (0, 1] 7→ t log(t)− t+ 1 and fa,b : t ∈ (0, 1] 7→ t→ at+ bϕ(t) for some
a, b > 0. Then:

min
t∈(0,1]

fa,b(t) = b(1− e−a/b) = fa,b(e−
a
b ). (8.109)

Proof of Lemma 8.3.1. Since fa,b is convex, cancelling the gradient is sufficient for optimality.
The solution follows immediately. �

Proof of Theorem 4.3.1. The proof uses the same core idea of (Fatras et al., 2021) but is slightly
more technical for two reasons: (1) we consider arbitrary outlier distributions instead of simple
Diracs; (2) we consider sample-feature outliers which requires more technical derivations.

The idea of proof is as follows. First, we construct sample and feature couplings from the
solution of "clean" UCOOT and the reference measures. Then, they are used to upper bound the
"noisy" UCOOT. By manipulating this bound, the "clean" UCOOT term will appear. A variable
t ∈ (0, 1) is also introduced in the fabricated couplings. The upper bound becomes a function of
t and can be optimized to obtain the final bound.

Fabricating sample and feature couplings. Given the equal-mass solution (πs, πf ) of the
UCOOT problem, with m(πs) = m(πf ) = M , consider, for t ∈ (0, 1), a pair of sub-optimal
transport plans:

π̃s = αsπ
s + t(1− αs)εs ⊗ µs2 (8.110)

π̃f = αfπ
f + t(1− αf )εf ⊗ µf2 . (8.111)

Then, for a ∈ {s, f}, it holds:

• π̃a#1 = αkπ
a
#1 + t(1− αa)εa,

• π̃a#2 = αkπ
a
#2 + t(1− αa)µa2,

• m(µ̃a1) = 1 and m(π̃a) = αaM + (1− αa)t.

Establishing and manipulating the upper bound. Denote q = (1 − αs)(1 − αf ), s =
αs(1−αf )+αf (1−αs) and recall that on S̃, the cost C is upper bounded by ∆∞ = max

S̃
|ξ1−ξ2|p.
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First we upper bound the transportation cost:∫
S̃
C dπ̃s dπ̃f

= αsαf

∫
S̃
C dπs dπf + t

∑
k 6=i

(1− αi)αk
∫
S̃
C dεi dµi2 dπk + qt2

∫
S̃
C dεs dµs2 dεf dµf2

≤ αsαf
∫
S
C dπs dπf + ∆∞(Ms+ q)t,

(8.112)

since t2 ≤ t. Second, we turn to the KL marginal discrepancies. We would like to extract the
KL terms involving only the clean transport plans from the contaminated ones. We first detail
both joint KL divergences for the source measure indexed by 1. The same holds for the target
measure:

KL(π̃s#1 ⊗ π̃
f
#1|µ̃

s
1 ⊗ µ̃

f
1) =

∑
k 6=i

m(π̃i)KL(π̃k#1|µ̃k1) +
∏
k

(
m(π̃k)− 1

)
KL(πs#1 ⊗ π

f
#1|µ

s
1 ⊗ µ

f
1) = M

∑
k

KL(πk#1|µk1) + (M − 1)2.
(8.113)

Now we upper bound each smaller KL term using the joint convexity of the KL divergence:

KL(π̃k#1|µ̃k1) ≤ αkKL(πk#1|µk1) + (1− αk)KL(tεk|εk)

= αkKL(πk#1|µk1) + (1− αk)ϕ(t),
(8.114)

where ϕ(t) = t log t− t+ 1, for t > 0. Thus, for k 6= i:

m(π̃i)KL(π̃k#1|µ̃k1) ≤ m(π̃i)αkKL(πk#1|µk1) +m(π̃i)(1− αk)ϕ(t)

= αiαkMKL(πk#1|µk1) + t(1− αi)αkKL(πk#1|µk1) + αi(1− αk)Mϕ(t) + tqϕ(t).
(8.115)

Summing over f and s, we obtain:∑
k 6=i

m(π̃i)KL(π̃k#1|µ̃k1)

≤ αsαfM
∑
k

KL(πk#1|µk1) + t
∑
k 6=i

(1− αi)αkKL(πk#1|µk1) +Msϕ(t) + 2qtϕ(t)

≤ (αsαf + ts

M
)
(
KL(πs#1 ⊗ π

f
#1|µ

s
1 ⊗ µ

f
1)− (1−M)2

)
+Msϕ(t) + 2qtϕ(t).

(8.116)
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where, in the last bound, we used the second equation of (8.113) and the fact that αs(1−αf ) ≤ s
and αf (1− αs) ≤ s. The product of masses of (8.113) can be written:

∏
k

(
m(π̃k)− 1

)
=
∏
k

(
αk(M − 1) + (1− αk)(t− 1)

)
= αsαf (1−M)2 + s(1−M)(1− t) + q(1− t)2.

(8.117)

Thus, combining these upper bounds for the source measure:

KL(π̃s#1 ⊗ π̃
f
#1|µ̃

s
1 ⊗ µ̃

f
1) ≤ αsαfKL(πs#1 ⊗ π

f
#1|µ

s
1 ⊗ µ

f
1)

+ ts

M

(
KL(πs#1 ⊗ π

f
#1|µ

s
1 ⊗ µ

f
1)− (1−M)2

)
+
[
sMϕ(t) + 2qtϕ(t) + s(1−M)(1− t) + q(1− t)2],

(8.118)

and similarly, for the target measure:

KL(π̃s#2 ⊗ π̃
f
#2|µ

s
2 ⊗ µ

f
2) ≤ αsαfKL(πs#2 ⊗ π

f
#2|µ

s
2 ⊗ µ

f
2)

+ ts

M

(
KL(πs#2 ⊗ π

f
#2|µ

s
2 ⊗ µ

f
2)− (1−M)2

)
+
[
sMϕ(t) + 2qtϕ(t) + s(1−M)(1− t) + q(1− t)2].

(8.119)

Then, for every 0 < t ≤ 1, by summing all bounds:

UCOOT(X̃1,X2) ≤ αsαfUCOOT(X1,X2) + ∆∞(Ms+ q)t

+ ts

M
(UCOOT(X1,X2)− (ρ1 + ρ2)(1−M)2)

+ (ρ1 + ρ2)
[
sMϕ(t) + 2qtϕ(t) + s(1−M)(1− t) + q(1− t)2].

(8.120)

Minimizing the upper bound with respect to t. To obtain the exponential bound, we
would like have an upper bound of the form at+ bϕ(t), so that Lemma 8.3.1 applies. Knowing
that 1 ≤ 2(t+ ϕ(t)) for any t ∈ [0, 1]: Let’s first isolate the quantity that is not of this form: We
have:

2qtϕ(t) + s(1−M) + q(t− 1)2 = 2qt2 log(t)− 2qt2 + 2qt+ s(1−M) + qt2 − 2qt+ q

= 2qt2 log(t)− qt2 + s(1−M) + q

= qϕ(t2) + s(1−M) ≤ q + s(1−M)

≤ 2(q + s(1−M))(t+ ϕ(t))

= 2(1− αsαf − sM)(t+ ϕ(t)).

(8.121)
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The new full bound is given by:

UCOOT(X̃1,X2) ≤ αsαtUCOOT(X1,X2) +A′t+B′ϕ(t), (8.122)

where

A′ = ∆∞(Ms+ q) + s(M − 1) + s

M
UCOOT(X1,X2)− s

M
(ρ1 + ρ2)(1−M)2

+ 2(ρ1 + ρ2)(1− αsαf − sM)

≤ ∆∞(M + 1) +M + 1
M

UCOOT(X1,X2) + 2(ρ1 + ρ2)(1− αsαf ) = A

B′ = 2sM(ρ1 + ρ2)(1− αsαf ) ≤ 2M(ρ1 + ρ2)(1− αsαf ) = B.

(8.123)

In both inequalities, we use the fact that s ≤ 1− αsαf ≤ 1. Using Lemma 8.3.1, we obtain

UCOOT(X̃1,X2) ≤ αsαfUCOOT(X1,X2) +B

[
1− exp

(
−A
B

)]
. (8.124)

The upper bound of Theorem 4.3.1 then follows. �

8.3.3 Numerical aspects

Proof of Proposition 4.4.1. Denote πε = πsε ⊗ πfε .

1. When ε→∞: the sub-optimality of
(√

m(µf )
m(µs)µ

s,

√
m(µs)
m(µf )µ

f

)
implies

εKL(πε|µs ⊗ µf ) ≤ Fρ(πsε, πfε ) + εKL(πε|µs ⊗ µf )

≤ Fρ

(√
m(µf )
m(µs)µ

s,

√
m(µs)
m(µf )µ

f

)
+ εKL(µs ⊗ µf |µs ⊗ µf )

=
∫∫
|ξ1 − ξ2|pdµsdµf .

(8.125)

Thus,
0 ≤ KL(πε|µs ⊗ µf ) ≤ 1

ε

∫∫
|ξ1 − ξ2|pdµsdµf → 0, (8.126)

whenever ε→∞. We deduce that KL(πε|µs⊗µf ), thus πε ⇀ µs⊗µf . The conclusion then
follows.

2. Let (πs∗, π
f
∗ ) be a solution of UCOOTρ(X1,X2). The optimality of (πsε, πfε ) implies

UCOOTρ(X1,X2) ≤ UCOOTρ(X1,X2) + εKL(πs∗ ⊗ πf∗ |µs ⊗ µf ). (8.127)

Thus, when ε→ 0, one has UCOOTρ,ε(X1,X2)→ UCOOTρ(X1,X2). Moreover, following
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the proof technique of Lemma 4 in (Pham et al., 2020), we can show that

UCOOTρ,ε(X1,X2) =
∑
k=1,2

ρk m(µsk) m(µfk) (8.128)

+ ε
∏
k=1,2

m(µsk) m(µfk)− (ρ1 + ρ2 + ε) m(πsε)2. (8.129)

We deduce that m(πsε)→ m(πs∗), when ε→ 0,
Now, for every ε > 0,

〈C, µs ⊗ µf 〉 = Fρ

(√
m(µf )
m(µs)µ

s,

√
m(µs)
m(µf )µ

f

)
+ εKL(µs ⊗ µf |µs ⊗ µf )

≥ Fρ(πsε, πfε ) + εKL(πsε ⊗ πfε |µs ⊗ µf )

≥ Fρ(πsε, πfε ).

(8.130)

On the other hand, following the same proof in Proposition 8.3.1, we can show that if
m(πε)→∞, then Fρ(πsε, πfε )→∞, which contradicts the above inequality. So, there exists
M > 0 such that m(πε) ≤M , for every ε > 0.
The set Ẽuco = {π ∈M+(S) : m(π) ≤M}∩Euco is clearly compact, thus from the sequence
of minimisers (πε)ε ⊂ Ẽuco (i.e., πε = πsε ⊗ πfε ), we can extract a converging subsequence
(πεn)εn such that πεn → π̂ = π̂s ⊗ π̂f ∈ Ẽuco, with m(π̂s) = m(π̂f ). The continuity of
the divergences implies that, Fρ,ε(πsεn

, πfεn
) → Fρ(π̂s, π̂f ), when ε → 0. We deduce that

UCOOTρ(X1,X2) = Fρ(π̂s, π̂f ), or equivalently (π̂s, π̂f ) is a solution of UCOOTρ(X1,X2).
Moreover, we have

0 ≤ Fρ(πsεn
, πfεn

)− Fρ(πs∗, πf∗ )

≤ εn
(
KL(πs∗ ⊗ πf∗ |µs ⊗ µf )−KL(πsεn

⊗ πfεn
|µs ⊗ µf )

)
.

(8.131)

Dividing by εn in Equation (8.131) and let εn → 0, we have

KL(π̂s ⊗ π̂f |µs ⊗ µf ) ≤ KL(πs∗ ⊗ πf∗ |µs ⊗ µf ). (8.132)

and we deduce that

KL(π̂s ⊗ π̂f |µs ⊗ µf ) = min
(πs,πf )

KL(πs ⊗ πf |µs ⊗ µf ), (8.133)

where the infimum is taken over all solutions of UCOOTρ(X1,X2).

�
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8.3.4 Experimental details

8.3.5 Heterogenous Domain Adaptation (HDA)

More details on label propagation Once the sample coupling P is learned, the label
propagation works as follows: suppose the labels contain K different classes, we apply the one-hot
encoding to the source label y(s) to obtain D(s) ∈ RK×ns where D(s)

ki = 1{y(s)
i =k}. The label

proportions on the target data are estimated by: L = D(s)P ∈ RK×nt . Then the prediction can
be generated by choosing the label with the highest proportion, i.e., ŷ(t)

j = argmaxk Lkj .

Paramater validation We tune the hyperparameters of each method via grid search.

• For COOT, we choose the regularisation on the feature and sample couplings εf , εs ∈
{0, 0.01, 0.1, 0.5}.

• For GW, we choose the regularisation parameter ε ∈ {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5}.

• For UGW and UCOOT, we choose ρ1, ρ2 ∈ {1, 5, 20, 50} and ε ∈ {0.01, 0.05, 0.1, 0.5}.
Furthermore, for UGW and GW, before calculating the Euclidean distance matrix for each
domain, the matrix of domain data is normalised by max scaling, so that its coordinates
are bounded in [−1, 1]. This pre-processing step improves the performance of the for UGW
and GW.

For each method, for each combination of tuple of hyperparameters, first, we choose a pair amongst
9 pairs, then repeat 10 times the training procedure, in which the optimal plan is estimated,
then used to calculate the accuracy. We choose the tuple of hyperparameters corresponding to
the highest average accuracy. This optimal tuple is then applied to all other 8 tasks, where in
each task, the training procedure is repeated 10 times and we report the average accuracy.

When there is no regularization In the above hyperparameter tuning process, we only
considered ε > 0 for UCOOT and UGW, so that the scaling algorithm (Chizat et al., 2018b)
is applicable. We note that, the MM solver can allow us to handle the case ε = 0 (i.e., we can
estimate directly UCOOT, rather than via its entropic approximation). In this case, we also
tune ρ1, ρ2 ∈ {1, 50, 20, 50} and follow exactly the same tuning and testing procedure as in the
case ε > 0. We report our finding in Table 8.1. We observe that, in many tasks, the performance
remains competitive while enjoying lower variance.

Sensitivity analysis We report the sensitivity of UCOOT’s performance to the hyper-
parameters ε, ρ1 and ρ2 for two tasks C→W and A→A in Tables 8.2 to 8.4. In general, the
performance depends significantly on the choice of hyperparameters. In Table 8.2, given fixed
values of ρ1 and ρ2, UCOOT performs badly for either too small or large values of ε, indicating

143

Optimal transport for transfer learning across spaces Quang huy Tran 2024



Chapter 8. Annexes

CaffeNet → GoogleNet

Domains COOT UCOOT (ε > 0) UCOOT (ε = 0)

C → C 36.40 (± 12.94) 44.05 (± 19.33) 38.60 (± 9.16)
C → A 28.30 (± 11.78) 31.90 (± 7.43) 29.45 (± 9.94)
C → W 19.55 (± 14.51) 28.55 (± 6.60) 40.85 (± 12.53)
A → C 41.80 (± 14.81) 39.15 (± 17.98) 18.00 (± 9.22)
A → A 57.90 (± 16.84) 42.45 (± 15.47) 40.40 (± 8.40)
A → W 42.10 (± 7.80) 48.55 (± 13.06) 49.15 (± 6.64)
W → C 8.60 (± 6.56) 69.80 (± 14.91) 19.70 (± 5.79)
W → A 16.65 (± 10.01) 30.55 (± 10.09) 25.90 (± 5.48)
W → W 75.30 (± 3.26) 51.50 (± 20.51) 49.55 (± 6.02)
Average 36.29 (± 10.95) 42.94 (± 13.93) 34.62 (± 11.17)

Table 8.1 – Unsupervised HDA from CaffeNet to GoogleNet for ε > 0 and ε = 0. UCOOT (ε > 0)
corresponds to the model where ε, ρ1 and ρ2 are tuned, with ε > 0, and UCOOT (ε = 0) means
that ε = 0 and only ρ1, ρ2 are tuned.

that regularization is necessary but should not be too strong. From Table 8.3, we see that large
value of ρ1 degrades the performance, meaning that the marginal constraints on the source
distributions should not be too tight. Meanwhile, it seems that large ρ2 is preferable, so the
marginal distributions on the target spaces should not be too relaxed.

CaffeNet → GoogleNet

Domains ε = 0.03 0.05 0.1 0.2 0.4

C → W 27.65 (± 11.34) 37.20 (± 9.35) 34.75 (± 13.04) 17.00 (± 5.92) 11.25 (± 1.66)
A → A 21.95 (± 9.46) 35.30 (± 15.11) 41.15 (± 19.16) 58.45 (± 15.54) 8.90 (± 1.34)

Table 8.2 – Sensitivity of UCOOT to ε in tasks C→W and A→A. We fix ρ2 = 50 and ρ1 = 1
and show the accuracy for various value of ε.

CaffeNet → GoogleNet

Domains ρ1 = 20 40 50 60 80

C → W 35.80 (± 9.33) 37.35 (± 13.82) 27.45 (± 8.33) 32.45 (± 11.62) 30.15 (± 12.89)
A → A 55.20 (± 18.44) 44.15 (± 21.54) 24.30 (± 15.58) 36.10 (± 23.97) 24.80 (± 15.08)

Table 8.3 – Sensitivity of UCOOT to ρ1 in tasks C→W and A→A. We fix ρ2 = 1 and ε = 0.1
and show the accuracy for various value of ρ1.
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CaffeNet → GoogleNet

Domains ρ2 = 0.3 0.5 1 2 4

C → W 34.20 (± 9.83) 34.45 (± 10.80) 34.75 (± 13.04) 29.70 (± 10.55) 32.30 (± 18.81)
A → A 20.75 (± 10.11) 29.00 (± 15.79) 41.15 (± 19.16) 32.65 (± 8.80) 49.95 (± 15.75)

Table 8.4 – Sensitivity of UCOOT to ρ2 in tasks C→W and A→A. We fix ρ1 = 50 and ε = 0.1
and show the accuracy for various value of ρ2.

8.4 Appendix of Chapter 5

8.4.1 Proofs related to Fused Unbalanced Gromov-Wasserstein

Proof of Corollary 5.2.1. Let (P,Q) be a solution of the problem F̃UGW(X s,X t). This means
P#1 = Q#1, P#2 = Q#2. Using the relation

KL(p⊗ q|a⊗ b) = m(q)KL(p|a) +m(p)KL(q|b) +
(
m(P )−m(a)

)(
m(Q)−m(b)

)
, (8.134)

we have,

1. KL(P#1 ⊗Q#1|ws ⊗ ws) = KL(P#1 ⊗ P#1|ws ⊗ ws) = KL(Q#1 ⊗Q#1|ws ⊗ ws).

2. KL(P#2 ⊗Q#2|wt ⊗ wt) = KL(P#2 ⊗ P#2|wt ⊗ wt) = KL(Q#2 ⊗Q#2|wt ⊗ wt).

3. KL
(
P ⊗Q|(ws⊗wt)⊗ (ws⊗wt)

)
= KL

(
P ⊗P |(ws⊗wt)⊗ (ws⊗wt)

)
= KL

(
P ⊗Q|(ws⊗

wt)⊗ (ws ⊗ wt)
)
.

So, the inequality F̃UGW(X s,X t) ≤ FUGW(X s,X t) and the suboptimality of P,Q with respect
to the problem FUGW(X s,X t) imply that

2〈G,P ⊗Q〉 ≤ 〈G,P ⊗ P 〉+ 〈G,Q⊗Q〉. (8.135)

Now, following exactly the same proof of Proposition 3.1.1, the above inequality becomes an
equality. �

8.5 Appendix of Chapter 5

8.5.1 Proofs related to Augmented Gromov-Wasserstein

Proof of Proposition 6.2.1. The proof of this proposition can be adapted directly from (Vayer
et al., 2019a). For self-contained purpose, we reproduce the proof here. Denote

• (Pα, Qα) the optimal sample and feature couplings for AGWα(X ,Y).
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• (P0, Q0) the optimal sample and feature couplings for COOT(X ,Y) (corresponding to
α = 0).

• P1 the optimal sample coupling for GW(X ,Y) (corresponding to α = 1).

Due to the suboptimality of Pα for GW and (P1, Q0) for AGW, we have

α〈L(Cx, Cy)⊗ P1, P1〉 ≤ α〈L(Cx, Cy)⊗ Pα, Pα〉+ (1− α)〈L(X,Y )⊗Qα, Pα〉 (8.136)

≤ α〈L(Cx, Cy)⊗ P1, P1〉+ (1− α)〈L(X,Y )⊗Q0, P1〉, (8.137)

or equivalently

αGW(X ,Y) ≤ AGWα(X ,Y) ≤ αGW(X ,Y) + (1− α)〈L(X,Y )⊗Q0, P1〉. (8.138)

Similarly, we have

(1− α)COOT(X ,Y) ≤ AGWα(X ,Y) (8.139)

≤ (1− α)COOT(X ,Y) + α〈L(Cx, Cy)⊗ P0, P0〉. (8.140)

The interpolation property then follows by the sandwich theorem.
Regarding the relaxed triangle inequality, given three weighted matrices X ,Y and Z, denote

(PXY , QXY ), (P Y Z , QY Z) and (PXZ , QXZ) the solutions of AGWα(X ,Y),AGWα(Y,Z) and
AGWα(X ,Z), respectively. We define P = PXY diag

(
1
µY

1

)
P Y Z and Q = QXY diag

(
1
µY

2

)
QY Z .
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Then, P ∈ U(µX1 , µZ1 ) and Q ∈ U(µX2 , µZ2 ). The suboptimality of (P,Q) implies that

AGWα(X ,Z)
2 (8.141)

≤ α
∑
i,j,k,l

|Cxi,j − Czk,l|2

2 Pi,kPj,l + (1− α)
∑
i,j,k,l

|Xi,j − Zk,l|2

2 Pi,kQj,l (8.142)

= α
∑
i,j,k,l

|Cxi,j − Czk,l|2

2

(∑
e

PXYi,e P Y Ze,k

(µY1 )e

)(∑
o

PXYj,o P Y Zo,l

(µY1 )o

)
(8.143)

+ (1− α)
∑
i,j,k,l

|Xi,j − Zk,l|2

2

(∑
e

PXYi,e P Y Ze,k

(µY1 )e

)(∑
o

QXYj,o Q
Y Z
o,l

(µY2 )o

)
(8.144)

≤ α
∑

i,j,k,l,e,o

|Cxi,j − Cye,o|2
PXYi,e P Y Ze,k

(µY1 )e
PXYj,o P Y Zo,l

(µY1 )o
(8.145)

+ (1− α)
∑

i,j,k,l,e,o

|Xi,j − Ye,o|2
PXYi,e P Y Ze,k

(µY1 )e
QXYj,o Q

Y Z
o,l

(µY2 )o
(8.146)

+ α
∑

i,j,k,l,e,o

|Cye,o − Czk,l|2
PXYi,e P Y Ze,k

(µY1 )e
PXYj,o P Y Zo,l

(µY1 )o
(8.147)

+ (1− α)
∑

i,j,k,l,e,o

|Ye,o − Zk,l|2
PXYi,e P Y Ze,k

(µY1 )e
QXYj,o Q

Y Z
o,l

(µY2 )o
(8.148)

= α
∑
i,j,e,o

|Cxi,j − Cye,o|2PXYi,e PXYj,o + (1− α)
∑
i,j,e,o

|Xi,j − Ye,o|2PXYi,e QXYj,o (8.149)

+ α
∑
k,l,e,o

|Cye,o − Czk,l|2P Y Ze,k P
Y Z
o,l + (1− α)

∑
k,l,e,o

|Ye,o − Zk,l|2P Y Ze,k Q
Y Z
o,l (8.150)

= AGWα(X ,Y) + AGWα(Y,Z). (8.151)

where the second inequality follows from the inequality: (x+ y)2 ≤ 2(x2 + y2). �

Proof of Corollary 6.2.1. This proof is based on the personal communication with professor Will
Sawin on his discussion on https://mathoverflow.net/questions/420319/why-is-the-set-of-hermitian-matrices-with-repeated-eigenvalue-of-measure-zero.
We thank him for his invaluable support during the submission of our paper.

First, let us recall the Schwartz-Zippel lemma. Denote F (x1, ..., xn) a multivariate polynomial.
Its total degree is the maximum of the sums of the powers of the variables in any monomial. The
Schwartz-Zippel lemma states that: let F (x1, ..., xn) be a nonzero multivariate polynomial of
total degree d and S be a finite subset of R. Denote ZS := {(x1, ..., xn) ∈ Sn : F (x1, ..., xn) = 0}
the set of zeros of F on Sn. Then |ZS | ≤ d|S|n−1.

Note that, the set of Hermitian matrices of size n forms a finite-dimensional real vector space.
In particular, it is isomorphic to the Euclidean space Rn2 . Denote I set of Hermitian matrices of
size n with repeated eigenvalues. It is enough to show that I has measure zero. We have I ' E,
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for some E ⊂ Rn2 . By Proposition 4 in (Stein and Shakarchi, 2005), since I is closed (see page 56
in (Tao, 2012)), it is measurable. If I does not have zero measure, then the intersection E∩ [0, 1]n2

has positive measure p > 0. If, for each i ∈ [n2], we sample m i.i.d coordinates uniformly in [0, 1],
then we have mn2 points uniformly distributed in [0, 1]n2 . So, the expected number of points
lying in E is pmn2 .

On the other hand, recall that a (Hermitian) matrix has repeated eigenvalues if and only
if the discriminant of its characteristic polynomial is zero. Moreover, the discriminant of the
characteristic polynomial is a polynomial in n2 entries of the matrix. Thus, the measure of I (or,
equivalently E) is the measure of the set of values of these n2 variables which make a certain
polynomial of total degree d vanish. By Schwartz-Zippel lemma, on average, there are at most
dmn2−1 points in E. By choosing m > d/p, we obtain a contradiction. Thus E (or equivalently
I) must have zero measure. �

Proof of Theorem 6.2.1. Regarding the first claim, note that Y = XQ, where Q is a permutation
matrix corresponding to the permutation σc. Since Y is obtained by swapping columns of X, it is
easy to see that GW(X ,Y) = 0 and the optimal plan between X and Y is P ∗ = 1

n2 Idn. Similarly,
COOT(X ,Y) = 0, where P ∗ and Q∗ = 1

nQ are the optimal sample and feature couplings,
respectively. In other words, 〈L(Cx, Cy)⊗ P ∗, P ∗〉 = 0 and 〈L(X,Y )⊗Q∗, P ∗〉 = 0. We deduce
that AGWα(X ,Y) = 0.

Now, for 0 < α < 1, if AGWα(X ,Y) = 0, then GW(X ,Y) = COOT(X ,Y) = 0. In particular,
X and Y must have the same shape, so X,Y ∈ Rn×d. As GW(X ,Y) = 0, there exists an
isometry from X to Y . Note that every isometry from Rd to Rd is a composition of at most d+ 1
reflections (see, for example, Corollary A.7 in (Isometries of Rn)). So, Y = XO, for some O ∈ Od.
As COOT(X ,Y) = 0, there exist two permutations σr and σc such that Xi,j = Yσr(i),σc(j), or
equivalently two permutation matrices P ∈ Pn, Q1 ∈ Pd such that Y = PXQ1. We deduce
that XO = PXQ1, or equivalently X = PXQ, for Q = Q1O

T ∈ Od. We will show that Q is
symmetric.

Indeed, consider the singular value decomposition of X, i.e., X = UΣV T , where U ∈ Rn×d

such that UTU = Id, V ∈ Od and Σ ∈ Rd×d is a diagonal matrix whose diagonal contains d
strictly decreasing singular values (since n ≥ d). As X = PXQ, we have UΣV T = (PU)Σ(V TQ).
For i ∈ [d], let ui ∈ Rn and vi ∈ Rd be columns of U and V , respectively. As the singular values
are positive and distinct, the columns are unique up to the sign change of both columns in U and
V . This means ui = ±Pui and vi = ±QT vi. In other words, ±1 are eigenvalues of P and QT , and
ui, vi are their corresponding eigenvectors, respectively. Denote D ∈ Rd×d any diagonal matrix
whose diagonal values are in {±1}, then QT = V DV −1 = V DV T = Q. So, Q is symmetric.
Theorem 6.2.1 then follows by observing that O = QTQ1. �

Lemma 8.5.1. COOT is weakly invariant to translation.
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Proof of Lemma 8.5.1. For any P ∈ U(µX1 , µY1 ), Q ∈ U(µX2 , µY2 ) and c ∈ R, we have

∑
i,j,k,l

(Xik − Yjl − c)2PijQkl =
∑
i,j,k,l

(Xik − Yjl)2PijQkl − 2c
∑
i,j,k,l

(Xik − Yjl)PijQkl + c2. (8.152)

Now,

∑
i,j,k,l

(Xik − Yjl)PijQkl =
∑
i,j,k,l

XikPijQkl −
∑
ijkl

YjlPijQkl (8.153)

=
∑
i,k

Xik

∑
j

Pij

(∑
l

Qkl

)
−
∑
j,l

Yjl

(∑
i

Pij

)(∑
k

Qkl

)
(8.154)

=
∑
i,k

Xik(µX1 )i(µX2 )jµ′k −
∑
j,l

Yjl(µY1 )j(µY2 )l (8.155)

= (µX1 )TXµX2 − (µY1 )TY µY2 . (8.156)

So, COOT(X ,Y + c) = COOT(X ,Y) − 2c
(
(µX1 )TXµX2 − (µY1 )TY µY2

)
+ c2. This implies that

COOT is weakly invariant to translation. �

Proof of Proposition 6.2.2. Note that the GW term in AGW remains unchanged by translation.
By adapting the proof of Lemma 8.5.1, we obtain

AGWα(X ,Y + c) = AGWα(X ,Y) + (1− α)
[
c2 − 2c

(
(µX1 )TXµX2 − (µY1 )TY µY2

)]
. (8.157)

The result then follows. �

8.5.2 Experimental Set-up Details

MNIST Illustrations

We align 1000 images of hand-written digits from the MNIST dataset with 1000 images
from the USPS dataset. Each dataset is subsampled to contain 100 instances of each of the 10
possible digits (0 through 9), using the random seed of 1976. We set all marginal distributions
to uniform, and use cosine distances for GW and AGW. We consider both the entropically
regularized and non-regularized versions for all methods. For entropic regularization, we sweep a
grid of ε1, ε2( =if applicable) ∈ [5e − 4, 1e − 3, 5e − 3, 1e − 2, 5e − 2, 1e − 1, 5e − 1]. For AGW,
we consider [0.1, 0.2, 0.3, ..., 0.9], and present results with the best-performing hyperparameter
combination of each method, as measured by the percent accuracy of matching images from the
same digit across the two datasets.
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Single-cell multi-omic alignment experiments

Datasets We largely follow the first paper that applied OT to single-cell multi-omic alignment
task (Demetci et al., 2020) in our experimental set-up and use four simulated datasets and three
real-world single-cell multi-omic datasets to benchmark our cell alignment performance.

Three of the simulated datasets have been generated by (Liu et al., 2019b) by non-linearly
projecting 600 samples from a common 2-dimensional space onto different 1000- and 2000-
dimensional spaces with 300 samples in each.

We include a fourth simulated dataset generated by (Demetci et al., 2020) using a single-cell
RNA-seq data simulation package in R, called Splatter (Zappia, Phipson, and Oshlack, 2017). We
refer to this dataset as “Synthetic RNA-seq”. This dataset includes a simulated gene expression
domain with 50 genes and 5000 cells divided across three cell types and another domain created
by non-linearly projecting these cells onto a 500-dimensional space. As a result of their generation
schemes, all simulated datasets have ground-truth 1-1 cell correspondence information. We
use this information solely for benchmarking. We do not have access to ground-truth feature
relationships in these datasets, so we exclude them from feature alignment experiments.

Additionally, we include three real-world single-cell sequencing datasets in our experiments.
To have ground-truth information on cell correspondences for evaluation, we choose three co-assay
datasets which have paired measurements on the same individual cells: an scGEM dataset (Cheow
et al., 2016), a SNARE-seq dataset (Chen, Lake, and Zhang, 2019b), and a CITE-seq dataset
(Stoeckius et al., 2017) (these are exceptions to the experimental challenge described above).
These first two datasets have been used by existing OT-based single-cell alignment methods (Cao
et al., 2020; Cao, Hong, and Wan, 2021; Demetci et al., 2020, 2022a; Singh et al., 2020), while
the last one was included in the evaluations of a non-OT-based alignment method, bindSC (Dou
et al., 2022).

In addition to these three datasets, we include a fourth single-cell dataset, which contains
data from the same measurement modality (i.e., gene expression) but from two different species:
mouse (Bhattacherjee et al., 2019) and bearded lizard (Tosches et al., 2018). Our motivation
behind including this dataset is to demonstrate the effects of both sample-level (i.e., cell-level)
and feature-level (i.e., gene-level) supervision on alignment qualities. We refer to this dataset as
the “cross-species dataset”, which contains 4,187 cells from lizard pallium (a brain region) and
6,296 cells from the mouse prefrontal cortex. The two species share a subset of their features:
10,816 paralogous genes. Each also has species-specific genes: 10,184 in the mouse dataset and
1,563 in the lizard dataset.

Baselines and hyperparameter tuning We benchmark AGW’s performance on single-cell
alignment tasks against three algorithms: (1) COOT (Redko et al., 2020), (2) SCOT (Demetci
et al., 2020), which is a Gromov-Wasserstein OT-based algorithm that uses k-nearest neighbor
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(kNN) graph distances on dimensionality reduced datasets (top 30 principal components for gene
expression domains and simulated domains, 15-25 topics with latent dirichlet allocation for other
measurement domains) as intra-domain distance matrices. This choice of distances has been
shown to perform better than Euclidean distances, cosine distances by (Demetci et al., 2020),
and bindSC (Dou et al., 2022). For consistency, we keep the intra-domain distance computations
the same for AGW and UGW, too. Among all baselines, bindSC is not an OT-based algorithm:
It employs bi-order canonical correlation analysis to perform alignment. We include it as a
benchmark as it is the only existing single-cell alignment algorithm that can perform feature
alignments (in addition to cell alignments) for a few limited types of measurement modalities.

When methods share similar hyperparameters in their formulation (e.g., entropic regularization
constant, ε for methods that employ OT), we use the same hyperparameter grid to perform their
tuning. Otherwise, we refer to the publication and the code repository for each method to choose
a hyperparameter range. For SCOT, we tune four hyperparameters: k ∈ {20, 30, . . . , 150}, the
number of neighbors in the cell neighborhood graphs, ε ∈ {5e−4, 3e−4, 1e−4, 7e−3, 5e−3, . . . , 1e−
2}, the entropic regularization coefficient for the optimal transport formulation. Similarly, for
both COOT and AGW, we sweep ε1, ε2 ∈ {5e− 4, 3e− 4, 1e− 4, 7e− 3, 5e− 3, . . . , 1e− 2} for the
coefficients of entropic regularization over the sample and feature alignments. We use the same
intra-domain distance matrices in AGW as in SCOT (based on kNN graphs). For all OT-based
methods, we perform barycentric projection to complete the alignment.

For bindSC, we choose the coupling coefficient that assigns weight to the initial gene activity
matrix α ∈ {0, 0.1, 0.2, . . . 0.9} and the coupling coefficient that assigns a weight factor to multi-
objective function λ ∈ {0.1, 0.2, . . . , 0.9}. Additionally, we choose the number of canonical vectors
for the embedding space K ∈ {3, 4, 5, 10, 30, 32}. For all methods, we report results with the
best-performing hyperparameter combinations.

Evaluation Metrics When evaluating cell alignments, we use a metric previously used by
other single-cell multi-omic integration tools (Cao et al., 2020; Cao, Hong, and Wan, 2021;
Demetci et al., 2020, 2022a; Dou et al., 2022; Liu et al., 2019b; Singh et al., 2020) called “fraction
of samples closer than the true match” (FOSCTTM). For this metric, we compute the Euclidean
distances between a fixed sample point and all the data points in the other domain. Then, we
use these distances to compute the fraction of samples that are closer to the fixed sample than
its true match and then average these values for all the samples in both domains. This metric
measures alignment error, so the lower values correspond to higher-quality alignments.

We investigate the accuracy of feature correspondences recovered to assess feature alignment
performance. We mainly use two real-world datasets for this task - CITE-seq, and the cross-species
scRNA-seq datasets (results on SNARE-seq and scGEM datasets are qualitatively evaluated
due to the lack of ground-truth information). For the CITE-seq dataset, we expect the feature
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correspondences to recover the relationship between the 25 antibodies and the genes that encode
them. To investigate this, we simultaneously align the cells and features of the two modalities
using the 25 antibodies and 25 genes in an unsupervised manner. We compute the percentage of
25 antibodies whose strongest correspondence is their encoding gene.

For the cross-species RNA-seq dataset, we expect alignments between (1) the cell-type
annotations common to the mouse and lizard datasets, namely excitatory neurons, inhibitory
neurons, microglia, OPC (Oligodendrocyte precursor cells), oligodendrocytes, and endothelial
cells and (2) between the paralogous genes. For this dataset, we generate cell-label matches by
averaging the rows and columns of the cell-cell alignment matrix yielded by AGW based on
these cell annotation labels. We compute the percentage of these six cell-type groups that match
as their strongest correspondence. For feature alignments, we compute the percentage of the
10,816 shared genes that are assigned to their corresponding paralogous gene with their highest
alignment probability. For this dataset, we consider providing supervision at increasing levels on
both sample and feature alignments. For feature-level supervision, 20% supervision means setting
the alignment cost of ∼ 20% of the genes with their paralogous pairs to 0. For sample-level
supervision, 20% supervision corresponds to downscaling the alignment cost of ∼ 20% of the
mouse cells from the aforementioned seven cell types with the ∼ 20% of lizard cells from their
corresponding cell-type by 1

# lizard cells in the same cell-type .
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Titre : Transport optimal pour l’apprentissage par transfert entre les espaces

Mot clés : Transport Optimal Non-équilibré, Gromov-Wasserstein, Co-Optimal Transport, Adap-
tation de Domaine Hétérogène

Résumé : Au cours des dernières années,
la remarquable puissance de la théorie du
transport optimal a largement dépassé la com-
paraison classique des mesures de proba-
bilité évoluant dans le même espace sous-
jacent. Dans cette thèse, nous nous inté-
ressons aux problèmes de transport opti-
mal entre des espaces incomparables. Plus
précisément, nous nous concentrons sur la
relaxation marginale du transport optimal
(équilibré) de Gromov-Wasserstein et du Co-
Optimal Transport, ainsi que sur l’intégration
de connaissances préalables dans la dis-
tance de Gromov-Wasserstein et sa formula-
tion non-équilibrée. Nous commençons par le
Co-Optimal Transport en cadre continu, qui

sert de première étape vers l’étude de l’ap-
proximation entropique et de l’extension non-
équilibrée. Ensuite, nous introduisons la for-
mulation non-équilibrée du Co-Optimal Trans-
port et montrons sa robustesse aux valeurs
aberrantes, contrairement à son homologue
équilibré. Ensuite, nous proposons d’utiliser
la divergence de Fused Gromov-Wasserstein
non-équilibrée pour aligner les surfaces corti-
cales, en exploitant simultanément les signaux
fonctionnels et la structure anatomique du cer-
veau humain. Enfin, nous renforçons davan-
tage la distance de Gromov-Wasserstein avec
la capacité de manipuler plus efficacement les
données brutes et d’effectuer un appariement
des features génomiques.

Title: Optimal transport for transfer learning across domains

Keywords: Unbalanced Optimal Transport, Gromov-Wasserstein, Co-Optimal Transport, Het-
erogeneous Domain Adaptation

Abstract: In the recent years, the remarkable
versatility of optimal transport theory has gone
far beyond the classic comparison of the prob-
ability measures living in the same underly-
ing space. In this thesis, we are interested
in the optimal transport problems between in-
comparable spaces. More precisely, we focus
on the marginal relaxation of the (balanced)
Gromov-Wasserstein and Co-Optimal Trans-
port, as well as the integration of prior known-
ledge into Gromov-Wasserstein distance and
its unbalanced formulation. We start with the
Co-Optimal Transport in continuous setting,
which serves as the first step towards the

study of the entropic approximation and unbal-
anced extension. Then, we introduce the un-
balanced formulation of the Co-Optimal Trans-
port and show its robustness to outliers, by
contrast to the balanced counterpart. Next,
we propose to use the fused unbalanced
Gromov-Wasserstein divergence to align the
cortical surfaces, by simultaneously exploiting
the functional signals and anatomical struc-
ture of human brain. Finally, we further em-
power the Gromov-Wasserstein distance with
the ability to manipulate more efficiently the in-
put data and to perform meaningful genomic
feature matching.
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