
HAL Id: tel-04918839
https://theses.hal.science/tel-04918839v1

Submitted on 29 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to scalable clustering of networks and
graphs

Chakib Fettal

To cite this version:
Chakib Fettal. Contributions to scalable clustering of networks and graphs. Machine Learning [cs.LG].
Université Paris Cité, 2024. English. �NNT : 2024UNIP7020�. �tel-04918839�

https://theses.hal.science/tel-04918839v1
https://hal.archives-ouvertes.fr


Université Paris Cité
Ecole Doctorale Informatique, Télécommunications et Electronique de Paris (ED 130)

Centre Borelli UMR 9010

Contributions to Scalable
Clustering of Networks and Graphs

Par Chakib Fettal

Thèse de Doctorat en Informatique
Spécialisation en Science des Données

Dirigée par Mohamed Nadif
Présentée et soutenue publiquement le 02 Février 2024

Devant un jury composé de :

Pr. Sébastien Adam Université de Rouen Rapporteur
Pr. Philippe Lenca IMT Atlantique Rapporteur
Pr. Christophe Marsala Sorbonne Université Examinateur
Pr. Ndeye Niang-Keita Cnam Examinatrice
Pr. Mohamed Nadif Université Paris Cité Directeur de Thèse
Dr. Lazhar Labiod Université Paris Cité Encadrant
M. Marc Gnanou Informatique CDC Encadrant Industriel





Remerciements

Tout d’abord, je tiens à remercier mon directeur de thèse, Mohamed Nadif, pour son
soutien tout au long de cette thèse ainsi que pour sa patience et pour avoir partagé son
savoir avec moi. Je souhaite aussi remercier mon responsable industriel, Marc Gnanou, de
m’avoir donné l’opportunité de faire cette thèse et pour avoir créé un environnement de
travail positif et encourageant. Je tiens également à exprimer ma gratitude envers mon
encadrant, Lazhar Labiod, pour avoir guidé mes efforts avec sagesse, foi et patience. Mes
sincères remerciements vont également aux rapporteurs, Pr. Sébastien Adam et Pr. Philippe
Lenca ; et aux examinateurs, Pr. Christophe Marsala et Pr. Ndeye Niang-Keita, qui ont
généreusement consacré leur temps et leur expertise à évaluer ce travail.

Je souhaite aussi remercier toutes les personnes que j’ai côtoyées durant ces quelques
années à Paris Cité et à ICDC. Je pense notamment à Serkan, Salimata, Hugo, Axel, Oualid,
Amy, Willie, Mira, Amine, Stéphane, Abdou, Karine, Joel, Abou-Oumar, Laurent, Hakim,
Sami, Sylvie, Clément, Matar, Gauthier, Amira et j’en passe. Je pense aussi à Nazim et
Mathieu avec qui j’avais effectué mes premiers pas dans la recherche pendant notre stage à
Paris Cité. Cette thèse étant financée par ICDC et l’ANRT, je tiens donc à les remercier
pour avoir rendu ce travail possible. Enfin, un grand merci à toutes les personnes, qu’elles
aient participé de près ou de loin à la réalisation de ce manuscrit.

I would like to dedicate this thesis to my family. To my dear mother and father to whom
I owe everything, as well as, to my brother and sister. My gratefulness also goes to the
rest of my family for their help during this journey. A special thanks goes to my aunts
and uncles (and Fadila) without whom I would not be in a position to fulfill this work. I
wish to also dedicate it to my friends; thank you for making these past three years easier to
handle: Abdelkader, Amine, Mohamed, Oussama B., Anis, Hichem, Hamza, Abdessamad,
Abdrahmane, Oussama M., Moutia, Rym, Rabah and the others.

i





Résumé
Les graphes sont une structure de données importante utilisée dans de nombreux domaines

car ils constituent un outil puissant pour la modélisation et l’analyse de systèmes complexes.
Ils sont utilisés pour représenter les relations entre les entités, comme les individus dans
un réseau social ou les nœuds dans un réseau informatique. Les graphes ont été utilisés
dans diverses applications dans différents domaines, tels que l’analyse des réseaux sociaux, la
bioinformatique, l’épidémiologie et bien d’autres encore. Dans l’analyse des réseaux sociaux,
par exemple, les graphes peuvent être utilisés pour étudier les modèles d’interactions entre les
individus dans un réseau social et identifier les groupes d’individus ayant des intérêts ou des
comportements similaires. Cela peut être utile pour le marketing ou les recommandations
ciblées.

Le partitionnement de graphes, également connu sous le nom de détection de commu-
nautés, est une technique importante dans l’analyse des données de graphes. Il permet
d’identifier des groupes de nœuds similaires dans le graphe. Cela peut révéler des motifs et
des structures sous-jacents dans le graphe qui ne sont pas immédiatement apparents. Par
exemple, dans un réseau social, le clustering peut révéler des groupes d’individus ayant des
intérêts ou des comportements similaires, et en bioinformatique, il peut révéler des modules
fonctionnels dans les réseaux d’interaction protéine-protéine.

Cette thèse tente de résoudre les problèmes de scalabilité des modèles de clustering de
graphes de l’état de l’art et présente des approches pour le clustering et l’apprentissage de
représentation de différents types de graphes, y compris les graphes classiques, les graphes
bipartis, les graphes attribués, les graphes attribués bipartis et les graphes attribués multi-
vues. À cette fin, nous exploitons des techniques simples telles que: les projections linéaires,
le lissage laplacien, le transport optimal, etc. Les approches proposées partagent toutes trois
caractéristiques clés: simplicité, efficacité et peu d’hyperparamètres. Grâce à leur nature
simple mais efficace, les méthodes proposées sont compétitives par rapport à l’état de l’art
tout en étant généralement plus efficaces en termes de calcul. Nous démontrons l’efficacité
et l’efficience de nos modèles par rapport à l’état de l’art par le biais d’une expérimentation
approfondie et de tests de Significativité statistique.

Mots clés : graphes, partitionnement, apprentissage de représentations

iii





Abstract
Graphs are an important data structure used in many fields because they provide a

powerful tool for modeling and analyzing complex systems. They are used to represent re-
lationships between entities, such as individuals in a social network or nodes in a computer
network. Graphs have been used in various applications across different fields, such as social
network analysis, bioinformatics, computer science, transportation, epidemiology and many
more. In social network analysis, for example, graphs can be used to study patterns of in-
teractions between individuals in a social network and identify groups of individuals with
similar interests or behaviors. This can be useful for targeted marketing or recommenda-
tions. In bioinformatics, graphs can be used to identify functional modules in protein-protein
interaction networks.

Graph clustering, also known as community detection, is an important technique in the
analysis of graph data. Clustering allows for the identification of groups of similar nodes
within the graph. This can reveal underlying patterns and structures in the graph that may
not be immediately apparent. For example, in a social network, clustering can reveal groups
of individuals with similar interests or behaviors, and in bioinformatics, clustering can reveal
functional modules in protein-protein interaction networks.

The thesis tries to address scalability issues of the state-of-the-art graph clustering models
and presents approaches for clustering and representation learning different types of graphs,
including classical graphs, bipartite graphs, attributed graphs, bipartite attributed graphs,
and multi-view attributed graphs. To this end we leverage techniques such as: linear projec-
tions, Laplacian smoothing, optimal transport, etc. The proposed approaches all share three
key characteristics: simplicity, cost-effectiveness, and having few hyper-parameters. Thanks
to their simple yet effective nature, the proposed methods are competitive with the state of the
art while also generally being more computationally efficient. We showcase the efficacy and
efficiency of our models against state-of-the-art methods through extensive experimentation
and significance testing.

Keywords : graphs, clustering, representation learning

v





Résumé Substantiel

Le Compte Personnel de Formation (également appelé Mon Compte Formation 1) est un
système de financement public français pour les programmes de formation. La plateforme a
été développée à l’origine par le Groupe Caisse des Dépôts. En raison de son importance, elle
est toujours l’un des projets phares pilotés par la CDC et, par extension, par Informatique
CDC (ICDC). La plateforme contient des informations sur les utilisateurs ainsi que sur les
programmes de formation. Ces données peuvent être naturellement représentées sous forme
de graphes basés sur les similarités qui existent entre les différents utilisateurs et les différents
programmes de formation. Ainsi, l’investigation de techniques d’exploration de données et
d’apprentissage automatique liées aux graphes peut s’avérer pertinente dans le contexte de
ICDC.

L’exploration et l’apprentissage sur les graphes est un domaine du machine learning qui
est en plein essor. Il traite de l’analyse et de la compréhension des données représentées
sous forme de graphes. Ce domaine a fait l’objet d’une attention particulière ces dernières
années en raison de la prolifération des données structurées sous forme de graphes dans divers
domaines, notamment les réseaux sociaux, les réseaux biologiques, le World Wide Web, etc.
La capacité à extraire des informations et des connaissances utiles de ce type de données est
devenue essentielle dans de nombreux domaines de la recherche et de l’industrie. L’objectif de
l’exploration et de l’apprentissage sur les graphes est de développer des algorithmes efficaces et
efficients pour découvrir des modèles, des relations et des structures latentes dans les données
structurées par des graphes. Le but ultime est de fournir des informations qui peuvent être
utilisées pour améliorer la prise de décision et soutenir diverses applications telles que les
systèmes de recommandation, la détection des fraudes et la bio-informatique, entre autres.
Cependant, comme le volume de données structurées en graphes continue de croître, le besoin
de techniques efficientes d’exploration de graphes devient encore plus pressant, car plusieurs
problèmes peuvent survenir en raison de la grande échelle des données dans les approches
d’apprentissage automatique des graphes comme :

• L’absence de données étiquetées: Les graphes contiennent générale-ment moins de don-
nées étiquetées que les autres types de données, ce qui complique l’apprentissage des
algorithmes d’apprentissage automatique basés sur les graphes.

1https://www.moncompteformation.gouv.fr/

vii

https://www.moncompteformation.gouv.fr/


• Sparsité des données: Les graphes peuvent être très éparses, ce qui signifie que la plupart
des nœuds n’ont que quelques arêtes. Cette sparsité peut rendre difficile l’apprentissage
de représentations de qualité à partir du graphe ou la réalisation de prédictions précises,
et plus le graphe est grand, plus ce problème est prononcé.

• Complexité spatiale: Bien que les graphes soient généralement peu denses, certaines
techniques d’exploration de graphes surmontent cette sparsité en appliquant des trans-
formations à la matrice d’adjacence du graphe, ce qui peut entraîner des problèmes de
perte de mémoire.

• Complexité de calcul: Certains algorithmes d’apprentissage automatique basés sur les
graphes, tels que ceux qui impliquent la factorisation des matrices, peuvent avoir une
complexité temporelle élevée, ce qui rend leurs exécutions sur des graphes à grande
échelle peu pratiques.

Il est possible d’atténuer ces problèmes de différentes manières. En cas de manque de
données étiquetées, il est possible, par exemple, d’envisager le contexte de l’apprentissage
non supervisé, qui est un type d’apprentissage automatique dans lequel le modèle apprend
à partir des données sans utiliser d’exemples étiquetés. Quant aux problèmes de données
éparses, de complexité spatiale et de calcul, ils peuvent être atténués en les prenant en
considération lors de l’élaboration de solutions aux problèmes liés aux graphes.

Dans cette thèse, nous abordons ces questions de complexité et proposons de nouvelles
techniques pour les traiter efficacement dans un contexte non supervisé, en particulier celui du
clustering (et de l’embedding dans une certaine mesure) en ce qui concerne différents types
de graphes. Le partitionnement non supervisé des données et des graphes en particulier
est depuis longtemps un sujet d’intérêt dans la communauté de l’exploration des données.
Le clustering de nœuds, également connu sous le nom de détection de communautés, est
un objectif récurrent dans l’analyse des graphes car il permet d’identifier des groupes de
nœuds similaires dans les réseaux. Cette technique peut révéler des modèles et des structures
sous-jacentes qui ne sont pas toujours évidentes. L’analyse des réseaux sociaux est un cas
d’utilisation clé du clustering de graphe, qui permet d’identifier des groupes d’individus ayant
des intérêts ou des comportements similaires [Handcock, 2007; Mishra, 2007]. Cela peut être
utile pour le marketing ciblé ou les recommandations [He, 2010]. Un autre cas d’utilisation est
la bio-informatique, où le clustering peut être utilisé pour identifier des modules fonctionnels
dans les réseaux d’interaction protéine-protéine [Brohee, 2006; Dittrich, 2008; Pizzuti, 2014].
Depuis les premiers jours de la classification automatique (non supervisée), un très grand
nombre d’approches ont été proposées dont certaines vont être privilégiées dans cette thèse.

Avec l’avènement de l’apprentissage profond et son succès dans le cadre supervisé, les
chercheurs ont essayé de reproduire ce succès dans un contexte non supervisé, tel que le
contexte du clustering de graphes. Cela a conduit, cependant, à une crise de reproductibilité
en raison de l’utilisation d’un grand nombre d’hyper-paramètres spécifiques aux données
en utilisant souvent à tort les labels disponibles pour évaluer les algorithmes. Ce qui est
particulièrement le cas dans le deep subspace clustering [Haeffele, 2021] par exemple. Notons

viii



toutefois que cela peut être surmonté par des approches de type ensemble comme celle réalisée
dans un cadre totalement non supervisé par [Affeldt, 2020; Affeldt, 2022].

Par sa simplicité et son efficience l’algorithme k-means reste l’algorithme de clustering
le plus populaire même s’il nécessite la connaissance du nombre de clusters. A noter que la
simplicité de k-means entraîne cependant certaines limitations, notamment dans la manière
dont il traite les clusters non sphériques de tailles différentes et pas assez bien séparées. Cela
s’explique par le fait que le critère optimisé est associé à un modèle de mélange gaussien
sphérique contraint. Le spectral clustering [Von Luxburg, 2007] et les algorithmes de type
Expectation-Maximization (EM) [Dempster, 1977], par exemple, remédient à ces faiblesses.
Ainsi, plusieurs approches seront proposées dans cette thèse, qui sont simples par nature
mais qui visent également à surmonter les difficultés liées au clustering de différents types de
données, tels que les réseaux attribués, les réseaux à vues multiples, etc.

Dans cette thèse, nous proposons des approches pour les deux tâches clustering et em-
bedding de différents types de graphes, à savoir les graphes classiques, les graphes bipartis,
les graphes attribués, les graphes attribués bipartis et les graphes attribués multi-vues. Les
approches que nous avons développées partagent toutes trois caractéristiques clés qui, selon
nous, contribuent à la grande popularité de l’algorithme de clustering k-means. Ces trois
caractéristiques sont les suivantes :

• Simplicité: Dans le sens où il n’y a pas de grands ensembles de paramètres à apprendre
comme c’est traditionnellement le cas dans l’apprentissage profond. La plupart des
modèles présentés dans cette thèse utilisent des transformations dont le coût est linéaire
par rapport à la taille de l’entrée pour apprendre les représentations, et des règles de
clustering simples pour générer des partitions.

• La nature rentable de l’algorithme: Les modèles proposés ici sont également renta-
bles par nature c’est à dire qu’il donnent de bons résultats par rapport à leurs temps
d’exécution, cela peut être compris dans le sens de l’optimalité de Pareto, ce qui signifie
qu’ils surpassent les modèles de l’état de l’art utilisés dans nos benchmarks en termes de
complexité de calcul, de temps d’exécution empirique ou de performance de clustering
empirique.

• Peu d’hyper-paramètres: Pour tous les modèles que nous avons introduits, peu d’hyper-
paramètres doivent être définis. Pour ce faire, nous proposons soit des valeurs par défaut
testées, soit des règles de sélection des hyperparamètres.

Ce document est organisé comme suit : Dans la Partie 1, nous présentons l’état de
l’art, en particulier, dans le chapitre 1, nous introduisons les réseaux et les notions liées aux
graphes. Ensuite, dans le chapitre 2, nous fournissons une introduction au clustering avec une
attention particulière portée sur le clustering des graphes. Dans Partie 2, nous présentons
nos contributions en détail :

Dans le Chapitre 3, nous avons présenté un nouvel algorithme pour le clustering de graphes
avec des contraintes de taille arbitraires grâce à l’utilisation d’un transport optimal. Cette

ix



approche généralise le concept de coupes normalisées et de coupes ratio à toute notion de
taille et de distributions de taille. L’algorithme proposé s’est avéré efficace lorsqu’il est utilisé
comme étape de post-traitement en conjonction avec les algorithmes classiques de coupure
de graphe, comme l’ont démontré des expériences sur des ensembles de données équilibrés
et déséquilibrés. Les résultats ont mis en évidence l’efficacité de notre approche en termes
de performances de clustering et sa capacité à récupérer des partitions qui correspondent
étroitement à la distribution souhaitée.

Dans le Chapitre 4, nous avons présenté une nouvelle approche pour le clsutering de
graphes bipartis à l’aide de la théorie du transport qui répond aux défis liés au clsutering
de données éparses telles que les matrices documents-termes. Le problème est formulé sous
la forme d’un programme bilinéaire qui est résolu par un algorithme efficace de descente de
coordonnées par blocs. Les résultats des expériences menées sur divers ensembles de données
documents-termes indiquent que la méthode proposée identifie efficacement et simultanément
les classes de documents et les classes de termes pertinentes sémantiquement. En outre, la
méthode proposée est plus performante que les techniques récentes de co-clustering basées
sur le transport optimal et est plus efficace sur le plan computationnel. Cela a conduit à une
publication [Fettal, 2022b] ainsi qu’à une version française publiée [Fettal, 2023a].

Dans le travail discuté dans le Chapitre 5, nous avons présenté un algorithme efficace pour
le clustering de graphes attribués par le biais du processus de clustering de sous-espace. Nous
avons proposé un algorithme efficace pour le clustering de graphes attribués par le biais du
processus de subspace clustering. L’algorithme commence par apprendre une représentation
initiale du graphe à l’aide d’une étape de propagation du voisinage simple mais efficace. En-
suite, il apprend une matrice de coefficients factorisée à l’aide de contraintes d’orthogonalité,
qui est ensuite intégrée dans un nouvel espace de caractéristiques pour créer une matrice
d’affinité symétrique et non négative. Cette matrice d’affinité est ensuite utilisée dans un
algorithme de clustering spectral implicite. L’expérimentation menée a montré que notre
proposition est efficace et efficiente par rapport aux algorithmes de clustering de graphes
attribués actuellement en vigueur. Ce travail a été publié dans [Fettal, 2023b].

Dans le chapitre 6, nous avons montré l’efficacité de l’utilisation de la formulation simple
du GCN pour l’embedding et le clustering efficaces des nœuds. Nous avons proposé une
normalisation qui fait de l’encodeur codeur GCN un filtre passe-bas, une nouvelle approche
qui exploite les informations provenant à la fois de la perte de reconstruction de l’embedding
GCN et de la structure en clusters des embeddings, ainsi qu’un algorithme dont nous avons
rigoureusement étudié la complexité et montré qu’il était plus performant que les autres algo-
rithmes de clustering de graphes. Nous avons également étudié rigoureusement la complexité
d’un nouvel algorithme et montré qu’il était plus efficace que d’autres algorithmes de cluster-
ing de graphes. Les résultats expérimentaux ont fourni des preuves solides de la performance
et de l’efficacité de notre approche. Ce projet a donné lieu à une publication [Fettal, 2022c]
ainsi qu’à une version française publiée dans [Fettal, 2022a].

Dans le chapitre 7, une nouvelle approche pour le clustering de graphes bipartis a été
proposée par l’utilisation du co-clustering et de la convolution de graphes bilatérale. Cette

x



approche aborde les questions de complexité computationnelle et spatiale en utilisant des
matrices factorielles et des transformations explicites de noyaux non négatifs. Nous avons
démontré que le modèle proposé avait un effet de groupement et que la convolution bilatérale
améliorait les performances même en l’absence du graphe vérité terrain. Des expériences sur
des ensembles de données synthétiques et réelles ont démontré que ce modèle est compétitif
par rapport aux méthodes actuelles de pointe pour le clustering de graphes attribués à du
texte, tout en étant efficace et robuste face à des structures de graphes non informatives. Ce
travail a été publié comme un article court dans une conférence [Fettal, 2022d] puis comme
une version étendue dans un journal [Fettal, 2024a]; une version française est disponible dans
[Fettal, 2023d].

Dans le chapitre 8, nous abordons le problème du clustering de graphes attribués multi-
vues et tentons de le simplifier au maximum. Pour ce faire, nous projetons des représentations
lissées des nœuds de chaque vue sur un sous-espace linéaire de même dimension et nous en
faisons la moyenne avec des poids proportionnels à la qualité du clustering obtenu sur chaque
vue. Ce travail a été publié dans [Fettal, 2023c].

Dans le chapitre 9, nous étendons l’approche proposée dans le chapitre 5 pour le clustering
multi-vues en utilisant la propriété de sommation des noyaux. Cela nous permet de créer un
algorithme de sous-espace multi-vues efficace qui peut s’executer sur des données avec des
millions de nœuds sur un ordinateur portable standard.

Dans le chapitre 10, nous avons introduit une approche de l’apprentissage non supervisé de
la représentation des textes, en nous concentrant sur la cohérence sémantique. En utilisant
le lissage sur les noeuds, nous améliorons les embeddings de phrases à partir de modèles
pré-entraînés, ce qui se traduit par une amélioration des performances pour les tâches de
classification et de clustering de textes. L’efficacité de la méthode a été démontrée sur huit
ensembles de données de référence. Ce travail est basé sur [Fettal, 2024b].

Enfin, dans le chapitre 11, nous avons sélectionné un cas d’utilisation industriel au sein de
la Caisse des Dépôts et de ICDC, où nous explorons la détection des demandes de paiement
suspectes faites par des organismes de formation. Nous examinons le processus de sélection
d’un modèle initial à partir d’une variété de modèles d’apprentissage automatique couram-
ment utilisés pour les données tabulaires, et nous montrons comment l’augmentation des
caractéristiques disponibles, grâce à l’utilisation de graphes dans un cadre transductif, peut
conduire à de meilleurs résultats statistiquement significatifs.

Une conclusion synthétisant toutes les contributions à la fois d’ordre académique et in-
dustrielle, ainsi qu’un ensemble de nouvelles perspectives de recherche pouvant être menées
ultérieurement, clôturent cette thèse.

xi





Contents

Résumé iii

Abstract v

List of Figures xix

List of Tables xxiii

Introduction 1
Context and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I State of the Art 7

1 Networks and Graphs 9
1 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Types of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Graph Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Neural Networks on Graphs . . . . . . . . . . . . . . . . . . . . . . . . 17

2 A Primer on Graph Clustering 19
1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 Types of Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 Clustering Performance Metrics . . . . . . . . . . . . . . . . . . . . . . 22

2 Bipartite Graph Clustering: Biclustering . . . . . . . . . . . . . . . . . . . . . 24
2.1 Types of Biclustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Attributed Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1 Architecture Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Learning Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Multi-view Attributed Graph Clustering . . . . . . . . . . . . . . . . . 28

xiii



II Contributions 31

3 Bipartite Graph Clustering via Optimal Transport 33
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Biclustering using Optimal Transport . . . . . . . . . . . . . . . . . . 36
2.3 Fuzzy Biclustering via Regularized Optimal Transport . . . . . . . . . 39

3 Links to Existing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1 Modularity Maximization in Bipartite Graphs. . . . . . . . . . . . . . 40
3.2 Modularity-Based Sparse Soft Graph Clustering. . . . . . . . . . . . . 40
3.3 Directional Co-clustering with a Conscience. . . . . . . . . . . . . . . . 41
3.4 Bipartite Correlation Clustering. . . . . . . . . . . . . . . . . . . . . . 41

4 Optimization and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Document Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Term Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Gene Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6 Co-clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Statistical Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Graph Clustering via Optimal Transport 51
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Graph Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Optimal Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Graph Cuts with Arbitrary Size Constraints via OT . . . . . . . . . . . . . . 57
4.1 Graph Cuts via Optimal Transport. . . . . . . . . . . . . . . . . . . . 57
4.2 Graph Cuts with Size Constraints. . . . . . . . . . . . . . . . . . . . . 58
4.3 Transport Plans as Partition Matrices . . . . . . . . . . . . . . . . . . 58
4.4 Optimization and Complexity. . . . . . . . . . . . . . . . . . . . . . . 59

5 Links to Prior Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1 Optimal-Transport Based Biclustering . . . . . . . . . . . . . . . . . . 61
5.2 OT Kernel k-Means. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Attributed Graph Joint Embedding and Clustering 67
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1 Preliminaries and Notations . . . . . . . . . . . . . . . . . . . . . . . . 70

xiv



3.2 Joint Graph Representation Learning and Clustering . . . . . . . . . . 71
3.3 Linear Graph Embedding . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4 Normalized Simple Graph Convolution . . . . . . . . . . . . . . . . . . 72
3.5 Graph Convolutional Clustering . . . . . . . . . . . . . . . . . . . . . 73
3.6 Connections to Existing Work . . . . . . . . . . . . . . . . . . . . . . . 74

4 Optimization and Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1 Optimization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 The GCC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 A Fair Comparison with Baseline Methods . . . . . . . . . . . . . . . 80
5.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Clustering Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5 Embedding and Visualization . . . . . . . . . . . . . . . . . . . . . . . 81
5.6 Choice of Propagation Matrix . . . . . . . . . . . . . . . . . . . . . . . 82

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Attributed Graph Subspace Clustering 85
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.1 Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.2 Attributed-Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . 88

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.1 Graph Convolutional Networks . . . . . . . . . . . . . . . . . . . . . . 88
3.2 Simplified Graph Convolutional Networks . . . . . . . . . . . . . . . . 90
3.3 Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.1 Simple Graph Convolutional Encoder . . . . . . . . . . . . . . . . . . 91
4.2 Efficient Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Learning the implicit coefficient matrix . . . . . . . . . . . . 91
4.2.2 Learning the implicit affinity matrix . . . . . . . . . . . . . . 91
4.2.3 Spectral clustering the implicit affinity matrix . . . . . . . . 92

4.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Datasets and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Baseline Models and algorithms . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Node Clustering Results . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Selection of the Power Hyper-Parameter . . . . . . . . . . . . . . . . . 97

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Attributed Bipartite Graph Subspace clustering 99
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.1 Self-expressive Subspace Clustering . . . . . . . . . . . . . . . . . . . . 103
2.2 Co-clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.3 Attributed Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . 104

3 Preliminaries and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.1 Self-Expressive Subspace Clustering . . . . . . . . . . . . . . . . . . . 104

xv



3.2 Block seriation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3 Neighborhood Propagation & Graph Convolutional Networks . . . . . 106

4 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.1 Self-Expressive Subspace Co-clustering . . . . . . . . . . . . . . . . . . 106
4.2 Promoting the Grouping Effect Through a Bilateral Graph Convolution 106
4.3 Subspace Co-clustering through LSR . . . . . . . . . . . . . . . . . . . 110
4.4 SC3: A More Efficient Formulation Through Orthogonality Constraints 110

4.4.1 Efficiently Solving for Z∗ and W∗ . . . . . . . . . . . . . . . 111
4.5 Efficient Spectral Clustering of the Kernel Self Representation Matrices 113

4.5.1 Nonnegative feature map . . . . . . . . . . . . . . . . . . . . 113
4.5.2 Efficient Spectral Clustering . . . . . . . . . . . . . . . . . . 114

5 Algorithm and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 116
6.1.3 Choice of Propagation Matrices . . . . . . . . . . . . . . . . 117

6.2 Co-clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.1 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Document Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.3 Choice of Propagation Matrices . . . . . . . . . . . . . . . . 119
6.3.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.5 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4 Term Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5 Convolution Using k-nn Graphs . . . . . . . . . . . . . . . . . . . . . . 123

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 Multi-view Attributed Graph Joint Embedding and Clustering 125
1 Introduction And Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 126
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

2.1 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . 128
2.2 Graph Filters and the Simple Graph Convolutional Network . . . . . . 128

3 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.1 First-order Neighborhood Propagation and Linear Graph Filtering . . 129
3.2 Simultaneous Multi-view Attributed Graph Representation Learning

and Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.3 Paying Attention to the Individual Views . . . . . . . . . . . . . . . . 130

4 Optimization and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.1 Optimizing for G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2 Optimizing for F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.3 Optimizing for W1, . . . ,WV . . . . . . . . . . . . . . . . . . . . . . . . 132
4.4 Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.1 Datasets and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xvi



5.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9 Multi-view Attributed Graph Subspace Clustering 141
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

3.1 Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
3.2 Scalable Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . 144
3.3 Multi-view Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . 145

4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.1 Weighing Views relative to their Clusterability . . . . . . . . . . . . . 146
4.2 Multi-view Scalability via Kernel Summation . . . . . . . . . . . . . . 146
4.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.3 Learning Node Representations . . . . . . . . . . . . . . . . . . . . . . 150
5.4 Clustering Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.5 Ablation on λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.6 Running Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.7 Statistical Significance Testing . . . . . . . . . . . . . . . . . . . . . . 151
5.8 Experimenting with other Kernels . . . . . . . . . . . . . . . . . . . . 151

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

10 Unsupervised Semantic Graph Smoothing for Text Categorization 155
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
2 Graph Smoothing & Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3 Smoothing Sentence Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.1 Datasets and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

11 Graph Filtering for Fraud Detection in Mon Compte Formation 163
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

1.1 Mon Compte Formation . . . . . . . . . . . . . . . . . . . . . . . . . . 164
1.2 Fraud in Mon Compte Formation . . . . . . . . . . . . . . . . . . . . . 164
1.3 Detecting Frauds through Machine Learning . . . . . . . . . . . . . . . 165

2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
3 Initial Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

3.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
3.2 Boosted Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3.3 Bagged Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3.4 Initial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4 Data Augmentation via Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 169

xvii



4.1 Augmentation with a single Graph . . . . . . . . . . . . . . . . . . . . 169
4.2 Augmentation with multiple Graphs . . . . . . . . . . . . . . . . . . . 169
4.3 Augmentation with a Row Graph and Column Graph . . . . . . . . . 170
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Conclusion & Perspectives 173

Bibliography 177

xviii



List of Figures

3.1 Biclusters formed using three different methods on the Pubmed dataset. Clas-
sical block seriation results in a biclustering that is hard. BCOT results in a
biclustering that is almost hard with few nonzero entries outside the main block
diagonal. BCOTλ results in a soft biclustering with many nonzero elements
outside the block diagonal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Loss for BCOT and BCOTλ on Pubmed. . . . . . . . . . . . . . . . . . . . . 42
3.3 Accuracy against training time on NG20 and Ohscal. BCOTλ is the fastest

and has a competitive level of accuracy. BCOT gives the best accuracy while
remaining relatively efficient. The multiplication factors shown for the training
times take BCOTλ as the reference (and so, for example, ×4.5 shown for BCOT
means that it is approximately 4.5 times slower than BCOTλ). We were not
able to benchmark CCOT-GW since it failed to scale to these datasets. . . . 45

3.4 Synthetic datasets rearranged with respect to the true partition. . . . . . . . 47
3.5 Result of the Nemenyi post hoc test. . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Evolution of loss as function of the number of iterations. . . . . . . . . . . . . 61
4.2 Training times of OT-ncut in seconds (log scale) over subsets of different sizes

of MNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Schema of the GCC model: GCC creates an initial representation of the graph
before iteratively learning to embed and cluster the data. The graph signal
is represented by the colors of the node. Feature propagation results in a
smoother signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 frequency response of the proposed GCN filter plotted against the frequency
on four real-world datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Visualization of the Cora GCC-embeddings using t-SNE for different values of p. 78
5.4 Left column: t-SNE projection of the original features colored according to the

real labels. Middle column: t-SNE projection of the GCC embeddings colored
according to the real labels. right column: t-SNE projection of the GCC embed-
dings colored according to the predicted labels. R-squared is used to measure
of class separability for real classes (left and middle column), e.g., 0.49 vs 0.85
for Citeseer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Accuracy with GCC using different propagation matrices averaged over 20 runs 82
5.6 Frequency response plotted against the frequency for different propagation

matrices on Cora. Left column: frequency response is 1 − λ. Middle column:
frequency response is (1− λ)2. Right column: frequency response is (1− λ)3. 83

xix



6.1 The traditional subspace clustering pipeline. A coefficient matrix C is initially
learned. An affinity matrix M is then generated based on the magnitudes of
C, e.g., a common choice for the affinity is M = |C|+|C⊤|

2 . Finally, a partition
of the data is carried out via spectral clustering on the affinity matrix M. . . 86

6.2 Clustering accuracy scores (%) plotted against the execution time (s) for our
method and the state-of-the-art attributed-graph clustering models on the
OGBN-arXiv dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Diagram of our proposal. We have as input an attributed-graph characterized
by an adjacency matrix A and a feature matrix X. An initial representation H
of the attributed-graph is learned through neighborhood propagation. Then,
subspace clustering is performed using a latent factor matrix U where M =
UU⊤ is the subspace coefficient matrix that we project using a quadratic kernel
feature map Φ so that D−1/2Φ(U)Φ(U)⊤D−1/2 ≥ 0. With this we obtain the
final partition by using the k-means algorithm on Z, the first k singular vectors
(not counting the first one) of D−1/2Φ(U)⊤. . . . . . . . . . . . . . . . . . . . 89

6.4 Plot of the clustering accuracy (%) and the Davies-Bouldin index [Davies, 1979]
against the propagation power. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Results of the Nemenyi test where each rank represents the average rank over
the CA, NMI, ARI and clustering F1-score; and the six datasets. We see that
our model achieves the best rank, and is alone in the best performing group.
We can also see the formation of two other groups. . . . . . . . . . . . . . . 97

7.1 Mean pairwise euclidean distance of the columns of SpX as p increases on
DBLP. The columns get mutually closer as more information propagates over
the rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 The resulting self-representation matrices using different levels of propagation
over synthetic data with the LSR subspace clustering algorithm. . . . . . . . 108

7.3 Synthetic datasets before and after rearrangement with respect to the true
partitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.4 Visualization of the results of the Nemenyi test with a confidence level of
95%. We see that SC3 variants perform similarly while being better than
other models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5 Clustering accuracy plotted against training times on a logarithmic scale of
subspace clustering algorithms on the different datasets. Linear SC3 timing
is used as the reference; for instance, on ACM, LSR ×13 means that it is
approximately 10 times slower than SC3. Linear SC3 consistently gives the
best results and training times. PubMed is left out due to OOMs. . . . . . . 122

8.1 Schematic representation of LMGEC. . . . . . . . . . . . . . . . . . . . . . . . 127
8.2 Evolution of the loss value across iterations using BCD for LMGEC. . . . . . 135
8.3 Two-dimensional projections of the LMGEC embeddings using t-SNE colored

according to the real class labels. . . . . . . . . . . . . . . . . . . . . . . . . 135
8.4 Performance of LMGEC on each individual view vs. its consensus performance

when considering all views on ACM, DBLP and IMDB (for the other datasets
see table 8.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.5 Sensitivity analysis of the parameters of LMGEC on the graph topology hetero-
geneous datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.1 Clustering accuracy with and without the regularization vector λ = [λ1, . . . , λV ].151
9.2 Holm post-hoc mean rank test (α = 0.01) with respect to clustering performance.153

xx



9.3 Holm post-hoc mean rank test (α = 0.01) with respect to running times. . . . 154

10.1 Bonferroni-Dunn mean rank test (α = 0.05). . . . . . . . . . . . . . . . . . . . 161

xxi





List of Tables

3.1 Computational and spatial complexity of the different OT biclustering ap-
proaches. For COOT variants, we report complexities for an euclidean cost
matrix. For a generic cost, the time complexity is greater. For simplicity, we
suppose that d ∈ O(n) and that we want a biclustering with the same number
of row and column clusters for COOT and CCOT. t denotes the number of
iterations and for CCOT, s denotes the number of necessary samplings. . . . 43

3.2 Characteristics of the datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Document clustering performance on the four datasets. OOM denotes out of

memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Term clustering performance on the four datasets. OOM denotes out of mem-

ory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Characteristics of the gene expression datasets. . . . . . . . . . . . . . . . . . 47
3.6 Gene clustering performance on the two microarray datasets. . . . . . . . . . 47
3.7 Characteristics of the synthetic datasets. . . . . . . . . . . . . . . . . . . . . . 48
3.8 Biclustering performance on four synthetic datasets. gnd stands for ground

truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Characteristics of the datasets from which we construct the graphs. The bal-
ance score ρ is the ratio of the number of occurrences of the most frequent
class over that of the least frequent class. . . . . . . . . . . . . . . . . . . . . 62

4.2 Image clustering performance on the imbalanced (long-tail) datasets. Values
are the averages over five runs. Standard deviations were not reported due to
being negligible (≤ 0.1). Best results are highlighted in bold font. . . . . . . . 63

4.3 Clustering performance on balanced image datasets. Values are the averages
over five runs. Standard deviations were not reported due to being negligible
(≤ 0.1). Best results are highlighted in bold font. OT-rcut* has the same
results since the ground truth sizes are uniform, similarly, OT-rcutSC also has
the same results due to SC-rcut returning a bad guess that is equivalent to a
random initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 The Kullback-Leibler divergence between the imposed target distribution and
the one obtained using OT-cut variants. . . . . . . . . . . . . . . . . . . . . . 65

5.1 Dataset statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Clustering performance on four datasets averaged over 20 runs. AGE was

averaged over 3 runs. AGE, LAE and LVAE failed to scale to Pubmed; OOM
denotes out of memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Wall-clock time in seconds for different methods on the four datasets averaged
over 20 runs (3 runs for AGE). . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xxiii



6.1 Complexity of the different models. For k-FSC, m referes to the dimension of
subspaces. For k-FSC, many possible complexities are possible depending on
the chosen algorithm, please see [Fan, 2021] for a discussion on its complexity.
For simplicity, we suppose that the embedding dimension in SGC, S2GC and
GCC is in O(k). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 The datasets statistics. The imbalance is quantified via the ratio between the
majority and minority classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Clustering performance of the different models over ACM, DBLP and Wiki.
Best results are highlighted in bold font and second best results are underlined. 94

6.4 Clustering performance of the SOTA models over the larger networks; Amazon
Computers, Pubmed and OGBN-arXiv. Best results are highlighted in bold
font and second best results are underlined. . . . . . . . . . . . . . . . . . . . 94

6.5 Execution time of all methods in seconds. Best results are highlighted in bold. 95

7.1 Synthetic datasets’ characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2 Co-clustering performance on the synthetic datasets averaged over 20 runs of

the different co-clustering models. Our model finds the ground truth partition
in almost all cases and has the best performance (or is tied for best) over all
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Document datasets’ statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.4 Clustering results on ACM, Citeseer and Wiki. . . . . . . . . . . . . . . . . . 120
7.5 Clustering results on PubMed and Amazon Computers. . . . . . . . . . . . . 120
7.7 Performance of SC3 with a quadratic kernel using different column propagation

matrices averaged over 20 runs. Best results are highlighted in bold font. . . . 122
7.6 The three topics found by SC3 characterized by their top ten most frequent

terms, their size and coherence. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.1 Characteristics of the Datasets. For wiki, there are two topologies and two
features matrices leading to four possible combinations/views. . . . . . . . . . 134

8.2 Clustering results on ACM, DBLP and IMDB. Best results are highlighted in
bold font and the second best results underlined. . . . . . . . . . . . . . . . . 135

8.3 Clustering results on Amazon Photos and Wiki. Additionally, we report the
performance of LMGEC on each individual view (for the other datasets see
figure 8.4). Note that Amazon Photos has only two views, while Wiki has four. 135

8.4 Training times. Best results are in bold font, second best results are underlined.
DMGI is only applicable to datasets with one set of features. . . . . . . . . . 136

9.1 Complexity of some of the considered approaches on network data. m repre-
sents the number of anchors. |E| is the number of edges in the graphs used in
formula 9.11. For the sake of simplicity, we consider that the dimension of the
features and the number of graph edges in the different views are the same. . 149

9.2 Characteristics of the Datasets. The imbalance is given as the ratio between
the cardinalities of the most frequent and least frequent classes. . . . . . . . . 152

9.3 Clustering results on the small scale datasets. . . . . . . . . . . . . . . . . . . 152
9.4 Clustering results on the medium scale datasets. . . . . . . . . . . . . . . . . 152
9.5 Clustering results on the large scale datasets. We allow for a maximum runtime

of two hours per run otherwise we report a timeout. . . . . . . . . . . . . . . 153
9.6 Execution times on the different datasets (in seconds). . . . . . . . . . . . . . 153
9.7 MvSCK results and running times (in seconds) using different kernels. . . . . 153

xxiv



10.1 The propagation rules associated with the different polynomial filters. H(0) is
the X. P is the propagation order. α and T are filter-specific hyperparameters. 158

10.2 Summary statistics of the datasets. Balance refers to the ratio of the most
frequent class over the least frequent class. . . . . . . . . . . . . . . . . . . . . 159

10.3 Clustering results in terms of AMI and ARI on the eight datasets. . . . . . . 159
10.4 Classification results in terms of F1 score on the eight data sets. . . . . . . . 160

11.1 Cross-validation score over the training set (F1%). . . . . . . . . . . . . . . . 168
11.2 Results of the original Random Forest and the augmented versions on the test

set. Results are averaged over five runs. . . . . . . . . . . . . . . . . . . . . . 170

xxv





Introduction

Context and Motivations

The Mon Compte Formation (also called Compte Personnel de Formation 2) is a the
french public funding system for training programs. The platform was originally developed
by the Groupe Caisse des Dépôts (CDC) and due to its importance is still one of the flagship
projects steered by the CDC and by extension Informatique CDC (ICDC). The platform
contains information about users as well as the training programs. This data can be naturally
represented as graphs based on the similarities that exist between the different users and
the different training programs. As such, exploring graph-related data mining and machine
learning techniques can be relevant in the context of CDC.

Graph mining and learning is a rapidly growing field in the area of machine learning that
deals with the analysis and understanding of data represented in the form of graphs. This field
has gained significant attention in recent years due to the proliferation of graph-structured
data in various domains, including social networks, biological networks, the World Wide
Web, etc. The ability to extract useful information and knowledge from this type of data
has become essential in many areas of research and industry. Some tasks present in graph
mining and learning include graph-based representation learning, community detection, link
prediction, node classification, and many more. The goal of graph mining and learning is
to develop efficient and effective algorithms to uncover hidden patterns, relationships, and
structures in graph-structured data, with the ultimate aim of providing insights that can
be used to improve decision-making and support various applications such as recommender
systems, fraud detection, and bioinformatics. However, as the volume of graph-structured
data continues to grow, the need for scalable graph mining techniques is becoming even more
pressing as there are several issues that can arise due to scale in graph machine learning
approaches:

• Lack of labeled data: Graphs usually have less labeled data than other types of data
which makes the training of graph-based machine learning algorithms difficult.

• Data sparsity: Graphs can be very sparse, which means that most nodes have only
a few edges. This sparsity can make it difficult to learn meaningful representations

2https://www.moncompteformation.gouv.fr/

1

https://www.moncompteformation.gouv.fr/


of the graph or to perform accurate predictions and the larger the graph, the more
pronounced this problem is.

• Spatial Complexity: Despite graphs being generally sparse, some graph mining tech-
niques break this sparsity by applying transformations on the adjacency matrix of the
graph which can cause out of memory errors.

• Computational complexity: Some graph-based machine learning algorithms, such
as those that involve matrix factorization, can have high time complexity, making them
impractical for large-scale graphs.

Mitigating these issues is possible. In the case of a lack of labeled data, it is possible, for
example, to consider the unsupervised learning context which is a type of machine learning
where the model learns from data without the use of labeled examples. As for the data
sparsity, Spatial and computational complexity problems, they can be attenuated by taking
them into consideration when developing solutions to graph related problems.

In this thesis, we tackle these scalability issues and propose new techniques to effectively
address them in an unsupervised context, particularly that of clustering (and embedding to
some extent) with respect to different types of graphs. Unsupervised partitioning of data and
graph data in particular has long been a topic of interest in the data mining community. Node
clustering, also known as community detection, is an important technique in the analysis of
graph data because it allows for the identification of groups of similar nodes within the graph.
This can reveal underlying patterns and structures in the graph that may not be immediately
apparent. One key use case of graph clustering is in social network analysis, where it can
be used to identify groups of individuals with similar interests or behaviors [Handcock, 2007;
Mishra, 2007]. This can be useful for targeted marketing or recommendations [He, 2010].
Another use case is in bioinformatics, where clustering can be used to identify functional
modules in protein-protein interaction networks [Brohee, 2006; Dittrich, 2008; Pizzuti, 2014].
Since the first days of automatic classification, a very large number of approaches have been
proposed.

With the advent of deep learning and the success it had in the supervised setting, re-
searchers have tried to replicate this success to an unsupervised context, such as the context
of (graph) clustering. However, this has led to a replicability crisis due to the use of very spe-
cific and large numbers of hyper-parameters in deep clustering models, this is especially the
case in deep subspace clustering [Haeffele, 2021]. When reporting results, authors tune these
hyper-parameters on a number of benchmark datasets, possibly using supervised performance
metrics in this tuning process which leads to data leakage. Since many papers propose clus-
tering models but no heuristics to tune their hyper-parameters on unseen datasets, it nullifies
any empirical utility they possibly could have. John Von Neumann famously said:

“ With four parameters I can fit an elephant, with five I can make him wiggle his
trunk ”

2



This problem resulted in the fact that, to this day, the k-means clustering algorithm is still
widely popular in spite of the deep learning revolution. We argue that this is largely due
to its simple and cost-effective nature even if it requires the knowledge of the number of
clusters. The simplicity of k-means does, however, result in certain limitations, particularly
in the way it handles non-spherical clusters with different sizes or when the clusters are not
well separated. This is explained by the fact that the optimized criterion is associated with a
constrained Spherical Gaussian mixture model. Spectral clustering and EM-type algorithms,
for instance, have emerged to remedy these weaknesses. Thus, several approaches will be
proposed in this thesis that are simple in nature, have few hyperparameters, but also aim
to overcome the difficulties of clustering different types of data, such as attributed networks,
multi-view networks, etc.

Outline and Contributions

In this thesis we propose approaches for clustering (and embedding) different types of
graphs, namely, classical graphs, bipartite graphs, attributed graphs, bipartite attributed
graphs, and multi-view attributed graphs. The approaches we have developed all share three
key characteristics that we believe contribute to the widespread popularity of the k-means
clustering algorithm. These three characteristics are:

• Simplicity: In the sense that there are no large sets of parameters to learn as is
traditionally the case in deep learning. Most models introduced in this thesis use
transformations whose cost is linear in the size of the input to learn representations,
and simple clustering rules to generate partitions.

• Cost-effectiveness: The models proposed here are also cost-effective in nature, it can
be understood in the sense of Pareto optimality, meaning that they either outperform
state of the art models used in our benchmarks in terms of computational complexity,
empirical execution times or empirical clustering performance.

• Few hyper-parameters: For all models we introduced, few hyper-parameters need
to be set. And for them we either propose sensible default values, or hyper-parameter
selection rules.

This document is organized as follows: In Part I, we present the state of the art, specifi-
cally, in Chapter 1, we introduce networks and graph related notions. Then in Chapter 2,
we provide an introduction to clustering with a particular attention paid to graph clustering.
In Part II, we introduce our contributions in detail. In Chapter 4, we leverage Optimal
Transport to propose a min cut algorithm for graph clustering with size constraints which
is of particular interest for balanced clustering. In Chapter 3, the previous concept was
extended and adjusted to deal with bipartite graphs, and led to a publication as well as a
published french translation [Fettal, 2022b; Fettal, 2023a]

3



In Chapter 5, we introduce another approach for attributed graph clustering but this
time we use the recent paradigms that consists in simultaneously learning graph node rep-
resentations when clustering. This joint clustering and embedding can lead to better results
for both tasks. It also led to publications as well as a translated french publication [Fet-
tal, 2022c; Fettal, 2022a]. The work discussed in Chapter 6 deals with attributed graph
subspace clustering. In it, we introduced a scalable subspace clustering procedure using a
factorized subspace coefficient matrix and nonnegative feature maps. It was published as
[Fettal, 2023b].

Another contribution is described in Chapter 7 where we extend the approach proposed
in Chapter 6 to bipartite attributed graphs. It was originally published as a short paper
in a conference then as an extended version in a journal and also has a published french
translation [Fettal, 2022d; Fettal, 2024a; Fettal, 2023d].

In Chapter 8, we tackle the problem of multi-view attributed graph clustering and try
to simplify it to its utmost. We do this by projecting smoothed representations of the nodes
in each on a linear subspace of the same dimension and averaging them with weights propor-
tional to their clusterability. This work was published as [Fettal, 2023c]. In Chapter 9, we
extend the approach proposed in chapter 6 to multi-view the setting via using the summation
property of kernels. This allows us to create an efficient multi-view subspace algorithm that
scales to millions of nodes on a laptop.

In Chapter 10, we explore the effect of using graph smoothing on text embeddings with
semantic graphs built from the data to learn more semantically discriminative representations
of textual data which led to improvements in text categorization tasks. This chapter is based
on [Fettal, 2024b]. Finally, in Chapter 11, we will dive into an industrial use case within
Caisse des Dépôts and Informatique Caisse des Dépôts, where we will explore the detection
of suspect payment requests made by training organisms. We will examine the process of
selecting an initial model from a variety of commonly used machine learning models for
tabular data, and demonstrate how augmenting the available features through the use of
graphs in a transductive setting can lead to statistically significant better results. Get ready
to gain insights into the practical application of machine learning in the financial sector.

4



List of Publications

Articles in International Conferences

• C. Fettal, L. Labiod, and M. Nadif, More Discriminative Sentence Embeddings via
Semantic Graph Smoothing,” in EACL, 2024.

• C. Fettal, L. Labiod, and M. Nadif, “Simultaneous Linear Multi-view Attributed Graph
Representation Learning and Clustering,” in WSDM, 2023, selected for oral presenta-
tion.

• C. Fettal, L. Labiod, and M. Nadif, “Scalable Attributed Graph Subspace Clustering,”
in AAAI, 2023, selected for oral presentation.

• C. Fettal, L. Labiod, and M. Nadif, “Efficient and Effective Optimal Transport-Based
Biclustering,” in NeurIPS, 2022.

• C. Fettal, L. Labiod, and M. Nadif, “Subspace Co-clustering with Two-Way Graph
Convolution,” in CIKM, 2022.

• C. Fettal, L. Labiod, and M. Nadif, “Efficient graph convolution for joint node repre-
sentation learning and clustering,” in WSDM, 2022.

Articles in International Journals

• C. Fettal, L. Labiod, and M. Nadif, “Boosting Subspace Co-Clustering via Bilateral
Graph Convolution,” in IEEE TKDE, 2024.

Articles in National Conferences

• C. Fettal, L. Labiod, and M. Nadif, “Biclustering Basée sur le Transport Optimal,” in
EGC, 2023.

• C. Fettal, L. Labiod, and M. Nadif, “Subspace Co-clustering avec Convolution Bilatérale
sur Graphe,” in EGC, 2023.

• C. Fettal, L. Labiod, and M. Nadif, “Apprentissage Joint de la Représentation et du
Clustering avec un Réseau Convolutif sur Graphe,” in EGC, 2022.

Codes

The majority of the code implementations of the contributions made in this thesis were
made publicly available at 3.

3https://github.com/chakib401/

5

https://github.com/chakib401/




Part I

State of the Art

7





Chapter 1
Networks and Graphs

The significance of studying networks and their mathematical representation as
graphs will be explored in this chapter.

Objective

Contents
1 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Types of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Graph Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Neural Networks on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

9



Chapter 1. Networks and Graphs

1. Networks

A network is a collection of interconnected nodes, or points, that are connected by links
or edges. The nodes can represent individuals, organizations, devices, or other entities, while
the links or edges represent the relationships or connections between them. Networks can be
used to model a wide range of systems and phenomena, including transportation networks,
social networks, and communication networks.

1.1. History

The history of networks can be traced back to the development of communication tech-
nologies in ancient times. One of the earliest forms of communication networks were smoke
signals. Indigenous people in many parts of the world used smoke signals to communicate over
long distances. The messages were conveyed by the use of smoke plumes of different shapes,
sizes and colors. Another early form of communication network was the use of semaphore
towers. These towers were used in ancient Greece and Rome to transmit messages over long
distances. The towers were equipped with a system of flags or lights that could be used to
convey different messages. These towers were strategically placed along major trade routes
and were used to warn of incoming invasions, report on the movement of troops and ships,
and to transmit news and other important information.

The modern history of networks began with the invention of the telegraph in the 1830s
and 1840s, which allowed for the rapid transmission of messages over long distances using
electrical signals. In the late 19th and early 20th century, the telephone was invented and
networks of telephone lines began to be built, allowing for the transmission of both voice and
data. The creation of the Internet in the 1960s marked a significant milestone in the history
of networks. The Internet was initially developed as a way for government researchers and
academics to share information and resources, but it quickly evolved into a global network
that connects millions of people and organizations. With the advent of personal computers
and mobile devices in the 1980s and 1990s, the number of people and devices connected
to the Internet continued to grow rapidly, leading to the development of new technologies
and applications such as email, the World Wide Web, and social media. Nowadays, network
technology continues expanding with the implementation of new protocols, such as 5G and
IoT technology, allowing networks to connect an even larger and diverse range of devices and
to handle high speed and low latency applications, such as virtual reality and autonomous
vehicles.

1.2. Applications

Networks play a critical role in modern society, enabling communication, collaboration,
and the sharing of information and resources. They have become essential for business,
government, and society as a whole, allowing for increased efficiency, productivity, and inno-

10



1. Networks

vation. They are used in a wide range of applications and industries, some examples include:

Communications Network technologies such as the telephone and the Internet are used
to transmit voice and data over long distances. These technologies have revolutionized the
way we communicate, allowing us to connect with people across the globe in real-time. The
telephone network uses a complex system of wires and switches to connect calls and transmit
voice data, while the Internet uses a network of computers and routers to transmit data using
various protocols such as TCP/IP.

Transportation Networks of roads, highways, railroads, and airports are used to move
people and goods from one location to another. These transportation networks are essen-
tial for the functioning of modern economies, allowing for the efficient movement of goods
and people. They are also important for connecting communities and promoting economic
development.

Power and utilities Networks of pipelines, power lines, and cable are used to transport
energy and other resources to customers. These networks are critical for the functioning of
modern societies, providing us with the energy and resources we need to power our homes
and businesses. The power grid is a complex network of power plants, transmission lines, and
substations that are used to generate and distribute electricity.

Social networks Online platforms such as Facebook, Twitter, and LinkedIn are used to
connect people and facilitate communication and collaboration. These social networks allow
individuals to connect with friends and family, share information, and stay connected with
people all over the world. They also have an impact on the way we interact with each other,
and have become an important tool for businesses and organizations to promote products
and services, and reach out to new customers.

Supply chain management Companies use networks of suppliers, manufacturers, and
distributors to manage the flow of goods and materials throughout the economy. A supply
chain is the network of organizations, people, activities, information, and resources involved
in moving a product or service from supplier to customer. This includes the movement and
storage of raw materials, work-in-progress inventory, and finished goods from point of origin
to point of consumption.

Biology Network biology is a field of study that aims to understand the structure and
function of biological networks, including networks of proteins, genes, and metabolic pathways
in cells. This field of study is becoming increasingly important as we learn more about the
complex interactions that occur within living organisms and how these interactions influence
the functioning of living systems.

11



Chapter 1. Networks and Graphs

Cybersecurity Computer networks and the internet are vulnerable to cyber-attacks, or-
ganizations use various measures to secure their networks, such as firewalls and intrusion
detection systems. Cybersecurity is becoming an increasingly important concern as more
and more of our personal and professional lives are conducted online.

Smart cities IoT technology is increasingly being used to create "smart" networks of sen-
sors, cameras, and other devices that can be used to monitor and control various aspects of
city infrastructure and services such as traffic and public transportation. These smart net-
works allow cities to gather and analyze data in real-time and make better decisions about
how to manage resources and improve services.

Healthcare Telemedicine and connected medical devices are increasingly being used to
create networks that connect patients, doctors, and hospitals, making it possible to provide
remote monitoring and care. These healthcare networks allow doctors to remotely monitor
patients’ health and provide care remotely, which is particularly useful in rural areas and for
patients with mobility issues.

1.3. Properties

Real-world networks can exhibit a variety of properties that are important to understand
when analyzing and modeling these systems. Some notable properties of real-world networks
include:

Scale-free Many real-world networks exhibit a scale-free property, meaning that they have
a few highly connected nodes (called "hubs") and many poorly connected nodes. This property
is often observed in social networks, where a small number of individuals have a large number
of connections, while most individuals have only a few connections.

Small-world Many real-world networks are also small-world networks, meaning that they
have a high degree of clustering (i.e., nodes tend to be connected to those that they are con-
nected to) and a relatively small average path length (i.e., the average number of steps needed
to get from one node to another). This property is often observed in social networks, where
individuals tend to be connected to those that they know, and the number of intermediaries
between any two individuals is relatively small.

Hierarchical Some real-world networks have a hierarchical structure, in which nodes are
grouped into different levels or layers and the links between layers are sparser than those
within layers. This is often observed in transportation networks, where cities and towns form
hubs that are connected by less populated areas, or in hierarchical organizations

Community structure Many real-world networks exhibit a community structure, mean-
ing that the nodes can be grouped into densely connected clusters or communities. These

12



2. Graphs

clusters may represent groups of individuals with similar interests, geographic proximity, or
other characteristics.

Evolving Real-world networks are often dynamic, evolving over time as nodes and links
are added, removed, or rewired. Understanding the dynamics of network evolution is critical
for understanding how networks change and adapt over time.

Correlation Real-world networks are often correlated, meaning that the properties of nodes
or edges are dependent upon one another. For example, many real-world networks have
degree-degree correlations, where nodes with high degree tend to connect to other nodes with
high degree.

Weighted and directed Real-world networks can also be weighted, meaning that the
connections between nodes have values, such as the amount of flow or influence. They can
also be directed, meaning that connections have a direction, such as a sender and a receiver.

These are some of the properties that are commonly observed in real-world networks.
However, the specific properties of a network can vary depending on the system it represents
and each network has its own unique characteristics.

2. Graphs

A graph and a network are similar concepts that are used to represent and analyze systems
of interconnected elements. A graph can be used to represent a network, where the vertices of
the graph represent the nodes of the network, and the edges of the graph represent the links or
connections between the nodes. In this way, a graph provides a mathematical representation
of the structure of a network, and graph theory can be used to analyze the properties of the
network, such as connectivity, centrality, and community structure.

2.1. History

The study of networks, and their mathematical representation as graphs, has a long
and rich history. The earliest known use of graph theory dates back to the 18th century.
The formal definition of a graph and the study of graphs as mathematical objects was first
introduced by Leonhard Euler. He used the concept of a graph to solve the famous Seven
Bridges of Königsberg problem in 1735. This problem involves finding a walk through the
city that would cross each of the seven bridges once and only once. Euler’s solution to this
problem is considered to be the first theorem in graph theory, and it is also considered as
the starting point of the branch of mathematics. In the 19th century, graph theory focused
primarily on the study of regular graphs, chromatic polynomials, topological graph theory
and combinatorial design theory. Key developments included the discovery of chromatic
polynomials by Cauchy and Bolyai, the formulation of the Four Color Problem by Francis

13



Chapter 1. Networks and Graphs

Guthrie, and the proposal of the "Fifteen Schoolgirl problem" by Thomas Kirkman, which
led to the development of combinatorial design theory. These works laid the foundation for
graph theory as a branch of mathematics. In the 20th century, the study of networks began to
branch out into other fields such as physics, sociology, and computer science. Mathematicians
such as Paul Erdös and Alfred Rényi developed the concept of random graphs and graph
entropy, which laid the foundation for the study of complex networks. Sociologists such
as Harrison White, Mark Granovetter, and Ronald Burt began to study social networks
and their implications for society. In the 21st century, the study of networks and graph
theory has continued to evolve and expand, with applications in many fields such as biology,
computer science, economics, and many more. In computer science and machine learning, the
development of Graph Convolutional Networks (GCN) has expanded the ability to analyze
graph-structured data, which has made it possible to extract features from the data that may
have been difficult to capture with other types of methods.

2.2. Definitions

Graphs A weighted undirected graph can be represented by a tuple G = (V, E) such that
V is a set of graph nodes and E is a set of edges represented with triplets of the form
(v, u, w) ∈ V2 × R where v and u are the extremities of the edge and w is the edge weight.
The neighborhood of a node v denoted by N(v) is the set of all nodes that are connected to
v. A p-th order neighborhood is the set of nodes that are at most p edges away from v.

Adjacency Matrix The adjacency matrix (generally denoted by A) is a squared matrix
which is the most commonly used representation for graphs. An entry aij is nonzero if and
only if there exists an edge between vertex vi and vj . It has a different structure and properties
following the type of the graphs it represents. For example, in the case of undirected weighted
graphs with n nodes, The adjacency matrix A ∈ Rn×n is a real symmetric matrix.

Laplacian Matrix The unnormalized Laplacian matrix of a graph is defined as L = D−A
where D is the diagonal matrix of degrees of the graph i.e. dii =

∑
aij . The Laplacian matrix

uncovers many properties of graphs. Its spectral decomposition allows for spectral embedding
in dimensionality reduction methods. It is used to extend the concept of signal processing
to graphs. It is also used in finding approximate solutions to min cut problems in graph
partitioning. Furthermore, because the graph Laplacian is a real symmetric matrix, it has a
complete set of orthonormal eigenvectors, which we denote by {ul}nl=1 and a set of associated
real and nonnegative eigenvalues {λl}nl=1. Its spectral decomposition is written as L = UΛU⊤

such that Λ is a diagonal matrix with the eigenvectors of L along its diagonal and U is a
matrix with the eigenvectors of L as its columns.

14



2. Graphs

2.3. Types of Graphs

Bipartite Graphs A bipartite graph is a graph whose nodes can be divided into two sets U
and V which are independent and disjoint. It can be represented using triplet G = (U, V, E).
Bipartite Graphs have an adjacency matrix of the form:

A =
(

0|U |×|U | B
B⊤ 0|V |×|V |

)
. (1.1)

It can then be fully characterized using the condensed representation B which is generally
called the biadjacency matrix of size |U | × |V |.

Attributed Graphs An attributed graph is a graph that in addition to having the graph
topology has features associated with its nodes and/or edges. Here we are interested in the
case of node-attributed graphs which can be characterized by a triplet G = (V, E ,X) where
V is the vertex set, E is the edge set, and X is a set of node level features.

Multi-view Graphs A multi-view graph of cardinally m is a set {Gi}i=m
i=0 such that each

graph Gi characterizes the same nodes but not necessarily in the same way. For example, this
could mean that node vi and vj could be connected in the l-th graph Gl but not in the g-th
graph Gg.

2.4. Graph Signal Processing

Graph Signal Processing, or GSP for short, provides a framework to analyze and process
signals defined on graphs, by extending traditional signal processing concepts and tools to
the graph domain. This allows for the representation and manipulation of signals in a way
that is tailored to the specific structure of the graph.

Graph Signals Graph signals are mappings from the set of vertices to the real numbers. A
graph signal for a given graph G can be represented using vector f = [f(v1), . . . , f(vn)] such
that f : V → R is a real-valued function on the vertex set. The smoothness of a signal f over
graph G can be characterized using the Laplacian quadratic form associated with Laplacian
L:

f⊤Lf = 1
2
∑
i,j

aij(fi − fj)2. (1.2)

Graph Fourier Transform Analogously to the classical Fourier transform, the graph
Fourier transform is defined as the expansion of the signal f in terms of the eigenvectors of
the graph Laplacian:

f̂ = Uf . (1.3)

15



Chapter 1. Networks and Graphs

This The inverse graph Fourier transform is then given as

f = U⊤f̂ . (1.4)

The graph eigenvalues carry a notion of frequency similar to those of the eigenfunctions in
classical FT, namely, the eigenvectors associated with low frequencies λl, vary slowly across
the graph, and those associated with larger values oscillate rapidly.

Graph Filters Classical graph signal filtering is the process of attenuating or amplifying
the contribution of some component frequencies. Using matrix theory, it is possible to write
the filtering process as

f̂out = ĥ(L) ˆfin (1.5)

where h is the transfer function of the filter and

ĥ(L) = U


ĥ(λ1) 0

. . .
0 ĥ(λn)

U⊤ (1.6)

A specific class of filters that has an intuitive interpretation in the vertex domain is that of the
polynomial filters. When the filter is a p-th order polynomial of the form ĥ(L) =

∑p
m=0 θmLm,

the frequency filtered signal at vertex i, is a linear combination of the components of the input
signal at vertices within a p-hop local neighborhood of vertex i:

fout[i] = αiifin[i] +
∑

j∈N(i,p)
αijfin[j] (1.7)

where N(i, p) is the p-th order neighborhood of vertex i. It is possible to then make the
correspondence with a polynomial filter as follows:

αij =
p∑

m=dG(i,j)
θm(Lm)ij (1.8)

where dG is the shortest distance between node i and j.

Graph Convolution Since it is impossible to directly define a convolution product for
graphs since we cannot express a meaningful translation operator on graphs. Another way
of generalizing convolutions is by defining them as

f ∗ h := U((U⊤f)⊙ (U⊤h)) (1.9)

where ⊙ is the Hadamard (element-wise) product. This definition makes the convolution in
the vertex domain equivalent to multiplication in the spectral domain. For more details, see
[Shuman, 2013].

16



2. Graphs

2.5. Neural Networks on Graphs

Convolutional Neural Networks (CNNs) are a special type of neural network that have
been particularly successful in image and video recognition tasks. Researchers tried to repli-
cate this success in graph-related tasks by finding ways to extend the different concepts used
by CNNs in the regular euclidean image domain to irregular and structured graph data.

Convolutional Neural Networks on Graphs [Defferrard, 2016] initially proposed a
way to extend the convolutional neural network from the euclidean domain to graphs using
a localized polynomial spectral filter of the form

ĥ(Λ) =
p∑

m=0
θmΛm (1.10)

and then doing the filtering obtaining an output signal via formula 1.9. They noted, however,
that the computational complexity of the multiplication of the signal with the eigenvector
matrix U is costly and subsequently proposed to instead use the Chebyshev expansion on Λ:

ĥ(Λ) =
p∑

m=0
θmTm(Λ̂). (1.11)

where Λ̂ = Λ/λmax − I,. The filtering operation can then be written as

f̂out = ĥ(L) ˆfin =
p∑

m=0
θmT (L̂), (1.12)

where L̂ = L/Lmax − I. Each Chebyshev term can then be computed with the recurrence:

T0(x) = 1

T1(x) = x

Tm(x) = 2xTm−1(x)− Tm−2(x).

(1.13)

Their network then learns the Chebyshev coefficients using backpropagation.

Graph Convolutional Networks [Kipf, 2017] proposed a layer-wise linear model where
each layer is followed by a non-linearity. They do this by setting p = 1 in each layer and
making the approximation λmax ≈ 2. Using a normalized Laplacian. The formula of the
filtering operation in each layer becomes

fout = θ0fin + θ1(Lsym − I)fin = θ0fin − θ1D̃− 1
2 ÃD̃− 1

2 fin (1.14)

17



Chapter 1. Networks and Graphs

The number of parameters is further decreased by setting θ = θ0 = −θ1. For further stability,
they also introduce a renormalization trick

I + D̃− 1
2 ÃD̃− 1

2 → D̃− 1
2 ÃD̃− 1

2 , (1.15)

where Ã = A + I is the adjacency matrix with added self loops. Multiple layers are then
stacked together, and the definition is extended to multi-dimensional signals represented via
matrix X, giving rise to this recursive formulation of the Graph Convolutional Network:

H(l+1) ← σ
(
D̂−1/2ÂD̂−1/2H(l)Θ(l)

)
with H(0) = X

(1.16)

where Θ(l) are the learnable weights of the l-th layer, they are optimized for some downstream
task.

Simplified Graph Convolutional Networks [Wu, 2019] proposed the simplified GCNs
(SGCs) by arguing that the non-linearities are superfluous. SGC uses a single layer of graph
convolution which makes it computationally less expensive than traditional GCNs, yet still
allows to retain the ability to extract useful features from graph-structured data. After
dropping the non-linearities from the GCN, we obtain

H← (D̂−1/2ÂD̂−1/2) . . . (D̂−1/2ÂD̂−1/2)XΘ(0)Θ(1) . . .Θ(p). (1.17)

Since all the p weight matrices are free, they can be reparameterized into a single weight
matrix and the adjacency matrix products collapse into a single matrix power operation.
The rule for the SGC then becomes:

H←
(
D̂−1/2ÂD̂−1/2

)p
XΘ. (1.18)

The weight matrix Θ is then optimized for a downstream task in a similar manner as the
original GCN. SGCs have the advantage of having less parameters to learn, which make them
faster to train. Additionally, they tend to require less data to generalize well. Similarily to
GCNs, SGC architectures have been studied and applied in various domains such as graph
classification, node classification, and even link prediction.

18



Chapter 2
A Primer on Graph Clustering

The goal of this chapter is to discuss the task of clustering, particularly as it
pertains to specific types of graphs, namely, classical, attributed, bipartite, multi-
view, and their hybrids.

Objective

Contents
1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 Types of Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 Clustering Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Bipartite Graph Clustering: Biclustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1 Types of Biclustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Attributed Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1 Architecture Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Learning Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Multi-view Attributed Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . . 28

19



Chapter 2. A Primer on Graph Clustering

1. Clustering

Clustering (or clustering analysis) is the task of grouping a set of observations in such
a way that observations in the same group (called a cluster) are more similar, according to
some metric, to each other than to those in other clusters. Here, we will be discussing the
more popular approaches to clustering.

1.1. Types of Clustering

Hard versus Fuzzy Clustering Before starting, it is important to note that when people
refer to clustering approaches, they generally implicitly refer to hard clustering where the goal
is to generate a hard partition of the data, meaning that each point exclusively belongs to a
single cluster. Fuzzy (or soft clustering), on the other hand, refers to a clustering in which
each data point can belong to more than one cluster, and where we quantify the "degree" of
its membership to each cluster.

Partitional clustering Partitional clustering splits a data set into a set of mutually ex-
clusive and jointly exhaustive clusters. Given a data set of n points, a partitioning method
constructs a k partition of the data, with each partition representing a cluster. To this end,
clusters are often characterized using a cluster representative, and an optimization problem
based on these representatives is introduced. An example of this type of approach is the
widely used k-Means algorithm where the representative is called a centroid and is defined
as the mean of all data points that belong to the cluster it represents. Data points are
grouped according to their closest centroid. Given a data matrix X, the k-means problem is
formulated as:

arg min
{gi}n

i=1,{fj}k
j=1

n∑
i=1

k∑
j=1

gij∥xi − fj∥2 (2.1)

where fj is the j-th centroid and gij is the assignment of i-th point i.e. gij ∈ {0, 1} and
gi. = 1. Equivalently, in matrix form, the formulation of k-means is:

arg min
G,F

∥X−GF∥2 such that G1 = 1 and G ∈ {0, 1}n×k (2.2)

This optimization problem is NP-hard, however, effective heuristics exist, one of which is
the Lloyd algorithm which is commonly referred to as the k-means algorithm due to its
widespread use. Following an initial selection of centroids, this algorithm consists of two
steps repeated alternatingly until convergence, an assignment step where each data point is
assigned to the cluster whose centroid is closest. The second step is called the update step
where each centroid is recalculated as the mean of the data points that belong to its cluster.

Hierarchical Clustering Hierarchical Clustering is one of the more popular clustering
algorithms and consists in creating a hierarchy of clusters. This hierarchy is generally repre-

20



1. Clustering

sented visually through a dendrogram. Hierarchical approaches fall into two categories:

• Agglomerative Clustering Agglomerative approaches are the more popular type of
hierarchical clustering. They use a bottom-up approach where algorithms start with
the data each being in a unique cluster and then start to merge clusters according to a
similarity recursively until reaching a stopping criterion. Depending on the similarity
measure, multiple agglomerative algorithms have been proposed, for example, we can
cite the single-linkage clustering, complete-linkage clustering, etc. These approaches
generally have a time complexity of O(n3)

• Divisive Clustering In contrast to agglomerative approaches, divisive approaches
proceed in a top-down manner, where they start with the data all grouped in a single
clustering and start to recursively split clusters until reaching a stopping criterion. Ex-
amples of divisive algorithms include DIANA and MONA. These approaches generally
have a time complexity of O(2n) but faster heuristics do exist.

Graph-Based Clustering Graphs are structures characterized by a set of nodes (or ver-
tices) connected via a set of edges. Mathematically, a graph G are represented by a pair
G = (E ,V) where V is the set of vertices, and E is the set of edges. Graph clustering generally
refers to the task of node clustering inside graphs. It is often posed as a mincut problem
where a cut is a partition of its vertices V into two disjoint subsets A and Ā. The value of a
cut is given by

cut(A) =
∑

vi∈A,vj∈Ā

wij . (2.3)

The multi-way mincut problem is then to find a partition (A1, ...,Ak) of the set of vertices
V into k different groups that is minimal in some metric. Intuitively, we wish for the edges
between different subsets to have small weights, and for the edges within a subset have large
weights. Formally, it is defined as

min-cut(A, k) = min
A1,...,Ak

k∑
i=1

cut(Ai). (2.4)

This problem can also be stated as a trace minimization problem by representing the resulting
partition A1, . . . ,Ak using an assignment matrix Q such that for each row i, we have that

xij =

1 if vertex i is in Aj ,

0 otherwise.
(2.5)

This condition is equivalent to introducing two constraints which are Q ∈ {0, 1}n×k and
Q1 = 1. The minimum k-cut problem can then be formulated as

min-cut(A, k) = min
Q∈{0,1}n×k

Q1=1

Tr(Q⊤LQ), (2.6)

21



Chapter 2. A Primer on Graph Clustering

where L = D−A refers to the graph Laplacian of the graph G and D is the diagonal matrix
of degree of A, i.e., dii =

∑
j wij .

In practice, however, solutions to the mincut problem do not yield satisfactory partitions
due to the formation of small groups of vertices. Consequently, versions of the problem that
take into account some notion of "size" for these groups have been proposed. The most
commonly used ones are normalized cut (ncut) and ratio cut (rcut). A solution Q for the
ncut problem is formed by stacking the first k-eigenvectors of the symmetrically normalized
Laplacian Ls = D−1/2LD−1/2 as its columns, and then applying a clustering algorithm such
as k-means on its rows and assign the original data points accordingly.

Model-Based Clustering Model-based clustering is a statistical approach to clustering
and assumes that the data was generated from a finite mixture of component models. The
idea is that there are as many clusters as there are individual models in the mixture and
that the component responsible for the generation of a particular observation determines the
cluster to which said observation belongs. Given a data matrix X, the density function of a
mixture model comprised of k components is given by:

f(X; Θ) =
n∏

i=1

k∑
j=1

πjφ(xi; θj) (2.7)

where Θ = (π1, . . . , πk, θ1, . . . , θk) are the parameters of the mixture, πj is the mixing pro-
portion of the j-th component (with

∑
i πi = 1) while φ(.|θj) refers to the density function

of the j-th component.
The most common type of mixture model is that of the Gaussian mixture model where

the individual components correspond to Gaussian distributions i.e. ∀i θi = (µi,Σi). To find
the parameters, a common strategy is often to maximize the log-likelihood as a function of
the parameters given the data matrix L(Θ; X) = f(X; Θ). This maximization can be done
using the Expectation-Maximization (EM) algorithm. Other variants based on the original
EM algorithm have been proposed such as the Classification EM (CEM) algorithm and the
Stochastic EM algorithm (SEM).

Deep Clustering Deep clustering frameworks combine representation learning and clus-
tering into an end to end model. The idea is to make a neural network component learn
suitable representations to adapt to the down-stream clustering task which is performed via
a clustering module that is also included in the model. The interaction between these two
modules can be sequential, iterative, or simultaneous.

1.2. Clustering Performance Metrics

To evaluate or compare clustering approaches, we can use a combination of the following
external indices:

22



1. Clustering

Clustering Accuracy In a supervised learning setting, given a set of ground-truth class
assignments y ∈ Cn and a set of class predictions ŷ ∈ Cn generated by some model, both of
size n where C is the set of possible classes. A popular measure of performance is accuracy:

ACC(y, ŷ) = 1
n

n∑
i=1

[yi = ŷi], (2.8)

where [.] is the Iverson bracket. In the unsupervised setting of clustering, since clusters do
not naturally match classes, a transformation of the cluster labels must be applied in order
to define an extension of accuracy to clustering:

CA(y, ŷ) = max
π∈P

1
n

n∑
i=1

[yi = π(ŷi)], (2.9)

where P is the set of functions possible bijections from C′ to C, where C is the set of classes
and C′ is the set of clusters. This problem is an instance of the linear assignment problem, it
can be solved via the Hungarian method.

Clustering F1-score Analogously to accuracy, a similar extension of the F1-score to clus-
tering can be defined by solving a similar optimization problem by finding the best bijection
from the cluster labels to the ground-truth class labels.

Adjusted Rand Score Another clustering quality measure is the Adjusted Rand Score
[Hubert, 1985] which lies in [−0.5, 1]. A value close to zero means that the assignment is
random while a value of one means a perfect match between two partitions. Given two
partitions A = A1, . . . , Ak and b = B1, . . . , Bk, we can quantify the overlap between two
partitions using table

X⧹
Y Y1 Y2 · · · Ys sums

X1 n11 n12 · · · n1s a1

X2 n21 n22 · · · n2s a2
...

...
... . . . ...

...
Xr nr1 nr2 · · · nrs ar

sums b1 b2 · · · bs

.

The adjusted rand index is then computed as follows:

ARI =
∑

ij

(nij

2
)
−
[∑

i

(ai
2
)∑

j

(bj

2
)]/ (n

2
)

1
2

[∑
i

(ai
2
)

+
∑

j

(bj

2
)]
−
[∑

i

(ai
2
)∑

j

(bj

2
)]/ (n

2
) (2.10)

Normalized Mutual Information The normalized mutual information is a normalized
version of the mutual information score. It takes values between one and zero with one
corresponding to a perfect correlation and zero corresponding to no mutual information.

23



Chapter 2. A Primer on Graph Clustering

Given the same table as for ARI, we define normalized mutual information as:

NMI = I(Y ;X)
H(X) +H(Y ) , (2.11)

where H(.) is the entropy and I(Y ;X) is the mutual information of the two partitions. Other
normalizations are possible, for example, it is possible for the denominator to be equal to√
H(X)H(Y ) or max{H(X), H(Y )}.

2. Bipartite Graph Clustering: Biclustering

Bipartite graph clustering is a technique for identifying groups or clusters of nodes in
a bipartite graph. The goal is to find groups of "left" nodes that are densely connected to
groups of "right" nodes. The clusters are formed by the grouping of the vertices of one set
and not both. It is used in many real-world applications, like community detection, market
segmentation and collaborative filtering.

Biclustering, also known as co-clustering, is a type of data mining technique used to
identify and extract patterns from a two-dimensional data set, such as a matrix. The goal
of biclustering is to find groups of rows and columns of a matrix that have similar values,
in a way that the patterns identified by biclustering are not present in any individual rows
or columns. Since bipartite graphs can be represented using a biadjacency matrix then
biclustering is suitable for bipartite graph clustering since it will yield a partition of both
rows and columns and since these rows and columns represent the left set and right node
sets respectively a simultaneous clustering of both of them using biclustering results in a
clustering of the bipartite graph.

2.1. Types of Biclustering

Partitional Biclustering We define partitional co-clustering approaches as ones that learn
a smaller summarized version of the original data matrix, it is generally referred to as the
summary matrix which can be seen as the extension of the concept of cluster representatives in
traditional clustering to co-clustering. To this end, partitional algorithms learn the summary
matrix based on two assignment matrices, one for the rows and one for the columns of the data
matrix. This is usually done in an alternating manner where row assignments are computed
given the current column assignments and vice versa. For example, a popular criterion of the
co-clustering of continuous data is the least-squares criterion:

C(X,Z,W,C) =
∑

i,j,h,l

zihwjl(xij − chl)2 (2.12)

where Z and W represent the assignment matrices of the rows and columns respectively and
C is the summary matrix. The fact that the compressed matrix C is computed based on the

24



2. Bipartite Graph Clustering: Biclustering

two matrices Z and W is made clearer with the matrix formulation:

C(X,Z,W,C) = ⟨L(X,C)⊗ Z,W⟩ . (2.13)

where ⊗ denotes the tensor-matrix multiplication and L(X,C) is the fourth order tensor of
all squared pairwise differences between entries of X and C. A double k-means procedure
was introduced in order to heuristically solve problem 2.12. The steps are similar to those
of the regular k-means except that there are two assignment steps, one for the rows and one
for the columns before updating the summary matrix.

Graph-based Biclustering Graph co-clustering algorithms generally propose to perform
graph clustering on the bipartite adjacency matrix directly, given a data matrix X which
represents the biadjacency matrix. In the traditional max association cut problem, the goal
is to maximize the weight of the edges inside connected components (or clusters) after per-
forming a cut. Then, if we were to formulate a the max association problem using a bipartite
adjacency matrix, we would obtain that

Tr(Q⊤AQ) = Tr

[ Z
W

]⊤ [
0n×n X
X⊤ 0d×d

] [
Z
W

] = 2Tr
(
ZXW⊤

)
(2.14)

where Z and W can be seen as the assignment matrices of the rows and columns respectively.
From this bipartite max-assoc problem, we can derive several co-clustering algorithms intro-
duced in the literature by performing transformations on matrix A or by applying different
graph clustering algorithms. For example, [Dhillon, 2001] proposed an efficient variant of the
spectral clustering algorithm to obtain a partition over both rows and columns using singular
value decomposition. [Barber, 2007] proposed to replace the biadjacency matrix X with a
modularity matrix M = (mij) = (xij − xi.x.j

x.. ) before applying a recursive graph clustering
algorithm. Other approaches for solving the modularity maximization for bipartite graphs
are proposed in [Labiod, 2011; Ailem, 2016].

Model-based biclustering In model-based approaches, blocks inside the data matrix are
assumed to be drawn from a probability distribution, and each distribution corresponding to
a single block has its own parameters. An interesting formulation for this problem is Latent
Block Model (LBM) [Govaert, 2003], where given a data matrix X, a latent block is a set
of matrix entries eij generated by the same probability density function. LBM assumes that
eij are i.i.d. given their co-cluster membership which is identified using the pair (zi, wj), and
that z and w are independent latent variables that follow a multinomial distribution. The
likelihood function of the LBM model is

f(X|Θ) =
∑

z∈Z,w∈W

∏
i,h

πzih
h

∏
j,g

ρ
wjg
g

 ∏
i,j,h,g

φ(xij ; θhg)zih,wjg

 (2.15)

25



Chapter 2. A Primer on Graph Clustering

where Θ = (π1, . . . , πk, ρ1, . . . , ρl, θ11, . . . , θkl) are the parameters of the LBM, πh and ρg are
the mixing proportions of the (h, g) block, and Z and W represent the set of all possible row
and cluster assignments respectively. Similar to the standard mixture model, the maximum
likelihood estimate of the parameters Θ can be obtained using the expectation-maximization
algorithm. The well studied Stochastic Block Model (SBM) is an LBM with the same units
in rows and columns and is used to model graphs [Matias, 2014]. In the case of SBMs, there
is only one latent variable [Boutalbi, 2021; Riverain, 2022].

3. Attributed Graph Clustering

In this section, we will explore various perspectives on the task of attributed graph clus-
tering such as architectures, learning paradigms and so on.

3.1. Architecture Types

We can broadly divide attributed graph clustering approaches as having one of two types of
architectures based on how their representation learning component and clustering component
interact.

Sequential Representation Learning & Clustering Here, models initially learn rep-
resentations for the nodes before applying some clustering algorithm on said representations.
For example, [Zhang, 2019] proposes to exploit high-order connections in the clustering pro-
cess through an adaptive rule for neighborhood order selection when learning representations.
[Zhu, 2021] applied the same principle to obtain node partitions but using another neighbor-
hood propagation matrix.

Simultaneous Representation Learning & Clustering The other type of clustering is
the type that considers the clustering objective when learning representation. This paradigm
is usually referred to as clustering-friendly representation learning. For example, [Rozember-
czki, 2019] places nodes in a latent space where the vertex features minimize the negative log
likelihood of preserving sampled vertex neighborhoods while they are simultaneously clus-
tered in this space. [Park, 2019] proposed a graph convolutional autoencoder architecture
with a subspace clustering regularization term suitable for image clustering.

3.2. Learning Paradigms

Autoencoder-Based Approaches An autoencoder [Rumelhart, 1985] is a type of neural
network used to learn lower-dimensional representations of data in an unsupervised manner.
These learned representations are generally referred to as embeddings. [Kipf, 2016] proposed
an extension of the traditional autoencoder that is able to deal with attributed graphs. The
autoencoder is widely used in the context of graph clustering, often in a way that leads to

26



3. Attributed Graph Clustering

learning clustering-friendly embeddings. The generic formulation is:

min
Θ

L (f(A,X), (ϕ ◦ ψ) g(A,X)) + Ω(Θ) (2.16)

where L is some reconstruction loss function, f and g are some characterizing functions of the
graph, and ϕ and ψ are encoding and decoding functions, respectively. All these functions
can be parameterized by Θ. Finally, γ is a parameter regularization function.

Notable examples include [Wang, 2017] which introduced a marginalization process for
their graph autoencoder by introducing randomness into the node features and then perform-
ing spectral clustering using the resulting embeddings. [Pan, 2018] proposed an adversarially
regularized graph autoencoder and variational version to learn graph embeddings by min-
imizing reconstruction error while enforcing the embedding to match a prior distribution;
clustering is performed by applying k-means on the embeddings. [Park, 2019] plugged a
subspace clustering cost function into their autoencoder architecture to learn a subspace
affinity matrix. [Mrabah, 2022] proposes an autoencoder sampling operator to deal with
noisy clustering assignments, and a correction operator to deal with feature drift by gradu-
ally transforming the reconstructed graph into a clustering-oriented one.

Contrastive Approaches The goal of unsupervised contrastive representation learning
is to learn a latent space where similar (positive) pairs of observations (x,x+) stay close
to each other while dissimilar (negative) ones (x,x−) are far apart. The positive sample
x+ is usually generated via an augmentation process from the original observation x, while
the negative sample x− is generally taken to be an observation from the original dataset
that is different from x. For example, [Zhao, 2021] proposed to simultaneously do clustering
and representation learning, in order to avoid false-negative samples in the random negative
sampling by considering the cluster information. Consequently, they randomly select negative
samples from the clusters which are different from the positive sample’s cluster. [Hassani,
2020] learns node and graph embeddings by using a diffusion process to generate a second
structural view of the graph which along with the regular view are sub-sampled and fed
to two dedicated GNNs followed by a shared MLP to learn node representations. These
representations are then passed to a graph pooling layer and then another shared MLP to
learn the graph representations. A discriminator then contrasts the node embeddings from
one graph with those of another view and vice versa.

Laplacian Smoothing Approaches These kinds of approaches learn representations via
conducting simple Laplacian smoothing operations. The generic formula for obtaining graph
embeddings H through Laplacian smoothing is

H← f(A; p)X, (2.17)

where p is a hyper-parameter that controls the order of propagation. The difference between
different models stems from the choice of the transformation f . For example, in [Zhang,

27



Chapter 2. A Primer on Graph Clustering

2019], we have that

fAGC(A; p) =
[
(D + I)−1/2(A + I)(D + I)−1/2

]p
. (2.18)

On the other hand, in [Zhu, 2021], in order to deal with over-smoothing, it is defined based
on a Markov diffusion kernel as

fS2GC(A; p) = 1
p

p∑
i=0

[
(D + I)−1/2(A + I)(D + I)−1/2

]i
. (2.19)

Different definitions of f correspond to different filters being applied on the graph signal.

3.3. Multi-view Attributed Graph Clustering

Multi-view clustering is a technique used in machine learning and data mining for grouping
a set of objects, or data points, into clusters based on multiple feature sets, or "views," of the
data. The goal of multi-view clustering is to take advantage of the complementary information
provided by different views in order to improve the performance of the clustering algorithm.
For example, if an image dataset has multiple features, such as color histograms, shape,
texture features etc, clustering these features separately will be sub-optimal in comparison
to multi-view clustering.

Multi-view graph clustering refers to the problem of grouping nodes in a graph into clusters
based on multiple feature sets or "views" of the graph data. Each view can be represented as a
different graph and can have different characteristics, such as different connectivity patterns
or edge weights. There are various ways that multi-view graph clustering can be performed,
such as by combining the multiple feature sets into a single graph, by aligning the multiple
views, or by fusing the multiple views in some way. Various algorithmic techniques have been
developed in the literature to solve this problem. For example, [Kumar, 2011] introduced
co-regularized spectral clustering where the idea is to construct a Laplacian matrix for each
view of the graph data and optimize the sum of spectral clustering objectives. The solutions
which are the eigenvectors are regularized with an additional term that encourages agreement
between the eigenvectors computed across the different views.

Depending on whether the data is represented as multiple graphs with one feature set,
one graph with multiple feature sets, or a combination of both:

Multiple graphs with one feature set In this scenario, the data is represented as mul-
tiple graphs, each with the same set of vertex or edge attributes. Clustering methods in this
scenario would focus on finding similar patterns in the graph structures across the different
views.

One graph with multiple feature sets In this scenario, the data is represented as a
single graph, but with multiple sets of vertex or edge attributes. Clustering methods in this
scenario would focus on finding similar patterns in the attributes across the different views.

28



3. Attributed Graph Clustering

Multiple graphs with multiple feature sets In this scenario, the data is represented
as multiple graphs, each with its own set of vertex or edge attributes. Clustering methods
in this scenario would focus on finding similar patterns in both the graph structures and the
attributes across the different views.

29





Part II

Contributions

31





Chapter 3
Bipartite Graph Clustering via Optimal
Transport

This chapter was published as [Fettal, 2022b]. Our goal was to create a more effi-
cient and effective optimal transport-based approach for the clustering of bipartite
graphs than the ones that existed in the literature.

Objective

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Biclustering using Optimal Transport . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Fuzzy Biclustering via Regularized Optimal Transport . . . . . . . . . . . . . . . . 39

3 Links to Existing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1 Modularity Maximization in Bipartite Graphs. . . . . . . . . . . . . . . . . . . . . 40
3.2 Modularity-Based Sparse Soft Graph Clustering. . . . . . . . . . . . . . . . . . . . 40
3.3 Directional Co-clustering with a Conscience. . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Bipartite Correlation Clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Optimization and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Document Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Term Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Gene Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6 Co-clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Statistical Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

33



Chapter 3. Bipartite Graph Clustering via Optimal Transport

1. Introduction

Let G = (U, V,E) be a bipartite graph, which is a graph whose vertices can be divided
into two disjoint sets U = {1, 2, . . . , |U |} with |U | = n, V = {1, 2, . . . , |V |} with |V | = d and
the set of edges E where each edge connects a vertex of U to a vertex of V . The adjacency
matrix for this type of graph has the following structure

A =
(

0n×n B
B⊤ 0d×d

)
(3.1)

where B of size n×d is called the biadjacency matrix of G, its rows and columns corresponding
to the two sets of vertices; each entry represents an edge between a row and a column.
Biclustering (or Co-clustering) is the extension of clustering to this type of graph. Following
[Hartigan, 1972], several biclustering models have attempted to solve the problem by viewing
B as a two-mode matrix and searching for a simultaneous partition of its rows and columns
[Dhillon, 2001]. In this way, biclustering seeks to reveal subsets of U which exhibit a similar
behaviour across a subset of V in matrix B.

Biclustering has been used in a number of different contexts. [Eisen, 1998] used microarray
data to find relations between genes and conditions, finding that genes with similar functions
often cluster together. [Harpaz, 2011] applied this paradigm to data from the US Food
and Drug Administration reporting system in order to identify groups of drugs with adverse
effects. [Dolnicar, 2012] used it to find market segments among tourists so as to enable more
effective targeted marketing. There have been various other applications [Dhillon, 2001;
Templin, 2010; Gu, 2008].

Several solutions to the biclustering problem have been proposed in the literature (see
[Govaert, 2013]). [Dhillon, 2003] used an information-theoretic approach to solve the problem
by minimizing the difference in mutual information between B and a summary matrix; they
implicitly assume that the data points are generated from a Poisson latent block model
[Govaert, 2018]. [Barber, 2007] adapted classical modularity to bipartite networks and then
used it to identify modules within them. [Wang, 2011] proposed a biclustering paradigm
based on nonnegative matrix tri-factorization of the biadjacency matrix.

Recently, Optimal Transport (OT) has taken the machine learning community by storm.
OT has helped to solve a variety of data mining problems, and biclustering is no exception.
[Laclau, 2017b] proposed two models for biclustering: a first model, CCOT, which does co-
clustering based on the scaling vectors obtained by applying the Sinkhorn-Knopp algorithm
on a square subsampled version of matrix B, and a second model, CCOT-GW, which uses
scaling vectors obtained by computing entropic Gromov-Wasserstein barycenters, and which
does not require subsampling. Then came [Titouan, 2020], where the authors did biclustering
by minimizing a new metric, COOT, which generalizes the Gromov-Wasserstein distance
between B and a summary matrix, similarly to what was done in [Dhillon, 2003]. More
specifically, they proposed two new metrics: COOT, together with an entropically regularized
metric COOTλ. However, both [Laclau, 2017b] and [Titouan, 2020] have certain drawbacks.

34



2. Methodology

First, both algorithms do not tackle the biclustering from the beginning; the co-clusters
are deduced at the convergence. Thereby biclustering is a consequence and not a main
goal. Secondly, they suffer from high computational complexity; CCOT and CCOT-GW also
consume large amounts of memory. Finally, we will see that these algorithms are not suited
to dyadic sparse data.

In this work, while integrating the biclustering objective from the beginning, we propose
a generic framework for biclustering through optimal transport, which generalizes some pre-
vious biclustering approaches. We propose two efficient methods for solving this problem:
one that gives an almost hard biclustering, and another that gives a fuzzy or soft biclustering
through entropic regularization. These methods outperform other optimal transport biclus-
tering models, in terms of both document and term clustering, on several regular and large
scale datasets, while being more computationally and memory efficient. We emphasize once
again that the approach we propose is specifically tailored to datasets consisting of dyadic
data.

2. Methodology

Notations. In what follows, ∆n = {p ∈ Rn
+|
∑n

i=1 pi = 1} denotes the n-dimensional
standard simplex. Π(w,v) = {Z ∈ Rn×k

+ |Z1 = w,Z⊤1 = v} denotes the transportation
polytope, where w ∈ ∆n and v ∈ ∆k are the marginals of the joint distribution Z and 1n

is a vector of ones. Matrices are denoted with uppercase boldface letters, and vectors with
lowercase boldface letters. For a matrix M, its i-th row is mi and its j-th column is m′

j We
have that ∥.∥0 is the 0-norm which returns the number of nonzero elements of its argument.

2.1. Preliminaries

We first need to introduce exact discrete OT and its entropically regularized counterpart,
and show how biclustering can be posed as an integer program.

Discrete OT as a linear program. The goal of discrete optimal transport is to find
a minimal cost transport plan between a source probability distribution w and a target
distribution v. Here we are interested in the discrete case of the Kantorovich formulation of
OT, that is

OT(M,w,v) ≜ min
Z∈Π(w,v)

⟨M,Z⟩ (3.2)

where M ∈ Rn×k is the cost matrix, and mij quantifies the effort needed to transport a
probability mass from wi to vj .

Discrete entropy regularized OT. It has been suggested in the literature [Cuturi, 2013;
Chizat, 2020] that the use of a regularization such as entropic regularization can lead to
better computational and statistical efficiency.

35



Chapter 3. Bipartite Graph Clustering via Optimal Transport

OTλ(M,w,v) ≜ min
Z∈Π(w,v)

⟨M,Z⟩ − λH (Z) (3.3)

where H is the entropy defined as H(Z) ≜ −
∑

i,j zij log zij and λ controls the strength
of regularization. The computational efficiency comes from the fact that the unique solution
of this problem is of the structure Z := diag(a) exp(−M/λ)diag(b), a rescaled elementwise
negative exponential of the cost M, where a and b are scaling vectors. These vectors can be
found efficiently using the Sinkhorn-Knopp algorithm.

Biclustering as an integer program. The Block seriation problem [Marcotorchino, 1987]
consists in finding two permutation matrices, one for the rows and one for the columns s.t.
dense blocks appear along the diagonal of the permuted matrix. A possible definition of the
block seriation problem is as follows: given a matrix B ∈ Rn×d s.t bij gives the strength of
the association between row i and column j (such as in the case of a biadjacency matrix, for
example), we have

max
C

∑
i,j

bijcij (3.4)

subject to ∀ i, j cij ∈ {0, 1}

∀ j
∑

i
cij ≥ 1

∀ i
∑

j
cij ≥ 1

∀ i, j, i′, j′ cij + cij′ + ci′j′ − ci′j ≤ 2

ci′j′ + ci′j + cij − cij′ ≤ 2

ci′j + cij + cij′ − ci′j′ ≤ 2

cij′ + ci′j′ + ci′j − cij ≤ 2
A solution C is a block diagonal matrix up to a permutation of its rows and columns. The

block seriation problem is an integer programming problem that is NP-hard. One approach
for solving this problem uses a simplified version where a rank constraint rank(C) ≤ k is
added for k the number of desired biclusters. Integrating this constraint into (3.4), we can
define a new problem by low-rank factorization of C, i.e. C = ZW⊤, which we formulate as

max
Z∈Γ(n,k)
W∈Γ(d,k)

∑
i,j,h

bijzihwjh (3.5)

where Γ(n, k) = {Z ∈ {0, 1}n×k | Z1 = 1} is the set of hard partitions of dimension n × k.
A simple heuristic for solving this problem involves alternatingly solving for Z given W,
and vice-versa, using classical clustering algorithms, before identifying biclusters through the
rearranged matrix C, which displays a block diagonal structure, as shown in figure 3.1a. The
biclusters are identified by grouping together the rows and columns that form a block along
the diagonal.

2.2. Biclustering using Optimal Transport

Here we propose a new biclustering problem based on block seriation and optimal trans-
port. For this purpose we first define what we term an anti-adjacency matrix. Note that a
similar concept has been discussed in [Wang, 2018a].

36



2. Methodology

Definition 1 (Anti-adjacency matrix). Given a graph characterized by an adjacency matrix
A, we have a corresponding anti-adjacency matrix A s.t. aij quantifies the discrepancy
between nodes i and j.

We consider a bipartite graph characterized by its biadjacency matrix B = (bij) ∈ Rn×d.
The rows of B are endowed with weights w ∈ ∆n and its columns with weights v ∈ ∆d. We
also consider a row exemplar distribution r ∈ ∆r and a column exemplar distribution c ∈ ∆c.
Depending on the availability of a priori information about the data, these weight vectors
can be set to uniform distributions.

Now let its anti-biadjacency matrix be B = L(B), where L : Rn×d → Rn×d means that
bij , the association between node i and node j, is transformed into a discrepancy measure
L(B)ij . Thus, we define the optimal transport block seriation problem as the following
bilinear program

BCOT(w,v, r, c) ≜ min
Z∈Π(w,r)
W∈Π(v,c)

∑
i,j,k

L(B)ijzikwjk ≡ min
Z∈Π(w,r)
W∈Π(v,c)

〈
L(B),ZW⊤

〉
(3.6)

where Z is a transport plan (or coupling) between between the row distribution w and the
row exemplar distribution r, and similarly for W w.r.t. the column distribution v and the
column exemplar distribution c.

Inducing a biclustering via BCOT. We will now show how to obtain a partition of the
rows and the columns given a solution pair (Z,W). In what follows our aim is to identify an
almost-hard clustering couple for rows and columns from the couplings Z and W.

Definition 2 (h-almost hard clustering). We define an h-almost hard clustering as a clus-
tering whose assignment matrix is C ∈ Rn×k s.t. ∥C∥0 = n+ h and for each row c of C we
have that ∥c∥0 > 0. When h = 0, we obtain a standard hard clustering with one non-zero
element per row.

Proposition 1. For w, v, r and c containing no zeros, there exists an optimal pair of
coupling matrices Z and W that are h-almost hard clusterings with h ∈ {0, . . . , k − 1}.
Furthermore, when n = k (resp. d = k) and w = r (resp. v = c), this Z (resp. W) becomes
a hard clustering, i.e., Z ∈ Γ(n, n) (resp. W ∈ Γ(d, d)).

Proof. Problem (3.2) is a bounded linear program since Π(w,v) is a polytope i.e. a bounded
polyhedron. The fundamental theorem of linear programming states that if the feasible set
is non-empty then the solution lies in the extremity of the feasible region. This means that a
solution Z to problem (3.2) is an extreme point of Π(w,v). We have that the extreme points
of Π(w,v) can have at most n+ d− 1 nonzero elements. To prove this we have to show that
the bipartite graph induced by biadjacency matrix Z, the solution to the optimal transport
problem has no cycles. The maximum number of edges in an acyclic graph is |V | − 1 where
|V | is the number of nodes in the graph. Since the number of edges in the bipartite graph
induced by biadjacency matrix Z is n+d− 1, the matrix Z can not have more than n+d− 1
nonzero entries. For a detailed proof see proposition 3.3 in [Peyré, 2017].

37



Chapter 3. Bipartite Graph Clustering via Optimal Transport

(a) Block Seriation. (b) BCOT. (c) BCOTλ.

Figure 3.1: Biclusters formed using three different methods on the Pubmed dataset. Classical
block seriation results in a biclustering that is hard. BCOT results in a biclustering that is
almost hard with few nonzero entries outside the main block diagonal. BCOTλ results in a
soft biclustering with many nonzero elements outside the block diagonal.

We also have to show that for probability measures w and v that have no zero probability
events, there is at minimum max(n, d) number of nonzero elements in Z. This is straightfor-
ward since w and v contain no zeros, there will always be at least one nonzero element in
every row and column of Z that represents some transfer of mass between elements of w and
v.

BCOT is a bilinear program that has a finite global solution which means that there exists
at least one optimal solution pair (Z,W) such that Z is an extreme point of Π(w, r) and W
is an extreme point of Π(v, c) (theorem 1 in [Konno, 1976]).

We then have that, For BCOT, Z has at most n + k − 1 and at least max(n, k) = n

nonzero entries and that W has at most d+ k− 1 and at least max(d, k) = d elements which
are both h-almost hard clusterings with h ∈ {0, . . . , k − 1}.

When n = k and w = r, the solution Z is a permutation matrix (up to a constant factor)
and the number of nonzero elements in it is exactly n which means that it represents a hard
partition Z ∈ Γ(n, n). The proof is the same for W.

This means that the solutions are already almost a hard partition of the data, since k <<
n, d. To obtain a final hard clustering in the strict sense, we assign each row (resp. column)
to the one corresponding to the row of Z (resp. W) with the largest value. This should not
significantly change the structure of the solution. Figure 3.1b provides an illustration: here
we see the block diagonal structure generated by the product of the two coupling matrices
C = ZW⊤, with its similarity in appearance to the biclustering produced by the hard block
seriation 3.1a, apart from a few nonzero entries off the block diagonal that are hard to see
immediately.

Intuition for BCOT. To explain the intuition behind the proposed approach we need to
look at how the problem is solved. The optimization procedure as described in algorithm 1
consists in alternating between the computation of an optimal transport plan Z given W and
vice versa. As regards solving for Z given W, the problem can be rewritten as

BCOT(w,v, r, c) ≡ min
Z∈Π(w,r)

⟨L(B)W,Z⟩ . (3.7)

38



2. Methodology

This is an optimal transport problem with L(B)W as the cost matrix. The resulting transport
plan Z can be seen as a kind of row cluster assignment matrix: if zih > 0, then row i

is assigned to cluster h. The same holds for W, which can be seen as a column cluster
assignment matrix. This also means that since L(B) is the dissimilarity between the rows
and the columns, then the cost matrix L(B)W represents the dissimilarity between rows and
row exemplars (or representatives or centroids). In particular, L(B)iwh is the dissimilarity
or cost of probability mass transportation between row i and row cluster exemplar h. The
reasoning is the same for the columns and the optimal coupling W.

Low-rank optimal transport. Biclustering is the main purpose of the approach we pro-
posed, but there is another interesting use case.

Proposition 2. For equal target row and column representative distributions, i.e., r = c,
and containing no zero entries, then given a solution pair Z and W to BCOT, the matrix
Q = Z diag(1/r)W⊤ is an approximation of the optimal transport plan that is a solution to
problem (3.2) and whose rank is at most min(rank(Z), rank(W)).

Proof. From linear algebra, we have that rank(Q) ≤min(rank(Z), rank(diag(1/r)), rank(W)).
Since Z and W cannot have a rank greater than k due to their dimension, and since diag(1/r)
is a full rank matrix due to the assumption that r has no zero entries, we then have that
rank(Q) ≤ min(rank(Z), rank(W)).

For a proof that Q is indeed a valid transport plan i.e. Q ∈ Π(w,v), we refer the reader
to proposition 2.2 in [Peyré, 2017].

Some recent works [Forrow, 2019; Scetbon, 2021] have suggested that this kind of low-rank
regularization is preferable to entropic regularization as regards certain aspects. For example,
the rank parameter is easier to select, since it has simple bounds (an integer between 1 and
n). This may be contrasted with the regularization strength λ in the Sinkhorn algorithm,
which is continuous.

2.3. Fuzzy Biclustering via Regularized Optimal Transport

As previously mentioned, using entropic regularization may be interesting because of its
various useful features including statistical and computational efficiency. However, another
feature of entropic regularization is that the optimal couplings Z and W are dense matrices
as a consequence of the structure of the optimal solution of entropically regularized OT
problems. We formulate the problem as follows

BCOTλ(w,v, r, c) ≜ min
Z∈Π(w,r)
W∈Π(v,c)

〈
L(B),ZW⊤

〉
− λZH (Z)− λWH (W) (3.8)

where λZ and λW are the regularization parameters.

39



Chapter 3. Bipartite Graph Clustering via Optimal Transport

Fuzzy block seriation. We propose a fuzzy variant of the block seriation problem that
allows us by extension to define a fuzzy variant for BCOT using entropic regularization. Let
the fuzzy block seriation problem be defined as

max
Z∈Γs(n,k)
W∈Γs(d,k)

∑
i,j,h

bijzihwjh + Ω(Z,W) (3.9)

where Ω(Z,W) is some regularization term introduced to make the partition matrices Z
and W dense (for example, entropic regularization or low-rank constraints), and Γs(n, k) =
{Z ∈ Rn×k

+ |Z1 = 1} is the set of fuzzy partitions. Intuitively, for a solution pair (Z,W),
up to a constant factor, each entry in the block seriation matrix C = ZW⊤ can be seen
as the probability of its corresponding row and column belonging to the same bicluster i.e.
cij = ziwj =

∑r
h=1 zihwjh = p(bi,b′

j) =
∑r

h=1 p(bi,b′
j ∈ h).

It is easy to see how problem (3.9) is related to problem (3.8) and that the couplings
corresponding to solutions of the problem give the probability that the different rows and
columns belong to the same biclusters. Figure 3.1c shows biclusters produced by the solutions
of BCOTλ. Similarly to BCOT, a block diagonal structure is formed. However, there are also
several off-block diagonal nonzero entries that represent the probabilities of the row-column
pairs belonging to the same biclusters.

3. Links to Existing Work

3.1. Modularity Maximization in Bipartite Graphs.

The model presented in [Barber, 2007] is able to co-cluster binary and contingency matri-
ces by directly maximizing an adapted version of the modularity measure traditionally used
for networks. The criterion that it optimizes is

max
Z∈Γ(n,k)
W∈Γ(d,k)

∑
i,j,h

zihwjh

(
bij −

b.jbi.

b..

)
. (3.10)

By setting L(B) = −(B− 1
b..

B11⊤B), this problem becomes equivalent to ours; the difference
is in the constraints on Z and W.

3.2. Modularity-Based Sparse Soft Graph Clustering.

In [Hollocou, 2019], the authors proposed a fuzzy variant of the above problem (although
in the context of traditional clustering rather than biclustering). Solving the problem gives,
for each element of the dataset, a probability of that element belonging to a given cluster.
Our proposed entropic regularization variant represents a kind of extension of this problem
to bipartite graphs.

40



4. Optimization and Complexity

3.3. Directional Co-clustering with a Conscience.

The model in [Salah, 2017a; Affeldt, 2021] makes use of the block von Mises-Fisher
mixture model for co-clustering directional data on the unit-sphere. It optimizes the following
criterion:

max
Z∈Γ(n,k)
W∈Γ(d,k)

∑
i,j,h

1
√
z.hw.h

zihwjhbij . (3.11)

In our formulation, if we define L(B) = −B and apply cluster size normalization on the
optimal transport plans Z̃ = Zdiag(Z⊤1)−1/2 and W̃ = Wdiag(W⊤1)−1/2 after computing
Z and W respectively in algorithm 1, we obtain a more general version of the algorithm
proposed by the authors for solving problem (3.11).

3.4. Bipartite Correlation Clustering.

In the case where the cost function results in a complete bipartite graph with ’+’ and ’-’
edges with a function

L(B)ij =

−1 if bij > 0

+1 otherwise
(3.12)

we get what is known as Bipartite Correlation Clustering [Ailon, 2012]. The solution to this
problem maximizes the number of agreements, i.e. the number of all ’+’ edges within clusters
plus all ’-’ edges distributed across clusters.

4. Optimization and Complexity

Optimization. Since the block seriation problem is NP-hard, computing an exact solution
is prohibitive. An efficient and widely used heuristic for solving these kinds of problems
involves the use of block coordinate descent, where row assignments are computed for fixed
column assignments, and then vice versa, in alternation. We express the proposed algorithm
in pseudo-code as algorithm 1. At each iteration we solve two intermediate optimal transport
problems with cost matrices of dimensions n× k and d× k, since B is generally sparse, and
L can be defined such that L(B) retains a similarly sparse structure. The computation of
the intermediate cost matrices L(B)W and L(B)⊤Z is reasonably efficient. We also observed
that the algorithm does not need many iterations to converge, as shown in figure 3.2, be it
for BCOT or BCOTλ.

Proposition 3. The computational complexity of the BCOT algorithm 1 when using an ex-
act OT solver is O (tk∥B∥0 + tnk(n+ k) log(n+ k) + tdk(d+ k) log(d+ k))), and when using
entropic regularization the complexity is O(tk∥B∥0 + tkn + tkd), where t is the number of
iterations.

Proof. We suppose that L(B) is a sparse matrix with the same number of nonzero entries as

41



Chapter 3. Bipartite Graph Clustering via Optimal Transport

0 20 40 60 80 100
Iteration

0.0022

0.0020

0.0018

0.0016

0.0014

Lo
ss

BCOT
BCOT

Figure 3.2: Loss for BCOT and BCOTλ on Pubmed.

Algorithm 1: BCOT
Input : B bi-adjacency matrix, w and v row and column weights, r and c row and

column exemplar distributions
Output: πr, πc row and column partitions
W←Winit;
while not converged do

Z← arg OT (L(B)W,w, r);
W← arg OT

(
L(B)⊤Z,v, c

)
;

end
Generate πr, πc from Z and W;

B. The complexity of computing L(B)W and L(B)W in the BCOT algorithm is O(k∥B∥0).
The optimal transport problem can be formulated and solved as the Earth Mover’s Dis-

tance (EMD) problem using any minimum-cost flow problem algorithm, such as one of the
many variants of the network simplex algorithm. The authors in [Orlin, 1997] proposed an
algorithm for the network simplex in O(|V ||E| log |V |), where |V | is the number of nodes
and |E| is the number of edges in the network. In our case, when solving the EMD for Z
and cost matrix L(B)W, the number of nodes is |V | = n + k and the number of edges is
|E| = nk, which means that the complexity of the operation is O(nk(n + k) log(n + k)).
When computing the optimal transport plan for W, for cost matrix L(B)⊤Z, the com-
plexity is O(dk(d + k) log(d + k)). The overall complexity of the BCOT algorithm is then
O(k∥B∥0) + tnk(n+ k) log(n+ k) + tdk(d+ k) log(d+ k))

When using entropic regularization the complexity is smaller, since computing the optimal
transport plan requires only a transformation of the inputs matrix, which takes O(nk) in the

42



5. Experiments

Z computation step and O(dk) for W. The ensuing application of the Sinkhorn-Knopp
algorithm on the transformed matrices has complexities O(tnk) and O(tdk) for Z and W
respectively, where t is the number of iterations necessary. The overall complexity of BCOTλ

is then O(k∥B∥0) + tnk + tdk), here t includes the number of iterations of our algorithm as
well as that of Sinkhorn-Knopp.

Table 3.1: Computational and spatial complexity of the different OT biclustering approaches.
For COOT variants, we report complexities for an euclidean cost matrix. For a generic cost,
the time complexity is greater. For simplicity, we suppose that d ∈ O(n) and that we want
a biclustering with the same number of row and column clusters for COOT and CCOT. t
denotes the number of iterations and for CCOT, s denotes the number of necessary samplings.

Method Spatial complexity Time complexity
CCOT O(n2) O(sn3)
CCOT-GW O(n2) O(n3)
COOT∗ O(nk) O((n+ k)nk + k2n+ t(n+ k)nk log(n+ k))
COOT∗

λ O(nk) O((n+ k)nk + k2n+ tnk)

BCOT O(nk) O(k∥B∥0 + t(n+ k)nk log(n+ k))
BCOTλ O(nk) O(k∥B∥0 + tnk)

In table 3.1, we report the computational and spatial complexities of the different biclus-
tering approaches. Our model has the same spatial complexity as the COOT variants and a
better complexity than CCOT variants. As regards the computational complexity, our model
should in most cases be faster with sparse data, and our experiments support this conjecture.
For reproducibility, we publicly release our code 1.

5. Experiments

We ran experiments using term-document matrices. The benefit of using biclustering on
this kind of data is that the resulting biclusters contain both documents and the words that
characterize them, which is helpful in interpreting the clustering of the documents. Additional
experiments over synthetic and gene expression data were also conducted.

5.1. Datasets

We evaluate BCOT in relation to six benchmark document-term datasets: ACM, DBLP,
PubMed, Wiki, Ohscal, and 20 Newsgroups. Their characteristics are shown in Table 3.2.
ACM, DBLP, Pubmed and Wiki are attributed networks from which we use only the node-
level features that correspond to term-document matrices. We also selected the Ohscal col-

1https://github.com/chakib401/BCOT

43

https://github.com/chakib401/BCOT


Chapter 3. Bipartite Graph Clustering via Optimal Transport

lection and 20 Newsgroups as large-scale document-term matrices to serve as computational
efficiency benchmarks.

Table 3.2: Characteristics of the datasets.

Dataset #Documents #Terms #Document clusters Sparsity (%)

ACM [Fan, 2020] 3025 1870 3 95.52
DBLP [Fan, 2020] 4057 334 4 96.4

PubMed [Sen, 2008] 19717 500 3 89.98
Wiki [Yang, 2015] 2405 4973 17 86.99

Ohscal [Hersh, 1994] 11162 11465 10 99.47
20 Newsgroups [Lang, 1995] 18846 14390 20 99.41

5.2. Experimental Setup

In our experiments we define the loss function as L(B) = −cB, where c is selected from
{1, k, d, n}. For BCOTλ, the regularization parameter lambda is selected from {10−4,10−3,
10−2, 10−1, 1, 10}. The best hyper-parameters are those that minimize the number of empty
clusters. In the case of ties, we select according to the value of the Davies-Bouldin index
of the partition [Davies, 1979]. Random restarts are not used for any of the algorithms,
including k-means. We use the implementation provided by the authors for CCOT, CCOTλ

and CCOT-GW. The code for CCOT was not available, and so we had to implement it based
on the code for CCOT-GW. All the reported figures are the averages of 10 runs. All the
experiments were performed on the same machine with an Intel(R) Xeon(R) CPU and 12GB
RAM. For OT solvers we made use of the POT package [Flamary, 2021].

5.3. Document Clustering

Metrics. Here, the evaluation is straightforward, we adopt three popular clustering metrics:
clustering accuracy (CA), normalized mutual information (NMI) [Cai, 2008], adjusted rand
index (ARI) [Hubert, 1985].

Table 3.3: Document clustering performance on the four datasets. OOM denotes out of
memory.

Method ACM DBLP PubMed Wiki
CA NMI ARI CA NMI ARI CA NMI ARI CA NMI ARI

k-Means 51.1±11.3 13.7±11.2 14.0±10.6 36.9±2.4 10.4±2.0 4.3±2.0 52.3±4.7 18.2±10.5 15.3±10.1 26.0±6.1 18.6±9.3 3.3±2.9

CCOT 12.4±2.0 1.0±0.2 0.4±0.2 28.6±0.5 0.6±0.0 0.4±0.0 32.7±0.2 3.0±0.0 3.1±0.1 10.6±0.5 4.9±0.1 0.6±0.15
CCOT-GW 8.1±0.0 1.5±0.0 0.3±0.0 9.4±0.0 1.7±0.0 0.3±0.0 OOM 10.9±0.0 4.3±0.0 0.48±0.0
COOT* 39.0±0.0 1.9±0.0 2.0±0.0 30.5±1.4 1.4±0.3 1.2±0.3 43.2±1.5 1.7±0.6 1.3±1.5 25.9±1.8 28.7±2.2 12.3±1.7
COOTλ 41.5±0.2 1.9±0.1 2.2±0.0 30.6±0.0 0.7±0.0 0.6±0.0 42.4±1.5 1.7±0.5 1.0±1.3 17.2±0.0 1.7±0.0 0.31±0.0

BCOT 76.6±1.5 38.3±2.2 43.3±2.6 61.5±6.2 27.4±4.3 28.3±5.5 53.6±4.5 15.9±1.9 12.9±2.4 49.8±1.5 47.9±1.0 30.6±1.0
BCOTλ 76.2±0.6 37.6±0.8 42.4±1.0 59.4±9.9 26.6±7.6 27.2±9.5 56.5±3.1 18.4±1.3 15.4±1.8 50.8±1.5 49.4±0.9 31.9±0.8

Performance. Document clustering results on ACM, DBLP, PubMed and Wiki are given
in table 3.3 for the three metrics. In all cases the best result is obtained either by BCOT

44



5. Experiments

25 27 29 211 213 215

Average Run Time (s)

0

5

10

15

20

25

30

35
C

lu
st

er
in

g 
Ac

c 
(%

)
BCOT ×4.5

BCOT

COOT  ×1.6
COOT ×19.2

k-Means ×1.3 CCOT ×464.9

(a) 20 Newsgroups.

23 24 25 26 27 28 29 210

Average Run Time (s)

5

10

15

20

25

30

35

40

45

C
lu

st
er

in
g 

Ac
c 

(%
)

BCOT ×4.1

BCOT

COOT  ×1.7
COOT ×23.3

k-Means ×2.2

CCOT ×97.6

(b) Ohscal.

Figure 3.3: Accuracy against training time on NG20 and Ohscal. BCOTλ is the fastest and
has a competitive level of accuracy. BCOT gives the best accuracy while remaining relatively
efficient. The multiplication factors shown for the training times take BCOTλ as the reference
(and so, for example, ×4.5 shown for BCOT means that it is approximately 4.5 times slower
than BCOTλ). We were not able to benchmark CCOT-GW since it failed to scale to these
datasets.

or by BCOTλ. Moreover, on Wiki, BCOTλ gives competitive results when compared with
state-of-the-art attributed graph clustering methods presented in [Fettal, 2022c], despite not
having access to the graph structure information in the Wiki citation network.

Efficiency. Figure 3.3 plots the document clustering performance (accuracy against train-
ing time) of the different methods on the two large-scale document-term matrices 20 News-
group and Ohscal. BCOT offers the best accuracy while BCOTλ is fastest method on both
datasets. We see that for both BCOT and COOT, the entropic-regularized versions out-
speed their exact counterparts and that CCOT suffers from very high computation times,
due mainly to the fact that this method requires pairwise distance matrices to be computed
on the rows and columns.

5.4. Term Clustering

Metrics. Unlike document clustering, there is no ground truth partition for terms, so we
need to find another way of evaluating term clustering results. One generally acceptable
technique is to analyse the semantic coherence of the clusters obtained. To this end we
introduce a metric based on point mutual information (PMI). PMI is a frequently used
information-theoretic metric for quantifying the relationship between pairs of discrete random
variable outcomes. The PMI measure was chosen because prior research [Newman, 2009] has
shown that it is closely associated with human judgements in determining word relatedness.
The PMI between the terms wi and wj is calculated as

PMI(wi, wj) = log p(wi, wj)
p(wi)p(wj) (3.13)

45



Chapter 3. Bipartite Graph Clustering via Optimal Transport

In the context of term clustering, given the word co-occurrence matrix K = B⊤B, the PMI
is estimated as in

PMI(wi, wj) = log k..kij

ki.k.j
(3.14)

To evaluate a partition of terms P, we propose a metric based on intra and inter PMI metrics
as follows:

PMIintra(P ) =
∑

i∈P

∑
j∈P kij (3.15) PMIinter(P ) =

∑
i∈P

∑
j ̸∈P kij (3.16)

In this way, a good clustering should reveal a high intra-cluster semantic relatedness,
corresponding to higher PMI values. Using the intra and inter PMIs, we propose the following
coherence index

coherence(P) = 1∑
P ∈P
|P |

∑
P ∈P
|P | (PMIintra(P )− PMIinter(P )) . (3.17)

Our reasoning is this: the greater the semantic proximity between terms in the same clusters,
and the greater the semantic distance between terms in different clusters, the higher the value
of coherence.

Results. Since there is no ground truth number of term clusters, we use the cluster number
estimations produced by CCOT-GW for all the other models so that it is easy to compare
coherence values between them. Comparisons based on different numbers of clusters would
favor the model using the larger number of clusters. Table 3.4 shows the coherences obtained
across the different datasets using our approach, along with those of the baselines. It is clear
that BCOT succeeds in capturing more semantics than the other approaches since, whatever
the dataset, one or other of the two BCOT variants gives the highest coherence.

Table 3.4: Term clustering performance on the four datasets. OOM denotes out of memory.

Method ACM DBLP PubMed Wiki Ng20 Ohscal
k-Means 0.19±0.01 0.05±0.03 0.31±0.18 0.28±0.02 0.28±0.04 0.01±0.02

CCOT 0.03±0.00 -0.07±0.06 0.02±0.01 0.02±0.00 0.05±0.00 0.06±0.00
CCOT-GW 0.08±0.00 0.03±0.00 OOM 0.01±0.00 OOM OOM
COOT 0.12±0.01 0.07±0.00 0.14±0.01 0.40±0.00 0.43±0.02 0.23±0.01
COOTλ 0.21±0.00 0.04±0.00 -0.00±0.00 -0.08±0.00 -0.02±0.00 -0.13±0.00

BCOT 0.27±0.01 0.22±0.04 0.54±0.03 0.64±0.01 0.79±0.01 0.44±0.00
BCOTλ 0.24±0.00 0.16±0.02 0.57±0.01 0.62±0.01 0.27±0.01 0.35±0.00

5.5. Gene Clustering

This approach has also been successfully evaluated on microarray data for gene clustering.
A microarray database is a repository containing microarray gene expression data.

46



5. Experiments

Datasets. The gene-expression matrices used are the CuMiDa Breast Cancer and Leukemia
datasets. Their characteristics are shown in Table 3.5.

Table 3.5: Characteristics of the gene expression datasets.

Dataset Samples Genes k Sparsity (%)

Breast Cancer [Feltes, 2019] 26 42945 2 0.0
Leukemia [Feltes, 2019] 64 22283 5 0.0

Metrics. The metrics are the same as for document clustering.

Performance In table 3.6, we report results on the two micro-array datasets, BCOTλ has
the best performance on both of them.

Table 3.6: Gene clustering performance on the two microarray datasets.

Method Breast Cancer Leukemia
CA NMI ARI CA NMI ARI

k-means 75.8±18.0 41.9±40.5 31.2±49.0 74.8±7.2 72.1±5.4 50.1±8.3

CCOT OOM 40.6±0.0 0.0±0.0 0.0±0.0
CCOT-GW OOM OOM
COOT 63.1±5.2 5.4±8.7 -1.2±2.9 36.2±2.7 14.0±3.6 5.4±3.2
COOTλ 61.5±0.0 5.4±0.0 2.2±0.0 32.5±3.3 8.7±2.7 -.5±2.1

BCOT 76.9±0.0 37.2±0.0 26.7±0.0 71.2±5.4 59.6±6.9 39.9±6.3
BCOTλ 84.6±0.0 48.3±0.0 46.0±0.0 80.9±3.8 70.9±4.1 55.3±3.3

5.6. Co-clustering

Datasets. As datasets with labels along both rows and columns are unavailable, we use
synthetic data as in [Laclau, 2017b; Titouan, 2020]. Their structure is shown in figure 3.4,
while their characteristics are reported in table 3.7.

(a) A (b) B (c) C (d) D

Figure 3.4: Synthetic datasets rearranged with respect to the true partition.

Metrics. From row πr and column πc clusters, we use the Co-Clustering Accuracy (CCA)
proposed by [Govaert, 2008] to compare two pairs of partitions. CCA is defined from Clus-

47



Chapter 3. Bipartite Graph Clustering via Optimal Transport

Table 3.7: Characteristics of the synthetic datasets.

Rows Cols Biclusters Sizes Sparse Structure
A 500 500 10 equal Yes Block diagonal
B 800 1000 6 unequal No Block diagonal
C 800 800 7 equal No Checkerboard
D 2000 1200 4 unequal No Checkerboard

tering Accuracy (CA) associated to πr and πc in comparison with the true row and column
clusters; it is given by

CCA(πr, πc) = CA(πr) + CA(πc)− CA(πr)× CA(πc).

Results. We report the biclustering performance on the synthetic datasets in table 3.8. At
least one of our models finds the perfect partition in all cases. These tests additionally allow
us to show the utility of the row cluster distribution r and column cluster distribution c.
The use of these ground truth distributions resulted in an increase of 19.5 and 4.2 points for
BCOT on C and D, and an increase of 0.3 and decrease of 0.8 for BCOTλ on C and D.

Table 3.8: Biclustering performance on four synthetic datasets. gnd stands for ground truth.

Method A B C D
k-means 100.0±0.0 95.0±5.0 95.3±4.0 96.6±4.7

CCOT 54.4±3.5 70.0±0.0 29.7±0.4 55.7±1.8
CCOT-GW 99.1±0.0 83.5±0.0 83.4±0.0 75.3±0.0
COOT 99.8±0.0 78.8±2.0 99.8±0.0 93.7±1.2
COOTλ 39.9±2.4 84.9±4.6 28.2±0.0 60.7±0.0

BCOT 99.8±0.0 80.4±2.2 99.6±0.1 91.3±0.7
BCOTλ 100.0±0.0 99.1±0.4 100.0±0.0 100.0±0.0
BCOT (gnd r, c) same r, c 99.9±0.0 same r, c 95.5±2.3
BCOTλ (gnd r, c) same r, c 100.0±0.0 same r, c 99.2±0.9

5.7. Statistical Significance

We performed a Nemenyi post-hoc test [Nemenyi, 1963; Demšar, 2006] with a confidence
level of 90% on the document and term clustering results that we obtained, to determine
whether our model outperforms other OT biclustering approaches in a statistically significant
way. To conduct this test we generated 20 performance rankings of the OT biclustering
models based on their performance for each dataset and quality metric pair for both document
and term clustering. Figure 3.5 shows the results of the test. We see that two differently
performing groups were identified, one comprising BCOT and BCOTλ and giving better
results than the other group comprising the remaining COOT and CCOT variants. This
indicates that with this specific number of datasets and metrics the test was unable to tell

48



6. Conclusion

1 2 3 4 5 6

BCOT
BCOT
COOT COOT

CCOT
CCOT-GW

CD

Figure 3.5: Result of the Nemenyi post hoc test.

COOT and CCOT apart in a statistically significant way.

6. Conclusion

Clustering and biclustering through optimal transport is still at a nascent stage, with
many challenges remaining unsolved. This work introduces a novel problem for biclustering
using optimal transport that takes into account the sparse nature of certain types of dyadic
data such as document-term matrices, to enable more computationally efficient resolution.
The problem is posed as a bilinear program that we solve using an efficient block coordinate
descent algorithm to find a vertex solution. Experiments on a number of document-term
datasets suggest that the proposed approach does a good job in finding clusters that corre-
spond to ground truth document classes, while generating semantically coherent partitions
for the terms. In this setting, our model outperforms recent OT biclustering methods by a
significant margin, while being more computationally efficient.

In the next chapter, we will be proposing a generalization of this approach to generic
graphs, thereby, showing its interest for other types of data.

49





Chapter 4
Graph Clustering via Optimal Transport

In this chapter we aimed to introduce a graph clustering method based on the
min-cut problem with parameterizable cluster size distribution for any notion of
size. Interesting applications include balanced and long-tailed dataset clustering.

Objective

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Graph Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Optimal Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Graph Cuts with Arbitrary Size Constraints via OT . . . . . . . . . . . . . . . . . . . . . . 57
4.1 Graph Cuts via Optimal Transport. . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Graph Cuts with Size Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Transport Plans as Partition Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Optimization and Complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Links to Prior Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1 Optimal-Transport Based Biclustering . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 OT Kernel k-Means. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

51



Chapter 4. Graph Clustering via Optimal Transport

1. Introduction

Clustering is an important task in machine learning and computer vision. Intuitively, the
task of image clustering boils down to grouping images into clusters such that the images
within the same clusters are similar to each other, while those in different clusters are dissim-
ilar. Applications are diverse and wide ranging, including, for example, content-based image
retrieval [Bhunia, 2020; Lee, 2022; Bhunia, 2021], image annotation [Cheng, 2018; Cai, 2013],
and image indexing [Cao, 2013]. Consequently, much research has been dedicated to image
clustering [Chang, 2017; Ji, 2017; Elhamifar, 2013; Ji, 2019].

A popular way of formulating the image clustering problem is through the minimum graph
cut (min-cut) problem where the graph is created based on the input images. However, in
practice, the min-cut problem suffers from the formation of some small groups which leads to
bad performance. As a result, other versions of min-cut were proposed that take into account
the size of the resulting groups, in order to make the partition more balanced. This notion of
size is variable, for example, in the Normalized Cut (ncut) problem [Shi, 2000], size refers to
the total volume of a group, while in the Ratio Cut (rcut) problem [Hagen, 1992], it refers
to the cardinality of a group. A common method for solving the ncut and rcut problems
is that of the spectral clustering algorithm [Von Luxburg, 2007; Ng, 2001] which is popular
due to it often showing good empirical performance and being somewhat efficient. The
spectral clustering algorithm variants are present in many image clustering frameworks, such
as for subspace clustering [Agrawal, 1998] where a spectral clustering algorithm is applied
to a learned subspace affinity matrix to obtain a partition of the points according to the
subspaces in which they lie.

However, some restrictions that apply to the spectral clustering algorithms and to most
approaches tackling the ncut and rcut problems in general do exist. A first one is that the
balance constraint is not strict enough, meaning that even if we include the size regularization
into the min-cut problem, the groups are still not necessarily of similar size, which is why
several truly balanced clustering algorithm have been proposed in the literature [Chen, 2017;
Chen, 2019a; Li, 2018b]. Another problem is that the balance constraint is too restrictive
for many real world datasets, for example, a recent trend in computer vision is to propose
approaches dealing with long-tailed datasets which are datasets that contain head classes
that represent most of the overall dataset and then have tail classes that represent a small
fraction of the overall dataset [Xu, 2022; Zhu, 2014]. Some approaches propose integrating
generic size constraints to the objective like in [Genevay, 2019; Höppner, 2008; Zhu, 2010],
however these approaches directly deal with the input images (or data in general) instead of
graphs.

In this work, we propose a novel framework that introduces generic and at the same time
stricter size constraints to the min-cut problem using Optimal Transport. To sum up, the
main contributions of this work are:

• We formulate a problem for obtaining graph cuts that are balanced for an arbitrarily
defined notion of size instead of specifically the volume or cardinality as is traditionally

52



2. Related Work

done in spectral clustering. We also propose a more general formulation of graph cuts
with cluster size constraints which can help when dealing with perfectly balanced datasets
and heavily imbalanced datasets such as long-tailed datasets which follow an exponential
decay in sample sizes across different classes.

• We then propose a solution for said problem through optimal transport using an approach
reminiscent of the simplex algorithm and analyze its computational complexity. Links
with existing works are also studied.

• Comprehensive experiments on balanced and long-tailed data sets using two variants we
named OT-ncut and OT-rcut showcase the effectiveness of the proposed method compared
to the most common min-cut algorithms (that use spectral clustering) both in terms of
obtaining the desired cluster sizes as well as clustering performance. We release the code
of our algorithm 1 for reproducibility.

The rest of this work is organized as follows: Preliminaries are presented in Section 2.
Some related work is discussed in section 3. The OT-cut problem and algorithm along with
their analysis and links to prior research are given in section 4. We present experimental
results and analysis in section 5. Conclusions are then given in section 6.

2. Related Work

Our work is related with balanced clustering, as the latter is a special case of it, as well
as with the more generic problem of constrained clustering.

Balanced Clustering. A common class of constrained clustering problems is balanced
clustering where we wish to obtain a partition with clusters of the same size. For example,
[DeSieno, 1988] introduced a conscience mechanism which penalizes clusters relative to their
size, [Ahalt, 1990], then employed it to develop the Frequency Sensitive Competitive Learn-
ing (FSCL) algorithm. In [Li, 2018b], authors proposed to leverage the exclusive lasso on
the k-means and min-cut problems to regulate the balance degree of the clustering results.
[Lin, 2019] proposed a simplex algorithm to solve a minimum cost flow problem similar to
k-means. In [Chen, 2017], authors proposed a self-balanced min-cut algorithm for image clus-
tering implicitly using exclusive lasso as a balance regularizer in order to produce balanced
partitions.

Constrained Clustering. Some clustering approaches with generic size constraints, which
can be seen as an extension of balanced clustering, also exist. In [Zhu, 2010], a heuristic al-
gorithm to transform size constrained clustering problems into integer linear programming
problems was proposed. Authors in [Ganganath, 2014] introduced a modified k-means algo-
rithm which can be used to obtain clusters of preferred sizes. Clustering paradigms based

1https://github.com/chakib401/ot-cut

53

https://github.com/chakib401/ot-cut


Chapter 4. Graph Clustering via Optimal Transport

on OT generally offer the possibility to set a target distribution for resulting partitions.
[Genevay, 2019] proposed a deep clustering algorithm through optimal transport with en-
tropic regularization. In [Fettal, 2022c], authors proposed a way to perform biclustering
which is an extension of clustering to bipartite graphs through Optimal Transport while
choosing the size of the resulting biclusters.

3. Preliminaries

In what follows, ∆n = {p ∈ Rn
+|
∑n

i=1 pi = 1} denotes the n-dimensional standard sim-
plex. Π(w,v) = {Z ∈ Rn×k

+ |Z1 = w,Z⊤
1 = v} denotes the transportation polytope, where

w ∈ ∆n and v ∈ ∆k are the marginals of the joint distribution Z and 1 is a vector of ones, its
size can be inferred from the context. Matrices are denoted with uppercase boldface letters,
and vectors with lowercase boldface letters. For a matrix M, its i-th row is mi. Tr refers
to the trace of a square matrix. ∥.∥0 is the zero norm that returns the number of nonzero
elements in its argument. ⊗ denotes tensor-matrix product.

3.1. Graph Cuts

Graph Cut. Given an undirected graph G = (V, E) with an weighted adjacency matrix
W ∈ Rn×n with n = |V|, a cut is a partition of its vertices V into two disjoint subsets A and
Ā. The value of a cut is given by

cut(A) =
∑

vi∈A,vj∈Ā

wij . (4.1)

Minimum k-cut Problem. The goal of the minimum k-cut problem is to find a partition
(A1, ...,Ak) of the set of vertices V into k different groups that is minimal in some metric.
Intuitively, we wish for the edges between different subsets to have small weights, and for the
edges within a subset have large weights. Formally, it is defined as

min-cut(W, k) = min
A1,...,Ak

k∑
i=1

cut(Ai). (4.2)

This problem can also be stated as a trace minimization problem by representing the resulting
partition A1, . . . ,Ak using an assignment matrix X such that for each row i, we have that

xij =

1 if vertex i is in Aj ,

0 otherwise.
(4.3)

54



3. Preliminaries

This condition is equivalent to introducing two constraints which are X ∈ {0, 1}n×k and
X1 = 1. The minimum k-cut problem can then be formulated as

min-cut(W, k) = min
X∈{0,1}n×k

X1=1

Tr(X⊤LX), (4.4)

where L = D−W refers to the graph Laplacian of the graph G and D is the diagonal matrix
of degree of W, i.e., dii =

∑
j wij .

Normalized Cut Problem. In practice, solutions to the minimum k-cut problem do not
yield satisfactory partitions due to the formation of small groups of vertices. Consequently,
versions of the problem that take into account some notion of "size" for these groups have
been proposed. The most commonly used one is normalized cut [Shi, 2000]:

ncut(W, k) = min
A1,...,Ak

k∑
i=1

cut(Ai)
vol(Ai)

, (4.5)

since vol(Ai) = xT
i Dxi, then this problem can also be stated as a trace minimization problem:

ncut(W, k) = min
X1=1

X∈{0,1}n×k

Tr
(

X⊤LX
X⊤DX

)
, (4.6)

where the ratio can be taken as either right or left multiplication of the numerator by the
inverse of the denominator, this equivalence is due to the fact that we use the trace operator
and that the denominator is a diagonal matrix. A special case of the normalized graph cut
is recovered by setting D = I in problem 4.6. This problem is referred to as the ratio cut
problem due to the different groups being normalized by their cardinality instead of their
volumes:

rcut(W,k) = min
A1,...,Ak

k∑
i=1

cut(Ai)
|Ai|

, (4.7)

and similarly to the normalized cut, since |Ai| = xT
i xi, we can formulate the ratio cut problem

as a trace minimization problem:

rcut(W, k) = min
X∈{0,1}n×k

X1=1

Tr
(

X⊤LX
X⊤X

)
. (4.8)

Spectral Clustering for the Normalized & Ratio Cuts. A common approach to solv-
ing the normalized graph cut problems, spectral clustering, replaces the partition constraints
on X with a form of semi-orthogonality constraints. In the case of rcut, we have

ncut(W, k) = min
X∈Rn×k

X⊤X=I

Tr
(
X⊤LX

)
. (4.9)

55



Chapter 4. Graph Clustering via Optimal Transport

On the other hand for ncut, the partition matrix X is substituted with H = D1/2X and a
semi-orthogonality constraint is placed on this H, i.e.,

ncut(W, k) = min
H∈Rn×k

H⊤H=I

Tr
(
H⊤D−1/2LD−1/2H

)
. (4.10)

A solution H for the ncut problem is formed by stacking the first k-eigenvectors of the
symmetrically normalized Laplacian Ls = D−1/2LD−1/2 as its columns, and then apply-
ing a clustering algorithm such as k-means on its rows and assign the original data points
accordingly [Ng, 2001]. The principle is the same for the spectral rcut algorithm.

3.2. Optimal Transport

Discrete optimal transport. The goal of the optimal transport problem is to find a
minimal cost transport plan X between a source probability distribution of w and a target
probability distribution v. Here we are interested in the discrete Kantorovich formulation of
OT. When dealing with discrete probability distributions, said formulation is

OT(M,w,v) ≜ min
X∈Π(w,v)

⟨M,X⟩ , (4.11)

where M ∈ Rn×k is the cost matrix, and cij quantifies the effort needed to transport a
probability mass from wi to vj .

Discrete Gromov-Wasserstein Discrepancy. The generic discrete Gromov-Wasserstein
(GW) discrepancy [Peyré, 2016] is an extension of optimal transport to the case where the
source and target distributions are defined on different metric spaces:

GW(M,M′,w,v) ≜ min
X∈Π(w,v)

〈
L(M,M′)⊗X,X

〉
(4.12)

where M ∈ Rn×n and M′ ∈ Rk×k are similarity matrices defined on the source space and
target space respectively, and L : R × R → R is a divergence measure between scalars,
L(M,M′) is the n× n× k × k tensor of all pairwise divergences between the elements of M
and M′.

Gromov-Wasserstein Learning for Graphs. The Gromov-Wasserstein partitioning
paradigm [Xu, 2019] supposes that the Gromov-Wasserstein discrepancy can uncover the
clustering structure of the observed source graph G when the target graph Gdc only contains
weighted self-connected isolated nodes, this means that its adjacency matrix is diagonal. The
weights of this diagonal matrix as well as the source and target distribution are a special func-
tion of the node degrees. Their approach uses a regularized proximal gradient method as well
as a recursive partitioning scheme and can be used in a multi-view clustering setting. The
problem with this approach is that it is extremely sensitive the hyperparameter setting which

56



4. Graph Cuts with Arbitrary Size Constraints via OT

is problematic since it is an unsupervised method. Another approach is the one introduced in
[Chowdhury, 2021] which generalizes spectral clustering using Gromov-Wasserstein discrep-
ancy and heat kernels but suffers from very high computational complexity since, given a
graph with n node, during its optimization procedure involves the computation a gradient
which is in O(n3 log(n)) and therefore is not usable for large scale graphs.

4. Graph Cuts with Arbitrary Size Constraints via OT

In this section, we derive our optimal transport-based constrained graph cut problem and
propose a simple iterative algorithm for its resolution.

4.1. Graph Cuts via Optimal Transport.

As already mentioned, the good performance of the normalized cut algorithm comes from
the normalization by the volume of each group in the cut. However, the size constraint is not
a hard one, meaning that obtained groups are not of exactly the same volume. This leads us
to propose to replace the volume normalization by a strict balancing constraint as follows:

min
A1,...,Ak

k∑
i=1

cut(Ai)

such that vol(A1) = . . . = vol(Ak).
(4.13)

Similarly to the ncut problem, this problem can be formulated as a trace minimization
problem:

min
X

Tr(X⊤LX)

such that X1 = D1, X⊤
1 =

∑
i dii

k
1, ∀i∥xi∥0 = 1

(4.14)

This problem is hard and may not contain feasible solutions. However, this problem can be
slightly modified to become an instance of the Gromov-Wasserstein problem, to which rela-
tively efficient heuristics exist. Specifically, the volume constraint can be implcitly satisfied
by defining X to be an element of the transportation polytope with a uniform target distri-
bution instead of being a partition matrix. The degrees are also normalized by dividing them
by their total sum and then representing them as proportions instead of absolute quantities,
yielding the following problem:

min
X

Tr(X⊤LX)

such that X ∈ Π
( 1∑

i dii
D1, 1

k
1

) (4.15)

This formulation is a special case of the Gromov-Wasserstein problem for a source space
whose similarity matrix in the initial space is M = L and whose similarity matrix in the
destination space is M′ = I. Note that a ratio cut version can easily be obtained by replacing

57



Chapter 4. Graph Clustering via Optimal Transport

the volume constraint with
|A1| = . . . = |Ak| (4.16)

in problem 4.14, and similarly in problem 4.15, by setting D = I, giving rise to:

min
X∈Π( 1

n
1, 1

k
1)

Tr(X⊤LX) (4.17)

4.2. Graph Cuts with Size Constraints.

From the previous problem, it is easy to see that target distribution does not need to
be uniform, and as such, any distribution can be considered, leading to further applications
like long-tailed dataset clustering. Another observation is that any notion of size can be
considered and not only the volume or cardinality of the formed node groups. We formulate
an initial version of the generic optimal transport graph cut problem as:

min
X∈Π(πs,πt)

Tr(X⊤LX) ≡ min
X∈Π(πs,πt)

⟨LX,X⟩ , (4.18)

where πs
i is the relative ’size’ of the element i and πt

j is the desired relative ’size’ of the group j.
Through the form that uses the Frobenius product, it is easy to see how our problem is related
to the Gromov-Wasserstein problem. These size parameters can either be set using domain
knowledge by the expert using our algorithm or by trying multiple guesses and selecting the
best one via internal clustering quality metrics such as Davies-Bouldin index [Davies, 1979],
Silhouette score [Rousseeuw, 1987], etc.

4.3. Transport Plans as Partition Matrices

The proposed approach relies on the fact that the transport plan X can be interpreted
as a partition matrix. Fortunately, this interpretation can be made through the concept of
h-almost hard clustering [Fettal, 2022c]:

Definition 3 (h-almost hard clustering). An h-almost hard clustering is a clustering whose
partition matrix is ⊗ ∈ Rn×k such that ∥ ⊗ ∥0 = n+ h and for each row c of ⊗ we have that
∥c∥0 > 0. When h = 0, we obtain a standard hard clustering with one non-zero element per
row.

The extreme points of the transportation polytope are always h-almost hard clustering
(see [Peyré, 2019; Fettal, 2022c] for a proof), so we add an extreme point condition to our
problem in order to always obtain a transport plan X that can be interpreted easily as a hard
partition matrix:

OT-cut(L,πs,πt) ≜ min
X∈ext(Π(πs,πt))

Tr(X⊤LX) (4.19)

where ext is the set of extreme points of its argument. Consequently we have the following
proposition:

58



4. Graph Cuts with Arbitrary Size Constraints via OT

Proposition 4. A solution X to the OT-cut problem is an h-almost hard clustering with
h ∈ {0, . . . , k − 1}.

We can obtain a size constrained variant of the ncut problem by setting πs = 1∑
i

dii
D1,

giving rise to the following problem:

OT-ncut(L,πt) ≜ min
X

Tr(X⊤LX)

such that X ∈ ext
(

Π
( 1∑

i dii
D1,πt

)) (4.20)

Analogously, the variant of the rcut problem is obtained by setting πs = 1
n1, yielding:

OT-rcut(L,πt) ≜ min
X∈ext(Π( 1

n
1,πt))

Tr(X⊤LX), (4.21)

4.4. Optimization and Complexity.

Problem 4.19 is nonconvex due to the extreme point constraint. We propose to use
proximal gradient descent with constant step size to search for a stationary point. We add an
l2-norm regularizer to simplify the update rule obtained with the proximal gradient method.
The resulting update rule is:

X(t+1) ← arg OT
(
(L− I)X(t),πs,πt

)
. (4.22)

Note that when L is symmetrically normalized, we have that Lsym − I = −Wsym and the
update rule becomes:

X(t+1) ← arg OT
(
−WX(t),πs,πt

)
. (4.23)

The resolution of this problem is possible by stating it as the earth-mover’s distance (EMD)
linear program [Hitchcock, 1941] which can be solved via the network simplex algorithm. This
algorithm has been empirically observed to converge to some stationary point in few iteration
based on the initial guess X(0). To illustrate this, in figure 4.1, we can report the evolution
of loss function OT-rcut on MNIST, OT-rcut on FMNIST and OT-ncut on CIFAR-10-LT
(ρ = 10). The pseudocode for the optimization procedure is presented in algorithm 2.

Similarly to the algorithm proposed in [Peyré, 2016] for solving the GW problem with
an arbitrary loss and cost matrices, there are no convergence guarantees. Possible heuristics
to improve the quality of the final solution would be doing multiple runs with different
initializations, or initializing the algorithm with a partition matrix obtained from a spectral-
cut algorithm projected onto the transportation polytope.

Proof. We formulate the l2-norm regularized OT-cut problem as

min Tr(X⊤LX) + Iext(Π(πs,πt))(X)− ∥X∥2

where IC is the indicator function of set C. The proximal gradient update rule with respect

59



Chapter 4. Graph Clustering via Optimal Transport

to this problem is:

X(t+1) ← proxα(Iext(Π(πs,πt))−∥.∥2)

(
X(t) − α∇Tr

(
X(t)LX(t)

))
← proxα(Iext(Π(πs,πt))−∥.∥2)

(
(I− 2αL)X(t)

)
← arg minZ∈ext(Π(πs,πt))

1
2α

∥∥∥Z− (I− 2αL)X(t)
∥∥∥2
− ∥Z∥2

← arg minZ∈ext(Π(πs,πt))
1

2α ∥Z∥
2 + 1

2α

∥∥∥(I− 2αL)X(t)
∥∥∥2

− 1
α

Tr
(
Z⊤(I− 2αL)X(t)

)
− ∥Z∥2 ,

(4.24)

then by setting α = 1
2 :

X(t+1) ← arg minZ∈ext(Π(πs,πt)) Tr
(
Z⊤(L− I)X(t)

)
,

← arg minZ∈ext(Π(πs,πt))
〈
Z, (L− I)X(t)

〉
,

(4.25)

here, we can drop the extreme point constraint since, even without it, the solution is guaran-
teed to be an extreme point of the transportation polytope. This results in the classical OT
problem with cost matrix (L− I)X(t) and marginals πs and πt::

X(t+1) ← arg minZ∈Π(πs,πt)
〈
Z, (L− I)X(t)

〉
. (4.26)

Proposition 5. For a graph with |E| edges and n nodes, the complexity of an iteration of the
proposed algorithm is O

(
kn2 logn

)
.

Proof. We note that in practice n >> k and that the complexity of the network simplex
algorithm for some graph GEMD = (VEMD,VEMD) is in O(|VEMD||EEMD| log |EEMD|) [Orlin,
1997]. In our case, this graph has |VEMD| = n + k (since n >> k, we can drop the k) and
|EEMD| = nk. The other operation that is performed during each iteration is the matrix
multiplication (L− I)X(t) whose complexity is in O(k|E|), in the worst case when matrix L
is fully dense, we have that |E| = n2. Note that the complexity of the spectral clustering
algorithm is in O(kn2).

5. Links to Prior Works

In this section we discuss how our approach generalizes and can used in conjunction with
other approaches.

60



5. Links to Prior Works

Algorithm 2: Proximal Gradient Descent for OT-cut
Input : L Laplacian matrix,

πs node size distribution,
πt cluster size distribution,
Ginit initial partition matrix,
max_iter maximum number of iterations.

Output: G partition of the graph.
X(0) ← arg OT

(
Ginit,π

s,πt
)
;

while t < max_iter do
X(t+1) ← arg OT

(
(L− I)X(t),πs,πt

)
;

end
Generate partition matrix G such that each node vi is assigned it to partition
arg maxi xi;

0 2 4 6 8 10
Iteration

4.50

4.25

4.00

3.75

3.50

3.25

3.00

2.75

2.50

Cr
ite

rio
n

1e 5

(a) OT-rcut on
MNIST

0 2 4 6 8 10
Iteration

5.50

5.00

4.50

4.00

3.50

3.00

Cr
ite

rio
n

1e 5

(b) OT-rcut on
FMNIST

0 2 4 6 8
Iteration

1.14

1.12

1.10

1.08

1.06

1.04

Cr
ite

rio
n

1e 4

(c) OT-ncut on
CIFAR-10 (ρ=10)

Figure 4.1: Evolution of loss as function of the number of iterations.

5.1. Optimal-Transport Based Biclustering

Biclustering is the extension of clustering to bipartite graphs. Here, we recover the BCOT
[Fettal, 2022c] problem as a special case of OT-cut. Given a bipartite adjacency matrix A:

A =
[
0n×n B
B⊤ 0d×d

]
,

we recover their formulation through ours by considering this anti-adjacency matrix Ā:

Ā =
[
∞n×n L(B)
L(B)⊤ ∞d×d

]
.

Then setting πs = [v,w]⊤ and πs = [v,w]⊤ and omitting the extreme point condition. All
in all, we have that

BCOT(L(B),w,v) ≡ OT-cut
(
Ā, [v,w]⊤, [w,v]⊤

)

61



Chapter 4. Graph Clustering via Optimal Transport

Dataset #Images #Classes Balance

MNIST [Deng, 2012] 60,000 10 1.0
Fashion-MNIST [Xiao, 2017] 60,000 10 1.0
KMNIST [Clanuwat, 2018] 60,000 10 1.0
CIFAR-10 [Krizhevsky, 2009] 50,000 10 1.0

CIFAR-10-LT (ρ = 5) 25,423 10 5.0
CIFAR-10-LT (ρ = 10) 20,431 10 10.0
CIFAR-10-LT (ρ = 20) 17,023 10 20.0
CIFAR-10-LT (ρ = 100) 12,406 10 100.0

Table 4.1: Characteristics of the datasets from which we construct the graphs.
The balance score ρ is the ratio of the number of occurrences of the most frequent class over
that of the least frequent class.

5.2. OT Kernel k-Means.

In [Genevay, 2019], authors proposed an algorithm for k-means with cluster size con-
straints and entropic regularization. By dropping the regularization and adding an extreme
point constraint, one can think of the case where the adjacency matrix in our formulation is a
kernel matrix and use the same principles that were used with kernel k-means [Dhillon, 2004]
to optimize the OT graph cut criterion.

6. Experiments

We ran experiments on balanced and heavily imbalanced (long-tailed) datasets. We evalu-
ated the clustering performance of three variants of each of OT-ncut and OT-rcut algorithms
against the spectral rcut and ncut algorithms, as well as the ability of our approach to re-
cover the desired partition distribution. We had initially also considered S-GWL [Xu, 2019]
as a baseline but its empirical performance was very poor. Specifically, it consistently re-
sulted in assigning all the nodes to a single cluster. We believe that this is due to the fact
that their algorithm is very sensitive to the hyperparameters selected as well as the fact
that they used entropic regularization which leads to coupling matrices being fully dense.
Considering entropic regularization also leads to poor results for our approach. Another OT
based approach which was not considered is SpecGWL [Chowdhury, 2021] due to its log-cubic
complexity which makes it unusable for the datasets we considered.

6.1. Datasets

We perform experiments on balanced datasets and long-tailed datasets. The statistical
summaries of these datasets are available in table 4.1. The CIFAR-10-LT (ρ = maxi ni

mini ni
)

variants, are generated using a long-tailed imbalance sampling method that yields a dataset
whose majority class is ρ times more frequent than the minority class following the procedure

62



6. Experiments

Table 4.2: Image clustering performance on the imbalanced (long-tail) datasets. Values are
the averages over five runs. Standard deviations were not reported due to being negligible
(≤ 0.1). Best results are highlighted in bold font.

CIFAR-10-LT (ρ = 5) CIFAR-10-LT (ρ = 10) CIFAR-10-LT (ρ = 20) CIFAR-10-LT (ρ = 100)

NMI ARI CF1 NMI ARI CF1 NMI ARI CF1 NMI ARI CF1

SC-rcut 0.1 -0.0 3.3 0.1 -0.0 4.0 0.1 -0.0 4.6 0.1 -0.0 5.8
OT-rcut 11.6 7.3 20.7 12.1 7.8 19.8 11.4 7.5 17.9 9.8 5.7 13.7
OT-rcutSC 11.1 6.4 20.8 10.6 6.5 18.7 11.3 7.4 17.1 9.8 5.8 13.7
OT-rcut∗

SC 11.2 6.1 19.5 10.5 5.4 16.6 10.8 5.4 14.6 11.6 5.6 14.3

SC-ncut 10.2 5.6 19.1 10.5 6.2 18.0 10.6 5.8 16.4 12.7 6.8 14.6
OT-ncut 12.0 8.3 21.3 10.1 7.3 18.9 10.6 7.9 17.3 8.4 6.9 13.8
OT-ncutSC 10.8 7.5 20.7 10.8 7.5 18.6 10.5 7.8 16.2 10.4 8.3 14.8
OT-ncut∗

SC 10.4 5.9 20.4 10.4 5.6 18.0 10.6 5.7 16.4 10.9 5.6 13.1

described in [Cao, 2019].

6.2. Metrics

The evaluation is straightforward, we adopt four popular clustering metrics when dealing
with the balanced datasets: clustering accuracy (CA), clustering F1 score (CF1), normalized
mutual information (NMI), and adjusted rand index (ARI) [Hubert, 1985]; multiplied by 100.
CA and CF1 are computed by solving a linear assignment problem [Crouse, 2016]. When
dealing with the long-tailed dataset, we only use metrics that are sensitive to imbalance NMI,
ARI, and CF1. When comparing the concordance of the input cluster distribution π and
the cluster distribution obtained via one of our algorithms π̂, we use the Kullback-Leibler
divergence [Kullback, 1951]. The concordance of two perfectly matching distributions will be
equal to zero, otherwise it will be larger.

6.3. Experimental settings

We compare two variants of our algorithm, namely, the OT-ncut and OT-rcut imple-
mented via the Python optimal transport package (POT) [Flamary, 2021] to the spectral
clustering variants SC-ncut and SC-rcut which were based on the implementation of the
spectral clustering in the Scikit-Learn package [Pedregosa, 2011]. For each image dataset
represented in matrix form as Y, we use subspace Least Squares Regression Subspace Clus-
tering (LSR) [Lu, 2012] to create the graph, we get A = YY⊤

(
YY⊤ + I

)−1
. Note that

all experiments are run five times. In the results tables, base OT-cut’s variants use random
initialization. The variants that end with * use the ground truth target distribution. Fi-
nally, for variants ending in SC , we choose the initial transport plan X(0) by first obtaining a
partition matrix through the corresponding spectral clustering algorithm, i.e., spectral ncut
(SC-ncut) for OT-ncut and spectral rcut (SC-rcut) to OT-rcut. We perform 10 iterations of
our algorithm to fine-tune the initial guesses of spectral cuts and perform 20 iterations when
using random initialization.

63



Chapter 4. Graph Clustering via Optimal Transport

Table 4.3: Clustering performance on balanced image datasets. Values are the averages over
five runs. Standard deviations were not reported due to being negligible (≤ 0.1). Best results
are highlighted in bold font. OT-rcut* has the same results since the ground truth sizes are
uniform, similarly, OT-rcutSC also has the same results due to SC-rcut returning a bad guess
that is equivalent to a random initialization.

MNIST FMNIST KMNIST CIFAR 10

ACC NMI ARI CF1 ACC NMI ARI CF1 ACC NMI ARI CF1 ACC NMI ARI CF1

SC-ncut 40.2 34.7 17.6 37.6 53.4 53.2 36.5 51.6 37.3 30.4 19.8 35.2 22.2 10.1 5.6 21.5
OT-ncutSC 48.2 36.4 27.1 48.2 47.8 51.0 35.5 47.0 43.6 33.2 24.2 42.8 21.5 11.5 6.4 21.3
OT-ncut∗

SC 41.5 35.5 25.0 41.1 56.3 53.0 40.7 56.0 44.7 33.6 24.2 44.5 23.0 10.8 5.8 23.0
SC-rcut 11.2 0.0 -0.0 2.0 10.0 0.0 0.0 1.8 10.0 0.0 0.0 1.8 10.0 0.0 0.0 1.8
OT-rcut 38.3 32.3 20.7 38.2 54.3 53.9 39.0 54.3 41.6 33.1 22.3 41.6 23.8 11.7 6.4 23.8
OT-rcutSC Same results as OT-rcut
OT-rcut∗

SC Same results as OT-rcut

All experiments were performed on a 64gb RAM machine with a 12th Gen Intel(R)
Core(TM) i9-12950HX (24 CPUs) processor with a frequency of 2.3GHz.

0 10000 20000 30000 40000 50000
#Nodes

0.01

0.10

1.00

10.00

100.00

Ti
m

e 
(s

)

OT-ncut
SC-ncut

Figure 4.2: Training times of OT-ncut in seconds (log scale) over subsets of different sizes of
MNIST.

6.4. Results

We emphasize the fact that the most important quality metric is the relative difference
instead of the absolute value of the metrics since our objective is not to learn a better graph
over the dataset but rather to get a better cut over the chosen graph.

Performance on balanced datasets. For balanced datasets, the results are reported in
table 4.3. One of our two approaches yields the best results in all 16 cases. Furthermore,
each one of them improves over the results of their spectral counterpart, exceeding them in
31 out of 32 cases. Notably, our OT-rcut variant achieves a significant improvement over the
spectral ratio cut algorithm.

Performance on long-tailed datasets. Table 4.2 presents the results obtained on the
long-tailed datasets. In all cases, OT-ncut and OT-rcut outperform their spectral clustering
counterparts, yielding the best performance in 11 out of 12 cases. Notably, the improvement of

64



7. Conclusion

Table 4.4: The Kullback-Leibler divergence between the imposed target distribution and the
one obtained using OT-cut variants.

OT-ncut* OT-ncut OT-rcut* OT-rcut

MNIST 3.00e-09 2.30e-09 0.0 0.0
FMNIST 1.70e-09 2.60e-09 0.0 0.0
KMNIST 2.50e-09 4.10e-09 0.0 0.0
CIFAR-10 3.70e-09 3.10e-09 0.0 0.0

CIFAR-10-LT (ρ = 5) 0.0 2.53e-07 1.62e-08 0.0
CIFAR-10-LT (ρ = 10) 1.48e-08 6.70e-09 1.08e-08 0.0
CIFAR-10-LT (ρ = 20) 7.00e-09 1.26e-08 7.07e-08 0.0
CIFAR-10-LT (ρ = 100) 8.62e-08 5.14e-08 7.80e-08 0.0

OT-rcut over SC-rcut is particularly significant, consistent with the findings in the balanced
case.

Concordance of the Desired & Resulting Cluster Sizes. To evaluate our algorithm’s
ability to produce a partition with the desired group size distribution, we use the Kullback-
Leibler (KL) divergence metric. Specifically, we compare the distribution obtained by our
OT-rcut and OT-ncut variants against the target distribution specified as a hyperparameter
(πt). Table 4.4 presents the KL divergences for both variants on various datasets. Our
approaches achieve near-perfect performance on most datasets. Notably, OT-rcut is able to
fully recover the desired group sizes.

Running Time. As shown in figure 4.2, OT-ncut with random initialization is more effi-
cient than the spectral ncut algorithm, significantly outspeeding it on all subsets of MNIST
despite being theoretically more complex. This is due to the fact that our algorithm needs few
iterations to converge. Regularization can be introduced to further speed up our algorithms
such as low-rank [Scetbon, 2022] and entropic [Cuturi, 2013] regularizations .

7. Conclusion

In this work we proposed a new graph cut algorithm for partitioning with arbitrary
size constraints through optimal transport. This approach generalizes the concept of the
normalized and ratio cut to arbitrary size distributions and this for any notion of size. The
proposed algorithm works well when used in conjunction with a classical spectral graph cut
algorithm as a post-processing step to obtain some desired distribution. Experiments on
balanced and imbalanced datasets showed the effectiveness of our approach both in terms of
clustering performance, computational speed, as well as its ability to recover partitions that
almost perfectly match the desired ones.

In the next chapter, we will be working on attributed graphs i.e. graphs with attributes
on their nodes. To deal with such types of graphs, approaches find a way to take into consid-

65



Chapter 4. Graph Clustering via Optimal Transport

eration both graph structure and node information. We will be doing that via neighborhood
propagation and using a new efficient low-rank subspace clustering approach to partition the
resulting representations.

66



Chapter 5
Attributed Graph Joint Embedding and
Clustering

This chapter was published as [Fettal, 2022c]. Our goal was to create an ef-
ficient yet effective approach for the simultaneous embedding and clustering of
attributed-graph nodes based on the simplified graph convolutional network, as
well as the reduced k-means.

Objective

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1 Preliminaries and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 Joint Graph Representation Learning and Clustering . . . . . . . . . . . . . . . . . 71
3.3 Linear Graph Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4 Normalized Simple Graph Convolution . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5 Graph Convolutional Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6 Connections to Existing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Optimization and Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1 Optimization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 The GCC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 A Fair Comparison with Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Clustering Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5 Embedding and Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6 Choice of Propagation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

67



Chapter 5. Attributed Graph Joint Embedding and Clustering

1. Introduction

In data science, low-dimensional representation learning is commonly used for visualiza-
tion purposes, but it can also play a significant role in the clustering task, where the aim
is to divide a dataset into homogeneous clusters. Indeed, working with a low-dimensional
space can be useful when partitioning data, and a number of approaches are reported in
the literature. Recently, the authors in [Karim, 2020a] have performed experiments on the
sequential combination of deep representation learning techniques such as the autoencoder
(AE), variational AE [An, 2015] and convolutional AE [Ghasedi Dizaji, 2017; Karim, 2020b],
and some popular clustering methods such as k-means; interactive Python Notebooks and
further technical details can be found at 1. They observed that this improves clustering re-
sults but that there is no ‘one size fits all’. Thus, low-dimensional representation learning
followed by cluster analysis can be helpful in data science. The k-means applied on data em-
beddings, derived from classical embedding methods such as the AE for instance, is a popular
approach. This procedure is carried out sequentially and is referred to as the tandem approach
[Yamamoto, 2014]. However, AE may sometimes be unsuitable for reducing dimension before
clustering; it can fail to retain information which could be valuable for the clustering task.
Hence, jointly optimizing for both tasks –representation learning and clustering– is a good
alternative [Fard, 2020; Allab, 2016; Allab, 2018; Labiod, 2021]. Learning representations
that are both faithful to the data while simultaneously adjusting them to have a clustering-
friendly structure can lead to a better clustering performance [De Soete, 1994; Fard, 2020;
Asano, 2020].

Clustering in the context of attributed graphs, which are graphs whose nodes and/or
edges have attributes or features, despite being an important unsupervised task, has proved
more impervious to such advances. Furthermore, some of these attributed graph clustering
methods suffer from high spatial and/or computational complexity. Unlike most existing
approaches, this work aims to overcome this weakness by considering a joint graph embed-
ding and clustering, which alternates iteratively between both tasks, that is to say between
embedding and clustering. Attributed graphs are used to model a wide variety of real-world
networks such as recommender systems [Salah, 2017b; Fan, 2019; Ying, 2018], computer
vision [Satorras, 2018; Qi, 2017; Yang, 2018a], Natural language processing [Marcheggiani,
2017; Song, 2018] and physical systems [Hoshen, 2017; Sanchez-Gonzalez, 2018]. Due to the
irregular high-dimensional non-euclidean structure of graphs as well as the various node-level
features it may contain, looking for suitable euclidean-representations that incorporate the
structural and features’ information of these graphs is an interesting challenge in machine
learning [Hamilton, 2017]. Recent literature proposes to learn these representations auto-
matically. Loosely speaking, these representation learning methods aim at embedding the
nodes into a low-dimensional space where in the embedded nodes’ proximity should be similar
enough to that of those in the original graph representation. These methods can be based on
approaches such as factorization [Belkin, 2003; Ahmed, 2013], random walks [Perozzi, 2014;

1https://github.com/rezacsedu/Deep-learning-for-clustering-in-bioinformatics

68

https://github.com/rezacsedu/Deep-learning-for-clustering-in-bioinformatics


2. Related Work

Grover, 2016], or neighborhood autoencoders [Wang, 2016; Zhu, 2020]. Recently, the Graph
Convolutional Network (GCN) [Defferrard, 2016; Kipf, 2017] has garnered a lot of attention
due to its ability to learn high-quality graph representations, and by extension, its effective-
ness for different graph-related tasks such as node classification, link prediction, and node
clustering which is the task our work focuses on. This node clustering, however, is generally
performed as a downstream task but some efficient GCN-based approaches for the simultane-
ous embedding and clustering have recently emerged [Zhang, 2019; Anton Tsitsulin, 2020]. In
this work, we propose to rely on the GCN to develop a novel Graph Convolutional Clustering
model referred to as GCC that is capable of taking into account both tasks simultaneously.
Our contributions in this work can be summarized as follows:
- We provide a variant of the GCN propagation matrix and demonstrate how it makes the

GCN truly act as a low-pass filter.
- We propose a new formulation combining the graph convolutional representation learning

and the clustering processes and show how our proposed GCC approach is related to some
other methods.

- We derive an efficient algorithm referred to as GCC2 and study its computational complexity
in detail. We release the code3 for easy reproducibility.

- We perform experimentations to showcase the worth of our proposal both in terms of
clustering and quality of embedding.
This work is organized as follows. Section 2 presents related works. Section 3 presents the

proposed approach and its derivation. Section 4 is devoted to the proposed algorithm and
its computational complexity study. In section 5, we compare GCC with the state-of-the-art
in terms of clustering and evaluate its performance in terms of embedding. Finally, Section
6 presents our conclusions.

2. Related Work

Our contributions lie in the intersection of several research topics, graph representation
learning, graph clustering and graph convolutional neural networks.

Unsupervised Graph Representation learning. Unsupervised Graph Representation
learning is generally done either through contrastive learning or via autoencoders.

The contrastive methods learn representations in a self-supervised way. They commonly
rely on maximizing mutual information. DGI [Velickovic, 2019], for example, maximizes
mutual information between node and graph representations. InfoGraph [Sun, 2020] expands
the previous concept to graph substructures of different scales rather than just the node-level
e.g. edges, triangles.

Autoencoder-based models learn embeddings by trying to reconstruct some property of
the graph, generally the adjacency matrix. Variational Graph Autoencoders (VGAE) [Kipf,

2From now on, in order to distinguish between a model and its derived algorithm, we will use typewriter
font for an algorithm. Consequently, GCC is the model and GCC its derived algorithm.

3https://github.com/chakib401/graph_convolutional_clustering

69

https://github.com/chakib401/graph_convolutional_clustering


Chapter 5. Attributed Graph Joint Embedding and Clustering

2016] extend the concept of variational autoencoders to the graph context, it uses a GCN
based encoder and a dot product decoder. Linear variational Graph autoencoders [Salha,
2020] simplify VGAE by defining the encoder to be a linear transformation with a one-hop
propagation matrix.

Graph Clustering. Graph clustering is the process of grouping nodes into clusters de-
pending on the structure of the graph and/or node-level features. By only considering node
attributes, classical clustering algorithms can be used to cluster the graph. Algorithms that
rely on graph structure exclusively include the spectral clustering algorithm [Ng, 2001] that
optimizes the ratio and normalized-cut criteria. Graclus [Dhillon, 2007] is mathematically
equivalent to the spectral clustering algorithm but is faster due to not having to compute the
eigenvalues of the graph Laplacian.

Finally, approaches that leverage both graph structure and node attributes commonly
learn representations before applying classical clustering algorithms on them [Wu, 2019; Zhu,
2021]. However, some recent works explored integrating the clustering loss directly into the
objective.

Clustering-friendly Graph Representation Learning. Literature on joint represen-
tation learning and clustering claims that doing the two tasks simultaneously can improve
clustering quality. DCN [Yang, 2017] proposed to include the k-means clustering loss to the
autoencoder loss as a regularization. Deep k-means [Fard, 2020] followed on this concept by
proposing a fully differentiable formulation of this problem. In the context of attributed graph
clustering, joint clustering and embedding is starting to receive some attention. GEMSEC
[Rozemberczki, 2019] maximizes the information between labels and visual input data indices
in order to self-label the data. AGC [Zhang, 2019] proposes to exploit high-order neighbor-
hoods in the clustering process through an adaptive rule for neighborhood order selection.
Deep Modularity Network [Anton Tsitsulin, 2020] clusters the graph by maximizing spectral
modularity. Graph InfoClust (GIC) [Mavromatis, 2021] computes clusters by maximizing the
mutual information between nodes contained in the same cluster.

3. Proposed Method

In this section we describe how we formulate the simultaneous node embedding and
clustering problem. Then we propose a new model for solving it (as depicted in figure 5.1).

3.1. Preliminaries and Notations

Let G = (V,A,X) be an attributed undirected graph where V represents the vertex set
consisting of nodes {v1, ..., vn}, A ∈ Rn×n is a symmetric adjacency matrix where aij denotes
the edge weight between nodes vi and vj , and X ∈ Rn×d is a node-level feature matrix. Tr
denotes the trace of a matrix. In what follows k represents the number of clusters. f is the

70



3. Proposed Method

  -iterations

Final  Partition

Embedding with
clustering structure

Centroid computation
 Embedding

Centroid reconstruction

Feature PropagationInput Graph

Partition computation

Joint Embedding & Clustering

Figure 5.1: Schema of the GCC model: GCC creates an initial representation of the graph
before iteratively learning to embed and cluster the data. The graph signal is represented by
the colors of the node. Feature propagation results in a smoother signal.

embedding dimension. 1m represents a column vector of m ones. Im represents an identity
matrix of dimension m. If G is a matrix then mi is its i-th row vector, m′

j is its j-th column
vector and mij is the j-th element of the i-th row.

3.2. Joint Graph Representation Learning and Clustering

We formulate the simultaneous node embedding and clustering problem as follows

min
θ1,θ2,G,F

∣∣∣∣∣∣ decθ2

(
encθ1

(
agg(A,X)

))
− agg(A,X)

∣∣∣∣∣∣2︸ ︷︷ ︸
reconstruction term

+ α
∣∣∣∣∣∣ encθ1

(
agg(A,X)

)
−GF

∣∣∣∣∣∣2︸ ︷︷ ︸
clustering regularization term

s.t. G ∈ {0, 1}n×k, G1k = 1n

(5.1)

where encθ1 is the encoding function, decθ2 is the decoding function, agg(A,X) is some
aggregate of A and X which represents the information contained in the graph (structure
and node-features), G ∈ {0, 1}n×k the binary classification matrix, F ∈ Rk×d play the role of
centroids in the embedding space and α is a coefficient that regulates the trade-off between
seeking reconstruction and clustering.

The clustering regularizer is the k-means clustering loss [Lloyd, 1982] on the encoded
observations. It penalizes transformations that do not result in a clustering-friendly repre-
sentation.

3.3. Linear Graph Embedding

Linear graph autoencoders (LGAE) [Salha, 2020] have shown that a linear encoder with
an inner product decoder can be powerful enough to reach competitive results w.r.t more

71



Chapter 5. Attributed Graph Joint Embedding and Clustering

complex GCN-based models on the link prediction and node clustering tasks. Consequently,
we also define our encoder to be a simple linear transformations i.e.

enc(agg(A,X); W1) = agg(A,X)W1

In LGAE, the decoder attempts to reconstruct the adjacency matrix A rather than an
aggregation of A and X. This means that this type of decoder is not suitable for our problem.
Therefore, we also define the decoder as a simple linear transformation

dec(Z; W2) = ZW2

where Z = agg(A,X)W1.

3.4. Normalized Simple Graph Convolution

Our choice for the aggregate function is inspired by the simple graph convolution proposed
in SGC [Wu, 2019]. We set

agg(A,X) = TpX (5.2)

but rather than have T be the symmetric normalized adjacency matrix with added self-loops,
we define it to be

T = DT
−1(I + S̃) (5.3)

where S̃ = D̃−1/2ÃD̃−1/2 with Ã = A + I and D̃ (resp. DT) being the diagonal matrix of
degrees of Ã (resp. I + S̃).

The GCN, and by extension the SGC, do graph signal filtering with matrix I − S̃ =
I − D̃−1/2(I − L̃)D̃−1/2 where L̃ is the Laplacian of Ã. The frequency response function of
this filter is h(λ̃l) = 1 − λ̃l where λl is a frequency of the graph. In the GCN stacking K-
layers, or equivalently raising S̃ to power K in SGC, implies doing the filtering with frequency
response function hK(λ̃l) = (1 − λ̃l)K . This filter is low-pass on [0, 1] but not [0, 1.5]. We
then propose to further add self-loops and row normalize matrix S̃. This has the following
effects

• From the spectral perspective: The proposed normalization further shrinks the spec-
trum of the matrix to lie in [0, 1], as can be seen in figure 5.2, which makes the filter
truly low-pass.

• From the spatial perspective: Each transformed vertex becomes a weighted-average
of the neighbors which is more intuitive but it also takes into account column degree
information unlike direct random walk adjacency normalization.

We further motivate this choice in the experiments section. Thereby, with this aggregation

72



3. Proposed Method

Figure 5.2: frequency response of the proposed GCN filter plotted against the frequency on
four real-world datasets

function, our problem turns into

min
G,F,W1,W2

∣∣∣∣TpX−TpXW1W2
∣∣∣∣ 2 + α

∣∣∣∣TpXW1 −GF
∣∣∣∣ 2

s.t. G ∈ {0, 1}n×k, G1k = 1n

(5.4)

Both terms of (5.4) make it possible to express a connection between the two tasks, the
first term plays the role of linear autoencoder and the second the role of clustering in the
embedding space. We decide in the following to give the same weight for the two terms
(α = 1).

3.5. Graph Convolutional Clustering

To obtain a mutual supplementation between embedding and clustering, we assume W =
W1 = W2

⊤ and add an orthogonality constraint on W in (5.4). It gives rise to the following
problem

min
G,F,W

∣∣∣∣TpX−TpXWW⊤ ∣∣∣∣ 2 +
∣∣∣∣TpXW−GF

∣∣∣∣ 2

s.t. G ∈ {0, 1}n×k, G1k = 1n, W⊤W = Ik

(5.5)

73



Chapter 5. Attributed Graph Joint Embedding and Clustering

Similar to [Yamamoto, 2014], solving this problem can be proven to be equivalent to

min
G,F,W

∣∣∣∣TpX−GFW⊤ ∣∣∣∣ 2

s.t. G ∈ {0, 1}n×k, G1k = 1n, W⊤W = Ik

(5.6)

Proof. We first decompose the reconstruction term

||TpX−TpXWW⊤||2 = ||TpX||2 + ||TpXWW⊤||2 − 2||TpXW||2

= ||TpX||2 − ||TpXW||2 due to W⊤W = Ik.

Similarly, the clustering regularization term can be decomposed as follows

||TpXW−GF||2 = ||TpXW||2 + ||GF||2 − 2Tr((TpXW)⊤GF)

Summing the two resulting expressions we get

||TpX||2 + ||GF||2 − 2Tr((TpXW)⊤GF) = ||TpX−GFW⊤||2

due to ||GFW⊤|| = ||GF||

Thus, optimizing (5.5) is equivalent to optimizing (5.6)

Before tackling the resolution of this problem in section 4, we will first look at how our
proposed GCC approach is related to some other methods.

3.6. Connections to Existing Work

Simple Graph Convolution Variants. Similarly to SGC, the computation of TpX can
be considered to be a pre-processing step with a different propagation matrix T. This repre-
sentation is then used for a downstream task. In the original work that task was classification
where the representation is fed to a linear regression model corresponding to a fully connected
neural network layer with sigmoid activations. Other variants of the simple graph convolution
can also be used as the aggregation function e.g. for the simple spectral graph convolution
(S2GC) [Zhu, 2021] we have agg(A,X) = 1

p

p∑
i=1

TiX.

Graph Autoencoder and Linear Graph Autoencoder. Our model can be seen as a
case of the non-probabilistic variant of the VGAE model adapted to graph clustering. Like
VGAE, the encoder we use is a form of GCN but rather than an inner-product decoder, we
use a linear decoder. The original graph autoencoder was used for link-prediction, i.e., it tried
to reconstruct a completed version of the adjacency matrix A. In our case we reconstruct
the convolved matrix TpX

Deep Clustering Network. From X, the DCN algorithm [Yang, 2017] also performs
unsupervised clustering using a deep autoencoder; it uses an optimization objective that is a

74



4. Optimization and Algorithm

weighted combination of a reconstruction error and a clustering error. The DCN cost function
is given by

min
θ1,θ2,G,{fi}

ℓ
(
gθ2(fθ1(xi)

)
,xi) + λ

2
∑

i

∣∣∣∣ fθ1(xi)−Gfi

∣∣∣∣ 2
2

s.t. sij ∈ {0, 1}, 1⊤fi = 1

where f is the encoder and g is the decoder, {fi} are the centroids, G is a membership matrix
and ℓ is a loss function. If we take λ = 2, the encoder and decoder to be linear functions
f(x; W) = xW and g(x; W⊤) = xW⊤ with a semi-orthogonality constraint on W, the loss
function to be the mean squared error and by considering the observations to be the rows
of TpX we get the problem as formulated in (5.5). As for the optimization process, the
update rule is the same for the cluster assignment while it differs in the centroids, encoder
and decoder updates.

4. Optimization and Algorithm

Directly solving optimization problem in (5.6) is tricky so we use the following alternating
iterative approach. The algorithm alternately fixes two of the matrices F, G and W and
solves for the third one.

4.1. Optimization Procedure

For each matrix, through fixing the two other matrices we obtain a formula which can
be solved directly. The solutions to these modified problems are guaranteed to decrease the
overall cost function monotonically. The initialization and update rules are described in what
follows.

Initialization. We initialize W with the first f components obtained from applying
a randomized Principal Component Analysis (PCA) on TpX. Matrices F and G are then
obtained via a k-means on TpXW.

Update Rule for F. By fixing G and W and solving for F we obtain a linear least
squares problem. By setting the derivative to zero, we obtain the normal equation which is
the optimal solution to the given problem. The update rule is then

F = (G⊤G)−1G⊤TpXW. (5.7)

Intuitively, each row vector fi is set to the average of the embeddings XW that are assigned
to cluster i. In the k-means algorithm this corresponds to the centroid update step.

Update Rule for W. By fixing G and F and solving for W, the update rule is as

75



Chapter 5. Attributed Graph Joint Embedding and Clustering

follows
W = UV⊤ s.t. [U,Σ,V] = SVD

(
(TpX)⊤GF

)
(5.8)

where Σ = (σii), U, and V are respectively the singular values, the left and right singular
vectors of the matrix (TpX)⊤GF.

Proof. Fixing F and G in (5.6) leads to the following generalized Procrustes problem

min
W

∣∣∣∣TpX−GFW⊤ ∣∣∣∣ 2 s.t. W⊤W = Ik. (5.9)

As ||TpX−GFW⊤||2 = ||TpX||2+||GFW⊤||2−2Tr(WF⊤G⊤TpX). and since ||GFW⊤||2 =
||GF||2 (5.9) is equivalent to

max
W

Tr
(
WF⊤G⊤TpX

)
s.t. W⊤W = Ik.

By taking [U,Σ,V] = SVD
(
F⊤G⊤TpX

)
, we have

Tr
(
WF⊤G⊤TpX

)
= Tr

(
WUΣV⊤)

=
f∑

i=1
σii < w′

iU,v′
i >

≤
f∑

i=1
σii||w′

iU|| × ||v′
i|| =

f∑
i=1

σii = Tr(Σ).

This implies that an upper bound for (5.9) is attained when
Tr(WUΣV⊤) = Tr(Σ) or equivalently when V⊤WU = I meaning that the maximum is
attained at W = VU⊤.

Update Rule for G. By fixing F and W and solving for F, we get a problem that can
be optimized with the assignment step of the k-means algorithm. The update rule is, then,
given as

gij∗ ←


1 if j∗ = arg min

j

∣∣∣∣ (TpXW)i − fj

∣∣∣∣ 2

0 otherwise.
(5.10)

4.2. The GCC Algorithm

The steps in the GCC algorithm are outlined in Algorithm 3. The convergence of GCC is
guaranteed, but it will only reach a local optimum according to the initial conditions. A
possible strategy to overcome this is to run GCC several times and to select the best result
relative to the objective function. The selection of the propagation order p is integral to
the overall performance of the algorithm. A smaller p can mean insufficient neighborhood
information is being propagated while a larger p can cause over-smoothing of the graph signal.
Figure 5.3 shows projections of the Cora dataset using the t-SNE algorithm [Maaten, 2008]
for different values of p (with a perplexity of 50).

76



4. Optimization and Algorithm

Algorithm 3: GCC
Input : - Adjacency matrix A

- Feature matrix X
- Propagation order p
- Number of clusters k
- Embedding dimension f
- Tolerance ϵ
- Maximum number of iterations max_iter

Output: - Membership indicator G ∈ {0, 1}n×k

- Embedded centers F ∈ Rk×f

- Embedding matrix W ∈ Rd×f

Compute T from A;
Initialize W with a randomized PCA on TpX;
Initialize G with a k-means on TpXW;
while

∣∣∣∣TpX−GFW⊤ ∣∣∣∣ > ϵ or max_iter not reached do
Update F using formula (5.7);
Update W using formula (5.8);
Update G using formula (5.10);

end

With AGC in [Zhang, 2019], the authors proposed to first select an interval of possible
values for p and then retain the first p that is a local minimum of an intra-cluster metric.
Since our loss function contains information about the clustering performance, it can serve as
a metric for the selection of p. Thus, similarly to AGC, we select the p via our loss function
as follows: We stop and select p = p∗ if the change in square-root of the loss function
||TpX −GFW⊤|| between p∗ and p∗ − 1 is less than d

n for p ∈ {0, . . . , 150}. The detailed
rule is described in Algorithm 4.

As our loss function w.r.t p is always decreasing for every dataset in the interval we chose.
We stop when the change in the loss is lower than a constant that is a function of the input
dimensions rather than wait for a local minimum.

4.3. Complexity Analysis

In what follows, we analyze the computational complexity of each operation in the GCC
algorithm as well as the overall one.

Computing agg(A,X). The computational complexity of the p-th order simple graph
convolution is O(p|E|d) as each multiplication costs |E|d and p such multiplications are
needed.

Initializing W and G. Initializing W with PCA costs O(nd log(k)) operations as
claimed in [Halko, 2011]. For G, computing TpXW takes O(ndf) while k-means applied
on TpXW is in O(tnkf) where t is the number of iterations of k-means; ergo, the overall
complexity of initialization is O(nd log(k) + ndf + tnkf).

Updating F. In (5.7), the cost of computing the embeddings matrix TpXW is O(ndf).

77



Chapter 5. Attributed Graph Joint Embedding and Clustering

Figure 5.3: Visualization of the Cora GCC-embeddings using t-SNE for different values of p.

Since G is an indicator matrix, it can be stored as a vector rather than a matrix and
multiplications that include it can be replaced by indexing operations. Thus, computing the
transformation (G⊤G)−1G⊤ takes O(n+k) and applying it on the embeddings TpXW costs
O(nf). Since n > k, the total complexity of the update of F is then O(ndf).

Updating W. In (5.8), computing (TpX)⊤GF for the SVD costs O(ndf) because of G
being indices. The SVD operation itself costs O(df2). As for calculating VU⊤, it is also in
O(df2). This brings us to a total of O(ndf + df2) operations.

Updating G. TpXW having already being computed, in (5.10) the complexity of com-
puting G comes from searching each embedded vector’s closest centroid, this takes O(nkf).

Loss computation. Is in O(dkf + nd) or O(ndf) depending on the order of the multi-
plication and the indexing operation in the product GFW⊤.

Overall complexity. The totality of the previous operations cost O
(
p|E|d+(t′+t)nkf+

t′(ndf+df2 +dkf)+nd log(k)
)

where t′ is the number of iterations of our algorithm (generally
converges within 5-15 iteration).

For simplicity’s sake we assume t′ = t, we can also assume that k, f ≤ min(n, d), which is
often the case in graph datasets (this condition can always be satisfied by adding duplicate
nodes or constant features), this allows us to set f = k. Consequently, the total complexity
is given as O(p|E|d+ tndk).

78



5. Experiments

Algorithm 4: Propagation order selection rule
Input : - Adjacency matrix A

- Feature matrix X
- Number of clusters k
- Embedding dimension f

Output: Propagation order p∗

for p ∈ {2, . . . , 100} do
G,F,W← GCC(A, X, p, k, f);
lossp ←

∣∣∣∣TpX−GFW⊤ ∣∣∣∣ ;
if | lossp − lossp−1 | < d

n then
p∗ ← p− 1

end
end

Table 5.1: Dataset statistics.

Dataset #Nodes #Edges #Features #Classes

CiteSeer [Sen, 2008] 3327 4732 3703 6
Cora [Sen, 2008] 2708 5429 1433 7

PubMed [Sen, 2008] 19717 44338 500 3
Wiki [Yang, 2015] 2405 17981 4973 17

In comparison, computing TpX and applying a k-means on it takes O(p|E|d + tndk),
the same as our method. In practice, however, our algorithm is significantly faster than the
k-means algorithm as its most theoretically heavy computations are matrix multiplications
which can be efficiently performed on GPUs.

5. Experiments

To evaluate our proposed model, we conduct experiments on four datasets and compare
it against a number of state-of-the-art approaches for the node clustering task.

5.1. Datasets

We evaluate GCC on four widely-used attributed network datasets (Cora, Citeseer, Pubmed
and Wiki). The nodes in Cora and Citeseer are associated with binary word vectors, while
the ones in Pubmed and Wiki with tf-idf weighted word vectors. The summary statistics of
the datasets are shown in table 5.1.

79



Chapter 5. Attributed Graph Joint Embedding and Clustering

Table 5.2: Clustering performance on four datasets averaged over 20 runs. AGE was averaged
over 3 runs. AGE, LAE and LVAE failed to scale to Pubmed; OOM denotes out of memory.

Method Input Citeseer Cora Pubmed Wiki
Acc F1 NMI Acc F1 NMI Acc F1 NMI Acc F1 NMI

Sph. k-means X 42.64 40.16 19.91 33.97 30.93 15.33 59.51 58.16 31.26 33.65 23.30 29.90
DCN X 19.16 11.44 2.91 20.01 11.81 2.32 15.87 7.06 4.07 44.28 17.14 12.45

Spectral A 21.60 9.46 1.54 30.00 8.78 2.36 58.96 43.53 18.30 23.20 13.74 18.05

LAE (2020) (A,X) 43.49 41.33 22.66 65.43 66.21 48.89 OOM 45.26 40.90 45.99
LVAE (2020) (A,X) 39.46 38.26 20.53 64.11 65.31 48.47 OOM 47.38 42.92 47.79
AGE (2020) (A,X) 57.85 55.01 35.74 69.17 67.30 56.91 OOM 53.79 41.39 52.63
GIC (2021) (A,X) 68.78 64.02 43.82 70.45 68.95 52.55 64.30 64.86 26.02 46.46 40.29 48.24
S2GC (2021) (A,X) 68.13 63.79 42.26 69.68 66.41 54.83 70.81 69.96 32.32 52.71 44.40 48.96

GCC (ours) (A,X) 69.45 64.54 45.13 74.29 70.35 59.17 70.82 69.89 32.30 54.56 46.10 54.61

Table 5.3: Wall-clock time in seconds for different methods on the four datasets averaged
over 20 runs (3 runs for AGE).

Method CiteSeer Cora Pubmed Wiki

Sph. k-means 18.1 3.2 8.3 20.2
LAE 12.3 8.9 OOM 27.3
LVAE 11.9 6.3 OOM 29.3
AGE 2461 936.3 OOM 3058.7
GIC 8.4 5.7 13.9 8.3
S2GC 7.7 1.0 24.8 6.1

GCC 2.5 1.0 11.8 2.9

5.2. A Fair Comparison with Baseline Methods

In our work we focus on clustering and related methods. Below we look at how our GCC
algorithm performs in comparison with state-of-the art unsupervised methods. Approaches
that use information from the actual labels, be it supervised or semi-supervised, are not
considered such as [Velickovic, 2019]. The baseline methods are categorized as follows:

1. Methods that use node-level features only. Spherical k-means [Hornik, 2012] is
k-means applied on data projected on the unit sphere. It will serve as the node features
clustering baseline along with DCN [Yang, 2017].

2. Methods that use graph structure only. Spectral is the spectral clustering algo-
rithm with the normalized Laplacian as the input similarity matrix.

3. Methods that use both. LVAE [Salha, 2020] is the linear graph variational autoen-
coder and LAE is its non-probabilistic version. GIC [Mavromatis, 2021], AGE [Cui,
2020] proposes a Laplacian smoothing filter that acts as a low-pass filter applied in
adaptive learning scheme. S2GC proposes a new method for the aggregation of K-hop
neighborhoods that is a trade-off of low- and high-pass filter bands, it then applies
spectral clustering on the output of that operation.

80



5. Experiments

In the experiments we use the implementations that are publicly available on Github reposi-
tories of the authors.

5.3. Experimental Settings

To evaluate the clustering results, we employ three performance metrics: clustering Ac-
curacy (Acc), Normalized Mutual Information (NMI) and clustering macro F1-score (F1).
Larger values imply better performance. We report the mean values of the three metrics for
each algorithm over 20 executions except for AGE which we average over three runs because
of high execution time.

For our model, we set the embedding dimension f = k for each dataset. The propagation
parameter p is selected via the heuristic rule described prior; we obtain p = 5 for citeseer,
p = 12 for Cora, p = 150 for Pubmed and p = 4 for Wiki. We row normalize the feature
vectors and use tf-idf normalization on the binary word vectors of Citeseer and Cora so that
all datasets are in tf-idf.

For other methods, we employ the parameters recommended by the authors for every
dataset, For S2GC we expand the possible propagation order to {1, . . . , 150}, the same as GCC
for a fair comparison. All models were run on the same machine with a 12GB memory GPU
and a RAM of 12GB. Note that we could not run AGE, LAE and LVAE on Pubmed due to
out of memory (OOM) issues.

5.4. Clustering Results

Clustering performances of the different methods are reported in table 5.2. Best perfor-
mances are shown in bold. It is clear that the methods that use both A and X perform
significantly better than those that use either of them individually. We see how GCC outper-
forms other attributed graph clustering methods in terms of accuracy, F1 and NMI except for
Pubmed where S2GC and GCC are comparable. The algorithm is also stable as its standard
deviation on the accuracy is 0.13 on Citeseer, 0.02 on Cora, 0.00 on Pubmed, and 1.58 on
Wiki.

We also report the average running time of each algorithm in table 5.3. Notice how the
running times of our algorithm are the lowest on the four datasets when compared to the
state-of-the-art especially when comparing with the AGE algorithm. We mentioned earlier
how our algorithm has a similar theoretical complexity to that of k-means. We can see
here that in practice our algorithm is faster on most datasets due to the fact that it can be
efficiently run on a GPU.

5.5. Embedding and Visualization

The GCC model offers the ability to display the cluster-based structure inherent to mul-
tivariate data. Figure 5.4 presents the lower-dimensional representations produced by our

81



Chapter 5. Attributed Graph Joint Embedding and Clustering

(a) Citeseer (b) Cora

(c) Pubmed (d) Wiki

Figure 5.4: Left column: t-SNE projection of the original features colored according to the
real labels. Middle column: t-SNE projection of the GCC embeddings colored according to
the real labels. right column: t-SNE projection of the GCC embeddings colored according to
the predicted labels. R-squared is used to measure of class separability for real classes (left
and middle column), e.g., 0.49 vs 0.85 for Citeseer.

model projected on a 2-d space by t-SNE (with a perplexity of 50). We can see a clear
difference in the structures of the projections of the raw data and those of the generated
embeddings. To further judge the quality of the embedding, we use the R-squared measure,
i.e., R2=Tr(Sb)

Tr(St) , where Sb is the between-class scatter matrix and St is the total scatter ma-
trix. We report this measure in Figure 5.4 on the true labels plots to quantify separability.
The R-squared is larger for 2-d projections of the GCC embeddings on all four datasets. On
Pubmed, the structure is less pronounced (0.47 vs 0.53) but we can still see the formation of
three clusters.

This shows how our model can be efficiently used for data visualization to generate more
interpretable embeddings or for a dimensionality reduction step before feeding the output
representations to more complex clustering algorithms down the line. Note also that such
visualisations can help the user in assessing the number of clusters.

Figure 5.5: Accuracy with GCC using different propagation matrices averaged over 20 runs

5.6. Choice of Propagation Matrix

We conduct experiments to further motivate our choice of propagation matrix. We
compare the following propagation matrices: i) Augmented symmetric norm. Asym =

82



5. Experiments

Figure 5.6: Frequency response plotted against the frequency for different propagation ma-
trices on Cora. Left column: frequency response is 1−λ. Middle column: frequency response
is (1− λ)2. Right column: frequency response is (1− λ)3.

D̃−1/2ÃD̃−1/2. ii) Augmented random walk norm. Arw = D̃−1Ã. iii) Our norm. Aours =
T = DT

−1(I + D̃−1/2ÃD̃−1/2). We do an analysis on the clustering accuracy of our model
with these normalizations for propagation orders p ∈ {1, .., 20}. These results are averaged
over 20 runs and the same parameters are used for all normalizations.

We see in figure 5.5 how our proposed propagation matrix offers the maximum accuracy
on three out of the four datasets (Arw slightly outperforms it on Pubmed). We also see
that it is more stable and well-behaved compared to the other two on all four datasets. The
symmetric normalization especially is prone to large changes even for consecutive propagation
orders. These results can be explained by the fact that the GCN when using the symmetric
and random walk normalizations is not strictly low-pass. Figure 5.6 shows the frequency
response functions for the GCN with the three propagation matrices for propagation order
p ∈ {1, 2, 3}. We see how the absolute value of the frequency response function is not always
decreasing w.r.t the frequencies for Arw and Asym as opposed to Aours.

83



Chapter 5. Attributed Graph Joint Embedding and Clustering

6. Conclusion

In this work, we harnessed the simple formulation of the graph convolutional network to
obtain an efficient model that addresses both node embedding and clustering in a unified
framework. First, we provided a normalization that makes the GCN encoder act as a low
pass filter in the strict sense. Secondly, we proposed a novel approach where the objective
function to be optimized leverages information from both the GCN embedding reconstruction
loss and the cluster structure of these embeddings. Thirdly, we derived GCC whose complexity
has been rigorously studied. In doing so, we showed how GCC achieves better performances
compared to other graph clustering algorithms in a more efficient manner. Note that all the
compared methods are unsupervised in nature in order to have a fair comparison with our
model. Our experiments demonstrated the interest of our approach. We also showed how
GCC is related to other methods including some GCN variants.

The proposed model is flexible and can be extended in several directions, thus opening
up opportunities for future research. For instance, in our approach we have assumed that
the α coefficient which regulates the trade-off between seeking reconstruction and clustering
is equal to one, it would be interesting to investigate the choice of this value. On the other
hand, while our focus in this work is clustering, so it would be worthwhile to extend the
problem, e.g., to co-clustering, which is useful in a wide range of real-world scenarios like
document clustering.

The following chapter considers a specific type of attributed graphs, namely, bipartite
attributed graphs. This is the same type of graph we considered in this chapter but with an
additional specificity which is that its vertices are divided into two disjoint and independent
subsets.

84



Chapter 6
Attributed Graph Subspace Clustering

This chapter was published as [Fettal, 2023b]. Our goal was to create an efficient
yet effective approach for the clustering attributed-graph nodes based on Laplacian
smoothing, as well as subspace clustering through learning factor matrices, and
using nonnegative explicit kernel feature maps.

Objective

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.1 Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.2 Attributed-Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.1 Graph Convolutional Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.2 Simplified Graph Convolutional Networks . . . . . . . . . . . . . . . . . . . . . . . 90
3.3 Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.1 Simple Graph Convolutional Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Efficient Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1 Datasets and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Baseline Models and algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Node Clustering Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Selection of the Power Hyper-Parameter . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

85



Chapter 6. Attributed Graph Subspace Clustering

Coefficient Matrix  

(may not be symmetric, may

contain  negative entries)

Affinity Matrix  

(symmetric with non-

negative entries)

k-means 

Spectral Clustering of the affinity matrix

Normalization Eigendecomposition

Solve an optimization
problem of the following 


form

Input

Input Data Partition

Time complexity of

post-processing

Figure 6.1: The traditional subspace clustering pipeline. A coefficient matrix C is initially
learned. An affinity matrix M is then generated based on the magnitudes of C, e.g., a
common choice for the affinity is M = |C|+|C⊤|

2 . Finally, a partition of the data is carried out
via spectral clustering on the affinity matrix M.

1. Introduction

An attributed-graph is a type of graph that contains two information sources, a topology
or structure and node- and/or edge-level features. It is a convenient representation for many
real-world networks, with applications in the fields of recommender systems [Fan, 2019; Ying,
2018], computer vision [Satorras, 2018; Yang, 2018a], Natural language processing [Marcheg-
giani, 2017] and physical systems [Hoshen, 2017].

With the advent of the Graph Convolutional Network (GCN) [Defferrard, 2016; Kipf,
2017], graph related tasks such as graph representation learning [Wu, 2019; Zhu, 2021] and
graph clustering [Anton Tsitsulin, 2020] have received a lot of attention. We observe, however,
that for the task of graph clustering, few approaches [Cai, 2020] based on the subspace cluster-
ing principle have been proposed despite it being, at first sight, well-suited to attributed-graph
data. We argue that this is mostly due to subspace clustering models suffering from high
spatial and/or computational complexity. In a nutshell, the goal of subspace clustering is to
group data points according to the subspaces in which they lie within a dataset. For example,
subspace clustering models that use the self-expressive property, whereby every data point
can be represented as an approximate linear combination of other points, have to learn a
square matrix called the coefficient or self-representation matrix. This coefficient matrix has
a size that is quadratic in the number of points. Once this matrix is learned, an affinity

86



2. Related Work

matrix is constructed from it and spectral clustering is performed on said affinity matrix. We
can see the classical subspace clustering pipeline in figure 6.1.

In this work, we argue that subspace clustering is well-suited to attributed-graph repre-
sentations generated with GCN-based models due the neighborhood averaging making the
data points closer and thus helping with the self-expressiveness of the data points. To lever-
age this property and in order to avoid the complexity problems associated with traditional
subspace clustering, we propose an efficient variant to learn an initial representation of the
graph before applying an efficient self-expressive subspace clustering procedure via learning a
factored coefficient matrix and then projecting these factors into a new feature space in such
a way as to generate a valid affinity matrix (symmetric with non-negative entries) on which
to perform implicit spectral clustering. A schema for our model is available in figure 6.3. To
showcase the efficacy and efficiency of our proposal, we perform extensive experimentation
on six widely used attributed-networks. We can see a preview of the results in figure 6.2,
these are the clustering results of our model on the arXiv open graph benchmark, our model
yields a 14% improvement over the second best model in terms of performance and 16%
improvement in terms of speed. Code for our work can be found in 1.

This work is organized as follows: Section 2 reviews related works. Section 3 presents the
necessary previous work. Section 4 is devoted to the proposed model and its computational
complexity study. In section five, we carry out our experimental study. Finally we present
our conclusion in section 6.

2. Related Work

2.1. Subspace Clustering

Subspace clustering methods based on the self-expressive property are commonly used on
image data and have set state-of-the-art results on the task of image clustering. One of the
earlier approaches was the Least-Square Regression subspace clustering (LSR) that leverages
a grouping effect in the data. Newer models that make up the state-of-the-art include the
Elastic-net Subspace Clustering (EnSC) [You, 2016a] that uses a mix of l1- and l2-norm
regularization, and the Subspace Clustering through the Orthogonal Matching Pursuit (SSC-
OMP) [You, 2016b] which possesses a subspace-preserving affinity under broad conditions.
There are also deep learning approaches like the deep Subspace clustering network [Ji, 2017]
and but these models have received some critique to the effect that their good performances
are the result of an ad-hoc post processing step instead of the actual self-representation
learning process [Haeffele, 2021]. More recently, a new efficiency trend has appeared, and some
scalable models have also been proposed e.g. k-Factorization Subspace Clustering (k-FSC)
[Fan, 2021] which was put forward as a scalable subspace clustering model that factorizes
data into subsets via structured sparsity.

1https://github.com/chakib401/sagsc

87

https://github.com/chakib401/sagsc


Chapter 6. Attributed Graph Subspace Clustering

2.2. Attributed-Graph Clustering

In this work, attributed-graph clustering refers to the process of grouping nodes into clus-
ters according to the graph topology and node features. We can classify attributed-graph
clustering models into two subsets. A first one, where the goal is to learn graph represen-
tations and then use traditional clustering models such as k-means. Examples of models
that use this approach include Simplified Graph Convolution (SGC) [Wu, 2019] which pro-
poses a neighborhood averaging process that corresponds to a fixed low-pass filter, and the
Simple Spectral Graph Convolution (S2GC) which uses a new method for the aggregation of
K-hop neighborhoods that is a trade-off of low- and high-pass filter bands. [Zhu, 2021]. On
the other hand, the second class of attributed-graph clustering models proposes to include
the clustering objective into the representation learning process to learn better results, e.g.,
Graph InfoClust (GIC) [Mavromatis, 2021] which generates clusters by maximizing mutual
information between nodes contained in the same cluster, and Graph Convolutional Clus-
tering (GCC) [Fettal, 2022c] that performs clustering by minimizing the difference between
convolved node representations and their reconstructed cluster representatives.

3. Preliminaries

Let G = (V, E ,A,X) be an undirected attributed-graph where V is the vertex set con-
sisting of nodes {v1, . . . , vn}, E is the set of edges that connects the nodes, A ∈ Rn×n is a
symmetric adjacency matrix where aij denotes the edge weight between nodes vi and vj , if
aij = 0 then there is no edge between vi and vj , and X ∈ Rn×d is a node-level feature matrix.
Our goal is to partition this graph into k independent subsets in an unsupervised manner.

3.1. Graph Convolutional Networks

The graph Convolutional Network consists in a sequence of propagation layers. It can be
formalized recursively as

H(l+1) ← σ
(
D̂−1/2ÂD̂−1/2H(l)W(l)

)
with H(0) = X

(6.1)

where Â = A+I is the adjacency matrix with added self-loop the, D̂ is its diagonal matrix of
degrees, σ is some activation function and W(l) is the weight matrix of the l-th layer. These
weight matrices are optimized for some downstream task like semi-supervised classification,
link prediction, etc.

88



3. Preliminaries

40 60 80 100 120 140 160
Execution time (s)

15

20

25

30

35

40

45

50
Cl

us
te

rin
g 

ac
cu

ra
cy

 (%
)

SGC
GIC
S²GC
GCC
Ours

Figure 6.2: Clustering accuracy scores (%) plotted against the execution time (s) for our
method and the state-of-the-art attributed-graph clustering models on the OGBN-arXiv
dataset.

 Feature SpaceLatent Factor Space  First k-Singular Vectors

SVD

Coefficient Matrix  

(symmetric, may contain 

negative entries)

Affinity Matrix  

(symmetric with non-

negative entries )

k-means

Graph Structure

Node Features p-th Order Feature Propagation Learned Representations

Implicit Subspace Clustering

Clustering StepGraph Representation Learning

Norrmalization 

+ SVD

Input Graph Partition

k-means 

Spectral Clustering of the affinity matrix

Normalization Eigendecomposition

Figure 6.3: Diagram of our proposal. We have as input an attributed-graph characterized by
an adjacency matrix A and a feature matrix X. An initial representation H of the attributed-
graph is learned through neighborhood propagation. Then, subspace clustering is performed
using a latent factor matrix U where M = UU⊤ is the subspace coefficient matrix that we
project using a quadratic kernel feature map Φ so that D−1/2Φ(U)Φ(U)⊤D−1/2 ≥ 0. With
this we obtain the final partition by using the k-means algorithm on Z, the first k singular
vectors (not counting the first one) of D−1/2Φ(U)⊤.

89



Chapter 6. Attributed Graph Subspace Clustering

3.2. Simplified Graph Convolutional Networks

Authors in [Wu, 2019] argued that the non-linearities in the GCN are superfluous and
that most of its performance comes from the feature propagation. With this, the recursive
of a p-layer GCN collapses into this single formula

H← SpXW

where S = D̂−1/2ÂD̂−1/2 is called the propagation matrix. Here, we can see how the weights
matrices collapsed into a single weight matrix W while the graph propagation steps collapsed
into the p-th power of the propagation matrix S.

3.3. Subspace Clustering

The goal of subspace clustering is to group data points according to the subspaces that
support them. A popular formulation uses the self-expressive property where it is assumed
that a data point can be written as a linear combination of the data points that belong in
the same subspace. A possible formulation is

min
C∈C

∥X−CX∥2 + Ω(C) (6.2)

where X ∈ Rn×d is a matrix of d-dimensional data points, C ∈ Rn×n is known as the self-
representation or coefficient matrix, Ω(C) is a regularization term introduced to establish
certain properties for C e.g. to avoid trivial solutions (such as C = I), and C is the feasible
region.

Once a solution C is found, an affinity matrix is generated based on the magnitudes of the
entries of C, a popular choice for this is |C + C⊤|/2. Finally, a clustering of the data points
is obtained using some graph clustering algorithm such as the spectral clustering algorithm
[Shi, 2000].

4. Proposed Approach

In this work, we propose the following generic formulation for the attributed-graph sub-
space clustering problem

min
C∈C

∥agg(A,X)−C agg(A,X)∥ + Ω(C) (6.3)

where agg is an aggregation function whose role is to merge the two information sources: the
topology information and the feature information present in the graph.

90



4. Proposed Approach

4.1. Simple Graph Convolutional Encoder

We propose to use a GCN-based encoder. More particularly, we use the convolution op-
eration proposed in the simplified graph convolutional network along with the normalization
of the adjacency matrix used in [Fettal, 2022c]

min
C∈C

∥SpX−C SpX∥ + Ω(C). (6.4)

Now that we have our initial graph representation, we can present our clustering step.

4.2. Efficient Subspace Clustering

4.2.1 Learning the implicit coefficient matrix

We set constraints on C in order to obtain a decomposition of C into the Gramian
product UU⊤ where U ∈ Rn×k is a semi-orthogonal matrix i.e. U⊤U = I. This will allow
us to significantly speed up the subspace clustering process. Thus, our problem becomes

min
U

∥SpX−UU⊤ SpX∥ such that U⊤U = I. (6.5)

As we can see, we have no need for any form of regularization. This problem can be efficiently
solved through a singular value decomposition of the convolved features SpX. With this we
obtain a solution C which corresponds to a subspace coefficient matrix from which we can
derive a clustering of the nodes.

4.2.2 Learning the implicit affinity matrix

Once we have a coefficient matrix C = UU⊤, we have to derive a nonnegative matrix
that reflects the magnitudes of the entries of C. As already mentioned the common way is to
compute (|C|+ |C⊤|)/2 but this will result in a spectral clustering step which has a quadratic
complexity in the number of nodes. In this work, we propose to use a nonnegative kernel
with feature map Φ to embed U into its feature space explicitly

M = Φ(U)Φ(U)⊤ ≥ 0. (6.6)

Here the feature map is applied row-wise, for example, in our experiments, we used the
quadratic kernel

M = C◦2 = (mij) = (c2
ij). (6.7)

It is also possible to introduce a bias term b to the kernel such as

mij = (cij + b)2.

91



Chapter 6. Attributed Graph Subspace Clustering

Hence, we have implicitly derived a Gramian decomposition through Φ(U) similarly to what
was done for C. This will allow us to efficiently perform the last step which corresponds to
spectral clustering. Note that M is symmetric by construction.

4.2.3 Spectral clustering the implicit affinity matrix

Through the previous step we can now efficiently perform the NJW spectral clustering
[Ng, 2001] on matrix M by:

• Projecting the factor U using feature map Φ, i.e., Q← Φ(U)

• Computing Q̃ ← QD− 1
2 where D is a diagonal matrix such that dii is the sum of M

i-th row.

• Constructing Z using the left singular vectors corresponding to the second to k + 1-
largest singular values of Q̃.

• Performing a clustering of the rows of Z and assigning node i to cluster j if the i-th
row of Z was assigned to cluster j.

4.3. Complexity Analysis

Our overall algorithm is presented in algorithm 5. In what follows, we will analyze the
computational complexity of our proposal

Table 6.1: Complexity of the different models. For k-FSC, m referes to the dimension of
subspaces. For k-FSC, many possible complexities are possible depending on the chosen
algorithm, please see [Fan, 2021] for a discussion on its complexity. For simplicity, we suppose
that the embedding dimension in SGC, S2GC and GCC is in O(k).

Method Time complexity Space complexity
k-means O(ndk) O(n(k + d))
LSR O(n2k) O(n2)
EnSC O(n2k) O(n2)
SSC-OMP O(n2k) O(n2)
SGC O(p|E|d+ ndk) O(n(k + d))
S2GC O(p|E|d+ ndk) O(n(k + d))
GCC O(p|E|d+ ndk) O(n(k + d))

SAGSC O(p|E|d+ n(d+m) log(k) + nk2) O(n(k + d+m))

Graph representation learning step To compute the p-th order graph convolution, we
need O(p|E|d) operations.

Learning the implicit coefficient matrix Getting the left singular values of the con-
volved data requires O(nd log(k)) operations using the randomized singular value decompo-
sition [Halko, 2011].

92



5. Experiments

Learning the implicit affinity matrix The projection of the data using a feature kernel
of dimensionality m takes O(nm). The computation of the diagonal matrix D and its multi-
plication with Q takes O(nm) operations. The truncated singular value decomposition of Q̂
is in O(nm log(k)). Finally, the k-means algorithm applied on Z costs roughly O(nk2). The
overall computation time of this step O(nm log(k) + nk2).

Overall complexity. The totality of our algorithm costs
O
(
p|E|d+ n(m+ d) log(k) + nk2). Generally, we have that k << d. The dimension m gen-

erally depends on k, for example in the case of the quadratic kernel m =
(k+2

2
)

= (k+2)(k+1)
2 .

In other cases, when wishing to use nonnegative infinite dimensional kernels such as the RBF
kernel or higher order polynomial kernels, feature map approximation techniques such as
Nyströem method [Zhang, 2008] or the polynomial count sketch [Pham, 2013] can be used
and m becomes a variable hyper-parameter.

In table 6.1, we can see how the complexity of our algorithm compares with that of
the other models. Despite our model being using subspace clustering, it is significantly more
efficient than the other subspace clustering models both in terms of computational and spatial
complexity. When comparing with the SOTA attributed-graph clustering models, we can see
that when m ∈ O(d) then our model has the same complexity as them. Which means that
when taking a smaller m, e.g., m ∈ O(k), then our model should be more computationally
efficient.

Algorithm 5: Scalable Attributed-Graph Subspace Clustering.
Input : X data matrix, S propagation matrix, p propagation order, k number of

clusters, Φ nonnegative kernel feature map.
Output: π partition of the nodes.
H← SpX;
Form the matrix U containing the first k left singular vectors of H in its rows;
Q← Φ(U);
r← Q⊤1;
D← diag(Qr);
Q̂← QD− 1

2 ;
Form the matrix Z containing left singular vectors corresponding to the second to
k + 1-th largest singular values of Q̂ in its rows;

Apply a clustering algorithm on the rows of Z to obtain π a partition of the data;

5. Experiments

In this section, we conduct experimentation to showcase the effectiveness and efficiency
of our LGCSC model.

93



Chapter 6. Attributed Graph Subspace Clustering

Table 6.2: The datasets statistics. The imbalance is quantified via the ratio between the
majority and minority classes.

Dataset Nodes Edges Features Classes Imbalance
ACM 3025 16,153 1870 3 1.1
Wiki 2405 14,001 4973 17 45.1
DBLP 4057 2,502,276 334 4 1.6
Amazon Computers 13,381 259,159 767 10 17.5
Pubmed 19,717 64,041 500 3 1.9
OGBN-arXiv 169,343 1,327,142 128 40 942.1

Table 6.3: Clustering performance of the different models over ACM, DBLP and Wiki. Best
results are highlighted in bold font and second best results are underlined.

Method Input ACM DBLP Wiki
CA NMI ARI CA NMI ARI CA NMI ARI

k-means X 87.8±0.9 61.7±1.5 67.4±2.1 67.9±0.0 37.3±0.0 31.5±0.1 47.6±1.4 48.6±0.2 26.6±0.2

LSR X 78.6±0.0 43.1±0.0 48.3±0.0 69.4±0.1 34.7±0.1 36.4±0.2 17.8±0.5 2.8±1.7 0.3±0.2

EnSC X 83.8±0.0 53.0±0.0 58.6±0.0 30.0±0.1 0.8±0.2 0.1±0.0 47.5±0.0 45.2±0.2 30.2±0.1

SSC-OMP X 82.1±0.0 49.4±0.1 55.3±0.0 29.4±0.1 0.4±0.1 -0.1±0.0 37.8±8.5 34.4±9.1 21.2±7.9

k-FSC X 59.7±7.2 25.2±7.1 27.2±7.2 51.3±11.1 17.4±7.3 17.3±9.6 38.2±5.1 35.6±3.9 17.7±4.4

SC A 36.5±0.2 1.0±0.2 0.7±0.1 91.0±0.0 73.0±0.1 78.3±0.1 30.7±1.1 24.0±0.8 6.0±0.2

SGC A,X 83.7±0.0 55.7±0.0 58.8±0.0 88.8±0.0 69.5±0.0 73.2±0.0 51.9±0.8 49.6±0.2 28.6±0.1

GIC A,X 90.1±0.3 68.2±0.6 73.2±0.6 90.2±0.2 72.4±0.4 77.4±0.3 48.0±0.7 48.4±0.3 31.0±0.3

S2GC A,X 84.1±0.1 56.8±0.1 59.6±0.2 88.3±0.0 69.2±0.0 71.9±0.0 52.1±1.0 52.2±0.1 33.0±0.4

GCC A,X 91.3±0.0 71.2±0.1 76.0±0.1 91.8±0.0 74.5±0.0 80.5±0.0 53.7±1.4 53.5±0.5 31.6±1.1

SAGSC A,X 93.3±0.1 75.1±0.2 80.9±0.1 93.1±0.1 78.1±0.2 83.2±0.2 56.0±2.1 53.2±1.2 34.1±2.7

5.1. Datasets and Metrics

In our experiments, We use six commonly used benchmark datasets to compare the dif-
ferent models including three citation network datasets (ACM, DBLP [Wang, 2019]; PubMed
[Sen, 2008]; and Wiki [Yang, 2015]), an Amazon sales dataset (Computers) [Shchur, 2018]
and one large scale dataset (OGBN-arXiv) [Hu, 2020]. The summary statistics of the datasets
are shown in table 6.2.

We adopt three popular clustering evaluation metrics: clustering accuracy (CA), normal-
ized mutual information (NMI) [Strehl, 2002], adjusted rand index (ARI) [Hubert, 1985].

Table 6.4: Clustering performance of the SOTA models over the larger networks; Amazon
Computers, Pubmed and OGBN-arXiv. Best results are highlighted in bold font and second
best results are underlined.

Method Input Amazon Computers PubMed OGBN-arXiv
CA NMI ARI CA NMI ARI CA NMI ARI

SGC A,X 65.5±0.0 52.2±0.0 45.7±0.0 69.6±0.0 29.3±0.0 29.9±0.0 34.6±0.4 39.2±0.1 25.2±0.6
GIC A,X 46.8±2.2 47.5±0.9 31.3±3.5 64.5±0.4 26.2±0.3 23.8±0.4 16.0±0.8 17.9±0.5 5.8±0.2
S2GC A,X 65.4±0.0 55.4±0.0 49.5±0.0 71.0±0.0 32.9±0.0 33.7±0.0 41.9±0.3 45.9±0.1 36.9±0.5
GCC A,X 67.6±0.0 56.0±0.0 46.5±0.0 70.5±0.0 32.2±0.0 33.1±0.0 40.5±1.7 46.8±0.2 35.1±2.0

SAGSC A,X 69.0±1.0 58.2±0.4 48.2±1.8 71.1±0.0 32.9±0.0 34.1±0.0 47.8±1.7 47.1±0.5 38.4±1.6

94



5. Experiments

Table 6.5: Execution time of all methods in seconds. Best results are highlighted in bold.

Method ACM DBLP Wiki Pubmed Computers OGBN-arXiv

k-means 4.29±0.7 6.05±0.7 24.25±0.3 - - -
LSR 20.14±0.26 5.2±0.64 46.55±1.61 - - -
EnSC 590.31±63.93 120.66±0.28 232.58±3.04 - - -
SSC-OMP 201.78±34.8 37.1±2.87 293.78±9.63 - - -
k-FSC 3.72±0.87 8.45±0.73 34.29±1.86 - - -
SC 2.15±0.32 18.54±1.30 2.86±0.44 - - -
SGC 0.56±0.13 0.19±0.04 1.68±0.14 1.18±0.39 1.00±0.11 37.30±2.66
GIC 3.67±0.16 268.96±63.17 5.96±0.66 12.0±1.50 22.38±1.51 155.7±13.34
S2GC 0.44±0.04 0.23±0.06 1.56±0.10 0.82±0.10 1.33±0.28 42.98±3.10
GCC 1.73±2.96 0.33±0.10 1.66±0.14 1.26±0.11 1.92±0.13 62.45±6.40

SAGSC 0.40±0.05 0.18±0.05 1.07±0.09 0.79±0.05 0.88±0.12 35.64±2.41

1 20 40 60 80 100
Power

Clustering accuracy
Davies-Bouldin index
Selection
Best

(a) ACM.

1 20 40 60 80 100
Power

(b) DBLP.

1 20 40 60 80 100
Power

(c) Pubmed.

Figure 6.4: Plot of the clustering accuracy (%) and the Davies-Bouldin index [Davies, 1979]
against the propagation power.

5.2. Baseline Models and algorithms

The following are the baselines we used in our experiments:

• k-Means will serve as the simplest baseline.

• LSR is a subspace clustering model with an l2-norm regularization.

• EnSC is a subspace clustering model with an elastic net regularization (mix of l1- and
l2-norm regularization).

• SSC-OMP has a subspace-preserving affinity under broad conditions.

• k-FSC is a scalable subspace clustering model that factorizes data in subsets via struc-
tured sparsity.

• SC refers to the classical spectral clustering algorithm applied on the original adjacency
matrix of the graph.

• SGC proposes a neighborhood averaging process that corresponds to a fixed low-pass
filter.

• GIC generates clusters by maximizing mutual information between nodes contained in
the same cluster.

95



Chapter 6. Attributed Graph Subspace Clustering

• S2GC proposes a new method for the aggregation of K-hop neighborhoods that is a
trade-off of low- and high-pass filter bands.

• GCC performs clustering by minimizing the difference between convolved node repre-
sentations and their reconstructed cluster representatives.

We use the implementations of the authors when possible.

5.3. Experimental Settings

All experiments were implemented in TensorFlow and conducted on a standard computer
with a 12GB memory GPU and a RAM of 12GB. In all experiments, we ran the models
ten times, and reported the average performance along with the corresponding standard
deviation. We use the implementations of the authors when possible but optimized them to
run on GPU. We used hyper-parameters prescribed by authors when possible. For fairness, for
the remaining hyper-parameters, we ran grid searches and reported the results corresponding
to the best accuracy for all models. For k-FSC, we use the LARGE implementation. All
results are the averages of ten runs.

For our model, we use a quadratic kernel feature map with a bias term equal to 1√
2 . This

leads to the following kernel feature map:

φ : Rk → R
(k+2

2
)

x 7→ ⟨x2
k, . . . , x

2
1, xkxk−1, . . . , xkx1, xk−1xk−2,

. . . , xk−1x1, . . . , x2z1, xk, . . . , x1,
1√
2⟩

(6.8)

For the power hyper-parameter, similarly to the other benchmarks, we use a grid search over
the accuracy and report the best results. We do however propose a heuristic to adaptively
select this hyper-parameter.

5.4. Node Clustering Results

Performance Clustering performances of the different methods are reported in tables 6.3
and 6.4. Best performances are highlighted in bold while second best results are underlined.
In table 6.3, there is a general trend that the methods that use both A and X perform better
than those that use A or X individually, except on DBLP where they perform well. Our
model has the best performance over the three datasets with respect to all three metrics.
The GCC has the second best results in all but one case, i.e., ARI on Wiki where it is
outperformed by S2GC. In table 6.4, the three datasets are of larger sizes, our model has the
best results in eight out of nine cases although our model has the second best result on the
remaining case (ARI over Amazon Computers), note that for NMI over PubMed we have a
tie between S2GC and our model. On the largest dataset OGBN-arXiv, our model shows a
14% improvement over the second best model, S2GC.

96



5. Experiments

1 2 3 4 5

Ours
GCC

S²GC
SGC
GIC

CD

Figure 6.5: Results of the Nemenyi test where each rank represents the average rank over the
CA, NMI, ARI and clustering F1-score; and the six datasets. We see that our model achieves
the best rank, and is alone in the best performing group. We can also see the formation of
two other groups.

Efficiency In table 6.5, we report the training times of all the baselines over ACM, DBLP
and Wiki, and report those of the SOTA over PubMed, Computers and OGBN-arXiv. Our
model is the fastest one on all datasets. Two main observations can be made. First, our model
is significantly faster than other subspace clustering models including the more efficient ones
like k-FSC. Second, our model is as fast as the SOTA attributed-graph clustering models
despite it being based on subspace clustering which is known to be computationally heavy.

Analysis Overall, our model is as fast as the fastest attributed-graph clustering models
while consistently yielding the best overall performance on all six datasets. This shows the
cost-effective nature of our model with respect to the state of the art.

To back up this claim statistically, we use the Nemenyi post-hoc test [Nemenyi, 1963] to
find groups of models that perform similarly in a statistically meaningful manner, to do this
we rank the performances of the different models w.r.t to each metric (CA, NMI, ARI, and
clustering F1-score) for each dataset. This yields 24 different rankings. We then carry-out
the Nemenyi test with a confidence level of 90%. Results are illustrated in figure 6.5. We see
the formation of three groups. The first one contains the best performing model, SAGSC; a
second one, containing GCC, S2GC and SGC; and a third one containing SGC and GIC.

5.5. Selection of the Power Hyper-Parameter

The selection of the power parameter is integral to the performance of our model. A power
that is too small can lead to not enough neighborhood information being propagated and a
power that is too large can lead to the oversmoothing phenomenon [Chen, 2020]. Since in
the unsupervised context, it impossible to know for certain which power will lead to the best
performance, several heuristics for the selection of this hyper-parameter have been proposed,
e.g., in [Zhang, 2019], authors proposed to use internal criteria based on the information
intrinsic to the data while in [Fettal, 2022c] authors proposed to choose a cutoff threshold
on the change of their loss function between successive powers. Here, we propose to use

97



Chapter 6. Attributed Graph Subspace Clustering

an approach similar to the elbow method [Ketchen, 1996] which is used for the selection of
the number of clusters in the k-means algorithm. We start by choosing an interval for the
powers we wish to consider e.g. the multiples of five plus one between one and a hundred i.e.
{1, 6, . . . , 96}. Then we choose the power that precedes the appearance of the first pronounced
’elbow’ in the graph. if there is no elbow, we choose the upper bound of the interval.

For example, in figure 6.4, we can see a clear elbow for ACM, DBLP when the power is
equal to six so we have the power to one. In the case of Pubmed, no such elbow appears and
so we set the power 96. We see that with very simple rules, we reach an accuracy that is
almost the same as the best one. For DBLP, we retrieve the best power, while for ACM and
PubMed, the differences between the accuracy of the power we retrieved and the best one are
0.23 and 0.02, respectively, which is negligible. Of course, after this initial selection, a more
granular selection can be performed since here we used an interval with a crude spacing of
five between consecutive powers. Note that this selection process can be easily automated.

6. Conclusion

In this work, we leveraged subspace clustering for attributed-graphs through the means
of an efficient algorithm whereby after learning an initial representation of the graph through
a simple yet effective neighborhood propagation step. We learn a factored coefficient matrix
through orthogonal constraints, these factors are then embedded into a new feature space in
such a way as to create a symmetric and nonnegative affinity matrix on which an implicit
spectral clustering algorithm is performed. We additionally showed how this overall clustering
process corresponds to an implicit subspace clustering algorithm. The experimentation we
conducted showed the effectiveness and efficiency of our proposal with respect to the state of
the art attributed-graph clustering algorithms.

In the next chapter, we show how taking into consideration the clustering objective in
the graph representation learning task can lead to better results on both the clustering and
embedding tasks.

98



Chapter 7
Attributed Bipartite Graph Subspace
clustering

This chapter is based on [Fettal, 2024a] an extended version of [Fettal, 2022d].
Our goal was to create an efficient yet effective approach for the co-clustering of
attributed-graph features based on Laplacian smoothing, as well as subspace co-
clustering through learning factor matrices, and using nonnegative explicit kernel
feature maps.

Objective

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.1 Self-expressive Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.2 Co-clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.3 Attributed Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3 Preliminaries and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.1 Self-Expressive Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2 Block seriation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3 Neighborhood Propagation & Graph Convolutional Networks . . . . . . . . . . . . 106

4 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.1 Self-Expressive Subspace Co-clustering . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2 Promoting the Grouping Effect Through a Bilateral Graph Convolution . . . . . . 106
4.3 Subspace Co-clustering through LSR . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.4 SC3: A More Efficient Formulation Through Orthogonality Constraints . . . . . . 110
4.5 Efficient Spectral Clustering of the Kernel Self Representation Matrices . . . . . . 113

5 Algorithm and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2 Co-clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3 Document Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4 Term Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5 Convolution Using k-nn Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

99



Chapter 7. Attributed Bipartite Graph Subspace clustering

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

100



1. Introduction

1. Introduction

As the datasets become more and more larger and can be in addition more sparse, adap-
tations to existing clustering algorithms are required to maintain cluster quality. In fact,
this quality can greatly suffer in the high dimensional data where many dimensions are often
irrelevant. This appears in many applications including recommendation systems, microarray
or even textual data represented as document-term matrices. In the text area, the task of
text clustering is always important and has many use cases including fake news detection,
sentiment analysis, information retrieval and so on; see for instance [Aggarwal, 2012] for
more applications. Thereby subspace clustering [Parsons, 2004] and biclustering/co-clustering
[Dhillon, 2001; Riverain, 2022] techniques have shown that can leveraged to uncover the com-
plex relationships found in such data.

Subspace clustering is an unsupervised learning method in which points are to be grouped
according to the subspaces in which they lie. A variety of approaches have been used to solve
this problem, and a number of these approaches are based on a self-expressive formulation
where it is assumed that each element can be written as a linear combination of the elements
in the subspace. Based on a self-expressive formulation, subspace clustering methods have
been widely used to cluster image datasets, given that image datasets will often be drawn
from multiple low-dimensional subspaces, and state-of-the-art clustering results have in many
cases been obtained. Regarding text data, however, to the best of our knowledge no self-
expressive subspace clustering approaches have been proposed that are specifically tailored
to text, although the assumption made in relation to image data applies equally to text data.
We argue that this discrepancy between image and text stems from two causes:

• Complexity. Document-term datasets are usually very large, much more so than figs/scc,
which makes it prohibitive to use subspace clustering algorithms whose computational
complexity is usually in O(n3), and whose spatial complexity is in O(n2).

• Sparsity. Document-term datasets are sparser than image datasets, and each individual
data point may thus potentially lie in a unique subspace, making it difficult for subspace
clustering algorithms to group points meaningfully.

In this work we propose a subspace clustering model tailored for networked (and non-
networked) text data based on the principle of co-clustering (or biclustering), that is to
say using the interplay between rows and columns [Govaert, 2013]. In the context of text,
this consists in harnessing the interplay between the set of documents and the set of terms
to jointly generate a partitioning for both of them. This leads to reorganize the initial data
matrix into a new one that is reorganized into homogeneous co-clusters/biclusters. The choice
of the co-clustering approach is justified for at least four reasons a) co-clustering overcomes
the curse of dimensionality and sparsity; by alternatingly updating the row partition given the
column partition and vice versa the clustering can be performed in lower dimensional space
and therefore more parsimonious than one-sided clustering performed on the row or column
sets separately [Govaert, 2008] b) the clusters/co-clusters tend to be more easily interpretable,

101



Chapter 7. Attributed Bipartite Graph Subspace clustering

allowing the user to better direct further study [Dhillon, 2001; Salah, 2018; Fettal, 2022b] c)
fuzzy co-clustering can be easily deduced from many co-clustering methods [Govaert, 2013]
allowing, for instance, to assign a document/term to several classes, and finally d) in terms of
topic modelling, the obtained results from co-clustering are in line with the human judgment,
outperforming, in general, the conventional LDA (Allocation Dirichlet Allocation) method
[Jelodar, 2019]; see for instance [Ailem, 2017]. In this regard, other researchers emphasize
that sparse datasets are not suitable for LDA [Chen, 2019b].

In our approach, we address the two major issues that are inherent to subspace clustering
on text data: complexity and sparsity. To this end, we use factorized representation matrices
and nonnegative kernel feature maps, as well as a bilateral graph convolution that includes
a weighted Laplacian smoothing preprocessing step, having similarities with a simple graph
convolutional network [Defferrard, 2016; Kipf, 2017; Wu, 2019]. Second, combining subspace
and co-clustering, we propose an efficient extension to [Fettal, 2023b] to co-clustering and
expand the proposal presented in [Fettal, 2022d]. This makes our model particularly well
suited to clustering attributed graphs whose nodes and/or edges have attributes or features.
This leads to tackle networked text data/text attributed graphs that are used to model a
wide variety of real-world networks such as in recommender systems [Fan, 2019], citation
networks [Sen, 2008] and so on. We summarize our contributions as follows:

• We study how the Laplacian smoothing operation boosts the grouping effect of subspace
clustering approaches that possess this property.

• Unlike the iterative process generally adopted in co-clustering, we show here that in our
formulation of the self-expressive subspace co-clustering problem the optimal solution
can be derived from a single truncated singular value decomposition, which makes it
efficient (linear complexity in the number of nodes).

• We carry out extensive experimentation on text attributed graphs where the graphs
exist on the one hand and when the graphs are generated from the node features on
the other using k-nearest neighbor graphs. This allows to demonstrate the flexibility
and value of the proposed model, in terms of document /word clustering capability and
computational efficiency.

• Making the code available for download to ensure reproducibility of the results 1.

The remainder of this work is structured as follows. Section 2 discusses related works.
Section 3 develops our proposed method SC3, and section 4 discusses the algorithm and its
complexity. Section 5 contains a detailed description of our experiments. Finally, we give our
conclusion in section 6.

1https://github.com/chakib401/sc3

102

https://github.com/chakib401/sc3


2. Related Works

2. Related Works

Our contributions can be seen as being at the intersection between subspace clustering,
co-clustering, and attributed graph clustering.

2.1. Self-expressive Subspace Clustering

Among the earliest approaches was Least Squares Regression (LSR) subspace cluster-
ing [Lu, 2012], which leverages a grouping effect based on the correlation of data. More
sophisticated approaches that represent today’s state of the art were later proposed, such
as Elastic-net Subspace Clustering (EnSC) [You, 2016a], subspace clustering by Orthogonal
Matching Pursuit (SSC-OMP) [You, 2016b], the ℓ0-norm regularized subspace clustering (ℓ0-
SCC) [Yang, 2018b] and its recent extension that deals with noisy data (Noisy-DR-ℓ0-SCC-
LR) [Yang, 2022]. Some recent works have proposed efficient methods such as K-Factorization
Subspace Clustering (K-FSC) [Fan, 2021] and others were created to deal with multi-view
data [Wang, 2015; Wang, 2018c; Wang, 2018b]. Some models like the GAN-Based Enhanced
Deep Subspace Clustering Networks [Yu, 2020] explicitly make the assumption of dealing
with image data. Note that deep self-expressive subspace clustering models have received
criticism over the necessity of a neural network component [Haeffele, 2021].

2.2. Co-clustering

Co-clustering seeks to form co-clusters which are sets of homogeneous sets of rows and
columns. It harnesses the inherent duality between the rows and columns of data tables,
which can lead to improvements in partitioning for both dimensions. For example, in the
case of document-term matrices, co-clustering incorporates term space information that is
used in the document partitioning, and vice versa. A popular method is by alternatingly
finding a clustering for the rows while taking into consideration the current clustering of
columns, and inversely. One of the first co-clustering approaches was the spectral co-clustering
algorithm [Dhillon, 2001]. Directional Co-clustering with Constraints (DCC) [Salah, 2017a]
is based on a regularized von Mises-Fisher mixture model that makes it suitable for balanced
text datasets. Regularized Dual-PPMI Co-clustering (RDPCo) [Affeldt, 2021] extends DCC
to incorporate both word-word semantic relationships and document-document similarities
into the procedure (see [Govaert, 2013] for a review). Finally, Consensus Factorization for
Co-Clustering Networked Data (CFOND) [Guo, 2018] is a consensus factorization model
that factorizes information simultaneously from three sources: network topology structures,
instance-feature content relationships, and feature-feature correlations.

103



Chapter 7. Attributed Bipartite Graph Subspace clustering

2.3. Attributed Graph Clustering

Attributed Graph clustering involves grouping nodes into clusters depending on the struc-
ture of the graph and node-level features. In Graph-InfoClust (GIC)[Mavromatis, 2021]
clustering is done by maximizing the mutual information between nodes contained in the
same cluster. Simple Spectral Graph Convolution (S2GC) [Zhu, 2021] is a method for the
aggregation of K-hop neighborhoods that is a trade-off between low- and high-pass filter
bands. Graph Convolutional Clustering (GCC) [Fettal, 2022c] is a procedure that simultane-
ously clusters and learns clustering-friendly representations of nodes. In addition, CFOND,
mentioned above in relation to co-clustering, is also considered to be an attributed graph
clustering model.

3. Preliminaries and Background

Matrices are denoted using boldface uppercase, and vectors using boldface lowercase let-
ters. Given a matrix X, its i-th row is denoted as xi and its j-th column as x′

j . In is the
identity matrix of size n. The Frobenius norm is denoted as ∥.∥. rk gives the rank of a ma-
trix. Function [U,Σ,V] = SVD(X) gives the compact singular value decomposition of matrix
X ∈ Rn×d, where U ∈ Rn×rk(X) and V ∈ Rd×rk(X) have the left and right singular vectors
in their columns and Σ ∈ Rrk(X)×rk(X) is the diagonal matrix containing the singular values,
sorted in decreasing order. We also define function [U,Σ,V] = TruncatedSVD(X, k) that
returns the first (largest) k singular values, and the left and right singular vectors. Function
diag creates a diagonal matrix from a vector input, while 1 denotes a vector of ones.

3.1. Self-Expressive Subspace Clustering

Given a X ∈ Rn×d a matrix of d-dimensional data points. The self-expressive subspace
clustering is typically formulated as

min
R

∥X−RX ∥2 + Ω (R) such that R ∈ R (7.1)

where R ∈ Rn×n is known as the self-representation matrix, Ω(R) serves as a regularization
term designed to establish certain properties for R so as to avoid trivial solutions (such as
R = I), and R is the feasible region. After an optimal solution R∗ has been obtained, an
affinity matrix is first generated based on the magnitudes of the entries in R∗, usually using
|R∗ +R∗⊤|/2, and a partition of the points is then generated using a graph clustering method
such as the spectral clustering algorithm [Shi, 2000].

104



3. Preliminaries and Background

3.2. Block seriation

Co-clustering can be posed as a block seriation problem [Marcotorchino, 1987] whose
objective is finding a block diagonal matrix R ∈ Rn×d that identifies co-clusters.

The block seriation problem can be stated as this integer program:

max
R

∑
ij

xijrij (7.2)

subject to:

∀ i, j rij ∈ {0, 1} Binarity

∀ i, j, i′, j′ rij + rij′ + ri′j′ − ri′j ≤ 2

ri′j′ + ri′j + rij − rij′ ≤ 2

ri′j + rij + rij′ − ri′j′ ≤ 2

rij′ + ri′j′ + ri′j − rij ≤ 2


No triads

∀ j
∑

i
rij ≥ 1

∀ i
∑

j
rij ≥ 1

 Assignment

The solution R is always block diagonal up to a permutation of the rows and columns. An
equivalent formulation consists in factorizing R using two assignment matrices Z and W:

max
Z,W

∑
ij

xijz⊤
i wj ≡ trace(Z⊤XW) (7.3)

s.t. Z ∈ {0, 1}n×k, Z1 = 1 (7.4)

W ∈ {0, 1}d×k, W1 = 1 (7.5)

For example, a simple heuristic for solving this problem consists in using block coordinate
descent, to iteratively solve for the row assignments while the column assignments, and vice
versa. This approach shows, how given a clustering of the rows and columns, it is possible to
obtain a diagonal co-clustering of the data matrix [Laclau, 2017a].

105



Chapter 7. Attributed Bipartite Graph Subspace clustering

3.3. Neighborhood Propagation & Graph Convolutional Networks

let G = (A,X) be a node-attributed graph, with A the adjacency and X the node features.
The graph convolutional network (GCN) consists of the following step repeated for each layer

H(l+1) ← σ
(
SH(l)W

)
such that H(0) ← X

where σ is some activation function, W are learnable weights that depend on the task at
hand, and S is a normalized version of A with self-loops added. The simplified version, on
the other hand, uses a GCN with linear activations and no weights. For example, the simple
equivalent of a GCN with p-layers is

H← SpX

These representations can then be used for some downstream task.

4. Proposed Method

Here, we derive a model that combines the concepts of self-expressive subspace clustering,
co-clustering and neighborhood propagation. The resulting model surpasses the performance
of state of the art methods for all three categories on document-term matrices.

4.1. Self-Expressive Subspace Co-clustering

Based on the Block Seriation model for co-clustering, given a document-term matrix
X ∈ Rn×d

+ , the self-expressive subspace co-clustering problem can be formulated as

min
R,C

∥X−RXC ∥2 + Ω(R,C)

such that R ∈ R, C ∈ C.
(7.6)

where R ∈ Rn×n and C ∈ Rd×d are respectively the row and column self-representation
matrices, Ω(R,C) is the regularization term where the regularization of R and C can be
either independent (i.e., Ω(R,C) = ΩR(R) + ΩC(C)) or dependent, and R and C are the
feasible regions. Note that unlike the Block Seriation model, the generic case of our problem
does not require k and g, the numbers of row and column clusters respectively, to be equal.

4.2. Promoting the Grouping Effect Through a Bilateral Graph Convolu-
tion

The performance of subspace clustering methods [Lu, 2012; Hu, 2014; Lu, 2013] is due
to the grouping effect. While the authors in [Lu, 2012; Lu, 2013] optimized this property
implicitly, [Hu, 2014] sought to enforce it explicitly through the regularization term Ω(R).
We use the definition of the grouping effect given in [Hu, 2014].

106



4. Proposed Method

0 5 10 15 20 25 30
Propagation order

0.5

1.0

1.5

2.0

2.5

M
ea

n 
eu

cli
de

an
 d

ist
an

ce

Figure 7.1: Mean pairwise euclidean distance of the columns of SpX as p increases on DBLP.
The columns get mutually closer as more information propagates over the rows.

Definition 4.1. (Grouping Effect) Given a data matrix X, a self-representation matrix R
has a grouping effect if

∀i, j, ∥xi − xj∥ → 0 =⇒ ∥ri − rj∥ → 0. (7.7)

In the case of text, the grouping effect will not necessarily be beneficial, because of its
high dimensionality and sparsity. Data points may not be sufficiently “close” (as regards
the self-expressive property) to be grouped in a meaningful way. This means that even if a
subspace clustering approach has the grouping effect, in practice ∥xi − xj∥ → 0 is not likely,
making the property useless. The implication is that data points need some sort of smoothing
to make some of the points closer and consequently to help subspace clustering algorithms
find common subspaces.

Here, we propose to solve this problem through a bilateral graph convolution preprocessing
step, based on simple graph convolution. This requires two similarity matrices to act as graphs
on the rows SR and columns SC. These matrices can either be constructed through some
similarity measure on the data, e.g. using the k-nn approach using the Euclidean or cosine
distance, or be provided a priori such as in the case of attributed graphs (on the rows at
least).

The reasoning, intuitively, is that the rows and columns of Sp
RXSq

C, as propagation orders
p, q grow, become smoother by being averaged up to their p-th and q-th neighbors respectively,
analogously to Laplacian smoothing. The rows and columns therefore become more similar
as powers increase. An illustration of this is shown in figure 7.1.

Proposition 6. Given a row-normalized adjacency matrix S on the rows of X, we have that
S is a non-expansive mapping on the columns of X

∀i ̸= j, ∥Sx′
i − Sx′

j∥ ≤ ∥x′
i − x′

j∥

107



Chapter 7. Attributed Bipartite Graph Subspace clustering

The same holds for the rows of X for S an adjacency matrix over the columns of X.

∀i ̸= j, ∥xiS− xjS∥ ≤ ∥xi − xj∥ (7.8)

Proof. Since S1 = 1 and sij ≥ 0, by the Gershgorin circle theorem, the spectral radius of S
is ρ(S) = 1. We therefore have

∥Sx′
i − Sx′

j∥ = ∥S(x′
i − x′

j)∥

≤ ∥S∥2∥x′
i − x′

j∥

= ∥x′
i − x′

j∥

(7.9)

since ||S||2 = ρ(S) where ||.||2 is the spectral norm. The proof is the same for the rows.

(a) No propagation.

(b) 10-hop propagation with a k-nn graph.

(c) 1000-hop propagation with a k-nn graph.

Figure 7.2: The resulting self-representation matrices using different levels of propagation
over synthetic data with the LSR subspace clustering algorithm.

108



4. Proposed Method

The grouping property also implies that in addition to the features X, the self-representation
vectors, i.e., the rows (or, by symmetry, the columns) of R and C should also be getting more
similar, leading to a more meaningful partitioning when applying spectral clustering on |R|
and |C| where the absolute value is applied element-wise. In figure 7.2 we show how prop-
agating the features using a row k-nn graph generated from the data using the Euclidean
distance impacts the learned self-representation matrix using LSR subspace clustering. We
see how the matrix obtained after 10-hop propagation has more nonzero entries than the
matrix with no propagation, which indicates, if the self-representation matrix is seen as a
graph, that there are more adjacent nodes. The difficulty is identifying the appropriate prop-
agation order, since large values can cause over-smoothing. As we can see from figure 7.2, the
self-representation matrix after 1000-hop propagation is entirely uniform, since node features
have converged to uninformative representations.

Proposition 7. Given a row-normalized adjacency matrix with added self-loops S, limp→∞ Sp

exists and its rank is the same as that of the number of connected components of A.

Proof. Since S is row-stochastic, we have that ρ(S) = 1. Furthermore, since it has added
self-loops it cannot be the adjacency matrix of a bipartite graph, and consequently −1 /∈ σ(S)
the spectrum of S.

lim
p→∞

Sp = lim
p→∞

UΣpU−1

= lim
p→∞

Udiag([1p, . . . , 1p, rp
1, ..., r

p
n−c])U−1

= Udiag([1, . . . , 1, 0..., 0])U−1

(7.10)

It follows that rk(limp→∞ Sp) = c, where ∀i ri ∈ σ(S), |ri| < 1 and c is the number of
connected components.

Regarding the bilateral graph convolution of rows and columns of order p and q re-
spectively, we define the generic self-expressive subspace co-clustering with bilateral graph
convolution problem as

min
R,C

∥Sp
RXSq

C −R (Sp
RXSq

C) C ∥2 + Ω(R,C)

such that R ∈ R, C ∈ C.
(7.11)

In what follows, we will refer to the row- and column-smoothed matrix as

H = Sp
RXSq

C

since this operation can be considered as a sort of preprocessing step, independent of the
co-clustering model that we are about to introduce.

109



Chapter 7. Attributed Bipartite Graph Subspace clustering

4.3. Subspace Co-clustering through LSR

We propose an initial variant based on the LSR subspace clustering model, where the
regularization term is defined as follows: Ω(R,C) = λR∥R∥2+λC∥C∥2, where λR and λC are
parameters that regulate the trade-off between the reconstruction term and the regularizer.
We formulate the LSR subspace co-clustering problem as

min
R,C

∥H−RHC∥2 + λR∥R∥2 + λC∥C∥2. (7.12)

Fixing R and solving for C and inversely, a closed form solution can be obtained for both
matrices, providing a clear illustration of how our model uses information from the columns
for the row space partitioning, and vice versa

R = HC⊤H⊤
(
HCC⊤H⊤ + λRI

)−1

C =
(
H⊤R⊤RH + λCI

)−1
H⊤R⊤H.

(7.13)

However, solving the problem requires an iterative process where, in alternation, one of R and
C is fixed and the other updated, until convergence. The overall computational complexity is
roughly in O(n3 +d3 + tnd2 + tn2d) due to the inversion and the necessary spectral clustering
step, where t is the number of iterations, and the spatial complexity is O(n2 + d2), which
is very often prohibitive for real-world applications, especially those pertaining to text. We
therefore try to improve the efficiency of the solving scheme by adding further constraints,
as described below.

4.4. SC3: A More Efficient Formulation Through Orthogonality Constraints

To address the issue of complexity we introduce factor matrices Z ∈ Rn×k and W ∈ Rd×g,
which we constrain to be semi-orthogonal, i.e., Z⊤Z = Ik and W⊤W = Ig, such that
R = ZZ⊤ and C = WW⊤. With these constraints the LSR co-clustering problem becomes
simpler, since ∥Z∥2 = rk(Z) and ∥W∥2 = rk(W) are constant. The new formulation of the
problem, that we have termed SC3, is

min
Z,W

∥H− ZZ⊤HWW⊤∥

such that Z⊤Z = Ik W⊤W = Ig

(7.14)

At first glance this problem also requires an alternating solving scheme using two update
rules that we obtain by fixing W and solving for Z, and vice versa:

Z = U such that [U,Σ,V] = TruncatedSVD(HW, k)

W = U such that [U,Σ,V] = TruncatedSVD(H⊤Z, g).

This entails that g = k, making this a block clustering problem reminiscent of the block
seriation co-clustering model. The detailed pseudo-code for this method is given in algorithm

110



4. Proposed Method

6, whose spatial complexity is the same as for LSR, but the computational complexity is in
O(n3 + d3 + tndk). Although this method is faster, it remains inefficient owing to bottle-
necks, to the iterative nature of the algorithm and, more importantly, because of the spectral
clustering step.

Algorithm 6: Naive SC3

Input : X feature matrix, SR row propagation matrix, SC column propagation
matrix, k number of co-clusters, p, q row and column propagation orders, ϵ
tolerance.

Output: Z, W row and column factors,
πR, πC row and column partitions.

H← Sp
RXSq

C;
[_,_,V] = TruncatedSVD (H, k);
W(0) ← V;
while ∥Z(k) − Z(k−1)∥+ ∥W(k) −W(k−1)∥ > ϵ do

[Z(k),_,_] = TruncatedSVD(HW(k−1), k);
[W(k),_,_] = TruncatedSVD(H⊤Z(k), k);

end
R,C← ZZ⊤,WW⊤;
πR ← spectral_clustering(|R|);
πC ← spectral_clustering(|C|);
Optionally deduce a block diagonal bicluster matrix from πZ and πW;

4.4.1 Efficiently Solving for Z∗ and W∗

The problem stated above can be solved efficiently using a single truncated SVD. This is
a consequence of the following proposition:

Proposition 8. The alternating process defined in system of equations 4.4 converges to Z
and W containing the k left and right singular vectors of H respectively corresponding to the
largest k singular values.

Proof. Suppose, without loss of generality, that k ≤ rk(H). We have that k = rk(Z) =
rk(W), implying that

rk
(
ZZ⊤HWW⊤

)
≤ min{rk(Z), rk(W), rk(H)}

= k.

This means that we are looking for the best k-rank approximation of H for the Frobenius
norm. Given [U,Σ,V] = SVD(H), and setting Z = Uk = [u′

1, . . . ,u′
k] and W = Vk =

111



Chapter 7. Attributed Bipartite Graph Subspace clustering

[v′
1, . . . ,v′

k], we have

∥H− ZZ⊤HWW⊤∥2 = ∥H−UkU⊤
k UΣV⊤VkV⊤

k ∥2

= ∥H−Uk[Ik,0]Σ[Ik,0]⊤V⊤
k ∥2

= ∥H− [Uk,0]Σ[Vk,0]⊤∥2

= ∥H−UkΣkV⊤
k ∥2.

(7.15)

From the Eckart–Young–Mirsky theorem we have that H̃ = UkΣkV⊤
k is the best rank-k

approximation of H.

This leads to a more efficient algorithm because the iterative step is circumvented. The
interplay between the rows and columns is still implicitly present, however, since this solution
is also the analytic solution to the alternating optimization problem referred to above, in
which the row-column interaction is explicit.

The above result enables us to show that our approach has a grouping effect.

Proposition 9. Given matrix H, the solutions R and C in SC3 display a grouping effect on
the rows and columns respectively of matrix H.

Proof. To this end, we show that R and C display a grouping effect on H. We give the
proof for R only since it is similar for C. Let the full singular value decomposition of H be
H = UΣkV⊤. We have that

Z =
(

Ik 0
0 0

)
U

and that ui = Σ−1V⊤hi. Given these two equations, it is possible to write

∥zi − zj∥ =
∥∥∥∥∥
(

Ik 0
0 0

)
ui −

(
Ik 0
0 0

)
uj

∥∥∥∥∥
=
∥∥∥∥∥
(

Ik 0
0 0

)
Σ−1V⊤hi −

(
Ik 0
0 0

)
Σ−1V⊤hj

∥∥∥∥∥
≤ ∥hi − hj ∥

∥∥∥∥∥
(

Ik 0
0 0

)
Σ−1V⊤

∥∥∥∥∥
= ∥hi − hj ∥ const.

(7.16)

We also have that since R = ZZ⊤, then ri = Zzi. Therefore, it holds that

∥ri − rj∥ = ∥Z(zi − zj)∥ (7.17)

= ∥ zi − zj ∥ . since Z⊤Z = I

From equations 7.16 and 7.17, we have

∀i, j ∥hi − hj∥ → 0 =⇒ ∥ri − rj∥ → 0

112



4. Proposed Method

implying that there is a grouping effect on the rows of H for R.

This gives us an efficient way to obtain Z∗ and W∗, together with theoretical guarantees
regarding the quality of these solutions. The main remaining complexity bottleneck is the
spectral clustering step with its cubic computational complexity and its quartic space com-
plexity in the number of rows and columns. However, using the structure of our R and C we
may obtain a spectral clustering algorithm.

4.5. Efficient Spectral Clustering of the Kernel Self Representation Ma-
trices

4.5.1 Nonnegative feature map

The optimal self-representation matrix R∗ = Z∗Z∗⊤ is symmetric by construction, but
its entries are not necessarily nonnegative. An element-wise absolute value would therefore
be required in order for us to obtain a valid affinity matrix. However, this would remove all
the information already held on the decomposition of R∗ into Z∗Z∗⊤, since generally there is
no relation between the spectrum of a matrix and its spectrum after applying an entry-wise
function. We circumvent this problem by instead considering an affinity matrix constructed
through some nonnegative kernel, i.e.,

KR = ⟨φ(Z∗), φ(Z∗)⟩ such that kij ≥ 0

where φ is the feature map of the kernel applied row-wise that we need to calculate explicitly.
Two possible approaches are available:

Exact feature maps. The kernel trick can provide a means of operating in a high-dimensional,
implicit feature space without ever computing the coordinates of the data in that space.
Computing explicit feature maps is challenging for most commonly used kernel func-
tions, which tend to increase the dimensionality of the original inputs to such an extent
that it becomes impossible to use them in realistic scenarios. For instance, in the case
of the second degree polynomial kernel k(zi, zj) = (z⊤

i zj + c)2 where c is some constant
that we can see as a bias term. For example, when c = 1 then the feature map is

φ : Rk → R(k+2
2 )

z 7→ ⟨z2
k, . . . , z

2
1 ,
√

2zkzk−1, . . . ,
√

2zkz1,
√

2zk−1zk−2, . . . ,
√

2zk−1z1, . . . ,
√

2z2z1,
√

2zk, . . . ,
√

2z1, 1⟩

More generally, for a polynomial kernel of degree d the feature map is a function
φ : Rk 7→ R(k+d

k ). The other possibility is that the explicit feature map is infinite-
dimensional and thus impossible to compute, such as in the case of the Radial Basis
Function (RBF) kernel.

113



Chapter 7. Attributed Bipartite Graph Subspace clustering

Approximate feature maps A number of methods using approximations of the feature
maps of the desired kernel have been proposed over the years. These include the
Nyström method [Drineas, 2005], Tensor Sketch [Pham, 2013], and the use of random
features [Rahimi, 2007].

4.5.2 Efficient Spectral Clustering

Since the eigenvectors of KR are the same as the left singular vectors of φ(Z∗), the
process of spectral clustering becomes much faster, since the affinity matrix does not need
to be computed explicitly. For our purposes we adapt the spectral algorithm proposed in
[Ng, 2001] as follows:

1. We efficiently compute the diagonal matrix D containing the sums of the rows of KR.

2. We construct matrix Ẑ = D−1/2φ(Z), on which we do an SVD yielding the eigenvectors
of D−1/2KRD−1/2, referred to as U.

3. We obtain the final assignments of the rows of H according to the assignment of vectors
[u1, ...un]⊤ using the k-means algorithm.

This is equivalent to doing the spectral clustering on the normalized Laplacian of KR

i.e. L = I−D−1/2KRD−1/2 rendering the complexity of the spectral clustering linear in the
number of samples instead of cubic. To obtain a spectral clustering of the affinity matrix of
C∗, the operations are the same.

5. Algorithm and Complexity

The pseudo-code for the efficient version of our algorithm is given in algorithm 7. We
now discuss the computational complexity in detail.

Feature Propagation Step Assuming that the propagation matrix is sparse, the complex-
ity of this operation is in O(p∥SR∥0 + q∥SC∥0), where ∥.∥0 is the 0-norm that gives the
number of non-zero entries of its input.

Truncated SVD on H The computational complexity of this step using randomized SVD
[Halko, 2011] is O(nd log(k)).

Truncated SVD on φ(Z) and φ(W) This depends on the dimensionality of the feature
map. Since we consider the affine kernel feature map as the main choice, the complexity
using a randomized SVD on it is O(nk log(k) + dk log(k)).

Efficient spectral clustering. This operation has a complexity in O(tnk2 + tdk2), where
t is the number of iterations of k-means.

Overall computational complexity The overall computational complexity of the pro-
posed SC3 algorithm is thus in O

(
p∥SR∥0 + q∥SC∥0 + nd log(k) + tnk2 + tdk2).

114



6. Experiments

Algorithm 7: Efficient SC3

Input : X feature matrix, SR row propagation matrix, SC column propagation
matrix, k number of co-clusters, p, q row and column propagation orders.

Output: Z, W row and column factors,
πR, πC row and column partitions.

H← Sp
RXSq

C;
[Z,_,W] = TruncatedSVD (H, k);
Mφ ← φ(Z);
D← diag(Zφ(Z⊤

φ 1));
Ẑφ ← D− 1

2 Zφ;
U← TruncatedSVD

(
Ẑφ, k

)
;

πZ ← k-means(U);
Mφ ← φ(W);
D← diag(Wφ(W⊤

φ 1));
Ŵφ ← D− 1

2 Wφ;
U← TruncatedSVD

(
Ŵφ, k

)
;

Discard the column of U corresponding to the largest singular value;
πW ← k-means(U);
Optionally deduce a block diagonal bicluster matrix from πZ and πW;

Overall spatial complexity The space taken by the created matrices is in O (nk + dk).

As seen in Algorithm 7, k-means is used to propose a hard clustering. Instead of k-means
the user can perform any other clustering method including fuzzy clustering methods such as
soft k-means. This implies that each data point can belong to more than one cluster; for
each of them a set of coefficients gives the degree of being in each cluster. It is also the case
of the EM algorithm [Dempster, 1977] where in E-step posterior probabilities of each data
point are computed.

6. Experiments

In this section we present the experimental setup and results. We consider two tasks
which are co-clustering and document clustering. We start by introducing the models used
for comparison and the overall experimental settings. Then, for each task we present the
datasets and evaluation metrics as well as the results that were obtained. We follow with
some comparisons between the different possible nonnegative kernels, and finally present the
results for neighborhood propagation when a k-nn graph is used instead of the ground truth
graph.

115



Chapter 7. Attributed Bipartite Graph Subspace clustering

(a) A. (b) B.

(c) C. (d) D.

(e) E.

Figure 7.3: Synthetic datasets before and after rearrangement with respect to the true par-
titions.

6.1. Experimental Setup

6.1.1 Baselines

We compare our model against clustering and co-clustering models that either use only
the input node feature matrix X or that use both A and X, that is to say attributed graph
clustering/co-clustering models.

Clustering models :

• Vanilla models: We take k-means as the simplest baseline for our comparison.

• Subspace Clustering Models: We compare our model against the subspace clustering
models previously mentioned: LSR, EnSC, ℓ0-SCC and Noisy-DR-ℓ0-SCC-LR, SSC-
OMP and the mini-batch version of K-FSC.

• Attributed graph clustering models: We use the GIC, S2GC and GCC models.

Co-clustering models :

• Vanilla models: We compare our model against the spectral co-clustering algorithm
(SpecCo), DCC and RDPCo.

• Attributed graph co-clustering Models: The only existing model of this kind is CFOND.

6.1.2 Experimental Settings

For our method, we normalize the word count datasets using tf-idf and unit-normalize
across the rows. We use the official implementation (with the recommended or default param-

116



6. Experiments

Algorithm 8: Propagation Order Selection Rule
Input : X document-term matrix, SR row propagation matrix, SC column

propagation matrix, q column propagation order, k number of co-clusters.
Output: Propagation order p∗.
p← 1;
while p∗ not found do

Z, W, _, _ ← SC3(X, SR, SC, p, q, k);
lossp ←

∥∥∥Sp
RX− ZZ⊤Sp

RXWW⊤
∥∥∥;

if | lossp − lossp−1 | < d
n⌈

√
k⌉ or p = 100 then

p∗ ← p
end
p← p+ 1

end

eters) for each of them, apart from CFOND (ρ = β = α = 1), LSR (λ = 1), and RDPCo (with
Sr and Sc), ℓ0-SCC and Noisy-DR-ℓ0-SCC-LR (see [Yang, 2018b; Yang, 2022] for parameter
setting) which, to the best of our knowledge, have not been made publicly available. We also
use the recommended parameters for each dataset whenever possible. For models that use
a parameter p like ours, we run their selection rule until convergence with a maximum p of
100 for fairness. All models were run on the same machine with 12GB memory GPU and a
RAM of 12GB. All experiments for the different models were run on the same machine with
12GB of RAM and a 2.3Ghz Xeon Processor. We perform 20 runs for each model.

6.1.3 Choice of Propagation Matrices

In our model, we use a k-nn graph generated from the rows of matrix X using the euclidean
distance with k = 3. We use a propagation order of ten, p = 10. For the columns, we do
not use a k-nn graph, but rather a graph based on NNPMI, which is a nonnegative version
of Pointwise Mutual Information (PMI) traditionally used to quantify word-relatedness. The
column propagation order is set to q = 1. The column NNPMI graph is defined as

SC =(sCij) =

max
{

log
(

y..

yi.y.j
yij

)
, 0
}

ij

 (7.18)

where yij = x⊤
i xj . We use the nonnegative version so that the resulting matrix after propa-

gation can still be seen as a document-term matrix. Both matrices are then normalized using
the normalization proposed in [Fettal, 2022c].

6.2. Co-clustering

6.2.1 Synthetic Datasets

Due to the absence of datasets with labels along both rows and columns. We propose to
use synthetic datasets for the evaluation of the co-clustering performance of our model. The

117



Chapter 7. Attributed Bipartite Graph Subspace clustering

five datasets are depicted in figure 7.3 before and after rearrangement with respect to the
ground truth partition. The characteristics of these datasets are available in table 7.1. These
datasets have one of two possible types of structures, checkerboard [Kluger, 2003] and block
diagonal [Dhillon, 2001].

Table 7.1: Synthetic datasets’ characteristics.

Dataset Rows Columns Biclusters Proportions Structure

A 500 500 10 equal Block diagonal
B 800 1000 6 unequal Block diagonal
C 800 800 8 equal Checkerboard
D 2000 1200 7 unequal Checkerboard
E 2500 2500 15 unequal Checkerboard

6.2.2 Evaluation Metrics

To compare our algorithms we rely on the clustering accuracy that is computed by re-
arranging the rows of the confusion matrix so as to obtain the greatest possible trace using
the Hungarian method. Clustering accuracy then corresponds to this trace divided by the
number of elements. However, here we use a metric that simultaneously quantifies the clus-
tering accuracy over rows and columns which we call co-clustering accuracy. Given c(πr), the
accuracy over the rows; and c(πc), the accuracy over the columns. The co-clustering accuracy
cca [Govaert, 2008] is given by

cca(πr, πc) = c(πr) + c(πr)− c(πr)× c(πr)

Table 7.2: Co-clustering performance on the synthetic datasets averaged over 20 runs of the
different co-clustering models. Our model finds the ground truth partition in almost all cases
and has the best performance (or is tied for best) over all datasets.

Dataset A B C D E

SpecCo 89.53±1.39 99.54±0.0 94.32±0.0 99.95±0.02 78.43±1.5
DCC 98.61±1.0 99.96±0.1 45.0±15.0 72.06±14.1 98.87±1.0
RDpCo 85.1±6.3 86.74±6.7 28.18±0.0 64.19±14.9 22.5±0.0
CFOND 100.0±0.0 97.9±2.0 100.0±0.0 99.25±0.7 98.16±0.8

SC3 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 99.87±0.2

6.2.3 Performance

Table 7.2 shows the co-clustering results of our algorithm with respect to other co-
clustering algorithms. We see that the models that use a topological information generally
outperform the other models. Our model finds the ground truth partition in four out of five
cases and has the best performance (or is tied for best) over the five datasets.

118



6. Experiments

6.3. Document Clustering

6.3.1 Datasets

We use four attributed graph citation networks, which are graphs characterized by an
adjacency matrix A and a node document-term matrix X. The summary statistics are given
in table 7.3. The nodes in ACM and Citeseer correspond to word count vectors, and those in
PubMed and Wiki to tf-idf weighted word vectors. We use the ACM dataset, whose graph
is not very informative, to compare the robustness of the models that use this information.

Table 7.3: Document datasets’ statistics.

Dataset #Nodes #Edges #Features #Classes

ACM [Wang, 2019] 3025 9150593 1870 3
CiteSeer [Sen, 2008] 3327 4732 3703 6
PubMed [Sen, 2008] 19717 44338 500 3
Wiki [Yang, 2015] 2405 17981 4973 17

Computers [Shchur, 2018] 13381 259159 767 10

6.3.2 Evaluation Metrics

To assess the performance of different algorithms on the document clustering task, we use
three commonly used clustering performance metrics: clustering accuracy (Acc), Adjusted
Rand Index (ARI) [Hubert, 1985], and normalized mutual information (NMI) [Cai, 2008].

6.3.3 Choice of Propagation Matrices

Here, we set the row graph to be the adjacency matrix provided in each attributed graph
dataset SR = A, but later we will test our model with a k-nn graph generated from the
rows of matrix X. The row propagation order p is selected using the selection rule given in
algorithm 8. The column propagation matrix and normalizations used are the same as for
the synthetic data.

6.3.4 Performance

We consider three versions for our method corresponding to three different nonnegative
kernel functions, linear, quadratic and radial basis (rbf) functions. Note that the linear
kernel does not really result in a proper affinity matrix but it has a similar behaviour to the
other valid kernels when using a bias term, so it can be a more efficient surrogate for them.
Tables 7.4,7.5 show the row/document clustering performance of the different models. We
report results for the power selected using rule 8. Overall, we see that methods using both
graph structure and features outperform methods using features only; this is the case for
all datasets, with the exception of ACM, where the graph is nearly strongly connected. We
included the ACM dataset to show the robustness of our model in the face of an uninformative

119



Chapter 7. Attributed Bipartite Graph Subspace clustering

Table 7.4: Clustering results on ACM, Citeseer and Wiki.

Method Input Co- Subspace ACM CiteSeer Wiki
clustering clustering Acc NMI ARI Acc NMI ARI Acc NMI ARI

k-means X % % 62.8±4.8 37.2±9.2 34.5±10.4 62.5±1.6 36.7±1.9 35.5±2.5 47.3±6.0 46.3±6.9 26.4±8.1

LSR X % " 80.3±0.0 47.0±0.0 51.9±0.0 21.1±0.0 0.2±0.1 0.0±0.0 21.1±3.3 9.0±5.9 2.6±2.0
EnSC X % " 79.5±0.0 46.8±0.0 50.3±0.0 55.6±0.0 14.8±0.0 14.6±0.0 45.5±2.0 45.7±1.7 28.8±1.3
SSC-OMP X % " 78.8±0.1 43.4±0.1 48.3±0.1 24.0±1.1 3.5±0.4 1.8±0.1 52.7±4.4 48.1±2.3 33.3±1.5
ℓ0-SSC X % " 80.7±0.0 48.4±0.0 52.8±0.0 55.4±0.0 26.3±0.0 24.5±0.0 45.1±0.0 43.8±0.0 25.6±0.0
DR-ℓ0SCC-LR X % " 75.8±2.1 42.4±2.7 41.5±4.0 58.1±0.6 27.1±0.3 26.2±0.6 45.8±0.1 45.2±0.4 25.3±0.7
K-FSC X % " 56.2±7.5 17.1±6.3 18.0±5.7 35.3±6.9 12.4±3.5 10.6±4.0 38.2±5.1 35.6±3.9 17.7±4.4

SpecCo X " % 80.6±0.1 48.4±0.1 52.3±0.1 30.3±1.7 10.0±1.3 5.5±1.6 37.8±1.2 38.2±0.3 20.8±0.4
DCC X " % 40.5±3.3 7.8±5.1 2.1±2.2 35.1±3.8 11.5±2.4 8.9±2.9 48.3±3.6 47.5±2.6 30.6±3.0
RDPCo X " % 35.1±0.0 0.0±0.0 0.0±0.0 46.3±3.2 12.6±6.3 8.3±4.2 18.8±3.1 5.6±7.7 1.4±2.3

GIC A, X % % 34.3±0.4 0.1±0.1 0.0±0.0 68.8±0.8 43.8±1.0 44.6±1.0 46.5±1.4 48.2±0.5 30.2±1.4
SGC A, X % % 83.7±0.0 55.7±0.0 58.8±0.0 64.9±0.1 39.4±0.0 38.8±0.0 51.9±0.8 49.6±0.2 28.6±0.1
S2GC A, X % % 40.5±3.4 1.7±1.2 1.8±1.3 68.1±0.3 42.3±0.2 43.5±0.3 52.7±1.0 49.0±0.3 29.6±0.9
GCC A, X % % 35.4±0.0 0.3±0.0 0.0±0.0 69.4±0.1 45.0±0.2 45.4±0.1 54.1±0.8 55.0±0.2 33.3±0.5

CFOND A, X " % 71.8±0.6 37.2±0.5 38.2±0.7 63.0±1.1 36.6±1.3 36.2±1.2 47.8±3.0 49.5±2.1 30.3±2.5

SC3
linear A, X " " 88.4±0.1 62.0±0.2 68.6±0.1 69.3±3.8 43.7±2.7 43.9±3.8 59.7±1.9 53.9±1.5 31.2±3.1

SC3
quad A, X " " 88.4±0.0 62.0±0.1 68.6±0.1 70.7±1.3 44.7±1.0 45.5±2.0 58.2±3.2 53.4±1.8 30.5±4.2

SC3
rbf A, X " " 88.4±0.1 62.0±0.2 68.6±0.1 70.4±1.1 44.4±0.9 44.8±1.8 57.0±3.0 52.9±2.1 28.4±3.8

Table 7.5: Clustering results on PubMed and Amazon Computers.

Method Input Co- Subspace PubMed Computers
clustering clustering Acc NMI ARI Acc NMI ARI

k-means X % % 60.1±0.0 31.4±0.0 28.1±0.0 36.4±1.6 7.0±8.5 -0.2±1.4

LSR X % % OOM 31.6±0.5 22.3±0.5 11.0±0.2
EnSC X % % 55.6±0.0 14.8±0.0 14.7±0.0 32.5±1.0 32.7±2.6 15.9±1.1
SSC-OMP X % % 60.4±0.0 22.3±0.0 19.4±0.0 46.6±1.3 29.1±0.3 30.0±3.1
ℓ0-SCC X % % OOM 41.2±0.0 44.5±0.0 22.0±0.0
DR-ℓ0SCC-LR X % % OOM 38.4±0.4 38.1±0.2 20.3±0.2
K-FSC X % " 49.5±9.8 14.8±5.9 12.1±7.1 41.1±2.5 28.9±3.2 16.5±3.5

SpecCo X " " 61.2±0.0 24.7±0.0 21.8±0.0 31.2±1.2 29.9±1.5 10.6±1.8
DCC X " " 54.3±3.6 16.5±2.9 13.4±4.1 34.3±1.9 3.0±1.5 -2.2±1.4
RDPCo X " " 21.4±0.2 1.0±0.5 0.2±0.1 37.1±0.0 0.0±0.0 0.0±0.0

GIC A, X % % 64.3±0.4 26.0±0.5 23.6±0.5 46.8±2.2 47.5±0.9 31.3±3.5
SGC A, X % % 64.7±0.0 54.3±0.0 48.5±0.0 65.5±0.0 52.2±0.0 45.7±0.0
S2GC A, X % % 70.7±0.0 32.9±0.0 33.5±0.0 58.3±0.0 54.6±0.0 40.1±0.0
GCC A, X % % 70.8±0.0 32.3±0.0 33.2±0.0 67.6±0.0 56.0±0.0 46.5±0.0

CFOND A, X " % 60.1±0.0 31.4±0.0 28.1±0.0 23.6±0.8 13.3±1.3 7.0±0.8

SC3
linear A, X " " 71.1±0.0 33.2±0.0 33.9±0.0 71.1±0.0 59.0±0.0 50.6±0.0

SC3
quad A, X " " 71.1±0.0 33.2±0.0 33.9±0.0 71.1±0.0 59.0±0.0 50.6±0.0

SC3
rbf A, X " " 71.1±0.0 33.2±0.0 33.9±0.0 71.1±0.0 59.0±0.0 50.6±0.0

120



6. Experiments

graph structure when compared with state-of-the-art attributed graph clustering models. Our
model is seen to be competitive on all five datasets, and to have the best performances on
all five datasets. SC3 has either the best or the second best performance with respect to
most metrics on each dataset, while having near-zero standard deviation, which shows that
the proposed approach is robust. The performance gap is most striking on Wiki, where our
model is seven points ahead of the closest model in terms of accuracy. We also see that the
performance of the three variants of our model is similar.

For statistical significance, we perform a Nemenyi post-hoc test [Nemenyi, 1963] with
a confidence level of 95% on the ranks of each model in terms of Acc, NMI, and ARI, for
each dataset and for each run (20 runs for each dataset) to compare our model with the
other best performing models, namely SGC, S2GC, GIC, GCC and CFOND. This allows us
to group models with similar performances. The results are shown in figure 7.4. The best
group consisting of the SC3 variants is seen to have the best performances by a wide margin,
followed by the group containing only GCC.

1 2 3 4 5 6 7 8

SC3_quad
SC3_linear

SC3_rbf
GCC SGC

S²GC
GIC
CFOND

CD

Figure 7.4: Visualization of the results of the Nemenyi test with a confidence level of 95%.
We see that SC3 variants perform similarly while being better than other models.

Compared to co-clustering methods applied on X, note that sometimes, with certain
methods we have zero values for NMI and ARI. This is explained by the fact that we are
facing the recurrent problem of empty classes when dealing with sparse and unbalanced data.
The problem is, however, overcome by SC3 as illustrated for ACM.

6.3.5 Efficiency

In figure 7.5 we plot the accuracy of the subspace clustering models in relation to their
training times, comparing their performance on four datasets to that of linear SC3. The
results correspond to an average over 20 runs. The time required by the propagation step is
included in the overall running time of our algorithm. The fastest model on all datasets is
linear SC3, it also achieves the best accuracy score. Note that while the other models give a
partition for the rows exclusively, ours gives one for both rows and columns while remaining
significantly more efficient.

121



Chapter 7. Attributed Bipartite Graph Subspace clustering

20 22 24 26 28 210 212

Average Run Time (s)

55

60

65

70

75

80

85

90

C
lu

st
er

in
g 

Ac
c 

(%
)

SC³

ENSC×812SSC-OMP×98

K-FSC×3

LSR×13

(a) ACM.

20 22 24 26 28 210

Average Run Time (s)

20

30

40

50

60

70

C
lu

st
er

in
g 

Ac
c 

(%
)

SC³

ENSC×296

SSC-OMP×192

K-FSC×12

LSR×115

(b) CiteSeer.

20 22 24 26 28

Average Run Time (s)

20

30

40

50

60

C
lu

st
er

in
g 

Ac
c 

(%
)

SC³

ENSC×113

SSC-OMP×129

K-FSC×19

LSR×31

(c) Wiki.

21 23 25 27 29 211 213

Average Run Time (s)

30

40

50

60

70

C
lu

st
er

in
g 

Ac
c 

(%
)

SC³

K-FSC×928

SSC-OMP×449

ENSC×475LSR×37

(d) Computers.

Figure 7.5: Clustering accuracy plotted against training times on a logarithmic scale of
subspace clustering algorithms on the different datasets. Linear SC3 timing is used as the
reference; for instance, on ACM, LSR ×13 means that it is approximately 10 times slower
than SC3. Linear SC3 consistently gives the best results and training times. PubMed is left
out due to OOMs.

Table 7.7: Performance of SC3 with a quadratic kernel using different column propagation
matrices averaged over 20 runs. Best results are highlighted in bold font.

Graph k ACM Citeseer Wiki Pubmed Computers
Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI

3 88.7 62.8 69.2 68.0 42.8 43.8 52.9 50.3 19.0 71.3 33.4 34.2 70.5 58.7 50.3
k-nn (euclidean) 5 88.7 63.1 69.3 68.3 43.6 44.3 56.7 51.4 24.5 71.2 33.2 34.1 70.8 59.2 48.9

10 88.8 63.3 69.5 68.6 44.2 44.8 58.4 52.7 26.4 71.2 33.3 34.2 72.6 60.5 52.6
3 88.0 61.1 67.7 67.3 42.3 42.7 54.7 51.7 24.0 71.2 33.0 34.0 71.3 60.2 49.7

k-nn (cosine) 5 87.9 61.0 67.3 67.2 42.8 42.8 55.7 52.0 23.8 71.1 32.9 33.9 72.4 60.5 52.2
10 87.9 60.9 67.4 67.3 42.8 43.0 55.4 51.6 25.3 71.0 32.8 33.8 72.5 60.6 52.4

3 88.6 62.7 69.0 67.3 42.4 43.1 58.8 53.3 27.3 71.2 33.1 34.2 72.6 60.5 52.6
k-nn (correlation) 5 88.7 62.9 69.2 68.1 43.4 43.9 55.7 51.1 26.6 71.1 32.9 34.0 72.6 60.5 52.5

10 88.3 62.2 68.5 68.1 43.8 44.2 57.1 52.5 26.2 71.1 32.9 34.0 72.5 60.5 52.4

Table 7.6: The three topics found by SC3 characterized by their top ten most frequent terms,
their size and coherence.

Topic a b c

patient cell rat
insulin mice control
glucos islet activ

Most type iddm level
Frequent group gene increas
Terms subject diseas respons

lt develop signific
risk nod effect

associ children express
treatment betacel plasma

Coherence -403.4 -365.5 -387.5

Size 280 63 157

6.4. Term Clustering

Since co-clustering models additionally generate a clustering for the terms. We use the
PubMed dataset which is the only dataset for which we managed to find the actual terms.

122



7. Conclusion

Table 7.6 presents the most frequent terms for each topic found by our model. The PubMed
dataset contains scientific works concerning diabetes. We see that topic a contains terms that
are related to a presentation of diabetes, e.g, insulin, glucos, type, etc. Topic b has terms that
are related to the microscopic effects of diabetes such as cell, islet, gene, betacel, and so on.
Finally, topic c seems to concern terms that are associated with medical experimentation and
analysis of results such as control, increas, signific, etc. We note the coherence of these term
clusters since they cluster the PubMed work contents according to three topics. This term
clustering can then be used to help characterize document clusters to facilitate interpretation.

In order to quantitatively evaluate the semantic coherence of topics, we use an internal
metric [Mimno, 2011] to measure the level of association between terms within each cluster.
Essentially, if a majority of the words within a term cluster are interconnected, it can be
inferred that the cluster is semantically coherent from a statistical standpoint. Topic coher-
ence measures the degree of semantic similarity between the top words within a topic or term
cluster. It takes into account both the intrinsic coherence of the words themselves, as well as
their coherence within the context of the topic or cluster as a whole. This metric has been
shown to be effective in assessing the quality of topic models and identifying topics that are
most representative of the underlying data. We consider the top 10 terms when computing
this metric. We also report the sizes of the topics which are considered as a good metric for
assessing topic quality.

6.5. Convolution Using k-nn Graphs

Unless we are working with attributed graphs, no ground truth adjacency matrix on
the rows is provided, but only the feature matrix. Consequently, we need to generate an
adjacency matrix on the rows ourselves. A popular choice is the k-nearest neighbors graph,
based on some metric. In table 7.7 we compare results on the five datasets using k-nn
graphs generated based on the Euclidean and cosine dissimilarity with a number of neighbors
k ∈ {3, 5, 10}. We symmetrize the obtained k-nn matrix A as follows: (A + A⊤)/2. We see
that even without using the ground truth graph, our model continues to outperform subspace
clustering and co-clustering models, including CFOND, which uses the actual ground truth
graph on all datasets. It also outperforms attributed graph clustering models on Wiki and
ACM. On ACM, the results obtained by our model results are better when using the k-nn
graph than when using the ground truth graph, since the ACM ground truth graph is not
very informative. To sum up, we note that whatever the number of neighbors k ∈ {3, 5, 10}
and the similarity measure used, SC3 remains profitable for data even without a ground truth
adjacency matrix on the data points.

7. Conclusion

We proposed SC3, a new approach to leverage subspace clustering for text data through
co-clustering and a bilateral graph convolution. SC3 circumvents the computational and

123



Chapter 7. Attributed Bipartite Graph Subspace clustering

spatial complexity issues inherent in subspace clustering by using factor matrices and non-
negative kernel feature maps. We showed that the simple model that we propose has a
grouping effect, and we demonstrated how the bilateral convolution helps to put this group-
ing property to good use. Experiments on synthetic and real datasets showed that our model
is competitive with the state of the art on the tasks of document and word clustering in the
context of document-term attributed graphs, while also being efficient (linear complexity in
the number of nodes) and robust in the face of uninformative graph topologies. Even when
no ground truth graph is available, the bilateral convolution operation improves performance
in comparison to classical subspace clustering approaches. In what comes next, we will con-
sider multi-view attributed graphs. These are attributed graphs with multiple versions of
graph structures and/or multiple graphs which describe the same nodes but from distinct
perspectives.

124



Chapter 8
Multi-view Attributed Graph Joint
Embedding and Clustering

This chapter was published as [Fettal, 2023c]. Our goal was to create an efficient
yet effective approach for the simultaneous embedding and clustering of multi-
view attributed-graph nodes based on the simplified graph convolutional network,
as well as the reduced k-means.

Objective

Contents
1 Introduction And Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

2.1 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
2.2 Graph Filters and the Simple Graph Convolutional Network . . . . . . . . . . . . . 128

3 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.1 First-order Neighborhood Propagation and Linear Graph Filtering . . . . . . . . . 129
3.2 Simultaneous Multi-view Attributed Graph Representation Learning and Clustering 129
3.3 Paying Attention to the Individual Views . . . . . . . . . . . . . . . . . . . . . . . 130

4 Optimization and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.1 Optimizing for G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2 Optimizing for F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.3 Optimizing for W1, . . . ,WV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.4 Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.1 Datasets and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

125



Chapter 8. Multi-view Attributed Graph Joint Embedding and Clustering

1. Introduction And Related Work

Attributed graphs are graphs that contain features in their nodes. They are used to
model a wide variety of structured data with applications in recommender systems [Salah,
2017b; Ying, 2018; Fan, 2019], computer vision, [Xu, 2017; Qi, 2017; Satorras, 2018], and
physical systems [Sanchez-Gonzalez, 2018]. However, capturing topological (or structural)
information at the same time as capturing information about node-level features presents
challenges, and in the last few years a number of methods have been proposed for tackling
problems such as attributed graph representation learning and attributed graph clustering.

In some real-world applications, data is collected from a variety of different sources, which
means that it can be characterized using different sets of information or views. This is the
premise of multi-view learning [Xu, 2013], an area of considerable interest among the data
mining and machine learning communities. In the context of attributed graphs, a multi-view
attributed graph is simply a set of attributed graphs; each attributed graph counts as a
single view. For example, in the case of a recommender system, the relationship between
users can be characterized using a two graphs, one representing their "friendship", and one
representing their mutual interests; as for the features, one set of features could represent
personal information and another set their past transactions.

The task of multi-view attributed graph clustering has lately received a lot of attention.
The methods that have been proposed can be separated into two broad approaches. In the
first approach, a consensus graph partition is learned directly from the data without explicitly
learning an embedding of the graph. Methods adopting this approach include MvAGC [Lin,
2021b], where a graph filter is proposed to perform the graph clustering, and MAGC [Lin,
2021c], a similar method to MvAGC that uses a graph filter to learn a consensus graph
before doing the clustering. The second approach is more flexible; it consists in learning a
consensus representation or embedding before applying a simple single-view attributed graph
clustering method. For example, DMGI [Park, 2020] is an unsupervised network embedding
method for attributed multiplex networks that uses the concept of mutual information, while
O2MAC [Fan, 2020] is based on the graph autoencoder [Kipf, 2016], it learns clustering-
friendly embeddings through integrating a clustering loss in its objective.

These different methods have their shortcomings. First, the more flexible approaches that
learn a consensus representation generally tackle the problems of representation learning and
clustering separately, i.e. they learn representations that are not specifically tailored to
clustering. Second, they often have unnecessarily complex architectures in comparison to
simpler strategies. Finally, some of these methods are not generic, in the sense that they
require the multi-view graph to be of a certain type: for example, a multi-view graph with
a multiple structures and a single set of features (but not the other way around) like for
DMGI, or a graph with exactly two views, etc. As a way of addressing these shortcomings,
we propose LMGEC (for Linear Multi-view Graph Embedding and Clustering), a simple yet
effective linear model. LMGEC starts by applying a linear graph filter corresponding to a
one-hop neighborhood propagation step in each individual view, and then applies a weighting

126



2. Preliminaries

 

 

Input views
as graph

and features
pairs

Representations
after weighing
their relative
importance

Representations
after applying

the linear graph-
filter

Consensus
partition

and
embedding


Combine

Cluster

Embed

Iterative
simultaneous
representation
learning and
Clustering

 

 

 

 

 

 

 

 

Figure 8.1: Schematic representation of LMGEC.

scheme so that views are attended to in order of their perceived importance. This is followed
by an iterative process of simultaneous clustering and representation learning, which gives
rise to a consensus embedding and partition of the graph. The model is generic in the sense
that it can deal with any number of graph structures and/or any number of feature sets. A
high-level schematic representation of the model is shown in figure 8.1. Our contributions
may be summarized as follows:

• We introduce a simple yet effective generic linear model for performing multi-view at-
tributed graph representation learning simultaneously with clustering. The model is based
on (1) a one-hop neighborhood propagation corresponding to a linear graph filter, (2) a
view weighting scheme reminiscent of the attention mechanism in neural networks, and
(3) a graph clustering and representation learning linear component that addresses both
tasks via a unified framework.

• We carry out a theoretical study of linear graph filtering, formulate the problem that we
are seeking to solve, and propose an algorithm that we subject to a detailed computational
complexity analysis.

• We showcase the efficiency and effectiveness of this model against the state of the art
through extensive experimentation. We show that our model is both competitive and
several magnitudes more efficient than current state-of-the-art multi-view attributed graph
clustering.

• We release our code for reproducibility1.

2. Preliminaries

1https://github.com/chakib401/LMGEC

127

https://github.com/chakib401/LMGEC


Chapter 8. Multi-view Attributed Graph Joint Embedding and Clustering

2.1. Definitions and Notations

An attributed graph is defined as a quadruple G = (V, E ,A,X) where V represents the
vertex set, E the edge, X ∈ Rn×d its node features matrix and A its adjacency matrix of
size n× n. A multi-view attributed graph is represented as a sequence of attributed graphs
M :=

{
Gv = (Vv, Ev,Av,Xv)

}v=V

v=1 . Matrices are denoted by boldface uppercase and vectors
by boldface lowercase letters, 1 represents a column vector of ones. I denotes the identity
matrix. Where X is a matrix, xi is its i-th row. A matrix referenced as Xv means that it
belongs to the v-th attributed graph, and its i-th row is referenced as xv

i .

2.2. Graph Filters and the Simple Graph Convolutional Network

Let G = (V, E ,A,X) be an attributed graph whose symmetrically normalized Laplacian
matrix is Lsym = I − D− 1

2 AD− 1
2 where D is the diagonal matrix of degrees of the graph

such that dii =
∑

j aij . A graph signal can be seen as a vector f = [f(v1), . . . , f(vn)] such
that f : V → R is a real-valued function on the vertex set V. For any graph signal f , we can
quantify its smoothness using the Laplacian quadratic form [Zhou, 2004]

S(f) = f⊤Lsymf = 1
2

n∑
i,j

aij

(
fi√
dii
− fj√

djj

)2

. (8.1)

Now let Lsym = UΛU⊤ be the eigendecomposition of the Laplacian and {ul}nl=1 and {λl}nl=1
the sets of eigenvectors and eigenvalues of Lsym. Since Lsym is symmetric, these eigenvectors
form a basis for Rn, and we can therefore write f = Uc =

∑n
l=1 clul. This implies that we

can write the Laplacian quadratic form as

S(f) = f⊤Lsymf =
(
c⊤U⊤

)
UΛU⊤(Uc) = c⊤Λc =

n∑
l=1

c2
l λl, (8.2)

and that diagonal operators applied to the spectrum of the Laplacian modulate the smooth-
ness of the signal; consequently, the eigenvalues can be seen as the frequencies of the signal
[Defferrard, 2016]. Accordingly, if we wish to make a graph signal smoother, we should min-
imize this measure through removing frequencies that correspond to larger eigenvalues. This
is done using a low-pass filter.

To low-pass filter a graph using a polynomial filter whose frequency-response function is
g, we use the graph convolution operation which is defined as

ffiltered = g (Lsym) f = Ug(Λ)U⊤f (8.3)

such that g(Λ) = diag (g(λ1), ..., g(λn)). For example, in the case of a graph filter corre-
sponding to a GCN [Kipf, 2017] with p layers, or its simplified version [Wu, 2019] using a
p-th order feature propagation, its frequency-response function is given as g(λ) = (1−λ)p, or
in matrix form as g(Lsym) = (I− Lsym)p = Ap, which is a polynomial filter that is low-pass

128



3. Proposed Model

for odd values of p and somewhat low-pass for even values of p since the filtering function is
not strictly decreasing on the interval of definition of the eigenvalues I = [0, 2]. Note that the
GCN also introduces added self-loops into the adjacency matrix A. For more details about
graph filtering and graph signal processing in general, we refer the reader to [Shuman, 2013;
Ortega, 2018].

3. Proposed Model

Now that we have introduced the necessary background, we can formulate our problem.

3.1. First-order Neighborhood Propagation and Linear Graph Filtering

As previously mentioned, the graph neighborhood propagation performed in the GCN
acts as a filter on the graph signal and removes high-frequency noise. We argue, however,
that these steps of neighborhood propagation as performed in the GCN are unnecessary
and even counterproductive because of a risk of over-smoothing, which is when the signal
becomes uniform over the different nodes. To support our argument, we would point to
the performance of the linear graph autoencoder [Salha, 2020], which was competitive w.r.t
more complex GCN-based models. In this work we are seeking to show that a first-order (or
one-hop) neighborhood propagation, when applied properly, is also sufficient for the task of
simultaneous graph clustering and embedding. Given an attributed graph G = (V, E ,A,X),
let

Ã← A + βI (8.4)

be the adjacency matrix with β added self-loops and D̃ its diagonal matrix of degrees. We
define our propagation matrix as

S← D̃−1Ã. (8.5)

The generalized Laplacian Lrw that corresponds to this propagation matrix is a random walk
normalized Laplacian with added self-loops. The linear propagation operation we propose is

H← SX (8.6)

where H are the new filtered features. The frequency-response function associated with this
filter is g(λ) = 1 − λ or, in matrix form, g(S) = I − Lrw, which is clearly a linear function
that is decreasing in the interval of definition of the eigenvalues I = [0, 2].

3.2. Simultaneous Multi-view Attributed Graph Representation Learning
and Clustering

Given a multi-view attributed graph represented as a set of attributed graphs M :={
Gv}v=V

v=1 , we define a preliminary version of the problem of simultaneous multi-view graph

129



Chapter 8. Multi-view Attributed Graph Joint Embedding and Clustering

representation learning and clustering as

min
G,F

W1,...,WV

∑
v

(∥Hv −HvWvW⊤
v ∥2︸ ︷︷ ︸

reconstruction term

+∥HvWv −GF∥2︸ ︷︷ ︸
clustering term︸ ︷︷ ︸

individual view loss

)

︸ ︷︷ ︸
multi-view loss

s.t. ∀v WvW⊤
v = I, G ∈ {0, 1}n×k, G1 = 1

(8.7)

where Wv ∈ Rdv×f such that dv is the dimension of the features in view v, f is the dimen-
sionality of the consensus representation we wish to learn and k is the number of clusters.
The loss corresponding to each view consists of two terms, namely a reconstruction term and
a clustering term:

• The reconstruction term can be seen as reconstructing the filtered graph signal of the
v-th view Hv using a semi-orthogonal matrix Wv similar to what is done in principal
component analysis. We may draw a parallel with autoencoders, where multiplying by W
encodes the data and W⊤ decodes it.

• The clustering term is similar to the k-means objective applied to the embeddings
learned from the reconstruction process HvWv. G is a partition matrix and F is the
centroids matrix.

Matrices G and F are the same for each matrix and represent the consensus partition and
centroids respectively. There are, however, exactly V Wv matrices, due the fact that the
features in the different views do not necessarily have the same dimensionality. Problem
(8.7) can be rewritten in a way that combines the two terms as follows

min
G,F,W1,...,WV

∑
v

∥Hv −GFW⊤
v ∥2

s.t. ∀v WvW⊤
v = I, G ∈ {0, 1}n×k, G1 = 1.

(8.8)

This formulation is more intuitive, since we can see it as trying to minimize the discrepancy
between each input vector hv

i and its corresponding centroid learned in the latent embedding
space after reconstructing giFW⊤

v . A proof of this is available in [Yamamoto, 2014].

3.3. Paying Attention to the Individual Views

Not all views have the same importance, and for this reason it is not optimal to directly
add the losses from each view without applying some kind of importance weighting scheme.
To address this issue we introduce a new set of parameters {αv}v=V

v=1 such that
∑

v αv = 1
where αv represents the relative importance of each view v. With this, we obtain the final

130



4. Optimization and Complexity

formulation of our problem

min
G,F,W1,...,WV

∑
v

αv∥Hv −GFW⊤
v ∥2

s.t. ∀v WvW⊤
v = I, G ∈ {0, 1}n×k, G1 = 1.

(8.9)

Note, however, that we do not introduce αv as a parameter, since this would cause a solution
to pay attention to only a single view, i.e., the view with the smallest individual view loss.
With this in mind, we define α as the softmax α of the negative inertia of each view, and we
add a temperature parameter for greater flexibility. The formula for each α is then

αv ←
e

−Iv
τ∑w=V

w=1 e
−Iw

τ

(8.10)

where I stands for inertia. For the v-th view Iv is computed as follows: Iv = ∥Hv −GvFv∥
such that Wv is obtained through a truncated singular value decomposition (SVD) on Xv,
and Gv and Fv are the results of a k-means applied on the embeddings of the v-th view
XvWv. When the temperature τ is sufficiently high, only the best view in terms of inertia
is selected, and when it is sufficiently low, all the views have the same weight.

4. Optimization and Complexity

Even though solving LMGEC exactly may be NP-hard, a solution can be computed rea-
sonably efficiently via the use of heuristics. To this end, we propose using a Block Coordinate
Descent (BCD) scheme that boils down to iteratively solving sub-problems where we alter-
nately solve for one of W1, . . . ,WV , G, F while keeping the others fixed. All optimizations
are described below.

4.1. Optimizing for G

When solving for G and fixing the other matrices, we obtain the following problem

min
G

∑
v

αv∥HvWv −GF ∥2 s.t G ∈ {0, 1}n×k, G1 = 1. (8.11)

This problem is hard to solve, so instead we propose solving the following relaxation obtained
using the Cauchy-Schwarz inequality:

min
G

∥∥∥∥∥∑
v

αvHvWv −GF
∥∥∥∥∥

2

s.t. G ∈ {0, 1}n×k, G1 = 1. (8.12)

131



Chapter 8. Multi-view Attributed Graph Joint Embedding and Clustering

In this way we can efficiently minimize the objective of this problem with the assignment step

gij ←


1 if j = arg min

l
∥ (
∑

v αvHvWv)i − fl∥2

0 otherwise.
(8.13)

4.2. Optimizing for F

When optimizing for F we retrieve the same criterion as for G, the difference lying in the
constraints

min
F

∥∥∥∥∥∑
v

αvHvWv −GF
∥∥∥∥∥

2

. (8.14)

This problem is an instance of an ordinary least-squares problem whose exact solution is easy
to find and is given as

F = (G⊤G)−1G⊤
(∑

v

αvHvWv

)
. (8.15)

4.3. Optimizing for W1, . . . , WV

Optimizing for the different Wv=V
v=1 matrices results in V sub-problems. For a specific

Wv, the resulting problem is minWv ∥Hv −GFW⊤
v ∥2 which can be solved using a singular

value decomposition as follows:

Wv = UV⊤ s.t. U,Σ,V = SVD(X⊤
v GF) (8.16)

For more details on the derivation we refer the reader to [Yamamoto, 2014; Fettal, 2022c].

4.4. Optimization Algorithm

The main steps are summarized in Algorithm 9. The loss function might not be strictly
decreasing due to the use of relaxations for the sub-problems, but it should nevertheless have
an overall decreasing trend, as shown in figure 8.2 where we observe that our algorithm does
not need many iterations to converge.

4.5. Complexity Analysis

For simplicity, we suppose that f ∈ O(k), that d1, . . . , dV ∈ O(d) and that |E1|, . . . , |EV | ∈
O(|E|). We also suppose that k << n, d, which is almost always the case in real-world
attributed graph datasets. Note that in what follows, the multiplication of matrix G with
another matrix amounts only to a re-indexing of this other matrix, because of the structure
of G.

• First-order Neighborhood Propagation. This step consumes roughly O(v|E|d) oper-

132



5. Experimentation

Algorithm 9: Block Coordinate Descent (BCD) for LMGEC
Input : - Sequence of views {(Av,Xv)}v=1,...,V

- Number of clusters k - Embedding dimension f
- Temperature τ - Tolerance ϵ
- Maximum number of iterations max_iter

Output: - Consensus membership indicator G ∈ {0, 1}n×k

- Consensus embedding centers F ∈ Rk×f

- Consensus embedding matrices W ∈ Rd×f

∀v Hv ← AvXv;
∀v Initialize Wv through a truncated SVD on Hv;
∀v Compute αv using formula (8.10);
Initialize G and F through a k-means on

∑
v αvHvWv;

while change in loss > ϵ and max_iter not reached do
∀v Update Wv using formula (8.16);
Update G using formula (8.13);
Update F using formula (8.15);
loss←

∑
v αv∥Hv −GFW⊤

v ∥;
end

ations.

• Initializing {Wv}v=V
v=1 . This step takes O(vnd log(k)) when using a randomized SVD

algorithm.

• Computing {αv}v=V
v=1 . Here it is necessary to compute the inertia as well as the sets

{Gv}v=V
v=1 and {Fv}v=V

v=1 for each view, totalling around O(vndk) operations.

• Initializing G and F. Computing the summation
∑

v αvHvWv and the application of
k-means on it amounts to O(ndk) operations, where the number of iterations of k-means
is held constant.

• Updating {Wv}v=V
v=1 . Like their initialization steps, this step takes roughly O(vnd log(k)).

• Updating G. The rule associated with this step takes O(nk2) computations.

• Updating F. This rule is computed in O(vndk), as a result of computing the embeddings
for the different views HvWv.

• Objective Value Calculation. The computation here can be performed in O(nd).

• Overall Complexity. Altogether, the total computation time for our algorithm is
O(v|E|d+ tvndk), where t is the number of iterations of LMGEC.

5. Experimentation

In this section we present the experimental setup and results. We start by introducing
the datasets and the evaluation metrics used in relation to clustering, the methods used for

133



Chapter 8. Multi-view Attributed Graph Joint Embedding and Clustering

Table 8.1: Characteristics of the Datasets. For wiki, there are two topologies and two features
matrices leading to four possible combinations/views.

Dataset Multi-view type #Views #Nodes #Features #Edges #Clusters

ACM [Wang, 2019] Topology 2 3,025 1,830
29,281

2,210,761
3

DBLP [Wang, 2019] Topology 3 4,057 334

11,113

5,000,495

6,776,335

4

IMDB [Wang, 2019] Topology 2 4,780 1,232
98,010

21,018
3

Amazon Photos [Shchur, 2018] Features 2 7,487
745

7,487
119,043 8

Wiki [Yang, 2015] Both 4
2405

2405

4973

4973

24,357

12,025
17

comparison with LMGEC, and the experimental settings. We then present the results in
terms of quality of clustering, followed by analysis where we consider embedding, complexity,
sensitivity, and robustness in the face of noisy views.

5.1. Datasets and Metrics

In order to demonstrate the generic nature of our model we looked at the three possible
types of multi-view attributed graph datasets:

1. Datasets with Heterogeneous Graph Topology. These datasets have the same set
of features X but multiple graph topologies, i.e. multiple adjacency matrices {Av}v=V

v=1 .
They include ACM, DBLP and IMDB.

2. Datasets with Heterogeneous Features. These datasets have the same graph struc-
ture A but multiple sets of features {Xv}v=V

v=1 . The example we chose was Amazon Photos.

3. Datasets with Both. These datasets have multiple graph structures {Av}v=V
v=1 as well

as multiple sets of features {Xv}v=V
v=1 , The only such dataset is Wiki for which we create

the additional views from the initial data, we initially have a single topology and features,
we then generate a second topology using a nearest neighbor graph based on the cosine
distance and a second set of features by using a log-scale of the original ones.

The characteristics of these datasets are given in table 8.1. In quantifying the quality of a
clustering we use four metrics: clustering accuracy (CA), clustering F1-score (F1) [Rijsbergen
CJ, 1979], normalized mutual information (NMI) [Strehl, 2002] and adjusted rand index
(ARI) [Hubert, 1985].

134



5. Experimentation

Table 8.2: Clustering results on ACM, DBLP and IMDB. Best results are highlighted in bold
font and the second best results underlined.

Model ACM DBLP IMDB
CA F1 NMI ARI CA F1 NMI ARI CA F1 NMI ARI

LINE-avg 0.6479 0.6594 0.3941 0.3433 0.875 0.866 0.6681 0.7056 0.4719 0.2985 0.0063 -0.009
GAE 0.8216 0.8225 0.4914 0.5444 0.8859 0.8743 0.6925 0.741 0.4298 0.4062 0.0402 0.0473
GAE-avg 0.699 0.7025 0.4771 0.4378 0.5558 0.5418 0.3072 0.2577 0.4442 0.4172 0.0413 0.0491
MNE 0.637 0.6479 0.2999 0.2486 out of memory error 0.3958 0.3316 0.0017 0.0008
PMNE(n) 0.6936 0.6955 0.4648 0.4302 0.7925 0.7966 0.5914 0.5265 0.4958 0.3906 0.0359 0.0366
PMNE(r) 0.6492 0.6618 0.4063 0.3453 0.3835 0.3688 0.0872 0.0689 0.4697 0.3183 0.0014 0.0115
PMNE(c) 0.6998 0.7003 0.4775 0.4431 out of memory error 0.4719 0.3882 0.0285 0.0284
RMSC 0.6315 0.5746 0.3973 0.3312 0.8994 0.8248 0.7111 0.7647 0.2702 0.3775 0.0054 0.0018
PwMC 0.4162 0.3783 0.0332 0.0395 0.3253 0.2808 0.019 0.0159 0.2453 0.3164 0.0023 0.0017
SwMC 0.3831 0.4709 0.0838 0.018 0.6538 0.5602 0.376 0.38 0.2671 0.3714 0.0056 0.0004
O2MA 0.888 0.8894 0.6515 0.6987 0.904 0.8976 0.7257 0.7705 0.4697 0.4229 0.0524 0.0753
O2MAC 0.9042 0.9053 0.6923 0.7394 0.9074 0.9013 0.7287 0.778 0.4502 0.4159 0.0421 0.0564
DMGI 0.8973 0.8985 0.6974 0.7296 0.8722 0.8691 0.6931 0.7034 0.5827 0.4253 0.1317 0.1457
MvAGC 0.8975 0.8986 0.6735 0.7212 0.9277 0.9225 0.7727 0.8276 0.5633 0.3783 0.0371 0.0940
MAGC 0.8806 0.8835 0.6180 0.6808 0.9282 0.9237 0.7768 0.8267 0.6125 0.4551 0.1167 0.1806

LMGEC 0.9302 0.9311 0.7513 0.8031 0.9285 0.9241 0.7739 0.8284 0.5893 0.4267 0.0632 0.1294

Table 8.3: Clustering results on Amazon Photos and Wiki. Additionally, we report the
performance of LMGEC on each individual view (for the other datasets see figure 8.4). Note
that Amazon Photos has only two views, while Wiki has four.

Model Amazon Photos Wiki
CA F1 NMI ARI CA F1 NMI ARI

LMGEC (view 1) 0.6726 0.6451 0.5903 0.4865 0.4757 0.4154 0.4772 0.2944
LMGEC (view 2) 0.6835 0.6164 0.5971 0.4896 0.5181 0.4463 0.5079 0.3226
LMGEC (view 3) - - - - 0.5202 0.4333 0.5383 0.3401
LMGEC (view 4) - - - - 0.5264 0.4384 0.5362 0.3455

MAGC 0.4511 0.3359 0.4297 0.1127 0.4972 0.4084 0.5139 0.2707
MvAGC 0.6775 0.6397 0.5237 0.3968 0.3297 0.2432 0.3531 0.0864

LMGEC 0.7117 0.6500 0.6114 0.5123 0.5333 0.4501 0.5408 0.3496

2 4 6 8 10
Iteration

20.7

20.8

20.9

21.0

21.1

21.2

21.3

(a) ACM

2 4 6 8 10
Iteration

14.2

14.4

14.6

14.8

15.0

15.2

(b) DBLP

2 4 6 8 10
Iteration

37.960

37.965

37.970

37.975

37.980

37.985

(c) IMDB

2 4 6 8 10
Iteration

10.365

10.370

10.375

10.380

10.385

(d) Photos

2 4 6 8 10
Iteration

23.5

24.0

24.5

25.0

25.5

26.0

26.5

27.0

(e) Wiki

Figure 8.2: Evolution of the loss value across iterations using BCD for LMGEC.

(a) ACM (b) DBLP (c) IMDB (d) Photos (e) Wiki

Figure 8.3: Two-dimensional projections of the LMGEC embeddings using t-SNE colored ac-
cording to the real class labels.

135



Chapter 8. Multi-view Attributed Graph Joint Embedding and Clustering

Table 8.4: Training times. Best results are in bold font, second best results are underlined.
DMGI is only applicable to datasets with one set of features.

Model ACM DBLP IMDB Wiki Amazon Photos

DMGI 943.19 3117.87 843.96 - -
MvAGC 14.48 26.28 32.97 34.73 139.14
MAGC 139.93 242.99 395.45 150.93 1661.64

LMGEC 3.49 3.07 4.96 18.06 19.42

Consensus View 1 View 2
0.0

0.2

0.4

0.6

0.8

1.0
CA
F1
NMI
ARI

(a) ACM

Consensus View 1 View 2 View 3
0.0

0.2

0.4

0.6

0.8

1.0
CA
F1
NMI
ARI

(b) DBLP

Consensus View 1 View 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6 CA
F1
NMI
ARI

(c) IMDB

Figure 8.4: Performance of LMGEC on each individual view vs. its consensus performance
when considering all views on ACM, DBLP and IMDB (for the other datasets see table 8.3).

5.2. Baselines

Below we list all the methods evaluated in our proposal.

• LINE [Tang, 2015]: A single-view graph embedding method. It is applied on each view
and the best results are reported.

• GAE [Kipf, 2016]: Another single-view graph embedding method based on the autoen-
coder.

• X-avg: To utilize multiple views of a network we apply the X method to learn node
representations on each single view, then average all learned representations.

• LINE-avg and GAE-avg: By this we mean that the node representations learned for
each view using LINE and GAE are averaged and clustered as such.

• MNE [Zhang, 2018]: A scalable multi-view network embedding model. Only the graph
structure information (adjacency matrix) of each view is input into this model.

• PMNE [Liu, 2017]: Encompasses three multi-view graph embedding methods, includ-
ing network aggregation PMNE (n), results aggregation PMNE (r) and layer co-analysis
PMNE (c).

• RMSC [Xia, 2014]: A multi-view spectral clustering method that uses Markov chains and
low-rank decomposition.

136



5. Experimentation

• PwMC and SwMC [Nie, 2017]: PwMC is a parameter-weighted multi-view graph clus-
tering method, while SwMC is a self-weighted multi-view graph clustering method.

• O2MA and O2MAC [Fan, 2020]: O2MAC is also an autoencoder-based multi-view
graph clustering method. O2MA is a simplified version of O2MAC with the clustering
loss removed from the objective function.

• DMGI [Park, 2020]: This is an unsupervised embedding method for attributed multiplex
network embedding. This approach is only applicable to datasets with one set of features
and multiple graphs.

• MvAGC [Lin, 2021b]: Performs graph filtering to do multi-view attributed graph clus-
tering.

• MAGC [Lin, 2021c]: A multi-view graph clustering method that utilizes both node at-
tributes and graphs.

5.3. Experimental Settings

We use the clustering results reported in the original works where possible. When per-
forming our own tests we tried to follow the setups prescribed by the authors of the different
models as faithfully as possible. For our model, we set the maximum number of iterations
to 30, the tolerance to 0 and f = k + 1 in all experiments. We performed experiments with
different hyper-parameter values for β and τ . We did a tf-idf normalization of the inputs to
our model, and we also centered the data after neighborhood propagation. For the values of β
and τ , we try β ∈ {.2, 1, 2} and τ ∈ {1, 10, 100} and we report the best results. The different
experiments were run on the same machine with two Intel(R) Xeon(R) CPU @ 2.20GHz and
13GB RAM. Most of the source codes in the official repositories of the baselines were not
optimized for GPU. Note that the results reported for our method are the averages of five
runs.

5.4. Experimental Results

Below we study in detail the results from our comparisons and highlight the interest of
LMGEC.

Clustering Results. Tables 8.2 and 8.3 show the results of our experiments for the clus-
tering task. Some of the results for ACM, DBLP, IMDB and Amazon Photos are taken from
[Fan, 2020; Lin, 2021c; Lin, 2021b], while results for Wiki are those that we obtained in our
experiments. The pattern that emerges is that methods combining multi-view information
tend to outperform those using single-view information. Our model LMGEC consistently
achieves competitive performances, outperforming other models on ACM, DBLP, IMDB,
Amazon Photos and Wiki on most metrics, and being competitive on IMDB, where it has

137



Chapter 8. Multi-view Attributed Graph Joint Embedding and Clustering

2 1

20

21

22
10 1

100

101

102

CA

0.0

0.2

0.4

0.6

0.8

1.0

2 1

20

21

22
10 1

100

101

102

F1

0.0

0.2

0.4

0.6

0.8

1.0

2 1

20

21

22
10 1

100

101

102

NMI

0.0

0.2

0.4

0.6

0.8

1.0

2 1

20

21

22
10 1

100

101

102

ARI

0.0

0.2

0.4

0.6

0.8

1.0

(a) ACM

2 1

20

21

22
10 1

100

101

102

CA

0.0

0.2

0.4

0.6

0.8

1.0

2 1

20

21

22
10 1

100

101

102

F1

0.0

0.2

0.4

0.6

0.8

1.0

2 1

20

21

22
10 1

100

101

102

NMI

0.0

0.2

0.4

0.6

0.8

1.0

2 1

20

21

22
10 1

100

101

102

ARI

0.0

0.2

0.4

0.6

0.8

1.0

(b) DBLP

2 1

20

21

22
10 1

100

101

102

CA

0.0

0.2

0.4

0.6

0.8

1.0

2 1

20

21

22
10 1

100

101

102

F1

0.0

0.2

0.4

0.6

0.8

1.0

2 1

20

21

22
10 1

100

101

102

NMI

0.0

0.2

0.4

0.6

0.8

1.0

2 1

20

21

22
10 1

100

101

102

ARI

0.0

0.2

0.4

0.6

0.8

1.0

(c) IMDB

2 1

20

21

22
10 1

100

101

102

CA

0.0

0.2

0.4

0.6

0.8

1.0

2 1

20

21

22
10 1

100

101

102

F1

0.0

0.2

0.4

0.6

0.8

1.0

2 1

20

21

22
10 1

100

101

102

NMI

0.0

0.2

0.4

0.6

0.8

1.0

2 1

20

21

22
10 1

100

101

102

ARI

0.0

0.2

0.4

0.6

0.8

1.0

(d) Amazon Photos

2 1

20

21

22
10 1

100

101

102

CA

0.0

0.2

0.4

0.6

0.8

1.0

2 1

20

21

22
10 1

100

101

102

F1

0.0

0.2

0.4

0.6

0.8

1.0

2 1

20

21

22
10 1

100

101

102

NMI

0.0

0.2

0.4

0.6

0.8

1.0

2 1

20

21

22
10 1

100

101

102

ARI

0.0

0.2

0.4

0.6

0.8

1.0

(e) Wiki

Figure 8.5: Sensitivity analysis of the parameters of LMGEC on the graph topology heteroge-
neous datasets.

the second best results on two out of four performance metrics. Overall, our model offers the
best results in 15 out of 20 cases and has the best or second best results in 18 out of 20 cases,
showing that it is competitive despite its simple nature. Note that for datasets with multiple
features, in our experiments we used only the baselines that were the best performing (on
average).

We can see the benefits of our model from tables 8.2 and 8.3 and from figure 8.4, where
the performance of LMGEC on individual views is shown against the consensus performance;
the consensus performance is consistently better than for the individual views. In some
instances LMGEC applied to the individual views even outperforms state-of-the-art models,
for example, on ACM, Amazon Photos and Wiki.

Embedding Results. Figure 8.3 depicts the embeddings produced by LMGEC on the
different datasets by projecting them onto a 2d-plane using t-SNE. A clustering structure is
visible on all datasets apart from IMDB, where the embeddings are not very well separated.

138



6. Conclusion

Efficiency Results. We report the training times of our method in table 8.4 as well as those
of the best performing (on average) baselines in our experiments. Our model is consistently
much faster than other models, improving on the training time of the second fastest model
(MvAGC) by 75%, 89%, 85%, 48% and 86% on ACM, DBLP, IMDB, Wiki and Amazon
Photos respectively.

Sensitivity Analysis. In our experiments we tried various values for the β and τ hyper-
parameters. Figure 8.5 illustrates the performance of LMGEC for different pairs of these
parameter values on the different datasets and for the different clustering metrics. We see
that the on most datasets the performance remains fairly constant, which is an indication of
LMGEC’s robustness. The exception is ACM, where LMGEC is sensitive to the temperature
parameter τ because of the presence of uninformative views. We discuss this in greater detail
in the following paragraph. As a rule of thumb, we suggest taking τ = 10 and β = 1.

Robustness in the face of noisy views. In real applications noisy data sources are
not uncommon and can impair the performance of multi-view models. Since LMGEC takes
into account the importance of the different views via a weighting scheme based each view’s
inertia, it is able to filter out noisy views by increasing the temperature τ of the softmax
function used in computing {αv}v=V

v=1 .
Tables 8.2 and 8.3 and figure 8.4 report the clustering performance of LMGEC on each

individual view for the different datasets, as well as the consensus performance. In the case
of DBLP we may consider that the first view is noisy, since LMGEC performs considerably
less well on this view than on the second and third views. We remark, however, that the
consensus performance is not influenced by the presence of this noisy view, which shows the
robustness of LMGEC in the face of noise. The same is true of Wiki as regards the first view,
albeit less significantly than for DBLP, since the performance gap is not as flagrant w.r.t the
other views.

6. Conclusion

In this work we proposed a simple linear additive model that addresses the dual tasks of
multi-view attributed graph representation learning and multi-view attributed clustering in
a unified framework. This model is more generic than most state-of-the-art approaches in
the sense that it can deal with any number of graph structures and/or any number of feature
sets. Experiments showed that our model is competitive with more complex state-of-the-art
models, outperforming these models on most benchmarks in terms of both performance and
computation time.

The next chapter will deal with the same data as this one, but it will exclusively focus on
the clustering task, specifically, we will use the summation property of kernels to propose an
efficient attributed multi-view subspace clustering algorithm.

139





Chapter 9
Multi-view Attributed Graph Subspace
Clustering

In this chapter we aimed at creating an approach that extends [Fettal, 2023b] to
the multi-view setting.

Objective

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

3.1 Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
3.2 Scalable Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
3.3 Multi-view Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.1 Weighing Views relative to their Clusterability . . . . . . . . . . . . . . . . . . . . 146
4.2 Multi-view Scalability via Kernel Summation . . . . . . . . . . . . . . . . . . . . . 146
4.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.3 Learning Node Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.4 Clustering Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.5 Ablation on λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.6 Running Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.7 Statistical Significance Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.8 Experimenting with other Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

141



Chapter 9. Multi-view Attributed Graph Subspace Clustering

1. Introduction

The explosive growth of data from diverse sources, such as social media, sensor networks,
and online platforms, has led to the emergence of complex high-dimensional datasets. These
datasets often contain multiple views of the same underlying data, each capturing different
aspects or perspectives. Traditional clustering algorithms, designed for single-view data, face
significant challenges in effectively capturing the intricate relationships and structures present
across multiple views.

Multi-view subspace clustering [Gao, 2015; Sun, 2021; Chen, 2022] has emerged as a
powerful paradigm to tackle this challenge by integrating information from multiple views
to enhance the clustering performance. By exploring the latent subspaces within each view
and leveraging the complementary nature of different views, multi-view subspace clustering
algorithms can reveal hidden structures that may not be apparent when considering indi-
vidual views in isolation. This not only leads to more accurate clustering results but also
enables a deeper understanding of the underlying data. Specifically, multi-view subspace
clustering for attributed-networks data, which consist of interconnected entities with associ-
ated attributes, has gained significant attention in recent literature [Fan, 2020; Lin, 2021b;
Lin, 2021c; Pan, 2021], offering a powerful framework to analyze complex datasets. For ex-
ample, one prominent application of multi-view clustering for attributed-networks data is in
social network analysis as social networks often exhibit rich attributes associated with in-
dividuals or groups, such as demographic information, interests, and affiliations [Fan, 2020;
Hu, 2020]. Another one is in biological research, where multi-omics data can be integrated
using multiple graph convolutional networks [Wang, 2021a]. Finally, recommender systems
often rely on multiple sources of information, such as user preferences, item attributes, and
social connections [Kipf, 2017; Wu, 2019; Shchur, 2018].

Be that as it may, the computational complexity of multi-view subspace clustering is a
significant challenge that hinders its widespread adoption in real-world applications. Despite
the proposal of efficient approaches, for example, based on the popular framework which
consists in using anchor based techniques which are used to decrease the sizes of the matrices
handled during optimization [Kang, 2020; Sun, 2021]. We found through experimentation
that the existing methods still often fall short of achieving the desired level of efficiency and
clustering performance for large-scale multi-view datasets. As a result, there is a pressing
need for further advancements in this area to overcome the computational challenges and
unlock the full potential of multi-view subspace clustering.

In this work, we tackle the scalable multi-view subspace clustering problem differently
from anchor-based methods and propose a novel algorithm that addresses the limitations of
existing approaches in terms of both clustering accuracy and computational efficiency. Our
algorithm leverages low-rank subspace clustering and properties of kernel features maps, to
capture the complex relationships between views and enhance the robustness of clustering
results in an efficient manner. Similarly to some state-of-the-art models, our approach scales
linearly with the number of inputs but it scales more favorably with other factors such as

142



2. Related Work

the number of dimensions and clusters. Additionally, we can exploit the inherent parallelism
present in the multi-view setting, allowing for efficient processing of large-scale datasets. In
summary, the key contributions of this work are threefold:

1. First, we introduce a novel framework that integrates multiple views of the data sub-
space structure graph into a unified consensus subspace structure graph, effectively
capturing the complementary information across views and allowing for a new scalabil-
ity framework for multi-view subspace clustering.

2. Second, we propose an efficient optimization strategy that scales well with very large-
scale datasets. By taking advantage of the properties of kernel features maps, our algo-
rithm significantly reduces the computational burden while maintaining state-of-the-art
clustering performance. This scalability makes our approach suitable for handling real-
world applications as it scales to datasets with millions of data points.

3. Third, we conduct extensive experiments, including statistical significance testing, on
real-world benchmark networks of different scales and degrees of overlap, to evaluate
the performance of our algorithm in comparison to state-of-the-art multi-view subspace
clustering methods as well as attributed-network specific multi-view approaches. Our
experiments are entirely reproducible, ensuring transparency and enabling others to
validate our results.

2. Related Work

Scalable Multi-view Subspace Clustering [Lin, 2021c] introduced Large-Scale Multi-
View Subspace Clustering in Linear Time (LMVSC) [Kang, 2020], a method where smaller
graphs are created for each view, and then integrated to enable spectral clustering on a re-
duced graph size, inspired by the concept of anchor graph. Scalable Multi-view Subspace
Clustering with Unified Anchors (SMVSC) [Sun, 2021] approach integrates anchor learning
and graph construction into a unified optimization framework, resulting in more accurate
representation of latent data distribution by learned anchors and a more discriminative clus-
tering structure. In [Chen, 2022], an efficient orthogonal multi-view subspace clustering
(OMSC) approach is proposed; it uses joint anchor learning, graph construction and par-
titioning. Recently, [Zhang, 2023] developed a Flexible and Diverse Anchor Graph Fusion
for Scalable Multi-view Clustering (FDAGF) that introduces a fusion strategy for multi-size
anchor graphs.

Graph Multi-view Clustering [Pan, 2021] proposed a multi-view contrastive graph clus-
tering (MCGC) method to learn a consensus graph with contrastive regularization over the
learned graph matrix. [Lin, 2021c] introduced a novel multi-view attributed graph clustering
(MAGC) framework, which incorporates node attributes and graphs. The approach stands
out in three key aspects: utilizing graph filtering for smooth node representation instead of

143



Chapter 9. Multi-view Attributed Graph Subspace Clustering

deep neural networks, learning a consensus graph from data to address noise and incomplete-
ness in the original graph, and exploring high-order relations through a flexible regularizer
design. The MvAGC model [Lin, 2021b] is a simple yet effective approach for Multi-view
Attributed Graph Clustering. It applies a graph filter to smooth the features without rely-
ing on neural network parameter learning. A reduced computational complexity is achieved
through a novel anchor point selection strategy. Furthermore, a new regularizer is introduced
to explore high-order neighborhood information. [Fettal, 2023c] introduced (LMGEC), a
generic linear model for performing multi-view attributed graph representation learning and
clustering simultaneously. It uses a simple weighing scheme based on inertia and a single-hop
neighborhood propagation.

3. Preliminaries

In what follows, matrices are denoted in boldface uppercase letters and vectors in boldface
lowercase letters. [n] corresponds to the integer set {1, . . . , n}. Tr is the trace operator. ⊕
denotes column-wise concatenation.

3.1. Subspace Clustering

Given a data matrix X ∈ Rn×d and a desired number of clusters k, most subspace
clustering problems have the following form:

min
C

∥X−CX∥2 + Ω(C) s.t. C ∈ C (9.1)

where C is called a coefficient matrix, Ω is a regularization function and C is the set of
feasible solutions. Once a solution C is found, a subspace affinity graph represented using its
adjacency matrix W is constructed, typically as W = (|C|+|C⊤|)/2. Finally, a partition of k
groups is obtained via spectral clustering on W. By considering different Ω and C, we retrieve
different subspace clustering techniques, for example, we can name low-rank approaches [Liu,
2010] and sparse approaches [Elhamifar, 2013] among others.

3.2. Scalable Subspace Clustering

[Fettal, 2023b] proposed a scalable low-rank subspace clustering model. Specifically, the
problem they considered is:

min
U

∥X−UU⊤X∥2 s.t. U⊤U = I. (9.2)

They then use nonnegative kernel maps to create an affinity matrix W = Φ(U)Φ(U)⊤. The
advantage of computing the affinity matrix in this manner is that spectral partitioning can
be obtained via singular values decomposition on Φ(U) instead of performing eigendecompo-
sition on W, leading to substantial gains in spatial and computational efficiencies.

144



4. Methodology

3.3. Multi-view Subspace Clustering

Given a set of features X1, . . . ,XV describing the same data points. A rudimentary
multi-view subspace clustering model can consider a problem of the following form:

min
F,C1,...,CV

∑
v

∥Xv −CvXv∥2 + Tr(FCvF)

such that F ∈ {0, 1}n×k, F1 = 1
C1, . . . ,CV ∈ C,

(9.3)

where Cv is the coefficient matrix of the v-th view and F is a a consensus partition matrix.
However, although the block structures in different view specific coefficient matrices are
similar, the magnitudes and the signs of the entries in each Cv can vary greatly. To solve this
issue, [Gao, 2015] instead considered using the affinity matrices Wv instead of the coefficient
matrices Cv . We generalize that formulation by dropping the specific constraints they used.
This results in the following generic multi-view subspace clustering problem:

min
G,C1,..,CV

∑
v

∥Xv −CvXv∥2

+ Tr
(
F⊤

(
I− |Cv |+|C⊤

v |
2

)
F
)

such that F ∈ {0, 1}n×k, F1 = 1,C1, . . . ,CV ∈ C.

(9.4)

Once solutions C1, . . . ,CV are available, depending on the regularization used, spectral clus-
tering can be performed on W =

∑
v Cv to obtain the partition matrix F.

4. Methodology

We consider the multi-view framework presented in problem 9.4 and introduce low-rank
constraints into it as in 9.2 and also use their affinity matrix. However, here we consider a
symmetrically normalized affinity matrix instead of the unnormalized one. We obtain the
following problem:

min
G,U1,...,UV

∑
v

∥Xv −UvU⊤
v Xv∥2 + Tr(F⊤(I−Wv)F)

such that Wv = D− 1
2

v Φ(Uv)Φ(Uv)⊤D− 1
2

v

F ∈ {0, 1}n×k, F1 = 1

(9.5)

where U ∈ Rn×f is a low rank matrix, Wv is the normalized affinity matrix of view v. If we
were to solve this problem directly, the consensus partition F would be obtained via spectral
clustering on

W =
∑

v

Wv =
∑

v

D− 1
2

v Φ(Uv)Φ(Uv)⊤D− 1
2

v . (9.6)

The problem of applying spectral clustering via the proper decomposition of this matrix
would result in a computational complexity of O(n2k) and a spatial complexity of O(n2).

145



Chapter 9. Multi-view Attributed Graph Subspace Clustering

This means that we would lose the efficiency argued by [Fettal, 2023b] and thus lose the
advantage of using such an approach in the first place. Therefore, we propose to solve this
problem via the summation property of kernels.

4.1. Weighing Views relative to their Clusterability

We additionally introduce a weighting scheme on the view-specific terms in problem 9.5 as
the different views should not always have the same contribution level towards the consensus
affinity matrix. Here, we evaluate the importance of each view using the affinity matrix
associated with said view. Specifically, we consider the following problem:

min
G,U1,...,UV

∑
v

∥Xv −UvU⊤
v Xv∥2 + λv Tr(F⊤(I−Wv)F)

such that Wv = D− 1
2

v Φ(Uv)Φ(Uv)⊤D− 1
2

v

F ∈ {0, 1}n×k, F1 = 1

(9.7)

where we define the regularization vector λ = [λ1, . . . , λV ] with respect to the cluster-ability
of the v-th view:

λv = exp( Tr( Gv(I−Wv)Gv) / T )∑
w exp( Tr( Gw(I−Ww)Gw) / T )

such that ∀w ∈ [V ] Wv = Φ(Uw)Φ(Uw)⊤

Gw ∈ {0, 1}n×k, Gw1 = 1

(9.8)

where T is a temperature parameter and G1, . . . ,GV are different view-specific partition
matrices we solve for using spectral clustering by applying singular value decomposition on
D− 1

2
w Φ(Uw) and then applying a clustering algorithm on the resulting left singular vectors

and repeating the process for each v ∈ [V ].

4.2. Multi-view Scalability via Kernel Summation

Since we are using kernels to compute the view-specific affinity matrices C1, . . . ,CV , we
propose to use another property of kernels in order to obtain a factorized matrix consensus
affinity matrix, which will then allow for efficient spectral clustering. Consider the following:

Property 1. Given two kernels ka and kb then their summation k(x, y) = ka(x, y) + kb(x, y)
is also kernel.

This means that matrix 9.6 is also a kernel and, consequently, has a decomposition of
the form BB⊤ for some matrix B (this is property of kernel matrices). So here to solve the
efficiency issue of combining the different view-specific affinity matrix, we have to find a way
to find a vector realization B for the decomposition of 9.6. Once we have B, we can obtain
a spectral clustering via singular value decomposition of B instead of eigendecomposition of
BB⊤. We can find this realization by noticing that:

146



4. Methodology

Property 2. Given kernels ka and kb and their associated feature maps Φa and Φb, the
feature map associated with their summation kernel k is Φ(x) = Φa(x)⊕ Φb(x).

Using this fact, we can infer that a vector realization is B =
[
D− 1

2
1 Φ(U1), . . . ,D− 1

2
V Φ(UV )

]
.

This decomposition means that the complexity of the approach is proportional to dimension
m of the feature map Φ. This leads to large speedup and memory saving when m << n.

4.3. Optimization

In addition to the use of properties associated with kernel feature maps, the efficiency of
our approach also stems from the fact that it does not need an iterative algorithm, contrary to
many other state-of-the-art models, e.g, [Pan, 2021]. The algorithm consists of the following
steps:

Solving for C1, . . . ,CV The first step is fixing C1, . . . ,Cv−1,Cv+1, . . . ,CV and F in prob-
lem 9.5 and reiterating for each v ∈ [V ]. The resulting problem is 9.2, and the solution is to
set U as the f left singular vectors of X associated with the largest singular values. Note
that to solve our approach in one step, as opposed to [Gao, 2015], we consider Wv to not be
a function of Cv.

Computing λ1, . . . , λV Once we obtained the singular vectors associated with each coeffi-
cient matrix Cv, we compute the corresponding λv using formula 9.8.

Solving for F When fixing every Cv, we obtain this problem in with respect to F, we
obtain:

min
F

∑
v

Tr(F(I−Wv)F)

such that F ∈ {0, 1}n×k, F1 = 1.
(9.9)

The solution, then, consists in using property 2, and noticing that:

W =
∑

v

Wv =
∑

v

λvD− 1
2

v Φ(Uv)Φ(Uv)⊤D− 1
2

v

=
(
⊕v

√
λvD− 1

2
v Φ(Uv)

)(
⊕v

√
λvD− 1

2
v Φ(Uv)

)⊤
.

(9.10)

The solution F of this problem is obtained by applying k-means clustering on the left singular
values corresponding to the largest k singular values of matrix ⊕v

√
λvD− 1

2
v Φ(Uv).

A pseudo-code for our approach, is given in algorithm 10.

4.4. Complexity Analysis

To complement our intuitive justification for the efficiency of our approach, we theoreti-
cally analyze its complexity:

147



Chapter 9. Multi-view Attributed Graph Subspace Clustering

Solving for C1, . . . ,CV This process takes O(vnd log(f)) where f is the chosen rank due
to the randomized singular values decomposition.

Computing λ1, . . . , λV This has a complexity of computing the projections using feature
map Φ, we consider the case of using a quadratic polynomial feature map whose computational
complexity is O(nf2). The computational complexity of this step is then O(V nf2log(k)).

Solving for F Finally the process of computing the concatenated matrix B and then
applying singular value decomposition is O(V nf2 log(k)). Applying k-means after results in
O(tV nf2k) operations.

Using other Kernels It is possible to use other nonnegative kernels than the quadratic
polynomial. However, in the case of infinite dimensional kernels such as RBF and sigmoid
kernels or in the case of polynomials kernels with large even degrees, it is necessary to use
kernel feature maps approximations techniques such Nystroem [Williams, 2000] or polynomial
sketching [Pham, 2013]. In that case the factor f2 will be replaced with the dimension of
the feature map approximation and the complexity of computing the approximation of the
kernel has to be added to the total complexity of our approach.

In table 9.1, we report the complexity of several state-of-the-art algorithms. We see that
compared to ours, a lot more factors have to be taken into consideration. Note that we added
the complexity of learning graph representations (using 9.11) to non-graph methods.

Algorithm 10: MvSCK
Require: Data matrices X1, . . . ,XV , number of clusters k, number of components f , kernel feature

map Φ, temperature T .
Ensure: Partition matrix F

for v ∈ [V ] do
Subtract column means from Xv

Uv,_,_ = randomized_svd(Xv, f)
Bv = Φ(Uv)
dv = (Bv @ Bv.sum(0))[:, None]
Bv = Bv ∗ d−0.5

v

Qv,_,_ = randomized_svd(Bv, k + 1)
Gv = KMeans(k).fit_predict(Qv[:, 1 :])

end for
Compute λ1, ..., λV via formula 9.8 with temperature T using {Gv}v∈[V ] and {Wv}v∈[V ]
B = ⊕vλvBv

d = (B @ B.sum(0))[:, None]
B = B ∗ d−0.5

Q,_,_ = randomized_svd(B, k + 1)
F = KMeans(k).fit_predict(Q[:, 1 :])

5. Experiments

In what follows, we refer to our approach as MvSCK.

148



5. Experiments

Table 9.1: Complexity of some of the considered approaches on network data. m represents
the number of anchors. |E| is the number of edges in the graphs used in formula 9.11. For the
sake of simplicity, we consider that the dimension of the features and the number of graph
edges in the different views are the same.

Method Time Complexity
LMVSC O(V p|E|d+ nm3V +m3V 3 +mV n+ nk2t)
FDAGF O(V p|E|d+ rV dm2 + rm2n+ rV dmn)
SMVSC O(V p|E|d+ V d3 + V d2k2 +md2 + dmk2 + nm3)
MAGC O(V n2d)
MvAGC O(tm3V + tV m2nd)
LMGEC O(V |E|d+ V ndk)

MvSCK O(V p|E|d+ V nf2 log(k))

5.1. Datasets

We evaluate our method on six benchmark datasets with different degrees of overlap, two
small scale ones, ACM and DBLP [Fan, 2020], two medium, Amazon Photos and Amazon
Computers [Shchur, 2018], and two large, OGBN-ArXiv and OGBN-Products [Hu, 2020].
Their statistical summary is described in Table 9.2.

5.2. Experimental Setup

For comparison, we validate our approach against the state-of-the-art approaches dis-
cussed in the related work using clustering accuracy (CA), clustering F1-score (CF1), ad-
justed rand index (ARI) and normalized mutual information (NMI). Implementations of the
comparative approaches used are the official ones. Parameters are set based on the recommen-
dations of the authors. When these recommendations are not available, we set parameters
similarly to how they were set on datasets of similar dimensions. Furthermore, in order to
perform fair comparisons, we remove any supervised signal when running experiments in the
original codes, this includes behaviors such as validating runs based on supervised metrics
such as accuracy or setting random seeds. For our approach, the kernel we used is quadratic
kernel, that was discussed in [Fettal, 2023b]. The number of components parameter f was
set equal to the number of clusters on all datasets with the exceptions of OGBN-Products
where it was set to ten due to its large size. Note that all metrics reported are averaged over
five different runs. All experiments were performed on a 64gb RAM laptop with a 12th Gen
Intel(R) Core(TM) i9-12950HX (24 CPUs) processor with a frequency of 2.3GH as well as a
12GB GeForce RTX 3080 Ti GPU.

149



Chapter 9. Multi-view Attributed Graph Subspace Clustering

5.3. Learning Node Representations

To perform clustering on network datasets using generic approaches such as ours as well
as LMVSC, SMVSC, FDAGF and OMSC. We first have to learn node embeddings. So given
a multi-view attributed-networks consisting of adjacency matrices A1, . . . ,AV and features
matrices X1, . . . ,XV , we learn embeddings via Laplacian smoothing, this techniques is well-
known and was used to deal with graph data in works such as [Pan, 2021; Fettal, 2023c]. It
consists in consecutive neighborhoods averaging steps:

∀v ∈ [V ] Xv ← Ap
vXv (9.11)

where p is the propagation order. Specifically, in our experiments, we set the propagation
order to 2, 2, 20, 40, 60 and 100 to ACM, DBLP, Amazon Photos, Amazon Computers,
OGBN-ArXiv and OGBN-Products, respectively. This step can be seen as a preprocessing
step that is independent from the aforementioned approaches. This methodology is built
upon the work done on simplifying graph convolutional networks [Wu, 2019].

5.4. Clustering Results

The clustering results on the small, medium and large graph datasets are reported in
tables 9.3, 9.4 and 9.5 , respectively. As shown in these tables, our approach outperforms
other approaches over most datasets and metrics even when compared to methods that are
specifically tailored to graphs datasets. LMVSC is competitive with our approach on Amazon
Computers, it outperforms it in terms of F1 and ARI but ours has better accuracy and NMI.

Some approaches have shown large discrepancies between the results reported in the
original works and the one we obtained by running their codes on the same datasets. Due to
space considerations, we do not report those original results here. Most of the approaches fail
to scale to OGBN-ArXiv and OGBN-Products. We also have that OMSC fails to retrieve the
correct number of clusters in Amazon Photos and Computers, which leads to the impossibility
of computing its CF1 scores for it.

5.5. Ablation on λ

In figure 9.1, we study the effect of the regularization vector λ = [λ1, . . . , λV ] on five
datasets. We see that it results in a boost in performance on four out of the five datasets we
considered for ablation and retains the same performance on the remaining one, ACM.

5.6. Running Times

The running times of the different models on all datasets are shown in table 9.6. Our
approach is the fastest one, we have the fastest approach on small, medium and large graph
datasets by a wide margin. Several approaches exceed the three hours threshold on OGBN-

150



5. Experiments

ACM DBLP Photos Computers arXiv
0

20

40

60

80

w/ 
w/o 

Figure 9.1: Clustering accuracy with and without the regularization vector λ = [λ1, . . . , λV ].

ArXiv and OGBN-Products.

5.7. Statistical Significance Testing

Figure 9.2 shows the results of the Holm mean-rank post-hoc test [Holm, 1979] over
the clustering results. We compute the mean rank over rankings generated based on each
(dataset, metric, run) triplet. We see that our approach is ranked first by a large margin
followed by LMGEC and LMVSC as second and third. After these three come multiple
overlapping groups of approaches.

In figure 9.3, we report the results of the Holm mean-rank post-hoc test over the execution
times of the different algorithms. Ours is the most efficient followed by LMGEC. LMVSC
and MvAGC are ranked third, followed by SMVSC, OMSC, and then a group composed of
MAGC and FDAGF. In the last position we find MCGC.

5.8. Experimenting with other Kernels

In table 9.7 we report our approach’s results with different kernels, specifically, we use an
exact quadratic kernel, and Nystroem approximations of the radial basis function (RBF) and
sigmoid kernels. For the approximations, we use 10 ∗ k components except on the Products
dataset which is too large and for which we use 100 components only. The results show that
using different kernels leads to similar performances except on Products where the dimension
of the approximations seems to not be sufficient and leads to a poor approximation of the
feature maps; the same is true for the sigmoid kernel on ArXiv. Note that in the context
of RBF and sigmoid kernels, we use approximations due to the fact that their exact feature
maps are infinite dimensional.

151



Chapter 9. Multi-view Attributed Graph Subspace Clustering

Table 9.2: Characteristics of the Datasets. The imbalance is given as the ratio between the
cardinalities of the most frequent and least frequent classes.

Dataset Scale Nodes Features Graph and Edges Clusters Imbalance

ACM Small 3,025 1,830
Co-Subject (29,281)

Co-Author (2,210,761)
3 1.1

DBLP Small 4,057 334
Co-Author (11,113)

Co-Conference (5,000,495)
Co-Term (6,776,335)

4 1.6

Amazon Photos Medium 7,487
745

7,487
Co-Purchase (119,043) 8 5.7

Amazon Computers Medium 13,381
767

13,381
Co-Purchase (504,937) 10 17.5

OGBN-ArXiv Large 169,343 128
k-NN (1,862,773)

Co-Citation (2,484,941)
40 942.1

OGBN-Products Large 2,449,029 100
k-NN (26,939,319)

Co-Purchase (126,167,053)
47 668,950

Table 9.3: Clustering results on the small scale datasets.

ACM DBLP
CA CF1 NMI ARI CA CF1 NMI ARI

LMVSC 90.33 ±0.0 90.59 ±0.1 68.33 ±0.2 73.64 ±0.1 52.72 ±0.0 58.30 ±0.0 20.15 ±0.0 14.97 ±0.0

OMSC 70.21 ±0.0 71.11 ±0.0 45.81 ±0.0 43.55 ±0.0 91.45 ±0.0 90.95 ±0.0 74.59 ±0.0 79.82 ±0.0

FDAGF 70.27 ±0.0 79.39 ±0.0 47.07 ±0.1 45.20 ±0.1 89.61 ±0.0 89.39 ±0.0 71.56 ±0.0 75.78 ±0.0

SMVSC 70.45 ±0.0 71.80 ±0.0 46.35 ±0.0 43.91 ±0.0 91.45 ±0.0 90.87 ±0.0 74.50 ±0.0 79.88 ±0.0

MvAGC 83.35 ±4.9 83.49 ±5.0 55.86 ±7.1 58.78 ±8.6 76.62 ±6.4 67.10 ±3.5 59.99 ±10.5 59.87 ±6.5

MAGC 55.81 ±7.8 47.58 ±4.1 26.09 ±12.6 20.05 ±16.6 91.93 ±0.6 91.43 ±0.6 75.28 ±1.1 80.53 ±1.4

MCGC 89.92 ±0.0 89.93 ±0.0 67.03 ±0.0 72.56 ±0.0 87.63 ±0.0 77.24 ±9.9 69.37 ±2.0 79.24 ±7.9

LMGEC 93.00 ±0.0 93.06 ±0.0 75.13 ±0.1 80.27 ±0.1 92.85 ±0.0 92.37 ±0.0 77.40 ±0.0 82.84 ±0.0

MvSCK 93.21 ±0.1 93.22 ±0.1 74.97 ±0.1 80.76 ±0.1 93.09 ±0.1 92.57 ±0.1 78.05 ±0.2 83.36 ±0.2

Table 9.4: Clustering results on the medium scale datasets.

Amazon Photos Amazon Computers
CA CF1 NMI ARI CA CF1 NMI ARI

LMVSC 61.23 ±1.2 55.87 ±1.4 57.17 ±0.7 36.60 ±0.7 64.97 ±0.9 62.24 ±3.4 52.39 ±0.9 48.76 ±0.1

OMSC 61.44 ±0.0 N/A 49.28 ±0.0 36.73 ±0.0 63.99 ±0.0 N/A 42.27 ±0.0 42.89 ±0.0

FDAGF 55.48 ±0.1 49.37 ±0.0 52.96 ±0.1 30.01 ±0.1 64.68 ±4.1 56.93 ±0.8 52.82 ±0.4 44.94 ±2.6

SMVSC 61.67 ±0.1 55.74 ±0.3 50.83 ±0.2 35.99 ±0.1 64.72 ±0.1 49.55 ±0.6 49.09 ±0.4 46.01 ±0.1

MvAGC 45.28 ±6.7 43.15 ±4.4 29.96 ±5.9 20.02 ±3.9 45.82 ±4.1 45.12 ±4.8 28.45 ±5.5 18.98 ±3.1

MAGC 52.36 ±2.7 43.76 ±3.5 48.86 ±2.5 21.42 ±2.3 63.48 ±6.1 51.81 ±10.2 52.47 ±10.1 35.48 ±9.4

MCGC 41.86 ±3.5 26.75 ±7.7 15.16 ±10.6 23.61 ±9.4 45.29 ±0.7 34.17 ±8.2 22.24 ±7.4 26.96 ±10.4

LMGEC 70.93 ±0.0 64.83 ±0.0 60.88 ±0.0 51.05 ±0.0 46.10 ±1.5 40.21 ±0.8 46.14 ±0.9 27.61 ±0.4

MvSCK 75.66 ±2.2 66.56 ±5.0 70.66 ±1.3 58.65 ±2.0 66.34 ±1.5 56.23 ±0.8 57.15 ±0.8 46.27 ±2.0

152



5. Experiments

Table 9.5: Clustering results on the large scale datasets. We allow for a maximum runtime
of two hours per run otherwise we report a timeout.

OGBN-ArXiv OGBN-Products
CA CF1 NMI ARI CA CF1 NMI ARI

LMVSC 30.94 ±0.6 23.51 ±4.6 31.92 ±1.0 20.07 ±0.5 Timeout
OMSC Timeout Timeout
FDAGF Timeout Timeout
SMVSC Timeout Timeout
MvAGC Out of Memory Out of Memory
MAGC Out of Memory Out of Memory
MCGC Timeout Timeout
LMGEC 29.61 ±0.8 16.44 ±0.7 34.53 ±0.3 19.86 ±0.7 36.09 ±1.1 16.23 ±0.7 43.64 ±0.7 21.60 ±0.5

MvSCK 48.29 ±1.8 28.46 ±0.9 46.99 ±0.5 39.15 ±1.2 47.14 ±1.5 16.89 ±1.3 50.80 ±0.8 32.24 ±1.3

Table 9.6: Execution times on the different datasets (in seconds).

ACM DBLP Amazon Photos Amazon Computers OGBN-ArXiv OGBN-Products
LMVSC 2.36 ±0.1 2.97 ±0.1 37.78 ±3.7 144.26 ±14.2 2952.97 ±210.43 Timeout
OMSC 24.66 ±0.2 27.51 ±0.1 288.32 ±43.1 414.94 ±3.7 Timeout Timeout
FDAGF 37.31 ±1.3 68.28 ±3.2 382.76 ±4.2 1555.28 ±50.6 Timeout Timeout
SMVSC 16.94 ±1.6 29.68 ±0.6 169.55 ±14.5 352.40 ±95.5 Timeout Timeout
MvAGC 5.05 ±0.1 5.65 ±0.0 36.59 ±1.0 36.76 ±0.7 Out of Memory Out of Memory
MAGC 21.83 ±1.6 38.12 ±3.8 304.23 ±22.6 8699.82 ±16343.2 Out of Memory Out of Memory
MCGC 738.54 ±4.5 358.56 ±13.5 3803.44 ±434.1 11393.04 ±1690.1 Timeout Timeout
LMGEC 0.63 ±0.4 0.51 ±0.5 2.95 ±0.3 7.80 ±1.0 44.87 ±1.4 601.32 ±29.2

MvSCK 0.18 ±0.1 0.19 ±0.1 0.86 ±0.1 5.96 ±0.2 20.43 ±3.8 239.32 ±14.2

Table 9.7: MvSCK results and running times (in seconds) using different kernels.

ACM DBLP Photos Computers ArXiv Products
Kernel CA Time CA Time CA Time CA Time CA Time CA Time

Quadratic 93.2 0.2 93.1 0.2 75.7 0.9 66.3 6.0 48.3 20.4 47.1 239.3
RBF 93.2 0.8 93.1 2.0 76.2 2.4 65.0 6.5 48.7 15.8 18.6 325.2
Sigmoid 93.2 0.9 93.0 1.9 74.7 2.3 65.6 6.4 34.0 16.6 33.2 231.3

1 3 5 7 9

MvSCK
LMGEC
LMVSC
SMVSC

FDAGF
MAGC
OMSC
MCGC
MvAGC

Figure 9.2: Holm post-hoc mean rank test (α = 0.01) with respect to clustering performance.

153



Chapter 9. Multi-view Attributed Graph Subspace Clustering

1 3 5 7 9

MvSCK
LMGEC
LMVSC
MvAGC

SMVSC
OMSC
MAGC
FDAGF
MCGC

Figure 9.3: Holm post-hoc mean rank test (α = 0.01) with respect to running times.

6. Conclusion

In conclusion, this work introduced a novel scalable framework for multi-view subspace
clustering through leveraging kernel feature maps for the efficient computation of the con-
sensus subspace affinity graph. The proposed approach results in performance gains and
significant speedup thanks to the properties inherent to kernel summation. Extensive exper-
iments on real-world benchmark networks, whatever the degree of overlapping, demonstrate
the algorithm’s superiority over state-of-the-art methods especially in the context of very
large scale network datasets where most other models failed to scale despite using the same
computational resources.

With the next chapter we will explore the case of text clustering through the use of large
language models, specifically, sentence embedding models. We will show how it is possible
to obtain better categorization performance by augmenting those embeddings with semantic
graphs.

154



Chapter 10
Unsupervised Semantic Graph Smoothing
for Text Categorization

This chapter is based on [Fettal, 2024b] where we aimed to create semantically
smooth representations of text embeddings in an unsupervised manner. The goal
is improving results in text categorization tasks.

Objective

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
2 Graph Smoothing & Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3 Smoothing Sentence Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.1 Datasets and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

155



Chapter 10. Unsupervised Semantic Graph Smoothing for Text Categorization

1. Introduction

Text categorization, also known as document categorization, is a natural language pro-
cessing (NLP) task that involves arranging texts into coherent groups based on their content.
It has many applications such as spam detection [Jindal, 2007], sentiment analysis [Melville,
2009], content recommendation [Pazzani, 2007], etc. There are two main approaches to text
categorization: classification (supervised learning) and clustering (unsupervised learning). In
text classification, the process involves training a model using a labeled dataset, where each
document is associated with a specific category. The model learns patterns and relationships
between the text features and the corresponding categories during the training phase. Text
clustering, however, aims to group similar documents together without prior knowledge of
their categories. Unlike text classification, clustering does not require labeled data. Instead,
it focuses on finding inherent patterns and similarities in the text data to create clusters.

In the field of NLP, pretrained models have attained state-of-the-art performances in a
variety of tasks [Devlin, 2019; Liu, 2019; Reimers, 2019], one of which is text classification.
In spite of that, text clustering using such models did not garner significant attention. To
this day most text clustering techniques use the representations of texts generated by some
pretrained model such as Sentence-BERT [Reimers, 2019] and often use classical clustering
approaches such as k-means to obtain a partition of the texts. This is done without any
fine-tuning due to the unsupervised nature of the clustering problem.

Recently, graph filtering has appeared as an efficient and effective technique for learning
representations for attributed network nodes. The effectiveness of this technique has made it
a backbone for popular deep learning architectures for graphs such as the graph convolutional
network (GCN) [Kipf, 2017]. Simplified versions of this deep architecture have been proposed
wherein the learning of large sets of weights has been deemed unnecessary. Their representa-
tion learning scheme works similar to Laplacian smoothing and, by extension, graph filtering.
We can give as examples of these simplified techniques the simple graph convolution (SGC)
[Wu, 2019], and the simple spectral graph convolution (S2GC) [Zhu, 2021]. Some researchers
used GCNs for the task of text classification. Yao et al. [Yao, 2019] proposed TextGCN
which is GCN with a custom adjacency matrix built from word PMI and the TF-IDF of the
documents with the attributes being word count vectors. Lin et al. [Lin, 2021a] proposed
BertGCN which is similar to TextGCN with the difference being that they use BERT repre-
sentation for the GCN and combine their training losses. The issue is that these approaches
are not suitable for learning unsupervised representations since labels are needed, this is a
significant limitation towards their use in unsupervised tasks.

In this work, we propose to use the concept of graph smoothing/filtering, which is the main
component accredited with the success of GCNs [Defferrard, 2016; Kipf, 2017; Li, 2018a], to
semantically "fine-tune" the representations obtained via sentence embedding models to help
traditional clustering (and classification) algorithms better distinguish between semantically
different texts and group together texts which have similar meanings, all in an unsuper-
vised manner. To do this, we build a graph with respect to the text which describes the

156



2. Graph Smoothing & Filtering

semantic similarity between the different documents based on the popular cosine similarity
measure. Our approach yields almost systematic improvement when using filtering on the
textual representations as opposed to using them without filtering in both facets of docu-
ment categorization: classification and clustering. Experiments on eight popular benchmark
datasets support these observations.

2. Graph Smoothing & Filtering

Graph Signal Processing [Shuman, 2013; Ortega, 2018] provides a framework to analyze
and process signals defined on graphs, by extending traditional signal processing concepts and
tools to the graph domain. This allows for the representation and manipulation of signals
in a way that is tailored to the specific structure of the graph. In what follows we refer to
matrices in boldface uppercase and vectors in boldface lowercase.

Graph Signals Graph signals are mappings from the set of vertices to the real numbers. A
graph signal for a given graph G can be represented using vector f = [f(v1), . . . , f(vn)] such
that f : V → R is a real-valued function on the vertex set. The smoothness of a signal f over
graph G can be characterized using the Laplacian quadratic form associated with Laplacian
L:

f⊤Lf = 1
2
∑
i,j

aij(fi − fj)2. (10.1)

These signals can be high dimensional and can represent many kinds of data. In our case,
signals will represent text embeddings.

Graph Filters Smoother graph signals can be obtained by minimizing the quantity de-
scribed in formula (10.1). That is the goal of graph filters and the filtering is generally
done from a spectral perspective. A specific class of filters that additionally has an intuitive
interpretation from a vertex perspective is that of polynomial filters. When the filter is a
P -th order polynomial of the form ĥ(L) =

∑p
m=0 θmLm, the filtered signal at vertex i, is a

linear combination of the components of the input signal at vertices within a P -hop local
neighborhood of vertex i:

fout[i] = αiifin[i] +
∑

j∈N(i,p)
αijfin[j] (10.2)

where N(i, p) is the P -th order neighborhood of vertex i. It is possible to then make the
correspondence with a polynomial filter (from a spectral perspective) as follows:

αij =
p∑

m=dG(i,j)
θm(Lm)ij (10.3)

where dG is the shortest distance between node i and j. Several polynomial filters have been
proposed in the literature such as the ones associated with SGC [Wu, 2019], S2GC [Zhu,

157



Chapter 10. Unsupervised Semantic Graph Smoothing for Text Categorization

Table 10.1: The propagation rules associated with the different polynomial filters. H(0) is
the X. P is the propagation order. α and T are filter-specific hyperparameters.

Filter Propagation Rule

FSGC H(p+1) ← SH(p)

FS2GC H(p+1) ← H(p) + SH(p)

FAPPNP H(p+1) ← (1− α)SH(p) + αH(0)

FDGC H(p+1) ← (1− T
P )H(p) + T

P SH(p)

2021], APPNP [Gasteiger, 2018] and DGC [Wang, 2021b].

3. Smoothing Sentence Embeddings

In this work, we theorize that smoothing sentence embeddings with a semantic similarity
graph can help supervised and unsupervised categorization models better differentiate be-
tween the similar and dissimilar documents, leading to performance gains. A common choice
for quantifying semantic similarity in the context of text is the cosine similarity. Given two
sentence embedding vectors xi,xj ∈ Rd, it is computed as:

cos(xi,xj) = x⊤
i .xj

∥xi∥∥xj∥
. (10.4)

We build a k-nearest neighbors connectivity graph which we denote G based on this similarity
measure i.e. a graph for which each node has exactly k neighbors and whose edge weights
are all equal to one. We characterize the graph G using its adjacency matrix A, we denote
its Laplacian as L. Given a the adjacency matrix, a standard trick to obtain better node
representations consists in adding a self-loop

Â = A + λI (10.5)

where λ is a hyperparameter controlling the number of self-loops. As such in what follows
we consider the symmetrically normalized version of Â, that is

S = D̂−1/2ÂD̂−1/2. (10.6)

Now given a node embedding matrix X and the previous semantic similarity graph. We
consider four polynomial graph filters whose propagation rules we describe in the table 10.1.

4. Experiments

In this section we evaluate our semantically smoothed representations obtained through
four filters on two tasks, clustering and classification, with respect to the original represen-
tations obtained from SentenceBERT, as well as BERT and RoBERTa based baselines.

158



4. Experiments

Table 10.2: Summary statistics of the datasets. Balance refers to the ratio of the most
frequent class over the least frequent class.

Dataset Documents Classes Balance

20 Newsgroup 18,846 20 1.6
DBpedia 12,000 14 1.1
AG News 8,000 4 1.1
BBC News 2,225 5 1.3
Classic3 3,891 3 1.4
Classic4 7,095 4 3.9
R8 7,674 8 76.9
Ohsumed 7,400 23 61.8

Table 10.3: Clustering results in terms of AMI and ARI on the eight datasets.

AMI ARI AMI ARI AMI ARI AMI ARI

20 Newsgroups AG News BBC News Classic3

ENSBERT-base 37.5 ±2.5 15.3 ±1.7 54.1 ±3.6 51.4 ±5.8 81.0 ±5.5 80.0 ±8.5 98.6 ±0.1 99.4 ±0.0
ENSBERT-large 46.1 ±0.7 21.4 ±0.6 58.5 ±2.8 58.2 ±5.9 86.0 ±3.5 86.5 ±6.3 98.4 ±0.2 99.3 ±0.1
ENSRoBERTa-base 37.5 ±1.4 15.9 ±1.8 55.9 ±4.1 52.1 ±4.1 80.0 ±5.3 77.2 ±9.4 98.4 ±0.1 99.3 ±0.1
ENSRoBERTa-large 48.0 ±0.8 23.2 ±1.2 56.7 ±4.6 52.8 ±5.1 85.8 ±3.8 85.1 ±7.2 98.7 ±0.1 99.4 ±0.1
SBERT+kM 62.9 ±0.3 47.4 ±1.0 57.9 ±0.1 60.5 ±0.1 90.8 ±0.2 93.0 ±0.1 96.0 ±0.1 97.6 ±0.1

SB+FSGC+kM 65.4 ±0.4 49.1 ±1.1 60.6 ±0.1 62.4 ±0.3 90.6 ±0.1 92.9 ±0.1 98.8 ±0.0 99.5 ±0.0
SB+FS2GC+kM 64.9 ±0.4 49.0 ±1.1 60.1 ±0.2 62.2 ±0.2 90.9 ±0.1 93.1 ±0.1 98.3 ±0.0 99.2 ±0.0
SB+FAPPNP+kM 65.4 ±0.4 49.8 ±1.2 60.6 ±0.0 62.5 ±0.0 90.6 ±0.1 92.9 ±0.1 98.5 ±0.0 99.3 ±0.0
SB+FDGC+kM 65.6 ±0.7 48.8 ±1.0 60.5 ±1.5 60.5 ±2.2 90.2 ±0.1 92.5 ±0.1 99.1 ±0.0 99.6 ±0.0

Classic4 DBpedia Ohsumed R8

ENSBERT-base 71.4 ±3.5 49.0 ±4.0 73.4 ±2.5 51.0 ±4.0 15.2 ±1.0 9.1 ±1.2 35.3 ±2.0 22.7 ±2.4
ENSBERT-large 73.0 ±1.8 51.1 ±3.2 72.4 ±2.1 47.2 ±4.2 16.1 ±0.9 9.3 ±0.7 35.7 ±3.5 22.8 ±3.1
ENSRoBERTa-base 72.1 ±4.7 51.0 ±4.1 74.2 ±2.6 52.5 ±4.7 17.5 ±0.7 11.4 ±0.8 25.6 ±1.0 13.6 ±1.2
ENSRoBERTa-large 74.1 ±3.5 52.5 ±3.9 72.5 ±2.5 49.0 ±4.4 19.4 ±0.7 12.7 ±0.7 42.4 ±5.6 32.9 ±9.2
SBERT+kM 84.5 ±0.1 86.2 ±0.1 86.0 ±1.4 80.0 ±3.1 39.3 ±0.7 23.5 ±1.2 63.1 ±1.8 45.5 ±3.7

SB+FSGC+kM 85.8 ±2.8 85.6 ±7.4 85.6 ±1.0 78.5 ±2.7 41.8 ±0.5 25.2 ±1.0 65.6 ±0.5 49.0 ±0.6
SB+FS2GC+kM 86.0 ±0.0 86.9 ±0.0 86.6 ±1.2 80.4 ±2.8 41.0 ±0.8 24.5 ±1.5 64.8 ±1.1 47.8 ±0.7
SB+FAPPNP+kM 86.2 ±0.0 87.0 ±0.0 85.8 ±1.0 78.9 ±2.7 41.6 ±0.7 24.9 ±1.5 65.1 ±1.6 48.5 ±1.0
SB+FDGC+kM 86.9 ±0.0 87.7 ±0.0 85.4±1.0 78.4 ±2.2 41.8 ±0.7 24.8±1.7 65.6 ±0.5 49.3 ±0.4

4.1. Datasets and Metrics

We use eight benchmark datasets of varying sizes and number of clusters, and we report
their summary statistics in table 10.2. For the metrics, in the supervised context, we use the
F1 score as the quality metric while in the unsupervised context we use the adjusted rand
index (ARI) [Hubert, 1985] and the adjusted mutual information (AMI) [Vinh, 2009].

4.2. Experimental Settings

For the classification task, we use a random stratified 64%-16%-20% train-val-test split.
We also tune the hyperparameters k of the k-nn graph, order of propagation P , the parameter
λ and the filter specfic parameters α and T . For the clustering task, we use k = 10 for the

159



Chapter 10. Unsupervised Semantic Graph Smoothing for Text Categorization

Table 10.4: Classification results in terms of F1 score on the eight data sets.

20News R8 AGNews BBCNews Classic3 Classic4 DBpedia Ohsumed

BERTbase 80.7 89.94 89.78 95.51 100.0 98.58 97.84 56.48
RoBERTabase 85.48 89.42 88.06 96.73 99.16 96.47 98.22 58.11
SBERT+LR 83.35 90.22 86.25 98.62 99.61 98.19 97.33 62.87

SB+FAPPNP+LR 87.54 90.9 87.9 99.06 99.75 98.36 97.14 67.6
SB+FDGC+LR 87.11 90.08 87.59 98.19 99.61 98.52 97.38 67.09
SB+FS2GC+LR 87.36 91.19 88.33 98.62 99.75 98.19 97.26 67.42
SB+FSGC+LR 87.26 89.22 88.05 99.06 99.61 98.32 97.01 67.05

k-nn graph, set P = 2 as the propagation order, λ = 1, α = .1 and T = 5. We report the
averages of the metrics as well as their standard deviations over 10 runs (for the classification
task, we omit standard deviation due to them being insignificant).

4.3. Experimental Results

Clustering Results We compare the results of the k-means algorithm (kM) applied on
Sentence-BERT (we refer to it as SBERT or SB) embeddings with and without the different
filtering operations. In addition to this, we add a baseline which uses an ensemble technique
[Ait-Saada, 2021] on the layer outputs of the word embedding of BERT and RoBERTa,
this method improves over considering a single layer or taking the mean. We report the
clustering results in table 10.3. The filtering operation systematically leads to better results
on the benchmark with respect to the filterless clustering scheme on all datasets we have
used. These increases are significant in most cases. It also significantly beats the ensemble
approach on most datasets.

Classification Results Similar to the clustering setting, we compare results from a Logistic
Regression (LR) applied on the original sentence embeddings with and without the filtering
operation we introduced. We also use fine-tuned BERT and RoBERTa as baselines (we use
the base versions, we did not use the large versions due to computational restrictions). We
report the results in table 10.4. We see that this operation leads to better performances on
the classification task on the majority of the datasets with respect to the filterless Sentence-
BERT but this performance increase is not as pronounced as for the clustering task. We also
see that the representations we learn lead to competitive results with respect to BERT and
RoBERTa.

Statistical Significance Testing Using the Bonferroni-Dunn post-hoc mean rank test,
we analyze the average ranks of the clustering and classification over the Sentence-BERT
representations with and without filtering in terms of AMI and ARI, for the clustering task,
as well as the F1 score for the classification task on the eight datasets. Figure 10.1 shows
that the clustering and classification results when using the proposed semantically smoothed
representations are statistically similar and that they all outperform the Sentence-BERT

160



5. Conclusion

variant with no filtering in a statistically significant manner with a confidence level of 95%.

2 3 4 5

SB+FAPPNP

SB+FS²GC

SB+FDGC

SB+FSGC

SB

CD

Figure 10.1: Bonferroni-Dunn mean rank test (α = 0.05).

5. Conclusion

We proposed a simple empirical approach that consists in using similarity graphs in an
unsupervised manner to smooth sentence embeddings obtained from pretrained models in
a semantically aware manner. The systematic improvements in performance on both clus-
tering and classification tasks on several benchmark datasets of different scales and balance
underscore the effectiveness of using semantic graph smoothing to improve sentence repre-
sentations.

In the next chapter, we discuss one of the many industrial use cases undertaken within In-
formatique CDC. We will demonstrate how we used some of the concepts developed through-
out this thesis to augment the tabular classification models in order to detect frauds in the
MCF system.

161





Chapter 11
Graph Filtering for Fraud Detection in Mon
Compte Formation

In this chapter, we try to improve classification performance on the "Mon Compte
Formation" data using different graph filtering techniques from the original non-
graph data based on the approaches presented in the previous chapters.

Objective

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

1.1 Mon Compte Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
1.2 Fraud in Mon Compte Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
1.3 Detecting Frauds through Machine Learning . . . . . . . . . . . . . . . . . . . . . . 165

2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
3 Initial Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

3.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
3.2 Boosted Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3.3 Bagged Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3.4 Initial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4 Data Augmentation via Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.1 Augmentation with a single Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.2 Augmentation with multiple Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.3 Augmentation with a Row Graph and Column Graph . . . . . . . . . . . . . . . . 170
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

163



Chapter 11. Graph Filtering for Fraud Detection in Mon Compte Formation

1. Introduction

In this chapter we will show how we leveraged attributed-graphs for the industrial use
case of fraud detection in the Mon Compte Formation. We first start by introducing the
MCF and the type of frauds that plagues it. We then present the project that Caisse des
Depôts implemented in order to address this problem and how we augmented the available
data using graphs in order to improve the performance of classifiers.

1.1. Mon Compte Formation

Mon Compte Formation1 (MCF) is a public scheme that allows each active person to
help fund their professional project. Throughout their working life, they accumulate training
rights, recorded in euros or in hours in their MCF, which can be consulted on the website
and the mobile application Mon Compte Formation. On this portal, they have access to the
catalog of eligible professional training courses for which they can register. Caisse des Dépôts
manages the scheme on behalf of the Ministry of Labour, Employment and Integration. The
purchase of a training offer should enable people to acquire new skills useful for their jobs or
give life to a professional reconversion project. This public service is therefore more valuable
than ever to help people progress in their career and adapt to changes in the labour market
2.

1.2. Fraud in Mon Compte Formation

Fraud from training organisms against the MCF is a lingering problem that has cost
millions of euros to the french government. Two types of fraud can be identified:

Fraud against the MCF users Here, training organisms try to directly access funds from
the users. Advertisements offering gifts in exchange for enrolment in a training offer (such
as a tablet, computer or telephone) or for the recovery of part of the balance in cash, are
contrary to the spirit of this law and are illegal. For example, more than 2,600 formal notices
have already been issued, more than 150 organisations have been excluded from the platform
and nearly 30 criminal complaints have been filed. Organisations or individuals offering this
type of deals are exposed to very serious sanctions: exclusion from the catalog for the training
organisation, administrative sanctions, restitution of earnings and criminal sanctions.

Calls, SMS, emails, or on social networks, fraudsters use the phishing technique as well
as aggressive canvassing. The practice of commercial canvassing is not currently prohibited
in France. However, it can be abusive or fraudulent if the person on the other end of the line
insists that you buy a course or offers you a benefit other than the educational contribution

1https://www.moncompteformation.gouv.fr/
2https://travail-emploi.gouv.fr/formation-professionnelle/droit-a-la-formation-et-orienta

tion-professionnelle/compte-personnel-formation

164

https://www.moncompteformation.gouv.fr/
https://travail-emploi.gouv.fr/formation-professionnelle/droit-a-la-formation-et-orientation-professionnelle/compte-personnel-formation
https://travail-emploi.gouv.fr/formation-professionnelle/droit-a-la-formation-et-orientation-professionnelle/compte-personnel-formation


2. Data Description

(for example, material goods or money) in exchange for enrolling in a course 3.

Fraud against the MCF service The other type of fraud is when a training organism
falsely declares that a trainee has fully or partially (as a percentage) followed a course and
thus requests reimbursement for the course fee from the MCF fund. A team inside Caisse
des Depôts is responsible for checking that the declarations made by the training bodies
correspond to reality. However, due to the large number of payment requests that the CDC
receives, it is impossible to perform a check on each individual request.

1.3. Detecting Frauds through Machine Learning

Caisse des Dépôts launched a machine learning project where the aim is to detect training
organisations that commit the second type of fraud, i.e., fraud against the MCF service. The
idea of this project is to find payment requests that look suspect and might be fraudulent,
this will allow the team responsible for checking these requests to have a higher rate of true
positives, thus avoiding checking valid requests and wasting the agents’ time.

2. Data Description

Since the MCF data contains sensitive information, we will only be presenting general
descriptive statistics of the dataset.. The dataset contains 42,230 payment requests in total
and each payment request is described with more than 90 features. After uninformative
features and one-hot encoding categorical features and add some engineered features, we
obtain exactly 73 features.

The task at hand is that of binary classification, where the only information we can give
about the target is that the corresponding payment request is either considered ’suspect’ or
’not suspect’, they represent 56% and 44% of the data, respectively. We consider that we are
in a supervised setting and we perform an 80%/20% training-test stratified split of the data
set.

3. Initial Model Selection

We start by selecting an initial model from a set of commonly used classification models.
During the project, several models were considered, but for the sake of succinctness we will
only be presenting those that performed significantly better than the remaining ones, namely,
those based on Decision Trees, which are known to be the best performing algorithms on
tabular data as well as for their interpretability.

3https://travail-emploi.gouv.fr/actualites/l-actualite-du-ministere/article/fraude-au-MCF
-prenez-garde-aux-faux-bons-plans-379534

165

https://travail-emploi.gouv.fr/actualites/l-actualite-du-ministere/article/fraude-au-MCF-prenez-garde-aux-faux-bons-plans-379534
https://travail-emploi.gouv.fr/actualites/l-actualite-du-ministere/article/fraude-au-MCF-prenez-garde-aux-faux-bons-plans-379534


Chapter 11. Graph Filtering for Fraud Detection in Mon Compte Formation

3.1. Decision Trees

A decision tree is a structure that resembles a flowchart where each inner node represents
a test for an attribute, each branch represents the result of the test, and each leaf node
represents a Class label. A path from root to leaf represents a classification rule. In machine
learning, decision tree learning is the process of learning a decision tree in a supervised
manner. Here, since we are interested in predicting categorical variables, we will be dealing
with classification trees. Notable decision tree algorithms include ID3 [Quinlan, 1986], C4.5
[Quinlan, 1993], CART [Breiman, 1984], etc.

For instance, the popular machine learning toolkit Scikit-Learn [Pedregosa, 2011] uses the
CART which stands for Classification And Regression Trees. CART constructs binary trees
using the feature and threshold that yield that minimizes impurity at each node. A simple
pseudo-code is provided in algorithm 11.

Algorithm 11: Classification And Regression Trees (CART)
Input : D: dataset of pairs {(xi, yi)}ni=1,

H: impurity function.
Output: T : binary decision tree.
Procedure TreeGrowing (T : tree, m: current node, Q: current dataset)

if |Q| is pure then
Make m a leaf node by setting T [m]← NULL;
return;

end
foreach candidate split θ ← (j, t) do

Partition Q into left and right sets:

Q−
θ ← {(x, y) ∈ Q | xj ≤ t} and Q+

θ ← Q \Q−
θ ;

Compute the impurity incurred from the split:

Gθ(Q)←

∣∣∣Q−
θ

∣∣∣
|Q|

H(Q−
θ ) +

∣∣∣Q+
θ

∣∣∣
|Q|

H(Q+
θ );

end
Save the split T [m]← θ∗ with the lowest incurred impurity where
θ∗ ← arg min

θ
Gθ(Q);

Grow the left subtree of m, TreeGrowing
(
T , m−, Q−

θ∗
)
;

Grow the right subtree of m, TreeGrowing
(
T , m+, Q+

θ∗
)
;

begin
Initialize the binary decision tree T ;
Grow the tree starting from the root TreeGrowing (T , 0, D);

end

166



3. Initial Model Selection

3.2. Boosted Trees

Boosting [Freund, 1996] is a supervised ensemble technique where a set of weak classifiers
are combined in order to obtain a strong classifier. The common idea of boosting algorithms
is that each time a weak learner is added, the data weights are readjusted. Misclassified
inputs gain a higher weight and inputs that are classified correctly lose weight which makes
future weak learners focus more on the previous weak learners’ misclassified examples. In
most applications, decision Trees are generally used as the weak learners. Notable boosting
algorithms include AdaBoost [Freund, 1997], XGBoost [Chen, 2016], etc. For instance, XG-
Boost, from eXtreme Gradient Boosting, works as Newton-Raphson in function space and
has been the algorithm of choice of many teams in machine learning competitions. A generic
pseudo-code for XGBoost is provided in algorithm 12.

Algorithm 12: eXtreme Gradient Boosting (XGBoost)
Input : D: dataset of pairs {(xi, yi)}ni=1,

L: loss function,
Φ: set of weak learners,
η: learning rate.

Output: FM : boosted model.
Initialize model with a constant F0 ← arg min

γ

∑n
i=1 L(yi, γ);

for m ∈ {1, . . . ,M} do
Compute the first-order pseudo-residuals:

∀i ∈ {1, . . . , n}, gim ←
∂L(F (xi), yi)

∂F
|F =Fm−1 ;

Compute the second-order pseudo-residuals:

∀i ∈ {1, . . . , n}, him ←
∂2L(F (xi), yi)

∂F 2 |F =Fm−1 ;

Fit a weak learner on the dataset of pairs
{(

xi,−
gim

him

)}n

i=1
by solving:

fm ← arg min
f∈Φ

n∑
i=1

him

[
− gim

him
− f(xi)

]2
;

Perform a functional gradient descent update:

Fm(x)← Fm−1(x) + ηfm(x);

end

167



Chapter 11. Graph Filtering for Fraud Detection in Mon Compte Formation

3.3. Bagged Trees

Bootstrap aggregating [Breiman, 1996] (or bagging for short) is a supervised ensemble
technique where learners are trained on different random subsets of the data. These subsets
are sampled with replacement, hence the bootstrapping part in the name. Algorithm 13
shows a pseudo-code for the training of a bagging classifier.

Once these learners are trained, an aggregation of the different predictions for the same
data points is performed. This aggregation generally consists in taking the statistical mode
of the different predictions for each single observation which can be interpreted as a voting
process between the different learners.

As with boosting, the most common learner used for bagging is the Decision Tree which
led to this kind of approach having its own name which is the Random Forest [Breiman, 2001].
Additional randomness can be introduced by considering other tree bagging approaches such
as the Extremely Randomized Trees ensemble [Geurts, 2006] where the splits in the trees are
randomized unlike in Random Forests where the best split is deterministic.

Algorithm 13: Bootstrap Aggregating Classifier
Input : D: dataset of pairs {(xi, yi)}ni=1,

L: loss function,
h1, . . . , hM : classifiers.

Output: F : bagged classifier.
for m ∈ {1, . . . ,M} do

Bootstrap a sample Dm from D;
Fit classifier hm on Dm;

end
Aggregate classifiers via a voting F (x)← arg max

y
1hm(x)=y

3.4. Initial Results

We consider three initial models: Decision Trees (CART), XGBoost and Random Forests
(CART). We perform a grid search over a set of possible parameters with a 3-fold cross
validation. The score used to fine-tune the parameters is the F1 score.

Table 11.1: Cross-validation score over the training set (F1%).

Model F1
Decision Tree 62.96
XGBoost 69.86
Random Forest 71.42

The initial results are reported in table 11.1, predictably, the ensemble approaches sig-
nificantly outperform the single decision tree. The bagging approach, Random Forest, in

168



4. Data Augmentation via Graphs

turn, outperforms the boosting approach, XGBoost. Consequently, in what follows, we will
consider the Random Forest model.

4. Data Augmentation via Graphs

We wish to augment the data by introducing neighborhood information via graphs. We
consider three types of augmentations: One with a graph on the rows based on [Fettal, 2022c;
Fettal, 2023b]. One with multiple graphs on the rows [Fettal, 2023c]. And finally, one with
two graphs, one on the rows and one on the columns [Fettal, 2022d].

In each of these scenarios, we assume that we are in a transductive setting, meaning that
we have access to the test set in addition to the training set but no access to the test set
labels.

4.1. Augmentation with a single Graph

The k-nearest neighbor (k-nn) graph is a graph in which two vertices v and w are con-
nected if the distance between them is among the k-th smallest distances from v to all other
data points. Here we create a k-nn graph based on the euclidean metric with a propagation
order p. This augmentation can be formulated as

H← SpX (11.1)

where X is the concatenation of both the train and test sets. S is the propagation matrix
formed from the k-nn graph and preprocessed using the procedure from [Fettal, 2022c]. The
rows of H corresponding to the training set are then fed into the random forest model for
training. Here, S is computed as

S← D̃−1
(
(D−1/2AD−1/2 + αI) + βI

)
(11.2)

where A is the adjacency matrix created from the k-nn graph M via A = (M + M⊤)/2. D
is the degree matrix of A and D̃ is the degree matrix of Ã = D−1/2AD−1/2 + αI. The two
scalars α and β are hyperparameters.

4.2. Augmentation with multiple Graphs

Same as for the previous augmentation type, we create three k-nn graphs. The first one
is based on the euclidean (or l2) metric, the second one is based on the cosine metric and the
last one on the Manhattan (or l1) metric. Here, like in [Fettal, 2023c], we only consider the
first order neighborhood during propagation. We formulate it as

H←
2∑

i=0
αiSiX (11.3)

169



Chapter 11. Graph Filtering for Fraud Detection in Mon Compte Formation

Table 11.2: Results of the original Random Forest and the augmented versions on the test
set. Results are averaged over five runs.

Model ACC F1 NMI ARI
Random Forest (RF) 72.61±0.13 77.30±0.13 15.25±0.21 20.36±0.24
Single Graph + RF 72.85±0.18 77.64±0.15 15.74±0.27 20.79±0.33
Two-way Graph + RF 72.78±0.21 77.67±0.17 15.72±0.32 20.66±0.39
Multi-view Graph + RF 72.86±0.02 77.56±0.02 15.67±0.02 20.81±0.03

with each propagation matrix Si being obtained similarly as the one for the augmentation
with a single graph.

4.3. Augmentation with a Row Graph and Column Graph

In this setting, similar to what was done in [Fettal, 2022d], we have two k-nn graphs,
one created over the rows and which will be based on the euclidean metric, and one created
over the columns and created based on the PPMI score. There will be a propagation order
parameter p over the rows, while for columns, we will only perform a one-hop propagation.
Formally, we have that

H← Sp
RXSC (11.4)

with each propagation matrix SR and SR being obtained similarly as for the two previous
augmentations.

4.4. Results

After performing the hyperparameter tuning via a grid search with 3-fold cross-validation
in order to choose the hyperparameters described when presenting the graph augmented
models. We obtain the results shown in table 11.2. Reported are the accuracy (ACC),
F1 score [Rijsbergen CJ, 1979], normalized mutual information (NMI) [Strehl, 2002], and
adjusted rand index (ARI) [Hubert, 1985]. Results are averaged over five runs.

We see that the models result in a small increase in performance over the four metrics.
Augmentation with the multi-view graph yielded the best clustering accuracy and the best
ARI, augmentation with the two-way graph resulted in the best F1 score, and the augmen-
tation with single graph yielded the best NMI.

Statistical Significance To see if augmentation improves the base model in a statistically
significant manner. We perform Student’s paired t-test where the alternative hypothesis is
that the augmented model has better (greater) perfomance scores. The compared models
are the RF and single graph + RF. For each metric; ACC, F1, NMI, and ARI; the p-value
is less than 0.05 which means that we can reject the null hypothesis in each of these cases.
Consequently, we can conclude that the improvement of the single graph + RF model over

170



5. Conclusion

the RF is statistically significant.

5. Conclusion

In this chapter, we presented an industrial use case inside Caisse des Dépôts and Infor-
matique Caisse des Dépôts for the detection of suspect payment requests made by training
organisms. We have shown how we selected an initial model from a range of commonly used
machine learning models for tabular data. We then showed how we can augment the avail-
able features via augmentation with graphs according to different schemes in a transductive
setting in order to obtain statistically significant better results.

171





Conclusion & Perspectives

The thesis presented approaches for addressing scalability issues in current graph commu-
nity detection models (and representation learning to some extent) and proposed new methods
for clustering (and embedding in some cases) different types of graphs, including classical, bi-
partite, attributed, bipartite attributed, and multi-view attributed graphs. These approaches
leverage techniques such as linear projections, Laplacian smoothing, optimal transport, and
kernel methods. We have three key characteristics: simplicity, cost-effectiveness, and few
hyper-parameters. Below we describe the main highlights of the different chapters and then
we will present some perspectives to consider for the continuation of the work carried out.

In Chapter 4, we presented a novel algorithm for graph clustering with arbitrary size
constraints through the use of optimal transport. This approach generalizes the concept of
normalized and ratio cuts to any notion of size and size distributions. The proposed algorithm
was shown to work well when used as a post-processing step in conjunction with classical
graph cut algorithms, as demonstrated by experiments on balanced and imbalanced datasets.
The results highlighted the effectiveness of our approach in terms of clustering performance
and its ability to recover partitions that closely match the desired distribution.

Chapter 3 [Fettal, 2022b; Fettal, 2023a] presented a novel approach for bipartite graph
clustering using optimal transport that addresses the computational challenges in cluster-
ing sparse data such as document-term matrices. The problem is formulated as a bilinear
program which is solved by an efficient block coordinate descent algorithm to find a sparse
vertex solution. The results of experiments on various document-term datasets indicate that
the proposed method effectively identifies clusters that align with ground truth document
classes and produces semantically meaningful partitions for terms. Additionally, the proposed
method performs better than recent OT co-clustering techniques and is more computationally
efficient.

In Chapter 5 [Fettal, 2022c; Fettal, 2022a], we have demonstrated the effectiveness of
using the simple formulation of the GCN for efficient node embedding and clustering. We
proposed a normalization that makes the GCN encoder act as a low pass filter, a novel
approach that leverages information from both the GCN embedding reconstruction loss and
the cluster structure of the embeddings, and an algorithm which we rigorously studied for
its complexity, and show that it performed better than other graph clustering algorithm in a
more efficient manner. We also discussed how GCC is related to other methods and compared

173



Conclusion & Perspectives

it with other unsupervised methods. The experimental results provided strong evidence for
the performance and effectiveness of our approach.

In Chapter 6 [Fettal, 2023b], we presented an efficient algorithm for attributed graph
clustering through the process of subspace clustering. The algorithm begins by learning an
initial representation of the graph using a simple yet effective neighborhood propagation
step. Next, it learns a factored coefficient matrix using orthogonal constraints, which is
then embedded into a new feature space to create a symmetric and nonnegative affinity
matrix. This affinity matrix is then used in an implicit spectral clustering algorithm. The
experimentation conducted showed that our proposal is effective and efficient compared to
current state-of-the-art attributed-graph clustering algorithms.

In Chapter 7 [Fettal, 2022d; Fettal, 2023d], a new approach for attributed bipartite
Graph clustering was proposed through the use of co-clustering and bilateral graph convolu-
tion. This approach addresses computational and spatial complexity issues by utilizing factor
matrices and nonnegative kernel feature maps. The proposed model was shown to have a
grouping effect, and the bilateral convolution improves performance even when no ground
truth graph is available. Experiments on both synthetic and real datasets demonstrated that
this model is competitive with current state-of-the-art methods for text-attributed graph
clustering, while also being efficient and robust in the face of uninformative graph structures.

In Chapter 8 [Fettal, 2023c] we presented a new model that can jointly perform multi-
view attributed graph representation learning and multi-view attributed clustering. The
proposed model is generic in that it can handle an arbitrary number of graph structures and
feature sets. Experiments show that the proposed model is comparable to more complex
state-of-the-art models, with even better performance and faster computation times on most
benchmarks.

In Chapter 9 we presented a scalable subspace clustering framework that leverages
kernel feature maps for efficiency purposes, outperforming existing methods in clustering
performance and scalability on large datasets.

In Chapter 10 we introduced an approach to unsupervised text representation learn-
ing, focusing on semantic coherence. By utilizing graph smoothing, we enhance sentence
embeddings from pretrained models, resulting in improved performance for text clustering
and classification tasks. The method’s efficacy was demonstrated across eight benchmark
datasets.

Finally, among the many industrial projects undertaken within Caisse des Dépôts and
Informatique Caisse des Dépôts, we have chosen to focus on a use case presented in Chap-
ter 11. Thereby, we discussed an industrial application for identifying potentially fraudulent
payment requests. The process for selecting an initial model from various commonly used
machine learning models for tabular data was outlined, as well as methods for improving
the performance of the model through feature augmentation with graphs in a transductive
setting. The result was a statistically significant improvement in performance. We do sug-
gest, however, that it would be worthwhile to improve the storage of the user and training
programs information as it was challenging dealing with the data as we had to work with

174



Conclusion & Perspectives

snapshots instead of having access to all the data at all time. Additionally, there were several
cases of data inconsistencies that we have found during the data exploration phase which the
industrial partners in charge of CPF were not aware of nor could explain . Note that over
the course of this PhD, CDC implemented additional measures to fight fraud. In addition to
using machine learning approaches for the detection of frauds that have already happened,
they added preventive actions through constraints and conditions for user access to the CPF
funds such as authentication through FranceConnect+.

Our work raises new research questions and opens up several interesting academic and
industrial research directions such as:

Unsupervised Graph Attention Networks. With the GCN, adapting it to learning
unsupervised representations can be easily done via graph filtering process which is akin
to Laplacian smoothing. However, with the graph attention network (GAT) [Veličković,
2018], it is necessary to learn an attention adjacency matrix which can be challenging in an
unsupervised context. This leads to interesting research directions.

Efficient Contrastive Clustering. In this thesis, we proposed a scalability framework
for subspace clustering. Another interesting technique for clustering uses contrastive learning
which also suffers from complexity issues and which can be prohibitive for a lot of applications.

Generic propagation order selection rule. In most of our contributions, there is a
propagation order parameter. While the rule-of-thumbs we proposed resulted in satisfying
results, it would be worthwhile to further investigate this aspect and find a theoretically
sound way of selecting that hyperparameter.

Semi-supervised and unsupervised Learning for the CPF. We had tested semi-
supervised approaches on the CPF project, however, the data we had received was biased
due to being selected based on being flagged as suspicious via selection rules made by the
CPF staff. As such, an interesting idea to try would be to select a representative sample of
the overall data to label and use it for semi-supervised learning. Of course fraudsters will
always come up with new ways to exploit the system, so new representative samples must be
regularly added to the training regime. As such, the ideal fraud detection system ought to
be unsupervised but this will prove to be very challenging.

175





Bibliography

[Affeldt, 2020] Séverine Affeldt, Lazhar Labiod, and Mohamed Nadif. “Spectral clustering via ensemble deep
autoencoder learning (SC-EDAE)”. Pattern Recognition 108 (2020), p. 107522 (cit. on p. ix).

[Affeldt, 2021] Séverine Affeldt, Lazhar Labiod, and Mohamed Nadif. “Regularized bi-directional co-clustering”.
Statistics and Computing 31.3 (2021), pp. 1–17 (cit. on pp. 41, 103).

[Affeldt, 2022] Séverine Affeldt, Lazhar Labiod, and Mohamed Nadif. “CAEclust: A consensus of autoen-
coders representations for clustering”. Image Processing On Line 12 (2022), pp. 590–603 (cit. on p. ix).

[Aggarwal, 2012] Charu C Aggarwal and ChengXiang Zhai. “A survey of text clustering algorithms”. Mining
text data (2012), pp. 77–128 (cit. on p. 101).

[Agrawal, 1998] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan. “Au-
tomatic subspace clustering of high dimensional data for data mining applications”. Proceedings of the 1998
ACM SIGMOD international conference on Management of data. 1998, pp. 94–105 (cit. on p. 52).

[Ahalt, 1990] Stanley C Ahalt, Ashok K Krishnamurthy, Prakoon Chen, and Douglas E Melton. “Competi-
tive learning algorithms for vector quantization”. Neural networks 3.3 (1990), pp. 277–290 (cit. on p. 53).

[Ahmed, 2013] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexan-
der J Smola. “Distributed large-scale natural graph factorization”. Proceedings of the 22nd international
conference on World Wide Web. 2013, pp. 37–48 (cit. on p. 68).

[Ailem, 2016] Melissa Ailem, François Role, and Mohamed Nadif. “Graph modularity maximization as an
effective method for co-clustering text data”. Knowledge-Based Systems 109 (2016), pp. 160–173 (cit. on
p. 25).

[Ailem, 2017] Melissa Ailem, François Role, and Mohamed Nadif. “Model-based co-clustering for the effective
handling of sparse data”. Pattern Recognition 72 (2017), pp. 108–122 (cit. on p. 102).

[Ailon, 2012] Nir Ailon, Noa Avigdor-Elgrabli, Edo Liberty, and Anke Van Zuylen. “Improved approximation
algorithms for bipartite correlation clustering”. SIAM Journal on Computing 41.5 (2012), pp. 1110–1121
(cit. on p. 41).

[Ait-Saada, 2021] Mira Ait-Saada, François Role, and Mohamed Nadif. “How to leverage a multi-layered
transformer language model for text clustering: an ensemble approach”. Proceedings of the 30th ACM
International Conference on Information & Knowledge Management. 2021, pp. 2837–2841 (cit. on p. 160).

[Allab, 2016] Kais Allab, Lazhar Labiod, and Mohamed Nadif. “A semi-NMF-PCA unified framework for
data clustering”. IEEE Transactions on Knowledge and Data Engineering 29.1 (2016), pp. 2–16 (cit. on
p. 68).

[Allab, 2018] Kais Allab, Lazhar Labiod, and Mohamed Nadif. “Simultaneous spectral data embedding and
clustering”. IEEE transactions on neural networks and learning systems 29.12 (2018), pp. 6396–6401 (cit. on
p. 68).

[An, 2015] Jinwon An and Sungzoon Cho. “Variational autoencoder based anomaly detection using recon-
struction probability”. Special Lecture on IE 2.1 (2015), pp. 1–18 (cit. on p. 68).

[Anton Tsitsulin, 2020] Bryan Perozzi Anton Tsitsulin John Palowitch and Emmanuel Müller. “Graph Clus-
tering with Graph Neural Networks”. Proceedings of the 16th International Workshop on Mining and Learn-
ing with Graphs (MLG). 2020 (cit. on pp. 69, 70, 86).

[Asano, 2020] Yuki M. Asano, Christian Rupprecht, and Andrea Vedaldi. “Self-labelling via simultaneous
clustering and representation learning”. International Conference on Learning Representations (ICLR).
2020 (cit. on p. 68).

177



Bibliography

[Barber, 2007] Michael J Barber. “Modularity and community detection in bipartite networks”. Physical
Review E 76.6 (2007), p. 066102 (cit. on pp. 25, 34, 40).

[Belkin, 2003] Mikhail Belkin and Partha Niyogi. “Laplacian Eigenmaps for Dimensionality Reduction and
Data Representation”. Neural Computation 15.6 (2003), pp. 1373–1396 (cit. on p. 68).

[Bhunia, 2021] Ayan Kumar Bhunia, Pinaki Nath Chowdhury, Aneeshan Sain, Yongxin Yang, Tao Xiang,
and Yi-Zhe Song. “More photos are all you need: Semi-supervised learning for fine-grained sketch based
image retrieval”. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 4247–4256 (cit. on p. 52).

[Bhunia, 2020] Ayan Kumar Bhunia, Yongxin Yang, Timothy M Hospedales, Tao Xiang, and Yi-Zhe Song.
“Sketch less for more: On-the-fly fine-grained sketch-based image retrieval”. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 9779–9788 (cit. on p. 52).

[Boutalbi, 2021] Rafika Boutalbi, Lazhar Labiod, and Mohamed Nadif. “Implicit consensus clustering from
multiple graphs”. Data Mining and Knowledge Discovery 35 (2021), pp. 2313–2340 (cit. on p. 26).

[Breiman, 1984] L Breiman. “Classification and Regression Trees”. The Wadsworth & Brooks/Cole (1984)
(cit. on p. 166).

[Breiman, 1996] Leo Breiman. “Bagging predictors”. Machine learning 24.2 (1996), pp. 123–140 (cit. on
p. 168).

[Breiman, 2001] Leo Breiman. “Random forests”. Machine learning 45.1 (2001), pp. 5–32 (cit. on p. 168).
[Brohee, 2006] Sylvain Brohee and Jacques Van Helden. “Evaluation of clustering algorithms for protein-

protein interaction networks”. BMC bioinformatics 7 (2006), pp. 1–19 (cit. on pp. viii, 2).
[Cai, 2008] Deng Cai, Xiaofei He, Xiaoyun Wu, and Jiawei Han. “Non-negative matrix factorization on

manifold”. 2008 eighth IEEE international conference on data mining. IEEE. 2008, pp. 63–72 (cit. on
pp. 44, 119).

[Cai, 2013] Xiao Cai, Feiping Nie, Weidong Cai, and Heng Huang. “New graph structured sparsity model
for multi-label image annotations”. Proceedings of the IEEE International Conference on Computer Vision.
2013, pp. 801–808 (cit. on p. 52).

[Cai, 2020] Yaoming Cai, Zijia Zhang, Zhihua Cai, Xiaobo Liu, Xinwei Jiang, and Qin Yan. “Graph con-
volutional subspace clustering: A robust subspace clustering framework for hyperspectral image”. IEEE
Transactions on Geoscience and Remote Sensing 59.5 (2020), pp. 4191–4202 (cit. on p. 86).

[Cao, 2013] Jie Cao, Zhiang Wu, Junjie Wu, and Wenjie Liu. “Towards information-theoretic k-means clus-
tering for image indexing”. Signal Processing 93.7 (2013), pp. 2026–2037 (cit. on p. 52).

[Cao, 2019] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. “Learning imbalanced
datasets with label-distribution-aware margin loss”. Advances in neural information processing systems 32
(2019) (cit. on p. 63).

[Chang, 2017] Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. “Deep
adaptive image clustering”. Proceedings of the IEEE international conference on computer vision. 2017,
pp. 5879–5887 (cit. on p. 52).

[Chen, 2020] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. “Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view”. Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 34. 2020, pp. 3438–3445 (cit. on p. 97).

[Chen, 2022] Man-Sheng Chen, Chang-Dong Wang, Dong Huang, Jian-Huang Lai, and Philip S Yu. “Ef-
ficient orthogonal multi-view subspace clustering”. Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 2022, pp. 127–135 (cit. on pp. 142, 143).

[Chen, 2016] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system”. Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016, pp. 785–794
(cit. on p. 167).

[Chen, 2019a] Xiaojun Chen, Renjie Chen, Qingyao Wu, Yixiang Fang, Feiping Nie, and Joshua Zhexue
Huang. “LABIN: balanced min cut for large-scale data”. IEEE transactions on neural networks and learning
systems 31.3 (2019), pp. 725–736 (cit. on p. 52).

[Chen, 2017] Xiaojun Chen, Joshua Zhexue Haung, Feiping Nie, Renjie Chen, and Qingyao Wu. “A self-
balanced min-cut algorithm for image clustering”. Proceedings of the IEEE International Conference on
Computer Vision. 2017, pp. 2061–2069 (cit. on pp. 52, 53).

178



Bibliography

[Chen, 2019b] Yong Chen, Hui Zhang, Rui Liu, Zhiwen Ye, and Jianying Lin. “Experimental explorations
on short text topic mining between LDA and NMF based Schemes”. Knowledge-Based Systems 163 (2019),
pp. 1–13 (cit. on p. 102).

[Cheng, 2018] Qimin Cheng, Qian Zhang, Peng Fu, Conghuan Tu, and Sen Li. “A survey and analysis on
automatic image annotation”. Pattern Recognition 79 (2018), pp. 242–259 (cit. on p. 52).

[Chizat, 2020] Lenaic Chizat, Pierre Roussillon, Flavien Léger, François-Xavier Vialard, and Gabriel Peyré.
“Faster wasserstein distance estimation with the sinkhorn divergence”. Advances in Neural Information
Processing Systems 33 (2020), pp. 2257–2269 (cit. on p. 35).

[Chowdhury, 2021] Samir Chowdhury and Tom Needham. “Generalized spectral clustering via Gromov-
Wasserstein learning”. International Conference on Artificial Intelligence and Statistics. PMLR. 2021,
pp. 712–720 (cit. on pp. 57, 62).

[Clanuwat, 2018] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto,
and David Ha. “Deep learning for classical japanese literature”. arXiv preprint arXiv:1812.01718 (2018)
(cit. on p. 62).

[Crouse, 2016] David F Crouse. “On implementing 2D rectangular assignment algorithms”. IEEE Transac-
tions on Aerospace and Electronic Systems 52.4 (2016), pp. 1679–1696 (cit. on p. 63).

[Cui, 2020] Ganqu Cui, Jie Zhou, Cheng Yang, and Zhiyuan Liu. “Adaptive graph encoder for attributed
graph embedding”. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining. 2020, pp. 976–985 (cit. on p. 80).

[Cuturi, 2013] Marco Cuturi. “Sinkhorn distances: Lightspeed computation of optimal transport”. Advances
in neural information processing systems 26 (2013) (cit. on pp. 35, 65).

[Davies, 1979] David L Davies and Donald W Bouldin. “A cluster separation measure”. IEEE transactions
on pattern analysis and machine intelligence 2 (1979), pp. 224–227 (cit. on pp. 44, 58, 95).

[De Soete, 1994] Geert De Soete and J Douglas Carroll. “K-means clustering in a low-dimensional Euclidean
space”. New approaches in classification and data analysis. Springer, 1994, pp. 212–219 (cit. on p. 68).

[Defferrard, 2016] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional neural
networks on graphs with fast localized spectral filtering”. Advances in neural information processing systems
29 (2016), pp. 3844–3852 (cit. on pp. 17, 69, 86, 102, 128, 156).

[Dempster, 1977] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum likelihood from in-
complete data via the EM algorithm”. Journal of the royal statistical society: series B (methodological) 39.1
(1977), pp. 1–22 (cit. on pp. ix, 115).

[Demšar, 2006] Janez Demšar. “Statistical comparisons of classifiers over multiple data sets”. The Journal
of Machine Learning Research 7 (2006), pp. 1–30 (cit. on p. 48).

[Deng, 2012] Li Deng. “The mnist database of handwritten digit images for machine learning research”.
IEEE Signal Processing Magazine 29.6 (2012), pp. 141–142 (cit. on p. 62).

[DeSieno, 1988] Duane DeSieno. “Adding a conscience to competitive learning.” ICNN. Vol. 1. 1988 (cit. on
p. 53).

[Devlin, 2019] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding”. Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). 2019, pp. 4171–4186 (cit. on p. 156).

[Dhillon, 2001] Inderjit S Dhillon. “Co-clustering documents and words using bipartite spectral graph par-
titioning”. Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and
data mining. 2001, pp. 269–274 (cit. on pp. 25, 34, 101–103, 118).

[Dhillon, 2004] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. “Kernel k-means: spectral clustering and
normalized cuts”. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining. 2004, pp. 551–556 (cit. on p. 62).

[Dhillon, 2003] Inderjit S Dhillon, Subramanyam Mallela, and Dharmendra S Modha. “Information-theoretic
co-clustering”. Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and
data mining. 2003, pp. 89–98 (cit. on p. 34).

[Dhillon, 2007] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. “Weighted Graph Cuts without Eigen-
vectors A Multilevel Approach”. IEEE Transactions on Pattern Analysis and Machine Intelligence 29.11
(2007), pp. 1944–1957 (cit. on p. 70).

179



Bibliography

[Dittrich, 2008] Marcus T Dittrich, Gunnar W Klau, Andreas Rosenwald, Thomas Dandekar, and Tobias
Müller. “Identifying functional modules in protein–protein interaction networks: an integrated exact ap-
proach”. Bioinformatics 24.13 (2008), pp. i223–i231 (cit. on pp. viii, 2).

[Dolnicar, 2012] Sara Dolnicar, Sebastian Kaiser, Katie Lazarevski, and Friedrich Leisch. “Biclustering: Over-
coming data dimensionality problems in market segmentation”. Journal of Travel Research 51.1 (2012),
pp. 41–49 (cit. on p. 34).

[Drineas, 2005] Petros Drineas, Michael W Mahoney, and Nello Cristianini. “On the Nyström Method for
Approximating a Gram Matrix for Improved Kernel-Based Learning.” journal of machine learning research
6.12 (2005) (cit. on p. 114).

[Eisen, 1998] Michael B Eisen, Paul T Spellman, Patrick O Brown, and David Botstein. “Cluster analysis
and display of genome-wide expression patterns”. Proceedings of the National Academy of Sciences 95.25
(1998), pp. 14863–14868 (cit. on p. 34).

[Elhamifar, 2013] Ehsan Elhamifar and René Vidal. “Sparse subspace clustering: Algorithm, theory, and
applications”. IEEE transactions on pattern analysis and machine intelligence 35.11 (2013), pp. 2765–2781
(cit. on pp. 52, 144).

[Fan, 2021] Jicong Fan. “Large-Scale Subspace Clustering via k-Factorization”. Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 2021, pp. 342–352 (cit. on pp. 87, 92, 103).

[Fan, 2020] Shaohua Fan, Xiao Wang, Chuan Shi, Emiao Lu, Ken Lin, and Bai Wang. “One2multi graph
autoencoder for multi-view graph clustering”. Proceedings of The Web Conference 2020. 2020, pp. 3070–
3076 (cit. on pp. 44, 126, 137, 142, 149).

[Fan, 2019] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, et al. “Graph Neural Networks
for Social Recommendation”. The World Wide Web Conference. WWW ’19. San Francisco, CA, USA:
Association for Computing Machinery, 2019, pp. 417–426 (cit. on pp. 68, 86, 102, 126).

[Fard, 2020] Maziar Moradi Fard, Thibaut Thonet, and Eric Gaussier. “Deep k-means: Jointly clustering
with k-means and learning representations”. Pattern Recognition Letters 138 (2020), pp. 185–192 (cit. on
pp. 68, 70).

[Feltes, 2019] Bruno César Feltes, Eduardo Bassani Chandelier, Bruno Iochins Grisci, and Márcio Dorn.
“CuMiDa: An Extensively Curated Microarray Database for Benchmarking and Testing of Machine Learn-
ing Approaches in Cancer Research”. Journal of Computational Biology 26.4 (2019), pp. 376–386 (cit. on
p. 47).

[Fettal, 2022a] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. “Apprentissage Joint de la Représenta-
tion et du Clustering avec un Réseau Convolutif sur Graphe”. Extraction et Gestion des Connaissances:
EGC’2022 (2022) (cit. on pp. x, 4, 173).

[Fettal, 2022b] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. “Efficient and Effective Optimal Transport-
Based Biclustering”. Advances in Neural Information Processing Systems. 2022 (cit. on pp. x, 3, 33, 102,
173).

[Fettal, 2022c] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. “Efficient Graph Convolution for Joint
Node Representation Learning and Clustering”. Proceedings of the Fifteenth ACM International Conference
on Web Search and Data Mining. 2022, pp. 289–297 (cit. on pp. x, 4, 45, 54, 58, 61, 67, 88, 91, 97, 104, 117,
132, 169, 173).

[Fettal, 2022d] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. “Subspace Co-clustering with Two-Way
Graph Convolution”. Proceedings of the 31st ACM International Conference on Information & Knowledge
Management. 2022, pp. 3938–3942 (cit. on pp. xi, 4, 99, 102, 169, 170, 174).

[Fettal, 2023a] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. “Biclustering Basé sur le Transport
Optimal”. Extraction et Gestion des Connaissances: EGC’2023 (2023) (cit. on pp. x, 3, 173).

[Fettal, 2023b] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. “Scalable Attributed-Graph Subspace
Clustering”. Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 37. 2023 (cit. on pp. x, 4,
85, 102, 141, 144, 146, 149, 169, 174).

[Fettal, 2023c] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. “Simultaneous Linear Multi-view At-
tributed Graph Representation Learning and Clustering”. Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining. 2023, pp. 303–311 (cit. on pp. xi, 4, 125, 144, 150, 169, 174).

[Fettal, 2023d] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. “Subspace Co-clustering avec Convolu-
tion Bilatérale sur Graphe”. Extraction et Gestion des Connaissances: EGC’2023 (2023) (cit. on pp. xi, 4,
174).

180



Bibliography

[Fettal, 2024a] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. “Boosting Subspace Co-Clustering via
Bilateral Graph Convolution”. IEEE Transactions on Knowledge and Data Engineering 36.3 (2024), pp. 960–
971 (cit. on pp. xi, 4, 99).

[Fettal, 2024b] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. “More Discriminative Sentence Embed-
dings via Semantic Graph Smoothing”. 18th Conference of the European Chapter of the Association for
Computational Linguistics. 2024 (cit. on pp. xi, 4, 155).

[Flamary, 2021] Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon,
Stanislas Chambon, et al. “Pot: Python optimal transport”. Journal of Machine Learning Research 22.78
(2021), pp. 1–8 (cit. on pp. 44, 63).

[Forrow, 2019] Aden Forrow, Jan-Christian Hütter, Mor Nitzan, Philippe Rigollet, Geoffrey Schiebinger, and
Jonathan Weed. “Statistical optimal transport via factored couplings”. The 22nd International Conference
on Artificial Intelligence and Statistics. PMLR. 2019, pp. 2454–2465 (cit. on p. 39).

[Freund, 1996] Yoav Freund, Robert E Schapire, et al. “Experiments with a new boosting algorithm”. icml.
Vol. 96. Citeseer. 1996, pp. 148–156 (cit. on p. 167).

[Freund, 1997] Yoav Freund and Robert E Schapire. “A decision-theoretic generalization of on-line learning
and an application to boosting”. Journal of computer and system sciences 55.1 (1997), pp. 119–139 (cit. on
p. 167).

[Ganganath, 2014] Nuwan Ganganath, Chi-Tsun Cheng, and K Tse Chi. “Data clustering with cluster size
constraints using a modified k-means algorithm”. 2014 International Conference on Cyber-Enabled Dis-
tributed Computing and Knowledge Discovery. IEEE. 2014, pp. 158–161 (cit. on p. 53).

[Gao, 2015] Hongchang Gao, Feiping Nie, Xuelong Li, and Heng Huang. “Multi-view subspace clustering”.
Proceedings of the IEEE international conference on computer vision. 2015, pp. 4238–4246 (cit. on pp. 142,
145, 147).

[Gasteiger, 2018] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. “Predict then Prop-
agate: Graph Neural Networks meet Personalized PageRank”. International Conference on Learning Rep-
resentations. 2018 (cit. on p. 158).

[Genevay, 2019] Aude Genevay, Gabriel Dulac-Arnold, and Jean-Philippe Vert. “Differentiable deep cluster-
ing with cluster size constraints”. arXiv preprint arXiv:1910.09036 (2019) (cit. on pp. 52, 54, 62).

[Geurts, 2006] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely randomized trees”. Machine
learning 63.1 (2006), pp. 3–42 (cit. on p. 168).

[Ghasedi Dizaji, 2017] Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng, Weidong Cai, and Heng
Huang. “Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization”.
Proceedings of the IEEE international conference on computer vision. 2017, pp. 5736–5745 (cit. on p. 68).

[Govaert, 2003] Gérard Govaert and Mohamed Nadif. “Clustering with block mixture models”. Pattern
Recognition 36.2 (2003), pp. 463–473 (cit. on p. 25).

[Govaert, 2008] Gérard Govaert and Mohamed Nadif. “Block clustering with Bernoulli mixture models:
Comparison of different approaches”. Computational Statistics & Data Analysis 52.6 (2008), pp. 3233–3245
(cit. on pp. 47, 101, 118).

[Govaert, 2013] Gérard Govaert and Mohamed Nadif. Co-clustering: models, algorithms and applications.
John Wiley & Sons, 2013 (cit. on pp. 34, 101–103).

[Govaert, 2018] Gérard Govaert and Mohamed Nadif. “Mutual information, phi-squared and model-based
co-clustering for contingency tables”. Advances in data analysis and classification 12.3 (2018), pp. 455–488
(cit. on p. 34).

[Grover, 2016] Aditya Grover and Jure Leskovec. “node2vec: Scalable feature learning for networks”. Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining.
2016, pp. 855–864 (cit. on p. 69).

[Gu, 2008] Jiajun Gu and Jun S Liu. “Bayesian biclustering of gene expression data”. BMC genomics 9.1
(2008), pp. 1–10 (cit. on p. 34).

[Guo, 2018] Ting Guo, Shirui Pan, Xingquan Zhu, and Chengqi Zhang. “CFOND: consensus factorization
for co-clustering networked data”. IEEE Transactions on Knowledge and Data Engineering 31.4 (2018),
pp. 706–719 (cit. on p. 103).

[Haeffele, 2021] Benjamin David Haeffele, Chong You, and Rene Vidal. “A Critique of Self-Expressive Deep
Subspace Clustering”. International Conference on Learning Representations. 2021 (cit. on pp. viii, 2, 87,
103).

181



Bibliography

[Hagen, 1992] Lars Hagen and Andrew B Kahng. “New spectral methods for ratio cut partitioning and
clustering”. IEEE transactions on computer-aided design of integrated circuits and systems 11.9 (1992),
pp. 1074–1085 (cit. on p. 52).

[Halko, 2011] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. “Finding structure with random-
ness: Probabilistic algorithms for constructing approximate matrix decompositions”. SIAM review 53.2
(2011), pp. 217–288 (cit. on pp. 77, 92, 114).

[Hamilton, 2017] William L. Hamilton, Rex Ying, and Jure Leskovec. “Representation Learning on Graphs:
Methods and Applications”. IEEE Data Eng. Bull. 40.3 (2017), pp. 52–74 (cit. on p. 68).

[Handcock, 2007] Mark S Handcock, Adrian E Raftery, and Jeremy M Tantrum. “Model-based clustering
for social networks”. Journal of the Royal Statistical Society: Series A (Statistics in Society) 170.2 (2007),
pp. 301–354 (cit. on pp. viii, 2).

[Harpaz, 2011] Rave Harpaz, Hector Perez, Herbert S Chase, Raul Rabadan, George Hripcsak, and Carol
Friedman. “Biclustering of adverse drug events in the FDA’s spontaneous reporting system”. Clinical Phar-
macology & Therapeutics 89.2 (2011), pp. 243–250 (cit. on p. 34).

[Hartigan, 1972] John A Hartigan. “Direct clustering of a data matrix”. Journal of the american statistical
association 67.337 (1972), pp. 123–129 (cit. on p. 34).

[Hassani, 2020] Kaveh Hassani and Amir Hosein Khasahmadi. “Contrastive multi-view representation learn-
ing on graphs”. International Conference on Machine Learning. PMLR. 2020, pp. 4116–4126 (cit. on p. 27).

[He, 2010] Jianming He and Wesley W Chu. “A social network-based recommender system (SNRS)”. Data
mining for social network data. Springer, 2010, pp. 47–74 (cit. on pp. viii, 2).

[Hersh, 1994] William Hersh, Chris Buckley, TJ Leone, and David Hickam. “OHSUMED: An interactive
retrieval evaluation and new large test collection for research”. SIGIR’94. Springer. 1994, pp. 192–201 (cit.
on p. 44).

[Hitchcock, 1941] Frank L Hitchcock. “The distribution of a product from several sources to numerous lo-
calities”. Journal of mathematics and physics 20.1-4 (1941), pp. 224–230 (cit. on p. 59).

[Hollocou, 2019] Alexandre Hollocou, Thomas Bonald, and Marc Lelarge. “Modularity-based sparse soft
graph clustering”. The 22nd International Conference on Artificial Intelligence and Statistics. PMLR. 2019,
pp. 323–332 (cit. on p. 40).

[Holm, 1979] Sture Holm. “A simple sequentially rejective multiple test procedure”. Scandinavian journal of
statistics (1979), pp. 65–70 (cit. on p. 151).

[Höppner, 2008] Frank Höppner and Frank Klawonn. “Clustering with size constraints”. Computational In-
telligence Paradigms. Springer, 2008, pp. 167–180 (cit. on p. 52).

[Hornik, 2012] Kurt Hornik, Ingo Feinerer, Martin Kober, and Christian Buchta. “Spherical k-Means Clus-
tering”. Journal of Statistical Software, Articles 50.10 (2012), pp. 1–22 (cit. on p. 80).

[Hoshen, 2017] Yedid Hoshen. “VAIN: Attentional Multi-agent Predictive Modeling”. Neural Information
Processing Systems (NIPS). 2017, pp. 2701–2711 (cit. on pp. 68, 86).

[Hu, 2014] Han Hu, Zhouchen Lin, Jianjiang Feng, and Jie Zhou. “Smooth representation clustering”. Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2014, pp. 3834–3841 (cit. on
p. 106).

[Hu, 2020] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, et al. “Open
graph benchmark: Datasets for machine learning on graphs”. Advances in neural information processing
systems 33 (2020), pp. 22118–22133 (cit. on pp. 94, 142, 149).

[Hubert, 1985] Lawrence Hubert and Phipps Arabie. “Comparing partitions”. Journal of classification 2.1
(1985), pp. 193–218 (cit. on pp. 23, 44, 63, 94, 119, 134, 159, 170).

[Jelodar, 2019] Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng, Xiahui Jiang, Yanchao Li, et al. “Latent
Dirichlet allocation (LDA) and topic modeling: models, applications, a survey”. Multimedia Tools and
Applications 78 (2019), pp. 15169–15211 (cit. on p. 102).

[Ji, 2017] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian Reid. “Deep subspace clustering
networks”. Advances in neural information processing systems 30 (2017) (cit. on pp. 52, 87).

[Ji, 2019] Xu Ji, Joao F Henriques, and Andrea Vedaldi. “Invariant information clustering for unsupervised
image classification and segmentation”. Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. 2019, pp. 9865–9874 (cit. on p. 52).

182



Bibliography

[Jindal, 2007] Nitin Jindal and Bing Liu. “Review spam detection”. Proceedings of the 16th international
conference on World Wide Web. 2007, pp. 1189–1190 (cit. on p. 156).

[Kang, 2020] Zhao Kang, Wangtao Zhou, Zhitong Zhao, Junming Shao, Meng Han, and Zenglin Xu. “Large-
scale multi-view subspace clustering in linear time”. Proceedings of the AAAI conference on artificial intel-
ligence. Vol. 34. 04. 2020, pp. 4412–4419 (cit. on pp. 142, 143).

[Karim, 2020a] Md Rezaul Karim, Oya Beyan, Achille Zappa, Ivan G Costa, Dietrich Rebholz-Schuhmann,
Michael Cochez, et al. “Deep learning-based clustering approaches for bioinformatics”. Briefings in Bioin-
formatics (2020), pp. 1–23 (cit. on p. 68).

[Karim, 2020b] Md Rezaul Karim, Michael Cochez, Achille Zappa, Ratnesh Sahay, Dietrich Rebholz-Schuhmann,
Oya Beyan, et al. “Convolutional Embedded Networks for Population Scale Clustering and Bio-ancestry
Inferencing”. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2020) (cit. on p. 68).

[Ketchen, 1996] David J Ketchen and Christopher L Shook. “The application of cluster analysis in strategic
management research: an analysis and critique”. Strategic management journal 17.6 (1996), pp. 441–458
(cit. on p. 98).

[Kipf, 2016] Thomas N Kipf and Max Welling. “Variational Graph Auto-Encoders”. NIPS Workshop on
Bayesian Deep Learning (2016) (cit. on pp. 26, 69, 126, 136).

[Kipf, 2017] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convolutional
Networks”. International Conference on Learning Representations (ICLR). 2017 (cit. on pp. 17, 69, 86, 102,
128, 142, 156).

[Kluger, 2003] Yuval Kluger, Ronen Basri, Joseph T Chang, and Mark Gerstein. “Spectral biclustering of
microarray data: coclustering genes and conditions”. Genome research 13.4 (2003), pp. 703–716 (cit. on
p. 118).

[Konno, 1976] Hiroshi Konno. “A cutting plane algorithm for solving bilinear programs”. Mathematical Pro-
gramming 11.1 (1976), pp. 14–27 (cit. on p. 38).

[Krizhevsky, 2009] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from tiny
images” (2009) (cit. on p. 62).

[Kullback, 1951] Solomon Kullback and Richard A Leibler. “On information and sufficiency”. The annals of
mathematical statistics 22.1 (1951), pp. 79–86 (cit. on p. 63).

[Kumar, 2011] Abhishek Kumar, Piyush Rai, and Hal Daume. “Co-regularized multi-view spectral cluster-
ing”. Advances in neural information processing systems 24 (2011) (cit. on p. 28).

[Labiod, 2011] Lazhar Labiod and Mohamed Nadif. “Co-clustering for binary and categorical data with
maximum modularity”. 2011 IEEE 11th international conference on data mining. IEEE. 2011, pp. 1140–
1145 (cit. on p. 25).

[Labiod, 2021] Lazhar Labiod and Mohamed Nadif. “Efficient regularized spectral data embedding”. Ad-
vances in Data Analysis and Classification 15.1 (2021), pp. 99–119 (cit. on p. 68).

[Laclau, 2017a] Charlotte Laclau and Mohamed Nadif. “Diagonal latent block model for binary data”. Statis-
tics and Computing 27.5 (2017), pp. 1145–1163 (cit. on p. 105).

[Laclau, 2017b] Charlotte Laclau, Ievgen Redko, Basarab Matei, Younes Bennani, and Vincent Brault.
“Co-clustering through optimal transport”. International Conference on Machine Learning. PMLR. 2017,
pp. 1955–1964 (cit. on pp. 34, 47).

[Lang, 1995] Ken Lang. “Newsweeder: Learning to filter netnews”. Proceedings of the Twelfth International
Conference on Machine Learning. 1995, pp. 331–339 (cit. on p. 44).

[Lee, 2022] Seongwon Lee, Hongje Seong, Suhyeon Lee, and Euntai Kim. “Correlation Verification for Image
Retrieval”. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp. 5374–5384 (cit. on p. 52).

[Li, 2018a] Qimai Li, Zhichao Han, and Xiao-Ming Wu. “Deeper insights into graph convolutional networks
for semi-supervised learning”. Proceedings of the AAAI conference on artificial intelligence. Vol. 32. 1. 2018
(cit. on p. 156).

[Li, 2018b] Zhihui Li, Feiping Nie, Xiaojun Chang, Zhigang Ma, and Yi Yang. “Balanced clustering via
exclusive lasso: A pragmatic approach”. Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 32. 1. 2018 (cit. on pp. 52, 53).

[Lin, 2019] Weibo Lin, Zhu He, and Mingyu Xiao. “Balanced Clustering: A Uniform Model and Fast Algo-
rithm.” IJCAI. 2019, pp. 2987–2993 (cit. on p. 53).

183



Bibliography

[Lin, 2021a] Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han, Kun Kuang, Jiwei Li, et al. “Bertgcn:
Transductive text classification by combining gcn and bert”. arXiv preprint arXiv:2105.05727 (2021) (cit.
on p. 156).

[Lin, 2021b] Zhiping Lin and Zhao Kang. “Graph Filter-based Multi-view Attributed Graph Clustering.”
IJCAI. 2021, pp. 2723–2729 (cit. on pp. 126, 137, 142, 144).

[Lin, 2021c] Zhiping Lin, Zhao Kang, Lizong Zhang, and Ling Tian. “Multi-view attributed graph cluster-
ing”. IEEE Transactions on Knowledge and Data Engineering (2021) (cit. on pp. 126, 137, 142, 143).

[Liu, 2010] Guangcan Liu, Zhouchen Lin, and Yong Yu. “Robust subspace segmentation by low-rank repre-
sentation”. Proceedings of the 27th international conference on machine learning (ICML-10). 2010, pp. 663–
670 (cit. on p. 144).

[Liu, 2017] Weiyi Liu, Pin-Yu Chen, Sailung Yeung, Toyotaro Suzumura, and Lingli Chen. “Principled mul-
tilayer network embedding”. 2017 IEEE International Conference on Data Mining Workshops (ICDMW).
IEEE. 2017, pp. 134–141 (cit. on p. 136).

[Liu, 2019] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, et al. “Roberta:
A robustly optimized bert pretraining approach”. arXiv preprint arXiv:1907.11692 (2019) (cit. on p. 156).

[Lloyd, 1982] S. P. Lloyd. “Least squares quantization in PCM”. IEEE Trans. Inf. Theory 28 (1982), pp. 129–
136 (cit. on p. 71).

[Lu, 2012] Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and Shuicheng Yan. “Robust
and efficient subspace segmentation via least squares regression”. European conference on computer vision.
Springer. 2012, pp. 347–360 (cit. on pp. 63, 103, 106).

[Lu, 2013] Canyi Lu, Jiashi Feng, Zhouchen Lin, and Shuicheng Yan. “Correlation adaptive subspace seg-
mentation by trace lasso”. Proceedings of the IEEE international conference on computer vision. 2013,
pp. 1345–1352 (cit. on p. 106).

[Maaten, 2008] Laurens van der Maaten and Geoffrey E. Hinton. “Visualizing High-Dimensional Data Using
t-SNE”. Journal of Machine Learning Research 9 (2008), pp. 2579–2605 (cit. on p. 76).

[Marcheggiani, 2017] Diego Marcheggiani and Ivan Titov. “Encoding Sentences with Graph Convolutional
Networks for Semantic Role Labeling”. Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. Copenhagen, Denmark: Association for Computational Linguistics, 2017, pp. 1506–
1515 (cit. on pp. 68, 86).

[Marcotorchino, 1987] Jean François Marcotorchino. “Block seriation problems: A unified approach. Reply
to the problem of H. Garcia and JM Proth (Applied Stochastic Models and Data Analysis, 1,(1), 25–34
(1985))”. Applied Stochastic Models and Data Analysis 3.2 (1987), pp. 73–91 (cit. on pp. 36, 105).

[Matias, 2014] Catherine Matias and Stéphane Robin. “Modeling heterogeneity in random graphs through
latent space models: a selective review”. ESAIM: Proceedings and Surveys 47 (2014), pp. 55–74 (cit. on
p. 26).

[Mavromatis, 2021] Costas Mavromatis and George Karypis. “Graph InfoClust: Maximizing Coarse-Grain
Mutual Information in Graphs”. PAKDD (1). 2021, pp. 541–553 (cit. on pp. 70, 80, 88, 104).

[Melville, 2009] Prem Melville, Wojciech Gryc, and Richard D Lawrence. “Sentiment analysis of blogs by
combining lexical knowledge with text classification”. Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. 2009, pp. 1275–1284 (cit. on p. 156).

[Mimno, 2011] David Mimno, Hanna Wallach, Edmund Talley, Miriam Leenders, and Andrew McCallum.
“Optimizing semantic coherence in topic models”. Proceedings of the 2011 conference on empirical methods
in natural language processing. 2011, pp. 262–272 (cit. on p. 123).

[Mishra, 2007] Nina Mishra, Robert Schreiber, Isabelle Stanton, and Robert E Tarjan. “Clustering social
networks”. International Workshop on Algorithms and Models for the Web-Graph. Springer. 2007, pp. 56–
67 (cit. on pp. viii, 2).

[Mrabah, 2022] Nairouz Mrabah, Mohamed Bouguessa, Mohamed Fawzi Touati, and Riadh Ksantini. “Re-
thinking graph auto-encoder models for attributed graph clustering”. IEEE Transactions on Knowledge and
Data Engineering (2022) (cit. on p. 27).

[Nemenyi, 1963] Peter Bjorn Nemenyi. Distribution-free multiple comparisons. Princeton University, 1963
(cit. on pp. 48, 97, 121).

[Newman, 2009] David Newman, Sarvnaz Karimi, and Lawrence Cavedon. “External evaluation of topic
models”. in Australasian Doc. Comp. Symp., 2009. Citeseer. 2009 (cit. on p. 45).

184



Bibliography

[Ng, 2001] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. “On Spectral Clustering: Analysis and an
Algorithm”. International Conference on Neural Information Processing Systems: Natural and Synthetic.
Vol. 14. 2001, pp. 849–856 (cit. on pp. 52, 56, 70, 92, 114).

[Nie, 2017] Feiping Nie, Jing Li, Xuelong Li, et al. “Self-weighted Multiview Clustering with Multiple
Graphs.” IJCAI. 2017, pp. 2564–2570 (cit. on p. 137).

[Orlin, 1997] James B Orlin. “A polynomial time primal network simplex algorithm for minimum cost flows”.
Mathematical Programming 78.2 (1997), pp. 109–129 (cit. on pp. 42, 60).

[Ortega, 2018] Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Vandergheynst.
“Graph signal processing: Overview, challenges, and applications”. Proceedings of the IEEE 106.5 (2018),
pp. 808–828 (cit. on pp. 129, 157).

[Pan, 2021] Erlin Pan and Zhao Kang. “Multi-view contrastive graph clustering”. Advances in neural infor-
mation processing systems 34 (2021), pp. 2148–2159 (cit. on pp. 142, 143, 147, 150).

[Pan, 2018] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. “Adversarially
Regularized Graph Autoencoder for Graph Embedding”. Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18. International Joint Conferences on Artificial Intelli-
gence Organization, 2018, pp. 2609–2615 (cit. on p. 27).

[Park, 2020] Chanyoung Park, Donghyun Kim, Jiawei Han, and Hwanjo Yu. “Unsupervised attributed mul-
tiplex network embedding”. Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. 2020,
pp. 5371–5378 (cit. on pp. 126, 137).

[Park, 2019] Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, and Jin Young Choi. “Symmetric
Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning”. Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). 2019 (cit. on pp. 26, 27).

[Parsons, 2004] Lance Parsons, Ehtesham Haque, and Huan Liu. “Subspace clustering for high dimensional
data: a review”. Acm sigkdd explorations newsletter 6.1 (2004), pp. 90–105 (cit. on p. 101).

[Pazzani, 2007] Michael J Pazzani and Daniel Billsus. “Content-based recommendation systems”. The adap-
tive web: methods and strategies of web personalization. Springer, 2007, pp. 325–341 (cit. on p. 156).

[Pedregosa, 2011] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, et al. “Scikit-learn: Machine learning in Python”. the Journal of machine Learning research
12 (2011), pp. 2825–2830 (cit. on pp. 63, 166).

[Perozzi, 2014] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “DeepWalk: online learning of social repre-
sentations”. The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
2014, pp. 701–710 (cit. on p. 68).

[Peyré, 2017] Gabriel Peyré, Marco Cuturi, et al. “Computational optimal transport”. Center for Research
in Economics and Statistics Working Papers 2017-86 (2017) (cit. on pp. 37, 39).

[Peyré, 2019] Gabriel Peyré, Marco Cuturi, et al. “Computational optimal transport: With applications to
data science”. Foundations and Trends® in Machine Learning 11.5-6 (2019), pp. 355–607 (cit. on p. 58).

[Peyré, 2016] Gabriel Peyré, Marco Cuturi, and Justin Solomon. “Gromov-wasserstein averaging of kernel
and distance matrices”. International conference on machine learning. PMLR. 2016, pp. 2664–2672 (cit. on
pp. 56, 59).

[Pham, 2013] Ninh Pham and Rasmus Pagh. “Fast and scalable polynomial kernels via explicit feature
maps”. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data
mining. 2013, pp. 239–247 (cit. on pp. 93, 114, 148).

[Pizzuti, 2014] Clara Pizzuti and Simona E Rombo. “Algorithms and tools for protein–protein interaction
networks clustering, with a special focus on population-based stochastic methods”. Bioinformatics 30.10
(2014), pp. 1343–1352 (cit. on pp. viii, 2).

[Qi, 2017] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel Urtasun. “3D Graph Neural
Networks for RGBD Semantic Segmentation”. 2017 IEEE International Conference on Computer Vision
(ICCV). 2017, pp. 5209–5218 (cit. on pp. 68, 126).

[Quinlan, 1986] J. Ross Quinlan. “Induction of decision trees”. Machine learning 1.1 (1986), pp. 81–106 (cit.
on p. 166).

[Quinlan, 1993] J. Ross Quinlan. C4.5: Programs for Machine Learning. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993 (cit. on p. 166).

185



Bibliography

[Rahimi, 2007] Ali Rahimi and Benjamin Recht. “Random features for large-scale kernel machines”. Ad-
vances in neural information processing systems 20 (2007) (cit. on p. 114).

[Reimers, 2019] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks”. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019,
pp. 3982–3992 (cit. on p. 156).

[Rijsbergen CJ, 1979] van Rijsbergen (CJ). Information retrieval. Butterworth, 1979 (cit. on pp. 134, 170).
[Riverain, 2022] Paul Riverain, Simon Fossier, and Mohamed Nadif. “Semi-supervised Latent Block Model

with pairwise constraints”. Machine Learning 111.5 (2022), pp. 1739–1764 (cit. on pp. 26, 101).
[Rousseeuw, 1987] Peter J Rousseeuw. “Silhouettes: a graphical aid to the interpretation and validation of

cluster analysis”. Journal of computational and applied mathematics 20 (1987), pp. 53–65 (cit. on p. 58).
[Rozemberczki, 2019] Benedek Rozemberczki, Ryan Davies, Rik Sarkar, and Charles Sutton. “Gemsec: Graph

embedding with self clustering”. Proceedings of the 2019 IEEE/ACM international conference on advances
in social networks analysis and mining. 2019, pp. 65–72 (cit. on pp. 26, 70).

[Rumelhart, 1985] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal repre-
sentations by error propagation. Tech. rep. California Univ San Diego La Jolla Inst for Cognitive Science,
1985 (cit. on p. 26).

[Salah, 2018] Aghiles Salah, Melissa Ailem, and Mohamed Nadif. “Word co-occurrence regularized non-
negative matrix tri-factorization for text data co-clustering”. Proceedings of the AAAI Conference on Arti-
ficial Intelligence. Vol. 32. 1. 2018 (cit. on p. 102).

[Salah, 2017a] Aghiles Salah and Mohamed Nadif. “Model-based von mises-fisher co-clustering with a con-
science”. Proceedings of the 2017 SIAM International Conference on Data Mining. SIAM. 2017, pp. 246–254
(cit. on pp. 41, 103).

[Salah, 2017b] Aghiles Salah and Mohamed Nadif. “Social regularized von Mises–Fisher mixture model for
item recommendation”. Data Mining and Knowledge Discovery 31.5 (2017), pp. 1218–1241 (cit. on pp. 68,
126).

[Salha, 2020] Guillaume Salha, Romain Hennequin, and Michalis Vazirgiannis. “Simple and Effective Graph
Autoencoders with One-Hop Linear Models”. European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML-PKDD). 2020, pp. 319–334 (cit. on pp. 70, 71,
80, 129).

[Sanchez-Gonzalez, 2018] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel,
Martin Riedmiller, Raia Hadsell, et al. “Graph networks as learnable physics engines for inference and
control”. International Conference on Machine Learning. 2018, pp. 4470–4479 (cit. on pp. 68, 126).

[Satorras, 2018] Victor Garcia Satorras and Joan Bruna Estrach. “Few-Shot Learning with Graph Neural
Networks”. International Conference on Learning Representations. 2018 (cit. on pp. 68, 86, 126).

[Scetbon, 2022] Meyer Scetbon and marco cuturi. “Low-rank Optimal Transport: Approximation, Statistics
and Debiasing”. Advances in Neural Information Processing Systems. Ed. by Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho. 2022 (cit. on p. 65).

[Scetbon, 2021] Meyer Scetbon, Marco Cuturi, and Gabriel Peyré. “Low-rank sinkhorn factorization”. In-
ternational Conference on Machine Learning. PMLR. 2021, pp. 9344–9354 (cit. on p. 39).

[Sen, 2008] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. “Collective classification in network data”. AI magazine 29.3 (2008), pp. 93–93 (cit. on pp. 44, 79, 94,
102, 119).

[Shchur, 2018] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
“Pitfalls of graph neural network evaluation”. arXiv preprint arXiv:1811.05868 (2018) (cit. on pp. 94, 119,
134, 142, 149).

[Shi, 2000] Jianbo Shi and Jitendra Malik. “Normalized cuts and image segmentation”. IEEE Transactions
on pattern analysis and machine intelligence 22.8 (2000), pp. 888–905 (cit. on pp. 52, 55, 90, 104).

[Shuman, 2013] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
“The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks
and other irregular domains”. IEEE signal processing magazine 30.3 (2013), pp. 83–98 (cit. on pp. 16, 129,
157).

186



Bibliography

[Song, 2018] Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel Gildea. “A Graph-to-Sequence Model for
AMR-to-Text Generation”. the Association for Computational Linguistics, ACL 2018. 2018, pp. 1616–1626
(cit. on p. 68).

[Strehl, 2002] Alexander Strehl and Joydeep Ghosh. “Cluster ensembles—a knowledge reuse framework for
combining multiple partitions”. Journal of machine learning research 3.Dec (2002), pp. 583–617 (cit. on
pp. 94, 134, 170).

[Sun, 2020] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. “InfoGraph: Unsupervised and
Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization”. Interna-
tional Conference on Learning Representations. 2020 (cit. on p. 69).

[Sun, 2021] Mengjing Sun, Pei Zhang, Siwei Wang, Sihang Zhou, Wenxuan Tu, Xinwang Liu, et al. “Scalable
multi-view subspace clustering with unified anchors”. Proceedings of the 29th ACM International Conference
on Multimedia. 2021, pp. 3528–3536 (cit. on pp. 142, 143).

[Tang, 2015] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. “Line: Large-
scale information network embedding”. Proceedings of the 24th international conference on world wide web.
2015, pp. 1067–1077 (cit. on p. 136).

[Templin, 2010] Jonathan Templin, Robert A Henson, et al. Diagnostic measurement: Theory, methods, and
applications. Guilford Press, 2010 (cit. on p. 34).

[Titouan, 2020] Vayer Titouan, Ievgen Redko, Rémi Flamary, and Nicolas Courty. “Co-optimal transport”.
Advances in Neural Information Processing Systems 33 (2020), pp. 17559–17570 (cit. on pp. 34, 47).

[Velickovic, 2019] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and
R Devon Hjelm. “Deep Graph Infomax”. ICLR (Poster) 2.3 (2019), p. 4 (cit. on pp. 69, 80).

[Veličković, 2018] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. “Graph Attention Networks”. International Conference on Learning Representations. 2018
(cit. on p. 175).

[Vinh, 2009] Nguyen Xuan Vinh, Julien Epps, and James Bailey. “Information theoretic measures for clus-
terings comparison: is a correction for chance necessary?” Proceedings of the 26th annual international
conference on machine learning. 2009, pp. 1073–1080 (cit. on p. 159).

[Von Luxburg, 2007] Ulrike Von Luxburg. “A tutorial on spectral clustering”. Statistics and computing 17.4
(2007), pp. 395–416 (cit. on pp. ix, 52).

[Wang, 2017] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. “Mgae: Marginalized
graph autoencoder for graph clustering”. Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management. 2017, pp. 889–898 (cit. on p. 27).

[Wang, 2016] Daixin Wang, Peng Cui, and Wenwu Zhu. “Structural deep network embedding”. Proceedings of
the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. 2016, pp. 1225–
1234 (cit. on p. 69).

[Wang, 2011] Hua Wang, Feiping Nie, Heng Huang, and Fillia Makedon. “Fast nonnegative matrix tri-
factorization for large-scale data co-clustering”. Twenty-Second International Joint Conference on Artificial
Intelligence. 2011 (cit. on p. 34).

[Wang, 2018a] Jianfeng Wang, Mei Lu, Francesco Belardo, and Milan Randić. “The anti-adjacency matrix
of a graph: Eccentricity matrix”. Discrete Applied Mathematics 251 (2018), pp. 299–309 (cit. on p. 36).

[Wang, 2021a] Tongxin Wang, Wei Shao, Zhi Huang, Haixu Tang, Jie Zhang, Zhengming Ding, et al.
“MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification
and biomarker identification”. Nature Communications 12.1 (2021), p. 3445 (cit. on p. 142).

[Wang, 2019] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, et al. “Heterogeneous
graph attention network”. The world wide web conference. 2019, pp. 2022–2032 (cit. on pp. 94, 119, 134).

[Wang, 2018b] Yang Wang and Lin Wu. “Beyond low-rank representations: Orthogonal clustering basis re-
construction with optimized graph structure for multi-view spectral clustering”. Neural Networks 103 (2018),
pp. 1–8 (cit. on p. 103).

[Wang, 2018c] Yang Wang, Lin Wu, Xuemin Lin, and Junbin Gao. “Multiview Spectral Clustering via Struc-
tured Low-Rank Matrix Factorization”. IEEE Transactions on Neural Networks and Learning Systems 29.10
(2018), pp. 4833–4843 (cit. on p. 103).

[Wang, 2015] Yang Wang, Wenjie Zhang, Lin Wu, Xuemin Lin, and Xiang Zhao. “Unsupervised metric
fusion over multiview data by graph random walk-based cross-view diffusion”. IEEE transactions on neural
networks and learning systems 28.1 (2015), pp. 57–70 (cit. on p. 103).

187



Bibliography

[Wang, 2021b] Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. “Dissecting the diffusion process
in linear graph convolutional networks”. Advances in Neural Information Processing Systems 34 (2021),
pp. 5758–5769 (cit. on p. 158).

[Williams, 2000] Christopher Williams and Matthias Seeger. “Using the Nyström method to speed up kernel
machines”. Advances in neural information processing systems 13 (2000) (cit. on p. 148).

[Wu, 2019] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
“Simplifying graph convolutional networks”. International conference on machine learning. PMLR. 2019,
pp. 6861–6871 (cit. on pp. 18, 70, 72, 86, 88, 90, 102, 128, 142, 150, 156, 157).

[Xia, 2014] Rongkai Xia, Yan Pan, Lei Du, and Jian Yin. “Robust multi-view spectral clustering via low-
rank and sparse decomposition”. Proceedings of the AAAI conference on artificial intelligence. Vol. 28. 2014
(cit. on p. 136).

[Xiao, 2017] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms”. arXiv preprint arXiv:1708.07747 (2017) (cit. on p. 62).

[Xu, 2013] Chang Xu, Dacheng Tao, and Chao Xu. “A survey on multi-view learning”. arXiv preprint
arXiv:1304.5634 (2013) (cit. on p. 126).

[Xu, 2017] Danfei Xu, Yuke Zhu, Christopher Choy, and Li Fei-Fei. “Scene Graph Generation by Iterative
Message Passing”. Computer Vision and Pattern Recognition (CVPR). 2017 (cit. on p. 126).

[Xu, 2019] Hongteng Xu, Dixin Luo, and Lawrence Carin. “Scalable gromov-wasserstein learning for graph
partitioning and matching”. Advances in neural information processing systems 32 (2019) (cit. on pp. 56,
62).

[Xu, 2022] Yue Xu, Yong-Lu Li, Jiefeng Li, and Cewu Lu. “Constructing balance from imbalance for long-
tailed image recognition”. European Conference on Computer Vision. Springer. 2022, pp. 38–56 (cit. on
p. 52).

[Yamamoto, 2014] Michio Yamamoto and Heungsun Hwang. “A general formulation of cluster analysis with
dimension reduction and subspace separation”. Behaviormetrika 41.1 (2014), pp. 115–129 (cit. on pp. 68,
74, 130, 132).

[Yang, 2017] Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, and Mingyi Hong. “Towards K-means-friendly
Spaces: Simultaneous Deep Learning and Clustering”. Proceedings of the 34th International Conference on
Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning
Research. 2017, pp. 3861–3870 (cit. on pp. 70, 74, 80).

[Yang, 2015] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y. Chang. “Network Repre-
sentation Learning with Rich Text Information”. IJCAI. 2015 (cit. on pp. 44, 79, 94, 119, 134).

[Yang, 2018a] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph R-CNN for Scene
Graph Generation. 2018 (cit. on pp. 68, 86).

[Yang, 2018b] Yingzhen Yang, Jiashi Feng, Nebojsa Jojic, Jianchao Yang, and Thomas S Huang. “Subspace
learning by L0-induced sparsity”. International Journal of Computer Vision 126.10 (2018), pp. 1138–1156
(cit. on pp. 103, 117).

[Yang, 2022] Yingzhen Yang and Ping Li. “Noisy L0-sparse subspace clustering on dimensionality reduced
data”. Uncertainty in Artificial Intelligence. PMLR. 2022, pp. 2235–2245 (cit. on pp. 103, 117).

[Yao, 2019] Liang Yao, Chengsheng Mao, and Yuan Luo. “Graph convolutional networks for text classifica-
tion”. Proceedings of the AAAI conference on artificial intelligence. Vol. 33. 01. 2019, pp. 7370–7377 (cit. on
p. 156).

[Ying, 2018] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. “Graph convolutional neural networks for web-scale recommender systems”. Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018, pp. 974–983
(cit. on pp. 68, 86, 126).

[You, 2016a] Chong You, Chun-Guang Li, Daniel P Robinson, and René Vidal. “Oracle based active set
algorithm for scalable elastic net subspace clustering”. Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016, pp. 3928–3937 (cit. on pp. 87, 103).

[You, 2016b] Chong You, Daniel Robinson, and René Vidal. “Scalable sparse subspace clustering by orthog-
onal matching pursuit”. Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 3918–3927 (cit. on pp. 87, 103).

188



Bibliography

[Yu, 2020] Zhiwen Yu, Zhongfan Zhang, Wenming Cao, Cheng Liu, Junlong Philip Chen, and Hau San
Wong. “Gan-based enhanced deep subspace clustering networks”. IEEE Transactions on Knowledge and
Data Engineering (2020) (cit. on p. 103).

[Zhang, 2018] Hongming Zhang, Liwei Qiu, Lingling Yi, and Yangqiu Song. “Scalable multiplex network
embedding.” IJCAI. Vol. 18. 2018, pp. 3082–3088 (cit. on p. 136).

[Zhang, 2008] Kai Zhang, Ivor W Tsang, and James T Kwok. “Improved Nyström low-rank approximation
and error analysis”. Proceedings of the 25th international conference on Machine learning. 2008, pp. 1232–
1239 (cit. on p. 93).

[Zhang, 2023] Pei Zhang, Siwei Wang, Liang Li, Changwang Zhang, Xinwang Liu, En Zhu, et al. “Let the
Data Choose: Flexible and Diverse Anchor Graph Fusion for Scalable Multi-View Clustering”. Proceedings
of the AAAI Conference on Artificial Intelligence 37.9 (2023), pp. 11262–11269 (cit. on p. 143).

[Zhang, 2019] Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. “Attributed Graph Clustering via
Adaptive Graph Convolution”. Proceedings of the Twenty-Eighth International Joint Conference on Artifi-
cial Intelligence, IJCAI-19. IJCAI’19. Macao, China: International Joint Conferences on Artificial Intelli-
gence Organization, 2019, pp. 4327–4333 (cit. on pp. 26, 27, 69, 70, 77, 97).

[Zhao, 2021] Han Zhao, Xu Yang, Zhenru Wang, Erkun Yang, and Cheng Deng. “Graph Debiased Con-
trastive Learning with Joint Representation Clustering.” IJCAI. 2021, pp. 3434–3440 (cit. on p. 27).

[Zhou, 2004] Dengyong Zhou and Bernhard Schölkopf. “A regularization framework for learning from graph
data”. ICML 2004 Workshop on Statistical Relational Learning and Its Connections to Other Fields (SRL
2004). 2004, pp. 132–137 (cit. on p. 128).

[Zhu, 2021] Hao Zhu and Piotr Koniusz. “Simple Spectral Graph Convolution”. 9th International Conference
on Learning Representations, ICLR, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021 (cit. on
pp. 26, 28, 70, 74, 86, 88, 104, 156, 157).

[Zhu, 2010] Shunzhi Zhu, Dingding Wang, and Tao Li. “Data clustering with size constraints”. Knowledge-
Based Systems 23.8 (2010), pp. 883–889 (cit. on pp. 52, 53).

[Zhu, 2020] Wenwu Zhu, Xin Wang, and Peng Cui. “Deep learning for learning graph representations”. Deep
Learning: Concepts and Architectures. Springer, 2020, pp. 169–210 (cit. on p. 69).

[Zhu, 2014] Xiangxin Zhu, Dragomir Anguelov, and Deva Ramanan. “Capturing long-tail distributions of
object subcategories”. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2014, pp. 915–922 (cit. on p. 52).

189


	Résumé
	Abstract
	List of Figures
	List of Tables
	Introduction
	Context and Motivations
	Outline and Contributions
	List of Publications

	I State of the Art
	Networks and Graphs
	Networks
	History
	Applications
	Properties

	Graphs
	History
	Definitions
	Types of Graphs
	Graph Signal Processing
	Neural Networks on Graphs


	A Primer on Graph Clustering
	Clustering
	Types of Clustering
	Clustering Performance Metrics

	Bipartite Graph Clustering: Biclustering
	Types of Biclustering

	Attributed Graph Clustering
	Architecture Types
	Learning Paradigms
	Multi-view Attributed Graph Clustering



	II Contributions
	Bipartite Graph Clustering via Optimal Transport
	Introduction
	Methodology
	Preliminaries
	Biclustering using Optimal Transport
	Fuzzy Biclustering via Regularized Optimal Transport

	Links to Existing Work
	Modularity Maximization in Bipartite Graphs.
	Modularity-Based Sparse Soft Graph Clustering.
	Directional Co-clustering with a Conscience.
	Bipartite Correlation Clustering.

	Optimization and Complexity
	Experiments
	Datasets
	Experimental Setup
	Document Clustering
	Term Clustering
	Gene Clustering
	Co-clustering
	Statistical Significance

	Conclusion

	Graph Clustering via Optimal Transport
	Introduction
	Related Work
	Preliminaries
	Graph Cuts
	Optimal Transport

	Graph Cuts with Arbitrary Size Constraints via OT
	Graph Cuts via Optimal Transport.
	Graph Cuts with Size Constraints.
	Transport Plans as Partition Matrices
	Optimization and Complexity.

	Links to Prior Works
	Optimal-Transport Based Biclustering
	OT Kernel k-Means.

	Experiments
	Datasets
	Metrics
	Experimental settings
	Results

	Conclusion

	Attributed Graph Joint Embedding and Clustering
	Introduction
	Related Work
	Proposed Method
	Preliminaries and Notations
	Joint Graph Representation Learning and Clustering
	Linear Graph Embedding
	Normalized Simple Graph Convolution
	Graph Convolutional Clustering
	Connections to Existing Work

	Optimization and Algorithm
	Optimization Procedure
	The GCC Algorithm
	Complexity Analysis

	Experiments
	Datasets
	A Fair Comparison with Baseline Methods
	Experimental Settings
	Clustering Results
	Embedding and Visualization
	Choice of Propagation Matrix

	Conclusion

	Attributed Graph Subspace Clustering
	Introduction
	Related Work
	Subspace Clustering
	Attributed-Graph Clustering

	Preliminaries
	Graph Convolutional Networks
	Simplified Graph Convolutional Networks
	Subspace Clustering

	Proposed Approach
	Simple Graph Convolutional Encoder
	Efficient Subspace Clustering
	Learning the implicit coefficient matrix
	Learning the implicit affinity matrix
	Spectral clustering the implicit affinity matrix

	Complexity Analysis

	Experiments
	Datasets and Metrics
	Baseline Models and algorithms
	Experimental Settings
	Node Clustering Results
	Selection of the Power Hyper-Parameter

	Conclusion

	Attributed Bipartite Graph Subspace clustering
	Introduction
	Related Works
	Self-expressive Subspace Clustering
	Co-clustering
	Attributed Graph Clustering

	Preliminaries and Background
	Self-Expressive Subspace Clustering
	Block seriation
	Neighborhood Propagation & Graph Convolutional Networks

	Proposed Method
	Self-Expressive Subspace Co-clustering
	Promoting the Grouping Effect Through a Bilateral Graph Convolution
	Subspace Co-clustering through LSR
	SC³: A More Efficient Formulation Through Orthogonality Constraints
	Efficiently Solving for Z and W

	Efficient Spectral Clustering of the Kernel Self Representation Matrices
	Nonnegative feature map
	Efficient Spectral Clustering


	Algorithm and Complexity
	Experiments
	Experimental Setup
	Baselines
	Experimental Settings
	Choice of Propagation Matrices

	Co-clustering
	Synthetic Datasets
	Evaluation Metrics
	Performance

	Document Clustering
	Datasets
	Evaluation Metrics
	Choice of Propagation Matrices
	Performance
	Efficiency

	Term Clustering
	Convolution Using k-nn Graphs

	Conclusion

	Multi-view Attributed Graph Joint Embedding and Clustering
	Introduction And Related Work
	Preliminaries
	Definitions and Notations
	Graph Filters and the Simple Graph Convolutional Network

	Proposed Model
	First-order Neighborhood Propagation and Linear Graph Filtering
	Simultaneous Multi-view Attributed Graph Representation Learning and Clustering
	Paying Attention to the Individual Views

	Optimization and Complexity
	Optimizing for G
	Optimizing for F
	Optimizing for W_1,...,W_V
	Optimization Algorithm
	Complexity Analysis

	Experimentation
	Datasets and Metrics
	Baselines
	Experimental Settings
	Experimental Results

	Conclusion

	Multi-view Attributed Graph Subspace Clustering
	Introduction
	Related Work
	Preliminaries
	Subspace Clustering
	Scalable Subspace Clustering
	Multi-view Subspace Clustering

	Methodology
	Weighing Views relative to their Clusterability
	Multi-view Scalability via Kernel Summation
	Optimization
	Complexity Analysis

	Experiments
	Datasets
	Experimental Setup
	Learning Node Representations
	Clustering Results
	Ablation on λ
	Running Times
	Statistical Significance Testing
	Experimenting with other Kernels

	Conclusion

	Unsupervised Semantic Graph Smoothing for Text Categorization
	Introduction
	Graph Smoothing & Filtering
	Smoothing Sentence Embeddings
	Experiments
	Datasets and Metrics
	Experimental Settings
	Experimental Results

	Conclusion

	Graph Filtering for Fraud Detection in Mon Compte Formation
	Introduction
	Mon Compte Formation
	Fraud in Mon Compte Formation
	Detecting Frauds through Machine Learning

	Data Description
	Initial Model Selection
	Decision Trees
	Boosted Trees
	Bagged Trees
	Initial Results

	Data Augmentation via Graphs
	Augmentation with a single Graph
	Augmentation with multiple Graphs
	Augmentation with a Row Graph and Column Graph
	Results

	Conclusion

	Conclusion & Perspectives
	Bibliography


