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VÉRIFICATION PARAMÉTRÉE DE

SYSTÈMES DISTRIBUÉS À MÉMOIRE

PARTAGÉE

Systèmes Distribués

Les systèmes distribués sont des systèmes informatiques composés de processus qui com-
muniquent et qui travaillent ensemble pour accomplir une tâche commune. Les systèmes
distribués sont aujourd’hui omniprésents et essentiels, et la théorie de l’informatique distribuée
a de nombreuses applications dans des domaines comme les télécommunications, la robotique,
les systèmes de partage de fichiers, les modèles biologiques et les réseaux de capteurs. De
nombreux problèmes théoriques se posent dans le cadre de systèmes distribués, notamment sur
comment réaliser l’exclusion mutuelle, l’élection d’un meneur, la synchronisation des horloges,
la cohérence du cache ou le consensus. Nous renvoyons à [Lyn96; Asp24] pour des introductions
détaillées sur la théorie des systèmes distribués et des algorithmes distribués. Dans la théorie
des systèmes distribués, le problème du consensus [PSL80] est d’une importance capitale. Dans
le problème du consensus, 𝑛 processus doivent se mettre d’accord sur une valeur d’un ensemble
donné. Chaque processus commence avec une valeur initiale appelée préférence et doit finir
par décider définitement d’une valeur. Classiquement, le problème considéré est le consensus
binaire où les valeurs possibles sont 0 et 1. Les algorithmes de consensus doivent satisfaire trois
propriétés [PSL80; Asp03] : accord, validité et terminaison. La propriété d’accord exprime que
tous les processus qui décident d’une valeur choisissent la même valeur. La validité demande que
la valeur décidée corresponde à la préférence initiale d’un processus. La terminaison exprime
que tous les processus (non défectueux) finissent par terminer. Le problème du consensus est
particulièrement difficile dans le cas des systèmes asynchrones, c’est-à-dire des systèmes sans
horloge globale où les processus fonctionnent à des vitesses différentes et doivent communiquer
pour se synchroniser. Il existe de nombreux résultats d’impossibilité relatifs au consensus dans
les systèmes asynchrones [FLP85; LA87; DDS87] ; en particulier, il n’existe pas d’algorithme
déterministe résolvant le consensus asynchrone dans le cas où les processus peuvent crasher de
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manière indétectable et où la communication se fait par transmission de messages ou par mé-
moire partagée (voir [FR03] pour un rapport technique sur les résultats d’impossibilité relatifs
au consensus). C’est pourquoi il existe de nombreuses approches différentes qui reposent sur
différentes façons de contourner ces résultats d’impossibilité (voir [Asp03, Section 2]). Deux
approches du problème du consensus asynchrone nous intéressent particulièrement. La pre-
mière consiste à utiliser des algorithmes à rondes, où le code d’un processus prend la forme
d’une boucle for sur une variable 𝑘 (la ronde) allant de 0 à +∞. Dans ce genre d’algorithme,
il est commun que les rondes restreignent la communication d’une manière ou d’une autre, par
exemple en interdisant aux processus de lire des messages provenant de processus à des rondes
différentes, ou en ayant une mémoire partagée propre à chaque ronde dans laquelle seuls les
processus de cette ronde peuvent écrire. Une autre approche du consensus est la randomisation :
alors que le résultat d’impossibilité de [FLP85] interdit que chaque exécution termine, il peut être
contourné en exigeant une terminaison avec probabilité 1 seulement. Plusieurs sources de ran-
domisation peuvent être utilisées, en particulier les lancers de pièces locaux (les processus sont
autorisés à effectuer des expériences aléatoires), les lancers de pièce globaux (des expériences
aléatoires sont effectuées globalement et les résultats sont visibles par tous les processus) et les
planificateurs stochastiques (l’ordre dans lequel les actions se déroulent est décidé de manière
aléatoire). L’un des premiers et des plus célèbres algorithmes de consensus, l’algorithme de
Ben-Or [Ben83], est à la fois à rondes et randomisé ; il en va de même pour de nombreux autres
algorithmes de consensus [BT85; Bra87; AH90; CR93; Asp02; GR07; RS12]. En effet, les
rondes sont généralement utiles pour répéter une expérience aléatoire un nombre arbitraire de
fois afin d’atteindre une probabilité de terminaison de 1.

Toutefois, la conception d’algorithmes pour les systèmes distribués asynchrones est une
tâche difficile. L’asynchronisme fait que le nombre d’entrelacements et donc le nombre de
comportements d’un système distribué sont potentiellement très importants. Les preuves à
la main ne sont souvent pas suffisantes pour garantir l’exactitude. Pour citer Leslie Lamport
[Lam19] :

L’expérience que nous avons acquise au fil des ans en matière de conception
d’algorithmes de synchronisation nous a appris que ce type de preuve n’est pas
très fiable. À plusieurs reprises, nous avons “prouvé” l’exactitude des algorithmes
de synchronisation pour découvrir par la suite qu’ils étaient incorrects.

Les méthodes formelles sont donc nécessaires pour obtenir des garanties de correction pour
les algorithmes distribués.
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Méthodes Formelles pour les Algorithmes Distribués

Il existe de nombreuses approches pour appliquer les méthodes formelles aux systèmes
distribués. Une famille de techniques consiste à implémenter directement l’algorithme dans
un langage qui permet d’écrire une preuve formelle ; cela permet de vérifier non seulement
l’algorithme lui-même, mais aussi son implémentation. Entre autres, Verdi [WWPTWEA15]
fournit un cadre pour implémenter et vérifier les algorithmes distribués en Coq [tea04] et
IronFleet [Haw+17] fournit une méthodologie pour le faire en Dafny [Lei10].

Dans le cadre de cette thèse, nous nous intéressons aux techniques de vérification automa-
tiques, et plus particulièrement au model checking. Le terme model checking fait référence aux
techniques automatisées qui prennent en entrée un modèle du système considéré et une propriété
que le système doit satisfaire et qui vérifient si le modèle satisfait à la propriété. La propriété
peut être, par exemple, l’accessibilité d’un état d’erreur donné ou l’absence de blocage. Si le
model checker conclut que le modèle ne satisfait pas à la propriété, il renvoie généralement
un contre-exemple. Nous nous intéressons aux applications du model checking pour vérifier
la conception de systèmes et d’algorithmes distribués. Il faut noter que le model checking ne
peut pas vérifier formellement le système, mais seulement un modèle du système. Lorsque nous
travaillons sur le model checking, nous supposons implicitement que la traduction du système
vers le modèle est correcte. Pour citer Baier et Katoen [BK08] :

Une méthode de vérification utilisant des techniques basées sur des modèles n’est
bonne que si le modèle du système l’est.

Le livre cité ci-dessus, [BK08], constitue une excellente introduction au model checking.
Nous désignons ici les techniques de model checking de [BK08] sous le nom de model checking
traditionnel. Dans le model checking traditionnel, le model checker explore typiquement tous
les états du système de manière exhaustive, bien qu’avec des algorithmes et des structures de
données appropriées. Parmi les nombreux model checkers existants, l’un des plus célèbres et
des plus puissants est Uppaal [LPY97].

Le model checking traditionnel est couramment appliqué aux systèmes distribués, souvent
avec succès. Nous avons cité plus haut Leslie Lamport soulignant la difficulté de prouver la
correction d’un algorithme distribué. De fait, Lamport considère le model checking comme une
solution à ce problème [Lam06] :

La vérification des modèles d’algorithmes avant leur soumission pour publication
doit devenir la norme.

Une façon classique d’appliquer le model checking aux systèmes distribués est de supposer
que le système est composé d’un nombre fixe 𝑛 de processus et que l’espace d’état de chaque
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processus est fini. Dans ce cas, le système distribué peut être considéré comme un système avec
un nombre d’états finis. L’un des défauts de cette approche est que l’espace d’état subit une
augmentation exponentielle en le nombre 𝑛 de processus, de sorte qu’il peut rapidement devenir
très grand. Les model checkers modernes étant très efficaces, cette approche peut néanmoins
donner des résultats satisfaisants.

Vérification paramétrée

En plus de l’explosion de l’espace d’état mentionnée ci-dessus, les techniques traditionnelles
de model checking présentent une autre limitation importante lorsqu’il s’agit de vérifier des
algorithmes distribués. Un algorithme distribué est typiquement conçu avec le nombre 𝑛 de
processus vu comme un paramètre, de sorte qu’il peut être instancié avec n’importe quelle
valeur de 𝑛. Le model checking traditionnel ne peut prouver la correction que pour des valeurs
fixes de 𝑛, et ne peut donc pas prouver la correction de l’algorithme en général. Cela a conduit la
communauté des méthodes formelles à envisager des systèmes distribués dits paramétrés, dans
lesquels le nombre de processus n’est pas fixé à l’avance.

Un modèle est dit paramétré lorsqu’une certaine valeur n’est pas fixée à l’avance et est donc
considérée comme un paramètre. Un modèle paramétré représente en fait toute une famille de
systèmes : un système pour chaque instanciation du paramètre. Dans cette thèse, le paramètre
considéré est le nombre 𝑛 de processus ; nous utilisons le terme paramétré pour désigner les
modèles et systèmes distribués où le nombre de processus n’est pas fixé à l’avance.

La vérification de modèles paramétrés de systèmes distribués est appelée vérification
paramétrée (voir [Esp14; BJKKRVW15] pour des rapports techniques sur le sujet). L’intérêt de
la vérification paramétrée est triple. Premièrement, elle permet d’éviter l’explosion de l’espace
d’état lorsque l’on considère des systèmes de grande taille. Deuxièmement, elle permet de prou-
ver que le système est correct pour chaque valeur de 𝑛, ce qui n’est pas possible avec le model
checking traditionnel. Troisièmement, considérer le système pour des valeurs arbitrairement
grandes de 𝑛 rend parfois l’analyse plus facile, car cela permet d’exploiter les propriétés de
monotonicité du système.

Dans cette thèse, nous nous intéressons à la vérification paramétrée d’un point de vue
théorique. Nous essayons de concevoir des modèles paramétrés qui capturent (certaines car-
actéristiques) des algorithmes distribués de la littérature et d’étudier, dans ces modèles, les
propriétés qui sont pertinentes pour ces algorithmes. Nous nous concentrerons principalement
sur les modèles d’algorithmes à mémoire partagée. En particulier, nous définirons et étudierons,
dans les chapitres 4 et 5, un modèle à mémoire partagée à rondes qui est destiné à capturer les
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algorithmes à mémoire partagée à rondes tels que l’algorithme de consensus bruité d’Aspnes
[Asp02]. Nous nous intéressons à la décidabilité et aux classes de complexité des problèmes
de décision associés : étant donné une instance du modèle, satisfait-elle la propriété ? Un
avertissement nécessaire est que cette approche théorique est avant tout motivée par la curiosité
intellectuelle ; les résultats obtenus ne se transforment pas nécessairement en des outils de
vérification pratiques. Il arrive qu’en déterminant la complexité d’un problème, on obtienne un
algorithme efficace. Souvent, cependant, la complexité associée est élevée et suggère que, pour
les applications pratiques, il est plus pertinent de considérer des méthodes incomplètes (c’est-
à-dire des méthodes dont la terminaison n’est pas théoriquement garantie mais qui donnent de
bons résultats sur des instances pratiques).

Contributions et organisation

Chapitre 1 Dans le premier chapitre de cette thèse, nous commençons par quelques prélim-
inaires. Dans la section 1.1, nous introduisons les notions mathématiques standard et leurs
notations. Nous introduisons ensuite des concepts de théorie des probabilités qui seront utiles
dans le chapitre 5. Dans la section 1.2, nous introduisons les variables aléatoires, que nous
utilisons comme briques de base pour nos définitions probabilistes. Dans la section 1.3, nous
présentons quelques outils classiques de la théorie des probabilités. Dans la section 1.4, nous
donnons une introduction rapide aux marches aléatoires, en particulier en dimension 1. Enfin,
dans la section 1.5, nous présentons les beaux préordres et quelques résultats sur le sujet qui
seront utiles dans le chapitre 3.

Chapitre 2 L’objet de ce deuxième chapitre est de présenter et d’étudier les systèmes asyn-
chrones à mémoire partagée (ASMS). Dans ce modèle, introduit pour la première fois dans
[EGM13], les processus communiquent en lisant et en écrivant dans une mémoire partagée.
Dans cette thèse, tous les processus sont supposés être identiques et à ensemble d’états fini.
Bien que notre modèle des ASMS soit très similaire à celui de [EGM13; EGM16], il constitue
une généralisation à deux égards : dans notre modèle, la mémoire partagée peut être consti-
tuée de plusieurs registres, et les registres contiennent initialement une valeur initiale. Dans
les modèles paramétrés de systèmes distribués comme les ASMS, les questions étudiées sont
typiquement des problèmes d’accessibilité de la forme ∃𝑛, ∃𝜌 : 𝛾0(𝑛)

∗−→ 𝛾, prop(𝛾), i.e., ils
demandent si, pour un certain nombre de processus, il existe une exécution qui atteint une con-
figuration satisfaisant une certaine propriété prop. Ces problèmes sont appelés paramétrés en
raison de la quantification universelle sur le nombre 𝑛 de processus. La question la plus simple
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est le problème de la couverture, où la propriété est que 𝛾 possède au moins un processus dans
un état particulier, l’état final 𝑞 𝑓 ; ici, la couverture est notée Cover. Cover dans les ASMS
a été étudié dans [EGM13; EGM16] ; plus précisément, le problème étudié dans [EGM13;
EGM16] est la négation de Cover, appelée sûreté. Dans le problème de la sûreté, on demande
qu’il n’y ait pas d’exécution qui mette un processus dans l’état 𝑞 𝑓 , qui est considéré comme
un état d’erreur. Une question plus difficile est le problème de synchronisation qui demande si
l’on peut atteindre une configuration où tous les processus sont dans l’état final 𝑞 𝑓 ; il est dénoté
ici Target. Nous généralisons Cover et Target en un problème d’accessibilité paramétré
plus expressif appelé problème d’accessibilité de présence. Les propriétés considérées sont des
contraintes de présence qui sont des formules exprimant que certains états doivent être peuplés
(au moins un processus se trouve dans l’état en question) et que d’autres doivent être vides
(aucun processus ne se trouve dans l’état en question). Les définitions formelles du modèle
ASMS et des problèmes qui nous intéressent se trouvent dans la section 2.2. Dans la section
2.3, nous présentons la propriété d’imitation : lorsqu’un processus passe de 𝑞1 à 𝑞2, tout autre
processus dans 𝑞1 peut aller dans 𝑞2 sans affecter le reste du système. Cette propriété permet de
prouver une forme de monotonicité de l’ensemble des configurations accessibles. Grâce à cette
propriété, nous définissons une abstraction non comptante qui est correcte et complète pour le
problème de l’accessibilité de présence dans la section 2.4. Nous établissons que ce problème
est NP-complet dans la section 2.5, et que la NP-dureté tient déjà pour Cover. Cela nous amène
à considérer certaines restrictions du modèle dans l’espoir d’obtenir des algorithmes en temps
polynomial. En particulier, la NP-dureté de Cover utilise directement les valeurs initiales des
registres. Par conséquent, dans la section 2.6, nous étudions le cas non initialisé où les registres
ne contiennent initialement aucune valeur. Cette restriction rend effectivement Cover soluble en
temps polynomial, mais les problèmes plus difficiles tels que Target restent NP-durs. Dans la
section 2.7, nous considérons une autre restriction où le système n’a qu’un seul registre partagé
(comme dans [EGM13]). Inspirés par un algorithme similaire dans le modèle des RBN [Fou15],
nous prouvons que, lorsque le système n’a qu’un seul registre, Target peut être résolu dans
PTIME et qu’il en va de même pour le problème de l’accessibilité de présence en supposant que
la contrainte est donnée en forme normale disjonctive. Dans la section 2.8, nous faisons une
petite incursion dans le monde de la complexité paramétrée en étudiant la dépendance de nos
résultats de complexité par rapport au nombre de registres. Nous prouvons que, avec le nombre
de registres comme paramètre de complexité, Cover est FPT mais Target est W[2]-dur.
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Chapitre 3 Dans le troisième chapitre de cette thèse, nous introduisons un modèle plus
abstrait, appelé système à imitation, qui est destiné à capturer les modèles qui bénéficient de la
propriété dite d’imitation. Ces systèmes sont composés d’un nombre arbitraire de identiques
dont l’ensemble d’états est fini. Une configuration du système est donc un multiensemble d’états
accompagné d’une valeur provenant d’un ensemble fini. Cette valeur, appelée point de contrôle,
représente l’état global du système et peut correspondre, e.g., à la valeur de variables partagées
ou à l’état d’un meneur. Une transition prend la forme d’un flux de transfert, qui consiste en
un point de contrôle de départ, un point de contrôle d’arrivée et une fonction exprimant le
nombre de processus pouvant passer d’un état donné à un autre. Nous définissons un cadre
mathématique pour les flux de transfert et en particulier un produit compositionel qui décrit les
possibilités offertes par plusieurs transitions effectuées à la suite. Dans les flux de transfert, si
𝑚 processus sont nécessaires pour passer de 𝑞1 à 𝑞2, alors n’importe quel entier dans J𝑚, +∞J
est autorisé. Cette hypothèse est cruciale et modélise la propriété d’imitation décrite dans le
chapitre 2, d’où le nom système à imitation. Les systèmes asynchrones à mémoire partagée
[EGM13], les réseaux de diffusion reconfigurables [DSTZ12] et les protocoles de population à
observation immédiate [ERW19] sont des exemples de modèles de la littérature qui peuvent être
encodés dans des systèmes à imitation. La section 3.2 est consacré à la définition des systèmes à
imitation, des flux de transfert et aux preuves des propriétés basiques des flux de transfert. Dans
la section 3.3, nous fournissons une borne générale sur les systèmes à imitation appelée borne
structurelle. En particulier, étant donné deux configurations 𝛾1, 𝛾2 telles que 𝛾2 peut être atteint
à partir de 𝛾1, nous bornons le nombre d’étapes nécessaires pour aller de 𝛾1 à 𝛾2. En outre, notre
résultat exprime que, si 𝛾1 et 𝛾2 ont de nombreux processus, on peut trouver 𝛾′1 et 𝛾′2 de taille
bornée qui sont similaires à 𝛾1 et 𝛾2 jusqu’à un certain seuil en le nombre de processus et de telle
sorte que 𝛾′2 peut être atteint à partir de 𝛾′1. Cette borne structurelle est doublement exponentielle
dans le nombre d’états dans la description des processus, mais polynomiale dans le reste de la
description du système. Elle est basée sur un borne sur la longueur des chaînes descendantes
dans N𝑑 [LS21; SS24] introduite dans Section 1.5. Dans la section 3.4, nous expliquons ce
que cette borne structurelle implique pour les systèmes à imitation. En particulier, elle permet
d’obtenir facilement des résultats de décidabilité pour plusieurs problèmes en limitant la taille
des configurations à considérer ; c’est par exemple le cas de la vérification LTL. Dans la section
3.5, nous présentons des applications à d’autres modèles, et en particulier aux ASMS du chapitre
2. Étant donné un protocole ASMS, on peut construire un système à imitation dont la sémantique
correspond à la sémantique accélérée de l’ASMS, i.e., une étape dans le système à imitation
correspond à une transition fixée de l’ASMS appliquée un nombre arbitraire de fois.
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Chapitre 4 Dans ce chapitre, nous introduisons les ASMS à rondes, un modèle conçu pour
capturer les algorithmes de consensus à mémoire partagée à rondes, et en particulier l’algorithme
de consensus bruité d’Aspnes [Asp02]. Pour motiver notre modèle, nous présentons cet algo-
rithme en détail dans la section 4.2. Les algorithmes de consensus à rondes sont généralement
structurés à l’aide d’une boucle for dans laquelle une valeur de ronde 𝑘 va de 0 à +∞. Dans
les ASMS à rondes, chaque ronde possède son propre ensemble de registres, de sorte que le
nombre total de registres n’est pas borné. Tous les processus commencent à la ronde 0 et
progressent de manière asynchrone en terme de ronde, de sorte qu’il n’y a pas de borne a priori
dans la différence de rondes entre les processus. Globalement, les informations relatives à un
processus donné à un moment donné prennent la forme d’une paire (𝑞, 𝑘) où 𝑞 est l’état et 𝑘 la
ronde. Les processus ne peuvent interagir qu’avec les registres des rondes proches. Le premier
problème naturel est à nouveau la couverture où l’on demande d’atteindre une configuration
où au moins un processus est dans l’état 𝑞 𝑓 . Encore une fois, la motivation de ce problème
est que 𝑞 𝑓 modélise un état d’erreur qui doit être évité, de sorte que le système est sûr (pour
tout nombre de processus) si la réponse à Cover est négative. Comme dans le chapitre 2, nous
voulons considérer des problèmes plus généraux, et nous définissons une généralisation des
contraintes de présence du chapitre 2. Dans les contraintes de présence du modèle à rondes,
nous autorisons les quantificateurs sur les valeurs des rondes, mais les quantificateurs ne peuvent
pas être imbriqués. Le problème d’accessibilité de présence est suffisamment expressif pour
exprimer la validité et l’accord des algorithmes de consensus et en particulier de l’algorithme de
consensus bruité d’Aspnes [Asp02]. Le modèle des ASMS à rondes et les problèmes associés
sont présentés dans la section 4.3. Dans la section 4.4, nous commençons notre analyse du
modèle en mettant en évidence des bornes inférieures exponentielles sur le nombre de rondes
pertinentes pour Cover. En fait, même le nombre de rondes qui doivent être pris en compte à
un moment donné peut devoir être exponentiel pour trouver une exécution témoin pour Cover.
Par conséquent, un algorithme à espace polynomial pour Cover ne peut pas naïvement deviner
l’exécution configuration par configuration. Nous fournissons également une borne inférieure
PSPACE pour Cover et donc pour PRP. Dans la section 4.5, nous présentons un algorithme
en espace polynomial pour Cover. Cet algorithme est non-déterministe ; il devine l’exécution
à l’aide d’un mécanisme de fenêtre coulissante. Cette fenêtre coulissante repose sur la no-
tion d’empreinte, qui correspond à la projection d’une exécution sur un ensemble de rondes
consécutives. En utilisant la même abstraction non comptante que dans le chapitre 2, nous
prouvons que l’empreinte d’une exécution bien choisie sur une petite fenêtre de rondes peut
être stockée dans un espace raisonnable, de sorte que l’on peut deviner l’exécution empreinte
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par empreinte. Dans la section 4.6, nous étendons cette appartenance à PSPACE au problème
PRP. L’algorithme devine encore l’empreinte d’exécution par empreinte, mais il doit effectuer
des choix non-déterministes et des calculs supplémentaires pour vérifier que la contrainte de
présence est satisfaite. Pour garantir que cet algorithme fonctionne en espace polynomial, nous
devons supposer que les constantes entières de l’entrée sont encodées en unaire ; dans la sec-
tion 4.7, nous prouvons que, si les entiers sont encodés en binaire, alors PRP et même Cover
deviennent EXPSPACE-complets.

Chapitre 5 De nombreux algorithmes de consensus à rondes nécessitent un nombre illimité de
rondes parce qu’ils sont randomisés et terminent avec probabilité 1 seulement. La randomisation
peut avoir lieu à différents niveaux : au niveau du processus (le code exécuté par le processus
effectue des tirages au sort) ou au niveau du système. La randomisation au niveau du système
peut impliquer des tirages au sort globaux (des tirages au sort dont le résultat est visible par
tous) ou provenir du planificateur (l’ordre dans lequel les processus agissent est sélectionné de
manière aléatoire). Nous nous intéressons au dernier cas, où le planificateur est stochastique.
C’est en effet le type de randomisation utilisé dans l’algorithme de consensus bruité d’Aspnes
[Asp02]. Dans la section 5.2, nous introduisons formellement les planificateurs stochastiques
pour les ASMS à rondes. Jusqu’à la section 5.6 (incluse), le planificateur stochastique considéré
sélectionne simplement le processus suivant qui agit de manière aléatoire uniforme parmi
tous les processus, indépendamment du passé. Si le processus sélectionné a plusieurs actions
possibles, l’action exécutée est sélectionnée de manière aléatoire uniforme parmi toutes les
actions possibles. Dans la section 5.3, nous introduisons les deux propriétés probabilistes qui
nous intéressent. Elles sont liées à un état spécial 𝑞 𝑓 que les processus ne peuvent pas quitter
et qui correspond à la terminaison du processus. La couverture presque sûre exprime que, avec
une probabilité de 1, un processus finit dans l’état final, tandis que la termination presque sûre
exprime que, avec une probabilité de 1, tous les processus se retrouvent dans l’état final. Cette
dernière propriété est particulièrement importante : si l’on considère, par exemple, le protocole
codant l’algorithme de consensus bruité d’Aspnes, la terminaison presque sûre de l’algorithme
est exprimée comme la terminaison presque sûre de l’ASMS à rondes pour tout 𝑛. Dans la section
5.4, nous présentons les résultats de [BMRSS16] relatifs à la couverture presque sûre dans les
ASMS sans rondes. Dans [BMRSS16], les auteurs prouvent une équivalence entre la couverture
presque sûre et une propriété non probabiliste. Cette équivalence stipule que, pour un 𝑛 donné,
𝑞 𝑓 est couvert de façon presque sûre si et seulement s’il peut être couvert à partir de chaque
configuration accessible. Cette équivalence est très pratique, c’est pourquoi nous essayons de
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suivre la même approche pour les ASMS à rondes. Dans la section 5.5, nous prouvons que,
malheureusement, cette équivalence ne tient pas dans notre modèle à rondes. En effet, nous
construisons un protocole qui met en évidence des comportements de marche aléatoire et où il
y a une probabilité non nulle que les processus s’éloignent les uns des autres, de sorte que 𝑞 𝑓
n’est pas couvert de façon presque sûre même s’il peut être couvert à partir de n’importe quelle
configuration accessible. Avec cet exemple, l’analyse de la couverture presque sûre semble très
difficile car les marches aléatoires sont hautement non triviales d’un point de vue mathématique.
Nous essayons donc de restreindre le modèle pour éviter les comportements de marche aléatoire.
Dans la section 5.6, nous présentons une restriction où les processus doivent incrémenter leurs
rondes au même rythme en moyenne. Cependant, nous montrons que cela ne résout pas notre
problème et que des comportements de marche aléatoire peuvent toujours se produire. Dans la
section 5.7, nous considérons une autre famille de planificateurs, appelée planificateurs à temps
d’attente. Un planificateur à temps d’attente s’appuie sur un modèle de temps continu ; chaque
fois qu’un processus effectue une action, le temps qui s’écoule jusqu’à la prochaine action de
ce processus est choisi selon une distribution de probabilité continue. Une fois de plus, ce
choix de planificateur n’empêche pas les comportements de marche aléatoire. Cela nous oblige
à revoir nos ambitions à la baisse et à revenir à nos motivations. Dans la section 5.8, nous
définissons une restriction, appelée absence d’obstruction presque sûre, qui limite fortement le
pouvoir d’expression des systèmes mais qui est typiquement satisfaite par les protocoles pour
les algorithmes de consensus à ronde. Cette restriction est fortement liée à la notion d’absence
d’obstruction présente dans certaines travaux d’algorithmique distribués [Asp24, Chapitre 27]
mais nous l’étendons aux processus non déterministes. L’absence d’obstruction presque sûre
exprime que, dans toute configuration accessible, si tous les processus tombent en panne sauf un,
alors le processus restant finit dans l’état final avec probabilité 1. Nous prouvons que l’absence
d’obstruction presque sûre implique la terminaison presque sûre quelque soit le nombre de
processus. De plus, étant donné un protocole, il est possible de décider en espace polynomial
s’il satisfait ou non la propriété d’absence d’obstruction presque sûre.
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INTRODUCTION

Distributed systems

Distributed systems are computerized systems composed of communicating processes that
work together to perform a common task. Distributed systems are nowadays ubiquitous and
essential, and the theory of distributed computing has numerous applications in many different
areas such as telecommunications, robotics, file-sharing systems, biological models and sensor
networks. Many theoretical problems arise from distributed settings, such as how to perform
mutual exclusion, leader election, clock synchronization, cache coherence or consensus. We
refer to [Lyn96; Asp24] for detailed introductions to the theory of distributed systems and
distributed algorithms. In the theory of distributed systems, the consensus problem [PSL80]
is of paramount importance. In the consensus problem, 𝑛 processes in a distributed system
must agree on a value from a given set. Each process starts with some initial value called
preference, and it must eventually decide of a value once and for all. Typically, one considers the
restricted problem of binary consensus where the set of values is {0, 1}. Consensus algorithms
must satisfy three properties [PSL80; Asp03]: agreement, validity and termination. Agreement
requires that all processes that decide of a value choose the same value. Validity asks that the
decided value is the initial preference of some process. Termination requires that all (non-faulty)
processes eventually terminate. The consensus problem is particularly challenging in the case
of asynchronous systems, i.e., systems where there is no global clock, so that processes may all
run at different speeds and must communicate to synchronize. There are many impossibility
results related to consensus in asynchronous systems [FLP85; LA87; DDS87]; in particular,
there is no deterministic algorithm solving asynchronous consensus in the case where processes
may fail undetectably and where communication is by message-passing or shared-memory (see
[FR03] for a survey on impossibility results for consensus). For this reason, there are many
different approaches to the problem relying on different workarounds to these impossibility
results (see [Asp03, Section 2]). Two approaches to the asynchronous consensus problem are
of particular interest to us. The first one is the use of round-based algorithms, where the code
of a process takes the form of a for loop over a variable 𝑘 (the round) ranging from 0 to
+∞. Oftentimes, the communication is somehow restricted by the round, e.g., by forbidding
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processes to read messages from processes in different rounds, or by having a distinct shared
memory per round that may only be written to by processes at this round. The other approach
is randomization: while the impossibility result from [FLP85] forbids that every execution
terminates, it can be circumvented by requiring termination with probability 1 only. Several
sources of randomization can be used, and in particular local coin tosses (processes are allowed
to perform random experiments), global coin tosses (some random experiments are performed
globally and the results are visible to all processes) and stochastic scheduling (the order in which
actions take place is decided at random). One of the first and most famous consensus algorithms,
Ben-Or’s algorithm [Ben83], is both round-based and randomized; the same is true for many
other consensus algorithms [BT85; Bra87; AH90; CR93; Asp02; GR07; RS12]. Indeed, rounds
are typically useful to repeat a random experiment arbitrarily many times in order to achieve
probability 1 of termination.

The design of algorithms for asynchronous distributed systems, however, is a difficult task.
Asynchronicity means that the number of interleavings and therefore the number of behaviors of
a given distributed system are potentially very large. Hand-written proofs are often not sufficient
to guarantee correctness. To quote Leslie Lamport [Lam19]:

Our experience in years of devising synchronization algorithms has been that this
style of proof is quite unreliable. We have on several occasions “proved” the
correctness of synchronization algorithms only to discover later that they were
incorrect.

Formal methods are needed to obtain guarantees of correctness for distributed algorithms.

Formal Methods for Distributed Algorithms

There are many approaches that apply formal methods to distributed systems. A family of
techniques is to directly implement the algorithm in a language that allows to write a formal proof;
this allows to verify not only the algorithm itself, but also its implementation. Among others,
Verdi [WWPTWEA15] provides a framework to implement and verify distributed algorithms
in Coq [tea04] and IronFleet [Haw+17] provides a methodology to do so using Dafny [Lei10].

For this thesis, we are interested in automated verification techniques, and more specifically
in model checking. The term model checking refers to automated techniques that take as input
a model of the system under consideration and a property that the system must satisfy, and that
check whether the model satisfies the property. The property can be, e.g., whether a given error
state can be reached or whether the system is deadlock-free. If the model checker finds that the
model does not satisfy the property, then it typically returns some form of counter-example. We
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are interested in applications of model checking to verify the design of distributed systems and
algorithms. Note that model checking cannot formally check the system but only a model of the
system. When working with model checking, we implicitly assume that the translation from the
system to the model is correct. To quote Baier and Katoen [BK08]:

Any verification using model-based techniques is only as good as the model of the
system.

The above-cited book [BK08] constitutes a great introduction to model checking. We will refer
to the model-checking techniques from [BK08] as traditional model checking. In traditional
model checking, the model checker will typically explore all states of the system in a brute-force
manner, although using well-chosen algorithms and data structures. Among the many model
checkers available, one of the most famous and powerful ones is Uppaal [LPY97].

Traditional model checking is commonly applied to distributed systems, oftentimes with great
success. We have quoted above Leslie Lamport highlighting the difficulty to prove correctness of
distributed algorithm. In fact, Lamport sees model checking as a solution to this issue [Lam06]:

Model checking algorithms prior to submitting them for publication should become
the norm.

A classic way to apply model checking to distributed systems is to assume that the system
is composed of a fixed number 𝑛 of processes and that the state space of each process is finite.
In this case, the distributed system can be seen as a standard, finite-state system. One of the
flaws of this approach is that the state space suffers an exponential blowup in the number 𝑛 of
processes, so that it can quickly become big. Because modern model checkers are very efficient,
this approach can nonetheless yield satisfying results.

Parameterized Verification

In addition to the state-space explosion mentioned above, traditional model checking tech-
niques present another important limitation when it comes to verification of distributed systems.
A distributed algorithm is typically designed with the number 𝑛 of processes seen as a param-
eter, so that it can be instantiated with any value of 𝑛. Traditional model checking can only
prove correctness for fixed values of 𝑛, and therefore cannot prove correctness of the algorithm
in general. This has lead the formal methods community to consider so-called parameterized
distributed systems, where the number of processes is not fixed beforehand.

A model is called parameterized when some value is not fixed and therefore considered as
a parameter. A parameterized model represents, in fact, a whole family of systems: one system
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for each instantiation of the parameter. In this thesis, the parameter considered is the number 𝑛
of processes; we use the word parameterized to refer to distributed models and systems where
the number of processes in not fixed in advance 1.

Verification of parameterized models of distributed systems is called parameterized verifi-
cation. The interest of parameterized verification is threefold. First, it allows us to avoid the
state-space explosion when considering large systems. Second, it might allow us to prove that
the system is correct for every value of 𝑛, something that is not possible with traditional model
checking. Third, considering the system for arbitrarily large values of 𝑛 sometimes makes the
analysis easier, because it allows to exploit monotonicity properties of the system.

In this thesis, we are interested in parameterized verification from a theoretical point of view.
We try to design parameterized models that capture (some features of) distributed algorithms
from the literature and to study, in these models, properties that are relevant for these algorithms.
We will mostly focus on models for shared-memory algorithm. In particular, we will define and
study, in Chapter 4 and Chapter 5, a round-based shared-memory model that is meant to capture
round-based shared-memory algorithm such as Aspnes’ noisy consensus algorithm [Asp02].
We are interesting in the decidability status and complexity classes of the associated decision
problems: given an instance of the model, does the instance of the model satisfy the property?
A necessary disclaimer is that this theoretical approach is first and foremost motivated by
intellectual curiosity; the results obtained does not necessarily translate to practical verification
tools. Sometimes, while settling the complexity status of a problem, one actually obtains an
efficient algorithm. Oftentimes, however, the associated complexity is high and suggests that,
for practical applications, one should instead look for incomplete methods (i.e., methods whose
termination is not theoretically guaranteed but that perform well on practical instances).

Literature on Parameterized Verification

The first result on parameterized verification can be traced back to 1986 [AK86], where
the authors establish undecidability of parameterized verification in the general case. This
negative result is very simple: if the number of processes is unbounded, then one can make
each process encode one cell of the tape of a Turing machine. In this undecidability proof, the
descriptions of the processes are asymmetric as each process has its own, pre-assigned role.
However, the observation was made that systems with many processes typically consist of the

1. There is one short exception to this choice of terminology for the word parameterized: in Section 2.8, we
perform a study of parameterized complexity with respect to the number of registers, and in this context we use the
word parameterized in a different sense, which is the one of parameterized complexity (see for example [Cyg+15]).
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same code replicated many times. This is the hypothesis made in the seminal work of [GS92],
where the authors consider systems composed of a leader and of arbitrarily many identical
contributors. In [GS92], the processes are finite-state machines that communicate by rendez-
vous, i.e., a communication step consists in two processes exchanging information with each
other. In this setting, the authors obtain decidability of coverability 2 in EXPSPACE, and they
even show that the problem can be solved in polynomial time when there is no leader. Since then,
many variations of this model have been studied. They differ on the means of communication
(broadcast, message passing, shared memory...), the topology of the network (who communicates
to whom), the computational power of a given process (finite-state, pushdown machine, . . . ),
the reliability of the processes (non-faulty, faulty behaviors, Byzantine behaviors). . . We present
here a few interesting models, see [Esp14; BJKKRVW15] for surveys.

One of the means of communication that has received the most attention by the parameter-
ized verification community is the one of broadcast networks [EFM99; FL02; DP08; DSZ10;
DSZ11]. In broadcast networks, processes are finite-state machines, the communication is by
broadcasting a message containing a symbol from a finite alphabet and the topology is complete:
a message sent must be received by everyone. The first positive result on broadcast protocols
is that coverability is decidable [EFM99]; this result, like many others in parameterized verifi-
cation, relies on the theory of well-quasi-orders (see, e.g., [DFGSS17]). More specifically, it
relies on a generic techniques from [ACJT96] later abstracted into the convenient framework
of well-structured transition systems [FS01]. This techniques gives no complexity result; it
was later proved that coverability for broadcast protocols is in fact a very hard problem, as it is
Ackermann-complete [DSZ10]. Moreover, if the topology is seen as a parameter and one asks
whether the system is safe for every topology, then the problem is undecidable [DSZ11]. This
led the community to consider a simpler model, where the topology may reconfigure itself at any
time [DSTZ12]. This model is called reconfigurable broadcast networks, and is meant to model
networks where the communication is unreliable. Indeed, another way of viewing this model
is that any message sent can be received by any subset of the other processes, as if one copy
of the message was sent to each process but copies can get lost. The reconfigurable hypothesis
drastically reduces the complexity of the model; in particular, coverability becomes solvable in
polynomial time [DSTZ12]. Numerous works have followed on the model of reconfigurable
broadcast networks, for example by adding probabilities [BFS14], considering local strategies
[BFS15], extending the computational power of processes [Bal18], considering the more gen-

2. We call coverability the problem of reaching a configuration with a least one process in a control state. This
name varies in the literature; it is in particular often called control-state reachability.
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eral problem of cube reachability [BW21; BGW22], analyzing the cutoff values for coverability
[BBM21] and adding local registers and identifiers [DST13; GMW24].

Many other means of communications have been considered by the community. We have
already mentioned rendez-vous communication; it was the means of communication of the first
positive results in parameterized verification [GS92]. Some subsequent works with rendez-vous
communication have studied more sophisticated questions [AKRSV14]; for the target problem
(where all processes must end up in the final state), deciding whether there is a cutoff (a limit
value in the number of processes above which the answer does not change) is proved decidable in
[HS20]; the variant of non-blocking rendez-vous is studied in [GSS23]. Another studied means
of communication is the one of token-passing [EN03; CTTV04; AJKR14; BGS14] where the
communication consists of a token that circulates among processes, typically in a ring. This
token is often valued, meaning that it carries a value from a fixed set.

A paradigm that is of particular importance to us is the one where processes communicate
by reading from and writing to a shared memory. More specifically, we are interested in com-
munication using non-atomic registers, which was first considered in a context of parameterized
verification in [Hag11]. Non-atomic registers do not allow a process to perform sequences of
actions while excluding other processes: if a process performs a read and a write action, other
processes may act in between the two actions. In other words, there is no locking mechanism.
In [Hag11], the system is composed of a leader and of arbitrarily many followers, all described
by pushdown machines, and coverability is proved to be decidable. This model was then further
studied in [EGM13] (and its journal version [EGM16]) where the authors give it the name
asynchronous shared-memory systems (ASMS for short). In [EGM13; EGM16], the complexity
of coverability in the setting of [Hag11] is proved to be PSPACE-complete, and the complexity
of coverability is settled in several variations on the computation powers of the leader and of
the followers. In particular, if all processes are finite-state machines, then coverability is NP-
complete in presence of a leader and in PTIME without a leader. An abstracted version of ASMS
is studied in [TMW15] where more general decidability results are obtained. In [DEGM15], the
liveness question (where the execution is infinite and must satisfy a Büchi condition) is proved
to be NP-complete when all processes, leader and follower, are finite-state. In [BMRSS16], the
question of almost-sure coverability is studied in ASMS under the assumption that all processes
are identical, finite-state machines. In [FMW17], verification of stuttering-invariant LTL is
proved to be NEXPTIME-complete in presence of a leader when all processes are pushdown
machines. Another work with shared-memory is the one from [BRS21], which is however not
on the ASMS model. In [BRS21], the system is composed of identical finite-state processes and
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each process has a local register and an assigned shared register, so that the number of shared
registers is unbounded. Processes may test the number of occurrences of their value in the shared
registers up to some threshold; in this model, coverability is proved to PSPACE-complete.

Some parameterized models abstract communication using guards. This is the case of
threshold automata [KVW14; KKW18] (see [KLSW23] for a survey of parameterized veri-
fication using threshold automata). Threshold automata are meant to model threshold-based
fault-tolerant distributed algorithms; interestingly, the threshold automata community often
combines theoretical results and practical model-checking experiments. In threshold automata,
processes are abstracted into counters that can only be incremented (meant to represent the
number of times that a given message was sent) and the behavior of the system is represented
by a single finite automaton who transitions may be guarded by thresholds that require a counter
value to be greater than a value depending on some parameters. A related model is the one
of guarded protocols [EK03; EN03; AJK15; JS18], where processes are each described by
instances of a finite-state description whose transitions are guarded by constraints related to the
states of the other processes; guards can be either conjunctive (all other process must satisfy the
guard) or disjunctive (some other process must satisfy the guard).

We end this overview of the literature on parameterized verification by presenting population
protocols. Population protocols were first introduced as a model of distributed computing
[AADFP04]; the communication mechanism consists in pairwise interactions between processes
and is similar to rendez-vous communication. This model is also very similar to the standard
model of Petri nets. We refer to [AR09] for a survey on the model of population protocols
from the point of view of distributed computing. Population protocols were analyzed with
a parameterized approach in [EGLM16], where the authors show that verification of LTL
properties over population protocols is decidable when the LTL property refers to actions of
the population protocol, but that the problem is as hard as Petri net reachability and therefore
Ackermann-complete [CO21]. Many subsequent works have been performed on parameterized
verification of population protocols, we refer to [Esp17; BEJK18] for surveys.

Contributions and Organization

Chapter 1 In the first chapter of the thesis, we start with some useful preliminaries. In
Section 1.1, we introduce standard mathematical notions and their notations. We then introduce
concepts of probability theory that will be useful in Chapter 5. In Section 1.2, we introduce
random variables, which we use as basic bricks for our probabilistic definitions. In Section 1.3,
we introduce some classic tools of probability theory. In Section 1.4, we give a quick introduction
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to random walks, in particular in dimension 1. Finally, in Section 1.5, we present well-quasi-
orders and some known results on the topic which will be useful in Chapter 3.

Chapter 2 The subject of this second chapter is to introduce and study asynchronous shared-
memory systems (ASMS). In this model, first introduced in [EGM13], processes communicate
via reading from and writing to a shared memory. In this thesis, all processes are assumed
to be identical finite-state machines. While our model of ASMS is very similar to the one
of [EGM13; EGM16], it constitutes a generalization in two ways: in our model, the shared-
memory may consist of several registers, and the registers initially hold a special initial value.
In parameterized models of distributed systems like ASMS, the questions studied are typically
reachability problems of the form ∃𝑛, ∃𝜌 : 𝛾0(𝑛)

∗−→ 𝛾, prop(𝛾), i.e., they ask whether, for some
number of processes, there is an execution that reaches a configuration satisfying some property
prop. These problems are called parameterized because of the universal quantification over
the number 𝑛 of processes. The simplest such question is the coverability problem where the
property is that 𝛾 has at least one process in a particular state 𝑞 𝑓 ; here, coverability is denoted
Cover. Cover in ASMS was studied in [EGM13; EGM16]; more precisely, the problem
studied in [EGM13; EGM16] is the negation of Cover, called safety. In the safety problem,
one asks that no execution puts a process on state 𝑞 𝑓 , which is seen as an error state. A more
difficult question is the target problem that asks whether one can reach a configuration where
all processes are in 𝑞 𝑓 ; it is here denoted Target. We generalize Cover and Target into
a more expressive parameterized reachability problem called presence reachability problem.
The properties considered are presence constraints, which are formulas expressing that some
states must be populated (e.g., at least one process is in the state) and some must be empty
(no process is in the state). The formal definition of the ASMS model and of our problems of
interest can be found in Section 2.2. In Section 2.3, we present the copycat property: when a
process goes from 𝑞1 to 𝑞2, any other process in 𝑞1 may go in 𝑞2 without affecting the rest of the
system. This property yields some monotonicity property of the set of reachable configurations.
Thanks to this property, we define a non-counting abstraction that is sound and complete for the
presence reachability problem in Section 2.4. We establish that this problem is NP-complete
in Section 2.5, and that NP-hardness already holds for Cover. This leads us to consider some
restrictions of the model in the hope to obtain polynomial-time algorithms. In particular, the
NP-hardness of Cover directly uses the initial values of the registers. Therefore, in Section 2.6,
we study the uninitialized case where the registers initially contain no value. This restriction
indeed makes Cover solvable in polynomial time, but harder problems such as Target remain
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NP-hard. In Section 2.7, we consider another restriction where the system has one shared
register only (as in [EGM13]). Inspired by a similar algorithm for RBN [Fou15], we prove that,
when the system has a single register, Target can be solved in PTIME and that the same is true
of the presence reachability problem assuming that the constraint is given in disjunctive normal
form. In Section 2.8, we make a small incursion into the world of parameterized complexity by
studying the dependency of our complexity results with respect to the number of registers. We
prove that, with the number of registers as complexity parameter, Cover is FPT but Target is
W[2]-hard.

Chapter 3 In the third chapter of this thesis, we introduce a more abstract model, called
copycat systems, which is meant to capture models that enjoy the so-called copycat property.
Such systems are composed of an arbitrary number of finite-state, identical processes. A
configuration of the system is therefore a multiset of states along with a value from a finite set.
This value, called control location, represents the global state of the system and can correspond,
e.g., to the values of shared variables or to the state of a leader. A transition takes the form of a
so-called transfer flow, which consists in a source control location, a destination control location
and a function that expresses how many processes may go from a given state to another. We
define a mathematical framework for transfer flows and in particular a compositional product
that describes the possibilities enabled by several transitions performed in a row. In transfer
flows, if 𝑚 processes are required to go from 𝑞1 to 𝑞2, then any integer in J𝑚, +∞J is allowed.
This hypothesis is crucial and models the copycat property described in Chapter 2, hence the
name copycat system. Examples of models from the literature encodable into copycat systems
include asynchronous shared-memory systems [EGM13], reconfigurable broadcast networks
[DSTZ12] and immediate-observation population protocols [ERW19]. Section 3.2 is devoted
to the definition of copycat systems, of transfer flows and to the proofs of basic properties of
transfer flows. In Section 3.3, we provide a general-purpose bound on copycat systems called
structural bound. In particular, given two configurations 𝛾1, 𝛾2 such that 𝛾2 can be reached
from 𝛾1, we bound the number of steps of the semantics needed to go from 𝛾1 to 𝛾2. Also, our
bound expresses that, if 𝛾1 and 𝛾2 have many processes, one can find 𝛾′1 and 𝛾′2 of bounded
size that are similar to 𝛾1 and 𝛾2 up to some threshold in the number of processes and such
that 𝛾′2 can be reached from 𝛾′1. This structural bound is doubly-exponential in the number
of states in the description of the processes, but polynomial in the rest of the description of
the system. It is based on the bound on the length of descending chains on N𝑑 [LS21; SS24]
introduced in Section 1.5. In Section 3.4, we elaborate on what this structural bound implies
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for copycat systems. In particular, it gives decidability results of several problems by bounding
the size of the configurations to consider; this is for example the case of LTL verification. In
Section 3.5, we present applications to other models, and in particular to ASMS from Chapter 2.
When given an ASMS protocol, one can build a copycat system whose semantics corresponds
to the accelerated semantics of the ASMS, i.e., a step in the copycat system corresponds to a
single transition of the ASMS performed arbitrarily many times. This means that our bounds
on copycat systems carry over to ASMS.

Chapter 4 In this chapter, we introduce round-based ASMS, a model designed to capture
round-based shared-memory algorithms for consensus, and in particular Aspnes’ noisy con-
sensus algorithm [Asp02]. To motivate our model, we introduce this algorithm in detail in
Section 4.2. Round-based consensus algorithms typically are structured using a for loop in
which a round value 𝑘 goes from 0 to +∞. In round-based ASMS, each round has its own set
of registers, so that the total number of registers is unbounded. All processes start at round
0 and they progress asynchronously in rounds, so that there is no a priori bound in the dif-
ference of rounds between pairs of processes. Overall, the information about a given process
at a given point in time takes the form of a pair (𝑞, 𝑘) where 𝑞 is its state and 𝑘 is its round
value. Processes may only interact with registers of nearby rounds. The first natural problem
is again coverability, called here round-based Cover, where one asks to reach a configuration
where at least one process is in state 𝑞 𝑓 (independently of its round). Again, the motivation for
this problem is that 𝑞 𝑓 models an error state that must be avoided, so that the system is safe
(for every number of processes) if the answer to Cover is negative. As in Chapter 2, we want
to consider more general problems, and we define a generalization of the presence constraints
from Chapter 2, which we call round-based presence constraints. In round-based presence con-
straints, we allow for quantifiers over round values, but quantifiers are not allowed to be nested.
The associated reachability problem is called round-based presence reachability problem, or
round-based PRP for short. The presence reachability problem is expressive enough to express
validity and agreement of consensus algorithms and in particular of Aspnes’ noisy consensus
algorithm [Asp02]. The round-based ASMS model and the associated problems are introduced
in Section 4.3. In Section 4.4, we start our analysis of the model by highlighting exponential
lower bounds in the number of relevant rounds to consider for round-based Cover. In fact,
even the number of rounds that must be considered at a given point in time may have to be as
large as exponential when looking for a witness execution for round-based Cover. Therefore,
a polynomial-space algorithm for round-based Cover cannot naively guess the execution con-
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figuration by configuration. We also provide a PSPACE lower bound for round-based Cover
and therefore for round-based PRP. In Section 4.5, we present a polynomial-space algorithm
for Cover. This algorithm is non-deterministic; it guesses the execution with a sliding window
mechanism. This sliding window relies on the notion of footprint, which corresponds to the
projection of an execution onto a set of consecutive rounds. Using the same non-counting
abstraction as in Chapter 2, we prove that the footprint of a well-chosen execution onto a small
window of rounds can be stored in reasonable space, so that one can guess the execution footprint
by footprint. In Section 4.6, we extend this PSPACE result to round-based PRP. The algorithm
again guesses the execution footprint by footprint, but it must perform additional computations
and non-deterministic choices to check that the presence constraint is satisfied. To guarantee
that this algorithm works in polynomial space, we need to assume that the integer constants
of the input are encoded in unary; in Section 4.7, we prove that, if the integers are encoded in
binary, then round-based PRP and even round-based Cover become EXPSPACE-complete.

Chapter 5 Many round-based consensus algorithms require an unbounded number of rounds
because they are randomized and terminate with probability 1 only. Randomization may take
place at several different level: at the level of the process (i.e., the code executed by the process
performs coin tosses) or at the level of the system. Randomization at the level of the system
may involve global coin tosses (i.e., coin toss whose result is visible by everyone) or come from
the scheduler (i.e., the order in which processes act is selected randomly). We are interested in
the last case, where the scheduler is stochastic. This is indeed the type of randomization used
in our motivating example, Aspnes’ noisy consensus algorithm [Asp02]. In Section 5.2, we
formally introduce stochastic schedulers for round-based ASMS. Until Section 5.6 (included),
the considered stochastic scheduler simply selects the next acting process uniformly at random
among all processes, independently from the past. If the process selected has several possible
actions, the action performed is selected uniformly at random among all possible actions. In
Section 5.3, we introduce the two probabilistic properties that we are interested in. They are
related to a special state 𝑞 𝑓 that processes cannot leave; this state models that the process has
terminated. Almost-sure coverability is when, with probability 1, some process ends up in
𝑞 𝑓 whereas almost-sure termination is when, with probability 1, all processes end up in 𝑞 𝑓 .
This last property is of particular relevance: when considering, e.g., the protocol encoding
Aspnes’ noisy consensus algorithm, almost-sure termination of the algorithm is expressed as
almost-sure termination of the round-based ASMS for every 𝑛. In Section 5.4, we present
an overview of results from [BMRSS16] related to almost-sure coverability in ASMS without
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rounds. In [BMRSS16], the authors prove an equivalence between almost-sure coverability and
a non-probabilistic property. This equivalence states that, for a given 𝑛, 𝑞 𝑓 is covered almost
surely if and only if it can be covered from every reachable configuration. This equivalence
is very convenient, therefore we try to follow the same approach for round-based ASMS. In
Section 5.5, we prove that, unfortunately, this equivalence does not hold in our round-based
model. Indeed, we build a protocol that highlights random-walk behaviors and where there is a
non-zero probability that processes drift away from each other, so that 𝑞 𝑓 is not covered almost
surely even though it can be covered from any reachable configuration. With this example, the
analysis of almost-sure coverability appears very challenging, because random walks are highly
non-trivial from a mathematical point of view. We thus attempt to restrict the model to prevent
random-walk behaviors. In Section 5.6, we present a restriction where processes are required
to increment their rounds at the same average pace. However, we illustrate that this does not
solve our issue and that random walks behaviors may still occur. In Section 5.7, we consider
another family of schedulers, called waiting-time schedulers. A waiting-time scheduler relies
on a continuous-time model; whenever a process performs an action, the time until the next
action of this process is drawn according to a continuous probability distribution. Yet again,
this choice of scheduler does not prevent random-walk behaviors. This forces us to lower our
ambitions and to come back to our motivations. In Section 5.8, we define a restriction, called
almost-sure obstruction-freedom, which heavily limits the expressive power of the systems but
which is typically satisfied by protocols for round-based consensus algorithms. This is strongly
related to the notion of obstruction-freedom in distributed algorithms [Asp24, Chapter 27] but
extends it to non-deterministic processes. Almost-sure obstruction-freedom expresses that, in
any reachable configuration, if all processes crash except one, then the remaining process ends
up in 𝑞 𝑓 with probability 1. We prove that almost-sure obstruction-freedom implies almost-sure
termination for every number of processes. Moreover, given a protocol, one can decide in
polynomial space whether it satisfies the almost-sure obstruction-freedom property or not.

Personal Publications

A total of five publications correspond to work performed during the time of the PhD. A
sixth publication [GSWW24] is in preparation; we mention it here because it is connected with
some of the content of this thesis. We list them here by chronological order.

[BMSW22] Nathalie Bertrand, Nicolas Markey, Ocan Sankur and Nicolas Waldburger. Param-
eterized Safety Verification of Round-Based Shared-Memory Systems. ICALP’22.
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[Wal23] Nicolas Waldburger. Checking Presence Reachability Properties on Parameterized
Shared-Memory Systems. MFCS’23.

[GMW24] Lucie Guillou, Corto Mascle and Nicolas Waldburger. Parameterized Broadcast
Networks with Registers: from NP to the Frontiers of Decidability. FoSSaCS’24.

[BGKMWW24] Steffen van Bergerem, Roland Guttenberg, Sandra Kiefer, Corto Mascle, Nicolas
Waldburger and Chana Weil-Kennedy. Verification of Population Protocols with
Unordered Data. ICALP’24.

[CLSW24] Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks and Nicolas Waldburger.
Invariants for One-Counter Automata with Disequality Tests. CONCUR’24.

[GSWW24] Pierre Ganty, Cesar Sanchez, Nicolas Waldburger and Chana Weil-Kennedy. Tem-
poral Hyperproperties on Population Protocols. In preparation. 2024.

Three works presented in the list above are related to the content of this thesis. [BMSW22]
is a study of safety problems in round-based asynchronous shared-memory systems: it is related
to Chapter 4, but it is mostly subsumed by [Wal23]. This second publication [Wal23] studies
a more generic class of problems in asynchronous shared-memory systems, with and without
rounds. The last work to mention is the study of hyperLTL verification in population protocols
[GSWW24]; while this topic is relatively far from the content of this thesis, some of the proof
techniques have inspired Chapter 3.

The other three publications do not appear in this thesis. The work from [GMW24] is
about parameterized verification of broadcast networks with private registers. [BGKMWW24]
is related to verification of population protocols with unordered data. Finally, [CLSW24] is
about reachability in 1-VASS with tests.
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Chapter 1

PRELIMINARIES

In this chapter, we introduce some useful definitions, notations and results. We start with
standard mathematical definitions in Section 1.1. We then introduce some notions of probability
theory that will be useful in Chapter 5. In Section 1.2, we introduce the fundamental notion
of random variables. In Section 1.3, we present classic probabilistic tools. In Section 1.4, we
provide a short introduction to random walks. In Section 1.5, we introduce well-quasi-orders
and some related results from the literature.

1.1 Standard Mathematical Definitions

In this section, we introduce, for the sake of completeness, standard terminology and nota-
tions. The set of all non-negative integers is written N, the set of all integers is written Z. Given
𝑚, 𝑛 ∈ N such that 𝑛 ⩽ 𝑚, we denote by J𝑛, 𝑚K := {𝑖 ∈ N | 𝑛 ⩽ 𝑖 ⩽ 𝑚} the set of integers
between 𝑛 and 𝑚. Moreover, given 𝑛 ∈ N, we denote by J𝑛, +∞J:= {𝑚 ∈ N | 𝑛 ⩽ 𝑚} the set of
integers greater than or equal to 𝑛. The set of all real numbers is written R. Given 𝑎, 𝑏 ∈ R, we
let [𝑎, 𝑏] := {𝑥 ∈ R | 𝑎 ⩽ 𝑥 ⩽ 𝑏}.

Given a finite set Σ called alphabet, we write Σ∗ for the set of finite words over Σ and Σ𝜔 for
the set of infinite words over Σ. Given a word 𝑤 ∈ Σ∗ ∪ Σ𝜔 and 𝑖 ∈ N, we denote by 𝑤(𝑖) ∈ Σ

the (𝑖 + 1)-th symbol of 𝑤, if it exists; therefore, 𝑤 = 𝑤(0)𝑤(1) . . . . If 𝑤 ∈ Σ∗ is a finite word,
its length ℓ is its number of letters, so that 𝑤 = 𝑤(0)𝑤(1) . . . 𝑤(ℓ − 1). The concatenation of
two words 𝑤1 ∈ Σ∗ and 𝑤2 ∈ Σ∗ ∪ Σ𝜔, with 𝑤1 finite, is written 𝑤1 · 𝑤2. A language (of infinite
words) is a set of words L ⊆ Σ𝜔.

Let 𝑆 be a countable set. A finite multiset over 𝑆 is a function 𝜇 : 𝑆 → N such that∑
𝑠∈𝑆 𝜇(𝑠) < ∞. We denote by M(𝑆) ⊆ 𝑆 the set of all finite multisets over 𝑆. The support of a

multiset 𝜇 ∈ M(𝑆) is defined by 𝜇 := {𝑠 ∈ 𝑆 | 𝜇(𝑠) > 0}. Given two multisets 𝜇1, 𝜇2 ∈ M(𝑆),
we let 𝜇1 ⊆ 𝜇2 when, for all 𝑠 ∈ 𝑆, 𝜇1(𝑠) ⩽ 𝜇2(𝑠). We let 𝜇1 ⊕ 𝜇2 ∈ M(𝑆) be the multiset such
that, for all 𝑠 ∈ 𝑆, (𝜇1 ⊕ 𝜇2) (𝑠) = 𝜇1(𝑠) + 𝜇2(𝑠). Also, if 𝜇1 ⊆ 𝜇2, then we let 𝜇2 ⊖ 𝜇1 be the
multiset defined by (𝜇2 ⊖ 𝜇1) (𝑠) = 𝜇2(𝑠) ⊖ 𝜇1(𝑠). Given 𝑠 ∈ 𝑆, the singleton multiset obtained
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from 𝑠 is the multiset 𝜇 such that 𝜇(𝑠) = 1 and 𝜇(𝑠′) = 0 for all 𝑠′ ≠ 𝑠; we abuse notations and
denote this singleton multiset 𝑠. Also, given 𝑘 ∈ N and 𝑠 ∈ 𝑆, we denote by 𝑘 · 𝑠 the multiset
𝜇 such that 𝜇(𝑠) = 𝑘 and 𝜇(𝑠′) = 0 for all 𝑠′ ≠ 𝑠. Finally, given 𝜇 ∈ M(𝑆), we denote by
|𝜇 | :=

∑
𝑠∈𝑆 𝜇(𝑠) the size of 𝜇.

A directed graph is a pair 𝐺 = (𝑉, 𝐸) where 𝐸 ⊆ 𝑉2. 𝑉 is the set of vertices while 𝐸 is the
set of edges. An undirected graph follows the same definition except that, for all (𝑢, 𝑣) ∈ 𝐸 ,
(𝑣, 𝑢) ∈ 𝐸 . A (finite) path from 𝑢 ∈ 𝑉 to 𝑣 ∈ 𝑉 is a sequence 𝑢 = 𝑣0, 𝑣1, . . . , 𝑣𝑘 = 𝑣 such that,
for all 𝑖 ∈ J0, 𝑘 − 1K, (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸 . The length of the path is defined to be 𝑘 . The path visits
𝑣′ ∈ 𝑉 when there is 𝑖 such that 𝑣𝑖 = 𝑣′. A set of vertices 𝑆 ⊆ 𝑉 is strongly connected if, for every
𝑢, 𝑣 ∈ 𝑆, there is a path from 𝑢 to 𝑣. An infinite path of 𝐺 is an infinite sequence 𝑣0, 𝑣1, . . . of
vertices such that (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸 for all 𝑖 ∈ N. An infinite path 𝑣0, 𝑣1, . . . visits 𝑣 infinitely many
times when there are infinitely many indices 𝑖 such that 𝑣𝑖 = 𝑣. A strongly connected component
of 𝐺 is a subset of vertices 𝑆 ⊆ 𝑉 that is strongly connected and maximal in that sense, i.e., for
all 𝑣 ∈ 𝑉 \ 𝑆, 𝑆 ∪ {𝑣} is not strongly connected. A strongly connected component 𝑆 is bottom
if, for every 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑉 , if there is a path from 𝑢 to 𝑣 then 𝑣 ∈ 𝑆.

1.2 Random Variables

In Chapter 5, we will consider a probabilistic model where the next process to act is selected
randomly by a stochastic scheduler. Therefore, in the following sections (Section 1.2, Section 1.3
and Section 1.4), we introduce notions of probability theory and some classic results that will
be useful in Chapter 5.

A formal definition of our probabilistic framework would require to introduce, among
others, the notion of probabilistic space and to present some elements of measure theory. Such
definitions would however add little value to the rest of this work. We therefore refer to, e.g.,
[BK08; Pan01], for such definitions; instead, we will hide technical details behind the notion of
random variable. Informally, a random variable 𝑋 with values in a set 𝑆 is a variable whose
value is in 𝑆 and is chosen at random. See, e.g., [BH14], for a formal definition of random
variables.

We first introduce discrete random variables, i.e., random variables with values in countable
sets. When a random variable 𝑋 has values in a countable (non-empty) set 𝑆, the basic events
are of the form “𝑋 ∈ 𝑇” with 𝑇 ⊆ 𝑆, and the probability distribution of 𝑋 takes the form of
a function 𝑃 : 𝑆 → [0, 1] such that

∑
𝑠∈𝑆 𝑃(𝑠) = 1. The probability associated to a subset of

𝑆 is simply the sum of the probabilities of its elements. We denote by P(𝐸) the probability of

36



1.2. Random Variables

a given event 𝐸 , and denote by P(𝑋 = 𝑠) the probability of the event 𝑋 ∈ {𝑠}. The simplest
random variables are Bernoulli variables. 𝑋 is a Bernoulli variable of parameter 𝑝 ∈ [0, 1],
denoted 𝑋 ∼ B(𝑝), when 𝑋 take values in {0, 1} and P(𝑋 = 1) = 𝑝. Another classic type of
discrete random variables are uniformly distributed random variables. When 𝑆 is a finite set, 𝑋
is uniformly distributed over 𝑆, denoted 𝑋 ∼ U(𝑆), when P(𝑋 = 𝑠) = 1

|𝑆 | for all 𝑠 ∈ 𝑆.

We will sometimes have to consider continuous random variables, i.e., random variables with
values inR. In this case, the basic events are of the form “𝑋 ∈ 𝑆” with 𝑆 a measurable subset ofR.
The definition of measurability for subsets of R is not important for us, all that we need to know
is that all intervals of R are measurable. The probability distribution of a continuous random
variable is a measurable function 𝑓𝑋 : R → [0, 1] such that

∫ +∞
−∞ 𝑓 (𝑥)𝑑𝑥 = 1. Given an interval

[𝑎, 𝑏] with 𝑎 ⩽ 𝑏, we have P(𝑋 ∈ [𝑎, 𝑏]) =
∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥. Note that, given 𝑥 ∈ R, P(𝑋 = 𝑥) = 0.

A classic continuous probability distribution is the normal distribution. Given 𝜇 ∈ R, 𝜎 > 0,
a random variable 𝑋 with values in R is normally distributed with mean 𝜇 and variance 𝜎2,
denoted 𝑋 ∼ N(𝜇, 𝜎), when its probability distribution is 𝐹𝑋 : 𝑥 ↦→ 1√

2𝜋𝜎
𝑒−

1
2 (

𝑥−𝜇
𝜎

)2 .

A random variable is not fully characterized by its probability distribution: indeed, the
values of different random variables may depend on one another. A countable family (𝑋𝑖)𝑖∈𝐼 of
random variables with values in a finite set 𝑆 is independent when, for all 𝐽 ⊆ 𝐼, for all families
(𝑇𝑗 ) 𝑗∈𝐽 of subsets of 𝑆,

P(
⋂
𝑗∈𝐽

𝑋 𝑗 ∈ 𝑇𝑗 ) =
∏
𝑗∈𝐽

P(𝑋 𝑗 ∈ 𝑇𝑗 ).

The random variables (𝑋𝑖) are independent identically distributed, or i.i.d., when they are
independent and have the same probability distribution.

Given two events 𝐴, 𝐵 such that P(𝐵) > 0, let P(𝐴 | 𝐵) := P(𝐴)
P(𝐵) be the conditional probability

of 𝐴 given 𝐵. More generally, given events 𝐴, 𝐵1, . . . , 𝐵𝑚, we use P(𝐴 | 𝐵1, . . . , 𝐵𝑚) as a
shorthand for P(𝐴 | (𝐵1 ∩ 𝐵2 · · · ∩ 𝐵𝑚)). Similarly, we use P(𝐵1, . . . , 𝐵𝑚) as a shorthand for
P(𝐵1 ∩ · · · ∩ 𝐵𝑚).

Given a discrete random variable 𝑋 with values in Z, its expected value is E(𝑋) :=∑
𝑧∈Z 𝑧 P(𝑋 = 𝑧), which is properly defined when the sum converges to a value in Z. Also,

its variance is 𝑉 (𝑋) :=
∑
𝑧∈Z(𝑧 − E(𝑋))2P(𝑋 = 𝑧), again assuming that the sum converges. For

a continuous random variable 𝑋 with a probability distribution 𝑓𝑋 , we letE(𝑋) :=
∫ +∞
−∞ 𝑧 𝑓𝑋 (𝑧)𝑑𝑧

and 𝑉 (𝑋) :=
∫ +∞
−∞ (𝑧 − E(𝑋))2 𝑓𝑋 (𝑧)𝑑𝑧.
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1.3 Classic Tools for Probabilistic Analysis

We here introduce two classic tools of probability theory. The first one is the central limit
theorem:

Theorem 1.1 (Central limit theorem). Let 𝜇, 𝜎 ∈ R, let (𝑋𝑖)𝑖⩾1 be a sequence of i.i.d. random
variable of expectation E(𝑋𝑖) = 𝜇 and of variance 𝑉 (𝑋𝑖) = 𝜎2 with 𝜎 > 0. For every 𝑛 ⩾ 1,
let 𝑆𝑛 :=

∑
𝑖∈J1,𝑛K 𝑋𝑖 and let 𝑌𝑛 :=

√
𝑛
(𝑆𝑛−𝜇)
𝜎

. The probability distribution of 𝑌𝑛 converges, when
𝑛 tends to infinity, to the normal distribution N(0, 1). In particular, for all 𝑎, 𝑏 ∈ R such that
𝑎 ⩽ 𝑏, P(𝑌𝑛 ∈ [𝑎, 𝑏]) −→

𝑛→+∞

∫ 𝑏

𝑎
𝑒−

𝑥2
2 𝑑𝑥.

The other useful tool is the so-called Borel-Cantelli lemma:

Lemma 1.2 (Borel-Cantelli lemma [Bor09]). Let (𝐸𝑖)𝑖∈N a countable family of events such that
the sum

∑
𝑖∈N P(𝐸𝑖) is finite. The probability that infinitely many events 𝐸𝑖 occur is 0. Formally,

P(
⋂
𝑖∈N

⋃
𝑗⩾𝑖

𝐸 𝑗 ) = 0.

1.4 Random Walks

We here introduce some notions of discrete random walks. Informally speaking, a discrete
random walk in dimension 𝑑 is a particle that moves randomly in an infinite 𝑑-dimensional grid,
corresponding to the set N𝑑 . At each step, the particle takes a step in one of the 2𝑑 possible
directions, chosen uniformly at random independently from the past.

The most important case for our purposes is the one-dimensional case, i.e., 𝑑 = 1. A one-
dimensional random walk of parameter 𝑝 is a sequence of random variables (𝑋𝑖)𝑖∈N with values
in Z such that 𝑋0 = 0 and, for all 𝑛 ∈ N, for all 𝑘0, . . . , 𝑘𝑛, 𝑘𝑛+1 ∈ Z,

P(𝑋𝑛+1 = 𝑘𝑛+1 | 𝑋0 = 𝑘0, . . . , 𝑋𝑛 = 𝑘𝑛) =


𝑝 if 𝑘𝑛+1 = 𝑘𝑛 + 1

1 − 𝑝 if 𝑘𝑛+1 = 𝑘𝑛 − 1

0 otherwise.

Said otherwise, at every step, the value has probability 𝑝 of increasing by 1 and probability
1 − 𝑝 of decreasing by 1. An equivalent definition is that the value of the random walk at step 𝑛
is 2

∑𝑛
𝑖=1𝑌𝑖 − 𝑛 where the 𝑌𝑖 are i.i.d. Bernoulli variables of parameter 𝑝. The random walk is

called balanced when 𝑝 = 1
2 , positively biased when 𝑝 > 1

2 and negatively biased when 𝑝 < 1
2 .
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A natural question is whether a random walk visits a given integer 𝑧, i.e., whether there is 𝑖
such that 𝑋𝑖 = 𝑧. This question has been extensively studied in the literature, see, e.g., [Joh11].
We provide all results relevant for us in the following proposition.

Proposition 1.3. Consider a one-dimensional random walk of parameter 𝑝.

If 𝑝 = 1
2 (the random walk is balanced) then the random walk almost surely visits all integers.

If 𝑝 > 1
2 (the random walk is positively biased), then it almost surely visits all positive integers.

Moreover, there is a non-zero probability that 𝑋𝑖 ⩾ 0 for all 𝑖 ∈ N.

If 𝑝 < 1
2 (the random walk is negatively biased) then it almost surely visits all negative integers.

Moreover, there is a non-zero probability that 𝑋𝑖 ⩽ 0 for all 𝑖 ∈ N.

We will also informally refer to balanced random walks of higher dimension. For example,
for dimension 2, a balanced random walk has, at every step, probability 1

4 to go to the left,
probability 1

4 to go to the right, probability 1
4 to go up and probability 1

4 to go down. A classic
result is that balanced random walks in dimensions 1 and 2 almost surely visit every point of the
grid whereas, in dimension at least 3, for every point of the grid (except the origin), a balanced
random walk has a non-zero probability of never visiting this point.

1.5 Well-Quasi-Orders and Descending Chains

In this section, we introduce some preliminary notions and results related to ordered sets
and well-quasi-orders. The results introduced here, and more specifically the bound from
Theorem 1.9, will be used in Chapter 3. We refer to [DFGSS17] for a complete introduction on
the topic.

A quasi-ordering is a relation that is transitive and reflexive, but does not have to be
antisymmetric. A quasi-order is a set 𝐸 equipped with a quasi-ordering ⪯. Given a quasi-order
(𝐸, ⪯), a subset 𝑆 ⊆ 𝐸 is upward-closed (for ⪯) when, for all 𝑠 ∈ 𝑆, for all 𝑡 ∈ 𝐸 , if 𝑠 ⪯ 𝑡 then
𝑡 ∈ 𝑆. Similarly, a set 𝑆 ⊂ 𝐸 is downward-closed when, for all 𝑠 ∈ 𝑆, for all 𝑡 ∈ 𝐸 , if 𝑡 ⪯ 𝑠

then 𝑡 ∈ 𝑆. Given a set 𝑆 ⊆ 𝐸 , we let ↑𝑆 := {𝑡 ∈ 𝐸 | ∃𝑠 ∈ 𝑆, 𝑠 ⪯ 𝑡} its upward-closure and
↓𝑆 := {𝑡 ∈ 𝐸 | ∃𝑠 ∈ 𝑆, 𝑡 ⪯ 𝑠} its downward-closure.

Definition 1.4. A well-quasi-order is a quasi-order (𝐸, ⪯) such that, for every infinite sequence
(𝑥𝑖)𝑖∈N of elements of 𝐸 , there is 𝑖 < 𝑗 such that 𝑥𝑖 ⪯ 𝑥 𝑗 .

In a well-quasi-order (𝐸, ⪯), any upward-closed set 𝑆 has a finite set of minimal elements,
denoted basis(𝑆). This set basis(𝑆) is called the basis of 𝑆 and we have 𝑆 = ↑basis(𝑆).
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A common well-quasi-ordered set is the set N𝑑 equipped with the component-wise ordering.
Let 𝑑 ⩾ 1. Given ®𝑣 of N𝑑 and 𝑖 ∈ J1, 𝑑K, we denote by ®𝑣(𝑖) its 𝑖-th component. Let ⩽× be the
partial order over N𝑑 such that ®𝑢 ⩽× ®𝑣 when, for all 𝑖 ∈ J1, 𝑑K, ®𝑢(𝑖) ⩽ ®𝑣(𝑖).

Lemma 1.5 (Dickson’s lemma). (N𝑑 ,⩽×) is a well-quasi-order.

An alternative characterization of well-quasi-orders relies on the notion of descending chains.
Given a quasi-order (𝐸, ⪯), a descending chain is a sequence 𝐷0 ⊋ 𝐷1 ⊋ 𝐷2 . . . of sets 𝐷𝑘 ⊆ 𝐸

that are downward-closed for ⪯. A descending chain can either be finite, i.e., of the form
(𝐷𝑘 )𝑘∈J0,𝑁K or infinite, i.e., of the form (𝐷𝑘 )𝑘∈N. To have a single notation for all descending
chains, we denote them by (𝐷𝑘 ), omitting the indexing set. The length of a finite descending
chain (𝐷𝑘 )𝑘∈J0,𝑁K is defined to be 𝑁 + 1.

Proposition 1.6. A quasi-order (𝐸, ⪯) is a well-quasi-order if and only if all its descending
chains are finite.

Although this implies that all descending chains of (N𝑑 , ⪯) are finite, there is no general
bound on their length. Even in the case of N𝑑 with 𝑑 = 1, which is (N,⩽), there is a descending
chain of length 𝐿 for every 𝐿, for example (𝐷𝑘 )𝑘⩽𝐿−1 where 𝐷𝑘 := ↓(𝐿 − 𝑘). However, it
is possible to bound the length of a descending chain under some additional constraints. In
this thesis, we will use a bound first introduced in [LS21], but in its improved form from
[SS24]. This bound will apply under two conditions. The first condition is that the sequence
is controlled, meaning that the size of the description of the set 𝐷𝑘 (expressed below by its
norm ∥𝐷𝑘 ∥) evolves in a reasonable way. The second condition, more technical, is that the
sequence is strongly monotone; we present here a stronger condition, namely 𝜔-monotonicity,
that is sufficient for our needs. We now introduce some definitions needed to formally state the
result from [SS24].

We extend N to N𝜔 := N ∪ {𝜔} with 𝑛 < 𝜔 for all 𝑛 ∈ N. Given a vector ®𝑣 ∈ N𝑑
𝜔, its

norm is ∥®𝑣∥ := max{®𝑣(𝑖) | 𝑖 ∈ J1, 𝑑K, ®𝑣(𝑖) ≠ 𝜔}, i.e., the largest ®𝑣(𝑖) that is not 𝜔, with the
convention that max ∅ = 0. An ideal is the downward closure in N𝑑 of a vector ®𝑣 ∈ N𝑑

𝜔, i.e.,
the set 𝐼 = {®𝑢 ∈ N𝑑 | ∀𝑖, ®𝑢(𝑖) ⩽ ®𝑣(𝑖)}; its norm ∥𝐼 ∥ is the norm ∥®𝑣∥. Note that the vector ®𝑣 is
unique; it is called the vector representing 𝐼.

A downward-closed set 𝐷 ⊆ N𝑑 can be canonically represented as a finite union of ideals:

Proposition 1.7 (see, e.g., [LS21]). Let 𝐷 be a downward-closed subset of (N𝑑 ,⩽×). The set
𝐷 can be expressed as a union of ideals, i.e., there is 𝑛 ∈ N and 𝐼1, . . . , 𝐼𝑛 ideals such that
𝐷 = 𝐼1 ∪ · · · ∪ 𝐼𝑛. Moreover, if we impose that, for all 𝑖, 𝑗 ∈ J1, 𝑛K, if 𝑖 ≠ 𝑗 then 𝐼𝑖 ⊈ 𝐼 𝑗 , then
{𝐼1, . . . , 𝐼𝑛} is unique and called decomposition of 𝐷.
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The norm ∥𝐷∥ of a downward-closed set 𝐷 is defined as the maximum of the norms of the
ideals in its decomposition. Given 𝑁 > 0, a descending chain (𝐷𝑘 ) is 𝑁-controlled when, for
all 𝑘 , ∥𝐷𝑘 ∥ ⩽ (𝑘 + 1)𝑁 . An ideal 𝐼 is proper at step 𝑘 if 𝐼 is in the decomposition of 𝐷𝑘 but
𝐼 ⊈ 𝐷𝑘+1. The sequence (𝐷𝑘 ) is 𝜔-monotone if, when an ideal 𝐼𝑘+1 represented by vector ®𝑣𝑘+1

is proper at step 𝑘 + 1, there is an ideal 𝐼𝑘 proper at step 𝑘 whose representing vector ®𝑣𝑘 ∈ N𝑑
𝜔 is

such that, for all 𝑖 ∈ J1, 𝑑K, if ®𝑣𝑘+1(𝑖) = 𝜔 then ®𝑣𝑘 (𝑖) = 𝜔.

Example 1.8. Let 𝑑 = 2, 𝐷0 := ↓(5, 𝜔), 𝐷1 := ↓(1, 𝜔), 𝐷2 := ↓(1, 13) and 𝐷3 := ↓(1, 1). All
𝐷𝑘 are downward-closed sets and they are also ideals (they each have a single ideal in their
decomposition). The sequence (𝐷𝑘 )𝑘⩽3 is a descending chain of length 4. This descending chain
is 5-controlled, because ∥𝐷0∥ = 5 ⩽ 5, ∥𝐷1∥ = 1 ⩽ 10, ∥𝐷2∥ = 13 ⩽ 15 and ∥𝐷3∥ = 1 ⩽ 20.
Also, (𝐷𝑘 ) is 𝜔-monotone; this is particularly easy to see in this example, because, for each
𝑘 , the only proper ideal at step 𝑘 is 𝐷𝑘 itself. The 𝜔-monotonicity entails from the fact that,
for all 𝑘 ⩾ 1, if the representing vector of 𝐷𝑘 has 𝜔 at position 𝑖 then the same is true for the
representing vector of 𝐷𝑘−1. Intuitively, the descending chain 𝐷𝑘 is 𝜔-monotone because it
only loses 𝜔 values but never gains new ones.

The length of descending chains that are controlled and 𝜔-monotone can be bounded using
the following result:

Theorem 1.9 ([SS24]). Let 𝑑, 𝑛 > 0. Every descending chain (𝐷𝑘 ) of (N𝑑 ,⩽×) that is 𝑛-
controlled and 𝜔-monotone has length at most 𝑛3𝑑 (log(𝑑)+1) .

41



Chapter 2

ASYNCHRONOUS SHARED-MEMORY

SYSTEMS

2.1 Introduction

The first model considered in this thesis is the one of asynchronous shared-memory systems,
or ASMS for short. In this model, the system is composed of arbitrarily many identical processes
that run asynchronously and communicate via reading from and writing to a shared memory.
This shared memory is composed of registers; each register contains, at a given point in time, a
symbol from a finite alphabet. While a given read or a given write action is performed atomically,
it is crucial that sequences of actions, and in particular read-write combinations, are performed
non-atomically. By this, we mean that a process cannot performed several actions in a row
while preventing other processes from acting: there is no locking mechanism. This hypothesis
allows for the copycat property: whenever a process goes from 𝑞1 to 𝑞2, other processes in
𝑞1 may also go to 𝑞2 without affecting the rest of the system. This copycat property will play
a central role in the analysis of the model. In fact, if we assume that sequences of actions
are performed atomically, then the model gains an expressivity similar to the one of Petri nets
[GS92; Esp14]. ASMS were first introduced in [EGM13; EGM16]; however, we highlight two
differences between their model and ours. First, in our model, the shared-memory is composed
of several independent registers, while the model of [EGM13; EGM16] has a single shared
register. Combining several registers into one would not only imply an exponential blowup,
but also alter the semantics of the model, as highlighted in Remark 2.28. Second, our registers
initially hold a special symbol, denoted ⊥. This choice is relatively common in parameterized
verification of shared-memory systems [BMRSS16; AAR20]. As we will see, the presence of
initial values increases the power of the model. Also, some shared-memory algorithms indeed
require this hypothesis; for example, in [Asp02], registers initially hold value⊥, so that a process,
upon reading a register, may notice whether someone has already written to this register or not.

In [EGM13; EGM16], the authors consider the case where the system has a distinguished
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leader, and they consider different combinations of computing powers for the leader of follower,
e.g., depending on the leader is a finite-state machine or a pushdown machine, and similarly
for the followers. In this chapter, we will consider only the case where there is no leader and
where all followers are finite-state machines. With this choice, all processes are identical and a
configuration of the system corresponds to a multiset of states, expressing how many processes
are in each state, along with the value of the shared variables.

In this model, we study reachability problems where the question is whether there is a value
of 𝑛 for which one can reach, from the initial configuration with 𝑛 processes, a configuration in
an objective set. To describe a general family of objective sets, we define presence constraints
where one may express, for each state 𝑞, whether there is at least one process in state 𝑞 or none.
More formally, a presence constraint is a Boolean combination of statements such as “state
𝑞 is populated” and “register 𝑟 contains symbol d”. The associated reachability problem is
called presence reachability problem, or PRP for short. Two special cases are Cover, where the
objective set is the set of configurations with at least one process in some state 𝑞 𝑓 , and Target,
where the objective set is the set of configurations where all processes are in 𝑞 𝑓 . Using a
non-counting abstraction, we establish that PRP is in NP. Our aim is then to find cases decidable
in polynomial time. In the general case, even Cover is NP-hard. If we make the assumption
that the registers are uninitialized, i.e., that the processes are not allowed to read ⊥, then Cover
is decidable in PTIME, but Target remains NP-hard. If the system has a single register, then
Target is solvable in PTIME and the same is true for PRP if the formula is given is disjunctive
normal form. The fact that the problem is easier with one register encourages us to consider
the dependency of the complexity of our problems with respect to the number of registers, with
the approach of parameterized complexity [Cyg+15]. We show that Cover in indeed FPT with
respect to the number of registers; by contrast, Target is W[2]-hard.

This chapter is organized as follows. In Section 2.2, we introduce the model and the problems
of interest. In Section 2.3, we present the copycat property. In Section 2.4, we introduce our
non-counting abstraction for PRP. In Section 2.5, we study the complexity of PRP in the general
case. In Section 2.6, we study the uninitialized case. In Section 2.7, we study the particular
case with one register only. In Section 2.8, we study the dependency of the complexities of
our problems with respect to the number of registers. We conclude this chapter with a closing
discussion in Section 2.9. Most results presented in this section have been published in [Wal23].

43



Chapter 2 – Asynchronous Shared-Memory Systems

Related works

The first study of a parameterized model with a shared memory and without atomic read-write
combinations can be found in [Hag11]. In [Hag11], the system is composed of a leader and of
arbitrarily many followers, all represented with pushdown machines. In this case, (control-state)
coverability (i.e., reachability of a configuration with at least one process in 𝑞 𝑓 ) is decidable,
which is interestingly not the case for the corresponding non-parameterized problem.

The model of ASMS is introduced in [EGM13] (and its journal version [EGM16]). In
[EGM13; EGM16], the problem considered is safety, which is the dual of coverability: a safety
instance is positive if, for every value of 𝑛, there is no execution that puts a process on 𝑞 𝑓 . The
systems considered are with and without leader, and the descriptions of processes considered
include finite-state machines and pushdown machines. Their approach is language-theoretical.
It relies on copycat arguments and on the so-called simulation lemma, that expresses that a
limited number of followers suffices to simulate the behavior of all followers. This allows the
authors to prove that the safety problems is coNP-complete if the leader is described by a finite-
state machine and the followers are described by pushdown machines, and also if the leader is
described by a pushdown machine and the followers are described by finite-state machines. If
both are described by pushdown machines, the problem becomes PSPACE-complete.

This work was extended to liveness verification in [DEGM15]. Liveness verification asks
whether there is an infinite execution that satisfies an 𝜔-regular property, expressed with a Büchi
automaton. The liveness problems is NP-complete when all machines, leader and follower
alike, are finite-state, and decidable in NEXPTIME when pushdown machines are considered
instead. Notably, when leader and followers are finite-state machines, liveness lies in the same
complexity class as coverability, which is rather unusual as liveness is typically much harder
than coverability. A fine-grained analysis of the complexity of the two problems (with leader
and follower, all finite-state machines) is performed in [CMS19], where the authors establish
that the deterministic complexity coverability and liveness only differ by a polynomial factor.

One last significant work on ASMS is the study of almost-sure coverability under a stochastic
scheduler [BMRSS16]. In [BMRSS16], the authors establish that there is a cutoff for almost-sure
coverability, i.e., a value 𝑁 such that the answer to almost-sure coverability is the same for every
𝑛 ⩾ 𝑁 . They also provide a doubly-exponential bound on the smallest cutoff value, and prove
that the answer to almost-sure coverability for large values of 𝑛 can be decided in PSPACE. This
result is extended to more general objectives such as almost-sure termination (all processes in
𝑞 𝑓 ) in [Sta17]. We will present the work of [BMRSS16] in more detail in Section 5.4, as we
will attempt to extend their results to our round-based setting from Chapter 4.
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2.2 Asynchronous Shared-Memory Systems

2.2.1 Protocols

The protocol is the description of the common finite automaton, which intuitively corre-
sponds to the code that the processes are running.

Definition 2.1. A (roundless) Asynchronous Shared-Memory System, or ASMS for short, is
described by a tuple P = ⟨𝑄, 𝑞0, dim,D,⊥,Δ⟩ where

— 𝑄 is a finite set of states with a distinguished initial state 𝑞0 ∈ 𝑄;

— dim ∈ J1, +∞J is the number of shared registers;

— D is a finite set of symbols containing the initial symbol ⊥;

— Δ ⊆ 𝑄 × A × 𝑄 is the set of transitions, where A := {read𝑟 (d) | 𝑟 ∈ J1, dimK,
d ∈ D} ∪ {write𝑟 (d) | 𝑟 ∈ J1, dimK, d ∈ D \ {⊥}} ∪ {⊛} is the set of actions. Given
𝛿 = (𝑞, act, 𝑞′) ∈ Δ, 𝑞 is the source state of 𝛿, act is its action and 𝑞′ is its destination
state.

In this chapter and the next one, we sometimes refer to the above-defined ASMS as roundless
to distinguish them from round-based ASMS introduced in Chapter 4. We refer to the tuple P
as the protocol of the roundless ASMS: the system, in the traditional sense, is defined by the
protocol along with a number of participating processes. The size of the protocol P is defined
as |P | := |𝑄 | + |D| + |Δ| + dim.

There are three types of actions. Actions of the form write𝑟 (d) are write actions correspond
to writing a symbol to a register, while actions of the form read𝑟 (d) are read actions that
correspond to reading a symbol from a register. Finally, action ⊛ is an internal action that does
not interact with the shared registers, so that it simply corresponds to a process changing its
state 1. A transition with a read action is called read transition, a transition with a write action is
called write transition and a transition with an internal action is called internal transition. The
variable 𝑟 ∈ J1, dimK denotes a shared register and d ∈ D denotes the symbol. Note that a given
transition may only be labeled by one action. While a given read action or a given write action is
performed atomically (they are modeled as instantaneous actions), read-write combinations are
performed non-atomically: in order to read the content of a register and then write to that register,
one needs two separate transitions. This has the important consequence that no process can

1. The internal action ⊛ does not change the expressive power of our model and is here for the sake of simplicity
only. We could indeed encode a ⊛ transition with, e.g., parallel read transitions that read all possible values from a
register.
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𝑞0

𝑞2

𝑞1

𝑞3

𝑞 𝑓read(⊥)

write(c)

read(⊥)

read(c)

read(a)

write(b)

read(b)

write(a)

Figure 2.1 – An example of an ASMS protocol with only one register (dim = 1). The index 1 of
the register is omitted from the labels of the transitions.

perform a read-write combination while excluding all other processes from acting. This choice
will be fundamental in Section 2.3 because it gives the system strong monotonicity properties.
The alternative would have been to allow transitions to be labeled by words of actions, so that
a process may perform several actions in a row with the guarantee that other processes will
remain idle in the meantime. The latter choice would in fact yield a model that is, arguably, too
powerful; we will expand on this subject in Section 2.9.

In all the following, we visually represent protocols as in Fig. 2.1: states are represented as
circles and transitions as arrows labeled by their actions.

2.2.2 Semantics

The shape of the system at a given point in time is called a configuration. Recall that the
system is composed of a finite number of processes which all execute the same protocol. Because
we assume that all processes are anonymous, the only relevant information about a given process
is its state. Therefore, a configuration is characterized by how many processes are in each state
of the protocol, which we represent by a multiset of states along with the content of the registers.
Each register stores one symbol from the finite set D at a time. Hence, a configuration is a pair
𝛾 = ⟨𝜇, ®𝑑⟩ in the set Γ := M(𝑄) ×Ddim such that |𝜇 | > 0. Given ®𝑑 ∈ DJ1,dimK and 𝑟 ∈ J1, dimK,
we denote by ®𝑑 (𝑟) the 𝑟-th component of ®𝑑. Let st(𝛾) := 𝜇 be the multiset which indicates
the number of processes in each state, and data(𝛾) := ®𝑑 mapping to each register its symbol:
for all 𝑟 ∈ J1, dimK, data(𝛾) (reg) is the symbol contained in register reg in 𝛾. We denote by
supp(𝛾) := st(𝛾) = {𝑞 ∈ 𝑄 | st(𝛾) (𝑞) > 0} the support of the multiset st(𝛾). The size |𝛾 | of a
configuration is the number of processes involved, i.e., |𝛾 | := |st(𝛾) |. A configuration is initial
if all processes are in 𝑞0 while all registers have value ⊥. Note that, for all 𝑛 ⩾ 1, there is only
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one initial configuration of size 𝑛, namely 𝛾0(𝑛) := ⟨𝑛 · 𝑞0,⊥dim⟩ where ⊥dim is the element
of Ddim whose components are all ⊥. We denote by Γ0 := {𝛾0(𝑛) | 𝑛 ⩾ 1} the set of initial
configurations.

Given 𝛾, 𝛾′ ∈ Γ, 𝛾′ is a successor of 𝛾 when there exists 𝛿 = (𝑞, act, 𝑞′) ∈ Δ such that
st(𝛾) (𝑞) > 0, st(𝛾′) = (st(𝛾) ⊖ {𝑞}) ⊕ {𝑞′} and:

— if act = read𝑟 (d) then data(𝛾) (𝑟) = d and data(𝛾′) = data(𝛾),

— if act = write𝑟 (d) then data(𝛾′) (𝑟) = d and ∀𝑟′ ≠ 𝑟, data(𝛾′) (𝑟′) = data(𝛾) (𝑟′),

— if act = ⊛ then data(𝛾′) = data(𝛾).

In that case, we write 𝛾 𝛿−→ 𝛾′ or simply 𝛾 −→ 𝛾′, which is called a step; this step is obtained by
applying 𝛿 from 𝛾. If there is a such a configuration 𝛾′, then 𝛿 can be applied from 𝛾; in this

case, 𝛾′ is unique. If act is a read action then the step 𝛾 𝛿−→ 𝛾′ is called a read step; it is called
a write step when act is a write action and an internal step when act = ⊛. An execution is a
sequence 𝜌 = 𝛾0, 𝛿1, 𝛾1, . . . , 𝛾ℓ−1, 𝛿ℓ, 𝛾ℓ such that, for all 𝑖, 𝛾𝑖

𝛿𝑖+1−−−→ 𝛾𝑖+1. Its length len(𝜌) is
simply defined as its number ℓ of steps. We write 𝛾0

𝛿1 ... 𝛿ℓ−−−−−→ 𝛾ℓ for the existence of an execution
from 𝛾0 to 𝛾ℓ of sequence of transitions 𝛿1, . . . , 𝛿ℓ, and simply 𝛾0

∗−→ 𝛾ℓ for the existence of an
execution from 𝛾0 to 𝛾ℓ. Given an execution 𝜌 = 𝛾0, 𝛿1, 𝛾1, . . . , 𝛾ℓ−1, 𝛿ℓ, 𝛾ℓ, the configurations
𝛾0, . . . , 𝛾ℓ are the configurations visited in 𝜌.

A configuration 𝛾′ is reachable from a configuration 𝛾 when 𝛾 ∗−→ 𝛾′. Given a set 𝐶 ⊆ Γ, we
write Post∗(𝐶) := {𝛾′ | ∃𝛾 ∈ 𝐶, 𝛾 ∗−→ 𝛾′}. Dually, we write Pre∗(𝐶) := {𝛾 | ∃𝛾′ ∈ 𝐶, 𝛾 ∗−→ 𝛾′}.
A configuration is reachable when it is in Post∗(Γ0). A state 𝑞 ∈ 𝑄 is coverable from 𝛾 if there
is an execution 𝜌 : 𝛾 ∗−→ 𝛾′ where st(𝛾′) (𝑞) > 0; the execution 𝜌 covers state 𝑞. A state 𝑞 is
coverable when it is coverable from Γ0, i.e., when there is 𝛾 ∈ Post∗(Γ0) such that st(𝛾) (𝑞) > 0.

Example 2.2. Figure 2.1 provides an example of an ASMS protocol P with D = {⊥, a, b, c} and
dim = 1, hence read and write actions are implicitly on register 1. The following execution with
two processes witnesses that ⟨𝑞 𝑓 ⊕ 𝑞3, a⟩ ∈ Post∗(Γ0):
⟨2 · 𝑞0,⊥⟩

(𝑞0,read (⊥),𝑞2)−−−−−−−−−−−−→ ⟨𝑞0 ⊕ 𝑞2,⊥⟩
(𝑞2,read (⊥),𝑞3)−−−−−−−−−−−−→ ⟨𝑞0 ⊕ 𝑞3,⊥⟩

(𝑞0,write (c),𝑞1)−−−−−−−−−−−→

⟨𝑞1 ⊕ 𝑞3, c⟩
(𝑞3,write (a),𝑞3)−−−−−−−−−−−−→ ⟨𝑞1 ⊕ 𝑞3, a⟩

(𝑞1,read (a),𝑞 𝑓 )−−−−−−−−−−−−→ ⟨𝑞 𝑓 ⊕ 𝑞3, a⟩.

We make the simple observation that additional processes cannot disable a transition:

Fact 2.3. If ⟨𝜇1, ®𝑑1⟩
𝛿−→ ⟨𝜇2, ®𝑑2⟩ then, for every 𝜇+ ∈ M(𝑄), ⟨𝜇1 ⊕ 𝜇+, ®𝑑1⟩

𝛿−→ ⟨𝜇2 ⊕ 𝜇+, ®𝑑2⟩.

Given a configuration 𝛾, we call a register 𝑟 blank when data(𝛾) (𝑟) = ⊥. By definition of
the set of actions A, processes are not allowed to write the initial symbol ⊥. Registers are all
initially blank, and once a register is written, it may never be blank again.
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Remark 2.4. The choice to forbid transitions writing ⊥ can be made without loss of generality.
Indeed, consider an ASMS protocol where transitions are allowed to be labeled by write actions
writing symbol ⊥; we build an equivalent protocol with no such action. To do so, we replace
actions writing ⊥ by actions that write a fresh symbol ⊥′ ≠ ⊥ that, upon reading, is not distin-
guished from ⊥ by the processes. Formally, this can be achieved by replacing each write𝑟 (⊥)
action in Δ by write𝑟 (⊥′) and by adding, for every transition of the form (𝑞, read𝑟 (⊥), 𝑞′) in Δ,
an alternative transition (𝑞, read𝑟 (⊥′), 𝑞′) to Δ.

2.2.3 Reachability Problems

We are interesting in reachability problems, i.e., problems asking whether the set of reachable
configurations Post∗(Γ0) intersects some particular set 𝑅 ⊆ Γ, called reachability objective.
Formally, one asks whether Post∗(Γ0) ∩ 𝑅 ≠ ∅. Of course, this does not describe a problem but
rather a family of problems, since we need to specify the shape and description of the set 𝑅. The
first problem of interest is the coverability problem (Cover) where the reachability objective
consists in all configurations covering a state 𝑞 𝑓 :
Cover for roundless ASMS
Input: A roundless ASMS protocol P, 𝑞 𝑓 ∈ 𝑄
Question: Does there exist 𝛾 ∈ Post∗(Γ0) such that st(𝛾) (𝑞 𝑓 ) > 0?

Note that, because the model is parameterized, a witness execution of Cover may have
an arbitrarily large number of processes. The dual of the coverability problem is the safety
problem, the answer to which is yes when state 𝑞 𝑓 cannot be covered regardless of the number
of processes. Here, 𝑞 𝑓 can be thought of as an error state that must be avoided: if 𝑞 𝑓 cannot be
covered then the system is safe no matter the number of participants.

A similar problem is the target problem (Target) where processes must synchronize at 𝑞 𝑓 :
Target for roundless ASMS
Input: A roundless ASMS protocol P, 𝑞 𝑓 ∈ 𝑄
Question: Does there exist 𝛾 ∈ Post∗(Γ0) s.t. for all 𝑞 ≠ 𝑞 𝑓 , st(𝛾) (𝑞) = 0?

Remark 2.5. Target is a harder problem than Cover, because Cover reduces to Target in
linear time. Indeed, it suffices to add a loop on 𝑞 that writes a fresh symbol ok to register 1, and
add, for every state 𝑞 ≠ 𝑞 𝑓 , a transition (𝑞, read1(ok), 𝑞 𝑓 ).

Presence constraints are Boolean combinations (with ∧, ∨ and ¬) of atomic propositions
of the form popu(𝑞) with 𝑞 ∈ 𝑄, or of the form cont(𝑟, d) with 𝑟 ∈ J1, dimK and d ∈ D. A
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presence constraint is interpreted over a configuration 𝛾 by interpreting popu(𝑞) as true if and
only if st(𝛾) (𝑞) > 0 (𝑞 is populated in 𝛾) and cont(𝑟, d) as true if and only if data(𝛾) (reg) = d
(register reg contains d). Note that presence constraints cannot refer to how many processes are
on a given state. We write 𝛾 |= 𝜙 when configuration 𝛾 satisfies presence constraint 𝜙.

Example 2.6. If 𝑄 = {𝑞1, 𝑞2, 𝑞3}, dim = 2, D = {⊥, 𝑎, 𝑏} and 𝜙 := popu(𝑞1) ∨ (popu(𝑞2) ∧
cont(1, 𝑎)) then ⟨𝑞1 ⊕ 𝑞3,⊥2⟩ |= 𝜙, ⟨2 · 𝑞2, (𝑎, 𝑏)⟩ |= 𝜙 but ⟨2 · 𝑞2, 𝑏

2⟩ ̸|= 𝜙.

The Presence Reachability Problem (PRP) generalizes both Cover and Target. A similar
problem has been studied in [DSTZ12] for reconfigurable broadcast networks, under the name
of “cardinal reachability problem restricted to CC[⩾ 1,= 0]”.
PRP for roundless ASMS
Input: A roundless shared-memory protocol P, a presence constraint 𝜙
Question: Does there exist 𝛾 ∈ Post∗(Γ0) such that 𝛾 |= 𝜙?

The formula 𝜙 automatically makes PRP NP-hard: one can easily encode the SAT problem.
For this reason, we also consider the DNF Presence Reachability Problem (dnfPRP), in which
𝜙 is in disjunctive normal form. A formula 𝜙 is in disjunctive normal form when 𝜙 is of the form∨

1⩽𝑖⩽𝑚 ℓ𝑖,1∧ · · ·∧ ℓ𝑖,𝑘𝑖 where {ℓ𝑖, 𝑗 | 𝑖 ∈ J1, 𝑚K, 𝑗 ∈ J1, 𝑘𝑖K} is the set of literals which are atomic
propositions or negation of atomic propositions. Formally, for all 𝑖 ∈ J1, 𝑚K and 𝑗 ∈ J1, 𝑘𝑖K,
ℓ𝑖, 𝑗 ∈ {popu(𝑞),¬popu(𝑞), cont(𝑟, d),¬cont(𝑟, d) | 𝑞 ∈ 𝑄, 𝑟 ∈ J1, dimK, d ∈ D}. Cover and
Target are special cases of dnfPRP, with 𝜙 = popu(𝑞 𝑓 ) for Cover and 𝜙 =

∧
𝑞≠𝑞 𝑓

¬popu(𝑞)
for Target.

Example 2.7. Consider again the protocol P defined in Figure 2.1. (P, 𝑞 𝑓 ) is a positive instance
of Cover, as proved in Example 2.2. However, consider the variant P1 from Fig. 2.2(a), obtained
from P by changing to read(c) the label of the transition from 𝑞0 to 𝑞2. (P1, 𝑞 𝑓 ) is a negative
instance of Cover. In fact, a process can only get in state 𝑞2 once c has been written to the
register, but then ⊥ can no longer be read so no process may go in state 𝑞3. This means that a
cannot be written and no process may go from 𝑞1 to 𝑞 𝑓 .

Again with P the protocol depicted in Fig. 2.1, (P, 𝑞 𝑓 ) is a negative instance of Target.
To prove this, assume by contradiction that we have a witness execution 𝜌 : 𝛾0

∗−→ 𝛾 𝑓 such that
𝛾0 ∈ Γ0 and 𝑞 ∉ st(𝛾 𝑓 ) for all 𝑞 ≠ 𝑞 𝑓 . Let 𝛾 be the penultimate configuration in 𝜌, so that
𝛾

𝛿−→ 𝛾 𝑓 . Transition 𝛿 is either the transition from 𝑞1 to 𝑞 𝑓 or the transition from 𝑞3 to 𝑞 𝑓 . To
send a process from 𝑞1 to 𝑞 𝑓 , a needs to be in the register. However, a can only be written from
𝑞3 and a process cannot leave 𝑞3 while a is in the register. This means that, whenever a is in the
register, at least one process must be in 𝑞3, hence the last transition 𝛿 performed in 𝜌 cannot be
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𝑞0
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read(b)
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(a) The protocol P1 obtained from P by chang-
ing the label of the transition from 𝑞0 to 𝑞2.

𝑞0

𝑞2

𝑞1

𝑞3

𝑞 𝑓read(⊥)

write(c)
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write(a)
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write(b)
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write(a)

(b) The protocol P2 obtained from P by chang-
ing the label of the transition from 𝑞3 to 𝑞1.

Figure 2.2 – Two variants of the protocol from Fig. 2.1.

the transition from 𝑞1 to 𝑞 𝑓 . Similarly, b can only be in the register when there is a process in
𝑞1, hence 𝛿 cannot be the transition from 𝑞3 to 𝑞 𝑓 , a contradiction.

Consider now the protocol P2 from Fig. 2.2(b), obtained from P by changing to write(a)
the label of the transition from 𝑞3 to 𝑞1. (P2, 𝑞 𝑓 ) is a positive instance of Target, as witnessed
by the following execution:

⟨2 · 𝑞0,⊥⟩
(𝑞0,read (⊥),𝑞2)−−−−−−−−−−−−→ ⟨𝑞0 ⊕ 𝑞2,⊥⟩

(𝑞2,read (⊥),𝑞3)−−−−−−−−−−−−→ ⟨𝑞0 ⊕ 𝑞3,⊥⟩
(𝑞0,write (c),𝑞1)−−−−−−−−−−−→

⟨𝑞1 ⊕ 𝑞3, c⟩
(𝑞3,write (a),𝑞1)−−−−−−−−−−−−→ ⟨2 · 𝑞1, a⟩

(𝑞1,read (a),𝑞 𝑓 )−−−−−−−−−−−−→ ⟨𝑞1 ⊕ 𝑞 𝑓 , a⟩
(𝑞1,read (a),𝑞 𝑓 )−−−−−−−−−−−−→ ⟨2 · 𝑞 𝑓 , a⟩.

Let 𝜙 := ¬popu(𝑞3) ∧ (cont(1, a) ∨ (cont(1, b) ∧ ¬popu(𝑞1))) be a presence constraint,
then (P, 𝜙) is a negative instance of PRP. Indeed, by the same reasoning as above, if a is in the
register then 𝑞3 must be populated and if b is in the register then 𝑞1 must be populated.

Let 𝜙 := popu(𝑞1) ∧¬popu(𝑞3) ∧popu(𝑞 𝑓 ) ∧ cont(1, c). 𝜙 is a presence constraint in DNF
and (P, 𝜙) is a positive instance of PRP and dnfPRP. In fact, one can reach a configuration with
four processes satisfying 𝜙 as follows:

⟨4 · 𝑞0,⊥⟩
(𝑞0,read (⊥),𝑞2)−−−−−−−−−−−−→ ⟨3 · 𝑞0 ⊕ 𝑞2,⊥⟩

(𝑞2,read (⊥),𝑞3)−−−−−−−−−−−−→ ⟨3 · 𝑞0 ⊕ 𝑞3,⊥⟩
(𝑞0,write (c),𝑞1)−−−−−−−−−−−→

⟨2 · 𝑞0 ⊕ 𝑞1 ⊕ 𝑞3, c⟩
(𝑞0,write (c),𝑞1)−−−−−−−−−−−→ ⟨𝑞0 ⊕ 2 · 𝑞1 ⊕ 𝑞3, c⟩

(𝑞3,write (a),𝑞3)−−−−−−−−−−−−→

⟨𝑞0 ⊕ 2 · 𝑞1 ⊕ 𝑞3, a⟩
(𝑞1,read (a),𝑞 𝑓 )−−−−−−−−−−−−→ ⟨𝑞0 ⊕ 𝑞1 ⊕ 𝑞3 ⊕ 𝑞 𝑓 , a⟩

(𝑞 𝑓 ,write (b),𝑞1)−−−−−−−−−−−−→ ⟨𝑞0 ⊕ 2 · 𝑞1 ⊕ 𝑞3, b⟩
(𝑞3,read (b),𝑞 𝑓 )−−−−−−−−−−−−→ ⟨𝑞0 ⊕ 2 · 𝑞1 ⊕ 𝑞 𝑓 , b⟩

(𝑞0,write (c),𝑞1)−−−−−−−−−−−→ ⟨3 · 𝑞1 ⊕ 𝑞 𝑓 , c⟩.
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2.3 Copycat and Accelerated Semantics

We start this section with the following observation. Assume that we have a configuration 𝛾
from which one process in 𝑞 fires a transition 𝛿. Another process in 𝑞 may immediately perform
𝛿 without changing the content of the registers: indeed, if 𝛿 is a read transition then the symbol
in the register is still there and may be read again, and if 𝛿 is a write transition then writing the
symbol to the register again does not change its content. This means that, given an execution
and a process in this execution, we are able to add a copycat 2 process that consistently follows
the first process along the execution. This observation gives us a useful monotonicity property,
formalized with the following lemma:

Lemma 2.8 (Copycat). Let 𝛾1, 𝛾2 ∈ Γ, 𝛿 = (𝑞1, act, 𝑞2) ∈ Δ such that 𝛾1
𝛿−→ 𝛾2. For every

𝑚 ⩾ 0, we have ⟨st(𝛾1) ⊕ 𝑚 · 𝑞1, data(𝛾1)⟩
𝛿𝑚+1

−−−→ ⟨st(𝛾2) ⊕ 𝑚 · 𝑞2, data(𝛾2)⟩.

Proof. This proof is almost a direct consequence of Fact 2.3 combined with the observation made
above. First, by Fact 2.3, we have that ⟨st(𝛾1) ⊕𝑚 · 𝑞1, data(𝛾1)⟩

𝛿−→ ⟨st(𝛾2) ⊕𝑚 · 𝑞1, data(𝛾2)⟩,
hence we will prove that ⟨st(𝛾2) ⊕ 𝑚 · 𝑞1, data(𝛾2)⟩

𝛿𝑚−−→ ⟨st(𝛾2) ⊕ 𝑚 · 𝑞2, data(𝛾2)⟩.
We prove by induction on 𝑘 that, for all 𝑘 ⩾ 0, ⟨st(𝛾2) ⊕ 𝑘 · 𝑞1, data(𝛾2)⟩

𝛿𝑘−−→ ⟨st(𝛾2) ⊕
𝑘 · 𝑞2, data(𝛾2)⟩. It it trivially true for 𝑘 = 0. Assume that it is true for 𝑘 and prove it for

𝑘 + 1. By induction hypothesis and Fact 2.3, we have ⟨st(𝛾2) ⊕ (𝑘 + 1) · 𝑞1, data(𝛾2)⟩
𝛿𝑘−−→

⟨st(𝛾2) ⊕ 𝑞1 ⊕ 𝑘 · 𝑞2, data(𝛾2)⟩. Let 𝛾 := ⟨st(𝛾2) ⊕ 𝑞1 ⊕ 𝑘 · 𝑞2, data(𝛾2)⟩. We make a case
disjunction on act:

— if act = write𝑟 (d) is a write action then, because 𝛾1
𝛿−→ 𝛾2, we have data(𝛾) (𝑟) =

data(𝛾2) (𝑟) = d and applying 𝛿 from 𝛾 does not change the content of the registers;

— if act = read𝑟 (d) is a read action then, because 𝛾1
𝛿−→ 𝛾2, we have data(𝛾1) (𝑟) =

data(𝛾2) (𝑟) = data(𝛾) (𝑟) = d and 𝛿 can be applied from 𝛾,

— if act = ⊛ is an internal action then 𝛿 can be applied from 𝛾.

This proves that ⟨st(𝛾2) ⊕ 𝑞1 ⊕ 𝑘 · 𝑞2, data(𝛾2)⟩
𝛿−→ ⟨st(𝛾2) ⊕ (𝑘 + 1) · 𝑞2, data(𝛾2)⟩, concluding

the proof. □

The previous lemma tells us that, whenever a transition 𝛿 from 𝑞1 to 𝑞2 is fired, we can
freely move processes from 𝑞1 to 𝑞2 by applying 𝛿 as many times as we want. This leads us

2. According to Cambridge dictionary, a copycat is “something that is intentionally done or made to be very
similar to something else”. The word is in fact a compound word of copy and cat, as in old English the word cat
was used as a derogatory term for a person.
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to defining the accelerated semantics: given 𝛾, 𝛾′ ∈ Γ and 𝛿 = (𝑞1, act, 𝑞2) ∈ Δ, we define

𝛾
𝛿−−→

acc
𝛾′ whenever there is 𝑘 ⩾ 1 such that 𝛾 𝛿𝑘−−→ 𝛾′.

Again, we extend the definition to define the reflexive and transitive closure ∗−−→
acc

. Obviously,
the accelerated semantics defines the same reachability relation as the normal semantics:

Fact 2.9. For every 𝛾, 𝛾′ ∈ Γ, one has 𝛾 ∗−→ 𝛾′ if and only if 𝛾 ∗−−→
acc

𝛾′.

One can also make the following, similar observation:

Lemma 2.10. Consider 𝛾1, 𝛾2, 𝑞2 such that 𝛾1
∗−→ 𝛾2, 𝑞2 ∈ supp(𝛾2). There exists 𝑞1 ∈

supp(𝛾1) s.t. ⟨st(𝛾1) ⊕ 𝑞1, data(𝛾1)⟩
∗−→ ⟨st(𝛾2) ⊕ 𝑞2, data(𝛾2)⟩.

Proof. The intuition is that we take one process ending in 𝑞2, let 𝑞1 its state in 𝛾1 and add
another process that mimics the behavior of this process so that it goes from 𝑞1 to 𝑞2 as well.
We will prove that a process may mimic another one using iterated applications of Lemma 2.8.
To prove this formally, we prove the result by induction on the length of the execution. If the
execution is of length 0 then one simply considers 𝑞1 := 𝑞2. Let 𝜌 : 𝛾1

∗−→ 𝛾2 and suppose that
the property is true for all executions of length len(𝜌) − 1. Decompose 𝜌 into 𝛾1

∗−→ 𝛾3
𝛿−→ 𝛾2.

If 𝑞2 is not the destination of 𝛿, then 𝑞2 ∈ supp(𝛾3): we directly apply the induction hypothesis
on 𝛾1

∗−→ 𝛾3 and 𝑞2 and conclude by applying 𝛿 to get to ⟨st(𝛾2) ⊕ 𝑞2, data(𝛾2)⟩ by Fact 2.3.
Assume that 𝑞2 is the destination of 𝛿; let 𝑞3 be the source state of 𝛿. We have 𝑞3 ∈ supp(𝛾3), so
we apply the induction hypothesis on 𝛾1

∗−→ 𝛾3 and 𝑞3: we obtain that there exists 𝑞1 ∈ supp(𝛾1)
such that ⟨st(𝛾1) ⊕ 𝑞1, data(𝛾1)⟩

∗−→ ⟨st(𝛾3) ⊕ 𝑞3, data(𝛾3)⟩. Moreover, by Lemma 2.8 we have
⟨st(𝛾3) ⊕ 𝑞3, data(𝛾3)⟩

𝛿−→ ⟨st(𝛾2) ⊕ 𝑞2, data(𝛾2)⟩, concluding the proof. □

Moreover, the set of initial configurations expresses that all processes are in 𝑞0. Therefore,
it is not sensitive to the number of processes. Combined with the result above, this gives a
monotonicity property for the set Post∗(Γ0):

Corollary 2.11. For all 𝛾 ∈ Post∗(Γ0) and 𝑞 ∈ supp(𝛾), ⟨st(𝛾) ⊕ 𝑞, data(𝛾)⟩ ∈ Post∗(Γ0).

Proof. Because 𝛾 ∈ Post∗(Γ0), by letting 𝑛 := |𝛾 |, we have 𝛾0(𝑛)
∗−→ 𝛾. Let 𝑞 ∈ supp(𝛾);

applying Lemma 2.10 proves that 𝛾0(𝑛 + 1) ∗−→ ⟨st(𝛾) ⊕ 𝑞, data(𝛾)⟩ and therefore that ⟨st(𝛾) ⊕
𝑞, data(𝛾)⟩ ∈ Post∗(Γ0). □

2.4 An Abstraction for Presence Reachability Problems

In this section, we define an abstract semantics that is sound and complete with respect to
PRP. This abstraction is a non-counting abstraction, a classic tool of parameterized verification
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of systems that enjoy strong monotonicity properties (see, e.g., [DSTZ12; DEGM15]). The
intuition is that there is no need to count processes, thanks to the following three observations:

(Obs1) initial configurations allow for arbitrarily many processes in 𝑞0,

(Obs2) the copycat principle presented in Section 2.3 allows us, given an execution that sends
at least one process from 𝑞0 to 𝑞, to build an execution equal to the original one except
with arbitrarily many processes going from 𝑞0 to 𝑞,

(Obs3) presence constraints are not able to count processes, as they may only express whether
a given state is populated or not.

We thus define an abstraction where we do not store how many processes are in each state.

Definition 2.12. An abstract configuration is a pair 𝜎 = ⟨st(𝜎), data(𝜎)⟩ ∈ Γ := 2𝑄 ×
Ddim. Given a configuration 𝛾 ∈ Γ, its abstract projection 𝛾 is the abstract configuration
⟨supp(𝛾), data(𝛾)⟩.

We will sometimes refer to actual configurations as concrete to distinguish them from abstract
configurations. In an abstract configuration, the only information kept about each state is whether
there is at least one process in the state, i.e., whether the state is populated. There is only one
initial abstract configuration 𝜎0 := ⟨{𝑞0},⊥dim⟩: for all 𝑛, 𝛾0(𝑛) = 𝜎0.

We define the abstract semantics as the abstract projection of the accelerated concrete
semantics:

Definition 2.13. For every 𝛿 ∈ Δ, for every 𝜎1, 𝜎2 ∈ Γ, we let 𝜎1
𝛿−→ 𝜎2, called an abstract step,

if and only if there is 𝛾1, 𝛾2 ∈ Γ such that 𝛾1 = 𝜎1, 𝛾2 = 𝜎2 and 𝛾1
𝛿−−→

acc
𝛾2.

For the sake of clarity, we explicit under what conditions one has 𝜎1
𝛿−→ 𝜎2 in the abstract

semantics. Let (𝑞1, act, 𝑞2) := 𝛿. The conditions on the content of the registers to have 𝜎1
𝛿−→ 𝜎2

are identical to the ones we had for concrete configurations. However, for the set of populated
states, there are now two options, making the semantics non-deterministic even for a fixed
transition. The first option is st(𝜎2) = st(𝜎1) ∪ {𝑞2}. This corresponds to sending some
processes from 𝑞1 to 𝑞2, but not all of them, and is called a non-deserting step. The second
option (possible when 𝑞1 ≠ 𝑞2 only) is st(𝜎2) = (st(𝜎1) \ {𝑞1}) ∪ {𝑞2}; it corresponds to
sending all processes in 𝑞1 to 𝑞2, and is therefore called a deserting step.

In the (non-accelerated) concrete semantics, implementing a deserting step might require
several steps, in fact as many steps as there are processes in 𝑞1. In the accelerated semantics,
emptying a state can always be done in one step. Hence, the abstract semantics is more similar
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to the accelerated concrete semantic. This is the reason why we used the accelerated semantics
in Definition 2.13. In fact, the definition of an abstract step would have been exactly the same if
we replaced 𝛾1

𝛿−−→
acc

𝛾2 with 𝛾1
𝛿−→ 𝛾2, using non-accelerated semantics instead. Indeed, if we

have 𝛾1
𝛿−−→

acc
𝛾2 with 𝛿 = (𝑞1, act, 𝑞2) then we have 𝛾′1

𝛿−→ 𝛾′2 with 𝛾′1 = 𝛾1 and 𝛾′2 = 𝛾2. To build
𝛾′1 and 𝛾′2, if st(𝛾2) (𝑞1) > 0 then we let 𝛾′1 := 𝛾1 and if 𝛾2(𝑞1) = 0 then we let 𝛾′1 equal to 𝛾1

except that st(𝛾′1) = 1, so that st(𝛾′2) (𝑞1) = 0 and 𝛾′2 = 𝛾2.

As in Section 2.2, we extend the abstract semantics 𝛿−→ to define relations −→ and ∗−→ on
abstract configurations. We also define abstract executions similarly to concrete ones. The
length of an abstract execution is given by its number of steps. We define the reachability set
Post∗(𝐴) and the notion of coverability as in the concrete case. This abstraction is sound and
complete for PRP. Indeed, thanks to (Obs1) and (Obs2), the set Post∗(Γ0) of reachable concrete
configurations and the set Post∗(𝜎0) of reachable abstract configurations are strongly related:

Proposition 2.14. Post∗(Γ0) = Post∗(𝜎0). In other words, for all 𝜎 ∈ Γ:

(∃𝛾 ∈ Post∗(Γ0) : 𝛾=𝜎) ⇐⇒ 𝜎 ∈ Post∗(𝜎0).

Proof. We start with the high-level idea of the proof. The converse implication is the interesting
one; it relies on the monotonicity of Post∗(Γ0) highlighted in Corollary 2.11, which allows us
to obtain concrete configurations with enough processes. Indeed, if we have an abstract step
𝜎

𝛿−→ 𝜎′ and a concrete configuration 𝛾 such that 𝛾 = 𝜎, although there is indeed 𝛾′ such that
𝛾

𝛿−−→
acc

𝛾′, it could be that 𝛾′ has no process in the source state 𝑞 of 𝛿 (if 𝛾 had only one process

in 𝑞) while 𝑞 ∈ st(𝜎′) so that 𝛾′ ≠ 𝜎′; we solve this issue by guaranteeing that st(𝛾) (𝑞) ⩾ 2.
First, by definition, if there is 𝛾0 ∈ Γ0, 𝛾 ∈ Γ such that 𝛾 = 𝜎 then, by definition of the

abstract semantics, 𝛾0 = 𝜎0
∗−→ 𝛾 = 𝜎.

We now prove the converse implication. Fix an abstract execution 𝜌 : 𝜎0
∗−→ 𝜎; we prove

the existence of 𝛾 ∈ Post∗(Γ0) such that 𝛾 = 𝜎. The proof is by induction in the length of
the abstract execution 𝜌. If 𝜌 has 0 steps then 𝜎 = 𝜎0 and the statement is trivially true.
Assume that the statement is true for abstract executions of length at most len(𝜌) − 1, and
decompose 𝜌 into 𝜎0

∗−→ 𝜎𝑚
𝛿−→ 𝜎. By induction hypothesis, there is 𝛾𝑚 ∈ Post∗(Γ0) such

that 𝛾𝑚 = 𝜎𝑚. Let (𝑞1, act, 𝑞2) := 𝛿. Because 𝛿 can be applied from 𝜎𝑚, it can be applied
from 𝛾𝑚. If 𝑞1 ∉ st(𝜎), it suffices to perform 𝛿 from 𝛾𝑚 st(𝛾𝑚) (𝑞1) times, so that there is no
process left on 𝑞1 (in the accelerated semantics, this corresponds to an accelerated step that sends
st(𝛾𝑚) (𝑞1) processes from 𝑞1 to 𝑞2). If 𝑞1 ∈ st(𝜎), we could have an issue if st(𝛾𝑚) (𝑞1) = 1,
as applying 𝛿 from 𝛾𝑚 would empty 𝑞1. We know that st(𝛾𝑚) (𝑞1) > 0, thus by Corollary 2.11

54



2.4. An Abstraction for Presence Reachability Problems

⟨st(𝛾𝑚) ⊕ 𝑞1, data(𝛾𝑚)⟩ ∈ Post∗(Γ0); applying 𝛿 once from this configuration brings us to a
configuration 𝛾 such that 𝛾 = 𝜎. □

(Obs3) can be formalized as follows. Given 𝛾1, 𝛾2 ∈ Γ, if 𝛾1 = 𝛾2 then 𝛾1 and 𝛾2 have
the same truth value for presence constraints. We interpret presence constraints on abstract
configurations in a straightforward manner. We can study directly presence reachability problems
in the abstract world:

Proposition 2.15. Let 𝜙 be a presence constraint. There exists 𝛾 ∈ Post∗(Γ0) such that 𝜙 |= 𝛾
if and only if there exists 𝜎 ∈ Post∗(𝜎0) such that 𝜙 |= 𝜎.

This proves that presence reachability problems may be studied in the abstract semantics.
We now bound the length of abstract executions needed to witness reachability between two
configurations. To do that, we first need to define a notion of abstract execution in normal form.

Given an abstract step 𝜎1
𝛿−→ 𝜎2 and a state 𝑞, the step deserts state 𝑞 whenever 𝑞 ∈

st(𝜎1) \ st(𝜎2), and it populates state 𝑞 whenever 𝑞 ∈ st(𝜎2) \ st(𝜎1).

Definition 2.16. An abstract execution 𝜌 is in normal form if each of its steps satisfies one of
the following three properties:

(2.16.1) it deserts a state, or

(2.16.2) it populates that was never populated before in the execution, or

(2.16.3) it is a write step on register 𝑟, its start and end configurations are distinct and the next
step involving register 𝑟 in 𝜌, if it exists, is a read step.

Lemma 2.17. For every 𝜎1, 𝜎2 ∈ Γ, if 𝜎1
∗−→ 𝜎2 then there is an abstract execution from 𝜎1 to

𝜎2 that is in normal form.

Proof. The high-level idea is that any step that violates all three conditions of Definition 2.16
is useless and can be removed. Let 𝜌 : 𝜎1

∗−→ 𝜎2. We build an execution 𝜌′ starting with 𝜌′ = 𝜌
and applying the following transformations:

1. for every state 𝑞, if 𝑞 is deserted and later populated again, add 𝑞 to all intermediate
abstract configurations between the first step deserting 𝑞 and the last step populating 𝑞;

2. remove from 𝜌′ all steps whose start and end configurations are equal;

3. remove from 𝜌′ all write steps that do not desert nor populate a state and whose written
symbol is overwritten; a write step on register 𝑟 in 𝜌′ is overwritten if, in the suffix 𝜌′𝑠
of 𝜌′ that follows this step, there is a step that involves register 𝑟 and the first step in 𝜌′𝑠
involving register 𝑟 is a write step;
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4. remove again from 𝜌′ all steps whose start and end configurations are equal.

It is important that we apply these four transformations in this order: 1 then 2 then 3 then 4.
Indeed, transformation 1 may generate steps with same start and end configurations, so that those
steps are deleted at transformation 2. In transformation 2, we delete useless read steps with same
start and end configurations; such steps must not be taken into account during transformation 3
to justify the presence of write steps. In transformation 3, we may generate write steps with the
same start and end configuration: it could be that, before this transformation, some write step
write𝑟 (d) was applied to some configuration with a symbol distinct from d in register 𝑟, but that,
after removal of anterior write steps in transformation 3, the start configuration of this step now
has symbol d.

We claim that, after these four transformations, the obtained execution 𝜌′ is in normal form.
We need to prove the conditions of Definition 2.16 for each step of 𝜌′. We therefore consider an
arbitrary step in 𝜌′; to do so, we split 𝜌′ into 𝜌𝑝 : 𝜎1

∗−→ 𝜎2, 𝜎2
𝛿−→ 𝜎3 and 𝜌𝑠 : 𝜎3

∗−→ 𝜎4 and we
are interested in the step 𝜎2

𝛿−→ 𝜎3. If this step does not satisfy (2.16.1), then st(𝜎2) ⊆ st(𝜎3).
If it does not satisfy (2.16.2), then st(𝜎3) ⊆ st(𝜎2). Indeed, if there is 𝑞 ∈ st(𝜎3) \ st(𝜎2)
then, because 𝑞 is not a witness for (2.16.2), 𝑞 appears in 𝜌𝑠; but then, 𝑞 would have been
detected in transformation 1 so that it would be in st(𝜎2), a contradiction. We have proved
that if the step 𝜎2

𝛿−→ 𝜎3 violates (2.16.1) and (2.16.2) then st(𝜎2) = st(𝜎3). Because the step
was not removed at transformations 2 and 4, we have 𝜎2 ≠ 𝜎3 therefore 𝛿 is a write transition.
Let 𝑟 be the register that 𝛿 writes to. Because the step 𝜎2

𝛿−→ 𝜎3 was not removed during
transformation 3, if 𝜌𝑝 has some step involving register 𝑟 then the first such step in 𝜌𝑝 is a read
step. We have proved that a step in 𝜌′ that violates (2.16.1) and (2.16.2) satisfies (2.16.3). This
proves that the obtained execution 𝜌′ is in normal form; it remains to prove that 𝜌′ connects
the two desired configurations. Let 𝜌′ : 𝜎′

1
∗−→ 𝜎′

2; we must argue that 𝜎′
1 = 𝜎1 and 𝜎′

2 = 𝜎2.
Transformation 1 does not change the set of states of the first and last configurations because it
only add states to intermediate configurations of the execution. Transformations 2, 3 and 4 may
only remove steps between configurations of same set of states. This proves that st(𝜎′

1) = st(𝜎1)
and st(𝜎′

2) = st(𝜎2). The content of the registers of the first configuration are never modified,
therefore data(𝜎′

1) = data(𝜎1). Finally, for every register 𝑟, if there is a write transition to 𝑟 in
𝜌, then the last write transition 𝛿 to 𝑟 in 𝜌 is also the last write transition to 𝑟 in 𝜌′, as this step
will not be removed during transformation 3. If there is no step writing to 𝑟 in 𝜌, then there is
also none in 𝜌′. This proves that data(𝜎′

2) = data(𝜎2), which concludes the proof. □

Abstract executions in normal form have their length bounded by a polynomial, making them
valid certificates for the abstract reachability relation.
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Lemma 2.18. Abstract executions in normal form are of length at most 4|𝑄 | + |D|.

Proof. At most |𝑄 | steps populate a state and at most |𝑄 | steps desert a state. All steps that do
not desert nor populate a state are write steps. Write steps that do not desert not populate a state
can be split into two categories: those whose register is not written again in the remainder of the
execution (there are at most |D| of them) and those whose register is written again later in the
execution. Write steps of the second category can be injectively mapped to the corresponding
read step, which exists thanks to (2.16.3), and there are at most 2|𝑄 | read steps hence at most
2|𝑄 | write steps of this second category. This makes at most 4|𝑄 | + |D| steps in total. □

2.5 Complexity of the General Case

In this section, we establish that the presence reachability problem is an NP-complete
problem, and that NP-hardness already holds for Cover.

Theorem 2.19. The presence reachability problem is in NP.

Proof. Consider an instance (P, 𝜙) of the presence reachability problem. Thanks to Proposi-
tion 2.15, the instance is positive if and only if there is 𝜎 ∈ Post∗(𝜎0) such that 𝜙 |= 𝜎. Thanks
to Lemma 2.17 and Lemma 2.18, 𝜎 ∈ Post∗(𝜎0) can be witnessed by an abstract execution of
length at most 4|𝑄 | + |D|. An NP certificate therefore consists in providing an abstract execution
in normal form. Such an execution can be stored in space 𝑂 (( |𝑄 | + |D| + |Δ|)2). Moreover,
given a certificate in the shape of an execution, one can easily check, in linear time in the number
of steps, that the execution is valid. Lastly, checking whether a given abstract configuration
satisfies 𝜙 can be done in polynomial time. □

This argument heavily relies on the unlimited supply of processes initially in 𝑞0. In fact,
when the set of initial configurations considered is allowed to express upper bounds on the
number of processes present in some states, the presence reachability problem and even Cover
are PSPACE-complete [BGW22; BW21; BGW23].

Since the presence reachability problem includes satisfiability of a SAT formula, it is auto-
matically NP-hard. What is less obvious is that even Cover is NP-hard.

Proposition 2.20. Cover is NP-hard.

Proof. The proof is by a reduction from 3-SAT. Consider a 3-CNF formula 𝜙 =
∧𝑚
𝑖=1 ℓ𝑖,1∨ℓ𝑖,2∨ℓ𝑖,3

over 𝑛 variables 𝑥1, . . . , 𝑥𝑛 where, for all 𝑖 ∈ J1, 𝑚K, for all 𝑘 ∈ J1, 3K, ℓ𝑖,𝑘 ∈ {𝑥 𝑗 ,¬𝑥 𝑗 | 𝑗 ∈
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𝑞0 𝐶1? 𝐶2? . . . 𝐶𝑚? 𝑞 𝑓

Test(ℓ1,1)

Test(ℓ1,2)

Test(ℓ1,3)

Test(ℓ𝑚,1)

Test(ℓ𝑚,2)

Test(ℓ𝑚,3)

Test(ℓ) :=
readrg(ℓ ) (true) readrg(¬ℓ ) (⊥)

writerg(𝑥1 ) (true)
. . .

writerg(𝑥𝑛 ) (true)

writerg(¬𝑥1 ) (true)
. . .

writerg(¬𝑥𝑛 ) (true)

Figure 2.3 – The protocol P𝜙 built in Proposition 2.20 to reduce 3-SAT to Cover. Transitions
with no depicted label are labeled by the internal action ⊛.

J1, 𝑛K}. We define a roundless protocol P𝜙 with a distinguished state 𝑞 𝑓 which is coverable if
and only if 𝜙 is satisfiable. In P𝜙, one has D = {⊥, true}, dim = 2𝑛 and there are two registers
for each variable 𝑥𝑖, namely rg(𝑥𝑖) := 2𝑖 − 1 and rg(¬𝑥𝑖) := 2𝑖. The protocol is represented on
Figure 2.3.

While any register may be set to true thanks to the loops on 𝑞0, a register set to true can never
be set back to the initial symbol ⊥. The general idea is that literal ℓ being true corresponds to
rg(ℓ) being set to true while rg(¬ℓ) still has value ⊥ (of course, if ℓ = ¬𝑥 𝑗 then rg(ℓ) = rg(¬𝑥 𝑗 )
and rg(¬ℓ) = rg(𝑥 𝑗 )). This is indeed the condition that must be satisfied to go across the gadget
Test(ℓ) at the bottom of Fig. 2.5.

Suppose that the instance of 3-SAT is positive, i.e., that 𝜙 is satisfied by some assignment
𝜈. Consider an abstract execution that writes true exactly to all rg(ℓ) with ℓ true in 𝜈. For each
clause 𝐶𝑖, there is 𝑘𝑖 ∈ {1, 2, 3} such that ℓ𝑖,𝑘𝑖 is true in 𝜈. In this case, rg(ℓ𝑖,𝑘𝑖 ) is written to
true while rg(¬ℓ𝑖,𝑘𝑖 ) is left blank, so that processes can go through Test(ℓ𝑖,𝑘𝑖 ). Therefore the
execution may cover 𝐶𝑖? for all 𝑖, so that it may cover 𝑞 𝑓 and the instance of Cover is positive.
Conversely, if the instance of Cover is positive, there exists an execution 𝜌 : 𝜎0

∗−→ 𝜎 with
𝑞 𝑓 ∈ st(𝜎). Consider 𝜈 that assigns to each variable 𝑥 𝑗 value true if, in 𝜌, rg(𝑥 𝑗 ) is written for
the first time while rg(¬𝑥 𝑗 ) is still blank; 𝜈 assigns to 𝑥 𝑗 value false otherwise. Given a literal
ℓ, 𝜌 may only send processes through Test(ℓ) if 𝜈(ℓ) is true. Note that the value of 𝜈 is in fact
only relevant for variables 𝑥 𝑗 such that 𝜌 either crossing Test(𝑥 𝑗 ) or Test(¬𝑥 𝑗 ); otherwise, the
value of 𝜈(𝑥 𝑗 ) is irrelevant. In particular, if 𝜌 writes to neither rg(ℓ) nor rg(¬ℓ) then the value
𝜈(𝑥 𝑗 ) is arbitrarily set to false. Because 𝜌 covers 𝑞 𝑓 , this proves that 𝜈 |= 𝜙. □

Given the simplicity of the model, it is a bit disappointing that all interesting problems are
NP-hard. In fact, in the first study of asynchronous shared-memory systems [EGM13; EGM16],
the coverability problem was proved to be in PTIME in the case where there is no leader and
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where all processes are finite-state machine, which is similar to our model. There are however
an important differences between our model of the one of [EGM13; EGM16], which is that our
registers have an initial value. This initial value breaks a key principle from [EGM13; EGM16],
which can be phrased as: “in an execution witnessing Cover, whenever a symbol is read from a
register, one may assume that this symbol can be written at will to this register”. The underlying
idea is to apply the copycat principle to the process writing the symbol. For a symbol that was
initially in the register, this idea breaks down.

2.6 The Uninitialized Case

The reduction used in Proposition 2.20 directly relies on the initialization of registers. Initial
values may force an execution to make global and irreversible choices, which is a common source
of NP-hardness. We now consider the case where the registers are uninitialized. Formally,
a protocol P is uninitialized when it has no transition reading ⊥: for all (𝑞, act, 𝑞′) ∈ Δ,
act ∉ {read𝑟 (⊥) | 𝑟 ∈ J1, dimK}. In other words, in an uninitialized protocol, processes are
not able to use the initial symbol in the registers, which is a way to model that this initial value
does not exist. In [AAR20, Section 7], where the systems considered also work with shared
memory, a similar uninitialized hypothesis yields lower complexity than the general case. The
uninitialized restriction indeed lowers the complexity of Cover for roundless ASMS:

Proposition 2.21. Cover for uninitialized roundless ASMS is PTIME-complete.

Proof. We first prove membership in PTIME. In an abstract execution witnessing Cover, one
may assume that there is no deserting step. In such an execution, whenever symbol d is written
to register 𝑟 using a transition (𝑞1,write𝑟 (d), 𝑞2), then 𝑞1 stays populated and it remains possible
to write d to this register for the remainder of the execution. We abstract this observation by
working with the assumption that a symbol d can be read from a register 𝑟 if and only if there
is a transition (𝑞1,write𝑟 (d), 𝑞2) such that 𝑞1 is populated (note that this does not hold for
initialized ASMS where the initial symbol ⊥ may be read although it cannot be written). This
observation allows us to apply a standard saturation technique (see, e.g., [DSTZ12]) to obtain
a polynomial-time algorithm. This saturation technique consists in a fixpoint computation of
𝑆 ⊆ 𝑄. Initially, we set 𝑆 � {𝑞0}. Then, we iteratively add to 𝑆 all states 𝑞 such that one of the
three following conditions is satisfied:

(i) there is 𝑞′ ∈ 𝑆 such that (𝑞′,write𝑟 (d), 𝑞) ∈ Δ for some d ∈ D and 𝑟 ∈ J1, dimK; or
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(ii) there is 𝑞′ ∈ 𝑆 such that (𝑞′, read𝑟 (d), 𝑞) ∈ Δ for some d ∈ D and 𝑟 ∈ J1, dimK for which
there is 𝑞1 ∈ 𝑆, 𝑞2 ∈ 𝑄 such that (𝑞1,write𝑟 (d), 𝑞2) ∈ Δ 3 ; or

(iii) there is 𝑞′ ∈ 𝑆 such that (𝑞′,⊛, 𝑞) ∈ Δ.

We claim that, once a fixpoint is reached for 𝑆, 𝑆 contains the set of coverable states so that the
instance is positive if and only if 𝑞 𝑓 ∈ 𝑆. First, from a computation of the above algorithm, one
can easily build an execution that covers all states added to 𝑆. The proof is by induction on the
number of states added to 𝑆 so far. Let 𝑞 be the next state added, and let 𝑆𝑖 be the content of 𝑆
right before 𝑞 is added. By induction hypothesis, we obtain an execution 𝜌𝑖 : 𝜎0

∗−→ 𝜎𝑖 such that
𝑆𝑖 ⊆ st(𝜎𝑖). We make a case disjunction on how 𝑞 is added to 𝑆. In the case where 𝑞 is added
with (i), it suffices to apply the write transition detected by the algorithm from 𝜎𝑖. In the case
where 𝑞 is added with (ii), we first apply the write transition then the read transition. If 𝑞 is
added with (iii), we simply apply the transition. Conversely, for every abstract execution 𝜌 from
𝜎0, all states visited in 𝜌 are eventually added to 𝑆 in the computation of the algorithm. This
is proved by induction on the length of the execution. If the last step of 𝜌 is a write step or an
internal step, then this step is captured by (i) and (iii) respectively. The interesting case is when
the last step of the execution is a read transition read𝑟 (d): in this case, we argue that a transition
(𝑞1,write𝑟 (d), 𝑞2) is applied before in 𝜌 and, by induction hypothesis, 𝑞1 is added to 𝑆 so that
this transition can be detected as a witness for (ii) in the algorithm. This is where we need that
the ASMS is uninitialized, as if d = ⊥ then there is no such write transition.

We now prove that Cover is PTIME-hard. For the sake of reusability, we show that this holds
even for uninitialized protocols with a single register (dim = 1). The proof is similar to the one
presented in [DSTZ12, Proposition 1] for broadcast protocols. It uses a LOGSPACE reduction
from the Circuit Value Problem, which is PTIME-complete for LOGSPACE reductions [Lad75].
The latter problem consists in determining the output value of an acyclic Boolean circuit with
given input values and Boolean gates that are negations ¬, disjunctions ∨ and conjunctions ∧.

Consider an instance of the Circuit Value Problem, we write 𝑉 for the set of input, inter-
mediate and output values of the circuit. A gate is represented as a tuple of the form (¬, 𝑖, 𝑜),
(∨, 𝑖1, 𝑖2, 𝑜) or (∧, 𝑖1, 𝑖2, 𝑜) where we denote by 𝑖, 𝑖1, 𝑖2 ∈ 𝑉 input(s) and by 𝑜 ∈ 𝑉 the output
of the gate. We construct an instance (PCVP, 𝑞 𝑓 ) of Cover with dim = 1 and where PCVP is
uninitialized. In D, we have ⊥ (which is never read) along with, for every 𝑣 ∈ 𝑉 , symbols
true(𝑣) and false(𝑣), denoting that 𝑣 is respectively true and false. First, PCVP has a part from
which one may write the symbols corresponding to the assignment of the input values of the

3. One could alternatively choose to enforce that 𝑞2 ∈ 𝑆; this choice is irrelevant, as case (i) guarantees that 𝑞2
will eventually be added to 𝑆.
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𝑞0

read(false(𝑖1))

read(false(𝑖2))

write(false(𝑜))

read(true(𝑖1))

read(true(𝑖2))
write(true(𝑜))

Figure 2.4 – The gadget in PCVP corresponding to a gate (∧, 𝑖1, 𝑖2, 𝑜)

circuit. Moreover, for every gate of the circuit, there is a part of the protocol corresponding to
this gate, in which a process may read the values of the inputs and write the corresponding value
of the output. A depiction for gate (∧, 𝑖1, 𝑖2, 𝑜) may be found in Fig. 2.4. Lastly, state 𝑞 𝑓 is the
destination of the transition writing symbol true(out) where out ∈ 𝑉 is the output variable. This
reduction can be computed in logarithmic space because we can build the protocol by going
through all gates one by one and building all corresponding gadgets. □

The uninitialized hypothesis therefore makes Cover a tractable problem; this is however not
the case for our other problems of interest and in particular for Target.

Proposition 2.22. Target for uninitialized protocols is NP-hard.

Proof. Once again, we proceed by reduction from 3-SAT. Consider a 3-CNF formula 𝜙 =∧𝑚
𝑖=1 ℓ𝑖,1 ∨ ℓ𝑖,2 ∨ ℓ𝑖,3 over 𝑛 variables 𝑥1, . . . , 𝑥𝑛 where, for all 𝑖 ∈ J1, 𝑚K, for all 𝑘 ∈ J1, 3K,

ℓ𝑖,𝑘 ∈ {𝑥 𝑗 ,¬𝑥 𝑗 | 𝑗 ∈ J1, 𝑛K}. We define an instance (P𝜙, 𝑞 𝑓 ) of Target with P𝜙 uninitialized,
so that (P𝜙, 𝑞 𝑓 ) is positive if and only if 𝜙 is satisfiable. We start by explaining how this
reduction compares with the one used to prove Proposition 2.20. Here, we only need one
register per variable, and not two. The encoding of the truth value is straightforward: 𝑥 𝑗 being
true corresponds to true being written to register 𝑗 , and 𝑥 𝑗 being false corresponds to false
being written to register 𝑗 . The definitive choice of the valuation is made by the last process
to leave the initial state 𝑞0, because 𝑞0 is the only state from which processes can write values
to the registers. Indeed, in every witness execution for Target, there is a last process to leave
the initial state. This is a crucial difference with Cover, where it is always possible to make
processes stay and write the same values over and over again.

Let dim := 𝑛, i.e., the protocol has a register for each variable of the formula. The symbols
of D are true and false (along with ⊥ which cannot be read nor written). A depiction of the
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𝑞0 𝐶1? 𝐶2? . . . 𝐶𝑚? 𝑞 𝑓

Test(ℓ1,1)

Test(ℓ1,2)

Test(ℓ1,3)

Test(ℓ𝑚,1)

Test(ℓ𝑚,2)

Test(ℓ𝑚,3)

write1(true)
. . .

write𝑛 (true)

write1(false)
. . .

write𝑛 (false)

Test(𝑥 𝑗 ) := Test(¬𝑥 𝑗 ) :=
read 𝑗 (true) read 𝑗 (false)

Figure 2.5 – The protocol P𝜙 for NP-hardness of uninitialized Target.

protocol can be found in Figure 2.5.
Suppose first that 𝜙 is satisfiable by an assignment 𝜈. For all 𝑖 ∈ J1, 𝑚K, there exists

𝑘 (𝑖) ∈ J1, 3K such that 𝜈(ℓ𝑖,𝑘 (𝑖)) = true. Consider the following execution 𝜌 with one process.
First, the process writes true to all literals ℓ such that ℓ is true in 𝜈. The process then leaves 𝑞0;
it goes through each state 𝐶𝑖? and through each gadget Test(ℓ𝑖,𝑘 (𝑖)), which is possible because
ℓ𝑖,𝑘 (𝑖) is true in 𝜈. This execution goes from ⟨𝑞0,⊥J1,dimK⟩ to ⟨𝑞 𝑓 , ®𝑑⟩ for some ®𝑑 ∈ Ddim hence
the instance of Target is positive. Conversely, suppose that there exists such an execution
𝜌 : 𝜎0

∗−→ ⟨𝑞 𝑓 , ®𝑑⟩. All processes end up in 𝑞 𝑓 , therefore there is a step in 𝜌 that deserts 𝑞0 for the
last time, i.e., where the last process to leave 𝑞0 does so. Let 𝛾 be the configuration immediately
after this step. Let 𝜈 be the valuation that assigns true to 𝑥 𝑗 if and only if data(𝛾) ( 𝑗) = true; this
means that 𝜈 assigns false to 𝑥 𝑗 if and only if data(𝛾) ( 𝑗) ∈ {false,⊥}. We claim that 𝜈 |= 𝜙.
There is at least one process in 𝜌, therefore for every 𝑖 ∈ J1, 𝑚K, there is 𝑘 (𝑖) ∈ {1, 2, 3} such that
at least one process in 𝜌 goes through Test(ℓ𝑖,𝑘 (𝑖)). From this, we deduce that, for all 𝑖 ∈ J1, 𝑚K,
𝜈 assigns true to ℓ𝑖,𝑘 (𝑖) , which proves that 𝜈 |= 𝜙. □

2.7 One-register Asynchronous Shared-Memory Systems

In the previous section, we have seen that, while the NP-hardness of Cover stems from the
initialization of registers, this is not true for more complex problems such as Target. Another
natural question is whether this hardness comes from the number of registers. Motivated by this
consideration, we study presence reachability problems in ASMS with one register only.

In this section, we prove that dnfPRP (therefore in particular Target) can be solved in
polynomial time when the protocol has only one register.

Theorem 2.23. dnfPRP for roundless ASMS with dim = 1 is PTIME-complete.
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The rest of this section is devoted to proving Theorem 2.23. Thanks to Proposition 2.15,
we work with the abstract semantics in this proof. The technique used for the complexity upper
bound is inspired by the one of [Fou15] in the setting of broadcast networks. We describe here
this general idea for Target, the proof for dnfPRP relies on the same idea but with additional
technical details.

Let (P, 𝑞 𝑓 ) be an instance of Target. We are looking for a witness (abstract) execution
for Target, i.e., an execution 𝜎0

∗−→ ⟨{𝑞 𝑓 }, ®𝑑⟩ for some ®𝑑. We first prove that such a witness
execution can be rearranged so that it starts by an increasing phase where it populates all
needed states, followed by a decreasing phase where all states except 𝑞 𝑓 are deserted. With this
observation, the algorithm works with two separate computations: one that computes the set of
states that can be populated in the first phase, and one that computes the set of states that can be
deserted in the second phase. Any state that is not in the intersection of these two sets has no
hope of appearing in a witness execution, so that such states can be deleted from the protocol.
After this removal, we apply the same procedure on the new, smaller protocol. Once a fixpoint
set of states is reached, it suffices to check whether this fixpoint is empty or not.

In the ASMS setting, the proof is however more complex than the one of [Fou15] because
of the initialization of the register, a concept that has no equivalent in broadcast networks, and
because of persistency of symbols in the register. We start by getting rid of the first obstacle by
reducing the general problem to the one for uninitialized ASMS.

Lemma 2.24. There exists a polynomial-time reduction from initialized dnfPRP with dim = 1
to uninitialized dnfPRP with dim = 1.

Proof. Let P = ⟨𝑄, 𝑞0, 1,D,⊥,Δ⟩ be a roundless protocol with a single register. Any execution
of P is composed of two (potentially empty) phases: the phase where the register has symbol ⊥
and no write transition is applied and the phase where the register has a symbol in D \ {⊥} and
⊥ may no longer be read. The reduction relies on the observation that, in the first phase, only
read transitions labeled by read(⊥) and internal transitions may be taken, and processes do not
interact during this phase. Therefore, we can consider as initial any state that may be covered
from 𝑞0 with a path composed only of transitions labeled by read(⊥) and ⊛.

Consider the graph 𝐺 = (𝑄, 𝐸) whose vertices are the states of the system and whose edges
are the transitions labeled by read(⊥) or ⊛: (𝑞1, 𝑞2) ∈ 𝐸 if and only if (𝑞1, read(⊥), 𝑞2) ∈ Δ

or (𝑞1,⊛, 𝑞2) ∈ Δ. Let 𝑄0 be the set of vertices with a path from 𝑞0 in 𝐺. This set can
trivially be computed in polynomial time. We let 𝑞′0 ∉ 𝑄 and we build an uninitialized protocol
P′ = ⟨𝑄 ⊎ {𝑞′0}, 𝑞

′
0, 1,D,⊥,Δ

′⟩ where Δ′ is obtained by removing from Δ all transitions labeled
by read(⊥) and, for each 𝑞 ∈ 𝑄0, adding an internal transition from 𝑞′0 to 𝑞. We now prove that
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(P, 𝜙) is a positive instance of dnfPRP if and only if (P′, 𝜙) is. Note that 𝜙 can be interpreted
over P′ because 𝑄 ⊆ 𝑄′. For the same reason, for every abstract configurations ⟨𝑆, d⟩ of P,
⟨𝑆, d⟩ and ⟨𝑆 ∪ {𝑞′0}, d⟩ are abstract configurations of P′.

First, assume that (P, 𝜙) is positive and let 𝜌 : 𝜎0
∗−→ 𝜎 be an abstract execution of P such

that 𝜎 |= 𝜙. Let ⟨𝑆,⊥⟩ be the last configuration visited in 𝜌 with a blank register (we can have
⟨𝑆,⊥⟩ = 𝜎 if 𝜌 never writes to the register). We first build 𝜌𝑚 : 𝜎0

∗−→ ⟨𝑆 ∪ {𝑞′0},⊥⟩ in P′

that uses the internal transitions to populate every state in 𝑆. If 𝜎 ≠ ⟨𝑆,⊥⟩, the next transition
performed in 𝜌 is a write transition, so that the remainder of the execution can be mimicked in
P′ to obtain 𝜌′ : 𝜎0

∗−→ 𝜎′ where 𝜎′ = ⟨st(𝜎) ∪ {𝑞′0}, data(𝜎)⟩. We have 𝜎′ |= 𝜙, which proves
that (P′, 𝜙) is positive.

Conversely, assume that (P′, 𝜙) is positive and let 𝜌′ : 𝜎0
∗−→ 𝜎′ be an abstract execution of

P′ such that 𝜎′ |= 𝜙. In 𝜌′, each process remains idle in 𝑞′0 until it takes an internal transition
to some state in 𝑄0. Because this involves no read or write transition, we may rearrange 𝜌′

so that all such transitions take place in some initial phase. Let ⟨𝑆′,⊥⟩ be the configuration
obtained after this initial phase. Let 𝑆 := 𝑆′ \ {𝑞′0}, so that 𝑆 ⊆ 𝑄0. From ⟨𝑆′,⊥⟩, 𝜌′ has a
(possibly empty) second phase ⟨𝑆′,⊥⟩ ∗−→ 𝜎′ that uses no transition with source state 𝑞′0. All
transitions of the second phase can be mimicked in P to obtain an execution ⟨𝑆,⊥⟩ ∗−→ 𝜎 where
𝜎 := ⟨st(𝜎′) \ {𝑞′0}, data(𝜎′)⟩; we have 𝜎 |= 𝜙 therefore it suffices to build 𝜌 : 𝜎0

∗−→ ⟨𝑆,⊥⟩
in P. This execution 𝜌 uses only transitions labeled by read(⊥) and ⊛; by definition of 𝑄0

and because 𝑆 ⊆ 𝑄0, all states in 𝑆 can be populated using only sequences of read(⊥) and ⊛

transitions from 𝑞0. We populate each state in 𝑆 one by one, while making sure to always desert
states that are not in 𝑆. This way, we construct an execution from 𝜎0 to ⟨𝑆,⊥⟩ in P. We have
proved that (P, 𝜙) is positive if and only if (P′, 𝜙) is positive. Because P′ can be constructed
from P in polynomial time and P′ has no transition labeled read(⊥), this concludes the proof
of Lemma 2.24. □

Thanks to the previous lemma, it is sufficient to prove Theorem 2.23 in the uninitialized
case. Consider an instance (P, 𝜙) of dnfPRP where P is uninitialized and only has one register.
Because 𝜙 is assumed to be in disjunctive normal form, (P, 𝜙) is positive if and only if (P, 𝐶) is
positive for some clause 𝐶 of 𝜙. The algorithm hence iterates over all clauses in 𝜙. A clause in
𝜙 is a conjunction of literals, hence we see clauses as sets of atomic propositions and negations
of atomic propositions that the final configuration has to satisfy. We first rule out the case where
there is a witness execution composed of internal steps only:

Lemma 2.25. One can decide in polynomial-time, giving an instance (P, 𝜙) of dnfPRP, whether
there is an execution 𝜌 : 𝜎0

∗−→ 𝜎 with 𝜎 |= 𝜙 where 𝜌 has internal steps only.
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Proof. The intuition is that, in execution with internal steps only, there is no communication
between processes so that processes independently follow paths of internal transitions. With the
same technique as in the proof of Lemma 2.24, we can compute the set 𝑆 of states that can be
covered from 𝜎0 using executions with internal steps only. It then suffices, for each clause 𝐶
in 𝜙, to check whether there is 𝑇 ⊆ 𝑆 such that 𝑇 ≠ ∅ and ⟨𝑇,⊥⟩ |= 𝐶. This can be done in
polynomial time by performing the following computation. First, check that, for all d ∈ D, if
cont(1, d) ∈ 𝐶 then d = ⊥ and check that (¬cont(1,⊥)) ∉ 𝐶. Then, check that, for all 𝑞 ∈ 𝑄,
if popu(𝑞) ∈ 𝐶 then 𝑞 ∈ 𝑆 and (¬popu(𝑞)) ∉ 𝐶. Finally, check that, if (¬popu(𝑞0)) ∈ 𝐶 then
there is 𝑞 ∈ 𝑆 such that (¬popu(𝑞)) ∉ 𝐶. □

From now on, we assume that there is no witness execution of (P, 𝜙) using only internal
steps. Let 𝐶 be a clause in 𝜙; 𝐶 is a conjunction of literals, hence we see 𝐶 as a set of atomic
propositions and negations of atomic propositions that the final configuration has to satisfy. Let
𝑄+(𝐶) be the set of states that need to be populated in the final configuration, 𝑄−(𝐶) the states
that need to not be populated, and Dok (𝐶) the symbols that are allowed in the final configuration.
Formally,

𝑄+(𝐶) := {𝑞 | popu(𝑞) ∈ 𝐶}
𝑄−(𝐶) := {𝑞 | (¬popu(𝑞)) ∈ 𝐶}

Dok (𝐶) := {d ∈ D | (¬cont(1, d)) ∉ 𝐶 and ∀d′ ≠ d, cont(1, d′) ∉ 𝐶}.

In words, a symbol d is in Dok (𝐶) if, in 𝐶, it is not forbidden to be in the register (formally,
(¬cont(1, d)) ∉ 𝐶) and if no other symbol has to be in the register (formally, for all d′ ≠ d,
cont(1, d′) ∉ 𝐶). In particular, if there is d such that cont(1, d) ∈ 𝐶 then Dok (𝐶) = {d} or
Dok (𝐶) = ∅. This last case may happen if two different symbols must in the register, so that
clause 𝐶 cannot be satisfied.

For all ⟨𝑆, d⟩ ∈ Γ, ⟨𝑆, d⟩ |= 𝐶 if and only if 𝑄+(𝐶) ⊆ 𝑆 ⊆ 𝑄 \𝑄−(𝐶) and d ∈ Dok (𝐶). Let

F (𝐶) := {𝑆 ⊆ 𝑄 | 𝑄+(𝐶) ⊆ 𝑆 ⊆ 𝑄 \𝑄−(𝐶)}

be the collection containing sets of states that could form a valid final configuration. We now
prove that, if there is a witness execution, then we can rearrange it into an increasing phase
followed by a decreasing phase. We call an execution 𝜌 write-first if its first step interacting
with the register exists and is a write step. An execution 𝜌 is write-first if it has some prefix
𝛾1

∗−→ 𝛾2
𝛿−→ 𝛾3 where the execution from 𝛾1 to 𝛾2 only has internal steps and 𝛿 is a write
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transition. Because P is uninitialized, any execution starting from a configuration with symbol
⊥ that has at some write transition is write-first.

Lemma 2.26. Let 𝜌 : 𝜎0
∗−→ 𝜎 𝑓 = ⟨𝑆 𝑓 , d 𝑓 ⟩ be an execution with at least one write transition.

There are write-first executions 𝜌inc, 𝜌dec such that 𝜌inc : 𝜎0
∗−→ ⟨𝑆, d 𝑓 ⟩, 𝜌dec : ⟨𝑆, d 𝑓 ⟩

∗−→ ⟨𝑆 𝑓 , d 𝑓 ⟩
where 𝑆 contains all states appearing in 𝜌, 𝜌inc has no deserting step and 𝜌dec does not populate
any state.

Proof. The execution 𝜌inc is obtained by mimicking 𝜌 (i.e., applying the same sequence of
transitions as in 𝜌) but turning into non-deserting all deserting steps, so that all states visited in
𝜌 are populated in the configuration obtained. The execution 𝜌dec is obtained by mimicking 𝜌
but from a larger set of states, which is possible thanks to Fact 2.3. For every state 𝑞 ∈ 𝑆 \ 𝑆 𝑓 ,
the last step in 𝜌 where 𝑞 appears is a deserting step with a transition leaving 𝑞. By making these
steps deserting in 𝜌dec and all other steps non-deserting, we obtain an execution from ⟨𝑆, d 𝑓 ⟩ to
⟨𝑆 𝑓 , d 𝑓 ⟩. Because the protocol is uninitialized, we know that 𝜌 is write-first, so that 𝜌dec and
𝜌inc also are. Also, 𝜌dec populates no state because the first configuration of 𝜌dec contains all
states seen in 𝜌dec, only states in 𝑆 \ 𝑆 𝑓 are deserted in 𝜌dec and these states are deserted only
once. □

Given a protocol P and a clause 𝐶, we define two sets of sets of states as follows:

— R(P) := {𝑆 ⊆ 𝑄 | ∃𝜎0 ∈ Γ0, ∃d ∈ D, 𝜎0
∗−→ ⟨𝑆, d⟩},

— BR(P, 𝐶) = {𝑆 ⊆ 𝑄 | ∃d 𝑓 ∈ Dok (𝐶), ∃𝑆 𝑓 ∈ F (𝐶), ∃𝜌 : ⟨𝑆, d⟩ ∗−→ ⟨𝑆 𝑓 , d 𝑓 ⟩ write-first}.

We put P as argument because Algorithm 1 will modify the protocol by removing states.
To avoid overloading notations, we consider that the sets 𝑄 and D and the reachability relation
are implicitly those of the protocol P taken as argument. In the definition of BR(P, 𝐶),
the symbol d is irrelevant because the execution is write-first, so that it in fact guarantee that
⟨𝑆, d′⟩ ∗−→ ⟨𝑆 𝑓 , d 𝑓 ⟩ for all d′ ≠ d.

Lemma 2.27. The sets R(P) and BR(P, 𝐶) are stable by union.

Proof. For both sets, the proof essentially consists in concatenating executions, which will be
possible because all executions considered are write-first. We first prove it for R(P). Let
𝜎0, 𝜎

′
0 ∈ Γ0, 𝜌 : 𝜎0

∗−→ ⟨𝑆, d⟩, 𝜌′ : 𝜎′
0

∗−→ ⟨𝑆′, d′⟩. We show that we can merge 𝜌 and 𝜌′ into a
single execution ⟨st(𝜎0) ∪ st(𝜎′

0),⊥⟩
∗−→ ⟨𝑆 ∪ 𝑆′, d′⟩. To do so, we first mimic 𝜌, but we make

non-deserting any deserting step in 𝜌 whose transition leaves a state in st(𝜎′
0). This way, we

obtain an execution ⟨st(𝜎0) ∪ st(𝜎′
0),⊥⟩

∗−→ ⟨𝑆 ∪ st(𝜎′
0), d⟩. We then mimic 𝜌, but we make
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non-deserting any deserting step in 𝜌′ whose transition leaves a state in 𝑆. 𝜌′ is write-first and
can be mimicked regardless of the symbol in the register. This way, we obtain an execution
⟨𝑆 ∪ st(𝜎′

0), d⟩
∗−→ ⟨𝑆 ∪ 𝑆′, d′⟩. This proves that 𝑆 ∪ 𝑆′ ∈ R(P).

Suppose now that we have 𝑆, 𝑆′ ∈ BR(P, 𝐶). By hypothesis on 𝑆, there exist d 𝑓 ∈ Dok (𝐶),
d ∈ D, 𝑆 𝑓 ∈ F (𝐶), 𝜌 : ⟨𝑆, d⟩ ∗−→ ⟨𝑆 𝑓 , d 𝑓 ⟩ where 𝜌 is write-first, and therefore ⟨𝑆∪𝑆′, d⟩ ∗−→ ⟨𝑆 𝑓 ∪
𝑆′, d 𝑓 ⟩. By hypothesis on 𝑆′, there exist d′

𝑓
∈ Dok (𝐶), 𝑆 𝑓 ∈ F (𝐶) and 𝜌′ : ⟨𝑆′, d 𝑓 ⟩

∗−→ ⟨𝑆′
𝑓
, d′

𝑓
⟩

where 𝜌′ is write-first. Therefore we also have ⟨𝑆 𝑓 ∪ 𝑆′, d 𝑓 ⟩
∗−→ ⟨𝑆 𝑓 ∪ 𝑆′𝑓 , d

′
𝑓
⟩, which combined

with the previous execution provides a write-first execution ⟨𝑆∪ 𝑆′, d⟩ ∗−→ ⟨𝑆 𝑓 ∪ 𝑆′𝑓 , d
′
𝑓
⟩, proving

that 𝑆 ∪ 𝑆′ ∈ BR(P, 𝐶). □

Because R(P) and BR(P, 𝐶) are stable by union and contain subsets of the finite set 𝑄,
we can define R(P) := maxR(P) and BR(P, 𝐶) := maxBR(P), where the maximum is for
inclusion of sets, so that R(P),BR(P, 𝐶) ⊆ 𝑄. By convention, we set max(∅) = ∅; this cannot
happen for R(P) because {𝑞0} ∈ R(P) but this can happen for BR(P, 𝐶), for example if
𝑄−(P, 𝐶) = 𝑄.

Algorithm 1 provides functions computing R(P, 𝐶) and BR(𝐶,P) along with the procedure
solving dnfPRP when the protocol is uninitialized and dim = 1.

The function Compute_R(P) used the same technique as in Proposition 2.21, but with
one register only. The proof that Compute_R(P) returns R(P) follows from the proof of
Proposition 2.21. We now claim that Compute_BR(P, 𝐶) returns BR(P, 𝐶).

First, we prove by induction in the number of write transitions in 𝜌 the following statement: if
there is 𝜌 : ⟨𝑆𝑠, d𝑠⟩

∗−→ ⟨𝑆 𝑓 , d 𝑓 ⟩ write-first such that 𝑆 𝑓 ∈ F (𝐶) and d 𝑓 ∈ Dok (𝐶), then all states
in 𝑆𝑠 are added to 𝑆 in the computation of Compute_BR(P, 𝐶). First, let 𝜌 be such an execution
with only one write step. The symbol written in 𝜌 is d 𝑓 and by hypothesis d 𝑓 ∈ Dok (𝐶). We
claim that all states of 𝑆𝑠 are added to 𝑆 during the call to PreviousSymbol(𝑄\𝑄−(𝐶),Dok (𝐶)).
Indeed, 𝑆 𝑓 ⊆ 𝑄 \ 𝑄−(𝐶) and 𝑞 𝑓 ∈ Dok (𝐶): from each state in 𝑆𝑠, there is a path to a state in
𝑆 𝑓 using only transitions reading and writing d 𝑓 . This proves that all states in 𝑆𝑠 are added to 𝑇
during the iteration of the loop of line 23 where d = d 𝑓 ; this iterative of the for loop passes the
test at line 27 therefore all states in 𝑆𝑠 are added to 𝑇 in PreviousSymbol(𝑄 \𝑄−(𝐶),Dok (𝐶)),
so that they are all in the result of Compute_BR(P, 𝐶). Let now 𝜌 : ⟨𝑆𝑠, d𝑠⟩

∗−→ ⟨𝑆 𝑓 , d 𝑓 ⟩ starting
with a write transition and such that 𝑆 𝑓 ∈ F (𝐶) and d 𝑓 ∈ Dok (𝐶), and suppose that 𝜌 has several
write steps. We split 𝜌 on its second write transition; let ⟨𝑆𝑚, d𝑚⟩ be the configuration in 𝜌 right
before this second write transition. By induction hypothesis, all states in 𝑆𝑚 are in the result
of Compute_BR(P, 𝐶). There is a call to PreviousSymbol(𝑆,D \ {⊥}) that is performed at
line 19 with 𝑆 ⊇ 𝑆𝑚. In this call, with the same reasoning as above, all states in 𝑆𝑠 \ 𝑆𝑚 are
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1 Function DNFPRP_Oneregister_Uninit(P):
2 for 𝐶 clause in 𝜙 do
3 P𝐶 � P ; // copy of P that will be modified
4 Until 𝑄(P𝐶) reaches a fixpoint do
5 𝑄(P𝐶) � 𝑄(P𝐶) ∩ R(P𝐶) ∩ BR(P𝐶 , 𝐶) ;

/* modifies P𝐶, only keeps in P𝐶 transitions with source
state and destination state in 𝑄(P𝐶) */

6 if 𝑄+(𝐶) ∪ {𝑞0} ⊆ 𝑄(P𝐶) then Accept;
7 Reject ;
8 Function Compute_R(P):
9 𝑆 � 𝑞0 ;

10 Until 𝑆 reaches a fixpoint do
11 𝑆 � 𝑆 ∪ {𝑞′ | ∃𝑞 ∈ 𝑆, ∃d ∈ D, (𝑞,write(d), 𝑞′) ∈ Δ} ;
12 𝑆 � 𝑆 ∪ {𝑞′ | ∃𝑞, 𝑞1, 𝑞2 ∈ 𝑆, ∃d, (𝑞, read(d), 𝑞′) ∈ Δ, (𝑞1,write(d), 𝑞2) ∈ Δ} ;
13 return 𝑆 ;
14 Function Compute_BR(P, 𝐶):

/* Compute_BR(P, 𝐶) builds an execution backwards, from
configurations ⟨𝑆, d 𝑓 ⟩ with 𝑆 ∈ F (𝐶) and d 𝑓 ∈ Dok (𝐶). */

15 if PreviousSymbol(𝑄 \𝑄−(𝐶),Dok (𝐶)) ≠ “Not found” then
𝑆 �PreviousSymbol(𝑄 \𝑄−(𝐶),Dok (𝐶));

16 else return ∅ ;
17 Until 𝑆 reaches a fixpoint do
18 if PreviousSymbol(𝑆,D \ {⊥})≠“Not found” then
19 𝑆 �PreviousSymbol(𝑆,D \ {⊥}) ; // This is not the last

symbol, it does not have to be in Dok (𝐶).
20 return 𝑆;
21 Function PreviousSymbol(𝑆,Symbols):

/* PreviousSymbol(𝑆,Symbols) looks in set Symbols for the
previous symbol written: for each d, it adds all states
from which one can reach 𝑆 with read(d) transitions, then
checks that d can be written; if not, it backtracks and
tries another symbol. If no symbol works, returns “Not
found”. */

22 Found � False ;
23 for d ∈ Symbols do
24 𝑇 � 𝑆;
25 Until 𝑇 reaches a fixpoint do
26 𝑇 � 𝑇 ∪ {𝑞 ∈ 𝑄 | ∃𝑞′ ∈ 𝑇, (𝑞, read(d), 𝑞′) ∈ Δ} ;
27 if there exist 𝑞 ∈ 𝑄, 𝑞′ ∈ 𝑇 s.t. (𝑞,write(d), 𝑞′) ∈ Δ then
28 𝑆 � 𝑇 ∪ {𝑞} ;
29 Found � True ;
30 if Found then return 𝑆 else return “Not found”;
Algorithm 1: A polynomial-time algorithm for dnfPRP for uninitialized ASMS with a
single register. 68
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detected during the iteration of the for loop at line 23 where d = d𝑚. Also, the test at line 27
passes because it detects the first transition performed in 𝜌. Overall, this proves that all states in
𝑆𝑖 are in the result of Compute_BR(P, 𝐶).

Conversely, we prove that all states in the result of Compute_BR(P, 𝐶) are in BR(P, 𝐶).
To do so, it suffices to prove that, for all 𝑆 ⊆ BR(P, 𝐶), for all 𝐷 ⊆ D, the set computed by
PreviousSymbol(𝑆, 𝐷) contains only states 𝑞 for which there is d 𝑓 ∈ 𝐷, 𝑆𝑠 ⊇ 𝑆 such that
𝑞 ∈ 𝑆𝑠 and such that there is a write-first execution ⟨𝑆𝑠, d𝑠⟩

∗−→ ⟨𝑆, d 𝑓 ⟩. This would indeed
guarantee, by direct induction, that the set 𝑆 in Compute_BR(P, 𝐶) only ever contains states in
BR(P, 𝐶). Let 𝑆 ⊆ BR(P, 𝐶) and 𝐷 ⊆ D. It suffices to prove the assertion for one iteration
of the loop at line 23; let d be the symbol of the considered iteration and let 𝑆′ ⊇ 𝑆 be the set
of states obtained after the iteration. We suppose that the test at line 27 passed, as otherwise
the iteration adds no state. It suffices to observe that, with the transition detected at line 27
and those detected at line 26, we can build a write-first execution ⟨𝑆′, d𝑠⟩

∗−→ ⟨𝑆, d⟩ that starts
with the write transition followed by the read transitions (in reversed order compared to the
order of detection at 26). This proves the desired assertion about PreviousSymbol(𝑆, 𝐷). By
iteratively applying this argument, first once with 𝐷 = Dok (𝐶) then with 𝐷 = D \ {⊥}, this
proves that all states added to 𝑆 in Compute_BR(P, 𝐶) are in BR(P, 𝐶).

We now prove that DNFPRP_Oneregister_Uninit of Algorithm 1 solves dnfPRP for
uninitialized protocols with one register. First, suppose that the algorithm accepts during the
iteration corresponding to clause 𝐶. It ends with a protocol P𝐶 such that 𝑄+(𝐶) ⊆ 𝑄(P𝐶) =
R(P𝐶)∩BR(P𝐶 , 𝐶). In this protocol, by definition of R(P𝐶) there exist 𝜎0 ∈ Γ0 and d ∈ D such
that𝜎0

∗−→ ⟨R(P𝐶), d⟩; since R(P𝐶) = BR(P𝐶 , 𝐶) we also have ⟨R(P𝐶), d⟩
∗−→ ⟨𝑆 𝑓 , d 𝑓 ⟩ |= 𝐶 and

the instance is positive. Conversely, suppose that the instance is positive. There exists a clause
𝐶 in 𝜙 and a witness execution 𝜌 : 𝜎0

∗−→ ⟨𝑆 𝑓 , d 𝑓 ⟩ with d 𝑓 ∈ Dok (𝐶) and 𝑆 𝑓 ∈ F (𝐶). Thanks
to Lemma 2.25 and because the protocol is uninitialized, we may assume that 𝜌 is write-first.
Let 𝑆 be the set of states appearing in 𝜌; let 𝜌inc : 𝜎0

∗−→ ⟨𝑆, d 𝑓 ⟩ and 𝜌dec : ⟨𝑆, d 𝑓 ⟩
∗−→ ⟨𝑆 𝑓 , d 𝑓 ⟩

obtained with Lemma 2.26. We have 𝑆 ⊆ R(P𝐶) thanks to 𝜌inc and 𝑆 ⊆ BR(P𝐶 , 𝐶) thanks to
𝜌dec, so that no states of 𝑆 are removed during the first iteration of the fixpoint computation at
line 4 of DNFPRP_Oneregister_Uninit. By direct induction, 𝜌inc and 𝜌dec remain witnesses
that 𝑆 ⊆ R(P) ∩BR(P, 𝐶) at every iteration, so that it remains true that 𝑆 ⊆ 𝑄(P𝐶). Moreover,
𝑄+(𝐶) ∪ {𝑞0} ⊆ 𝑆 therefore the algorithm accepts. This proves that dnfPRP is in PTIME.

The PTIME-hardness proof can be obtained using the reduction in the proof of Proposi-
tion 2.21. This concludes the proof of Theorem 2.23.

Remark 2.28. The result above proves that many problems can be solved more efficiently on
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𝑞0

𝑞1

𝑞 𝑓

𝑞2 𝑞3

read1(a) write2(a)

write1(a) write1(b)
read1(a)

Figure 2.6 – An example of negative instance of Target that becomes positive when merging all
registers into one with the procedure described in Remark 2.28. In this uninitialized protocol,
dim = 2 and D = {⊥, a, b}.

systems with only one register. A natural idea is to generalize the result above by simply
encoding several registers into one. The hope is to find algorithms that pay a high cost in the
number of registers but a reasonable cost in the number of states and transitions. We explain
here why this is a wrong track. The natural way to encode several registers into one works as
follows. Let P be a protocol with dim registers and alphabet D, we build a protocol P′ with one
register and whose alphabet is Ddim, i.e., the merged register of P′ contains a dim-tuple whose
components correspond to register values in P. A write transition (𝑞1,write𝑖 (d), 𝑞2) in P is
translated in P′ by adding |D|dim intermediate states between 𝑞1 and 𝑞2 so that one can read and
remember the value of the register, and then write the new dim-tuple with component 𝑖 set to
d. A read transition (𝑞1, read𝑖 (d), 𝑞2) of P is transformed to |D|dim−1 parallel transitions from
𝑞1 to 𝑞2, i.e., read transitions that read all dim-tuple in which the 𝑖-th component has symbol
d. With this construction, we would pay an exponential blowup in dim but not in the rest of the
system. However, such a construction is actually not correct. While every execution of P can
be simulated in P′, some executions of P′ do not correspond to executions of P. Intuitively, a
merged transition in P′ allows a process to write symbols to registers that it should not be able
to write to. We illustrate this on an example in Fig. 2.6. The depicted (P, 𝑞 𝑓 ) is a negative
instance of Target: there must be at least one process going in 𝑞2, but the last process to leave
𝑞2 can never go from 𝑞3 to 𝑞 𝑓 . Nonetheless, if we let P′ be the protocol where the two registers
are merged into one using the procedure described above, then (P′, 𝑞 𝑓 ) is a positive instance of
Target. Indeed, a process going from 𝑞1 to 𝑞 𝑓 may, for every d ∈ D, read tuple (𝑎, d) for some
d, go to an intermediate state then write (𝑎, 𝑎). Such a process may stop in the intermediate state
while all processes in 𝑞2 go in 𝑞3, and then this process can write (𝑎, 𝑎) which allows processes
in 𝑞3 to go in 𝑞 𝑓 .
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2.8 Dependency in the Number of Registers

In the previous section, we established that Target and dnfPRP are decidable in polynomial
time when the systems considered only have one register, although both problems are NP-
complete with an arbitrary number of registers. This highlights that the number of registers is
a source of difficulty. In this section, we study more finely the dependency of the complexities
of our problems with respect to the number of registers. We start by introducing a few so-
called parameterized complexity classes. Note that the term parameterized here has a different
meaning as in the rest of this thesis. Here, we study parameterized complexity, which asks how
the complexity of our problems depends on some relevant metrics different from the size of
the input, this metric being here the number of registers in our system. We elsewhere refer to
parameterized verification to express the fact that we do not fix the number of processes so that
we consider an infinite family of systems.

We introduce here a few notions of parameterized complexity that will be useful for our
purposes; we refer to, e.g., [Cyg+15] for a complete overview. A parameterized problem is
a decision problem that takes as input a tuple (𝑥, 𝑘) with 𝑥 a binary input and 𝑘 ∈ N. The
component 𝑘 is called parameter of the problem. The complexity class FPT is the class of
parameterized problems that can be decided in deterministic time 𝑂 ( 𝑓 (𝑘) |𝑥 |𝑂 (1)) where 𝑓

is a computable function. In words, this time complexity is a polynomial in |𝑥 | multiplied
by a function in 𝑘 . To define other classes, we rely on the concept of FPT reductions. An
FPT reduction from a parameterized problem 𝑃1 to a parameterized problem 𝑃2 transforms an
instance (𝑥, 𝑘) of 𝑃1 into an equivalent instance (𝑥′, 𝑘′) of 𝑃2 such that there is a computable
function 𝑔 for which 𝑘′ ⩽ 𝑔(𝑘) for some computable function 𝑔 and such that the transformation
can be computed in time𝑂 ( 𝑓 (𝑘)𝑝( |𝑥 |)) where 𝑓 is a computable function and 𝑝 is a polynomial.
In particular, the class FPT is stable under FPT reductions. Another class is W[1], which we
define here as problems that are FPT-interreducible with the 𝑘-clique problem. The 𝑘-clique
problem takes as input (𝐺, 𝑘) with 𝐺 an undirected graph and asks whether 𝐺 contains a
clique of size at least 𝑘 , i.e., a set of 𝑘 vertices that are pairwise connected in 𝐺. It is known
that FPT ⊆ 𝑊 [1], and this inclusion is commonly believed to be strict. Yet another class is
W[2], which we define here as problems that are FPT-interreducible with the 𝑘-dominating set
problem. The 𝑘-dominating set problem takes as input (𝐺, 𝑘) with 𝐺 an undirected graph and
asks whether 𝐺 contains a dominating set of size at most 𝑘 , i.e., a set of 𝑘 vertices such that
every vertex of 𝐺 is at distance at most 1 of the set. It is known that 𝑊 [1] ⊆ 𝑊 [2], and this
inclusion is commonly believed to be strict.
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We start with the Cover problem. Recall that this problem is in PTIME for ASMS with one
register and for uninitialized ASMS but NP-complete in general.

Proposition 2.29. The Cover problem is FPT with respect to the number of registers.

Proof. Let (P, 𝑞 𝑓 ) be an instance of Cover. The high-level idea of the algorithm is to enumerate
all first-write orders, i.e., all possible orders in which registers lose the initial value. For a given
such first-write order, using a simple saturation technique, one can build an execution that covers
all states that can be covered by executions with the same first-write order. It then suffices
to prove that this maximal set of states coverable with this first-write order can be computed
efficiently.

First-write orders are non-repeating sequences of elements of J1, dimK, there are at most∑
𝑘⩽dim 𝑘! ⩽ (dim + 1)! such sequences. For 𝑓1, . . . , 𝑓𝑘 such a sequence, let Execs( 𝑓1, . . . , 𝑓𝑘 )

be the set of abstract executions in which the registers that are written for the first time are
𝑓1, . . . , 𝑓𝑘 , in this order. Formally, 𝜌 : 𝜎0

∗−→ 𝜎 is in Execs( 𝑓1, . . . , 𝑓𝑘 ) if all its write transitions
are to registers in { 𝑓1, . . . , 𝑓𝑘 }, if 𝜌 has a write transition to register 𝑖 for all 𝑖 ∈ { 𝑓1, . . . , 𝑓𝑘 } and
if, for all 𝑖 < 𝑗 , there is a configuration ⟨𝑆, ®𝑑⟩ in 𝜌 such that ®𝑑 ( 𝑓𝑖) ≠ ⊥ but ®𝑑 ( 𝑓 𝑗 ) = ⊥.

We need to provide a polynomial-time algorithm that decides the following problem:
given (P, 𝑞 𝑓 ) and a non-repeating sequence 𝑓1 . . . 𝑓𝑘 of J1, dimK, is there an execution of
Execs( 𝑓1, . . . , 𝑓𝑘 ) covering 𝑞 𝑓 ? We prove the following property by induction on 𝑘 . For every
non-repeating sequence 𝑓1, . . . , 𝑓𝑘 of elements of J1, dimK , there is a set 𝑆 such that, for all
⟨𝑆′, ®𝑑⟩ reachable from 𝜎0 with an execution in Execs( 𝑓1, . . . , 𝑓𝑘 ), 𝑆′ ⊆ 𝑆; moreover, 𝑆 can be
computed in polynomial time.

For 𝑘 = 0, the sequence is empty and the only allowed executions are those that only use
transitions reading ⊥, hence the result. Suppose that the result is true for 𝑘 , and let 𝑓1, . . . , 𝑓𝑘+1

be a non-repeating sequence of J1, dimK. Let 𝑆𝑘 be the set obtained by induction hypothesis
on 𝑓1, . . . , 𝑓𝑘 ; we know that 𝑆𝑘 can be computed in polynomial time. We set 𝑆 � 𝑆𝑘 , and we
iteratively add to 𝑆 all states 𝑞 that satisfy one of the following conditions:

— there is (𝑞′,write𝑖 (d), 𝑞) ∈ Δ with 𝑞′ ∈ 𝑆 and 𝑖 ∈ { 𝑓1, . . . , 𝑓𝑘+1}; or

— there is (𝑞′, read𝑖 (⊥), 𝑞) ∈ Δ with 𝑞′ ∈ 𝑆 and 𝑖 ∉ { 𝑓1, . . . , 𝑓𝑘+1}; or

— there is (𝑞′, read𝑖 (d), 𝑞), (𝑞1,write𝑖 (d), 𝑞2) ∈ Δ with 𝑞′, 𝑞1 ∈ 𝑆 and 𝑖 ∈ { 𝑓1, . . . , 𝑓𝑘+1},

— there is (𝑞′,⊛, 𝑞) ∈ Δ with 𝑞′ ∈ 𝑆.

This computation reaches a fixpoint in polynomial time. We then check that at least one
write transition on register 𝑓𝑘+1 has source state in 𝑆; if no, then we return ∅ because
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Execs( 𝑓1, . . . , 𝑓𝑘+1) is empty. Otherwise, we return the set 𝑆, which satisfies the desired
property. Indeed, by direct induction, all states added to 𝑆 can be covered by executions of
Execs( 𝑓1, . . . , 𝑓𝑘+1). We prove that, for all 𝜌 : 𝜎0

∗−→ ⟨𝑇, d⟩ such that 𝜌 ∈ Execs( 𝑓1, . . . , 𝑓𝑘+1),
we have 𝑇 ⊆ 𝑆 with 𝑆 the set computed above. Let 𝜌 : 𝜎0

∗−→ ⟨𝑇, ®𝑑 𝑓 ⟩ such that 𝜌 ∈
Execs( 𝑓1, . . . , 𝑓𝑘+1); we split 𝜌 into 𝜌𝑝 : 𝜎0

∗−→ ⟨𝑆𝑚, ®𝑑𝑚⟩ and 𝜌𝑠 : ⟨𝑆𝑚, ®𝑑𝑚⟩
∗−→ ⟨𝑇, ®𝑑 𝑓 ⟩

where ®𝑑𝑚 ( 𝑓𝑘+1) = ⊥ and 𝜌𝑠 starts with a write transition on 𝑓𝑘+1. By induction hypothesis on
𝜌𝑝, all states in 𝑆𝑚 are in 𝑆 at the beginning of the computation. We then proceed inductively
along 𝜌𝑠; for a given transition, it suffices to make a case disjunction on the type of transition,
with the same four cases highlighted in the fixpoint computation above. This directly proves
that the algorithm detects all transitions along 𝜌𝑠, so that 𝑇 ⊆ 𝑆 with 𝑆 obtained at the end
of the fixpoint computation. We have proven that we can decide, given (P, 𝑞 𝑓 ) and a non-
repeating sequence 𝑓1 . . . 𝑓𝑘 of J1, dimK, if there is an execution of Execs( 𝑓1, . . . , 𝑓𝑘 ) covering
𝑞 𝑓 . Iterating over all non-repeating sequences gives an algorithm for Cover that works in time
𝑂 ((dim + 1)! poly( |P|)) with poly a polynomial. □

We now consider the more complex problems of Target and dnfPRP. Recall that both
problems are in PTIME for protocols with one register, but NP-complete for protocols with
several registers, even for uninitialized protocols. We now provide a hardness result that
highlights that these problems are not easily tractable with respect to the number of registers.

Proposition 2.30. Target and dnfPRP are𝑊 [2]-hard with respect to the number of registers.

Proof. Because Target is FPT-reducible to dnfPRP, we provide an FPT reduction from the
𝑘-dominating set problem to Target. Let (𝐺, 𝑘) be an instance of the 𝑘-dominating set problem;
for simplicity, we assume that every vertex is its own neighbor. We build a protocol P with
𝑘 registers and a special state 𝑞 𝑓 such that (P, 𝑞 𝑓 ) is a positive instance of Target if and
only if (𝐺, 𝑘) is a positive instance of the 𝑘-dominating set problem. Let {𝑣1, . . . , 𝑣𝑛} be the
set of vertices of 𝐺; for every 𝑖 ∈ J1, 𝑛K, let 𝑑𝑖 be the number of neighbors of 𝑣𝑖 in 𝐺, and
let {𝑤1

𝑖
, . . . , 𝑤

𝑑𝑖
𝑖
} be its set of neighbors. The built protocol P is depicted in Fig. 2.7. P is

uninitialized and has 𝑘 registers, one for each of the vertices of the dominating set. It works
with set of symbols D = {⊥} ∪ {𝑣1, . . . , 𝑣𝑛}. This construction is polynomial in 𝑘 and 𝑛, so that
this reduction is a polynomial-time reduction hence an FPT reduction. If there is a dominating
set {𝑣𝑖1 , . . . , 𝑣𝑖ℓ } with ℓ ⩽ 𝑘 , then it is easy to obtain a witness execution that starts by writing
𝑣𝑖 𝑗 to register 𝑗 for all 𝑗 ⩽ ℓ, then sends all processes to 𝑞 𝑓 : from every 𝑣𝑖?, it takes the
transition reading a register in which the vertex written is a neighbor of 𝑣𝑖. Conversely, if there
is an execution 𝜌 witnessing that the instance of Target is positive, then let (𝑢1, . . . , 𝑢𝑘 ) be the
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𝑞0start 𝑣1? . . . 𝑣2? . . . . . . 𝑣𝑛? . . . 𝑞 𝑓

write1(𝑣1)
write1(𝑣2)

. . .

. . .

write𝑘 (𝑣𝑛−1)
write𝑘 (𝑣𝑛)

read1(𝑤1
1)

read𝑘 (𝑤𝑑1
1 )

read1(𝑤1
2)

read𝑘 (𝑤𝑑2
2 )

read1(𝑤1
𝑛−1)

read𝑘 (𝑤𝑑𝑛−1
𝑛−1 )

read1(𝑤1
𝑛)

read𝑘 (𝑤𝑑𝑛
𝑛 )

Figure 2.7 – The protocol built in the proof of Proposition 2.30. From 𝑞0, one can write anything
to any register, so that there is a loop (𝑞0,write𝑖 (𝑣 𝑗 ), 𝑞0) for all 𝑖 ∈ J1, 𝑘K and 𝑗 ∈ J1, 𝑛K. From
𝑣𝑖?, the leaving edges correspond to an exhaustive check for a neighbor of 𝑣𝑖 in the registers.
Therefore, for all 𝑖 ∈ J1, 𝑛K, there is an edge (𝑣𝑖?, read 𝑗 (𝑤ℓ𝑖 ), 𝑣𝑖+1?) for every 𝑟 ∈ J1, dimK and
for every ℓ ∈ J1, 𝑑𝑖K (with convention 𝑣𝑛+1? = 𝑞 𝑓 ).

content of the registers when 𝑞0 is deserted in 𝜌. Because all states 𝑣1? to 𝑣𝑛? are eventually
deserted in 𝜌, the set {𝑢1, . . . , 𝑢𝑘 } is a 𝑘-dominating set. □

This hardness result puts an end to our hope to design efficient algorithms for protocols with
small numbers of registers. It is also instructive with respect to the discussion of Remark 2.28.
In Remark 2.28, we tried to build a transformation of protocols with dim registers into protocols
with one register. The hardness result from Proposition 2.30 proves that (unless 𝑊 [2] = FPT)
there exists no such transformation computable in 𝑂 ( 𝑓 (dim)𝑝( |P|)) with 𝑓 computable and 𝑝
a polynomial. Indeed, by contradiction, combining such a transformation with Theorem 2.23
would prove that Target is FPT with respect to dim. However, it remains an open question
whether Target and dnfPRP are slice-wise polynomial, i.e., whether they can be solved in
polynomial time for any fixed value of dim. The class of slice-wise polynomial parameter-
ized problems is the parameterized complexity class XP, which subsumes FPT and W[2] (see
[Cyg+15] for a formal definition of XP).

2.9 Perspectives

We recall the complexity results obtained in this chapter in Fig. 2.8.
All of the problems studied in this chapter lie in NP, a complexity class that, in formal

verification, can sometimes be considered reasonable. Several restrictions of our problems are
even solvable in polynomial time. It is interesting to compare the results from Fig. 2.8 to the ones
known in the related but simpler model of RBN (discussed in the introduction of this chapter).
Indeed, presence reachability problems have their counterparts in RBN, which have studied in
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Cover Target dnfPRP PRP

General case NP-complete NP-complete NP-complete NP-complete
(2.19 & 2.20) (2.19 & 2.20) (2.19 & 2.20) (2.19)

Uninitialized PTIME-complete NP-complete NP-complete NP-complete
(2.21) (2.19 & 2.22) (2.19 & 2.22) (2.19)

One register PTIME-complete PTIME-complete PTIME-complete NP-complete
(2.23) (2.23) (2.23) (2.19)

Figure 2.8 – Summary of complexity results for roundless ASMS. All problems in the rightmost
column are automatically NP-hard because the presence constraint is a general SAT formula.

[DSTZ12] under the name of “cardinal reachability problem restricted to CC[⩾ 1, = 0]”. All
such problems are also in NP in RBN [DSTZ12], and the general PRP problem is NP-complete
because of the general SAT formula. However, Cover and Target in RBN are solvable in
PTIME without any restriction [Fou15], a result that could be extended to dnfPRP. The study
of the parameterized complexity with respect to the number of registers is, to the best of our
knowledge, new; it has no equivalent in related models such as RBN. It remains, however, quite
superficial. A possible future work would be to complete this study; in particular, it is not known
whether Target lies in XP, i.e., whether Target can be solved in polynomial time for a fixed
number of registers. Another possibly interesting question would be to perform a fine-grained
complexity analysis and to extend the work from [CMS19] to ASMS with multiple registers and
to the problem of Target.

The main issue with the roundless ASMS model and presence reachability problems is their
lack of expressive power. We will explore in the next chapters some extensions of this model
and some more general problems. We discuss here one important choice that we have made in
Section 2.2, which is to forbid atomic read-write combinations, i.e., transitions labeled by a read
and a write action that the process performs instantly. Atomic read-write combinations allow a
process to perform a read and a write action while no other process may act between the two
actions. This choice in particular breaks the copycat property: a process may ensure that it is
the only one taking a transition. Therefore, a given process has the ability to pick a role while
ensuring that no other process is playing the same role. The low complexities we obtained in the
non-atomic case are due to monotonicity property, so that it seems likely that atomic read-write
combinations make the complexity jump. In fact, it was first observed in [GS92] that, when
allowing read-write combination, roundless ASMS gain an expressive power similar to the one
of Petri nets and population protocols. In particular, Cover becomes an EXPSPACE-complete
problem. This high complexity, along with the fact that we would essentially end up with
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the known model of Petri nets, discourages a formal study of ASMS with atomic read-write
combinations. This is why, in this thesis, we only consider non-atomic read-write combinations.

In the next chapter, we will embed roundless ASMS into a more general family of systems,
named copycat systems. This will allow us to provide general-purpose bounds that we leverage
to prove decidability of problems beyond presence reachability problems. In Chapter 4, we will
extend the ASMS model to a round-based version meant to capture round-based distributed
algorithms.
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Chapter 3

COPYCAT SYSTEMS

3.1 Introduction

Copycat Systems In this chapter, we introduce copycat systems, a new model meant to capture
parameterized distributed systems enjoying a monotonicity property called copycat property. In
parameterized verification of distributed systems, it is common to consider models composed
of arbitrarily many identical processes described by a common finite-state machine, so that the
overall configuration of the system is described by a multiset of states along with some global
state. This global state can be, e.g., the values of shared variables or the state of a leader.
Sometimes, such systems enjoy a monotonicity property called copycat property. Whenever
a step is performed where some process goes from 𝑞1 to 𝑞2, any other process in 𝑞1 may go
to 𝑞2 without impacting the rest of the system 1. While the copycat property hints that the
computational power of the model is limited, it also gives the system convenient monotonicity
properties. These properties often allow for decidability of verification and for somewhat low
complexity when compared with more powerful models such as Petri nets. The aim of this
chapter is to design a generic model for systems enjoying the copycat property and to provide a
general-purpose bound that allows to prove decidability of most problems on this model. This
model is meant to implement the accelerated semantics of traditional models such as ASMS:
in one step of the copycat system, arbitrarily many processes are allowed to perform the same
transition. The main result of this chapter is called structural theorem. This theorem provides
us with two different bounds for copycat systems: one on the number of steps needed to reach
a configuration from another, and one on the number of processes needed in an execution, i.e.,
of processes that cannot be removed without affecting the rest of the execution. The adjective
structural expresses that the bound is related to any execution of the system, so that it structurally
bounds the system. To the best of our knowledge, the literature, for example in ASMS, has no

1. Sometimes, less powerful properties are also referred to as “copycat properties”, for example the ability to
combine several copies of an execution. The property describes here corresponds to the strongest notion that bears
the name “copycat property”
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equivalent bound with the same level of generality. In our view, this theorem is an important
result by itself. To illustrate the power of this theorem, we apply it to some decision problems
such as emptiness of so-called generalized reachability expressions (inspired by [Wei23]) and
LTL verification. In ASMS, this theorem allows to easily reprove the results from [BMRSS16]
with almost no additional work. The structural theorem is the core result of this chapter; the
subsequent results are here to demonstrate the power of the structural theorem and are not
extraordinarily new on their own.

This chapter is organized as follows. In Section 3.2, we define copycat systems and associated
notions. In Section 3.3, we introduce and prove the structural bound. In Section 3.4, we elaborate
on what this bound implies for copycat systems. In Section 3.5, we connect copycat systems
with other models and in particular ASMS. We conclude the chapter with some perspectives in
Section 3.6. Some proofs from this chapter are technical and less important; to ease the read of
the chapter, these proofs are relegated to Section 3.7. The work presented in this chapter is partly
based on a joint work with Pierre Ganty, Cesar Sanchez and Chana Weil-Kennedy [GSWW24]
that remains to be published. This joint work was performed during a stay at IMDEA Madrid
from January to March 2024. Many thanks to Rennes Métropole for funding this stay.

Related Works We start with a presentation of models that satisfy the conditions above and
are captured by copycat systems. The first such model is the one of asynchronous shared-
memory systems (ASMS) from Chapter 2. Numerous works on ASMS and similar models rely
on copycat arguments, be it explicitly [EGM13; EGM16; DEGM15] or implicitly [BMRSS16;
CMS19]. See Section 2.1 for a detailed overview of the literature on ASMS.

Another related model is the one of reconfigurable broadcast networks (RBN). Recon-
figurable broadcast networks are similar to ASMS but, instead of using a shared memory,
processes communicate via broadcasting and receiving messages. A message consists of a
symbol from a finite alphabet; when a message is broadcast, it can be received by any subset
of the other processes. Reception of messages is instantaneous. This model was first defined
in [DSZ10; DSTZ12], and has been widely studied since [BFS14; Fou15; BBM18; BW21;
BGW22; BGW23]. In broadcast networks, the copycat property requires the reconfigurable
hypothesis [DSZ10]: that every process can receive a message sent, but that no process has to
do so. This hypothesis is intended to model unreliable communication where messages may
get lost. Reconfigurable Broadcast Networks are in fact equivalent to ASMS for problems that
allow to enforce that some processes play the role of the shared memory [BW21]. In [BW21;
BGW22], the authors define a generic class of expression, named nice expressions, and consider
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the problem of deciding whether the set defined by such an expression is empty or not. This
problem is meant to encompass known problems from the literature of ASMS and RBN; in
particular, they claimed to have solved a complexity gap left open in [BMRSS16], related to
almost-sure coverability. However, the proof turned out to be incorrect [BGW23]. The associ-
ated question remains an open problem. In this chapter, we formulate a more general version of
this open problem, but unfortunately we do not solve it.

A third model that lies under the scope of copycat systems is the one of Immediate Observa-
tion (IO) population protocols (also known as immediate observation Petri nets). IO population
protocols are a restriction of population protocols; they were first defined in [AAER07], where
their expressive power was established, and the complexity of standard parameterized verifi-
cation problems was identified in [ERW19]. The immediate observation hypothesis enforces
that, when two processes interact, only one of them is allowed to change state: it observes the
other process, while this other process remains passive. This hypothesis allows for the copycat
principle, and makes IO population protocols easier to verify (and less expressive) than usual
population protocols. Overall, IO population protocols are simpler than RBN and ASMS.

This chapter constitutes an attempt to provide a general framework that encompasses param-
eterized models of distributed systems enjoying the copycat property. We present two unification
attempts from the literature that are arguably related to ours. The first one corresponds to a
general study of models of population protocols where the communication is unreliable [Ras21;
Ras23], among which IO population protocols; [Ras21; Ras23] is however specific to population
protocols and only interested in questions related to expressive power, and not in decidability
and complexity of verification problems. Another unification attempt can be found in [EJW24];
the latter work, however, only considers simple problems such as the coverability problem, and
its main contribution is to give a unified version of proofs relying on a non-counting abstraction
similar to the one we used in Chapter 2.

3.2 Copycat Systems

In this section, we define copycat system and transfer flows and we prove some basic
properties. We will often manipulate functions with several arguments and express the growth
rate of such a function with respect to a given parameter. Given a function 𝑓 (𝑥1, . . . , 𝑥𝑛), we
call 𝑓 polynomial (resp. exponential, doubly-exponential) in 𝑥𝑖 if, for fixed values of 𝑥 𝑗 for each
𝑗 ≠ 𝑖, the function 𝑥𝑖 ↦→ 𝑓 (𝑥1, . . . , 𝑥𝑛) is polynomial (resp. exponential, doubly-exponential).
For example, 𝑓 : (𝑛, 𝑚) ↦→ 𝑚𝑛 is exponential in 𝑛 but polynomial in 𝑚, so that the value would
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Chapter 3 – Copycat Systems

overall remain exponential if we pay the cost of an exponential blowup in the value of 𝑚.

3.2.1 Definition and Semantics

Copycat systems are meant to capture distributed systems where the copycat principle holds,
i.e., whenever a process goes from a state 𝑞1 to a state 𝑞2, another process in 𝑞1 may do the
same with no difference in the rest of the execution. In particular, we consider systems where a
configuration is composed of a multiset of states (representing how many processes are in each
state), where the set of states 𝑄 is finite, along with an element from a finite set ℓ (representing
a global state of the system).

It will be convenient to extend the natural numbers with a special element, written #. Let
N# := N ∪ {#}; we extend the order on N to a partial order on N# by making # incomparable to
all integers: for all 𝑎, 𝑏 ∈ N#, 𝑎 ⩽ 𝑏 when either 𝑎, 𝑏 ∈ N and 𝑎 ⩽ 𝑏 or 𝑎 = 𝑏 = #. We extend
addition by # + 𝑛 = 𝑛 for all 𝑛 ∈ N and # + # = #. Note that N# differs from N𝜔 in that # is not
comparable with the integers, whereas 𝜔 ⩾ 𝑛 for all 𝑛 ∈ N. A subtlety to keep in mind is that,
for 𝑥 ∈ N# and 𝑚 ∈ N, we do not always have 𝑥 ⩽ 𝑥 +𝑚, because if 𝑥 = # then 𝑥 +𝑚 = 𝑚 and #
and 𝑚 are incomparable.

Definition 3.1. A copycat system is a tuple C = (𝑄,L,Tmin) where:

— 𝑄 is a finite set of states,

— L is a finite set of control locations,

— Tmin ⊆ (𝑄2 → N#) × L2 is a finite set of transfer flows.

We additionally require that, for all ( 𝑓 , ℓ, ℓ′) ∈ Tmin, for all 𝑞 ∈ 𝑄, 𝑓 (𝑞, 𝑞) ≠ #. We call this
property idle-compliance.

We start by explaining the sets 𝑄 and L; the role of the set Tmin will be explained later in
this subsection. The set 𝑄 represents the states of the processes composing the system, while
the set L represents a global variable. Therefore, a configuration 𝛾 of the copycat system is an
element of the set Γ := M(𝑄) × L. The size of a configuration 𝛾 = ⟨𝜇, ℓ⟩ is |𝛾 | := |𝜇 |. From
now on, we fix a copycat system (𝑄,L,Tmin).

We now explain the set Tmin. To do so, we start by defining the concept of transfer flows.

Definition 3.2. A transfer flow is a triplet tf = ( 𝑓 , ℓ, ℓ′) where 𝑓 : 𝑄2 → N# and ℓ, ℓ′ ∈ L. We
denote by F the set of all transfer flows.
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3.2. Copycat Systems

With this definition, Tmin is a subset ofF . Transfer flows are meant to represent the possibility
offered by transitions of the system. The function 𝑓 represents a transfer of processes. ℓ and
ℓ′ represent the starting and ending control locations. We call ℓ the source control location
and ℓ′ the destination control location. Having 𝑓 (𝑞1, 𝑞2) = # represents that one is unable to
send processes from 𝑞1 to 𝑞2, while having 𝑓 (𝑞1, 𝑞2) = 𝑛 means that one has to send at least 𝑛
processes from 𝑞1 to 𝑞2, but that one may send any number in J𝑛, +∞J.

Given a transfer flow tf = ( 𝑓 , ℓ, ℓ′) ∈ F , we define the weight of tf as weight(tf) :=∑
𝑞,𝑞′ 𝑓 (𝑞, 𝑞′); by convention, if 𝑓 (𝑞, 𝑞′) = # for all 𝑞, 𝑞′, we set weight(tf) := 0.

We define a partial order ⪯ on F as follows. For tf1 = ( 𝑓1, ℓ1, ℓ2) and tf2 = ( 𝑓2, ℓ2, ℓ′2), we let
tf1 ⪯ tf2 when ℓ1 = ℓ′1, ℓ2 = ℓ′2 and 𝑓1 ⩽ 𝑓2 (i.e., for all 𝑞, 𝑞′, 𝑓1(𝑞, 𝑞′) ⩽ 𝑓2(𝑞, 𝑞′)). In particular,
this requires that 𝑓1(𝑞, 𝑞′) = # if and only if 𝑓2(𝑞, 𝑞′) = #, because # is incomparable with
all integers. Intuitively, tf1 ⪯ tf2 means that tf1 gives more possibilities than tf2. We therefore
highlight the following rule of thumb, which provides the reader with an intuition that shall be
useful for the rest of this chapter:

Rule of thumb. Smaller transfer flows are more powerful.

The role played by transfer flows is made more concrete with the following definition:

Definition 3.3. Given 𝛾1 = ⟨𝜇1, ℓ1⟩, 𝛾2 = ⟨𝜇2, ℓ2⟩ ∈ Γ and tf = ( 𝑓 , ℓ, ℓ′) ∈ F , we let 𝛾1
tf
=⇒ 𝛾2

when the following conditions are satisfied:

— ℓ1 = ℓ,

— ℓ2 = ℓ′, and

— there exists ℎ : 𝑄2 → N# such that 𝑓 ⩽ ℎ and:

— for all 𝑞 ∈ 𝑄, 𝜇1(𝑞) =
∑
𝑞′ ℎ(𝑞, 𝑞′), and

— for all 𝑞′ ∈ 𝑄, 𝜇2(𝑞′) =
∑
𝑞 ℎ(𝑞, 𝑞′).

The function ℎ is called a witness function that 𝛾1
tf
=⇒ 𝛾2.

Notice that ⟨𝜇1, ℓ1⟩
tf
=⇒ ⟨𝜇2, ℓ2⟩ is possible only when the source control location of tf is equal

to ℓ1 and the destination control location of tf is equal to ℓ2. Also, it requires that |𝜇1 | = |𝜇2 |.
The function ℎ represents how many processes indeed go from one state to another; 𝑓 ⩽ ℎ

expresses that 𝑓 and ℎ have the same # values and that, when 𝑓 (𝑞, 𝑞′) ≠ #, we have that
ℎ(𝑞, 𝑞′) ⩾ 𝑓 (𝑞, 𝑞′). This last inequality corresponds to the fact that the number of processes
sent from 𝑞 to 𝑞′ must be in J 𝑓 (𝑞, 𝑞′), +∞J. Observe that 𝜇1(𝑞) =

∑
𝑞′ 𝑓 (𝑞, 𝑞′) for all 𝑞 is only
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Figure 3.1 – A depiction of Example 3.4. In black, the transfer flow tf = ( 𝑓 , ℓ1, ℓ2). For each
state 𝑞, 𝑓 (𝑞, 𝑞) = 0; every such pair is represented by an unlabeled, dashed edge indicating
that any number of processes may cross using this edge. A pair (𝑞, 𝑞′) with 𝑓 (𝑞, 𝑞′) > 0 is
represented by an edge with label ⩾ 𝑛, to indicate that the number of processes to cross using
this edge must be at least 𝑛, but can be higher. The pairs (𝑞, 𝑞′) for which 𝑓 (𝑞, 𝑞′) = # are not
represented. The blue labels correspond to the multisets 𝜇1 (left) and 𝜇2 (right), as well as the
non-# values of the function 𝑔.

possible when there is 𝑞′ such that 𝑓 (𝑞, 𝑞′) ≠ #; symmetrically, 𝜇2(𝑞′) =
∑
𝑞 𝑓 (𝑞, 𝑞′) is only

possible when there is 𝑞 such that 𝑓 (𝑞, 𝑞′) ≠ #. In fact, this will not be restrictive because
we will work with transfer flows for which 𝑓 (𝑞, 𝑞) ≠ # for all 𝑞, thanks to idle-compliance.
Intuitively, it is always possible to make an extra process remain idle in its state.

Example 3.4. Let 𝑄 := {𝑞1, 𝑞2, 𝑞3} and L := {ℓ1, ℓ2}. Consider the transfer flow tf = ( 𝑓 , ℓ1, ℓ2)
where 𝑓 (𝑞, 𝑞) = 0 for all 𝑞 ∈ 𝑄, 𝑓 (𝑞1, 𝑞2) = 1, 𝑓 (𝑞2, 𝑞3) = 2 and 𝑓 (𝑞, 𝑞′) = # for all 𝑞 ≠ 𝑞′

such that (𝑞, 𝑞′) ≠ (𝑞1, 𝑞2) and (𝑞, 𝑞′) ≠ (𝑞2, 𝑞3). This transfer flow is represented in Fig. 3.1 (in
black). Let 𝜇1 ∈ M(𝑄) such that 𝜇1(𝑞1) = 3, 𝜇1(𝑞2) = 2 and 𝜇1(𝑞3) = 0; also, let 𝜇2 ∈ M(𝑄)
such that 𝜇2(𝑞1) = 1, 𝜇2(𝑞2) = 2 and 𝜇2(𝑞3) = 2. Let 𝛾1 := ⟨𝜇1, ℓ1⟩ and 𝛾2 := ⟨𝜇2, ℓ2⟩; we
have 𝛾1

tf
=⇒ 𝛾2. First, the control locations matches: tf goes from the control location ℓ1 of

𝛾1 to the control location ℓ2 of 𝛾2. Moreover, a witness function of 𝛾1
tf
=⇒ 𝛾2 is the function

𝑔 : 𝑄2 → N# such that 𝑔(𝑞1, 𝑞1) = 1, 𝑔(𝑞1, 𝑞2) = 2, 𝑔(𝑞2, 𝑞2) = 0, 𝑔(𝑞2, 𝑞3) = 2, 𝑔(𝑞3, 𝑞3) = 0
and 𝑔(𝑞, 𝑞′) = # for all other (𝑞, 𝑞′). The multisets 𝜇1 and 𝜇2 and the function 𝑔 are represented
with the blue labels in Fig. 3.1. Function 𝑔 is a valid witness function for 𝛾1

tf
=⇒ 𝛾2 because

𝑓 ⩽ 𝑔, 𝜇1(𝑞) =
∑
𝑞′ 𝑔(𝑞, 𝑞′) for all 𝑞 and 𝜇2(𝑞′) =

∑
𝑞 𝑔(𝑞, 𝑞′) for all 𝑞′.

The following observation is a direct consequence of Definition 3.3:

Fact 3.5. If 𝛾1
tf
=⇒ 𝛾2 then 𝛾1

tf′
==⇒ 𝛾2 for every tf′ ∈ F such that tf′ ⪯ tf.
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This matches the intuition from the rule of thumb that a smaller transfer flow is more
powerful. Indeed, let tf = ( 𝑓 , ℓ, ℓ′) and 𝑞, 𝑞′ ∈ 𝑄, and suppose that 𝑓 (𝑞, 𝑞′) = 𝑘 ∈ N. This
means that, with tf, at least 𝑘 processes may be sent from 𝑞 to 𝑞′, but possibly more, so that the
set of values allowed for the number of processes sent from 𝑞 to 𝑞′ is J𝑘, +∞J. Therefore, it
we change 𝑓 by setting 𝑓 (𝑞, 𝑞′) := ℓ ⩽ 𝑘 , then the new set of values allowed for the number of
processes sent from 𝑞 to 𝑞′ is Jℓ, +∞J and J𝑘, +∞J⊆ Jℓ, +∞J.

It is now time to discuss again the role of the set Tmin ⊆ F . This set is meant to encode
the transfer flows allowed by the system. Of course, with the intuition above, for all 𝑡 ∈ Tmin,
for every tf′ ∈ F such that 𝑡 ⪯ tf′, tf′ should also be allowed by the system. Recall the rule
of thumb: smaller transfer flows are more powerful, hence if one can achieve a transfer flow,
then one is also able to achieve all larger transfer flows. For this reason, all transfer flows in the
upward-closure of Tmin are allowed by the system. We let T denote this upward-closure. More
formally:

T := ↑Tmin = {tf ∈ F | ∃𝑡 ∈ Tmin, 𝑡 ⪯ tf}.

We now define a notion of execution of the copycat system. An execution is an alternating
sequence 𝜌 = 𝛾0, tf1, 𝛾1, tf2, 𝛾2, . . . , tf𝑘 , 𝛾𝑘 with 𝑘 ∈ N and, for all 𝑖 ∈ J1, 𝑘K, tf𝑖 ∈ Tmin and

𝛾𝑖−1
tf𝑖
==⇒ 𝛾𝑖. In this context, 𝛾𝑖−1

tf𝑖
==⇒ 𝛾𝑖 is called a step, and configurations 𝛾1 to 𝛾𝑘 are visited

by 𝜌. The length of execution 𝜌 is defined to be 𝑘 . We denote by 𝛾0
∗
=⇒ 𝛾𝑘 the existence of

such an execution. In this case, 𝛾𝑘 is said to reachable from 𝛾0. Note that the reachability

relation preserves the size of the configurations: if 𝛾
∗
=⇒ 𝛾′ then |𝛾 | = |𝛾′|. While we require

an execution to only contain transfer flows in Tmin, transfer flows in T would define the same
reachability relation, as a direct consequence of Fact 3.5:

Fact 3.6. For every 𝛾, 𝛾′ ∈ Γ, 𝛾
∗
=⇒ 𝛾′ if and only if there is 𝑘 ∈ N, tf1, . . . , tf𝑘 ∈ T and

𝛾 = 𝛾0, 𝛾1, . . . , 𝛾𝑘 = 𝛾
′ such that 𝛾𝑖−1

tf𝑖
==⇒ 𝛾𝑖 for every 𝑖.

Example 3.7. In order to give some intuition about the definition of copycat systems, we sketch
here how ASMS can be encoded into copycat systems. This transformation will be presented in
detail in Section 3.5. Let P = ⟨𝑄, 𝑞0, dim,D,⊥, 𝛿⟩ be an ASMS protocol. The corresponding
copycat system is C := ⟨𝑄,Ddim,Tmin⟩, so that the states of C are those of P and the control
locations are used to encode the values of the registers. The set Tmin must encode, for each
transition 𝛿 ∈ Δ, the possibilities offered by 𝛿. More precisely, for every 𝛿 = (𝑞1, act, 𝑞2) ∈ Δ,
Tmin contains a family of transfer flows ( 𝑓 , ®𝑑1, ®𝑑2) where:

— 𝑓 expresses that at least one process must go from 𝑞1 to 𝑞2 and that any number of
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processes may go from 𝑞 to 𝑞 for all 𝑞 ∈ 𝑄;

— ®𝑑1 and ®𝑑2 are so that there are 𝜇1, 𝜇2 such that ⟨𝜇1, ®𝑑1⟩
𝛿−→ ⟨𝜇2, ®𝑑2⟩ (this condition can be

made explicit with a case disjunction on act).

Note that there are exponentially many transfer flows in Tmin for each transition in Δ, because
one must list all the possibilities ®𝑑1 and ®𝑑2 for the content of the registers. While this definition,
one step in C corresponds to an accelerated step in P; indeed, one step in P allows arbitrarily
many processes to go from 𝑞1 to 𝑞2.

3.2.2 Flow Composition

Our aim is to better understand the concept of reachability defined above. To do that, we
are now interested in the possibilities offered by using several transfer flows in a row. Given
transfers flows tf1, . . . , tf𝑘 , can we give a convenient characterization of the configurations 𝛾0, 𝛾𝑘

for which there are 𝛾1, . . . , 𝛾𝑘−1 such that 𝛾𝑖
tf𝑖+1
===⇒ 𝛾𝑖+1 for all 𝑖? As we will see, the possibilities

offered by a sequence of transfer flows can be conveniently described with a set of transfer flows.
We start with two transfer flows used consecutively. To do so, we define the compositional

product tf1 ⊗ tf2 as the set of transfer flows defined as follows.

Definition 3.8. Let tf1 = ( 𝑓1, ℓ1, ℓ′1), tf2 = ( 𝑓2, ℓ2, ℓ′2) ∈ F . If ℓ′1 ≠ ℓ2, then we set tf1 ⊗ tf2 = ∅ .
Assume now that ℓ′1 = ℓ2. The set tf1 ⊗ tf2 ⊆ F is the set that contains all transfer flows of the
form (ℎ, ℓ1, ℓ′2) for which there is 𝐻 : 𝑄3 → N# such that:

(3.8.i) for all (𝑞1, 𝑞3),
∑
𝑞2 𝐻 (𝑞1, 𝑞2, 𝑞3) = ℎ(𝑞1, 𝑞3);

(3.8.ii) for all (𝑞1, 𝑞2),
∑
𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3) ⩾ 𝑓1(𝑞1, 𝑞2);

(3.8.iii) for all (𝑞2, 𝑞3),
∑
𝑞1 𝐻 (𝑞1, 𝑞2, 𝑞3) ⩾ 𝑓2(𝑞2, 𝑞3).

The function 𝐻 is called a witness function that (ℎ, ℓ1, ℓ′2) ∈ tf1 ⊗ tf2.

In particular, for all 𝑞1, 𝑞2, 𝑓 (𝑞1, 𝑞2) = # if and only if, for all 𝑞3, 𝐻 (𝑞1, 𝑞2, 𝑞3) = #.
Similarly, 𝑔(𝑞2, 𝑞3) = # if and only if, for all 𝑞1, 𝐻 (𝑞1, 𝑞2, 𝑞3) = #.

We extend the operator ⊗ to sets of transfer flows in a natural manner: for 𝐹, 𝐹′ ⊆ F ,
𝐹 ⊗ 𝐹′ :=

⋃
tf∈𝐹,tf′∈𝐹′ tf ⊗ tf′. We start with some basic properties of the compositional product:

Lemma 3.9. For all tf1, tf2 ∈ F :

(3.9.i) the set tf1 ⊗ tf2 is upward-closed with respect to ⪯: for all tf ∈ tf1 ⊗ tf2, for all tf′ ∈ F ,
if tf ⪯ tf′ then tf′ ∈ tf1 ⊗ tf2;
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Figure 3.2 – An example of element in a compositional product: here, tf1 ∈ tf2 ⊗ tf3. Unlabeled
arrows correspond to value 0. The witness function 𝐻 is represented with dashed arrows. Only
values of 𝐻 greater than 0 are depicted.

(3.9.ii) the compositional product is decreasing with respect to ⪯ and ⊆: for all tf′1 ⪯ tf1
and tf′2 ⪯ tf2, we have tf1 ⊗ tf2 ⊆ tf′1 ⊗ tf′2.

Proof. Relegated to Section 3.7.1. □

Example 3.10. An example to illustrate the compositional product can be found in Fig. 3.2.
Here, we have tf1 = ( 𝑓1, ℓ1, ℓ2) and tf2 = ( 𝑓2, ℓ2, ℓ3) where 𝑓1(𝑞1, 𝑞2) = 2, 𝑓2(𝑞2, 𝑞3) = 3,
𝑓1(𝑞, 𝑞) = 𝑓2(𝑞, 𝑞) = 0 for all 𝑞, 𝑓 (𝑞2, 𝑞1) = 0 and all other values equal to #. Also, let
tf = ( 𝑓 , ℓ1, ℓ3) where 𝑓 (𝑞1, 𝑞1) = 1, 𝑓 (𝑞1, 𝑞3) = 1, 𝑓 (𝑞2, 𝑞3) = 2, 𝑓 (𝑞1, 𝑞1) = 𝑓 (𝑞2, 𝑞2) =

𝑓 (𝑞3, 𝑞3) = 𝑓 (𝑞1, 𝑞2) = 𝑓 (𝑞2, 𝑞1) = 0 and 𝑓 (𝑞, 𝑞′) = # for all other (𝑞, 𝑞′). We have tf ∈ tf1⊗tf2.
Indeed, the control locations match and we have the following witness function 𝐻 : 𝑄3 → N#:

— 𝐻 (𝑞1, 𝑞2, 𝑞1) = 1,

— 𝐻 (𝑞1, 𝑞2, 𝑞3) = 1,

— 𝐻 (𝑞2, 𝑞2, 𝑞3) = 2,

— 𝐻 (𝑞1, 𝑞2, 𝑞2) = 𝐻 (𝑞2, 𝑞2, 𝑞1) = 𝐻 (𝑞2, 𝑞2, 𝑞2) = 𝐻 (𝑞3, 𝑞3, 𝑞3) = 𝐻 (𝑞1, 𝑞1, 𝑞1) = 0,

— all other values equal to #.

In fact, tf1 is minimal for ⪯ in tf2 ⊗ tf3. Because tf2 ⊗ tf3 is upward-closed, increasing the value
of non-# components of tf1 would yield transfer flows that are also in tf2 ⊗ tf3.

A necessary but tedious task is to prove that the compositional product ⊗ is associative.

Lemma 3.11. The compositional product ⊗ is associative, i.e., for all tf1, tf2, tf3 ∈ F , (tf1 ⊗
tf2) ⊗ tf3 = tf1 ⊗ (tf2 ⊗ tf3).
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Proof. Relegated to Section 3.7.1. □

Another convenient property of the compositional product is related to the weight of the
transfer flows:

Lemma 3.12. Let tf1, tf2 ∈ F . For every tf ∈ basis(tf1 ⊗ tf2), weight(tf) ⩽ weight(tf1) +
weight(tf2).

Proof. Relegated to Section 3.7.1. □

Given tf1, tf2 ∈ F , the set tf1 ⊗ tf2 corresponds to the set of transfer flows that can be obtained
by using tf1 then tf2, as formalized in the following lemma.

Lemma 3.13. Let tf1, tf2 ∈ F , 𝛾1, 𝛾3 ∈ Γ. We have the following equivalence:

(∃ tf ∈ tf1 ⊗ tf2, 𝛾1
tf
=⇒ 𝛾3) ⇐⇒ (∃ 𝛾2 ∈ Γ, 𝛾1

tf1
==⇒ 𝛾2

tf2
==⇒ 𝛾3).

Proof. Let tf1 =: ( 𝑓1, ℓ1, ℓ2), tf2 =: ( 𝑓2, ℓ′2, ℓ3). If we have ℓ2 ≠ ℓ′2 then tf1 ⊗ tf2 = ∅, both
assertions are false and the equivalence holds. Similarly, if the control location of 𝛾1 is not equal
to ℓ1, then both assertions are false and the equivalence holds, and same for 𝛾3 and ℓ3. We now
suppose that 𝛾1 =: ⟨𝜇1, ℓ1⟩ and 𝛾3 =: ⟨𝜇3, ℓ3⟩.

Assume first that there is tf ∈ tf1 ⊗ tf2 such that 𝛾1
tf
=⇒ 𝛾3, let tf =: ( 𝑓 , ℓ1, ℓ3). Let 𝑔 ⩾ 𝑓

witnessing that 𝛾1
tf
=⇒ 𝛾3. By hypothesis, tf ∈ tf1 ⊗ tf2. By Lemma 3.9, tf1 ⊗ tf2 is upward-

closed, therefore tf′ := (𝑔, ℓ1, ℓ3) ∈ tf1 ⊗ tf2. Let 𝐻 : 𝑄3 → N# be a witness function of that.
Let 𝜇2 : 𝑞2 ∈ 𝑄 ↦→ ∑

𝑞1,𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3), and let 𝛾2 := ⟨𝜇2, ℓ2⟩. Let ℎ : (𝑞1, 𝑞2) ∈ 𝑄2 ↦→∑
𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3), we prove that ℎ is a witness function that 𝛾1

tf1
==⇒ 𝛾2. By definition of 𝐻,

for all 𝑞1, 𝑞2,
∑
𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3) ⩾ 𝑓1(𝑞1, 𝑞2) hence ℎ(𝑞1, 𝑞2) ⩾ 𝑓1(𝑞1, 𝑞2), so that ℎ ⩾ 𝑓1. By

definition of 𝐻, for all 𝑞1,
∑
𝑞2 𝐻 (𝑞1, 𝑞2, 𝑞3) = 𝑔(𝑞1, 𝑞3) and by definition of 𝑔,

∑
𝑞3 𝑔(𝑞1, 𝑞3) =

𝜇1(𝑞1). This gives, for all 𝑞1,
∑
𝑞2 ℎ(𝑞1, 𝑞2) =

∑
𝑞2,𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3) =

∑
𝑞3

∑
𝑞2 𝐻 (𝑞1, 𝑞2, 𝑞3) =∑

𝑞3 𝑔(𝑞1, 𝑔3) = 𝜇1(𝑞1). Moreover,
∑
𝑞1 ℎ(𝑞1, 𝑞2) =

∑
𝑞1,𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3) = 𝜇2(𝑞2) by definition

of 𝜇2. This proves that 𝛾1
tf1
==⇒ 𝛾2; the proof that 𝛾2

tf2
==⇒ 𝛾3 is similar.

Conversely, assume that there is 𝛾2 such that 𝛾1
tf1
==⇒ 𝛾2

tf2
==⇒ 𝛾3. Let 𝑔1 ⩾ 𝑓1 be a witness

function that 𝛾1
tf1
==⇒ 𝛾2 and 𝑔2 ⩾ 𝑓2 a witness function that 𝛾2

tf2
==⇒ 𝛾3. We build 𝐻 : 𝑄3 → N#

that satisfies the following conditions:

(i) for all 𝑞1, 𝑞2,
∑
𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3) = 𝑔1(𝑞1, 𝑞2),
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(ii) for all 𝑞2, 𝑞3,
∑
𝑞1 𝐻 (𝑞1, 𝑞2, 𝑞3) = 𝑔2(𝑞2, 𝑞3).

Indeed, the existence of 𝐻 would imply that, by letting ℎ : (𝑞1, 𝑞3) ↦→
∑
𝑞2 𝐻 (𝑞1, 𝑞2, 𝑞3) and

tf := (ℎ, ℓ1, ℓ3), we have tf ∈ tf1 ⊗ tf2 (with 𝐻 as witness function, because 𝑔1 ⩾ 𝑓1 and 𝑔2 ⩾ 𝑓2)
and 𝛾1

tf
=⇒ 𝛾3 because

∑
𝑞2 𝑔1(𝑞1, 𝑞2) = 𝜇1(𝑞1) and

∑
𝑞2 𝑔2(𝑞2, 𝑞3) = 𝜇3(𝑞3).

We now prove the following statement:

For every 𝑔1 : 𝑄2 → N# and 𝑔2 : 𝑄2 → N#, if
∑
𝑞1 𝑔1(𝑞1, 𝑞2) =

∑
𝑞3 𝑔2(𝑞2, 𝑞3) for

every 𝑞2, then there is 𝐻 : 𝑄3 → N# such that
∑
𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3) = 𝑔1(𝑞1, 𝑞2) and∑

𝑞1 𝐻 (𝑞1, 𝑞2, 𝑞3) = 𝐺 (𝑞2, 𝑞3).

First, if 𝐹 and 𝐺 are constant equal to # then we set 𝐻 constant equal to #. Suppose that it is not
the case; let 𝑛 :=

∑
𝑞1,𝑞2 𝑔1(𝑞1, 𝑞2) =

∑
𝑞2,𝑞3 𝑔2(𝑞2, 𝑞3) ∈ N. We proceed by induction on 𝑛.

If 𝑛 = 0 then all values in 𝑔1 and 𝑔2 are in {0, #}. For each 𝑞1, 𝑞2, 𝑞3, we let𝐻 (𝑞1, 𝑞2, 𝑞3) := 0
whenever both 𝑔1(𝑞1, 𝑞2) = 0 and 𝑔2(𝑞2, 𝑞3) = 0, and 𝐻 (𝑞1, 𝑞2, 𝑞3) := # otherwise. We first
prove that, for all 𝑞1, 𝑞2,

∑
𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3) = 𝑔1(𝑞1, 𝑞2). Let 𝑞1, 𝑞2 ∈ 𝑄; if 𝑔1(𝑞1, 𝑞2, 𝑞3) = #

then 𝐻 (𝑞1, 𝑞2, 𝑞3) = # for all 𝑞3 hence
∑
𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3) = #. Suppose now that 𝑔1(𝑞1, 𝑞2) = 0.

This implies that
∑
𝑞3 𝑔2(𝑞2, 𝑞3) = 0 therefore there is 𝑞3 such that 𝑔2(𝑞2, 𝑞3) = 0, so that

𝐻 (𝑞1, 𝑞2, 𝑞3) = 0 and
∑
𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3) = 0. Similarly, for every 𝑞2, 𝑞3, if 𝑔2(𝑞2, 𝑞3) = # then∑

𝑞1 𝐻 (𝑞1, 𝑞2, 𝑞3) = # and if 𝑔2(𝑞2, 𝑞3) = 0 then there is 𝑞1 such that 𝑔1(𝑞1, 𝑞2) = 0 hence
𝐻 (𝑞1, 𝑞2, 𝑞3) = 0 and

∑
𝑞1 𝐻 (𝑞1, 𝑞2, 𝑞3) = 0.

Suppose now that 𝑛 > 0. There exists 𝑞2 such that
∑
𝑞1 𝑔1(𝑞1, 𝑞2) =

∑
𝑞3 𝑔2(𝑞2, 𝑞3) > 0.

Let 𝑞1 such that 𝑔1(𝑞1, 𝑞2) > 0 and 𝑞3 such that 𝑔2(𝑞2, 𝑞3) > 0. Let 𝑔′1 equal to 𝑔1 except that
𝑔′1(𝑞1, 𝑞2) := 𝑔1(𝑞1, 𝑞2)−1 and let 𝑔′2 equal to 𝑔2 except that 𝑔′2(𝑞2, 𝑞3) := 𝑔2(𝑞2, 𝑞3)−1. We have∑
𝑞1 𝑔

′
1(𝑞1, 𝑞2) =

∑
𝑞3 𝑔

′
2(𝑞2, 𝑞3) for all 𝑞2, and

∑
𝑞1,𝑞2 𝑔

′
1(𝑞1, 𝑞2) =

∑
𝑞2,𝑞3 𝑔2(𝑞2, 𝑞3) −1 = 𝑛−1.

We apply the induction hypothesis on 𝑔′1 and 𝑔′2 to obtain 𝐻′ such that
∑
𝑞3 𝐻

′(𝑞1, 𝑞2, 𝑞3) =

𝑔′1(𝑞1, 𝑞2) for all 𝑞1, 𝑞2 and
∑
𝑞1 𝐻

′(𝑞1, 𝑞2, 𝑞3) = 𝑔′2(𝑞2, 𝑞3) for all 𝑞2, 𝑞3. It suffices to let
𝐻 equal to 𝐻′ except that 𝐻 (𝑞1, 𝑞2, 𝑞3) := 𝐻′(𝑞1, 𝑞2, 𝑞3) + 1. Note that it could be that
𝐻′(𝑞1, 𝑞2, 𝑞3) = #, in which case 𝐻 (𝑞1, 𝑞2, 𝑞3) = 1. We know that 𝑔′1(𝑞1, 𝑞2) ≠ # therefore∑
𝑞3 𝐻

′(𝑞1, 𝑞2, 𝑞3) ≠ # so that we indeed have
∑
𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3) = 𝑔′1(𝑞1, 𝑞2) + 1 = 𝑔1(𝑞1, 𝑞2).

With the same argument,
∑
𝑞1 𝐻 (𝑞1, 𝑞2, 𝑞3) = 𝑔2(𝑞2, 𝑞3). This concludes the induction.

By letting ℎ : (𝑞1, 𝑞3) ↦→
∑
𝑞2 𝐻 (𝑞1, 𝑞2, 𝑞3) and tf = (ℎ, ℓ1, ℓ3), we have tf ∈ tf1 ⊗ tf2 and

𝛾1
tf
=⇒ 𝛾3, concluding the proof. □

By iterating Lemma 3.13, we obtain a similar property for a larger number of transfer flows:
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Lemma 3.14. Let 𝑘 ⩾ 1, tf1, . . . , tf𝑘 ∈ F , 𝛾0, . . . , 𝛾𝑘 ∈ Γ. We have the following equivalence:

∃𝛾1, . . . , 𝛾𝑘−1, 𝛾0
tf1
==⇒ 𝛾1

tf2
==⇒ . . .

tf𝑘
==⇒ 𝛾𝑘 ⇐⇒ ∃tf ∈ tf1 ⊗ tf2 ⊗ . . . ⊗ tf𝑘 , 𝛾0

tf
=⇒ 𝛾𝑘 .

Proof. We proceed by induction on 𝑘 . The case 𝑘 = 1 is immediate. Let 𝑘 ⩾ 1. By Lemma 3.13,
there is tf ∈ tf1 ⊗ . . . ⊗ tf𝑘+1 such that 𝛾0

tf
=⇒ 𝛾𝑘+1 if and only if there is tf′ ∈ tf1 ⊗ . . . ⊗ tf𝑘 and

𝛾𝑘 ∈ Γ such that 𝛾0
tf′
==⇒ 𝛾𝑘

tf𝑘+1
====⇒ 𝛾𝑘+1. By induction hypothesis, for a given 𝛾𝑘 , the existence of

tf′ ∈ tf1 ⊗ . . . ⊗ tf𝑘 such that 𝛾0
tf′
==⇒ 𝛾𝑘 is equivalent to the existence of 𝛾1, . . . , 𝛾𝑘−1 such that

𝛾0
tf1
==⇒ . . .

tf𝑘
==⇒ 𝛾𝑘 , which concludes the proof. □

Let F0 ⊆ F be the set of transfer flows ( 𝑓 , ℓ, ℓ) with ℓ ∈ L and 𝑓 such that 𝑓 (𝑞, 𝑞′) = # for
all 𝑞 ≠ 𝑞′ and 𝑓 (𝑞, 𝑞) ∈ N for all 𝑞 ∈ 𝑄. Intuitively, F0 contains trivial transfer flows where all
processes remain idle. Note that F0 is upward-closed and that basis(F0) = {( 𝑓0, ℓ, ℓ) | ℓ ∈ L}
where 𝑓0(𝑞, 𝑞) = 0 for all 𝑞 and 𝑓0(𝑞, 𝑞′) = # for all 𝑞 ≠ 𝑞′.

Lemma 3.15. For all 𝑇 ⊆ F upward-closed for ⪯, F0 ⊗ 𝑇 = 𝑇 ⊗ F0 = 𝑇 .

Proof. Relegated to Section 3.7.1. □

Given 𝑇 ⊆ F and 𝑘 ∈ N, we define 𝑇 𝑘 ⊆ F by 𝑇0 := F0 and 𝑇 𝑘+1 := 𝑇 𝑘 ⊗ 𝑇 . In particular,
we have 𝑇1 = 𝑇 . The set 𝑇 𝑘 contains all possibilities obtained by using exactly 𝑘 transfer flows
in 𝑇 . Similarly, we let 𝑇⩽𝑘 :=

⋃
ℓ⩽𝑘 𝑇

ℓ. Finally, we let 𝑇∗ :=
⋃
𝑘∈N 𝑇

𝑘 . The set 𝑇∗ encodes all
transfer flows possible by combining transfer flows from T :

Lemma 3.16. For all 𝛾, 𝛾′ ∈ Γ, 𝛾
∗
=⇒ 𝛾′ if and only if there is tf ∈ T ∗ such that 𝛾

tf
=⇒ 𝛾′.

Proof. By definition, 𝛾
∗
=⇒ 𝛾′ if and only if there exist 𝑘 ∈ N and 𝛾 = 𝛾0, tf1, 𝛾1, tf2, 𝛾2, . . . , tf𝑘 ,

𝛾𝑘 = 𝛾′ such that, for all 𝑖 ∈ J1, 𝑘K, tf𝑖 ∈ Tmin and 𝛾𝑖−1
tf𝑖
==⇒ 𝛾𝑖. If 𝑘 = 0, then we must have

𝛾 = 𝛾′, which is equivalent to the existence of tf0 ∈ F0 such that 𝛾
tf0
==⇒ 𝛾′. By Lemma 3.14 and

Fact 3.6, this proves that 𝛾
∗
=⇒ 𝛾′ if and only if there is 𝑘 ⩾ 0 and tf ∈ T 𝑘 such that 𝛾

∗
=⇒ 𝛾′, so

that 𝛾
∗
=⇒ 𝛾′ if and only if there is tf ∈ T ∗ such that 𝛾

∗
=⇒ 𝛾′. □

The set T ∗ is upward-closed with respect to ⪯, therefore it has a finite basis basis(T ∗). This
basis fully characterizes the reachability relation: for all 𝛾, 𝛾′, we have 𝛾

∗
=⇒ 𝛾′ if and only if

there is tf ∈ basis(T ∗) such that 𝛾
tf
=⇒ 𝛾′. For this reason, we are interested in the set basis(T ∗).
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𝑡𝑎𝑏

ℓ𝑎 ℓ𝑏

𝑞1 𝑞1

𝑞2 𝑞2

⩾2

𝑡𝑏𝑎

ℓ𝑏 ℓ𝑎

𝑞1 𝑞1

𝑞2 𝑞2

⩾1

tf1
ℓ𝑎 ℓ𝑎

𝑞1 𝑞1

𝑞2 𝑞2

⩾2

tf2
ℓ𝑎 ℓ𝑎

𝑞1 𝑞1

𝑞2 𝑞2

⩾1

⩾1

tf3
ℓ𝑎 ℓ𝑎

𝑞1 𝑞1

𝑞2 𝑞2

⩾2 ⩾1

Figure 3.3 – The example of copycat system from Example 3.17. As before, dashed edge
correspond to value 0, and # edges are not represented.

Example 3.17. Consider the copycat system C = ({𝑞1, 𝑞2}, {ℓ𝑎, ℓ𝑏}, {𝑡𝑎𝑏, 𝑡𝑏𝑎}) where:

— 𝑡𝑎𝑏 = ( 𝑓𝑎𝑏, ℓ𝑎, ℓ𝑏) with 𝑓𝑎𝑏 (𝑞1, 𝑞1) = 𝑓𝑎𝑏 (𝑞2, 𝑞2) = 0, 𝑓𝑎𝑏 (𝑞1, 𝑞2) = 2 and 𝑓𝑎𝑏 (𝑞2, 𝑞1) = #,

— 𝑡𝑏𝑎 = ( 𝑓𝑏𝑎, ℓ𝑏, ℓ𝑎) with 𝑓𝑏𝑎 (𝑞1, 𝑞1) = 𝑓𝑏𝑎 (𝑞2, 𝑞2) = 0, 𝑓𝑏𝑎 (𝑞2, 𝑞1) = 1 and 𝑓𝑏𝑎 (𝑞1, 𝑞2) = #.

The two transfer flows are depicted in Fig. 3.3. Note that they both satisfy the idle-compliance
property, because 𝑓𝑎𝑏 (𝑞, 𝑞) ≠ # and 𝑓𝑏𝑎 (𝑞, 𝑞) ≠ # for all 𝑞 ∈ 𝑄. Let F𝑎𝑎 := {( 𝑓 , ℓ𝑎, ℓ𝑎) | 𝑓 :
𝑄2 → N#} denote transfer flows from ℓ𝑎 to ℓ𝑎. In Fig. 3.3, we illustrate three transfer flows,
denoted tf1, tf2 and tf3, that are in T ∗ ∩ F𝑎𝑎. It is easy to see that they are incomparable and
that they are exactly the minimal elements of 𝑡𝑎𝑏 ⊗ 𝑡𝑏𝑎, so that {tf1, tf2, tf3} = basis(𝑡𝑎𝑏 ⊗ 𝑡𝑏𝑎).
This implies that basis((𝑡𝑎𝑏 ⊗ 𝑡𝑏𝑎)2) ⊆ {tf𝑖 ⊗ tf 𝑗 | 𝑖, 𝑗 ∈ {1, 2, 3}}. Moreover, with a (tedious)
case disjunction, one cna show that, for all 𝑖, 𝑗 ∈ {1, 2, 3}, tf𝑖 ⊗ tf 𝑗 ⊆ 𝑡𝑎𝑏 ⊗ 𝑡𝑏𝑎. This implies that
(𝑡𝑎𝑏 ⊗ 𝑡𝑏𝑎)2 ⊆ 𝑡𝑎𝑏 ⊗ 𝑡𝑏𝑎. With a symmetric argument, one can prove that (𝑡𝑏𝑎 ⊗ 𝑡𝑎𝑏)2 ⊆ 𝑡𝑏𝑎 ⊗ 𝑡𝑎𝑏.
This proves that T 4 ⊆ T 2, so that T ∗ = T⩽3.

Remark 3.18. The model of transfer flows arguably constitutes an interesting formalism on its
own. To the best of our knowledge, this notion is new. In [BDGG17], the authors use so-called
transfer graphs, which are subsets of 𝑄2 describing from which state to which state processes
may go. In our formalism, this would correspond to transfer flows where L = ∅ and whose
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values are in {#, 0}. No notion of composition of transfer graphs is defined in [BDGG17]. In
the probabilistic extension of the previous work [CFO20], the authors consider flows, which are
elements of 𝑄2 → N; they also rely on an implicit flow composition. In their case, however, an
edge from 𝑞 to 𝑞′ labeled 𝑛 expresses that at most 𝑛 processes may go from 𝑞 to 𝑞′, so that the
set of achievable flows is downward-closed and not upward-closed.

Another family of models that is related to transfer flows is the one of threshold automata
[KVW14]. The threshold constraints are somewhat reminiscent of our constraints on the
number of processes in transfer flows. An important result in threshold automata is that the
diameter is bounded, so that any two configurations can be connected with an accelerated
execution of bounded length, a result analogue to our structural theorem. However, the analogy
between copycat systems and threshold automata is limited: the two models have several crucial
differences, and the bound on the diameter for threshold automata is polynomial while our bound
from the structural theorem is doubly-exponential.

The main contribution of this chapter is to provide two bounds related to basis(T ∗). The
first bound is related to the smallest value of 𝐾 such that basis(T ∗) ⊆ T⩽𝐾 . In other words,
it bounds the number of steps needed to connect two configurations. The second bound is
related to the norm of the elements of basis(T ∗); it bounds, in a given execution, the number of
processes that cannot be removed without affecting the rest of the execution.

We are yet to define a notion of size of a copycat system. In fact, we will not rely on a
single such notion but on two different ones. The first one is 𝑛(C) := |𝑄 |, and the other one is
𝑀 (C) := |L| + |Tmin | + max𝑡∈Tmin weight(𝑡). Note that a copycat system can be stored in space
polynomial in 𝑛(C) + 𝑀 (C). The reason for this distinction is that we will, in the next section,
obtain a bound of the form 𝑂 (𝑀 (C))2𝑂 (𝑛(C) ) , whose dependency in 𝑛(C) and in 𝑀 (C) are
therefore very different. Tracking this difference will allow us, in Section 3.4 and Section 3.5,
to allow for exponential blowups in 𝑀 (C) without affecting the overall order of magnitude of
our bounds.

The following result constitutes the main contribution of this chapter. Its proof relies on the
bound on descending chains from Theorem 1.9 and is the topic of the next section.

Theorem 3.19 (Structural Theorem).
Let 𝐿 : (𝑛, 𝑀) ↦→ (𝑀22𝑛2)3𝑛2+2 (log(𝑛2+2)+1) and 𝐵 : (𝑛, 𝑀) ↦→ 𝑀 · 𝐿 (𝑛, 𝑀).
We have T ∗ = T⩽𝐿 (𝑛(C),𝑀 (C)) and, for all tf ∈ basis(T ∗), weight(tf) ⩽ 𝐵(𝑛(C), 𝑀 (C)).
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3.3 The Structural Bound

In this section, we use the result from [LS21; SS24] introduced in Theorem 1.9 to prove
Theorem 3.19. Again, we fix a copycat system C = (𝑄,L,Tmin).

3.3.1 Mapping Transfer Flows to Vectors

Let 𝑛 := 𝑛(C) = |𝑄 | and 𝑀 := 𝑀 (C) = |𝑄 | + |L| + |Tmin | + max𝑡∈Tmin weight(𝑡). Also,
let 𝑑 := 𝑛2 + 2 and 𝑁 := |L2 × 2𝑄2 | ⩽ 𝑀22𝑛2 . We fix two arbitrary bĳective mappings
𝜃 : L2 × 2𝑄2 → J1, 𝑁K and index : 𝑄2 → J1, 𝑛2K.

We map transfer flows to sets of vectors with a mapping 𝜒 : F → 2N𝑑 defined as follows.
Let tf = ( 𝑓 , ℓ, ℓ′) ∈ F . Let 𝑆 := {(𝑞, 𝑞′) | 𝑓 (𝑞, 𝑞′) = #}. A vector ®𝑣 ∈ N𝑑 is in 𝜒(tf) if and only
if:

— for all (𝑞, 𝑞′) ∉ 𝑆 (i.e., such that 𝑓 (𝑞, 𝑞′) ≠ #), ®𝑣(index(𝑞, 𝑞′)) = 𝑓 (𝑞, 𝑞′);

— ®𝑣(𝑛2 + 1) = 𝜃 (ℓ, ℓ′, 𝑆),

— ®𝑣(𝑛2 + 2) = 𝑁 + 1 − 𝜃 (ℓ, ℓ′, 𝑆).

Note that there is no restriction to the value ®𝑣(𝑖) when the corresponding pair (𝑞, 𝑞′) = index−1(𝑖)
is in 𝑆, i.e., when 𝑓 (𝑞, 𝑞′) = #. Also, this definition guarantees that, if ®𝑣 ∈ 𝜒(tf) and ®𝑢 ∈ 𝜒(tf′)
are such that ®𝑣 ⩽× ®𝑢, then ®𝑢(𝑛2 + 1) = ®𝑣(𝑛2 + 1) and ®𝑢(𝑛2 + 2) = ®𝑣(𝑛2 + 2), so that tf and tf′ have
the same control locations and the same # values. This mapping satisfies a convenient property
which we dub strong injectivity:

Lemma 3.20 (Strong injectivity). For all tf ∈ F , 𝜒(tf) ≠ ∅ and for all tf′ ≠ tf, 𝜒(tf) ∩ 𝜒(tf′) = ∅.

Proof. Let tf = ( 𝑓 , ℓ1, ℓ2), tf′ = ( 𝑓 ′, ℓ′1, ℓ
′
2) ∈ F . Let 𝑆 := {(𝑞, 𝑞′) | 𝑓 (𝑞, 𝑞′) = #} and

𝑆′ := {(𝑞, 𝑞′) | 𝑓 (𝑞, 𝑞′) = #}. Let ®𝑣 be the vector such that ®𝑣(𝑖) = 𝑓 (index−1(𝑖)) when
index−1(𝑖) ∈ 𝑆, ®𝑣(𝑖) = 0 when index−1(𝑖) ∉ 𝑆, ®𝑣(𝑛2 + 1) = 𝜃 (ℓ1, ℓ2, 𝑆) and ®𝑣(𝑛2 + 2) =

𝑁 + 1 − 𝜃 (ℓ1, ℓ2, 𝑆). Trivially, ®𝑣 ∈ 𝜒(tf) so that 𝜒(tf) ≠ ∅. We now prove that 𝜒(tf) ∩ 𝜒(tf′) ≠ ∅
implies that tf = tf′; suppose that 𝜒(tf) ∩ 𝜒(tf′) ≠ ∅ and let ®𝑣 ∈ 𝜒(tf) ∩ 𝜒(tf′). We have
®𝑣(𝑛2 + 1) = 𝜃 (ℓ1, ℓ2, 𝑆) = 𝜃 (ℓ′1, ℓ

′
2, 𝑆

′) and, by injectivity of 𝜃, ℓ1 = ℓ′1, ℓ2 = ℓ′2 and 𝑆 = 𝑆′.
This implies that 𝑓 (𝑞, 𝑞′) = 𝑔(𝑞, 𝑞′) = # for all (𝑞, 𝑞′) ∈ 𝑆. Moreover, for every (𝑞, 𝑞′) ∉ 𝑆,
𝑓 (𝑞, 𝑞′) = ®𝑣(index(𝑞, 𝑞′)) = 𝑓 ′(𝑞, 𝑞′). We have proved that tf = tf′, concluding the proof. □

Given a set 𝐹 of transfer flows, we write 𝜒(𝐹) :=
⋃

tf∈𝐹 𝜒(tf). The vectors of N𝑑 that are in
𝜒(F ) are exactly those whose last two components are (strictly) positive and sum to 𝑁 +1. Note
that, even for 𝑇 ⊆ F is upward-closed in(F , ⪯), then 𝜒(𝑇) is not upward-closed in (N𝑑 ,⩽×).
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Indeed, the upward-closure of 𝜒(𝑇) would include vectors whose last two components sum to
values strictly greater than 𝑁 + 1, and such vectors are not in 𝜒(F ).

Our aim is to build a descending chain (𝐷𝑘 ) of N𝑑 such that 𝐷𝑘 contains the images by 𝜒 of
transfer flows in F \ T⩽𝑘 . Let 𝑉0 be the set of vectors ®𝑣 such that either ®𝑣(𝑛2 + 1) = 𝑁 + 1 and
®𝑣(𝑛2 + 2) = 0 or ®𝑣(𝑛2 + 1) = 0 and ®𝑣(𝑛2 + 2) = 𝑁 + 1. For technical reasons, we will enforce that
𝐷𝑘 ∩𝑉0 = ∅ for every 𝑘 . Note that 𝑉0 ∩ 𝜒(F ) = ∅: vectors in 𝑉0 have no relevance in terms of
transfer flows.

3.3.2 Construction of the Descending Chain

We now build a descending chain in N𝑑 related to the sets of transfer flows T⩽𝑘 . For all
𝑘 ⩾ 0, let𝑈𝑘 denote the upward-closure, in (N𝑑 ,⩽×), of 𝜒(T⩽𝑘 ) ∪𝑉0:

𝑈𝑘 := ↑ ( 𝜒(T⩽𝑘 ) ∪𝑉0).

Intuitively,𝑈𝑘 corresponds to the vector counterpart of T⩽𝑘 . For technical reasons, we want the
set 𝑉0 to be included in𝑈𝑘 for each 𝑘 . Because T⩽𝑘 is upward-closed with respect to ⪯, taking
the upward-closure for ⩽× of 𝜒(T⩽𝑘 ) only adds in𝑈𝑘 vectors with higher values in the last two
components:

Lemma 3.21. For all 𝑘 ⩾ 0,𝑈𝑘 ∩ 𝜒(F ) = 𝜒(T⩽𝑘 ).

Proof. Trivially, 𝜒(T⩽𝑘 ) ⊆ 𝑈𝑘 ∩ 𝜒(F ). Conversely, let ®𝑣 ∈ 𝑈𝑘 ∩ 𝜒(F ). There exists
®𝑢 ∈ 𝜒(T⩽𝑘 ) ∪ 𝑉0 such that ®𝑢 ⩽× ®𝑣. Since ®𝑣 ∈ 𝜒(F ), the last two components of ®𝑣 sum to
𝑁 + 1 and same for ®𝑢, so that ®𝑢(𝑛2 + 1) = ®𝑣(𝑛2 + 1) and ®𝑢(𝑛2 + 2) = ®𝑣(𝑛2 + 2). This proves
that ®𝑢 ∉ 𝑉0 because ®𝑣 ∈ 𝜒(F ), therefore ®𝑢 ∈ 𝜒(T⩽𝑘 ). Let tf𝑢 = ( 𝑓𝑢, ℓ𝑢, ℓ′𝑢) ∈ T⩽𝑘 such that
®𝑢 ∈ 𝜒(tf𝑢); let tf𝑣 = ( 𝑓𝑣, ℓ𝑣, ℓ′𝑣) ∈ F such that ®𝑣 ∈ 𝜒(tf𝑣). Because ®𝑢 and ®𝑣 coincide on the
last two component, we have ℓ𝑢 = ℓ𝑣 and ℓ′𝑢 = ℓ′𝑣; also, 𝑓𝑢 (𝑞, 𝑞′) = # whenever 𝑓𝑣 (𝑞, 𝑞′) = #.
When 𝑓𝑢 (𝑞, 𝑞′), 𝑓𝑣 (𝑞, 𝑞′) ≠ #, we have 𝑓𝑣 (𝑞, 𝑞′) ⩽ 𝑓𝑢 (𝑞, 𝑞′). This proves that tf𝑢 ⪯ tf𝑣, hence
tf𝑣 ∈ T⩽𝑘 because T⩽𝑘 is upward-closed. □

For every 𝑘 , we let 𝐷𝑘 := N𝑑 \𝑈𝑘 . Trivially, the sets 𝐷𝑘 are downward-closed. Also for all
𝑘 , T⩽𝑘 ⊆ T⩽𝑘+1 so that 𝑈𝑘 ⊆ 𝑈𝑘+1 thus 𝐷𝑘+1 ⊆ 𝐷𝑘 . Therefore, because all descending chains
are finite by Proposition 1.6, there exists 𝑘 such that 𝐷𝑘 = 𝐷𝑘+1. Let 𝐿 be the smallest 𝑘 such
that 𝐷𝑘 = 𝐷𝑘+1: (𝐷𝑘 )𝑘⩽𝐿 is a descending chain. This length 𝐿 has a direct implication on T⩽𝑘 :

Lemma 3.22. T ∗ = T⩽𝐿 .
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Proof. We have 𝐷𝐿+1 = 𝐷𝐿 therefore 𝑈𝐿+1 = 𝑈𝐿 so that, thanks to Lemma 3.21, 𝜒(T⩽𝐿+1) =
𝜒(T⩽𝐿). Lemma 3.20 tells us that 𝜒 is strongly injective hence in particular injective, so that
T⩽𝐿+1 = T⩽𝐿 . Said otherwise, T⩽𝐿⊗T = T⩽𝐿; by direct induction, for all 𝑘 ⩾ 𝐿, T⩽𝑘 = T⩽𝐿 ,
so that T ∗ = T⩽𝐿 . □

Towards proving Theorem 3.19, we want to argue that 𝐿 ⩽ 𝐿 (𝑛, 𝑀). To apply Theorem 1.9,
we will prove that (𝐷𝑘 )𝑘⩽𝐿 is 𝐶-controlled for some 𝐶 and is 𝜔-monotone.

3.3.3 The Descending Chain is Controlled and 𝜔-monotone

Let 𝜆 := max𝑡∈Tmin weight(𝑡). TWe first prove that (𝐷𝑘 )𝑘⩽𝐿 is𝐶-controlled where𝐶 := 𝑁+𝜆.

Lemma 3.23. The descending chain (𝐷𝑘 )𝑘⩽𝐿 is 𝐶-controlled.

Towards proving Lemma 3.23, we start by bounding the norm of minimal elements of 𝑈𝑘 .
For all 𝑘 , 𝑈𝑘 is upward-closed for ⩽× hence it has a finite basis basis(𝑈𝑘 ). Because 𝑈𝑘 is the
upward-closure of 𝜒(T⩽𝑘 ) ∪𝑉0, we have basis(𝑈𝑘 ) ⊆ 𝜒(T⩽𝑘 ) ∪𝑉0. A vector ®𝑣 ∈ basis(𝑉0) is
such that ®𝑣(𝑖) = 0 for all 𝑖 ∈ J1, 𝑛2K, and max(®𝑣(𝑛2 + 1), ®𝑣(𝑛2 + 2)) = 𝑁 + 1, so that ∥®𝑣∥ = 𝑁 + 1.
We now consider vectors in basis(𝑈𝑘 ) ∩ 𝜒(T⩽𝑘 ); such vectors must be minimal in 𝜒(T⩽𝑘 ).

Lemma 3.24. Minimal vectors of 𝜒(T⩽𝑘 ) are in 𝜒(basis(T⩽𝑘 )).

Proof. Let ®𝑣 minimal in 𝜒(T⩽𝑘 ). In particular, ®𝑣 ∈ 𝜒(T⩽𝑘 ); let tf = ( 𝑓 , ℓ1, ℓ2) ∈ T⩽𝑘 such
that ®𝑣 ∈ 𝜒(tf). Our aim is to prove that tf ∈ basis(T⩽𝑘 ). Let 𝑆 := {(𝑞, 𝑞′) | 𝑓 (𝑞, 𝑞′) = #}. Let
tf′ = ( 𝑓 ′, ℓ′1, ℓ2) ⪯ tf; we prove that tf′ = tf. Because tf′ ⪯ tf, by letting 𝑆′ := {(𝑞, 𝑞′) | 𝑓 (𝑞, 𝑞′) =
#}, we have 𝑆′ = 𝑆. Therefore, there exists ®𝑢 ∈ 𝜒(tf′) such that ®𝑢(𝑖) = 0 for all 𝑖 ∈ index−1(𝑆).
We claim that ®𝑢 ⩽× ®𝑣. We have ®𝑢(𝑛2 + 1) = ®𝑣(𝑛2 + 1) and ®𝑢(𝑛2 + 2) = ®𝑣(𝑛2 + 2); for all
𝑖 ∈ index−1(𝑆), ®𝑢(𝑖) = 0 ⩽ ®𝑣(𝑖); for all 𝑖 ∉ index−1(𝑆), by letting (𝑞, 𝑞′) := index−1(𝑖), we have
®𝑢(𝑖) = 𝑓 ′(𝑞, 𝑞′) ⩽ 𝑓 (𝑞, 𝑞′) = ®𝑣(𝑖). We have therefore ®𝑢 ∈ 𝜒(T⩽𝑘 ) and ®𝑢 ⩽× ®𝑣, but ®𝑣 is minimal
in basis(𝜒(T⩽𝑘 )) therefore ®𝑢 = ®𝑣. This implies that 𝑓 = 𝑓 ′ hence that tf = tf′. □

Note that, because 𝜒(T⩽𝑘 ) is not upward-closed, we cannot write that minimal vectors of
𝜒(T⩽𝑘 ) are in the basis of the set. The remaining task is to bound the values of transfer flows
in basis(T⩽𝑘 ), which is achieved with the following lemma:

Lemma 3.25. For all 𝑘 ⩾ 0, for all tf ∈ basis(T⩽𝑘 ), weight(tf) ⩽ 𝜆𝑘 .
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Proof. The proof is by induction on 𝑘 and relies on Lemma 3.12. For 𝑘 = 0, T⩽0 = F0 and
transfer flows in basis(F0) only have values 0 and #, so that they have weight 0. Suppose that
the statement is true for 𝑘 , and prove it for 𝑘 + 1. Let tf ∈ basis(T⩽𝑘+1). If tf ∈ T⩽𝑘 then,
because T⩽𝑘 ⊆ T⩽𝑘+1, tf ∈ basis(T⩽𝑘 ) and it suffices to apply the induction hypothesis on tf.
Otherwise, there is tf𝑘 ∈ T⩽𝑘 , 𝑡 ∈ Tmin such that tf ∈ tf𝑘 ⊗ 𝑡. By Lemma 3.9, we may assume
that tf𝑘 ∈ basis(T⩽𝑘 ). By applying the induction hypothesis, we have weight(tf𝑘 ) ⩽ 𝜆𝑘; by
definition of 𝜆, we have weight(𝑡) ⩽ 𝜆. By Lemma 3.12, we obtain that weight(tf) ⩽ 𝜆𝑘 + 𝜆 =

(𝑘 + 1)𝜆, concluding the induction. □

We now conclude the proof of Lemma 3.23. Let 𝑘 ∈ N, and let ®𝑣 ∈ N𝑑
𝜔 be the representing

vector of some ideal of 𝐷𝑘 . First, we argue that ®𝑣(𝑖) ⩽ 𝑁 for 𝑖 ∈ {𝑛2 + 1, 𝑛2 + 2}. Indeed, we
would otherwise have a vector ®𝑢 ⩽× ®𝑣 such that ®𝑢 ∈ 𝑉0, which contradicts the fact that 𝑉0 ⊆ 𝑈𝑘 .
Let 𝑖 ∈ J1, 𝑛2K such that ®𝑣(𝑖) ≠ 𝜔. Let ®𝑢 denote the vector equal to ®𝑣 except that ®𝑢(𝑖) := ®𝑣(𝑖) + 1.
Because ®𝑣 is maximal in 𝐷𝑘 , ↓{®𝑢} ⊈ 𝐷𝑘 . Therefore, there is a vector ®𝑢𝑚 ∈ basis(𝑈𝑘 ) such
that ®𝑢𝑚 ⩽× ®𝑢. We must have ®𝑢𝑚 (𝑖) = ®𝑣(𝑖) + 1 because we would otherwise have ®𝑢𝑚 ⩽× ®𝑣,
which would imply that ®𝑢𝑚 ∈ 𝐷𝑘 and would contradict ®𝑢𝑚 ∈ 𝑈𝑘 . By definition of 𝑈𝑘 , we have
®𝑢𝑚 ∈ 𝑉0 ∪ 𝜒(T⩽𝑘 ); but ®𝑢𝑚 (𝑖) > 0, hence ®𝑢𝑚 ∉ 𝑉0 therefore ®𝑢𝑚 ∈ 𝜒(T⩽𝑘 ). Moreover, because
®𝑢𝑚 ∈ basis(𝑈𝑘 ), by Lemma 3.24, there is tf𝑚 = ( 𝑓𝑚, ℓ, ℓ′) ∈ basis(T⩽𝑘 ) such that ®𝑢𝑚 ∈ 𝜒(tf𝑚).
By Lemma 3.25, we have weight(tf𝑚) ⩽ 𝜆𝑘 so that 𝑓𝑚 (𝑞, 𝑞′) ∈ J0, 𝜆𝑘K ∪ {#} for all 𝑞, 𝑞′. This
proves in particular that ®𝑣(𝑖) ⩽ ®𝑢𝑚 (𝑖) ⩽ 𝜆𝑘 . Overall, we have proved that, for all 𝑖 ∈ J1, 𝑛2K such
that ®𝑣(𝑖) ≠ 𝜔, ®𝑣(𝑖) ⩽ 𝜆𝑘 , and that ®𝑣(𝑛2 + 1) ⩽ 𝑁 and ®𝑣(𝑛2 + 2) ⩽ 𝑁 , so that ∥®𝑣∥ ⩽ max(𝜆𝑘, 𝑁).
This proves that the norm of 𝐷𝑘 is bounded by max(𝑁, 𝜆𝑘) ⩽ (𝑁 + 𝜆) (𝑘 + 1), concluding the
proof of Lemma 3.23.

The last ingredient needed to apply Theorem 1.9 is the 𝜔-monotonicity. While this may
seem like a technical detail (and it is), the proof is actually quite involved. The reason for that
is that our encoding into N𝑑 is quite artificial and makes it tedious to reason about the ideals of
𝐷𝑘 . The proof of the following lemma is therefore fully relegated to Section 3.7.2.

Lemma 3.26. (𝐷𝑘 )𝑘⩽𝐿 is 𝜔-monotone.

3.3.4 The Structural Theorem

We are now ready to conclude the proof of the main result of this chapter:

Theorem 3.19 (Structural Theorem).
Let 𝐿 : (𝑛, 𝑀) ↦→ (𝑀22𝑛2)3𝑛2+2 (log(𝑛2+2)+1) and 𝐵 : (𝑛, 𝑀) ↦→ 𝑀 · 𝐿 (𝑛, 𝑀).
We have T ∗ = T⩽𝐿 (𝑛(C),𝑀 (C)) and, for all tf ∈ basis(T ∗), weight(tf) ⩽ 𝐵(𝑛(C), 𝑀 (C)).
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Proof. Let 𝑛 := 𝑛(C) and 𝑀 := 𝑀 (C). We construct the descending chain (𝐷𝑘 )𝑘⩽𝐿 from
Section 3.3.2. As before, 𝑁 := |L2×2𝑄2 |, 𝑑 := 𝑛2+2, 𝜆 := max𝑡∈Tmin weight(𝑡) and𝐶 := 𝑁+𝜆. We
have𝐶 ⩽ |L|22𝑛2+𝜆 ⩽ ( |L|+𝜆)22𝑛2

⩽ 𝑀22𝑛2 . Thanks to Lemma 3.23, (𝐷𝑘 )𝑘⩽𝐿 is𝐶-controlled.
Thanks to Lemma 3.26, (𝐷𝑘 )𝑘⩽𝐿 is 𝜔-monotone. We apply Theorem 1.9: 𝐿 ⩽ 𝐶3𝑑 (log(𝑑)+1) =

(𝑀22𝑛2)3𝑛2+2 (log(𝑛2+2)+1) = 𝐿 (𝑛, 𝑀). By Lemma 3.22, T ∗ = T⩽𝐿 , thus T ∗ = T⩽𝐿 (𝑛,𝑀) .
Moreover, by Lemma 3.25, for every 𝑘 , for every tf ∈ basis(T⩽𝑘 ), weight(tf) ⩽ 𝜆𝑘 . Applying
this with 𝑘 = 𝐿 (𝑛, 𝑀) gives that, for all tf ∈ basis(T ∗), weight(tf) ⩽ 𝜆𝐿(𝑛, 𝑀) ⩽ 𝐵(𝑛, 𝑀). □

Theorem 3.19 allows us to bound the length of relevant executions of the copycat system:

Corollary 3.27. For all 𝛾1 = ⟨𝜇1, ℓ1⟩, 𝛾2 = ⟨𝜇2, ℓ2⟩ ∈ Γ such that 𝛾1
∗
=⇒ 𝛾2, there is an execution

of C from 𝛾1 to 𝛾2 of length at most 𝐿 (𝑛(C), 𝑀 (C)).

Proof. Because 𝛾1
∗
=⇒ 𝛾2, there is tf ∈ T ∗ such that 𝛾1

tf
=⇒ 𝛾2. By Theorem 3.19, we have

tf ∈ T⩽𝐿 (𝑛(C),𝑀 (C)) , so that we obtain the result by applying Lemma 3.14. □

While the exact bounds provided by Theorem 3.19 are not important to us, their depen-
dency with respect to the two parameters will play a role later. Both 𝐿 (𝑛(C), 𝑀 (C)) and
𝐿 (𝑛(C), 𝑀 (C)) depend doubly-exponential in 𝑛(C), but polynomially in 𝑀 (C). In other words,
the bounds obtained are very large with respect to the number of states |𝑄 |, but reasonable with
respect to all other metrics of the input.

A natural question is whether the bound above can be improved. It is easy to show that
the dependency in the number of states may have to be as large as exponential: for example,
one could encode a binary counter over 𝑛 bits using 2𝑛 states, using control locations of L to
propagate information from bit to bit. We do not present this construction here. In Section 3.5,
we will show an encoding of ASMS into copycat systems, which allows to derive such an
exponential lower bound from the PSPACE-hardness proof in [BMRSS16].

However, no example is known where the bound of Theorem 3.19 has to be as large as doubly-
exponential in the number of states. It constitutes a major open question whether this bound can
be improved to exponential in |𝑄 | or not. As we will see in Section 3.5, this open question is in
fact an abstracted version of a long-standing open problem first stated in [BMRSS16], that was
wrongly claimed to be solved in [BGW22; BGW23].

3.4 Implications for Copycat Systems

The aim of this section is to illustrate the power of the structural theorem (Theorem 3.19)
with a few case studies. Most the results presented in this section consist in generalized versions
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of previously known results; we present them here as a way to highlight how the structural
theorem allows us to easily obtain decidability of many problems on copycat systems.

3.4.1 𝐾-Blind Sets

We start this section by introducing 𝐾-blind sets. A 𝐾-blind set is a set that is sensitive to
the number of processes only up to threshold 𝐾 . This notion shares similarities with the one of
cubes from [BGW22]. As we will see, many natural sets of configurations of copycat systems
can be proved to be 𝐾-blind for some threshold 𝐾 of same order of magnitude as the bounds of
Theorem 3.19. In this subsection, we fix a copycat system C = (𝑄,L,Tmin).

Definition 3.28. Let 𝐾 ∈ N and let 𝑆 ⊆ Γ be a set of configurations. The set 𝑆 is 𝐾-blind when,
for every ⟨𝜇, ℓ⟩ ∈ Γ, for every 𝑞 ∈ 𝑄 such that 𝜇(𝑞) ⩾ 𝐾 , ⟨𝜇, ℓ⟩ ∈ 𝑆 if and only if ⟨𝜇⊕ 𝑞, ℓ⟩ ∈ 𝑆.

Example 3.29. Let 𝑞0 ∈ 𝑄. The set 𝐼 of configurations ⟨𝜇, ℓ⟩ such that 𝜇(𝑞) = 0 for every
𝑞 ≠ 𝑞0 is a 1-blind set. Indeed, it only distinguishes value 0 from values greater than 1. More
generally, any set expressed by conditions related to which states are empty and which are not is
1-blind. This would be the case of the sets of configurations expressed by presence constraints
from Chapter 2, should we extend this notion to copycat systems.

This definition is robust with respect to Boolean combinations:

Fact 3.30. Let𝐾 ∈ N. If 𝑆1 and 𝑆2 are two𝐾-blind sets of configurations, then so are 𝑆1 := Γ\𝑆1,
𝑆1 ∪ 𝑆2 and 𝑆1 ∩ 𝑆2.

From now on, we use notation 𝑆 := Γ \ 𝑆 to write the set complement of 𝑆. As in Chapter 2,
given a configuration 𝛾, we let Post∗(𝛾) := {𝛾′ ∈ Γ | 𝛾 ∗

=⇒ 𝛾′} and Pre∗(𝛾) := {𝛾′ ∈ Γ | 𝛾′ ∗
=⇒

𝛾}. We extend this notion to sets of configurations in a straightforward manner. We now exploit
the structural theorem (Theorem 3.19) to obtain the following result related to 𝐾-blind sets.

Proposition 3.31. Let 𝐾 ∈ N, let 𝑆 ⊆ Γ be a 𝐾-blind set. The sets Post∗(𝑆) and Pre∗(𝑆) are
𝐾′-blind with 𝐾′ := 𝑛(C) max(𝐾, 𝐵(𝑛(C), 𝑀 (C))).

Proof. Let 𝑛 := 𝑛(C), 𝑀 := 𝑀 (C). We prove the result for Post∗(𝑆), the proof for Pre∗(𝑆) is
similar. Let 𝛾 = ⟨𝜇, ℓ⟩ ∈ Γ and 𝑞 ∈ 𝑄 such that 𝜇(𝑞) ⩾ 𝐾′, let 𝛾′ := ⟨𝜇 ⊕ 𝑞, ℓ⟩. We show that
𝛾 ∈ Post∗(𝑆) if and only if 𝛾′ ∈ Post∗(𝑆). The high-level idea is as follows. The easy direction
is to prove that 𝛾 ∈ Post∗(𝑆) implies that 𝛾′ ∈ Post∗(𝑆), because if 𝛾𝑆

∗−→ 𝛾 with 𝛾𝑆 ∈ 𝑆, one
can find 𝑟 such that there are many processes sent from 𝑟 to 𝑞, and simply increase this value by
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one. The opposite direction is a bit more complex, as it requires Theorem 3.19 to argue that a
process can be removed.

First, suppose that 𝛾 = ⟨𝜇, ℓ⟩ ∈ Post∗(𝑆). Let 𝛾𝑆 = ⟨𝜇𝑆, ℓ𝑆⟩, tf ∈ T ∗ such that 𝛾𝑆
tf
=⇒ 𝛾.

Let 𝑔 : 𝑄2 → N# be a witness function that 𝛾𝑆
tf
=⇒ 𝛾. We have

∑
𝑟∈𝑄 𝑔(𝑟, 𝑞) = 𝜇(𝑞) ⩾ 𝐾′. By

the pigeonhole principle, there is 𝑟 ∈ 𝑄 such that 𝑔(𝑟, 𝑞) ⩾ 𝐾 ′

𝑛
⩾ 𝐾 . In particular, we have

𝜇𝑆 (𝑟) ⩾ 𝐾 . Let 𝛾′
𝑆

:= ⟨𝜇𝑆 ⊕ 𝑟, ℓ𝑆⟩. Because 𝑆 is 𝐾-blind, 𝛾′
𝑆
∈ 𝑆; also, 𝛾′

𝑆

tf
=⇒ 𝛾′ = ⟨𝜇 ⊕ 𝑞, ℓ⟩

as it suffices to increase 𝑔(𝑟, 𝑞) by one to obtain a witness function of that. This proves that
𝛾′ ∈ Post∗(𝑆).

Conversely, suppose that 𝛾′ = ⟨𝜇⊕𝑞, ℓ𝑆⟩ ∈ Post∗(𝑆). Let tf ∈ T ∗, 𝛾′
𝑆
∈ 𝑆 such that 𝛾′

𝑆

tf
=⇒ 𝛾′.

Thanks to Fact 3.5, without loss of generality, we may consider that tf = ( 𝑓 , ℓ𝑆, ℓ) ∈ basis(T ∗).
By Theorem 3.19, we have weight(tf) ⩽ 𝐵(𝑛, 𝑀). Let 𝑔 : 𝑄2 → N# be a witness function of
𝛾′
𝑆

tf
=⇒ 𝛾′. By hypothesis, 𝜇(𝑞) ⩾ 𝐾′ + 1, so that

∑
𝑟 𝑔(𝑟, 𝑞) ⩾ 𝐾′ + 1 = 𝑛max(𝐾, 𝐵(𝑛, 𝑀)) + 1.

By the pigeonhole principle, there exists 𝑟 ∈ 𝑄 for which 𝑔(𝑟, 𝑞) ⩾ max(𝐾, 𝐵(𝑛, 𝑀)) + 1. Let
ℎ : 𝑄2 → N# equal to 𝑔 except that ℎ(𝑟, 𝑞) := 𝑔(𝑟, 𝑞) − 1. We have 𝑓 ⩽ 𝑔 so that 𝑓 (𝑞1, 𝑞2) ⩽
ℎ(𝑞1, 𝑞2) for all (𝑞1, 𝑞2) ≠ (𝑟, 𝑞). Also, 𝑔(𝑟, 𝑞) ⩾ 𝐵(𝑛, 𝑀) + 1 so that ℎ(𝑟, 𝑞) ⩾ 𝐵(𝑛, 𝑀)
which proves that 𝑓 (𝑟, 𝑞) ⩽ weight(tf) ⩽ 𝐵(𝑛, 𝑀) ⩽ ℎ(𝑟, 𝑞). Therefore, 𝑓 ⩽ ℎ, so that ℎ is a
witness function that 𝛾𝑆

tf
=⇒ 𝛾 where 𝛾𝑆 = ⟨𝜇𝑆 ⊖ 𝑟, ℓ𝑆⟩. Moreover, 𝜇𝑆 (𝑟) =

∑
𝑞′ 𝑔(𝑟, 𝑞′) > 𝐾

and, because 𝑆 is 𝐾-blind, 𝛾𝑆 ∈ 𝑆. Because 𝛾𝑆
∗
=⇒ 𝛾, 𝛾 ∈ Post∗(𝑆). □

The bound from Proposition 3.31 yields naive decision procedures that consist in a non-
deterministic exploration of the space of configurations of a given, bounded size. For example,
a generalized version of the presence reachability problem from Chapter 2 asks, given two
1-blind sets 𝐼 and 𝐹 (for example described as presence constraints), whether Post∗(𝐼) ∩
𝐹 ≠ ∅. Thanks to Proposition 3.31, we know that Post∗(𝐼) ∩ 𝐹 is a 𝐾-blind set with 𝐾 :=
𝑛(C)𝐵(𝑛(C), 𝑀 (C)). Therefore, to decide emptiness of this set, we can look for a witness
execution whose configurations have size at most 𝐾; by storing configurations in binary and
guessing the execution configuration by configuration, this can be decided in non-deterministic
space exponential in |𝑄 | and polynomial in the rest of the input.

This can be extended to expressions obtained by using 𝐾-blind sets as basic blocks and
applying Boolean operations and Post∗ and Pre∗ operators. This leads us to define generalized
reachability expressions [Wei23] as the expressions produced by the grammar:

𝐸 ::= 𝜙 | 𝐸 ∪ 𝐸 | 𝐸 ∩ 𝐸 | 𝐸 | Post∗(𝐸) | Pre∗(𝐸)
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where 𝐸 denotes the set complement of 𝐸 and 𝜙 denotes basic predicates. These basic predicates
range over a family of constraints; a basic predicate defines a set of configuration. To define
generalized reachability expressions, one must choose what family of basic predicates is allowed.
Possible such families could be, e.g., presence constraints from Chapter 2 or so-called cubes
from [BGW22]. For us, the exact choice of the family of basic predicates is not really important,
as long as they define, in an effective way, 𝐾-blind sets for a reasonable 𝐾 .

In order to illustrate some techniques related to generalized reachability expressions, we
make an arbitrary choice on the family of basic predicates allowed. To save us some definitions,
we choose a very simple family: we consider that 𝜙 is allowed to take the form of a pair (𝑆, ℓ)
with 𝑆 ⊆ 𝑄, and that the set described is {⟨𝜇, ℓ⟩ | ∀𝑞 ∉ 𝑆, 𝜇(𝑞) = 0}. Given a GRE 𝐸 , we
denote by J𝐸K ⊆ Γ the set of configurations that it defines.

Example 3.32. Consider again the copycat system C = ({𝑞1, 𝑞2}, {ℓ𝑎, ℓ𝑏}, {𝑡𝑎𝑏, 𝑡𝑏𝑎}) from Ex-
ample 3.17. Let 𝜙𝑎 be the predicate that describes the set Γ×{ℓ𝑎}; let 𝐸 := Post∗(𝜙𝑎) \Pre∗(𝜙𝑎).
We have that J𝐸K = ∅. In words, for every 𝛾 with control location ℓ𝑎, for every 𝛾′ reachable
from 𝛾, there is an execution from 𝛾′ to a configuration in J𝜙𝑎K, i.e., a configuration with control
location ℓ𝑎. Indeed, if 𝛾′ = ⟨𝜇′, ℓ𝑎⟩ then it is trivially in J𝜙𝑎K; if 𝛾′ = ⟨𝜇′, ℓ𝑏⟩ then the execution
from 𝛾 to 𝛾′ ends with 𝑡𝑎𝑏, so that 𝜇′(𝑞2) ⩾ 2 and one may apply 𝑡𝑏𝑎 from 𝛾′, proving that
𝛾′ ∈ Pre∗(J𝜙𝑎K).

We can now define the GRE emptiness problem:
GRE emptiness problem for copycat systems
Input: A copycat system C, a GRE 𝐸
Question: Is J𝐸K empty?

The size of an instance (C, 𝐸) is defined by 𝑛(C) + 𝑀 (C) + |𝐸 | where |𝐸 | is the number of
operators of 𝐸 .

Lemma 3.33. The following problem is in PSPACE: given a copycat system C, a GRE 𝐸 over
P and a configuration 𝛾 encoded in binary, is 𝛾 in J𝐸K?

Proof. This proof follows the same procedure used to check GRE membership in [Wei23] and
[BGKMWW24]. Let 𝑛 := 𝑛(C), 𝑀 := 𝑀 (C) and 𝑁 := |𝛾 |. Observe that a configuration
of size 𝑁 can be stored in space polynomial in 𝑀 and 𝑛 and logarithmic in 𝑁 using binary
encoding. Thanks to Savitch’s theorem, we may allow for non-deterministic choices. Using a
non-deterministic exploration of the configuration space, we can decide, given 𝛾1 and 𝛾2 of size
𝑁 , whether 𝛾1

∗
=⇒ 𝛾2 in space polynomial in 𝑀 (C) and 𝑛(C) and logarithmic in 𝑁 .
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We prove Lemma 3.33 by structural induction on 𝐸 . Suppose that, for every 𝐸′ appearing
in 𝐸 , we have a polynomial-space procedure to decide membership of configurations of size 𝑁 .
To check that 𝛾 ∈ J𝐸K, we operate a case disjunction on 𝐸 :

— if 𝐸 = 𝜙 then it is easy to check whether 𝛾 ∈ J𝜙K;

— if 𝐸 = Post∗(𝐸′) then we guess 𝛾′ ∈ 𝐸′ of same size as 𝛾, and we check that 𝛾
∗
=⇒ 𝛾′ and

that 𝛾′ ∈ J𝐸′K;

— if 𝐸 = Pre∗(𝐸′) then we guess 𝛾′ ∈ 𝐸′ of same size as 𝛾, and we check that 𝛾′
∗
=⇒ 𝛾 and

that 𝛾′ ∈ J𝐸′K;

— if 𝐸 = 𝐸1 ∪ 𝐸2 then we check whether 𝛾 ∈ J𝐸1K and whether 𝛾 ∈ J𝐸2K, and accept if one
of these holds;

— if 𝐸 = 𝐸1 ∩ 𝐸2 then we check whether 𝛾 ∈ J𝐸1K and whether 𝛾 ∈ J𝐸2K, and accept if both
hold;

— if 𝐸 = 𝐸′ then we check whether 𝛾 ∈ J𝐸′K and negate the answer.

This concludes the proof. □

We now give decidability and a complexity upper bound for GRE emptiness:

Proposition 3.34. The GRE emptiness problem is in EXPSPACE.

Proof. We want to apply Lemma 3.33; to do that, we need a doubly-exponential bound in the
configuration 𝛾 to consider. Let (C, 𝐸) be an instance of GRE emptiness, let 𝑛 := 𝑛(C) and
𝑀 := 𝑀 (C). Let 𝑘 denote the highest number of nested Post∗ and Pre∗ operators in 𝐸 . By
iterative applications of Proposition 3.31, the set J𝐸K is 𝐾-blind for 𝐾 := 𝑛𝑘𝐵(𝑛, 𝑀). Therefore,
J𝐸K ≠ ∅ if and only if it contains some configuration 𝛾 of size at most 𝐾 . It therefore suffices
to guess 𝛾 of size at most 𝐾 and to apply the membership procedure from Lemma 3.33. This
procedure works in space polynomial in log(𝐾) because of binary encoding. Because 𝐾 is
doubly-exponential in the size of the input, this procedure uses exponential space. □

We will now provide another case study to illustrate the power of the structural theorem:
verification of linear-time properties in copycat systems.

3.4.2 LTL for Copycat Systems

We start by defining linear-time logic, or LTL for short [Pnu77]. An LTL formula expresses
properties over infinite words, i.e., words in Σ𝜔.
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Definition 3.35. LTL formulas are defined by the following grammar:

𝜓 ::= 𝑥 | 𝜓 ∨ 𝜓 | 𝜓 ∧ 𝜓 | ¬𝜓 | X𝜓 | G𝜓 | F𝜓 | 𝜓 U 𝜓

where 𝑥 ∈ Σ is a symbol. LTL formula are interpreted over Σ𝜔 × N as follows:

(𝑤, 𝑖) |= 𝑥 iff 𝑤(𝑖) = 𝑥
(𝑤, 𝑖) |= 𝜓1 ∨ 𝜓2 iff (𝑤, 𝑖) |= 𝜓1 or (𝑤, 𝑖) |= 𝜓2

(𝑤, 𝑖) |= 𝜓1 ∧ 𝜓2 iff (𝑤, 𝑖) |= 𝜓1 and (𝑤, 𝑖) |= 𝜓2

(𝑤, 𝑖) |= ¬𝜓 iff (𝑤, 𝑖) ̸|= 𝜓
(𝑤, 𝑖) |= X𝜓 iff (𝑤, 𝑖 + 1) |= 𝜓
(𝑤, 𝑖) |= G𝜓 iff for all 𝑗 ⩾ 0 (𝑤, 𝑖 + 𝑗) |= 𝜓
(𝑤, 𝑖) |= F𝜓 iff for some 𝑗 ⩾ 0 (𝑤, 𝑖 + 𝑗) |= 𝜓
(𝑤, 𝑖) |= 𝜓1 U 𝜓2 iff for some 𝑗 ⩾ 0 (𝑤, 𝑖+ 𝑗) |= 𝜓2 and for all 𝑘 < 𝑗, (𝑤, 𝑖+𝑘) |= 𝜓1.

The language L(𝜓) of an LTL formula 𝜓 is defined as the set of words 𝑤 ∈ 𝜓𝜔 such that
(𝑤, 0) |= 𝜓.

In this thesis, we will not work directly with LTL formula, but rather with automata. Given
a finite set Σ, a deterministic Rabin automaton over Σ is a tuple A = (R,Δ, 𝑟0,Ω), where R
is the finite set of states, 𝑟0 is the initial state, Δ : R × Σ → R is the transition function and
Ω ⊆ 2R × 2R is a finite set of Rabin pairs of the form (𝐹, 𝐺) with 𝐹, 𝐺 ⊆ R. Given an infinite
word 𝑤 ∈ Σ𝜔, the run of A reading 𝑤 is the sequence of states 𝑟0, 𝑟1, 𝑟2, . . . such that, for all
𝑖 ∈ N, Δ(𝑟𝑖, 𝑤(𝑖)) = 𝑟𝑖+1. A word 𝑤 ∈ Σ𝜔 is accepted by A if there exists a pair (𝐹, 𝐺) ∈ Ω

such that the run of A reading 𝑤 visits 𝐹 finitely often and 𝐺 infinitely often. The language
L(A) accepted by A is the set of all words accepted by A. The size of A is |A| := |R |.

Theorem 3.36 (see, e.g., [EKS18]). Given a finite set Σ and an LTL formula 𝜓 over Σ, there
is a deterministic Rabin automaton A𝜓 over Σ that accepts the same language as 𝜓. Moreover
A𝜓 has number of states at most doubly-exponential in |𝜓 |, and can be computed in space
doubly-exponential in |𝜓 |.

Let C = (𝑄,L,Tmin) be a copycat system. Our aim is to define LTL formulas over executions
of C. For this purpose, we consider infinite executions; an infinite execution is a sequence

𝛾0, 𝑡1, 𝛾1, . . . such that, for all 𝑖 ∈ N, 𝛾𝑖
𝑡𝑖+1
===⇒ 𝛾𝑖+1 and 𝑡𝑖+1 ∈ T . We also need a notion of initial

configuration of a copycat system. To do that, we define a notion of initial copycat system. An
initial copycat system is a tuple C = (𝑄,L,Tmin, 𝑞0, ℓ0) where (𝑄,L,Tmin) is a copycat system,

100



3.4. Implications for Copycat Systems

𝑞0 ∈ 𝑄 and ℓ0 ∈ L. The set of initial configurations of an initial copycat system is defined by

I(C) := {⟨𝜇0, ℓ0⟩ | ∀𝑞 ≠ 𝑞0, 𝜇0(𝑞) = 0}.

An infinite execution of C is called initial when its first configuration is in I(C). We assume

that there is no deadlock, i.e., that from every 𝛾, there is 𝑡 ∈ Tmin and 𝛾′ such that 𝛾
𝑡
=⇒ 𝛾′; this

can be enforced by adding to Tmin transfer flows of basis(F0), so that there is always 𝑡 ∈ Tmin

such that 𝛾
𝑡
=⇒ 𝛾.

We interpret LTL formulas over infinite executions as follows. Let 𝜓 be an LTL formula
over Tmin and 𝜌 = 𝛾0, 𝑡1, . . . be an infinite execution. Let 𝑤 ∈ T𝜔

min such that 𝑤(𝑖) := 𝑡𝑖 for all
𝑖 ∈ N; 𝜓 accepts 𝜌 when (𝑤, 0) |= 𝜓. We abuse notation and denote this by 𝜌 |= 𝜓.

When considering infinite executions, it is common to enforce an additional constraint to
ensure that the execution is reasonable. This takes the form of a fairness condition. A typical
fairness condition, called here weak fairness, is that any step available infinitely often appears
infinitely often. Formally, an infinite execution 𝛾0, 𝑡1, 𝛾1, . . . is weakly fair when it is initial and
when, for every 𝛾 ∈ Γ, for every 𝛾′ ∈ Post∗(𝛾), if 𝛾 = 𝛾𝑖 for infinitely many 𝑖 ∈ N, for every
𝑡 ∈ Tmin then for every 𝛾′ ∈ Γ such that 𝛾

𝑡
=⇒ 𝛾′, there are infinitely many 𝑖 such that 𝛾𝑖 = 𝛾,

𝑡𝑖+1 = 𝑡 and 𝛾𝑖+1 = 𝛾′. This notion of fairness is however too weak for fairness verification, as
argued in Section 3.4.3.

For this reason, we define a more restrictive notion of fairness, called strong fairness. Given
an infinite execution 𝜌 = 𝛾0, 𝑡1, 𝛾1, . . . and a finite execution 𝜌′ = 𝛾′0, 𝑡

′
1, . . . , 𝑡

′
𝑘
, 𝛾′

𝑘
, we say that

𝜌′ appears infinitely often in 𝜌 when there are infinitely many indices 𝑖 such that 𝛾𝑖+ 𝑗 = 𝛾′𝑗 for
all 𝑗 ∈ J0, 𝑘K and 𝑡𝑖+ 𝑗 = 𝑡′𝑗 for all 𝑗 ∈ J1, 𝑘K. An infinite execution is strongly fair when it is
initial and, for every finite execution 𝜌′ = 𝛾′0, 𝛿1, . . . , 𝛾

′
𝑘
, if 𝛾0 is visited infinitely often in 𝜌 then

𝜌′ appears infinitely often in 𝜌. This definition is harder to grasp, because it involves a universal
quantification over an infinite (but countable) set, namely the set of finite executions. An
argument to justify that this definition is sound is that, under a reasonable stochastic scheduler,
the execution selected will be strongly fair with probability 1. By reasonable, we mean that the
stochastic scheduler is memoryless (the choice only depends on the current configuration) and
gives non-zero probability to all possible candidates for the next step.Under such a scheduler,
given a finite execution 𝜌′ = 𝛾′0, 𝛿1, . . . , 𝛾

′
𝑘
, whenever 𝛾′0 is the current configuration, there is a

fixed non-zero probability that the next 𝑘 steps correspond to 𝜌′, regardless of the past. If 𝛾′0 is
visited infinitely often, we have infinitely many independent repetitions of this experiment and
𝜌′ appears infinitely often. Because the set of finite executions is countable, by summing over
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this set, the probability of existence of a finite execution disproving strong fairness is equal to 0,
so that the drawn execution is strongly fair with probability 1.

This allows us to define the LTL verification problem for copycat systems. There are two
versions of this problem, depending on whether (strong) fairness is enforced or not.
LTL verification without Fairness
Input: An initial copycat system C = (𝑄,L,Tmin, 𝑞0, ℓ0), an LTL formula 𝜓 over Tmin

Question: Does there exist an initial execution 𝜌 of C such that 𝜌 |= 𝜓?

LTL verification with (strong) Fairness
Input: An initial copycat system C = (𝑄,L,Tmin, 𝑞0, ℓ0), an LTL formula 𝜓 over Tmin

Question: Does there exist a strongly fair execution 𝜌 of C such that 𝜌 |= 𝜓?

3.4.3 Strong Fairness and Stochastic Schedulers

Our decision to rely on strong fairness instead of on the traditional, weak fairness may seem
surprising. It is even more so given that a prior work on LTL verification for population protocols
(a parameterized model) [EGLM16] considers weak fairness for LTL verification. To do so, the
authors relate weak fairness to stochastic schedulers. More precisely, they claim that there is
a weakly fair execution satisfying an LTL formula if and only if, under a reasonable stochastic
scheduler, there is a non-zero probability that the LTL formula is satisfied. However, this claim
is incorrect, both for population protocols and in our model.

The high-level intuition is that weak fairness allows for regular patters, whereas a stochastic
scheduler does not. We highlight this on an example 2. Suppose that Tmin = {𝑡1, 𝑡2, 𝑡3, 𝑡4}
and that we have three distinct configurations 𝛾1, 𝛾2, 𝛾3 (with 𝛾1 initial) such that 𝛾1

𝑡1
=⇒ 𝛾2,

𝛾2
𝑡2
=⇒ 𝛾1, 𝛾1

𝑡3
=⇒ 𝛾3 and 𝛾3

𝑡4
=⇒ 𝛾1. Also, suppose that these are the only possible steps from each

of these configurations. Consider 𝜓 := ¬F (𝑡1 ∧ (X 𝑡2) ∧ (X 2𝑡1) ∧ (X 3𝑡2)), which expresses that
sequence of transitions 𝑡1 𝑡2 𝑡1 𝑡2 does not appear in the execution. Under a reasonable stochastic
scheduler, from 𝛾1, 𝜓 is satisfied with probability 0. However, there is a weakly fair execution
satisfying 𝜓: it suffices to repeat infinitely 𝛾1

𝑡1
=⇒ 𝛾2

𝑡2
=⇒ 𝛾1

𝑡3
=⇒ 𝛾3

𝑡4
=⇒ 𝛾1.

Let C = (𝑄,L,Tmin, 𝑞0, ℓ0) be an initial copycat system and let 𝜓 be an LTL formula over
Tmin. Thanks to Theorem 3.36, we build a Rabin automaton A = (R,Δ, 𝑟0,Ω) over Tmin that ac-
ceptsL(𝜓). Given 𝑡 = ( 𝑓 , ℓ1, ℓ2) ∈ Tmin and 𝑟 ∈ R, we define tr(𝑡, 𝑟) := ( 𝑓 , (ℓ1, 𝑟), (ℓ2,Δ(𝑟, 𝑡))).

2. For simplicity, we keep this example abstract. It is not hard to build an actual copycat system or population
protocol that implements this example.
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We build a new initial copycat system

C𝜓 := (𝑄,L × R,Tmin,𝜓 , 𝑞0, (ℓ0, 𝑟0)) with Tmin,𝜓 := {tr(𝑡, 𝑟) | 𝑡 ∈ Tmin, 𝑟 ∈ R}.

Intuitively, C𝜓 consists in C where the Rabin automaton A has been implemented using
control locations in L; this Rabin automaton takes as input the transitions applied in C. We
denote by Γ𝜓 := M(𝑄) × (L × R) the set of configurations of C𝜓 . For simplicity, we denote
by (𝛾, 𝑟) the configuration ⟨𝜇, (ℓ, 𝑟)⟩ ∈ Γ𝜓 where 𝛾 = ⟨𝜇, ℓ⟩ ∈ Γ. In order to distinguish
configurations of C𝜓 and of C, we use symbol 𝑐 for configurations of C𝜓 . Also, we abuse

notations and write (𝛾, 𝑟) 𝑡
=⇒ (𝛾′, 𝑟′) instead of (𝛾, 𝑟)

tr(𝑡,𝑟)
=====⇒ (𝛾′, 𝑟′). For every 𝑅 ⊆ R, we write

Γ𝜓 (𝑅) := {(𝛾, 𝑟) ∈ Γ𝜓 | 𝛾 ∈ Γ, 𝑟 ∈ 𝑅} for the set of configurations of C𝜓 whose Rabin state is
in 𝑅. Also, we let G(C𝜓) denote the graph whose vertices are configurations of C𝜓 and whose
edges correspond to reachability in one step in C𝜓 , i.e., given 𝑐, 𝑐′ ∈ C𝜓 , there is an edge from
𝑐 to 𝑐′ whenever there is 𝑡 ∈ Tmin such that 𝑐

𝑡
=⇒ 𝑐′. A set of vertices 𝑆 of G(C𝜓) is called

reachable from 𝑐 when there is a path from 𝑐 to some vertex in 𝑆. Also, 𝑆 is called winning
when there is (𝐹, 𝐺) ∈ Ω such that 𝑆 ∩ Γ𝐹 = ∅ but 𝑆 ∩ Γ𝐺 ≠ ∅. For every (finite or infinite)
execution 𝜌C = 𝛾0, 𝑡1, 𝛾1, . . . of C and every 𝑟 ∈ R, we let Ex𝑟 (𝜌C) := (𝛾0, 𝑟), 𝑡1, (𝛾1, 𝑟1), . . .
be the (finite or infinite) execution of C𝜓 where 𝑟1 = Δ(𝑟, 𝑡1) and 𝑟𝑖+1 = Δ(𝑟𝑖, 𝑡𝑖+1) for all 𝑖. In
words, Ex𝑟 (𝜌C) is the execution of C𝜓 corresponding to performing 𝜌 starting with Rabin state
𝑟. From an execution 𝜌 of C𝜓 starting from (𝛾0, 𝑟), we let Ex−1(𝜌) be the unique execution 𝜌C
of C such that 𝜌 = Ex𝑟 (𝜌C).

We call an execution 𝜌 of C𝜓 system-fair when the corresponding execution Ex−1(𝜌) of C
is strongly fair. Note that the system-fairness condition is only related to the first component of
configurations of C𝜓 . For example, if a system-fair execution 𝜌 of C𝜓 visits infinitely many times
some configuration (𝛾, 𝑟1) from which there exists a step (𝛾, 𝑟1)

𝑡
=⇒ (𝛾′, 𝑟2), fairness guarantees

the existence of 𝑟3, 𝑟4 such that (𝛾, 𝑟3)
𝑡
=⇒ (𝛾′, 𝑟4) appears infinitely often in 𝜌, but a priori does

not guarantee that the step (𝛾, 𝑟1)
𝑡
=⇒ (𝛾′, 𝑟2) ever appears. This is in fact the mistake made in

[EGLM16, Proposition 7]. However, because we rely on strong fairness, system-fair executions
satisfy a property that is sufficient for our needs.

Lemma 3.37. Any system-fair execution of C𝜓 ends in a bottom SCC 𝑆 of G(C𝜓) and visits
infinitely many times every configuration in 𝑆.

Proof. Note that, because steps in C𝜓 may only connect configurations of same size (i.e., same
number of processes), all SCC of G(C𝜓) are finite. Let 𝜌 be a system-fair execution of C𝜓 ,
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there is a unique SCC 𝑆 visited infinitely many times by 𝜌. Let 𝜌C := Ex−1(𝜌) denote the
corresponding execution of C; 𝜌C is strongly fair. We first prove that 𝑆 is bottom.

By contradiction, suppose that 𝑆 is not bottom. There is 𝑡 ∈ Tmin, (𝛾𝑎, 𝑟𝑎) ∈ 𝑆, (𝛾𝑏, 𝑟𝑏) ∉ 𝑆
such that (𝛾𝑎, 𝑟𝑎)

𝑡
=⇒ (𝛾𝑏, 𝑟𝑏). Let 𝐶𝑎 := 𝑆 ∩ ({𝛾𝑎} × R). Trivially, 𝜌 is infinite hence visits

infinitely often some configuration (𝛾, 𝑟) ∈ 𝑆. There is a finite execution of C from 𝛾 to 𝛾𝑎
hence, by strong fairness of 𝜌C , 𝛾𝑎 is visited infinitely often in 𝜌C , so that 𝐶𝑎 is visited infinitely
often in 𝜌.

Let 𝐶′
𝑎 := {(𝛾𝑎, 𝑟) ∈ 𝐶𝑎 | (𝛾𝑏,Δ(𝑟, 𝑡)) ∈ 𝑆}; 𝐶′

𝑎 contains configurations (𝛾𝑎, 𝑟) ∈ 𝐶𝑎 from
which the step (𝛾𝑎, 𝑟)

𝑡
=⇒ (𝛾𝑏, 𝑟′) makes us stay in 𝑆. Let 𝐶′

𝑎 =: {(𝛾𝑎, 𝑟1), . . . , (𝛾𝑎, 𝑟𝑚)} with
𝑚 = |𝐶′

𝑎 |. Our aim is to build a finite execution 𝜎 of C from 𝛾𝑎 such that, for all 𝑖 ∈ J1, 𝑚K,
the execution Ex𝑟𝑖 (𝜎) leaves 𝑆; said otherwise, performing 𝜎 from any configuration in 𝐶′

𝑎

takes us out of 𝑆. For all 𝑖 ∈ J1, 𝑚K, we build a finite execution 𝜎𝑖 of C from 𝛾𝑎 to 𝛾𝑎 as
follows. First, we let 𝜎0 be the execution from 𝛾𝑎 of length 0. Let 𝑖 < 𝑚 and suppose that
𝜎𝑖 is constructed; let (𝛾𝑎, 𝑠𝑖+1) be the last configuration of Ex𝑟𝑖+1 (𝜎𝑖), i.e., the configuration
obtained when translating 𝜎𝑖 to an execution of C𝜓 from (𝛾𝑎, 𝑟𝑖+1). If (𝛾𝑎, 𝑠𝑖+1) ∉ 𝐶′

𝑎 then we
let 𝜎𝑖+1 = 𝜎𝑖. If (𝛾𝑎, 𝑠𝑖+1) ∈ 𝐶′

𝑎, by letting 𝑠′
𝑖+1 := Δ(𝑠𝑖+1, 𝑡), we have (𝛾𝑎, 𝑠𝑖+1)

𝑡
=⇒ (𝛾𝑏, 𝑠′𝑖+1) and

(𝛾𝑏, 𝑠′𝑖+1) ∈ 𝑆. Because 𝑆 is strongly connected, there is an execution 𝜋𝑖+1 of C𝜓 from (𝛾𝑏, 𝑠′𝑖+1)
to (𝛾𝑎, 𝑟𝑎). Let 𝜏𝑖+1 := Ex−1(𝜋𝑖+1) be the corresponding execution of C from 𝛾𝑏 to 𝛾𝑎. We let
𝜎𝑖+1 denote the finite execution of C from 𝛾𝑎 to 𝛾𝑎 that consists in following 𝜎𝑖, then the step
𝛾𝑎

𝑡
=⇒ 𝛾𝑏 and finally 𝜏𝑖+1. This concludes the induction step. Finally, we let 𝜎 be the finite

execution of C obtained by following 𝜎𝑚 then the step 𝛾𝑎
𝑡
=⇒ 𝛾𝑏.

For all 𝑗 ∈ J1, 𝑚K, let 𝜌 𝑗 := Ex𝑟 𝑗 (𝜎); 𝜌 𝑗 corresponds to performing 𝜎 from (𝛾𝑎, 𝑟 𝑗 ). By
strong fairness of 𝜌C , 𝜎 appears infinitely often in 𝜌C . Because 𝜎 starts with step 𝛾𝑎

𝑡
=⇒ 𝛾𝑏,

the corresponding steps in 𝜌 must be from 𝐶′
𝑎 as 𝜌 would otherwise leave 𝑆. Therefore, there

is 𝑗 ∈ J1, 𝑚K such that 𝜌 𝑗 appears infinitely often in 𝜌. Because 𝜌 does not leave 𝑆, it must be
that 𝜌 𝑗 remains in 𝑆. Consider step 𝑗 of the construction above. First, 𝜌 𝑗 follows Ex𝑟 𝑗 (𝜎𝑗−1)
and gets to (𝛾𝑎, 𝑠 𝑗 ). If (𝛾𝑎, 𝑠 𝑗 ) ∉ 𝐶′

𝑎 then 𝑗 > 0 and we have set 𝜎𝑗 = 𝜎𝑗−1; the next step in
𝜌 𝑗 is then (𝛾𝑎, 𝑠 𝑗 )

𝑡
=⇒ (𝛾𝑏, 𝑟) where 𝑟 is such that (𝛾𝑏, 𝑟) ∉ 𝑆 since (𝛾𝑎, 𝑠 𝑗 ) ∉ 𝐶′

𝑎: 𝜌 𝑗 leaves
𝑆, a contradiction. Suppose now that (𝛾𝑎, 𝑠 𝑗 ) ∈ 𝐶′

𝑎. In this case, by construction of 𝜎, 𝜌 𝑗
follows Ex𝑟 𝑗 (𝜎𝑗−1) to (𝛾𝑎, 𝑠 𝑗 ), performs step (𝛾𝑎, 𝑠𝑖+1)

𝑡
=⇒ (𝛾𝑏, 𝑠′𝑖+1), follows 𝜋 𝑗+1 while leads

to (𝛾𝑎, 𝑟𝑎) from where 𝜌 𝑗 performs step (𝛾𝑎, 𝑟𝑎)
𝑡
=⇒ (𝛾𝑏, 𝑟𝑏). This last step makes 𝜌 𝑗 leave 𝑆, a

contradiction.

We have proven that 𝜌 eventually leaves any non-bottom SCC, so that the SCC 𝑆 visited
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infinitely often in 𝜌 is bottom. We now must prove that 𝜌 visits all configurations in 𝑆 infinitely
often. Suppose by contradiction that there are (𝛾𝑎, 𝑟𝑎), (𝛾𝑏, 𝑟𝑏) ∈ 𝑆 and 𝑡 ∈ Tmin such that
(𝛾𝑎, 𝑟𝑎)

𝑡
=⇒ (𝛾𝑏, 𝑟𝑏) and such that 𝜌 visits (𝛾𝑎, 𝑟𝑎) infinitely often but (𝛾𝑏, 𝑟𝑏) finitely often.

We proceed similarly to above, except that now 𝐶′
𝑎 = 𝐶𝑎, which makes this case easier. Let

𝐶𝑎 = 𝑆 ∩ ({𝛾𝑎} × R) = {(𝛾𝑎, 𝑟1), . . . , (𝛾𝑎, 𝑟𝑚)} with 𝑚 = |𝐶𝑎 | > 0. We construct 𝜎 as
above, except that the case (𝛾𝑎, 𝑠 𝑗 ) ∉ 𝐶′

𝑎 may no longer happen since 𝐶′
𝑎 = 𝐶𝑎. Again, for

all 𝑗 ∈ J1, 𝑚K, we let 𝜌 𝑗 be the finite execution of C𝜓 that corresponds to performing 𝜎 from
(𝛾𝑎, 𝑟 𝑗 ). By strong fairness of 𝜌C , there is 𝑗 such that 𝜌 𝑗 appears infinitely often in 𝜌. We then
argue that 𝜌 𝑗 visits (𝛾𝑏, 𝑟𝑏). Again, the reasoning is the same as above: once at (𝛾𝑎, 𝑠 𝑗 ), by
construction, we visit (𝛾𝑎, 𝑟𝑎) from where the next step makes 𝜌 𝑗 visit (𝛾𝑏, 𝑟𝑏). We have proven
that, if (𝛾𝑎, 𝑟𝑎)

𝑡
=⇒ (𝛾𝑏, 𝑟𝑏) and (𝛾𝑎, 𝑟𝑎) is visited infinitely many times in 𝜌 then the same is true

for (𝛾𝑏, 𝑟𝑏). By direct induction, 𝜌 visits infinitely often each configuration in 𝑆. □

We argue that strong fairness, unlike weak fairness, is equivalent to stochastic schedulers
for LTL verification. This justifies our choice to consider strong fairness. We fix a reasonable
stochastic scheduler for C. Given a configuration 𝛾, we denote by P𝛾 (𝜌 |= 𝜓) the probability
that an execution from 𝛾 satisfies 𝜓. We may now express that strong fairness is equivalent for
LTL to a stochastic scheduler:

Proposition 3.38. Let 𝛾𝑠 ∈ Γ. The following are equivalent:

(i) there is a strongly fair execution 𝜌 from 𝛾𝑠 such that 𝜌 |= 𝜓;

(ii) P𝛾𝑠 (𝜌 |= 𝜓) > 0;

(iii) there is a winning bottom SCC 𝑆 of G(C𝜓) that is reachable from (𝛾𝑠, 𝑟0).

Proof. We follow the same proof scheme as in [EGLM16, Proposition 7]. The equivalence
between (ii) and (iii) is fairly easy to prove using the same proof as [EGLM16, Proposition
6]. It is a direct consequence of the fact that, under a reasonable stochastic scheduler, there
is probability one that the execution of C𝜓 ends in a bottom SCC of G(C𝜓) and visits all
configurations in this bottom SCC infinitely many times.

We now prove the equivalence between (i) and (iii). We first prove that (iii) implies (i).
Suppose that there is such an SCC 𝑆. Under a reasonable stochastic scheduler, there is probability
one that the obtained execution of C𝜓 from (𝛾𝑠, 𝑟0) is system-fair, ends in a bottom SCC of G(C𝜓)
and visits all configurations in the SCC infinitely often; there is a non-zero probability that this
SCC is 𝑆 (because 𝑆 is reachable from (𝛾𝑠, 𝑟0)) hence that the corresponding execution of C
satisfies 𝜓. The fact that the stochastic scheduler, with non-zero probability, selects a strongly
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fair execution from 𝛾 satisfying 𝜓 implies the existence of such an execution, which proves (i).
For the converse implication, suppose that there is a strongly fair execution 𝜌 of C such that
𝜌 |= 𝜓. Let 𝜌′ := Ex𝑟0 (𝜌) denote the corresponding execution of C𝜓; trivially, 𝜌 |= 𝜓 implies
the existence of (𝐹, 𝐺) ∈ Ω such that 𝜌′ visits Γ𝜓 (𝐹) finitely often and Γ𝜓 (𝐺) infinitely often.
By Lemma 3.37, we have that the SCC 𝑆 visited infinitely often in 𝜌′ is bottom and that 𝜌′ visits
infinitely often each configuration in 𝑆; this implies that 𝑆∩ Γ𝜓 (𝐹) = ∅ and that 𝑆∩ Γ𝜓 (𝐺) ≠ ∅,
which concludes the proof. □

Note that the proof above does not use many features copycat system, and in particular does
not use the copycat property. Therefore, it could easily apply to other parameterized models
where processes are finite-state and their number is preserved in an execution, by considering
the larger system obtained by putting side by side the original system and the Rabin automaton.
In particular, it applies to population protocols, so that strong fairness fixes the mistake from
[EGLM16].

3.4.4 Verification of LTL for Copycat Systems

This subsection is devoted to proving the following theorem:

Theorem 3.39. The LTL verification problems without fairness and with fairness are in 2-
EXPSPACE.

We start by considering the problem without fairness, which is equivalent to asking for
the existence of an initial execution 𝜌 of C𝜓 such that, for some (𝐹, 𝐺) ∈ Ω, 𝜌 visits Γ𝜓 (𝐹)
finitely often but Γ𝜓 (𝐺) infinitely often. Our aim is to prove that, when looking for such an
execution, one may consider configurations of bounded size. Let C′

𝜓
= (𝑄,L′,T ′

min,𝜓) be the
copycat system obtained from C𝜓 by removing all elements of L and Tmin,𝜓 involving states in
𝐹. Formally, L′ := L × (R \ 𝐹) and T ′

min,𝜓 := Tmin,𝜓 \ {( 𝑓 , (ℓ, 𝑟), (ℓ′, 𝑟′)) | 𝑟 ∈ 𝐹 ∨ 𝑟′ ∈ 𝐹}.
The upward-closure of T ′

min,𝜓 is denoted T ′
𝜓

. Observe that the set of configurations of C′
𝜓

is
Γ′
𝜓
= Γ𝜓 \ Γ𝜓 (𝐹).

Lemma 3.40. Let 𝑛 := 𝑛(C𝜓), 𝑀 := 𝑀 (C𝜓) and 𝜆 := max𝑡∈Tmin,𝜓 weight(𝑡). Let 𝑁 := 𝜆 +
𝑛𝑛𝐵(𝑛, 𝑀). The instance (C, 𝜓) of LTL verification without fairness is positive if and only if
there is 𝑐 ∈ Post∗(I(C𝜓)) ∩ (Γ𝜓 (𝐺) \ Γ𝜓 (𝐹)) of size at most 𝑁 and tf ∈ T ′

min,𝜓 ⊗ (T ′
𝜓
)∗ such

that 𝑐
tf
=⇒ 𝑐.
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Proof. We know that (C, 𝜓) is positive if and only if there exist (𝐹, 𝐺) ∈ Ω and 𝜌 =

𝑐0, 𝑡1, 𝑐1, 𝑡2 . . . an initial execution of C𝜓 that visits Γ𝜓 (𝐹) finitely often but Γ𝜓 (𝐺) infinitely
often. If suffices to prove that the existence of 𝜌 above is equivalent to the existence of 𝑐
that satisfies the conditions of the lemma. We start by omitting the condition on the size of
𝑐, which we will treat afterwards. First, assume that we have such a configuration 𝑐, and let
𝑡1, . . . , 𝑡𝑘 ∈ T ′

min,𝜓 , 𝑘 > 0, such that there is an execution 𝜌 𝑓 from 𝑐 to 𝑐 whose sequence of
transitions is 𝑡1, . . . , 𝑡𝑘 . We build an initial execution 𝜌 that starts with a prefix execution from
𝑐0 ∈ I(C𝜓) to 𝑐 then repeats infinitely many times the finite execution 𝜌 𝑓 . By hypothesis,
𝑐 ∈ Γ𝜓 (𝐺) and 𝜌 𝑓 does not visit Γ𝜓 (𝐹), so that 𝜌 visits Γ𝜓 (𝐹) finitely many times but Γ𝜓 (𝐺)
infinitely many times.

Conversely, suppose that we have 𝜌 = 𝑐0, 𝑡1, 𝑐1, 𝑡2 . . . an initial execution of C𝜓 that visits
Γ𝜓 (𝐹) finitely often but Γ𝜓 (𝐺) infinitely many times. Recall that all configurations in 𝜌 have the
same size, so that the set of configurations from Γ𝜓 (𝐺) visited in 𝜌 is finite. By the pigeonhole
principle, there is 𝑐 ∈ Γ𝜓 (𝐺) that is visited infinitely many times. There is 𝑘 such that 𝑐𝑘 = 𝑐

and, for all 𝑖 ⩾ 𝑘 , 𝑐𝑖 ∉ Γ𝜓 (𝐹). Moreover, there is 𝑗 > 𝑖 such that 𝑐 𝑗 = 𝑐, which proves that there
is a non-trivial execution from 𝑐 to 𝑐 in C′

𝜓
. This implies that there is tf ∈ T ′

𝜓
⊗ (T ′

𝜓
)∗ such that

𝑐
tf
=⇒ 𝑐. By Fact 3.5, we may assume that tf ∈ basis(T ′

𝜓
⊗ (T ′

𝜓
)∗) ⊆ T ′

min,𝜓 ⊗ basis((T ′
𝜓
)∗).

We now prove that we may assume that 𝑐 has size at most 𝑁 . Suppose that we have 𝑐 of size
strictly greater than 𝑁; we show that we can find 𝑐′ that satisfies the conditions of the lemma
and with |𝑐′| < |𝑐 |. Let tf ∈ T ′

min,𝜓 ⊗ basis((T ′
𝜓
)∗) such that 𝑐

tf
=⇒ 𝑐. By definition, all transfer

flows in T ′
min,𝜓 have weight bounded by 𝜆, and by Theorem 3.19 applied in C′

𝜓
, all transfer

flows in basis((T ′
𝜓
)∗) have weight bounded by 𝐵(𝑛(C𝜓′), 𝑀 (C′

𝜓
)) ⩽ 𝐵(𝑛, 𝑀). By considering

tf minimal, we obtain by Lemma 3.12 that weight(tf) ⩽ 𝜆 + 𝐵(𝑛, 𝑀). Let ⟨𝜇, ℓ⟩ := 𝑐 and
( 𝑓 , ℓ, ℓ) := tf; let 𝑔 : 𝑄2 → N# be a witness function that 𝑐

tf
=⇒ 𝑐. We want to build a set of

states 𝑆 ⊆ 𝑄 so that we can remove, in 𝑐, one process from every state in 𝑆 while maintaining
that 𝑐

tf
=⇒ 𝑐. We have supposed that |𝑐 | > 𝑛𝑛 (𝜆 + 𝐵(𝑛, 𝑀)) so that there is 𝑞1 ∈ 𝑄 such that

𝜇(𝑞1) > 𝑛𝑛−1(𝜆+𝐵(𝑛, 𝑀)). There is therefore 𝑞2 such that 𝑔(𝑞1, 𝑞2) > 𝑛𝑛−2(𝜆+𝐵(𝑛, 𝑀)), thus
also 𝜇(𝑞2) > 𝑛𝑛−2(𝜆+𝐵(𝑛, 𝑀)). If 𝑞2 = 𝑞1 then we let 𝑆 := {𝑞1, 𝑞2}. If not, there is 𝑞3 such that
𝑔(𝑞2, 𝑞3) > 𝑛𝑛−3(𝜆 + 𝐵(𝑛, 𝑀)), and so on. By iterating this construction, we obtain 𝑞1, . . . , 𝑞𝑘

such that 𝑘 ⩽ 𝑛 and 𝑞𝑘 = 𝑞 𝑗 for some 𝑗 ⩽ 𝑘 . For all 𝑖 ∈ J 𝑗 , 𝑘 − 1K, 𝑔(𝑞𝑖, 𝑞𝑖+1) > 𝜆 + 𝐵(𝑛, 𝑀)
and, for all 𝑞 ∈ 𝑆, 𝜇(𝑞) > 𝑛(𝜆 + 𝐵(𝑛, 𝑀)). We let 𝑆 := {𝑞𝑖 | 𝑗 ⩽ 𝑖 < 𝑘}. We let 𝑐′ = ⟨𝜇′, ℓ⟩
where 𝜇′(𝑞) = 𝜇(𝑞) − 1 for all 𝑞 ∈ 𝑆 and 𝜇′(𝑞) = 𝜇(𝑞) for all 𝑞 ∉ 𝑆. We also let 𝑔′ such that
𝑔′(𝑞𝑖, 𝑞𝑖+1) = 𝑔(𝑞𝑖, 𝑞𝑖+1) − 1 for all 𝑖 ∈ J 𝑗 , 𝑘 − 1K and 𝑔′(𝑞, 𝑞′) = 𝑔(𝑞, 𝑞′) otherwise. For all
𝑖 ∈ J 𝑗 , 𝑘 − 1K, 𝑔′(𝑞𝑖, 𝑞𝑖+1) ⩾ 𝑛(𝜆 + 𝐵(𝑛, 𝑀)) ⩾ 𝑓 (𝑞𝑖, 𝑞𝑖+1), so that 𝑔′ is a witness function that
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𝑐′
tf
=⇒ 𝑐′. Moreover, by Proposition 3.31, we have that Post∗(I(C𝜓)) is (𝑛𝐵(𝑛, 𝑀))-blind so

that 𝑐′ ∈ Post∗(I(C𝜓)). This proves that 𝑐′ satisfies the conditions of the lemma. By iterating
this shortening procedure, we prove that we can assume that |𝑐 | ⩽ 𝑁 . □

We now provide a similar result for the problem with fairness. To do that, we actually reduce
the problem to a GRE emptiness question:

Lemma 3.41. (C, 𝜓) is a positive instance of the LTL verification problem with fairness if and
only if, in C𝜓 ,

S𝜓 := I(C𝜓) ∩ Pre∗(
⋃

(𝐹,𝐺)∈Ω
Pre∗(Γ𝜓 (𝐹)) ∩ Pre∗(Pre∗(Γ𝜓 (𝐺)))) ≠ ∅

where, for all 𝑆 ⊆ Γ𝜓 , 𝑆 := Γ𝜓 \ 𝑆 denotes the set complement operation.

Proof. Thanks to Proposition 3.38, we know that the instance is positive if and only if there
is, in the graph G(C𝜓), a bottom SCC that is winning and reachable from (𝛾0, 𝑟0) for some
𝛾0 ∈ I(C). Note that I(C𝜓) = {(𝛾0, 𝑟0) | 𝛾0 ∈ I(C)}. We need to prove that such an SCC
exists if and only if S𝜓 ≠ ∅.

Suppose first that S𝜓 ≠ ∅, let 𝑐0 ∈ S𝜓 . By definition of S𝜓 , there is a Rabin pair (𝐹, 𝐺) ∈ Ω

and a configuration 𝛾 ∈ Pre∗(Γ𝜓 (𝐹)) ∩ Pre∗(Pre∗(Γ𝜓 (𝐺))) such that 𝑐0
∗
=⇒ 𝑐. Consider a

bottom SCC 𝑆 reachable from 𝑐. Because 𝑐 ∉ Pre∗(Γ𝜓 (𝐹)) and 𝑐 ∈ Pre∗(𝑆), 𝑆 ∩ Γ𝜓 (𝐹) = ∅.
For similar reasons, 𝑆 ⊆ Pre∗(Γ𝜓 (𝐺)) so that 𝑆 ∩ Γ𝜓 (𝐺) ≠ ∅.

Conversely, suppose that we have 𝑐0 ∈ I(C), a bottom SCC 𝑆 reachable from 𝑐0 and (𝐹, 𝐺) ∈
Ω such that 𝑆 ∩ Γ𝜓 (𝐹) = ∅ and 𝐺 ∩ Γ𝜓 (𝐺) ≠ ∅. Let 𝑐 ∈ 𝑆; we have that 𝑐0 ∈ Pre∗(𝑐) ∩ I(C𝜓).
We have 𝑐 ∉ Pre∗(Γ𝜓 (𝐹)) because Post∗(𝑐) ⊆ 𝑆. Also, because 𝑆 is an SCC and 𝑆∩Γ𝜓 (𝐺) ≠ ∅,
we have 𝑆 ⊆ Pre∗(Γ𝜓 (𝐺)) and Post∗(𝑐) ⊆ 𝑆 so that 𝑐 ∉ Pre∗(Pre∗(Γ𝜓 (𝐺))). We have proven
that 𝑐 ∈ S𝜓 , so that S𝜓 ≠ ∅. □

We are now able to conclude the proof of Theorem 3.39. Let 𝑛 := 𝑛(C𝜓) = 𝑛(C) and
𝑀 := 𝑀 (C𝜓) = 𝑂 (𝑀 (C) · |𝜓 |). We first transform the LTL formula automaton 𝜓 to the Rabin
automaton A𝜓 , which can be done in doubly-exponential space in 𝜓 according to Theorem 3.36.
Configurations of C𝜓 of size 𝑁 can be stored in space doubly-exponential in |𝜓 |, polynomial in
the parameters of C and logarithmic in 𝑁 , using binary encoding for the multiset; with the same
space constraints, we can enumerate the set of successors, which in particular allows to decide
reachability between two configurations using non-determinism.
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For the LTL verification problem without fairness, by Lemma 3.40 it suffices to guess
(𝐹, 𝐺) ∈ Ω, a configuration 𝑐 ∈ Γ𝜓 (𝐺) of size at most 𝑛(C𝜓)𝑛(C𝜓) (𝜆 + 𝐵(𝑛(C𝜓), 𝑀 (C𝜓))),
and to check that 𝑐 ∈ Post∗(I(C𝜓)) and that there is a non-trivial execution of C𝜓 from 𝑐 to 𝑐
that does not visit Γ𝜓 (𝐹). This can all be done in non-deterministic doubly-exponential space.
Moreover, note that the double-exponential cost in only in |𝜓 |, because of the construction of
the automaton using Theorem 3.36. In fact, we can drop determinism of the Rabin automaton,
which is not needed in the case without fairness, to obtain A𝜓 simply-exponential in |𝜓 | and
thus membership in EXPSPACE.

For the LTL verification problem with fairness, by Lemma 3.41, it suffices to decide emptiness
of the set S𝜓 defined in Lemma 3.41. To do so, we apply Proposition 3.34 on C𝜓 . Although C𝜓
has a doubly-exponential blowup in |𝜓 |, the space used in the proof of Proposition 3.34 is only
polynomial in |𝜓 |, so that we remain doubly-exponential in 𝜓 and not triply-exponential. This
proves that LTL verification with fairness is in 2-EXPSPACE. In this case, we need determinism
of the Rabin automaton, in particular in the proof of Lemma 3.37. Whether we can drop
determinism to improve this complexity result to EXPSPACE is an open question.

3.5 Applications to ASMS and Other Models

In this section, we make connections between copycat systems and other models. The
models considered are the ones mentioned in the introduction of this chapter: asynchronous
shared-memory systems (ASMS), reconfigurable broadcast networks and immediate observation
population protocols. We present here in detail the connection with ASMS; the links with the
two other models can be obtained similarly.

ASMS can be encoded into copycat systems as follows. Given an ASMS protocolP = ⟨𝑄, 𝑞0,

dim,D,⊥,Δ⟩, we let CP = (𝑄,Ddim,Tmin) with Tmin :=
⋃
𝛿∈Δ 𝑇𝛿 where, given 𝛿 ∈ Δ, the set 𝑇𝛿

is defined as follows. Given two states 𝑞1, 𝑞2, we let 𝑓𝑞1,𝑞2 : 𝑄2 → N# be the function such that:

— 𝑓𝑞1,𝑞2 (𝑞, 𝑞) = 0 for all 𝑞 ∈ 𝑄 such that (𝑞, 𝑞) ≠ (𝑞1, 𝑞2);

— 𝑓𝑞1,𝑞2 (𝑞1, 𝑞2) = 1;

— 𝑓𝑞1,𝑞2 (𝑞, 𝑞′) = # for all 𝑞 ≠ 𝑞′ such that (𝑞, 𝑞′) ≠ (𝑞1, 𝑞2).

Let 𝛿 = (𝑞1, act, 𝑞2) ∈ Δ. We define the set 𝑇𝛿 as the subset of F that contains exactly the
transfer flows ( 𝑓𝑞1,𝑞2 ,

®𝑑1, ®𝑑2) where ®𝑑1 and ®𝑑2 satisfy the following condition:

— if act = read𝑟 (d) is a read transition, then ®𝑑1(𝑟) = d and ®𝑑1 = ®𝑑2;

— if act = write𝑟 (d) is a write transition, ®𝑑2(𝑟) = d and ®𝑑1(𝑟′) = ®𝑑2(𝑟′) for all 𝑟′ ≠ 𝑟;
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— if act = ⊛ is an internal action then ®𝑑1 = ®𝑑2.

The obtained set L has size |D|dim and Tmin has size bounded by |Δ| |D|dim, so that |L| and
|Tmin | are exponential in the size of the ASMS protocol. Therefore, 𝑛(CP) is bounded by |P |
and 𝑀 (CP) is bounded by an exponential in |P |. The semantics of CP are equivalent to the
accelerated semantics of P defined in Section 2.3.

Proposition 3.42. Let P = ⟨𝑄, 𝑞0, dim,D,⊥,Δ⟩ be an ASMS protocol. For every 𝜇1, 𝜇2 ∈
M(𝑄), ®𝑑1, ®𝑑2 ∈ Ddim, 𝛿 ∈ Δ:

⟨𝜇1, ®𝑑1⟩
𝛿−−→

acc
⟨𝜇2, ®𝑑2⟩ in P ⇐⇒ ∃𝑡 ∈ 𝑇𝛿, ⟨𝜇1, ®𝑑1⟩

𝑡
=⇒ ⟨𝜇2, ®𝑑2⟩ in CP .

Proof. Let 𝛾1 := ⟨𝜇1, ®𝑑1⟩, 𝛾2 := ⟨𝜇2, ®𝑑2⟩, and let 𝛿 = (𝑞1, act, 𝑞2); 𝛾1 and 𝛾2 can be seen both
as configurations of P and as configurations of CP . Let 𝑡 = ( 𝑓𝑞1,𝑞2 ,

®𝑑1, ®𝑑2). By a direct case
disjunction on act, we have 𝑡 ∈ 𝑇𝛿 whenever ®𝑑1 and ®𝑑2 satisfy the conditions for 𝛾1

𝛿−→ 𝛾2.
Therefore, we focus on the conditions on 𝜇1 and 𝜇2. We distinguish two cases based on whether
𝑞1 = 𝑞2 or 𝑞1 ≠ 𝑞2.

Case 𝑞1 = 𝑞2. If 𝛾 𝛿−−→
acc

𝛾2 in P then 𝜇1(𝑞1) > 0 and 𝜇1 = 𝜇2. We let 𝑔 : 𝑄2 → N# such
that 𝑔(𝑞, 𝑞) = 𝜇1(𝑞) for all 𝑞 ∈ 𝑄 and 𝑔(𝑞, 𝑞′) = # for all 𝑞 ≠ 𝑞′. We obtain that 𝑓𝑞1,𝑞1 ⩽ 𝑔,
because 𝑔(𝑞1, 𝑞1) = 𝜇1(𝑞1) > 0. Therefore, 𝑔 is a witness function that 𝛾1

𝑡
=⇒ 𝛾2. Conversely,

if 𝛾1
𝑡
=⇒ 𝛾2 then let 𝑔 : 𝑄2 → N# be a witness function that 𝛾1

𝑡
=⇒ 𝛾2. We have 𝑓𝑞1,𝑞1 ⩽ 𝑔.

In particular, 𝜇1(𝑞1) =
∑
𝑞 𝑔(𝑞1, 𝑞) = 𝑔(𝑞1, 𝑞1) ⩾ 𝑓𝑞1,𝑞1 (𝑞1, 𝑞1) = 1 so that 𝜇1(𝑞1) ⩾ 1.

Moreover, because 𝑓𝑞1,𝑞1 ⩽ 𝑔, we have 𝑔(𝑞, 𝑞′) = # if and only if 𝑞 ≠ 𝑞′, so that 𝜇1 = 𝜇2. This
proves that 𝛾1

𝛿−→ 𝛾2.

Case 𝑞1 ≠ 𝑞2. If 𝛾1
𝛿−−→

acc
𝛾2 in P then let 𝑘 ⩾ 1 such that 𝛾1

𝛿𝑘−−→ 𝛾2. We have 𝜇1(𝑞1) ⩾ 𝑘

and 𝜇2 = (𝜇1 ⊖ 𝑘 · 𝑞1) ⊕ 𝑘 · 𝑞2. Let 𝑔 : 𝑄2 → N# such that 𝑔(𝑞, 𝑞) = 𝜇1(𝑞) for all 𝑞 ≠ 𝑞1,
𝑔(𝑞1, 𝑞2) = 𝑘 , 𝑔(𝑞1, 𝑞1) = 𝜇1(𝑞1) − 𝑘 and 𝑔(𝑞, 𝑞′) = # for all 𝑞 ≠ 𝑞′ such that (𝑞, 𝑞′) ≠ (𝑞1, 𝑞2).
We have 𝑓𝑞1,𝑞2 ⩽ 𝑔; also, for all 𝑞,

∑
𝑞′ 𝑔(𝑞, 𝑞′) = 𝜇1(𝑞) and for all 𝑞′,

∑
𝑞 𝑔(𝑞, 𝑞′) = 𝜇2(𝑞′).

Therefore, 𝑔 is a witness function that 𝛾1
𝑡
=⇒ 𝛾2. Conversely, if 𝛾1

𝑡
=⇒ 𝛾2 then let 𝑔 : 𝑄2 → N#

be a witness function of that. We have 𝑓𝑞1,𝑞2 ⩽ 𝑔, so that 𝑔(𝑞1, 𝑞2) ⩾ 𝑓𝑞1,𝑞2 (𝑞1, 𝑞2) = 1; let
𝑘 := 𝑔(𝑞1, 𝑞2) > 0. We have 𝜇1(𝑞1) =

∑
𝑞 𝑔(𝑞1, 𝑞) ⩾ 𝑔(𝑞1, 𝑞2) ⩾ 𝑘 . Because 𝑔(𝑞, 𝑞′) = # for

all 𝑞 ≠ 𝑞′ except for 𝑞 = 𝑞1 and 𝑞′ = 𝑞2, we have 𝜇2 = (𝜇1 ⊖ 𝑘 · 𝑞1) ⊕ 𝑘 · 𝑞2. This proves that

𝛾1
𝛿𝑘−−→ 𝛾2 so that 𝛾1

𝛿−−→
acc

𝛾2. □
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Therefore, ASMS with accelerated semantics can be seen as copycat systems. Given an
ASMS, a finite accelerated execution is a sequence 𝛼 = 𝛾0, 𝛿1, 𝛾1, . . . , 𝛿𝑘 , 𝛾𝑘 such that 𝛾𝑖

𝛿𝑖+1−−−→
acc

𝛾𝑖+1. The length of this accelerated execution is defined to be 𝑘 . An infinite accelerated execution
is defined similarly. With this notion, we translate Theorem 3.19 to ASMS:

Proposition 3.43. Let P = ⟨𝑄, 𝑞0, dim,D,⊥,Δ⟩ be an ASMS protocol. For every 𝛾, 𝛾′ ∈ Γ

such that 𝛾1
∗−→ 𝛾2, there is an accelerated execution from 𝛾1 to 𝛾2 whose length is bounded by

a function doubly-exponential in |P |.

Proof. It suffices to use Proposition 3.42 and to apply Corollary 3.27 on the corresponding
execution of CP . Note that the fact that 𝑀 (CP) is exponential in P has no impact on the bound,
because the bound of Theorem 3.19 is polynomial in 𝑀 (C). □

We may also apply this connection to retrieve results related to generalized reachability
expressions and to GRE emptiness in ASMS. Let us consider, for ASMS, GRE whose basic
predicates 𝜙 range over presence constraints from Chapter 2. Note that, when 𝜙 is a presence
constraint, the set J𝜙K is 1-blind. With this definition, we have a result on the shape of the set
J𝐸K for 𝐸 a GRE:

Proposition 3.44. Let P = ⟨𝑄, 𝑞0, dim,D,⊥,Δ⟩ be an ASMS protocol, let 𝐸 be a GRE over P.
The set J𝐸K is 𝐾-blind set with 𝐾 a bound doubly-exponential in |P | and simply exponential in
the number of operators in 𝐸 .

Proof. We apply the exact same reasoning as in the proof of Proposition 3.34: by iterative
applications of Proposition 3.31, J𝐸K is 𝐾-blind for 𝐾 := |𝑄 |𝑘𝐵(𝑛(CP), 𝑀 (CP)) where 𝑘

denotes the maximal number of nested Pre∗ and Post∗ operators in 𝐸 , which is less than the
total number of operators in 𝐸 . Moreover, CP is polynomial in |P | and 𝑀 (CP) is exponential
in P. Because 𝐵(𝑛, 𝑀) is doubly-exponential in 𝑛 and polynomial in 𝑀 , the obtained bound is
doubly-exponential in |P |. □

This allows us to decide of GRE emptiness:

Proposition 3.45. The following problem is in EXPSPACE: given an ASMS protocol P and a
GRE 𝐸 over P, is it the case that J𝐸K = ∅?

Proof. The proof is very similar to the one of Proposition 3.34 applied to CP . One must again
notice that the fact that 𝑀 (CP) is exponential in |P | does not affect the complexity class, because
the space used in the proof of Proposition 3.34 was polynomial in 𝑀 (C). □
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We present here an application of the two propositions above. In [BMRSS16], the problem
of almost-sure coverability in ASMS (with one uninitialized register) is studied. Assuming that
there is no transition escaping 𝑞 𝑓 , the authors show that, for a given 𝑛, 𝑞 𝑓 is covered almost
surely from 𝛾0(𝑛) if and only if Post∗(𝛾0(𝑛)) ⊆ Pre∗( ↑𝑞 𝑓 ) where ↑𝑞 𝑓 denotes the set of
configurations with at least one process in 𝑞 𝑓 . There are two main results in [BMRSS16]: that
there is a bound 𝑁 doubly-exponential in |P | such that either Post∗(𝛾0(𝑛)) ⊆ Pre∗( ↑𝑞 𝑓 ) for all
𝑛 ⩾ 𝑁 or Post∗(𝛾0(𝑛)) ⊈ Pre∗( ↑𝑞 𝑓 ) for all 𝑛 ⩾ 𝑁 , and that the problem of deciding which of
the two cases holds is in EXPSPACE. The techniques from [BMRSS16] are very different from
ours, and are very specific to this particular question. Nonetheless, our framework allows us to
prove this same fact using 𝐾-blind sets and the structural theorem. We know by Proposition 3.44
that the set Post∗(Γ0) \ Pre∗( ↑𝑞 𝑓 ) is 𝐾-blind with 𝐾 doubly-exponential in |P |, which proves
the existence of 𝑁 above. Moreover, thanks to the proof of Proposition 3.34, we know that
membership of a doubly-exponential configuration in a GRE can be decided in EXPSPACE,
proving the second part of the result. We are thus able to reprove the main results from
[BMRSS16], which highlights the level of generality and the power of the structural theorem.

There is another theoretical consequence of our results on copycat systems: verification of
stuttering-invariant LTL on ASMS. A language is called stuttering-invariant when, for every
𝑤𝑝 ∈ Σ∗, 𝑥 ∈ Σ and 𝑤𝑠 ∈ Σ𝜔, for every 𝑘 ⩾ 1, 𝑤𝑝 · 𝑥 · 𝑤𝑠 ∈ L if and only if 𝑤𝑝 · 𝑥𝑘 · 𝑤𝑠 ∈ L.
The stuttering-invariant fragment of LTL contains all LTL formula whose language is stuttering-
invariant. This fragment is a natural restriction of LTL for computer science application and in
particular for concurrent systems, as first argued by Lamport [Lam83]. In fact, any LTL formula
without the X operator is stuttering-invariant, and stuttering-invariant LTL is as expressive as
LTL without X [PW97].

Remark 3.46. In ASMS, it makes little sense to consider LTL formulas that are not stuttering-
invariant. Indeed, if we do not have stuttering-invariance, then the copycat property (as expressed
in Lemma 2.8) breaks down. In fact, if we allow for general LTL formulas, then we may encode
atomic read-write combinations (recall that atomic read-write combinations were discussed in
Section 2.2.1 and Section 2.9). Indeed, consider a transition (𝑞1, read𝑟 (d1) − write𝑟 (d2), 𝑞2)
with an atomic read-write combination: a process that takes this transition must first read symbol
d1 from 𝑟 and then, right away, write symbol d2 to 𝑟. We argue that such a transition can be
implemented in an ASMS under standard LTL constraints as follows. We add an intermediate
state 𝑞int and two transitions 𝛿 = (𝑞1, read𝑟 (d1), 𝑞int) and 𝛿′ = (𝑞int,write𝑟 (d2), 𝑞2). Because
processes may stay in 𝑞int, this does not suffice to guarantee that 𝛿′ is always taken immediately
after 𝛿. However, this last condition can be encoded in LTL by G (𝛿 =⇒ X 𝛿′), a formula that
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is not stuttering-invariant. Therefore, under standard LTL, ASMS are essentially equivalent to
Petri nets and population protocols, so that verification of general LTL in ASMS lies under the
scope of [EGLM16] and is therefore an Ackermann-complete problem [CO21].

It is easy to define the counterpart in ASMS of the LTL verification problems from Sec-
tion 3.4. Using Theorem 3.39 applied to CP , it directly yields decidability of the LTL verification
problem without fairness for ASMS. For the version with fairness, we need a an additional result.
We extend the notion of strong fairness to accelerated infinite executions in a natural manner:
an infinite accelerated execution is strongly fair when, if 𝛾 is visited infinitely often, every
finite accelerated execution from 𝛾 appears infinitely often. An infinite accelerated execution
𝛼 = 𝛾0, 𝛿1, 𝛾1, . . . , 𝛿𝑘 , 𝛾𝑘 is an acceleration of an (unaccelerated) infinite execution 𝜌 when 𝜌

can be put under the form 𝛾0
𝛿
𝑘1
1−−→ 𝛾1

𝛿𝑘2
−−→ 𝛾2.

Lemma 3.47. Given a strongly fair accelerated execution 𝛼, there is a strongly fair execution
𝜌 such that 𝛼 is an acceleration of 𝜌. Conversely, given a strongly fair execution 𝜌, there is a
strongly fair acceleration 𝛼 of 𝜌.

Proof. We start with the first statement. Let 𝛼 = 𝛾0, 𝛿1, 𝛾1, 𝛿2, . . . be a strongly fair accelerated

execution. Let 𝜌 be the infinite non-accelerated execution corresponding to 𝛾0
𝛿
𝑘1
1−−→ 𝛾1

𝛿
𝑘2
2−−→ 𝛾2 . . .

where, for all 𝑖 ⩾ 1, 𝑘𝑖 is the minimal integer 𝑘 ⩾ 1 such that 𝛾𝑖−1
𝛿𝑘
𝑖−−→ 𝛾𝑖. Note that all 𝑘𝑖

exist because 𝛼 is an accelerated execution. Clearly, 𝛼 is an acceleration of 𝜌. We now claim
that 𝜌 is strongly fair. Let 𝜌′ = 𝛾′0, 𝛿

′
1, 𝛾

′
1, . . . , 𝛿

′
𝑚, 𝛾

′
𝑚 where 𝛾′0 is visited infinitely often in 𝜌.

We claim that 𝛾′0 appears infinitely often in 𝛼. Trivially, there is a configuration 𝛾 ∈ Γ that is
visited infinitely often in 𝛼. Both 𝛾 and 𝛾′0 are visited infinitely often in 𝜌, therefore there is a
finite execution from 𝛾 to 𝛾′0, and hence there is an accelerated finite execution from 𝛾 to 𝛾′0.
Because 𝛼 is strongly fair, this finite accelerated execution appears infinitely often in 𝛼 so that
𝛾′0 is visited infinitely often in 𝛼. Let 𝛼′ be the accelerated execution equal to 𝜌′, but seen as an
accelerated execution. By strong fairness, 𝛼′ appears infinitely often in 𝛼. For each 𝑖 ∈ J1, 𝑚K,

we have 𝛾′
𝑖−1

𝛿′
𝑖−→ 𝛾′

𝑖
. Therefore, whenever 𝛼′ appears in 𝛼, all the corresponding 𝑘𝑖 are equal to

1 by minimality. This proves that, for each occurrence of 𝛼′ in 𝛼, there is an occurrence of 𝜌′ in
𝜌. We conclude that 𝜌′ appears infinitely often in 𝜌 and that 𝜌 is strongly fair.

We now prove the second statement. Let us fix a probability distribution 𝑓 : N → [0, 1]
such that 𝑓 (𝑛) > 0 for all 𝑛 (e.g., a geometric distribution). We first define a random variable
𝑅 that takes value over the set of infinite accelerated executions. We build 𝑅 as follows. We
proceed (accelerated) step by (accelerated) step by grouping consecutive steps of 𝜌 with the same
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transition. Suppose that the acceleration has been built until the 𝑖-th configuration of 𝜌; let 𝛾
denote this configuration, and let 𝑡 denote the next transition in 𝜌 (the 𝑖-th transition of 𝜌, which
is fired from 𝛾). We pick an integer 𝑚 ∈ N according to 𝑓 , independently from the past. If steps
𝑖 to 𝑖 + 𝑚 − 1 of 𝜌 use transition 𝑡 then we accelerated all those steps into one accelerated step
from the 𝑖-th configuration of 𝜌 to the 𝑖 + 𝑚-th configuration of 𝜌, and we repeat the procedure
from the (𝑖 + 𝑚)-th configuration of 𝜌. Otherwise, we define the next accelerated step as equal
to the step from the 𝑖-th configuration to the (𝑖 + 1)-th configuration of 𝜌 (the next step is not
grouped with other steps), and we repeat the procedure from the (𝑖 + 1)-th configuration of 𝜌.

By repeating this construction, we obtained an infinite accelerated execution 𝑅. Trivially,
𝑅 is an acceleration of 𝜌. We claim that 𝑅 is strongly fair with probability 1. Let 𝛾0 ∈ Γ

be a configuration that appears infinitely often in 𝑅 and let 𝛼 = 𝛾0, 𝛿1, 𝛾1, 𝛿2, . . . , 𝛿𝑚𝛾𝑚 be
an accelerated finite execution from 𝛾0. For each 𝑖 ∈ J1, 𝑚K, let 𝑘𝑖 be an integer in J1, +∞J

such that 𝛾𝑖−1
𝛿
𝑘𝑖
𝑖−−→ 𝛾𝑖. Let 𝜎 denote the (unaccelerated) finite execution corresponding to

𝛾0
𝛿
𝑘1
1−−→ 𝛾1

𝛿
𝑘2
2−−→ . . .

𝛿
𝑘𝑚
𝑚−−−→ 𝛾𝑚. Because 𝛾0 is visited infinitely often in 𝑅, it is also visited infinitely

often in 𝜌 so that𝜎 appears infinitely often in 𝜌. Whenever𝜎 is visited in 𝜌, at the corresponding
point in 𝑅, there is probability at least

∏𝑚
𝑖=1 𝑓 (𝑘𝑖) > 0 that the next 𝑚 accelerated steps are the

same as in 𝛼. This proves that there is probability 0 that 𝛾0 is visited infinitely often in 𝑅 but that
𝛼 appears finitely often in 𝑅. By summing over the set of finite accelerated executions (which
is countable), there is probability zero that there is a finite accelerated execution 𝛼 disproving
strong fairness. We have proven that 𝑅 is strongly fair with probability one; in particular, this
implies the existence of a strongly fair acceleration of 𝜌. □

Therefore, we can apply the result from Theorem 3.39 to obtain decidability of verification
of LTL in ASMS, both without fairness and with fairness. The following result is not very new
or powerful on its own, because it has been shown that this verification problem is decidable in
EXPTIME for the more powerful model of shared-memory pushdown systems, although without
the fairness condition [FMW17]. For this reason and for the sake of simplicity, we keep the
following statement and proof informal.

Proposition 3.48. Given an ASMS protocol P and a stuttering-invariant LTL formula 𝜓, the
problem of the existence of an execution of P that satisfies 𝜓 is in 2-EXPSPACE, and the same
is true if the execution is required to be strongly fair.

Proof. Because the LTL formula 𝜓 is stuttering-invariant, one may equivalently study whether it
is satisfied in the accelerated semantics. In the case with strong fairness, Lemma 3.47 guarantees
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that, because 𝜓 is stuttering-invariant, it is satisfied by an (unaccelerated) strongly fair execution
if and only if it is satisfied by an accelerated strongly fair execution. We then apply the procedure
from the proof of Theorem 3.39 to C𝜓 . One must simply observe that the exponential blowup of
𝑀 (CP) with respect to |P | does not affect the complexity, because the decidability procedures
from the proof of Theorem 3.39 work in space polynomial in 𝑀 (C). □

Other known model mentioned in the introduction of this chapter can be encoded in copycat
systems. This is the case of reconfigurable broadcast networks, which is not surprising given
the strong connection between this model and ASMS [BW21]. Another one is immediate
observation population protocols (or, equivalently, immediate observation petri nets). The
encoding of such systems in copycat systems works in a straightforward manner similar to the
one introduced above for ASMS. Therefore, the results from Proposition 3.43, Proposition 3.44,
Proposition 3.45 and Proposition 3.48 can be easily extended to these two models.

3.6 Perspectives

In this section, we defined copycat systems, a general model meant to capture systems with
arbitrarily many identical processes, each described by a finite-state system, and that satisfy
the copycat property: whenever a process goes from state 𝑞1 to state 𝑞2, other processes in 𝑞1

may do the same without impacting the rest of the system. We have proved a general-purpose
doubly-exponential bound on these systems, which limits the number of (accelerated) steps
needed to connect two configurations and the number of processes needed in an execution.

The motivation for defining copycat systems is to provide a unified model so that results can
be stated in the most general manner. The proof techniques rely on so-called transfer flows which
express the possibilities provided by a sequence of transitions. In our eyes, the mathematical
framework of transfer flows is interesting on its own and may have other applications. So far in
the literature, known results on parameterized distributed systems with the copycat property are
proved in separate models, requiring additional work whenever trying to convert results from one
model to another. Moreover, the level of generality of our general-purpose doubly-exponential
bound does not appear in the literature of the closely-related models of ASMS and RBN. The
closest results from the literature would be the techniques relying on so-called symbolic graphs
(see [Sta17, Chapter 9] for a detailed use of symbolic graphs), which also allow to prove doubly-
exponential bounds on the description on some sets; these techniques are however more ad hoc
to specific problems and models and therefore, in our opinion, less powerful and convenient
than Theorem 3.19.
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Copycat systems are meant to be as general as possible, so that the results can be translated
to other models without having to duplicate the proofs. In particular, the set L allows to encode
information about the global state of the system, and it may be doubly-exponentially large without
affecting the overall scale of the bound from Theorem 3.19. For example, in Section 3.5, we
have used the set L to encode the content of shared registers, but one can also use it to, e.g.,
encode the presence of a leader in the system.

There is one crucial open question related to copycat systems, which also appears very
challenging. Indeed, it remains unknown whether the bound from Theorem 3.19 can be improved
to simple-exponential in the number of states 𝑛(C). This open question is related to the open
complexity gap on almost-sure coverability in ASMS [BMRSS16]. This question was wrongly
claimed to be solved in the model of reconfigurable broadcast networks [BGW22; BGW23].
Despite several independent efforts, it remains open at the time of writing this thesis.

3.7 Technical Proofs

3.7.1 Proofs of Basic Properties of the Compositional Product

Lemma 3.9. For all tf1, tf2 ∈ F :

(3.9.i) the set tf1 ⊗ tf2 is upward-closed with respect to ⪯: for all tf ∈ tf1 ⊗ tf2, for all tf′ ∈ F ,
if tf ⪯ tf′ then tf′ ∈ tf1 ⊗ tf2;

(3.9.ii) the compositional product is decreasing with respect to ⪯ and ⊆: for all tf′1 ⪯ tf1
and tf′2 ⪯ tf2, we have tf1 ⊗ tf2 ⊆ tf′1 ⊗ tf′2.

Proof. We first prove (3.9.i). Let tf = (ℎ, ℓ, ℓ′) ∈ tf1 ⊗ tf2. We apply the definition to obtain a
witness function 𝐻 : 𝑄3 → N#. Let tf′ = (ℎ′, ℓ, ℓ′) ∈ F such that tf ⪯ tf′. This implies that ℎ ⩽

ℎ′. We define 𝐻′ : 𝑄3 → N# as follows. Let 𝑞1, 𝑞3 ∈ 𝑄. If we have 𝐻 (𝑞1, 𝑞2, 𝑞3) = # for all 𝑞2

then we set 𝐻′(𝑞1, 𝑞2, 𝑞3) := # for all 𝑞2. Suppose now that there is 𝑞2 such that 𝐻 (𝑞1, 𝑞2, 𝑞3) ≠
#. This in particular implies, by (3.8.i), that ℎ(𝑞1, 𝑞3) ≠ # therefore ℎ′(𝑞1, 𝑞3) ≠ #. We set
𝐻′(𝑞1, 𝑞2, 𝑞3) := 𝐻 (𝑞1, 𝑞2, 𝑞3)+ℎ′(𝑞1, 𝑞3)−ℎ(𝑞1, 𝑞3), and we set𝐻′(𝑞1, 𝑞2, 𝑞3) = 𝐻 (𝑞1, 𝑞2, 𝑞3)
for every 𝑞2 ≠ 𝑞2. We claim that 𝐻′ is a witness function that (ℎ′, ℓ, ℓ′) ∈ tf1 ⊗ tf2. First, 𝐻′ has
the same # values as 𝐻, so that we have 𝐻′ ⩾ 𝐻 by construction. Note that 𝐻′ ⩾ 𝐻 requires that
they have the same # values (# is incomparable with all integers), which would not hold if we
had set 𝐻′(𝑞1, 𝑞2, 𝑞3) = 𝐻 (𝑞1, 𝑞2, 𝑞3) + ℎ′(𝑞1, 𝑞3) − ℎ(𝑞1, 𝑞3) for some 𝑞1, 𝑞2 and 𝑞3 such that
ℎ′(𝑞1, 𝑞3) ≠ # but 𝐻 (𝑞1, 𝑞2, 𝑞3) = #. We therefore have that 𝐻′ satisfies (3.8.ii) and (3.8.iii).
Also, for all 𝑞1, 𝑞3, if ℎ′(𝑞1, 𝑞3) = # then

∑
𝑞2 𝐻

′(𝑞1, 𝑞2, 𝑞3) =
∑
𝑞2 𝐻 (𝑞1, 𝑞2, 𝑞3) = ℎ(𝑞1, 𝑞3) =
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#. If ℎ(𝑞1, 𝑞3) ≠ # then
∑
𝑞2 𝐻

′(𝑞1, 𝑞2, 𝑞3) =
∑
𝑞2 𝐻 (𝑞1, 𝑞2, 𝑞3) + ℎ′(𝑞1, 𝑞3) − ℎ(𝑞1, 𝑞3) =

ℎ(𝑞1, 𝑞3) + ℎ′(𝑞1, 𝑞3) − ℎ(𝑞1, 𝑞3) = ℎ′(𝑞1, 𝑞3). We have proved that 𝐻′ satisfies Item (3.8.i) for
ℎ′, so that (ℎ′, ℓ, ℓ′) ∈ tf1 ⊗ tf2.

To prove (3.9.ii), it suffices to observe that, when we decrease the values of 𝑓1 and 𝑓2 in
Definition 3.8, conditions (3.8.ii) and (3.8.iii) become less restrictive. □

Lemma 3.11. The compositional product ⊗ is associative, i.e., for all tf1, tf2, tf3 ∈ F , (tf1 ⊗
tf2) ⊗ tf3 = tf1 ⊗ (tf2 ⊗ tf3).

Proof. Let tf𝑖 =: ( 𝑓𝑖, ℓ𝑖, ℓ′𝑖 ) for all 𝑖 ∈ {1, 2, 3}. If we have ℓ′1 ≠ ℓ2 or ℓ′2 ≠ ℓ3 then (tf1⊗ tf2) ⊗ tf3 =

tf1 ⊗ (tf2 ⊗ tf3) = ∅. Suppose now that ℓ′1 = ℓ2 and ℓ′2 = ℓ3.
Let 𝑇1,2,3 ⊆ F denote the set of transfer flows tf = ( 𝑓 , ℓ1, ℓ′3) for which there exists a function

𝐻 : 𝑄4 → N# that satisfies the following properties:

1. for all 𝑞1, 𝑞4,
∑
𝑞2,𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) = 𝑓 (𝑞1, 𝑞4);

2. for all 𝑞1, 𝑞2,
∑
𝑞3,𝑞4 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) ⩾ 𝑓1(𝑞1, 𝑞2);

3. for all 𝑞2, 𝑞3,
∑
𝑞1,𝑞4 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) ⩾ 𝑓2(𝑞2, 𝑞3);

4. for all 𝑞3, 𝑞4,
∑
𝑞1,𝑞2 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) ⩾ 𝑓3(𝑞3, 𝑞4).

We claim that (tf1 ⊗ tf2) ⊗ tf3 = 𝑇1,2,3 = tf1 ⊗ (tf2 ⊗ tf3).
We first prove that (tf1 ⊗ tf2) ⊗ tf3 ⊆ 𝑇1,2,3. Let tf = ( 𝑓 , ℓ1, ℓ′3) ∈ (tf1 ⊗ tf2) ⊗ tf3. Let

tf1,2 = ( 𝑓1,2, ℓ1, ℓ′2) ∈ tf1 ⊗ tf2 such that tf ∈ tf1,2 ⊗ tf3; let 𝐺 : 𝑄3 → N# be a witness function
of that. We have

∑
𝑞4 𝐺 (𝑞1, 𝑞3, 𝑞4) ⩾ 𝑓1,2(𝑞1, 𝑞3) for all 𝑞1, 𝑞3,

∑
𝑞1 𝐺 (𝑞1, 𝑞3, 𝑞4) ⩾ 𝑓3(𝑞3, 𝑞4)

for all 𝑞3, 𝑞4 and
∑
𝑞3 𝐺 (𝑞1, 𝑞3, 𝑞4) = 𝑓 (𝑞1, 𝑞4) for all 𝑞1, 𝑞4. Let 𝐹1,2 be a witness function

that tf1,2 ∈ tf1 ⊗ tf2, i.e.,
∑
𝑞2 𝐹1,2(𝑞1, 𝑞2, 𝑞3) = 𝑓1,2(𝑞1, 𝑞3) for all 𝑞1, 𝑞3,

∑
𝑞3 𝐹1,2(𝑞1, 𝑞2, 𝑞3) ⩾

𝑓1(𝑞1, 𝑞2) for all 𝑞1, 𝑞2 and
∑
𝑞1 𝐹1,2(𝑞1, 𝑞2, 𝑞3) ⩾ 𝑓2(𝑞2, 𝑞3) for all 𝑞2, 𝑞3. For every 𝑞1, 𝑞3,∑

𝑞4 𝐺 (𝑞1, 𝑞3, 𝑞4) ⩾ 𝑓1,2(𝑞1, 𝑞3) =
∑
𝑞2 𝐹1,2(𝑞1, 𝑞2, 𝑞3). For all 𝑞1, 𝑞3, if 𝑓1,2(𝑞1, 𝑞3) ≠ # then

there is 𝑞2 such that 𝐹1,2(𝑞1, 𝑞2, 𝑞3) ≠ #. Let 𝐹 equal to 𝐹1,2 except that, for all 𝑞1, 𝑞3 such
that 𝑓1,2(𝑞1, 𝑞3) ≠ #, we choose 𝑞2 such that 𝐹1,2(𝑞1, 𝑞2, 𝑞3) ≠ # and set 𝐹 (𝑞1, 𝑞2, 𝑞3) :=
𝐹1,2(𝑞1, 𝑞2, 𝑞3) +

∑
𝑞4 𝐺 (𝑞1, 𝑞3, 𝑞4) − 𝑓1,2(𝑞1, 𝑞3). This way, 𝐹 satisfies the same conditions

as 𝐹1,2 related to 𝑓1 and 𝑓2 but also, for all 𝑞1, 𝑞3,
∑
𝑞2 𝐹 (𝑞1, 𝑞2, 𝑞3) =

∑
𝑞4 𝐺 (𝑞1, 𝑞3, 𝑞4).

To provide 𝐻 that satisfies the conditions above, it suffices to build 𝐻 : 𝑄4 → N# so that∑
𝑞4 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) = 𝐹 (𝑞1, 𝑞2, 𝑞3) and

∑
𝑞2 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) = 𝐺 (𝑞1, 𝑞3, 𝑞4). Indeed, this

would imply conditions 1 and 4 thanks to 𝐹 and conditions 2 and 3 thanks to 𝐺.
We now prove the following statement:
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For every 𝐹 : 𝑄3 → N# and𝐺 : 𝑄3 → N#, if
∑
𝑞2 𝐹 (𝑞1, 𝑞2, 𝑞3) =

∑
𝑞4 𝐺 (𝑞1, 𝑞3, 𝑞4)

for every 𝑞1, 𝑞3, then there is 𝐻 : 𝑄4 → N# such that
∑
𝑞4 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) =

𝐹 (𝑞1, 𝑞2, 𝑞3) and
∑
𝑞2 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) = 𝐺 (𝑞1, 𝑞3, 𝑞4).

First, if 𝐹 and 𝐺 are constant equal to # then we set 𝐻 constant equal to #. Suppose now
that it is not the case; let 𝑛 :=

∑
𝑞1,𝑞2,𝑞3 𝐹 (𝑞1, 𝑞2, 𝑞3) =

∑
𝑞1,𝑞3,𝑞4 𝐺 (𝑞1, 𝑞3, 𝑞4) ∈ N. We proceed

by induction on 𝑛.

If 𝑛 = 0 then all values in 𝐹 and 𝐺 are in {0, #}. We let 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) := 0 whenever
both 𝐹 (𝑞1, 𝑞2, 𝑞3) = 0 and 𝐺 (𝑞1, 𝑞3, 𝑞4) = 0, and 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) := # otherwise. We
claim that, for all 𝑞1, 𝑞2, 𝑞3,

∑
𝑞4 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) = 𝐹 (𝑞1, 𝑞2, 𝑞3). Let 𝑞1, 𝑞2, 𝑞3 ∈ 𝑄; if

𝐹 (𝑞1, 𝑞2, 𝑞3) = # then 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) = # for all 𝑞4 hence
∑
𝑞4 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) = #. Suppose

now that 𝐹 (𝑞1, 𝑞2, 𝑞3) = 0. This implies
∑
𝑞4 𝐺 (𝑞1, 𝑞3, 𝑞4) = 0 therefore there is 𝑞4 such that

𝐺 (𝑞1, 𝑞3, 𝑞4) = 0, so that 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) = 0 and
∑
𝑞4 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) = 0. Similarly, for

every 𝑞1, 𝑞3, 𝑞4, if𝐺 (𝑞1, 𝑞3, 𝑞4) = # then
∑
𝑞2 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) = # and if𝐺 (𝑞1, 𝑞3, 𝑞4) = 0 then

there is 𝑞2 such that 𝐹 (𝑞1, 𝑞2, 𝑞3) = 0 hence𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) = 0 and
∑
𝑞2 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) = 0.

Suppose now that 𝑛 > 0. Let 𝑞1, 𝑞3 such that
∑
𝑞2 𝐹 (𝑞1, 𝑞2, 𝑞3) =

∑
𝑞4 𝐺 (𝑞1, 𝑞3, 𝑞4) > 0.

Let 𝑞2 such that 𝐹 (𝑞1, 𝑞2, 𝑞3) > 0 and 𝑞4 such that 𝐺 (𝑞1, 𝑞3, 𝑞4) > 0. Let 𝐹′ equal to 𝐹

except that 𝐹′(𝑞1, 𝑞2, 𝑞3) := 𝐹 (𝑞1, 𝑞2, 𝑞3) − 1 and let𝐺′ equal to𝐺 except that𝐺′(𝑞1, 𝑞3, 𝑞4) :=
𝐺 (𝑞1, 𝑞3, 𝑞4) − 1. We have

∑
𝑞2 𝐹

′(𝑞1, 𝑞2, 𝑞3) =
∑
𝑞4 𝐺

′(𝑞1, 𝑞3, 𝑞4) for all 𝑞1 and 𝑞3, and∑
𝑞1,𝑞2,𝑞3 𝐹

′(𝑞1, 𝑞2, 𝑞3) =
∑
𝑞1,𝑞2,𝑞3 𝐹 (𝑞1, 𝑞2, 𝑞3) − 1 = 𝑛 − 1. We apply the induction hy-

pothesis on 𝐹′ and 𝐺′ to obtain 𝐻′ such that
∑
𝑞4 𝐻

′(𝑞1, 𝑞2, 𝑞3, 𝑞4) = 𝐹′(𝑞1, 𝑞2, 𝑞3) for all
𝑞1, 𝑞2, 𝑞3 and

∑
𝑞2 𝐻

′(𝑞1, 𝑞2, 𝑞3, 𝑞4) = 𝐺′(𝑞1, 𝑞3, 𝑞4) for all 𝑞1, 𝑞3, 𝑞4. It suffices to let 𝐻
equal to 𝐻′ except that 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) = 𝐻′(𝑞1, 𝑞2, 𝑞3, 𝑞4) + 1. Note that it could be that
𝐻′(𝑞1, 𝑞2, 𝑞3, 𝑞4) = #, in which case 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) = 1. We know that 𝐹′(𝑞1, 𝑞2, 𝑞3) ≠ #
therefore

∑
𝑞4 𝐻

′(𝑞1, 𝑞2, 𝑞3, 𝑞4) ≠ # so that we indeed have
∑
𝑞4 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) = 𝐹′(𝑞1, 𝑞2, 𝑞3)+

1 = 𝐹 (𝑞1, 𝑞2, 𝑞3). With the same argument,
∑
𝑞2 𝐻

′(𝑞1, 𝑞2, 𝑞3, 𝑞4) = 𝐺 (𝑞1, 𝑞3, 𝑞4). This con-
cludes the induction.

We have proved that (tf1 ⊗ tf2) ⊗ tf3 ⊆ 𝑇1,2,3. The fact that tf1 ⊗ (tf2 ⊗ tf3) ⊆ 𝑇1,2,3 follows
by a symmetric argument. We claim that 𝑇1,2,3 ⊆ (tf1 ⊗ tf2) ⊗ tf3. Indeed, let tf ∈ 𝑇1,2,3 and let
𝐻 : 𝑄4 → N# that satisfies conditions 1 to 4 for tf. Let 𝑓 : (𝑞1, 𝑞3) ↦→

∑
𝑞3,𝑞4 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4),

we have ( 𝑓 , ℓ1, ℓ′2) ∈ tf1 ⊗ tf2 with 𝐹 : (𝑞1, 𝑞2, 𝑞3) ↦→
∑
𝑞4 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) as witness function.

Moreover, let 𝑔 : (𝑞3, 𝑞4) ↦→
∑
𝑞1,𝑞2 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4); we have tf3 ⪯ (𝑔, ℓ3, ℓ′3). Finally, we have

tf ∈ ( 𝑓 , ℓ1, ℓ′2) ⊗ (𝑔, ℓ3, ℓ′3) with (𝑞1, 𝑞3, 𝑞4) ↦→
∑
𝑞2 𝐻 (𝑞1, 𝑞2, 𝑞3, 𝑞4) as witness function, hence

by (3.9.ii) we conclude that tf ∈ (tf1 ⊗ tf2) ⊗ tf3. This proves that 𝑇1,2,3 ⊆ (tf1 ⊗ tf2) ⊗ tf3; a
symmetric argument proves that 𝑇1,2,3 ⊆ tf1 ⊗ (tf2 ⊗ tf3). In the end, we obtain (tf1 ⊗ tf2) ⊗ tf3 =
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tf1 ⊗ (tf2 ⊗ tf3) = 𝑇1,2,3. □

Lemma 3.12. Let tf1, tf2 ∈ F . For every tf ∈ basis(tf1 ⊗ tf2), weight(tf) ⩽ weight(tf1) +
weight(tf2).

Proof. Let tf1 = ( 𝑓1, ℓ1, ℓ2), tf2 = ( 𝑓2, ℓ2, ℓ3) and tf = ( 𝑓 , ℓ1, ℓ3) ∈ basis(tf1 ⊗ tf2); let 𝐻 : 𝑄3 →
N# be a witness function that tf ∈ tf1 ⊗ tf2. We know that weight(tf) =

∑
𝑞1,𝑞3 𝑓 (𝑞1, 𝑞3) =∑

𝑞1,𝑞2,𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3). We thus prove that
∑
𝑞1,𝑞2,𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3) ⩽ weight(tf1) + weight(tf2).

Suppose by contradiction that
∑
𝑞1,𝑞2,𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3) > weight(tf1) +weight(tf2). We claim that

there is 𝐻′ : 𝑄3 → N# such that:

— 𝐻′ ⩽ 𝐻,

—
∑
𝑞1,𝑞2,𝑞3 𝐻

′(𝑞1, 𝑞2, 𝑞3) <
∑
𝑞1,𝑞2,𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3),

—
∑
𝑞3 𝐻

′(𝑞1, 𝑞2) ⩾ 𝑓1(𝑞1, 𝑞2) for all 𝑞1, 𝑞2,

—
∑
𝑞1 𝐻

′(𝑞1, 𝑞2, 𝑞3) ⩾ 𝑓2(𝑞2, 𝑞3) for all 𝑞2, 𝑞3.

Indeed, if we have such a function 𝐻′, then letting 𝑓 ′ : (𝑞1, 𝑞2) ↦→ 𝐻′(𝑞1, 𝑞2, 𝑞3), we would
have ( 𝑓 ′, ℓ1, ℓ3) ∈ tf1 ⊗ tf2 and ( 𝑓 ′, ℓ1, ℓ3) ⪯ tf, contradicting minimality of tf in tf1 ⊗ tf2.

To build 𝐻′, it suffices to prove the existence of 𝑞1, 𝑞2, 𝑞3 such that
∑
𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3) >

𝑓1(𝑞1, 𝑞2) and
∑
𝑞1 𝐻 (𝑞1, 𝑞2, 𝑞3) > 𝑓2(𝑞2, 𝑞3), so that we can set 𝐻′ equal to 𝐻 except that

𝐻′(𝑞1, 𝑞2, 𝑞3) = 𝐻 (𝑞1, 𝑞2, 𝑞3) − 1.
To find 𝑞1, 𝑞2 and 𝑞3, we prove the following statement:

For all ℎ : 𝑄3 → N#, 𝑔1 : 𝑄2 → N# and 𝑔2 : 𝑄2 → N# such that
∑
𝑞3 ℎ(𝑞1, 𝑞2, 𝑞3) ⩾

𝑔1(𝑞1, 𝑞2) for all 𝑞1, 𝑞2,
∑
𝑞1 ℎ(𝑞1, 𝑞2, 𝑞3) ⩾ 𝑔2(𝑞2, 𝑞3) for all 𝑞2, 𝑞3 and∑

𝑞1,𝑞2,𝑞3 ℎ(𝑞1, 𝑞2, 𝑞3) >
∑
𝑞1,𝑞2 𝑔1(𝑞1, 𝑞2) +

∑
𝑞2,𝑞3 𝑔2(𝑞2, 𝑞3), there are 𝑞1, 𝑞2 and

𝑞3 such that
∑
𝑞3 ℎ(𝑞1, 𝑞2, 𝑞3) > 𝑔1(𝑞1, 𝑞2) and

∑
𝑞1 ℎ(𝑞1, 𝑞2, 𝑞3) > 𝑔2(𝑞2, 𝑞3).

The proof is by induction on
∑
𝑞1,𝑞2,𝑞3 ℎ(𝑞1, 𝑞2, 𝑞3). The base case is when

∑
𝑞1,𝑞2,𝑞3 ℎ(𝑞1, 𝑞2, 𝑞3)

= 1 and 𝑔1 and 𝑔2 only have value 0 and #, in which case it suffices to take 𝑞1, 𝑞2, 𝑞3

such that ℎ(𝑞1, 𝑞2, 𝑞3) = 1. For the induction step, let 𝑟1, 𝑟2, 𝑟3 such that ℎ(𝑟1, 𝑟2, 𝑟3) > 0.
This implies that 𝑔1(𝑟1, 𝑟2), 𝑔2(𝑟2, 𝑟3) ∈ N. If 𝑔1(𝑟1, 𝑟2) = 0 and 𝑔2(𝑟2, 𝑟3) = 0 then we let
(𝑞1, 𝑞2, 𝑞3) := (𝑟1, 𝑟2, 𝑟3) and we are done. Assume now that 𝑔1(𝑟1, 𝑟2) > 0 or 𝑔2(𝑟2, 𝑟3) > 0.
Let ℎ′ equal to ℎ except that ℎ′(𝑟1, 𝑟2, 𝑟3) = ℎ(𝑟1, 𝑟2, 𝑟3) − 1; let 𝑔′1 equal to 𝑔1 except
if 𝑔1(𝑟1, 𝑟2) > 0 in which case 𝑔′1(𝑟1, 𝑟2) = 𝑔1(𝑟1, 𝑟2) − 1; let 𝑔′2 equal to 𝑔2 except if
𝑔2(𝑟2, 𝑟3) > 0 in which case 𝑔′2(𝑟2, 𝑟3) = 𝑔2(𝑟2, 𝑟3) − 1. For every (𝑞1, 𝑞2) ≠ (𝑟1, 𝑟2),
we have

∑
𝑞3 ℎ

′(𝑞1, 𝑞2, 𝑞3) =
∑
𝑞3 ℎ(𝑞1, 𝑞2, 𝑞3) ⩾ 𝑔1(𝑞1, 𝑞2) = 𝑔′1(𝑞1, 𝑞2). Moreover, if

𝑔1(𝑟1, 𝑟2) = 0 then 𝑔′1(𝑟1, 𝑟2) = 0 and
∑
𝑞3 ℎ

′(𝑟1, 𝑟2, 𝑞3) ∈ N so that
∑
𝑞3 ℎ

′(𝑟1, 𝑟2, 𝑞3) ⩾
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0 = 𝑔′1(𝑟1, 𝑟2). If 𝑔1(𝑟1, 𝑟2) > 0 then 𝑔′1(𝑟1, 𝑟2) = 𝑔1(𝑟1, 𝑟2) − 1 and
∑
𝑞3 ℎ

′(𝑟1, 𝑟2, 𝑞3) =∑
𝑞3 ℎ(𝑟1, 𝑟2, 𝑞3) − 1 ⩾ 𝑔1(𝑟1, 𝑟2) − 1 = 𝑔′1(𝑟1, 𝑟2). Overall, we have proved that, for all 𝑞1, 𝑞2,∑
𝑞3 ℎ

′(𝑞1, 𝑞2) ⩾ 𝑔′1(𝑞1, 𝑞2). A similar argument proves that, for all 𝑞2, 𝑞3,
∑
𝑞1 ℎ

′(𝑞1, 𝑞2, 𝑞3) ⩾
𝑔2(𝑞2, 𝑞3). Finally, by hypothesis, we have either 𝑔1(𝑟1, 𝑟2) > 0 or 𝑔2(𝑟2, 𝑟3) > 0 so that∑
𝑞1,𝑞2 𝑔

′
1(𝑞1, 𝑞2) +

∑
𝑞2,𝑞3 𝑔

′
2(𝑞2, 𝑞3) ⩽

∑
𝑞1,𝑞2 𝑔1(𝑞1, 𝑞2) +

∑
𝑞2,𝑞3 𝑔2(𝑞2, 𝑞3) − 1. Therefore,∑

𝑞1,𝑞2,𝑞3 ℎ
′(𝑞1, 𝑞2, 𝑞3) =

∑
𝑞1,𝑞2,𝑞3 ℎ(𝑞1, 𝑞2, 𝑞3) −1 ⩾

∑
𝑞1,𝑞2 𝑔1(𝑞1, 𝑞2) +

∑
𝑞2,𝑞3 𝑔2(𝑞2, 𝑞3) −1 ⩾∑

𝑞1,𝑞2 𝑔
′
1(𝑞1, 𝑞2)+

∑
𝑞2,𝑞3 𝑔

′
2(𝑞2, 𝑞3). We have proved that we may apply the induction hypothesis

on ℎ′, 𝑔′1 and 𝑔′2. By doing so, we obtain 𝑞1, 𝑞2, 𝑞3 such that
∑
𝑞3 ℎ

′(𝑞1, 𝑞2, 𝑞3) > 𝑔′1(𝑞1, 𝑞2) and∑
𝑞1 ℎ

′(𝑞1, 𝑞2, 𝑞3) > 𝑔′2(𝑞2, 𝑞3). We prove that the same holds for ℎ, 𝑔1 and 𝑔2. If (𝑞1, 𝑞2) ≠
(𝑟1, 𝑟2) then

∑
𝑞3 ℎ(𝑞1, 𝑞2, 𝑞3) =

∑
𝑞3 ℎ

′(𝑞1, 𝑞2, 𝑞3) > 𝑔′1(𝑞1, 𝑞2) = 𝑔1(𝑞1, 𝑞2). Moreover, if
(𝑞1, 𝑞2) = (𝑟1, 𝑟2), we have

∑
𝑞3 ℎ(𝑞1, 𝑞2, 𝑞3) =

∑
𝑞3 ℎ

′(𝑞1, 𝑞2, 𝑞3) + 1 > 𝑔′1(𝑞1, 𝑞2) + 1 ⩾

𝑔1(𝑞1, 𝑞2). Overall, this proves that
∑
𝑞3 ℎ(𝑞1, 𝑞2, 𝑞3) > 𝑔1(𝑞1, 𝑞2); a similar argument proves

that
∑
𝑞1 ℎ(𝑞1, 𝑞2, 𝑞3) > 𝑔2(𝑞2, 𝑞3). This concludes the induction.

Applying the property to𝐻, 𝑓1 and 𝑓2 allow to obtain 𝑞1, 𝑞2, 𝑞3 such that
∑
𝑞3 𝐻 (𝑞1, 𝑞2, 𝑞3) >

𝑓1(𝑞1, 𝑞2) and
∑
𝑞1 𝐻 (𝑞1, 𝑞2, 𝑞3) > 𝑓2(𝑞2, 𝑞3), so that we can set 𝐻′ equal to 𝐻 except that

𝐻′(𝑞1, 𝑞2, 𝑞3) = 𝐻 (𝑞1, 𝑞2, 𝑞3) − 1. We then let 𝑓 ′ : (𝑞1, 𝑞2) ↦→ 𝐻′(𝑞1, 𝑞2, 𝑞3); 𝐻′ is a witness
function that ( 𝑓 ′, ℓ1, ℓ3) ∈ tf1 ⊗ tf2, but ( 𝑓 ′, ℓ1, ℓ3) ⪯ tf, contradicting minimality of tf in
tf1 ⊗ tf2. □

Lemma 3.15. For all 𝑇 ⊆ F upward-closed for ⪯, F0 ⊗ 𝑇 = 𝑇 ⊗ F0 = 𝑇 .

Proof. Let𝑇 ⊆ F0 be an upward-closed set of transfer flows. For every ℓ ∈ L, let tfℓ := ( 𝑓0, ℓ, ℓ)
with 𝑓0 as defined above. We trivially have tfℓ ∈ F0 for all ℓ ∈ L. Let tf = ( 𝑓 , ℓ, ℓ′) ∈ 𝑇 . We
claim that tf ∈ tfℓ⊗ tf. Indeed, the control locations match and, for the witness function, it suffices
to let 𝐻 : 𝑄3 → N# such that 𝐻 (𝑞1, 𝑞2, 𝑞3) = # when 𝑞1 ≠ 𝑞2 and 𝐻 (𝑞1, 𝑞1, 𝑞3) = 𝑓 (𝑞1, 𝑞3)
for all 𝑞1, 𝑞3 ∈ 𝑄. With a similar argument, tf ∈ tf ⊗ 𝑓ℓ′ . We have proved that 𝑇 ⊆ F0 ⊗ 𝑇 and
𝑇 ⊆ 𝑇 ⊗ F0.

Let now tf0 ∈ F0 and tf′ ∈ tf0 ⊗ tf. We must have tf′ = ( 𝑓 ′, ℓ, ℓ′) for some 𝑓 ′ : 𝑄2 → N#. Let
𝐻 : 𝑄3 → N# be a witness function that tf′ ∈ tf0 ⊗ tf. We must have 𝐻 (𝑞1, 𝑞2, 𝑞3) = # whenever
𝑞1 ≠ 𝑞2, so that 𝑓 ′(𝑞1, 𝑞3) = 𝐻 (𝑞1, 𝑞1, 𝑞3) for all 𝑞1, 𝑞3 ∈ 𝑄. Moreover,

∑
𝑞1 𝐻 (𝑞1, 𝑞2, 𝑞3) ⩾

𝑓 (𝑞2, 𝑞3) for all 𝑞1, 𝑞2, 𝑞3 ∈ 𝑄 therefore 𝐻 (𝑞1, 𝑞1, 𝑞3) ⩾ 𝑓 (𝑞1, 𝑞3) for all 𝑞1, 𝑞3 ∈ 𝑄. This
proves that tf ⪯ tf′ so that, because 𝑇 is upward-closed, tf′ ∈ 𝑇 . We have proved that F0 ⊗𝑇 ⊆ 𝑇 ;
a similar argument proves that 𝑇 ⊗ F0 ⊆ 𝑇 . □
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3.7.2 Proof of 𝜔-monotonicity

Lemma 3.26. (𝐷𝑘 )𝑘⩽𝐿 is 𝜔-monotone.

This subsection is devoted to proving Lemma 3.26. Let 𝑘 ⩾ 0, let 𝐼𝑘+1 ⊆ 𝐷𝑘+1 be a proper
ideal at step 𝑘 + 1. Let ®𝑣𝑘+1 ∈ N𝑑

𝜔 be the vector representing 𝐼𝑘+1. Because 𝐼𝑘+1 is proper,
𝐼𝑘+1 ⊈ 𝐷𝑘+2.

Lemma 3.49. 𝐼𝑘+1 ∩ (𝜒(T 𝑘+2) \ 𝜒(T⩽𝑘+1)) ≠ ∅.

Proof. We know that 𝐼𝑘+1 ∩ (𝑈𝑘+2 \𝑈𝑘+1) ≠ ∅ because 𝐼𝑘+1 is a proper ideal at step 𝑘 + 1. Let
®𝑣 ∈ 𝐼𝑘+1 ∩ (𝑈𝑘+2 \ 𝑈𝑘+1). Because ®𝑣 ∈ 𝑈𝑘+2, there is ®𝑢 ∈ 𝜒(T⩽𝑘+2) ∪ 𝑉0 such that ®𝑢 ⩽× ®𝑣.
We have ®𝑢 ∉ 𝑉0 as it would otherwise imply that ®𝑣 ∈ 𝑈𝑘+1, therefore ®𝑢 ∈ 𝜒(T⩽𝑘+2). Also,
®𝑢 ∉ 𝜒(T⩽𝑘+1) as it would otherwise imply that ®𝑣 ∈ 𝑈𝑘+1. Because 𝐼𝑘+1 is downward-closed,
®𝑢 ∈ 𝐼𝑘+1, so that ®𝑢 ∈ 𝐼𝑘+1 ∩ (𝜒(T 𝑘+2) \ 𝜒(T⩽𝑘+1)). □

Given a set 𝐼 ⊆ N𝑑 of vectors and 𝑡 ∈ Tmin, let Pre𝑡 (𝐼) be the set of vectors ®𝑣 such that there
are transfer flows tf𝐼 ∈ F , tf®𝑣 ∈ tf𝐼 ⊗ 𝑡 with ®𝑣 ∈ 𝜒(tf®𝑣) and 𝜒(tf𝐼) ⊆ 𝐼.

Lemma 3.50. For all 𝑡 ∈ Tmin, Pre𝑡 (𝐼𝑘+1) ⊆ 𝐷𝑘 .

Proof. Suppose by contradiction that we have ®𝑣 ∈ Pre𝑡 (𝐼𝑘+1) ∩𝑈𝑘 . There are tf𝑘 , tf𝑘+1 such that
®𝑣 ∈ 𝜒(tf𝑘 ) and 𝜒(tf𝑘+1) ⊆ 𝐼𝑘+1. In particular ®𝑣 ∈ 𝜒(F )∩𝑈𝑘 hence ®𝑣 ∈ 𝜒(T⩽𝑘 ) by Lemma 3.21.
By strong injectivity (Lemma 3.20) this implies that tf𝑘 ∈ T⩽𝑘 , so that tf𝑘+1 ∈ T⩽𝑘+1. Therefore,
𝜒(tf𝑘+1) ∩ 𝐼𝑘+1 ≠ ∅ but 𝜒(tf𝑘+1) ⊆ 𝜒(T⩽𝑘+1) ⊆ 𝑈𝑘+1, which contradicts 𝐼𝑘+1 ⊆ 𝐷𝑘+1. □

Lemma 3.51. There is 𝑡 ∈ Tmin such that Pre𝑡 (𝐼𝑘+1) ∩𝑈𝑘+1 ≠ ∅.

Proof. By Lemma 3.49, there is ®𝑣 ∈ 𝐼𝑘+1 ∩ (𝜒(T 𝑘+2) \ 𝜒(T⩽𝑘+1)). Let tf = ( 𝑓 , ℓ, ℓ′) ∈ T 𝑘+2

such that ®𝑣 ∈ 𝜒(tf). Because ®𝑣 ∉ 𝜒(T⩽𝑘+1), tf ∉ T⩽𝑘+1. Also, 𝜒(tf) ⊆ 𝐼𝑘+1. Indeed, by
Lemma 3.21, 𝜒(tf) ∩𝑈𝑘+1 ⊆ 𝜒(T⩽𝑘+1) but 𝜒(tf) ∩ 𝜒(T⩽𝑘+1) = ∅ by strong injectivity, so that
𝜒(tf) ⊆ 𝐷𝑘+1. This means that the representing vector of 𝐼𝑘+1 must have value 𝜔 on every 𝑖 such
that 𝑓 (index−1(𝑖)) = # by maximality of 𝐼𝑘+1 in 𝐷𝑘+1, so that ®𝑣 ∈ 𝐼𝑘+1 implies that ®𝑢 ∈ 𝐼𝑘+1 for
every ®𝑢 ∈ 𝜒(tf). Overall, we have proved that 𝜒(tf) ⊆ 𝐼𝑘+1.

Because tf ∈ T 𝑘+2, there is 𝑡 ∈ Tmin, tf′ ∈ T 𝑘+1 such that tf ∈ tf′ ⊗ 𝑡. By definition of
Pre𝑡 (𝐼𝑘+1), 𝜒(tf′) ⊆ Pre𝑡 (𝐼𝑘+1). Also, 𝜒(tf′) ⊆ 𝜒(T⩽𝑘+1) ⊆ 𝑈𝑘+1, so that 𝜒(tf′) ⊆ Pre𝑡 (𝐼𝑘+1) ∩
𝑈𝑘+1. By Lemma 3.20, 𝜒(tf′) ≠ ∅ therefore Pre𝑡 (𝐼𝑘+1) ∩𝑈𝑘+1 ≠ ∅. □
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In all the following, we fix 𝑡 ∈ Tmin such that Pre𝑡 (𝐼𝑘+1) ∩ 𝑈𝑘+1 ≠ ∅. By applying the
definition, there are tf𝑘 , tf𝑘+1 such that tf𝑘+1 ∈ tf𝑘 ⊗ 𝑡, 𝜒(tf𝑘 ) ⊆ Pre𝑡 (𝐼𝑘+1) ∩𝑈𝑘+1 and 𝜒(tf𝑘+1) ⊆
𝐼𝑘+1. We write tf𝑘+1 = ( 𝑓𝑘+1, ℓ𝑘+1, ℓ

′
𝑘+1). Also, let 𝐸 ⊆ J1, 𝑑K be the set of components at which

the representing vector of 𝐼𝑘+1 is equal to𝜔. We know that 𝑛2+1, 𝑛2+2 ∉ 𝐸 as it would otherwise
imply that 𝑉0 ∩ 𝐷𝑘 ≠ ∅, which contradicts definition of 𝑈𝑘 3. This means that 𝐸 ⊆ J1, 𝑛2K. Let
𝑆 := index−1(𝐸); 𝑆 is the set of pairs of states (𝑞, 𝑞′) such that index(𝑞, 𝑞′) ∈ 𝐸 . For every
𝑗 ∈ N, for every transfer flow tf = ( 𝑓 , ℓ, ℓ′), we denote by tf( 𝑗) the transfer flow ( 𝑓 ( 𝑗) , ℓ, ℓ′)
where 𝑓 ( 𝑗) is such that, for all 𝑞, 𝑞′ ∈ 𝑄:

— if (𝑞, 𝑞′) ∉ 𝑆 then 𝑓 ( 𝑗) (𝑞, 𝑞′) = 𝑓 (𝑞, 𝑞′);

— if (𝑞, 𝑞′) ∈ 𝑆 and 𝑓 (𝑞, 𝑞′) ≠ # then 𝑓 ( 𝑗) (𝑞, 𝑞′) = max( 𝑓 (𝑞, 𝑞′), 𝑗);

— if (𝑞, 𝑞′) ∈ 𝑆 and 𝑓 (𝑞, 𝑞′) = # then 𝑓 ( 𝑗) (𝑞, 𝑞′) = #.

Intuitively, tf( 𝑗) is equal to tf except that, in all components in 𝐸 where tf does not have value
#, the values will tend to infinity as 𝑗 grows. We define a similar notion for vectors. For every
𝑗 ∈ N, for every vector ®𝑣, we let ®𝑣 ( 𝑗) be the vector defined by, for all 𝑖 ∈ J1, 𝑑K:

— if 𝑖 ∈ 𝐸 and ®𝑣 ( 𝑗) (𝑖) = max(®𝑣(𝑖), 𝑗)

— if 𝑖 ∉ 𝐸 then ®𝑣 ( 𝑗) (𝑖) = ®𝑣(𝑖).

We connect the definition of ®𝑣 ( 𝑗) and of tf( 𝑗) with the following lemma:

Lemma 3.52. Let tf ∈ F and ®𝑣 ∈ 𝜒(tf). For all 𝑗 ∈ N, ®𝑣 ( 𝑗) ∈ 𝜒(tf( 𝑗)).

Proof. Let 𝑗 ∈ N, tf = ( 𝑓 , ℓ, ℓ′) and ®𝑣 ∈ 𝜒(tf). Let 𝑖 ∈ J1, 𝑛2K and (𝑞, 𝑞′) := index−1(𝑖). First,
if 𝑖 ∉ 𝐸 then (𝑞, 𝑞′) ∉ 𝑆, so that ®𝑣 ( 𝑗) (𝑖) = ®𝑣(𝑖) = 𝑓 (𝑞, 𝑞′) = 𝑓 ( 𝑗) (𝑞, 𝑞′). Suppose now that
𝑖 ∈ 𝐸 . If 𝑓 (𝑞, 𝑞′) = # then 𝑓 ( 𝑗) (𝑞, 𝑞′) = # and the value at component 𝑖 in ®𝑣 ( 𝑗) plays no role
in whether ®𝑣 ( 𝑗) ∈ 𝜒(tf( 𝑗)). If 𝑓 (𝑞, 𝑞′) ≠ # then 𝑓 (𝑞, 𝑞′) = ®𝑣(𝑖) so that ®𝑣 ( 𝑗) (𝑖) = max(®𝑣(𝑖), 𝑗) =
max( 𝑓 (𝑞, 𝑞′), 𝑗) = 𝑓 ( 𝑗) (𝑞, 𝑞′), concluding the proof. □

By applying this construction to tf𝑘+1, we obtain a sequence that remains in 𝜒−1(𝐼𝑘+1):

Lemma 3.53. For all 𝑗 , we have 𝜒(tf( 𝑗)
𝑘+1) ⊆ 𝐼𝑘+1.

Proof. By definition of tf𝑘+1, 𝜒(tf𝑘+1) ⊆ 𝐼𝑘+1. Let ®𝑣 𝑗 ∈ 𝜒(tf( 𝑗)𝑘+1). Let ®𝑣 equal to ®𝑣 𝑗 except that
®𝑣(index(𝑞, 𝑞′)) = 𝑓 (𝑞, 𝑞′) for all 𝑞, 𝑞′ ∈ 𝑆 such that 𝑓 (𝑞, 𝑞′) ≠ #. We obtain that ®𝑣 ∈ 𝜒(tf𝑘+1)
so that ®𝑣 ∈ 𝐼𝑘+1. Observe that, for such values of 𝑞 and 𝑞′, ®𝑣 𝑗 (𝑞, 𝑞′) = max( 𝑗 , 𝑓 (𝑞, 𝑞′)), so that
®𝑣 ⩽× ®𝑣 𝑗 . Moreover, ®𝑣 𝑗 is equal to ®𝑣 on components that are not in 𝐸 , because by definition

3. In fact, this argument is the reason why we enforced that 𝑉0 ⊆ 𝑈𝑘 .
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𝐸 = index(𝑆). By definition of 𝐸 , the representing vector of 𝐼𝑘+1 is equal to𝜔 on all components
in 𝐸 , so that membership in 𝐸 is not sensitive to the values at these components; this proves that
®𝑣 𝑗 ∈ 𝐼𝑘+1. □

The following lemma is where the magic really happens:

Lemma 3.54. For all 𝑗 ∈ N, there is 𝑚 ∈ N such that tf(𝑚)
𝑘+1 ∈ tf( 𝑗)

𝑘
⊗ 𝑡.

Proof. We proceed by induction on 𝑗 . For 𝑗 = 0, tf(0)
𝑘

= tf𝑘 , tf(0)
𝑘+1 = tf𝑘+1 and indeed tf𝑘+1 ∈ tf𝑘 ⊗ 𝑡

so that the property holds by letting 𝑚 = 0.
We suppose that the property is true for 𝑗 , and we prove it for 𝑗 +1. By induction hypothesis,

there is 𝑚 such that tf(𝑚)
𝑘+1 ∈ tf( 𝑗)

𝑘
⊗ 𝑡; let 𝐻 𝑗 : 𝑄3 → N# be a witness function of that. We build a

function 𝐻 𝑗+1 : 𝑄3 → N# as follows. For every (𝑞1, 𝑞2) ∈ 𝑄2:

— if 𝑓 ( 𝑗)
𝑘

(𝑞1, 𝑞2) ≠ 𝑗 or 𝑓 ( 𝑗+1)
𝑘

(𝑞1, 𝑞2) ≠ 𝑗 + 1, we set 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞3) := 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞3) for
all 𝑞3;

— if 𝑓 ( 𝑗)
𝑘

(𝑞1, 𝑞2) = 𝑗 and 𝑓 ( 𝑗+1)
𝑘

(𝑞1, 𝑞2) = 𝑗 +1, we set 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞2) := 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞2) +1
and, for all 𝑞3 ≠ 𝑞2, 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞3) := 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞3).

There is a subtlety in the second case: it could be that 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞2) = #, in which case we set
𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞2) = 1 (recall that # + 1 = 1). We therefore do not always have 𝐻 𝑗+1 ⩾ 𝐻 𝑗 . Let
𝑓 : (𝑞1, 𝑞3) ↦→

∑
𝑞2 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞3). We claim that ( 𝑓 , ℓ𝑘+1, ℓ

′
𝑘+1) ∈ tf( 𝑗+1)

𝑘
⊗ 𝑡, with 𝐻 𝑗+1 as

witness function.
First, we prove that, for all 𝑞1, 𝑞2,

∑
𝑞3 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞3) ⩾ 𝑓

( 𝑗+1)
𝑘

(𝑞1, 𝑞2). Let 𝑞1, 𝑞2 ∈ 𝑄. Be-
cause 𝐻 𝑗 is a witness function that tf(𝑚)

𝑘+1 ∈ tf( 𝑗)
𝑘

⊗ 𝑡, we have
∑
𝑞3 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞3) ⩾ 𝑓

( 𝑗)
𝑘

(𝑞1, 𝑞2).
If 𝑓

( 𝑗)
𝑘

(𝑞1, 𝑞2) ≠ 𝑗 or 𝑓
( 𝑗+1)
𝑘

(𝑞1, 𝑞2) ≠ 𝑗 + 1, we have 𝑓
( 𝑗+1)
𝑘

(𝑞1, 𝑞2) = 𝑓
( 𝑗)
𝑘

(𝑞1, 𝑞2) and
𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞3) = 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞3) for all 𝑞3, so that

∑
𝑞3 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞3) =

∑
𝑞3 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞3) ⩾

𝑓
( 𝑗)
𝑘

(𝑞1, 𝑞2) = 𝑓
( 𝑗+1)
𝑘

(𝑞1, 𝑞2). If 𝑓 ( 𝑗)
𝑘

(𝑞1, 𝑞2) = 𝑗 and 𝑓 ( 𝑗+1)
𝑘

(𝑞1, 𝑞2) = 𝑗+1, then
∑
𝑞3 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞3) ⩾

𝑗 and
∑
𝑞3 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞3) =

∑
𝑞3 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞3) + 1 ⩾ 𝑗 + 1.

Let 𝑡 =: ( 𝑓𝑡 , ℓ𝑡 , ℓ′𝑡 ). We now prove that, for all 𝑞2, 𝑞3,
∑
𝑞1 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞3) ⩾ 𝑓𝑡 (𝑞2, 𝑞3). We

know that this is true for 𝐻 𝑗 . For every 𝑞2 ≠ 𝑞3, we have
∑
𝑞1 𝐻 𝑗+1(𝑞2, 𝑞3) =

∑
𝑞1 𝐻 𝑗 (𝑞2, 𝑞3) ⩾

𝑓𝑡 (𝑞2, 𝑞3). For every 𝑞2, we have either
∑
𝑞1 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞2) =

∑
𝑞1 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞2) or∑

𝑞1 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞2) =
∑
𝑞1 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞2) + 1. By idle-compliance, we have 𝑓𝑡 (𝑞2, 𝑞2) ≠ # so

that
∑
𝑞1 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞2) ≠ #, therefore

∑
𝑞1 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞2) ⩾

∑
𝑞1 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞2) ⩾ 𝑓𝑡 (𝑞2, 𝑞2).

Note that we need idle-compliance here: if we had 𝑓𝑡 (𝑞2, 𝑞2) = # then we would have∑
𝑞1 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞2) = # but

∑
𝑞1 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞2) = 1 so that

∑
𝑞1 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞2) would be

incomparable with 𝑓𝑡 (𝑞2, 𝑞2).
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It remains to prove that 𝐻 𝑗+1 is a witness function that tf𝑘+1(𝑚′) ∈ tf( 𝑗+1)
𝑘

⊗ 𝑡 for some 𝑚′.
To do that, let 𝑓 : (𝑞1, 𝑞3) ↦→ ∑

𝑞2 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞3) and tf′𝑘+1 := ( 𝑓 , ℓ𝑘+1, ℓ
′
𝑘+1). By the above

arguments, we know that tf′𝑘+1 ∈ tf( 𝑗+1)
𝑘

⊗ 𝑡. It therefore suffices to prove that there exists 𝑚′ such
that ( 𝑓 , ℓ𝑘+1, ℓ

′
𝑘+1) ⪯ ( 𝑓 (𝑚

′)
𝑘+1 , ℓ𝑘+1, ℓ

′
𝑘+1) = tf(𝑚

′)
𝑘+1 . Indeed, this would imply that tf(𝑚

′)
𝑘+1 ∈ tf( 𝑗+1)

𝑘
⊗ 𝑡

by Lemma 3.9.
We now prove that there is𝑚′ ∈ N such that tf′𝑘+1 ⪯ tf(𝑚

′)
𝑘+1 . Let 𝑞1, 𝑞3 ∈ 𝑄. If (𝑞1, 𝑞3) ∉ 𝑆 then

we must have 𝑓 ( 𝑗)
𝑘

(𝑞1, 𝑞2) = 𝑓
( 𝑗+1)
𝑘

(𝑞1, 𝑞2) so that, by definition of 𝐻 𝑗+1,
∑
𝑞2 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞3) =∑

𝑞2 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞3) = 𝑓
(𝑚)
𝑘+1 (𝑞1, 𝑞3) = 𝑓

(𝑚′)
𝑘+1 (𝑞1, 𝑞3) for all 𝑚′. Suppose now that (𝑞1, 𝑞3) ∈ 𝑆.

There are two cases: 𝑓𝑘+1(𝑞1, 𝑞3) = # and 𝑓𝑘+1(𝑞1, 𝑞3) ≠ #.
Let (𝑞1, 𝑞3) ∈ 𝑆 such that 𝑓𝑘+1(𝑞1, 𝑞3) = #. We must prove that 𝑓 (𝑞1, 𝑞3) = #. Recall that

we have tf𝑘+1 ∈ tf𝑘 ⊗ 𝑡. Upon defining the compositional product ⊗ in Definition 3.8, we have
made sure that tf𝑘+1 ∈ tf𝑘 ⊗ 𝑡 implies that, for all 𝑞, 𝑞′, if 𝑓𝑘+1(𝑞, 𝑞′) = # then 𝑓𝑘 (𝑞, 𝑞′) = #.
This proves that 𝑓𝑘 (𝑞1, 𝑞3) = #. By definition of 𝑓 ( 𝑗+1)

𝑘
, this implies that 𝑓 ( 𝑗+1)

𝑘
(𝑞1, 𝑞3) =

#. In particular, 𝑓 ( 𝑗+1)
𝑘

(𝑞1, 𝑞3) ≠ 𝑗 + 1 so that, by definition of 𝐻 𝑗+1, for all 𝑞2, we have
𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞3) = 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞3) for all 𝑞2. However,

∑
𝑞2 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞3) = 𝑓

(𝑚)
𝑘+1 (𝑞1, 𝑞3) = #,

so that 𝑓 (𝑞1, 𝑞3) =
∑
𝑞2 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞3) =

∑
𝑞2 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞3) = #.

Let (𝑞1, 𝑞2) ∈ 𝑆 such that 𝑓𝑘+1(𝑞1, 𝑞3) ≠ #; we have 𝑓 (𝑚
′)

𝑘+1 (𝑞1, 𝑞3) = max( 𝑓𝑘+1(𝑞1, 𝑞3), 𝑚′)
for all 𝑚′. Also, 𝑓 (𝑚)

𝑘+1 (𝑞1, 𝑞3) ≠ # therefore
∑
𝑞2 𝐻 𝑗 (𝑞1, 𝑞2, 𝑞3) ≠ #. By definition of 𝐻 𝑗+1,

this also implies
∑
𝑞2 𝐻 𝑗+1(𝑞1, 𝑞2, 𝑞3) ≠ # so that 𝑓 (𝑞1, 𝑞3) ≠ #. For 𝑚′ ⩾ 𝑓 (𝑞1, 𝑞3), we have

𝑓 (𝑞1, 𝑞3) ⩽ 𝑓
(𝑚′)
𝑘+1 (𝑞1, 𝑞3).

Let 𝑚′ large enough so that, for every 𝑞1, 𝑞3 such that 𝑓 (𝑞1, 𝑞3) ≠ #, 𝑚′ ⩾ 𝑓 (𝑞1, 𝑞3). We
have proved that tf′𝑘+1 ⪯ tf(𝑚

′)
𝑘+1 . This implies that tf(𝑚

′)
𝑘+1 ∈ tf( 𝑗+1)

𝑘
⊗ 𝑡, concluding the induction. □

We now claim that, for all 𝑗 ∈ N, 𝜒(tf( 𝑗)
𝑘
) ∩ 𝑈𝑘 = ∅. Indeed, suppose by contradiction

that this is not the case: let 𝑗 such that 𝜒(tf( 𝑗)
𝑘
) ∩𝑈𝑘 ≠ ∅. By Lemma 3.21 and Lemma 3.20,

this implies that tf( 𝑗)
𝑘

∈ T⩽𝑘 . We apply Lemma 3.54 to obtain 𝑚 such that tf(𝑚)
𝑘+1 ∈ tf( 𝑗)

𝑘
⊗ 𝑡, so

that tf(𝑚)
𝑘+1 ∈ T⩽𝑘+1. We have 𝜒(tf(𝑚)

𝑘+1) ⊆ 𝑈𝑘+1, but by Lemma 3.53 𝜒(tf(𝑚)
𝑘+1) ⊆ 𝐼𝑘+1. Because

𝜒(tf𝑘+1) (𝑚) is not empty by Lemma 3.20, this contradicts that 𝐼𝑘+1 ⊆ 𝐷𝑘+1.
We have proved that 𝜒(tf( 𝑗)

𝑘
) ⊆ 𝐷𝑘 for every 𝑗 . Recall that our objective is to exhibit an ideal

𝐼𝑘 proper at step 𝑘 whose representing vector is equal to 𝜔 at any component in 𝐸 . Let ®𝑣𝑘+1 be
an arbitrary vector in 𝜒(tf𝑘+1), and ®𝑣𝑘 be an arbitrary vector of 𝜒(tf𝑘 ).

Lemma 3.55. For every 𝑗 ∈ N:

— ®𝑣 ( 𝑗)
𝑘+1 ∈ 𝐼𝑘+1,

— ®𝑣 ( 𝑗)
𝑘

∈ 𝑈𝑘+1 \𝑈𝑘 .
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3.7. Technical Proofs

Proof. Let 𝑗 ∈ N. By Lemma 3.52, ®𝑣 ( 𝑗)
𝑘

∈ 𝜒(tf( 𝑗)
𝑘
) and ®𝑣 ( 𝑗)

𝑘+1 ∈ 𝜒(tf( 𝑗)
𝑘+1). By Lemma 3.53, this

directly proves that ®𝑣 ( 𝑗)
𝑘+1 ∈ 𝐼𝑘+1.

We have 𝜒(tf𝑘 ) ⊆ 𝑈𝑘+1 therefore 𝑣𝑘 ∈ 𝑈𝑘+1, thus ®𝑣 ( 𝑗)
𝑘

∈ 𝑈𝑘+1 because𝑈𝑘+1 is upward-closed.
Suppose by contradiction that we have ®𝑣 ( 𝑗)

𝑘
∈ 𝑈𝑘 . This would imply that 𝜒(tf( 𝑗)

𝑘
) ∩𝑈𝑘 ≠ ∅; by

Lemma 3.21 and Lemma 3.20, this implies that tf( 𝑗)
𝑘

∈ T⩽𝑘 . By Lemma 3.54, there is 𝑚 such
that tf(𝑚)

𝑘+1 ∈ tf( 𝑗)
𝑘

⊗ 𝑡, so that tf(𝑚)
𝑘+1 ∈ T⩽𝑘+1. This implies that 𝜒(tf(𝑚)

𝑘+1) ⊆ 𝑈𝑘+1, which contradicts
Lemma 3.53 since 𝐼𝑘+1 ⊆ 𝐷𝑘+1. □

Let ®𝑢𝑘 be the vector such that, for all 𝑖 ∈ J1, 𝑑K, ®𝑢𝑘 (𝑖) := 𝜔 if 𝑖 ∈ 𝐸 and ®𝑢𝑘 (𝑖) := ®𝑣𝑘 (𝑖) if
𝑖 ∉ 𝐸 . Let 𝐽 be the ideal represented by ®𝑢𝑘 , i.e., 𝐽 := {®𝑢 ∈ N𝑑 | ®𝑢 ⩽× ®𝑢𝑘 }. In particular, 𝐽
contains vector ®𝑣 ( 𝑗)

𝑘
for every 𝑗 ∈ N, which are all in𝑈𝑘+1 \𝑈𝑘 by Lemma 3.55. This implies that

𝐽 ⊈ 𝐷𝑘+1. We now prove that 𝐽 ⊆ 𝐷𝑘 . Let ®𝑢 ∈ 𝐽, and let 𝑗 := ∥ ®𝑢∥. We have ®𝑢 ⩽× ®𝑣 ( 𝑗)
𝑘

: for all
𝑖 ∉ 𝐸 , ®𝑢(𝑖) ⩽ ®𝑢𝑘 (𝑖) = ®𝑣 ( 𝑗)

𝑘
(𝑖), and for 𝑖 ∈ 𝐸 , ®𝑢𝑘 (𝑖) ⩽ ∥ ®𝑢∥ = 𝑗 ⩽ ®𝑣 ( 𝑗)

𝑘
(𝑖). Because ®𝑣 ( 𝑗)

𝑘
∈ 𝐷𝑘 by

Lemma 3.55, we have proved that ®𝑣 ∈ 𝐷𝑘 . That being true for all ®𝑣 ∈ 𝐽, this proves that 𝐽 ⊆ 𝐷𝑘 .
In particular, 𝐽 is contained in some ideal 𝐼𝑘 in the decomposition of 𝐷𝑘 ; because 𝐽 ⊈ 𝐷𝑘+1, 𝐼𝑘
is proper at step 𝑘 . The representing vector of 𝐽 is equal to 𝜔 on every 𝑖 ∈ 𝐸 , therefore the same
is true for the representing vector of 𝐼𝑘 , concluding the proof of Lemma 3.26.
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Chapter 4

ROUND-BASED ASMS

4.1 Introduction

A classic workaround to impossibility results for asynchronous consensus [FLP85; LA87;
DDS87] is to rely on randomization and to require termination with probability 1 but not in every
execution. Randomized consensus algorithms typically work with rounds. Rounds correspond
to iterations of a for loop: each round has non-zero probability to succeed but also a non-zero
probability to fail, so that infinitely many rounds are necessary for almost-sure termination. When
the systems under consideration are asynchronous, rounds are also asynchronous: processes can
be at different rounds and there is no a priori bound in the difference of rounds between processes.
The first algorithm to work under this paradigm is Ben-Or’s algorithm [Ben83] and many others
have followed (e.g., [BT85; Bra87; AH90; CR93]).

In this thesis, we are interested in the particular case of round-based shared-memory al-
gorithms [AH90; Asp02; GR07; RS12]. The algorithm of [Asp02] is of particular interest to
us: in this algorithm, each round has its own set of registers. Therefore, the overall number of
registers is unbounded. We will present this algorithm in details in Section 4.2. We use this al-
gorithm as a motivating example to extend the (roundless) ASMS model to capture round-based
algorithms. This extension is needed, because roundless ASMS cannot encode the round values
of the processes nor the infinite set of registers. In the round-based ASMS model, each round
has its own set of registers, and processes may only interact with registers of nearby rounds.
We define round-based PRP, an adaptation of PRP from Chapter 2 to the round-based setting
where one allows for quantification over the rounds but where quantifiers cannot be nested. We
prove that this problem is PSPACE-complete. The PSPACE membership is not easy, as one
cannot guess the execution configuration by configuration. Instead, our procedure guesses the
execution footprint by footprint, where footprints correspond to the projections of the executions
onto small windows of rounds. This relies on the hypothesis that the integers constants of the
input are given in unary, a reasonable hypothesis given our motivations. If the integers constants
are encoded in binary, then we prove that round-based PRP becomes EXPSPACE-complete.
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4.2. Aspnes’ Noisy Consensus Algorithm

This chapter is organized as follows. In Section 4.2, we present in detail the algorithm from
[Asp02]. In Section 4.3, we define round-based ASMS and round-based PRP. In Section 4.4,
we present exponential lower bounds and a PSPACE-hardness result for Cover. In Section 4.5,
we provide a non-deterministic polynomial-space procedure for Cover. We extend this result
to round-based PRP in Section 4.6. In Section 4.7, we discuss the impact of unary encoding.
We conclude the chapter with some perspectives in Section 4.8. Most of the results presented
in this chapter have been published in [BMSW22; Wal23].

Related works The formal methods community has studied various approach to verification of
asynchronous round-based randomized algorithms, such as ad hoc analysis [PSL00], probabilis-
tic model checking with a fixed number of processes [KNS01; KN02] using PRISM [KNP11]
or verification in Isabelle [CDM11]. However, there is little work related to parameterized
verification of asynchronous round-based algorithms. The closest works are for parameterized
verification of round-based Byzantine agreement algorithms such as Ben-Or’s algorithm. In
[BKLW21], the authors consider a model for such algorithms in which, for non-probabilistic
properties, one may in fact consider that processes behave synchronously in rounds, so that
all processes move from round 𝑘 − 1 to round 𝑘 consecutively. This simplification, called
round-rigid adversary in [BKLW21], does not apply to our model. Another related work is
[BTW21], where round-based Byzantine agreement algorithms are abstracted into so-called
layered threshold automata, yielding an incomplete verification technique.

4.2 Aspnes’ Noisy Consensus Algorithm

We here explain in more detail the round-based consensus algorithm from [Asp02], which we
use as a guideline to define round-based ASMS. This algorithm is meant to work in a so-called
noisy environment, which is why we refer to it as Aspnes’ noisy consensus algorithm.

The pseudocode of this algorithm is given in Algorithm 2. It proceeds in asynchronous
rounds. This means that each process has a private round value, denoted 𝑘 in Algorithm 2, that
starts at 0 and only increases. Because this value is private, processes can be at different rounds
and there is no a priori bound on the round difference between pairs of processes. Processes
communicate via writing to and reading from shared registers. Each round 𝑘 has its own shared
registers: reg0 [𝑘] and reg1 [𝑘]. All registers are initialized to value ⊥, and within an execution,
their value may only be updated to ⊤. Intuitively, reg𝑖 [𝑘] = ⊤ if 𝑖 is a proposed consensus
value at round 𝑘 . The algorithm essentially consists in a race: if a process manages to get to a
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Chapter 4 – Round-Based ASMS

round high enough compared to all disagreeing processes, then it imposes its preference as the
consensus value.

1 int 𝑘 � 0, bool 𝑝 ∈ {0, 1}, (reg𝑏 [𝑘])𝑏∈{0,1},𝑘∈N all initialized to ⊥;
2 while true do
3 read from reg0 [𝑘] and reg1 [𝑘];
4 if reg0 [𝑘] = ⊤ and reg1 [𝑘] = ⊥ then 𝑝 � 0;
5 else if reg0 [𝑘] = ⊥ and reg1 [𝑘] = ⊤ then 𝑝 � 1;
6 write ⊤ to reg𝑝 [𝑘];
7 if 𝑘 > 0 then
8 read from reg1−𝑝 [𝑘−1];
9 if reg1−𝑝 [𝑘−1] = ⊥ then return 𝑝;

10 𝑘 � 𝑘+1;
Algorithm 2: Aspnes’ noisy consensus algorithm [Asp02].

We now explain the algorithm in more detail. As usual in distributed consensus algorithms,
each process starts with a preference value 𝑝. At each round, a process starts by reading the
value of the shared registers of that round (line 3). If exactly one of them is set to ⊤, the process
updates its preference 𝑝 to the corresponding value (lines 4 and 5). In all cases, it writes ⊤ to
the register of the current round that corresponds to its preference 𝑝 (line 6). Then, it reads the
register of the previous round corresponding to the opposite preference 1−𝑝 (line 8), and if it is
equal to ⊥, the process returns its preference 𝑝 for the consensus (line 9). To be able to return
its current preference value, a process must write to a register of its current round 𝑘 while no
other process has written to the register of round 𝑘−1 for the opposite value. In other words, to
decide, the process must be enough ahead, in terms of rounds, of all disagreeing processes.

In this algorithm, it is assumed that processes are not Byzantine, i.e., that they follow the
pseudocode above faithfully. There is however, one exception in that processes may crash
at any point: a process that crashes stops prematurely. A process that does not crash is
called non-faulty. The expected properties of a consensus algorithm are validity, agreement
and termination [PSL80; Asp02]. Validity expresses that if all processes start with the same
preference 𝑝, then no process can return a value different from 𝑝. Agreement expresses that
no two processes can return different values. Finally, termination expresses that eventually
all non-faulty processes should return a value. Because Aspnes’ noisy consensus algorithm
consists in a race between processes, one cannot guarantee termination of every execution.
The termination of Aspnes’ algorithm requires some additional constraints on the scheduler,
which is why the algorithm is designed to work in a so-called noisy environment [Asp02] where
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𝑞0

𝐴0

𝐴1

𝐵0

𝐵1

𝐶0

𝐶1

𝐷0

𝐷1

𝑅0

𝑅1

𝐸0

𝐸1

read0 (⊤)

read1 (⊤)

read0 (⊥)

read1(⊥)

read1(⊥)

read0 (⊥)
read1 (⊤)

read0 (⊤)

write0 (⊤)

write1 (⊤)

𝑘 = 0 ∨ read−1
1 (⊤)

𝑘 = 0 ∨ read−1
0 (⊤)

incr

incr

𝑘 ⩾ 1 ∧ read−1
1 (⊥)

𝑘 ⩾ 1 ∧ read−1
0 (⊥)

𝑝 = 0

𝑝 = 1

Figure 4.1 – A round-based protocol PAsp for Aspnes’ noisy consensus algorithm. Since the
first round (𝑘 = 0) slightly differs from the others, to avoid duplication of the state space, we
allow for guards related to whether 𝑘 = 0 or 𝑘 ⩾ 1 in the transition labels.

the relative computation speeds of the processes tend to vary. This is abstracted into a stochastic
scheduler. In this case, termination is proved to occur almost surely under the assumptions that
the stochastic scheduler is continuous and satisfies some reasonable properties [Asp02]. This
makes termination a probabilistic property; such properties are the topic of Chapter 5. In the
current chapter, we focus on non-probabilistic properties such as validity and agreement, which
must hold unconditionally, i.e., regardless of the choices made by the scheduler. The objective
of this chapter is to study problems related to the automated verification of such properties.

For a single round – corresponding to one iteration of the while loop of line 2 – the system
can be seen as a roundless ASMS so that the techniques from Chapter 2 apply. If the while loop
was guarded by a bound on 𝑘 , for example if it was while 𝑘 ⩽ 𝐾 for some constant 𝐾 , then
one could model the algorithm as a roundless ASMS with 𝑂 (𝐾) states and 𝑂 (𝐾) registers. In
general, such an encoding is not possible: the system has unboundedly many rounds and thus
unboundedly many shared registers. Therefore, this calls for a new model and new verification
techniques.

The model studied here is an extension of roundless ASMS meant to model round-based
algorithms. We dub this model round-based ASMS, and we introduce it formally in the next
section. In Fig. 4.1, we depict a protocol encoding Aspnes’ algorithm in this new model.
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4.3 Round-based Asynchronous Shared-Memory Systems

4.3.1 Round-Based Protocols

We start with a formal definition of round-based asynchronous shared-memory systems. In
this round-based model, there is a fresh set of dim registers at each round, and each process has
its own private round value that starts at 0 and can only be incremented. A process may only
write to registers of its current round and read from registers of nearby rounds; this will be made
more formal in the upcoming definitions.

Definition 4.1 (Round-based Asynchronous Shared-Memory Systems). A round-based asyn-
chronous shared-memory system (round-based ASMS for short) is described by a round-based
protocol which is a tuple P = ⟨𝑄, 𝑞0, dim,D,⊥,Δ⟩ where

— 𝑄 is a finite set of states with a distinguished initial state 𝑞0 ∈ 𝑄;

— dim ∈ N is the number of shared registers per round;

— D is a finite data alphabet with an initial symbol ⊥;

— Δ ⊆ 𝑄 × A ×𝑄 is a finite set of transitions, where A = {read−𝑖𝑟 (d) | 𝑖 ∈ N, 𝑟 ∈ J1, dimK,
d ∈ D} ∪ {write𝑟 (d) | 𝑟 ∈ J1, dimK, d ∈ D \ {⊥}} ∪ {incr} ∪ {⊛} is the set of actions.

Note that this definition is almost identical to the one of roundless protocols (Definition 2.1).
There are, however, two differences. The first one is the addition of a fourth type of action:
round increment transitions, written incr. These transitions allow a process in round 𝑘 to go
to round 𝑘 + 1; this corresponds to line 10 in Algorithm 2. Another difference can be found
in the definition of read actions. Indeed, they now have an additional value, written 𝑖 above,
that specifies to what round they refer. This round is given in relative value with respect to the
current round of the process. The action read−𝑖𝑟 (d) can be read as: “read symbol d from register
𝑟 of round 𝑘 − 𝑖” where 𝑘 denotes the current round of the process. If 𝑖 = 0 then we simply write
read𝑟 (d). Write actions always refer to the registers of the current round of the process.

We denote by rg𝑟 [𝑘] register 𝑟 of round 𝑘 . Let Reg𝑘 := {rg𝑟 [𝑘] | 𝑟 ∈ J1, dimK} be the set
of registers of round 𝑘 , and let Reg := {rg𝑟 [𝑘] | 𝑟 ∈ J1, dimK, 𝑘 ∈ N} be the set of all registers.
We use reg to denote a variable in Reg. We let

𝑣 := max{𝑖 ∈ N | ∃𝑟, d, 𝑞, 𝑞′, (𝑞, read−𝑖𝑟 (d), 𝑞′) ∈ Δ}

with the convention that max ∅ = 0. Because Δ is a finite set, 𝑣 < ∞. We call 𝑣 the visibility
range of P.
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𝑞0𝑞1 𝑞2

𝑞3 𝑞4

𝑞5 𝑞6 𝑞 𝑓

incr

write(a) incr

write(a)
read−1(⊥)

read−1(a)
read(⊥)

write(b)

read(b)

Figure 4.2 – An example of a round-based protocol.

The size of a protocol is |P | = |𝑄 | + |D| + |Δ| + 𝑣 + dim. Note that 𝑣 appears in the sum: we
assume that 𝑖 is encoded in unary in the actions read−𝑖𝑟 (d). We justify this decision by the fact
that 𝑣 is typically small: in round-based algorithms from the literature, one rarely interacts with
rounds far away. In particular, in Aspnes’ noisy consensus algorithm, we have 𝑣 = 1.

Example 4.2. An example of a round-based protocol is depicted in Fig. 4.2. In this example,
𝑄 = {𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞 𝑓 }, D = {⊥, a, b} and dim = 1, so that there is only one register
per round and we omit the subscript indicating the index 𝑟 ∈ J1, dimK. All read and write actions
interact with the register of the current round 𝑘 of the process, with the exception of the read
transitions from 𝑞3 to 𝑞4 and from 𝑞2 to 𝑞5, which read from the register of the previous round
𝑘 − 1. Here, 𝑣 = 1: a process in round 𝑘 can no longer read from registers of rounds 0 to 𝑘 − 2.

Another example of round-based protocol is the one from Fig. 4.1 that encodes Aspnes’
noisy consensus algorithm. In the represented protocol, 𝑄 = {𝑞0} ∪ {𝐴𝑏, 𝐵𝑏, 𝐶𝑏, 𝐷𝑏, 𝐸𝑏, 𝑅𝑏 |
𝑏 ∈ {0, 1}}. However, the state space should in fact be twice bigger because we must encode in
the state space whether 𝑘 = 0 or 𝑘 ⩾ 1. In this protocol, D = {⊥,⊤}, dim = 2 and 𝑣 = 1.

4.3.2 Semantics

An important difference with Chapter 2 is that the situation of a process at a given point in
time is no longer only described by its state, but also by its round value. Formally, the relevant
information about a process at a given point in time takes the form of a pair (𝑞, 𝑘) ∈ 𝑄 × N

called location. Let L := 𝑄 × N be the set of locations. A configuration describes the number
of processes in each location along with the value of each register. Formally, a configuration
is a pair ⟨𝜇, ®𝑑⟩ with 𝜇 ∈ M(L) such that |𝜇 | > 0 and ®𝑑 ∈ DReg . For 𝛾 = ⟨𝜇, ®𝑑⟩, we write
loc(𝛾) := 𝜇, data(𝛾) := ®𝑑 and supp(𝛾) := 𝜇. The size of 𝛾 is |𝛾 | := |𝜇 |. We write Γ for
the set of configurations. For every 𝑛 ⩾ 1, we let 𝛾0(𝑛) := ⟨𝑛 · (𝑞0, 0),⊥Reg⟩ be the initial
configuration with 𝑛 processes. The set of initial configurations is Γ0 := {𝛾0(𝑛) | 𝑛 ⩾ 1}.
Observe that configurations of ASMS cannot in general be stored in finite space, because the set
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Reg is infinite. Reachable configurations, however, will only have finitely many registers set to
values in D \ {⊥}.

Towards defining the operational semantics of round-based ASMS, we define the notion of
move. A move is a pair 𝜃 ∈ Δ × N: move (𝛿, 𝑘) expresses that transition 𝛿 is taken by a process
at round 𝑘 . We write M := Δ × N for the set of all moves. A move (𝛿, 𝑘) is called at round 𝑘 .
A move 𝜃 has effect on a given round 𝑘 ∈ N if it is related to round 𝑘 in any way. Formally, a
move 𝜃 has effect on round 𝑘 when one of the following conditions is satisfied:

— 𝜃 = (𝛿, 𝑘) for some 𝛿, or

— 𝜃 = ((𝑞, incr, 𝑞′), 𝑘−1) for some 𝑞 and 𝑞′, or

— 𝜃 = ((𝑞, read−𝑖𝑟 (d), 𝑞′), ℓ) for some 𝑞, 𝑞′, 𝑟, ℓ, 𝑖 such that ℓ − 𝑖 = 𝑘 .

We define a step as follows: for 𝜃 = ((𝑞, 𝑎, 𝑞′), 𝑘) ∈ M, 𝛾 𝜃−→ 𝛾′ when (𝑞, 𝑘) ∈ loc(𝛾) and:

— if 𝑎 = read−𝑖𝑟 (d), loc(𝛾′) = (loc(𝛾) ⊖ {(𝑞, 𝑘)}) ⊕ {(𝑞′, 𝑘)}, data(𝛾) (rg𝑟 [𝑘−𝑖]) = d and
data(𝛾′) = data(𝛾);

— if 𝑎 = write𝑟 (d), loc(𝛾′) = (loc(𝛾) ⊖ {(𝑞, 𝑘)}) ⊕ {(𝑞′, 𝑘)}, data(𝛾′) (rg𝑟 [𝑘]) = d and for
all reg ≠ rg𝑟 [𝑘], data(𝛾′) (reg) = data(𝛾) (reg);

— if 𝑎 = incr, loc(𝛾′) = (loc(𝛾) ⊖ {(𝑞, 𝑘)}) ⊕ {(𝑞′, 𝑘+1)} and data(𝛾′) = data(𝛾),

— if 𝑎 = ⊛, loc(𝛾′) = (loc(𝛾) ⊖ {(𝑞, 𝑘)}) ⊕ {(𝑞′, 𝑘)} and data(𝛾′) = data(𝛾).

Location (𝑞, 𝑘) is called the source location of the step, while the destination location is (𝑞′, 𝑘)
if 𝑎 ≠ incr and (𝑞′, 𝑘 + 1) if 𝑎 = incr. A step is at round 𝑘 when the corresponding move is of
the form (𝛿, 𝑘). This step is obtained by applying move (𝛿, 𝑘). When 𝛾′ exists, (𝛿, 𝑘) can be
applied from 𝛾; in this case, 𝛾′ is unique.

In the read steps above, we have not specified what happens if the round of the read register
is negative, i.e., if 𝑘 − 𝑖 < 0. For simplicity, we consider that registers of negative rounds always
contain value ⊥, so that if 𝑘 − 𝑖 < 0 then action read−𝑖𝑟 (d) is only possible if d = ⊥.

The definition of execution, reachability and coverability are similar to the ones of Chapter 2,
except that the notion of transition is replaced with the one of move. An execution is a sequence

𝜌 = 𝛾0, 𝜃1, 𝛾1, . . . , 𝛾ℓ−1, 𝜃ℓ, 𝛾ℓ such that, for all 𝑖, 𝛾𝑖
𝜃𝑖+1−−−→ 𝛾𝑖+1. Its length len(𝜌) is simply defined

as its number ℓ of steps. We write 𝛾0
∗−→ 𝛾ℓ for the existence of an execution from 𝛾0 to 𝛾ℓ. Given

an execution 𝜌 = 𝛾0, 𝜃1, 𝛾1, . . . , 𝛾ℓ−1, 𝜃ℓ, 𝛾ℓ, the configurations 𝛾0, . . . , 𝛾ℓ are the configurations
visited in 𝜌. A configuration 𝛾′ is reachable from 𝛾 when 𝛾 ∗−→ 𝛾′. Given a set 𝐶 ⊆ Γ, we write
Post∗(𝐶) := {𝛾′ | ∃𝛾 ∈ 𝐶, 𝛾 ∗−→ 𝛾′}. Dually, we write Pre∗(𝐶) := {𝛾 | ∃𝛾′ ∈ 𝐶, 𝛾 ∗−→ 𝛾′}. A
configuration is reachable when it belongs to Post∗(Γ0). A location (𝑞, 𝑘) ∈ L is coverable
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from 𝛾 if there is an execution 𝜌 : 𝛾 ∗−→ 𝛾′ where loc(𝛾′) (𝑞, 𝑘) > 0. A state 𝑞 is coverable from
𝛾 if there is 𝑘 ∈ N such that (𝑞, 𝑘) is coverable from 𝛾. In this case, execution 𝜌 covers location
(𝑞, 𝑘) and state 𝑞. A state 𝑞 (or a location (𝑞, 𝑘)) is coverable when it is coverable from Γ0.
Given a configuration 𝛾, we call a register reg ∈ Reg blank when data(𝛾) (reg) = ⊥.

Example 4.3. Consider again the protocol P depicted in Fig. 4.2. We give two examples of
executions. State 𝑞4 is coverable from 𝛾0(1) with the following execution:

𝜌1 : 𝛾0(1) =
〈
(𝑞0, 0), rg [0] = ⊥

rg [1] = ⊥

〉 (𝑞0,incr,𝑞2),0−−−−−−−−−−→
〈
(𝑞2, 1), rg [0] = ⊥

rg [1] = ⊥

〉 (𝑞2,write (𝑎),𝑞3),1−−−−−−−−−−−−−→〈
(𝑞3, 1), rg [0] = ⊥

rg [1] = 𝑎

〉 (𝑞3,read−1 (⊥),𝑞4),1−−−−−−−−−−−−−−−→
〈
(𝑞4, 1), rg [0] = ⊥

rg [1] = 𝑎

〉
.

State 𝑞6 is coverable from 𝛾0(2) with the following execution:

𝜌2 : 𝛾0(2) =
〈
2 · (𝑞0, 0), rg [0] = ⊥

rg [1] = ⊥

〉 (𝑞0,write (𝑎),𝑞1),0−−−−−−−−−−−−−→
〈
(𝑞0, 0) ⊕ (𝑞1, 0), rg [0] = 𝑎

rg [1] = ⊥

〉
(𝑞0,incr,𝑞2),0−−−−−−−−−−→

〈
(𝑞2, 1) ⊕ (𝑞1, 0), rg [0] = 𝑎

rg [1] = ⊥

〉 (𝑞2,read−1 (𝑎),𝑞5),1−−−−−−−−−−−−−−→
〈
(𝑞5, 1) ⊕ (𝑞1, 0), rg [0] = 𝑎

rg [1] = ⊥

〉
(𝑞5,read (⊥),𝑞6),1−−−−−−−−−−−−−→

〈
(𝑞6, 1) ⊕ (𝑞1, 0), rg [0] = 𝑎

rg [1] = ⊥

〉
.

The content of registers rg [𝑘] with 𝑘 > 1 are not represented as these registers remain blank.
This proves that states 𝑞4 and 𝑞6 can be covered. However, no execution can cover both state

𝑞4 and state 𝑞6 at the same round, regardless of the number of processes, thus preventing from
covering 𝑞 𝑓 . Formally, for all 𝑘 ∈ N, there is no 𝛾 ∈ Post∗(Γ0) such that loc(𝛾) (𝑞4, 𝑘) > 0 and
loc(𝛾) (𝑞6, 𝑘). Indeed, in order to cover (𝑞4, 𝑘), one must write a to rg [𝑘] then read ⊥ from
rg [𝑘−1], while in order to reach (𝑞6, 𝑘), one must read a from rg [𝑘−1] then read ⊥ from rg [𝑘].
In other words, covering (𝑞4, 𝑘) requires that rg [𝑘] is written before rg [𝑘−1], whereas covering
(𝑞6, 𝑘) requires that rg [𝑘] is written after rg [𝑘−1].

4.3.3 Problems of Interest

The two simplest problems are, as in Chapter 2, Cover and Target.
Round-based Cover
Input: A round-based protocol P, 𝑞 𝑓 ∈ 𝑄
Question: Does there exist 𝛾 ∈ Post∗(Γ0) and 𝑘 ∈ N such that loc(𝛾) (𝑞 𝑓 , 𝑘) > 0?
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Round-based Target
Input: A round-based protocol P, 𝑞 𝑓 ∈ 𝑄
Question: Does there exist 𝛾 ∈ Post∗(Γ0) s.t. for all 𝑞 ≠ 𝑞 𝑓 and 𝑘 ∈ N, loc(𝛾) (𝑞, 𝑘) = 0?

We now generalize presence constraints from Chapter 2 to round-based ASMS. To do so, we
need to choose how rounds are specified in the formulas. We choose to allow quantification over
rounds, because the value 𝑘 is indeed quantified over N in the two problems above. However,
we forbid nested quantifiers in order to restrict the logical power of the presence constraints and
to simplify the analysis.

We start with the definitions of a few auxiliary notions. A term is of the form 𝑚 or 𝑘+𝑚
with 𝑚 ∈ N and 𝑘 a free variable. An atomic proposition is either of the form “popu(𝑞, 𝑡)” with
𝑡 a term and 𝑞 ∈ 𝑄 or of the form “cont(rg𝑟 [𝑡], d)” with 𝑡 a term, 𝑟 ∈ J1, dimK and d ∈ D. A
proposition is a Boolean combination of atomic propositions that has at most one free variable.
An atomic presence constraint is either a closed proposition (no free variables), or of the form
“∃𝑘 𝜙” or “∀𝑘 𝜙” where 𝜙 is a proposition with 𝑘 as a free variable. A closed proposition is of
the form (negation of) “popu(𝑞, 𝑚)” or (negation of) “cont(rg𝑟 [𝑚], d)” for some 𝑚 ∈ N; such
an closed proposition is related to round 𝑚. A presence constraint is a Boolean combination of
atomic presence constraints. A presence constraint is interpreted over a configuration 𝛾 ∈ Γ as
follows:

— for all 𝑞 ∈ 𝑄, 𝑘 ∈ N, 𝛾 |= popu(𝑞, 𝑘) if and only if loc(𝛾) (𝑞, 𝑘) > 0;

— 𝛾 |= cont(reg, d) if and only if data(𝛾) (reg) = d;

— Boolean operators are interpreted as usual;

— 𝛾 |= ∃𝑘 𝜙 if and only if there is ℓ ∈ N such that 𝛾 |= 𝜙[𝑘 � ℓ] where 𝜙[𝑘 � ℓ] is equal
to 𝜙 where all occurrences of free variable 𝑘 are replaced by constant term ℓ (and term of
the form 𝑘 + 𝑚 are replaced with the constant ℓ + 𝑚 ∈ N);

— 𝛾 |= ∀𝑘 𝜙 if and only if, for every ℓ ∈ N, 𝛾 |= 𝜙[𝑘 � ℓ].

Example 4.4. Consider a round-based protocol P with 𝑄 = {𝑞0, 𝑞1}, D = {⊥, a} and dim = 1.
The formula 𝜓 = (∀𝑘 popu(𝑞0, 𝑘) ∨¬popu(𝑞1, 𝑘+1)) ∨ cont(rg [1], a) ∨ (∀𝑘 cont(rg [𝑘+2], a))
is an example of presence constraint. It is composed of three atomic presence constraints:
“∀𝑘 popu(𝑞0, 𝑘) ∨ ¬popu(𝑞1, 𝑘+1)”, “cont(rg [1], a)” and “∀𝑘 cont(rg [𝑘+2], a)”. Let 𝛾 :=
((𝑞0, 0) ⊕ (𝑞1, 1),⊥Reg). We have 𝛾 ̸ |= cont(rg [1], a). However, 𝛾 |= ∀𝑘 popu(𝑞0, 𝑘) ∨
¬popu(𝑞1, 𝑘 + 1): for 𝑘 = 0 we have 𝛾 |= popu(𝑞0, 𝑘) and for all 𝑘 ⩾ 1 we have 𝛾 |=
¬popu(𝑞1, 𝑘 + 1). This proves that 𝛾 |= 𝜓. Note that we have 𝛾 ̸ |= ∀𝑘 cont(rg [𝑘+2], a), and
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that the same is true for every reachable configuration 𝛾 because reachable configurations only
have finitely many values in D \ {⊥}.

We define the round-based presence reachability problem (round-based PRP for short):

Round-based PRP
Input: A round-based protocol P, a presence constraint 𝜓
Question: Does there exist 𝛾 ∈ Post∗(Γ0) such that 𝛾 |= 𝜓?

As in the roundless case, round-based Cover and round-based Target are particular cases
of round-based PRP with 𝜓 := ∃𝑘, popu(𝑞, 𝑘) for Cover and 𝜓 := ∀𝑘 ∧

𝑞≠𝑞 𝑓
¬popu(𝑞, 𝑘) for

Target.

Example 4.5. Consider the protocol P from Fig. 4.2. As proved in Example 4.3, (P, 𝑞 𝑓 ) is a
negative instance of round-based Cover and of round-based Target.

Let 𝜓 := ∃𝑘 popu(𝑞3, 𝑘) ∧ popu(𝑞6, 𝑘). We have that (P, 𝜓) is a positive instance of
round-based PRP, because (P, 𝜓 [𝑘 � 1]) is: it suffices to send two processes to (𝑞2, 1),
then write a to rg [0] with a third process and make one process go to (𝑞6, 1) then another
one go to (𝑞3, 1). It fact, (P, 𝜙[𝑘 � ℓ]) is positive if and only if ℓ ⩾ 1. However, if we
let 𝜓′ := ∃𝑘 popu(𝑞4, 𝑘) ∧ popu(𝑞6, 𝑘), then the instance (P, 𝜓′) is negative, as proved in
Example 4.3.

Example 4.6. Consider now the protocol PAsp from Fig. 4.1, which encoded Aspnes’ noisy
consensus algorithm. Agreement expresses that no two processes may return distinct values.
This is equivalent to (PAsp, 𝜓) being a negative instance of round-based PRP where 𝜓 :=
(∃𝑘 popu(𝑅0, 𝑘)) ∧ (∃𝑘 popu(𝑅1, 𝑘)).

Validity expresses that any value decided by a process must have been the original preference
of some process. In other words, for all 𝑝 ∈ {0, 1}, validity states that if all processes start with
preference 𝑝 then no process will decide 1 − 𝑝. For each 𝑝 ∈ {0, 1}, let P (𝑝)

Asp be the protocol
where 𝑞0 is removed and 𝐴𝑝 is the initial state instead. Validity is equivalent to (P (𝑝)

Asp, 𝑅1−𝑝)
being a negative instance of round-based Cover for each 𝑝 ∈ {0, 1}.

We have established that the agreement and validity of Aspnes’ noisy consensus algorithm
can be expressed using round-based PRP. We are now interested in the complexity of this
problem. We will establish in the three following sections that round-based PRP is PSPACE-
complete.
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4.4 Exponential Lower Bounds

Towards our objective to establish the complexity of round-based PRP, we start by under-
standing why and to what extent the problem is hard. This section is devoted to the construction
of complex round-based protocols to highlight why round-based ASMS are more complex than
roundless ASMS studied in Chapter 2. This section is split into two parts. In the first part,
composed of Section 4.4.1 and Section 4.4.2, we provide family of protocols that highlight the
power of round-based PRP. The aim is twofold: to provide the reader with some intuition on our
model and, later, to justify our approach towards a polynomial-space algorithm. In the second
part, corresponding to Section 4.4.3, we provide a complexity lower bound for round-based
PRP, proving that this problem is PSPACE-hard.

4.4.1 Exponential Lower Bound in the Number of Rounds for Cover

The first question is whether there is a polynomial bound on the smallest number of rounds
in a witness execution for round-based PRP and in particular for round-based Cover. If the
answer was yes, then we could simply compute this polynomial bound and build an equivalent
roundless ASMS of polynomial size, so that all the complexity results from Chapter 2 would
carry over to their round-based counterparts. However, it is not the case:

Proposition 4.7. There exists a family (P𝑚)𝑚⩾1 of round-based protocols with a special state
𝑞 𝑓 such that |P𝑚 | = 𝑂 (𝑚) and the minimum round 𝑘 at which (𝑞 𝑓 , 𝑘) can be covered is Ω(2𝑚).

The protocol P𝑚, depicted in Figure 4.3, encodes a binary counter on𝑚 bits. It only uses one
register per round (dim = 1) and has visibility range 𝑣 = 0. The counter value is initially equal
to 0 and is incremented by one at each round; setting the most significant bit to 1 puts a process
in 𝑞 𝑓 . In order to reach 𝑞 𝑓 , any execution needs at least 𝑚+1 processes: one in 𝑞tick ticking
every round, and one per bit, in states {𝑞𝑖,0, 𝑞𝑖,1} to represent the value of the counter’s 𝑖-th bit.
At round 𝑘 , the value of the 𝑖-th least significant bit is 0 if at least one process is at (𝑞𝑖,0, 𝑘), and 1
if at least one process is at (𝑞𝑖,1, 𝑘). The construction in fact guarantees the following: for every
𝑖, for every 𝑘 , it cannot be that some execution covers (𝑞𝑖,0, 𝑘) but that some other execution
covers (𝑞𝑖,1, 𝑘). Finally, at round 2𝑚−1, setting the 𝑚-th least significant bit –of weight 2𝑚−1–
to 1 corresponds to (𝑞 𝑓 , 2𝑚−1) being reached. This round-based ASMS satisfies the following
property, that entails Proposition 4.7.

Proposition 4.8. Let 𝑘 ∈ J0, 2𝑚−1K. Location (𝑞 𝑓 , 𝑘) is coverable in P𝑚 iff 𝑘 = 2𝑚−1.
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𝑞0𝑞tick

𝑞1,0 𝑞1,1

. . .

𝑞𝑖,0 𝑞𝑖,1

. . .
𝑞𝑚,0 𝑞 𝑓

read (wait𝑖)
write (wait𝑖+1)

incr

read (wait𝑚)
incr read (move𝑚)

read (move1)
write (wait2)

incr

read (move1)
write (move2)

incr

read (move𝑖)
write (wait𝑖+1)

incr

read (move𝑖)
write (move𝑖+1)

incr

read (wait𝑖)
write (wait𝑖+1)

incr
write (move1)

incr

Figure 4.3 – Protocol P𝑚 where an exponential number of rounds is needed to reach 𝑞 𝑓 . For the
sake of readability, we allow for transitions labeled with sequence of actions. These sequences
are performed non-atomically: one should in principles add intermediate states to split the
transition into several consecutive transitions. The tick gadget in grey will be modified in
Section 4.4.2.
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Proof. Let 𝑖 ∈ J1, 𝑚K, 𝑘 ∈ J0, 2𝑚−1K and let 𝑟 be the remainder of the Euclidean division of
𝑘 by 2𝑖. We claim that (𝑞𝑖,0, 𝑘) is reachable if and only if 0 ⩽ 𝑟 ⩽ 2𝑖−1 − 1 and (𝑞𝑖,1, 𝑘) is
reachable if and only if 2𝑖−1 ⩽ 𝑟 ⩽ 2𝑖 − 1. The proof is by induction on pairs (𝑘, 𝑖), ordered
lexicographically.

Observe first that, for all 𝑖 ∈ J1, 𝑚K, (𝑞𝑖,0, 0) is coverable and (𝑞𝑖,1, 0) is not. Moreover, for
all 𝑘 ∈ J0, 2𝑚K, (𝑞1,0, 𝑘) is coverable exactly for even 𝑘 , and (𝑞1,1, 𝑘) exactly for odd 𝑘 .

Let 𝑘 > 0, 𝑖 ∈ J2, 𝑚K and suppose that the statement holds for all pairs (𝑘′, 𝑖′) with 𝑘′ < 𝑘

or 𝑘′ = 𝑘 and 𝑖′ < 𝑖. The only way to write move𝑖 to rg [𝑘] is when a process moves from
(𝑞𝑖−1,1, 𝑘−1) to (𝑞𝑖−1,0, 𝑘). By induction hypothesis, this means that the remainder of the
Euclidean division of 𝑘−1 by 2𝑖−1 is in J2𝑖−2, 2𝑖−1 − 1K and the remainder of the Euclidean
division of 𝑘 by 2𝑖−1 is in J0, 2𝑖−2K, which is equivalent to 𝑘 being divisible by 2𝑖−1. To sum
up, move𝑖 can be written to rg [𝑘] exactly when 𝑘 is a multiple of 2𝑖−1. Similarly, wait𝑖 can be
written to rg [𝑘] exactly when 𝑘 is not divisible by 2𝑖−1.

We distinguish cases according to the remainder 𝑟 of the Euclidean division of 𝑘 by 2𝑖:

— if 𝑟 = 0, then the remainder of 𝑘−1 by 2𝑖 is in J2𝑖−1, 2𝑖 − 1K hence (𝑞𝑖,1, 𝑘−1) can be
reached and (𝑞𝑖,0, 𝑘−1) cannot; since 𝑘 is divisible by 2𝑖−1, move𝑖 can be written to rg [𝑘]
but wait𝑖 cannot, so that (𝑞𝑖,0, 𝑘) can be reached and (𝑞𝑖,1, 𝑘) cannot;

— if 1 ⩽ 𝑟 ⩽ 2𝑖−1 − 1, then the remainder of 𝑘−1 by 2𝑖 is in J0, 2𝑖−1 − 1K hence (𝑞𝑖,0, 𝑘−1)
can be reached and (𝑞𝑖,1, 𝑘−1) cannot; since 𝑘 is not divisible by 2𝑖−1, wait𝑖 can be written
to rg [𝑘] but move𝑖 cannot, so that (𝑞𝑖,0, 𝑘) can be reached and (𝑞𝑖,1, 𝑘) cannot;

— if 𝑟 = 2𝑖−1, then the remainder of 𝑘−1 by 2𝑖 is in J0, 2𝑖−1 − 1K hence (𝑞𝑖,0, 𝑘−1) can be
reached and (𝑞𝑖,1, 𝑘−1) cannot; since 𝑘 is divisible by 2𝑖−1, move𝑖 can be written to rg [𝑘]
but wait𝑖 cannot, so that (𝑞𝑖,1, 𝑘) can be reached and (𝑞𝑖,0, 𝑘) cannot;

— if 2𝑖−1+1 ⩽ 𝑟 ⩽ 2𝑖−1, then the remainder of 𝑘−1 by 2𝑖 is in J2𝑖−1, 2𝑖−1K hence (𝑞𝑖,1, 𝑘−1)
can be reached and (𝑞𝑖,0, 𝑘−1) cannot; since 𝑘 is divisible by 2𝑖−1, wait𝑖 can be written to
rg [𝑘] but move𝑖 cannot, (𝑞𝑖,1, 𝑘) can be reached and (𝑞𝑖,0, 𝑘) cannot.

This concludes the inductive step. Applied to (𝑚, 𝑘), this proves that, for all 𝑘 ∈ J0, 2𝑚−1K,
(𝑞𝑚,1, 𝑘) is coverable if and only if the remainder of the Euclidean division of 𝑘 by 2𝑚 is at least
2𝑚−1, which is the case if and only if 𝑘 = 2𝑚−1. □

This proves that the number of rounds needed in an execution witnessing Cover may have
to be as large as exponential in the size of the protocol.
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𝑞0𝑞tick𝑞sink
write (move1 )

incr

(a) An exponential number of processes is needed
to reach 𝑞 𝑓 .

𝑞0𝑞tick

𝑞𝐵

𝑞𝐶

𝑞𝐷

𝑞𝐴

incr

write (a)

incr

rea
d−

1 (⊥
)

read −1(move1 ) write
(m

ov
e 1)

write (move1 )

(b) An exponential number of active rounds is
needed to reach 𝑞 𝑓 .

Figure 4.4 – Two modifications of the tick mechanism of (P𝑚)𝑚⩾1 yielding protocols that need
respectively an exponential number of processes and an exponential number of active rounds.

4.4.2 Additional Exponential Lower Bounds

Here, we generalize the lower bound from the previous section to other relevant quantities,
starting with the number of processes.

Proposition 4.9. There exists a family (P′
𝑚)𝑚⩾1 of round-based protocols with 𝑞 𝑓 a special state

such that |P′
𝑚 | = 𝑂 (𝑚) and the minimal number of processes to cover 𝑞 𝑓 is Ω(2𝑚).

Proof. We modify the tick mechanism of protocol P𝑚 from Proposition 4.7 so that, at each
round, a process must sacrifice itself to provide the tick. This modification is depicted in
4.4(a). □

In the protocol built in Fig. 4.3, although the number of rounds needed is exponential, one
can cover 𝑞 𝑓 with an execution where processes are never more than one round apart. More
specifically, we can cover 𝑞 𝑓 with an executions whose steps are first at round 0, then round
increments, then moves at round 1, then round increments, and so on. This makes it possible
to store this execution configuration by configuration, because in a given configuration there
are at most 2 relevant rounds which must be stored, and all earlier rounds can be forgotten.
This gives the hope to design a polynomial-space non-deterministic algorithm that guesses
the witness execution in such a manner, under the assumption that few rounds are relevant at
a time. We will prove that this assumption cannot however be made in general. To do so,
we introduce another quantity, which we dub number of simultaneously active rounds. In an
execution 𝜌 = 𝛾0, 𝜃1, . . . , 𝜃ℓ, 𝛾ℓ, round 𝑘 is active at configuration 𝛾𝑖 if there is 𝑗 < 𝑖 and 𝑗 ′ ⩾ 𝑖
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such that 𝜃 𝑗 and 𝜃 𝑗 ′ have effect on round 𝑘 (recall that we have defined in Section 4.3.2 what
is means for a move to have effect on a round). The number of simultaneously active rounds
of 𝜌 is the maximum over 𝑖 of the number of rounds active at 𝛾𝑖 in 𝜌. If a round is not active,
then it is either blank (recall that a register reg is blank in 𝛾 when data(𝛾) (reg) = ⊥) and
with no process or it is irrelevant from this point onwards because it plays no role in the future.
Executions with a small number of simultaneously active rounds are therefore easier to store.
However, as we will now see, the number of simultaneously active rounds may need to be as
large as exponential, even for Cover.

Proposition 4.10. There exists a family (P′′
𝑚)𝑚⩾1 of round-based protocols with 𝑞 𝑓 a special state

such that |P′′
𝑚 | = 𝑂 (𝑚) and the minimal number of simultaneously active rounds in executions

covering 𝑞 𝑓 is in Ω(2𝑚).

Proof. Again, we modify the family of protocols (P𝑚) from Proposition 4.7. To do so, we
replace the tick mechanism with the gadget presented in Fig. 4.4(b). This increases the value
of 𝑣 to 1, because we use read−1(⊥) and read−1(move1) actions. The transitions from 𝑞tick

to 𝑞𝐵 and from 𝑞𝐵 to 𝑞𝐶 ensure that, for all 𝑘 ∈ J0, 2𝑚−1K, a must be written to rg [𝑘] before
it is written to rg [𝑘−1]. The transitions from 𝑞𝐶 to 𝑞𝐷 and from 𝑞𝐷 to 𝑞tick, on the contrary,
ensure that, for all 𝑘 ∈ J1, 2𝑚−1K, move1 must be written to rg [𝑘−1] before it is written to rg [𝑘].
Hence, in an execution covering 𝑞 𝑓 , when move1 is first written to rg [0], all rounds from 1 to
2𝑚−1 must be active and the number of simultaneously active rounds is at least 2𝑚−1. □

Remark 4.11. The construction in the proof of Proposition 4.10 requires 𝑣 > 0. More generally,
for any positive instance (P, 𝑞 𝑓 ) of Cover with 𝑣 = 0, there is an execution covering 𝑞 𝑓 whose
number of simultaneous active rounds is at most 2. Indeed, let 𝜌 be an execution of P that
covers 𝑞 𝑓 . In P, a process do not interact with rounds different from his own, so that we may
rearrange 𝜌 as follows: all steps at round 0 first, then all steps at round 1, then all steps at round
2, and so on. The obtained execution covers 𝑞 𝑓 and its number of simultaneously active rounds
is at most 2. Therefore, when 𝑣 = 0, a naive polynomial-space algorithm for Cover consists
in computing all coverable states round after round. This algorithm is not satisfying for us, in
particular because our motivating example from Section 4.2 requires 𝑣 = 1.

4.4.3 Complexity Lower Bound for PRP

Here, we prove that the round-based presence reachability problem is PSPACE-hard. In
comparison with the results from Chapter 2, this highlights an increase in complexity due to
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the addition of rounds. We in fact prove that this complexity lower bound already holds for the
simplest problem, Cover:

Theorem 4.12. Round-based Cover is PSPACE-hard, even for round-based ASMS with visibility
range 𝑣 = 0 and number of registers per round dim = 1.

The rest of this section is devoted to proving Theorem 4.12. The proof is by reduction
from the validity problem of 3-QBF. We fix an instance 𝜙 of 3-QBF over the 2𝑚 variables
{𝑥0, · · · , 𝑥2𝑚−1}

𝜙 = ∀𝑥2𝑚−1∃𝑥2𝑚−2∀𝑥2𝑚−3∃𝑥2𝑚−4 . . .∀𝑥1∃𝑥0
∧

1⩽ 𝑗⩽𝑝
𝑎 𝑗 ∨ 𝑏 𝑗 ∨ 𝑐 𝑗 ,

where for every 𝑗 ∈ J1, 𝑝K, 𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 ∈ {𝑥𝑖,¬𝑥𝑖 | 𝑖 ∈ J0, 2𝑚−1K} are the literals. We write
𝜓 :=

∧
1⩽ 𝑗⩽𝑝 𝑎 𝑗 ∨ 𝑏 𝑗 ∨ 𝑐 𝑗 for the inner 3-SAT formula.

From 𝜙 we construct a round-based protocol on the data alphabet

D := {wait𝑖, yes𝑖, no𝑖 | 𝑖 ∈ J0, 2𝑚K} ∪ {xi,¬xi | 𝑖 ∈ J0, 2𝑚−1K} ∪ {⊥}.

Moreover, we let 𝑣 = 0 and dim = 1. The protocol we construct is represented in Figure 4.5; it
contains several gadgets that we detail in the sequel.

𝑞0

Pcheck (𝜓)
(Figure 4.6)

...G0
(Figure 4.7)

G2𝑚−1
(Figure 4.7)

𝑞yes 𝑞no 𝑞𝑖𝑛𝑡 𝑞 𝑓

if yes

incr
write(yes0)

if no

incr
write(no0)

incr

read(yes2𝑚)

Figure 4.5 – Overview of the protocol PQBF. All transitions to gadgets go to their initial states.

Before that, we provide a high-level description of PQBF. In PQBF, each variable 𝑥𝑖 is
represented by a subprotocol G𝑖. At every round; a different valuation is considered and the
gadget Pcheck (𝜓) evaluates whether it makes the inner SAT formula true. The gadget G𝑖 writes
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at each round the truth value of 𝑥𝑖 in the considered valuation. The protocol enumerates all
valuations: a given round 𝑘 will correspond to one valuation of the variables of 𝜓, in which
variable 𝑥 is true if x can be written to rg [𝑘], and false if ¬x can be written to rg [𝑘]. This
protocol is almost deterministic, in the sense that the enumeration of valuations is done in a
deterministic fashion so that, at a given round, for each variable 𝑥 and round 𝑘 , it cannot be
that some execution has a move writing x to rg [𝑘] but that some other execution has a move
writing ¬x to rg [𝑘]. The enumeration of the valuations and corresponding evaluations of 𝜓 are
performed so as to take the appropriate decision about the validity of the global formula 𝜙.

We start by describing the gadget Pcheck (𝜓), depicted in Figure 4.6, that checks whether 𝜓
is satisfied by the valuation under consideration. The valuation under consideration at round
𝑘 corresponds to the symbols that can be written to the register: 𝑥 is considered true if x can
be written to the register, and considered false if ¬x can be written to the register. State 𝑞yes

𝑞𝜓 𝑞1 𝑞2 ... 𝑞yes

𝑞no

read(a1)

read(b1)
read(c1)

read(a2)

read(b2)
read(c2)

read(¬a1)
read(¬b1)
read(¬c1)

read(¬a2)
read(¬b2)
read(¬c2)

read(¬a3)
read(¬b3)
read(¬c3)

Figure 4.6 – Gadget Pcheck (𝜓) that checks whether the inner SAT formula 𝜓 is satisfied by the
current valuation.

corresponds to 𝜓 evaluated to true and 𝑞no corresponding to 𝜓 evaluated to false. Note that we
allow transitions labeled by sequences of actions: these sequences of actions are encoded in the
model by adding intermediate states and transitions so that each transition is only labeled by one
action.

We now explain how valuations are enumerated and how the quantifiers are handled. We
define below a procedure next that, given valuation 𝜈, computes the next valuation next(𝜈)
that needs to be checked. This next valuation next(𝜈) will depend on whether 𝜈 |= 𝜓 or not,
and this information will be propagated from the innermost to the outermost quantifier. An
existential quantifier is satisfied with only one positive witness while a universal quantifier needs
two positive witnesses. Conversely, an existential quantifier is invalidated with two negative
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witnesses while a universal quantifier only needs one. Let 𝜈0 be the valuation that assigns 0
to all variables. The validity of the formula will be determined by computing, increasingly in
𝑘 , valuation next𝑘 (𝜈0) until a value of 𝑘 is reached for which the outermost quantifier is either
satisfied or invalidated.

We now define formally the procedure next. Let 𝜙𝑖 be the subformula 𝑄𝑥𝑖 . . .∀𝑥1∃𝑥0𝜓

where 𝑄 = ∃ if 𝑖 is even, and 𝑄 = ∀ if 𝑖 is odd. Variables 𝑥2𝑚−1, . . . , 𝑥𝑖+1 are free in 𝜙𝑖.
The procedure next uses variables 𝑏𝑖 ∈ {yes, no,wait} for each 𝑖 ∈ J0, 2𝑚K, whose role is the
following. We will set 𝑏0 = yes if 𝜈 |= 𝜓, and 𝑏0 = no otherwise. For any 1 ⩽ 𝑖 ⩽ 2𝑚−1,
𝑏𝑖 = yes means that we have satisfied 𝜙𝑖 with the current values of 𝑥𝑖+1 to 𝑥2𝑚−1 (𝜈 was the
last check needed for 𝜙𝑖 and it was successful); 𝑏𝑖 = no means that we have satisfied ¬𝜙𝑖 with
the current values of 𝑥𝑖+1 to 𝑥2𝑚−1 and 𝑏𝑖 = wait means that more valuations are needed to
determine the truth value of 𝜙𝑖 with the current values of 𝑥𝑖+1 to 𝑥2𝑚−1. Given a valuation 𝜈, the
procedure next computes, at each iteration 𝑖, the truth value of 𝑥𝑖 in valuation next(𝜈) and the
value of 𝑏𝑖+1. After 2𝑚 iterations, this provides the new valuation next(𝜈) against which 𝜓 must
be checked. Formally, the iteration is defined as follows:

— If 𝑏𝑖 = wait, then next(𝜈) (𝑥𝑖) � 𝜈(𝑥𝑖) and 𝑏𝑖+1 � wait.

— Otherwise,

— if 𝑖 is even (existential quantifier):

— if 𝑏𝑖 = yes, then next(𝜈) (𝑥𝑖) � 0 and 𝑏𝑖+1 � yes,

— if 𝑏𝑖 = no and 𝜈(𝑥𝑖) = 0, then next(𝜈) (𝑥𝑖) � 1 and 𝑏𝑖+1 � wait,
— if 𝑏𝑖 = no and 𝜈(𝑥𝑖) = 1, then next(𝜈) (𝑥𝑖) � 0 and 𝑏𝑖+1 � no;

— if 𝑖 is odd (universal quantifier):

— if 𝑏𝑖 = no, then next(𝜈) (𝑥𝑖) � 0 and 𝑏𝑖+1 � no,

— if 𝑏𝑖 = yes and 𝜈(𝑥𝑖) = 0, then next(𝜈) (𝑥𝑖) � 1 and 𝑏𝑖+1 � wait,
— if 𝑏𝑖 = yes and 𝜈(𝑥𝑖) = 1, then next(𝜈) (𝑥𝑖) � 0 and 𝑏𝑖+1 � yes.

Example 4.13. Let us illustrate the next operator on a small example. Assume

𝜙 = ∀𝑥1∃𝑥0¬𝑥1 ∧ (¬𝑥1 ∨ 𝑥0),

which is not a valid formula. In this case, 𝜓 = ¬𝑥1 ∧ (¬𝑥1 ∨ 𝑥0). To determine that 𝜙 is not
valid, we start by checking the valuation 𝜈0, and set 𝑏0 = yes. According to the next operator,
we obtain next(𝜈) (𝑥0) = 0, 𝑏1 = yes in the first iteration (we have satisfied ∃𝑥0𝜓 for 𝑥1 = 0);
and next(𝜈) (𝑥1) = 1, 𝑏2 = wait in the second iteration. In fact, even though 𝜈 |= 𝜓, because 𝑥1 is
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quantified universally, we cannot yet conclude: we must also check whether 𝜓 holds by setting 𝑥1

to 1. This is what 𝑏2 = wait means, and this is why next(𝜈) (𝑥1) is set to 1. Let 𝜈′ = next(𝜈)
and consider the computation of next from 𝜈′. We have 𝜈′ ̸ |= 𝜓 therefore 𝑏0 = no. The first
iteration sets next(𝜈′) (𝑥0) = 1, 𝑏1 = wait; and the second iteration leaves 𝑥1 unchanged and
sets 𝑏2 = wait. For 𝑥1, we have computed that 𝑥0 = 0 does not work; because the quantifier
before 𝑥0 is existential, we still have a chance with 𝑥0 = 1 and the computation continues. We
let 𝜈′′ = next(𝜈′): 𝜈′′ sets both variables to 1; however, 𝜈′′ ̸ |= 𝜓. Therefore, we set 𝑏0 = no. Now,
having exhausted all possibilities, the first iteration sets 𝑏1 = no, and the second sets 𝑏2 = no.
We have determined that 𝜙 is not valid.

The following lemma formalizes how validity can be checked using next. It is easily proved
by induction on the number of variables.

Lemma 4.14. QBF formula 𝜙 is valid if and only if, when iterating next from valuation 𝜈0, one
eventually obtains a computation of next that sets 𝑏2𝑚 to yes.

Now, we define, for all 𝑖 ∈ J0, 2𝑚−1K, a gadget G𝑖 that will play the role of variable 𝑥𝑖. At
each round, gadget G𝑖 receives from gadget G𝑖−1 the value 𝑏𝑖 ∈ {wait𝑖, yes𝑖, no𝑖}, except for
gadget G0 which receives 𝑏0 from Pcheck (𝜓). It transmits 𝑏𝑖+1 ∈ {wait𝑖+1, yes𝑖+1, no𝑖+} to G𝑖+1,
computes the value of variable 𝑥𝑖 accordingly and communicates it by writing either xi or ¬xi.
These gadgets G𝑖 are given in Figure 4.7(a) if 𝑥𝑖 is existentially quantified (i.e., even 𝑖), and
Figure 4.7(b) if 𝑥𝑖 is universally quantified (i.e., odd 𝑖). We define the protocol PQBF represented
in Fig. 4.5 using the gadgets G𝑖 from Fig. 4.7(a) and Fig. 4.7(b) and the gadget Pcheck (𝜓) from
Fig. 4.6.

Finally, the following lemma justifies the correctness of the construction by formalizing the
relation between next and PQBF.

Lemma 4.15. Let 𝑘 ∈ N and let 𝜈𝑘 := next𝑘 (𝜈0) be the valuation obtained by applying next 𝑘
times from 𝜈0 := 02𝑚. For all 𝑖 ∈ J0, 2𝑚−1K:

— (𝑞false,𝑖, 𝑘) is coverable if and only if 𝜈𝑘 (𝑥𝑖) = 0,

— (𝑞true,𝑖, 𝑘) is coverable if and only if 𝜈𝑘 (𝑥𝑖) = 1,

— ¬xi can be written to rg [𝑘] if and only if 𝜈𝑘 (𝑥𝑖) = 0,

— xi can be written to rg [𝑘] if and only if 𝜈𝑘 (𝑥𝑖) = 1.

The above lemma holds by construction, because we have designed the protocol so that it
follows step by step the computation of next.
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𝑞false,𝑖 𝑞true,𝑖

write(¬xi)
incr

read(wait𝑖)
write(wait𝑖+1)

write(¬xi)
incr

read(yes𝑖)
write(yes𝑖+1)

write(¬xi)
incr

read(no𝑖)
write(wait𝑖+1)

write(xi)
incr

read(wait𝑖)
write(wait𝑖+1)

write(xi)
incr

read(yes𝑖)
write(yes𝑖+1)

write(xi)
incr

read(no𝑖)
write(no𝑖+1)

(a) Gadget G𝑖 for existentially quantified variable
𝑥𝑖 (i.e., 𝑖 even).

𝑞false,𝑖 𝑞true,𝑖

write(xi)
incr

readwait𝑖 ()
write(wait𝑖+1)

write(xi)
incr

readno𝑖 ()
write(no𝑖+1)

write(xi)
incr

readyes𝑖 ()
write(wait𝑖+1)

write(¬xi)
incr

readwait𝑖 ()
write(wait𝑖+1)

write(¬xi)
incr

readyes𝑖 ()
write(yes𝑖+1)

write(¬xi)
incr

readno𝑖 ()
write(no𝑖+1)

(b) Gadget G𝑖 for universally quantified variable
𝑥𝑖 (i.e., 𝑖 odd).

Figure 4.7 – Illustration of the gadgets G𝑖.

Combining Lemma 4.15 with Lemma 4.14 proves that 𝜙 is valid if and only if there exists 𝑘
such that yes2𝑚 can be written to the register of round 𝑘; by construction of PQBF, this is also
the condition under which 𝑞 𝑓 can be covered. This proves that (P, 𝑞 𝑓 ) is a positive instance of
Cover if and only if 𝜙 is a positive instance of 3-QBF. Also, the protocol P can be built in time
polynomial in 𝑚. This concludes the proof of Theorem 4.12.

Note that this lower bound already holds for 𝑣 = 0 and dim = 1 and without read(⊥)
transitions, which proves that none of the restrictions considered in Chapter 2 for roundless
ASMS would yield a complexity lower than PSPACE for Cover in round-based ASMS.

4.5 A Polynomial-Space Algorithm for Cover

We have proved PSPACE-hardness of round-based Cover and therefore of round-based
PRP in the previous section. We now aim to prove that these problems are in PSPACE. For
pedagogical reasons, we start by providing a polynomial-space procedure to decide Cover. We
will generalize this procedure to PRP in the next section.

Theorem 4.16. Round-based Cover is PSPACE-complete.

The rest of this section is devoted to proving Theorem 4.16. We have proved PSPACE-
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hardness in Theorem 4.12, we here prove membership in PSPACE. We start by defining in
Section 4.5.1 a non-counting abstraction similar to the one developed in Chapter 2 for roundless
ASMS. We then define in Section 4.5.2 the notion of footprint meant to represent the projection
of an abstract execution onto a few rounds. We explain in Section 4.5.3 how we check that
several footprints can be merged into an execution. We finally introduce the polynomial-space
procedure in Section 4.5.4.

4.5.1 A Non-Counting Abstraction

We here develop a non-counting abstraction very similar to the one developed in Section 2.4
for roundless ASMS. Indeed, we have the same copycat property as in Lemma 2.10.

Lemma 4.17. Consider 𝛾1, 𝛾2, 𝑞2, 𝑘2 such that 𝛾1
∗−→ 𝛾2 and (𝑞2, 𝑘2) ∈ supp(𝛾2). There exists

(𝑞1, 𝑘1) ∈ supp(𝛾1) s.t. ⟨loc(𝛾1) ⊕ (𝑞1, 𝑘1), data(𝛾1)⟩
∗−→ ⟨loc(𝛾2) ⊕ (𝑞2, 𝑘2), data(𝛾2)⟩.

This lemma can be proved almost identically to Lemma 2.10. The only new case is the one
of incr transitions, which causes no issue because it does not interact with the registers.

This leads to define abstract configurations of round-based ASMS in similar fashion to Sec-
tion 2.4. An abstract configuration is a pair 𝜎 = ⟨loc(𝜎), data(𝜎)⟩ ∈ Γ = 2𝑄×N ×DReg . Given
a configuration 𝛾 ∈ Γ, its abstract projection is the abstract configuration ⟨supp(𝛾), data(𝛾)⟩.
The initial abstract configuration is 𝜎0 := ⟨(𝑞0, 0),⊥⟩.

As in the roundless case, we define the abstract semantics by letting 𝜎1
𝜃−→ 𝜎2 whenever there

are 𝛾1, 𝛾2 ∈ Γ such that 𝛾1
𝜃−→ 𝛾2, 𝛾1 = 𝜎1 and 𝛾2 = 𝜎2. We have the same non-determinism as

in the roundless case: given a move 𝜃 that can be applied from 𝜎, there are two ways to apply
𝜃, yielding either a deserting step that empties the source location or a non-deserting step that
does not. We define as in Chapter 2 the notion of abstract execution, the reachability relation
∗−→, the reachability set Post∗(𝑆) for 𝑆 ⊆ Γ and the notion of coverability.

Given an abstract configuration 𝜎 and a presence constraint 𝜓, we let 𝜎 |= 𝜓 when there is
𝛾 ∈ Γ such that 𝛾 |= 𝜓 and 𝛾 = 𝜎. With this definition, the interpretations of popu(𝑞, 𝑘) and
of cont(reg, d) are intuitive: 𝜎 |= popu(𝑞, 𝑘) whenever (𝑞, 𝑘) ∈ loc(𝜎) and 𝜎 |= cont(reg, d)
whenever data(𝜎) (reg) = d. Just like in Proposition 2.15, this abstraction is sound and complete
for round-based PRP:

Proposition 4.18. Let 𝜓 be a presence constraint. There is 𝛾 ∈ Post∗(Γ0) such that 𝛾 |= 𝜓 if
and only if there is 𝜎 ∈ Post∗(𝜎0) such that 𝜎 |= 𝜓.
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Therefore, we work with abstract configurations and abstract executions in the rest of the
section. As in Section 2.4, we define a notion of abstract execution in normal form. This
definition is almost identical to the one from Section 2.4 except that the concept of state (an
element of set 𝑄) is replaced by the concept of location (an element of set 𝑄 × N). An abstract
execution is in normal form when every step either deserts a location, populates a location that
was never populated before in the execution, or is a write step whose source and destination
locations are distinct and that writes to a register reg ∈ Reg such that the next step involving
reg, if it exists, and is a read step. It is easy to adapt the proof of Lemma 2.17 by replacing states
with locations:

Lemma 4.19. For every 𝜎1, 𝜎2 ∈ Γ, if 𝜎1
∗−→ 𝜎2 then there is an abstract execution from 𝜎1 to

𝜎2 that is in normal form.

In round-based ASMS, contrarily to the roundless case, there is no general bound on the
number of steps in an abstract execution in normal form, because the set of locations is infinite.
However, we can bound the number of steps of the executions on a given round.

Lemma 4.20. An abstract execution has at most 5|𝑄 | + |D| steps at each round.

Proof. The proof is the same as for Lemma 2.18, with locations of round 𝑘 instead of states; in
addition to the 4|𝑄 | + |D| steps identified in the proof of Lemma 2.18, there might be |𝑄 | round
increment steps at round 𝑘 that populate a new location of round 𝑘 + 1. □

4.5.2 Footprints

While abstract configurations can be stored more concisely than (concrete) configurations,
this is far from being sufficient to obtain a polynomial-space procedure. Indeed, there is no
general bound on the space needed to store an abstract configuration, and with the exponential
lower bounds from Section 4.4, we know that we need to consider configurations that spread
across exponentially many rounds. Therefore, it seems hard to store entire configurations of the
witness execution in polynomial space. For this reason, instead of representing the execution
step by step, we represent it within a short, sliding window of rounds. This leads us to defining
footprints, which correspond to the projection of executions onto windows of consecutive rounds.
Our goal will be to guess the abstract execution covering 𝑞 𝑓 footprint by footprint. First, we
define so-called restricted configurations, which correspond to abstract configurations projected
onto such a window.
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Restricted Configurations We first define restricted configurations, which correspond to
configurations restricted to a limited number of consecutive rounds.

Let 0 ⩽ 𝑗 ⩽ 𝑘 . We write LJ 𝑗 ,𝑘K := 𝑄 × J 𝑗 , 𝑘K for the set of locations of rounds 𝑗 to 𝑘;
similarly, we write RegJ 𝑗 ,𝑘K :=

⋃
ℓ∈J 𝑗 ,𝑘K Regℓ for the set of registers of rounds 𝑗 to 𝑘 . In this

context, we sometimes refer to rounds ℓ < 𝑗 as the rounds below 𝑗 and to the rounds ℓ > 𝑘 as
the rounds above 𝑘 .

Definition 4.21. Let 𝑗 ⩽ 𝑘 . A restricted configuration on (rounds) J 𝑗 , 𝑘K is an element
𝜆 = ⟨𝜇, ®𝑑⟩ ∈ ΓJ 𝑗 ,𝑘K := 2LJ 𝑗 ,𝑘K × DRegJ 𝑗 ,𝑘K . We write loc(𝜆) := 𝜇 and data(𝜆) := ®𝑑. Given 𝜎 ∈ Γ,
we define the restricted configuration restrJ 𝑗 ,𝑘K(𝜎) by loc(restrJ 𝑗 ,𝑘K(𝛾)) := loc(𝜎) ∩ ΓJ 𝑗 ,𝑘K and
data(restrJ 𝑗 ,𝑘K(𝛾)) (reg) := data(𝜎) (reg) for all reg ∈ RegJ 𝑗 ,𝑘K.

In words, the restricted configuration restrJ 𝑗 ,𝑘K(𝜎) is obtained by removing from 𝜎 all
information that is not about rounds 𝑗 to 𝑘 .

Restricted Semantics We now define restricted semantics. Let 𝜆, 𝜆′ ∈ ΓJ 𝑗 ,𝑘K. Given 𝜃 a

move, we let 𝜆 𝜃−→ 𝜆′, which we call a (restricted) step, when there exist two configurations 𝛾
and 𝛾′ such that 𝛾 𝜃−→ 𝛾′, restrJ 𝑗 ,𝑘K(𝛾) = 𝜆 and restrJ 𝑗 ,𝑘K(𝛾′) = 𝜆′. For clarity, we explicit under

which conditions 𝜆 𝜃−→ 𝜆′ holds:

— if 𝜃 is a move with no effect on rounds 𝑗 to 𝑘 , then 𝜆 𝜃−→ 𝜆′ if and only if 𝜆 = 𝜆′;

— if 𝜃 = ((𝑞,write𝑟 (d), 𝑞′), ℓ) with ℓ ∈ J 𝑗 , 𝑘K then either loc(𝜆′) = loc(𝜆) ∪ {(𝑞′, ℓ)}
or loc(𝜆′) = loc(𝜆) \ {(𝑞, ℓ)} ∪ {(𝑞′, ℓ)}, data(𝜆′) (rg𝑟 [ℓ]) = d and data(𝜆′) (reg) =

data(𝜆) (reg) for all reg ∈ RegJ 𝑗 ,𝑘K \ {rg𝑟 [ℓ]};
— if 𝜃 = ((𝑞, read−𝑖𝑟 (d), 𝑞′), ℓ) with ℓ ∈ J 𝑗 , 𝑘K then either loc(𝜆′) = loc(𝜆) ∪ {(𝑞′, ℓ)} or

loc(𝜆′) = loc(𝜆) \ {(𝑞, ℓ)} ∪ {(𝑞′, ℓ)}, data(𝜆) = data(𝜆′) and if ℓ − 𝑖 ∈ J 𝑗 , 𝑘K then
data(𝜆) (rgℓ−𝑖 [𝑟]) = d (if the register read is below round 𝑗 then there is no condition on
the content of the registers);

— if 𝜃 = ((𝑞, read−𝑖𝑟 (d), 𝑞′), ℓ) with ℓ ∉ J 𝑗 , 𝑘K and ℓ − 𝑖 ∈ J 𝑗 , 𝑘K then loc(𝜆′) = loc(𝜆) (the
round of the process is outside J 𝑗 , 𝑘K), data(𝜆) = data(𝜆′) and data(𝜆) (rgℓ−𝑖 [𝑟]) = d;

— if 𝜃 = ((𝑞, incr, 𝑞′), ℓ) then 𝜆 𝜃−→ 𝜆′ if and only if data(𝜆′) = data(𝜆) and:
— if ℓ = 𝑗−1 then loc(𝜆′) = loc(𝜆)∪{(𝑞′, 𝑘)} (there is no condition related to (𝑞, 𝑗−1)

since 𝑗−1 is outside of J 𝑗 , 𝑘K);
— if ℓ ∈ J 𝑗 , 𝑘−1K then loc(𝜆′) = loc(𝜆) \ {(𝑞, ℓ)} ∪ {(𝑞′, ℓ + 1)} or loc(𝜆′) = loc(𝜆) ∪

{(𝑞′, ℓ + 1)},
— if ℓ = 𝑘 then loc(𝜆′) = loc(𝜆) \ {(𝑞, 𝑘)} or loc(𝜆′) = loc(𝜆).

148



4.5. A Polynomial-Space Algorithm for Cover
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footprintJ1,2K(𝜌) : 𝜆0 𝜆1 𝜆2 𝜆3 𝜆6 𝜆10
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Figure 4.8 – An example of footprint of an abstract execution. A move (𝛿, 𝑘) of 𝜌 is represented
at 𝑦-coordinate 𝑘 . For every 𝑖 ∈ J0, 10K, we let 𝜆𝑖 := restrJ1,2K(𝛾𝑖). We assume that 𝜆3 = 𝜆4 = 𝜆5
and 𝜆6 = 𝜆7 = 𝜆8 = 𝜆9. The moves that remain in footprintJ1,2K(𝜌) are colored in red.

Footprints A footprint on rounds J 𝑗 , 𝑘K is an alternating sequence 𝜏 = 𝜆0, 𝜃0, 𝜆1, . . . , 𝜃𝑚−1, 𝜆𝑚

where 𝜆𝑖 ∈ ΓJ 𝑗 ,𝑘K for all 𝑖 ∈ J0, 𝑚K and for all 𝑖 ⩽ 𝑚 − 1, 𝜆𝑖
𝜃𝑖−→ 𝜆𝑖+1 and 𝜆𝑖 ≠ 𝜆𝑖+1. It is meant to

correspond to the projection of an execution on rounds J 𝑗 , 𝑘K . The length of the footprint 𝜏 is
defined by its number of steps 𝑚.

Let 𝜌 = 𝛾0, 𝜃0, 𝛾1, . . . , 𝜃𝑚−1, 𝛾𝑚 be an execution. The footprint of 𝜌 on (rounds) J 𝑗 , 𝑘K,
written footprintJ 𝑗 ,𝑘K(𝜌), is the footprint on J 𝑗 , 𝑘K obtained from 𝜌 by replacing 𝛾𝑖 by 𝜆𝑖 =

restrJ 𝑗 ,𝑘K(𝛾𝑖) and then removing all steps 𝜆𝑖
𝜃−→ 𝜆𝑖+1 with 𝜆𝑖 = 𝜆𝑖+1. In words, we take

the restricted configurations and we remove useless steps 1; this means that the length of
footprintJ 𝑗 ,𝑘K(𝜌) can be much smaller than the one of 𝜌.

Example 4.22. An example of footprint projection of an abstract execution can be found in
Fig. 4.8. In this example, 𝜌 is an abstract execution of length 10 and footprintJ1,2K(𝜌) is a footprint
on rounds J1, 2K of length 6. Here, we suppose that 𝜆3 = 𝜆4 = 𝜆5 and 𝜆6 = 𝜆7 = 𝜆8 = 𝜆9. The
moves 𝜃𝑖 of 𝜌 that do not appear in footprintJ1,2K(𝜌) are those such that 𝜆𝑖−1 = 𝜆𝑖. The only
moves that can remain in footprintJ1,2K(𝜌) are those on rounds 1 and 2 and round increments

1. In the projection of an execution, we forbid that the same restricted configuration is visited twice consecutively,
which matches the condition that 𝜆𝑖 ≠ 𝜆𝑖+1 in the definition of footprints. This may seem surprising, as executions
are allowed to visit the same configuration several times in a row. This choice, however, guarantees unicity of the
projection while also guaranteeing that a footprint on rounds J 𝑗 , 𝑘K is equal to its projection onto J 𝑗 , 𝑘K. This will
be in particular convenient for the statements and proofs of Lemma 4.23 and Lemma 4.24.
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on round 0. This condition is however not sufficient: for example, it can be that 𝜃4 is a round
increment but that its destination location is already populated in 𝜎3. Even moves at rounds 1
or 2 can be removed, as it is here the case of 𝜃9.

Let J 𝑗 ′, 𝑘′K ⊆ J 𝑗 , 𝑘K. We extend the projection operator in a natural way to define, given
𝜆 ∈ J 𝑗 , 𝑘K, the restricted configuration restrJ 𝑗 ′,𝑘 ′K(𝜆) by loc(restrJ 𝑗 ′,𝑘 ′K(𝜆)) := loc(𝜆) ∩ ΓJ 𝑗 ′,𝑘 ′K

and data(restrJ 𝑗 ′,𝑘 ′K(𝜆)) (reg) := data(𝜆) (reg) for all reg ∈ RegJ 𝑗 ′,𝑘 ′K. Similarly, given a
footprint 𝜏 on J 𝑗 , 𝑘K, we define the projected footprint footprintJ 𝑗 ′,𝑘 ′K(𝜏) of 𝜏 on J 𝑗 ′, 𝑘′K by
projecting configurations onto J 𝑗 ′, 𝑘′K and removing useless steps.

It will be convenient to define ΓJ 𝑗 ,𝑘K for 𝑗 and 𝑘 negative as well. In this case, we let
LJ 𝑗 ,𝑘K = {(𝑞, ℓ) | 𝑗 ⩽ ℓ ⩽ 𝑘, ℓ ∈ N} so that only locations of positive rounds are considered.
We consider that registers of negative rounds exist, and that they always hold value ⊥. This will
allow us to assume that RegJ 𝑗 ,𝑘K always contains the symbols of dim(𝑘 − 𝑗 + 1) registers. In
particular, if 𝑗 , 𝑘 < 0 then ΓJ 𝑗 ,𝑘K = {⟨∅,⊥dim(𝑘− 𝑗+1)⟩}. With this convention, we allow ourselves
to consider footprints on J 𝑗 , 𝑘K for 𝑗 , 𝑘 ∈ Z.

4.5.3 Combining Footprints

Our goal is to design a non-deterministic polynomial-space algorithm that guesses an execu-
tion covering 𝑞 𝑓 footprint by footprint. Therefore, we need a sufficient condition for a sequence
of overlapping footprints to be the projections of a single common execution. As we will see,
there are essentially two conditions: that the footprints coincide on overlapping rounds, and
that the overlap between footprints represents at least max(𝑣, 1) rounds. This last condition
corresponds to the fact that the overlap must be high enough in terms of rounds that we can
check that all moves are valid: we need at least 𝑣 common rounds to check read actions and at
least 1 common round to check round increments.

We start by giving a condition allowing us to combine two overlapping footprints into one:

Lemma 4.23. Let 𝑤 ⩾ max(𝑣, 1), 𝑘 ∈ Z, 𝜏− a footprint on J𝑘−𝑤, 𝑘K and 𝜏+ a footprint
on J𝑘−𝑤+1, 𝑘+1K such that footprintJ𝑘−𝑤+1,𝑘K(𝜏−) = footprintJ𝑘−𝑤+1,𝑘K(𝜏+). There exists 𝑇 a
footprint on J𝑘−𝑤, 𝑘+1K such that footprintJ𝑘−𝑤,𝑘K(𝑇) = 𝜏− and footprintJ𝑘−𝑤+1,𝑘+1K(𝑇) = 𝜏+.

Proof. We start by explaining the high-level idea of the proof. We build 𝑇 in a naive manner,
where we essentially start with the common part between 𝜏− and 𝜏+ and add all steps at rounds
𝑘 − 𝑤 from 𝜏− and all steps at round 𝑘 + 1 from 𝜏+, in a way such that the relative order of steps
in 𝜏− is preserved and same for 𝜏+. This will yield a footprint because, since 𝑤 ⩾ 𝑣, steps at
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round 𝑘 + 1 may not depend on what happens on rounds 𝑘 − 𝑤 and below, and steps at round
𝑘−𝑤 may not depend on what happens on rounds above 𝑘−𝑤+1 and in particular on round 𝑘+1.

More formally, let 𝜏com := footprintJ𝑘−𝑤+1,𝑘K(𝜏−) = footprintJ𝑘−𝑤+1,𝑘K(𝜏+). We proceed by
induction on the number of steps in 𝜏com.

First, assume that 𝜏com has length 0. It contains no steps and exactly one restricted config-
uration 𝜆com ∈ ΓJ𝑘−𝑤,𝑘+1K. This implies that all steps in 𝜏− are at round 𝑘−𝑤 and that all steps
in 𝜏+ are at round 𝑘+1. Let 𝜏+ =: 𝜆+0 , 𝜃

+
1 , 𝜆

+
1 , . . . , 𝜃

+
𝑝, 𝜆

+
𝑝 and 𝜏− =: 𝜆−0 , 𝜃

−
1 , 𝜆

−
1 , . . . , 𝜃

−
𝑚, 𝜆

−
𝑚. Let

𝜏+ := 𝜆+0 , 𝜃
+
1 , 𝜆

+
1 , . . . , 𝜃

+
𝑝, 𝜆

+
𝑝 where, for all 𝑖 ∈ J0, 𝑝K, 𝜆+

𝑖
∈ ΓJ𝑘−𝑤,𝑘+1K, restrJ𝑘−𝑤+1,𝑘+1K(𝜆+𝑖 ) = 𝜆+𝑖

and restrJ𝑘−𝑤,𝑘−𝑤K(𝜆+𝑖 ) = restrJ𝑘−𝑤,𝑘−𝑤K(𝜆−0 ). In words, 𝜏+ corresponds to 𝜏+ where the informa-
tion from 𝜆−0 about round 𝑘−𝑤 has been added to all restricted configurations. Because moves
in 𝜏+ are at round 𝑘+1 and 𝑤 ⩾ 𝑣, these moves have no effect on round 𝑘−𝑤 therefore 𝜏+ is a
footprint on rounds J𝑘−𝑤, 𝑘+1K. Similarly, we build a footprint 𝜏− = 𝜆−0 , 𝜃

−
1 , 𝜆

−
1 , . . . , 𝜃

−
𝑚, 𝜆

−
𝑚 that

corresponds to 𝜏− where the information about round 𝑘+1 from𝜆+𝑝 has been added to all restricted
configurations. This is possible because moves on round 𝑘−𝑤 has no effect on round 𝑘 + 1. In-
deed, moves on round 𝑘−𝑤 may only have effect on rounds below 𝑘−𝑤 and on round 𝑘−𝑤+1 for
round increments (this last case is why we require that 𝑤 ⩾ 1 so that 𝑘−𝑤+1 < 𝑘+1). Observe
that 𝜆+𝑝 = 𝜆−0 : they coincide on rounds 𝑘−𝑤+1 to 𝑘 where they are equal to 𝜆com, on round 𝑘−𝑤
by construction of 𝜆+𝑝 and on round 𝑘+1 by construction of 𝜆−0 . Let𝑇 be the footprint obtained by
concatenating 𝜏+ and 𝜏−. We have footprintJ𝑘−𝑤+1,𝑘+1K(𝜏−) = 𝜆+𝑝 = restrJ𝑘−𝑤+1,𝑘+1K(𝜆+𝑝) (footprint
of length 0 with one restricted configuration) and footprintJ𝑘−𝑤,𝑘K(𝜏+) = 𝜆−0 = restrJ𝑘−𝑤,𝑘K(𝜆−0 ).
Therefore all restricted configurations in 𝜏− merge into one single restricted configuration where
we project onto J𝑘−𝑤+1, 𝑘+1K, and the same is true for 𝜏+ when we project onto J𝑘−𝑤, 𝑘K. This
proves that footprintJ𝑘−𝑤,𝑘K(𝑇) = 𝜏− and footprintJ𝑘−𝑤+1,𝑘+1K(𝑇) = 𝜏+.

Assume that the property is true if 𝜏com has𝑚 steps, and suppose that 𝜏com has𝑚+1 steps. We
decompose 𝜏− = 𝑡−, 𝜃, 𝑠− and 𝜏+ = 𝑡+, 𝜃, 𝑠+ where 𝑡− and 𝑡+ coincide on rounds 𝑘−𝑤+1 to 𝑘 , their
projection on these rounds has exactly 𝑚 steps, 𝜃 is the 𝑚+1-th move of 𝜏com and 𝑠− and 𝑠+ have
no move with effect on rounds 𝑘−𝑤+1 to 𝑘 . By induction hypothesis, there exists a footprint 𝑡 on
J𝑘−𝑤, 𝑘+1K such that footprintJ𝑘−𝑤,𝑘K(𝑡) = 𝑡− and footprintJ𝑘−𝑤+1,𝑘+1K(𝑡) = 𝑡+. By the base case
of the induction, there exists 𝑠 such that footprintJ𝑘−𝑤,𝑘K(𝑠) = 𝑠− and footprintJ𝑘−𝑤+1,𝑘+1K(𝑠) = 𝑠+.
We claim that 𝑇 := 𝑡, 𝜃, 𝑠 is a footprint. Let 𝜆𝑡 be the last restricted configuration of 𝑡 and 𝜆𝑠 the
first restricted configuration of 𝑠; we prove that 𝜆𝑡

𝜃−→ 𝜆𝑠. All conditions about rounds 𝑘−𝑤+1
to 𝑘 are satisfied because of 𝜏com. Conditions about round 𝑘−𝑤 are satisfied because of 𝜏− and
conditions about round 𝑘+1 are satisfied because of 𝜏+. Finally, 𝑇 projects to 𝜏− on J𝑘−𝑤, 𝑘K
and to 𝜏+ on J𝑘−𝑤+1, 𝑘+1K, which concludes the inductive step. □
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We now provide a sufficient condition to merge footprints into a common execution:

Lemma 4.24. Let 𝐾 ∈ N, 𝑤 ∈ N such that 𝑤 ⩾ 𝑣−1, (𝜏𝑘 )0⩽𝑘⩽𝐾 and (𝑇𝑘 )1⩽𝑘⩽𝐾 such that:

— for all 𝑘 ∈ J0, 𝐾K, 𝜏𝑘 is a footprint on J𝑘−𝑤, 𝑘K,
— for all 𝑘 ∈ J1, 𝐾K, 𝑇𝑘 is a footprint on J𝑘−𝑤−1, 𝑘K,

— for all 𝑘 ∈ J1, 𝐾K, footprintJ𝑘−𝑤−1,𝑘−1K(𝑇𝑘 ) = 𝜏𝑘−1,

— for all 𝑘 ∈ J1, 𝐾K, footprintJ𝑘−𝑤,𝑘K(𝑇𝑘 ) = 𝜏𝑘 .
There exists an abstract execution 𝜌 such that, for all 𝑘 ∈ J0, 𝐾K, footprintJ𝑘−𝑤,𝑘K(𝜌) = 𝜏𝑘 .

Proof. The high-level idea of this proof is to merge footprints two by two using Lemma 4.23,
and to repeat the operation until we have only one large footprint on rounds 0 to 𝐾 , which can
be seen as an abstract execution.

For the formal proof, we proceed by induction on 𝐾 . First, if 𝐾 = 0, footprint 𝜏0 only has
moves at round 0 and may be seen as an abstract execution. Suppose that the property is true
for 𝐾 , and consider (𝜏𝑘 )𝑘∈J0,𝐾+1K, (𝑇𝑘 )𝑘∈J1,𝐾+1K satisfying the hypothesis. For all 𝑘 ∈ J1, 𝐾K,
𝑇𝑘 and 𝑇𝑘+1 both have projection 𝜏𝑘 on rounds J𝑘−𝑤, 𝑘K, hence thanks to Lemma 4.23 applied
with 𝑤′ := 𝑤+1 and 𝑘′ := 𝑘+1, there exists 𝑈𝑘 on rounds J𝑘−𝑤−1, 𝑘+1K that projects to 𝑇𝑘
and 𝑇𝑘+1 on J𝑘−𝑤−1, 𝑘K and J𝑘−𝑤, 𝑘+1K respectively. By applying the induction hypothesis
on (𝑇𝑘 ) and (𝑈𝑘 ) with 𝐾′ := 𝐾−1 and 𝑤′ := 𝑤 + 1, there exists an abstract execution 𝜌 such
that, for all 𝑘 ∈ J1, 𝐾 + 1K, footprintJ𝑘−𝑤−1,𝑘K(𝜌) = 𝑇𝑘 ; this implies that, for all 𝑘 ∈ J0, 𝐾+1K,
footprintJ𝑘−𝑤,𝑘K(𝜌) = 𝜏𝑘 , concluding the proof of Lemma 4.24. □

Finally, we prove that, over a window of rounds of height 𝑣 + 1, a footprint of an abstract
execution in normal form can be stored in polynomial space. Of course, this is not possible if
we store the value of the rounds explicitely, because their is no a priori bound on these values.
It is however possible if we store the values of the rounds relatively to the highest round of the
window, which is itself not stored explicitely.

Lemma 4.25. Let 𝜌 be an abstract execution in normal form, let 𝑘 ∈ N. The footprint
footprintJ𝑘−𝑣−1,𝑘K(𝜌) has length at most (𝑣 + 3) (5|𝑄 | + |D|) and it can be stored in polynomial
space 𝑂 ((𝑣 + 1)2 |𝑄 |2 |Δ| |D|dim), assuming that round values are stored relatively to 𝑘 .

Proof. Let 𝜏 := footprintJ𝑘−𝑣−1,𝑘K(𝜌). Any step of 𝜏 corresponds to a step of 𝜌 at a round
between 𝑘−𝑣−2 and 𝑘 . By Lemma 4.20, there are at most (𝑣 + 3) (5|𝑄 | + |D|) such steps in 𝜌,
so that 𝜏 has length in 𝑂 ((𝑣 + 1) |𝑄 | |D|). Each move of 𝜏 can be stored in 𝑂 ( |Δ| (𝑣 + 1)) and
each restricted configuration of 𝜏 in𝑂 ((𝑣 + 1) |𝑄 | + |D| (𝑣 + 1)dim) if the round values are stored
relatively to 𝑘 . □
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The space bound above is expressed as a function of 𝑣 + 1 because 𝑣 may be equal to 0. The
bound from Lemma 4.25 could be made much smaller with a more thorough analysis; however,
this bound is sufficient to prove that such footprints can be stored in polynomial space. Note that
the hypothesis that 𝑣 is encoded in unary in the input is required to argue that the above bound
is polynomial.

4.5.4 A Polynomial-Space Algorithm for Cover

We now prove Theorem 4.16 by providing a polynomial-space procedure to decide Cover.
The pseudocode of the algorithm can be found in Algorithm 3. Thanks to Savitch’s theorem
[Sav70], we may design a non-deterministic algorithm. The high-level idea of the algorithm is
to guess the execution footprint by footprint until state 𝑞 𝑓 is seen. We may look for an abstract
execution in normal form, which gives a bound of the length of the footprints to consider. The
guessed footprints are of height 𝑣 + 1 (i.e., they are on rounds J𝑘−𝑣−1, 𝑘K for 𝑘 ∈ N). In fact,
one could work with footprints of height 𝑣 except when 𝑣 = 0, in this case we need footprints of
height at least 1 to be able to check that round increment steps are valid. Note that Algorithm 3
does not always terminate, because the for loop at line 3 allows for infinite computations. We
start by analyzing this non-terminating algorithm to argue that it has an accepting computation
whenever the instance is positive; we will later discuss how to guarantee termination.

1 Input: A Cover instance (P, 𝑞 𝑓 )
2 𝜏 � ⟨∅,⊥dim(𝑣+1)⟩ ; // footprint on J−𝑣−1,−1K with one config, no step
3 for 𝑘 from 0 to +∞ do
4 Guess 𝑇 = 𝜆0, 𝜃1, . . . , 𝜃ℓ, 𝜆ℓ with 𝜆𝑖 ∈ ΓJ𝑘−𝑣−1,𝑘K and ℓ ⩽ (𝑣 + 3) (5|𝑄 | + |D|) ;

5 if there is 𝑖 for which we do not have 𝜆𝑖
𝜃𝑖+1−−−→ 𝜆𝑖+1 then Reject;

6 if footprintJ𝑘−𝑣−1,𝑘−1K(𝑇) ≠ 𝜏 then Reject;
7 if 𝜆0 ≠ restrJ𝑘−𝑣−1,𝑘K(𝜎0) then Reject;
8 𝜏 � footprintJ𝑘−𝑣,𝑘K(𝑇) ;
9 if 𝑞 𝑓 appears in 𝜏 then Accept ;

Algorithm 3: Non-deterministic algorithm for round-based Cover

Lemma 4.26. Algorithm 3 has an accepting computation on input (P, 𝑞 𝑓 ) if and only if (P, 𝑞 𝑓 )
is a positive instance of Cover.

Proof. We start with the high-level idea of the proof. If there is an execution covering 𝑞 𝑓 ,
then there is an abstract execution in normal form that does so, and it is not difficult build a
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computation that guesses all footprints of this execution and eventually accepts. Conversely,
from an accepting computation of the algorithm, we use Lemma 4.24 to build an execution
covering 𝑞 𝑓 that projects to the footprints guessed by the computation.

Suppose first that there is an accepting computation of Algorithm 3. For all 𝑘 ∈ J0, 𝐾K, let 𝜏𝑘
be the footprint on J𝑘−𝑣, 𝑘K assigned to 𝜏 at line 8 during iteration 𝑘 , and let 𝑇𝑘 be the footprint
on J𝑘−𝑣−1, 𝑘K guessed for 𝑇 at line 4 during iteration 𝑘 (both 𝜏𝑘 and 𝑇𝑘 are footprints because
of the test at line 5). By the definition of 𝜏 at line 8, we have footprintJ𝑘−𝑣,𝑘K(𝑇𝑘 ) = 𝜏𝑘 , and
because of the test at line 6, we have footprintJ𝑘−𝑣−1,𝑘−1K(𝑇𝑘 ) = 𝜏𝑘−1. By applying Lemma 4.24
on (𝜏𝑘 )𝑘∈J0,𝐾K and (𝑇𝑘 )𝑘∈J1,𝐾K, there exists an abstract execution 𝜌 : 𝜎𝑠

∗−→ 𝜎 such that, for all
𝑘 ⩽ 𝐾 , footprintJ𝑘−𝑣+1,𝑘K(𝜌) = 𝜏𝑘 . Because all tests at line 7 have passed, we have that, for all
𝑘 ⩽ 𝐾 , restrJ𝑘−𝑣,𝑘K(𝜎𝑠) = restrJ𝑘−𝑣,𝑘K(𝜎0). Without loss of generality, in 𝜎𝑠, all locations on
rounds ℓ > 𝐾 are empty and all registers of rounds > 𝐾 are blank, so that 𝜎𝑠 = 𝜎0. Because 𝑞 𝑓
appears in 𝜏𝐾 , it appears in some configuration of 𝜌. By Proposition 4.18, (P, 𝑞 𝑓 ) is a positive
instance of Cover.

Conversely, suppose that (P, 𝑞 𝑓 ) is a positive instance of Cover. By Proposition 4.18, there
is an abstract execution 𝜌 : 𝜎0

∗−→ 𝜎 and 𝐾 ∈ N such that (𝜎, 𝐾) ∈ loc(𝜎). By Lemma 4.19, we
may assume that 𝜌 is in normal form. For every 𝑘 ∈ J−1, 𝐾K, let 𝜏𝑘 := footprintJ𝑘−𝑣,𝑘K(𝜌), and
for all 𝑘 ∈ J0, 𝐾K, let 𝑇𝑘 := footprintJ𝑘−𝑣−1,𝑘K(𝜌). We prove, by induction on 𝑘 ⩽ 𝐾 , there is a
computation of Algorithm 3 that does the following. It starts with 𝜏 = 𝜏−1 and for every 𝑘′ ⩽ 𝑘 ,
if the computation gets to iteration 𝑘′ then:

(i) it starts iteration 𝑘′ with 𝜏 = 𝜏𝑘 ′−1, and

(ii) it guesses 𝑇 = 𝑇𝑘 ′ and then sets 𝜏 = 𝜏𝑘 ′ , and

(iii) it does not reject at lines 5, 6 and 7.

First, 𝜏−1 = ⟨∅,⊥dim(𝑣+1)⟩ because all registers of negative rounds always hold value ⊥, so that
iteration 0 starts with 𝜏 = 𝜏−1. Let 𝑘 ⩽ 𝐾 , and suppose that the statement is true for 𝑘−1.
By induction hypothesis, we have a computation of Algorithm 3 that respects the conditions
for all iterations before 𝑘 . By hypothesis (iii), the computation did not reject until then; if the
computation accepted before iteration 𝑘 , then we are done. Suppose now that this is not the case,
i.e., that the considered computation gets to iteration 𝑘 . Applying (ii) for 𝑘′ = 𝑘 −1 proves (i) for
𝑘′ = 𝑘 . By definition, 𝑇𝑘 is a footprint on J𝑘−𝑣−1, 𝑘K of length bounded by (𝑣 + 3) (5|𝑄 | + |D|)
by Lemma 4.20, so that 𝑇𝑘 can be guessed for 𝑇 at line 4 and passes the test at line 5. Also,
footprintJ𝑘−𝑣−1,𝑘−1K(𝑇𝑘 ) = 𝜏𝑘−1 which is the value of 𝜏 at the beginning of iteration 𝑘 by (i), so
that iteration 𝑘 passes the test at line 6. The first restricted configuration 𝜆0 of 𝑇𝑘 is equal to
restrJ𝑘−𝑣,𝑘K(𝜎0) by definition of 𝑇𝑘 , so that iteration 𝑘 passes the test at line 7. We have proved
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that iteration 𝑘 does not reject so that (iii) holds. Also, this means that the value of 𝜏 is set
to 𝜏𝑘 at line 8 during iteration 𝑘 , satisfying (ii). This concludes the inductive step. Lastly, the
computation accepts at some iteration 𝑘 ⩽ 𝐾 . Indeed, by (iii), the computation never rejects,
therefore it either accepts at some iteration 𝑘 < 𝐾 or gets to iteration 𝐾 . Suppose that it gets
to iteration 𝐾; in this case, it sets 𝜏 = 𝜏𝐾 . By definition, 𝜏𝐾 = footprintJ𝐾−𝑣,𝐾K(𝜌) therefore 𝑞 𝑓
appears in 𝜏𝐾 and the computation accepts at iteration 𝐾 . □

We have proved that the algorithm accepts if and only if the instance is positive. There are
two remaining tasks: to argue that the algorithm works in polynomial space and to provide a
termination criterion. By Lemma 4.25, the footprint 𝑇 can be stored in 𝑂 ((𝑣 + 1)2 |𝑄 |2 |Δ| |D|),
and the same is true for footprint 𝜏. This relies on the idea that 𝑘 is not stored explicitly in 𝑇 and
𝜏, and that all round values are stored relatively to 𝑘 . Indeed, although the instructions inside
the for loop of Algorithm 3 are written with variable 𝑘 , they can be implemented without using
the explicit value of 𝑘 2. If the same value of 𝑇 appears twice in two differents iterations of the
same computation, then the computation has looped. By the pigeonhole principle, there is no
reason to let the computation perform more iterations than there are possible values for 𝑇 . Let
𝐵 be the total number of values for 𝑇 ; 𝐵 is exponential in the size of the system and can be
computed. Therefore, one can change the for loop at line 3 to make it stop when 𝑘 = 𝐵. This
guarantees termination of the algorithm. The values of 𝑘 and 𝐵 are exponential in the size of
the system therefore can be stored in polynomial space. This proves that Algorithm 3 works in
polynomial space, concluding the proof of Theorem 4.16.

4.6 Handling Presence Constraints

In the previous section, we have proved that the problem of Cover can be solved in polyno-
mial space. The techniques developed and the algorithm provided, however, are far from being
specific to Cover: the fact that the reachability objective is a coverability objective actually
only appears at line 9 in Algorithm 3. In particular, this algorithm can be directly extended to
round-based Target by simply changing the test at line 9. Extending the result of Theorem 4.16
to round-based PRP requires more work and is the topic of this section.

Theorem 4.27. Round-based PRP is PSPACE-complete.

2. Except for the iteration 𝑘 = 0 where the test at line 7 is different for the one performed in iterations 𝑘 > 0,
because (𝑞0, 0) may be in 𝜆0 while (𝑞0, 𝑘) may not for all 𝑘 > 1. This does not affect the pigeonhole argument
because the value of 𝑇 with 𝑘 = 0 cannot be equal to a value of 𝑇 of a later iteration.
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The PSPACE-hardness comes from Theorem 4.12. We here prove membership in PSPACE.
To do so, we use the same idea as in Section 4.5, which is to guess the witness execution footprint
by footprint. There are however many new technical considerations, because we need to check
whether the constructed abstract execution satisfies the presence constraint. Unlike for Cover,
this cannot be tested on each footprint separately, because atomic propositions of a presence
constraint refer to various rounds which are not all in the same footprint. For this reason, we
need to store intermediate information about what parts of the presence constraint have already
been satisfied, and what parts have not.

Example 4.28. Recall that agreement of Aspnes’ noisy consensus algorithm can be stated as
the fact that, in PAsp, no configuration can be reached that satisfies 𝜓 := (∃𝑘1 popu(𝑅0, 𝑘1)) ∧
(∃𝑘2 popu(𝑅1, 𝑘2)). To solve the corresponding instance (PAsp, 𝜓) of PRP, we guess, footprint
by footprint, an abstract execution whose last configuration satisfies 𝜓. There is no a priori
bound on the difference between 𝑘1 and 𝑘2, so that the truth value of 𝜓 cannot be evaluated
on each footprint separately. We need to remember, as we are guessing the witness execution,
whether we have already found a witness for 𝑘1 or not, and same for 𝑘2.

4.6.1 Description of the Algorithm

The pseudocode can be found in Algorithm 4. The for loop on 𝑘 relies on the same
principles as in Algorithm 3, which is to guess the execution footprint by footprint. This
corresponds to line 6; the checks performed on 𝑇 are the same as in Algorithm 3. The function
NDInit, NDComputeIteration and TestPresenceConstraint are in charge of handling the
presence constraint. The algorithm is non-deterministic; whenever the algorithm must “check”
something, it rejects if the condition is not met.

To handle the presence constraint 𝜓, we split it into smaller formulas. This is mostly done
in some initial phase performed by NDInit (line 10). Recall that atomic propositions are of the
form popu(𝑞, 𝑡) or cont(rg𝑟 [𝑡], d) with 𝑡 a term, which is either of the form 𝑘 + 𝑚 with 𝑘 a free
variable and 𝑚 ∈ N or simply equal to a constant 𝑚 ∈ N. Let Cons(𝜓) be the set of closed
atomic propositions in 𝜓 whose term is constant, along with the negations of such propositions.
Atomic propositions in Cons(𝜓) must be checked at a fixed round. We start by deciding which
atomic propositions in Cons(𝜓) are true and which are false (line 11). We put in a set 𝐶 all
closed atomic propositions that have to be true, to check them later. For each atomic proposition
𝜙 in Cons(𝜓), either 𝜙 is in 𝐶 or ¬𝜙 is in 𝐶 (but not both). We then simplify 𝜓 according to
the truth value of closed atomic propositions of Cons(𝜓): a closed atomic proposition 𝜙 in 𝜓 is
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1 Input: A PRP instance (P, 𝜓)
2 𝐸,𝑈,𝐶 � ∅ ;
3 𝜏 � ⟨∅,⊥dim(𝑣+1)⟩ ;
4 NDInit(𝐸,𝑈,𝐶) ;
5 for 𝑘 from 0 to +∞ do
6 Guess 𝑇 = 𝜆0𝜃1 . . . 𝜃ℓ𝜆ℓ a footprint on J𝑘−𝑣−1, 𝑘K with ℓ ⩽ (𝑣 + 2) (5|𝑄 | + |D|)

such that footprintJ𝑘−𝑣−1,𝑘−1K(𝑇) = 𝜏 and 𝜆0 = restrJ𝑘−𝑣,𝑘K(𝜎0) ;
7 𝜏 � footprintJ𝑘−𝑣,𝑘K(𝑇) ;
8 NDComputeIteration(𝐸,𝑈,𝐶, 𝜆ℓ, 𝑘) ;
9 if TestPresenceConstraint(𝐸,𝑈,𝐶) then Accept ;

10 Function NDInit(𝐸,𝑈,𝐶) :
/* Puts in 𝑈, 𝐸 and 𝐶 the APC to check: universal in 𝑈,
existential in 𝐸, closed in 𝐶. Modifies 𝜓. */

11 Guess 𝐶 ⊆ Cons(𝜓) and simplify 𝜓 by setting all atomic propositions in 𝐶 to true ;
12 Guess 𝑋 ⊆ APC(𝜓) s.t. 𝜓 is true when all APC in 𝑋 are true ;
13 Add all universal APC in 𝑋 to 𝐸 and all existential APC in 𝑋 to𝑈 ;
14 Function NDComputeIteration(𝐸,𝑈,𝐶, 𝜆, 𝑘) :
15 for “∀ℓ 𝜙” in𝑈 do
16 Guess 𝐿 ⊆ AP(𝜙[ℓ � 𝑘]) s.t. 𝜙[ℓ � 𝑘] is true when formulas in 𝐿 are true ;
17 Add all formulas in 𝐿 to 𝐶 ;
18 for “∃ℓ 𝜙” in 𝐸 do
19 if 𝜙[ℓ � 𝑘] guessed to be true then
20 Guess 𝐿 ⊆ AP(𝜙[ℓ � 𝑘]) s.t. 𝜙[ℓ � 𝑘] is true when formulas in 𝐿 are true ;
21 Add all formulas in 𝐿 to 𝐶 ; Remove “∃ℓ 𝜙” from 𝐸 ;
22 for 𝜙 in 𝐶 related to round 𝑘 do
23 Check that 𝜙 is satisfied by 𝜆 ; Remove 𝜙 from 𝐶 ;
24 Function TestPresenceConstraint(𝐸,𝑈,𝐶) :
25 if 𝐸 ≠ ∅ then return false ;
26 for 𝜙 ∈ 𝐶 or “∀ℓ 𝜙” in𝑈 do
27 if ⟨∅,⊥Reg⟩ ̸|= 𝜙 then return false ; // Exec. cannot stop at round 𝑘

28 return true ;
Algorithm 4: Non-deterministic algorithm for round-based PRP
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simplified to true if 𝜙 ∈ 𝐶, and to false if ¬𝜙 ∈ 𝜓. After this transformation, there are no closed
atomic propositions left in 𝜓.

This means that, after the above step performed at line 11, all atomic presence constraints in
𝜓 start with a quantifier. Let APC(𝜓) be the set of atomic presence constraints (APC for short)
that are either present in 𝜓 or whose negation is present in 𝜓. We guess a subset 𝑋 ⊆ APC(𝜓)
such that 𝜓 is satisfied when all APC in 𝑋 are evaluated to true and their negations are evaluated
to false (line 12). We split atomic presence constraints in 𝑋 into two sets: we put universal APC
of 𝑋 (of the form ∀ℓ 𝜙) in𝑈 and existential APC of 𝑋 (of the form ∃ℓ 𝜙) in 𝐸 (line 13).

Overall, we have selected a number of smaller formulas to check. Formulas in 𝐶 refer to
constant rounds and are checked at these rounds only. Formulas in𝑈 are checked at every round.
For each formula in 𝐸 , the algorithm will guess at which round the formula is true.

The algorithm guesses the execution footprint by footprint. At a given round 𝑘 , after guessing
the footprint as in the algorithm for Cover, there are three tasks to perform:

(i) check that atomic propositions in 𝐶 that are related to round 𝑘 are satisfied,

(ii) check that all universal APC in𝑈 are satisfied,

(iii) guess which existential APC in 𝐸 are satisfied and check that they are.

These tasks are performed in NDComputeIteration. The last two tasks, (ii) and (iii), are
performed first in NDComputeIteration, because they add new APC to check in 𝐶. While
universal APC are checked at every round, for existential APC, we guess at line 19 which ones
are satisfied at round 𝑘 . There are, however, other non-deterministic choices performed for both
(ii) and (iii). Indeed, (ii) and (iii) require to guess, in the APC, which atomic propositions are
satisfied and which are not; we put those that have to be true in 𝐶, so that they are checked at
line 23 of this iteration or of subsequent ones. More formally, given an APC ∀ℓ 𝜙 or ∃ℓ 𝜙 that
must be satisfied at round 𝑘 , we denote by AP(𝜙) the set of atomic propositions appearing in 𝜙
and of negations of atomic propositions appearing in 𝜙. We guess (at line 16 for𝑈 and at line 20
for 𝐸) 𝐿 ⊆ AP(𝜙) so that setting atomic propositions in 𝐿 to true makes 𝜙 true. Because atomic
propositions in 𝐿 may be of the form ℓ + 𝑚, they may need to be checked at higher rounds. For
this reason, we simply add all atomic propositions in 𝐿 to 𝐶 (line 17 for 𝑈 and line 21 for 𝐸),
to be checked at round 𝑘 or at later rounds. Finally, NDComputeIteration checks all atomic
propositions in 𝐶 related to round 𝑘 at line 23. Because such an atomic proposition 𝜙 is related
to round 𝑘 , it makes sense to test whether it is satisfied by 𝜆, because all information about round
𝑘 can be found in 𝜆. At iteration 𝑘 , we only add to 𝐶 atomic propositions related to rounds ⩾ 𝑘 ,
so that, after NDComputeIteration, all atomic propositions in 𝐶 are related to rounds > 𝑘 .
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It remains to explain under which conditions the algorithm accepts. This is the role of
function TestPresenceConstraint. In this function, we check whether we can stop the
execution at round 𝑘 , leaving all rounds ⩾ 𝑘+1 untouched. First, we check that 𝐸 is empty
(line 25). This means that a round has been guessed for every existential formula that needed
to be checked. Moreover, we check that remaining formulas in 𝐶 and 𝑈 would be satisfied at
rounds ⩾ 𝑘+1 if these rounds are left untouched by the execution, which is done in lines 26 and
27. The test is expressed under the condition ⟨∅,⊥Reg⟩ |= 𝜙, and is implemented as follows.
Any formula 𝜙 that is in 𝐶 at this stage is about some round ℓ ⩾ 𝑘 + 1 and must be either of the
form ¬popu(𝑞, ℓ) or of the form cont(rg𝑟 [ℓ],⊥). A universal APC ∀ℓ 𝜙 must be satisfied on
arbitrarily large rounds ⩾ 𝑘+1, hence must be true when evaluating in 𝜙 all popu(𝑞, 𝑡) to false,
all cont(rg𝑟 [𝑡],⊥) to true and all cont(rg𝑟 [𝑡], d) to false for d ≠ ⊥. Note that if the universal
APC does not evaluate to true during this test, then it will in fact never be satisfied and the
computation has no hope of accepting at further iterations. We could have detected this issue
in NDInit and rejected directly, but for the sake of simplicity we leave it as part of the test for
termination.

Example 4.29. Consider 𝜙1 := ∀𝑘 popu(𝑞, 𝑘) ∨ cont(rg𝑟 [𝑘],⊥) and 𝜙2 := ∀𝑘 cont(rg𝑟 [𝑘], d)
with d ≠ ⊥. One has ⟨∅,⊥Reg⟩ |= 𝜙1, but ⟨∅,⊥Reg⟩ ̸|= 𝜙2. There is no hope of finding
𝜎 ∈ Post∗(𝜎0) such that 𝜎 |= 𝜙2.

4.6.2 Correctness of the Algorithm

We now prove that the algorithm is correct, which is expressed using the following lemma:

Lemma 4.30. (P, 𝜓) is a positive instance of round-based PRP if and only if there exists an
accepting computation of Algorithm 4 on input (P, 𝜓).

First, consider a computation of the algorithm that accepts at round 𝐾 ∈ N. For all
𝑘 ∈ J0, 𝐾K, let 𝜏𝑘 be the footprint on J𝑘−𝑣+1, 𝑘K guessed by the algorithm during iteration 𝑘 .
By Lemma 4.24, with the same reasoning as in the proof of Lemma 4.26, there exist 𝜎0 ∈ Γ0

and an execution 𝜌 : 𝜎0
∗−→ 𝜎 such that, for all 𝑘 ⩽ 𝐾 , footprintJ𝑘−𝑣+1,𝑘K(𝜌) = 𝜏𝑘 . Moreover, 𝜌

leaves rounds ⩾ 𝐾 untouched.
We claim that, for every formula 𝑃 that is in 𝑈, 𝐸 or 𝐶 at some point in the computation,

𝜎 |= 𝑃. Let 𝐿 be a closed atomic proposition that has been in𝐶 at some point. If it was removed
from 𝐶 at line 23, then 𝐶 is satisfied by 𝜆 hence by 𝜎. If it has remained in 𝐶 until the end, then
it is related to round ℓ ⩾ 𝐾+1 and ⟨∅,⊥Reg⟩ |= 𝐿, hence 𝜎 |= 𝐿.
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Consider ∃ℓ 𝜙 that has appeared in 𝐸 at some point in the computation. At some iteration 𝑘 ,
∃ℓ 𝜙 is removed from 𝐸 at line 21. All closed atomic propositions guessed at line 20 are added
to 𝐶 at line 21 hence are satisfied by 𝜎, thus 𝜎 |= 𝜙[ℓ � 𝑘] and 𝜎 |= ∃ℓ 𝜙.

Similarly, consider ∀ℓ 𝜙 that has appeared in 𝑈 at some point. By the same argument, for
all 𝑘 ⩽ 𝐾 , 𝜎 |= 𝜙[ℓ � 𝑘]. Also, thanks to the verification at lines 26 and 27, for all 𝑘 ⩾ 𝐾+1,
𝜎 |= 𝜙[ℓ � 𝑘], which proves that 𝜎 |= ∀ℓ 𝜙.

We have proved that all formula that are in𝑈, 𝐸 and 𝐶 at some point in the computation are
satisfied by 𝜎. This proves that all atomic propositions guessed at line 11 and all APC guessed
at line 12 are satisfied by 𝜎. Because 𝜓 is satisfied when all these subformulas are true, 𝜎 |= 𝜓
and (P, 𝜓) is a positive instance of PRP.

We now prove the converse implication: suppose that there exists 𝜌 : 𝜎0
∗−→ 𝜎 with 𝜎 |= 𝜓.

Since 𝜌 is an abstract execution, it has finitely many steps and there exists 𝐾 such that 𝜌 has
no move with effect on rounds > 𝐾 . We build an accepting computation of the algorithm as
follows. First, the computation of the algorithm guesses 𝜎0 as initial configuration. At line 11,
it guesses all atomic propositions 𝜙 in AP(𝜓) such that 𝜎 |= 𝜙. This modifies 𝜓, let 𝜓′ be the
new formula. By construction of 𝜓′, we have 𝜎 |= 𝜓 if and only if 𝜎 |= 𝜓′. At line 12, the
computation guesses all APC 𝜙 ∈ AP(𝜓′) such that 𝜎 |= 𝜙. This means that all formulas added
to 𝐶, 𝐸 and𝑈 in NDInit are satisfied by 𝜎.

At iteration 𝑘 , the computation guesses 𝑇 = footprintJ𝑘−𝑣−1,𝑘K(𝜌), so that the restricted
configuration 𝜆 obtained is equal to restrJ𝑘−𝑣,𝑘K(𝜎). For every ∀ℓ 𝜙 in 𝑈, it guesses for 𝐿 at
line 16 exactly the formulas in AP(𝜙[ℓ � 𝑘]) that are satisfied by 𝜎; 𝜙[ℓ � 𝑘] is true when all
formulas in 𝐿 are true because 𝜎 |= 𝜙[ℓ � 𝑘]. At line 19, it guesses exactly the formulas ∃ℓ 𝜙
in 𝐸 for which 𝜎 |= 𝜙[ℓ � 𝑘]. In this case, it guesses for 𝐿 at line 20 exactly the formulas in
AP(𝜙[ℓ � 𝑘]) that are satisfied by 𝜎. Either way, formulas added to 𝐶 are satisfied by 𝜎.

We have proved that all formulas added to 𝐶, 𝐸 and 𝑈 at any point in the computation
are satisfied by 𝜎. It is clear that the computation never rejects, i.e., that it passes all “check”
instructions. We now argue that the computation accepts at some iteration 𝑘 ⩽ 𝐾 + 1. By
contradiction, suppose that the computation finishes iteration 𝐾 + 1 without accepting. This
means that the call to TestPresenceConstraint at iteration 𝐾 + 1 returns false. We perform
a case analysis on the possible reasons. If 𝐸 ≠ ∅, then there is ∃ℓ 𝜙 in 𝐸 that was guessed true in
no iteration of the computation. By definition of the computation, 𝜎 ̸ |= 𝜙[ℓ � 𝑘] for all 𝑘 ⩽ 𝐾 .
We have however 𝜎 |= ∃ℓ 𝜙, hence there is 𝑘′ > 𝐾 +1 such that 𝜎 |= 𝜙[ℓ � 𝑘′]. However, 𝜎 has
all rounds above 𝐾 untouched, so that 𝜎 |= 𝜙[ℓ � 𝑘′] implies 𝜎 |= 𝜙[ℓ � 𝐾 + 1], so that ∃ℓ 𝜙 is
removed from 𝜙 at iteration 𝐾 +1. Moreover, if we have 𝜙 in𝐶 at the end of iteration 𝐾 +1, then
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𝜙 is related to some round 𝑘′ > 𝐾 + 1, but round 𝑘′ is untouched in 𝜎 so that ⟨∅,⊥Reg⟩ |= 𝜙.
Lastly, for each ∀ℓ 𝜙 in 𝑈, we have in particular 𝜎 |= 𝜙[ℓ � 𝐾 + 1] so that ⟨∅,⊥Reg⟩ |= 𝜙.
This proves that, if the computation gets to iteration 𝐾 + 1, then it accepts at this iteration. We
thus have constructed an accepting computation of the algorithm. This concludes the proof of
Proposition 4.30.

4.6.3 Space Complexity and Termination

For termination, we proceed as we did in Section 4.5 for Cover: we prove that the algorithm
works in polynomial space, so that the algorithm loops after an exponential number of iterations
and we can add a counter that stops the algorithm and rejects once the number of iterations
has reached this exponential bound. Therefore, it remains to prove that Algorithm 4 works in
polynomial space.

Regarding the footprints 𝜏 and 𝑇 , the argument is the same as for the algorithm for Cover
in Section 4.5. It therefore remains to prove that the sets 𝐸 , 𝑈 and 𝐶 can always be stored in
polynomial space. Let 𝑁 be the number of atomic propositions in 𝜓; also, let 𝑀 be the largest
value of 𝑚 such that a term of the form 𝑚 or 𝑘 + 𝑚 appears in 𝜓. By hypothesis, such values
of 𝑚 are given in unary, so that 𝑀 is polynomial in the size of the input. As before, we store
round values relatively to 𝑘; because round values considered at round 𝑘 cannot exceed 𝑘 + 𝑀 ,
all round values considered are storable in polynomial space. The number of atomic presence
constraints put to 𝐸 and𝑈 is in𝑂 (𝑁) and 𝐸 and𝑈 can be stored in polynomial space. The same
is true for the number of elements added to 𝐶 in NDInit. However, the size of 𝐶 may in fact
become larger, because more atomic propositions are added to 𝐶 at lines 17 and 21 and these
atomic propositions do not necessarily appear in 𝜓 initially. However, the number of elements
added to 𝐶 at a given iteration may not exceed |AP(𝜓) | = 𝑂 (𝑁) and a given element does not
stay in 𝐶 for more than 𝑀 + 1 iterations. This bounds the maximal number of elements in 𝐶 at
a given point of the computation by 𝑂 (𝑁 + 𝑁𝑀), so that 𝐶 can be stored in polynomial space.
This proves that Algorithm 4 works in polynomial space.

We have provided a non-deterministic polynomial-space algorithm solving round-based
PRP, which proves that the problem is in PSPACE, concluding the proof of Theorem 4.27.
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4.7 About Unary Encoding

In the previous sections, we proved that round-based Cover and round-based PRP are both
PSPACE-complete. This result, however, required the hypothesis that we use unary encoding
for the integer constants in the input, namely the visibility range 𝑣 and the constants in the terms
of the presence constraint. This choice of unary encoding makes a lot of sense with respect to the
motivations of the model: because no practical example is known with large integer constants,
we do not want them to have a large influence on the complexity results. Nonetheless, what
happens when they are encoded in binary instead remains an interesting theoretical question.
As we will now see, this choice drastically increases the complexity, which is another argument
in favor of our choice of unary encoding.

Proposition 4.31. Round-based PRP and round-based Cover are both EXPSPACE-complete
when the visibility range 𝑣 is given in binary or, in the case of round-based PRP, when the
integer constants in the presence constraint are encoded in binary.

Proof. To obtain membership in EXPSPACE, we use Algorithm 4 again. The analysis of the
space complexity provides a bound polynomial in |𝑄 |, dim, 𝑣, |D|, |Δ|, |𝜓 | and 𝑀 where 𝑀 is
the largest constant in 𝜓. With binary encoding, this bound is now exponential in the size of the
input. This means that the result from Theorem 4.27 translates to an EXPSPACE membership
when all integers in the input are encoding in binary.

We now prove that this complexity upper bound is tight by providing a matching complexity
lower bound. We prove EXPSPACE-hardness for two distinct problems: round-based Cover
with 𝑣 encoded in binary, and round-based PRP with the constants in the presence constraint
encoded in binary (but 𝑣 encoded in unary).

First, round-based Cover is EXPSPACE-hard when 𝑣 is encoded in binary. We proceed by
reduction from the halting problem for a deterministic Turing machine with a tape of exponential
size 2𝑛−1. The idea is, for every 𝑖, to use rounds 𝑖 2𝑛 to (𝑖+1)2𝑛−2 to encode the 𝑖-th configuration
of the Turing machine, and to use round (𝑖 + 1)2𝑛 − 1 as a separator between configurations.
As in the proof of Theorem 4.12, we design the protocol so that two different executions cannot
write different values to the same register, which is possible because the Turing machine is
deterministic. We set dim = 3: each round has one register that plays the role of a cell of the
Turing machine, along with another register that is set to the state of the machine if the head
is at this cell. The third register per round is used to encode a binary counter in the style of
the protocols of Proposition 4.7 in order to write the initial configuration of the Turing machine
along with the separator symbol. To write subsequent configurations of the Turing machine,
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processes proceed round by round. A process at round 𝑘 = 𝑖 2𝑛 + 𝑗 with 𝑖 ⩾ 1 reads the values
of the registers 𝑘 − 2𝑛 − 1, 𝑘 − 2𝑛 and 𝑘 − 2𝑛 + 1 to compute, in configuration 𝑖, the symbol in the
cell number 𝑗 , whether the head is at cell number 𝑗 and, if yes, what the state of the machine is.
If a process computes that the Turing machine halts, it goes to state 𝑞 𝑓 .

For round-based PRP, if 𝑣 is encoded in unary but the constants in the presence constraint 𝜓
are encoded in binary, then we can proceed similarly. In this case, processes will simply write
symbols to the registers without checking that they form valid configurations and that these
configurations are the ones of the Turing machine. The first 2𝑛 rounds, however, will contain the
initial configuration of the Turing machine thanks to the binary counter. In 𝜓, using universal
quantification over the rounds, we enforce that the values written respect the rules of the Turing
machine. This takes the form of implications such as “for every 𝑘 , if the content of the cell at
round 𝑘 +1 is symbol 𝑎 and the head is at round 𝑘 +1 with state 𝑞, then the cell at round 𝑘 +1+2𝑛

contains symbol 𝑏 and the head is at the cell of round 𝑘 + 2𝑛 with state 𝑞′”. Implications of
this shape allow us to enforce that the execution of the round-based ASMS encodes a run of the
Turing machine. This corresponds to enforcing that the head of the Turing machine follows the
rules of the Turing machine and that the contents of the cells do not change except when the
head is there and performs a write transition. In 𝜓, when a halting state of the Turing machine
has been written, the round above must contain a special round symbol. Rounds are allowed to
remain blank only above the round where the end symbol has been written. This is expressed
by: “for all 𝑘 , round 𝑘 + 1 is blank if and only if 𝑘 is blank or 𝑘 contains the end symbol”. This
means that an abstract configuration 𝜎 ∈ Post∗(𝜎0) such that 𝜎 |= 𝜓 must faithfully encode
the run of the Turing machine. Also, because 𝜎 must have blank rounds, it must have the end
symbol in some register so that 𝜎 with 𝜎 |= 𝜓 exists if and only if the run of the Turing machine
halts, concluding the proof. □

4.8 Perspectives

We defined round-based ASMS, a new model of shared-memory systems which aims to
capture round-based shared-memory distributed algorithms such as Aspnes’ noisy consensus
algorithm. In this model, we defined a general problem, namely the round-based presence
reachability problem, and established that this problem is decidable and PSPACE-complete.

Although the complexities of these problems are settled, the algorithm provided is non-
deterministic and its stopping criterion relies on an exponential number of iterations, so that its
interest is mostly theoretical. There are several lines of attack to make this algorithm applicable
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in practice. Non-deterministic choices would be implemented by branching instructions whose
number must be limited (some ideas to limit non-deterministic choices for Cover may be found
in [BMSW22] with so-called first-write orders) and for which we would have to find heuristics
to start with the most likely candidates. Also, instead of making the algorithm run exponentially
many iterations on every positive instance, one could provide a termination criterion so that we
may accept at earlier iterations. An inspiration for such a termination criterion could be dynamic
cutoff detection [KKW10], where one provides conditions, in a distributed system, under which
increasing the number of processes will not allow to cover more states. In our case, one would
want to detect that the next round will not offer better chances to satisfy the property that earlier
rounds. More specifically for Cover, this could mean to detect that we have already obtained
all coverable states because some fixpoint condition is satisfied.

There remain round-based shared-memory algorithms that cannot be captured by the round-
based ASMS model. We illustrate this with two examples of round-based shared-memory
algorithms. The first one is the algorithm from [RS12], that relies on failure detection and
so-called closure sets, where processes may deposit values and collect values deposited by
others. There is one closure set by round, and a process may deposit to the closure set of
its current round and collect values from the closure set one round below. Another famous
algorithm is the one from [GR07]; like Aspnes’ noisy consensus algorithm, this algorithm
relies on a race between processes, but this race is circular in similar fashion to a stadium.
This algorithm relies on so-called weak counters; the number of weak counters depends on the
number of processes, and each weak counter is implemented using an unbounded number of
binary registers. Finding parameterized models for these algorithms as we did Aspnes’ noisy
consensus algorithms appears challenging, because they are significantly more complex. In
order to retain decidability, one would have to choose wisely the set of primitives in the model.

On the contrary, one could study whether one can reduce the expressive power of the model
to obtain better complexity while retaining, e.g., the ability to model Aspnes’ noisy consensus
algorithm. The latter ambition seems, however, hard to achieve. Indeed, having an unbounded
number of rounds generally gives the ability to explore exponential sets such as the set of
valuations over 𝑛 variables, which naturally leads to PSPACE-hardness.

Another family of open problems is related to the study of more general properties on round-
based ASMS. For example, one could define a notion of generalized reachability expression akin
to the one introduced in Chapter 3, but using presence constraints as basic blocks, and study
the emptiness problem of such expressions. Also, in line with Chapter 3, one could study the
problem of stuttering LTL verification on round-based ASMS.
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Finally, there is an important remaining task related to the automated verification of Aspnes’
noisy consensus algorithm. While we provided an algorithm that allows to decide properties such
as validity and agreement, we have no such tools for termination. As mentioned in Section 4.2,
the termination of Aspnes’ noisy consensus algorithm relies on the hypothesis that the scheduler
is stochastic, in which case, under reasonable assumptions on the probability distribution,
termination occurs almost surely. The techniques developed in this chapter are unapplicable
when it comes to verification of probabilistic properties under stochastic schedulers. This is the
topic of the next chapter.
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Chapter 5

ROUND-BASED ASMS UNDER

STOCHASTIC SCHEDULERS

5.1 Introduction

In Chapter 2 and Chapter 4, we studied existential and universal properties over the set
of executions. Implicitly, we restricted our study of roundless and round-based ASMS to
non-deterministic (and often adversarial) scheduling. However, many distributed algorithms
rely on randomization for termination, as it is the case for Aspnes’ noisy consensus algorithm
(Algorithm 2). This algorithm is deterministic at the level of the processes, but relies on
randomized scheduling for termination. This randomization at the level of the scheduler models
the natural difference of speed between processes. In this chapter, we study round-based ASMS
from Chapter 4 with this type of randomization; we formalize it with so-called stochastic
schedulers where, at each step, the next process to act is selected uniformly at random among
all processes. The objective is to design techniques for automated verification of almost-sure
termination of round-based algorithms such as Aspnes’ noisy consensus algorithm. In this
model, we are interested more specifically in the properties of almost-sure coverability (the final
state is covered with probability 1) and almost-sure termination (with probability 1, all processes
end up in the final state). However, as we will see, when combining the stochastic setting
with round-based systems, even simple questions may hide complex mathematic problems
arising from random walks. In [BMRSS16], the authors turn almost-sure coverability into
a non-probabilistic property by proving its equivalence with the inclusion Post∗(𝛾0(𝑛)) ⊆
Pre∗( ↑𝑞 𝑓 ). Because of random-walk behaviors, this property does not hold in round-based
ASMS. This means that, in round-based ASMS, almost-sure coverability and termination may
rely on fundamentally probabilistic behaviors, which is bad news for our ambitions. We explore
a few natural restriction to prevent random-walk behaviors, but without success. In particular,
random walks still occur when all processes are required to progress in round at the same
average pace, and also under another choice of scheduler more similar to the one considered
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in [Asp02]. We therefore consider a very restrictive property, almost-sure obstruction-freedom.
This property is inspired by a similar notion used in the area of distributed algorithms [Asp24,
Chapter 27] that is typically satisfied by consensus algorithm. This property requires that, from
every reachable configuration, a process left playing in isolation terminates with probability 1.
This property implies almost-sure termination, and deciding whether a protocol is almost surely
obstruction-free is a PSPACE-complete problem.

This chapter is organized as follows. In Section 5.2, we introduce our stochastic schedulers.
In Section 5.3, we present the probabilistic problems that we are interested in. In Section 5.4,
we highlight results from the literature related to roundless ASMS under stochastic schedulers
[BMRSS16]. In Section 5.5, we exhibit a first protocol with random walk behaviors. We discuss
some ideas to prevent these behaviors in Section 5.6 and Section 5.7.In Section 5.8, we introduce
and study almost-sure obstruction-freedom. We conclude the chapter with some perspectives in
Section 5.9.

Related Works

The impossibility results for asynchronous consensus [FLP85; DDS87; LA87; FR03] have
lead the distributed algorithms community to consider other solutions. One such solution is to
rely on probabilistic algorithms, a concept first introduced by Rabin [Rab76]. Probabilities can be
used in a distributed setting as a symmetry-breaker, as first done in [LR81] for mutual exclusion.
This idea is particularly well-suited for consensus algorithms. Indeed, the impossibility result
from [FLP85] proves the existence of non-terminating executions, but can be circumvented
by requiring termination with probability 1 and not for all executions. The first randomized
consensus algorithm was suggested by Ben-Or [Ben83]. The randomization approach was then
applied to shared-memory systems, notably in [Abr88; AH90]; see [Asp03] for a survey.

In asynchronous distributed systems, one does not assume that processes perform their
computations at the same speed. This allows, a priori, all consistent interleaving of actions.
Previously in this thesis, we implicitly worked under the assumption that any difference of speed
is possible, so that the system must be correct for all interleavings. In practice, one expects that
some of the behaviors considered are very unlikely, for example because they require than some
processes are recurrently much faster than others. It is therefore reasonable to rule out such
behaviors. One classic approach consists in enforcing some fairness conditions, as we briefly
mentioned in Chapter 3. Many notions of fairness exist, see [GH19] for a survey. Another
approach consists in modeling the noise from the environment as a stochastic process, which we
call here stochastic scheduler. In most of the work with stochastic schedulers, they are seen as
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a way to give the adversary less power, and one evaluates how distributed algorithms perform
against this randomized opponent [GM01; GM14; ASV15].

From the viewpoint of designers of distributed algorithms, stochastic schedulers may also
be seen as allies. Indeed, they may be used as symmetry-breakers for consensus problems. This
concept, first introduced in [BT85], makes use of deterministic, simple algorithms that rely on
the probabilistic noise of the environment to guarantee termination with probability 1. This
approach has since been used in various settings to design consensus algorithms that do not
always terminate, but do so with probability 1 under the right assumptions about the scheduler
[Asp00; Asp02; GMMB15]. These algorithms implicitly exploit the irregularity of speed of the
processes; this irregularity has been exploited in other ways, e.g., to generate random numbers
[ABGS18]. Another distributed computing model where the scheduler is often considered to
be stochastic is the one of population protocols. In the original work on population protocols
[AADFP04], the authors indeed consider that the scheduler selects the next interacting pair
uniformly at random, and are interested in almost-sure termination and termination with high
probability (i.e., probability that tends to 1 when the number of participating processes tends
to infinity). They also consider quantitative probability questions such as the expected number
of steps until termination. A finer approach consists in attempting to quantify how much
randomness an algorithm needs, as done in [BBBG15] in the setting of population protocols.
See [AR09] for a survey of works on population protocols from the distributed algorithms
community, and in particular see [AR09, Section 1.6.] which is devoted to random interactions.

Reasoning about distributed randomized systems is a complex task; to quote Lehmann
and Rabin [LR81], “proofs of correctness for probabilistic distributed systems are extremely
slippery”. This calls for tools allowing formal verification of such systems, which is in fact a
very challenging objective. As an example, a round-based randomized consensus algorithm due
to Aspnes and Herlihy [AH90], where the processes are allowed to use coin tosses, was formally
proved correct in an ad hoc proof of about 30 pages in [PSL00]. This proof notably uses involved
probabilistic notions such as random walks. Since designing automated model-checking tool
is typically harder than ad hoc proofs, this gives an idea of how big of a challenge it could be.
Most of the work from the literature focuses on algorithm where the randomization is at the level
of process, and where the behavior of the scheduler is specified in a non-probabilistic manner.
For example, [LR16] studies liveness in systems where the processes are randomized but the
scheduler is arbitrary (all executions are possible). In [LLMR17], the problem of interest is
termination and the scheduler satisfies a finitary fairness condition: in a finitary-fair (infinite)
execution, there is 𝑘 such that an enabled process is always picked after at most 𝑘 steps. In
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[BKLW21], the authors are interested in almost-sure termination in randomized round-based
systems where the scheduler is assumed to be round-rigid, which means that processes move
from round to round in a synchronous manner. See [Ber20] for a survey on formal verification
of randomized algorithms.

In this thesis, we are interested in another family of randomized models, where randomization
is at the level of the scheduler. This model is common in the distributed algorithms community,
less so in the formal verification community. In the parameterized setting where the number
of processes is arbitrary, it is not possible to abstract the system into a finite Markov chain or
Markov decision process, which calls for new techniques. An example of study under stochastic
scheduler in a parameterized setting is [BMRSS16], which we will describe in more detail in
Section 5.4. The model considered in [BMRSS16] is, except for a few details, our roundless
ASMS model from Chapter 2. The authors consider the problem of almost-sure coverability of
a state, and they reduce this probabilistic problem to a non-probabilistic one using what we will
call decisiveness in Section 5.4.

In [BKL14], a study is made of so-called probabilistic basic parallel processes under stochas-
tic scheduler. In this setting, a selected process chooses its next action at random depending
on its state only (there is no communication), and may generate other processes. The first part
of the paper studies stochastic schedulers, and establishes that the exact choice ofprobability
distribution the of the scheduler is not important. Despite the fact that processes do not commu-
nicate, the authors prove that the problem of almost-sure coverability of an upward-closed set,
while decidable, is non-elementary. When working with population protocols, the distributed
computing community oftentimes relies on stochastic schedulers. Classic model checking was
used to prove almost-sure termination of population protocols when fixing the initial configu-
ration [PLD08; CDFS11]. By contrast, the numerous works about parameterized verification
of population protocols (i.e., when the initial configuration is not fixed) tend to abstract the
random character of the scheduler under the notion of fairness, see [Esp17; BEJK18] for sur-
veys. There are, however, a few works on verification of population protocols under stochastic
schedulers. In [EGLM16], population protocols are considered under a uniform scheduler. The
authors establish that quantitative model checking (for example, whether the probability to cover
a given state is at least 1

2 ) is undecidable. However, qualitative model checking is decidable:
one can decide almost-sure satisfiability of linear-time properties over actions, but the problem
is Ackermann-complete. Again with a uniform scheduler, the expected number of steps until
convergence of a population protocol is studied in [BEK18] where the authors provide an algo-
rithm that, given a protocol, gives a reasonable asymptotic upper bound on this expected number
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of steps. In [BEHKM20], the authors consider stochastic schedulers in replicated systems, a
generalization of population protocols. They only assume that the scheduler is memoryless
and always gives non-zero probability of selecting a given process, as the exact scheduler does
not matter. [BEHKM20] proves that qualitative model checking of linear-time properties is
decidable but non-elementary, and they provide an incomplete procedure that is more efficient
on practical instances.

5.2 Stochastic Schedulers

In this section, we formally introduce the stochastic schedulers used in this chapter. We
start by presenting the underlying idea, which should suffice to follow the remainder of this
chapter. The stochastic scheduler selects an execution at random, step by step. From a given
configuration, the scheduler picks the next configuration in the following fashion. First, the
scheduler selects, uniformly at random among all processes, which process acts in the next step.
It then selects the transition performed by the process, uniformly at random among all transitions
that can be applied by the process. The obtained stochastic process is Markovian, in the sense
that the choice of the next step only depends on the current configuration and not on previous
configurations or steps.

This stochastic scheduler gives all processes the same chance of being selected at each step,
regardless of their number of applicable transitions. This requires ruling out the possibility that
a process has no applicable transition: if a process with no applicable transition is selected, we
consider that it performs a dummy transition that has no effect.

In all the following, we assume that all processes always have at least one applicable
transition.

Let P = ⟨𝑄, 𝑞0, dim,D,⊥,Δ⟩ be a round-based ASMS protocol. For all 𝛾 ∈ Γ, 𝑞 ∈ 𝑄 and
𝑘 ∈ N, let 𝑇𝛾 (𝑞, 𝑘) ⊆ M be the set of moves whose source location is (𝑞, 𝑘) and that can be
applied from 𝛾. By the above hypothesis, for all 𝛾, 𝑞, 𝑘 such that loc(𝛾) (𝑞, 𝑘) > 0, |𝑇𝛾 (𝑞, 𝑘) | > 0.
We define, given a configuration 𝛾 = ⟨𝜇, ®𝑑⟩ ∈ Γ and a move 𝜃 = ((𝑞, act, 𝑞′), 𝑘) ∈ M, the
probability P(𝛾 𝜃−→) that 𝜃 is applied from 𝛾 by:

P(𝛾 𝜃−→) :=
𝜇(𝑞, 𝑘)

|𝜇 | |𝑇𝛾 (𝑞, 𝑘) |
.
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Observe that, for a given 𝛾, we have∑︁
𝜃∈M

P(𝛾 𝜃−→) =
∑︁

(𝑞,𝑘)∈L

∑︁
𝜃∈𝑇𝛾 (𝑞,𝑘)

𝜇(𝑞, 𝑘)
|𝜇 | |𝑇𝛾 (𝑞, 𝑘) |

=
∑︁

(𝑞,𝑘)∈L

𝜇(𝑞, 𝑘)
|𝜇 |

∑︁
𝜃∈𝑇𝛾 (𝑞,𝑘)

1
|𝑇𝛾 (𝑞, 𝑘) |

= 1.

With this definition, all processes has the same chance of acting at each step. Indeed, from
𝛾 = ⟨𝜇, ®𝑑⟩, the probability that the move selected has source location (𝑞, 𝑘) is 𝜇(𝑞,𝑘)

|𝜇 | .
Let 𝛾 ∈ Γ. We aim to assign a probability P𝛾 to (suffixes of) executions starting from 𝛾.

The rigorous way to do so would be to define a probabilistic space and a measure over the set of
infinite executions (see, e.g., [Par11]). Again, to save ourselves this tedious effort, we proceed
less rigorously and rely on random variables instead. To do so, we consider two sequences of
random variables: (𝐶𝑖)𝑖∈N with values in Γ and (𝑇𝑖)𝑖⩾1 with values in M. We define 𝐶0 := 𝛾
and for all 𝑖 ⩾ 1:

— for all 𝜃 ∈ M, P𝛾 (𝑇𝑖 = 𝜃) := P(𝐶𝑖−1
𝜃−→);

— 𝐶𝑖 is the configuration such that 𝐶𝑖−1
𝑇𝑖−→ 𝐶𝑖.

We also require that the stochastic process is Markovian, in the sense that 𝑇𝑖 only depends on
the past insofar as it depends on 𝐶𝑖−1. Formally, for all 𝑖 ⩾ 1, for all 𝜃1, . . . , 𝜃𝑖 ∈ M, for all
𝛾𝑖−1 ∈ Γ,

P𝛾 (𝑇𝑖 = 𝜃𝑖 | 𝐶𝑖−1 = 𝛾𝑖−1, 𝑇𝑖−1 = 𝜃𝑖−1, . . . , 𝑇1 = 𝜃1) = P𝛾 (𝑇𝑖 = 𝜃𝑖 | 𝐶𝑖−1 = 𝛾𝑖−1) = P(𝛾𝑖−1
𝜃𝑖−→).

Implicitly, this defines a probability measure over executions starting from 𝛾. We will refer
to the probability that a given event occurs from configuration 𝛾 to refer to this probability
measure. In particular, the event that a set of configurations 𝑈 is reached from 𝛾 is the event⋃
𝑖∈N(𝐶𝑖 ∈ 𝑈). A convenient observation is that this scheduler is memoryless so that, when

𝐶𝑖 = 𝛾𝑖, the probability distribution of configurations (𝐶 𝑗 ) 𝑗⩾𝑖 corresponds to the probability
distribution P𝛾𝑖 , i.e., the probability distribution from configuration 𝛾𝑖.

Note that, from a given initial configuration, the stochastic process is in fact a Markov chain.
However, the state space of the Markov chain is infinite even for a fixed number of processes.

Remark 5.1. An interpretation of this definition is that we have randomization at two distinct
levels: at the scheduler level to select the process, but also at the level of the processes to select
the transition among all possible transitions. This second level of randomization is necessary
when the protocol is non-deterministic, but is not our main topic of interest. In fact, if the
protocol is deterministic, which is the case in Aspnes’ noisy consensus algorithm (Algorithm 2),
then randomization lies only at the level of the scheduler.
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5.3 Stochastic Properties

In this section, we introduce the stochastic properties studied in this chapter. They correspond
to the probabilistic qualitative versions of the Cover and Target problems from Chapter 4. Here,
qualitative means that we are interested in whether a given event occurs with probability 1 or
not (or, dually, whether it occurs with probability 0 or not). By contrast, quantitative properties
would refer to specific values; examples of quantitative properties would be whether a given set
is reached with probability 1

2 or whether the expected number of steps to reach it is greater than
some value. In this thesis, we will only study qualitative properties.

Let P = ⟨𝑄, 𝑞0, dim,D,⊥,Δ⟩ be a round-based ASMS protocol with a special state 𝑞 𝑓 . For
all 𝑛 ⩾ 1, we use P𝑛 as a shorthand for P𝛾0 (𝑛) , i.e., the probability measure of the stochastic
process starting on the initial configuration of size 𝑛.

Fix an arbitrary starting configuration 𝛾 ∈ Γ. Let (𝐶𝑖)𝑖∈N be the random variables defined
in Section 5.2 from 𝛾. For every 𝑈 ⊆ Γ, we denote by ^𝑈 the event

⋃
𝑖∈N𝐶𝑖 ∈ 𝑈. The value

P𝛾 (^𝑈) therefore represents the probability that, starting from 𝛾, 𝑈 is eventually visited. In
the system with 𝑛 processes, we call almost-sure reachability of 𝑈 the fact that P𝛾 (^𝑈) = 1.
We are interested in two families of sets 𝑈. To define them, we assume that the protocol has a
special state 𝑞 𝑓 which is a stalemate state, i.e., all transitions with source state 𝑞 𝑓 are self-loops
with internal actions, so that processes in 𝑞 𝑓 have terminated and may not longer influence the
rest of the system.

The first one is when𝑈 is a coverability objective, i.e., the set of all configurations that cover
state 𝑞 𝑓 . Formally, the coverability objective associated to state 𝑞 𝑓 is ↑𝑞 𝑓 := {𝛾 ∈ Γ | ∃𝑘 ∈
N, st(𝛾) (𝑞 𝑓 , 𝑘) > 0}. State 𝑞 𝑓 is covered almost surely from 𝛾 when P𝛾 (^↑𝑞 𝑓 ) = 1. In the
system with 𝑛 processes, we call almost-sure coverability the fact that P𝑛 (^↑𝑞 𝑓 ) = 1.

The other family of sets 𝑈 considered in this chapter is the set Cons(𝑞 𝑓 ) of configurations
where all processes are in state 𝑞 𝑓 . Formally, Cons(𝑞) := {𝛾 | ∀𝑘 ∈ N,∀𝑞′ ≠ 𝑞, st(𝛾) (𝑞′, 𝑘) =
0}. Cons(𝑞 𝑓 ) can be interpreted as the set of configurations where all processes have terminated.
For this reason, in the system with 𝑛 processes, we call almost-sure termination the property
P𝑛 (^Cons(𝑞 𝑓 )) = 1.

Both properties are more restrictive that there non-probabilistic counterparts, because almost-
sure reachability of a set 𝑈 implies that 𝑈 is reachable, but the converse is not true. Moreover,
as before, almost-sure termination implies almost-sure coverability. Note that almost-sure
coverability and almost-sure termination are properties and not problems, because they apply
for a given value of 𝑛. Corresponding problems could be, e.g. whether they hold for large values
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of 𝑛. However, in this chapter, we will mostly analyze the properties for fixed values of 𝑛, in the
hope to rephrase them into equivalent, non-probabilistic properties.

5.4 Literature on ASMS under Stochastic Schedulers

Almost-sure coverability in roundless ASMS under stochastic schedulers has been studied
in [BMRSS16]. We present here their approach, which we will use as a guideline in the next
sections when considering the same question for round-based ASMS.

The approach from [BMRSS16] leverages the following crucial observation. Assume that
𝑞 𝑓 is a stalemate state. Fix 𝑛 ⩾ 1: the set of configurations with 𝑛 processes is finite, therefore
there are 𝜆 > 0, 𝑀 ∈ N such that, for all 𝛾 ∈ Pre∗( ↑𝑞 𝑓 ), there is probability at least 𝜆 that
𝑞 𝑓 is covered within the next 𝑀 steps. This implies that P𝑛 (^↑𝑞 𝑓 ) < 1 if and only if one can
reach from 𝛾0(𝑛) a configuration from which 𝑞 𝑓 may no longer be covered. This property was
not named in [BMRSS16]. We dub it decisiveness, and call a system that satisfies this property
decisive. We borrow this terminology from a study of infinite Markov chains where an infinite
Markov chain is called decisive if, with probability 1, it reaches either a final state or a state
from which no final state may be reached [AHM07]. For a given P, 𝑞 𝑓 and 𝑛, decisiveness is
formally stated as follows:

P𝑛 (^↑𝑞 𝑓 ) = 1 if and only if Post∗(𝛾0(𝑛)) ⊆ Pre∗( ↑𝑞 𝑓 ). (Decisiveness)

Decisiveness is convenient because it turns almost-sure coverability into a non-probabilistic
property so that probabilistic reasoning is not needed. If P is a roundless ASMS with a stalemate
state, then the system is decisive for every 𝑛 ⩾ 1. Based on this observation, the authors of
[BMRSS16] prove the following results.

Theorem 5.2 ([BMRSS16]). In roundless ASMS:

— there is a cutoff 𝑁 ⩾ 1 such that either P𝑛 (^↑𝑞 𝑓 ) = 1 for all 𝑛 ⩾ 𝑁 (positive cutoff) or
P𝑛 (^↑𝑞 𝑓 ) < 1 for all 𝑛 ⩾ 𝑁 (negative cutoff),

— there is such a cutoff of value at most doubly-exponential in the size of the protocol,

— whether the cutoff is positive or negative can be decided in EXPSPACE.

The previous results have been extended to more general reachability objective, and in
particular to almost-sure termination, in [Sta17].
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Remark 5.3. Decisiveness in roundless ASMS relies on the fact that, from a given configuration
𝛾0(𝑛), the set Post∗(𝛾0(𝑛)) is finite. In particular, this equivalence is not specific to the stochastic
scheduler defined in Section 5.2. In fact, it applies to any scheduler that is (weakly) fair, i.e., in
which, almost surely, if a configuration 𝛾 is visited infinitely often and 𝛿 can be applied from
𝛾 then, with probability 1, there is eventually a step 𝛾 𝛿−→ 𝛾′. Weak fairness is a very standard
property that is satisfied by all reasonable stochastic schedulers. This essentially implies that,
in the roundless model, the choice of the scheduler is irrelevant.

In the rest of this chapter, we study almost-sure coverability and almost-sure termination
in the round-based ASMS model. To do so, we first ask whether the round-based model is
decisive. Decisiveness would indeed be of great help; however, as we will see, it does not hold
for round-based ASMS. In fact, the round-based model under a stochastic scheduler possesses
complex mathematical behaviors which make analysis a challenging task.

5.5 Round-based ASMS are not Decisive

In this section, we will provide a round-based protocol that disproves decisiveness. This
protocol will rely on probabilistic behaviors closely related to random walks. Somehow, this
will suggest that, in round-based ASMS under stochastic schedulers, almost-sure coverability is
fundamentally probabilistic.

The main theorem of this section is the following.

Theorem 5.4. There is a round-based ASMS P with a state 𝑞 𝑓 such that, for all 𝑛 ⩾ 2:

— Post∗(𝛾0(𝑛)) ⊆ Pre∗( ↑𝑞 𝑓 ), but

— P𝑛 (^↑𝑞 𝑓 ) < 1.

The rest of this section is devoted to proving Theorem 5.4. The organization of the proof
is as follows. First, we introducing the protocol P and provide some intuition in Section 5.5.1.
We will prove in Section 5.5.2 that this protocol satisfies the desired conditions, under the
assumption that some initial gadget works as expected. The description of this initial gadget and
the associated proof are postponed to Section 5.5.3.

5.5.1 Some Intuition about the Protocol

We first provide an overall introduction of the protocol as well as some intuition. The
protocol P is partially depicted in Fig. 5.1. Not depicted in the picture is the initial gadget
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𝑞0

𝑞𝑢

𝑞𝑑

𝑞 𝑓

incr

read1 (a)

read1 (⊥)

write1 (a)

read1 (⊥)

read1 (a) incr

Gadget to ensure
that at least one pro-
cess in 𝑞𝑢 and in 𝑞𝑑

Figure 5.1 – The protocol P used in the proof of Theorem 5.4.

which guarantees that, almost surely, if 𝑛 ⩾ 2 then at least one process visits (𝑞𝑢, 1) and at least
one process visits (𝑞𝑑 , 1). The details of this gadget are provided in Section 5.5.3; until then,
we assume that this gadget works as intended. Under this assumption, we have, for all 𝑛 ⩾ 2,
Post∗(𝛾0(𝑛)) ⊆ Pre∗( ↑𝑞 𝑓 ).

We explain why this protocol satisfies P𝑛 (^↑𝑞 𝑓 ) < 1. In order to go to (𝑞 𝑓 , 𝑘), a process
must be in (𝑞𝑢, 𝑘) and read a, so that register 1 of round 𝑘 must contain symbol a. This symbol
must have been written by a process in 𝑞𝑑 , which is only possible if there is a process in 𝑞𝑑 at
a round higher than 𝑘 . In particular, this is not possible if all processes in 𝑞𝑢 always remain
at higher rounds than all processes in 𝑞𝑑 . A process in 𝑞𝑢 always has two possible actions,
among which one incr, so that it increments its round every two actions on average. By contrast,
a process in 𝑞𝑑 always has three possible actions, among which one incr, so that it needs on
average to be selected three times by the scheduler to increment its round once.

Consider a configuration where 𝑛𝑢 processes are in (𝑞𝑢, 1) and 𝑛𝑑 processes are in (𝑞𝑑 , 1).
First, there is a non-zero probability that all processes in 𝑞𝑢 go in (𝑞𝑢, 2) while processes in
𝑞𝑑 remain idle. We aim at proving that there is a non-zero probability that, forever after, the
lowest process in 𝑞𝑢 (in terms of rounds) remains strictly higher than the highest process in
𝑞𝑑 . The full proof is presented in Section 5.5.2; we explain here the case where 𝑛𝑢 = 𝑛𝑑 = 1.
For the sake of simplicity, we deanonymize processes; we denote by 𝑝𝑢 the process in 𝑞𝑢 and
by 𝑝𝑑 the process in 𝑞𝑑 . Almost surely, infinitely many increment steps are overall performed.
For all 𝑖 ∈ N, let 𝑠𝑖 be the random variable giving the index of the 𝑖-th increment step overall
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(the 𝑖-th step of the execution that is an increment step) and let 𝑅𝑖 (𝑝𝑢) (resp. 𝑅𝑖 (𝑝𝑑)) be the
random variable giving the round of 𝑝𝑢 (resp. 𝑝𝑑) in 𝐶𝑠𝑖 , i.e., after the 𝑖-th increment step. In
particular, we have 𝑅0(𝑝𝑢) = 2 and 𝑅0(𝑝𝑑) = 1. The random variable 𝑅𝑖 (𝑝𝑢) − 𝑅𝑖 (𝑝𝑑) − 1 is
a 1-dimensional random walk of parameter 𝑝 = 3

5 . Indeed, at each step, 𝑝𝑢 has probability 1
2

of acting and, when it does, it has probability 1
2 of performing an increment step, which gives

an overall probability of 1
4 . With the same reasoning, at each step, 𝑝𝑑 has probability 1

6 of
performing a round increment. Overall, when a round increment is performed, it has probability

1
4

1
4+

1
6
= 3

5 of being performed by 𝑝𝑢. This proves that the difference of rounds behaves like a
positively biased 1-dimensional random walk. Hence, by Proposition 1.3, there is a non-zero
probability that 𝑝𝑢 always remains at a higher round than 𝑝𝑑 and that 𝑞 𝑓 is never covered. We
now extend this observation to the general case.

5.5.2 Processes may Diverge in Rounds

We prove the following result:

Lemma 5.5. Let 𝑛𝑢, 𝑛𝑑 > 0, let 𝛾 := ⟨𝑛𝑢 · (𝑞𝑢, 2) ⊕ 𝑛𝑑 · (𝑞𝑑 , 1),⊥Reg⟩ be the configuration
with 𝑛𝑢 processes in 𝑞𝑢 at round 2, 𝑛𝑑 processes in 𝑞𝑑 at round 1 and where all registers are
blank. Let Γ⩽ := {𝛾 | ∃𝑘 ⩽ ℓ, (𝑞𝑢, 𝑘), (𝑞𝑑 , ℓ) ∈ st(𝛾)}. We have P𝛾 (^ Γ⩽) < 1. In words, from
configuration 𝛾, there is a non-zero probability that all processes in 𝑞𝑢 always remain at strictly
higher rounds than all processes in 𝑞𝑑 .

The rest of Section 5.5.2 is devoted to proving Lemma 5.5. Let 𝑛𝑢, 𝑛𝑑 > 0, and let
𝛾 := ⟨𝑛𝑢 · (𝑞𝑢, 2) ⊕ 𝑛𝑑 · (𝑞𝑑 , 1),⊥Reg⟩. If 𝑞 𝑓 is covered then Γ⩽ has been visited. For this reason,
we equivalently prove the property in the protocol P′ where 𝑞 𝑓 is removed and the read1(a)
transition is a self-loop on 𝑞𝑢. This choice makes it more convenient to reason about infinite
executions, because it means that a process in 𝑞𝑢 stays in 𝑞𝑢 forever.

Again, we deanonymize processes. Let 𝑃𝑢 be the set of all processes in 𝑞𝑢 in 𝛾 and 𝑃𝑑 be
the set of processes in 𝑞𝑑 in 𝛾. For every 𝑝𝑢 ∈ 𝑃𝑢, 𝑝𝑑 ∈ 𝑃𝑑 , for every 𝑖 ∈ N, let 𝑠𝑖 (𝑝𝑢, 𝑝𝑑) be
the index of the 𝑖-th increment performed by a process among {𝑝𝑢, 𝑝𝑑} (where we consider the
probability distribution from 𝛾). Almost surely, all 𝑠𝑖 (𝑝𝑢, 𝑝𝑑) are well-defined. Let Eq𝑖 (𝑝𝑢, 𝑝𝑑)
be the event: “the round numbers of 𝑝𝑢 and 𝑝𝑑 are equal after step 𝑠𝑖 (𝑝𝑢, 𝑝𝑑)”.

Lemma 5.6. Almost surely, finitely many events in (Eq𝑖 (𝑝𝑢, 𝑝𝑑))𝑝𝑢∈𝑃𝑢,𝑝𝑑∈𝑃𝑑 ,𝑖∈N occur.
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Proof. Thanks to the Borel-Cantelli lemma (Lemma 1.2), it suffices to prove that∑︁
𝑝𝑢∈𝑃𝑢

∑︁
𝑝𝑑∈𝑃𝑑

∑︁
𝑖∈N

P(Eq𝑖 (𝑝𝑢, 𝑝𝑑)) < ∞.

Because the two leftmost sums are over finite sets, this amounts to proving that, for every 𝑝𝑢 ∈ 𝑃𝑢
and 𝑝𝑑 ∈ 𝑃𝑑 ,

∑
𝑖 P(Eq𝑖 (𝑝𝑢, 𝑝𝑑)) < ∞. Let 𝑝𝑢 ∈ 𝑃𝑢, 𝑝𝑑 ∈ 𝑃𝑑 . In 𝛾, 𝑝𝑢 is at round 2 and 𝑝𝑑 is at

round 1. For all 𝑖 ∈ N, Eq𝑖 (𝑝𝑢, 𝑝𝑑) occurs if, among the first 𝑖 increment steps performed by the
two processes, 𝑖+1

2 are performed by 𝑝𝑑 and 𝑖−1
2 are performed by 𝑝𝑢. This is only possible when

𝑖 is odd, let 𝑗 := 𝑖−1
2 . An increment step performed by a process among {𝑝𝑢, 𝑝𝑑} has probability

3
5 to be performed by 𝑝𝑢 and probability 2

5 to be performed by 𝑝𝑑 . Therefore,

P(Eq2 𝑗+1(𝑝𝑢, 𝑝𝑑)) =
(
2 𝑗 + 1
𝑗

)
(2
5
) 𝑗+1(3

5
) 𝑗

=
2(2 𝑗 + 1)! 6 𝑗

5 𝑗! ( 𝑗 + 1)! 25 𝑗

By Stirling’s formula,

2(2 𝑗 + 1)! 6 𝑗

5 𝑗!( 𝑗 + 1)! 25 𝑗
∼

√︁
2𝜋(2 𝑗 + 1) (2 𝑗 + 1)2 𝑗+1 𝑒 𝑗+( 𝑗+1) 6 𝑗

5𝜋
√︁
𝑗 ( 𝑗 + 1) 𝑗 𝑗 ( 𝑗 + 1) 𝑗+1 25 𝑗 𝑒2 𝑗+1

∼ 𝑂 ( 𝑗) ( 6(2 𝑗 + 1)2

25 𝑗 ( 𝑗 + 1) )
𝑗 ∼ 𝑂 ( 𝑗) (24 𝑗2 + 24 𝑗 + 6

25 𝑗2 + 25 𝑗
) 𝑗

Asymptotically, 24 𝑗2+24 𝑗+6
25 𝑗2+25 𝑗 converges to 24

25 thus is eventually smaller than, e.g., 49
50 . This

asymptotically bounds P(Eq𝑖 (𝑝𝑢, 𝑝𝑑)) by a geometric progression of ratio strictly less than 1,
hence the sum of all P(Eq𝑖 (𝑝𝑢, 𝑝𝑑)) converges. □

Let Γ= := {𝛾= ∈ Γ | ∃𝑘 ∈ N, (𝑞𝑢, 𝑘), (𝑞𝑑 , 𝑘) ∈ st(𝛾=)}. We argue that, almost surely (from
𝛾), Γ= is visited finitely many times. This is not directly proved by Lemma 5.6: it only proves
that the set Γ= is entered finitely many times. Formally, Lemma 5.6 proves that, almost surely,
there are finitely many indices 𝑖 such that 𝐶𝑖 ∉ Γ= but 𝐶𝑖+1 ∈ Γ=. To conclude that Γ= is visited
finitely many times, we need to argue that there is probability 0 to stay in Γ= forever. From every
configuration 𝛾= ∈ Γ=, there is an execution of length at most 𝑛2 to a configuration in Γ \ Γ=:
indeed, it suffices to send, one by one, each process to the nearest round where no other process
is. This proves that, from any configuration in Γ=, there is probability at least 𝑝 = 1

(3𝑛)𝑛2 to
escape Γ= within the next 𝑛2 steps. For all 𝑚, the probability to remain in Γ= for 𝑚𝑛2 steps is
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less than (1 − 𝑝)𝑚 −→
𝑚→+∞

0, so that the probability to eventually remain in Γ= forever is zero.
Combined with Lemma 5.6, this proves that, almost surely, Γ= is visited finitely often.

By contradiction, if we had P𝛾′ (^ Γ=) = 1 for all 𝛾′ ∈ Post∗(𝛾), then, by iteratively applying
this property, we would have probability 1 of visiting Γ= infinitely often from 𝛾. Hence there
exists 𝛾′ ∈ Post∗(𝛾) such that P𝛾′ (^ Γ=) < 1. We now claim that 𝛾′ ∉ Γ⩽, using the following
argument.

Lemma 5.7. For every 𝛾⩽ ∈ Γ⩽, P𝛾⩽ (^ Γ=) = 1.

Proof. Because 𝛾⩽ ∈ Γ⩽, there is 𝑘 ⩽ ℓ such that 𝛾⩽ has a process 𝑝𝑢 in (𝑞𝑢, 𝑘) and a process
𝑝𝑑 in (𝑞𝑑 , ℓ). Almost surely, infinitely many increment steps are performed by 𝑝𝑢 and 𝑝𝑑 . For
all 𝑖 ∈ N, let 𝑠𝑖 be the random variable giving the index of the 𝑖-th increment step performed by
a process in {𝑝𝑢, 𝑝𝑑}, and let 𝑅𝑖 (𝑝𝑢) (resp. 𝑅𝑖 (𝑝𝑑)) be the random variable giving the round
of 𝑝𝑢 (resp. 𝑝𝑑) in 𝐶𝑠𝑖 , i.e., after the 𝑖-th increment step. As before, the random variable
𝑅𝑖 (𝑝𝑢) − 𝑅𝑖 (𝑝𝑑) − 𝑘 + ℓ is a 1-dimensional random walk of parameter 𝑝 = 3

5 . Hence, by
Proposition 1.3, it visits ℓ − 𝑘 with probability 1 and Γ= is reached almost surely from 𝛾⩽. □

This proves that 𝛾′ ∉ Γ⩽. Any execution from Γ \ Γ⩽ to Γ⩽ must visit Γ=, therefore this also
proves that P𝛾′ (^ Γ⩽) < 1. Of course, it could still be that the execution 𝜌 from 𝛾 to 𝛾′ goes
through Γ⩽. However, we can rearrange 𝜌 as follows. In a first phase, we make processes in
𝑞𝑢 perform the increment transitions that they performed in 𝜌. In the second phase, we make
processes in 𝑞𝑑 perform the increment and write transitions that they performed in 𝜌. This
yields an execution 𝜌′ from 𝛾 to 𝛾′ which does not visit any configuration in Γ⩽. Because
P𝛾′ (^ Γ⩽) < 1, this proves that P𝛾 (^ Γ⩽) < 1, concluding the proof of Lemma 5.5.

5.5.3 Details about the Initial Part of the Protocol

We denote by Γok the set of reachable configurations 𝛾 such that, for some 𝑛𝑑 , 𝑛𝑢 > 0, the
multiset of states of 𝛾 is 𝑛𝑢 · (𝑞𝑢, 2) ⊕ 𝑛𝑑 · (𝑞𝑑 , 1). Thanks to Lemma 5.5, we have that, for all
𝛾 ∈ Γok, P𝛾 (^↑𝑞 𝑓 ) < 1. We now aim to design the initial gadget so that, for all 𝑛 ⩾ 2:

— P𝑛 (^ Γok) > 0, and

— Post∗(𝛾0(𝑛)) ⊆ Pre∗( ↑𝑞 𝑓 ).

Regarding the first point, it suffices to make sure that Γok is reachable from 𝛾0(𝑛) for every
𝑛 ⩾ 2. Regarding the second point, it suffices to ensure that, from every configuration reachable
from 𝛾0(𝑛), one can still reach a configuration where at least one process is sent to 𝑞𝑢 and at
least one process is sent to 𝑞𝑑 . Indeed, if there is one process 𝑝𝑢 in (𝑞𝑢, 𝑘) and a process 𝑝𝑑 in
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𝑞0

𝑢1 𝑢2 𝑢3 𝑞𝑢

𝑑1 𝑑2 𝑑3 𝑞𝑑

write 1
(go u)

read3 (god)
write2 (oku)

read4 (okd)

write 1
(leave u)

incr

write
3 (go

d )

read2 (oku)

write4 (okd)
read1 (gou)

write
3 (leaved )

incr

Figure 5.2 – The gadget omitted in Fig. 5.1, allowing to guarantee that at least one process is
sent to (𝑞𝑢, 1) and at least one process is sent to (𝑞𝑑 , 1).

(𝑞𝑑 , ℓ), it is possible to cover 𝑞 𝑓 : the two processes get to round max(𝑘, ℓ), the process in 𝑞𝑑
writes a and then the process in 𝑞𝑢 reads a.

The initial gadget is represented in Fig. 5.2. This gadget does not have incr transitions
therefore processes in the gadget are at round 0. It also uses four registers and six new symbols:
{gou, leaveu, oku, god, leaved, okd}. Because these symbols may be written to the registers of
round 0 only, this gadget may not interfere with the rest of the protocol.

For all 𝑛 ⩾ 2, Γok can be reached from 𝛾0(𝑛) with the following execution. We first send
one process to (𝑢1, 0) and 𝑛 − 1 processes to (𝑑1, 0). We make the process at 𝑢1 go to (𝑢2, 0)
by reading god, then to (𝑞𝑢, 1), and finally to (𝑞𝑢, 2) using the incr loop on 𝑞𝑢. We finally make
the 𝑛 − 1 processes in (𝑑1, 0) read oku from register 2 to get to (𝑑2, 0) and then to (𝑞𝑑 , 1). This
proves, using Lemma 5.5, that P𝑛 (^↑𝑞 𝑓 ) < 1.

We now prove that Post∗(𝛾0(𝑛)) ⊆ Pre∗( ↑𝑞 𝑓 ). It suffices to prove that, for every 𝛾 ∈
Post∗(𝛾0(𝑛)) that has no process on 𝑞 𝑓 , there is 𝛾′ ∈ Post∗(𝛾) and 𝑘, ℓ such that (𝑞𝑢, 𝑘), (𝑞𝑑 , ℓ) ∈
st(𝛾′). Let 𝛾 ∈ Post∗(𝛾0(𝑛)) that has no process in 𝑞 𝑓 . We make a case disjunction on 𝛾.

— If 𝛾 has a process in {𝑢2, 𝑢3, 𝑞𝑢} and a process in {𝑞𝑑 , 𝑑2, 𝑑3}, then it can trivially reach a
configuration 𝛾′ satisfying the specifications.

— Assume that 𝛾 has a process in {𝑢2, 𝑢3, 𝑞𝑢}, none in {𝑑2, 𝑑3, 𝑞𝑑} and at least one in
{𝑢1, 𝑞0, 𝑑1}. If there is a process in 𝑢2, we first make it go to 𝑢3, so that we are guaranteed
to have a process in {𝑢3, 𝑞𝑢}. Such a process must have taken the write2(oku) transition.
Because no other transition can write to register 2 of round 0, this register must contain
oku in 𝛾. As a consequence, any process in {𝑢1, 𝑞0, 𝑑1} can get to {𝑑2, 𝑑3, 𝑞𝑑}.
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— Assume that all processes are in {𝑞0, 𝑢1, 𝑑1}. We can put all processes back to 𝑞0, then
send some to 𝑞𝑢 and some to 𝑞𝑑 using the sequence of transitions described above.

— The last two remaining cases is the one where all processes are in {𝑢2, 𝑢3, 𝑞𝑢} and the
one where all processes are in {𝑑2, 𝑑3, 𝑞𝑑}. We treat the first case, the other case follows
by symmetry. We prove by contradiction that this case is in fact not possible. Consider
the last process to go in 𝑢2. It cannot have read okd because that would imply that some
process went to {𝑑3, 𝑞𝑑}; therefore it must have read god from register 3. This contradicts
the fact that the last process to leave 𝑑1 must have written leaved to register 3.

Overall, we have proved that, for all 𝑛 ⩾ 2, Post∗(𝛾0(𝑛)) ⊆ Pre∗( ↑𝑞 𝑓 ) but P𝑛 (^↑𝑞 𝑓 ),
concluding the proof of Theorem 5.4.

Remark 5.8. This also proves that the choice of the scheduler might impact whether 𝑞 𝑓 is almost
surely covered. For example, if we modify the scheduler so that processes in 𝑞𝑑 are twice more
likely to be selected than processes in 𝑞𝑢, then, in the protocol P built above, 𝑞 𝑓 would be almost
surely covered for all 𝑛 ⩾ 2. This contrasts with the roundless case where, as highlighted in
Remark 5.3, the choice of the stochastic scheduler is unimportant.

The protocol built above also hints that some protocols, under stochastic schedulers, have
behaviors akin to random walks, which are mathematically challenging to study even on fixed
protocols, let alone automatically. This is bad news considering our ambitions to automatically
verify almost-sure termination of round-based protocols.

5.6 Regular Increments

In this section and the next one, we discuss some restrictions in the hope to prevent random-
walk behaviors from occurring. The first and main idea to restrict random-walk behaviors is to
limit the drift, i.e., to make it unlikely that processes end up many rounds apart from one another.
Indeed, in the protocol built in Section 5.5, the reason why we have P𝑛 (^↑𝑞 𝑓 ) < 1 even though
Post∗(𝛾0(𝑛)) ⊆ Pre∗( ↑𝑞 𝑓 ) is that processes in 𝑞𝑢 increment their rounds faster on average than
processes in 𝑞𝑑 . This means that the gap in terms of rounds between processes in 𝑞𝑢 and 𝑞𝑑 is
likely to become large and tend to infinity, preventing processes from communicating. For this
reason, a natural attempt would be to enforce that all processes increment their rounds at the
same average rate.

Definition 5.9. Let 𝑚 ⩾ 1, let P be a protocol with a stalemate state 𝑞 𝑓 . The protocol P has
𝑚-regular increments when, for each cycle 𝜋 in the underlying graph of P such that 𝜋 does not
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𝑞0 𝑤2

𝑤3

𝑤1

𝑞 𝑓

write3 (a)

write2 (a)

write1 (a) write1 (𝑏)

write1 (𝑏)

write1 (𝑏)

write2 (𝑏) write3 (𝑏)

read1 (a) read2 (a) read3 (a)

read1 (D\{𝑎}) read2 (D\{𝑎})

read3 (D\{𝑎})

incr

Figure 5.3 – The protocol built in the proof of Proposition 5.10.

visit 𝑞 𝑓 , 𝜋 has length exactly 𝑚 and includes exactly one increment transition.

Hence, each process increments its round once every 𝑚 actions that it performs (except for
processes already in 𝑞 𝑓 ). On average, all processes increment their rounds at the same speed.
This, however, does not prevent complex random-walk behaviors from occurring.

Proposition 5.10. There is a round-based ASMS P with a special state 𝑞 𝑓 and 5-regular
increments such that, for all 𝑛 ⩾ 4:

— Post∗(𝛾0(𝑛)) ⊆ Pre∗( ↑𝑞 𝑓 ), but

— P𝑛 (^↑𝑞 𝑓 ) < 1.

We now prove Proposition 5.10. The protocol is represented in Fig. 5.3. This protocol has
3 registers per round and its data alphabet is D := {⊥, a, b}. At each round, a process may take
the top branch to write a to one of the three registers; however, its next three actions will write
symbol b to all three registers of its round. In order to reach 𝑞 𝑓 , a process needs to read a from
all three registers of its round. Therefore, when a process gets to (𝑞 𝑓 , 𝑘), 4 different process are
at round 𝑘 .

Let 𝑛 ⩾ 4. We first observe that we indeed have Post∗(𝛾0(𝑛)) ⊆ Pre∗( ↑𝑞 𝑓 ), because it
suffices that 4 processes get at the same round, that one goes in 𝑤𝑖 for each 𝑖 ∈ {1, 2, 3} and
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that one last process goes in the bottom branch and reaches 𝑞 𝑓 . We now argue that there is
a non-zero probability that 𝑞 𝑓 is never covered. It suffices to prove that there is a non-zero
probability that, after a few initial steps where processes spread across the first rounds, there are
never 4 processes on the same round again. The intuition is that the relative rounds of 4 distinct
processes have three degrees of freedom and are similar to a balanced random walk in dimension
3, which is known to have a non-zero probability of never visiting a given point. However, this
intuition is hard to formalize because the round differences between pairs of processes are not
independent from one another. We instead proceed in similar fashion to Section 5.5. One may
work in the protocol where 𝑞 𝑓 is removed, so that processes never stop performing increments.
In this protocol, it suffices to prove that the event “four processes are at the same round” occurs
finitely often with probability one. Fix a 4-tuple of processes (𝑝1, 𝑝2, 𝑝3, 𝑝4); almost surely, this
4-tuple overall performs infinitely many increments. Let Eq𝑖 be the event that all four processes
are at the same round once the 4 processes have overall performed 𝑖 steps. In order to use the
Borel-Cantelli lemma (Lemma 1.2), we need to prove that

∑
𝑖 P(Eq𝑖) is finite. Fix 𝑖 ∈ N, let

𝑖 = 20𝑘 +𝑚 with 𝑚 < 20 be the Euclidean division of 𝑖 by 20; we consider what happens in the
first 𝑖 steps of the execution. We are interested in the probability that, after 𝑖 steps overall, all 4
processes have performed a number of steps in J5𝑘, 5𝑘 + 4K, so that they all are at round 𝑘 . For
all 𝑗 ∈ {1, 2, 3, 4}, let 𝑅 𝑗 be the random variable giving the remainder of the Euclidean division
by 5 of the number of steps performed by 𝑝 𝑗 after 𝑖 overall steps. For all 𝑟1, 𝑟2, 𝑟3, 𝑟4 ∈ J0, 4K,

P(Eq𝑖, 𝑅1 = 𝑟1, 𝑅2 = 𝑟2, 𝑅3 = 𝑟3, 𝑅4 = 𝑟4) =
(20𝑘 + 𝑟1 + 𝑟2 + 𝑟3 + 𝑟4)!

(5𝑘 + 𝑟1)!(5𝑘 + 𝑟2)!(5𝑘 + 𝑟3)!(5𝑘 + 𝑟4)!
(1
4
)20𝑘+𝑟1+𝑟2+𝑟3+𝑟4 .

Indeed, having all Eq𝑖, 𝑅1 = 𝑟1, 𝑅2 = 𝑟2, 𝑅3 = 𝑟3 and 𝑅4 = 𝑟4 is equivalent to having, for all
𝑗 ∈ J1, 4K, that the number of steps performed by 𝑝 𝑗 is equal to 5𝑘 + 𝑟 𝑗 . Therefore, a simple
counting argument allows to prove the equality above.

We now prove that the sum of all 𝑖,
∑
𝑖 P(Eq𝑖), is finite. By summing over all values of 𝑘

and of 𝑟1, 𝑟2, 𝑟3, 𝑟4, we obtain:∑︁
𝑖∈N

P(Eq𝑖) =
∑︁
𝑘∈N

∑︁
𝑟1,𝑟2,𝑟3,𝑟4∈J0,4K

(20𝑘 + 𝑟1 + 𝑟2 + 𝑟3 + 𝑟4)!
(5𝑘 + 𝑟1)!(5𝑘 + 𝑟2)!(5𝑘 + 𝑟3)!(5𝑘 + 𝑟4)!

(1
4
)20𝑘+𝑟1+𝑟2+𝑟3+𝑟4
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By Stirling’s approximation, we have that when 𝑘 → +∞:

(20𝑘 + 𝑟1 + 𝑟2 + 𝑟3 + 𝑟4)!
(5𝑘 + 𝑟1)!(5𝑘 + 𝑟2)!(5𝑘 + 𝑟3)!(5𝑘 + 𝑟4)!

(1
4
)20𝑘+𝑟1+𝑟2+𝑟3+𝑟4

∼ 𝑂 (1)𝑘− 3
2

(20𝑘 + 𝑟1 + 𝑟2 + 𝑟3 + 𝑟4)20𝑘+𝑟1+𝑟2+𝑟3+𝑟4

(5𝑘 + 𝑟1)5𝑘+𝑟1 (5𝑘 + 𝑟2)5𝑘+𝑟2 (5𝑘 + 𝑟3)5𝑘+𝑟3 (5𝑘 + 𝑟4)5𝑘+𝑟4
(1
4
)20𝑘+𝑟1+𝑟2+𝑟3+𝑟4

∼ 𝑂 (1)𝑘− 3
2

(20𝑘)20𝑘+𝑟1+𝑟2+𝑟3+𝑟4

(5𝑘)20𝑘+𝑟1+𝑟2+𝑟3+𝑟4420𝑘+𝑟1+𝑟2+𝑟3+𝑟4

(1 + 𝑟1+𝑟2+𝑟3+𝑟4
20𝑘 )20𝑘+𝑟1+𝑟2+𝑟3+𝑟4

(1 + 𝑟1
5𝑘 )5𝑘+𝑟1 (1 + 𝑟2

5𝑘 )5𝑘+𝑟2 (1 + 𝑟3
5𝑘 )5𝑘+𝑟3 (1 + 𝑟4

5𝑘 )5𝑘+𝑟4

∼ 𝑂 (1)𝑘− 3
2
(20𝑘)20𝑘+𝑟1+𝑟2+𝑟3+𝑟4

(20𝑘)20𝑘+𝑟1+𝑟2+𝑟3+𝑟4
∼ 𝑘− 3

2𝑂 (1)

The last line of equivalence uses the fact that (1 + 𝐾
𝑚
)𝑚+𝑝 −→

𝑚→∞
𝑒𝐾 = 𝑂 (1). This proves that the

sum converges, completing the proof of Proposition 5.10.
This example puts an end to our hope. Not only does the restriction to regular increments

fail to restore decisiveness, but it also does not prevent random-walk behaviors. Such complex
mathematical behaviors are already hard to analyze on fixed protocols. For example, one could
change the protocol above and adapt it with two registers per round, so that 3 processes only
are needed at the same round to cover 𝑞 𝑓 . In this case, the rounds of a 3-tuple of processes has
two degrees of freedom and is therefore similar to a 2-dimensional random walk, which almost
surely visits all points infinitely often. Therefore, we would have almost-sure coverability of 𝑞 𝑓
for all 𝑛 ⩾ 3. The fact that, to analyze this simple example, one must invoke rather involved
random walk results is a bad sign for our ambitions to perform automated analysis.

5.7 Another Choice of Scheduler

In this section, we mention one last line of attack in the hope to prevent random walks from
occurring and to make automated analysis feasible. With the current definition of stochastic
schedulers, at each step, all processes have the same probability of acting, regardless of whether
they just performed a transition or if they have been idle for a while. It would arguably be more
realistic that the scheduler gives greater probability of being selected to processes which have
not acted recently. Intuitively, such processes are more likely to be done with their internal
computation and to be ready for their next read or write action. A priori, this choice might also
limit random-walk behaviors by limiting the drift in rounds.

We model this idea with an alternative notion of stochastic scheduler, which we call waiting-
time scheduler. This scheduler relies on continuous time and works as follows. Whenever a
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process performs an action, the waiting time until its next action is drawn according to some
continuous probability distribution. It is important that all distributions are continuous: this way,
the probability that two events occur at the same time is zero and the semantics are sequential.
After this waiting time, the process performs an action selected randomly among all its possible
actions. This is the type of scheduler considered in [Asp02], where the probability distribution
of the waiting time is allowed to depend on the last operation performed by the process. Here,
we focus on a simpler case, where all waiting time are independent identically distributed.

Definition 5.11 (Waiting-time schedulers). Let 𝑃 be the set of all processes of the system.
A waiting-time scheduler uses positive continuous random variables (𝑇𝑖 (𝑝))𝑖⩾1,𝑝∈𝑃 that are
independent identically distributed of finite mean value 𝜇 > 0 and finite variance 𝜎2 with
𝜎 > 0. For all 𝑗 ∈ N and 𝑝 ∈ 𝑃, the time of the 𝑗-th action of process 𝑝 is

∑ 𝑗

𝑖=1 𝑇𝑖 (𝑝).
Almost surely, no two actions take place at the same time. The execution is obtained by
iteratively selecting the process whose next action takes place at the nearest time in the future,
and selecting the transition uniformly at random among all possible transitions of the process.

We prove that such schedulers do not prevent random-walk behaviors from occurring. To
do that, we use a generalized version of the protocol from Proposition 5.10. For every 𝑚 ⩾ 1,
we build a protocol P𝑚 with (𝑚 + 2)-regular increments in which, in order to cover 𝑞 𝑓 , one
must have 𝑚 processes in the same round. We will prove that, for 𝑚 large enough and under a
waiting-time scheduler, we do not have almost-sure coverability of 𝑞 𝑓 in P𝑚.

Theorem 5.12. Let 𝑚 ⩾ 6. Under a waiting-time scheduler, (P𝑚, 𝑞 𝑓 ) violates decisiveness.

We now prove Theorem 5.12. Fix a 𝑚-tuple of processes (𝑝1, . . . , 𝑝𝑚). As in Sections 5.5
and 5.6, we prove that, almost surely, all 𝑚 processes are at the same round in finitely many
configurations of the executions, using the Borel-Cantelli lemma (Lemma 1.2). We need to
argue that (in the protocol where 𝑞 𝑓 is removed) the sum over 𝑟 ∈ N of probabilities of the
following events is finite: “at some point, all processes in the 𝑚-tuple have performed exactly
𝑟 round increments”. This event occurs when, at some point, each process of the tuple has
performed a number of actions in J(𝑚 + 2)𝑟, (𝑚 + 2)𝑟 + 𝑚 + 1K. Fix 𝑟 ⩾ 1, let 𝑎𝑟 := (𝑚 + 2)𝑟
and 𝑏𝑟 := (𝑚 + 2)𝑟 +𝑚 + 1. For all 𝑝 ∈ {𝑝1, . . . , 𝑝𝑚} and 𝑁 ⩾ 1, let 𝑆𝑁 (𝑝) :=

∑𝑁
𝑖=1 𝑇𝑖 (𝑝) be the

random variable giving the time of the 𝑁-th action of process 𝑝. At a given time 𝑡, a process 𝑝
has performed a number of actions between 𝑎𝑟 and 𝑏𝑟 when 𝑆𝑎𝑟 (𝑝) < 𝑡 < 𝑆𝑏𝑟 (𝑝) 1. Therefore,

1. Because all random variables are continuous, whether we use strict or non-strict inequalities is irrelevant.
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there exists a time 𝑡 at which all processes of the 𝑚-tuple are at round 𝑟 if and only if

max
𝑗∈J1,𝑚K

𝑆𝑎𝑟 (𝑝 𝑗 ) ⩽ min
𝑗∈J1,𝑚K

𝑆𝑏𝑟 (𝑝 𝑗 ). (5.1)

We now prove that the sum over 𝑟 of the probabilities of the event defined in (5.1) converges.
Let 𝑟 ⩾ 1 and suppose that (5.1) holds. Fix a pair (𝑝, 𝑝′) of distinct process of the tuple. We
have max(𝑆𝑎𝑟 (𝑝), 𝑆𝑎𝑟 (𝑝′)) ⩽ min(𝑆𝑏𝑟 (𝑝), 𝑆𝑏𝑟 (𝑝′)). We claim that this implies the following
inequality:

|𝑆𝑎𝑟 (𝑝) − 𝑆𝑎𝑟 (𝑝′) | ⩽ max(𝑆𝑏𝑟 (𝑝) − 𝑆𝑎𝑟 (𝑝), 𝑆𝑏𝑟 (𝑝′) − 𝑆𝑎𝑟 (𝑝′)). (5.2)

Indeed, if |𝑆𝑎𝑟 (𝑝) − 𝑆𝑎𝑟 (𝑝′) | > 𝑆𝑏𝑟 (𝑝) − 𝑆𝑎𝑟 (𝑝) then 𝑆𝑎𝑟 (𝑝′) ∉ [𝑆𝑎𝑟 (𝑝), 𝑆𝑏𝑟 (𝑝)], which com-
bined with 𝑆𝑎𝑟 (𝑝′) ⩽ 𝑆𝑏𝑟 (𝑝) gives that 𝑆𝑎𝑟 (𝑝′) < 𝑆𝑎𝑟 (𝑝). If we also have |𝑆𝑎𝑟 (𝑝) − 𝑆𝑎𝑟 (𝑝′) | >
𝑆𝑏𝑟 (𝑝′) − 𝑆𝑎𝑟 (𝑝′), then we have 𝑆𝑎𝑟 (𝑝) > 𝑆𝑏𝑟 (𝑝′), a contradiction. This proves that inequality
implies (5.1) implies inequality (5.2) for every pair (𝑝, 𝑝′) of processes.

Let 𝐷𝑟 := 𝑆𝑎𝑟 (𝑝) − 𝑆𝑎𝑟 (𝑝′) and 𝑍𝑟 := 𝑆𝑏𝑟 (𝑝) − 𝑆𝑎𝑟 (𝑝) + 𝑆𝑏𝑟 (𝑝′) − 𝑆𝑎𝑟 (𝑝′). Because
max(𝑎, 𝑏) ⩽ 𝑎 + 𝑏, it suffices to bound P( |𝐷𝑟 | ⩽ 𝑍𝑟) with respect to 𝑟. Note that 𝐷𝑟 =∑𝑎𝑟
𝑖=1 𝑇𝑖 (𝑝) − 𝑇𝑖 (𝑝

′) and 𝑍𝑟 =
∑𝑏𝑟
𝑖=𝑎𝑟+1 𝑇𝑖 (𝑝) + 𝑇𝑖 (𝑝

′), so that 𝐷𝑟 and 𝑍𝑟 are independent. For
every 𝑖, let 𝐷𝑖 := 𝑇𝑖 (𝑝) −𝑇𝑖 (𝑝′). The random variable 𝐷𝑟 is equal to the sum

∑𝑎𝑟
𝑖=1 𝐷𝑖 where the

random variables 𝐷𝑖 := 𝑇𝑖 (𝑝) − 𝑇𝑖 (𝑝′) are i.i.d. of mean value 0 and of variance 2𝜎2. Because
𝑎𝑟 = (𝑚 + 2)𝑟 , by central limit theorem, when 𝑟 goes to infinity the distribution of 𝐷𝑟

𝜎
√

2(𝑚+2) 𝑟
converges to a normal distribution of mean value 0 and of variance 1. Therefore, for every 𝑧 > 0,

P( |𝐷𝑟 | ⩽ 𝑧) = P( 𝐷

𝜎
√︁
(𝑚 + 2) 𝑟

⩽
𝑧

𝜎
√︁
(𝑚 + 2) 𝑟

) −→
𝑟→+∞

1
√

2𝜋
𝑧

𝜎
√︁
(𝑚 + 2) 𝑟

.

By contrast, the random variable 𝑍𝑟 =
∑𝑏𝑟
𝑖=𝑎𝑟+1 𝑇𝑖 (𝑝)+𝑇𝑖 (𝑝

′) is the sum of 2𝑚+2 i.i.d. independent
variables of fixed distribution, hence the probability distribution of 𝑍𝑟 does not depend on 𝑟.
By conditioning over possible values for 𝑍𝑟 , this proves that P( |𝐷𝑟 | ⩽ 𝑍𝑟) is asymptotically
equivalent, when 𝑟 goes to infinity, to a term in 𝑂 (1)√

𝑟
. This bounds the probability of the event

defined by (5.2) by a term in 𝑂 (1)√
𝑟

.

We apply this reasoning to three disjoint pairs of distinct processes in {𝑝1, . . . , 𝑝𝑚}, which
is possible because 𝑚 ⩾ 6. For disjoint pairs, the events of (5.2) are independent, which bounds
the probability of the event described by (5.1) by a term in 𝑟− 3

2 . Summing these probabilities
over 𝑟 gives a finite sum. By using the same reasoning as in Sections 5.5 and 5.6, this proves
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that, for all 𝑛 ⩾ 6, there is a non-zero probability that 𝑞 𝑓 is never covered. Because we have
Post∗(𝛾0(𝑛)) ⊆ Pre∗( ↑𝑞 𝑓 ) for all 𝑛 ⩾ 6, this violates decisiveness.

We have proved that waiting-time schedulers do not allow us to retrieve decisiveness and that
they do not prevent random-walk behaviors. This is another negative result, on top of the ones
from Section 5.5 and Section 5.6. This forces us to lower our ambitions; to do so in a meaningful
way, we come back to our motivations and therefore to round-based consensus algorithms.

5.8 Almost-sure Obstruction-Freedom

Round-based consensus algorithms as in [Asp00; GR07; RS12] are meant to be robust with
respect to failure of any number of processes. This in particular implies that, in these algorithm,
if all processes suddenly crash except one, this process will eventually terminate. We abstract
this observation into the notion of almost-sure obstruction-freedom.

5.8.1 Definition

Let P = (𝑄, dim,D,⊥,Δ) be a round-based ASMS of visibility range 𝑣 and a special
stalemate state 𝑞 𝑓 . Given two configurations 𝛾 = ⟨𝜇, ®𝑑⟩, 𝛾′ = ⟨𝜇′, ®𝑑′⟩ ∈ Γ, we let 𝛾 ⪯ 𝛾′ when
®𝑑 = ®𝑑′ and 𝜇 ⊆ 𝜇′. In words, 𝛾 ⪯ 𝛾′ when 𝛾 can be obtained from 𝛾′ by removing some
processes. Given a configuration 𝛾 = ⟨𝜇, ®𝑑⟩, let Iso(𝛾) := {𝛾′ | 𝛾′ ⪯ 𝛾, |𝛾′| = 1} be the set of
configurations obtained from 𝛾 by removing all processes except one. Given a set 𝑆 ⊆ Γ, we let
Iso(𝑆) :=

⋃
𝛾∈𝑆 Iso(𝛾). Given a configuration 𝛾 ∈ Γ and (𝑞, 𝑘) ∈ L such that st(𝛾) (𝑞, 𝑘) > 0,

the local view of a process at (𝑞, 𝑘) in 𝛾 is the tuple (𝑞, (data(𝛾) (rg𝑘−𝑖 [𝑟]))𝑖∈J0,𝑣K,𝑟∈J1,dimK) ∈
𝑄 ×Ddim(𝑣+1) . In words, the local view of a process at round 𝑘 includes its state and the content
of all registers of rounds 𝑘−𝑣 to 𝑘 . Recall that 𝑣 is the visibility range, so that registers of rounds
𝑘 − 𝑣 to 𝑘 are those that the process can read from round 𝑘 . To save us some case disjunctions,
we assume that registers of negative rounds always contain value ⊥, so that the local view of a
process at round 𝑘 < 𝑣 is still an element of 𝑄 × Ddim(𝑣+1) .

In particular, when 𝛾 has size 1, the local view of 𝛾 is the local view of the only process in
𝛾, i.e., the local process at (𝑞, 𝑘) where (𝑞, 𝑘) ∈ st(𝛾).

Definition 5.13 (Almost-sure Obstruction-Freedom). A protocol P with a special stalemate
state 𝑞 𝑓 is almost surely obstruction-free, or Asof for short, when for every 𝑛 ⩾ 1, for every
𝛾 ∈ Iso(Post∗(𝛾0(𝑛))), we have P𝛾 (^↑𝑞 𝑓 ) = 1.
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In words, in any reachable configuration, if one process is selected and only this process is
allowed to act in the remainder of the execution, then this process reaches 𝑞 𝑓 with probability
1. This is a loosened version of obstruction-freedom, a classic notion in distributed algorithm
which states that, in any reachable configuration, any process finishes in a bounded number of
steps if all the other processes stop. In fact, if all processes are deterministic then the two notions
coincide. Obstruction-freedom was first defined in [HLM], see e.g. [Asp24, Chapter 27] for an
introduction.

5.8.2 Link with Almost-Sure Termination

It is clear that almost-sure obstruction-freedom is a strong property. In fact, it is stronger
than almost-sure coverability and even than almost-sure termination for every 𝑛.

Theorem 5.14. If a protocolP with a special stalemate state 𝑞 𝑓 is almost surely obstruction-free,
then for all 𝑛 ⩾ 1, P𝑛 (^Cons(𝑞 𝑓 )) = 1.

The rest of this section is devoted to proving Theorem 5.14. We start with the observation
that, from configurations with only one process, there is a convenient bound in the number of
steps needed to cover 𝑞 𝑓 . This bound depends on the highest round of the configuration that is
not blank. Recall that, in a configuration 𝛾, round 𝑘 is blank if, in 𝛾, all registers of round 𝑘
have symbol ⊥. The highest non-blank round in 𝛾 is the maximal 𝑘 such that round 𝑘 is not
blank in 𝛾; this value is finite for all reachable configurations. In a reachable configuration, one
also has a process whose round is at least the highest non-blank round. This is however not true
for configurations in Iso(Post∗(𝛾0(𝑛))), because it could be that the process that wrote to the
highest non-blank round was removed.

The following lemma bounds the number of steps needed to cover 𝑞 𝑓 from a configuration of
size 1. This bound depends on the distance in terms of rounds that the process has to perform to
get above the highest non-blank round. Indeed, if the process is far below the highest non-blank
round and it needs to get above this round to get to 𝑞 𝑓 , then it must perform a large number of
steps to get to 𝑞 𝑓 .

Lemma 5.15. Let 𝛾 ∈ Γ of size 1, let 𝐾 be the highest non-blank round in 𝛾 and let 𝑘 be the
round of the process in 𝛾. If one can cover 𝑞 𝑓 from 𝛾 then one can do so with an execution of
less than (max(𝐾 − 𝑘, 0) + 1) |𝑄 | |D|dim(𝑣+1) steps.

Proof. Let 𝜌 be the shortest execution covering 𝑞 𝑓 from 𝛾. By the pigeonhole principle, for all
ℓ, this execution has at most |𝑄 | |D|dim configurations where the process is at round ℓ. Indeed,
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such configurations only differ in the state of the process and the content of the registers of
round ℓ. Therefore, at most |𝑄 | |D|dim max(𝐾 − 𝑘, 0) steps in 𝜌 are at rounds strictly less than 𝐾 .
Moreover, when the process is at round ℓ ⩾ 𝐾 , the only register contents that matter are the ones
in rounds ℓ − 𝑣 to ℓ, i.e., those in the local view of the process; registers of rounds below ℓ − 𝑣
may not be read by the process and registers of rounds above ℓ are all blank. Assume that there
are 𝑞 ∈ 𝑄 and two configurations 𝛾1, 𝛾2 appearing in this order in 𝜌 such that 𝛾1 and 𝛾2 have
the same local view. We build a shorter execution by removing all steps between 𝛾1 and 𝛾2 and
shifting the rounds of all steps after 𝛾2 by 𝑘1 − 𝑘2 rounds; the obtained execution covers 𝑞 𝑓 from
𝛾 and is shorter than 𝜌, which contradicts minimality of 𝜌. By the pigeonhole principle, in 𝜌,
once the process is at round at least 𝐾 , the process covers 𝑞 𝑓 within the next |𝑄 | |D|dim(𝑣+1) steps
of 𝜌. This proves that 𝑞 𝑓 can be covered from 𝛾 in less than (max(𝐾 − 𝑘, 0) + 1) |𝑄 | |D|dim(𝑣+1)

steps overall. □

Another easy observation is that, for all 𝑛 ⩾ 1, any execution with one process can be
translated to an execution with 𝑛 processes where 𝑛 − 1 processes remain idle.

Lemma 5.16. Let 𝛾 ∈ Γ and 𝛾1 ∈ Iso(𝛾). Let 𝜌1 be an execution from 𝛾1 to some configuration
𝛾′1. There is 𝜌 from 𝛾 to some configuration 𝛾′ such that 𝛾′1 ∈ Iso(𝛾′). Moreover, 𝜌 has the
same underlying sequence of moves as 𝜌1.

Proof. The intuition is that it suffices, in 𝜌, to leave all processes idle except one. The proof is
by induction on the length of 𝜌1. The initialization is trivial. For the induction step, it suffices to
split 𝜌1 before its last step, perform the induction hypothesis on the prefix of length len(𝜌1) − 1
and prove that, from the configuration obtained, one can apply the move performed in the last
step of 𝜌1. □

Lemma 5.17. For all 𝛾 ∈ Γ, Post∗(Iso(𝛾)) ⊆ Iso(Post∗(𝛾)).

Proof. Let 𝛾′1 ∈ Post∗(Iso(𝛾)); there is 𝛾1 ∈ Iso(𝛾) and 𝜌1 an execution from 𝛾1 to 𝛾′1. There
is only one process in 𝜌. Because this process appears with the same state and round in 𝛾 and
in 𝛾1, and because the content of the registers is the same in 𝛾 and in 𝛾1, it is possible to build,
from 𝜌1, an execution 𝜌′ where only this process acts and where it performs the same moves as
in 𝜌. By letting 𝛾′ the end configuration of 𝜌′, we have 𝛾′ ∈ Post∗(𝛾) and 𝛾′1 ∈ Iso(𝛾′). □

We now prove Theorem 5.14. Suppose that (P, 𝑞 𝑓 ) is Asof. For all 𝛾 ∈ Γ, we prove
the following property by induction on |𝛾 |: if there is 𝛾𝑢 ∈ Post∗(Γ0) such that 𝛾 ⪯ 𝛾𝑢, then
P𝛾 (^Cons(𝑞 𝑓 )) = 1. This is true for configurations of size 1 thanks to the Asof property. Let
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𝛾 ∈ Γ, 𝛾𝑢 ∈ Post∗(Γ0) such that 𝛾 ⪯ 𝛾𝑢. Assume that the property is true for configurations
of size strictly less than |𝛾 |. We first prove that P𝛾 (^↑𝑞 𝑓 ) = 1, i.e., that 𝑞 𝑓 is covered almost
surely from 𝛾.

Let 𝐾 be the highest non-blank round in 𝛾 and let 𝑀 := (𝐾 +1) |𝑄 | |D|dim(𝑣+1) . We prove that,
from every 𝛾′ ∈ Post∗(𝛾), 𝑞 𝑓 can be covered from 𝛾′ in less than 𝑀 steps. Let 𝛾′ ∈ Post∗(𝛾).
Consider a process whose round 𝑘′ is maximal among the rounds of all processes in 𝛾′, and let
𝛾′1 ∈ Iso(𝛾′) be the configuration obtained from 𝛾 by deleting all processes except this one. Let
𝐾′ be the highest non-blank round in 𝛾′; this is also the highest non-blank round in 𝛾′1. Because
𝛾′ ∈ Post∗(𝛾), we have 𝐾 ⩽ 𝐾′. Moreover, we have 𝐾′ − 𝑘′ ⩽ 𝐾 . Indeed, if 𝐾′ = 𝐾 then this is
trivially true, and if 𝐾′ > 𝐾 then a register of round 𝐾′ has been written in the execution from
𝛾 to 𝛾′, hence the process in 𝛾′ has round greater than 𝐾′ and 𝑘′ ⩾ 𝐾′. Because (P, 𝑞 𝑓 ) is
Asof and 𝛾′1 ∈ Iso(Post∗(Γ0)), 𝑞 𝑓 can be covered from 𝛾′1. Thanks to Lemma 5.15, 𝑞 𝑓 can be
covered from 𝛾′1 in less than 𝑀 steps. By Lemma 5.16, the same is true for 𝛾′.

Let 𝑝 := 1
|𝛾 |·|Δ| . From any 𝛾′ ∈ Post∗(𝛾), there is probability at least 𝑝𝑀 to cover 𝑞 𝑓 within

the next 𝑀 steps. This proves that the probability to cover 𝑞 𝑓 from 𝛾 within 𝑚 · 𝐵 steps is at
least 1 − (1 − 𝑝)𝑚 −→

𝑚→∞
1, hence that P𝛾 (^↑𝑞 𝑓 ) = 1.

We have proved that P𝛾 (^↑𝑞 𝑓 ) = 1; we now must prove that P𝛾 (^Cons(𝑞 𝑓 )) = 1. Let 𝐶 𝑓

be the random variable giving the first configuration, in executions from 𝛾, that has a process in
𝑞 𝑓 . With probability 1, 𝐶 𝑓 is in Post∗(𝛾). We have that

P𝛾 (^↑𝑞 𝑓 ) = 1 =
∑︁

𝛾 𝑓 ∈Post∗ (𝛾)
P(𝐶 𝑓 = 𝛾 𝑓 )P𝛾 𝑓

(^Cons(𝑞 𝑓 )).

It therefore suffices to prove that, for all 𝛾 𝑓 ∈ Post∗(𝛾) with exactly one process in 𝑞 𝑓 , we
have P𝛾 𝑓

(^Cons(𝑞 𝑓 )) = 1. Fix such a configuration 𝛾 𝑓 . Recall that, by hypothesis, there is
𝛾𝑢 ∈ Post∗(Γ0) such that 𝛾 ⪯ 𝛾𝑢. By mimicking the execution from 𝛾 to 𝛾 𝑓 but from 𝛾𝑢,
we obtain 𝛾𝑢, 𝑓 ∈ Post∗(Γ0) such that 𝛾 𝑓 ⪯ 𝛾𝑢, 𝑓 . Let 𝛾′

𝑓
is the configuration of size |𝛾 | − 1

obtained from 𝛾 𝑓 by removing all processes in 𝑞 𝑓 (if all processes in 𝛾 𝑓 are in 𝑞 𝑓 then we
already have 𝛾 𝑓 ∈ Cons(𝑞 𝑓 )). We have 𝛾′

𝑓
⪯ 𝛾𝑢, 𝑓 hence the induction hypothesis applies and

P𝛾′
𝑓
(^Cons(𝑞 𝑓 )) = 1. Executions from 𝛾 𝑓 are isomorphic to executions from 𝛾′

𝑓
: the only

difference are the steps performed by the process in 𝑞 𝑓 , but such steps have no influence on the
rest of the system because 𝑞 𝑓 is a stalemate state. The means that the probability distribution of
executions from 𝛾 𝑓 is equal, up to dismissing the process on 𝑞 𝑓 , to the probability distribution of
executions from 𝛾′

𝑓
; therefore, P𝛾 𝑓

(^Cons(𝑞 𝑓 )) = 1. This concludes the induction. Applying
the induction hypothesis to each 𝛾0(𝑛), 𝑛 ⩾ 1, concludes the proof of Theorem 5.14.
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This proves that if a protocol is Asof then, for every number of participating processes, all
processes almost surely terminate. Therefore, we can use the Asof property to argue of the
almost-sure termination of round-based consensus algorithms. Of course, this is only relevant
if one can check that a given protocol is Asof.

5.8.3 Deciding Almost-Sure Obstruction-Freedom

We now provide the complexity of this verification problem.

Theorem 5.18. The following problem is PSPACE-complete:
Almost-sure Obstruction-Freedom
Input: A round-based protocol P with a special stalemate state 𝑞 𝑓
Question: Is (P, 𝑞 𝑓 ) Asof?

To prove Theorem 5.18, we first observe that the Asof property can be phrased in similar
fashion to decisiveness, under a weaker form where only configurations in Iso(Post∗(Γ0)) are
considered. The intuition is that, given a configuration 𝛾 ∈ Iso(Post∗(Γ0)), if 𝑞 𝑓 can be
covered from all configurations in Post∗(𝛾), then there is a lower bound (depending on 𝛾) on
the probability to cover 𝑞 𝑓 within a bounded number of steps. By iterating the argument, this
gives probability 1 to eventually cover 𝑞 𝑓 from 𝛾. This is not true in general for 𝛾 ∈ Post∗(Γ0):
in the examples from Section 5.5 and Section 5.6, there is no such lower bound.

Lemma 5.19. (P, 𝑞 𝑓 ) is Asof if and only if Iso(Post∗(Γ0)) ⊆ Pre∗( ↑𝑞 𝑓 ).

Proof. First, if Iso(Post∗(Γ0)) ⊈ Pre∗( ↑𝑞 𝑓 ) then there is 𝛾 ∈ Iso(Post∗(Γ0)) such that
P𝛾 (^↑𝑞 𝑓 ) = 0 which contradicts (P, 𝑞 𝑓 ) being Asof.

Conversely, assume that Iso(Post∗(Γ0)) ⊆ Pre∗( ↑𝑞 𝑓 ) Let 𝛾𝑢 ∈ Post∗(Γ0) and let 𝛾 ∈
Iso(𝛾𝑢); by hypothesis, 𝑞 𝑓 can be covered from 𝛾. We prove that P𝛾 (^↑𝑞 𝑓 ) = 1. Let 𝐾 be
the highest non-blank round in 𝛾 and let 𝑀 := (𝐾 + 1) |𝑄 | |D|dim(𝑣+1) . Let 𝛾′ ∈ Post∗(𝛾) ⊆
Post∗(Iso(Post∗(Γ0))). By Lemma 5.16, 𝛾′ ∈ Iso(Post∗(Γ0)) and, by hypothesis, 𝑞 𝑓 can be
covered from 𝛾′. Using the same reasoning as in the proof of Theorem 5.14, in 𝛾′, the process
is not more than 𝐾 rounds below the highest non-blank round. Thanks to Lemma 5.15, 𝑞 𝑓 can
be covered in less than 𝑀 steps from 𝛾′. Therefore, for every 𝛾′ ∈ Post∗(𝛾), this is probability
at least 1

|Δ|𝑀 of covering 𝑞 𝑓 in the next 𝑀 steps, which proves that P𝛾 (^↑𝑞 𝑓 ) = 1. This being
true for every 𝛾 ∈ Iso(Post∗(Γ0)), (P, 𝑞 𝑓 ) is Asof. □
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We therefore aim at deciding whether Iso(Post∗(Γ0)) ⊆ Pre∗( ↑𝑞 𝑓 ). Among configurations
of size 1, we highlight a convenient subset: the one where the process is at least as high as
the highest non-blank round. In such configurations, the sequences of moves that the processes
will be able to perform (up to translation) only depends on its local view, because rounds that
are lower than the local view are irrelevant and rounds that are above the local view are blank.
We denote by Γh ⊆ Iso(Γ) the set of configurations of size 1 where the round of the process is
greater than or equal to the highest non-blank round. Note that this set is stable by reachability,
i.e., Post∗(Γh) ⊆ Γh. Indeed, processes may never decrease their rounds, hence if a round 𝑘
is blank in 𝛾 but not blank in some configuration 𝛾′ ∈ Post∗(𝛾), then in 𝛾′ the process is at a
round greater than or equal to 𝑘 .

Because of the argument above, configurations in Γh can be abstracted by their local view;
therefore, our aim is to build a reachability graph for local views. Given a protocol P, let GP

be the directed graph whose set of vertices 𝑉 := 𝑄 × DJ0,𝑣K×dim is the set of local views and
such that, for all ℓ1, ℓ2 ∈ 𝑉 , there is an edge from ℓ1 to ℓ2 whenever there exists 𝛾1, 𝛾2 ∈ Γh and
𝜃 ∈ M such that 𝛾1

𝜃−→ 𝛾2, ℓ1 is the local view of 𝛾1 and ℓ2 is the local view of 𝛾2.
Enforcing that 𝛾1, 𝛾2 ∈ Γh may seem useless: if ℓ1 −→ ℓ2 holds, why would it matter if higher

rounds are blank or not? In fact, this condition is needed when the move allowing the step from
𝛾1 to 𝛾2 is a round increment, in which case the fact that 𝛾1 ∈ Γh guarantees that the round of
the process in 𝛾2 is blank.

Let 𝑄 incr be the set of states 𝑞 such that there is 𝑞′ ∈ 𝑄 with (𝑞, incr, 𝑞′) ∈ Δ, i.e., the set of
states from which there is a round increment transition.

Lemma 5.20. Let 𝛾1 ∈ Γ of size 1, let ℓ1 be the local view of 𝛾1, and let ℓ2 be another local view
such that there is a path 𝜋 in GP from ℓ1 to ℓ2. If one of the following two conditions is satisfied,
then there is an execution from 𝛾1 to some configuration 𝛾2 ∈ Γ such that 𝛾2 has local view ℓ2:

(i) 𝛾1 ∈ Γh, or

(ii) 𝜋 visits no local view with state in 𝑄 incr, except possibly for ℓ2.

Proof. We first prove the result in the case where the path from ℓ1 to ℓ2 is composed of one edge
only. By definition of GP , there are 𝛾′1, 𝛾

′
2 ∈ Γh and 𝜃 ∈ M such that 𝛾′1

𝜃−→ 𝛾′2 and the local
view of 𝛾′1 (resp. 𝛾′2) is ℓ1 (resp. ℓ2). Because the local views of 𝛾1 and 𝛾′1 are the same, 𝜃 can

be applied from 𝛾1: let 𝛾2 be the configuration such that 𝛾1
𝜃−→ 𝛾2. If 𝜃 is not a round increment,

then we directly have that 𝛾2 and 𝛾′2 have the same local view. This is in particular the case if (ii)
is satisfied. If (i) is satisfied, then 𝛾1, 𝛾

′
1 ∈ Γh, so that 𝛾2 and 𝛾′2 have the same local view even if

𝜃 is a round increment, because the round immediately above the round of the process is blank
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in both 𝛾1 and 𝛾′1. We generalize this to paths 𝜋 of GP by direct induction on the length of 𝜋. In
case (i), the induction requires the observation that Post∗(Γh) ⊆ Γh, so that the configurations
obtained are also in Γh. □

We now provide a characterization of the Asof property in terms of local views. A local
view ℓ is reachable when there is 𝛾 ∈ Iso(Post∗(Γ0)) with local view ℓ.

Lemma 5.21. (P, 𝑞 𝑓 ) is not Asof if and only if there is a reachable local view ℓ whose strongly
connected component in GP is bottom and does not have vertices with state 𝑞 𝑓 .

Proof. Thanks to Lemma 5.19, (P, 𝑞 𝑓 ) is not Asof if and only if Iso(Post∗(Γ0)) ⊈ Pre∗( ↑𝑞 𝑓 ).
First, suppose that there is such a local view ℓ. Because ℓ is reachable, there is 𝛾 ∈

Iso(Post∗(Γ0)) with local view ℓ. Let 𝑘 be the round of the process in 𝛾. Let 𝜌 : 𝛾0(𝑛)
∗−→ 𝛾𝑢

such that 𝛾 ⪯ 𝛾𝑢. Consider 𝜌′ the execution identical to 𝜌 except that all steps taking place at
rounds > 𝑘 are removed. Because steps from rounds below 𝑘 may not depend on the content
of registers above 𝑘 , 𝜌′ is a valid execution, let 𝛾′𝑢 be its last configuration. By letting (𝑞, 𝑘)
the location of the process in 𝛾, there is a process in (𝑞, 𝑘) in 𝛾′𝑢; let 𝛾′ ∈ Iso(𝛾′𝑢) obtained by
deleting all processes except this one. We have that 𝛾′ ∈ Γh and that 𝛾′ has the same local view
as 𝛾. We have Post∗(𝛾′) ⊆ Γh, so that the local views of configurations reachable from 𝛾′ are
exactly those that can be reached from ℓ in GP . Since the strongly connected component of ℓ in
GP is bottom and has no vertex with state 𝑞 𝑓 , 𝛾′ ∉ Pre∗( ↑𝑞 𝑓 ) and (P, 𝑞 𝑓 ) is not Asof.

Suppose now that (P, 𝑞 𝑓 ) is not Asof. By Lemma 5.19, there is 𝛾 ∈ Iso(Post∗(Γ0)) such
that 𝛾 ∉ Pre∗( ↑𝑞 𝑓 ). Note, however, that we do not necessarily have 𝛾 ∈ Γh, so that paths
from the local view of 𝛾 in GP do not automatically yield executions from 𝛾. We make a case
disjunction based on the following assertion:

for each 𝛾′ ∈ Post∗(𝛾), there is a path in GP

from the local view of 𝛾′ to a local view with state in 𝑄 incr.
(5.3)

Assume first that (5.3) does not hold. Let 𝛾′ ∈ Post∗(𝛾) that contradicts the assertion, let ℓ′

be the local view of 𝛾′. We know that, in GP , there is no path from ℓ′ to a local view with state in
𝑄 incr. There exists a local view ℓbot that is in a bottom strongly connected component of GP and
such that there is a path from ℓ′ to ℓbot; moreover, no local view along this path has state in𝑄 incr,
hence by Lemma 5.20, there is 𝛾bot ∈ Post∗(𝛾) with local view ℓbot. Again by Lemma 5.20,
a path in GP from ℓbot to a local view with state 𝑞 𝑓 would contradict that 𝛾 ∉ Pre∗( ↑𝑞 𝑓 ).
Therefore, the strongly connected component of ℓbot is bottom and contains no local view with
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state 𝑞 𝑓 ; moreover, ℓbot is reachable because 𝛾bot ∈ Post∗(Iso(Post∗(Γ0))) ⊆ Iso(Post∗(𝛾)) by
Lemma 5.17, concluding this case.

Assume now that (5.3) holds. By Lemma 5.20, this implies that, for all 𝛾′ ∈ Post∗(𝛾),
one can reach a configuration where the process is in a state in 𝑄 incr, and therefore there is an
execution from 𝛾′ that increases the round by 1. By iterating the argument, Post∗(𝛾) contains
configurations of arbitrarily large rounds. For 𝛾′ ∈ Post∗(𝛾), if the round of the process in 𝛾′

is greater than the highest non-blank round in 𝛾 then 𝛾′ ∈ Γh. This proves the existence of
𝛾′ ∈ Post∗(𝛾) ∩ Γh. Let ℓ′ be its local view. Because Post∗(Γh) ⊆ Γh, any path in GP from ℓ′

can be translated to an execution from 𝛾′ using Lemma 5.20. There exists a local view ℓbot that
is in a bottom strongly connected component of GP and such that there is a path from ℓ′ to ℓbot;
using Lemma 5.20 and Lemma 5.17, we obtain 𝛾bot ∈ Iso(Post∗(Γ0)) of local view ℓbot, and
ℓbot is reachable. Moreover, a path from ℓbot to a local view with state 𝑞 𝑓 would contradict that
𝛾 ∉ Pre∗( ↑𝑞 𝑓 ). This concludes the proof. □

Given a local view ℓ, one can easily explore its SCC in polynomial space. Indeed, although
GP has size exponential in the size of P, its vertices are storable in polynomial space (thanks
to the fact that 𝑣 is assumed to be encoded in unary in the input). Moreover, a given vertex has
at most |Δ| many successors, and this set can be computed efficiently. It remains to argue that
we can check, given a local view ℓ, whether it is reachable, i.e., whether there is 𝛾 ∈ Post∗(Γ0)
with local view ℓ.

Lemma 5.22. Whether a local view ℓ is reachable is decidable in PSPACE.

Proof. The local view of a process depends only on its state and on the content of the registers.
Therefore, for all 𝛾′ ∈ Γ, there is a process with local view ℓ in 𝛾′ if and only if there is
𝛾 ∈ Iso(𝛾′) with local view ℓ. The set of configurations that have a process with local view
ℓ can be expressed as a presence constraint (in the sense of Chapter 4) of polynomial size.
Membership in PSPACE is directly given by Theorem 4.27. □

We are now ready to prove that one can decide whether a protocol is Asof in polynomial
space. By Lemma 5.21 and because PSPACE is stable by complement, it suffices to be able
to detect whether there is a reachable local view in GP that is in a bottom strongly connected
component where 𝑞 𝑓 does not appear. We cannot directly buildGP because its size is exponential
in the size of the protocol; each vertex, however, can be stored in polynomial space, and the set
of successors of a given vertex can be computed efficiently. The polynomial-space procedure
guesses the local view ℓ and checks that it is reachable using Lemma 5.22. To check that its
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strongly connected component is bottom and that it contains no occurrence of 𝑞 𝑓 , it suffices to
perform a (non-deterministic) exploration of the strongly connected component vertex by vertex.
This procedure works in polynomial space, and is correct thanks to Lemma 5.21.

This proves that deciding whether a protocol is Asof is a PSPACE problem. It remains to
argue that the problem is PSPACE-hard.

Proposition 5.23. The almost-sure obstruction-freedom problem is PSPACE-hard.

Proof. We proceed by reduction from the halting problem of a deterministic Turing machine with
a tape of size 𝑛. The idea, in line with the hardness proofs of Theorem 4.12 and Proposition 4.31,
is to design the protocol so that no two executions write different symbols to a register. If the
Turing machine halts, the protocol must be Asof: any process, if left in isolation, must be able
to carry out the simulation of the Turing machine. To do that, we use 𝑛 + 2 registers per round:
one for each cell of the tape, one for the position of the head and one for the state. Registers of
a round can thus store an entire configuration of the Turing machine. At round 0, every process
goes through an initial gadget where it writes the initial configuration of the Turing machine. A
process that gets to round 𝑘 +1 reads the registers from round 𝑘 and writes the next configuration
of the machine (this requires 𝑣 = 1). A process at round 𝑘 writes to every register of round 𝑘
before incrementing its round. Because the Turing machine is deterministic, all write actions
performed to a given register write the same symbol. Processes go to 𝑞 𝑓 upon writing the halting
state of the Turing machine. In this protocol, reachable configurations correspond to (partial)
simulations of runs of the Turing machines. From a reachable configuration, a process left in
isolation will eventually simulate the run of the Turing machine and go to 𝑞 𝑓 ; this process may
write to registers that were already written, which is not an issue. This protocol is Asof if and
only if the Turing machine halts. The protocol is polynomial in the size of the machine, which
concludes the proof. □

5.9 Perspectives

In this section, we studied round-based ASMS under stochastic schedulers. One of our ini-
tial ambitions was to transpose to the round-based setting the study of almost-sure coverability
from [BMRSS16]. In particular, [BMRSS16] relies on an equivalence, called here decisiveness,
that turns almost-sure coverability into a non-probabilistic property. In the round-based model,
however, the set of rounds is infinite which allows for random-walk behaviors. Such behaviors
entail that decisiveness does not hold in round-based ASMS. Random walks are mathematically
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complex phenomena, therefore we tried to find reasonable restrictions that exclude such behav-
iors. We considered enforcing that processes progress in terms of rounds at the same average
pace. Also, inspired by the stochastic scheduler model from [Asp02], we considered another
type of scheduler based on continuous time, where each process draws independently the time
until its next action. Both attempts fail to forbid random-walk behaviors. This led us to consider
a stronger restriction, called almost-sure obstruction-freedom. It states that, from any reachable
configuration, if a process is left playing in isolation, then it eventually decided with probability
1. This property is typically satisfied by randomized round-based consensus algorithms, and it is
in particular satisfied by Aspnes’ noisy consensus algorithm [Asp02]. Almost-sure obstruction-
freedom implies almost-sure termination and that deciding whether a protocol satisfies it is a
PSPACE-complete problem.

While this last fact constitutes a much-needed positive result after all the negative ones from
the rest of this chapter, it remains a bit unsatisfactory. Most of the questions associated with
round-based ASMS under stochastic schedulers remain unsolved. In particular, we have not
performed a cutoff analysis in the style of [BMRSS16]. An important result would therefore
be the following: “for every round-based ASMS protocol P with a stalemate state 𝑞 𝑓 , there
is 𝑁 ∈ N such that either P𝑛 ( ↑𝑞 𝑓 ) = 1 for all 𝑛 ⩾ 𝑁 (positive cutoff) or P𝑛 ( ↑𝑞 𝑓 ) < 1 for
all 𝑛 ⩾ 𝑁 (negative cutoff)”. A similar question can be asked for almost-sure termination,
and potentially for more general properties such as almost-sure reachability of sets defined by
presence constraints. If such a cutoff exists, then the next question would be what the order of
magnitude of this cutoff. Can it be bounded by a primitive-recursive function? By a doubly-
exponential one? A related question would be the decidability status and complexity of the
associated decision problem: given (P, 𝑞 𝑓 ), does it have a positive cutoff or a negative one?
All of these questions are potentially very challenging; in our experience, even the analysis of
simple protocols may raise questions that random walk specialists cannot easily answer 2.

2. We thank Mathias Rousset, Frédéric Cérou and Bruno Sericola for the interesting discussions on this
challenging task.
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CONCLUSION

Summary

This thesis is dedicated to the study of parameterized verification of distributed systems
and in particular of shared-memory systems. We defined and studied several models, notably
inspired by shared-memory consensus algorithms such as Aspnes’ noisy consensus algorithm
[Asp02]. While we used distributed algorithms as a guideline, our contributions are theoretical
and mostly related to the decidability and complexity of the considered decision problems. We
recall here the main results from this thesis.

Chapter 2 We studied a slightly extended version of the classic model of asynchronous shared-
memory systems [EGM13; EGM16]. On this model, we define presence reachability problem
(PRP), a generic reachability problem of which Cover and Target are two particular cases. We
proved that the generic problem is NP-complete, and that NP-hardness already holds for Cover.
Assuming that the registers are not initialized makes Cover solvable in polynomial time, but
this does not extend to more sophisticated questions such as Target. However, if the system
has a single shared register then Target is also PTIME, and this can be extended to PRP as
long as the presence constraint is in disjunctive normal form. When considering parameterized
complexity with respect to the number of registers, Cover is FPT but Target is W[2]-hard.

Chapter 3 We defined and studied copycat systems, a general model meant to capture param-
eterized systems composed of many identical processes that satisfy the copycat property, such
as asynchronous shared-memory systems. We defined a generic mathematical notion, called
transfer flows, to describe the possibilities offered by transitions of the system. We defined a
compositional product on transfer flows, which expresses the possibilities offered by several tran-
sitions applied in a row. Thanks to this concept and to a bound from the literature on the length
of descending chains of N𝑑 [LS21; SS24], we obtained a general-purpose doubly-exponential
bound. This proves that any execution can be rearranged into one of at most doubly-exponential
length in which only at most doubly-exponentially many processes play an important role. We
presented a few applications of this result, notably to decide emptiness of generalized reacha-
bility expressions and for LTL verification. It also allowed us to provide, with little overhead,
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most of the results of [BMRSS16; Sta17] on almost-sure reachability in ASMS.

Chapter 4 We generalized the ASMS model from Chapter 2 to capture round-based algorithms
such as Aspnes’ noisy consensus algorithm. We extended the presence reachability problem PRP
from Chapter 2 to round-based PRP by allowing non-nested quantification over round values.
We established that this problem is PSPACE-complete; to obtain membership in PSPACE, one
cannot guess the execution naively configuration by configuration, and we instead relied on the
notion of footprint, which is the projection of an execution onto a few rounds. This PSPACE
result relies on the hypothesis that the integer constants of the input are given in unary; if they
are given in binary then the problem becomes EXPSPACE-complete.

Chapter 5 We defined a stochastic scheduler where the next process to act is selected uniformly
among all processes, and we considered the round-based ASMS model under such schedulers.
Unfortunately, the occurrence of random-walk behaviors make the analysis very complex, and
it does not seem that one can prevent such behaviors easily. Nonetheless, we defined almost-
sure obstruction-freedom, a property that round-based consensus algorithms typically satisfy.
We proved that this property implies almost-sure termination and that the problem of deciding
whether a protocol satisfies this property is PSPACE-complete.

Future Works

We have highlighted, at the end of each chapter of this thesis, several open questions and
possible extensions. We here mention two future works that are, in our eyes, the most interesting
and important tasks:

Gap on the structural bound in copycat systems The structural bound (Theorem 3.19)
depends doubly-exponentially in the number of states of the system. While examples are known
where one cannot cover a state with less than exponentially many steps (see, e.g., PSPACE-
hardness in [BMRSS16]), it is not known whether this doubly-exponential bound is tight or not.
In other words: can the bound from Theorem 3.19 be improved to a bound whose dependency
in the number of states is only exponential and not doubly-exponential? This is closely related
to the complexity gap on almost-sure coverability for ASMS left open in [BMRSS16] that was
wrongly claimed to be solved in [BGW22; BGW23]. If one can prove that the structural bound
on copycat systems can be improved to exponential in the number of states, then this would have
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direct implications to ASMS and to RBN and would constitute a valuable contribution. In our
view, this is the most important question left open by this thesis.

Round-based ASMS under stochastic schedulers. Many questions related to round-based
ASMS under stochastic schedulers remain open. The most interesting ones are the following.
First, given (P, 𝑞 𝑓 ), does there exist a cutoff for almost-sure coverability, i.e., a number 𝑁 of
processes such that the answer to almost-sure coverability remains the same for all 𝑛 ⩾ 𝑁? How
large can this cutoff be? What are the decidability status and complexity of the problem of
deciding whether (P, 𝑞 𝑓 ) has a positive cutoff? All these questions seem very interesting but
also, given the presence of random walks in the model, very challenging.
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Titre : Vérification paramétrée de systèmes distribués à mémoire partagée

Mot clés : vérification paramétrée, systèmes infinis, algorithmes distribués

Résumé : Les systèmes distribués sont
constitués de plusieurs composantes informa-
tisés (que nous appelons processus) qui in-
teragissent pour accomplir une tâche com-
mune. Un exemple de tâche est le consen-
sus, où tous les processus doivent se mettre
d’accord sur une valeur commune. Dans cette
thèse, nous nous intéressons aux systèmes
à mémoire partagée, où les processus inter-
agissent en lisant et en écrivant dans une mé-
moire partagée. Nous ne travaillons pas di-
rectement sur des systèmes distribués, mais
plutôt sur des modèles de ces systèmes, où
nous considérons des questions de vérifica-
tion automatique. Nos modèles sont paramé-
trés : le nombre de processus n’est pas fixé à

l’avance et peut être arbitrairement grand, ce
qui nous permet de vérifier le système pour
tout nombre de participants. Cette hypothèse
permet également des propriétés de monoto-
nicité qui simplifient l’analyse. Notre modèle,
inspiré par des algorithmes de consensus de
la littérature, est à ronde : chaque proces-
sus évolue de manière incrémentale en un
nombre appelé ronde, et où chaque ronde a
sa propre mémoire partagée. Nous étudions
de plus l’impact d’un ordonnanceur stochas-
tique sur ce modèle à rondes. Notre approche
est théorique et nous nous intéressons princi-
palement à l’analyse de nos modèles et à la
classification de nos problèmes en termes de
classes de complexité.

Title: Parameterized verification of distributed shared-memory systems

Keywords: parameterized verification, infinite-state systems, distributed algorithms

Abstract: Distributed systems consist in sev-
eral computerized components (called pro-
cesses) interacting with one another to per-
form a common task. An example of such a
task is consensus, where all processes must
agree on a common value. In this thesis,
we are interested in shared-memory systems
where the processes interact via reading from
and writing to a shared memory. We do not
work directly on distributed systems, but rather
on models of such systems, and we consider
questions related to the automated verification
of these models. Our models are parameter-
ized: the number of processes is not fixed
beforehand and may be arbitrarily large, so

that we are able to verify the system regard-
less of the number of participants. They enjoy
some monotonicity property, called copycat
property, which simplifies the analysis. Moti-
vated by consensus algorithms from the liter-
ature, we consider a model where each pro-
cess evolves incrementally in a number called
round and where each round has its own set
of registers. Also, we study the impact of
a stochastic scheduler on this round-based
model. Our approach is theoretical and we are
mostly interested in analyzing our models and
in classifying our problems of interest in terms
of complexity.
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