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Résumé

En 1870, George Cantor a prouvé que si la série trigonométrique

oo

E (cp cosnmx + d, sinnwx)
n=0

est €gale a 0 pour tout x € R, alors tous ses coefficients ¢, et d,, doivent étre nuls. Ce résultat
l’a amené a poser la question suivante:

Pour combien de valeurs x € R la série doit-elle s’annuler, afin de garantir que les coefficients
s’annulent également ?

Cantor a compris que la réponse reposait sur le concept d’infini. Plus précisément, il a
prouvé que s’il existe S C R tel que la dérivée de Cantor-Bendixon de S s’annule a une étape
dénombrable, et que la série s’annule pour tout x € R\S, alors tous ses coefficients doivent
également s’annuler. On peut affirmer que cette découverte a marqué le début de la théorie des
ensembles, établissant les bases de ['un des développements les plus profonds des mathématiques
modernes.

Une fois que les travaux de Cantor, Dedekind, Zermelo, Hausdorff, Fraenkel, Godel, Tarski
entre autres ont établi les fondements de la théorie des ensembles, et que Cohen a prouvé
I'indépendance de certains énoncés naturels par rapport a la théorie ZFC - parmi lesquels, en
particulier, le probléeme du Continuum - la question centrale de la théorie des ensembles, connue
sous le nom de programme de Godel, est devenue:

Quels nouwveaur axiomes doivent étre incorporés a ZFC?

Des recherches ultérieures ont suggéré qu’une famille intéressant d’axiomes potentiels pou-
vait étre détecté en analysant la méthode du forcing. Deux axiomes clés ont émergé de ces
investigations. Tout d’abord, Martin et Solovay [15] ont introduit 'axiome de Martin (MA),
un axiome de forcing concernant la classe des forcings satisfaisant la condition de la chaine
dénombrable (c.c.c.). Plus tard, Foreman, Magidor et Shelah [2] ont étendu cette idée en
développant une variante maximale appelée Martin’s Mazimum (MM ), qui prend en compte les
forcings qui préservent les sous-ensembles stationnaires de wy .

Les principaux résultats de cette thése sont liés au forcing, mais notre présentation bénéficie
de sa mise en relation avec un autre domaine de la logique: la théorie des modeles des logiques
infinitaires.

Dans les années 1950, apres l’établissement du cadre de base de la théorie des modeles du
premier ordre, Carol Karp, suivie par Makkai, Keisler et Mansfield, parmi d’autres (voir par
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exemple [4,7, 10, 14]), a développé la branche de la logique connue sous le nom de logiques
infinitaires. Une idée clé de notre travail, qui était plus ou moins implicite dans les recherches
de nombreuz auteurs (voir par exemple Mansfield [14] ou Keisler [7]), est que le forcing joue
un role en logique infinitaire similaire a celui joué par le théoréeme de compacité en logique du
premier ordre. Plus précisément, de la méme maniére que le théoréeme de compacité est ’outil
clé pour produire des modeles de théories du premier ordre, le forcing peut étre l’outil clé pour
produire les modeles intéressants des théories Lo, .

La premiere partie de cette thése explore la relation entre les logiques infinitaires et les
modeles a valeurs booléennes.

Les modeéles a valeurs booléennes sont apparus pour la premiére fois dans le livre de Rasiowa-
Sikorski [17], ot il est démontré que les modéles a valeurs booléennes fournissent une sémantique
complete pour la logique du premier ordre. Ils ont rapidement émergé comme une sémantique
possible non seulement pour la logique du premier ordre, mais aussi pour les logiques infinitaires,
en particulier dans le cadre de L, ., [11,18]. En s’appuyant sur la traduction du forcing dans
la terminologie des modeles a valeurs booléennes développée par Solovay, Scott et Vopénka,
cette partie de la theése pose les bases reliant les logiques infinitaires au forcing. S appuyant sur
la traduction du forcing dans la terminologie des modéles a valeurs booléennes développée par
Solovay, Scott et Vopénka, on introduit les bases reliant les logiques infinitaires au forcing.

Une propriété de consistance est une famille d’ensembles de formules non contradictoires,
fermée sous certaines opérations logiques naturelles (voir Def. 1.53.2). Les propriétés de consis-
tance reproduisent dans le contexte des logiques infinitaires la technique donnée par la méthode
de résolution pour produire des modéles d’une formule du premier ordre; elles sont [outil
standard pour produire des modéles de formules infinitaires non contradictoires. Le livre de
Keisler [7] est notre référence sur ce sujet.

Le premier résultat majeur que nous établissons dans cette these est le Théoreme d’Existence
des Modéles Booléens 1.4.14, affirmant que toute Lo,,-formule 1 appartenant a un s qui est
dans une propri¢té de consistance S posséde un modéle a valeurs booléennes avec la propriété
de “mixing”, et renforce (mais uniquement dans le contexte de Ly, ) le résultat original de
Mansfield [1]] affirmant que le méme résultat vaut pour les formules Loooo ¢ si lon affaiblit la
conclusion a la demande que ¢ posséde un modéle a valeurs booléennes (mais non “mixing”).

La version que nous produisons du Théoreme d’Fxistence des Modeles Booléens pour les
formules L., est un renforcement propre du résultat de Mansfield, au vu d’un contre-exemple
(di a Ben de Bondt, et que nous présenterons en détail avec sa permission) montrant une
Looso-formule qui est booléenne consistante mais n’admet pas de modele a valeurs booléennes
avec la propriété de “mizing”.

Le Théoreme d’Existence des Modeles Booléens nous permet de prouver trois résultats
supplémentaires dans la théorie des modeles des logiques infinitaires munis de la sémantique
des modeles a valeurs booléennes avec la propriété de “mizring”: un théoreme de complétude
par rapport a un calcul de type Gentzen pour Loo, (Thm. 2.8.1), un théoréme d’interpolation
(Thm. 2.4.1) et un théoréme d’omission des types (Thm. 2.5.3). Ceuz-ci peuvent étre montrés
comme des généralisations a Lo, des résultats correspondants pour la logique du premier ordre,
étant donné qu’une formule du premier ordre posséde un modeéle de Tarski si et seulement si
elle posséde un modéle a valeurs booléennes.

Cependant, nous croyons que le résultat central de cette partie de la these est le Théoréeme de
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Compacité Conservative (Thm. 2.2.5). Dans la poursuite d’une généralisation de la compacité
du premier ordre pour les logiques infinitaires, nous introduisons le concept de “renforcement
conservatif” et de “conservativité finie” (Def. 2.2.2). Nous soutenons que la généralisation
appropriée de la consistance finie (relative a la sémantique de Tarski pour la logique du premier
ordre) est la conservativité finie (relative a la sémantique donnée par les modéles a valeurs
booléennes pour Ls,). Cela est vrai car nous pouvons montrer que la conservativité finie est
équivalente a la consistance finie (modulo I’équivalence logique) dans le cadre du premier or-
dre (Thm. 2.2.6). Le Théoréme de Compacité Conservative stipule que toute famille finiment
conservative de formules L., admet un modéle a valeurs booléennes avec la propriété de “miz-
ing”. 1l est bien connu que la généralisation standard a Lo, du Théoréeme de Compacité pour
la logique du premier ordre est fausse (voir I’Ezemple 2.2.1). A notre avis, ces résultats nous
permettent de soutenir que:

Les modeéles a valeurs booléennes avec la propriété de “mizing” fournissent une sémantique
naturelle pour L., .

Dans la seconde partie de la these, nous nous appuyons sur les résultats de la premiere
partie pour aborder la question suivante :

Pour quelle famille de formules infinitaires peut-on forcer ’existence d’un modéle de Tarski
sans détruire les sous-ensembles stationnaires de wy ?

Kasum et Velickovi¢ [6] ont introduit une caractérisation des Lo, -formules pour lesquelles
un modele de Tarski peut étre forcé par un forcing préservant les ensembles stationnaires (AS-
goodness). Leur travail s’appuie sur le résultat révolutionnaire d’Aspero et Schindler [1] mon-
trant que 'axiome de forcing (x) introduit par Woodin est une conséquence de la forme forte
de MM, connue sous le nom de MM, Nous définissons la propriété ASK - une variante de
I’AS-goodness - que nous utilisons également de la méme maniére que Kasum et Velickovic. Il
est démontré dans le Thm. 5.4.2 que pour toute formule 1 ayant la propriété ASK, on peut
forcer lexistence d’un modeéle de Tarski de 1 d’une maniére qui préserve les ensembles station-
naires. La preuve de ce résultat s’appuie sur la perspective de la théorie des modéles de forcing
présentée dans la premiere partie de la thése, tout en introduisant une nouvelle notion de forc-
ing itéré. Cetle présentation du forcing itéré est étroitement liée au Théoréeme de Compacité
Conservateur, soulignant a nouveau [’analogie entre les paires (forcing, logiques infinitaires) et
(compacité, logique du premier ordre).

L’idée derriére la propriété ASK est la suivante : Tout d’abord, le (preuve du) Théoréme
d’Existence des Modéles a Valeurs Booléennes montre qu’une propriété de consistance S pour
Lo, est une notion de forcing qui produit dans son extension générique un modele de Tarski
de toute formule 1) telle que {1} € S. Supposons qu’on cherche a construire un modéle d’une
formule infinitaire 1y de maniere a préserver les ensembles stationnaires. Pour commencer, si
cela est possible, il faut d’abord démontrer que la formule est consistante dans une extension
générique ou un fragment suffisamment grand de l'univers est effondré. Cela fournit la propriété
de consistance/forcing Sy dans la premiére étape de l’itération qui produit un modéle a valeurs
booléennes de 1g. Aux étapes successives, nous considérons un sous-ensemble stationnaire S
de wy et C un (nom de Py pour un) sous-ensemble club de wy. En nous appuyant sur le



v

pouvoir expressif de Lo, nous pouvons écrire une formule Lo, V1, qui est un renforcement
conservateur de o et affirme que S et C' ne sont pas disjoints. 1y est naturellement associée
a une propriété de consistance/forcing S1, qui produira un modéle & valeurs booléennes de 1.
La propriété ASK pour vy joue ici un role crucial, garantissant que la nouvelle formule est
un renforcement conservateur de l’originale (encore une fois en s’appuyant sur le Théoréme
de Compacité Conservateur). Aux étapes limites [, nous nous assurons que tous les progrés
réalisés dans la production de (Su, Vs @ a < ), de sorte que S, est une propriété de consistance
fournissant un modéle de 1, soient préservés en considérant une paire appropriée (Ss,vg). En
continuant cette itération (Sa, Vs : @ < K) jusqu’a un cardinal k avec une suite Diamond, on
obtient un forcing final qui préserve les ensembles stationnaires et produit un modéle de la
formule originale 1.

Pour conclure cette theése, nous démontrons que tout forcing préservant les ensembles sta-
tionnaires est absorbé par le forcing SSP généré par une formule avec la propriété ASK. En
d’autres termes, la méthode que nous avons présentée pour construire des forcings SSP est
optimale.

Mots-clés : Logique, forcing, modeles a valeurs booléennes, compacité, forcing itéré, préservation
des sous-ensembles stationnaires.



Résumé court

Les principaux résultats de cette these sont liés au forcing, mais notre présentation bénéficie
de sa mise en relation avec un autre domaine de la logique: la théorie des modeles des logiques
infinitaires. Une idée clé de notre travail, qui était plus ou moins implicite dans les recherches
de nombreux auteurs, est que le forcing joue un role en logique infinitaire similaire a celui
joué par le théoreme de compacité en logique du premier ordre. Plus précisément, de la méme
maniere que le théoreme de compacité est 'outil clé pour produire des modeles de théories du
premier ordre, le forcing peut étre ’outil clé pour produire les modeles des théories infinitaires.
La premiere partie de cette these explore la relation entre les logiques infinitaires et les modeles
a valeurs booléennes. Une propriété de consistance est une famille d’ensembles de formules
non contradictoires, fermée sous certaines opérations logiques naturelles. Les propriétés de
consistance reproduisent dans le contexte des logiques infinitaires la technique donnée par la
méthode de résolution pour produire des modeles d’une formule du premier ordre; elles sont
I'outil standard pour produire des modeles de formules infinitaires non contradictoires. Le
premier résultat majeur que nous établissons dans cette these est le Théoreme d’Existence des
Modeles Booléens, affirmant que toute formule dans un ensemble qui est dans une propriété de
consistance possede un modele a valeurs booléennes avec la propriété de ”mixing”, et renforce
le résultat original de Mansfield. Le Théoreme d’Existence des Modeles Booléens nous permet
de prouver trois résultats supplémentaires dans la théorie des modeles des logiques infinitaires
munis de la sémantique des modeles a valeurs booléennes avec la propriété de “mixing”: un
théoreme de complétude par rapport a un calcul de type Gentzen, un théoreme d’interpolation
et un théoreme d’omission des types. Cependant, nous croyons que le résultat central de
cette partie de la these est le Théoreme de Compacité Conservative. Dans la poursuite d’une
généralisation de la compacité du premier ordre pour les logiques infinitaires, nous introduisons
le concept de "renforcement conservatif” et de ”conservativité finie”. Nous soutenons que la
généralisation appropriée de la consistance finie (relative a la sémantique de Tarski pour la
logique du premier ordre) est la conservativité finie (relative a la sémantique donnée par les
modeles a valeurs booléennes). A notre avis, ces résultats nous permettent de soutenir que:
Les modeles a valeurs booléennes avec la propriété de ”mixing” fournissent une sémantique
naturelle pour les logiques infinies. Dans la seconde partie de la theése, nous nous appuyons
sur les résultats de la premiere partie pour aborder la question suivante: pour quelle famille
de formules infinitaires peut-on forcer I'existence d’un modele de Tarski sans détruire les sous-
ensembles stationnaires? Kasum et Velickovic ont introduit une caractérisation des formules
pour lesquelles un modele de Tarski peut étre forcé par un forcing préservant les ensembles
stationnaires (AS-goodness). Leur travail s’appuie sur le résultat révolutionnaire d’Aspero
et Schindler. Nous définissons la propriété ASK - une variante de I’AS-goodness - que nous
utilisons également de la méme maniere que Kasum et Velickovic. Il est démontré que pour
toute formule ayant la propriété ASK, on peut forcer 'existence d’un modele de Tarski d'une
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maniere qui préserve les ensembles stationnaires. La preuve de ce résultat s’appuie sur la
perspective de la théorie des modeles de forcing présentée dans la premiere partie de la these,
tout en introduisant une nouvelle notion de forcing itéré. Cette présentation du forcing itéré
est étroitement liée au Théoreme de Compacité Conservateur, soulignant a nouveau l’analogie
entre les paires (forcing, logiques infinitaires) et (compacité, logique du premier ordre).

Mots clés: Logique, forgage, modeles a valeurs booléennes, compacité, forcing itéré, préservation
des sous-ensembles stationnaires.



Short abstract

The main results of this thesis are related to forcing, but our presentation benefits from relating
them to another domain of logic: the model theory of infinitary logics. In the 1950s, after the
basic framework of first-order model theory had been established, Carol Karp, followed by
Makkai, Keisler and Mansfield among others, developed the area of logic known as ”infinitary
logics”. One key idea from our work, which was more or less implicit in the research of many;,
is that forcing plays a role in infinitary logic similar to the role compactness plays in first-order
logic. Specifically, much alike compactness is the key tool to produce models of first-order
theories, forcing can be the key tool to produce the interesting models of infinitary theories. The
first part of this thesis explores the relationship between infinitary logics and Boolean valued
models. Leveraging on the translation of forcing in the Boolean valued models terminology,
this part lays the foundations connecting infinitary logics to forcing. A consistency property is
a family of sets of non-contradictory sentences closed under certain natural logical operations.
Consistency properties are the standard tools to produce models of non-contradictory infinitary
sentences. The first major result we establish in the thesis is the Boolean Model Existence
Theorem, asserting that any sentence which belongs to some set which is in some consistency
property has a Boolean valued model with the mixing property, and strengthens Mansfield’s
original result. The Boolean Model Existence Theorem allows us to prove three additional
results in the model theory of Boolean valued models for the semantics induced by Boolean
valued models with the mixing property: a completeness theorem, an interpolation theorem,
and an omitting types theorem. These can be shown to be generalizations of the corresponding
results for first order logic in view of the fact that a first order sentence has a Tarski model if and
only if it has a Boolean valued model. However we believe that the central result of this part of
the thesis is the Conservative Compactness Theorem. In pursuit of a generalization of first-order
compactness for infinitary logics, we introduce the concepts of conservative strengthening and of
finite conservativity. We argue that the appropriate generalization of finite consistency (relative
to Tarski semantics for first order logic) is finite conservativity (relative to the semantics given
by Boolean valued models). The Conservative Compactness Theorem states that any finitely
conservative family of sentences admits a Boolean valued model with the mixing property. In
our opinion these results support the claim: Boolean-valued models with the mixing property
provide a natural semantics for infinitary logics. In the second part of the thesis we leverage
on the results of the first part to address the following question: For what family of infinitary
formulae can we force the existence of a Tarski model for them without destroying stationary
sets? Kasum and Velickovic introduced a characterization of which sentences can be forced by
a stationary set preserving forcing (AS-goodness). Their work builds on the groundbreaking
result of Aspero and Schindler. We define the ASK property -a variant of AS-goodness- which
we also employ to the same effect of Kasum and Velickovic. It is shown that for any formula
with the ASK-property, one can force the existence of a Tarski model in a stationary set
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preserving way. The proof of this result builds on the model theoretic perspective of forcing
presented in the first part of the thesis, and does so introducing a new notion of iterated forcing.
This presentation of iterated forcing is strictly intertwined with the Conservative Compactness
Theorem, thereby emphasizing again the analogy between the pairs (forcing, infinitary logics)
and (compactness, first-order logic).

Keywords Logic, forcing, Boolean valued models, compactness, iterated forcing, stationary
set preserving.



Abstract

In 1870, George Cantor proved that if the trigonometric series

[e.9]

Z(Cn cosnmx + d, sinnmwx)

n=0

equals 0 for all x € R, then all of its coefficients ¢, and d,, must vanish. This result led him to
pose the following question:

How many values of x € R must the series vanish for, in order to guarantee that the
coefficients also vanish?

Cantor realised that the answer was rooted in the concept of infinite. More precisely, he
proved that if there exists S C R such that the Cantor-Bendixon derivative of S vanishes at a
countable stage, and the series vanishes for all x € R\S, then all of its coefficients must also
vanish. It is fair to claim that this discovery marked the beginning of set theory, laying the
foundations for one of the most profound developments in modern mathematics.

Once the works of Cantor, Dedekind, Zermelo, Fraenkel, Hausdorff, Godel, Tarski and many
others had established the foundations of set theory, and Cohen demonstrated the independence
of certain natural statements from ZFC -among which, notably, the Continuum problem-, the
central question in set theory, known as Godel’s program, became:

What new azxioms should be incorporated into ZFC?

Subsequent research suggested that an interesting pattern of potential axioms for set theory
could be detected by analyzing the method of forcing. Two key axioms emerged from these
investigations. First, Martin and Solovay [15] introduced Martin’s Aziom (MA), a forcing
aziom dealing with the class of c.c.c. (countable chain condition) forcings. Later, Foreman,
Magidor and Shelah [2] extended this idea by developing a mazimal variant called Martin’s
Mazimum (MM ), which takes into consideration those forcings that preserve stationary subsets
of wy.

The main results of this thesis are related to forcing, but our presentation benefits from
relating them to another pillar of logic: the model theory of infinitary logics.

In the 1950s, after the basic framework of first-order model theory had been established, Carol
Karp, followed by Makkai, Keisler and Mansfield among others (see for example [4, 7, 10, 14]),
developed the area of logic known as “infinitary logics”. One key idea from our work, which was
more or less implicit in the research of many (see for example Mansfield’s [14] or Keisler’s [7]),

X



18 that forcing plays a role in infinitary logic similar to the role compactness plays in first-
order logic. Specifically, much alike compactness is the key tool to produce models of first-order
theories, forcing can be the key tool to produce the interesting models of L., -theories.

The first part of this thesis explores the relationship between infinitary logics and Boolean
valued models.

Boolean valued models appeared first in Rasiowa-Sikorski’s book [17], where it is proved
that Boolean valued models provide a complete semantics for first order logic. They rapidly
emerged as a possible semantics not only for first order, but for infinitary logics, particularly
in the L, setting [11,18]. Leveraging on the translation of forcing in the Boolean valued
models terminology developed by Solovay, Scott, and Vopenka, this part of the thesis lays the
foundations connecting infinitary logics to forcing.

A consistency property is a family of sets of non-contradictory sentences closed under certain
natural logical operations (see Def. 1.3.2). Consistency properties reproduce in the context of
infinitary logics the technique given by the method of resolution for producing models of a first
order sentence; they are the standard tools to produce models of non-contradictory infinitary
sentences. Keisler’s and Vadandnen’s books [7,21] are our main references on this topic. The first
major result we establish in the thesis is the Boolean Model Ezxistence Theorem 1.4.1/, asserting
that any Loo,-sentence 1 which belongs to some s which is in some consistency property S has
a Boolean valued model with the mixing property, and strengthens (but only in the context of
Loow) Mansfield’s original result [14] stating that the same holds for L..-sentences ¢ if one
weakens the conclusion to the request that ¢ has a Boolean valued model. It has to be noted
that an equivalent variant of Theorem 1.4.14 has been independently proved by De Bondt and
Velickovié.

The version we produce of the Boolean Model Existence Theorem for L. -sentences is a
proper strengthening of Mansfield’s result in view of a counterexample (due to Ben de Bondt,
and which we will present in full detail with his kind permission) showing an L..o-sentence
which is Boolean consistent but does not admit a Boolean valued model with the mixing property.

The Boolean Model Existence Theorem allows us to prove three additional results in the
model theory of Boolean valued models for L., for the semantics induced by Boolean valued
models with the mizing property: a completeness theorem with respect to a Gentzen type calculus
for Locw (Thm. 2.3.1), an interpolation theorem (Thm. 2.4.1) and an omitting types theorem
(Thm. 2.5.3). These can be shown to be generalizations to L, of the corresponding results for
first order logic in view of the fact that a first order sentence has a Tarski model if and only if
it has a Boolean valued model.

However we believe that the central result of this part of the thesis is the Conservative Com-
pactness Theorem (Thm. 2.2.5): In pursuilt of a generalization of first-order compactness for
infinitary logics, we introduce the concepts of conservative strengthening and of finite conserva-
twity (Def. 2.2.2). We argue that the appropriate generalization of finite consistency (relative
to Tarski semantics for first order logic) is finite conservativity (relative to the semantics given
by Boolean valued models for L ). This holds true as we can show that finite conservativity
is “equivalent” to finite consistency (modulo logical equivalence) in the first-order setting (see
Thm. 2.2.6 for a precise statement). The Conservative Compactness Theorem states that any
finitely conservative family of L..-sentences admits a Boolean valued model with the mizing
property. It is well known that the usual generalization to L., of the standard formulation
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of the Compactness Theorem for first order logic is false (see Example 2.2.1). In our opinion
these results support the claim:

Boolean-valued models with the mizing property provide a natural semantics for Lo .

In the second part of the thesis we leverage on the results of the first part to address the
following question:

For what family of infinitary formulae can we force the existence of a Tarski model for them
without destroying stationary subsets of wy ?

Kasum and Velickovié [6] found an answer to the above question characterzing such L~
sentences as those which are AS-good. Their work builds on the groundbreaking result of Aspero
and Schindler [1] showing that the forcing axiom (x) introduced by Woodin is a consequence of
the strong form of Martin’s mazimum known as MMYT . We define the ASK-property -a variant
of AS-goodness- which we also employ to the same effect of Kasum and Velickovié. It is shown
in Thm. 5.4.2 that for any formula v with the ASK-property, one can force the existence of a
Tarski model of ¥ in a stationary set preserving way. The proof of this result builds on the model
theoretic perspective of forcing presented in the first part of the thesis, and does so introducing
a new notion of iterated forcing. This presentation of iterated forcing is strictly intertwined
with the Conservative Compactness Theorem, thereby emphasizing again the analogy between
the pairs (forcing, infinitary logics) and (compactness, first-order logic).

The idea behind the ASK-property is as follows: First of all the (proof of the) Boolean valued
models Existence Theorem shows that a consistency property S for Lo, s a forcing notion which
produces in its generic extension a Tarski model of any ¢ such that {¢p} € S. Suppose one
aims to construct a model of an infinitary sentence 1y in a stationary set preserving manner.
To begin, should this be possible, one should first be able to demonstrate that the sentence
18 consistent in some generic extension where a sufficiently large fragment of the universe is
collapsed. This provides the consistency property/forcing Sy in the initial stage of the iteration
which produces a Boolean valued model of 1g. At successor stages, we consider a stationary
subset S of wy and C a (Py-name for a) club subset of wy. Leveraging on the expressive power of
Loow, we can write an Lo,-sentence 1y which is a conservative strenghtening of 1y and asserts
that S and C are not disjoint. 1 is naturally attached to a consistency property/forcing Sy
which will produce Boolean valued model of 1. The ASK-property for 1y plays a crucial role
here, ensuring that the new formula is a conservative strengthening of the original one. At limit
stages 3, we ensure that all progresses made up in producing (Sa, Ve : a < ) so that S, is
a consistency property giving a model of V., are preserved by considering an appropriate pair
(S, /\a<ﬂ Ya) (the latter pair can be found appealing to the Conservative Compactness theorem,
as {1a 1 a < B} is a finitely conservative family of La.,-sentences). Continuing this iteration
(Sas o a0 < K) up to a cardinal k with a Diamond sequence yields a final forcing that is
stationary set preserving and produces a model of the original sentence 1)y.

The last result of the thesis is a converse of Thm. 5.4.2: it is shown that any stationary set
preserving forcing is absorbed by a forcing/consistency property generated by a sentence with
the ASK-property (Thm. 5.5.1). In other words, the method we have presented for constructing
forcings that preserve the stationarity of subsets of wy is optimal.
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e Chapter 1 introduces infinitary logics of the form L., Boolean valued models and con-
sistency properties. These three notions, together with forcing, form the backbone of this
thesis. Once the basic facts about Boolean-valued models with the mixing property are
established, we address the issue of forcing with an arbitrary consistency property. The
main result is the Boolean Model Existence Theorem, which gives a powerful tool for
producing models of L., -sentences, and states that for any consistency property S and
any s € S, there exists a Boolean valued model with the mixing property satisfying A s.

e Chapter 2 studies the model theory of Boolean valued models with respect to infinitary
logics of the form L.,. We start by showing that Boolean satisfiability is equivalent to
Tarski satisfiability in the first-order setting. Then we prove a completeness theorem for
Boolean valued semantics for L., relative to a natural Gentzen calculus for L.,,. By
analising the failure of compactness for L,,,.,, we come to isolate the notion of conservative
strengthening. Leveraging on this notion, we prove the Conservative Compactness The-
orem and we show that it generalizes the classical Compactness theorem for first-order
logic. Later, building on the consistency properties presented in Keisler’s book [7], we
prove an omitting types theorem and an interpolation theorem. We close the chapter pre-
senting Ben De Bondt’s example on why Boolean valued models with the mixing property
are not a right semantics for £.o.

e Chapter 3 presents a number of key examples from set theory of L., -sentences of interest
to us. It also arguments why in the remaining part of the thesis it is natural to work
exclusively with L.-sentences which are quantifier-free. We present the examples in
this chapters with two key objectives: on the one hand that of outlinining the expressive
power of L., in set theory, on the other hand that of establishing the basic results needed
in the final chapters of the thesis.

e Chapter 4 introduces a new form of iterated forcing based on the concept of conservative
strengthening and on the Conservative Compactness Theorem. It is shown that if the
iteration has length equal to an ineffable cardinal «, the final forcing is < k-c.c. Addi-
tionally, the chapter introduce a key complexity class for quantifier free £ -sentences
and examines some model theoretic properties of the sentences in this class.

e Chapter 5 presents the central definition of the second part of the thesis: the ASK-property
(which is a slight variant of a notion - AS-goodness - isolated by Kasum and Velickovic [6]).
With the aim of building models of infinitary sentences in a stationary set preserving
(SSP) manner, the ASK-property emerges as the crucial condition for handling successor
stages in our iterations. The chapter begins by introducing the necessary background for
defining the ASK-property. The remainder of the chapter is dedicated to the proof of the
main theorem: for any L.-sentence with the ASK-property, a Tarski model of it can be
forced to exist by an SSP forcing. The main theorem of the chapter gives an alternative
account and rielaboration in the language we developed in the previous chapters of the
result presented in [6], where the same conclusion is drawn for £.,-sentences which are
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AS-good according to the terminology of the paper. Finally, we argue the converse of the
previous theorem by showing that any stationary set preserving forcing can be absorbed
by some forcing/consistency property generated by some L.,-sentence with the ASK-

property.
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Part 1

Infinitary logics, consistency properties
and Boolean valued semantics






Chapter 1

Infinitary logics and consistency
properties

Logics are determined by their expressive power and their class of models. In first order logic
the finitary nature of its sentences is in perfect balance with Tarski semantics, as shown by the
completeness theorem.

In the 1950s, the mathematician Carol Karp found herself in a situation where being able
to consider a countable disjunction over the natural numbers would make a problem easier (see
the introduction of [4]). Infinitary logics arouse as a generalization of first order logic with
increased erpressive power.

The logic L., still maintains that Tarski models provide a nice semantics for it, as arqued
by the Model Existence Theorem 1.3.3. Nonetheless, as soon as one increases the sizes of the
disjunctions and conjuntions under consideration (and defines the logic L., ), Tarski semantics
s not anymore a right set-up where to interpret these infinitay formulae, mostly because of the
non-absoluteness of the concept of cardinality.

The main arm of the first part of this thesis is to prove that one recovers a natural semantics
for the infinitary logic Lo, when one interprets its formulae not only in Tarski structures but
in Boolean valued models. In order to do so we maintain the same path that was historically
developed for L, and Tarski semantics:

Build the right consistency property + Model Ezxistence Theorem.

In the first chapter we obtain the Boolean valued version 1.4.15 of the Model Existence
Theorem through the forcing method. In the second chapter we focus on the model theory of
Boolean valued models with respect to infinitary logics of the form Lo.,. In the third chapter
we introduce set theoretic examples of Lo, -sentences.

Finally, it is worth noting that the nice balance between infinitary logics and Boolean valued
models (or forcing) was already made explicit in the works of Mansfield [14], Stern [19], and
others. However, a key advancement is the restriction of Boolean-valued models to those with the
mixing property. For example Pierobon and Viale [16] showed that, for a fized Boolean algebra
B, Boolean valued models over B correspond to presheaves over the category generated by BT,
while Boolean valued models over B with the mixing property correspond to sheaves with respect
to the dense Grothendieck topology. Furthermore, the sheafification process corresponds in the
Boolean valued setting to a certain Boolean ultrapower construction introduced by Mansfield

in [13].
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1.1 The infinitary logics L,

The set of formulae for a language in first order logic is constructed by induction from atomic
formulae by taking negations, finite conjunctions and disjuctions and finite quantifications. The
logic L., generalizes the finite conjunction operation to a cardinal k allowing conjunctions and
disjunctions of size less than k. Our main references on infinitary logics are Keisler’s book [7]
and Vadandnen’s book [21].

1.1.1 Syntax

To simplify slightly our notation we confine our attention to finitary relational languages, i.e.
languages that do not have function symbols and where all relations symbols have finite arity
and are set sized many.! From now on by a language or signature we will mean a finitary
relational (and set sized) one.

Definition 1.1.1. Let £ be a relational signature. Let  be a cardinal. Let {v, : a < Kk} be a
set of k variables. The set of terms and atomic formulae for L, is constructed in analogy to
first order logic using the symbols of LU {v, : @« < k}. The other L,,-formulae are defined by
induction as follows:

e if ¢ is an L, -formula, then —¢ is an L,-formula;

o if O is a set of L, -formulae of size < k with finitely many free variables, then A ® and
\ ® are L,,-formulae;

o if ¢(v) is an L,-formula, then Yo¢(v) and Jvg(v) are L,-formulae.

We denote by

[’oow = U ‘C,‘iw

K a cardinal

the set of formulae whose conjunctions and disjunctions are of arbitrary (set-)size.

The restriction on the number of free variables for the clauses / and \/ is intended to
avoid formulae for which there is no quantifier closure. Another common possibility is to call
pre-formula any “formula”, and formula the ones that verify this property.

1.1.2 Proof systems for L.,

We present a proof system for L., that is a direct generalization of the standard Sequent
Calculus for first order logic. When dealing with sequents, and in order to make proofs shorter,
we will assume that formulae only contain —, /\ and V as logical symbols; this is not restrictive
as all reasonable semantics for these logics (among which all those we consider) should validate

the natural logical equivalences =Vv—¢ = Jvp, = \;c; i = V,c; &i-

'With some notational efforts our results transfer to arbitrary signatures.
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Definition 1.1.2. Let I" and A be arbitrary sets of L.,-formulae. A proof of I' = A in L.,
is a sequence (S, )a<p Of sequents, where sg is I' = A and each element s, is either an axiom or
comes from an application of the following rules to (some elements of) (s,)y<a-

T,oFA T'F ¢ A

Axiom rule Lok o, A DIV EA A Cut Rule
'EA '-A

Substitution I'(w,/7v) - A(w,/ ) T EAA Weakening

I'Fo, A Lot A
Left Negation I-¢oFA 'kF =g, A Right Negation

I F A THouA,iel
Left Conjunction L, A\T'FA I A{¢i:iel},A Right Conjunction

iel
Lot/ v)FA ['Fo(w, v),A N

Left Quantification [, Yvop(v) F A ' Yoo(v), A Right Quantification
Equality 1 Vo = U g = v, u=t,¢(t) - ¢(u) Equality 2

* The Right Quantification rule can only be applied in the case that the variable w does
not occur free in formulae from I'U A U {¢}.

Let us argue that with this deduction system the completeness theorem for £, (even for
L,,.) fails for the usual semantics given by Tarski structures. Remark first that this proof
system is forcing invariant: the existence of a proof for a certain sentence is described by a 3,
statement in parameter the sequent to be proved; if the proof exists in V', then it exists in any
further extension of V.

Consider now a set of k constants {c, : @ < k} for K > w and the sentence

zp::( A ca¢cﬁ):av(/\v¢cn>.

wla#B<K n<w

The sentence v is valid in the usual Tarski semantics for L., but it cannot be proved (in our
deduction system or in any forcing invariant system) since the sentence is no longer valid when
moving to V[G] for G a V-generic filter for Coll(w, k).

Malitz [12, Thm. 3.2.4] showed also that the above formula is a counterexample to Craig’s
interpolation property for Tarski semantics in L., .

Our opinion is that a proof system should not depend on the model of set theory in which
one is working, which is the case for the proof system presented here.
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In contrast with our point of view, one finds a complete proof system for Tarski semantics
in Malitz’s thesis [12, Thm. 3.3.1]. However, this proof system (which by the way is due to
Karp [4, Ch. 11]), is not forcing invariant e.g. a proof of some sequent in some model of set
theory may not be anymore a proof of that same sequent in some forcing extension.

1.2 Boolean valued semantics

Definition 1.2.1. Let £ be a signature and B be a Boolean algebra. A B-valued structure
M for L is given by:

1. a non-empty set M;
2. the Boolean value of equality,

M? > B

(1,0) = 1 = UHJBM;

3. the interpretation of relation symbols R € L of arity n,

M"— B
(Ti:ign)HﬂR(Ti:ign)]]/BM;

4. the interpretation ¢™ € M of constant symbols ¢ in L.
We require that the following conditions hold:

(a) For all 7,0,m € M,

[[T:T]]/BV[ = lg,
[r=olg" = o =715".

[r = olg" Ao =l < [r =7l3".

(b) If R € L is an n-ary relation symbol, then for all (; : i <n),(0;:1 <n) € M,

(/\[[Ti:UiHJB\A>A[[R(Ti: i <)l <[R(ov:i <)

See Appendix 6 for a precise definition of RO(P).

Definition 1.2.2.
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€ Fix a Boolean algebra B and a B-valued structure M for a signature £. We define the
RO(B™)-value of an L.,-formula ¢(v) with assignment ¥ — m by induction as follows:

[R(t; - i < n)[v— M|]36@s = [R(E[T - m] 10 < n)[g" for R € L of arity n,
[(=¢)[v m]ﬂ%(8+) = [¢[v— m]]]ﬁ/(t)(Bﬂ g

[(Aommm] | = Aol mllibee.
ped
[Vor-m] - V 6l il

[(Vvo(v))[v — m]]]g(t)(sﬂ = /\ [po = m v — a]]]%(sﬂ )

[Bug(v))[o m]ﬂ%(sﬂ = \/ [ = m,v— a]]]ﬁAO(Bﬂ :

€ A B-valued structure M is well behaved for L,,, if
[o(ti:i<n)fv— m]ﬂﬁ/(l)(sﬂ €B

for any L,-formula ¢(7).

¢ Let T be an L., theory and M be a well behaved B-valued L-structure. The relation

MET

holds if

AT =2

If B is complete, then any B-valued model is well behaved. We write just [¢(7; : i < n)]
or [o(r; + i <n)]™ or [¢(r ;i <n)]g when no confusion arises on which structure we are
considering or in which Boolean algebra we are evaluating the formula ¢.

1.2.1 The mixing property

Definition 1.2.3. Let B be a complete Boolean algebra and let M be a B-valued L-structure.
M has the mixing property if for any antichain A C B and any subset {7, : a € A} C M
there is some 7 € M such that

a< [[T:Ta]]'éw

for all a € A.
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Definition 1.2.4. Let x be an infinite cardinal, B be a complete Boolean algebra, and M
be a B-valued L-structure. M is full for the logic L, if for every L,,-formula ¢(v,w) and
7y € M™ there exists z € M such that

[Fvs(v, 9" = [¢(z, D)]g" -

M is full if it is full for the logic L.

Proposition 1.2.5. Let L be a signature and let B be a complete Boolean algebra. Any B-valued
L-structure M with the mixing property is full.

Proof. Let Jup(v) be a L,-sentence. Fix a maximal antichain A among

{beB:b< [¢p(x)] for some z € M}.

Then we can fix
{.Ib b e A}

such that b < [¢(zp)]. The mixing property for M gives = such that [x = x;,] > b for all b € A.
Then

Bog)] =\ A=\ b=\ 0Alp(z)]) <\ ([x = 2] A [o(20)]) <

beA beA beA

\ [6(2)] = [¢(=)] -

beA

1.2.2 Quotients of Boolean valued models

Definition 1.2.6. Let B be a Boolean algebra, let M be a B-valued L-structure and let F' C B
be a filter. The quotient of M by F is the L-structure M/p defined as follows:

1. its domain M/ is the quotient of M by the equivalence

T=po+ [T=0] €F,

2. if R € L is an n-ary relation symbol,

RM/P = {([r]p i <n) € (M/p)": [R(7i i <n)] € F},

3. if ¢ € L is a constant symbol,

MF = [CM}F € M/F.
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Lemma 1.2.7. Let B be a Boolean algebra, let M be a B-valued L-structure and let F' C B be
a filter. The quotient M/ is well defined.

Proof. We need to argue that if R € £ is an n-ary relation symbol and 7q,...,7,, 01,...,0,
are such that

T; = 0; for every ¢ < n,

then ([r;] 1 i < n) € RMF if and only if ([0y], : i < n) € RM/F. By definition of RM/* we
have that if ([r;] : i < n) € RM/F | then

[R(r;: i <n)] € F.

By definition of Boolean algebra (precisely condition (b)),
[R(7; i <n)] A /\ [ri=0:] <[R(o;:i<n)].
i<n
We have [R(7; : ¢ <n)] € F by assumption and and [r; = ;] € F since 7; =¢ 0;. Then
[[R(Ti:ign)]]/\/\ﬂTizai]]EF
i<n

as filters are closed under finite conjunctions. Hence,
[R(o; :i<n)] € F

as F' is upward closed. O

Definition 1.2.8. Let x be an infinite cardinal, B be a < x-complete Boolean algebra, and
U C B be an ultrafilter on B existing in some generic extension of V.

U is < k-complete for V-sequences if A\ X € U whenever X € V is such that X C U and
X has size less than x in V.

Theorem 1.2.9 (LoS). Let k be an infinite cardinal, B be a < k-complete Boolean algebra,
M be an Loo,-full B-valued structure and U C B be a < k-complete ultrafilter for V-sequences
existing in some generic extension V|G| of V.. Then for every L,,-formula ¢(T) which is in V
and 7 € M,

. —— MU ) ) Y

H¢(v)[v o [T]U]HB/ —1g), if and only if [¢(@)[F— A €U
U

holds in V[G].

Proof. We proceed by induction on the complexity of formulae. For atomic formulae the result

holds as the thesis is precisely the definition of the quotient.

Assume the result true for ¢(v) and let us prove it for —¢(v). We have that
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/u — MU
Mg, e H¢ﬁﬂﬁkﬁ[ﬂUmB/ — Ogy, &

U

B/u
[e@ =T ¢ U & [~e@—TlE" ¢ U.

Assume the result true for every ¢,(v) and let us prove it for A,_, ¢4(v) (a formula in V/

with v < k and free variables v = (v, ...,v,)). We have that
M/u
|l/\ 60 (0)[(vo, -, vn) = ([0]us - - -, [Tn]U)]m =1g,, & (deﬁnition of truth for /\)
a<ly B/u
/\ [o(@)[(vo, ..., vn) = ([10]u, - -, [Tn]U)]]]/B\%U =1g,, & (induction hypothesis)
Voo < ([¢a(®)[(vo, - - -, vn) = ([To)urs - - - [TH]U)]]]EM el) < (U is < k-complete for V—sequences)
M
|l/\ Ga(0)[(vo, - - .y vn) = ([T0]u,y - - - [Tn]U)]m eU.
a<ly B

Assume the result true for ¢(w, ) and let us prove it for Jwe(w,v). We have that

M/
[[Elwqb(w,ﬁ) [0 — [T]U]]] B/UU =1g,, & (deﬁnition of truth for EI)

M/
\/ [{¢(w,ﬂ) [w— 0,0 — [T]U]]] ) - lg), < <induction hypothesis)
B/u
oeM

\/ [o(w,v)[w — o, — T]]]éw el & (fullness of M)

[Bwé(w, )T — 7] € U.

1.2.3 Boolean satisfiability
Definition 1.2.10.

€ BVM denotes the class of Boolean valued models with values on a complete Boolean
algebra.

€& Sh denotes the subclass of Boolean valued models with the mixing property with values
on a complete Boolean algebra.
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Let T and A be sets of Lo,-formulae. If I' = ), then we let

M

[[/\FHB = 1.

If A =0, then we let

*®

*®

&
&

[Va], =0

I' is Boolean satisfiable if there is a complete Boolean algebra B and a B-valued struc-
ture M such that [¢]5" = 1g for each ¢ € T

I' is Boolean valid for BVM if for every complete Boolean algebra B and every B-valued
structure M we have that [¢]4"' = 1g for each ¢ € T.

I' is Boolean valid for Sh if for every complete Boolean algebra B and every B-valued
structure M with the mixing property we have that ﬂgb]]é/l = 1g for each ¢ € T".

r ':BVM A if
M M
], <[Vl
[{/\ B \/ B
for any complete Boolean algebra B and B-valued structure M.

I' Egy A if
M M
], <[ve]
[{/\ B \/ B
for any complete Boolean algebra B and B-valued structure M with the mixing property.

I =BVM AT ':BVM A and A ':BVM I.
r =Sh AifT ':Sh A and A ':Sh I

1.3 Consistency properties

In first order logic the main tool for building Tarski models of a theory is the compactness
theorem. However, this technique is not suited for the infinitary logics Ly, since it fails even
for the weakest non-trivial case given by L,,.,. Actually, a cardinal k is (weakly) compact if and
only if the (weak) compactness theorem holds for the logic Ly.,. Thus, a new recipe for building
models is needed.

In this section we introduce consistency properties as the canonical tool for building models
of infinitary sentences. Consistency properties are partial approzimations of a model of an
infinitary sentence. Theorem 1.4.1J shows that by means of consistency properties one gets a
powerful tool to produce Boolean valued models.

We follow the approach of Keisler’s book [7] to consistency properties for L, ..
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First of all, it is convenient for technical reasons to reduce the satisfaction problem to
formulae where negations occur only in atomic formulae. This operation is used in the proofs
of Thm. 1.3.3 and Thm. 1.4.7.

Definition 1.3.1. Let ¢ be a L-formula. We define moving a negation inside ¢— by
induction on the complexity of formulae:

e If ¢ is an atomic formula, then ¢— is —¢.
o If ¢ is —p, then ¢— is .

If ¢ is A @, then ¢—is \/{p—: ¢ € O}.
If ¢ is \/ @, then ¢— is A{p—: p € D}
If ¢ is Vv p(v), then ¢— is Jv (p(v)-).

If ¢ is Jv p(v), then ¢ is Yo(p(v)-).

The formulas —¢ and ¢— can be proved to be equivalent by induction on the complexity of
formulae.

Definition 1.3.2. Let £L = R UD be a language where the relation symbols are in R and the
constants symbols are in D. Given an infinite set of constants C disjoint from D, consider L(C)
the signature obtained by extending £ with the constants in C. A set S whose elements are set
sized subsets of £(C)x is a consistency property for £(C), if for each s € S the following
properties hold.

(Con) For any r € S and any £(C)oc,-sentence ¢ either ¢ & r or —¢ & r,

(Ind.1) If =¢ € s, then sU {¢p—} € S.

Ind.2) If A ® € s, then for any ¢ € ¢, sU {¢} € S.

(
(Ind.3) If Vo ¢(v) € s, then for any ¢ € CUD, sU{¢p(c)} € S.
(

(Ind.5) If Jv @(v) € s, then for some ¢ € C, sU{d(c)} € S.

(
(
(

Str.l) If ,de CUD and c=d € s, then sU{d=c} € S.
Str.2) If c,d € CUD and {c=d,¢(d)} C s, then sU{¢p(c)} € S.

)
)
)
)
Ind.4) If \/ @ € s, then for some ¢ € ¢, sU {¢} € S.
)
)
)
)

Str.3) If d € CUD, then for some c € C, sU{c=d} € S.

The following result, due to Makkai [10], shows the value of consistency properties for L, .

Theorem 1.3.3 (Model Existence Theorem). Let £ be a language, let C be a countable set
of fresh constants and let S C [L(C)u,0]=% a consistency property of countable size. Then any
s € S s realized in some Tarski model.

Let us present some examples of consistency properties for £(C)ue -
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1. Let x and p be cardinals and let K be a class of Tarski structures for £(C). The following
families are consistency properties for £(C)oew-

o S ={s€[L(C)u): FTAEK AE A\ s}
© Sicy=1{s€[L(C)pu]: FA K AE A\s}.
e S., and S.., where only a finite number of constants from C appear in each s € S.

e Any of the previous cases where the family of Tarski structures K may exist only in
some generic extension of V'

2. Let M be a B-valued L-structure with domain M for a signature L =RUD. Let C = M
and S be the set of finite (less than k-sized ...) sets r of L(M),,-sentences such that

[[/\r]]B > Og.

Then S is a consistency property.

3. Let ¢ be an L,-formula. Denote by S, the consistency property given by finite sets
s U {1} that are Boolean consistent and s only contains subformulae of 1.

The example where K is a family existing in some generic extension is based on the following
observation. Let S in V be a consistency property for L.+, of size k whose elements are all
sets of formulae of size at most k. Let G be a V -generic filter for the forcing Coll(w, k). Then,
in the generic extension V[G], S becomes a consistency property of countable size all whose
elements are countable and Model Ezxistence Theorem 1.3.3 applied in V|G| provides a Tarski
model of any s € S.

1.4 Forcing with consistency properties

In this section £ denotes a language, C denotes a set of fresh constants and S C P(L(C) ) 18
a set-sized consistency property.

Fact 1.4.1. If S is a consistency property, then so is {s C L(C)oow : IS0 € S's C Sp}-

Definition 1.4.2. Let £ be a language, let C be a set of fresh constants and let S be a
consistency property in language £(C)sn. The forcing notion Py is given by:

e domain: {s C L(C)ocw : 50 € S (s C s0)};

e order: p < ¢ if and only if ¢ C p.

Given a filter F' on Pg, denote

EF:UF.



14 CHAPTER 1. INFINITARY LOGICS AND CONSISTENCY PROPERTIES

Let S be a consistency property. The proof of the Model Existence Theorem for L. as
given in [7] corresponds naturally to the construction of a suitable filter G on Pg generic over
countably many dense sets.

The clauses of a consistency property are naturally attached to dense sets a maximal filter
G on Pg needs to meet in order to produce a Tarski model of the formulae ¢ € |JG. For
example, suppose \| ® € sg € S. Clause 1.5.2 together with Fact 1.4.1 states that the set
{s€ S: dNs#D} is dense below so. In Keisler’s case the elements of a consistency property
are countable and each L(C)y,.-formula has countably many subformulae. Therefore, one can
take an enumeration of all the dense sets at issue and diagonalize.

In the general case Lo, one deals with many more dense sets. Hence, a filter meeting all the
relevant dense sets may not exists. However, we can translate Keisler’s argument using forcing
and produce a Boolean valued model with the mizing property for the associated consistency
property.

For the rest of this section we work with consistency properties made up from finite sets of
sentences. The reader familiar with Keisler’s book [7] will find this restriction natural.

We split our generalization of Keisler’s result in two results. The first shows how far one
can go in proving the Model Existence Theorem assuming only the existence of a maximal filter.
The second one shows how genericity fills the missing gaps.

1.4.1 The structure A for a maximal filter ' C S

Let S be a consistency property. In this subsection we prove the existence of an L-structure Ap
for each maximal filter F' C S.

Fact 1.4.3. Let S be a consistency property for L(C)oow whose elements are finite. Let ' C Pg
be a filter. Then [YLp]<¥ = F.

Proof. The inclusion F' C [¥F|<“ follows from

EF:UF

and conditions in S being finite.
We now prove [Xp]<“ C F. Suppose p = {¢1,...,0,} € [Zr]<“. Then there exist
S1,...,8, € F such that ¢; € s;. Hence p C Uign s;. Since F'is a filter, we have that

U&GFQW-

i<n

The set p is a condition in Pg since Pg is closed under subsets. Finally, J,, s; < p and
Ui, si € Fimply p € F. O

Definition 1.4.4. Let £ = R U D be a language, let C be a set of fresh constants, let .S be a
consistency property for £(C)s. and let F' be a maximal filter on Pg. Denote by

AF:(AF,RFIRER,dFZdED)

the following string of symbols.
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e Ap is the set of equivalence classes on C U D for the equivalence relation ¢ =g d if and
only if (¢ =d) € Xp.

e For R € D n-ary relation symbol and ¢y, ...,¢, € CUD, Rp([c1]F, ..., [ca]r) holds if and
only if R(cy,...,¢c,) € Xp.

e dp = [d]p for any d € DUC.

Fact 1.4.5. Let L = RUD be a language, C be a fresh set of constants, S be a consistency
property for L(C)ow and F be a mazximal filter on Ps. Then Ap is a Tarski structure in
language L(C).

Proof. We check that the definitions of Ar and of Rr do not depend on the chosen represen-
tatives. Suppose

Cl:dl,...,Cn:dn,R(Cl...Cn)EEF.

By the previous Fact {¢; = dy,...,¢, = dp, R(cy...c,)} € F. Hence, by Clause 1.3.2(Ind2),
for any p 2 {¢; = dy,...,¢, = dp,R(cy...c,)} in Pg, pU{R(dy,...,d,)} € Pg. This
combined with Clause 1.3.2(Con) gives that no p € Pg can contain {¢; = di,...,¢, =
dn, R(cy...c,),mR(dy,...,d,)}. By maximality of F

{Cl :dl,...,Cn:dn,R<Cl...Cn),R(dl,...,dn)} EEF

must be the case. O

Lemma 1.4.6. Let £ be a language, C be a fresh set of constants, S C [L(C)w|= be a
consistency property and F C Pg be a mazimal filter on Pg. Denote by ¥ C X the set of
(quantifier free) formulae v € Y which are either atomic, negated atomic, or such that any
subformula of 1) which is neither atomic nor negated atomic contains just the logical symbol \.

Then Ap F 3.

Proof. We proceed by induction on the complexity of ¢» € ¥.. For atomic formulae it follows
from Def. 1.4.4. Pg is a consistency property of which S is a dense subset.

— Suppose ¢ = —¢ € ¥ with ¢ an atomic formula. Let’s see that
Ar E ¢.

Since ¢ is atomic it is enough to check ¢ ¢ X%, Suppose otherwise. Then there exists
p € F with ¢ € p. Also ¢ € ¢ for some ¢ € F. By compatibility of filters there exists
r < p,q. But ¢, ~¢ € r contradicts clause 1.3.2(Con). Therefore,

¢ ¢ L.
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/\ Suppose » = A ® is in ¥%. Since A ¢ € ¥/, we have that ¢ € ¥ for every ¢ € &. We
have to check

ApFE ¢

for any ¢ € ®. Fix ¢ € ®. Let us first prove that:
For any g € Pg with A\ ® € ¢, we have that ¢ U {¢} € Pg and qU {—¢} & Pg.

Take ¢ in Pg with A ® € ¢. By Clause 1.3.2(Ind.2), ¢ U {¢} € Ps. Assume now that
{—¢}Uq € Ps. Since \ ® € ¢U {—¢}, another application of Clause 1.3.2(Ind.2) ensures
qU{¢, ¢} € Pg, a contradiction.

By maximality of F, if some ¢ € F is such that A ® € ¢, then qU{¢} € F. By Fact 1.4.3
we have that ¢ € Y. Finally, by induction hypothesis

Ar E ¢.

1.4.2 The structure A for a generic filter G C S

Theorem 1.4.7 (Model Existence Theorem). Let L be a language, C be a set of fresh constants,
S be a consistency property consisting of L(C)ew-sentences and G be a V-generic filter for Pg.
Then in V|G| it holds that:

1. The domain of Ag is exactly {[c|]g : ¢ € C}.

2. For any L(C)sw-sentence 1) € g we have that

Ac E .
Proof. Let (in V[G]) Ag be the structure obtained from G as in Def. 1.4.4. Since S is a dense

subset of Pg, G N S is a generic filter for (5, D).

€ Let us prove statement 1 of the Theorem. Fix d € D. By Clause 1.3.2(Str.3), we have that
the set

Dy={peS:3ceCc=dep}

is dense in Pg. Let p € G N Dy. Then for some c € C, d=c € p C ¥g and [d|g = [a-

¢ Let us prove statement 2 of the Theorem. We proceed by induction on the complexity of
¢ € Y. We have to handle only the cases for =, \/, 3, V formulae, since the atomic case and
the case /\ follow by the same proof as Lemma 1.4.6.
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\/: Suppose \V & € Xg. Let pg € G be such that \/ ® € py. By Clause 1.3.2(Ind.4) we have
that the set

Dye={peS:3pecd¢cp}

is dense below py. Since G is V-generic over Pg and py € G, there exists p € G N Dy .
Then for some ¢ € &, ¢ € p C X and

AG = ¢7
proving

Agt:\/cb.

3: Suppose Jvp(v) € Y. Let pg € G such that Jv ¢(v) € py. By Clause 1.3.2(Ind.5) we have
that the set

Daypy = {p € S :3c e€C ¢(c) € p}

is dense below po. Since G is V-generic over Pg and py € G, there exists p € G N D3yg(0)-
Then for some ¢ € C, ¢(c) € p C X. Therefore

AG = ¢(C)7

hence

Ac E Jug(v).

V: Suppose ¥ = Yugp(v) is in Xg. By the first item 1 it is enough to check
A E ¢(v)[v/[c]c]

for all ¢ € C. By Clause 1.3.2(Ind.3) and Yvo(v) € X, we get that ¢(c) € Eg for all
c € C. By induction hypothesis we get that

Ac F o(v)[v/[c]c]

for all [c]g € Ag.
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- Suppose n¢ € Y. Clause 1.3.2(Ind.1) ensures that G’ = [£g U {¢—}] is a prefilter on Pg
containing G. By maximality of G, ¢— € G. Since ¢— and —¢ are equivalent, it is enough
to argue

.AG = ¢—\.

But ¢— starts with a logical symbol among A,V,\/ or 3, and for these the proof has
already been given.

Note the following apparently trivial corollary of the above Theorem:

Corollary 1.4.8. Assume S is a consistency property on L(C)ue, Satisfying the assumptions
of Thm. 1.4.7. Then for any s € S, we have that

st 0.

Proof. Assume s F () for some s € S. Note that if G is V-generic for Pg with s € G, the same
proof existing in V of s F (), is a proof of the same sequent in V[G]. By Theorem 1.4.7

Ag):/\s

holds in V[G]. By the soundness of Tarski semantics for - in V[G], we get that Ag = ¥ A~
for some 1) holds in V[G]. This is a contradiction. O

Remark 1.4.9. Essentially the same Theorem and Corollary have been proved independently
by Ben De Bondt and Boban Velickovic (using the language of forcing via partial orders to
formulate them).

1.4.3 Maximal consistency properties

It may occur that for some L(C)sow-sentence 1, neither 1 nor = belongs to any r € S. Hence,
for some V -generic filter G for P, it can be the case that s ¢ G while Ag |= . This occurs for
consistency properties of the form Sy (as in Example 3), since the only sentences in elements
of Sy are subformulae of 1. We introduce a strengthening of the notion of consistency property
to prove a converse of Thm. 1.4.7.

Definition 1.4.10. Let £ be a language, C be a fresh set of constants, S be a consistency
property as in Def. 1.3.2 and k be a cardinal. A consistency property S is k-maximal if all
its elements consist of £(C),,-sentences and S satisfies the following clause:

(S-Max) For any p € S and L(C).,-sentence ¢, either pU {¢} € S or pU {—¢} € S.

Example 2, given by the finite sets of £L(M),,-sentences which have positive value in some
fixed Boolean valued model with domain M, gives the standard case of a k-maximal consistency

property.
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Proposition 1.4.11. With the notation of Thm. 1.4.7 assume S is k-maximal. Then for any
L(C)pw-sentence ¥ and any V -generic filter G, we have that

Ac E 4 if and only if ¥ € Yg.

Proof. We need to prove the “only if” part of the implication assuming S is k-maximal. Suppose
Y is an L(C)qe-sentence not in Y. By x-maximality of S we get that

Dy={reS:¢yeror—er}

is dense in Pg. Since G is V-generic for Pg, we get that G N D,, is non-empty. Hence either
Y € Yg or ) € g, but the first is not the case by hypothesis. Then =) € Yg and by
Theorem 1.4.7 Ag = —), that is Ag = 9. H

1.4.4 Boolean Model Existence Theorem

Given a complete Boolean algebra B, an e-formula ¢(vy, ..., v,) for L, (for £ = {€}), and
any family 71,...,7, € VB, [¢(r,. .. ,Tn)]]gB denotes the B-value of ¢(7, ..., 7,) in the Boolean
valued model VB. The definition of [¢(ry, ... ,7',1)]]‘;B is by induction on the complexity of ¢. It

is the standard one for the atomic formulae [7 € o] ‘B/B and [T = o] ‘éB. We extend it to all L,
according to Def. 1.2.2.

Let us recall one result about < k-cc forcing notions. Proposition 4.1.3 appears in [3].

Proposition 1.4.12. Let x be a reqular cardinal and P C H, be a forcing notion with the
< k-cc. Suppose p € P and 7 is a P-name such that p IFp 7 € Hy,? then there ewists o € H,
such that p lFp o = 7.

Definition 1.4.13. Let £ be a language, C be a set of fresh constants and S be a consistency
property. Denote by

AS:(As,RsiRER,dsidEDUC)

the string defined as follows:

o Ag = {a e VROES) N H, . o € Ag KSOI;]:) = 1RO(PS)}, where p is a regular cardinal big

enough so that £ C H,, and for any o € VRO®s) guch that

VRO(Pg)

[0 € Aclrorsy = LrOE®s);
one can find 7 € VRO®s) 0 , with
VRO(Pg)
[T = ]]RO (Ps) = lro(es);

2Here 7 € Hj is a short-hand for the €-formula in parameters 7, % asserting that the transitive closure of 7
has size less than &.
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VRO(]P’S)

e [Rs(oy,..., )]]RO(]PS) [Ae = Re(or, .. on)lpoe,) for RETR;
o forde DUC, dg = d.

Theorem 1.4.14. Let L be a language, C be a set of fresh constants and S be a consistency
property whose elements are finite. Then Ag is a RO(Pg)-valued model with the mizing property
and for every s € S

VRO(Pg)

N = T E A

Proof.
€ We first establish that Ag has the mixing property. Let {0, : a € A} be a family of elements
of Ag indexed by an antichain A of RO(Pg). Apply the mixing property of VEO®s) to find

o € VRO®s) guch that [o = Ua]]VRO< s
o € Ag. By definition of Ag

> a for all a € A. By choice of Ag we can suppose that

VRO(Ps)
[o = Ua]]Ro (Ps) — [o = Ua]]RO Ps) =@

for all a € A. Hence o is a mixing element for the family {0, : a € A}.

€ Now we prove the second part of the Theorem. One needs to check that for any L, -formula
¢(v) and oy,...,0, € Asg,

VRO([PS)

[0S es) = [Ag F 6(@)koe. -

It is clear that this allows one to prove

Ag VRO(]P’S)

[{/\ S]] RO(Pg) - [{AG - /\ Sﬂ RO(Ps)

letting ¢ = A s.
We proceed by induction on the complexity of formulae.

e For atomic sentences this follows by definition.

e For —,

VRO(]P’S) VRO(]PS) VRO (Pg)

[~elades) = = [Plades) = = [Ac F dlroes = [Aa ¥ dlrors = [Ac F ~dlrogs) -

e For A,

VRO(Pg)

[N, = Alelieen = Ao ol = [4s= Aol

PP
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e For 4,

RO(Pg)
[Fvg(v,7) RO (Ps) \/ [¢(7, ) RO (Ps) \/ [As F (T, 0) KO(]P’S) <
TEAg TEAg
O(Bg) RO(Pg)
\/ [Ag F (T, U>]]RO(IP’S) [Ag E Fve(v, 5) KO(IP’S) =

TevRO([P’S)
VRO(Pg)

[As E ¢(70,0) RO(Ps) = [¢(o, ) RO (Ps) < [Fvg(v, ) QCS)(IPSW

where 7y € Ag is obtained by fullness of VEO(®s) and can be supposed in H . by Proposition
4.1.3; while the equality in the last line holds by inductive assumptions.

]

Corollary 1.4.15 (Boolean Model Existence Theorem). Let L be a language, C be a set of
fresh constants and S be a consistency property whose elements are finite. Then for any s € S
there is a B-Boolean valued model M with the mixing property in which

M

HASHB = 1.

Proof. Given s € S, we let B = RO(Pg) | Reg (Ns). Since
s ”_IPS (AG IZ /\S>

we get that Reg (V) < [A 3]] pg)- 10 particular, if we consider Ag as a B-valued model by
evaluating all atomic formulae R(&’) by

[R(&)[7d ) A Reg (V)

then we get that

As
[[/\ Sﬂ = 13.
B
B is a non-trivial complete Boolean algebra, since Reg (N;) # 0 = Ogro(p) for all s € S. ]

Remark 1.4.16. When working with a consistency property S for £(C),,, there is a canonical
way of extending it to a k-maximal one. Consider the Boolean valued model Ag of Def. 1.4.13,
let also B = RO(Pg). Then

S C Mg ={te[LCUAs)uw: [t]5° > 08}

and Mg is a k-maximal consistency property for £(C U Ag).w
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Chapter 2

Model theory of Boolean valued models

This chapter explores the model theory of Boolean valued models in the context of infinitary
logics of the form L.,. Our analysis is inspired by the classical model theory of first order
logic. To set the stage, let us start by recalling the original version of the results we will deal
with.

€ Compactness Theorem. A first order theory T is consistent if and only if it is finitely
consistent.

€ Completeness Theorem. A first order sentence 1 holds in all models of a first order theory
T if and only if there is a proof of ¢ from T.

€ Interpolation Theorem. Let 1y and 1y be first order sentences in languages Lo and L. If
Yo F 11, then there exists 0 in language Lo N L1 such that Yo = 0 and 0 F ;.

€ Omitting Types Theorem. Let ® be a first order type not isolated by a first order theory
T. Then there exists a model of T in which the type ® is not realized.

We claim that Boolean valued models with the mixing property are a natural semantics for
infinitary logics of the form L., since all four theorems have canonical translations in this
setting. Let us summarize the main differences and similarities from the first order version to
the infinitary one.

€ Compactness Theorem. This result requires significant adjustments. The main issue for
infinitary logics occurs when we have two L., -senteces 1 and 6 with v of logical complex-
ity (for example set theoretic rank) much higher than that of 0. In first order logic this
1ssue does not arise, since both sentences will contain at most finitely many conjunctions
and disjunctions and their "logical distance” is "negligible”. But for infinitary logics, we
might have that i is an L+,-sentence with k supercompact while 6 is an atomic sentence
of very low set-theoretic rank; the expressive power of o might be in such case ”far too
strong” compared to that of 0. Once the notion of conservative strengthening is intro-
duced to control the "distance in logical complexity” between formulae, the natural form
of compactness can be proved.

€ Completeness Theorem. This result translates literally by replacing first order logic for
Loow and Tarkst semantics for Boolean valued models with the mixing property. The reader

23
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should take into account that we need to use the relation T & S where T and S are both
sets of sentences. This relation has been presented in Definition 1.2.10 and asserts that
AT F\ S, which in particular gives the usual definition when S = {1 }.

€ Interpolation Theorem. As for completeness this result also translates literally by replacing
first order logic with L., and Tarksi semantics with the semantics given by Boolean valued
models with the mizing property.

€ Omitting Types Theorem. This theorem cannot be literally translated to Lo, since any
type is isolated by the existential closure of its conjunction. Nonetheless, once the right
hypothesis about the complexity of the type and the theory are introduced, the same state-
ment as in first order logic can be proved.

All proofs in this chapter are based on the following recipe, which has been developed in
details in Chapter 1:

Build the right consistency property + Boolean Model Existence Theorem 1.4.15.

A natural question at this point would be why not work with the more general version of
finitary logics given by Lo tstead of Loo,,. Historically, one of the first results in this subject,
and actually one of the main sources of motivation for all our work, is Mansfield Completeness
Theorem [14] for Boolean valued models (without the mizing property) with respect to Laooo-
In the final section we present an example due to Ben De Bondt arguing that mizing Boolean
valued models are not a correct semantics for Looo. This counterexample, together with the work
of Viale and Pierobon [?] and Monro [?]establishing that in category theory mizing B-valued
models correspond with sheaves on BT with respect to the dense Grothendieck topology, while
general B-valued models correspond with BT -presheaves, are the two main reasons motivating
our focus on the infinitary logic Lo, -

2.1 Boolean satisfiability generalizes Tarski satisfiability

As a first step, we argue that Boolean satisfiability correctly generalizes Tarski satisfiability.

Lemma 1. Assume T is a first order theory. Then T is Boolean satisfiable if and only if T is
Tarsky satisfiable.

Proof. 1f T is Tarski satisfiable, then T is Boolean satisfiable as any Tarski model is a Boolean
valued model for the Boolean algebra B = {0, 1}.

Let T be Boolean satisfiable, M be a B-valued model of 7" and k be the size of T'. Consider
S the consistency property from Example 2 given by the sets s of size k of L(M)s,-sentences
such that

We have that T belongs to S since
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By the Boolean Model Existence Theorem 1.4.15 there exists A/ a B’-valued model with the
mixing property such that

N

[[/\ Tﬂ B le:

Let G be an ultrafilter on B’. Then M/ is a Tarski model of T" by Proposition 1.2.5 and
Theorem 1.2.9. [

Hence, when dealing with first order theories we need not distinguish between Boolean or
Tarski satisfiability.

2.2 Conservative Compactness

Suppose {1; i € I} is a set of first order sentences. Compactness for first order logic says that
every finite subset of {1; : i € I} has a Tarski model if and only if \,.; ¥ has a Tarski model.
With this formulation the result does nos generalize to Lo, even if one replaces Tarski models
with Boolean valued models (see Example 2.2.1).

We produce a generalization to L., of the compactness theorem; toward this aim we in-
troduce the key concept of conservative strengthening and the corresponding notion of being a
finitely conservative set of Ly, -sentences. We show that (with minor twists) being a finitely
conservative set of sentences is a natural refinement of being finitely consistent (and in a precise
sense an equivalent reformulation of this concept).

Replacing finitely consistent with finitely conservative, compactness generalizes naturally to
Loow logics (see the Conservative Compactness Theorem 2.2.5).

2.2.1 The failure of the simplistic notion of compactness for L.,

Example 2.2.1 (The failure of compactness). Let £ be a language containing constants {c,, :
n € w}U{c,} and the equality relation symbol. Denote by T' the theory

{en #c, :new}t U

{\/ Cw = Cn}

new

¢ Failure of compactness for Tarski semantics. Let us argue that this theory has
no Tarski model, yet it has models for every finite subset. T has no Tarski model since any
realization ¢, = ¢, iof the axiom

Ve =c

new

in a Tarski model would contradict axiom ¢,, # ¢, from the second family of sentences. Nonethe-
less, if we consider ¢ C T finite subset, then by interpreting in a Tarski structure with infinite
domain ¢, the same way as ¢, for n bigger than the highest index appearing inside ¢, we can
produce a model of t. Hence, we have an inconsistent L.,-theory for Tarski semantics all
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whose finite subsets are Tarski consistent. That is, compactness fails for the logic L,,, with
respect to Tarski semantics.

€ Failure of compactness for Boolean valued semantics. Let us argue that the same
theory shows the failure of compactness forthe semantics given by Boolean valued models.

Assume M is a B-valued model of T'. Then
[[Cn # Cw]] =1p

for every n € w and

ﬁ/\cn%cw]‘ :/\[[cn;écw]]:lg.

new new

But at the same time

ﬁﬁ/\cn%%m = ﬁ\/cn:cwm = 1g,

new

a contradiction.

2.2.2 Conservative strengthening

Definition 2.2.2 (Conservative strengthening).

¢ Let ¢y and 9, be L,-sentences. We say that 1), is a conservative strengthening of ) if:

1. 1/11 F wo and

2. for any finite set s of subformulae of vy, s U {10} is Boolean consistent if and only if
s U {41} is Boolean consistent.

€ A family {1; : i € I'} of formulae is finitely conservative if at least one v; is consistent and
for any finite s C {¢; : i € I}, \ s is a conservative strengthening of every v; € s.
€ A family {¢; : ¢ € I} of formulae is conservative if
N\ v
iel
is a conservative strengthening of v; for every ¢ € I and at least one 1); is consistent.

€ An L,-formula 1 is strongly conservative over ¢ if any model of ¢ can be expanded to
a model of .

The following is clear:

Fact 2.2.3. If 1 is strongly conservative over ¢ and v = ¢, then 1 is a a conservative strength-
ening of ¢.

!Note that 1; and 1y might be in distinct signatures, in several applications v will be in a richer signature
than 1/)0.
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There can be ¢ which are conservative strengthening of 1) but not strongly conservative over
¢. We will see an example with ¢ := ) A AS(S, X, X*).

Let us now argue that finitely conservative generalizes finitely consistent.
Fact 2.2.4. Any finitely conservative theory {1; : i € I} is finitely consistent.

Proof. Let J C I be finite. We need to argue {t; : i € J} is consistent. By hypothesis we
can fix 79 € I such that v, is consistent. By assumption {¢; : i € J} U {;,} is finitely
conservative. Then, since 1);, is consistent, so is {; : i € J} U {1;,}. In particular {¢; : i € J}
is consistent. [l

Consider the setting from Example 2.2.1. Let us argue that 7" is not finitely conservative.
Let ¢t C T be the finite subset given by the two sentences

\/cw:cn and ¢, # .

new

Let us argue that At is not a conservative strengthening of \/, . c. = ¢,. In order to do so,
we need to find a subsentence of \/new ¢, = ¢, that is consistent with \/ = ¢,, but is not
consistent with A t.

We have that ¢, = ¢y is a consistent subsentence of \/n€w ¢, = ¢,. Nonetheless, ¢, = ¢
is not consistent with A ¢ since ¢, # ¢o € t. Thus, At is not a conservative strengthening of
V. .., ¢, =cy, and T is not finitely conservative. The next result shows that this is the reason

ncw W
for which T admits no Boolean valued model.

new Cu

2.2.3 Conservative Compactness

Theorem 2.2.5 (Conservative Compactness). A family of Leo,-formulae is finitely conserva-
tive if and only if it is conservative.

Proof. Only the direction finitely conservative = conservative requires a detailed argument.
Assume {1); : i € I} is finitely conservative (and thus also finitely consistent). Without loss

of generality (enlarging our family by adding all the conjunctions of its finite subsets), we may

assume that {1; : i € I} is closed under finite conjunctions and is still finitely conservative. Let

U= /\ ;.

iel
1. Consider the family S of sets {U} Ut such that:

e t is finite,
e t is Boolean consistent,
e there exists 7; € I such that:

— 1, €1,
— 0 is a subformula of 1);, for each 0 € t.
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2. Let us first show that if S is a consistency property, then W is a conservative strengthening
of ¢; for any 7 € I.

e Let s be a finite set of subformulae of ¢;. We need to show that if s U {¢;} is
Boolean consistent, then so is s U {¥}. Note that if s U {¢;} is Boolean consistent,
{V}UsU{y;} € S, as i is exactly the i; for t = sU{¢;} witnessing that {U} Ut € S.
By the Boolean Model Existence Theorem 1.4.15, this implies the existence of a
Boolean valued model of {W} U ¢, which is also a model of {¥} U s.

3. Now we show that S is a consistency property.

e Suppose {V} Ut € S. We need to argue that for each clause in the definition
of consistency property the relevant formula required by the clause belongs to an
extension of {W} U .

e Since t is Boolean consistent, all clauses in the definition of a consistency property
will automatically be met for formulas inside of ¢.

e Therefore, we only need to deal with the case of ¥, i.e. a formula that is not inside
of t.

e Fix j € I. We need to argue that there is r € S such that {V} Ut U {¢,} Cr.
o If 9); € ¢, then we are done.

e Suppose otherwise. By the definition of S, there is p = ¢; € I such that ¢, € ¢t and
all 6 in t are subformulae of ,,.

e Since the family {¢; : ¢ € I} is finitely conservative, we have that 1, A v, is a
conservative extension of 1.

e Since the family {v; : i € I} is closed under finite conjunctions, we have that
Yy N ; = iy, for some k € 1.

e By definition of conservative strengthening, for any s finite subset of ¢,-subformulae,
e ANNSs =1, ANp; A \'s is Boolean consistent if and only if ¢, A A 's is Boolean
consistent.

e Since ¢ is Boolean consistent, 1, € ¢ and all formulas in ¢ are subformulae of 1,

ANt = A\t ut) =v, A\t

is Boolean consistent. Therefore, s = {1;, ¢y} Ut is Boolean consistent.

e Finally, as all formulae in s are subformulae of vy, ¢t U {¢;, ¢, ¥} belongs to S.
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2.2.4 Conservative compactness generalizes first order compactness

The goal of this subsection is to prove that Conservative Compactness Theorem 2.2.5 is truly
a generalization of compactness from first order logic. This would follow immediately if one
could show that a first order theory is finitely conservative if and only if it is finitely consistent.
This is almost true. Before dealing with the precise relation between these two concepts, let us
mention the issue one might face. Suppose 7' is a finitely consistent theory. Fix ¢ a sentence
of T such that —¢ is consistent. We have that

T ={0V—¢:0eT}uU{}

is consistent since 1"+ 4 for all » € T". In particular T” is finitely consistent. Nonetheless, T” is
not finitely conservative: for § € T and t = {¢,0V —¢}, A\t is not a conservative strengthening
of 'V —¢. Indeed, since —¢ is consistent, we have that —¢ is a subsentence of 6 VV ¢ consistent
with 6V =¢, but not consistent with A ¢.

This is essentially the unique type of obstruction impeding the literal equivalence of the two
concepts.

Theorem 2.2.6. Let T be a finitely consistent first order theory. Then there exists T* a first
order theory such that

o 1™ is logically equivalent to T and

o 1™ is finitely conservative.

In particular, this result shows that the Conservative Compactness Theorem is a strength-
ening (and thus a generalization to L,,) of the usual compactness theorem for first order logic:
if T is a first order finitely consistent theory, then the Conservative Compactness Theorem 2.2.5
applied to T™* together with Lemma 1 produces a Tarski model of T'.

Proof. For each ¢ € T, let {6; : i € 1} be the family of subformulae of ¢ and consider
=0 AN\ v\ 0 Jo. i Cy, Jon i =0, and TH \/ ~6; v \/ 6;}.
i€Jp i€J1 i€Jg i€J1

Let us argue that
is the theory we are searching for.

e First, we prove that T™ is logically equivalent to T. We have that T™ - ¢ for any ¢ € T,
since ¢* = ¢ and ¢* € T™ for every ¢ € T. We also have that T+ ¢* for every ¢ € T, by
the very definition of ¢*.

e Before proving that 7™ is finitely conservative, let us show the following characterization
of the subformulae of ¢*.
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For any ¢ € T', every subformula v of ¢* is:

— either a subformula of ¢,
— or such that for some Jy, J; C Iy with Jy N J; = () and such that

T\ -6 v\ 6

i€Jg i€J1

1 is either of the form —6; with ¢ € Jy or exactly the formula

\/ —0; V \/ 0;.

i€Jo i€Jy

Proof. 1f ¢ is not a subformula of ¢, then it is a subformula of
\/ —0:v'\/ 6.
i€Jo i€Jy

Since each 6; is a subformula of ¢, ¥ is not a subformula of any #;. Then the only
possibilities are

\/ —0:v'\/ b
i€Jp i€y
or —8; for some i € Jy. O

Let us argue T™ is finitely conservative. First, since T is finitely consistent and 7™ is
logically equivalent to it, then 7™ is finitely consistent and there is at least one sentence
from T™* that is consistent.

Now assume by contradiction that there exist ¢ C T™ a finite subset, ¢* € t and ny, ..., M
subformulae of ¢* whose conjunction is consistent with ¢* but not with A ¢. Then

k
/\t - \/ i
i=1

and since T't n* for allp € T and t C T* = {n* : n € T'}, we have that

k
i=1
Fix k£ minimal for which subformulae ny,...,n of * can be found so that:

k
T+ \/ -n; and
i=1

k

(" A /\ n;) is Boolean consistent.
i=1
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Our analysis of the subformulae of ¢* shows that for every i =1,...,k

(i) either n; is a subformula of ¢,

(ii) or for some J¢, Ji C I such that J¢ N Ji = () and

TI—\/ﬂQZ\/\/Gl

leJd leJi

1 i \/ZGJg =0V \/leJ{' 0,
(iii) or for some Jg, Ji C I, such that Ji N J{ = 0 and

Tk\/ﬁel\/\/él

leJg leJi
n; is —0;, for some I; € J¢.

€ First, we prove that the second case cannot occur for any i € {1,...,k}. Indeed, if for
some i € {1,...,k} the formula 7; is

\/ —6iv\/ 6.
leJg leJi

then T F n;, and therefore

k
TH \/ ;-
=15
This contradicts the minimality of k.

€¢ Hence, only the first and the third case can occur for every ¢ € {1,...,k}. Let
J=A{l;:ieJ,iel}

and Jy be such that the set {6,, : m € Jy} is exactly the set of n; for which the first case
above occurs. Let us argue that \/f:1 —n; is logically equivalent to the formula

\/ —0,, \/ 0,..

meJdy meJy

— For n; satisfying the third case, n; is —6;, with [; € J¢ for some ¢ € I, hence —; is
logically equivalent to #,, with m € J;, by the very definition of J;.

— For n; satisfying the first case, n; is ,, for some m € .Jy, hence —n; is =6, for exactly
that m.
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Since

k
Tk \/ i,
i=1
we have that

T+ \/ —0,, V \/ 0,,.

meJo meJy

But now each 6,, for m € Jy U J; is a subformula of ¢. Since n; A --- A 1 is consistent,
we must have that Jy N J; must be empty, otherwise \/, Jo "Om V Ve g, Om would be
trivially provable, making m; A --- A 7, inconsistent. Hence

is one of the conjuncts of ¢*. This entails that

k
¢ E\ i,
=1

giving that ¢* cannot be consistent with the conjunction of the various n;. We reached
the desired contradiction.

2.3 Completeness

Recall from Definition 1.2.10 that |=g, refers to model theoretic implication with respect to
the class of Boolean valued models with the mixing property, gy refers to model theoretic
implication with respect to the class of all Boolean valued models and F means there exists a
proof of the sequent.

Theorem 2.3.1 (Boolean Completeness). Let £ be a language. The following are equivalent
for T, S sets of Lso,-formulae.

1. T ):Sh S,

2. T E=gvm S,

3. TES.
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Proof. We have that 3 implies 2 since the deduction system we presented is sound. We have
that 2 implies 1 since the class of all Boolean valued models contains the class of Boolean valued
models with the mixing property.

Assume 3 fails, we show that 1 fails as well. Assume T ¥ S with T, S sets of L., -formulae.
Let C be the infinite set of fresh constants for which T" proves the quantifier elimination axiom
and let R be the family of finite sets » C £(C) such that

e rUT IS,
e any ¢ € r contains only finitely many constants from C.

& Let us first argue that if R is a consistency property, then the result follows. Consider Ag
the Boolean valued model with the mixing property from Theorem 1.4.15 derived from R. We
have Apg ensures T g, S as:

. [[w]]AR = lgro(py) for all ¢ € T, since for any ) € T the set
E,={reR:yer}

is dense in Pg;

. [[gzﬁ]]AR = Oro(py) for all ¢ € S, since for any such ¢ the set
Fy={reR: -~¢per}

is dense in Pg: note that rU{—¢}UT F S if and only if rUT F SU{¢}, which, if ¢ € S,
amounts to say that r ¢ R.

# Now we show that R is a consistency property:
(Con) If {¢,—¢} € r, then r UT F S and we have a contradiction with the definition of R.

(Ind.1) Let =¢ € r € R. Then r U {¢p—-} UT ¥ S, since it can be proved by induction on the
complexity of formulae that r - r U {¢—}. Hence, r U{¢—} € R.

(Ind.2) Let ¢ € ® and AP € r € R. Then r U{¢p} UT ¥ S since r F r U {¢} by the left A-rule
of the calculus together with axiom rule. Hence, r U {¢} € R.

(Ind.3) Let Yvg(v) € r € Rand ¢ € C. Since Yvg(v) = ¢(c), any proof from rUT U{¢(c)} induces
a proof from r UT. Hence, rUT U{¢(c)} ¥ S and r U {¢(c)} € R.

(Ind.4) Let \/ X € r € R. Since r € R, rUT / S. By contradiction suppose that for all o € ¥,
rU{c}UT F S. Then, by the left \/-rule of the calculus r U {\/ X} UT  S. This
contradicts r € R, since r =r U {\/ X}.

(Ind.5) Suppose Jvp(v) € r. Pick ¢ € C which does not appear in any formula in r. It exists
by definition of R. Suppose r U {¢(c)} UT F S. Since ¢ does not appear in any formula
of rUS, ru{3z¢(z)} F S (applying the rules of the calculus). This contradicts r € R,
since r = r U {3x ¢(x)}.
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(Str.1,2,3) All three cases follow from the rules of the calculus for equality.

2.4 Interpolation

Let us recall a model theoretic interpretation of interpolation theorems. Let 1)y be a sentence in
the language of ordered groups and 11 be a sentence in the language of groups. If 1y implies 11,
then interpolation guarantees that we can find a sentence 6 in the common language, that is the
language of groups, such that 1y implies 0 and 6 implies 1. Since 0 is a property about groups,
this results is telling us that the reason for which 1y implies 1y is rooted in the properties of
groups and is not dependant on the order symbol.

Recall from Definition 1.2.10 that j=g, refers to model theoretic implication with respect to
the class of Boolean valued models with the mixing property.

Theorem 2.4.1 (Boolean Craig Interpolation). Assume Fgy, ¢ = ¥ with ¢,v € Ly,. Then
there exists a sentence 0 in L., such that

L ':Sh¢:>97
o Fgy 0 =1,

e all non logical symbols appearing in 6 appear both in ¢ and .

Proof. Fix a set C of fresh constants for £ of size k. Consider X the set of all £(C),,,-sentences
x such that all non logical symbols from £ appearing in x also appear in ¢. Define X,, similarly.
Consider S the set of finite sets of £(C),.-sentences s such that:

(1) s =51 U 39,
(i)
(111) So C Xw,
(iv) if 0,0 € Xy N X, are such that

e 1o constant symbols of C appears in 6 and ¢ and

e Fsp Asi = 6 and Fsy A\ s2 = o,
then 6 A o is Boolean consistent.

% Assuming that S is a consistency property, we now show how to obtain the interpolant. The
Boolean Model Existence Theorem 1.4.15 grants that any s € S has a Boolean valued model
with the mixing property. By hypothesis Fg, ¢ = 1, thus the set {¢, =)} is not consistent and
it cannot belong to S.

Then the set {¢, =1} has to miss at least one property from the definition of S. We have
that s1 = {¢} C Xy, so = {9} C Xy and s = s; U s is finite. Therefore, the last property
(iv) must fail. This means that there exist 6,0 € X, N Xy, such that § has no constant symbols
of C and such that
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Fsh ¢ = 0,

Fsn =1 = o and 0 A o is not consistent. The last assertion gives

Fsn 0 = —o.
This together with

Fsh o = ¢
implies

Fsn 0 = 1.

Recall that # has no constant symbol from C. Hence, an interpolant is given by the L, -sentence

6.

% It remains to check that S is a consistency property.

(Con)

(Ind.1)

(Ind.2)

(Ind.3)

(Ind.4)

By the definitions of S and X, we have that if some s € S is such that §, -6 € S, then
0,-0 € 51 C Xy or 0,20 € s C X. Towards a contradiction we can suppose w.l.o.g.
that 6, -6 € X,. Consider any sentence ' € X, N Xy such that Fg, A s2 = x’'. Because
sy is contradictory we have Fg, A s1 = —x'. But x’ A =)’ is not Boolean consistent, a
contradiction with item (iv).

Suppose —x € s; C s. Because s; U {x—} and s; are equivalent, any sentence x’ such
that Fgn, A s1U{x—} = X’ also verifies Fg, A s1 = x’. Then, s U {x—} € S since s € S
ensures all four conditions are met.

Suppose x € ® and AP € s; C s. Because A s; and A sy U {x} are equivalent we have
that sU{x} € 5.

Suppose Yox(v) € s; € s and ¢ € C. Because A s; and A s; U{x(c)} are equivalent,
sU{x(c)} € S.

Let \/ X € s; C s. By contradiction we suppose that for no o € 3, sU {o} € S. This
means that for each o € X there exist x., x2 € X, N X, such that

Fsh /\(81 U{o}) = x, and Fgy /\32 = Xo»

but x! A x2% is inconsistent. Then

Fsn /\(81 U {\/ X} = \/{X}7 :o0€X} and
Fsh /\82 = /\{X§ co € X}
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Note that s; U {\/ X} = s1. Because x. A x2 is Boolean inconsistent for each o € 3, so is

WORVIE

(e (A¥)
o€y o’'ex
VA xo AXS s

ceX o'ex
1 2
VoG A
oeX

Then 6 being \/{x! : 0 € £} and ¢ being A{x? : 0 € ¥} witness that s = s; U sy & S,
contradiction.

Suppose Jux(v) € s; C s and consider ¢ € C a constant not appearing in s, which
exists by the clause on the number of constants from C in sentences in X4. Let us check
sU{x(c)} € S. For this take 0,0 € X, N X, such that Fg, Asi U{x(c)} — 6 and
Fsn A\ s2 — o with no constants from C either in 6 or in 0. We must show that 0 A o
is Boolean satisfiable. It is enough to prove Fg, s; — 6. Consider M a Boolean valued
model for £ U {c} with the mixing property such that M E s;. Since Jvx(v) € s,
[Fox(v)]5" = 1g; since M is full, we can find 7 € M such that

Box()]s' = [x(7)]g" = 1.

Consider M’ to be the model obtained from M reinterpreting all syx/nbols of L the same
way, but mapping now ¢ to 7. Then M’ = A s;U{¢(c)}, hence [0]5" = 15 as well. Since
¢ does not appear in 6 we get that []* = [6]*" = 1g.

All three cases follow from A s; and A sy U{x} being Sh-equivalent when x is the relevant
formula of each clause.

2.5 Omittying types

Let us recall some notions about omitting types to make the statement of the theorem intelli-
gible. Suppose X(vy,...,v,) is a set of L,-formulae in free variables vy, ..., v,. We say that
a model M realizes ¥(vy, ..., v,) if there exist my, ..., m, € M such that

M #/\E(ml,...,mn).

M omits the type ¥ amounts to say that for any mq,...,m, € M,
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ME \/ —d(My,y ..., M),

PeX

Thus, a model M omits the family of types F = {X(vy,...,vng) : 2 € F} if it models the
sentence

/\ Vo \/ {-6(vs) : ¢ € T}

YeF

In the statement of the following theorem the sets ® will be playing the roles of {—¢ : ¢ € 3},
where X is the type we wish to omit. In this context, the type Y is not isolated by a sentence
0 if whenever there is a model of 6, there is also a model of 8 A =¢ for some ¢ € 3.

Another essential ingredient to translate omitting types to infinitary logics is given by
the notion of fragment. Since any type is isolated by its conjunction, we need to introduce
restrictions on what formulae might appear inside the theory T

Definition 2.5.1. Suppose « is an infinite cardinal and let £ be a signature. A fragment
L4 C L., consists of a set of L,,-formulae such that:

e L4 is closed under -, A and V,

e if p € L, and v is a variable appearing in some L 4-formula, Yv¢ and Jv¢ belong to L 4,
e [, is closed under subformulae,

o if p € Ly, then ¢p— € L4,

e if p € L4, then there is a variable appearing in £ 4 which does not occur in ¢,

o if p(v) € L4 and t is any L-term, ¢(t) € L4,

o if p(vy,...,v,) € L4 and wy, ..., w, are variable appearing in L4, ¢(wy, ..., w,) € L4.

Let k be an infinite cardinal, let £ be a signature and let T" be a set of L,,,-formulae. Then
there exists a smallest fragment £ 4 such that T C £4 and

[Lal = LI +|T| + 5.

Definition 2.5.2. Let T be a theory, ®(v, ..., v,,) be a type and L1 ¢ be the smallest fragment
containing 7" and ®. We say that ¢ is not Boolean isolated in L7 ¢ if for all L1 ¢-formulae 6 in
free variables vy, ..., v,,, the theory

T+3U0...Un90
is Boolean satisfiable if and only if so is

T+ 3vg... Umax{ng,ne} [9 A gb]

for some ¢ € .
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Theorem 2.5.3 (Boolean Omitting Types Theorem).
o Let T be a Boolean consistent L...-theory.

o Assume F is a family of sets such that every ® € F is a set of Lo, -formulae with free
variables among vo, . .., Upng -

o Let L r be the smallest fragment of Lo, such that T, ® C Lp 5 for all ® € F.
o Suppose that no ® is Boolean isolated in Lp r.

Then there exists a Boolean valued model M with the mizing property such that

MET+ A\ V.. vn \/ @

e F

Proof. Fix a set of constants C = {c,: a < k}. Consider L(C)r 7 the set of all sentences
obtained by replacing in the Lr r-formulae with free variables in {v; : i € w} all occurrences
of these finitely many free variables by constants from C. The consistency property S has as
elements the sets

s =8y U {\/ {(ﬁ[cg@(o), o ,ng>(n¢)] C Q€ (I)} d e fo} ,
where:

e 5 is a finite set of £(C)r 7 sentences,

only finitely many constants from C appear in s,
e J{ is a finite subset of F,
e 0g:w — C for all ® € Fy, and

e T'U sg is Boolean consistent.

% Let us first argue that if S is a consistency property, then the thesis follows. We have that
for all ® € F and 0 : w — C the set

Dq,ﬁ = {S €S \/ {¢[CU(0), e ,CU(T@)} : ¢ S (I)} S S}
is dense in Pg. By the Model Existence Theorem there is a model M of
TU {\/{gb[ca(o),...,cg(n@)} NS (I)} cdeFo:w —>C}

in which all the elements are the interpretation of some constant from C. Thus M models the
theory

TU{/\ VUO...v%\/qD(vo,...,v%)}7

deF
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as required.

% Let us argue now that S is a consistency property. Consider s € S and ¢ € s. First of all,
by definition of S and the Completeness Thm. 2.3.1 we can fix a mixing model M of sq U T.
We deal with two cases.

o If ) € 5gUT, then M FE 9 allows to find the correspondent formula. Here one also uses
that only finitely many constants from C occur in sg.

o If
¥ =\ {8lcos0): - Coutma)] : 6 € P}

for some ® € F and 0 : w — C, then we need to find some ¢ € ® such that sU{¢} € s.
Denote dy, ..., d, € C the constants in sy from C that are not c,(),. .., Cs(ng) and write
Sp as

SO[CG—(I)(O), <o+ Cog(ng)) do, . ,dm]

with all its constant symbols displayed. Since

M':TUS(),

we have that

ME Elvo...Elvnq)Elwo...Elwm/\so[vo,...,vnq,,wo,...,wm].

All sentences in sy belong to the fragment which is closed under finite conjunctions and
quantifications, hence

Fvg . .. Fup, Fwp ..Elwm/\sg[vo, ey Ungs WO,y « s Wy

is an Ly r-formula. By the Theorem assumptions, since the type is not isolated, we get
that for some ¢ € P,

TU {EIUO...anéflwo...Elwm/\so[vo,...,v%,wo,...,wm} /\gzﬁ[vo,...,vnq)]}

has an L7 z-model N, which again by completeness can be supposed to be mixing. Make
N an L(C)r r-structure by choosing an interpretation of the constants from C such that
Cop(0)s - - - Cop(ng) are assigned to the witnesses of vy, ..., v,, and dy, ..., d,, are assigned
to the witnesses of wy, ..., w,,. Then
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50 U0} UT UL\ {0lcrs0) - Contna] - 6 € @} 1 B € Fof €S,

This concludes the proof that S is a consistency property.

2.6 Counterexamples for £,

This section reports a crucial counterexample to the good behaviour of Boolean valued seman-
tics for Lo due to Ben De Bondt. Since it is not available elsewhere and it’s one of the
reasons behind our choice for Lo, instead of Looso, we present it in details (with the author’s
permission,).

The logic Lo extends Lo, by removing the restriction that formulae have only finitely
many variables and allowing the quantification over infinite strings of variables. The notion of
consistency properties given in Def. 1.3.2, the Boolean valued semantics given in Def. 1.2.1
and the proof system given in Def. 1.1.2 for L., can naturally be extended to Looo. For details
see [20]. Mansfield established in [14] that an Loo-sentence 1) is provably consistent if and only
if it is Boolean consistent if and only if there is a consistency property S such that {1} € S.

Howewver, the following counterezample brings to light a significant limitation in the appli-
cation of Boolean valued semantics to Loon. Specifically, the counterexample below produces
an Looso-sentence 1 which is boolean consistent but cannot hold in any Boolean valued model
with the mixing property. Given that the Boolean valued models produced by forcing in The-
orem 1.4.14 are mixing, this suggests that forcing is a powerful tool for building models of
Loow-sentences, but not that helpful in building models for L ~-sentences.

Definition 2.6.1.
® Let £ be the language containing:

e a binary predicate symbol < and
e countably many unary predicate symbols {C,, : n < w}.

@ Let T be the L ,.-theory asserting the following:

(i) the intersection of all C), is empty: Vx ( View® & C’n),

(ii) C,, is unbounded for each n: Vz3y (C’n(y) ANy > x),
(iii) C, is closed for each n: V& (ﬂCn(x) = NVz(z> 2>y = ﬂC’n(z)),
(iv) < is well founded: —3(v, : n < w) ( Ao Uns1 < vn>,

(v) < has uncountable cofinality: ¥V(v, : n < w)EIx(/\Mw Uy, < x),
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(vi) < is a linear order.

Theorem 2.6.2. The theory T belongs to a consistency property but there is no forcing exten-
sion containing a Tarski model of T. Hence, there is no Boolean valued model of T with the
mixing property.

The Theorem is a consequence of the following two Lemmata:
Lemma 2.6.3. The theory T has no Tarski model in any forcing extension.

Proof. Suppose there is a model M. Since T ensures < is a well order, we can identify it
with some ordinal «, which -by definition of T- has to be of uncountable cofinality in V|[G].
But then the interpretations of the C,, are club subsets of a and their intersection is empty, a
contradiction. ]

Lemma 2.6.4. There is a consistency property containing T as an element.

Proof. Let {c, : @ < w1} = C be a set of fresh constants. Consider S the consistency property
on L£(C) made of sets

{/\T}Us

where s is a finite set contained in the fragment generated by T such that A s holds in the
Tarski model

MS = (Wl,E,DZ 'n GU.)’VS)

where v, : C; — w; has as domain the set of all constants ¢, appearing in formulae from s and
satisfies the following requests:

e the constants ¢, for a € w; are interpreted by vs(c,) € wy,
e the order < is interpreted as €,

e the set {D? :n € w} is a finite set of clubs on w; (hence many of the predicates C,, get
the same interpretation),

e if ¢, is some constant appearing in A s, there is i such that vy(c,) & D;.

Let us argue that S is a consistency property.

Note that any subformula of axioms (ii)—(vi) contains at most one predicate symbol C,,
and no subformula of axiom (i) (other than the atomic subformulae) is a subformula of any of
the axioms (ii)—(vi) (and conversely). Remark that if  belogns to some s with sU{A\ T} € S,
this is the case because € is obtained by a subformula of axioms (i)—(vi) replcing the free
variables by appropriate constants in C.

Let for any s € S ny be such that {D5,..., D5 } = {D::n € w} and all predicates C,,
occurring in some ¢ € s with ¢ a subformula of axioms (ii)—(vi) are indexed by some n < n.

Note that no s € S is such that M can satisfy Axiom (i) of 7', since ({D; : n € w} is a
club on wy. Note also that M satisfies axioms (ii) to (vi) of 7. Also it is well possible that
Vew(Ca & Cp) is a formula occurring in some s € S.
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Since the quantifications appearing in the theory T are over countable sequences, only
countably many new constants are introduced by the formula 6 generated by some clause of a
consistency property applied to some 1) € s coming from axioms (i)-(vi) of 7. Consider such a
formula 6 and let us argue {AT}UsU {6} € S.

® If 0 comes from a subformula of axioms (ii)-(vi), then we have canonical choices to realize
some clause applied to any of them, as M, is a model of these axioms. Let vyuq9y : Csugy — w1
be such that

(wi, €,D5,..., D3, D3y, Dy o vagey) = (f\ s) A 6.
Let « be the supremum of the ordinals in the range of v4,6 and consider now the model
MSU{Q} = (wlu S D17 ) Dn7 [Oé + 17(-*]1)7 DZ+27 B VSU{H})'

This model witnesses that s U {0} U{AT} € S, as all the new constants are interpreted by
ordinals not in [o + 1, wy).

% Regarding a consistency clause applied in s U {\ T} to some sentence 1) € S obtained by
some subformula of axiom (i), ¢ must either be

(\/ ca & Cn)

n<w
(as ¢ cannot be axiom (i) itself, and this is the only possible subsentence obtained by a
subformula of axiom (i) which is not atomic), or ¢, & C,, for some some « and n.
Therefore ¢, is a constant appearing in A s. Furthermore

Ms ):w7

as € Sand sU{A\T} € S.
It is clear now that the unique cases in which a clause of a consistency property can be

applied to 1 are either given by 1 being

(\/ ca & Cn)

n<w

and the clause being that associated to a disjunction, or ¢ being ¢, ¢ C,, and the clause being
one associated to the equality relation. In either cases we know what to do to satisfy these

clauses, since M models .
O
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Examples

3.1 Quantifier elimination

Let us argue why consistency properties naturally induce quantifier elimination.

Definition 3.1.1. Let £ be a language and let C be a set of fresh constants. The quantifier
elimination axiom for £(C) is

VU\/v:c.

ceC

Fact 3.1.2. Let L be a language and let C be a set of fresh constants. Under the quantifier
elimination axiom existential quantifiers can be replaced by disjunctions

Fvo(v, ) \/ o(c
ceC
and universal quantifiers can be replaced by conjunctions
Yoo(v, W) /\ o(c
ceC

The reader should be careful at this point. Our choice does not simply imply that we can
forget about the quantifer clauses from the definition of consistency property. From now on,
whenever we prove that something is a consistency property, we will need to make sure that
the quanfitier elimination axiom is a sentence appearing densely often. This will generally be
achieved by working with theories T" such that

TI—VU\/U:c.

ceC

More precisely, clauses (Ind.3) and (Ind.5) from the definition of consistency property 1.3.2
have switched places with a new condition

(QE) if s € S, then sU{Vv\/ v =c}€S.

43
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Since this new condition still contains a universal sentence, a priori one should check that
condition (Ind.3) for the universal quantifier is realized for the formula

Yo \/v =c.
ceC

But notice that this would require checking that if

Vv\/v:cESES,

ceC

then

SU{\/d:c}ES

ceC

for any d € C. Then the clause for the disjunction would require checking that for some ¢ € C,

su{\/d=clu{d=c}es.

ceC

But this will always be the case since, if S is a consistency property, then
{s€eS:(d=d) € s}
is dense for every d € C.
Summarizing, this argument shows that in practice,
e if the quantifier elimination clause (QE) is met by S and

e S realizes all conditions to be a consistency property apart from those related to the
quantifier elimination axiom,

then S is a consistency property and we don’t need to deal with the quantifier clauses (Ind.3)
and (Ind.5).

3.2 Examples from set theory

From now on the quantifier elimination axiom is always implicit. This means that every struc-
ture (or sort in a structure) corresponds with the set of interpretations of the constants (of that
sort).

3.2.1 Coll(w,w)

The first example shows how to describe Coll(w,w;) as a consistency property.
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Example 3.2.1 (Coll(w, w;)). In Definition 1.3.2 there is no constraint on the size of C. While
Theorem 1.4.7 holds for any size of C, some sizes automatically collapse cardinals. Consider the
language £ = {d, : @ < w;} and the set of constants C = {¢, : n < w}. Let S denote the set
whose elements are the conditions s € [£(C)u,w]<“ such that for some injective interpretation

Ciy 77 Qyy v vy Gy 2 QG Qs < W

of the constants from C appearing in s,

(w1, =, ¢, — @, do — ) E s.

S is a consistency property. Consider Ag € V[G] for G a filter V-generic for Pg. It is a model
of A\, Lewy do # dg. Furthermore, the interpretation maps

frw = {[dg:decD}
ar—>déc

g:w—=A{lch]g:n <w}

Ac
n e c,

are both injective. This entails that the map « — nif {d, = ¢,} € G is also injective. Therefore

wy is collapsed.

3.2.2 ¢-graph of a transitive set

Example 3.2.2 (Axiom for the €-graph of a transitive set). Let X be a transitive set, let £
be a language with one predicate symbol € and let C D {Z : € X} be a set of fresh constants.
The axiom 1y in language £(C) is the conjunction of the following axioms:

e Forallx e yin X

¢
m
Nl

e Forallifx € yin X

¢
R
N

e Transitivity of X

/\/\(cem\/c:g).

r€X ceC yeT
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Let M E 9¢x be a Tarski model. The axiom 1 x ensures that
(X, €)
is isomorphic to
{aM:z e X}, eM)

and {#M : x € X} sits as a transitive subclass inside M.
Lemma 3.2.3. Let X be a transitive set. Then
e any model of Yx contains a transitive subclass isomorphic to (X, €),
e any set containing (X, €) as a transitive substructure induces a model of 1,

e Yy is a conjunction of size |C| of sentences of complexity (\//\W)

3.2.3 Iterations

Example 3.2.4 (Axiom for an iteration of length ~). Denote by Li(,) the language with the
following sorts, constants and predicates.

Sorts
e Sorts N, for a < 7.
Constants
e Constants {c,, : 1 < w} of sort N, for each a < 7.
e Constants {cg, : B < 7} of sort N,.
e A constant wi*(Ng) of sort Nj for each @ < < 7.
Predicates

1. Unary predicate symbols {Ga v < 7} of sort N, for a <  to denote the N,-generic
filter for (P (w1) /ns)™e.

2. Binary predicate symbols j'ag of sort (Na, N, 3) to denote the elementary embeddings
Jap for a < g <.

3. Binary predicates €, for each a < ~ of sort (Na,Na) to denote the &-relation
restricted to IV,.

4. For each a < 7 a satisfaction predicate

Satn, ({¢(z1, ..., 2m)})
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of sort! (Na, Na) for each a < w; to be represented by the pairs

(o} (as,. .o am))

with ¥ (zq,...,z,) an €-formula in displayed free variables and (ay,...,a,) € N
such that

(No, €) E (1, ..oy xm)|x1/ar, ... 2/ am).

For the sake of convenience Forme denotes the set of €-formulae. Denote by e,y the
axiom given by the conjunction of the following sentences.

Satisfaction predicates
1. For all < 7 the predicate Saty, is correctly computed.

Generic filters

1. For all o < «y the filter G, is N,-generic

/\ (SatNa({cm is dense for P (w1) /Nsw1 ) — \/ (Ga(cma) A Cma € cm)>.
n<w m<w
2. For all a < 7 the filter GG, is the filter derived from the map j,a11

AN (jaa+1(0na) = Crag1 =

n<w m<w

(G'a<cm> o (w{wNaH) ot Cnoin A St ({ene € NSIJ)))-

Elementary maps
1. For all @ < v the map joa+1 is elementary
/\ /\ /\ (jaa+1(0na) = Cma+1 = (SatNa({w(Cna)}) And Sa'tNa+l({w<CmOl+l)})))'
YeEForme n<w m<w

2. Forall o < 8 <7 <7y <w; the maps jag, jg, and j,, commute
A A A (Gasenn) = s A daneon) = ) = o) = 1)
n<w m<w I<w

3. For all @ < n <+ the maps jay, jny and j,, commute

ANNA ( Jon(Cna) = Con A diry(Cn) = €57) = Jan (€na) —%)

n<w m<w <y

!The interpretation of this predicate symbol will subsume the interpretation of €, by considering the formula
Saty, ({x € y}). However, it is convenient (just for notational simplicity) to have a special symbol to denote
€l N,.
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Constants for critical points

1. For all @ < 8 < the constant w; “(Nz) gives the ordinal wy'® inside Ng

( N Jap(ena) # wfv"(Nﬁ)) A ( N (cns € ™ (N5) = \/ Jap(cna) = Cmﬁ))

n<w m<w n<w

A Saty, ({w)*(Ng) € Ord}).
Equality of sets

1. For all a < 7 the set {jaas1(f) (W) : f € Ny A dom f = w*} equals the sort
Na+1

/\ \/ (Sat N, ({€ma 1s a function with domain w;}) A

n<w m<w

Cna+1 = joza+1 (Cma> (W{VQ <Na+1))> '

Isomorphisms

1. The sort N,y is isomorphic to the ultrapower of N, by G, for all a <~

/\ /\ (Cna+1 Eoa—‘,—l Cma+1 <

n<w m<w
( \/ \/ (jaaH (Cpa>(wiva (Nat1)) = Crat1 A Jaat1 (an)(wiva (Nat1)) = Cmat1
p<w qg<w
A \/ Cla /\ (Cpa(cra) - an(croc) < Cra €a Cla)))) .
I<w r<w

2. The sort NN, is isomorphic to the direct limit of (Ny, jag : @ < B < 1) for all limit

ordinals n < v
ANANVVYV

n<w m<w a<n r<w s<w

(Cnn = jan(cra) A Cmn = jan(csa) A (Cnn En Cmn = Cra €a Csa)) .

3. The sort N, is isomorphic to the direct limit of (Ng, jos: @ < 8 < )

ANV VYV

B<yn<y aly r<w s<w

(Cﬁv = Jar(Cra) N Coy = Jar(Csa) N (Cﬁv Cuy Cpy = Cra €a CS@))'

Let M tjie(y). Let us argue the existence of an iteration Juq of length ~y derived from M.
For a precise definition of iteration see 6.4.1.
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e Axiom 1 for the satisfaction predicate ensures Saty, is correctly computed for all o < 7.

e Axiom 1 for the generic filter ensures that G meets all dense sets in N, for NSle‘*.
Axiom 2 for the generic filter ensures it is a filter (this axiom requires of the constants
given by axiom 1 for the critical points to be formulated).

e Axioms 1 for the elementary maps ensures that the maps jé};‘ 41 are elementary for all

a < 7. Axiom 2 for the generic filter ensures Gﬁ" is the filter derived from ;M 41 by
setting for S € (NS )N«

S € Gy W € juas(S).

Axiom 1 for the isomorphisms ensures N2, is isomorphic to Ult(N,,G,) (this axiom
requires of axiom 1 for the equality of sets and the constants given by axiom 1 to be
formulated).

e Axioms 2 and 3 for the isomorphisms together with axioms 2 and 3 for the commutativity
of the maps ensure at all limit stages A < v the sort Ny is the direct limit of (N, j%‘ :
a<fB<A).

Let J be an iteration of length v of a countable model N. Then, modulo choosing a bijection
for each iterate with w (and with « for the last sort), there is a unique Liie(y)-structure Mz
such that

MJ = wite(’y) .

Furthermore, the iteration derived from M is J.

€ Suppose v = w;. Let us discuss the satisfaction predicate for Nwl. We have not introduce it
in the above axiomatization for two reasons. First, its logical complexity does not match the
one we will use in Definition 5.1.13. Second, it can be defined from the satisfaction predicates
for N, a < wy, since Nwl is the direct limit of (Ng, jas : @ < 8 < wy). We denote by

Sata, ({t:(c51)})

the sentence

V'V (Jaw1<cm) = Cu ASatNa({w(cw}))-

a<w) n<w
Let us summarize the relevant information.

Lemma 3.2.5.

o Any model of V() induces an iteration of length v where the sorts correspond with the
iterates,
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e any iteration of length vy induces a model of Vi) where the sorts correspond with the
iterates,

® Yite(y) 15 a conjunction of size || of sentences of complexity (\//\W)

3.2.4 Models coded by trees

Example 3.2.6 (Models coded by the branches of a tree). Let T" be a tree on w X k for kK > wy
a regular cardinal and ((k,,J,) : n € w) be a bijection between w and w X w. Denote by Lr
the language with the following sorts, constants and predicates.

Sorts

e One sort N.
e One sort N,,,.

e One sort {r, f}.
Constants

e Constants {cng : n < w} of sort Nj.
e Constants {cg,, : f < wi} of sort N,,,.
e Constants {i : x € H,} of sort N,,,.

Predicates

1. Binary predicates €y and &, for the sorts NO and Nwl.
2. A binary predicate bry of sort (N, {r, f},{r, f}).

3. A unary predicate T of sort N, for the tree 7.
4

. A satisfaction predicate
SatNo({¢($1> cee ,Qfm)})

as before.

5. A binary predicate symbol £2 of sort (Nwl,Nwl) to interpret the order relation on
T.

6. A binary predicate €* of sort (N,,, {7”, f }) to interpret the extensions of r and f.

Denote by 17 the axiom given by the conjunction of the following axioms.

1. An axiom to ensure that HY sits as a transitive subclass of N,

Yp, (from the previous example 3.2.2).
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2. An axiom to ensure that 7' is interpreted by 1"

(NzeT)n( )\ z¢T).

zeT z€HN\T

3. (r, f) is a pair of infinite sequences:

NEere \/ (@E=Mmi)Anconic?)

z€H, nEw,i€2

Nizefe \/ @=hyric)

rE€H, yEH, ,nEw

/'\‘ [((ned) € A (n,j) € 7) =7 = ]]

A\ ((n,0) €7 v (n,1) € 1)

new

N (i) e Fang)e f)—i=]

new,t,jEH

AV (ny) e f)

new yeHy

/\(caei“—> \/ Co =)
x€EH,

4. The pair (r, f) is a branch trough T

A ((brT(<sjt>,f-, £) Abrr((u, ), 7, £)) = ((s,t) E% (u,0) V

(s,t),(uv)eT

() € 1))

N \/  bre((s,t),7, f).

n<w (s,t)€TN(wXrK)™
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5. The sort Ny is isomorphic to the model coded by the real r

A A (ber@sim ) A 660 = D) = 0 €0 e

(s,t)ET nE€w

A A (bretsie1 7. A st = 01)) = et o i

(s,t)€T nEw

Let M F 9. By the example 3.2.2 we have that H, sits as a transitive subclass of the
interpretation of the sort N,, in M. The axioms 3 an 4 ensure that the pair (r, f) given by
the sort {r, f} gives a branch through 7. The two axioms 5 for the sort Ny ensure that the
structure

{cMn <w}, el
is isomorphic to the structure

(w, Ey)

where E,. = {(k,,jn) Ew Xw:n<wAr(n)=1}

Conversely, whenever we have a tree T' € H, and a branch (r, f) € [T, we obtain a model

of ¢y by interpreting the sort Ny as the structure coded by r, interpreting {r, f} as {r, f} and
interpreting N, as a transitive superset of HY .



Part 11

The ASK-property and iterations of
consistency properties
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Chapter 4

Iterations of consistency properties

4.1 Forcing notions as consistency properties

By the results of Section 1.4 a consistency property S for L, can be naturally seen as a forcing
notion Pg; then, using the forcing machinery on Pg, we can produce a Boolean valued model
with the mizing property of \p for any p € S. In this section we show that it is possible to
go the other way round: we prove that any forcing notion P has a consistency property Sp
associated to it, so that it is equivalent to force with P or with Pg,.

Given a complete Boolean algebra B, we show that for some regular k large enough in 'V, B
18 forcing equivalent to a consistency property describing the €-theory of H. as computed in a
V -generic extension by B.

First, Lemma 4.1.1 establishes that given a B-name in H) its interpretation in the generic

extension will remain in HY'“ as long as k is not collapsed and G is V -generic for B. Second,
Lemma 4.1.3 shows the converse. Under some conditions, we prove that if the interpretation
of a B-name o is in H,Y[G], then we can suppose that ¢ is already in HY .

Let P be a forcing notion and let & € V¥ be a P-name such that

IFp & is a cardinal,

H; is some P-name such that
IFp Hy s the set of all elements whose transitive closure has size less than k.

We now recall that we have a canonical name for Hy whenever x > |B].

Lemma 4.1.1. Let k be a reqular cardinal and let P be a forcing notion that does not collapse
k. Then for any P-name ¢ € H, N V¥ we have that

lFp o € Hy.

95
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Proof. We proceed by induction on the rank of &. The result holds true for rank(s) = 0 since
() belongs to H,. Suppose the result holds for any P-name 7 of rank strictly less than rank(d).
Then for any 7 € dom(d), the induction hypothesis ensures

lFp 7 € H.

This proves IFp ¢ C Hy. Because k is not collapsed and |6 < k, we have that IFp |6] < K.
Recall that for regular cardinals, € H, if and only if + C H, and |z| < k. Then by stability
of IFp under logical deduction

Fpo C H. and IFp |O'| <K

imply

IFp o € Hx.
[l

We need a way to approximate the transitive closure of any x € H, with a sequence of
length < k.

Fact 4.1.2. Let x € H,; with k a reqular cardinal. There exist A < k and (zq)a<x C H, such
that v, C {zg: f < a} and z\ = x.

Proof. We proceed by induction on the rank of x. The base case holds by setting zo = (). Let
x € H,. The induction hypothesis ensures the result holds for any element of rank less than
rank(x). In particular it holds for each y € x. Then there exist (yq)a<x, for each y € x verifying
all the conditions from the statement. We have A\ = Zy@c Ay < k by regularity of k. Consider
(Za)a<x the concatenation of all these sequences (no matter the order in which they are glued)
and set =) = x. O

The following appears in [3].

Proposition 4.1.3. Let k be a reqular cardinal and let P C H, be a forcing notion with the
< k-cc. If p € P and 7 is a P-name such that p - 7 € Hy, then there exists 6 € H, such that
plFo=r1.

Proof. First, by the < k-c.c., k is not collapsed and it makes sense to talk about H, in the

generic extension by P.
By Fact 4.1.2 and stability under logical deduction,

plEINTFTAN<EAT:A+1 = Hi Am(A) =7 AVa < A 7(a) C{m(B): B < a}).

By the Maximality Lemma we can find P-names A and 7 such that

pIFA<EAT:A+1— He A(\) =7 AVa < A 7(a) C {7(B8) : B < A}).
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Let us argue that by the < k-c.c. we can replace A by a canonical P-name A for some ordinal
A < k. It is enough to see that for some A < k, we have that p I+ A < A, since we can then
define 7(a) = 7(\) for any A < a < A. Suppose that for no A < k, p I- A < A. Then for each
A < r there exists § > A and ¢, < p such that ¢, IF A = §. Then {gr» : A < Kk} is an antichain
of size k, a contradiction. Therefore we can fix A < k such that

plEA<EATA+1— Hi AT(\) =7 AVa < A #(a) C {7(B) : B < A}).

We define a sequence (64 )a<x of P-names by induction on «. It will be contained in H, and

satisfy p IF 645 = 7(a) for all a < A. Since p IF 7(A) = 7, ¢, will be the desired P-name. The
definition is by induction on «. Suppose the sequence has been defined for any § < « and set

0o =1{(05,9) : B<ANg<pAqlF7(B) € 7(a)}.

¢ We first check 6, € H,. Suppose the result holds for all 8 < a. Consider (¢g,q) € 7.
By hypothesis, 63 € H, and since ¢ € P C Hy, (63,9) € H, and ¢, C H,. We also have
Ga CUger{ds} x P, this yields |64] < x. Hence, 6, € H,.

€2 We now prove p Ik 7(a) = &, for all @« < A. Suppose by induction that the result has
been proven for all # < a and let’s do it for a. Let G be a V-generic filter containing p.
By hypothesis (63)q = 7¢(8) for all 5 < a.

— We first prove (d,)¢ C 7g(a). Consider y € (64)g. There exists (d3,q9) € 04
and ¢ € G such that y = (d3)¢, 8 < «, and ¢ IF 7(8) € 7(«). By hypothesis
(65)c = Ta(B). Since ¢ € G and ¢ I- 7(f5) € 7(a), we have that

y = (08)a = 7a(B) € Ta(a).

— It remains to check 7g(a) C (64)g. Consider y € 7g(«). Since p I- 7(a) C {7(B) :
f < a} and p € G, we can find 8 < « such that y = 7¢(5). Since 7g(a) € 7a(f),
there exists ¢ < p in G such that ¢ IF 7(3) € 7(«). By definition of 6,, (d3,¢q) € d4.
By induction hypothesis 74 (5) = (65)¢ and we have that

y=1c(8) = (65)c € (da)c-
O

We are now ready to define the consistency property associated to an arbitrary forcing
notion. Fix B a cba and let x denote its cardinality. In order to ensure B € H,+ it remains
to check B C H,+. Wlog this holds assuming the domain of B is k. By means of Proposition
4.1.3 we now restrict our attention to B-names in H,+ in order to define a consistency property
which we will show to be equivalent to B. We need beforehand to extend the forcing relation
to formulae of infinitary logic.
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Definition 4.1.4. Let B be a complete Boolean algebra, let ¢(vy, ..., v,) be an e-formula for
Lo and let 11, ..., 7, € VB. Denote by

[0, )]s

the B-value of ¢(7y,...,7,) in the Boolean valued model VB for first order formulae. The
definition of [¢(71,...,7,)]g for Lo is by induction on the complexity of ¢. For first order
formulae we maintain the same definition and we extend it to all L., according to Definition
1.2.2.

e Let A\ ® be an infinite formula with parameters in V. Then [A ®]z = Noes [¢]g and
c¢lF A\ @ if and only if ¢ IF ¢ for every ¢ € ®.

e Let \/ @ be an infinite formula with parameters in V®. Then [\ @[5 = V4 [¢]g and
c¢F A\ @ if and only if the set {b € B: b IF ¢ for some ¢ € ®} is dense below c.

Let B be a complete Boolean algebra of cardinality . let £ be the language {€} and C be
the set of constants VBN H,.+. We use ¢«+ to denote that all quantifiers from ¢ are restricted
to H,.+.

Theorem 4.1.5. For any complete Boolean algebra B of size less or equal than k and any
reqular cardinal \ the following holds:

(i) S ={s € [(C)ro]™ : [(As)"=+] g > Og} is a consistency property,
(i) the map
g : (S8, <) — (BT, <s)

s (A9 ],

1s a dense embedding. In particular B and Sg are equivalent forcing notions.

Proof. We first prove (7).
o If p < g, then ¢ C p and 7(p) = [Ap]g < [Adls = 7(9).
o Wehavep L g < pUq ¢ S < [A(pU )]s =08 < [Aplg A [Adlg =08 & 7(p) L 7(q).

o Let G = {(l;, b): be B} be the canonical B-name for a V-generic filter. Since for any

beB*
w({l}e(}}): [[BGGL:I),

the map 7 is surjective; in particular 7[Sg] is dense in BT.

Now we prove (i). We have to check that Sg satisfies the clauses of Definition 1.3.2. By
choice of k we have that

[vo € Hero™ )]y = A [0% )] -

TeC

B
For notational simplicity we use [¢]g instead of [[¢Hk+]]; . Note also that in the proof below
we will only be interested in formulae where quantifiers range over (and constants belong to)

H.+nN VB,
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(Con) Consider s € Sg and ¢ € L(C)ocw- If ¢ and —¢ are both in s, [A s]g < [¢ A =¢]g = O,
a contradiction since [/ s[g > Og. Then for any ¢, either ¢ ¢ s or ¢ ¢ s.

(Ind.1) Consider s € Sg and —¢ € s. Since [-¢]g = [¢—]g, [AN(sU{o=}]g = [Aslg > 08
and sU {¢—} € Sg.

(Ind.2) Consider s € Sg and AP € s. For any ¢ € @, [A(sU{o})]g = [Aslg > 0g and
sU {qb} € Sg.

(Ind.3) Consider s € Sg, Yvg(v) € s and 7 € C. We have

Vop)le= N [6(0)]g < [6(r)]s -

o€VENH, 1

Therefore

and sU{¢(7)} € Sk.

(Ind.4) Consider s € Sg and \/ ® € s. Suppose that for no ¢ € ¢, sU {¢} € Sg. Then for
any ¢ € P,

INGuish] = |As], Al =0e.

Therefore [A s[g < [¢]g for any ¢ € ®. Since /\ ;g [~4]g is the greatest lower bound
of {[-¢]g : ¢ € P}, we have

IAle < A= [V 9],

Pped

Then [A(sU{=V ®})]g = [A slg > Os, but since \/ & and =/ ® are both in sU{—\/ &},
we have that [A(sU{—\ ®})]g = O, a contradiction.

(Ind.5) Consider s € Sg and Jvg(v) € s. Suppose that for no 7 € C, sU{¢(7)} € Sg. Then
for any 7 € C,

IAGUtemb]_ = [As], Aol = 0e.

This gives that

N3], <ol

for any 7 € VBN H,.+. Therefore
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Nsl. = A [0l = P06 = [~306(0)]s

TEVENH, +

The equality

A 6] = [Vo-o(v)]g

TeEVENH, +

holds since the quantifiers from ¢ are restricted to Hz+. Therefore

H/\(s U {ﬂﬂvqﬁ(v)})ﬂB - [[/\ SHB > Og.

But Jv¢(v) and —=Jve(v) are both in s U {—Jve(v)}, hence

ﬂ A(su {ﬂﬂvqb(v)})ﬂ — Og.

B

We reached a contradiction.

(Str.1) Suppose s € Sg and 7 = 0 € s; since B-valued models for set theory verify [7 = o]z =
lo=7lg, INsU{o=7})]g =[Aslg >0s and sU{oc =7} € Sg.

(Str.2) Suppose s € Sg and {0 = 7,¢(7)} C s. We have [o = 7]z A [¢(7)]g < [¢(0)]g;
therefore [A(s U{¢(c)})]g > 0g and s U {¢(0)} € Sg.

(Str.3) This condition is a vacuous since £ = {€} has no constant symbol.

O

Note that the only formulae one needs to keep in Sg in order to ensure that there is a dense
embedding between both forcing notions are b € G. This is because in order to prove that the
embedding has dense image, one only uses that the B-value of b € G is b. In particular one can
consider various choices of constants C to produce the desired consistency property Sg, other
than the one we made.

4.2 Complexity classes for infinitary logics

In this section we present two classes of L, -formulas based on their complexity

(\//\:O) and [\'\/.

The first one contains Lo, -formulae whose conjunctions are of countable size and whose
disjunctions are of arbitrary size. The second one contains L.,-formulae of complezity \\/.
By this we mean formulae starting with one infinitary conjunction followed by one infinitary
disjunction of quantifier free L., -formulae. All of this is formalized in Definition 4.2.1.
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& The definition of the class (\//\W) 1s motivated by the study of realizability of infinitary
formulae in the context of elementary embeddings

gV =W

with uncountable critical point existing in some generic extension V|G| of V' containing W as
a transitive subclass. Why such elementary embeddings are important for our purposes will
become transparent in Section 5.1.13 when we introduce the ASK-property. Let us argue why
this class of formulae is the canonical one for dealing with such embeddings.

Assume U € V is an infinitary formula in V' and in V[G] there is a model for . Now let
j: V. = W be elementary and consider the formula j(¥) € W. Can we find a model for j(¥)
in V|G]?

Realizing a conjunction W := )\, ; requires realizing every conjunct ;. If I is countable
in'V, then j(I) = j[I] remains countable in W as the critical point of j is uncountable. Working
in V[G], if we wish to find a model of j(V) assuming there is a model of ¥, it will be easier to
find it if we need to consider only the countably many conjuncts indexed by j(I) = j[I], rather
than if we had to realize a conjunction indexed by j(I) of size strictly bigger than j[I].

For disjunctions the situation is opposite. Realizing a disjunction ¥ := \/._ 1; requires
realizing just one disjunct. If the disjunction is realized in V', by pushing the realization of the
disjunct Uy, witnessing the consistency of ¥ to the realization of j(y), one is able to realize the
formula j(¥) no matter how big j(I) becomes in W. This idea is formalized in the Preservation
Lemma 4.2.3.

& The class \'\/ is of interest beacuse of its nice syntactic properties. Suppose S is a
consistency property and {1} belongs to S. If G is V-generic for S and contains {1}, then in
V[G] there exists a model of 1. For 1 of arbitrary complezity the consistency property S needs
to contain sets of formulae with (almost) the same complexity as 1. However, in case ¥ has
complexity /\'\/, one only needs to deal with consistency properties containing L., -sentences.
This idea is formalized in the Realization Lemma 4.2.4.

Through the rest of this chapter a particular family of consistency properties will be con-
sidered. Let 1 be an Loo,-sentence. The consistency property Sy contains finite sets of sub-
sentences of 1 that are Boolean consistent with 1. For this set not to be empty, one already
needs 1 to be Boolean consistent. This will not be an issue since the goal here is not to produce
models of 1, but to omit or realize certain types in models of V.

Definition 4.2.1 (Complexity).
® An L.-formula ¢ has complexity (\//\W) if:

— negation symbols occur only in its subformulas which are negation of atomic formu-
las,

— its subsentences of the form
N\ &
el

are such that I is at most countable.
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® An L,-formula ¢ has complexity A \/ if it is of the form
AV v
i€l jed;
with each 9;; in L.
(\//\w) contains L, is closed under countable conjunctions and arbitrary disjunctions, but is
not closed under negation. Formulas of complexity A \/ alre infinitary conjunctions of formulas

of type (\//\w) Nonetheless, we maintain a distinct notation for both types of formulas, since

their raison d’étre is not the same.
The following will play a crucial role in arguments to follow.

Fact 4.2.2. The sentences of Fxamples 3.2.2, 3.2.4, 3.2.6 are all infinitary conjunctions of

sentences of type (\//\W)

4.2.1 Complexity with respect to elementary embeddings
Lemma 4.2.3 (Preservation). Suppose that

e V[G] is a forcing extension of V,

e in V|G| there exists an elementary embedding j : V. — W with critical point wy,
e L is a language in V,

e M € VI[G] is an L-structure,

o N e VI[G] is a j(L)-structure and

e for atomic L-sentences ¢, we have that

ME ¢ = N E j(9).

Then

o for L, .-formulae ¢, we have that

ME ¢ < NF j(é);

o for L.-formulae ¢ of complezity (\//\W), we have that

ME ¢ = N E j(9).
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Proof. We prove the both statements by induction on the complexity of formulae.
¢ is an L, ,~-formula:

¢ atomic or negated atomic: Apply the hypothesis.

—: Suppose the result true for an £, ,-formula ¢ and let us prove it for —¢:

ME ¢ &
ME o<
NEj(¢) <
N E =j(¢) <
N E j(=9).

® = A, .., @nt Suppose by induction the result true for each ¢,. Then

MEO &
Vn<w ME ¢, <
Vn<w NEj(¢,) <

NE N i) &

n<w

N E j(D).

The last equivalence requires that j(®) = A, _, j(¢n) holds. This is the case since
the critical point of j is w;.

¢ is of complexity (\//\W):

L, .~-formulas: We just proved something stronger.

—: We do not need to consider the case of negations, since formulas of complexity (\//\w)
only have negations occuring inside L, ,-formulas, which is a case already covered.

® = A, ., @n: Assume the result holds true for each ¢,. Then we can replicate the proof
from 4.2.1 above for L, ,-formulae ¢. In this case we only need the left to right
implication in moving from the second to the third line, and this implication holds

true by the inductive assumptions.
® =\/,.; ¢+ Assume the result holds true for each ¢;. Then

MED =
Jiel ME ¢ =
diel NEje)=

N E j(D).
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4.2.2 Complexity with respect to consistency properties

Given a consistency property S in signature £ and a maximal filter H on S, let

Yg={Y € Loy :3Is€ Hy € s}

and My denote the L,-structure given by the term model induced by the atomic ¢ € H as
in Section 1.4.

Suppose 1 is a sentence, S is a consistency property and G C S is a V-generic filter. The
easiest way to ensure Mg F 1) is to have {1} € G as argued in the Model Existence Theorem.
Nonetheless, this much is not needed. We now adress the question:

How far can the complexity of a formula v be with respect to that of formulae appearing in the
elements of S in order to ensure that a V -generic filter for S produces a model of 1) ?

The next result ensures that whenever we wish to force a formula of the form

vi= AV v

1€l jeJd;

with each v, ; an L, ,-formula, whether or not S forces ¢ is decided by the finite subsets of
{¢;; i € 1,j € J;} that are in S. This means two levels of complexity below that of
1. Actually, the next lemma shows that we can take any fragment of L., as building blocks
instead of L,

Lemma 4.2.4. Let L be a language and

vi= AV vy

i€l ]'EJZ‘

be an Loo,-sentence with the 1;; being arbitrary Loo.-sentences. Suppose S is a consistency
property such that for every i € I the set

Di:{SGSIEUGJi@Z)iJES}
is predense in S. Then for any V-generic filter G C S, we have that

Me E .

Proof. Fix G C S a filter V-generic. We need to argue that
Mg E 1.

Fix i € I. We need to prove that
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MaE \/ ;.

JE€Ji

Since
Di:{SESlajGJiQﬁi,jES}
is predense in S, there exists s € G and j € J; such that

wi,j €sed.

By the Model Existence Theorem 1 we know that s € G implies

MIZ/\S.

Hence,

ME\/ ¢,

JE€J;
as wanted. O]
The converse holds if we consider maximal consistency properties.

Lemma 4.2.5. Let L be a language and

vi= AV vy

i€l jeJ;

be an Lo,-sentence with the v, ; sentences in L.,,. Let S be a consistency property mazimal
for L, as in Definition 1.4.10. If for every V-generic filter G C S we have that

MG = @/)7
then for every i € I the set
Di:{SES:EleJZ-meS}

s predense in S.

Proof. Fix v € I. We need to argue that
Di:{SGSlajGJZ‘@DZ‘JGS}

is predense in S. Let G be a V-generic filter for S containing s. Since
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Mg E \/ i,

Jj€J;

Proposition 1.4.11 ensures that for some j € J; we have that 1; ; € Y. Hence,

SU{'(MJ}GGCS

and D; is predense. O

4.2.3 The consistency properties 5, induced by a boolean consistent
(8

Now we present the family of consistency properties we will deal with in the remainder of this
chapter. They come in pairs with the notion of Conservative Strengthening 2.2.2 and with the
Conservative Compactness Theorem 2.2.5.

Definition 4.2.6. Let £ be a language and let 1 be an L. -sentence. Sy, is the set of s such
that:

1. |s] < w,
2. all elements in s are proper subsentences of 1 or (negated) atomic L£-sentences and

3. A(sU{¢}) is Boolean consistent.

The following relates the Conservative Compactness Theorem with our new family of con-
sistency properties.

Corollary 4.2.7. Let {t; : i € I} be a family of L,-sentences closed under finite conjunctions
and finitely conservative. Let W be \,.; ;. Then for each i € I we have that

S%. C Sy.

Furthermore, the inclusion map is order and incompatibility preserving and has a predense
target.

Note that we are not asserting that the inclusion map of Sy, into Sy, is a complete embedding.
This is in general false.

Proof. First, we check that Sy, C Sy. Consider s € Sy,. We need to prove that s € Sy. Since
s is a finite set of subsentences of v;, s is also a finite set of subsentences of V. It remains to
prove that U A A s is Boolean consistent. Since s € Sy,, 1; A A 's is Boolean consistent. As
{1; : i € I} is finitely conservative, the Conservative Compactness Theorem 2.2.5 ensures ¥ is
a conservative strengthening of ;. Hence, ¥ A A s is Boolean consistent and s € Sy.

The inclusion map preserves order and incompatibility, so we only need to check it has a
predense target. Let ¢ € Sy. We need to argue ¢ is compatible with a condition from Sy. The
set s of formulae in ¢ that are subformulae of v; is in Sy, and is compatible with ¢ in Sy. [
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Remark 4.2.8. The inclusion map embedding Sy, into Sy is most likely not a complete em-
bedding. The map preserves the predense subsets defined by the conditions in a consistency
property which ensure the realizations of finite sets of subformulae of ;. There can be however
predense subsets of Sy, which are possibly not expressed by conditions on subformulae of v;
inherent to the fact that Sy, is a consistency property. These predense sets are possibly not
preserved by the above map. This issue will be addressed in the following sections.

4.3 TIterations which are < k-CC

Suppose we want to build a sequence of formulas (1a)a<s Such that s is a conservative strength-
ening of Y, for every a < [ < k. If at all successor stages 1,1 1S a conservative strengthening
of Yy, then Conservative Compactness Theorem 2.2.5 ensures that at limit stages we can define

w)\: /\wa-

a<<

However, as we argued before, it is likely not the case that Sy, is a complete subforcing
of Sy, for a < B. We can amend this obstacle if we consider “long enough” iterations. If k
is an ineffable cardinal, then at stationarily many stages, we will have that Sy, is a complete
subforcing of Sy, .

This result, combined with Baumgartner’s theorem on the preservation of < k-CC iterations
where direct limits are taken stationarily often, ensures Sy, is < k-CC.

4.3.1 Ineffable cardinals

Definition 4.3.1. A cardinal « is ineffable if for every sequence (A4, : o < k) with A, C «
there exists a set X C x such that the set

{a<k: XNa=A4,}

is stationary.
The version of ineffability we will apply is the following.

Lemma 4.3.2. Suppose k is ineffable. Then for every sequence (A, : a < k) with A, C V,
there exists a set X C V,. such that the set

{a<k: XNV,=A,}

18 stationary.
An important consequence for us is that ineffable cardinals produce diamond sequences.

Lemma 4.3.3. Suppose k is ineffable. Then there is a diamond sequence on K, i.e. there exists
a sequence (A, @ a < k) such that:

o A, CV, forall o < Kk and
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e for each X C V, the set

Sx={a<kr: XNV,=A.}
18 Stationary.

4.3.2 Complete subforcings and < xk-CC

In order to prove the main result we first need to present a canonical example of conservative
strengthening. It is derived from Proposition 4.2.4 and based on the following idea. Let 1) be
a Boolean consistent Lo,-sentence. All conditions in the forcing Sy are made up of Loow-
sentences. Hence, if we consider D C Sy a dense set, we can define the Lo, -formula

Vs

seD

to ensure that the dense set D is met.

Lemma 4.3.4. Let ¢ be a Boolean consistent infinitary formula in signature L and E a pre-
dense subset of Sy,. Then

oAV s

seE

18 a conservative strengthening of 1.

Proof. Let t be a finite set of subformulae of 1) such that ) A A\t is Boolean consistent. We
need to argue

(1/}/\\//\3)/\/\75

sek

is Boolean consistent. By definition of Sy, 4.2.6 we have that t € Sy. Let G be a filter V-generic
for S containing ¢t. By Model Existence Theorem 1 we have that

McEyYA Nt
Since the set £ is predense in Sy, the set
{{/\ 3} :s € B}

is also predense in Sy;. Then by Proposition 4.2.4 we have that

Mg E \//\s

seE
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Theorem 4.3.5. Let k be an ineffable cardinal and (A, : o < k) be a diamond sequence on k.
Let {(Va, 0a) : @ € K} be such that:

e 1y is Boolean consistent,

® ¢, is an L,,,-formula,

o 5= Noep@a for all B <k,

e {0, : a € K} is finitely conservative,

o for all o for which A, is a predense subset of Sy, Pu 1S

V As

SEAL

Let ¢, be N\, ¢a- Then

1. Sy, 1s a complete subforcing of Sy, for stationarily many o < kK;

2. Sy, s < k-CC.

Proof. Since {¢, : a € k} is finitely conservative and v, is Boolean consistent, we have that 1,
is Boolean consistent by Conservative Compactness Theorem 2.2.5. Hence, Sy, is non empty.

1:

Assume the first item fails as witnessed by a club C.

For each av € C'let D, be an open dense subset of Sy, such that D, is not predense
n ST/%'

Since k is ineffable there exists D C V. such that

Sp={a<k:DNV,=D,}

is stationary.
Let us argue D is open dense in Sy, .

— Dense: pick s € Sy, , find o € Sp such that s € Sy, then s C r for some
reD, CD.

— Open: if r € D and s D r is in Sy, there is o such that r,s € Sy, and
DNV,=D,; then se D, C D.

For each a € C (since D, is not predense in Sy, ) we can find s, € D such that
Sq Ur & Sy, forallr e D,.

Aiming for a contradiction let us find 8 € C' and s € Dg such that sUsg € Sy, .

Since (A, : @ < k) is a Diamond sequence on k, we can find o € C such that
DNV,=A, and

(Vaa Aom Szpa) < (me Da Szﬁ,g)'
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e By the assumptions of the theorem,

o=V As

se DNV,

and 1), is a conservative strengthening of 1,11 := ¥y A @q.

e Pick any 5 € S\ a. Then sg € S;, entails that
{¢a} Usp

is in Sy, (any model of ¢, A A s is also a model of ¢,).
e Therefore there must be an s € D, = DNV, C DN Vg = Dg such that

55U {¢o} U {/\s} € Sy,

This gives that sz U s must also be in Sy, , which is a contradiction.

Each Sy, has size less than x. By 1 for stationarily many o < s, we have that Sy, is a
complete subforcing of Sy, .

Let us argue that if P C Q C R are three posets such that P,Q are both complete
subforcings of R, then P is a complete subforcing of Q. Let D be a predense set for PP.
We need to argue D is predense for Q. Since P is a complete subforcing of R, we have
that D is predense for R. Since D C Q C R and D is predense for R, we have that D is
predense for Q.

Then, letting S be the set of o such that Sy, is a complete subforcing of Sy, , we obtain
that

{Sy, :a €S}

is such that Sy, is a complete subforcing of Sy, for « < 3 both in S. The above is
an iteration of posets in the ordinary sense such that direct limits are taken at all limit
stages. Since every ¢, is an L,,-sentence, Sy, has size less than ~ and in particular is
< k-CC. Then, Sy, is < k-CC by Baumgartner’s theorem (see for example [22, Thm.
3.13]).

O



Chapter 5

ASK-property

5.1 The ASK-property

Suppose 1 is an L-sentence and forcing with Sy produces a model of ¢ but kills a stationary set
S onwy of V. Then there exists X an Sy-name for a club on wy disjoint from S. The problem
with our setting so far is that the language £ may not be able to talk about X .

Subsection Languages 5.1.1 introduces the minimal requirements on languages and formu-
lae that will be assumed all over this chapter.

Subsection Names for subsets of wi 5.1.2 addresses the issue of “talking about X7
First, we discuss how to move from L to L* = LU{X*} so that X “becomes a member” of L*.
Second, we introduce an L*-axiom called Name of complezity (\//\W) ensuring X and X* agree

(up to some countable ordinal). Third, we show that 1) A Name is conservative over 1. Hence,
moving to the new setting is safe and allows to state properties about X .

Now that we can talk about the Sy-name X for a subset of wy, Subsection AS condition
5.1.3 addresses the problem of removing the possibility that X denotes a club disjoint from a
stationary set S € V.. We introduce an aziom AS in language L£* ensuring X and S are not
disjoint as witnessed by some countable ordinal. We don’t know if 1» A AS is a conservative
strengthening of 1 for arbitrary 1. Nonetheless, building on work of Kasum and Velickovié [6],
we 1solate a rather broad family of formulae for which this is the case.

Subsection ASK-property 5.1.13 introduces new requirements on the language L in order to
present a family of formulas v for which ¥ AAS is a conservative strengthening of 1». The ASK
condition is the most important definition in this whole chapter. It is a technical and rough
(at least on a first sight) statement isolated with one precise goal in mind: showing that for
formulae 1 with the ASK-property, 1 AAS is a conservative strengthening of 1. A key syntactic
requirements (to be paired with others) to ensure the ASK-property for 1 will be that of having

Y an infinitary conjunction of formulas of type (\//\w)

5.1.1 Languages

From this section onward, we restrict our attention to languages and theories satisfying the
following requirements.

Languages: We only consider multi-sorted languages containing at least the following symbols:

71
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e A sort denoted N,,, (see Example 3.2.4).
e Constants {cg,, : § < w;} of sort N,, (see Example 3.2.4).
e Constants {7 : x € H,} of sort N,,, (see Example 3.2.2).

Theories: We only consider logical theories implying at least the following axioms:

e Quantifier elimination for the sort N,
vz \/ T = Cg,V-
B<wy

e Axiom ¢p, from Example 3.2.2 to ensure H, Y sits as a transitive substructure of
N, -

e N, models ZFC™ + there exists an uncountable cardinal .
To be precise, we will always need the quantifier elimination axiom and (fragments of)
axiom 9y, . We will only need that the interpretation of sort N,, contains w} up to and
including Section 5.1.2, from Section 5.1.3 onwards we will also need that P (w;)" is contained

in the interpretation of sort Nwl, from Section 5.1.4 onwards all of the above listed axioms and
symbols and more.

Notation 5.1.1. All over this chapter £L* denotes a language expanding the above language
and we shall only consider qunatifier free formulae in languages expanding L£*.

5.1.2 Names for subsets of w;

Let 1) be a Boolean consistent £..,-sentence.
up(r,0) = {(7.{T}), {e: {TH}
and
op(7, o) = {{up(7,7), {T}), (up(7, 0), {TH}

are the canonical Sy-names for (un)ordered pairs.

Definition 5.1.2. Let ¢ be an L.,-sentence. Consider X an Sy-name such that

s, X s wy — 2 is a partial function.

For each o < wq let
Do = {s €Sy :(op(a,1),s) € X}

and
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Epa=15€Sy: (op(&,0),s) € X}.
We say that X is canonical for v if Dy oY Ex ., 1s predense in Sy for all o < wy.

X is canonical for 1 if and only if

s, X w1 — 2 18 a total function.

Fact 5.1.3. Assume 1 is a Boolean consistent infinitary sentence. Sticking to the notation of
Def. 5.1.2, assume s € Dy, , andt € Ex .. Then u = {¢} UsUt is not Boolean consistent.

Proof. If u were Boolean consistent, then s Ut would belong to Sy. If G were V-generic for S,
with sUt € G, then we would have X () = 1 as witnessed by s and Xg(«) = 0 as witnessed
by t. A contradiction. O

If S C T are consistency properties, then any S-name is also a T-name, even if S is not a
complete subforcing of T'.
Recall that given any filter G on T one can always recursively define the map

valg VT = VG|
X+—>XG={YG: 3t € T(Y,#) ex}.
We are used to consider this map only when G is V-generic for 7', but it can be defined

always. We are interested in considering what happens for this map also in cases when G is
not V-generic for T'.

Fact 5.1.4. Let i be a Boolean consistent infinitary sentence. Assume T' 2 Sy is any consis-
tency property, X is canonical for ¢ and G is a mazimal filter on T}

Then:

o X¢(a) =1 if and only if G N Dy .o 18 non-empty,

e X¢(a) =0 if and only if G N E .o s non-empty,

o X¢ is undefined on « if and only if G N (Ex yoUDx .y is empty.

Proof. Suppose X¢(a) = 1. By definition of X¢ there exists s € G such that (op(d, 1), s) € X.
Then s € GN Dy,

Consider s € GN Dy, , # 0. By definition of Dy , , we have that (op(c,1),s) € X. Since
se @, Xa(a) =1

The proof of the second item is analoguous to the first one. The third item follows from the
other two. n

'Note that S, might not be a complete subforcing of 7.
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Definition 5.1.5. Let ¢ be a Boolean consistent sentence. Let X be an Sy-name for a subset
of w as described by its characteristic function. Let £* be the language £ U {X*} where X* is
a unary predicate of sort N, .

For each ordinal v we define axiom Name(¢,, X, X *) in language L£* as the conjunction of

A (X*(d) = \{/\s:s¢ DX,w,a})

a<y

and

A (2@ = Vis:s e B,

a<ly

Lemma 5.1.6. Let v a countable ordinal and v be an infinite conjunction of formulae of
complezity (\//\W), then Name(v, v, X, X*) (as in Def. 5.1.5) is of complexity (\//\W)

Proof. Name(v),~, X, X*) is equivalent to the conjunction of

A (X @V VIAS s D)

a<y

and

A (X*(d) VV{/\s:s¢ EX’%Q}).

a<ly

These sentences have at least the conjunctions

/\ and /\s for s € Dy o UE% 4

a<ly

plus the ones inside any of the above s. The ones listed above are countable since ~ is countable
and each of the s under consideration is finite.

It remains to deal with the ones that might appear inside some s € Dy, U FEx , .. By
hypothesis v is an infinite conjunction of formulae of complexity (\//\W) Therefore the proper
subformulas of ¢ are of complexity (\//\;) Since conditions in Sy only contain proper subfor-
mulas of ¢, we have that any s € Dy, U Ex , , C Sy only contains formulas of complexity

(\//\W) Thus, all conjunctions appearing inside s are countable. O
We outline below how Name(%), 7, X, X *) allows to control the intepretation of a canonical
Sy-name X in generic extensions by some 17" D Sy,.

Lemma 5.1.7. Let ¢ be a Boolean consistent infinitary sentence, let X be an Sy-name for
a subset of wy canonical for 1, let v be a countable ordinal, and let T' D Sy be a consistency
property in language L1 D L*. Suppose ty € T is such that
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{t € T : Name(¢),~v, X, X*) € t}

is dense below ty. Then for any V -generic filter G for T' containing ty and o < 7y, we have that

Xeg(a) =14 X*(a) € X6

Proof. Consider a such that X¢(a) = 1. Fact 5.1.4 ensures the existence of some s € GNDx 4 o

Since to € G and the set of conditions containing axiom Name(v),~, X, X *) is dense below t,
we have that

t = sU {Name(¢),~, X, X*)} € G.

Then axiom Name(¢),v, X, X*) and A s € Xg ensure X*(d) € Y¢: otherwise ~X*(d) € g
entails that there is some ¢ € Ey, , M G. This is impossible because s Ut U {1} is not Boolean
consistent, while s Ut € GG makes it Boolean consistent.

The proof for Xg(a) = 0 is symmetric. O

Corollary 5.1.8. Let v be a Boolean consistent infinitary sentence in language L*, let X bea
canonical name for 1, let v be an ordinal and let T' O Sy, be a consistency property in language
L1 D L. Suppose tg € T is such that

{t € T : Name(¢,7, X, X") € t}
is dense below to. Then for any o <7, Dx 4 o, U Ex 4, 18 predense below to in T
Proof. Fix a < wy. Consider s <ty € T and G a V-generic filter for T' containing s. Since
X(a)

is an atomic formula, we have that either sU{X*(&)} € G or sU{=X*(&)} € G. The previous
Lemma ensures

Xe(a) =14 X*(a) € Xq
and

Xg(Oé) =0« _\X*(Ové) €.

Since X¢ is a canonical name for ¥, Xg(a) = 1 if and only if some s € Dy o is in G and
Xe(a) = 0 if and only if some s € Ex o isin G O

Lemma 5.1.9. Let ¢ be a Boolean consistent infinitary sentence, let X be a canonical name
for 1 and let vy be a countable ordinal. Then 1 A Name(1), v, X, X*) is conservative over 1.
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Proof. Let s € Sy. We need to argue that

(1/) A Name(@/z,v,X,X*)) A /\3
is Boolean consistent. Let G be a V-generic filter for S, containing s. Then
MaFEYA Ns.
Define
(XM ={a < v: Xa(a) =1}.
Consider a < X such that M E X*(&). In order to realize Name(1), v, X, X*) we need to ensure
Mg E \/{/\s 15 € DXAW}.

By definition of (X*)™¢ we have that X¢(a) = 1. By Fact 5.1.4 there exists s € G N Dy o
By the Model Existence Theorem 1.4.7 we have that

Mgf:/\s.

The proof for X*(a) = 0 is completely symmetric. O

5.1.3 AS condition

In the previous subsection we introduced aziom Name to ensure X and X* describe the same
set up to some ordinal v. Now, for each stationary set S and each name for a club X, we
introduce an axiom denoted by AS to ensure X* and S are not disjoint.

We need more expressive power than that given by the languages introduced in Section
5.1.1.

Notation 5.1.10. We expand the language introduced in Section 5.1.1 with a satisfaction
predicate Saty,, for the sort N,, and with constants {ds : < wi} of sort IN,,.

The satisfaction predicate Saty,, is a unary predicate of sort Nwl which takes as inputs
quantifier free infinitary sentences ¢ in V' in the language

{€,¢ch 17 <wi,dg: B <wi}.
Saty,, (¢) holds or not in an L*-structure M according to the evaluation of ¢ in the structure
(NM, M M

C :7<w1,dg\4zﬁ<w1>.

w17 w1 TYwl

We denote by L£* this expanded language.
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We shall only consider quantifier free £*-sentences ¢ implying that the satisfaction predi-
cate? is correctly interpreted and the following axioms to ensure that the constants {dg : B < wi}
give all the stationary sets of N,,:

/\ /\ (Sath1 Crun 18 club on wy) = dg N ey, # @>

B<wi Y<wi
/\ (Sath1 (Cyw, 1s stationary on wq) = \/ dg = cwl)
y<wi B<w

Definition 5.1.11 (The Aspero-Schindler condition). Let £* be the signature of Notation
5.1.10 and ¢ be an L. -sentence in some signature £ O L*.

Let X be a canonical Sy-name, X* be a unary predicate symbol of sort Nwl, and dg be a
constant for a stationary set. Define the Aspero-Schindler condition

AS(B, X, X*)
as the conjunction of

(1) \/ (Name(w,y,X,X*) A Unbounded(X*,~) A (Closed(y, X*) = ¥ € dﬁ))

YEW1

and

(ii) /\ C(;wl ngl 64

o<wi a<wiy

where

Unbounded (v, X /\ \/ X*(p

a<ly a<f<y
Closed(y, X*) == [\ (ﬁX* =\ A X 5)
a<y [B<a f<o<a

Each formula is introduced with the following purpose:

(I) Name(1),v, X, X*) is intended to ensure X and X* describe the same set up to 7 as argued
in Lemma 5.1.7.

(IT) Unbounded(~y, X*) ensures the interpretation of X* | v is unbounded on .
(IT1) Closed(vy, X*) forces the interpretation of X* N~ to be a closed subset of ~.

(IV) Axiom (ii) ensures X* is a subset of w;.

2This is not trivial since the satisfaction predicate for N, is not expressible by an infinitary conjunction of

formulae of type (\//\ ) However we will set up ¢ so that a coherent interpretation of the satisfaction predicate

for N,, is provably definable in models of ¢, and ¢ is an infinitary conjunction of (\/ )-formulas.



78 CHAPTER 5. ASK-PROPERTY

When (II) and the premise of (III) holds, X* | 7 is a closed unbounded subset of .
Fact 5.1.12. Sticking to the notation of the previous definition

o Aziom (i) from AS(3, X, X*) has compleity (\//\W) in language L* = LU {X*}.

o Aziom (ii) from AS(B, X, X*) is a conjunction of size wy of sentences of complexity (\//\w)
in language L* = LU {X*}.

Proof. We have that X*(&) and § € dg are atomic formulae and Closed(y, X*) is an L*

wiw”

formula. We have seen in Lemma 5.1.6 that Name(v), 7, X, X*) is of complexity (\//\W) Thus, so
is axiom (i) from AS(3, X, X*) being an infinite disjunction of sentences of complexity (\//\w ).

We have that (ii) is given by a conjunction of size w; of sentences of complexity (\//\w) m

5.1.4 ASK-property
Suppose 1 is a Boolean consistent formula which is an infinitary conjunction of sentences of
complexity (\//\w) Our goal is to show that for any Sy-name for a club and any constant cg.,

for a stationary set in the sort Ny, 1 A AS(B, X, X*) is a conservative strengthening of 1.
We will prove this for formulae 1 satisfying a property, which is a refined version of a similar
concept isolated by Kasum and Velickovié. With respect to the original concept of Kasum
and Velickovié [6] the refinement takes into account the complexity of the formula to which it
applies.

Definition 5.1.13 (The Aspero-Schindler-Kasum property). Let £* be the signature of Nota-
tion 5.1.10 and ¥ be an L,,-sentence in some signature £ O L*.
1 has the ASK-property if:

1. it is Boolean consistent,

2. it is an infinitary conjunction of sentences of complexity (\//\W) and

o o]

3. the following holds.

e For any A large enough and any V-generic filter G C Coll(w, < A),

e for any M F ¢ in V[G] with M,y the domain for the sort Nw}/ being a transitive
set and

o for any constant dg for a stationary set,

in V[G] it holds that:

w2

M
(I) NS}, = NSwle NV and (M,y, €) is a model of ZFC™ containing HY

(IT) there exists an elementary embedding j : V — W with critical point w} and target
W transitive,

(IIT) there exists N such that:
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(i) NV is a j(£)-structure,
(i) N Fay €(ds),
(iii) for all atomic L-sentences ¢, we have that
ME$ = NEG(9),
(iv) A models j(1)).

5.2 Preservation of the ASK-property through successor
stages

Theorem 5.2.1 (Successor stage). Let L* be the signature of Notation 5.1.10 and 1 be an

Lo -sentence in some signature L O L*.

Assume 1 has the ASK-property, X is a canonical Sy-name for an unbounded subset of wy,
and dg is a constant in L* for a stationary set. Then,

o ) AAS(B, X, X*) is a conservative strengthening of ¥ in signature £* = £ U {X*} and
e ) AAS(B, X, X*) has the ASK-property.

The following proof is technical and long. Its content is divided in two steps whose proofs are
(almost) independent: checking that 1 A AS(S, X, X *) is a conservative strengthening of ¢ and
checking that the ASK-property propagates to ¥ AAS(f, X, X*). The proof is divided in mycro-
steps which are itemized: each bullet contains just one logical step. Whenever different paths
open inside the proof, and this happens twice in each proof, we use bullet symbols different
from the typical ones to indicate the beginning of each path.

Proof.
Conservative strengthening:

e Suppose s is a finite set of subsentences of ¢ such that ¢ A /\ s is Boolean consistent.
We need to show that ) A AS(5, X, X*) A A s is Boolean consistent.

e Let A be such that [P (Sy) | < Aholdsin V. Fix G a filter V-generic for Coll(w, < A).

e Since ¢ A A\ s is Boolean consistent and P (Sy) is countable in V[G], we can find
H € VI[G] a filter V-generic for Sy, containing s.

e By the Model Existence Theorem 1.4.7 there exists My € V[H| an L-model of
Y ANS.

e Since X is a canonical Sy-name and H is V-generic for Sy, Xy is a characteristic

function with domain w}’.

e The argument now depends on whether Xy is a club subset of wy or not.
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# Assume Xy is not a club subset of w'.

e In order to prove that My ensures the Boolean consistency of 1y AAS(, X, X*)ANs,
it remains to argue My F AS(S, X, X*).

e Since X g is not a club subset of w}/, it is unbounded and not closed. Let v be a
limit point of ordinals in Xz such that Xy [ v is not closed.

e Extend My to an £ U {X*}-structure by setting
(XYMi = Xy c WY,

e Axiom (ii) of AS(8, X, X*) requires that X* is interpreted by a subset of w}". Then
our choice of (X*)™# ensures it holds.

e Let us argue that My realizes axiom (i) from AS(8, X, X*) as witnessed by 7:

- My F Name(z/J,fy,X,X*) since (X*)M# = Xy,
— My E Unbounded(X*, ) since 7 is a limit of (X*)M# and
— My E Closed(X*, ) = ¥ € dg since (X*)™# is not closed.

# Assume Xy is a club subset of wy. Let us argue how to obtain the Boolean consis-
tency of ¥ A AS(5, X, X*) A A\ s from the ASK-property.

e In V[G], fix 7 : V — W and N the witnesses for the ASK-property given by condi-
tions (II) and (III) with respect to G C Coll(w, < A), My E ¢ and dp.

e By the ASK-property (i) we have that N is a j(£)-structure. Extend it to a j(£) U
{j(X*)}-structure by setting

XV = {a <w: Xpg(a) = 1} .
e The rest of the proof is divided in two arguments:

1. Show that
J(W) ANAS((B), §(X), 5(X™) A\ (s)

holds in V.

2. Argue why this is enough to ensure that i) A AS(B,X,X*) A A s is Boolean
consistent in V.

% We start addressing 1.

e By condition (iv) in the definition of the ASK-property, N realizes j(v)).
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e By condition (iii) in the definition of the ASK-property, My and N realize the
hypothesis of the Preservation Lemma 4.2.3. Since s is a finite set of formulae of

complexity (\//\W) and My E A 's, Preservation Lemma 4.2.3 ensures

NE Ni(s).

e Axiom (ii) of AS(j(f),j(X),j(X™)) requires that j(X*) is interpreted by a subset of
j(w)). This holds by definition of j(X*)" since it is a subset of w} C j(w)).

e Let us argue that

N E Name(j(),wY, 5(X), 5(X*)) A Unbounded(X*, w;) A Closed(w!’, 7(X™*)) A
VvV .
wi € j(dg).

If this is done, axiom (i) of
AS((8), 5(X), (X))

holds in A as witnessed by the w} -th disjunct.
e We have that N F @} € j(ds) by condition (ii) of the ASK-property.
e Closed(w!’, (X)) holds in A since j(X*)" is a closed subset of w} .
e Unbounded(X*,w}) holds in A since j(X*)" is unbounded in w} .

e Let us argue that A E Name(j(¢),w), j(X), j(X*)). Fix o < w). We need to show
that N E j(X*)(«) implies

N F \/{/\T 7€ Dy i)}

Since j(X*)V(a) holds, we have that Xp(a) = 1.
— By definition of evaluation for a name there exists ¢ € H such that (op(c&, 1), ) €
X, which is precisely the definition of ¢ € Dy, .. Hence,t € Dy, , N H.

— Since t € H, the Model Existence theorem 1.4.7 ensures that My = A t.
— Since t € Sy, is a finite set of proper subsentences of 1, A t has complexity (\//\w )

The Preservation Lemma 4.2.3 ensures N E A j(t).
— Hence, N'F V{AT 17 € Djix) i)} 2 Witnessed by A j(t).

e The same argument proves that if N' E —j(X*)(«), then N' E \/{Ar : r €
5.8 -
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#® Now, we argue for 2. The main complication being that V[G] is not a forcing
extension of W.

e Consider G a filter V[G]-generic for Coll(w, k) for some  big enough so that
N € HY ]
and
J() NAS(5(B), ] )A N\ i(s) € HY,
which is a subset of Hy " = HYNN gince W ¢ V[G].

e By Shoenfield’s Absoluteness Lemma ?7 between Hu‘,/l[Gl] and HE{ [Gﬂ, there exists
N’ € W[G1] a model of j(1)) AAS(5(53), j(X), (X*)) AN j(s). Therefore, W models
that 7(v) AAS(5(B), (X)), 7(X*)) A A j(s) is Boolean consistent.

e Since W models FIAAS(G(B), 5(X), j(X*))AN j(s) is Boolean consistent, V models
W ANAS(B, X, X*) A\ s is Boolean consistent by elementarity of j : V' — W.

ASK-property:
e We follow the indexes from Definition 5.1.13.

1. Since t» A AS(B, X , X*) is a conservative strengthening of ¢ and 1 is Boolean con-
sistent, 1) A AS(B, X, X*) is Boolean consistent.

2. ¢ NAS(B, X, X*) is an infinitary conjunction of (\//\w )—sentences:

oo

— 1) is an infinitary conjunction of (\//\W )-sentences since it has the ASK-property,

— AS(B, X, X *) is an infinite conjunction of sentences of complexity (\//\w) by Fact
5.1.12. -

3. Let G be a filter V-generic for Coll(w, A) for A big enough, let M be an £ U {X*}-
model of ¥y A AS(5, X, X*) and let dg be a constant for a stationary set. We need

to ensure conditions (I), (IT) and (III) are met.

(I) We have that
M v
NS =NS,, NV

since 1 has the ASK-property.
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e For conditions (IT) and (ITT) we need to produce j : V' — W and N witnesses for
the ASK-property relative to G, M E ¢ AAS(B, X, X*) and dg .

e Since v has the ASK-property, we can find j : V. — W and N witnesses for the
ASK-property relative to G, M [ L F ¢ and dg.

e Enrich NV to a j(£*) = j(£) U {j(X*)}-structure denoted by N* by setting
HXY = (M

e Let us show that j : V — W and N* are witnesses for the ASK-property relative to
G, MEYANAS(B, X, X*) and dg.

(i) N* is a j(L*)-structure by definition.

(ii) We have that N* F @} € j(dg) since N E @} € j(dg) by condition (ii) of the
ASK-property relative to .

(iii) Let us argue that for £*-atomic formulae ¢ we have that
ME ¢ N*Ej(9).
An atomic L*-formula might come from two different places:

— for those in language £ the ASK-property ensures

ME ¢ N*E j(9),

— the remaining atomic formulas are of the form X*(c) for ¢ some constant of
sort N,v. Then the desired conclusion follows from the fact that j(X N =
(XM C wy together with j(a) = a for a < wy.

(iv) Finally, we argue
N*E () AAS(i(B),5(X), §(X7)).
— We have that
N*Fj(¥)

by the ASK-property for 1.
— Axiom (i) from AS(3, X, X*) is of complexity (\//\W) by Fact 5.1.12, and

MEAS(B, X, X*);
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hence, by the Preservation Lemma 4.2.3,

N*EAS(j(B), 4(X), 5(X™)).

— Axiom (ii) of AS(j(5), j(X), j(X*)) requires that j(X*) is interpreted by a subset
of j(w}). This holds by definition of j(X*)V" since it is a subset of w} .

The proof of the Theorem is completed.
m

5.3 Preservation of the ASK-property through limit stages

In the previous section we argued that ¥ NAS(S, X, X*) is a conservative strengthening of 1 for
any Y with the ASK-property. If we iterate this construction, the Conservative Compactness
Theorem 2.2.5 ensures the formula obtained at stage w is a conservative strengthening of 1.
Nonetheless, we don’t know if the resulting formula maintains the ASK-property. This issue is
addressed and solved in this section.

We introduce a weaker version of the above iteration where constants e, are introduced to
decide randomly if aziom AS(B,, X,, X,’;) 15 taken into account at stage n or not. For this type
of iterations we are able to ensure the ASK-property is maintained at all limit stages.

In the next section we will argue why the Successor Stage Theorem 5.2.1 ensures AS(/3,, X,], X;)

18 taken into account generically often as long as we index the names Xn to be taken into ac-
count according to a diamond sequence. This will occur when in the generic term model for i,
the formula AS(B,, X,), X;) is realized for stationarily many n < k.

Lemma 5.3.1 (Limit stage). Let L* be the signature of Notation 5.1.10 and v be an Luo,-
sentence in some signature L O L* with the ASK-property. Let also:

e 0%, 1% be two fresh constants symbols of sort —1,
o {e,:n <K} be fresh constants symbols of sort —1 and

° {X;; :n < Kk} be fresh unary predicate symbols of sort Nw}/.
Suppose (Vy)n<s 15 a sequence of sentences such that:
® Yy is Y,
® Y1 18 Yy N @y, with ¢, being
(e, = 0%) = AS(B,, X, X7),
where:

— X, is a canonical Sy, -name,
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- 677 < CU}/,'

o by, =Yg AN, ., & for all v <k limit ordinal.

Then v, is a conservative strengthening of 1 and has the ASK-property with respect to the
language £ U {emX;?k tn <k} U{0%, 17}

Proof. By induction on n < k we prove that v, has the ASK-property and is a conservative
strengthening of 1.

Successor stage: Suppose the result true for n < x and let us prove it for n + 1.

¢ First, we show that 1, is a conservative extension of v,. Consider s a finite set of

(i)

(i)

subsentences of 1, such that {¢,} U s is Boolean consistent. We need to argue the
Boolean consistency of ¢4 A A s.

By the Successor Theorem 5.2.1 we have that i, A AS(3,, Xn, X,;) is a conservative
strengthening of ¢, Therefore, there exists (in some generic extension of V') M a model
of Yy, AN sAAS(B,, Xy, X). Expand M to M* by letting enM = 0. Then M* E 9,11 A/ 5.

Second, we show that 1), has the ASK-property. Let A be large enough, let G C
Coll(w, < A) be a filter V-generic, let M be a model of 9,11 and let dg € L be a constant
for a stationary set. Let us argue conditions (I),(II) and (III) from the ASK-property
5.1.13.

We have that
My
NS! =NS,," NV

since any model of 1, is a model of ¢, and 1, has the ASK-property.

For items (II) and (III) we need to build j : V' — W and N witnessees for the ASK-
property with respect to G, M F ¢, ; and dg.

Consider j : V' — W and N witnesses for the ASK-property for v, with respect to G,
M E 1, and dg. Let us show that j and an expansion of N are the witnesses we are
looking for.

By the ASK-property for ¢, we have that N is a j(L£L U {eq, X2 : a < n} U {0*,1*})-
structure. Expand A to a j(L U {eq, X+ oo <} U{0%,1°}) U {ej(), X,y } denoted by
N* by interpreting (X;.‘(n))N as (X;)™ and (en)V as (e,)™.

We have that N* F @) € j(dg) since N F @] € j(dg) hold by the ASK-property relative
to .
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Let ¢ be an atomic £ U {e,, X} : a < n} U {0*, 1*}-formula. Let us argue M F ¢ if and
only if N'E j(¢).

— For formulae in language LU{e,, X : a < n}U{0*, 1*} it holds by the ASK-property
for 1,,.

— For the new formulae it is a consequence of the definition we chose for the new
symbols e, and X} together with j(a) = a for & < w}" and (X;)N* C wy.

We need to argue that
N*E gy A (e, = 0" = AS(B,, X, X;)).
We have that N* E 1, by the ASK-property for v,

The only subformula of e, = 0* = AS(}3,, Xnv X,) whose complexity is a conjunction of
formulae of complexity (\//\:O) is conjunct (ii) from AS(S,, Xn, X,). But this is realized by
N* since

(X)) = (XM Cwl Ciwy).
Since M E (e, = 0*) = AS(,, Xn,X;‘,) and conjunct (i) of AS(,, Xn,X;‘])) is of complex-
ity (/\w ), the Preservation Lemma 4.2.3 ensures that if ¢ is conjunct (i) of AS(8,, X, X

vOO
and it holds in M, then j(¢) holds in N*. Now:

— if M models e, = 1*, then the premise of j(e, = 0* = AS(BW,XV,,X;)) is false in
N*;
— if M models e, = 1*, then ¢ holds in M, hence j(¢) holds in N*.
In either cases .
N* F j(eﬁ = 0* = AS(ﬁW? XWX;))u

as required.

Limit stage: Suppose the result true for a < n and let us prove it for 7.

€¢ First, by the Conservative Compactness Theorem 2.2.5 we have that 1), is a conservative

strengthening of 1.

¢ Second, let us argue the ASK-property for 1,,.

1.

We have that 1, is Boolean consistent since it is a conservative strengthening of 1, and
1o is Boolean consistent.
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2. By definition 1), is the conjunction of 1)y with ¢,, o < 7. Since all of them are conjunctions
of sentences of complexity (\//\w) we have that 1, is a conjunction of sentences of complexity

().

3. Let A be large enough, let G be a filter V-generic for Coll(w, < \), let M be a model of
Y, and let dg € £ be a constant for a stationary set.

(I) We have that
My
NS! = NS, NV

since any model of v, is a model of ¥y and v, has the ASK-property.

e For items (IT) and (III) we need to build j : V' — W and N the witnesses for the
ASK-property.

e Iix j : V — W and N witnesses for the ASK-property for 1, with respect to G, M |
L F 1y and dg. Let us show j: V' — W and an expansion of A/ are the witnesses we are
looking for.

e Expand N to a structure denoted by N* for the language j(LU{e., X : o < n}uU{0*, 1*})

as follows:
— for v < n let
GV = (XN = (XM,
and

()™ = (ej)™" = (ea)™,
— for a & j[n], let e¥* = 1* and (XN = 0.

e We have that N* F &} € j(dg) since N F @} € j(dg) holds by the ASK-property relative
to y,.

(iii) Let ¢ be an atomic £ U {e,, X : a < n} U {0* 1*}-formula. Let us argue M E ¢ if and
only if N*FE j(¢).
— For formulae in language £ it holds by the ASK-property for .

— For the new formulae it is a consequence of the definition we chose for the new
symbols e, and X7 together with j(8) = 3 for # < w} and (X)V" C wy.
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(iv) Let us argue N* E j(¢,). We have that N* E j(¢) by the ASK-property for ¢. We

need to ensure

NE N ((er =0") = AS(Ba, X, X))

a<j(n)

We have that axiom (ii) in AS(Ba, Xa, X*) holds in N* since (X*)V° C w). The rest
of the formulae appearing in (e, = 0*) = AS(f,, X4, X) are of complexity (/\w) for all

. a Ve
a<j(n).

— For a <, since
ME (e}, = 07) = AS(Ba, Xa. X7),

we can repeat mutatis mutandis the argument of the case for v, of this proof to
conclude

N E (€)= 07) = AS(j(Ba), j(Xa), 4(X2))

by the Preservation Lemma 4.2.3.

— For a & j[n], since we set e} = 1*, the implication is true as the premise is false.

e We have finished the proof of the theorem.

5.4 The ASK property and stationary set preservation

In this section we argue that the forcing Sy, of the previous section is stationary set preserving
whenever k is a cardinal for which there exists a diamond sequence.

As said, we cannot ensure that the iteration (,)n<x built in Limit Lemma 5.3.1 takes the
formula AS(BU,Xn,X;) into account at all stages. Lemma 5.4.1 below ensures that, whenever
K 1s a cardinal with a diamond sequence, this occurs stationarily often for each name for a club
and each constant for a stationary set. We wil use the results of Section 4.2, on \'\/ formulas
to ensure Sy, deals with all names for clubs and all constants for stationary sets. Theorem
5.4.2 will use the condition

NSV = NS NV

giwen by (I) from the ASK-property to grant that Sy, is stationary set preserving.

Lemma 5.4.1. Let L* be the signature of Notation 5.1.10 and 1) be an L., -sentence in some
signature L O L* with the ASK-property.
Let also:
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o k> || be a regular cardinal with {(N,, A,) : n < k} a Diamond sequence on k.

e {0, 1*}U {en,X; i < /@'} be fresh symbols for L with e,,0*,1* constant symbols of sort
—1 and X} unary predicate symbols of sort N, .

o o). be the Lo,-sentence of the preceding Limit Lemma 5.3.1, where X, = mo[A,] and
By = ma[A,] < wy whenever

— mo[A,] is a canonical ,-name and

- A, = Xn x B x f3,
and each m; denotes the projection map on coordinate t.
Let X be a canonical Sy, -name and let § < w;. Sx 5 consists of those n such that:
o A, = (X x ¢, x B)NN, and

e there is a map k : Ny — Hy with N, transitive and k with critical point n witnessing
(Nm XN Nnv ¢n7 EAO) = (HM X, Y, GAO)'

Then for any canonical ¥.-name X and B < wy we have that S5 s stationary in k and
{{e, =0"}:n € SX,,B}
is predense in Sy, . In particular, forcing with Sy, realizes the sentence

Pr N /\ {\/ {en =0":ne SX,ﬁ} . X is a canonical 1,-name and 8 < w1} )
Proof.

e The fact that

Mg E Y, A /\ {\/ {en =0":ne SX,ﬁ} - X is a canonical Ye-name and [ < wl} .

holds for all V-generic G C Sy, is a consequence of Proposition 4.2.4 once we check
Hen=0}ine SX,,B}

is predense in Sy, .

e The Diamond property ensures Sy 5 is stationary whenever X is a canonical ¥,-name
and 0 < wi.

3T.e. a sequence such that N,, € H, is transitive for all , and for some fixed A > x and all X C H, there
are stationarily many 7 such that some k : N, — H) defines an elementary embedding of (N, 4,,...) into
(Hx, X,...).
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e Let X be a canonical Sy,.-name and 8 < w;. Let s € Sy, be any condition. We need to
find n € Sy 4 such that s U {e, = 0"} € Sy,. This means finding n € Sy 4 such that

zb,.;/\/\s/\ (e, =07)
is Boolean consistent.

e Find n € S 4 such that :

— s €Ny,
— (X x4 x )N N, = A, and
- (Nn,X NNy, ¢y, €ay) < (Hy, X, v, €a,) via some k : N, — H,.

Then 3, = f.

e Since H)y models s € Sy, we have that N, models s € Sy, . In particular, s is a finite set
of subsentences of ¢, and does not contain any sentence using the constant ey (in other
words, s does not decide the value of e;).

o (N,, XN Ny, ¢y, €a,) models that XN N,, defines a canonical ¥,-name since

(NT]7X N N?an?er) < (H)\7X7w/€7€Ao)-

e The statement X N N, defines a canonical ¥,-name is a A;-property in parameters xXn
Ny, 1y, as:

— the statement

(op(c,i),s) € A,

is Ap in parameters s, X N N, a, i;

— the statement
D,y U Ea, p,.a 05 predense in Sy,

is A, in parameters X N Ny, 1y, for all o < wy.

Therefore both statements are computed the same way in (V,), bda Ny, ¢y, €a,) and in
V for all relevant s,i and «.
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e Recall that ), has the ASK-property by the Limit Lemma 5.3.1. Hence the Successor
Theorem 5.2.1 ensures

Yyq =y ANAS(dp, Ay, X))

has the ASK-property and is a conservative extension of 1,,.

e Since e; does not appear in ¢, 4,
Yo = U A (e =07)

is strongly conservative over ¢, ., and has the ASK-property.

e Consider a new iteration of same length x where the first formula is 1" ; and the following
elements follow the original iteration from ), 1o onwards. Denote as 1 the last formula
of this iteration. Then 1} is (equivalent to) ¥, A (e = 0%). Since the first formula %,
of this new iteration has the ASK-property, the Limit Lemma ensures ¢ is conservative

over ¢’ .
e Since s € Sy, , we have that A s A ¢, is Boolean consistent. In particular, so is A s A ¢,,.

] )k : : : . .
e Since ;% is a conservative strengthening of ¢, and A s A 1, is Boolean consistent,
A s Ay is Boolean consistent.

e Since ¢} is a conservative strengthening of ¢%, and A s A1, is Boolean consistent,
/\3/\¢Z :/\53/\1/1,4A(e;’<7 =0")

is Boolean consistent.

The proof is completed. O

Theorem 5.4.2. Let L* be the signature of Notation 5.1.10 and ¢ be an L..,-sentence in some
signature £ O L* with the ASK-property.

Let k > || be a cardinal with a diamond sequence and let 1, be the formula defined in the
preceding Lemma 5.4.1. Then Sy, s stationary set preserving.

Furthermore, for any constant for a stationary set dg and any V -generic filter H for Sy,
we have that d/BMH is stationary in V[H].

Proof.

e First of all, the ASK-property for 1), ensures that

V_ el
NS, =NS,, ' NV
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where M,y is the interpretation of the sort Nwl in My and H is any filter V-generic for
Sy.. Hence, any stationary subset S of wy in V' is in V[H] of the form dg/‘H. It is then
enough to argue that all sets of the form dg/lH are stationary in V' [H].

Let X be a canonical Sy,_-name for a club and let ds be a constant for a stationary set.
By the preceding lemma we can find n € Sy 5 with e, = 0" € Xp.

Then AS(5, X N N,, X;) holds in My and we can find v < w; such that

Mz E Name(t, v, X, X*) A Unbounded(X™*,v) A (Closed(y, X*) = ¥ € dg)

The proof will be completed once we show that
AS dg/lH N XH

In order to prove v € dg/l” it is enough to check that

My F Closed(v, X;)
since

My E Closed(y, X™) = 7 € dp.

In order to prove v € Xy we proceed as follows:

— we prove that (XﬂNn)H Iy =X |7,

— we prove that 7 is a limit point of (X;‘,)MH,

— using Name(v, X N N,, X;) we get that (XNN)g = (XM Ty,
— then v is a limit point of (X N Ny = Xy 7 and

— since XH is club on w; we have that v € XH.

First, let us argue that X N N, is in V' an Sy, -name for the characteristic function of a

club subset of w;. By the elementarity of IV, into H, we have that xXn N, is in N, an
Sy,-name for the characteristic function of a club subset of w;. Since this is expressible

by a Aj-property in parameters wy, X N N, and 1,, it is also in V" a Sy, -name for the
characteristic function of a club subset of w;.

Let us argue that

(XN N [ v=Xnu 7.
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° Name('y,X N Ny, X;) € Xp gives that for all a <
X,(a) € ¥g
if and only if there is some s € D,, yy, ,, N H; and
—X, (&) € Xpg

if and only if there is some s € Emewan NH.

e By elementarity of N, into H) we have that

DaaXmN777¢7z g Da7X7¢n

and

EaszN’llzwn g Ea7X7wl€

for all @ < wy.

e This gives that for all & < v we have that

(XN Ny)pula) =1

¥
Y
there is some s € D, 3y, 4 NH
Y
there is some s € D, x , NH
¥

Similarly, we get that

(X N Ny)(e) =0
Y

% We have that 7 is a limit point of (X*)™# since My F Unbounded(~y, X*).

93
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# Since Xy is the characteristic function of a club subset of w)” we have that Xy | v =
(X N N,)u [ 7 is the characteristic function of a closed subset of . Therefore

My F Closed (v, X))

and 7 is a limit point of (X;)M#.

e Hence, we have proved
v e déVIH N XH

and dgAH is stationary in V[H].

5.5 SSP forcings are absorbed by the ASK-property

This section is devoted to the proof of the following result.

Theorem 5.5.1. Let k be inaccesible and P € H,, be SSP and forcing NS, to be saturated.
Then there exists 1 an Loo,-sentence with the ASK-property such that any model of 1 induces
a V-generic filter for P.

Since Theorem 5.4.2 ensures that for such a sentence 1) there exists a conservative strength-
ening # such that Sy is SSP, we have that [P is a complete subforcing of Sy. The proof is divided
in three steps:

1. build a sentence 1p such that its models are precisely iterations of length w} whose last
iterate is H,[G] for some V-generic filter G C P,

2. show that the sentence is Boolean consistent,

3. prove that ¥p has the ASK-property.

In this section we will use repeatedly the following theorem.

Theorem 5.5.2 (Laver [9]). There is an €-formula ¢genext(T,y, 2, w) with the following prop-
erties. If

e N models ZFC and is transitive,
e M* € N is a transitive model of ZFC™,
e P e M* is a forcing notion and

e G € N us filter on P which is M*-generic,
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then there is at most one transitive class M which is the extension in N of ¢cengxt(z, M*, G, P)
such that:

& M 1s a model of ZFC,

#® M* = HM for some k cardinal in M.
Furthermore, whenever M C N 1is a transitive model of ZFC, the following are equivalent:

€ N = M[G] is a generic extension of M by G which is an M-generic filter for P € M;

¢ M is the extension in N in parameters PG, HM for some (any) k such that P € HM of
¢GenExt(x> H,é\/[a G> P)

Definition 5.5.3. Let P € H, be a forcing notion with x inaccessible and P € H), for some
A< K. The language Lp extends the languages L. and Ly, with one constant symbol G
of sort N,, and unary predicate symbols HS of sort N, for each o < w;. Axiom p is the

conjunction of the following sentences.

(i) Axiom 1)y, from example 3.2.4 to ensure any model produces an iteration of length w}
where the iterates correspond with the sorts.

(i) Axiom v, from example 3.2.2 to ensure H, sits as a transitive subclass of the sort Nw}/.
(iif) Axioms to ensure G is a filter H,-generic for P.

(a) G is a subset of P

/\ ie,, G= e, P

xEH,

(b) G is a filter.

(¢) G meets all dense sets in V

A \ i€ G

DCP dense, DEH,, x€D

(iv) Axioms to ensure the sort NwY equals H,[G], such as:

Jow (Con) = P A Jowr (C10) = G A Jow (C20) = H)
Sat (Vaz do (0 is a cgo-name A & = 0y A PGenExt (T, €20, C10, Coo)))

A A (H2en) © Sato, (cmans n ez, o) o)

a<w] NnEw
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/\ H (Cow,) & \/ [(Cawr = Jpur (cng)) N H (cnp)]

a<wi B<wi ,n<w

a<wi zeHY

Lemma 5.5.4. Let P € H, force NS, to be saturated. Then 1p is Boolean consistent.

Proof.

e Let H be a V-generic filter for Coll(w, k). Since P (P)" is countable in V[H], there exists
G a filter V-generic for P in V[H].

e Since P forces NS, to be saturated, we have that H,[G] is iterable in V[H] (see Lemma

6.4.5 in Appendix 6.4). Denote by J* an NS, -correct iteration of H[G| of length

n :wY[H} in V[H].

e Consider
J ={jap:a <[ <n}

the extension of J* given by Lemma 6.4.2 (see Appendix 6.4) to an iteration of V[G] of
length 7. Denote by

j:VIGl =M
the map jo,. We have that j(H, M [G}) is the last iterate of J* and by elementarity of 7,

. VIGl\ _ M
](Hn[ ]) - Hj(n)‘

e Consider K C Coll(w, j(\)) a filter V-generic for A large enough with K chosen such that
H € V[K] and Hj, is countable in M[K].

e Then J witnesses that

H U‘J/l K] = there exists an iteration of length wY 1 guch that the last sort is H %).
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o Since w¥ = w/ ™ = j(wY) and HY = j(HY[G]) is in HAE] Shoenfield’s absoluteness

K
ensures that

HMETE there exists an iteration of length j(w} ) such that the last sort is j(HY [G]).

e By homogeneity of Coll(w, j(A)) we have that

MCN@IN) = there exists an iteration of length j(w)) with last sort j(HY[G]).

e By elementarity of j we have that in the generic extension of V' given by Coll(w, A) there
exists an iteration of length w}” whose last iterate is H,[G]. This iteration naturally gives
rise to a model of ¥p. Therefore, the sentence 1p is Boolean consistent.

]

Lemma 5.5.5. Let P € H, be SSP and forcing NS, to be saturated. Then vp has the ASK
property.

Proof. We check the conditions in the definition of the ASK-property 5.1.13. We follow closely
the indexes from the definition.

1 The sentence is Boolean consistent by the previous Lemma ?7?.

2 The axiomatization of ¥p we gave shows that it is a conjunction of sentences of complexity

(§)-

¢S]

3 Let H C Coll(w, < A) be a filter V-generic, let M be a model of ¥p in V[H] with M,y
the domain for the sort MwY and let dz be such that

M,v F dg is stationary.

We need to argue all the conditions are met.

(I) If M 4p, then the sort M,v is H,[G] for G a filter V-generic for P. Since P is SSP we
have that

M
NS/ = NS/ NV =NS, NV,
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(IT) Since P forces NS, to be saturated we have that H,[G] is iterable (see Lemma 6.4.5 in
Appendix 6.4). Denote by

T = (Mo, jop 0 < B < ™)
an iteration of length w}/ 1 that continues the iteration J, v and is such that
dy' € Gy.
Enlarge the iteration
T 1w oo ™) = (Mayjop s wf Sa < B<w™)
using Lemma 6.4.2 (see Appendix 6.4) in V[G] so that it becomes an iteration
g ={iss el <a<p<al™}

of V|G| and denote by

the map j:va[H] so that
171

J(HLG]) = M_vim = HJj,,.

(K
wy J

We have our witnesses for condition (II) since j has critical point w}” and M is transitive.
(IIT) Let us build N realizing conditions (i)-(iv).

(i) — Denote by N the j(L;.)-structure generated by the iteration J continued with the
iteration J*.

* We interpret the constants c,, for o € w} in the same way as in the structure

M.

+ The interpretation of the constants ¢, for w;” < 8 < wY

H1 g arbitrary.

* For the constants Coo 1) WE need to make sure that ¢

j(cgf,y)

vy is interpreted by

. For the other constants we can pick any interpretation.

— We have that j(H[G]) is the domain of the sort NwV[H]. Hence, every constant &
1
with x € j(H,) can be interpreted as x.
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— We have that j(H.[G]) is the domain of the sort N vim. Hence, we can interpret
. w:l

Ji(G) as j(G).

— We interpret the predicates HS for o < w}/ 1 in the sort N, as the extension in M,
of Ggenkxt (T, Joa(€20), Joa(C10)s Joa(Coo)). That is, since for each « the a-th iterate M,
is of the form M?*[jo.(c10)], we interpret H® to be M.

V[H]

— We interpret H.'  as j(H,).

(ii) We have that V' F @) € j(dg) since dj' = dg/ and

dg/l S Gw}/
(iii) Let ¢ be an Lp-atomic formula.

— If ¢ comes from L;;. the equivalence comes from our choice of interpretations for the
constants depending on the sort.

— Atomic formulae from Ly, are of the form & € ¢ with z,y € H,.. The equivalence
comes from j being defined on all of V[G].

— Assume ¢ is either H%(c,,) for some a < w{. Then the equivalence follows from j
being the identity below w] and N copying the interpretations from M for Ju.

— Assume ¢ is Couy € G. Then the equivalence comes from the fact that we interpreted
Ci(a)jw?) bY J'(CQZIV) and j(G) by j(G).

4
— Assume ¢ is H,! (¢poy ) Then the equivalence comes from the fact that we interpreted

WV H] .
Ciayiwy) bY j(Cé\i}/) and Hy'  as j(HY).

(iv) Finally,
N E j(ie)

since

being an iteration of length w ensures j(1;:) holds,
— the last iterate being j(H[G]) ensures j(¢y, ) holds,
— the last iterate being j(H,[G]) ensures j(G) is a filter j(HY )-generic for j(P),

the axioms concerning the predicates H> hold by elementarity of j.
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Chapter 6

Appendix

6.1 Boolean algebras

Let us recall the following basic facts about partial orders and their Boolean completions:
Definition 6.1.1. Given a Boolean algebra B and a partial order P = (P, <):

e BT denotes the partial order given by its positive elements and ordered by a <g b if
aNb=a.

e B is < A-complete if any subset of B of size less than A has an infimum and a supremum
according to <g.

e A set G C P is a prefilter if for any aq,...,a, € G wecan find b€ G, b < aq,...,a,.
e A set F C P is a filter if it is a prefilter and is upward close:

(ae FANa<b)=beF.

Remark 6.1.2. Given a partial order P = (P, <):

e The order topology on P is the one whose open sets are given by the downward closed
subsets of P; the sets N, = {q € P : ¢ < p} form a basis for this topology.

e RO(P) is the complete Boolean algebra given by the regular open sets of the order topol-
ogy on P.

e The map p — Reg(NV,) defines an order and incompatibility preserving map of P into
a dense subset of (RO(P)",C); hence (P,<) and (RO(P)*,C) are equivalent forcing
notions.

If B is a Boolean algebra, BT sits inside its Boolean completion RO(B™) as a dense subset
via the map b +— N, (e.g. for all A € RO(B™) there is b € B such that N, C A). From now on
we identify B with its image in RO(B™) via the above map.

103
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6.2 Direct limits

Definition 6.2.1. Let £ be a language, (I, <) be a directed set, let (M, : i € I) be a family of
L-structures and let m;; : M; — M; be an L-morphism for every i < j € I. The direct limit
of the system (M;,m;; : i < j € I) is denoted by

lim M@

el
and is the L-structure given by the following.

e Let |_|
that

.e1 Mi be the disjoint union of the grounds M;. For xz; € M; and z; € M; we say

€T; ~ J]j
if for some k > 1,7 we have that
ik (74) = ().

The domain of lim;c; M; is given the equivalence classes of this equivalence relation.

e Let R be an n-ary relation symbol in £. Define

lim ./\/l@ F R([xil]a ) [zln])

iel
if for some j > iy,...,%, we have that

Mj F R(ﬂ—ilj(xh)a s 77Tinj(xin))'

e Let ¢ € L be a constant symbol. Define

limjer M; _ [CM]

¢ i

for some 7 € I.
e For i € I define m; : M; — lim;e; M; by m;(z) = [z].

Lemma 6.2.2. Let L be a language, let (I, <) be a directed set, let (M; i € I) be a family of
L-structures and let m;; : My — M be an L-morphism for every i < j € 1.

o The direct limit lim;c; M; is an L-structure.
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e The induced maps m; are L-morphisms.

o The following commutativity property holds

T Th5 = Ty

o [f the maps m;; are elementary for every i < j in I, then the maps m; are elementary.

6.3 Stationary set preserving forcings

The goal of this section is to argue that assuming Woodin cardinals, SSP forcings are absorbed
by SSP forcings that force NS, to be saturated.

Definition 6.3.1. Let P be a forcing notion. We say that [P is stationary set preserving,
or simply SSP; if for any S stationary subset of wy’, S remains stationary in V.

Definition 6.3.2. The non stationary ideal is saturated if every maximal antichain in
P (w1) /Ns,,

has size at most w;.

Suppose P € H,, is SSP and ¢ is a Woodin cardinal above k. Let G be a V-generic filter
for P. Then ¢ remains Woodin in V[G]. Consider the following result which appears in [5] as
Corollary 3.3.7.

Theorem 6.3.3. Let 6 be a Woodin cardinal. Then there exists Q an SSP forcing notion such

that in VO the non stationary ideal is saturated and § = wy" .

If we let H be V[G]-generic for the forcing stated in the previous theorem, then V[G][H]

models NS, is saturated and § = w;/ (GIH], Hence, for any SSP forcing P, if we assume the

existence of a Woodin cardinal above |P|, there exists P’ (given by P * Q) such that:

e P is a complete subforcing of P,
e [P’ is SSP and

e NS_, is saturated in the generic extension given by P’.

This might be of interest if one wishes to apply Theorem 5.5.1.
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6.4 Iterable models
Definition 6.4.1. Let

M E ZFC™

be a countable transitive set. An iteration 7 of M of length v < w; is a sequence of models
(M, Eq) » o <), asequence of sets (G, : a < 7) and a commuting family of embeddings

(jap : Moy — Mg : a < B <)

such that:

1. (Mo,Eo) - (M, 6),
2. Gy is M,-generic for (P (w;) /NS, )Mo for each o < 7,
3. Jaa is the identity map for each a < 7,

4. (Muy1, Eay1) = (Ult(M,, Ga), €q,) and Jaa+1 is (modulo isomorphism) the ultrapower
embedding for each a < 7,

5. (Ms, E5) is (isomorphic to) the direct limit of the system {(M,, E,), jop : o < § < 0} for
every limit ordinal § < v, and j,s is (modulo isomorphism) the induced embedding for
each a < § (see Appendix 6.2 for a precise definition).

The following result appears in [23] as Lemma 3.8 and in [8] as Lemma 1.5. Since both omit

the proof, let us present it as it will be used in the proofs of Theorem 5.5.1 and Lemmas 5.5.4,
5.5.5.

Lemma 6.4.2 (Upward extension of iterations). Let M € N be transitive sets such that

o M s iterable,

o M,NEZFC™,
o Wl =uwy,

e N ENS,, is saturated and

M s closed under sequences of length wM existing in N, that is for any function

frwd s M

belonging to N, we have that f € M.
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Then for any generic iteration
J ={Ma,Gao Jop @ < B < 7}
of length v of M there exists
J' = {Na, Gy Jas @ < B <}
a generic iteration of length v of N such that
(1) Go = Gy,
(1) jos(Ma) = Mg and as a consequence My € N, and M, is transitive inside N,
(111) Jog(x) = jap(x) for x € Ma,
(iv) wie = wd and
(v) M, is closed under w™*-sequences in N,.

For the proof we will need the following result.

Lemma 6.4.3 (Upward extension of filters). Let M C N be countable transitive models such
that

o M,NEZFC,
o Wl =uwy,

e N ENS,, is saturated and

e M is closed under sequences of length w}! existing in N, that is for any function

frwl = M

belonging to N, we have that f € M.

. M - . N
Then every filter M -generic for NS is also a filter N-generic for NS, .

Proof. Since M and N have the same first uncountable ordinal and M is closed under w-
sequences in N, both models have the same stationary sets. Then G is a filter on NSffl. Let
us argue that it is N-generic. Consider A a maximal antichain in N. Since

N E NS,, is saturated

there exists f : wM — A C M an enumeration of A in order type w}’. Since M is closed under
wM_sequences in N, this enumeration is also in M and A belongs to M. Then G N A is non
empty since G meets all maximal antichains in M. O
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Proof. Any iteration is determined by the first model and the sequence of generic filters: at
successor stages the definition of iteration forces to consider the ultrapower given by the generic
filter and at limit stages the definition of iteration forces to consider the direct limit. Hence, in
order to argue the existence of a generic iteration for NV, it is enough to argue the existence of
a sequence of N,-generic filters G/, C (P (w;) /NS, ).

Since we claim that G, = G, building the iteration comes down to check that G, is
N,-generic for (P (w;) /NS, ) for all a € 7.

Since Lemma 6.4.3 ensures that whenever conditions (ii), (iv) and (v) are met Gy, is N~
generic for (P (w;) /NS, )Ve, we only need to deal with conditions (ii)-(v).

The proof is by induction on the length « of the iteration.

& Suppose 7 = 0. Then all conditions that are not vacuous are met by hypothesis.

& Suppose v = a + 1. By induction hypothesis the result holds true for the iteration
restricted to length a. Let us extend it to a + 1.

(ii) Proceed by double inclusion. Suppose
Ult(Na, Ga) F [fla € Jaas1(Ma).
We need to argue that [f]g, € My41 = Ult(M,,G,). Since
Jaat1(Ma) = [er]

there exists S € G, such that for all 5 € S we have that f(5) € ca, (8) = M,. Define
f' by setting f'(a) = f(a) for « € S and f'(a) = 0 for a ¢ S. Since M, is closed under
wi'e-sequences in N, and f(a) € M, for o € S, we have that f’ € M,. Since S € G,
we have that

[fle. = [fa. € Ult(M,, Ga).

For the other inclusion suppose

[flg. € Mo = Ult(M,, G,).

By definition of Ult(M,, G,) we have that f € M,. Then for all § € w;"* we have that
f(B) € Mo = ¢, (B) and

Ult(Na; Ga) = [f]Ga € jgaJrl(MOé)‘
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(iii) Let z € M,. We have that

jaa+1<x) = [Cr]Ga = j&oﬂrl(x)'

(iv) We have that

Wiwaﬂ = jaa+1<wiwa) = j(/anrl(wl “) = W{VQH-

(v) Let us argue that M, is closed under w*-sequences in N, ;. Let
Not1 F [fle, is a function with domain w; and range j, 1 (Ma).
Then for some S € GG, and for every 5 € S we have that

N, E f(p) is a function with domain w; and range M,,.

Define

g:w%x—)Ma
B f(B) forpesS
B0 forp&s.

We have that g € M, since M, is closed under w{w"—sequences in N,. Finally,

9l = [fle. and [glc, € Moy

& Suppose 7 is a limit ordinal. In the following arguments we will assume a@ < [ < 7~
for notational simplicity but the same arguments work for any other arrangement of the
indexes.

(ii) We proceed by double inclusion. Assume [z] € j,., (M,). Then for some 3 > a
Nﬁ Fxe j&ﬁ(Ma) = Mﬂ.

Since j;,5(Mas) = Mz and My is transitive inside N3 we have that x € My and [z] € M,,.

For the other inclusion assume [z] € M,. Then = € M, for some o < v and

[:E] = jaw(x) S jéw(MO)'
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(iii) Let z € M,. We have that
Jap (%) = Jos(x)
for any 5. Then

Jor(2) = [2] = [jap(2)] = [ap(@)] = [2] = 7o, ().
(iv) We have that

M, ., M y N N.
wy = Joylwy ) = .](l)'y(wl ) =w
(v) Let [f] : w}™ — M, be in N,. Then for some a < v we have that

Ny E frw™ = M,.

Then f € M, since M, is closed under w;’*-sequences in N,. Hence, [f] € M,,.

O
Remark 6.4.4. Let G C Coll(w,d) be a filter V-generic such that HY is countable in V[G] for
k > wy . Let J be an iteration of H" of length v < wY Hl et us argue why the previous lemma

allows to enlarge de domain of the iterates so that J becomes “an iteration of V7. Let A be a
regular cardinal above x. Assume NS, is saturated in V. We have that H) is closed under
wy -sequences in H) since k > w]. Hence, all conditions from the previous lemma are met
by the couple (HY, HY') and the iteration can be enlarged from HY to H) in a coherent way.
Repeating this argument for all cardinals A in the class of regular cardinals above x produces

a class iteration of V' since all the extensions are coherent by condition (iii).

Lemma 6.4.5. Assume the non stationary ideal is saturated in V and k is a cardinal in V
larger than wy . If G is a filter V-generic such that in V[G] the set HY is countable, then HY
is iterable in V[G].

The proof of the above result is based on Lemma 6.4.2, the fact that being an iterable model
is T1} in the codes and the following Lemma which appears in [8] as Lemma 1.6.

Lemma 6.4.6. Suppose M is a countable transtive model of ZFC™, NSi\f1 18 precipitous and J
is an iteration of M of length n € M. Then M, is well founded.
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