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Abstract

In this dissertation, we address three major challenges in the design of blockchain systems in particular
and large-scale fault-tolerant distributed systems in general. This work aims at improving the perfor-
mance of such systems directly, as well as providing useful tools for future development of distributed
algorithms.

First, we explore the limits of what can be done with minimal synchronization by designing
CryptoConcurrency—an asset transfer system that, instead of totally ordering all users’ requests, pro-
cesses concurrent requests in parallel as much as possible. Unlike other similar systems, in CryptoCon-
currency, we allow the users to have shared accounts and do not make the unrealistic assumption that an
honest user’s account is never accessed from two devices concurrently. CryptoConcurrency explores novel
theoretical grounds by addressing transaction conflicts in a dynamic and non-pairwise manner, allowing
the owners of each account to independently choose their preferred mechanism for conflict resolution.

Then, we improve the performance of consensus—the synchronization problem at the heart of most
practical distributed systems. We build the first consensus protocol that manages to combine two
desirable properties: extremely fast termination in favorable conditions and graceful recovery when such
conditions are not met. The design involves a novel type of cryptographic proofs, with an efficient
practical implementation.

Finally, we set out to tackle the problem of designing efficient distributed protocols with weighted
participation. To this end, we define several new optimization problems, related to reducing or, in other
words, quantizing the weights of the participants in a way that preserves important structural properties.
We show how to apply them to make weighted-model variants of a large class of distributed protocols
with very little overhead compared to their counterparts in the simpler non-weighted model. For these
optimization problems, we prove upper bounds, provide a practical open-source approximate solver that
satisfies these upper bounds, and perform an empirical study on the weight distributions from real-world
blockchain systems.
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Résumé

Dans cette thèse, nous abordons trois défis majeurs dans la conception des systèmes de blockchain en
particulier et des systèmes distribués tolérants aux pannes à grande échelle en général. Ce travail vise
à améliorer directement la performance de tels systèmes, ainsi qu’à fournir des outils utiles pour le
développement futur d’algorithmes distribués.

Premièrement, nous explorons les limites de ce qui peut être réalisé avec une synchronisation minimale
en concevant CryptoConcurrency—un système de transfert d’actifs qui, au lieu d’ordonner totalement
toutes les requêtes des utilisateurs, traite les requêtes concurrentes en parallèle autant que possible.
Contrairement à d’autres systèmes similaires, dans CryptoConcurrency, nous permettons aux utilisateurs
d’avoir des comptes partagés et ne faisons pas l’hypothèse irréaliste qu’un compte d’utilisateur honnête
n’est jamais accédé simultanément depuis deux dispositifs. CryptoConcurrency explore de nouveaux
terrains théoriques en abordant les conflits de transactions de manière dynamique et non par paires,
permettant aux propriétaires de chaque compte de choisir indépendamment leur mécanisme préféré de
résolution de conflits.

Ensuite, nous améliorons la performance du consensus—le problème de synchronisation au cœur
de la plupart des systèmes distribués pratiques. Nous construisons le premier protocole de consensus
qui parvient à combiner deux propriétés souhaitables : une terminaison extrêmement rapide dans des
conditions favorables et une récupération gracieuse lorsque ces conditions ne sont pas remplies. La
conception implique un nouveau type de preuves cryptographiques, avec une implémentation pratique
et efficace.

Enfin, nous nous attaquons au problème de la conception de protocoles distribués efficaces avec une
participation pondérée. À cette fin, nous définissons plusieurs nouveaux problèmes d’optimisation, liés
à la réduction ou, en d’autres termes, à la quantification des poids des participants d’une manière qui
préserve d’importantes propriétés structurelles. Nous montrons comment les appliquer pour créer des
variantes pondérées d’un large éventail de protocoles distribués avec très peu de surcharge par rapport
à leurs homologues dans le modèle non pondéré plus simple. Pour ces problèmes d’optimisation, nous
prouvons des bornes supérieures, fournissons un solveur pratique open-source approximatif qui satisfait
ces bornes, et effectuons une étude empirique sur les distributions de poids provenant de systèmes de
blockchain réels.
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Résumé long en français

Contexte

Tolérance aux pannes byzantines dans les blockchains

Un système distribué est un ensemble d’acteurs, que nous appellerons participants ou parties, qui com-
muniquent via un certain type de support (tel qu’Internet) et tentent d’atteindre un objectif commun.
Un des principes centraux dans la conception de systèmes distribués est la tolérance aux pannes : la
capacité d’un système à fonctionner comme prévu malgré la défaillance de certains de ses participants.
Le type de défaillance le plus général parmi ceux couramment considérés est appelé faute arbitraire
ou byzantine [101]. Comme son nom l’indique, il correspond à une situation où l’on fait peu ou pas
d’hypothèses quant au comportement des parties défaillantes. Pour formaliser cette notion, l’approche
standard consiste à considérer que toutes les parties défaillantes sont entièrement contrôlées par un même
adversaire, dont l’unique objectif est de compromettre le système. C’est pourquoi ce type de défaillance
est aussi appelé faute malveillante.

Bien qu’à l’origine on ait surtout eu à l’esprit des pannes matérielles et des bogues logiciels, l’utilisation
la plus répandue aujourd’hui de la tolérance aux pannes byzantines (ou simplement BFT) se trouve
dans les protocoles de blockchain. Au sens large, une blockchain est un système qui fonctionne sur un
ensemble d’ordinateurs gérés par différentes personnes qui ne se font pas entièrement confiance, voire
ne se connaissent pas. En fait, dans la plupart des blockchains publiques, n’importe qui peut devenir
participant tout en restant anonyme, sous réserve d’investir un certain montant de ressources de calcul
(dans les systèmes dits de proof-of-work [136]) ou de capital (dans les systèmes de proof-of-stake [135]).
Ces systèmes gèrent souvent des actifs de très grande valeur monétaire, avec une capitalisation de marché
totale estimée à plusieurs billions de dollars pour l’ensemble des actifs de blockchains publiques au
moment de la rédaction. Étant donné les enjeux considérables, il est quasiment inévitable que des
acteurs malveillants tentent de s’infiltrer dans le système et de le manipuler pour en extraire de la valeur
ou, tout simplement, de le briser dans le but de nuire aux autres.

Cependant, les protocoles traditionnels tolérants aux pannes byzantines ne suffisent pas à satisfaire
les besoins des blockchains modernes. Ils ont été conçus dans l’optique d’un petit nombre de parties,
généralement inférieur à dix, tandis que dans les blockchains on peut compter des centaines, voire des
dizaines de milliers de participants. De plus, la vision aujourd’hui popularisée du « web-3 » suggère
que, à terme, la plupart des services Internet utiliseront des blockchains pour représenter la propriété
numérique, ce qui ne sera possible que si les blockchains parviennent à proposer des latences très faibles
combinées à un débit extrêmement élevé. Tout cela nécessite une nouvelle génération de protocoles, qui
s’appuient souvent sur une cryptographie sophistiquée.

Mais qu’est-ce qu’une blockchain et pourquoi devrais-je m’y intéresser ?

Les blockchains, au sens moderne du terme, ont vu le jour à la suite d’un article pseudonyme décrivant
Bitcoin [112]. L’objectif annoncé par les auteurs était de créer une monnaie numérique et un sys-
tème de paiement fonctionnant avec cette monnaie, qui ne seraient possédés ni contrôlés par aucune
personne, organisation ou pays, mais qui émergeraient plutôt du comportement collectif de nombreux
participants indépendants. Ces participants, appelés mineurs dans l’article sur Bitcoin, investissent leurs
ressources pour entretenir le système et reçoivent en retour une récompense sous forme de la même mon-
naie numérique. Cette application à elle seule est déjà assez puissante. Une monnaie émise sur la base
d’un ensemble de règles publiques et prédéfinies peut constituer une alternative attrayante (ou peut-être
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un complément précieux) au système monétaire actuel, où la création monétaire est décidée à volonté par
les gouvernements. D’autre part, un système de transfert d’actifs qui n’est pas fondé sur des relations de
confiance complexes entre banques permet des transferts internationaux de valeur beaucoup plus rapides
et moins coûteux.

Cependant, l’aspect potentiellement encore plus intéressant réside dans le mécanisme sous-jacent sur
lequel ce système de paiement est construit : en essence, une base de données distribuée, décentralisée,
et jusqu’à un certain point programmable, qui maintient un registre de la « propriété » des BTC — la
monnaie — et facilite son transfert. Par la suite, à la suite du succès de Bitcoin, une multitude d’autres
systèmes similaires sont apparus [134]. Le plus notable est sans doute Ethereum [139], qui s’est alors
concentré principalement sur l’enrichissement des capacités de programmation de la base de données
sous-jacente.

Une bonne manière abstraite de penser à une blockchain publique est d’imaginer un ordinateur mag-
ique quelque part dans le « nuage », qui ne tombe jamais en panne ni ne commet d’erreurs, auquel tout
le monde a accès (selon un ensemble de règles d’interface données), mais que personne ne possède ni ne
contrôle. Qu’on adhère ou non à l’utilité de chaque application en particulier, il est clair que c’est une
capacité nouvelle qui n’existait pas auparavant. Dans un monde sans blockchain, toute base de données
doit être gérée par une entité, qu’il s’agisse d’une administration publique ou d’une entreprise. Dans ce
monde, toutes les interactions numériques à caractère public, commerciales ou autres, passent par une
instance centrale, qui est en général une société commerciale. En outre, au sein de cette société, des
personnes physiques disposent d’un accès administrateur direct à la base de données.1 Cela suscite des
problèmes d’alignement des intérêts, de maîtrise des coûts et de sécurité, tout en compliquant les inter-
actions transfrontalières lorsque la recherche d’une source de confiance commune s’avère problématique.

Les blockchains privées, quant à elles, sont souvent contrôlées par une seule organisation, mais ren-
forcent la sécurité en rendant nécessaire l’accès à plusieurs serveurs pour toute tentative de falsification
de la base de données. Enfin, les blockchains dites de consortium permettent à plusieurs organisations
d’établir un socle de confiance commun, indispensable à une collaboration efficace, chacune contrôlant
un sous-ensemble de participants du protocole blockchain, de sorte qu’aucune organisation ne dispose
d’un accès privilégié à la base de données partagée.

Malgré tout ce potentiel, de nombreux obstacles se dressent encore pour une adoption à grande échelle,
et leur analyse détaillée sort du cadre de ce travail. Cependant, même aujourd’hui, seize ans après la
publication initiale de l’article sur Bitcoin, l’un des principaux freins reste la technologie. Les protocoles
actuels ne sont tout simplement pas prêts à supporter la charge nécessaire tout en offrant une latence
suffisamment faible et en passant à l’échelle pour accueillir un grand nombre de participants, condition
essentielle pour assurer la décentralisation du système. Dans cette thèse, nous entendons contribuer à la
fois à une meilleure compréhension théorique de la tolérance aux pannes byzantines et à l’amélioration
technologique des blockchains.

Notre contribution

Au cœur même des blockchains modernes se trouve sans doute le problème le plus étudié de l’informatique
distribuée : le consensus [63]. Plus précisément, la plupart des blockchains implémentent une variante du
consensus connue dans la littérature de l’informatique distribuée traditionnelle sous le nom de réplication
de machines à états (SMR) [96]. Ce concept formalise l’idée d’un « ordinateur magique quelque part
dans le nuage qui ne tombe jamais en panne ni ne commet d’erreurs ». Le défi consiste à construire cet
ordinateur à partir d’un ensemble de machines bien réelles et susceptibles de dysfonctionner, voire d’être
contrôlées de manière malveillante. C’est un problème très difficile même lorsque seules des pannes de
type « crash » sont envisagées, et il l’est d’autant plus dans le monde des pannes byzantines [10, 55, 56,
58, 63].

Chapitre 2 s’appuie sur un travail conjoint avec Pavel Ponomarev, Petr Kuznetsov et Yvonne-Anne
Pignolet [133], dans lequel nous contournons le consensus pour résoudre le problème de la création d’un
système de paiement (ou, plus généralement, un système de transfert d’actifs) directement à partir de
principes de base. Contrairement à des travaux antérieurs similaires [19, 48, 78, 79, 92, 126], nous évitons
l’hypothèse, trop simpliste, selon laquelle chaque compte appartiendrait à un unique propriétaire et
qu’aucun compte d’utilisateur honnête ne pourrait jamais être utilisé de façon concurrente (par exemple,

1Sauf si l’entreprise exploite une blockchain privée, comme évoqué ci-dessous.
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depuis plusieurs appareils). Bien qu’il soit fondamentalement impossible de se passer entièrement du
consensus sans une telle hypothèse [78], nous réussissons à l’éviter sur le chemin critique et ne nous
appuyons que sur une forme affaiblie de consensus, que nous avons appelée « consensus de compte »,
laquelle vise essentiellement à permettre aux propriétaires d’un compte partagé de se mettre d’accord
entre eux. De plus, nous ne la sollicitons que dans le cas rare où des transactions émises concurremment
dépassent le solde du compte. Sur le plan formel, il s’agit bien d’une forme de consensus, mais cela n’a
rien à voir avec la nécessité de parvenir à un accord entre tous les participants du système à chaque fois
que quelqu’un souhaite effectuer un transfert. Avec ce travail, nous espérons contribuer à la fois à la
conception de systèmes pratiques et à la compréhension théorique fondamentale des types de problèmes
qui peuvent se résoudre sans recourir à l’arsenal lourd du consensus.

Bien que le transfert d’actifs reste l’application la plus courante des blockchains, il existe de
nombreuses autres applications importantes nécessitant un consensus, comme les contrats intelligents
génériques [137]. Ainsi, même avec un système de transfert d’actifs plus efficace, le consensus demeure
indispensable. Il est essentiel d’en améliorer les performances tout en maintenant la capacité du protocole
à s’adapter à un grand nombre de participants, afin de préserver une décentralisation suffisante.

Chapitre 3 est basé sur un travail conjoint avec Matthieu Rambaud et Mark Abspoel [122], dans
lequel nous montrons comment accélérer le consensus à l’aide d’une voie rapide, assurant la terminaison
en seulement quelques délais de messages dans des conditions favorables, tout en maintenant la complexité
en authenticateurs (une mesure qui combine la charge de communication et de calcul dans le système)
linéaire en fonction du nombre de participants. Avant nos travaux, les constructions similaires de voies
rapides [74, 90, 99] s’accompagnaient d’une complexité quadratique en cas de défaillance du leader ou
de retards réseau inattendus, ce qui les rendait inadaptées à des déploiements à grande échelle. Pour
obtenir ce résultat, nous introduisons un nouveau type de preuve cryptographique, que nous appelons
Proof-of-Exclusivity (PoE), et en proposons une implémentation efficace à partir de signatures de seuil.
De plus, nous utilisons l’responsabilisation (accountability) et la réutilisation de signatures afin que la
construction d’une PoE n’induise aucun surcoût tant qu’aucun participant n’équivaut ouvertement. En
intégrant un mécanisme de reconfiguration [100] ou de slashing [33], il est possible de sanctionner tout
participant malhonnête, rendant ce cas extrêmement improbable en pratique.

Depuis la publication de [122], notre construction PoE, appelée Big Buckets PoE, a trouvé une
application indépendante dans l’amélioration de la complexité adaptative du consensus synchrone [46].

Ces deux chapitres suivent la convention quasiment universelle de la littérature sur la tolérance aux
pannes byzantines : on considère un système de n nœuds dont jusqu’à f peuvent être byzantins, avec f
limité à une fraction de n (les cas les plus courants étant f < n/3 ou f < n/2). Ironiquement, malgré
le fait qu’il soit omniprésent dans la littérature et l’analyse formelle des protocoles, ce modèle est trop
simplificateur et ne représente pas les systèmes réels. En pratique, les blockchains publiques fonctionnent
généralement dans un modèle pondéré, où chaque participant est associé à un poids et où l’adversaire
peut corrompre un ensemble de parties détenant au plus une fraction (par exemple, 1/3 ou 1/2) du poids
total. Si certains protocoles se traduisent relativement facilement dans ce nouveau cadre au moyen de «
votes pondérés », d’autres s’appuient sur des composants qui semblent intrinsèquement discrets, comme
le partage de secrets [123] ou les codes correcteurs et effaçables [105].

Nous abordons ce problème dans le Chapitre 4, qui s’appuie sur un travail conjoint avec Luciano
Freitas [132]. Nous formalisons et proposons des solutions approchées à trois nouveaux problèmes
d’optimisation, que nous regroupons sous le nom générique de problèmes de réduction de poids.2 Fait
quelque peu surprenant, nous découvrons qu’il est possible de projeter efficacement de grands poids réels
en de petits poids entiers, tout en préservant certaines propriétés structurelles essentielles. Nous mon-
trons ensuite comment appliquer ces problèmes de réduction de poids pour transformer une vaste classe
de protocoles conçus dans le modèle classique (ou, selon notre terminologie, nominal) vers le modèle
pondéré. Dans certains cas, notre transformation ne nécessite qu’une très faible baisse de la résilience,
mais, de manière assez remarquable, pour de nombreux problèmes importants, nous parvenons à proposer
des solutions pondérées offrant la même résilience que celles du modèle nominal, grâce à une utilisation
sélective et soignée de la réduction de poids. Parmi ces exemples notables, on trouve le stockage dis-
tribué à codes effaçables, la diffusion authentifiée (broadcast), le partage de secrets vérifiable ou encore
le consensus asynchrone. Nous pensons que ce travail est une contribution importante non seulement
pour l’informatique distribuée, mais aussi pour la cryptographie appliquée, car il apporte une solution
pratique à une difficulté de longue date : l’adaptation de la cryptographie de seuil au modèle pondéré.

2Un nom plus descriptif, quoique moins précis, pourrait être « quantification des poids ».
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La réduction de poids a déjà trouvé une application dans l’implémentation de balises aléatoires
(random beacons) pour les blockchains en proof-of-stake [140].
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Chapter 1

Introduction

1.1 Background

1.1.1 Byzantine fault tolerance in blockchains

A distributed system is one that consists of a number of actors, which we will refer to as participants or
parties, communicating over some kind of medium (such as the Internet) and trying to achieve a common
objective. One of the central principles in the design of distributed systems is fault tolerance: the ability
of the system to function as intended despite the failures of some of the participants. The most general
of the commonly considered types of failures is called arbitrary or Byzantine [101] faults. As the name
suggests, it corresponds to making no or very few assumptions on the behavior of faulty parties. To
formalize this notion, the standard approach is to consider all the faulty parties as being under the total
control of a single adversary, whose sole goal is to break the system. Hence, yet another name for this
type of failures is malicious faults.

While originally conceived with hardware malfunctions and software bugs in mind, the prevalent use
of Byzantine fault tolerance (or simply BFT) today is in blockchain protocols. In the general sense, a
blockchain is a system that runs on a set of computers managed by different people who do not fully
trust or even know each other. In fact, in the case of most public blockchains, anyone can become a
participant while staying anonymous, provided they invest a certain amount of computational resources
(in the so-called proof-of-work systems [136]) or capital (in proof-of-stake systems [135]). These systems
often manage assets of very high monetary value, with the total market capitalization of all public
blockchain assets estimated to be in the trillions of dollars at the time of writing. With stakes so high,
it is all but inevitable that malicious actors will try to infiltrate the system and either manipulate it to
extract value for themselves or simply break it to harm others.

However, traditional Byzantine fault-tolerant protocols are not sufficient to satiate the needs of mod-
ern blockchains. They were designed with a small number of parties in mind, typically below ten, while
the number of participants in blockchain systems ranges from hundreds to tens of thousands. More-
over, the newly popularized vision of “web-3” suggests that eventually most Internet services will use
blockchains to represent digital ownership, which is only ever going to be possible if blockchains manage
to achieve very low latencies combined with extremely high throughput. All of this necessitates a new
set of protocols, often relying on sophisticated cryptography for their construction.

1.1.2 But what is a blockchain and why should I care?

Blockchains, in the modern sense of the word, started from a pseudonymous paper introducing Bit-
coin [112]. The authors’ stated goal was to create a digital currency and a payment system operating in
that currency that would not be owned or controlled by any person, organization, or country, but instead
emerged from the collective behavior of many individual participants. The participants, called miners in
the Bitcoin paper, would invest their resources into maintaining the system and in return would receive
a reward in the form of that same digital currency. This application alone is quite powerful. A currency
that is issued purely based on a set of publicly known pre-set rules may provide an attractive alternative
(or, perhaps, a valuable complement) to the current monetary system, where money is created at will
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by governments. On the other hand, the asset transfer system that is not based on complicated trust
relationships between banks allows for much faster and cheaper international value transfers.

However, what is potentially even more interesting is the underlying mechanism that this payment
system was built upon, which is essentially a distributed, decentralized, and, to a limited degree, pro-
grammable database maintaining the records of “ownership” of BTC—the currency—and facilitating its
transfers. Later, following Bitcoin’s success, a myriad of other similar systems emerged [134]. Most
notably, Ethereum [139], which, at the time, focused primarily on enriching the programmability of the
underlying database.

A good abstract way of thinking about a public blockchain system is to imagine a magical computer
somewhere in the sky that never crashes or errs, that everyone has access to (within a fixed set of
interfacing rules), but no one owns or controls. While the utility of specific applications is still a subject
for debate, it is easy to see that this is a new capability that did not exist before. In a pre-blockchain
world, every database must be managed by some entity, be it a government agency or an organization. In
that world, all digital public interactions, commercial or otherwise, must go through some central party,
typically a for-profit company. Moreover, within that company, there are individual people with direct
admin access to the database.1 This creates incentive alignment, cost efficiency, and security issues and
complicates cross-border interactions where finding common anchors of trust may be problematic.

On the other hand, private blockchains are often controlled by a single organization, but provide
additional security by making sure that any tampering with the database requires the attacker to obtain
access to multiple servers. Finally, consortium blockchains allow multiple organizations establish a
common pivot of trust necessary for efficient collaboration by each controlling a subset of participants
in a blockchain protocol, thus ensuring that no single organization has privileged access to the shared
database.

Despite all of that potential, the barriers for its full realization are numerous and their detailed
analysis is outside the scope of this work. However, even today, 16 years after the initial publication
of the Bitcoin paper, at least one of the major barriers is still technological. The current protocols are
simply not ready to handle the necessary load while simultaneously providing sufficiently low latency and
scaling to enough participants to ensure that the system is sufficiently decentralized. In this dissertation,
we attempt to contribute to both the theoretical understanding of Byzantine fault tolerance and the
technological development of blockchains.

1.2 Our contribution

At the very heart of modern blockchain systems lies what is, perhaps, the most widely studied problem
of distributed computing—consensus [63]. More precisely, most blockchains implement a variant of
consensus known in traditional distributed computing literature as state machine replication (SMR) [96].
It formally captures the abstraction of a “magical computer somewhere in the sky that never crashes or
errs”. The challenge, however, is in constructing it out of a number of non-magical and error-prone or
even sometimes maliciously controlled computers. This is a very challenging problem even when simple
crash failures are concerned and even more so in the world with Byzantine faults [10, 55, 56, 58, 63].

Chapter 2 is based on a joint work with Pavel Ponomarev, Petr Kuznetsov, and Yvonne-Anne
Pignolet [133], in which we sidestep consensus and solve the problem of creating a payment system
(or, more generally, an asset transfer system) directly, from the first principles. Unlike prior similar
works [19, 48, 78, 79, 92, 126], we avoid making the overly simplistic assumption that every account
belongs to a single owner only and no account belonging to an honest user can ever be accessed con-
currently (e.g., from multiple devices). Although it is fundamentally impossible to completely avoid
consensus without such an assumption [78], we manage to avoid it on the critical path and only use a
certain weak form of consensus that we dubbed “account consensus”, which essentially means that the
owners of a shared account need to be able to reach an agreement between themselves. Furthermore,
we only rely on it in the rare case when concurrently issued transactions exceed the account balance.
While, from the formal point of view, it is a form of consensus, it is not the same as having to reach
an agreement among all the participants of the system each time someone wants to make a transfer.
With this work, we aim to contribute both to practical system design and to the fundamental theoretical

1Unless the company runs a private blockchain, as described below.
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understanding of the kinds of problems that are possible to solve without involving the heavy machinery
of consensus.

While asset transfer is still the most common application of blockchains, there are many other im-
portant applications that do require consensus, such as general-purpose smart contracts [137]. Hence,
even with a separate, more efficient asset transfer system in place, consensus will remain necessary. It is
essential to improve its performance while keeping the protocol scalable to allow as many independent
parties as possible to participate, ensuring sufficient decentralization.

Chapter 3 is based on a joint work with Matthieu Rambaud and Mark Abspoel [122], in which we
show how to speed up consensus with a fast track, ensuring termination in just a couple of message
delays in favorable conditions, while keeping the authenticator complexity (a measure that combines
communicational and computational load on the system) linear in the number of participants. Prior to
our work, similar fast track constructions [74, 90, 99] incurred quadratic complexity in case of a faulty
leader or unexpected network delays, making them unsuitable for large-scale deployments. To achieve
this result, we introduce a novel type of a cryptographic proof that we dub a Proof-of-Exclusivity (PoE)
and provide an efficient instantiation of such a proof from threshold signatures. Moreover, we employ
accountability and reuse signatures to ensure that a PoE can be constructed with zero overhead unless
a participant openly equivocates. With the help of a reconfiguration [100] or a slashing [33] mechanism,
we can punish the misbehaving participant, thus making this case extremely unlikely in practice.

Since the publication of [122], our PoE construction, called Big Buckets PoE, has found an indepen-
dent application in improving the adaptive complexity of synchronous consensus [46].

These two chapters follow what is a nearly universal standard for the Byzantine fault tolerance
literature: they assume a system of n nodes of which up to f can be Byzantine, where f is limited to a
fraction of n (f < n/3 or f < n/2 are the most common choices). Ironically, despite being ubiquitous in
the literature and formal analysis of protocols, this model is oversimplified and does not represent real
systems. Instead, public blockchains typically operate in a weighted model, where each participant is
associated with a weight and the adversary can corrupt a set of parties holding at most a fraction (e.g.,
1/3 or 1/2) of the total weight. While some protocols are relatively easy to convert to such a model with
what we call “weighted voting”, others rely on components that seem to be inherently discrete in nature,
such as secret sharing [123] or erasure and error-correcting codes [105].

We address this issue in Chapter 4, which is based on a joint work with Luciano Freitas [132]. We
formalize and provide approximate solutions to three novel optimization problems, which we collectively
call the weight reduction problems.2 The somewhat surprising discovery is that it is possible to efficiently
map large real weights into small integer weights while preserving certain critical structural properties.
We then proceed to demonstrate how to apply the weight reduction problems to transform a large class of
protocols designed in the classical (or, how we call it, nominal model) to the weighted model. While, for
some protocols, our transformation requires an arbitrarily small reduction in resilience, surprisingly, for
many important problems, we manage to obtain weighted solutions with the same resilience as nominal
ones through a more careful selective application of weight reduction. Notable examples include erasure-
coded distributed storage and broadcast protocols, verifiable secret sharing, and asynchronous consensus.
We believe that this work provides a valuable contribution not only to distributed computing, but also
to applied cryptography as it provides a practical solution to the long-standing challenge of adapting
threshold cryptography to the weighted model.

Weight reduction has already found an application in the implementation of random beacons in
proof-of-stake blockchains [140].

1.3 Publications
The technical chapters in this dissertation are based on three published articles:

• Andrei Tonkikh, Pavel Ponomarev, Petr Kuznetsov, and Yvonne-Anne Pignolet. Cryptoconcur-
rency:(almost) consensusless asset transfer with shared accounts. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, pages 1556–1570, 2023.

• Matthieu Rambaud, Andrei Tonkikh, and Mark Abspoel. Linear view change in optimistically fast
bft. In Proceedings of the 2022 ACM Workshop on Developments in Consensus, pages 67–78, 2022.

2Perhaps, a more descriptive albeit slightly less precise name could be “weight quantization”.
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• Andrei Tonkikh and Luciano Freitas. Swiper: a new paradigm for efficient weighted distributed
protocols. In Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing,
pages 283–294, 2024.

The author also participated in the publication of several other articles that were not included in this
dissertation:

• Luciano Freitas, Andrei Tonkikh, Adda-Akram Bendoukha, Sara Tucci-Piergiovanni, Renaud
Sirdey, Oana Stan, and Petr Kuznetsov. Homomorphic sortition – single secret leader elec-
tion for PoS blockchains. Cryptology ePrint Archive, Paper 2023/113, 2023. URL: https:
//eprint.iacr.org/2023/113

• Petr Kuznetsov, Yvonne-Anne Pignolet, Pavel Ponomarev, and Andrei Tonkikh. Permissionless
and asynchronous asset transfer. Distributed Computing, 36(3):349–371, 2023

• Luciano Freitas, Petr Kuznetsov, and Andrei Tonkikh. Brief announcement: Asynchronous ran-
domness and consensus without trusted setup. In Proceedings of the 2022 ACM Symposium on
Principles of Distributed Computing, pages 103–105, 2022

• Luciano Freitas, Petr Kuznetsov, and Andrei Tonkikh. Distributed randomness from approximate
agreement. In 36th International Symposium on Distributed Computing, 2022

• Petr Kuznetsov and Andrei Tonkikh. Asynchronous reconfiguration with byzantine failures. Dis-
tributed Computing, 35(6):477–502, 2022

• Luciano Freitas de Souza, Andrei Tonkikh, Sara Tucci-Piergiovanni, Renaud Sirdey, Oana Stan,
Nicolas Quero, and Petr Kuznetsov. Randsolomon: Optimally resilient random number generator
with deterministic termination. In 25th International Conference on Principles of Distributed
Systems (OPODIS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022

• Petr Kuznetsov, Andrei Tonkikh, and Yan X Zhang. Revisiting optimal resilience of fast byzantine
consensus. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing,
pages 343–353, 2021

• Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Yvonne-Anne Pignolet, Dragos-Adrian
Seredinschi, and Andrei Tonkikh. Dynamic byzantine reliable broadcast. In 24th International Con-
ference on Principles of Distributed Systems (OPODIS 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2021

• Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo Monti, Matej
Pavlovic, Yvonne Anne Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh, and Athanasios
Xygkis. Online payments by merely broadcasting messages. In 50th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, DSN 2020, Valencia, Spain, June 29 -
July 2, 2020, pages 26–38. IEEE, 2020

1.4 Roadmap
Chapter 2 presents our asset transfer protocol with minimal synchronization. Chapter 3 describes a
construction of a Byzantine fault-tolerant consensus protocol with fast track and linear complexity.
Chapter 4 addresses the problem of converting distributed protocols to the weighted model. Each
chapter concludes with a discussion of interesting directions for future research, related to each of the
topics (Sections 2.14, 3.9 and 4.12). We conclude the dissertation in Chapter 5 with a brief discussion
of more general topics of interest in the fields of Byzantine fault-tolerant distributed computing and
blockchains.

1.5 Funding
This thesis was supported by Mazars Group and the TrustShare Innovation Chair project.
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Chapter 2

(Almost) Consensusless Asset Transfer
with Shared Accounts

2.1 Introduction

The ability to transfer assets from one user’s account to another user’s account despite the potential
presence of malicious parties comes naturally when the users are able to solve Byzantine fault-tolerant
consensus [101] in order to reach an agreement on the evolution of the system state. They can simply
agree on the order in which their transactions are executed. Indeed, for a long time consensus-based
blockchain protocols [112, 139] have remained the de facto standard to implement asset transfer (also
known as cryptocurrency).

However, Byzantine fault-tolerant consensus is a notoriously hard synchronization problem. Not only
is it impossible to solve deterministically in asynchronous systems [63], there are also harsh lower bounds
on its costs even with stronger synchrony assumptions: at least Ω(f2) messages [55] and Ω(f) rounds of
communication [10, 56, 58], even in the synchronous model (i.e., when there is a known upper bound ∆
on the time it takes for a message sent by a correct process to reach its destination). Despite the efforts
of many brilliant researchers and engineers, existing consensus-based blockchain implementations still
struggle to achieve latency, throughput, and transaction fees acceptable for widely applicable payment
systems.

The good news is that consensus is not necessary to implement an asset transfer system [78, 79].
This observation led to a series of purely asynchronous, consensus-free cryptocurrencies [19, 48, 92, 125].
Practical evaluations have confirmed that such solutions have significant advantages over consensus-based
protocols in terms of scalability, performance, and robustness [19, 48].

However, all existing consensus-free implementations share certain limitations. In particular, they
assume that each account is controlled by a single user that never issues multiple transactions in par-
allel. This assumption precludes sharing an account by multiple users, e.g., by family members, or
safely accessing it from multiple devices. If an honest user accidentally issues several concurrent trans-
actions, the existing implementations may block the account forever, without any possibility to recover
it. Consensus-free systems based on the UTXO model [138], such as [125], share the same restriction.

In this chapter, we propose CryptoConcurrency, a hybrid protocol that combines the benefits of both
approaches. It allows accounts to be shared by multiple users and avoids using consensus in most cases.
Indeed, as demonstrated in [78], in certain cases, consensus is unavoidable. Therefore, the challenge is
to minimize its use.

Informally, in our implementation, if transactions concurrently issued on the same account can all be
applied without exhausting the account’s balance, they are processed in parallel, in a purely asynchronous
way (i.e., without invoking consensus). This property appears natural as such transactions can be ordered
arbitrarily, and the order will not affect the resulting account’s state. In contrast, when the account
balance does not allow for accepting all of the concurrent transactions, the account owners may use
consensus to agree which transactions should be accepted and which ones should be considered failed
due to the lack of funds.

Our protocol dynamically detects the cases when consensus should be used. This distinguishes our
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approach from earlier work on combining weak and strong synchronization in one implementation, where
conflicts were defined in a static way, i.e., any potentially conflicting concurrent operations incur the use
of consensus, both in general-purpose systems [20, 102, 104, 118] and in systems specialized for asset
transfer [125].

Interestingly, every account can be associated with distinct consensus instances that only need to
be accessed by the account’s owners. In practice, consensus instances for different accounts can be
implemented in different ways and on different hardware, depending on the trust assumptions of their
owners.

We believe that the results of this chapter can be further generalized to applications beyond asset
transfer and that this work can be a step towards devising optimally-concurrent protocols that dy-
namically determine the cases when falling back to stronger synchronization primitives is unavoidable.
Intuitively, it seems to be possible for an object with a sequential specification [82] to operate in a purely
asynchronous manner without resorting to consensus in any executions where reordering of the concur-
rent operations does not affect their outcomes. This enables the development of lightweight, adaptive
implementations that can avoid the costs of heavy synchronization primitives in most cases without
compromising functionality or sacrificing liveness even in highly concurrent scenarios.

Roadmap. The rest of this chapter is organized as follows. We overview related work in Section 2.2.
In Section 2.3, we introduce our system model. In Section 2.4, we overview the basic principles of our
algorithm. We state the problem and the main theorem of the chapter formally in Section 2.5, describe
the key building blocks in Sections 2.6 and 2.7 and provide the complete protocol in Section 2.8. Details
on the algorithm and its proof of correctness are delegated to Sections 2.10 to 2.13. We conclude the
chapter with a discussion of the directions for future work in Section 2.14.

2.2 Related Work

protocol resilience
worst-case end-to-end latency (in round-trip times)

no concurrency
on the account

k concurrent requests,
no overspending

k concurrent requests,
with overspending

Consensus-based f < n/3 Global Consensus Global Consensus Global Consensus

k-shared AT [78] f < n/3 Account Consensus Account Consensus Account Consensus

Astro II [48] / FastPay [19] f < n/3 2 RTTs with O(n) msgs Not supported Not supported

Consensus on Demand [125] f < n/5 2 RTTs with O(n2) msgs 1 Global Consensus 2 Global Consensus 2

CryptoConcurrency f < n/3 5 RTTs with O(n) msgs 3 k+ 4 RTTs Account Consensus

1 The original paper does not consider how the client learns a relevant sequence number. Hence, we added one
round-trip for the client to fetch it. Note that the local client’s sequence number can be outdated unless the
client is also required to act as a replica and to stay online observing all other transactions.

2 The original paper considers only Global Consensus, trusted by all parties. However, we believe that it is
possible to make a version of [125] that relies only on Account Consensus without affecting latency in case of
absence of concurrency, using techniques similar to those used in CryptoConcurrency.

3 2 out of 5 RTTs are used to fetch an up-to-date initial state. We discuss potential ways to avoid it as well as
other directions for optimizations in Section 2.8.4.

Table 2.1: Asset transfer protocol comparison.

Conventionally, asset transfer systems (or cryptocurrencies) were considered to be primary applica-
tions of blockchains [13, 112, 139], consensus-based protocols implementing replicated state machines.
In [78, 79], it has been observed that asset transfer per se does not in general require consensus. This
observation gave rise to simpler, more efficient and more robust implementations than consensus-based
solutions [19, 48, 92, 125]. These implementations, however, assume that no account can be concurrently
debited, i.e., no conflicting transactions must ever be issued by honest account owners.

In this chapter, we propose an asset-transfer implementation in the setting where users can share an
account and, thus, potentially issue conflicting transactions. Our implementation does resort to consensus
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in some executions, which is, formally speaking, inevitable [78]. Indeed, as demonstrated in [78], a fully
consensus-free solution would be impossible, as there is a reduction from consensus to asset transfer with
shared accounts. The algorithm for asset transfer with account sharing presented in [78] uses consensus
for all transfers issued by accounts owned by multiple clients, even if the account owners never try to
access the account concurrently.

Lamport’s Generalized Paxos [102] describes a state-machine replication algorithm for executing
concurrently applied non-conflicting commands in a fast way, i.e., within two message delays. The
algorithm involves reaching agreement on a partially ordered command-structure set with a well-defined
least upper bound. The approach, however, cannot be applied directly in our case, as it assumes that
every set of pairwise compatible operations can be executed concurrently [102, p. 11]. This is not the
case with asset transfer systems: imagine three transactions operating on the same account, such that
applying all three of them drain the account to a negative balance, but every two of them do not. In order
to account for such transactions, we therefore have to further generalize Generalized Paxos, in addition
to taking care of Byzantine faults. (The original protocol was designed for the crash-fault model, though
an interesting Byzantine version has been recently proposed [118]).

Byblos [20], a “clairvoyant” state machine replication protocol, further improves upon Byzantine
Generalized Paxos by making it leaderless and compatible with a more general class of consensus protocols
for the fallback at the cost of sub-optimal resilience (n ≥ 4f + 1). However, it also considers a static
definition of conflicts.

In [104], RedBlue consistency was introduced. It manifests a different approach to combining weak
(asynchronous) and strong (consensus-based) synchronization in one implementation. In defining the
sequential specification of the object to be implemented, the operations are partitioned a priori into blue
(parallelizable) and red (requiring consensus). In the case of asset transfer, transfer operations would be
declared red, which would incur using consensus among all clients all the time.

Generalized Lattice Agreement [61] has emerged as a useful abstraction for achieving agreement
on comparable outputs among clients without resorting to consensus. One can use it to build a fully
asynchronous state-machine replication protocol assuming that all operations are commutative (can be
executed in arbitrary order, without affecting the result). In this chapter, we further extend these ideas
to operations that are not always commutative.

Recent work by Sliwinski, Vonlanthen, and Wattenhofer [125] aims to achieve the same goal of com-
bining the consensus-free and consensus-based approaches as we do in this chapter. It describes an
asset-transfer implementation that uses consensus whenever there are two concurrent transactions on
the same account, regardless of the account’s balance. The algorithm assumes 5f + 1 replicas, where
up to f can be Byzantine, and a central consensus mechanism trusted by all participants. In contrast,
CryptoConcurrency implements dynamic (balance-based) overspending detection with the optimal num-
ber of 3f + 1 replicas and without universally trusted consensus, but has higher latency in conflict-free
executions. We achieve this by introducing a new abstraction that combines and then extends key ideas
from Generalized Lattice Agreement [61] and Paxos [102] as will be further elaborated in Section 2.6.

We summarize the performance of CryptoConcurrency compared to similar protocols in Table 2.1. In
the absence of concurrent transactions on the same account, the end-to-end latency of CryptoConcurrency
is 5 round-trips, compared to 2 in [48] and [125]. If k concurrent transactions on the same account can all
be satisfied without overspending, the worst-case latency will be k + 4 round-trips, whereas [125] would
fall back to consensus, and [48] would lose liveness.

The higher latency of CryptoConcurrency is mainly due to the fact that we do not assume that clients
have an up-to-date state when they start executing a transaction (in principle, a “client” can be simply
a smart card storing a private key connected to a mobile point-of-sale device). Furthermore, since the
main goal was to demonstrate the possibility rather than to achieve the best performance, we preferred
simplicity over efficiency and opted for a highly consistent storage system (see Section 2.7 for details).
Hence, we spend 2 round-trips to obtain the relevant state at the beginning of each operation. We
provide a more detailed latency breakdown and discuss potential ways to decrease it in Section 2.8.4.
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2.3 System Model

2.3.1 Processes, clients and replicas

Let Π be a (possibly infinite) set of potentially participating processes. We assume that there is a fixed
subset of n processes Π, called replicas, that verify operations and maintain the system state. Every
process can also act as a client that invokes operations on the shared state. We make no assumptions on
the number of clients in the system or on their availability, i.e., a client can go offline between its requests
to the system. In the definitions and proofs, we impose the standard assumption of the existence of a
global clock, not accessible to the processes.

We assume an adaptive adversary that can corrupt any process at any moment in time. Once
corrupted, the process falls under complete control of the adversary. For simplicity of presentation,
we say that a process is correct if it is never corrupted during the whole execution and is Byzantine
otherwise.

The adversary can perfectly coordinate all Byzantine processes, and it is aware of the entire system
state at any point of time except for the private cryptographic keys of the correct processes. We rely on
the standard assumption that the computational power of the adversary is bounded so that it cannot
break cryptographic primitives, such as digital signatures.

We assume that any number of clients and f < n/3 replicas can be Byzantine and that each pair of
correct processes can communicate over a reliable authenticated channel.

2.3.2 Accounts

We assume a set of accounts A across which assets are exchanged in the system. As every account can
be owned by multiple processes, we equip accounts with a map µ : A → 2Π that associates each account
with a finite set of clients that can perform debit operations on it. We say that client q ∈ µ(a) is an
owner of an account a (q owns account a). To simplify the model, we suppose that no client owns more
than one account. To use two or more accounts, one is required to have multiple client instances.

Account a is called correct if it is owned by correct clients, i.e., ∀q ∈ µ(a) : q is correct. We assume
that the owners of an account trust each other and, if any owner of an account is corrupted, the other
owners are also considered corrupted (i.e., Byzantine) and thus lose any guarantees provided by the
system.

2.3.3 Consensus objects

The owners of each correct account share an unbounded supply of consensus objects
Consensus[acc][1, 2, . . . ]. Each consensus object exports a single operation Propose(v), which satisfies
the following three properties: (C-Liveness:) each invocation of Propose(v) by a correct client eventually
returns a value; (C-Consistency:) no two correct clients return different values; and (C-Validity:) if a
correct client returns value v, then some client invoked Propose(v).

The particular implementation of consensus can be chosen by the owners of the account and does not
have to be trusted by other participants. As an extreme example, if an account is shared by two people,
they could resolve a conflict via a phone call. Another option would be to use any consensus-based
blockchain of choice.

2.3.4 Protocols and executions

A protocol equips every process p (client or replica) with an automaton Ap that, given an input (a
received message or, if p is a client, an invocation of an operation), changes its state according to its
transition function and produces an output (a message to send, a consensus invocation, or, if p is a
client, a response to an operation). An execution of a protocol is a sequence of events, where each event
is a received message, a sent message, an invocation, or a response. We assume that every invocation or
response carries a unique identifier of the corresponding operation instance (we simply say operation).
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2.3.5 Cryptographic Primitives

For simplicity, we assume the cryptographic primitives to be “oracles” implementing their ideal function-
alities.

Digital signatures. In our algorithms we extensively use digital signatures to ensure that every par-
ticipant can verify the authenticity of the received messages. We model digital signatures using two
functions:

• Sign(m) – returns a signature for message m;

• Verify(m, sig , p) returns true iff sig was obtained with Sign(m) invoked by process p.

Threshold signatures. Additionally, we assume that n−f valid signatures on the same message m can
be efficiently aggregated via a threshold signature scheme [24, 124] or a multi-signature scheme [24, 117].
Namely, the following operations are available to all processes:

• CreateTS(m,S) – returns a threshold signature given a message m and a set S of valid digital
signatures on message m issued by n− f distinct replicas;

• VerifyTS(m, s) – returns true iff signature s was obtained by invoking CreateTS(m,S) for some
set S.

Merkle trees. A Merkle tree (or a hash tree) is a binary tree in which every leaf node is labeled with a
value (or a hash of a value), and every internal node is the hash of its two child nodes. One can use it to
efficiently create a short commitment (namely, the root of the tree) to a set of values M = {m1, . . . ,mk}.
Then, for any of the original values mi, it is easy to prove that mi belongs to M to anybody who knows
the root. We model this primitive with the following functions available to all processes:

• MerkleTree(M) – returns a Merkle tree merkleTree for the set of values M . One can access the
root of the tree using the notation merkleTree.root ;

• GetItemProof(merkleTree,m) – returns a proof for item m iff merkleTree = MerkleTree(M) for
some M s.t. m ∈ M ;

• VerifyItemProof(root , itemProof ,m) – returns true iff itemProof = GetItemProof(merkleTree,m)
for some merkleTree with merkleTree.root = root .

In our protocols, Merkle trees could be replaced by more communication-efficient cryptographic prim-
itives such as set accumulators [22] or vector commitments [41, 44]. However, they typically require more
expensive computation and a trusted setup.

2.4 CryptoConcurrency Architecture

In a traditional, consensus-based, asset transfer system [112, 139], the participating processes agree on a
(totally ordered) sequence of transactions, usually split into discrete blocks and applied to some initial
state (often called the genesis block), as illustrated in Figure 2.1.
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Eve → Alice: 5
. . .
. . .
. . .

Alice → Bob: 20
Bob → Carl: 10
Alice → Carl: 10
Carl → Eve: 15

block 1 block 2

Alice: 100
Bob: 0
Carl: 0
Eve: 0

initial state

current state

Alice: 75
Bob:10
Carl:5
Eve:10

Global Consensus
for block 3

Figure 2.1: Total order asset transfer architecture

A crucial observation is that, as long as the final balance of each account is non-negative, the resulting
state does not depend on the order in which the transactions are applied. This provides the core insight
for the so-called consensus-free asset transfer systems [19, 48, 78, 79, 92, 126]. At a high level, such
systems maintain an unordered set of committed transactions. In order to be added to the set, a new
transaction must pass a special Conflict Detector object. The object maintains the invariant of non-
negative balances by imposing a notion of pairwise conflicts on the transactions and preventing multiple
conflicting transactions from being accepted (see Figure 2.2). Intuitively, two transactions are considered
conflicting when they are trying to move the same assets. The Conflict Detector object operates in a
way similar to Byzantine Consistent Broadcast [34, 48]. Namely, a quorum of replicas must acknowledge
a transaction in order for it to pass the Conflict Detector and each replica acknowledges at most one of
the conflicting transactions.

Alice: 100
Bob: 0
Carl: 0
Eve: 0

initial state

Alice → Bob: 20
Carl → Eve: 15

Bob → Carl: 10
Alice → Carl: 10

Eve → Alice: 5

Conflict Detector

Eve → Bob: 5

Eve → Carl: 3

committed transactions

Bob → Carl: 10

Alice: 75
Bob:10
Carl:5
Eve:10

Eve → Alice: 5

current state

Figure 2.2: Consensus-free asset transfer architecture

As discussed in the introduction, the main downside of such systems is that they preclude any
concurrent use of an account. Moreover, the existing solutions may actually punish even accidental
attempts to issue several conflicting transactions concurrently by not letting any of them to pass the
Conflict Detector and, hence, effectively blocking the entire account.

To mitigate this issue and enable new use-cases such as shared accounts or periodic subscription pay-
ments, we propose a hybrid approach: we replace the Conflict Detector with a more advanced Recoverable
Overspending Detector abstraction and use external consensus objects to perform the recovery proce-
dure in case an attempt to overspend is detected. We build an adaptive asset transfer system that goes
through a consensus-free “fast path” whenever possible. The system supports shared accounts and avoids
blocking the funds because of an accidental attempt of overspending on an account (see Figure 2.3).

In order to preserve the efficiency and robustness of consensus-free solutions, the consensus objects
are used as rarely as possible. More precisely, our protocol only accesses consensus objects when the total
volume of all ongoing transactions on the account exceeds the balance of the account. Our implementation
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of the Recoverable Overspending Detector (see Section 2.6) inherits the key ideas from the Lattice
Agreement protocol of [61] and Paxos [97, 98].

Alice: 100
Bob: 0
Carl: 0
Eve: 0

initial state

Alice → Bob: 20
Carl → Eve: 15

Bob → Carl: 10
Alice → Carl: 10

Eve → Alice: 5

Recoverable Overspending Detector

Eve → Bob: 5

Eve → Carl: 3

committed transactions

Bob → Carl: 10

Alice: 75
Bob:10
Carl:5
Eve:10

Eve → Alice: 5

current state
Account

Consensus

Figure 2.3: CryptoConcurrency architecture

Finally, we avoid the need of a central, universally trusted consensus mechanism by allowing the
owners of each account to use their own consensus protocol of choice. To this end, after obtaining a
consensus output, the owners send “notarization” requests to the replicas and the replicas will refuse to
notarize diverging outputs for the same consensus instance.

2.5 Formal Problem Statement

Now we formally define the asset transfer abstraction that CryptoConcurrency implements.

Transactions. In asset transfer systems, clients move funds between accounts by issuing transactions.
A transaction is a tuple tx = ⟨sender , recipient , amount , id , sig⟩. The amount value specifies the funds
transferred from account sender to account recipient . In order to distinguish transactions with identical
accounts and transferred amounts, each transaction is equipped with a special unique element called
id. In practice, one can use a long (e.g., 128 bits) randomly generated string or a sequence number
concatenated with the id of the client. Each transaction contains a digital signature sig of one of the
owners of the account tx .sender to confirm the transaction’s authenticity. We denote the set of all possible
well-formed transactions as T . Ill-formed transactions (including transactions with invalid signatures)
are ignored by the participants.

For every account a ∈ A, there exists a genesis transaction tx init, a = ⟨⊥, a, amounta, 0,⊥⟩, which
specifies the initial balance amounta of account a. All genesis transactions are publicly known and are
considered to be well-formed by definition.

In addition, from the perspective of an account a ∈ A, we distinguish two types of transactions: debits
and credits (on a). A debit transaction (or simply a debit) is a transaction tx , for which tx .sender = a,
and a credit transaction (or simply a credit) is a transaction tx , such that tx .recipient = a. In other
words, debits “spend money” and credits “add money to the account”.

Let us also define a helper function TotalValue that, given a set of transactions, returns the sum of
funds they transfer: TotalValue(txs) =

∑
tx∈txs

tx .amount . Let credits(txs, acc) and debits(txs, acc) denote

the sets of credit and debit transactions on acc in txs, respectively (i.e., credits(txs, acc) = {tx ∈ txs |
tx .recipient = acc} and debits(txs, acc) = {tx ∈ txs | tx .sender = acc}). Now the balance of acc in txs
is defined as: balance(txs, acc) = TotalValue(credits(txs, acc))− TotalValue(debits(txs, acc)).

Interface. Clients interact with the asset transfer system using operations Transfer(tx ) and
GetAccountTransactions(). The system also provides a function VerifyCommitCertificate(tx , σcommit).

Operation Transfer(tx ), tx ∈ T , is used by the clients to move assets as stipulated by the transaction
tx . The operation may return one of the following responses:
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• OK(σcommit), indicating that the transfer has been completed successfully, σcommit is a certificate
proving this. σcommit can be verified by any process using the VerifyCommitCertificate function;

• FAIL, indicating that the transfer failed due to insufficient balance.

Operation GetAccountTransactions() can be used to obtain the current set {⟨tx , σcommit⟩} of debit and
credit transactions tx applied to the client’s account with their commit certificates σcommit .

Committed and active transactions. A transaction tx is called committed iff there exists a certifi-
cate σcommit such that VerifyCommitCertificate(tx , σcommit) = true. For the purposes of this chapter,
by the existence of a cryptographic certificate, we mean that some process or the adversary is capable of
computing it with non-negligible probability using the available information in polynomial time. Let C(t)
denote the set of all such transactions at time t. Note that for all t′ > t, we have C(t) ⊆ C(t′). We define
commitTime(tx ) as the moment of time t when tx gets committed, i.e., t = commitTime(tx ) ⇔ tx ∈ C(t)
and ∀t′ < t : tx /∈ C(t′).

We assume that every transaction has a unique identifier and that the owners of a correct account
will never invoke Transfer more than once with the same transaction tx . Hence, for a correct account
acc, there is a one-to-one mapping between the debit transactions issued on acc and Transfer operations
invoked by the owners of acc (including the ones that return FAIL).

From the perspective of the owners of a correct account acc, a debit transaction starts when the corre-
sponding Transfer operation is invoked and ends when the operation terminates (with either OK(σcommit)
or FAIL). Hence, for a debit transaction tx , we define startacc(tx ) and endacc(tx ) as the moments in
time when the corresponding operation is invoked and returns, respectively.

A debit transaction tx on a correct account is called active at time t iff startacc(tx ) ≤ t ≤ endacc(tx ).
Let O(t, acc) denote the set of all active debit transactions on account acc at time t.

As for the credit transactions, the owners of acc have no insight into the execution of the corresponding
operations (which could be performed by Byzantine clients). Instead, a credit transaction appears
to happen instantly at the moment it is committed. Hence, for a credit transaction tx , we define
startacc(tx ) = endacc(tx ) = commitTime(tx ).

Properties. Given an execution E and a correct account acc, we define T (E , acc) as the set of all
debit transactions and committed credit transactions on acc that appear in E . The map ρE,acc associates
each debit transaction in T (E , acc) with its response in E (if any). We say that a debit transaction
tx ∈ T (E , acc) is successful iff ρE,acc(tx ) = OK(σ) (for some σ).

We define a real-time partial order on transactions in T (E , acc) as follows: we say that tx 1 precedes
tx 2 in execution E from the point of view of account acc, and we write tx 1 ≺E,acc tx 2 iff endacc(tx 1) <
startacc(tx 2) in E .

Let H be a permutation (i.e., a totally ordered sequence) of transactions in T (E , acc). Given tx , a
debit transaction on acc in E , let S(H, tx ) denote the set of credit and successful debit transactions in
the prefix of H up to, but not including, tx . We say that permutation H is legal if and only if, for every
debit transaction tx ∈ T (E , acc), ρE,acc(tx ) = OK(σ) ⇔ tx .amount ≤ balance(S(H, tx ), acc).

We say that H is consistent with ≺E,acc iff for all tx 1, tx 2 ∈ T (E , acc), tx 1 ≺E,acc tx 2 implies that tx 1

precedes tx 2 in H.
Now we are ready to formally state the properties that every execution E of our asset transfer

implementation must satisfy. First, no account (be it correct or Byzantine) can exhibit a negative
balance:

Transfer Safety: At any time t, for all acc ∈ A: balance(C(t), acc) ≥ 0.

Furthermore, for every correct account acc, from the point of view of the owners of the account,
the outputs of the Transfer operations are as if they were executed sequentially, one at a time, with no
concurrency and the certificates returned by Transfer are valid. More formally, the following properties
hold for each correct account acc and each protocol execution E :

Transfer Consistency: There exists a legal permutation of transactions in T (E , acc) that is consistent
with ≺E,acc .
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Transfer Validity: If Transfer(tx ) on acc returns OK(σcommit), then
VerifyCommitCertificate(tx , σcommit) = true.

The second operation, GetAccountTransactions, must return the set of committed transactions related
to the account:

Account Transactions Completeness: GetAccountTransactions() invoked by an owner of a correct
account acc at time t0 returns a set {⟨tx i, σi⟩}li=1 such that ∀i : VerifyCommitCertificate(tx i, σi) =
true and debits(C(t0), acc) ∪ credits(C(t0), acc) ⊆ {tx i}li=1.

An asset transfer system should also satisfy the following liveness property:

Transfer Liveness: Every operation invoked by a correct client eventually returns.

Finally, CryptoConcurrency satisfies one more important property that we consider as one of the key
contributions of this chapter. Intuitively, if the owners of a correct account do not try to overspend,
eventually the system will stabilize from their previous overspending attempts (if any), and the clients
will not need to invoke consensus from that point on. Let us now define this property formally.

We say that there is an overspending attempt at time t iff TotalValue(O(t, acc) \ C(t)) >
balance(C(t), acc).

Transfer Concurrency: Let acc be a correct account. If there is no overspending attempt at any time
t > t0, for some t0, then there exists a time t1 such that the owners of acc do not invoke consensus
objects after t1.1

In terms of algorithmic complexity, this chapter is focused on the latency exhibited by an asset-
transfer implementation in the absence of overspending attempts, i.e., when consensus objects are not
involved. We measure the latency in round-trip times (RTTs). Informally, RTT is the time it takes for
a given process to send a request message to another process and receive a response message. 2 For
an algorithm satisfying the Transfer Concurrency property, we say that it exhibits k-overspending-free
latency f(n, k) if, after the time t1 (defined in Transfer Concurrency), any transfer operation that runs
in the absence of overspending concurrently with at most k − 1 other transfer operations on the same
account in a system with n replicas completes in at most f(n, k) RTTs.

Given the above, the main theorem of this chapter is as follows.

Theorem 2.1. There exists a deterministic asynchronous protocol that implements an asset transfer
system (as formally defined in this section), satisfies the Transfer Concurrency property and exhibits
k-overspending-free latency of k + 4 RTTs.

2.6 Closable Overspending Detector
We implement the Recoverable Overspending Detector layer illustrated in Figure 2.3 in Section 2.4 as a
collection of slightly simpler objects, which we call Closable Overspending Detector (or COD for short).
COD objects are account-specific. At each moment in time, there is at most one COD object per account
that is capable of accepting client transactions. The mission of a single COD object is to ensure operation
under normal conditions when there are no overspending attempts. In this case, COD will accept every
transaction that a client submits to it using the Submit operation.

However, because of concurrency, even the owners of a correct account might accidentally try to
overspend. In this case, some of the client requests submitted to COD may fail. Clients can then use the
Close operation that deactivates this COD instance and provides a snapshot of its final state. This allows
the account owners to gracefully recover from overspending by instantiating a new instance of COD from
this snapshot. To this end, each account acc is provided with a list of COD objects COD[acc][1, 2, . . .].
Object COD[acc][e] is said to be associated with epoch number e. The procedure of migrating from one
COD object to another, i.e., from one epoch to another, is called recovery and will be described in detail
in Section 2.8.1.

1Note that, if the Transfer Consistency property holds, all Transfer operations invoked after t1 must return OK(σcommit )
and cannot return FAIL.

2A more precise definition of time complexity of an asynchronous algorithm can be found in [39].
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2.6.1 COD Protocol Overview
We define the interface and the properties of COD formally and provide pseudocode in Section 2.10.
However, learning about this concept alongside a high-level overview of the algorithm, as presented in
the rest of this section, may be more accessible. In order to keep the explanation simple and highlight
the main ideas, we omit some minor implementation details.

Initial state. As described before, each account is associated with a sequence of COD objects, each
serving for one epoch – a period of time without overspending attempts. However, if an overspending
attempt is detected, a COD object is closed, and, after a procedure that we call recovery, a new COD
object is initialized. Thus, a COD object needs to be initialized from some initial state, namely: initDebits
– the set of debits accepted in prior epochs, initCreditsσ – a set of credits with commit certificates
sufficient to cover initDebits, and restrictedDebits – the set of debits canceled in prior epochs (the COD
object must not accept the transactions from restrictedDebits).

Submit operation. The main operation of COD is Submit(debits, creditsσ), through which clients
inform replicas of new incoming transactions (credits) and request approval for new outgoing transactions
(debits). Credits must be accompanied by valid commit certificates. Hence, creditsσ is a set of pairs
⟨tx , σcommit⟩ such that tx .recipient = acc and VerifyCommitCertificate(tx , σ) = true.

As a convention, throughout the rest of the chapter, we use variable names with a superscript “σ”
(e.g., txsσ, creditsσ, debitsσ, etc.) to denote sets of transactions paired with some kind of cryptographic
certificates (e.g., {⟨tx 1, σ1⟩, . . . , ⟨txn, σn⟩}). We also define an auxiliary function Txs(txsσ) that, given
a set of pairs txsσ = {⟨tx 1, σ1⟩, . . . ⟨txn, σn⟩}, returns only the transactions {tx 1, . . . , txn}, without the
certificates.

In the optimistic scenario, when there are no overspending attempts, Submit returns
OK(debitsσ, outCreditsσ). Here, debitsσ contains the same set of transactions as in the input to
Submit, augmented with certificates that we will call accept certificates, confirming that the transac-
tions passed through the Closable Overspending Detector object. The COD implementation exposes a
boolean function VerifyCODCert(tx , σ) that can be used to verify the accept certificates. We say that
a transaction tx is accepted by COD[acc][e] iff tx ∈ COD[acc][e].initDebits or there exists σ such that
COD[acc][e].VerifyCODCert(tx , σ) = true.

The second value returned by a successful invocation of Submit, outCreditsσ, is, intuitively, the set of
credits used to “cover” the debits. For correct accounts, COD maintains the property that, at any time
t, the total value of all debits accepted by COD does not exceed the total value of all credits returned
from successful invocations of Submit.3

The “Prepare” phase. To detect overspending attempts, a correct replica r maintains a set creditsσr of
all credits it has seen so far (with the corresponding commit certificates) and a set debitsσr of debit transac-
tions it acknowledged (with client signatures), preserving the invariant that TotalValue(Txs(creditsσr )) ≥
TotalValue(Txs(debitsσr )). To process a client request, it adds all the committed credits the client at-
tached to the message to the local set creditsσr (given they come with valid commit certificates) and then
adds the received debits to debitsσr if possible without violating the invariant. The replica then responds
to the client with both sets and a signature on the debits set.

Then, on the client side, it is tempting to wait for a quorum of responses, such that each will contain
client debit transactions and assume that this means that the set of transactions client sent to replicas
does not lead to overspending. Indeed, it would mean that at least

n

3
correct replicas added all input

debits to their local sets. However, this approach is not sufficient to prevent potential overspending.
Consider the example illustrated in Figure 2.4. In this example, each of the 3 correct replicas (1,2,
and 4) acknowledged 2 transactions each and thus did not detect overspending. The third replica is
Byzantine and it acknowledged all 3 transactions. In the end, all three transactions would manage to
pass the overspending detector even though the account they share contains funds only for 2 of them.

To deal with such situations, we follow a similar approach to the one proposed to solve Generalized
Lattice Agreement [61]: we retry requests to replicas until we receive identical sets of debits in the

3For Byzantine clients, we cannot formally use the language of “returned values”. Instead, for Byzantine accounts, COD
guarantees that the total value of accepted debits does not exceed the total value of all committed credits for the account,
ensuring non-overspending.
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Alice Bob Carl

{txA, txC} {txA, txB} {txB , txC}

Alice, Bob, and Carl share an account with the balance of 2 coins.
Each of the three transactions (txA, txB , and txC) spends 1 coin.

Figure 2.4: An example where the naive 1 RTT algorithm fails.

responses, updating the inputs with the new transactions we learn with every attempt. In the above
example, Alice, after receiving {txA, txC} from replica 1 and {txA, txB} from replica 2, would retry
its request as these two responses are different even though both contain txA. However, unlike in
Generalized Lattice Agreement, where the assumption is that any combination of inputs is “mergeable”
(i.e., commutative), in our case, due to the non-overspending invariant maintained by the replicas, the
object may reach a state where convergence would not be reached regardless of how many retries the
client performs. We will explain how to deal with such situations later in this section. For now, let us
consider the “good” scenario when there are no overspending attempts.

For all requests that successfully passed this phase, we can guarantee the comparability property:
suppose that client A obtains a quorum of signatures for a set of transaction SA and client B – for a set
SB . Then we can claim that either SA ⊆ SB or vice versa. Indeed, it is sufficient to consider the quorum
intersection property [107]: there must be a correct replica that signed both sets and the one it signed
later must be a superset of the one it signed earlier. We can also guarantee that for all transactions
in both sets, there are enough committed credits to cover all of them. Indeed, consider the largest of
the two sets. It was acknowledged by a quorum of replicas that would only acknowledge it if they saw
enough credits.

We call this process of repeatedly trying to get a quorum of replicas to converge on the same set of
debits the Prepare phase. After a client successfully passes the Prepare phase in the course of executing
a Submit operation, the client obtains a set of debits preparedDebits with signatures from a quorum of
replicas confirming that they acknowledged this set. We use a threshold signature scheme (as defined in
Section 2.3.5) in order to compress these signatures into one small signature σprepare.

The “Accept” phase. The purpose of the second phase of the Submit operation, called the Accept
phase, is to ensure recoverability, i.e., to make it possible to transfer state from one COD object to the
next without reverting transactions that could have been accepted. The phase consists of just one round-
trip: the client simply sends preparedDebits along with the threshold signature σprepare to the replicas,
the replicas check the validity of σprepare and, unless they have previously received a request to close this
COD instance, acknowledge the client’s request with a signature on the Merkle tree root (as defined in
Section 2.3.5) of the set preparedDebits. The client can then extract individual Merkle tree proofs for
each of the transactions, thus obtaining a short accept certificate for each individual transaction.

Detecting overspending. The client may not be able to terminate its request on the “good” path for
one of two reasons:

1. In the Prepare phase, the client does not have enough committed credits to cover the union of sets
of debits returned by the replicas. This means that there is an overspending attempt;

2. In either phase, a replica refuses to process the client’s request because it has already acknowledged
a request to close this COD instance. This means that some other owner of the account observed
an overspending attempt and started migrating the state from this instance to the next.

In either of these two cases, the client returns FAIL from the Submit operation, indicating a potential
overspending attempt and that a (consensus-based) recovery is necessary.
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Closing an instance. The Close operation is designed to deactivate the COD object and to collect a
snapshot of its state to facilitate the recovery. During this operation, the client solicits from a quorum of
replicas the sets of transactions they accepted and then asks the replicas to sign the accumulated joint
state in order to obtain a short proof (a single threshold signature) of validity of the resulting snapshot.
Accessing a quorum guarantees that the client gathers all the debits that have been previously returned
from the Submit operations. As a result, accepted transactions are never lost.

Upon careful examination, one can notice that the interaction between the Accept phase of the
Submit operation and the first message of the Close operation is similar to that of “propose” messages
and “prepare” messages with a larger ballot number in Paxos [98]. Intuitively, it guarantees that, if there
is a Submit concurrent with a Close, either the client executing Submit will “see” the Close operation
and return FAIL or the client executing the Close operation will “see” that the debits were accepted by
some replicas.

Achieving liveness. Special care is necessary to ensure liveness of all clients in such a protocol,
especially in the Prepare phase. First, we only wait for convergence on debits in the replicas’ responses
and not on credits, as otherwise, it would be possible to prevent progress on a correct account by sending
lots of small credits to it. Second, it is not hard to see that a certain unlucky client may never reach
convergence due to a constant inflow of new debits. In order to avoid such situations, a replica that
already accepted a set of debits that includes all the debits submitted by a client will notify that client,
and it will be able to move on directly to the Accept phase.

2.6.2 COD performance

We are mostly interested in the latency of the Submit operation as the Close operation is only used in case
of an overspending attempt, which is assumed to happen rarely. The protocol for the Submit operation
consists of two phases: Prepare and Accept, where the latter always consists of just one rount-trip while
the former may involve multiple retries, until the client obtains a quorum of identical replies. However,
the main strength of this implementation is that it is adaptive. Indeed, in absence of other concurrent
requests, the client will be able to finish the Prepare phase in just one round-trip. Otherwise, it may
take up to k round-trips in presence of k − 1 other concurrent requests.

Put differently, we pay one extra round-trip compared to purely asynchronous solutions such as [19, 48]
in order to ensure recoverability (the Accept phase), but the overspending detection part comes “for free”.
The main difference is that CryptoConcurrency retries where others would give up, until it reaches a
state where further retries would be pointless.

2.7 Append-Only Storage

In this section, we present an abstraction called Append-Only Storage, which allows us to implement two
distinct algorithm building blocks. The first one, Global Storage, represents a layer in the architecture of
CryptoConcurrency that stores all committed transactions (as illustrated in Figure 2.3 in Section 2.4).
The second one, Account Storage, is associated with each account, and its primary purpose is to facilitate
communication between its owners and ensure liveness of its operations.

Append-Only Storage can be seen as a distributed implementation of an indexed collection of sets:
with each key k, the abstraction associates an unordered set of values vs. Furthermore, Append-Only
Storage is capable of (i) verifying that a given value is allowed to be added to a specified key and
(ii) providing a proof of the fact that the values appended or read by a client for a specific key k are
stored persistently (i.e., any later read operation with key k will return a set that includes these values).

To add a value v to a set of values stored for a key k, a client calls AppendKey(k, v, σv), where σv is
a validity certificate for value v and key k. To read the values associated with a key k, a client invokes
the ReadKey(k) operation.

We provide a formal definition of Append-Only Storage and discuss the protocol implementing it in
Section 2.11. For simplicity, we use a highly consistent storage system that requires only one round-trip
for the AppendKey operation, but two round-trips for the ReadKey operation: one to fetch the values
and one for the “write-back” phase [17] to ensure that any subsequent read will see at least as many
elements in the set.
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2.7.1 Global and Account Storage
We use Append-Only Storage as a generalized implementation for both Global Storage and Account
Storage. Let us explain how we use each of these objects in the protocol.

Global Storage. In CryptoConcurrency, all clients have access to one common Append-Only Storage
instance called Global Storage. After a transaction is accepted by a COD object or the recovery procedure
(discussed in more detail below), it is written to Global Storage to make it publicly available to all clients.
In CryptoConcurrency, the moment a transaction is written to Global Storage, it becomes committed
and the persistence certificate plays the role of a commit certificate for the transaction. One can view the
Global Storage abstraction as the “final” public transaction ledger. However, unlike in consensus-based
cryptocurrencies, this ledger is not a sequence, but just a set, and the transactions in it can be applied
in any order. In the pseudocode, we denote this instance by GlobalStorage.

Account Storage. Every account acc is equipped with an instance of Append-Only Storage called
Account Storage. Inside this instance, clients that share account acc store information about started debit
transactions on acc and initial states for COD objects. This allows us to ensure progress of all operations
on the account: i.e., any operation invoked by an owner of acc terminates (assuming acc is correct).
More specifically, we use the technique known as helping, common to concurrent algorithms [9, 77, 81].
Communicating via storage allows clients to temporarily go offline (lose connection) and still preserve
all system guarantees, which would be hard to achieve with a broadcast-like algorithm. In the code, we
denote an instance of an Account Storage for an account acc as AccountStorage[acc].

Similarly to the consensus objects, the implementation of Account Storage can be account-specific
and only the owners of the account need to trust it.

2.8 CryptoConcurrency: Algorithm

Create
transaction tx

Submit tx
to COD

Recover from
overspending

tx is cancelled
(return FAIL)

tx is accepted tx is committed
(return OK)

Figure 2.5: Transaction lifecycle in CryptoConcurrency

In this section, we demonstrate how to combine Closable Overspending Detector, Account Storage,
Global Storage, and Consensus objects in order to obtain a protocol implementing an asset transfer
system with the Transfer Concurrency property as defined in Section 2.5, thus providing a constructive
proof for Theorem 2.1.

2.8.1 Composing COD and Consensus instances
In CryptoConcurrency, COD serves as a fundamental building block: it allows the owners of an account
acc to issue concurrent transactions. As long as there are enough committed credit transactions to cover
all debit transactions submitted to COD, all owners of a correct account will be able to confirm their
transactions and get matching certificates, i.e., the COD object will accept them.

However, even correct clients may accidentally try to overspend. In this case, a correct client might
return FAIL from a Submit operation. Intuitively, when this happens, we consider the internal state of
the COD instance being “broken” and we need to “recover” from this.
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Let us overview the recovery procedure performed after an overspending attempt was detected in
COD[acc][e]. First, the client invokes the Close operation on COD[acc][e], which will return a snapshot
with the following data:

1. a set of selected debits that includes (but is not limited to) all debit transactions accepted by
COD[acc][e];

2. a set of committed credit transactions sufficient to cover the selected debits;

3. a set of cancelled debits, for which there are not enough known credits.

If multiple clients invoke Close, the snapshots they receive might vary due to the asynchronous nature
of COD. However, every valid snapshot will include all debit transactions that are or ever will be accepted
by COD[acc][e]. To this end, the Close operation “invalidates” COD[acc][e], so that no transaction can
be accepted after a snapshot was made (in case of concurrency, either the transaction will make it to the
snapshot or it will not be accepted).

In order to initialize COD[acc][e+1], the clients must agree on its initial state. Hence, they will pro-
pose the snapshots they received from the Close operation invoked on COD[acc][e] to Consensus[acc][e+
1]. There will be exactly one snapshot selected by the consensus instance, from which the initial state
for COD[acc][e+1] will be derived. We would like to emphasize that CryptoConcurrency preserves both
safety and liveness regardless of which of the (potentially multiple) valid snapshots is selected by the con-
sensus object as long as the owners of the account agree on it (which is guaranteed by the C-Consistency
property of consensus).

We do not bind clients to any specific consensus protocol: every instance of consensus can be imple-
mented differently. To preserve safety, the consensus output must be notarized (i.e., signed) by a quorum
of replicas that run CryptoConcurrency, and no correct replica will sign two different consensus outputs.
Since the owners of a correct account will never try to get multiple different outputs notarized for the
same consensus instance, they will always be able to get the notarization. The consensus output signed
by a quorum can be used to initialize COD[acc][e+ 1]. This concludes the recovery procedure.

2.8.2 Transfer algorithm

Overview. At a very high level, when the Transfer(tx ) operation is invoked, tx is submitted to the
latest COD instance. If there are sufficient credit transactions on the account to cover tx , it is accepted
by the COD instance and registered in the Global Storage. Otherwise, there is a risk of overspending, and
the account’s state is recovered as described in Section 2.8.1. A transaction is considered failed if it ends
up in the set of cancelled debits in the snapshot selected by the consensus object. Similarly, a transaction
can be accepted by the recovery procedure if it ends up in the set of selected debits. Figure 2.5 depicts
the lifecycle of a transaction in our protocol.

Preparation. The algorithm proceeds in consecutive epochs for each account. For a correct account
acc, epoch e corresponds to the period of time when COD[acc][e] is active (i.e., is initialized but is not
yet closed). Let us consider a correct client p, one of the owners of an account acc. When p invokes
Transfer(tx ), it first fetches the current epoch number e and the initial state of COD[acc][e] from the
AccountStorage[acc]. The client also accesses the Global Storage to fetch all newly committed credit
transactions for account acc. It will later submit these credit transactions to the COD object along with
tx . Lastly, p writes tx to AccountStorage[acc]. This way, other owners of acc will be able to help
commit tx when they read it from the Account Storage. This step is crucial to avoid starvation of slow
clients.

Main loop. After the preparation, the client enters a loop. In each iteration (corresponding to one
epoch e), the client reads the pending debits (all debit transactions on account acc that are not yet
committed) from the Account Storage. After this, p invokes the Submit operation on COD[acc][e] with
the pending debits it just read from the Account Storage and the committed credits it read during the
preparation phase from the Global Storage. If the invocation returns OK(. . . ), then the only thing left
to do is to commit tx by writing it to the Global Storage (as a result, the recipients of the transaction
can learn about it by reading the Global Storage). Finally, p returns OK from the Transfer operation
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with the certificate of a successful write to the Global Storage acting as the commit certificate σcommit

for transaction tx .
If, however, COD[acc][e].Submit returns FAIL, it indicates that either the volume of all known credits

was insufficient to cover all existing debits at some point of time, or some other client invoked the Close
operation on this COD object. Either way, the client then goes through the recovery procedure as
described in Section 2.8.1 in order to obtain the initial state for COD[acc][e+ 1].

Finally, the client checks whether, during the Recovery procedure, tx ended up in the set of selected
or cancelled debits (see Section 2.8.1). In the former case, the client commits the transaction by writing
it to the Global Storage and returns OK. In the latter case, the client simply returns FAIL from the
Transfer operation. However, it might also happen that tx is neither accepted nor canceled (e.g., if, due
to concurrency, the initial state for COD[acc][e+1] was selected before any process other than p learned
about tx ). In this case, p increments its local epoch number e and proceeds to the next iteration of the
loop, proposing tx to the next COD instance.

This loop eventually terminates due to the helping mechanism: once tx is stored in the Account
Storage in the preparation phase, every other owner of acc executing Transfer submits tx to COD along
with their own transactions.

2.8.3 CryptoConcurrency pseudocode

The pseudocode for CryptoConcurrency is provided in Algorithms 2.1 to 2.3 and algorithm 4. We assume
that each block of code (a function, an operation, a procedure or a callback) is generally executed
sequentially to completion. However, a block may contain a wait for operator, which interrupts the
execution until the wait condition is satisfied. Some events, e.g., receiving a message, might trigger
callbacks (marked with upon keyword). They are not executed immediately but are first placed in
an event queue, waiting for their turn (we assume a fair scheduler). We denote an assignment of an
expression expr to a variable var as var := expr .

In the code, we assume that each message sent by a client carries a distinct sequence number. When
a replica replies to a client, it also implicitly includes the same sequence number in its response. This
allows clients to match replies with the corresponding request messages and ignore outdated replies.

A message from process p is considered valid by process q if there exists a possible execution of the
protocol in which p is correct and it sends this message to q. In most cases, this boils down to the
correct number and order of message attachments as well as all the attached signatures and certificates
being valid. In our protocols, we implicitly assume that invalid messages are simply ignored by correct
processes. Hence, for the adversary, sending an invalid message is equivalent to not sending anything at
all.

Recall that the m-th consensus instance associated with account acc is denoted by
Consensus[acc][m].

Clients and replicas in CryptoConcurrency. The client’s protocol is described in Algorithms 2.1
and 2.2 and the replica’s protocol is described in Algorithm 2.3. The algorithm uses instances of COD, and
instances of Append-Only Storage: Global Storage (one per system, shared by all clients), and Account
Storage (one per account, shared by the owners of the account). We describe objects initialization in
Algorithm 4. The implementations of COD and Append-Only Storage are delegated to Sections 2.10
and 2.11, respectively.

The algorithm proceeds in consecutive epochs for each account. Let us consider a correct client p,
one of the owners of a correct account acc.

When Transfer(tx ) is invoked, client p first fetches the current epoch number e, the initial state
CODState of COD[acc][e] and a certificate σ for CODState from AccountStorage[acc] (line 5). Then
it reads committed transactions from Global Storage at line 7. After this, the client forms a set of credits
(line 8) that are later submitted to the COD and writes tx to Account Storage (line 10): this way, other
owners of acc will be able to help to commit tx .

Accessing COD After this, the client enters a while loop. In each iteration of the loop (corresponding
to one epoch e), the client reads pending debits on acc from Account Storage (lines 13 and 15). Then,
it sends the epoch number e, the initial state CODState, and the matching certificate σ to the replicas
(line 17). This way replicas that fall behind can initiate an up-to-date instance of COD object for account
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acc before receiving messages associated with it. After this, client p invokes the Submit operation on the
corresponding COD object. If the invocation returns OK(. . . ), then the only thing left to do is to write
⟨tx , σ⟩ to the Global Storage at line 23 (as a result, the recipients of the transaction can learn about it by
performing GetAccountTransactions() on their side). Finally, p returns OK with the commit certificate
from the Transfer operation.

Otherwise, if p returns FAIL from Submit, then either all known credits were not enough to cover
all existing debits at some point of time, or some other client invoked Close operation on this COD
object. Either way the client then goes through the Recovery procedure to get the state for the next
COD[acc][e+ 1] (line 26).

Recovery and consensus. In the Recovery procedure, the client first makes sure that the current
instance COD[acc][e] is closed by invoking Close operation on it (line 44). Then it uses consensus object
Consensus[acc][e+1] (line 47) in order to initialize the next instance of COD. We allow the owners of each
account to use local, distinct consensus objects that can be handled outside of the CryptoConcurrency
system. However, due to this, the outcome of consensus should be signed by a quorum of replicas
(lines 50-52 and 70-77), so that Byzantine clients are not able to break the system and use a diverging
result.

The resulting initial state for the COD object in epoch e + 1 contains selectedDebits, a set of
transactions that were decided to be used as initial debits in the new transactions. It is guaran-
teed that all previously committed debits and all debits accepted by the COD[acc][e] are in this set,
though it may also contain some extra debits. For convenience, the Recovery procedure also returns
selectedDebitsσ (signed version of selectedDebits) that are ready to be written to Global Storage. For ev-
ery ⟨tx , σ⟩ ∈ selectedDebitsσ : VerifyRecoveryCert(tx , σ) = true, where VerifyRecoveryCert is a publicly
known function.

Finally, the client checks if tx is in the set CODState.selectedDebits (line 27) or
CODState.cancelledDebits (line 31). In the former case, the client commits the transaction by appending
it to the Global Storage (line 29) and returns OK. In the latter case, it simply returns FAIL.

However, it might happen that tx is in neither of these sets. In this case, p proceeds to the next
iteration of the while loop corresponding to the next epoch number e+ 1 (line 33).
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Algorithm 2.1 CryptoConcurrency (for client p, account acc)
1: type Σ := {0, 1}∗ // set of all possible cryptographic certificates
2: type TΣ := Pair⟨T ,Σ⟩ // set of all possible pairs of form ⟨tx , σ⟩, where tx ∈ T and σ ∈ Σ

3: operation Transfer(tx ) returns OK(Σ) or FAIL
4: // Read the latest up-to-date state of the account
5: ⟨e,CODState, σstate⟩ := ReadLatestCODState()
6: // Read all committed transactions (with their commit certificates) related to this account
7: committedTxsσ := GetAccountTransactions()
8: newCreditsσ := {⟨tx ′, σtx ′⟩ | ⟨tx ′, σtx ′⟩ ∈ committedTxsσ, tx ′.recipient = acc} \ CODState.initCreditsσ

9: // Make sure that all other owners of this account will eventually see this transaction to prevent starvation
10: AccountStorage[acc].AppendKey(“debits”, tx ,⊥)
11: while true do
12: // Read debits from the Account Storage, no need for certificates
13: debits := Txs(AccountStorage[acc].ReadKey(“debits”))
14: // The client must help to commit other pending transactions in order to avoid starvation
15: pendingDebits := debits \ CODState.cancelledDebits
16: // Help all replicas to catch up with the current epoch and initialize COD[acc][e]
17: send ⟨InitCOD, e,CODState, σstate⟩ to all replicas
18: // Try to commit the pending transactions (including tx ) in this epoch
19: CODResult := COD[acc][e].Submit(pendingDebits,newCreditsσ)
20: if CODResult is OK(acceptedDebitsσ, outCreditsσ) then
21: // Extract the certificate for tx from the Submit response
22: let σCOD be a certificate such that ⟨tx , σCOD⟩ ∈ acceptedDebitsσ

23: σcommit := GlobalStorage[acc].AppendKey(“txs”, tx , ⟨acc, e, σCOD⟩)
24: return OK(σcommit)

25: // COD[acc][e].Submit has failed
26: ⟨CODState, σstate, selectedDebitsσ⟩ := Recovery(e, pendingDebits)
27: if tx ∈ CODState.selectedDebits then
28: let σrecovery be a certificate such that ⟨tx , σrecovery⟩ ∈ selectedDebitsσ

29: σcommit := GlobalStorage[acc].AppendKey(“txs”, tx , σrecovery)
30: return OK(σcommit)

31: if tx ∈ CODState.cancelledDebits then
32: return FAIL // The transaction is cancelled due to insufficient balance
33: e += 1
34: // CODState and σstate from the recovery are used for the next iteration of the loop

35: operation GetAccountTransactions() returns Set⟨TΣ⟩
36: committedTxsσ := GlobalStorage[acc].ReadKey(“txs”)
37: return {⟨tx , σcommit⟩ ∈ committedTxsσ | tx .sender = acc or tx .recipient = acc}

38: public function VerifyCommitCertificate(tx , σcommit) returns Boolean
39: return GlobalStorage.VerifyStoredCert(“txs”, tx , σcommit)

40: function ReadLatestCODState() returns ⟨EpochNum,CloseState,Σ⟩
41: return ⟨e,CODState, σ⟩ such that ⟨⟨e,CODState, σ⟩,⊥⟩ ∈ AccountStorage[acc].ReadKey(“state”)

and e is maximum
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Algorithm 2.2 CryptoConcurrency: Recovery (code for client p, account acc)
42: function Recovery(e, pendingDebits) returns Tuple⟨CloseState,Σ,Set⟨TΣ⟩⟩
43: // Close the current instance of COD and get the closing state and a certificate confirming that this state

is valid
44: ⟨CODState, closedStateCert⟩ := COD[acc][e].Close(pendingDebits)
45: ⟨allCreditsσ, selectedDebits, cancelledDebits⟩ := CODState
46: // The consensus mechanism resolves the overspending attempts that led to the recovery.
47: ⟨nextCODState,nextCODStateCert⟩ := Consensus[acc][e+ 1].Propose(⟨CODState, closedStateCert⟩)
48: // Since consensus is only trusted by the owners of the account, the client needs to commit to the

consensus output.
49: // This prevents malicious clients from creating multiple different initial states for the same COD.
50: send ⟨CommitInitState, e+ 1,nextCODState,nextCODStateCert⟩ to all replicas
51: wait for valid ⟨CommitInitStateResp, sigStatei, sigTxsi⟩ replies from a quorum Q
52: σstate := CreateTS(⟨CommitInitStateResp,nextCODState⟩, {sigStatei}i∈Q)
53: // Let other owners of the account know about the new epoch and its initial state.
54: AccountStorage.AppendKey(“state”, ⟨e+ 1,nextCODState, σstate⟩,⊥)
55: // Create confirm certificates for the selected debits.
56: merkleTree := MerkleTree(nextCODState.selectedDebits)
57: σMT := CreateTS(⟨ConfirmInRecovery, e,merkleTree.root⟩, {sigTxsi}i∈Q)
58: selectedDebitsσ = {⟨tx , ⟨merkleTree.root ,GetItemProof(merkleTree, tx ), σMT , e⟩⟩ | tx ∈

nextCODState.selectedDebits}
59: return ⟨nextCODState, σstate, selectedDebitsσ⟩

60: public function VerifyRecoveryCert(tx , σrecovery) returns Boolean
61: ⟨root , itemProof , σMT , e⟩ := σrecovery

62: return VerifyItemProof(root , itemProof , tx ) and VerifyTS(⟨ConfirmInRecovery, e, root⟩, σMT )

Algorithm 2.3 CryptoConcurrency (code for replica r)
63: State:
64: signedStates – mapping from an account and an epoch number to the hash of a signed state,

initially: ∀a ∈ A, s ≥ 0 : signedStates[a][s] = ⊥

65: upon receive ⟨InitCOD, e,CODState, σ⟩ from owner q of account acc
66: if COD[acc][e] is already initialized then return
67: if not VerifyTS(⟨CommitInitStateResp,CODState⟩, σstate) then return
68: ⟨allCreditsσ, selectedDebits, cancelledDebits⟩ := CODState
69: initialize COD[acc][e] with

initDebits := selectedDebits,
initCreditsσ := allCreditsσ,
restrictedDebits := cancelledDebits

70: upon receive ⟨CommitInitState, e,CODState, cryptoCDStateCert⟩ from owner q of account acc
71: if not COD[acc][e− 1].VerifyCloseStateCert(CODState, cryptoCDStateCert) then return
72: // Check if previously signed a different initial state for COD[acc][e]
73: if signedStates[acc][e] ̸= ⊥ and signedStates[acc][e] ̸= Hash(CODState) then return
74: signedStates[acc][e] := Hash(CODState)
75: sigState := Sign(⟨CommitInitStateResp,CODState⟩)
76: sigTxs := Sign(⟨ConfirmInRecovery, e− 1,MerkleTree(CODState.selectedDebits).root⟩)
77: send ⟨CommitInitStateResp, sigState, sigTxs⟩ to q
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Algorithm 4: COD, Global Storage and Account Storage initialization
78: Storage Objects:
79: GlobalStorage is an AOStorage object with one key:

key “txs” with initial set of value {tx init, a}a∈A and validity function VerifyTxCertForGlobalStorage
80: ∀a ∈ A : AccountStorage[a] is an AOStorage object with the following keys:

key “debits” with initial set of values ∅ and validity function VerifyDebitacc
key “state” with initial set of values {⟨1, ⟨{tx init, a}, ∅, ∅⟩,⊥⟩} and validity function

VerifyAccountStateacc
81: ∀a ∈ A : COD[a][0] = COD(a, 1, ∅, {tx init, a}, ∅)

82: function VerifyTxCertForGlobalStorage(tx , σ) returns Boolean
83: if ⟨accσ, eσ, σCOD⟩ = σ then
84: return COD[accσ][eσ].VerifyCODCert(tx , σCOD)

85: return VerifyRecoveryCert(tx , σ)

86: function VerifyDebitacc(tx , _) returns Boolean
87: return tx .sender = acc and tx is well-formed (including a valid signature)

88: function VerifyAccountStateacc(state, _) returns Boolean
89: ⟨e,CODState, σstate⟩ := state
90: return VerifyTS(⟨CommitInitStateResp,nextCODState⟩, σstate)

2.8.4 Latency breakdown and optimizations

Lines 5, 7 and 10, as well as line 13 on the first iteration of the loop, can all be executed in parallel. This
is crucial to achieve the latency claimed in Theorem 2.1.

With this optimization applied and with the instantiation of COD described in Section 2.6, the
algorithm achieves latency of 5 round-trips in case of absence of concurrency.

We can further break down the latency costs into 3 categories:

• 2 round-trips are necessary for a consistent broadcast protocol with optimal resilience (n = 3f +1)
and a linear number of messages [34]. This is the latency of the purely asynchronous asset transfer
protocols with optimal resilience [19, 48], which serve as a baseline for us;

• 2 round-trips to read the up-to-date state (lines 5, 7 and 13 executed in parallel). This facilitates
light-weight clients and is especially important in the context of shared accounts, where a client
may not always have up-to-date information about its own account;

• 1 round-trip to facilitate the recovery.

As discussed in Section 2.6.2, somewhat surprisingly, the Transfer Concurrency property of CryptoCon-
currency does not have an inherent latency cost, as the COD protocol automatically adapts to the current
level of contention.

Further optimizations. We believe that one can achieve a smaller latency with any combination of
the following techniques (each coming at its own cost):

Use larger quorums: It is a common pattern in distributed computing to trade resilience for latency [5,
6, 83, 94, 99, 108, 125]. Recently, it was exploited in a context very similar to CryptoConcurrency
in [125].

Use all-to-all communication between replicas: Naturally, all-to-all communication often offers
smaller latency than client-server communication pattern (as in CryptoConcurrency) at the cost
of a quadratic number of messages being exchanged. This technique was also adopted by [125].

Execute storage write-back in parallel with COD.Submit: By opening up the storage black
box, one may try to perform the write-back phase of ReadKey (described in Section 2.7) in parallel

23



with the Submit operation of COD. This may reduce the latency by 1 RTT at the cost of slightly
complicating the protocol.

Make additional assumptions about the clients: This may help to avoid the need to interact with
storage prior to accessing COD. However, relying on the client’s local state, even if the client
actively listens to all events on the network, would likely require a slight relaxation of the
Transfer Consistency property (as defined in Section 2.5).

Make a more monolithic design: In the current design, clients are required to relay information
about credits from Global Storage to COD. It may be possible to avoid this if these objects are
maintained by the same set of replicas. If combined with the two preceding suggested optimizations,
it may be sufficient to avoid the need to read the storage before accessing COD, even without
relaxing the consistency requirement.

2.9 Proof Outline
In this section, we sketch the main arguments for Theorem 2.1. In particular, we show that CryptoCon-
currency protocol satisfies all the conditions imposed by the theorem. The detailed proof is deferred to
Section 2.12.

Transfer Safety. This property requires that, for any account, the balance is always non-negative.
This property is ensured by the COD objects used on account acc, which guarantee that, at any time,
the set of accepted debit transactions does not surpass the total value of committed credit transactions.
We also show that this invariant is preserved during the transition between consecutive COD objects.

Transfer Consistency. To show that our implementation of CryptoConcurrency satisfies the
Transfer Consistency property, we define an order on the transactions on a correct account acc and then
show that this order is both legal and consistent with the real-time order ≺E,acc . More precisely, we order
transactions by the epochs they are accepted in, and, then, inside each epoch e, we divide them into three
consecutive groups: (i) transactions accepted by COD[acc][e], (ii) selected by Consensus[acc][e+1], and
(iii) failed debit transactions canceled by Consensus[acc][e+1]. Inside each group we order transactions
by endacc(tx ), giving the priority to the credit transactions in case of ties.

Transfer Validity. The proof of Transfer Validity property is relatively simple. We show that Cryp-
toConcurrency satisfies the following two facts: (i) any successful transaction is written to the Global-
Storage, which produces a commit certificate σcommit , and (ii) VerifyCommitCertificate is implemented
via verification function of the certificate from the Global Storage.

Transfer Liveness. CryptoConcurrency ensures that every operation invoked by a correct client re-
turns. The proof proceeds as follows. We first show that all operations invoked on Account Storage,
Global Storage, and COD eventually terminate. Then, we show that the number of epochs one Transfer
operation can span over is finite. Combining these facts, we demonstrate that any operation invoked by
a correct client returns.

Account Transactions Completeness. We ensure that CryptoConcurrency satisfies the
Account Transactions Completeness property with the help of Global Storage. Every time a client
invokes GetAccountTransactions, it essentially reads all committed transactions from GlobalStorage
and then filters out the ones that are not relevant.

Transfer Concurrency. In the Transfer Concurrency property, we show that, if from some moment
on, there are no overspending attempts observed on a correct account acc (i.e., the total amount spent
by all active debit transactions does not exceed the balance at any time t), then there is some moment
of time after which no Consensus object is invoked on this account. We prove this by showing that, in
such a case, the number of epochs an account goes through is finite, and thus, from some point on, the
account does not go through the recovery process and owners do not use Consensus objects.
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Latency. To prove that k-overspending-free latency of CryptoConcurrency is k + 4 RTTs, we show
that the upper bound for the latency of COD.Submit is k + 1. Here, k round-trips come from the
Prepare phase, and 1 more comes from the Accept phase. We also prove that latencies of AppendKey
and ReadKey operations of Append-Only Storage are constant and equal to 2 and 1 RTTs respectively.
Finally, we then conclude that with most of the read requests combined as described in Section 2.8.4, we
achieve k-overspending-free latency of k + 4 RTTs.

2.10 Closable Overspending Detector
In this section, we state the properties Closable Overspending Detector should satisfy and how we
implement this abstraction.

2.10.1 Formal definition of Closable Overspending Detector
An instance of COD is identified by an account acc and an epoch number e. Additionally, all owners of
the account and correct replicas must run the COD instance with the same initial state that consists of:

• initDebits : Set⟨T ⟩ – the initial set of debit transactions for account acc, ∀tx ∈ initDebits :
tx .sender = acc;

• initCreditsσ : Set⟨Pair⟨T ,Σ⟩⟩ – initial set of credit transactions for account acc, ∀⟨tx , σ⟩ ∈
initCreditsσ : tx .recipient = acc and VerifyCommitCertificate(tx , σ) = true;

• restrictedDebits : Set⟨T ⟩ – the set of debit transactions for account acc that this COD object is
prohibited from accepting, restrictedDebits ∩ initDebits = ∅;

Moreover, the initial balance of the account must be non-negative (i.e., TotalValue(Txs(initCreditsσ)) ≥
TotalValue(initDebits)).

The Closable Overspending Detector abstraction exports two operations: Submit(debits, creditsσ)
and Close(pendingDebits). It also provides two verification functions: VerifyCODCert(tx , σ) and
VerifyCloseStateCert(CODState, σ).

We say that a transaction tx is accepted by an instance I of COD iff tx ∈ I.initDebits or there exists
σ such that I.VerifyCODCert(tx , σ) = true. In order to get new debit transactions accepted, correct
clients submit them to the COD object by invoking Submit(debits, creditsσ). Here, creditsσ is the set of
committed credit transactions the client is aware of with the corresponding commit certificates.

In the most common case when no overspending attempts are detected, Submit(debits, creditsσ) re-
turns OK(debitsσ, outCreditsσ), where debitsσ contains the same transactions as in debits augmented with
the cryptographic certificates confirming that these transactions are accepted by a COD and outCreditsσ

contains enough committed credit transaction to cover all of the transactions in debits. More formally,
the following two properties are satisfied:

COD-Submit Validity: If a correct client obtains OK(debitsσ, outCreditsσ) from
Submit(debits, creditsσ), then Txs(debitsσ) = debits and ∀⟨tx , σ⟩ ∈ debitsσ :
VerifyCODCert(tx , σ) = true. Moreover, ∀⟨tx , σ⟩ ∈ outCreditsσ :
VerifyCommitCertificate(tx , σ) = true;

COD-Submit Safety:

• At any time t, the total value of the initial debits (initDebits) and the debits accepted by a
COD object by time t does not exceed the total value of committed credits on the account
acc by time t. Moreover, if acc is correct, it does not exceed the total amount of all credits
returned by the Submit operation by time t;

• No tx ∈ restrictedDebits is ever accepted by a COD object.

COD.Submit may also return FAIL if the replicas observe an overspending attempt. Note, however,
that due to communication delays, a replica may observe only a subset of all the Submit operations that
are being executed. Hence, we allow the COD object return FAIL if any subset of Submit operations
overspends. Another case when we allow the COD object to return FAIL is when some client already
invoked the COD.Close operation. More formally:
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COD-Submit Success: If (i) acc is a correct account, (ii) no client invokes the Close operation,
and (iii) for every subset S of invoked operations Submit(debitsi, creditsσi ), TotalValue(debits) ≤
TotalValue(credits) (where debits =

⋃
i∈S debitsi ∪ initDebits and credits = Txs(

⋃
i∈S creditsσi ∪

initCreditsσ), then no Submit operation returns FAIL.

In CryptoConcurrency, once a correct process receives FAIL from an invocation of Submit, it proceeds
to closing the COD instance by invoking Close(pendingDebits), where pendingDebits is an arbitrary set
of debit transactions. The operation returns ⟨CODState, σstate⟩, where CODState is a snapshot of the
accumulated internal state of the COD object and σ is a certificate confirming the validity of the snapshot.
σstate can be later verified by any third party using the VerifyCloseStateCert function.

The snapshot CODState contains the following fields:

1. creditsσ – the set of credits submitted to this COD along with their commit certificates;

2. selectedDebits – a set of debits submitted to this COD such that TotalValue(selectedDebits) ≤
TotalValue(Txs(creditsσ));

3. cancelledDebits – a set of debits submitted to this COD that cannot be added to selectedDebits
without exceeding the amount of funds provided by creditsσ.

The set selectedDebits must contain all the transactions that have been or ever will be accepted by this
COD instance. To this end, as stipulated by the name of the operation, it “closes” the instance of
COD and, as already formalized in the COD-Submit Success property, new invocations of the Submit
operation may return FAIL even there is no overspending. Formally, operation Close must satisfy the
following properties:

COD-Close Validity: If a correct client obtains ⟨CODState, σstate⟩ from Close(pendingDebits), then
VerifyCloseStateCert(CODState, σstate) = true;

COD-Close Safety: If a correct client obtains ⟨CODState, σstate⟩ from Close(pendingDebits), then:

• initDebits ⊆ CODState.selectedDebits and restrictedDebits ⊆ CODState.cancelledDebits;
• for every transaction tx accepted by this COD instance: tx ∈ CODState.selectedDebits;
• pendingDebits ⊆ CODState.selectedDebits ∪ CODState.cancelledDebits;
• for any Submit operation that returns OK(debitsσ, outCreditsσ): outCreditsσ ⊂
CODState.creditsσ and ∀⟨tx , σ⟩ ∈ CODState.creditsσ: VerifyCommitCertificate(tx , σ) = true.
Moreover, initCreditsσ ⊆ CODState.creditsσ;

• TotalValue(Txs(CODState.creditsσ)) ≥ TotalValue(CODState.selectedDebits). More-
over, ∄tx ∈ cancelledDebits, such that TotalValue(Txs(CODState.creditsσ)) ≥
TotalValue(CODState.selectedDebits ∪ {tx});

• CODState.selectedDebits ∩ CODState.cancelledDebits = ∅;

Finally, both operations must eventually terminate:

COD-Liveness: Every call to Submit and Close operations by a correct client eventually returns.

In CryptoConcurrency, each account acc is provided with a list of COD objects COD[acc][1, 2, . . .]
and for all e ≥ 1, the initial state (initDebits, initCreditsσ, and restrictedDebits) of COD[acc][e + 1] is
initialized using a snapshot returned by COD[acc][e] (selectedDebits, creditsσ, and cancelledDebits).

2.10.2 Implementation of Closable Overspending Detector
The variables defining a Closable Overspending Detector object and a replica’s state are listed in Algo-
rithm 2.5. The pseudocode of the verifying functions is provided Algorithm 2.6, while the protocols of
a client and a replica are presented in Algorithms 2.7 and 2.8, respectively. Here we implicitly assume
that each protocol message and each message being signed carries information on the account acc and
the epoch the COD object is parameterized with. This ensures that different instances of COD do not
interfere with each other and, in particular, that signatures created in one instance cannot be used in
another one.

The Submit operation consists of two phases: Prepare and Accept.
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Prepare phase. The implementation of the Prepare phase inherits the key ideas from the Generalized
Lattice Agreement protocol of [61]. In this phase, each debit transaction is appended with a set of
dependencies, i.e., credit transactions that are submitted to COD along with the debit transaction,
signed by the client (line 131). Intuitively, this is necessary in order to prevent Byzantine replicas from
falsely detecting overspending simply by ignoring credit transactions. Then, the client sends a Prepare
message containing all the debit transactions (with signed sets of dependencies attached to them) and
credit transactions (with commit certificates) it is aware of to all the replicas (line 133) and waits for
their replies (line 134). It also attaches the set of debit transactions that it started the Prepare phase
with (submitDebits). If any replica replies with any debit transactions the client is unaware of, the client
repeats the request with the updated sets of debits and credits (line 144).

There are multiple ways in which this loop may terminate. In a successful scenario, the client either
manages to collect a quorum of signed replies with an identical set of debits (line 141) or receives a
notification that some other client already managed to prepare a set of transactions that includes all
the transactions from submitDebits (line 136). In these two cases, the client returns will move on to the
Accept phase with a quorum of signatures as a certificate that it performed the Prepare phase correctly
(lines 137 and 143).

If the total value of all debits that the client is aware of (including the ones from ongoing Submit
operations) exceeds the total value of committed credits known to the client (line 139), this indicates a
potential overspending attempt. As a result, the client will return FAIL both from the Prepare phase
(line 140) and from the Submit operation (line 125). Finally, if the client is notified (with a valid
signature from another owner of the account) that this COD instance is being closed, it also returns
FAIL (line 135).

When a correct replica receives a Prepare message from a client, it first checks that the COD
instance is not yet closed (line 164) and that the transactions in the submitDebits set are not yet
prepared (line 165). If one of these conditions does not hold, the replica notifies the client with a proper
certificate and stops processing the message. Otherwise, the replica proceeds to check that the client’s
message is well-formed (lines 168 to 173) and, if it is, the replica adds the received transactions to its
local state (lines 175 and 176). Finally, the replica sends to the client all debit transactions (with signed
dependencies) and all credit transactions (with commit certificates) it is aware of. It also attaches a
digital signature on the set of debits if the account’s balance is non-negative after all the transactions
the replica is aware of are applied (lines 176 to 179). Intuitively, the signature indicates that the replica
acknowledged these debits. As described above, if a client collects a quorum of such signatures for an
identical set of debits, it can move on to the Accept phase.

Accept phase. In the Accept phase (lines 145 to 152), the client gathers signatures for the Merkle tree
root of the set of debits it obtained during the Prepare phase. Once it has collected signatures from a
quorum of replicas, the client constructs certificates for the debit transactions with which it invoked the
Submit operation and returns them along with all credits used to cover these transactions. The client
may return FAIL in the Accept phase if another client has invoked the Close operation.

The purpose of the Accept phase is, intuitively, to ensure that each transaction accepted by this
COD instance is stored in the preparedDebits set on at least a quorum of replicas. This is necessary to
guarantee that, in the Close operation, the clients will be able to reliably identify which transactions
could have been accepted (by looking at the preparedDebits sets reported by the replicas).

The Close operation. The Close operation is designed to deactivate the COD object and to collect
a snapshot of its state. During this operation, the client collects the states of a quorum of replicas and
then asks the replicas to sign the accumulated joint state. Accessing a quorum guarantees that the
client gathers all the debits that have been previously returned from the Submit operations. As a result,
confirmed transactions are never lost.

The interaction between the AcceptRequest and Close messages in the COD implementation is
similar to that of “propose” messages and “prepare” messages with a larger ballot number in Paxos [98].
Intuitively, it guarantees that, if there is a Submit concurrent with a Close, either the client executing
Submit will “see” the Close operation (i.e., will receive a Closed message) and will return FAIL or the
client executing the Close operation will “see” the debits in a replica’s preparedDebits set.
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Algorithm 2.5 Closable Overspending Detector (Parameters and replica state)
91: Parameters:
92: acc – account for which this COD is used
93: e – epoch number of this COD
94: initDebits – set of initial debits used by this COD
95: initCreditsσ – set of initial credits used by this COD
96: restrictedDebits – set of debits that should not be accepted by this COD
97: Replica State:
98: debitsσ – the set of debits acknowledged by this replica, initially {⟨tx ,⊥⟩ | tx ∈ initDebits}
99: creditsσ – the set of known credits, initially initCreditsσ

100: preparedDebits – prepared debits received in AcceptRequest messages, initially ∅
101: σprepare – certificate for preparedDebits, initially ⊥
102: isClosed – current status of this COD, initially false
103: σclosed – proof of the fact that COD was closed, initially ⊥

Algorithm 2.6 COD verifying and helper functions
104: public function VerifyCODCert(tx , σ)
105: ⟨root , itemProof , σMT , accσ, eσ⟩ := σ
106: if accσ ̸= acc or eσ ̸= e then return false

107: return VerifyItemProof(root , itemProof , tx ) and VerifyTS(⟨AcceptAck, root⟩, σMT )

108: public function VerifyCloseStateCert(closedState, closedStateCert) returns Boolean
109: let ⟨creditsσ, selectedDebits, cancelledDebits⟩ be closedState
110: if creditsσ are not sufficient to cover all debits in selectedDebits then return false

111: return VerifyTS(⟨ConfirmStateResp, selectedDebits, cancelledDebits⟩, closedStateCert)

112: function SplitDebits(pendingDebits, messages) returns Pair⟨Set⟨T ⟩,Set⟨T ⟩⟩
113: assert messages is a set of tuples {⟨CloseResp, creditsσi , preparedDebitsi, σpreparei, sig i⟩}i∈Q

114: let preparedDebits :=
⋃

i∈Q preparedDebitsi
115: let allCredits := Txs(initCreditsσ) ∪ (

⋃
i∈Q Txs(creditsσi ))

116: assert TotalValue(allCredits) ≥ TotalValue(initDebits ∪ preparedDebits)
117: // At least all initial debits and all prepared debits must be selected
118: selectedDebits := initDebits ∪ preparedDebits
119: for tx ∈ pendingDebits \ restrictedDebits do
120: if TotalValue(selectedDebits ∪ {tx}) ≤ TotalValue(allCredits) then
121: selectedDebits := selectedDebits ∪ {tx}
122: return ⟨selectedDebits, restrictedDebits ∪ (pendingDebits \ selectedDebits)⟩
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Algorithm 2.7 COD (code for client p)
123: operation Submit(debits, creditsσ) returns OK(Pair⟨Set⟨TΣ⟩,Set⟨TΣ⟩⟩) or FAIL
124: prepareResult = Prepare(debits, creditsσ)
125: if prepareResult is FAIL then return FAIL
126: let OK(⟨preparedDebits, allCreditsσ, σprepare⟩) be prepareResult
127: return Accept(debits, preparedDebits, allCreditsσ, σprepare)

128: function Prepare(debits, creditsσ) returns OK(Tuple⟨Set⟨T ⟩,Set⟨TΣ⟩,Σ⟩) or FAIL
129: submitDebits := debits
130: deps := {tx .id | tx ∈ Txs(creditsσ)}
131: debitsσ := {⟨tx , ⟨deps, Sign(⟨Deps, tx , deps⟩)⟩⟩ | tx ∈ debits}
132: while true do
133: send ⟨Prepare, debitsσ, creditsσ, submitDebits⟩ to all replicas
134: wait for quorum Q of valid PrepareResp replies ⟨PrepareResp, debitsσi , credits

σ
i , sig i⟩

or 1 valid AlreadyPrepared reply or 1 valid Closed reply
135: if received a valid ⟨Closed, sig⟩ reply then return FAIL
136: if received a valid ⟨AlreadyPrepared, preparedDebits, σprepare⟩ reply then
137: return ⟨preparedDebits, σprepare⟩ // Someone has already prepared a set with our transac-

tions.
138: allDebitsσ := debitsσ ∪

(⋃
i∈Q debitsσi

)
; allCreditsσ := creditsσ ∪

(⋃
i∈Q creditsσi

)
139: if balance(Txs(allDebitsσ) ∪ Txs(allCreditsσ), acc) < 0 then
140: return FAIL // Impossible to add all transactions without violating the invariant.
141: else if ∀i ∈ Q : Txs(debitsσi ) = Txs(allDebitsσ) and sig i ̸= ⊥ then
142: σprepare := CreateTS(⟨PrepareResp,Txs(allDebitsσ)⟩, {sig i}i∈Q)
143: return OK(⟨Txs(allDebitsσ), allCreditsσ, σprepare⟩)
144: debitsσ := allDebitsσ; creditsσ := allCreditsσ

145: function Accept(submittedDebits, preparedDebits, allCreditsσ, σprepare) returns
OK(Pair⟨Set⟨TΣ⟩, Set⟨TΣ⟩⟩) or FAIL

146: send ⟨AcceptRequest, preparedDebits, allCreditsσ, σprepare⟩ to all replicas
147: wait for valid ⟨AcceptAck, sig i⟩ replies from a quorum Q or 1 valid Closed reply
148: if received a valid ⟨Closed, sig⟩ reply then return FAIL
149: merkleTree = MerkleTree(preparedDebits)
150: σMT = CreateTS(⟨AcceptAck,merkleTree.root⟩, {sig i}i∈Q)
151: submittedDebitsσ = {⟨tx , ⟨merkleTree.root ,GetItemProof(merkleTree, tx ), σMT , acc, e⟩⟩ | tx ∈

submittedDebits}
152: return OK(submittedDebitsσ, allCreditsσ)

153: operation Close(pendingDebits) returns Pair⟨CloseState,Σ⟩
154: send ⟨Close, Sign(⟨Close, e⟩)⟩ to all replicas
155: wait for a quorum Q of valid CloseResp replies
156: messages := replies ⟨CloseResp, creditsσi , preparedDebitsi, σpreparei, sig i⟩ from quorum Q
157: creditsσ :=

⋃
creditsσi

158: ⟨selectedDebits, cancelledDebits⟩ := SplitDebits(pendingDebits,messages)
159: send ⟨ConfirmState, pendingDebits,messages⟩ to all replicas
160: wait for a quorum Q of valid ⟨ConfirmStateResp, sig i⟩ replies
161: closedStateCert := CreateTS(⟨ConfirmStateResp, selectedDebits, cancelledDebits⟩, {sig i}i∈Q)
162: return ⟨⟨creditsσ, selectedDebits, cancelledDebits⟩, closedStateCert⟩
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Algorithm 2.8 COD (code for replica r)
163: upon receive ⟨Prepare, receivedDebitsσ, receivedCreditsσ, submitDebits⟩ from client q
164: if isClosed then send ⟨Closed, σclosed⟩ to q and return
165: if submitDebits ⊆ preparedDebits then
166: send ⟨AlreadyPrepared, preparedDebits, σprepare⟩ to q
167: return
168: for all tx ∈ Txs(receivedDebitsσ) do
169: if tx .sender ̸= acc then return
170: if tx ∈ restrictedDebits then return
171: for all ⟨tx , σcredit⟩ ∈ receivedCreditsσ do
172: if tx .recipient ̸= acc or not VerifyCommitCertificate(tx , σcredit) then return
173: if (

⋃
⟨tx ,⟨deps,σ⟩⟩∈receivedDebitsσ deps) ̸⊆ Txs(receivedCreditsσ) then return

174: creditsσ := creditsσ ∪ receivedCreditsσ

175: debitsσ := debitsσ ∪ receivedDebitsσ

176: if balance(Txs(debitsσ ∪ creditsσ), acc) ≥ 0 then
177: sig := Sign(⟨PrepareResp,Txs(debitsσ)⟩)
178: else sig :=⊥
179: send ⟨PrepareResp, debitsσ, creditsσ, sig⟩ to q

180: upon receive ⟨AcceptRequest, receivedDebits, receivedCreditsσ, σ⟩ from client q
181: if isClosed then send ⟨Closed, σclosed⟩ to q and return
182: if not VerifyTS(⟨PrepareResp, receivedDebits⟩, σ) then return
183: for all ⟨tx , σ⟩ ∈ receivedCreditsσ do
184: if not VerifyCommitCertificate(tx , σ) then return
185: creditsσ := creditsσ ∪ receivedCreditsσ

186: if preparedDebits ⊂ debits then
187: preparedDebits := debits; σprepare := σ

188: sig := Sign(⟨AcceptAck,MerkleTree(debits).root⟩)
189: send ⟨AcceptAck, sig⟩ to q

190: upon receive ⟨Close, sig⟩ from client q
191: if not VerifySignature(⟨Close, e⟩, sig , q) then return
192: isClosed := true; σclosed := sig
193: sig := Sign(⟨CloseResp, preparedDebits⟩)
194: send ⟨CloseResp, creditsσ, preparedDebits, σprepare, sig⟩ to q

195: upon receive ⟨ConfirmState, pendingDebits, messages⟩ from client q
196: if messages contains invalid messages then return
197: ⟨selectedDebits, cancelledDebits⟩ := SplitDebits(pendingDebits,messages)
198: sig := Sign(⟨ConfirmStateResp, selectedDebits, cancelledDebits⟩)
199: send ⟨ConfirmStateResp, sig⟩ to client q
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2.11 Append-Only Storage
First, we give a formal definition for Append-Only Storage in 2.11.1 and then proceed with its detailed
implementation in 2.11.2.

2.11.1 Formal definition of Append-Only Storage
The abstraction is parameterized with a set of tuples {⟨k1, vsinitk1

,VerifyInputk1
⟩, . . . ,

⟨kn, vsinitkn
,VerifyInputkn

⟩}. Each tuple consists of a key ki, initial set of values vsinitki
for this key,

and a verifying function for this key VerifyInputki
, which takes a value v and a certificate σv for this

value and returns true if ⟨v, σv⟩ is valid input for key ki, and false otherwise.4 Also, any initial value for
a given key is valid: ∀v ∈ vsinitki

: VerifyInputki
(ki, v,⊥) = true.

The abstraction exports two operations: AppendKey(k, v, σv) and ReadKey(k). It also provides one
boolean function: VerifyStoredCert(k, v, σAOS).

The operation AppendKey(k, v, σv) accepts a key k and a value v together with its certificate σv and
adds v to the set of stored values for k in Append-Only Storage, but only if VerifyInputk(v, σv) = true.
As a result, the AppendKey(k, v, σv) operation outputs a certificate σAOS, which is an evidence of the
fact that value v is stored in the set corresponding to the key k in Append-Only Storage.

The ReadKey(k) operation returns vsσAOS, where vsσAOS is a set of pairs ⟨v, σAOS⟩, such that: v is a
valid value for a key k (i.e., there exists a certificate σv, such that VerifyInputk(v, σv) = true), and σAOS
is a certificate that proves that v belongs to the set of values for the key k in the Append-Only Storage.

Let us formally define the properties of Append-Only Storage:

AOS-Consistency: If there exists σAOS such that VerifyStoredCert(k, v, σAOS) = true at the moment
when ReadKey(k) was invoked by a correct client, then the output of this operation will contain v
(paired with a certificate);

AOS-Input Validity: If there exists a certificate σAOS such that VerifyStoredCert(k, v, σAOS) = true,
then there exists σv, such that VerifyInputk(v, σv);

AOS-Output Validity: If a correct client returns σAOS from AppendKey(k, v, σv), then
VerifyStoredCert(k, v, σAOS) = true. Moreover, if a correct client returns vsσAOS from ReadKey(k),
then ∀⟨v, σAOS⟩ ∈ vsσAOS : VerifyStoredCert(k, v, σAOS) = true;

AOS-Liveness: All operations eventually terminate.

2.11.2 Implementation of Append-Only Storage
The pseudocode for the Append-Only Storage can be found in Algorithm 2.9.

In operation AppendKey(k, v, σv), the client calls function WriteValuesToKey with a key k and a
singleton set {⟨v, σv⟩} as parameters. In WriteValuesToKey, given a key k and a set of values with
certificates vsσ, the client first sends k and vsσ to all replicas and waits for a quorum of valid replies.
The client then returns the submitted values, provided with their aggregated Merkle Tree signatures,
and extracted certificates for all v in vsσ (⟨v, ∗⟩ ∈ vsσ).

In operation AppendKey(k, v, σv), the call to WriteValuesToKey returns a set consisting of only one
pair ⟨v, σAOS⟩ (due to the input being a singleton set). Finally, AppendKey returns σAOS.

In the ReadKey(k) operation, the client first requests the values stored by a quorum of replicas for
this key. The aggregated set of values vsσ is then passed to the WriteValuesToKey function to make sure
that any value v in vsσ is written to a quorum of processes. This guarantees that any value read from
the Append-Only Storage will be read from it again later. Finally, vsσ is returned by the operation.

In CryptoConcurrency, we use two types of the Append-Only Storage. The first is Global Storage
which allows different accounts to interact with each other (i.e., receive incoming transactions). The other
one – Account Storage is used per account, i.e., only clients that share an account can communicate with
it and every account has an Account Storage associated with it.

As there is one Global Storage per system, it makes sense to implement it on the same set of replicas
as all of the other parts of the algorithm. At the same time, Account Storage serves only one account,
and, in fact, can be implemented on a different, local set of replicas for each account.

4Sometimes, we define the validity based only on the values themselves and use ⊥ for the certificates.
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Algorithm 2.9 Append-Only Storage
// Code for client p

200: operation ReadKey(k) returns Set⟨Pair⟨V,Σ⟩⟩
201: send ⟨ReadKey, k⟩ to all replicas
202: wait for valid ⟨ReadKeyResp, vsσi ⟩ replies from a quorum Q
203: vsσ :=

⋃
i vs

σ
i

204: return WriteValuesToKey(vsσ)

205: operation AppendKey(k, v, σv) returns Σ
206: {⟨v, σAOS⟩} := WriteValuesToKey(k, {⟨v, σv⟩})
207: return σAOS

208: operation WriteValuesToKey(k, vsσ) returns Set⟨Pair⟨V,Σ⟩⟩
209: send ⟨AppendKey, k, vsσ⟩ to all replicas
210: wait for valid ⟨AppendKeyResp, sig i⟩ replies from a quorum Q
211: vs := {v | ⟨v, σv⟩ ∈ vsσ}
212: merkleTree := MerkleTree(vs)
213: σMT := CreateTS(⟨AppendKeyResp, k,merkleTree.root⟩, {sig i}i∈Q)
214: return {⟨v, ⟨merkleTree.root ,GetItemProof(merkleTree, v), σMT ⟩⟩ | v ∈ vs}

215: public function VerifyStoredCert(k, v, σAOS) returns Boolean
216: ⟨root , itemProof , σMT ⟩ := σAOS

217: return VerifyItemProof(root , itemProof , v) and VerifyTS(⟨AppendKeyResp, k, root⟩, σMT )

// Code for replica r
218: State:
219: log – mapping from a key to a set of values for this key, initially ∀k : log [k] = ∅
220: upon receive ⟨ReadKey, k⟩ from client p
221: send ⟨ReadKeyResp, log [k]⟩ to p

222: upon receive ⟨AppendKey, k, vsσ⟩ from client p
223: for all ⟨v, σv⟩ ∈ vsσ do
224: if not VerifyInputk(v, σv) then return
225: log [k] := log [k] ∪ vsσ

226: vs := {v | ⟨v, σv⟩ ∈ vsσ}
227: sig := Sign(⟨AppendKeyResp, k,MerkleTree(vs).root⟩)
228: send ⟨AppendKeyResp, sig⟩ to p
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2.12 Proofs of correctness

In 2.12.1 we prove the correctness of the CryptoConcurrency protocol, assuming the correctness of the
underlying building blocks. Then, in 2.12.2 and 2.12.3, we show that the implementations of Closable
Overspending Detector and Append-Only Storage are correct.

2.12.1 Proof of Correctness: CryptoConcurrency

In this subsection, we prove that CryptoConcurrency satisfies the six Asset Trans-
fer properties Transfer Liveness, Transfer Validity, Transfer Safety, Transfer Consistency,
Account Transactions Completeness and Transfer Concurrency, as defined in Section 2.5.

Transfer Liveness. Let us start with the proof of the Transfer Liveness property. First of all, it is
important to note that all invocations of operations of COD, Append-Only Storage (Account Storage
and Global Storage), and Consensus will eventually terminate due to the liveness properties of these
objects (namely, COD-Liveness, AOS-Liveness and C-Liveness). Moreover, in the implementation of
CryptoConcurrency presented in Algorithm 2.1, there is just one “wait for ” statement (line 51) and
one potentially infinite loop (lines 11 to 34). Hence, we need to prove their eventual termination.

Lemma 2.2. Line 51 invoked by a correct client always eventually terminates.

Proof. Let us say that two CommitInitState messages are conflicting if they contain the same epoch,
but different nextCODState fields. By inspecting lines 70 to 77, it is easy to verify that, unless the
owners of some account issue conflicting CommitInitState messages, the correct replicas will reply to
each CommitInitState message that contains a CODState with a valid certificate.

Thanks to the C-Consistency property of consensus, correct owners of the same account will never
send conflicting CommitInitState messages. Moreover, according to our assumptions, correct clients
never share their account with Byzantine clients (see Section 2.3.2).

Hence, a correct client that reached line 51 will always eventually collect a quorum of replies and will
move on to the next line.

Lemma 2.3. A correct client p executing Transfer(tx∗) enters the loop of lines 11 to 34 a finite number
of times.

Proof. Let acc be the account of client p.
Let us consider the moment t when p returns from the invocation on line 10. Let us consider all

clients that are executing the Transfer operation on acc at time t. Let emax be the maximum of their
epoch numbers.

By the AOS-Consistency property of Account Storage, whenever any owner of acc enters epoch emax+
1, it will have tx∗ in its variable pendingDebits on line 15. This implies that, whenever any process invokes
Recovery(emax+1, pendingDebits) on line 26, tx∗ ∈ pendingDebits. By the COD-Close Safety property of
COD, tx∗ will belong to the CODState (either to CODState.selectedDebits or CODState.cancelledDebits)
state received by any owner of acc invoking COD[acc][emax +1].Close(pendingDebits) on line 44. Finally,
by the C-Validity property of Consensus, tx∗ will also belong to nextCODState on line 47.

Since with each iteration of the loop p increments its own epoch number, it will either eventu-
ally exit the loop or reach line 27 with e = emax + 1 and, as we just established, will find tx∗ in
either CODState.selectedDebits or CODState.cancelledDebits. In any case, the client will terminate
Transfer(tx∗) with either OK(σcommit) on line 30 or FAIL on line 32.

Theorem 2.4. CryptoConcurrency satisfies the Transfer Liveness property of Asset Transfer.

Proof. Liveness of Transfer operation follows directly from Theorems 2.2 and 2.3 and the liveness prop-
erties of the underlying building blocks. Liveness of GetAccountTransactions operation follows from the
liveness property of Append-Only Storage (AOS-Liveness).
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Transfer Validity. Now we proceed by proving the Transfer Validity property.

Theorem 2.5. CryptoConcurrency satisfies the Transfer Validity property of Asset Transfer.

Proof. This theorem follows from the implementation of the algorithm and the AOS-Output Validity
property of the Append-Only Storage. If a correct client returns OK(σcommit) from the Transfer(tx )
operation, then it successfully returned σcommit from GlobalStorage.AppendKey(′txs ′, tx , σ) (at
either line 23 or line 29). As the implementation of VerifyCommitCertificate(tx , σcommit) is es-
sentially GlobalStorage.VerifyStoredCert(′txs′, tx , σcommit), by the AOS-Output Validity property
VerifyCommitCertificate(tx , σcommit) = true.

Transfer Safety. The Transfer Safety is a type of property that is essential for any asset transfer
system. It tells us that no account can overspend. We now show that CryptoConcurrency satisfies this
property.

For the proof, let us consider an account acc. We say that a debit transaction tx on acc is associated
with an epoch e, iff e is the minimum epoch number such that:

• Either there exists a certificate σCOD such that
COD[acc][e].VerifyCODCert(tx , σCOD) = true;

• Or there exists σrecovery = ⟨∗, ∗, ∗, e⟩ such that
VerifyRecoveryCert(tx , σrecovery) = true.

Lemma 2.6. For any epoch number e, COD[acc][e].initDebits includes all committed debit transactions
associated with any epoch e′ < e.

Proof. We prove this lemma by induction. The base case of the induction (e = 1) is trivially satisfied as
there are no debit transactions associated with epoch numbers less than 1 (note that genesis transactions
are credits).

Now, assuming that the statement of this lemma holds up to the epoch number e, we prove
that it also holds for the epoch number e + 1. The initial state of the COD object for epoch
e + 1 (in particular, COD[acc][e + 1].initDebits) is formed from the output value ⟨nextCODState, ∗⟩
of the Consensus[acc][e + 1].Propose operation. Note that nextCODState is also an input of
Consensus[acc][e + 1] and it must satisfy COD-Close Safety property to be accepted by a quorum
of replicas (i.e., pass the check at line 71). Particularly, any transaction accepted by COD[acc][e] is in
nextCODState.selectedDebits. Furthermore, by the implementation of the Recovery function, for any
transaction tx , such that VerifyRecoveryCert(tx , σrecovery) = true and σrecovery = ⟨∗, ∗, ∗, e⟩, the follow-
ing holds: tx ∈ nextCODState.selectedDebits. This means that any transaction associated with epoch
e is in COD[acc][e + 1].initDebits. The fact that any transaction associated with epoch e′ < e is in
COD[acc][e+1].initDebits follows from the part of the COD-Close Safety property of the COD abstrac-
tion saying that COD[acc][e].initDebits ⊆ nextCODState.selectedDebits. By induction we know that any
committed transaction associated with epoch e′ < e is in COD[acc][e].initDebits. Thus, if the statement
of this lemma holds up to an epoch number e, then it also holds up to an epoch number e + 1, which
concludes the induction.

We say that account acc is in epoch e at a given moment in time iff, at this moment, there ex-
ists a correct replica that initialized COD[acc][e] object at line 69, but no correct replica initialized
COD[acc][e+ 1] yet.

Theorem 2.7. CryptoConcurrency satisfies the Transfer Safety property of Asset Transfer.

Proof. We prove this theorem by contradiction. Let us assume that CryptoConcurrency does not sat-
isfy Transfer Safety property, i.e., there exists an account acc, such that, at some moment of time
t, balance(C(t), acc) < 0. Let us consider the first moment of time t0 when it happens and an
epoch e account acc is in at time t0. We know that a transaction can be committed if it obtains
certificate via a COD object or via the Recovery procedure. From the COD-Submit Safety prop-
erty of COD object, we know that the for any time t total value of COD[acc][e].initDebits and deb-
its accepted by a COD object by time t for an account acc does not exceed total value of com-
mitted credits on account acc by time t. By Lemma 2.6, we know that COD[acc][e].initDebits in-
cludes all committed debit transactions associated with any epoch e′ < e. Also, let us consider a
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set of committed transactions selectedDebits that are associated with an epoch e′ ≤ e and such that
∀tx ∈ debits : VerifyRecoveryCert(tx , e, σ) = true. By the implementation, there exists a quorum
of processes that signed a message ⟨CommitInitStateResp, ⟨selectedDebits, creditsσcancelledDebits⟩⟩.
Then, ⟨selectedDebits, creditsσ, cancelledDebits⟩ should satisfy COD-Close Safety property, in particular
TotalValue(selectedDebits) ≥ TotalValue(Txs(creditsσ)). Also, note that creditsσ is a set of committed
credits on account acc and Txs(creditsσ) ⊆ credits(C(t0), acc). In addition, from Lemma 2.6 and the
COD-Close Safety property of COD, we know that selectedDebits includes all transactions that have
been accepted by COD[acc][e] and all committed transactions associated with an epoch e′ < e. This
implies that balance(C(t0), acc) ≥ 0, which contradicts our assumption. Consequently, for all t and for
all acc balance(C(t), acc) ≥ 0.

Transfer Consistency. Next, we prove that CryptoConcurrency satisfies the Transfer Consistency
property.

Let us briefly outline the proof structure. Consider any execution E . We need to show that there exists
a legal permutation of transactions in T (E , acc) that is consistent with ≺E,acc for a correct account acc.
First, we provide some formalism that we will use during the proof. Then, we construct a permutation
of transactions in T (E , acc). Using given definitions, by induction on the epoch number, we show that
the constructed permutation is legal and consistent with ≺E,acc .

Given a correct account acc, we say that n is the final epoch for acc in E iff this is the largest number
such that at least one correct replica initialized COD[acc][n] at line 69. Any epoch with a smaller number
is said to be non-final.

For the rest of this proof section, we consider a correct account acc.
We say that transaction tx belongs to epoch n iff it belongs to one of the following three groups:

• Group G1(n):

– debit transactions accepted by COD[acc][n], i.e., every tx , such that there ex-
ists COD[acc][n].Submit(. . .) that returned OK(acceptedDebitsσ, ∗), such that ⟨tx , ∗⟩ ∈
acceptedDebitsσ, excluding the transactions from COD[acc][n].initDebits;

– credit transactions returned from COD[acc][n], i.e., any tx such that there exists
COD[acc][n].Submit(. . .) that returned OK(∗, creditsσ), such that ⟨tx , ∗⟩ ∈ creditsσ, exclud-
ing the transactions from COD[acc][n].initCreditsσ;

• Group G2(n):

– debit and credit transactions selected by Consensus[acc][n + 1], i.e.,
any transaction tx , such that Consensus[acc][n + 1].Propose(. . .) returns
⟨⟨allCreditsσ, selectedDebits, cancelledDebits⟩, ∗⟩ and tx ∈ selectedDebits or ⟨tx , ∗⟩ ∈
allCreditsσ, excluding the transactions from G1(n), COD[acc][n].initDebits and
COD[acc][n].initCreditsσ;

• Group G3(n):

– debit transactions canceled by Consensus[acc][n+1], i.e., any debit transaction tx , such that
Consensus[acc][n + 1].Propose(. . .) returns ⟨⟨allCreditsσ, selectedDebits, cancelledDebits⟩, ∗⟩
and tx ∈ cancelledDebits, excluding COD[acc][n].restrictedDebits.

Let E(n) denote the set of transactions that belong to epoch n (i.e., E(n) = G1(n) ∪ G2(n) ∪ G3(n)).
Each transaction belongs to at most one epoch, i.e., ∀n1 ̸= n2 : E(n1) ∩ E(n2) = ∅. Also, for any
committed transaction tx with acc ∈ {tx .sender , tx .recipient} ∃n ≥ 0, for which tx ∈ E(n).

For completeness, we also define E(0) as a set that consists of only one special group G1(0), which
contains only genesis transaction tx init, acc.

Lemma 2.8. Transaction tx belongs to one of the sets COD[acc][n].initDebits,
Txs(COD[acc][n].initCreditsσ), or COD[acc][n].restrictedDebits iff tx ∈ E(n′) for some n′ < n.
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Proof. The implication from left to right follows by induction from the definition of groups G2 and G3

and the implementation of the Recovery procedure.
Similarly, the other direction follows by induction from the COD-Close Safety property and the

implementation of the Recovery procedure, in a way analogous to Theorem 2.6.

Lemma 2.9. Each transaction tx on account acc belongs to exactly one of the groups, i.e., ∀tx ∈
T (E , acc) : ∃ unique pair (n, i) such that tx ∈ Gi(n).

Proof. Follows from Theorem 2.8 and the definition of groups.

Let us now define a total order < on the transactions in T (E , acc) as follows:

(i) First, we order the transactions by their epoch numbers, i.e.: ∀k,m s.t. k ̸= m : ∀tx ∈ E(k), tx ′ ∈
E(m): tx < tx ′ iff k < m;

(ii) Within an epoch, by their group numbers: ∀n, i, j s.t. i ̸= j : ∀tx ∈ Gi(n), tx
′ ∈ Gj(n): tx < tx ′ iff

i < j;

(iii) Within each group, by endacc , giving the priority to the credit transactions: ∀n, i : ∀tx , tx ′ ∈
Gi(n) : tx < tx ′ iff endacc(tx ) < endacc(tx

′) or endacc(tx ) = endacc(tx
′), tx is a credit transaction

and tx ′ is a debit transaction;

Let H be the permutation of T (E , acc) implied by the total order “<”. It is convenient to think of
H as a sequence of epoch sets, i.e., H = (E(0), E(1), . . . , E(n), . . .) or a sequence of groups, i.e., H =
(G1(0), . . . , G1(n), G2(n), G3(n), . . .).

Now, we need to prove that H is both legal and consistent with real-time partial order ≺E,acc . We
are doing this by induction on the length of the permutation H. We start with the base of the induction.

Lemma 2.10. H up to E(0) is consistent with ≺E,acc and legal.

Proof. This follows from the fact that E(0) contains only genesis transaction tx init, acc that deposits
initial balance to the account, which by definition is non-negative.

Now, assuming that H is legal and consistent with ≺E,acc up to E(k), let us prove that it is legal and
consistent with ≺E,acc up to E(k + 1).

First, we show that H is consistent with ≺E,acc .

Lemma 2.11. For any i ∈ {1, 2, 3}, for any tx , tx ′ ∈ Gi(k + 1) if tx ≺E,acc tx ′ then tx < tx ′.

Proof. Given endacc(tx ) < startacc(tx ′), we need to show that endacc(tx ) < endacc(tx
′). This is obvious

as endacc(tx ) < startacc(tx ′) ≤ endacc(tx
′).

Lemma 2.12. For any tx ∈ G1(k + 1) and tx ′ ∈ G2(k + 1) ∪G3(k + 1): tx ′ ̸≺E,acc tx .

Proof. We prove this lemma by contradiction. Let us assume that tx ′ precedes tx . Consider two scenarios:

• tx is a debit transaction. Then, tx could not be accepted by COD[acc][k+1] as it was closed before
tx ′ was submitted to the Consensus[acc][k + 2] according to the implementation. Contradiction.

• tx is a credit transaction. According to COD-Close Safety and algorithm implementation, as tx
returned from COD[acc][k + 1], then it is both consensus input and output. This implies that it
was committed by the time tx ′ was submitted to the Consensus[acc][k + 2]. Contradiction.

We came to a contradiction in both cases, thus for any tx ∈ G1(k + 1) and tx ′ ∈ G2(k + 1) ∪G3(k + 1)
tx ′ ̸≺E,acc tx .

Lemma 2.13. For any tx ∈ G2(k + 1) and tx ′ ∈ G3(k + 1): tx ′ ̸≺E,acc tx .

Proof. It follows from the fact that any pair of transactions tx ∈ G2(k + 1) and tx ′ ∈ G3(k + 1) should
have been submitted as a part of Consensus[acc][k + 2] input and both are part of its output, which
implies that there should exist a time t when both tx and tx ′ are active.

Lemma 2.14. For any transaction tx ∈
⋃k

i=0 E(i), and tx ′ ∈ E(k + 1): tx ′ ̸≺E,acc tx .
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Proof. Let epochStart(n) be the time when a process receives a value from Consensus[acc][n] for the
first time. Note that epochStart(n) ≤ epochStart(n+ 1).

By COD-Close Safety property of COD, and C-Validity of Consensus, for any i ≤ k, the output
of Consensus[acc][i + 1] contains (in allCreditsσ, selectedDebits, or cancelledDebits) all transactions
from E(i). Hence, ∀tx ∈ E(i) : startacc(tx ) ≤ epochStart(i + 1). Moreover, by definition of E(k + 1),
for any tx ′ ∈ E(k + 1), endacc(tx

′) ≥ epochStart(k + 1). Hence startacc(tx ) ≤ epochStart(i + 1) ≤
epochStart(k + 1) ≤ endacc(tx

′).

Lemma 2.15. If H is consistent with ≺E,acc up to E(k), then it is consistent with ≺E,acc up to E(k+1).

Proof. From Lemma 2.11, we know that transactions inside every group for epoch k+1 are ordered such
that if tx ≺E,acc tx ′, then tx < tx ′.

Also, according to Lemma 2.12 and Lemma 2.13, ordering of groups is consistent as well: i.e., ∀tx 1 ∈
G1(k + 1), tx 2 ∈ G2(k + 1), tx 3 ∈ G3(k + 1): tx 1 < tx 2 < tx 3 and it cannot be that a transaction from a
higher group precedes a transaction from a lower group in the real-time order ≺E,acc .

Finally, according to Lemma 2.14, ordering of transactions between epochs is consistent with the
real-time order.

Taking all these facts into consideration together with the fact that H is consistent with ≺E,acc up
to E(k), we conclude that H is consistent with ≺E,acc up to E(k + 1).

Now, let us show that H is also legal.

Lemma 2.16. Consider a debit transaction tx such that tx ∈ G1(k+1). Consider the first invocation of
COD[acc][k + 1].Submit that returns ⟨debitsσ, creditsσ⟩ such that ⟨tx , ∗⟩ ∈ debitsσ. Then, for any credit
transaction tx c ∈ creditsσ: tx c < tx .

Proof. Note that by definition of G1(k + 1), either tx c ∈ G1(k + 1) or tx c ∈ Txs(COD[acc][k +
1].initCreditsσ). In the latter case, by Theorem 2.8, tx c ∈ E(n′) for some n′ < n and, hence, tx c < tx .

Consider the former case (tx c ∈ G1(k + 1)). We need to prove that endacc(tx c) < endacc(tx ). Let t
be the moment when the invocation returned. It is easy to see that t < endacc(tx ). Moreover, for any
tx c ∈ creditsσ: endacc(tx c) = commitTime(tx c) < t since creditsσ includes a valid commit certificate for
tx c. Hence, endacc(tx c) < t < endacc(tx ).

Recall that ρE,acc(tx ) maps the debit transaction tx to the return value of the corresponding Transfer
operation in E .

Also, recall that, for a debit transaction tx on acc and a permutation H of T (E , acc), S(H, tx )
denotes the set of credit and successful debit transactions in the prefix of H up to, but not includ-
ing, tx , i.e., S(H, tx ) = {tx ′ ∈ T (E , acc) | tx ′ < tx and either tx ′.recipient = acc or tx ′.sender =
acc and ρE,acc(tx ′) = OK}.

Lemma 2.17. For any debit tx f ∈ E(k + 1) such that ρE,acc(tx f ) = FAIL, balance(S(H, tx f ), acc) <
tx f .amount .

Proof. Note that tx f ∈ G3(k + 1). Also, ∀tx ∈ S(H, tx f ): either tx ∈
⋃k

i=0 E(i) or tx ∈ G1(k + 1) ∪
G2(k + 1).

Now, consider the first moment of time when tx f was returned as a part of a consensus out-
put on line 47 to some correct process, i.e., an invocation of Consensus[acc][k + 2] returned
⟨⟨creditsσ, selectedDebits, cancelledDebits⟩, ∗⟩ such that tx f ∈ cancelledDebits.

Consider any tx ∈ S(H, tx f ). We want to prove that tx ∈ Txs(creditsσ) ∪ selectedDebits. Indeed,
consider two cases:

• tx ∈
⋃k

i=0 E(i): by Theorem 2.8, any such transaction tx should be either present in COD[acc][k+
1].initDebits or COD[acc][k + 1].initCreditsσ, and by COD-Close Safety initCreditsσ ⊆ creditsσ

and initDebits ⊆ selectedDebits.

• tx ∈ G1(k + 1) ∪ G2(k + 1): Txs(creditsσ) ∪ selectedDebits by the definition of groups G1(k + 1)
and G2(k + 1) and COD-Close Safety property.
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By Theorem 2.8 and the definition of G2(k + 1), ∀tx ∈ selectedDebits ∪ Txs(creditsσ): tx ∈ G2(k +

1), G1(k+1), or
(⋃k

i=0 E(i)
)
. Hence, tx ∈ S(H, tx f ). Thus, S(H, tx f ) = selectedDebits ∪Txs(creditsσ).

Now, recall that, according to the COD-Close Safety property, the resulted set selectedDebits
should be “maximal by inclusion”, i.e., ∄tx ∈ cancelledDebits, such that TotalValue(Txs(creditsσ)) ≥
TotalValue(selectedDebits ∪ {tx}).

Let us summarize all of the above:

1. tx f ∈ G3(k + 1) ⇔ tx f ∈ cancelledDebits;

2. ∄tx ∈ cancelledDebits, such that TotalValue(Txs(creditsσ)) ≥ TotalValue(selectedDebits ∪ {tx});

3. S(H, tx f ) = selectedDebits ∪ Txs(creditsσ).

Hence, balance(S(H, tx f ), acc) < tx f .amount .

Lemma 2.18. For any debit tx s ∈ E(k + 1) such that ρE,acc(tx s) = OK, balance(S(H, tx s), acc) ≥
tx s.amount .

Proof. Consider a debit transaction tx s ∈ E(k + 1) such that ρE,acc(tx s) = OK. Note that tx s cannot
belong to G3(k+1) as this group only contains failed transactions. Hence, tx s belongs to either G1(k+1)
or G2(k = 1).

Suppose tx s ∈ G1(k + 1). Let t = endacc(tx s). Let {oi}ki=1 be the set of all COD[acc][k + 1].Submit
operations such that oi returned OK(debitsσi , outCredits

σ
i ) by the moment t. By COD-Submit Safety,

TotalValue(initDebits ∪ Txs(
⋃k

i=1 debits
σ
i )) ≤ TotalValue(Txs(initCreditsσ) ∪ Txs(

⋃k
i=1 outCredits

σ
i )).

Moreover, by Theorem 2.8 and the definition of G1(k+1), one can see that debits(S(H, tx s), acc)∪{tx s} ⊆
initDebits ∪ Txs(

⋃k
i=1 debits

σ
i )) and debits(S(H, tx s), acc) ⊇ Txs(initCreditsσ) ∪ Txs(

⋃k
i=1 outCredits

σ
i ).

Hence, TotalValue(debits(S(H, tx s), acc)∪ {tx s}) ≤ TotalValue(debits(S(H, tx s), acc)), which is equiva-
lent to saying that balance(S(H, tx s), acc) ≥ tx s.amount .

Now consider the case when tx s ∈ G2(k + 1). Let us have a look at selectedDebits
and allCreditsσ that are part of the consensus output (i.e., returned from Consensus[acc][k +
2].Propose). From COD-Submit Safety and the implementation of the algorithm, we know that
TotalValue(selectedDebits) ≤ TotalValue(Txs(allCreditsσ)). Moreover, by Theorem 2.8 and the definition
of G2(k + 1), debits(S(H, tx s), acc) ∪ {tx s} ⊆ selectedDebits and credits(S(H, tx s)) = Txs(allCreditsσ).
Hence, TotalValue(debits(S(H, tx s), acc)∪ {tx s}) ≤ TotalValue(debits(S(H, tx s), acc)), which is equiva-
lent to saying that balance(S(H, tx s), acc) ≥ tx s.amount .

Lemma 2.19. If H is legal up to E(k), then it is legal up to E(k + 1).

Proof. This follows directly from Theorems 2.17 and 2.18.

Theorem 2.20. CryptoConcurrency satisfies the Transfer Consistency property of Asset Transfer.

Proof. This fact follows from Lemma 2.10, Lemma 2.15 and Lemma 2.19.

Account Transactions Completeness. Let us now show that the implementation
of the GetAccountTransactions operation correct, i.e., CryptoConcurrency satisfies the
Account Transactions Completeness property.

Theorem 2.21. CryptoConcurrency satisfies the Account Transactions Completeness property of Asset
Transfer.

Proof. The proof of this theorem follows from the implementation of the algorithm and the
AOS-Output Validity property of the Append-Only Storage. Let us assume that operation
GetAccountTransactions() is invoked by an owner of a correct account acc at time t0 and returns set
txsσ.

Consider the first part of the property: (debits(C(t0), acc) ∪ credits(C(t0), acc) ⊆ Txs(txsσ). It di-
rectly follows from the definition of committed transactions, implementation of VerifyCommitCertificate
function (via verifying function of Global Storage) and AOS-Consistency property of the Append-Only
Storage (in particular, Global Storage).
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Now, let us consider the second part of the property: ∀⟨tx , σ⟩ ∈ txsσ :
VerifyCommitCertificate(tx , σ) = true. This is follows from the implementation of
GetAccountTransactions and VerifyCommitCertificate (both are implemented via Global Storage), and
from the AOS-Output Validity property of the Append-Only Storage.

Transfer Concurrency. We conclude the proof of correctness of CryptoConcurrency by showing that
it satisfies the Transfer Concurrency property. Basically, this property states that if there are no over-
spending attempts on a correct account acc after some time t0, then after some time t1 ≥ t0, the owners
of acc do not use consensus. Since we only use consensus to perform the Recovery procedure (line 47),
the proof boils down to an argument that the number of the epochs is finite if the condition in the
Transfer Concurrency property holds.

Recall that C(t) denotes the set of all transactions committed by time t and O(t, acc) denotes the
set of all active debit transaction of acc at time t, i.e., {tx | tx .sender = acc and startacc(tx ) ≤ t ≤
endacc(tx )}. In the proofs, we consider a correct account acc and a time t0 such that for all t ≥ t0:
balance(C(t), acc) ≥ TotalValue(O(t, acc) \ C(t)).

We say that epoch e starts at the moment when the first correct replica initializes COD[acc][e]
(line 69) and ends when the next epoch (e+1) starts. We call a debit transaction tx interfering iff
Transfer(tx ) was invoked before t0. Also, we say that debit transaction tx is active in epoch e iff it was
active at some time between the start and the end of epoch e.

Lemma 2.22. There exists an epoch e, such that there are no interfering transactions active in epoch
e, or the number of the epochs is finite.

Proof. This lemma follows from the Transfer Liveness property, which says that every Transfer operation
eventually terminates, and the fact that there can only be a finite number of interfering transactions.

Lemma 2.23. The number of epochs is finite.

Proof. We prove this lemma by contradiction. Let us assume that the number of the epochs is infinite.
Then, by Lemma 2.22, there should exist an epoch e∗, such that there are no interfering transactions
active in epoch e∗. Note that e∗ must have started after t0 (by definition of an interfering transaction).

As number of the epochs is infinite, there should exist an epoch e∗ + 1. We know from the imple-
mentation that correct account can progress into an epoch e∗+1 only in case one of the clients returned
FAIL from COD[acc][e∗].Submit(. . .). According to the COD-Submit Success of COD object, it can only
happen if there exists a set S = {op1, . . . , opn}, where opi = COD[acc][e∗].Submit(debitsi, creditsσi )),
such that TotalValue(debits) > TotalValue(credits), where debits =

⋃
i∈S debitsi ∪ initDebits and

credits = Txs(
⋃

i∈S creditsσi ∪ initCreditsσ).
Let us consider a minimal (by inclusion) such set S. Each Submit operation can be naturally associ-

ated with a Transfer operation by which it was invoked. Let us sort the Submit operations in S by the
beginning time of the associated Transfer operations in ascending order. We consider the “largest” (w.r.t.
the above sorting) operation opmax = COD[acc][e∗].Submit(debitsmax, credits

σ
max). Note that creditsσmax

are committed credits and were read from the GlobalStorage. From the condition imposed by
Transfer Concurrency, we also know that for all t ≥ t0, balance(C(t), acc) ≥ TotalValue(O(t, acc)\C(t)).
Combining these facts together, we can easily see that TotalValue(Txs(initCreditsσ ∪ creditsσmax)) >
TotalValue(

⋃
i∈S debitsi ∪ initDebits). Then such set S does not exist. A contradiction.

Theorem 2.24. CryptoConcurrency satisfies the Transfer Concurrency property of Asset Transfer.

Proof. In Lemma 2.23, for a correction account acc, we showed that the number of the epochs is finite
assuming that there exist t0, such that for all t ≥ t0: balance(C(t), acc) ≥ TotalValue(O(t, acc) \
C(t)). According to the implementation, if number of the epochs is finite, then from some moment of
time t1, no consensus objects are invoked after time t1 on acc. Thus, CryptoConcurrency satisfies the
Transfer Concurrency property of Asset Transfer.
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2.12.2 Proof of Correctness: Closable Overspending Detector
In this subsection, we demonstrate the correctness of our implementation of the Closable Overspending
Detector abstraction, the most important building block of CryptoConcurrency, as specified in Algo-
rithms 2.5 to 2.8.

COD-Submit Validity. The next two lemmas will help us to prove the COD-Submit Validity prop-
erty of COD.

Lemma 2.25. If a correct client returns OK(debitsσ, outCreditsσ) from Submit(debits, creditsσ), then
debits = Txs(debitsσ).

Proof. This lemma directly follows from the implementation. When returning from the Accept function,
the client forms debitsσ from debits transactions passed to the function (line 151). Note that a correct
client passes debits transactions from the Submit(debits, creditsσ) to the Accept function.

Lemma 2.26. If a correct client returns OK(debitsσ, outCreditsσ) from Submit(. . .), then ∀⟨tx , σaccept⟩ ∈
debitsσ : VerifyCODCert(tx , σaccept) = true.

Proof. This lemma directly follows from the implementation. A correct client forms a certificate for each
transactions that will be accepted by the verifying function VerifyCODCert.

Lemma 2.27. If a correct client returns OK(debitsσ, outCreditsσ) from Submit(. . .), then ∀⟨tx , σaccept⟩ ∈
outCreditsσ : VerifyCODCert(tx , σaccept) = true.

Proof. This lemma directly follows from the implementation. A correct client uses only committed credit
transactions.

Theorem 2.28. Our implementation of Closable Overspending Detector satisfies the
COD-Submit Validity property.

Proof. This theorem follows directly from Lemma 2.25, Lemma 2.26 and Lemma 2.27.

COD-Submit Safety. The next property of COD that we will address is the COD-Submit Safety.
A certificate σprepare is called a prepare certificate for a set debits iff it is a threshold signature of a

message ⟨PrepareResp, debits⟩ (formed at line 142). If a set of debit transactions debits has a prepare
certificate, then it is called prepared.

Let us consider all prepared sets of debits transactions for a COD object.

Lemma 2.29. Any two prepared debit sets debitsi and debitsj are comparable (w.r.t. ⊆): either debitsi ⊆
debitsj or debitsj ⊂ debitsi.

Proof. Let us consider a prepared set of debits debitsi. As it is prepared, there exists a prepare certificate
σprepare i. As a prepare certificate is, essentially, a threshold signature, then there exists a quorum Q that
signed message ⟨PrepareResp, debitsi⟩.

Similarly, there exists a quorum Q′ that signed a message ⟨PrepareResp, debitsj⟩ for debitsj .
Due to the quorum intersection property there exists a correct replica r, such that r ∈ Q ∩Q′. This

implies that r signed both ⟨PrepareResp, debitsi⟩ and ⟨PrepareResp, debitsj⟩. Note that correct
replicas sign only comparable sets of transactions (w.r.t. ⊆). Thus, either debitsi ⊆ debitsj or debitsj ⊂
debitsi.

Lemma 2.30. The total amount spent by initDebits and transactions accepted by a COD instance never
exceeds the sum of the committed credits for the account COD.acc.

Proof. Let us note that initDebits is covered by initCreditsσ by definition. Also, from the implementation
it follows that any prepared set of debits contains initDebits.

According to the implementation it holds that if tx is accepted, then there exists a prepared set
of debit transactions debits, such that tx ∈ debits. By Lemma 2.29, all prepared set of debits are
related by containment. Then, for any finite set S of accepted transactions, there exists a prepared set
debitsall, such that it contains all transactions from S. A corresponding prepare certificate for debitsall
is a threshold signature formed from signatures of of ⟨PrepareResp, debitsall⟩ of some quorum Q. In

40



every quorum there are at least f signatures made by correct replicas. Note that correct replicas only
sign ⟨PrepareResp, debitsall⟩ if they saw enough committed credits (line 176). Consequently, the total
amount spent by initDebits and transactions accepted by a COD instance never exceeds the sum of
committed credits for the account COD.acc.

Now, we want to prove that if acc is a correct account, then the total amount of initial debits and
debits accepted by the COD by time t, does not exceed the total amount of all credits returned by the
Submit operation by time t. We prove this by showing that our implementation satisfies even stronger
property in the following lemma.

Lemma 2.31. For any subset S = {o1, . . . , ok} of Submit operations invoked by correct clients
such that ∀i ∈ {1, . . . , k} : oi returns OK(debitsσi , outCredits

σ
i ), it holds that TotalValue(initDebits ∪⋃k

i=1 debits
σ
i ) ≤ TotalValue(initCreditsσ ∪

⋃k
i=1 credits

σ
i ).

Proof. Let us consider a set of operations S from the lemma condition. From the COD-Submit Validity
property, we know that if there exists i ∈ {1, . . . , k}, such that tx ∈ debitsσi , then tx is accepted.
Let us match any operation oi ∈ S with prepared set of debit transactions preparedDebitsi that was
collected during execution of a given operation. By Lemma 2.29, all prepared sets of debit transaction
are comparable (w.r.t., ⊆). Thus, in the set {preparedDebitsi}i=k

i=1 , there should exist maximum set
preparedDebitsm.

A corresponding prepare certificate for preparedDebitsm is a threshold signature formed from
signatures of of ⟨PrepareResp, preparedDebitsm⟩ of some quorum Q. In every quorum there
are at least f signatures made by correct replicas. Note that correct replicas only sign
⟨PrepareResp, preparedDebitsm⟩ if they accounted enough committed credits (line 176) to cover all
transactions from there. As outCreditsσm contains all credits correct replicas saw before signing the
message, TotalValue(Txs(outCreditsσi )) ≥ TotalValue(preparedDebitsm). From the implementation,
Txs(debitsσm) ⊆ preparedDebitsm. Even more, ∀i ∈ {1, . . . , k} : Txs(debitsσi ) ⊆ preparedDebitsi.
Also, recall that ∀i ∈ {1, . . . , k} : preparedDebitsi ⊆ preparedDebitsm. Hence, TotalValue(initDebits ∪⋃k

i=1 debits
σ
i ) ≤ TotalValue(initCreditsσ ∪

⋃k
i=1 credits

σ
i ).

Lemma 2.32. If tx ∈ restrictedDebits, then tx is never accepted by a COD object.

Proof. This lemma follows from the implementation. Correct replicas do not respond to messages con-
taining transactions from restrictedDebits during Prepare phase (line 170).

Theorem 2.33. Our implementation of Closable Overspending Detector satisfies the COD-Submit Safety
property.

Proof. This theorem follows from Lemma 2.30, Lemma 2.31 and Lemma 2.32.

COD-Submit Success. The next step is to show that our COD protocol satisfies the
COD-Submit Success property.

Theorem 2.34. Our implementation of Closable Overspending Detector satisfies the
COD-Submit Success property.

Proof. We prove this theorem by contradiction. Let us assume that acc is a correct account, no client in-
vokes the Close operation, and for every possible subset S of invoked operations Submit(debitsi, creditsσi ):
TotalValue(debits) ≤ TotalValue(credits) (where debits =

⋃
i∈S debitsi ∪ initDebits and credits =

Txs(
⋃

i∈S creditsσi ∪ initCreditsσ)); however there exists an operation Submit(debitsp, creditsσp ) in-
voked by a client p that returns FAIL. Before we continue with the proof, let us note that any
valid reply ⟨PrepareResp, creditsσ, debitsσ, sig⟩ from a replica should satisfy the following condition:
∀⟨tx , ⟨depstx , sig tx ⟩⟩ ∈ debitsσ, ∀id ∈ depstx : ∃⟨tx ′, σtx ′⟩ ∈ creditsσ such that id = tx ′.id . Also,
∀i : initDebits ⊆ Txs(debitsσi ) and initCreditsσ ⊆ creditsσi .

Now, consider operation op = Submit(debitsp, creditsσp ) executed by a correct client p. Note that op
can only return FAIL from the Prepare function, as Accept returns FAIL only after receiving Closed
reply, and this is impossible, since no client invokes the Close operation.

Thus, client p should have collected a set of messages M =
{⟨PrepareResp, debitsσk , credits

σ
k , sigk⟩}k∈{1,...,|M |} from a quorum Q. Otherwise, either
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Close operation was invoked by some client, which is impossible by Thus, FAIL is re-
turned by the Prepare function. To be more precise it is returned at line 140. It means
that, naturally, there should exist a set S′ of Submit(debitsi, creditsσi ) operations and a
set of credits creditsσextra, such that

⋃
i∈S′ debitsi ∪ initDebits = Txs(

⋃
k∈M debitsσk) and⋃

i∈S′ creditsi ∪ initCreditsσ = Txs(
⋃

k∈M creditsσk ∪ creditsσextra). As we assume that p returns
FAIL, then TotalValue(Txs(

⋃
k∈M debitsσk)) > TotalValue(Txs(

⋃
k∈M creditsσk ∪ creditsσextra)). Then, it

also means that TotalValue(
⋃

i∈S′ debitsi∪ initDebits) > TotalValue(
⋃

i∈S′ creditsi∪ initCreditsσ). How-
ever, this contradicts with the assumption that for any subset S′ of invoked Submit(debitsi, creditsσi ),
such that TotalValue(debits) > TotalValue(credits) (where debits =

⋃
i∈S′ debitsi ∪ initDebits and

credits = Txs(
⋃

i∈S′ credits
σ
i ∪ initCreditsσ)). Consequently, our assumption that there exists a

Submit(debitsp, creditsσp ) operation, which returns FAIL, is wrong. This means that our implementation
of COD satisfies COD-Submit Success property.

COD-Close Validity. Now we continue with the proof of the COD-Close Validity property of the
COD object, which is relatively simple.

Theorem 2.35. Our implementation of Closable Overspending Detector satisfies the
COD-Close Validity property.

Proof. Trivially follows from the algorithm implementation.

COD-Close Safety.

Lemma 2.36. If a correct client returns ⟨CODState, σstate⟩ from Close(pendingDebits), then:

• ∀tx ∈ pendingDebits : tx ∈ CODState.selectedDebits or tx ∈ CODState.cancelledDebits;

• initDebits ⊆ CODState.selectedDebits and restrictedDebits ⊆ CODState.cancelledDebits;

• CODState.selectedDebits ∩ CODState.cancelledDebits = ∅;

• TotalValue(Txs(CODState.creditsσ)) ≥ TotalValue(CODState.selectedDebits)

Proof. This lemma trivially follows from the implementation of the SplitDebits function (lines 112 to 122)
and the way it is used in the implementation of the Close operation (lines 153 to 162).

Lemma 2.37. If a correct client p returns ⟨CODState, σstate⟩ from Close(pendingDebits), then for every
transaction tx accepted by this COD: tx ∈ CODState.selectedDebits.

Proof. Let us consider an accepted transaction tx . If tx is accepted, then there exists a certificate
σaccept , such that VerifyCODCert(tx , σaccept) = true. This means that σaccept contains a threshold
signature formed by a client q from valid signatures {sigr}r∈Q made by a quorum of replicas Q.

As p is a correct client, then during Close operation it should have collected valid CloseResp
responses from a quorum Q′. By quorum intersection property there exists a correct replica r, such that
r ∈ Q∩Q′. Then, one of the following should have happened before the other: (i) r produced a signature
sigr and sent ⟨AcceptAck, sigr⟩ to q; (ii) r sent to p a valid CloseResp reply. Note that as r is correct,
(ii) could not happen before (i). In this case, r would send Closed message to q. Thus, (i) happened
before (ii). As r is correct, it signed preparedDebits (such that tx ∈ preparedDebits) and attached it
to CloseResp that was sent to p. As p is correct and due to the way SplitDebits is implemented:
preparedDebits ⊆ CODState.selectedDebits.

The above reasoning is valid for any accepted transaction tx and any Close operation performed by
a correct client.

Lemma 2.38. If a correct client obtains ⟨CODState, σstate⟩ from Close(pendingDebits), then for
any Submit operation that returns OK(debitsσ, outCreditsσ) to a correct client: outCreditsσ ⊆
CODState.creditsσ and ∀⟨tx , σ⟩ ∈ CODState.creditsσ: VerifyCommitCertificate(tx , σ) = true. More-
over, initCreditsσ ⊆ CODState.creditsσ.
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Proof. The first part of the lemma follows from the implementation of Accept phase. Upon receiving
AcceptRequest message, correct replicas add outCreditsσ to their local set of credit transactions
(line 185). For any such set there exist at least f +1 correct replicas that store these credit transactions.
Then, by quorum intersection property, during any execution of Close operation invoked by client c,
∀tx ∈ outCreditsσ will be read by c.

The second part of the lemma follows from the fact that replicas ignore messages if credits do not
come together with commit certificates (line 184).

Theorem 2.39. Our implementation of Closable Overspending Detector satisfies the COD-Close Safety
property.

Proof. This theorem follows from Lemma 2.36, Lemma 2.37 and Lemma 2.38.

COD-Liveness. Finally, we want to show that any operation invoked by a correct process eventually
returns and, hence, to prove that our implementation satisfies the COD-Liveness property.

Let us recall that once a correct client returns FAIL from an invocation of Submit, it never invokes
this operation on a given COD object again.

Lemma 2.40. Every Close operation invoked by a correct client eventually returns.

Proof. The lemma follows from the fact that the operation makes a constant number of steps, all wait
for conditions will be satisfied as the client waits for a quorum of replies and there exists a quorum that
consists of only correct replicas that eventually responds.

Lemma 2.41. If a correct client p does not return from Submit operation, then Close is never invoked.

Proof. Indeed, otherwise, if Close is invoked, then p will eventually receive Closed reply and return
FAIL

Lemma 2.42. If some correct client invokes Submit, then some (not necessarily the same) correct client
eventually returns from Prepare function.

Proof. We prove this lemma by contradiction. Let us assume that all processes that invoked Submit
operation of a given COD object never return from Prepare function. Note, that in this case Close is
never invoked (Lemma 2.41). As an account is shared by a finite number of clients, there is a finite
number of Submit(debitsi, creditsσi ) invocations. Due to the fact that the number of invocations is finite,
eventually every client will receive a set of equal ⟨PrepareResp, debitsσ, creditsσ⟩ replies from some
quorum Q. No client can return FAIL (by the assumption), however as a client obtains a set of equal
replies, the condition at line 141 will be satisfied and it will return OK(. . .). This contradicts with
our initial assumption. Thus, if some correct client invokes Submit, then some correct client eventually
returns from Submit operation.

Lemma 2.43. If a correct client invokes the Accept function while executing the Submit operation, it
eventually returns from it.

Proof. The proof of this lemma directly follows from the implementation: i.e., it should eventually get a
quorum of valid AcceptAck messages or at least one valid CloseResp message.

Lemma 2.44. If a correct client p invokes Submit(debits, creditsσ), then it eventually returns from it.

Proof. We prove this lemma by contradiction. Let us assume that p never returns from the Submit
function. The only place it can stuck is while executing Prepare function: indeed, correct processes
always return from Accept by Lemma 2.44.

Now, let us consider two scenarios: (i) there exists a time t0, starting from which no client returns
from the Submit operation, (ii) no such time t0 exists, i.e., for any t, there always exists some client q,
which returns from Submit function, after time t.

We start with the first scenario. As an account is shared by a finite number of clients, there is a finite
number of Submit(debitsi, creditsσi ) invocations. Let us consider all operations Submit(debitsi, creditsσi )
that are active after time t0. There should exist time t1 ≥ t0, such that all operations that do not return
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from Prepare are active at all times t > t1. There exists at least one operation that is active at that time
– one that was invoked by client p. Due to the fact that the number of invocations is finite, eventually
every client will receive a set of equal ⟨PrepareResp, debitsσi , credits

σ
i , sig i⟩ replies from some quorum

Q. No client can return FAIL (by the assumption that clients do not exit Prepare function), however as
a client obtains a set of equal replies, the condition at line 141 will be satisfied and it will return OK(. . .)
from the Prepare function. This way, client p returns from the Submit operation. This contradicts our
assumption, and, consequently, (i) is impossible.

Let us consider now the second scenario: for any t, there always exists some client q, which returns
from Submit operation, after time t. Note that the first ⟨Prepare, debitsσ, creditsσ, submitDebitsσ⟩
message client p sent during the execution of Submit operation will eventually reach all correct replicas
and they will add all transactions from submitDebitsσ to their local set of debit transactions (line 175).
Let denote the time it happens as t1. From the scenario we consider, there should be an infinite number of
Submit invocations on a given COD object: indeed, otherwise there should exists a time tn, such that no
operation returns after tn. As a consequence, there should exist a Submit operation, which was invoked
after t1 and returned OK(. . .) (recall that correct client do not invoke Submit once it returns FAIL). As
it started after t1, client should have collected a set S of ⟨PrepareResp, debitsσi , credits

σ
i , sig i⟩, such

that (i) ∀i: submitDebitsσ ⊆ debitsσi (ii) every message in S has equal set of debitsσi . Then, there
exists a prepare set of debits that includes all of the transactions from submitDebitsσ. Hence, eventually
client p should return from the Prepare function at line 137, and then complete Submit operation after
returning from the Accept function. However, this contradicts with our assumption, this means that (ii)
is impossible.

We considered two potential scenarios and came to a contradiction in both of them. Note that the
set of scenarios is exhaustive. Hence,

Theorem 2.45. Our implementation of Closable Overspending Detector satisfies the COD-Liveness
property.

Proof. This theorem follows from Lemma 2.40 and Lemma 2.44.

Theorem 2.46. Algorithm 2.7 and Algorithm 2.8 correctly implement Closable Overspending Detector.

Proof. All properties of Closable Overspending Detector hold:

• COD-Submit Validity follows from Theorem 2.28;

• COD-Submit Safety follows from Theorem 2.33;

• COD-Submit Success follows from Theorem 2.34;

• COD-Close Validity follows from Theorem 2.35;

• COD-Close Safety follows from Theorem 2.39;

• COD-Liveness follows from Theorem 2.45.

2.12.3 Proof of Correctness: Append-Only Storage

In this subsection we show that our implementation of the Append-Only Storage is correct, i.e., it satisfies
AOS-Consistency, AOS-Input Validity, AOS-Output Validity and AOS-Liveness.

Lemma 2.47. For any value v and a key k, if there exists σAOS such that VerifyStoredCert(k, v, σAOS) =
true at the moment when ReadKey(k) was invoked by a correct client, then the output of this operation
vsσout will contain v (paired with a certificate), i.e., ⟨v, ∗⟩ ∈ vsσout.

Proof. If there exists σAOS such that VerifyStoredCert(k, v, σAOS) = true, then there should
exist a quorum of processes Q and vsσ, such that every process r ∈ Q signed a message
⟨AppendKeyResp, k,MerkleTree({v | ⟨v, ∗⟩ ∈ vsσ}).root⟩. Note that any correct process r ∈ Q should
have also added vsσ in their log [k].
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Let us consider a correct client p that returns vsσout from ReadKey(k) invoked when there existed
σAOS such that VerifyStoredCert(k, v, σAOS) = true. Then, there should exist a quorum of processes Q′

that responded with ⟨ReadKeyResp, vsσi ⟩ messages. According to the quorum intersection property,
there should exist a correct replica r, such that r ∈ Q ∩ Q′. As r added v (with its certificate) to
its log [k], it should have also included it into ⟨ReadKeyResp, vsσr ⟩ that it replied with to p. By the
implementation, vsσout =

⋃
i vs

σ
i . Thus p includes v (with its certificate) in vsσout.

Theorem 2.48. Algorithm 2.9 is a correct implementation of the Append-Only Storage.

Proof. All properties of the Append-Only Storage hold:

• AOS-Input Validity follows from the implementation;

• AOS-Output Validity follows from the implementation;

• AOS-Consistency follows from Lemma 2.47;

• AOS-Liveness follows from the fact that each operation makes a constant number of steps and that
any wait for condition will be satisfied, as there exist n− f correct processes that form a quorum
and must eventually respond.

2.13 Latency Proofs
Lemma 2.49. Latency of the AppendKey operation of Append-Only Storage invoked by a correct client
is 1 round-trip.

Proof. Follows directly from the implementation (Algorithm 2.9, lines 205 to 214). The client simply
sends the request to the replicas and waits for signed acknowledgments from a quorum.

Lemma 2.50. Latency of the ReadKey operation of Append-Only Storage invoked by a correct client is
2 round-trips.

Proof. Similarly, this fact follows directly from the implementation (Algorithm 2.9). In the algorithm, the
client first waits for a quorum of ReadKeyResp replies (1 round-trip) and then performs a write-back.
The latency of the latter is 1 RTT as shown in Theorem 2.49.

Theorem 2.51. CryptoConcurrency exhibits k-overspending-free latency (as defined in Section 2.5) of
k + 4 round-trips.

Proof. In the definition of k-overspending-free latency, we only consider operations that start after the
system stabilizes from all overspending attempts, i.e., when no epoch changes happen during the opera-
tion execution. In this case, the client will do the following sequence of actions:

• Execute ReadKey on lines 5, 7 and 13 and AppendKey on line 10 concurrently. By Theorems 2.49
and 2.50, this step will take at most 2 round-trips;

• Send the InitCOD message to replicas (line 17). This step does not affect the latency, as the client
does not wait for replicas’ replies and moves on directly to the next step;

• Execute COD[acc][e].Submit on line 19. As we discuss in the next paragraph, this step takes at
most k + 1 round-trips;

• Finally, execute GlobalStorage[acc].AppendKey on line 23. By Theorem 2.49, this step will
take 1 round-trip.

All we have left to show is that each client will return from the Submit operation of COD[acc][e]
after at most k + 1 RTTs. We consider the Prepare phase first and show that the upper bound on the
number of loop iterations (line 132) is k. The client c can return from the loop when it either (i) detects
an overspending attempt (line 139) or (ii) converges on the debit sets received from a quorum of replicas
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(line 141). Note that (i) is impossible given the conditions of this theorem, so we can safely consider
only (ii).

For all debit transactions that terminated before the client started its Transfer operation, the client
will observe them in the Account Storage and, thus, will include them in its input to COD. Hence, each
time, after receiving a quorum of valid replies from the replicas, either the client learns about at least
one new concurrent debit transaction, or terminates. Thus, after at most k round-trips, there will be no
new transactions to learn and the client will exit the Prepare phase on line 143.

Finally, the latency of the Accept phase is always 1 round-trip, which results in a latency of k + 1
RTTs for COD[acc][e].Submit operation.

Proof of Theorem 2.1 (Section 2.5). Follows from the theorems claiming that CryptoConcurrency sat-
isfies all the properties of an asset transfer system with Transfer Concurrency (Theorems 2.4, 2.5, 2.7,
2.20, 2.21 and 2.24) as well as Theorem 2.51 asserting the k-overspending-free latency of CryptoConcur-
rency.

2.14 Concluding Remarks
There are multiple interesting directions for future work.

First, our algorithm leaves space for further optimizations in addition to the ones we discussed in
Section 2.8.4. To preclude the system state and protocol messages from growing without bound, one can
introduce a checkpointing mechanism. For example, checkpointing can be implemented using occasional
invocations of consensus similar to how our protocol resolves overspending attempts. Additionally, a
practical implementation should probably avoid repeatedly exchanging (potentially, large) sets of trans-
actions between the replicas and the clients and instead should send only the updates (“deltas”) since
their last communication.

Second, to quantify the actual performance gains of CryptoConcurrency, a practical implementation
and a comparison to other similar protocols such as [118] would be of interest.

Third, recent results [76, 92, 93, 125] demonstrate how asynchronous Byzantine fault-tolerant systems
can be reconfigured without relying on consensus. Notably, in [92], it is shown that a permissionless Proof-
of-Stake asset transfer system can be implemented using a similar technique. A fascinating challenge is
to combine reconfiguration with the ideas of CryptoConcurrency for building a reconfigurable, or even
permissionless, asset transfer system with shared accounts and without a central consensus mechanism.

Finally, we believe that our work opens the way to optimally-concurrent solutions to other, more
general problems, such as fungible token smart contracts [12], an abstraction intended to grasp the
synchronization requirements of a specific type of Ethereum smart contracts. The objects allow the set
of account owners to vary over time, which might require generalizing our notion of conflicts.

In the general case, it is appealing to address the question of optimally-concurrent state machine
replication. Intuitively, one would like to avoid consensus-based synchronization whenever any reordering
of concurrent operations has the same effect. Formalizing this intuition and implementing this kind of
optimality in the context of generic state machine replication is left for future work.
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Chapter 3

Linear View Change in Consensus with
Optimistic Fast Track

3.1 Introduction
The ultimate vision for blockchain is to replace trusted parties by decentralized systems where collusion
of a large fraction of the participants would be required for the attacker to break the system rules.
To this end, Byzantine consensus [101] is typically used to reach agreement on a sequence of blocks of
operations.

Intuitively, in a single instance of consensus, each participant, which we dub as party, starts with
some valid value (e.g., a block of transactions or an availability certificate as in [50]). The goal is for
each party to irrevocably output a valid value, which we dub as decision. Moreover, all parties that
follow the protocol must output the same value. This property is known as consistency. Some parties
are denoted as “corrupt” or “Byzantine”, which means that they are controlled by a malicious adversary
and may arbitrarily deviate from the protocol. Non-corrupt parties are denoted as “honest”.

In this work, we are concerned with a much studied class of protocols designed to operate under a
network model known as partial synchrony [60]. In this model, there is an unknown moment in time,
called the global stabilization time (GST), such that any message sent after this moment is delivered
within a known time bound ∆. In order to ensure liveness of the protocols, this bound has to be
pessimistic and, in practice, most messages are delivered much faster. Hence, we use δ to denote the
unknown actual message delay in a given execution (δ < ∆). In this model, consensus is solvable only
when the adversary corrupts less than one-third of the parties [60].

3.1.1 Fast track and linear communication
In order for blockchain systems to be competitive with centralized services, it is imperative to keep the
latency of the consensus algorithm as low as possible while maintaining high throughput. In this work we
are concerned with the subclass of Byzantine consensus protocols, known as leader-based, which achieve
the best known parameters, as soon as some conditions, which we denote as normal, are met. These
protocols require for their operation a mechanism that notifies the parties of the identity of one of them,
denoted as leader, which may change in time. Broadly speaking, a time frame in which all players are
aware of the same leader, is often designated as a view. A view is denoted as normal if the leader is
honest and GST happened before the start of the view. Leader-based consensus protocols guarantee that,
in a normal view, a common decision is reached within a fixed number of message delays. Moreover,
architectures based on frequent changes of leaders [142] enable some form of fairness, i.e., that every
player, when promoted as leader in a normal view, can enforce a common decision on its own input.

PBFT [40] is by far the most famous leader-based Byzantine consensus protocol. However, its
quadratic communication complexity in the number of parties prohibits having a large number of them,
which undermines the potential for decentralization. Hence, protocols with worst-case linear communi-
cation in every view, such as [1, 142], were proposed. They were designed to replace PBFT in blockchain
applications. In this work, we will follow the baseline of the protocol Hot-Stuff v1 [1]. It credits its
view-change mechanism to Tendermint [32], thus we will dub it as TH1. If the first view is normal,
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protocol
first view view change (worst case)

auth.
complexity

latency auth.
complexity latencyfast track slow track

PBFT [40] O(n2) — 3δ O(n2) 1δ
FaB Paxos [109] O(n2) 2δ 3δ O(n2) 1δ

SBFT [74] O(n) 2δ 4δ O(n2) 1δ
TH1 [1, 32] O(n) — 4δ O(n) 1∆

HotStuff [142] O(n) — 6δ O(n) 1δ

PnS [8] O(n) — 4δ O(nϕ) (1) 1δ

Wendy [73] O(n) — 4δ O(n) 3δ (2)

this work O(n) 2δ 4δ O(n) 1∆

1. ϕ is the number of views before the network stabilizes and an honest leader is elected. In practice,
this number is usually small, but it can be arbitrarily large in theory.

2. In the design of Wendy, an extra round-trip was deliberately added to the worst case latency of
the view change in order to save some computation and communication in the good case.

Table 3.1: Overview of existing and proposed protocols.

then a decision is reached within the delay of 4 consecutive message deliveries at the actual speed of the
network, i.e., 4δ. This is one more message delay compared to PBFT (which needs 3 message delays to
reach a decision). Then in every subsequent view, the new leader (dubbed as “proposer” in [1]) initially
waits for the pessimistic bound on the message delay, ∆, before it starts proposing a new value. Notice
that this waiting for a fixed delay is removed in subsequent works, either at the cost of more consecutive
interactions [130, 142], or more cryptographic computations [7, 8, 73]. In this chapter, we only focus on
the original approach of [1] and defer the integration with other protocols to a follow-up.

Meanwhile, Martin and Alvisi [109] demonstrated that PBFT itself is not optimal in terms of la-
tency. More precisely, it is possible to reach a decision in just 2 message delays under some optimistic
assumptions. This desirable guarantee is known as a fast track. Furthermore, if these assumptions do
not hold, the protocol still reaches a decision in 3 message delays, on par with PBFT. A number of
practical systems [74, 90] have further improved and implemented in practice the idea of a fast track.
Unfortunately, these systems inherit the quadratic communication complexity of PBFT.

3.1.2 Our contributions

In this chapter, we suggest a protocol that combines the best of the two worlds: linear authenticator
complexity and a fast track. If the network is synchronous from the beginning of the execution and all
parties are honest, the proposed protocol reaches a decision in just 2 message delays. Otherwise, it falls
back to TH1.

Interactive proofs that a value is safe. Our key technical contribution is the construction of an
efficient Proof of Exclusivity (or PoE for short) sub-protocol. Intuitively, it allows the leader to prove to
parties that no value other the one being proposed could have been decided on the fast track. It allows
to safely integrate the fast track with the slow track without extra costs in communication complexity.

Structural changes to BFT. To preserve the latency of the BFT, despite the interactions needed
in the PoE sub-protocol, we make a structural change to previous BFTs with a fast track. Namely, we
allow players to cast preliminary votes for a value before they were convinced that this value is safe.

Optimistic zero-overhead track and accountability. Finally, in Section 3.7, we introduce the
notion of an optimistic zero-overhead PoE. By reusing the signatures produced in the baseline protocol
itself, we obtain a PoE at no extra cost unless the leader of the first view is caught on producing
2 contradictory digital signatures (the behavior we call “equivocation”), in which case the protocol still
produces a PoE, but using up to 5 extra threshold signatures. If combined with a reconfiguration [100] or a
slashing [33] mechanism, it is possible to make sure that, in the vast majority of cases, the protocol incurs
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almost no extra communication or computational overhead compared to the baseline while providing 2
times smaller latency in the good case.

A detailed comparison of our protocol with previous works is shown in Table 3.1. There, authenticator
complexity (shortened to “auth. complexity”) is the total number of authenticators sent over the network,
where an authenticator is either a message authentication code (implicitly appended to each message),
a signature, or a threshold signature. The latency is measured since the start of the view and until
at least one honest party reaches a decision (assuming the leader of the view is correct and the GST
happened before the start of the view).1 The view change is defined as the extra steps taken in views
v ≥ 2 compared to the protocol for v = 1.

3.1.3 Roadmap

In Section 3.2, we describe the formal system model. In Section 3.3, we recall the protocol of [1, 32],
which we denote as TH1. Then, in Section 3.4, we explain how to safely augment this protocol with a
fast track using the abstraction of a Proof-of-Exclusivity (PoE). In Section 3.5, we describe an efficient
protocol for constructing such a proof. In Section 3.6 then Section 3.7, we demonstrate an accountability
mechanism that always enables to get this proof “for free”, unless the first leader is caught cheating. As a
result, plugging PoEs in the upgrade Hotstuff-2 [106] of TH1, preserves their responsiveness unless
a leader is caught cheating. In Section 3.8, we overview the related work. We conclude the chapter
in Section 3.9 with a discussion on the directions for future work.

3.2 Model and Definitions

In this section, we define the formal system model for our protocols.

Notation. The size of a finite set E is denoted |E|. The size of a bitstring b is denoted |b|, and the
empty string is denoted ⊥. N := {0, 1, 2, . . . } denotes the set of non-negative integers, of which the
positive ones N∗ := {1, 2, . . . }. Strings of characters are denoted in quotes, as: “string”. To multicast a
message means to send it to every party.

Partially-synchronous network and corruptions. We consider a set P = {P1, . . . , Pn} of proba-
bilistic polynomial time (PPT) machines connected by pairwise authenticated channels. We denote them
as parties. We consider a PPT machine, denoted as the Environment E , which can read all messages sent
and, without further specification, alter, reroute, drop, delay or replay them. E has full control of up to
t parties, where t is a parameter known as corruption threshold. We denote them as maliciously corrupt,
also known as Byzantine. For simplicity, we consider the maximal corruption threshold, i.e., we assume
that the number of parties is n = 3t+1 and that corruptions happen at the beginning of the execution.2
The remaining (at least 2t+1) parties are said to be honest. At some point in time denoted as GST [60],
E commits to delivering from now on all messages sent within a fixed delay δ. Both GST and δ are
arbitrarily set by E in every execution, and are not disclosed to the honest parties. However, there is a
fixed upper bound ∆ ≥ δ which holds for any execution, and which is publicly known in advance. In
some executions, ∆ may be much larger than the actual message delay δ. If GST = 0, then this means
that the δ delay holds since the beginning of the execution.

Views and leaders. For simplicity, we assume a global clock that publicly ticks positive integers in
increasing order, starting from 1 at the beginning of the execution. A view v is the timeframe between
the ticks of v and of v + 1. Along with each new tick v, the clock also designates a party denoted
Lv–the leader of phase v. For simplicity of the presentation, we assume that exactly one leader Lv is
designated per phase v, and that its identity is made public to all parties as soon as the clock ticks v.
The simplest implementation is the one of [60], in which parties have weakly synchronized clocks and
leaders are predetermined in round robin order (see [103] for a state-of-the-art implementation). Our
results carry over to the model with a more general abstraction denoted as “pacemaker”, introduced

1The motivation for this latency measure is that, in most protocols considered, along with a decision, honest parties
output a decision certificate, which can be independently verified by a client.

2Neither of these assumptions is necessary. We only make them for simplicity of the presentation.
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in [142]. See also [30, 31, 114] for more flexible abstractions and efficient implementations of such
mechanisms. Importantly, our protocols remain safe even if the delivery of clock ticks to parties are
arbitrarily scheduled, and even if parties are notified of different leaders in a view.

Bulletin board PKI setup and threshold signatures. In this chapter, the only cryptographic
primitive needed could be formalized in a broad sense as a non-interactive threshold signature scheme [24,
124, 131]. Precisely, we will need the following algorithms.

First, a local algorithm enabling each party to individually generate a pair of keys: a private signature
key, and a public verification key. We assume that every party published a public verification key on a
public bulletin board, denoted as PKI.

On input its signature key and any message m, party Pi can produce with Sign what is denoted as a
signature σi(m) on m. There is a public algorithm which checks the validity of σi against the verification
key of Pi and m. We will dub a valid signature on some message m, with respect to the verification key
of a party, as a signature issued by this party.

We require the standard existential unforgeability property of digital signature schemes. Then, for
any integer k, there is a public algorithm, denoted aggregatek that, for any given message m, takes as
input any set of k valid signatures (σi), issued by any k distinct parties, on this same message m, then
outputs what is denoted as a threshold signature σ on m. There is a public verification algorithm that
checks the validity of any threshold signature σ on any m.

The signing, aggregation, and verification algorithms, together, have the property that any polynomial
adversary learning up to k− 1 secret keys, and making oracle queries to obtain partial signatures issued
by any of the remaining n − (k − 1) keys, cannot possibly forge a valid signature on some message
m unless it has already made an oracle query on m. They also have the robustness property that an
adversary, even learning all the secret keys, cannot produce k valid signature shares of some m such that
the aggregatek of them would fail to output a valid threshold signature on m.

One possible instantiation for the threshold signature scheme is BLS multi-signatures [25]. In this
scheme, the identities of the k signers must be included in the signature σ, which, in our setting, can
be represented as n bits. Another possible instantiation is [16, §5], which has the advantage that the
identities of the signers are not required for verification, but the signature itself has the size proportional
to log(n). The two schemes have the same, constant verification complexity.

Finally, note that threshold signatures are also implementable under a trusted setup, which we will
not assume in this chapter. In this category we have the scheme based on RSA [124] and the one based
on BLS [131]. The trusted setup brings the benefits that these signatures have constant bitsize and do
not require knowledge of the k signers. These schemes, however, require distinct setups and algorithms
for every distinct k. In this chapter, we will consider three values of k: t+ 1, 2t+ 1 and 3t+ 1.

BFT. Let us consider any public efficiently computable predicate ExtValid : {0, 1}∗ → {true, false}. We
denote X :=

{
x ∈ {0, 1}∗ | ExtValid(x) = true

}
the set of externally-valid values. We assume that each

party starts the protocol with an input from X .

Definition 3.1 (BFT). A partially synchronous leader-based Byzantine fault-tolerant consensus with
external validity, or BFT for short, is a protocol in which each party outputs at most one value (we say
that the party decides the value) such that the following properties hold:

Consistency: no two parties decide different values;

External Validity: if a party decides x, then x ∈ X ;

Termination: every honest party decides a value in any execution in which there is a sufficiently long
normal view v.3

Latency and authenticator complexity. Here, we formally define the metrics by which we evaluate
the protocols. Neglecting the computation time, the delays are measured in terms of ∆ and δ. Follow-
ing [73, 142], authenticator complexity is defined as the total number of authenticators sent over the

3Recall that a view is said to be normal iff Lv is honest and GST happens before the start of the view. The exact
definition of “sufficiently long” depends on the protocol. Typically, it is a function of δ and/or ∆.
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network, where an authenticator is either a message authentication code (implicitly appended to each
message), a signature, or a threshold signature.

The majority of protocols that we consider furthermore enforce that, if a party decides some value
x, then it must be the case that it also learned a cryptographic proof, which we designate as a decision
certificate, that confirms that x is indeed the only possible output value and that can be checked by
any (possibly, external) party. Thus, we will usually measure the delays only up to the point when one
honest party decides on a value (as opposed to waiting for all honest parties to decide).

We say that a BFT protocol has a slow track latency Dslow if, assuming GST = 0 and the first leader
is honest, L1 decides within the delay Dslow since the start of the protocol. Moreover, we say that a
BFT protocol has a fast track latency Dfast (Dfast < Dslow) if, under the additional assumption that all
parties are honest, L1 decides within the delay Dfast. Finally, a protocol with a slow track latency Dslow
has the view change latency Dvc if it guarantees that, in any normal view v ≥ 2, the leader of the view
Lv decides within the delay Dslow +Dvc.

Similarly, we define the authenticator complexity of a view change of a BFT protocol as a difference
between the authenticator complexity in a view v ≥ 2 and the authenticator complexity in the first view.

Our protocol stays safe in relaxed models allowing players to be aware of possibly different leaders for
the same view, or, not having synchronized view numbers. It still has liveness in this adversarial setting,
provided a narrowing of the definition of a normal view.

3.3 Baseline

The protocol of [1], which we dub as TH1, is described in Algorithm 3.2 with the description of the used
data structures in Algorithm 3.1.

In Algorithm 3.2, actions are specified with respect to the current view number v. The last action
(tagged with ∗) is not conditional to the view number. The actions specific to the first view (v = 1)
are further highlighted in blue. Parties perform actions as soon as they can, in any order. However, the
actions are numbered to reflect their causal dependency in an execution or the protocol. For example,
with respect to a given view v, if leader v completes action 3, then it must be the case that at least t+1
honest parties completed action 2. Some actions (namely, 1, 3, and 5) are taken only by the leader.

Every view follows the same pattern. The leader selects a value x, in a way that will be detailed later,
and sends x with some extra cryptographic metadata to the parties in a prepare message. Upon receiving
a prepare message from the leader for the first time, every party verifies the correctness of the metadata
and sends back to the leader a signed lockvote message vouching for the value x received in the prepare
message. Upon receiving 2t+ 1 lockvote messages vouching for the same value x, the leader aggregates
the 2t+ 1 signatures into what we denote as a lock certificate for the value x, which it multicasts to the
parties.

Note that the t < n/3 assumption implies that no two lock certificates with the same view number for
two distinct values x ̸= x′ can possibly be created. Upon receiving a lock certificate vouching for some
value x, a player sends back to the leader a signed vote vouching for this value, in the form of a decvote
message. Upon receiving 2t + 1 decvote messages vouching for the same value x, the leader aggregates
the 2t+ 1 signatures into what we denote as a decision certificate and multicasts it to the parties.

At this point, we say that we have reached a decision for the value x. Indeed, any honest party
which forms or receives a decision certificate for a value x must automatically decide x. Thus, any entity
external to the system, upon receiving a decision certificate for a value x, has the guarantee that x has
been or will be decided by every party.

Now, since each leader of a view can do these operations, we need to enrich the protocol with an
additional safeguard mechanism which guarantees that no two decision certificate can ever be created
for two distinct values. Following the terminology of [142], we denote the following mechanism as “view
change”.

All view change implementations since [60] have in common that every party keeps in memory the
lock certificate associated to the highest view number that it ever received or created. We then say that
the party is “locked” on the value x vouched by this lock certificate. More specifically, the protocol TH1
follows the rule of [1, 32, 60], which is that a party locked on some value x with view number w, refuses
to vote for any other value x′ ̸= x unless it comes with a lock certificate associated to a higher view
number w′ > w. Upon receiving or forming such a lock certificate associated to a higher view number,
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the party releases its lock on the value x and becomes instead locked on the value x′. This mechanism
maintains the safety invariant that, if a value is decided in a view, then no lock certificate for any other
value can ever be created in any higher view.

To maintain liveness of TH1 with small communication, every view begins with an initial step in
which all parties send to the new leader the lock certificate on which they are locked, if any, or their
input value otherwise. For consistency of notations, we denote this latter case as a degenerate lock
certificate lc[0, x] = x. Then, after the maximum network delay ∆ has elapsed, the leader multicasts its
prepare, to which it appends its highest lock certificate. The liveness is guaranteed by the fact that, after
GST, it must be the case that the leader received the highest lock certificate of every honest party. Thus,
every party will agree to vote on the value contained in the prepare message.

Theorem 3.2 ([1]). The protocol TH1 of Algorithm 3.2 is a BFT with normal-case latency 4δ, view
change latency ∆, and authenticator complexity O(n).

• lock certificate is the data structure of triples (w, y, σ), where: w ∈ N is called locked view number
and y ∈ X is called locked value.

• If w ≥ 1, then σ is a (2t+1)-threshold signature on the triple (“ lockvote”, w, y).

• Else if w = 0, then σ = ⊥. In this latter case, we make the identification of the lock certificate
with the x itself, and dub such lock certificate as degenerate.

For brevity, we use lc[w, y] to denote a lock certificate for view w and value y, omitting σ.

• high locki is a local variable maintained by every party Pi, equal to the lock certificate lc[wi, yi]
such that wi is the highest locked view number for which Pi ever created or received a lock certificate.
Thus, Pi replaces it each time it creates or receives a lock certificate with a strictly higher locked view
number.

• In the beginning of the protocol, every Pi initializes high locki with the (degenerate) lock certifi-
cate lc[0, yi] = yi, where yi is Pi’s input to the BFT protocol. Recall that no threshold signature
is required in this case.

On the other hand, lock certificates for higher view numbers are hard to forge, because of the threshold
signature required.

• report is a data structure consisting of a pair (v, lc[w, y]), where v ∈ N∗, such that the condition
w < v is satisfied.

• prepare is a data structure consisting of a pair (v, lc[w, y]), where v ∈ N∗, such that the condition
w < v is satisfied.

• lockvote
(
v, x

)
/ decvote(v, x) are both data structures consisting of a triple (v ∈ N∗, x ∈ X , σi),

where σi a signature of party Pi on the triple (“ lockvote”/“decvote”, v, x). Pi is denoted the issuer.
We often omit the σi for brevity.

• A decision certificate deccert(v, x), where v ∈ N∗ and x ∈ X , is a (2t+1)-threshold signature on
the triple (“decvote”, v, x).

Algorithm 3.1: Data Structures for TH1

3.4 Fast Track from a Black-Box PoE

3.4.1 Overview

As was first noted in [91] and later exploited in [59, 74, 90, 109], consensus with n = 3t+ 1 parties can
be reached much faster, in just 2δ, in the optimistic case when all parties are honest and the network is
synchronous from the beginning of the protocol. The way it is done is pretty simple. The lockvotes in
the first view now serve a second purpose: if the leader of the first view manages to collect n such votes
for the same value x, it creates a fast decision certificate for x out of these n votes after just 2 message
delays. The leader multicasts it to the parties, any party receiving a fast decision certificate for some
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The following steps are performed by each party as soon as it is in view v.

0. Report If v = 1, skip and go directly to step 1.
Else if v ≥ 2: Every party Pi, denoting by lc[wi, yi] its high locki, sends to the leader Lv a message
report

(
v, lc[wi, yi]

)
.

1. Prepare If v = 1, L1 multicasts prepare
(
1, lc[0, yL1

]
)
, where lc[0, yL1

] = yL1
is the input of L1 to

the BFT.
Else if v ≥ 2: Leader Lv receives report messages during the delay ∆ since the beginning
of the view v. When ∆ is elapsed, denoting by lc[wLv , yLv ] its high lockLv

, Lv multicasts
prepare

(
v, lc[wLv , yLv ]

)
.

2 Lock Vote Every party Pi, upon receiving a message of the form prepare
(
v, lc[w, y]

)
from Lv for

the first time: If its highest locked view number wi is lower than or equal to w, then it replies with
a lockvote

(
v, y

)
signed with its signature σi.

3. Lock Certificate Upon receiving lockvote
(
v, x

)
from 2t + 1 distinct issuers, the leader Lv

aggregates2t+1 their signatures to form a lc[v, x], which it multicasts to the players.

4. Decision Vote Upon receiving a lc[v, x] from leader Lv, a party Pi replies with a signed
decvote(v, x).

5. Decision Certificate Leader Lv, upon receiving 2t+1 decvote(v, x) from distinct issuers,
aggregates2t+1 the signatures into a deccert(v, x), which it multicasts to the players.

∗ Decision Upon forming or receiving a deccert(v′, x) for any v′ ∈ N∗, a party decides x (and con-
tinues the protocol).

Algorithm 3.2: TH1: Non-responsive BFT of [1]

x immediately decides x. When there is a fast decision certificate for some value x, we say that x is
committed on the fast track.

Since an honest party only reacts to the first prepare message it receives from the leader, it will never
issue lockvote(1, x) and lockvote(1, x′) where x ̸= x′. Hence, it is easy to see that, due to simple quorum
intersection, the leader of the first view will not be able to obtain two conflicting decision certificates (be
they fast or not).

However, we also need to preserve the consistency property of BFT in views higher than 1. Namely,
we need to also guarantee that, if some value is decided in the first view through the fast track, no other
value can be decided in higher views. To this end, we will define a special kind of a cryptographic proof,
called Proof of Exclusivity (or PoE for short). Intuitively, PoE(x) allows the leader of a higher view Lv,
v ≥ 2, to convince other parties that no value other than x could be committed on the fast track. We
provide a formal definition of PoE in Section 3.4.2. To guarantee consistency, in views other than the
first one, honest parties only issue decision votes for the values for which a PoE was created, if any.

Prior protocols [2, 5, 74, 90, 94, 109] implicitly implemented a Proof of Exclusivity (without actually
defining it) by forwarding 2t+1 signed messages reporting values voted in the fast track. Thus, they all
have quadratic authenticator complexity in the view change.

3.4.2 Definition of Proof of Exclusivity (PoE)

We now define a type of protocol called Proof of Exclusivity (PoE) protocol that can be used to produce
a PoE. In a PoE protocol, every honest party Pi has one single input in X ∪{⊥}. In addition, one of the
players, denoted as L, is publicly designated to play a special role of a prover. Apart from its input to
the PoE protocol, the prover also has a default valid value xdefault ∈ X . The goal of a PoE protocol is
for L to obtain a valid value x ∈ X , satisfying the predicate that no other value x′ can possibly be the
input of all honest parties, and a publicly verifiable proof that this predicate holds on x.

Definition 3.3. A value x ∈ X satisfies the exclusivity predicate if there is no valid value x′ ∈ X such
that x′ ̸= x and all honest parties have input x′.

Let x ∈ X . We say that a bitstring, denoted PoE(x), is a (non-interactive) Proof of Exclusivity
of x, if it is such that any verifier, possibly external, can efficiently check on PoE(x) that x satisfies
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exclusivity.

We call a value x ∈ X unanimous iff all honest parties have x as their input to PoE. Hence, the
exclusivity predicate can be restated as: “only x can possibly be unanimous”. Additionally, we use
notation PoE(⊥) to denote a bitstring that can serve as PoE(x) for any valid value x ∈ X . For example,
it is easy to see that a (t+1)-threshold signature on the statement “my PoE input is ⊥” can serve as a
PoE(⊥).

Definition 3.4. A protocol between n = 3t+1 parties, of which a designated prover L, is denoted as a
PoE protocol if it guarantees that, if it is started after GST and the prover is honest, then the following
happens in finite time:

• At some point, L outputs a valid value x ∈ X . We denote this action as PoEAnticipate(x);

• Then, L outputs a PoE(x). We denote this action as PoEOutput(PoE(x)).

Let us give the intuition of why and how a PoE protocol is used as a subroutine of the BFT with
a fast track sketched in section 3.4.1. At the beginning of a new view v of the BFT, parties start an
instance of a PoE protocol with the leader of this view L := Lv acting as the prover. Each party Pi

sets its input to the PoE protocol xi equal to the valid value received in the prepare message from the
first leader L1, if any, or to xi := ⊥ otherwise. Note that, if the input value of the PoE protocol of an
honest party Pi is a valid xi ∈ X , then Pi could not have cast a lockvote in the first view for any value
other than xi.

In addition, L sets the default valid value xdefault ∈ X equal to its own valid input of the BFT
protocol. The purpose of xdefault is to be used by the prover as the output value in case when all honest
parties (including L) have ⊥ as their input to the PoE protocol.

At the end of the PoE protocol, Lv outputs some value x ∈ X satisfying the exclusivity predicate
and, possibly later, a publicly verifiable proof of this predicate, denoted PoE(x). By definition, PoE(x)
proves that no other value x′ ̸= x could possibly be such that all honest parties cast a lockvote

(
1, x′).

This implies that no fast decision certificate can ever be created for any x′ ̸= x. Thus, PoE(x) is exactly
the proof needed by Lv in our short description of the BFT protocol in section 3.4.1.

The time since the start of the PoE protocol and until the PoEAnticipate event is called the anticipation
latency of the PoE protocol. This metric affects the latency of the BFT protocol because, as we will see,
a leader can propose a value x as soon as it receives the notification PoEAnticipate(x).

Similarly, the time since the start of the PoE protocol and until the PoEOutput event is called the
output latency of the PoE protocol. However, since the parties need to know the anticipated value x
already at the time when they issue lockvote vouching for this value, but need not verify the PoE(x) up
until the moment when they issue decvote, as long as output latency is at most anticipation latency plus
2δ, it does not affect the overall latency of the BFT protocol.

3.4.3 Generic BFT with fast track from a black-box PoE protocol
The protocol is described in Algorithm 3.4 and uses the additional or modified data structures as pre-
sented in Algorithm 3.3. The notations, in terms of numbered steps, still denote actions which can safely
be taken in any order, and, for liveness, are meant to be taken as soon as allowed. We further highlighted
with the tag [ – fast track] some additional steps which are related to the fast track, although they can
be taken in parallel with other steps. Notice that the fast track impacts the slow track, e.g., in steps 0
and 1 for v ≥ 2, parties must now run in the background a PoE protocol.

Theorem 3.5. When instantiated with a PoE protocol with anticipation latency ∆ and output latency
at most ∆+ 2δ, the protocol of Algorithm 3.4 is a BFT with normal-case latency 4δ, fast-track latency
2δ, view change latency ∆, and O(n) authenticator complexity (cf Table 3.1).

3.4.4 Relationship to prior protocols
In all previous BFT protocols with a fast track, in a view-change, when players received a prepare for
some value x not in a (non-degenerate) lock certificate, then they refused to cast a lockvote for x until
they received a PoE(x). But if we apply this rule to our BFT, we will have the following extra latency.
Indeed, our PoE protocol in Section 3.5 has worst-case output latency of ∆+2δ. This is why, in Algorithm
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• A fastdeccert(x) is a pair (x, σfast) where σfast is a n-threshold signature on the pair
(“ lockvote”, 1, x).
• A lock certificate lc[w, y] is as in TH1, but, if w ≥ 1, it must also contain a PoE on the locked value
in order to be considered valid. Formally, for w ≥ 1, lc[w, y] is a tuple of the form

(
w, y, σ,PoE(y)

)
where σ is a (2t+1)-threshold signature on the triple (“ lockvote”, w, y). As in TH1, lc[0, y] = y and
does not require either a threshold signature nor a PoE(y).

Algorithm 3.3: Data Structures of Generic BFT with a Fast Track. Data structures not displayed are
the same as in TH1 (Algorithm 3.1)

0. Report If v = 1, skip and go directly to step 1.
Else if v ≥ 2: Every party Pi, denoting by lc[wi, yi] its high locki, sends to the leader Lv a message
report

(
v, lc[wi, yi]

)
.

• Furthermore, if wi = 0, Pi initiates a PoE protocol with leader L := Lv, with input equal
to the value xi ∈ X received in the prepare message from the first leader L1, if any, or ⊥
otherwise. If Pi is the leader (i.e., Pi = Lv), it sets xdefault in the PoE protocol equal to its
input value in the BFT.

1. Prepare If v = 1: L1 multicasts prepare
(
1, yL1

)
, where yL1 is its input to BFT.

Else if v ≥ 2: Leader Lv receives report messages during delay ∆ since the beginning of the view
v. When ∆ is elapsed, denoting by lc[wLv

, yLv
] its high lock, leader Lv:

• If wLv = 0, Lv waits for PoEAnticipate(x) and multicasts prepare
(
v, lc[0, x]

)
.

• Else if wLv
≥ 1, Lv multicasts prepare

(
v, lc[wLv

, yLv
]
)
.

2. Lock Vote Every party Pi, upon receiving for the first time a prepare
(
v, lc[w, y]

)
from Lv. If

its highest locked view number wi is lower than or equal to w, then it replies with a signed
lockvote

(
v, y

)
.

[3. – fast track] Fast Decision Certificate If v = 1: upon receiving lockvote
(
1, y

)
issued by all

n = 3t+1 players, L1 aggregatesn their signatures into a fastdeccert(x) and multicasts it to the
parties.

3. Lock Certificate Upon receiving 2t+1 lockvotes for some value x, leader Lv aggregates2t+1

their signatures. Then, it forms and multicasts lc[v, y]. To this end, in addition to the threshold
signature, it will need a PoE(x). Let lc[w, y] be the lock certificate Lv multicasted on step 1
(Prepare).

• If w = 0 and v = 1, the (2t+1)-threshold signature on (“ lockvote”, 1, y) serves the purpose
PoE(y);

• Else if w = 0 and v ≥ 2, Lv waits for the event PoEOutput(PoE(y)) and takes the PoE from
it;

• Else if w ≥ 1, Lv takes PoE(y) from lc[w, y].

4. Decision Vote Upon receiving a lc[v, x] from leader Lv (so, including a PoE(x) attached), a party
P answers by a signed decvote (v, x).

5. Decision Certificate Leader Lv, upon receiving 2t+1 decvotes for the same (v, x),
aggregates2t+1 the signatures into a deccert(v, x) and multicasts it to the parties.

∗ Decision Upon receiving a deccert(v′, x) for any v′ ∈ N∗, a party decides x (and continues the
protocol).

[∗ – fast track] Fast Decision Upon receiving a fastdeccert(x), a party decides x (and continues the
protocol).

Algorithm 3.4: Generic BFT with a Fast Track
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3.4, we introduced a structural modification of possibly independent interest. Namely, parties now cast
a lockvote for a value x, even if they did not receive yet a PoE(x). Despite this relaxation, we preserve
safety since parties cast a decvote only if the lock certificate of the current view, which they receive from
the leader, is appended with a PoE for the value enclosed. A lock certificate without an appropriate
PoE is considered as invalid and completely ignored (it does not unlock parties, nor does it change their
high lock).

3.5 Big Buckets PoE

In this section, we provide a PoE protocol with linear authenticator complexity, constant size proof, and
anticipation latency 1∆. When we integrate it in the protocol described in Section 3.4.3, we obtain a
BFT protocol with the properties summarized in Table 3.1. However, to obtain a protocol that would
perform best in practice, the optimizations from Section 3.7 should be applied in order to reduce the
hidden constants in the asymptotic complexities.

0. Report Every player Pi sends its input xi to the prover L in a signed message poe report(xi).

1. Timely output or Anticipate and Request L waits the time interval ∆. When ∆ is elapsed, if
the prover received at least 2t+ 1 poe reports:

• If L received at least t+1 poe reports for some value x ∈ X ∪{⊥}, then it aggregatest+1 the
signatures from these reports. If x ̸= ⊥, L triggers PoEAnticipate(x). Otherwise, it triggers
PoEAnticipate(xdefault). In any case, it also triggers PoEOutput(σ), where σ is the threshold
signature and terminates the protocol.

• Otherwise, L triggers PoEAnticipate(xdefault) and partitions the interval [0;∞) into k (up to 5)
consecutive intervals B1, . . . , Bk (called “buckets”) as described in the proof of Theorem 3.10
and multicasts message bb-request(b1, . . . , bk−1), where bj = min(Bj+1).

2. Confirm Upon receiving bb-request(b1, . . . , bk−1) from L, each party Pi sends to the prover a poe
confirm message with up to k signatures: for each j ∈ {1, . . . , k} such that xi /∈ [bj−1; bj) (letting
b0 = 0 and bk = ∞), Pi sends to L a signature for the tuple (“poe confirm”, H(b1, . . . , bk−1), “my
value is not in bucket j”), where H is a collision-resistant hash function.

3. Output L waits until it receives t+ 1 such signatures for each of the k buckets, aggregatest+1

them and triggers PoEOutput(σ1, . . . , σk), where σj is the j-th threshold signature.

Algorithm 3.5: Big Buckets PoE

The protocol is summarized in Algorithm 3.5. It starts from each party Pi sending its input value
xi and a signature on the tuple (“poe report”, xi) in a poe report message to the prover (denoted by L).
Then L waits for the time period ∆ in order to collect poe report messages from all correct processes
(assuming GST has happened).

Recall that a value x is called unanimous iff it is the PoE input of all honest parties. Let us make a
few simple observations.

Lemma 3.6. If some value x is unanimous, then for any set S of 2t+ 1 poe reports issued by different
parties, at least t+ 1 reports are for value x.

Proof. In a set of 2t+1 parties there must be at least t+1 honest parties, which will only report x.

Lemma 3.7. If t+ 1 parties report that their PoE input is not x, then x is not unanimous.

Proof. In any set of t+1 parties, there must be at least 1 honest party. If x was unanimous, this player
would report that its value is x.

Corollary 3.8. If t+1 parties report that their PoE input is x ∈ X ∪{⊥}, then no value x′ ∈ X , x′ ̸= x,
can be unanimous.
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Figure 1: Bucket allocation example with 9 reports and t = 3

We now detail the rest of the protocol after ∆. If, by the end of the ∆ waiting period, L does not
collect at least n−t = 2t+1 poe reports, then it can conclude that GST has not yet happened and simply
terminate the protocol prematurely (the protocol does not guarantee liveness in this case). Otherwise,
it can check if it has collected at least t+ 1 poe reports for some value x. If there is such a value, then,
by Theorem 3.8, L can simply aggregatet+1 the signatures on (“poe report”, x) to obtain PoE(x) and
trigger both PoEAnticipate(x) and PoEOutput(σ), where σ is the aggregated threshold signature.

Otherwise, by Theorem 3.6, L can conclude that there is no unanimous value and any value can be
safely anticipated. In this case, L will trigger PoEAnticipate(xdefault) and, in the rest of the protocol, will
try to produce PoE(⊥).

The prover will construct PoE(⊥) by relying on Theorem 3.7: it will create a short proof that, for
each value x ∈ X , there are at least t + 1 parties voting against x. To this end, L will partition the
range of values X (more precisely, the range of binary representations of values) into a constant number
of intervals B1, . . . , Bk, called buckets, such that each bucket will contain values from at most t of the
received poe reports. An example of such an allocation can be seen in Figure 1.

As we show in Theorem 3.10, for n = 3t + 1, just 5 buckets are always sufficient. Hence, a bucket
allocation can be encoded with at most 4 binary strings of the same size as the input values: b1 = min(B2),
. . . , bk−1 = min(Bk). The prover sends these numbers to the parties and asks them to report to which
buckets their input values do not belong (by convention, ⊥ does not belong to any bucket). More
precisely, upon receiving from the prover the k − 1 numbers encoding the buckets, honest party Pi with
input value xi responds with up to k signatures: for each j ∈ {1, . . . , k} such that xi /∈ [bj−1 + 1; bj)
(letting b0 = 0 and bk = ∞), Pi sends to L a signature for the tuple (“poe confirm”, H(b1, . . . , bk−1), “my
value is not in bucket j”), where H is a collision-resistant hash function.

Assuming that GST happened before the start of the PoE protocol, L must have initially received
poe reports from all honest parties and it knows that no bucket contains more than t of the reports. Since
each honest party will reply to L, for each j ∈ {1, . . . , k}, L will be able to aggregatet+1 a signature
for the tuple (“poe confirm”, H(b1, . . . , bk−1), “my value is not in bucket j”). By Theorem 3.7, these k
threshold signatures constitute PoE(⊥) and, hence, PoE(xdefault) as well.

Theorem 3.9. The protocol in Algorithm 3.5 is a partially-synchronous non-responsive PoE protocol
with O(n) authenticator complexity, proof size O(1), anticipation latency 1∆, and output latency 1∆+2δ.

Proof. If GST happened before the start of the PoE protocol, all honest parties will send poe reports to
the prover and, after waiting for the time interval ∆, the prover will trigger PoEAnticipate with some
value (either a value contained in t+1 poe reports or xdefault). Now, either the prover will output a PoE
immediately (by aggregating t+ 1 signatures for the same value) or it will send a bb-request message.

In the latter case, since the prover had taken into account poe reports of all honest parties when it was
constructing the buckets, for each bucket Bj , at least n−2t = t+1 honest players will send a poe confirm
message with signatures that their values are not in Bj and the prover will trigger PoEOutput.

The validity of the output proofs follows directly from Theorems 3.7 and 3.8.

Finally, let us prove that 5 buckets are always sufficient.

Lemma 3.10. Given a set S of poe report messages from up to n = 3t + 1 distinct parties, provided
that there is no value that received more than t reports, it is always possible to partition the set of integer
numbers [0;∞) into at most 5 consecutive intervals B1, . . . , B5 such that, for each j, values from at most
t poe reports fall into the interval Bj.
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Proof. The following explicit construction ensures our claim. Let b0 = 0, and b1 be the largest integer
such that the number of poe reports for the values in [b0; b1) is at most t (or ∞ if this holds for any
integer b1). If b1 < ∞, repeat the procedure for b2 and the interval [b1; b2). Continue until, for some k,
bk = ∞. For all j ≤ k, let Bj be [bj−1; bj). Note that, since there is no value contained in more than t
reports, for all j ≤ k, the interval [bj−1; bj) contains a value from at least one poe report. This ensures
that the process eventually terminates and k < ∞.

Finally, let us prove that k ≤ 5. Suppose, for contradiction, that k > 5. Consider buckets B1 and
B2. Together, they must cover values from at least t+1 poe reports because, otherwise, by construction,
all the reports would be covered by B1. The same reasoning applies to B3 and B4. Hence, there are at
most 3t+1− 2 · (t+1) < t poe reports remaining for B5. Therefore, b5 = ∞ and k = 5. A contradiction.

3.6 Achieving Accountably Zero-overhead and Responsiveness
In Section 3.7, we further optimize the fast BFT protocol so that executions fall in either of the two
following categories:

1. Either the execution has practically no complexity overhead compared to TH1, meaning no extra
generations, retransmissions, or verifications of threshold signatures; Moreoever, the generation of
the PoE is then non-interactive and responsive: the leader generates it upon receiving any 2t+1 poe
reports; Hence, it can be plugged in Hotstuff-2 [106] with, accountably, zero latency or complexity
overhead.

2. Or an externally verifiable proof that the leader of the first view, L1, violated the protocol is
produced along with a PoE. Such a guarantee to catch, under some conditions, a misbehaving
party, is commonly referred to as accountability.

Let us convey the idea on a non-optimized version: the first leader signs the proposed value, then players
poe report() to next leaders: either their received signed proposal, or ⊥. As a result, unless a leader is
reported equivocating signed proposed values from the first leader, it is guaranteed to receive either t+1
reports for the same value x, which then constitutes of PoE(x), or for ⊥, which constitutes a PoE(any).

3.7 Optimistic zero-overhead PoE and accountability
Our starting observation is that our PoE protocol of Section 3.5 suffers from costly steps in which parties
send up to 5 signatures to the leader, which aggregates them into a PoE. Then it sends it back to all
parties, which have to verify the 5 threshold signatures. Although these extra steps do not impact the
asymptotic complexities nor the latency of BFT, it is still a significant overhead. Thus, we would like to
avoid this costly steps whenever possible.

To this end, we start by observing that these costly steps need not be taken if there is at most one
valid value x∈X such that all players report to have either x or ⊥ as their input to the PoE protocol.
We can easily enforce this favorable configuration of inputs to happen in every BFT execution in which
the leader of the first view, L1, did not send equivocating prepare messages (even if GST happened later).
To this end, we require that inputs of the PoE protocol are either ⊥ or carry a signature of L1 in order
to be considered valid by the prover.

Our roadmap now consists of optimizing for this favorable case and forcing it to happen as much as
possible.

First, in Section 3.7.1, we provide a further optimization of the PoE protocol of Section 3.5 in the
executions where the first leader does not equivocate. Namely, we remove the need for the prover to
verify and aggregate partial signatures on the poe report messages by reusing the signatures produced
as part of the baseline protocol TH1. We thus denote this case as a the optimistic zero-overhead track
of the (improved) PoE protocol. If, however, the prover detects an equivocation of the first leader L1, it
executes Big Buckets PoE as described in Section 3.5: we denote this as the fallback track.4

Then, in Section 3.7.2, we will discuss how to use accountability mechanisms to make sure that the
optimistic zero-overhead track is used as much as possible.

4In principle, any other PoE construction can be used as a fallback, potentially with some minor adaptations.
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3.7.1 Optimistic PoE protocol with zero–overhead when integrated into BFT

The optimized PoE protocol is described in Algorithm 3.6. The model of this new optimized PoE protocol
is slightly enriched, in that the inputs of honest parties which are not ⊥, are now assumed to carry a
signature of L1. We leave implicit in the PoE protocol that the prover L ignores all reported inputs
which do not come appended with a signature of L1.

Intuitively, the zero–overhead track is triggered by the prover if the reported inputs are in the favorable
configuration: they are all either ⊥ or equal to one unique valid value x∈X . Upon observing such a
configuration after waiting ∆, the prover has the certainty that, if GST happened before the start of
the view, since the reported inputs contain in particular all those of honest parties, it will be able to
successfully obtain at least 2t + 1 signed declarations “my input is either x or ⊥” if it requests it to
parties.

However, in order to satisfy the zero-overhead claim, these declarations are signed with the same
signature as the lock votes. More specifically, on step [2. Lock Vote] of Algorithm 3.4, instead of simply
signing the tuple (“ lockvote”, v, x), the parties add statement “my PoE input is either x or ⊥” to the
tuple. Then a single threshold signature is sufficient to serve both purposes.

0. Report Every player Pi sends its input xi to the prover L in a signed message poe report(xi).

1. Anticipate and Request L waits until the time interval ∆ is elapsed. Then, if L received at least
2t+ 1 poe reports, it continues depending on those two alternatives:

• [zero-overhead] If there exists a value x∈X such that all 2t+1 reported values are in {x,⊥}:
L triggers PoEAnticipate(x) and multicasts zo-request(x). Note that, if all poe reports are for
⊥, xdefault can be used as x.

• [fallback] Otherwise, execute Big Buckets PoE as specified in Algorithm 3.5 starting from step
1.

2. Zero-Overhead Confirm An honest party Pi, when executing step [2. Lock Vote] of Algo-
rithm 3.4, waits for either zo-request(x) or bb-request(b1, . . . , bk−1) from the leader.

• [zero-overhead] If zo-request(x) is received and the PoE input of Pi is either x or ⊥, sign the
tuple (“ lockvote”, v, x, “my PoE input is either x or ⊥”).

• [fallback] If a bb-request message is received, continue executing the Big Buckets PoE (Algo-
rithm 3.5) and the BFT protocol (Algorithm 3.4) unchanged.

3. Zero-Overhead Output Leader Lv, upon receiving 2t+1 identical signatures on the tuple
(“ lockvote”, v, x, “my PoE input is either x or ⊥”) and producing the threshold signature σ in step
[3. Lock Certificate] of Algorithm 3.4, trigger PoEOutput((σ, v, x)). Note that v and x are in-
cluded in the PoE output in order for it to be externally verifiable and satisfy the definition of
Section 3.4.2.

Algorithm 3.6: Zero-overhead PoE protocol

3.7.2 Accountability in case of fallback in the PoE

In this section, we will address two issues that may prevent zero-overhead track from being executed:

1. So far, nothing prevents a malicious first leader from equivocating, and thus preventing the execu-
tion of the PoE protocol from benefiting from the zero-overhead optimization; and

2. Even if the first leader behaved correctly, nothing prevents a malicious current leader Lv from not
taking the optimistic zero-overhead track, and instead triggering parties to take the fallback track
of the PoE protocol of Section 3.5, thus making parties spend unnecessary resources.

The first ingredient to address the first issue (1), which we already required in the optimized PoE
(Algorithm 3.6), is that the prepare messages of the first leader are now required to be signed in order to
be considered as valid (otherwise they are ignored by honest parties). Thus, if an honest current leader
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must follow the fallback in the PoE protocol, it must be the case that it was reported conflicting prepare
messages signed by the first leader. These conflicting signed messages constitute a proof of misbehaviour
of the first leader L1. Thus, an equivocating first leader L1 takes the risk that an honest leader will
later publicly exhibit a proof of misbehaviour, which may trigger some form of punishment (e.g., via
reconfiguration[100] or slashing [33]) for L1. Thanks to this deterrence, it is possible to make sure that
the fallback has to be used by honest leaders in very few occasions, which solves (1).

The additional mechanism to address issue (2) is now very simple: upon receiving a request message
from the current leader Lv relative to step [2. Confirm] of the fallback track of the PoE, a party checks if
this message comes appended with a proof of misbehaviour for the first leader L1. If not, then the party
ignores subsequent messages from Lv. This mechanism does not harm liveness, since, by construction,
if an honest leader Lv triggers the fallback then it must be the case that it has a proof of misbehaviour.

In conclusion, we achieve the following alternative in every view v, even if the current leader Lv≥2

is corrupt:

zero–overhead Either the authenticator complexity of the view is equal to the one of TH1 (plus one
plain signature appended by L1 on its prepare messages and n unverified partial signatures on
poe report messages);

fallback Or, there exists at least one honest party which receives from the leader Lv a proof of misbe-
haviour of L1.

3.8 Related Work
PBFT [40] is considered to be the first practical algorithm solving Byzantine fault-tolerant consensus in
partial synchrony. The protocol ensures that a decision is reached within 3 message delays in a normal
view with quadratic authenticator complexity.

BFT consensus with linear authenticator complexity. To the best of our knowledge, Hot-
Stuff v1 [1], based on [32], is the first partially-synchronous leader-based deterministic Byzantine fault-
tolerant consensus protocol with linear authenticator complexity in every view. We denote this protocol
as TH1 and use it as the baseline for our protocols. It instructs each new leader to wait for the eventual
maximum network delay ∆ before taking actions.

In [142], Yin et al. lift this requirement at the expense of an extra round-trip of communication (the
proposed protocol needs 3 round-trips in a view before a decision can reached, compared to 2 in TH1).

PnS [8] achieves responsive BFT in 2 round trips, with a PBFT-like view change that requires the
parties to send at most ϕ signatures to the leader, where ϕ is the number of views since the beginning of
the instance until when the network stabilizes and an honest leader is elected, which is expected to be
small in most cases. The computational cost is that of checking one aggregate signature.

Wendy [73] is a BFT protocol which has 2 round-trips in every view in which no party has a higher
lock than the leader. When this happens, [73] has 3 round-trips. It has a one-time cost of 2 log(vupper)
authenticators published in the PKI per player and a one-time computation cost per player equivalent to
verifying 2n log(vupper) aggregate signatures, where vupper is a conservative upper bound on the maximum
possible number of views in an execution. In each view, the leader forwards to the parties O(n) bits
and one authenticator. The computation complexity in each view is the same as verifying an aggregate
signature, plus a multiplicative overhead of log(ϕ) for the number of linear operations in the group.

The protocol of [130] has linear authenticator complexity, takes two round-trips when all parties are
locked on the previous view number (denoted as a “happy path”), and 3 round-trips otherwise. Both the
protocols Jolteon [71] (implemented in Diem) and [86] have the opposite trade-off: always 2 round-trips,
but the authenticator complexity is linear only if all parties are locked on the previous view number,
otherwise it is quadratic. Notice that in [86], this quadratic authenticator complexity is because players
have to check an aggregate signature of [28], which requires the computation of 2t + 2 = O(n) pairings
(instead of two, for a multi-signature or a BLS threshold signature).

Fast track in BFT consensus. Kursawe [91] was the first to implement a Byzantine fault-tolerant
consensus protocol with an optimistic fast track. The protocol suggested in [91] tolerates up to one-third
of Byzantine failures and is able to reach a decision in two message delays when all parties are honest
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and the network is synchronous. Otherwise, the protocol falls back to a much less efficient randomized
asynchronous consensus protocol.

Later, Martin and Alvisi [109] integrated a fast track into PBFT [40] in a protocol called FaB Paxos.
Moreover, they generalized the idea by providing an algorithm that requires n ≥ 3t+2f +1 parties, can
tolerate t Byzantine parties, and is able to reach a decision after two message delays when the network
is synchronous and at most f parties are Byzantine, thus exposing a fine-grained trade-off between the
resilience and the level of “optimism” required for the fast track. The protocol proposed in this chapter
can also be easily generalized in a similar way.

As was first noted in [59] and later rediscovered in [5, 94], the resilience of the generalized FaB Paxos
can be improved from 3t+2f +1 to 3t+2f −1. These results are mostly relevant for small-scale systems
and, thus, target different applications than the ones considered in this chapter.

Zyzzyva [90], UpRight [47], and SBFT [74] are practical systems that build upon the ideas from FaB
Paxos [109]. The evaluations in these papers demonstrate that Byzantine consensus protocols with fast
track can achieve performance comparable with crash fault-tolerant solutions in the most common case
when there are no (or very few) corrupted parties.

Bosco [127] provides an alternative take on the idea of a fast track. The protocol is able to reach
a decision after just one message delay in an optimistic case when all honest parties propose the same
value. It requires n ≥ 5t+ 1 or n ≥ 7t+ 1, depending on the desired validity property.

To the best of our knowledge, prior to this work, there were no BFT protocols with fast track and
linear per-view authenticator complexity.

An efficient randomized round-synchronization protocol [114] may allow to translate a leader-based
consensus protocol with linear per-view authenticator complexity to a protocol with expected linear
authenticator complexity in the worst case.

Another application of Big Buckets PoE. Since the publication of the first version of this work,
the Big Buckets PoE construction has found an independent application in improving the adaptive
complexity of synchronous consensus [46].

3.9 Concluding Remarks
While, in terms of practical efficiency, Big Buckets PoE is likely to be optimal, thanks to the opti-
mistic zero-overhead responsive path, it has the added complexity of having the interactive fallback.
Hence, non-interactive PoE constructions would be of interest and could be preferable for some practical
implementations.

More broadly, we believe that Byzantine fault-tolerant distributed protocols in general and consensus
protocols in particular could benefit from more creative applications of cryptography and from expanding
the cryptographic tool set. In this chapter, we focused specifically on combining fast track with linear
complexity. However, there are likely many other ways to improve protocols by integrating different
kinds of ad-hoc cryptographic proofs.

Another likely underutilized tool for distributed protocols is game theory. In this chapter, we rely on
it in its simplest form—accountability. We optimize the protocol for the good case of a non-equivocating
leader and then punish the leader otherwise. Another common application is to reward parties for
following the protocol. A more rogue approach could be trying to harvest the power of free markets by
intentionally underspecifying certain parts of the protocols and focusing on aligning the incentives of the
participants with the overall performance. If incentives are big enough, this will encourage people to find
creative ways to optimize the system.
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Chapter 4

Weight Reduction Problems and Their
Applications

4.1 Introduction

4.1.1 Weighted distributed problems
Traditionally, distributed problems are studied in the egalitarian setting where n parties communicate
over a network and any t of them can be faulty or corrupted by a malicious adversary. Different combi-
nations of n and t are possible depending on the problem at hand, the types of failures (crash, omission,
semi-honest, or malicious, also known as Byzantine), and the network model (typically, asynchronous,
semi-synchronous, or synchronous). However, for most distributed protocols, t has to be smaller than a
certain fraction of n. For example, most practical Byzantine fault-tolerant consensus protocols [39, 40]
can operate for any t < n

3 . We call such models nominal and use fn to denote their resilience, i.e., a
nominal protocol with resilience fn operates correctly as long as less than fnn parties are corrupt, where
n is the total number of participants.

However, this simple corruption model is not always sufficient to express the actual fault structure or
trust assumptions of real systems. As a result, we see many practical blockchain protocols adopt a more
general, weighted model, where each party is associated with a real weight that, intuitively, represents
the number of “votes” this party has in the system. The assumption on the number of corrupt parties
in this setting is replaced by the assumption that the total weight of the corrupt parties is smaller than
a fraction fw of the total weight of all participants. For example, in permissionless systems, the weight
can correspond to the amount of “stake” or computational resources a participant has invested in the
system and, in the context of managed systems, to a function of the estimated failure probability.

There are two main reasons for adopting the weighted model in the context of blockchain systems.
First and foremost, it protects the system from the infamous Sybil attacks, i.e., malicious users registering
themselves multiple times in order to obtain multiple identities, thereby surpassing the resilience thresh-
old fn. Second, it is speculated that users with a greater amount of resources (monetary, computational,
or otherwise) invested in the system, and consequently a higher weight, will be more committed to the
system’s stability and less likely to engage in malicious behavior.

4.1.2 Weighted voting and where it needs help
Perhaps, the most prevalent tool used for the design of distributed protocols is quorum systems [72,
107, 113]. Intuitively, to achieve fault tolerance, each “action” is confirmed by a sufficiently large set of
participants (called a quorum). Then, if two actions are conflicting or somehow interdependent (e.g.,
writing and reading a file in a distributed storage system), then the parties in the intersection of the
quorums are supposed to ensure consistency. Thus, many distributed protocols can be converted from
the nominal to the weighted setting simply by changing the quorum system, i.e., instead of waiting
for confirmations from a certain number of parties, waiting for a set of parties with the corresponding
fraction of the total weight. We call this strategy weighted voting and it often allows translating protocols
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from the nominal to the weighted model while maintaining the same resilience (i.e., fw = fn) and, in
some cases, with virtually no overhead.

However, weighted voting has two major downsides. First and foremost, many protocols rely on
primitives beyond simple quorum systems, and weighted voting is often insufficient to translate these
protocols to the weighted model. Notable examples include threshold cryptography [24, 54], secret
sharing [35, 123], erasure and error-correcting codes [105], and numerous protocols that rely on these
primitives.

Another example, relevant to blockchain systems, where weighted voting is typically not sufficient is
in Single Secret Leader Election protocols [26, 42, 43, 67]. It illustrates that not all protocols that cannot
be converted to the weighted model simply3 by applying weighted voting belong to the categories above
and motivates the general approach taken in this chapter.

The second drawback of weighted voting is that it requires a careful examination of the protocol in
order to determine whether weighted voting is sufficient to convert it to the weighted model, as well as
non-trivial modifications to the protocol implementation. It would be much nicer to have a “black-box”
transformation that would take a protocol designed and implemented for the nominal model and output
a protocol for the weighted model. In this chapter, we offer both a “black-box” transformation and a set
of more efficient “open-box” transformations for a wide range of problems.

4.1.3 Our contribution
Our contribution to the fields of distributed computing and applied cryptography is twofold:

1. We present a simple and efficient black-box transformation that can be applied to convert a wide
range of protocols designed for the nominal model into the weighted model. Crucially, one can determine
the applicability of the transformation simply by examining the problem in question (e.g., Byzantine
consensus), instead of the protocol itself (e.g., PBFT [40]) and it does not require modifications to the
source code, only a slim wrapper around it. The price for this transformation is an arbitrarily small
decrease in resilience (fw = fn− ϵ, where ϵ > 0) and an increase in the communication and computation
complexities proportional to fw

ϵ .

2. Furthermore, by opening the black box and examining the internal structure of distributed pro-
tocols, we discover that by combining our transformation with weighted voting, in many cases, we can
obtain weighted algorithms without the reduction in resilience (fw = fn) and with a minor or non-existent
performance penalty.

We summarize some examples of our techniques applied to a range of different protocols in Table 4.1.
The last two columns of the table give the upper bound on the overhead of the obtained weighted
protocols compared to their nominal counterparts executed with the same number of parties. Note,
however, that, in many cases, the overhead applies only to specific parts of the protocol, which may not
be the bottlenecks. Thus, further experimental studies may reveal that the real overhead is even lower or
nonexistent, even with the worst-case weight distribution. Columns “fw” and “fn” specify the resilience
of the weighted protocols obtained and the original nominal protocols, respectively. As discussed above,
in most cases, we manage to avoid sacrificing resilience (i.e., fw = fn).

Furthermore, the main building block of our constructions, the weight reduction problems, may be
of separate interest and may have important applications beyond distributed protocols. It is indeed an
interesting and somewhat counterintuitive observation that large real weights can be efficiently reduced
to small integer weights while preserving the key structural properties. We formally define the three
weight reduction problems considered in this chapter in Section 4.2 and present a practical solver called
Swiper in Section 4.3.

4.1.4 Empirical study
The performance of the weighted protocols constructed as suggested in this chapter is sensitive to the
distribution of the participants’ weights. While we provide upper bounds and thus analyze our protocols
for the worst weight distributions possible, it is interesting whether such weight distributions emerge in
practice.
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distributed
problem

nominal
solutions

weight reduction
problem fw fn

worst-case average
comm. overhead

worst-case average
comp. overhead

Derived Protocols
Efficient Asynchronous

State-Machine Replication
[50, 57, 88,
111, 128]

WR for RNG
WQ for Broadcast 1/3 1/3

× 1.33 for Broadcast
× 1.33 for RNG

× 3.56 for Broadcast
× 1.33 for RNG

Structured Mempool [50] WQ for Broadcast 1/3 1/3 × 1.33 for Broadcast × 3.56 for Broadcast
Validated Asynchronous
Byzantine Agreement [4, 36] WR for RNG 1/3 1/3 × 1.33 for RNG × 1.33 for RNG

Consensus with Checkpoints [18] WR for signing 1/3 1/3 × 1.33 for signing × 1.33 for signing
Linear BFT Consensus [142]

WR (BB) 1/4 1/3 × 2.67 × 2.67
Chain-Quality SSLE [26]

Useful Building Blocks

Erasure-Coded
Storage and Broadcast

[38, 80,
115, 116,
120, 141]

WQ 1/3 1/3 × 1.33 × 3.56

WR (BB) 1/4 1/3 – × 3

Error-Corrected Broadcast [52]
WQ 1/3 1/3 × 1.33 × 7.11

WR (BB) 1/4 1/3 – × 3

Verifiable Secret Sharing [123] WR 1/3 1/3 × 1.33 × 1.33

Common Coin [37, 119]

WR 1/3 1/2 × 1.33 × 1.33
Blunt Threshold Signatures [24, 124, 129]
Blunt Threshold Encryption [54]

Blunt Threshold FHE [27, 85]
Tight Secret Sharing

See sec. 4.4.3
(this chapter) WR 1/2 1/2

× 1.33
(+O(n2) small messages) × 1.33

Tight Threshold Signatures
Tight Threshold Encryption

Tight Threshold FHE

Table 4.1: Examples of suggested weighted distributed protocols with the upper bounds on communica-
tion and computation overhead compared to the nominal solutions with the same number of participants.
See Sections 4.4 to 4.6 for details on how these numbers were obtained. In Section 4.7, we study real-
world weight distributions and conclude that, in practice, the overhead should be much smaller. “WR”
and “WQ” refer to the weight reduction problems defined in Section 2.5. “WR (BB)” refers to the black-
box transformation described in Section 4.4.4.

To study real-world weight distributions, we tested our weight reduction algorithms on the distribution
of funds from multiple existing blockchain systems [14, 75, 95, 110] ranging in size from a hundred
parties [14, 15] up to multiple tens of thousands [11, 110]. We perform an in-depth analysis in Section 4.7.

Roadmap
The rest of the chapter is organized as follows: we formally define weight reduction problems and state
the upper bounds in Section 4.2. We present Swiper in Section 4.3. The proof that it satisfies the
stated bounds is delegated to Section 4.8. Sections 4.4 to 4.6 discuss in detail the applications of the
weight reduction problems in distributed computing and cryptography. In Section 4.7, we discuss the
results of the empirical study performed on real-world weight distributions. We discuss related work in
Section 4.11. Section 4.8 presents the formal proofs of the upper bounds. Section 4.9 contains the mixed
integer programming formulation of the Weight Restriction problem. We conclude the chapter with the
discussion of directions for future work in Section 4.12.

4.2 Weight reduction problems
Let us define the key building block to our construction, the weight reduction problems: a class of
optimization problems that map (potentially large) real weights w1, . . . , wn ∈ R≥0 to (ideally small)
integer weights t1, . . . , tn ∈ Z≥0 while preserving certain key properties. For convenience, we use the
word “tickets” to denote the units of the assigned integer weights, i.e., if t1, . . . , tn is the output of a
weight reduction problem, we say that party i is given ti tickets.
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Notation

To avoid repetition, throughout the rest of the chapter, we use the following notation:

1. [n] := {1, 2, . . . , n}
2. for any S ⊆ [n]: w(S) :=

∑
i∈S wi

3. for any S ⊆ [n]: t(S) :=
∑

i∈S ti

4. W := w([n]) =
∑n

i=1 wi

5. T := t([n]) =
∑n

i=1 ti

4.2.1 Weight Restriction
The first weight reduction problem is Weight Restriction (or simply WR). It is parameterized by two
numbers αw, αn ∈ (0, 1) and requires the mapping to preserve the property that any subset of parties of
weight less than αw obtains less than αn tickets. More formally:

Problem 1 (Weight Restriction)

Given αw, αn ∈ (0, 1) and w1, . . . , wn ∈ R≥0 such that W ̸= 0 as input, find t1, . . . , tn ∈ Z≥0 such that T is
minimized, subject to the following restriction:

∀S ⊆ [n] s.t. w(S) < αwW : t(S) < αnT

In Section 4.4, we apply Weight Restriction to implement the black-box transformation announced
in Section 4.1.3 as well as weighted versions of secret sharing and threshold cryptography with different
access structures. In Section 4.8, we prove the following theorem:

Theorem 4.1 (WR upper bound). For any αw, αn ∈ (0, 1) such that αw < αn and any w1, . . . , wn:
there exists a solution to the Weight Restriction problem with T ≤

⌈
αw(1−αw)
αn−αw

n
⌉

To make sense of this expression, note that: (1) it is proportional to n; (2) it is inversely proportional
to the “gap” between αw and αn; (3) the numerator αw(1 − αw) is smaller than 1 and, in fact, never
exceeds 1/4. For a fixed αw, one can see αw(1−αw) as the “constant” and O

(
n

αn−αw

)
as the “complexity”.

4.2.2 Weight Qualification
The next weight reduction problem we study is Weight Qualification (or simply WQ). It requires the
mapping to preserve the property that any subset of parties of weight greater than βw obtains more than
βn tickets. In some sense, WQ is the opposite of the Weight Restriction problem discussed above. More
formally:

Problem 2 (Weight Qualification)

Given βw, βn ∈ (0, 1) and w1, . . . , wn ∈ R≥0 such that W ̸= 0 as input, find t1, . . . , tn ∈ Z≥0 such that T is
minimized, subject to the following restriction:

∀S ⊆ [n] s.t. w(S) > βwW : t(S) > βnT

In Section 4.5, we show how to apply Weight Qualification to implement weighted versions of storage
and broadcast protocols that rely on erasure and error-correcting codes for minimizing communication
and storage complexity.

There exists a simple reduction between WR and WQ:

Theorem 4.2. For any βw, βn ∈ (0, 1) and w1, . . . , wn ∈ R≥0, the following problems are identical:

1. WQ(βw, βn, w1, . . . , wn)

2. WR(1− βw, 1− βn, w1, . . . , wn)
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Proof. Let us prove that any valid solution to WR(1 − βw, 1 − βn, w1, . . . , wn) is a valid solution to
WQ(βw, βn, w1, . . . , wn). The inverse can be proven analogously. Indeed, if t1, . . . , tn is a valid solution
for WR(1 − βw, 1 − βn, w1, . . . , wn), then ∀S ⊆ [n] such that w(S) > βwW it holds that w([n] \ S) =
W − w(S) < (1− βw)W . Hence, t([n] \ S) < (1− βn)T and t(S) = T − t([n] \ S) > βnT .

From Theorems 4.1 and 4.2, we obtain the following:

Corollary 4.3 (WQ upper bound). For any βw, βn ∈ (0, 1) such that βn < βw: there exists a solution
to the Weight Qualification problem with T ≤

⌈
βw(1−βw)
βw−βn

n
⌉

4.2.3 Weight Separation
Finally, Weight Separation, in a sense, combines WR and WQ: it has two parameters, α and β, and
guarantees that any set of weight β receives more tickets than any set of weight α. Intuitively, it is
similar to solving WR(α, γ) and WQ(β, γ) for some unknown γ ∈ (0, 1) at the same time, i.e., with just
a single ticket assignment.

Problem 3 (Weight Separation)

Given α, β ∈ (0, 1) and w1, . . . , wn ∈ R≥0 such that W ̸= 0 as input, find t1, . . . , tn ∈ Z≥0 such that T is
minimized, subject to the following restriction:

∀S1, S2 ⊆ [n] s.t. w(S1) < αW and w(S2) > βW : t(S1) < t(S2)

In this chapter, we focus primarily on Weight Restriction and Weight Qualification because they are
sufficient for most applications and, being less restrictive on the ticket assignment, permit more efficient
solutions. However, for completeness, we also provide an upper bound on Weight Separation and support
it in our approximate solver described in Section 4.3.

Theorem 4.4 (WS upper bound). For any α, β ∈ (0, 1) such that α < β: there exists a solution to the
Weight Separation problem with T ≤ (α+β)(1−α)

β−α n.

Note that the numerator (α+ β)(1− α) is always smaller than 1 for 0 < α < β < 1.

4.3 Swiper: Approximate solver for Weight Reduction problems

System

number of tickets using Swiper

WR and WQ WS
αw = 1/4

αn = 1/3

αw = 1/3

αn = 3/8

αw = 1/3

αn = 1/2

αw = 2/3

αn = 3/4 α = 1/4

β = 1/3

α = 1/3

β = 1/2

α = 2/3

β = 3/4βw = 3/4

βn = 2/3

βw = 2/3

βn = 5/8

βw = 2/3

βn = 1/2

βw = 1/3

βn = 1/4

Aptos [14, 15]
W = 8.47× 108 n = 104

85 235 27 110 385 98 437 (+1)

Tezos [64, 75]
W = 6.76× 108 n = 382

133 425 61 (+8) 258 (+1) 670 233 (+2) 811

Filecoin [62, 95]
W = 2.52× 1019 n = 3700

3 091 8 233 1 533 4 691 10 485 4 838 11 858

Algorand [11, 110]
W = 9.72× 109 n = 42 920

745 13 475 293 6 258 46 009 2 188 64 189

Table 4.2: Number of tickets allocated by the Swiper protocol on sample weight distributions. In the few
cases when the linear mode yields more tickets than the standard (full) mode, the difference is written
in parentheses.
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To provide a constructive proof for Theorems 4.1, 4.3 and 4.4 as well as to facilitate practical applica-
tions of weight reduction problems, we designed Swiper—a fast approximate solver for the three weight
reduction problems defined in this chapter. Swiper enjoys a number of desirable properties:

1. Robustness: It always respects the upper bounds stated in Section 4.2. This means that even
under a malicious distribution of weights, the number of assigned tickets will be within a known limit,
linear in the number of parties. We present the algorithm in Section 4.3.1 and prove the upper bounds
in Section 4.8.

2. Determinism: Swiper is a deterministic protocol. Hence, when the initial weights are common
knowledge, each party can run it locally and all parties will obtain the same result. This eliminates the
need for executing any complex protocol to agree on the ticket assignment.

3. Allocation efficiency: As we explore in detail in Section 7, Swiper performs remarkably well on
real-world weight distributions, often allocating far fewer tickets than predicted by the upper bounds. In
Table 4.2, we summarize the number of tickets allocated by Swiper on the distribution of funds in four
major blockchain systems [11, 15, 62, 64] with some example thresholds. Notice that, in many cases, the
number of tickets is actually below the number of users. This happens partly due to the distributions
being significantly skewed and a large number of users actually owning only a small fraction of the total
funds.

4. Computational efficiency: Assuming that the thresholds (α, αw, αn, β, βw, βn) are constants,
the runtime of Swiper is either Õ(n) (in --linear mode) or Õ(n2) (in standard mode). The difference in
the implementation of the two modes is detailed in Section 4.3.1. Both modes respect the upper bounds
and, as can be seen in Table 4.2, in practice, usually yield identical or almost identical results.

4.3.1 Algorithm and implementation
Overall structure. In Swiper, we consider ticket assignments of a special form. Let c be a fixed
number between 0 and 1 (we will precisely specify c later in this section). Let t(s, k) be the result of the
following procedure: first, let ti := ⌊swi + c⌋; then, consider the parties that ended up “on the border”,
i.e., that would lose a ticket if we decreased s any further1 and take 1 ticket from all but arbitrary (yet
deterministically chosen) k of them.

More formally, let Bs := {i | swi + c is integer} and Ks,k := {arbitrary k members of Bs}. Then:

t(s, k)i :=

{
⌊swi + c⌋ − 1, if i ∈ (Bs \ Ks,k)

⌊swi + c⌋, otherwise

The crucial observation is that, despite having two indices, this family of ticket assignments can be
totally ordered, each ticket assignment having precisely one ticket more than the previous one (after
removing duplicates). Indeed, let Ts,k :=

∑n
i=1 t(s, k)i. Then, for 0 < k < |Bs|, by definition, T (s, k +

1) = T (s, k) + 1. Moreover, if s′ is the smallest number greater than s such that |Bs′ | ̸= 0, then
T (s′, 1) = T (s′, 0) + 1 = T (s, |Bs|) + 1. For any s′′ in between s and s′, t(s′′, ∗) = t(s′, 0) = t(s, |Bs|).

Swiper finds a local minimum in this family of ticket assignments, i.e., s∗ and k∗ such that t(s∗, k∗)
is viable (satisfies the problem requirements), but, for any sufficiently small ε and any k′, t(s∗ − ε, k′) is
not viable and neither is t(s∗, k∗ − 1).

Theoretical foundations. In Section 4.8, we prove that, by selecting the constant c as αw in case of
Weight Restriction, (1− βw) in case of Weight Qualification, and α+β

2 in case of Weight Separation, the
resulting ticket assignment always satisfies the bounds stated in Section 4.2 (Theorems 4.1, 4.3 and 4.4).2
The proof works by demonstrating that any invalid ticket assignment of this form yields at least one fewer
tickets than the stated upper bounds. Any local minimum yields just 1 ticket more than some invalid
ticket assignment and, thus, fewer or equal to the upper bounds. This proof structure is important for
achieving practical efficiency.

1This corresponds to all i such that swi + c is an integer.
2To obtain these specific values, we first considered the general case for an arbitrary c and then found the values of c

that minimized the upper bounds.
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Bootstrapping the solution. As mentioned above, if the ticket assignment yielded by some tuple
(s, k) is invalid (does not satisfy the problem’s requirement), then the total number of tickets in this
ticket assignment must be smaller than the upper bound. Conversely, if some tuple (s, k) yields a ticket
assignment with the total number of tickets greater or equal to the upper bound, we can conclude that
the resulting ticket assignment is valid. This fact alone allows us to quickly arrive at a valid solution
satisfying the upper bound by simply finding a tuple (s, k) that yields the number of tickets exactly equal
to the upper bound. This can be done efficiently with a binary search.

Finding the local minimum. Thanks to the fact that we are only looking for a local minimum in
the considered family of ticket assignments, we can find it efficiently with a binary search, assuming
an efficient algorithm for verifying the validity of a ticket assignment. However, in the general case,
verifying the validity of a ticket assignment looks a lot like a (co-)NP-hard problem. Indeed, one can
easily see that verifying a solution to Weight Restriction as defined in Section 4.2 is equivalent to solving
a particular instance of Knapsack—the famous NP-hard optimization problem [89].

Fortunately, for the specific family of ticket assignments that Swiper considers (denoted as t(s, k)
earlier in this section), an efficient algorithm does exist. Indeed, we have already established that any
ticket assignment in this family with the total number of tickets (T ) exceeding the upper bound is valid.
If, on the other hand, T is smaller than the upper bound, then we can use the “dynamic programming
by profits” approach [89, Lemma 2.3.2] to solve Knapsack in time O(Tn). Assuming αs and βs to be
constant, T is O(n) and O(Tn) = O(n2).

Practical efficiency and the --linear mode. Solving Knapsack to verify the validity of t(s, k) is
the main bottleneck for the algorithm. To achieve better practical efficiency, Swiper uses well-known
quasilinear-time Knapsack lower and upper bounds to filter out as many solutions as possible without
invoking the knapsack solver.

The upper bound allows us to implement a conservative check, i.e., it may yield false negatives (falsely
declaring t(s, k) as invalid), but never false positives (falsely declaring t(s, k) as valid). In --linear mode,
Swiper only relies on the upper bound and is guaranteed to find a valid solution, albeit not necessarily
a locally minimal one.

Additionally, the lower bound allows us to implement a liberal check, i.e., it may yield false positives,
but never false negatives. By combining the two, we can implement a quick test that can return one of
the three values (“valid”, “invalid”, or “uncertain”). In the full mode (i.e., when --linear is not provided),
Swiper only invokes the full knapsack solver (with O(n2) time complexity) when the quick test returns
“uncertain”, which speeds up the algorithm by a more than a factor of 3 on inputs with large enough
resulting number of tickets.

Prototype implementation. We provide the full code for a prototype of Swiper and the data used
to generate Table 4.2 in a public GitHub repository3. The prototype is implemented in Python, with
JIT compilation used for certain computation-heavy parts. It utilizes the Fraction class to avoid any
possible rounding errors. If sub-second latencies are required by the application, an implementation in
a more performance-oriented programming language as well as the use of rounding (be it floating- or
fixed-point arithmetic) may be necessary.

4.4 Applications of Weight Restriction

4.4.1 Distributed random number generation
As a motivating example for Weight Restriction, consider the Distributed Random Number Generation
problem. Typically, it needs to satisfy two properties:

• If all honest parties cooperate, they can generate the next random number;

• Unless at least one honest party wants to open the next random number, it remains completely
unpredictable to the adversary.

3https://github.com/DCL-TelecomParis/swiper
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Perhaps, the simplest way it can be achieved [119] is by having a trusted party generate the random
number and pre-distribute it using secret sharing [123], such that each party gets a number ti of shares
and any subset of parties possessing at least ⌈αnT ⌉ shares (where T =

∑n
i=1 ti) can reconstruct the

secret, but no set of parties possessing less than this amount of shares can learn anything about the
secret.

Thus, by setting αw to the resilience of the protocol (αw := fw) and αn ≤ 1
2 , we can guarantee that:

• Honest participants will receive more than (1 − αn)T ≥ ⌈αnT ⌉ shares and, hence, will be able to
reconstruct the random number.

• Corrupt participants will receive less than αnT shares and, hence, will not be able to reconstruct
the random number unless some honest party also wants to open it;

Practical randomness beacons [37, 121] operate similarly, only employing unique threshold signa-
tures [24, 124] in order to be able to reuse the same secret multiple times. The described weighted
solution still applies to such approaches unchanged.

4.4.2 Blunt Secret Sharing and derivatives
In cryptography, certain actions have an associated access structure A that determines all sets of parties
that are able to perform these actions once they collaborate. Traditional (n, k + 1)-threshold systems
can be seen as a particular access structure An(α) = {P ⊆ [n] : |P | > αn}, where α := k

n . Analogously,
a weighted threshold access structure can be defined as Aw(α) = {P ⊆ Π :

∑
i∈P wi > α

∑
i∈Π wi}.

We can also define the adversary structure F ⊆ 2Π, the set of all sets of parties that can be simulta-
neously corrupted at any given execution. Often, the adversary structure is also defined by a threshold,
with a maximum corruptible weight fraction fw, i.e., Fw(fw) = {P ⊂ Π :

∑
i∈P wi < fw

∑
i∈Π wi}.

While threshold access structures are commonly studied in cryptography and are applied in numerous
distributed protocols, in practice, as we illustrate in Section 4.6, it is often sufficient if the access structure
provides the following two properties, generalizing the requirements of the random beacon presented in
Section 4.4.1:

• There exists at least one set entirely composed of honest parties that belongs to the access structure.
This typically guarantees the accompanying protocol’s liveness properties.

• Any set containing only corrupt parties does not belong to the access structure, as this would break
safety properties.

Hence, we define a blunt access structure as follows:

Definition 4.5 (Blunt access structure). Given a set of parties Π and the adversary structure F ⊆ 2Π,
A is a blunt access structure w.r.t. F if (∀F ∈ F : F ̸∈ A) and (∃A ∈ A : A ∩ F = ∅).

The following theorem shows that solving WR is sufficient to implement weighted cryptographic
protocols with blunt access structures by a reduction to their nominal counterparts.

Theorem 4.6. Given a set of parties, a protocol P implementing a cryptographic primitive with nominal
threshold access structure An(αn), for αn ≤ 1

2 , we obtain a protocol P ′ implementing a blunt access
structure w.r.t. adversarial structure Fw(fw), assuming fw < αn, by solving Weight Restriction with the
corresponding parameters αn and αw := fw. This is accomplished by instantiating P with n̂ = T virtual
users and allowing party i to control ti of them.4

Proof. By definition of WR, once it distributes T tickets, the number of tickets (and, hence, virtual users)
allocated to the corrupt parties will be less than αnT . Hence, no element of the adversary structure
shall appear in the resulting access structure. In addition, honest participants will receive more than
(1 − αn)T ≥ αnT (recall that αn ≤ 1

2 ) tickets (and, hence, virtual users), ensuring that there exists a
set consisting of only honest parties in the access structure.

4Recall that ti is the number of tickets assigned to party i and T is the total number of tickets assigned by the solution
to the weight reduction problem (in this case, to WR). See Section 4.2 for details.
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Note that all participants must agree on how many virtual users are assigned to each party, as nominal
protocols typically assume that the membership is common knowledge. To this end, it is sufficient for
all parties to run an agreed upon deterministic weight-restriction protocol (e.g., Swiper).

Among other things, this way, one can obtain weighted versions of secret sharing [123], distributed
random number generation [37], threshold signatures [24], threshold encryption [54], and threshold fully-
homomorphic encryption [85], all with blunt access structures. In the next section, we discuss how to do
it for other access structures.

4.4.3 Tight Secret Sharing and derivatives
Although a blunt access structure is sufficient for a large spectrum of applications, more restrictive access
structures are sometimes necessary as well. Here, we present a straightforward approach that involves
just one extra round of communication to transform a blunt access structure into a weighted threshold
access structure.5 This means that our construction can be readily utilized in any protocol that already
uses threshold cryptography without requiring significant redesign efforts.

Given a protocol P implementing a certain primitive of distributed cryptography (e.g., threshold
signatures [54]) with a blunt access structure, we can obtain a protocol P ′ implementing the same
protocol with a weighted threshold access structure Aw(β) as follows: whenever an honest party wants
to perform an action A (e.g., produce a threshold signature), instead it simply broadcasts a message
“voting” for the action to be performed, without actually revealing any secret data (e.g., its threshold
signature share). Then, when an honest party receives such votes from parties with a total weight more
than βW , it participates in the action A, according to the underlying protocol P (e.g., broadcasts its
threshold signature share). Thus, we can notice that:

1. Unless a threshold of parties (potentially including Byzantine) cast votes for A, no honest party
will participate in A in P. Thus, by Theorem 4.5, action A will not be performed;

2. If a threshold of parties cast votes for A, all honest parties will eventually participate in A according
to P, thus, by Theorem 4.5, the action will be performed.

4.4.4 Black-Box transformation
The same approach of allocating a number of virtual users according to the number of tickets as described
in Section 4.4.2 can be applied to arbitrary distributed protocols.

Given a nominal protocol P, the “virtual users” approach allows us to define a protocol P ′ that
operates in the weighted model by, essentially, emulating the nominal model, as long as we can solve
Weight Restriction with parameters αw := fw and αn := fn. If fw < fn, by Theorem 4.1, T =

∑
i∈[n] ti

will be at most O
(

n
fn−fw

)
. In P ′, each party i participates in P with ti virtual identities. Two

components of the transformation depend on the problem at hand (but not on the underlying protocol
P):

1. Mapping the input of i in P ′ to the inputs of its virtual identities in P;

2. Treatment of the outputs of i’s virtual identities in P to produce the outputs in P ′.

We illustrate the black-box transformation with two examples: Validated Byzantine Agreement [36]
and Single Secret Leader Election [26].

Consensus. For concreteness, let us consider the problem of Validated Byzantine Agreement
(VBA) [36]. However, one can easily verify that the same logic will apply to most, if not all, of the many
types of consensus and state machine replication, including both crash and Byzantine fault-tolerant ones.

Definition 4.7. A protocol solves validated Byzantine agreement with external validity predicate V if it
satisfies the following conditions:

Liveness: Each honest party outputs a value.
5In fact, this can be further generalized to arbitrary access structures.
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Agreement: No two honest parties can output different values.

External Validity: If an honest party outputs v, then V(v) holds.

Integrity: If all parties are honest, and if some party decides v, then v is the input of some party.

Efficiency: The communication complexity is probabilistically uniformly bounded.

Consider an arbitrary protocol P that solves the problem for some external validity predicate V. Let
P ′ be the protocol obtained from P by applying the transformation described above with the problem-
specific part defined as follows:

1. The input of all virtual identities of party i in P is the same as i’s input in P ′;

2. If ti ̸= 0, party i outputs the value output by its first virtual identity and sends it to all parties
j such that tj = 0. If ti = 0, it waits for messages from parties with total weight greater than fwW
vouching for the same output v and outputs v.

By construction and the definition of WR, assuming that at most a fraction fw of the total weight
is corrupted, at most a fraction fn of virtual identities will be corrupted and, hence, assuming P solves
VBA with nominal resilience fn, the simulated protocol will satisfy the properties of VBA. One can easily
verify that each of the five properties will be satisfied for P ′ as well. Notice, in particular, that efficiency
will still be satisfied as the total communication complexity will be increased by only a constant factor
(assuming fw and fn to be constants).

Single Secret Leader Election. SSLE [26] is a distributed protocol that has as an objective to
select one of the participants to be a leader with an additional constraint that only the elected party
knows the result of the election. Then, once the leader is ready to make a proposal, it reveals itself and
other participants can then correctly verify that the claiming leader was indeed elected by the protocol.

The original paper [26] contains nominal solutions for the protocol relying on ThFHE [27] and on
shuffling a list of commitments under the DDH assumption. The authors initially suggest that their
protocols could support weights by replicating each party to match their weights. This approach is
identical to the transformation described in this section with the exception that it does not include
weight reduction and, thus, exhibits overhead proportional to the total weight (which can be prohibitively
large, see Table 4.2). We can solve this issue by applying Weight Restriction at the cost of lowering the
resilience by an arbitrarily small constant ϵ (fw = fn − ϵ).

However, the original problem definition requires the election to be fair, that is, for the probability
of each party being elected to be uniform. It is easy to see that, as a result of applying weight reduction,
this property will not be maintained. Instead, we can relax it to an alternative property of chain-quality,
requiring that the fraction of blocks produced by corrupt parties should not surpass a constant fraction
α when the adversary might control a fraction of the weights up to fw. Our transformation then trivially
solves this problem for α := fn.

Properties such as fairness are one of the limitations of our transformations since any property that
is a function of the weight of the parties may not be preserved after the transformation is applied. We
discuss fairness in slightly more detail and speculate about possible fixes to this issue in Section 4.12.

4.5 Applications of Weight Qualification

4.5.1 Erasure-Coded Storage and Broadcast
Erasure-coded storage systems [38, 80, 116, 120, 141], also known under the names of Information Disper-
sal Algorithms (IDA) [120] and Asynchronous Verifiable Information Dispersal (AVID) [38], are crucial
to many systems for space and communication-efficient, secure, and fault-tolerant storage. Moreover, as
demonstrated in [38], they can yield highly communication-efficient solutions to the very important prob-
lem of asynchronous Byzantine Reliable Broadcast [29, 34], a fundamental building block in distributed
computing that, among other things, serves as the basis for many practical consensus [50, 57, 88, 111, 128],
distributed key generation [3, 53], and mempool [50] protocols.

The challenge of applying these protocols in the weighted setting is that (k,m) erasure coding, by
definition, converts the original data into m discrete fragments such that any k of them are sufficient
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to reconstruct the original information. Thus, each party will inevitably get to store an integer number
of these fragments, and the smaller m is, the more efficient the encoding and reconstruction will be.
Moreover, for the most commonly used codes–Reed Solomon–the original message must be of size at
least k logm bits. Hence, using a large m may lead to increased communication as the message may
have to be padded to reach this minimum size. As we illustrate in this section, determining the smallest
“safe” number of fragments to give to each party is exactly the Weight Qualification problem defined in
Section 4.2.

Let us consider the example of [38] as it is the first erasure-coded storage protocol tolerating Byzantine
faults. We believe Weight Qualification can be applied analogously to other similar works.

This protocol operates in a model where any t out of n parties can be malicious or faulty, where
t < n

3 . In other words, it has the nominal fault threshold of fn = 1
3 . The protocol encodes the data using

(t+1, n) erasure coding, and the data is considered to be reliably stored once at least 2t+1 parties claim
to have stored their respective fragments. The idea is that, even if t of them are faulty, the remaining
t+ 1 parties will be able to cooperate to recover the data.

In order to make a weighted version of this protocol, instead of waiting for confirmations from 2t+1
parties, one needs to wait for confirmations from a set of parties that together possess more than a
fraction 2fw of total weight, where fw = fn = 1

3 . A subset of weight less than fw of these parties may be
faulty. Hence, for the protocol to work, it is sufficient to guarantee that any subset of total weight more
than 2fw − fw = fw gets enough fragments to reconstruct the data. To this end, we can apply the WQ
problem with the threshold βw = fw. We can set βn to be an arbitrary number such that 0 < βn < βw.
Then, we can use (⌈βnT ⌉, T ) erasure coding, where T is the total number of tickets allocated by the WQ
solution. Hence, whenever a set of parties of weight more than 2fw claim to have stored their fragments,
we will be able to reconstruct the data with the help of the correct participants in this set. As for the
rest of the protocol, it can be converted to the weighted model simply by applying weighted voting, as
was discussed in Section 4.1.2.

As a result, we manage to obtain a weighted protocol for erasure-coded verifiable storage with the
same resilience as in the nominal protocol (fw = fn = 1

3 ). The “price” we pay is using erasure coding
with a smaller rate (βn instead of fw), i.e., storing data with a slightly increased level of redundancy.
However, note that βn can be set arbitrarily close to fw, at the cost of more total tickets and, hence,
more computation.

Example instantiations

The communication and storage complexity of these protocols depends linearly on the rate of the era-
sure code. Using Reed-Solomon with Berlekamp-Massey decoding algorithm, the decoding computation
complexity [70] is O(m2 · M

rm ) = O(mr ·M), where M is the size of the message (which we do not affect),
r is the rate of the code (in our case, r = βn), and m is the number of fragments (in our case, the
number of tickets allocated by the solution to the WQ problem). For the sake of illustration, let us fix
βn to be 1

4 . Then, the rate of the code used in the weighted solution will be 4
3 times smaller than in the

nominal solution. For the number of fragments m, let us substitute the upper bound from Theorem 4.3
(m ≤

⌈
βw(1−βw)
βw−βn

n
⌉
). For βw = 1

3 and βn = 1
4 , m ≤ 8

3n. Hence, the overall slow-down compared to the

nominal solution is 8
3 · 4

3 ≈ 3.56.
One can also consider using FFT-based decoding algorithms [87]. Since the complexity of the FFT-

based decoding depends only polylogarithmically on the number of fragments m, one can select the rate
of the code (r = βn) to be much closer to βw and, thus, minimize communication and storage overhead.

Some protocols [115] are designed for higher reconstruction thresholds, which allows them to be more
communication- and storage-efficient compared to [38]. For these cases, we will need to set βw := 2

3 . By
setting βn := 1

2 and applying the upper bound from Theorem 4.3, we will obtain the same reduction
of factor 4

3 in rate and 2 times fewer tickets: m ≤ 1/3·2/3
2/3−1/2n = 4

3 . The computational overhead will be
4
3 · 4

3 ≈ 1.78.

4.5.2 Error-Corrected Broadcast
The exciting work of [52] illustrated how one can avoid the need for complicated cryptographic proofs in
the construction of communication-efficient broadcast protocols by employing error-correcting codes, thus
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enabling a better communication complexity when a trusted setup is not available. The protocol of [52]
can be used for the construction of communication-efficient Asynchronous Distributed Key Generation [3,
53] protocols.

Similarly to erasure codes, error-correcting codes convert the data into m discrete fragments, such that
any k of them are sufficient to reconstruct the original information. However, they have the additional
property that the data can be reconstructed even when some of the fragments input to the decoding
procedure are invalid or corrupted. Reed-Solomon decoding allows correcting up to e errors when given
k + 2e fragments as input.

The protocol of [52] tolerates up to t failures in a system of n ≥ 3t+1 parties (for simplicity, we will
consider the case n = 3t+1). Its key contribution is the idea of online error correction. Put simply, the
protocol first ensures that:

• Every honest party obtains a cryptographic hash of the data to be reconstructed;

• Every honest party obtains its chunk of the data.

Then, in order to reconstruct a message, an honest party solicits fragments from all other parties and
repeatedly tries to reconstruct the original data using the Reed-Solomon decoding and verifies the hash
of the output of the decoder against the expected value. As the protocol uses k = t+1 and m = n, after
hearing from all 2t+ 1 honest and e ≤ t malicious parties, it will be possible to reconstruct the original
data (as 2t+ 1 + e ≥ k + 2e, for k = t+ 1).

To convert this protocol into the weighted model, it is sufficient to make sure that all honest parties
together possess enough fragments to correct all errors introduced by the corrupted parties. To this end,
we will apply the WQ problem. We will set βw to the fraction of weight owned by honest parties, i.e.,
βw := 1 − fw = 2

3 (where fw will be the resilience of the resulting weighted protocol, fw = fn = 1
3 ).

However, it is not immediately obvious how to set βn to allow the above-mentioned property.
If we want to use error-correcting codes with rate r, we need to guarantee that the fraction of

fragments received by the honest parties (which is at least βn) is at least r+ e, where e is the fraction of
fragments received by the corrupted parties. However, since honest parties get at least the fraction βn

of all fragments, then e ≤ 1 − βn. Hence, we need to set βn so that βn ≥ r + (1 − βn). We can simply
set βn := r

2 + 1
2 for arbitrary r < 1

3 .

Example instantiation

For the sake of an example, we can set βw := 2
3 , r := 1

4 and βn := 5
8 . Then, using the bound from

Theorem 4.3, the number of tickets will be at most 2/3·1/3
2/3−5/8 · n ≤ 16

3 n.
As was discussed above, for erasure codes, we can either use the Berlekamp-Massey decoding algo-

rithm or the FFT-based approaches. The same applies to error-correcting codes. As most practical
implementations use the former, we will focus on it. In this case, the communication overhead will be
rn
rw

, where rn = 1
3 is the rate used in the nominal protocol and rw is the rate used for the weighted

protocol (in the example above, r = 1
4 ). The computation overhead is rn

rw
· T
n , where T is the number of

tickets allocated by the WQ solution (in the example above, T ≤ 16
3 n in the worst case). Hence, for the

example parameters, the worst-case computational overhead is 4
3 · 16

3 ≈ 7.11.

4.6 Derived Applications
In this section, we discuss indirect applications of weight reduction problems that are obtained by using
one or multiple building blocks discussed in Sections 4.4 and 4.5. For all applications discussed here,
we manage to avoid losing resilience despite applying weight reduction. In all cases, the majority of the
protocol logic should be converted to the weighted model by applying weighted voting, as discussed in
Section 4.1.2.

4.6.1 Asynchronous State Machine Replication
For asynchronous state machine replication protocols [50, 57, 88, 111, 128], we simply need to use a
weighted communication-efficient broadcast protocol (discussed in Section 4.5) and weighted distributed

74



random number generation (discussed in Section 4.4.1). distributed number generation part can use
a nominal protocol with threshold αn = 1

2 and set αw := 1
3 , which is the resilience of the rest of the

protocol. Thus, in some sense, we level the resilience of different parts of the protocol, without affecting
the resilience of the composition.

4.6.2 Validated Asynchronous Byzantine Agreement
The same approach can be applied to generate randomness for Validated Asynchronous Byzantine Agree-
ment (VABA) [4, 36].

These protocols also require tight threshold signatures. However, in practice, multi-signatures [24,
117] are usually applied instead as they have almost no overhead over threshold signatures on the system
sizes where such protocols could be applied (below 1000 participants): it suffices to append the multi-
signature with an array of n bits, indicating the set of parties that produced the signature. Then,
along with the verification of the validity of the multi-signature itself, anyone can verify that the signers
together hold sufficient weight.

Alternatively, one could apply the approach described in Section 4.4.3 to implement tight weighted
threshold signatures. However, it would lead to an increase in message complexity of the resulting
protocol, which we want to avoid.

Finally, an ad-hoc weighted threshold signature scheme can be applied, such as the one recently
proposed in [51]. Note that these signatures cannot be used for distributed randomness generation as
they lack the necessary uniqueness property, and thus we still need to apply Swiper to obtain a complete
protocol.

4.6.3 Consensus with Checkpoints
We can apply the same approach for checkpointing proof-of-stake consensus protocols [18], but this time
for blunt threshold signatures (as discussed in Section 4.4.2) instead of random number generation. If,
for some reason, one wants to use a tight threshold signature, the approach described in Section 4.4.3
can be applied at the cost of just 1 additional message delay per checkpoint.

Compared to ad-hoc solutions for weighted threshold signatures [51], we claim that our approach is
more computationally efficient as it is basically as fast as the underlying nominal protocol. For example,
2 pairings to verify a BLS signature [24] compared to 13 pairings to verify a signature in [51]. Moreover,
the weight reduction approach is more general and can support other types of threshold signatures, such
as RSA [124] and Schnorr [129], the latter being particularly important in the context of checkpointing
to Bitcoin [18].

4.7 Analyzing Weight Restriction on sample systems
Data sets. We analyzed our protocol using four real-world data sets for weight distribution: Aptos [14,
15], Tezos [64, 75], Filecoin [62, 95], and Algorand [11, 110]. For the reader’s convenience, we provide
the results for all the datasets in a separate section 4.10 and present the results for only one blockchain
(Tezos) in Figure 1 as an example.

Experiment description. We performed two kinds of experiments on real blockchain data. In the first
experiment, shown in the left column of Figure 1, we analyzed the influence of the choice of parameters
αw and αn for the original data retrieved from the blockchains; the value of αn was varied in the range
[0.1, 1], while the value of αw was tested in the range [0.1×αn, 0.9×αn]. In the experiments showcased
in the right column of Figure 1, we kept these parameters fixed and analyzed the influence of the number
of parties in the metrics we tracked. In order to simulate having the same blockchain with different
numbers of parties, we used the statistical technique known as bootstrapping. To this end, we performed
100 experiments sampling parties with replacement from the blockchain data and taking the average of
the results.

In each experiment, we tracked the total number of tickets distributed, the maximum number of
tickets held by a single party, and the number of parties that get at least one ticket (in the figures,
we label them as the number of holders). In Figure 1, we show the results for the Tezos blockchain.
The results for Algorand, Aptos, and Filecoin are available in Section 4.10. The analysis of the results
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Figure 1: Experiment results using Tezos (100 samples per data point)
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reveals the following information: the upper bound given in Section 4.2 is very pessimistic for weight
distributions emerging in practice, with the total number of tickets rarely surpassing the number of
parties for different values of αn and αw. The total number of tickets varies extremely close to a linear
function on the number of parties, as well as the number of holders. The maximum number of tickets,
on the other hand, seems to saturate when the number of parties in absolute terms surpasses the order
of magnitude of 1000, remaining almost constant after that point.

4.8 Proofs
In this section, we provide formal proofs for Theorems 4.1, 4.3 and 4.4.

4.8.1 Upper bounds on Weight Restriction and Weight Separation
Let us start with some auxiliary definitions. A ticket assignment t is a vector of n numbers: t1, . . . , tn ∈
Z≥0. With a slight abuse of notation, for a ticket assignment t and a set S ⊆ [n], we use notation t(S) to
denote

∑
i∈S ti. Let us say that a ticket assignment t is viable if t([n]) ̸= 0 and ∀S ⊆ [n] : if w(S) < αwW ,

then t(S) < αnt([n]), that is if it satisfies the requirements of the Weight Restriction problem as defined
in Section 4.2.

In this section, we formally prove Theorem 4.1 by constructing a viable ticket assignment t̂ such that
t̂([n]) ≤

⌈
αw(1−αw)
αn−αw

n
⌉
. As the starting point, we consider a family of ticket assignments parameterized

by a single number s > 0:

(ts)i := ⌊wis+ αw⌋.

Let s∗ be a locally minimal viable value for s, i.e., a positive number such that ts∗ is viable, but
ts∗−ε is not, for any sufficiently small ε. Since we already proved that viable values of s exist, it is
easy to see that such s∗ exists. Moreover, there must be some j such that s∗wj + αw is an integer.
Indeed, if this does not hold, we would be able to slightly decrease s∗ without changing the ticket
assignment, which would contradict the assumption that s∗ is a local minimum. Let t∗ := ts∗ and
J := {j ∈ [n] | s∗wi + αw is an integer}. Let t′ be a ticket assignment in which we take one ticket from
each party in J , i.e.:

t′i :=

{
t∗i − 1 if i ∈ J

t∗i otherwise

Notice that t′ is equal to ts∗−ε for a sufficiently small ε > 0.6 Hence, by construction, t′ is not viable.
Now, let us consider a set of “intermediate” ticket assignments: we will be taking tickets from parties in
J as long as the ticket assignment stays viable. We will end up with two ticket assignments: t̂ and ˆ̂t such
that t̂ is viable and ˆ̂t is not, and t̂([n]) = ˆ̂t([n]) + 1. All that is left is to prove that t̂([n]) ≤

⌈
αw(1−αw)
αn−αw

n
⌉

or, equivalently, that ˆ̂t([n]) ≤
⌈
αw(1−αw)
αn−αw

n
⌉
− 1.

Since ˆ̂t is not viable, either ˆ̂t([n]) = 0 or there must exist a set S ⊆ [n] such that w(S) < αwW and
ˆ̂t(S) ≥ αn

ˆ̂t([n]). As the former case is trivial, we will focus on the latter. Let us provide an upper bound
on ˆ̂t(S) and a lower bound on ˆ̂t(S), where S := [n] \ S. To this end, let us note that, for any i ∈ [n], it
holds that ˆ̂ti ≥ wis

∗ + αw − 1. Indeed, there are two cases to consider:

1. if ˆ̂ti = t∗i , the inequality holds trivially as ˆ̂ti = t∗i = ⌊wis
∗ + αw⌋;

2. otherwise, ˆ̂ti = t∗i − 1. However, by construction, it means that wis
∗ + αw is an integer and, thus

t∗i = wis
∗ + αw and ˆ̂ti = wis

∗ + αw − 1.
6Indeed, if we decrease s∗ by any positive amount, each party in J will lose at least one ticket as they will step over

the rounding threshold. However, it is also easy to see that ε can be made small enough so that no other party will lose a
ticket and no party in J will lose more than one ticket.
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Hence:

ˆ̂t(S) =
∑
i∈S

ˆ̂ti

≤
∑
i∈S

t∗i =
∑
i∈S

⌊wis
∗ + αw⌋

< αwWs∗ + αw|S|
ˆ̂t(S) =

∑
i ̸∈S

ˆ̂ti

≥
∑
i ̸∈S

(wis
∗ + αw − 1)

> (1− αw)Ws∗ − (1− αw)(n− |S|)

By construction, ˆ̂t(S) ≥ αn
ˆ̂t([n]) and ˆ̂t([n]) = ˆ̂t(S) + ˆ̂t(S). Hence, (1− αn)ˆ̂t(S) ≥ αn

ˆ̂t(S). From this,
we can derive an upper bound on s∗:

(1− αn)ˆ̂t(S) ≥ αn
ˆ̂t(S) ⇒

⇒ (1− αn)(αwWs∗ + αw|S|)
> αn((1− αw)Ws∗ − (1− αw)(n− |S|))

⇒ s∗ <
αn(1− αw)n

(αn − αw)W
− |S|

W

Finally, we can combine everything into an upper bound on ˆ̂t([n]):

ˆ̂t([n]) ≤
ˆ̂t(S)

αn

<
αw

αn
(Ws∗ + |S|)

<
αw

αn

(
αn(1− αw)n

αn − αw
− |S|+ |S|

)
=

αw(1− αw)

αn − αw
n

Since ˆ̂t([n]) is an integer and the inequality is strict, we can rewrite it as ˆ̂t([n]) ≤
⌈
αw(1−αw)
αn−αw

n
⌉
− 1.

As, by construction, t̂ is viable and t̂([n]) = ˆ̂t([n]) + 1, we found a viable ticket assignment with at most⌈
αw(1−αw)
αn−αw

n
⌉

tickets, thus concluding the proof of Theorems 4.1 and 4.3. □

4.8.2 Upper bound on Weight Separation
Let γ := α+β

2 . For Weight Separation, we analyze a family of ticket assignments of form ts,i := ⌊wis+γ⌋.
Let us consider the case when the WS conditions are violated, i.e., there exist sets S1 and S2 such that
w(S1) < αW , w(S2) > βW , and t(S1) ≥ t(S2). This means that at least one of two events happened:
t(S1) ≥ γT or t(S2) < γT , or, equivalently, t(S2) > (1− γ)T .

Let us first consider the case when t(S1) ≥ γT . This can only happen when s < γ(1−γ)n
(γ−α)W . The proof
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is done using the same set of techniques as in Section 4.8.1:

t(S1) =
∑
i∈S1

ti =
∑
i∈S1

⌊wis+ γ⌋

≤
∑
i∈S1

(wis+ γ)

< αWs+ γ|S1|

t(S1) =
∑
i̸∈S1

⌊wis+ γ⌋

≥
∑
i̸∈S1

(wis+ γ − 1)

> βWs− (1− γ)(n− |S1|)

t(S1) ≥ γT

⇔ (1− γ)t(S1) ≥ γt(S1)

⇒ (1− γ)(αWs+ γ|S1|) > γ(βWs− (1− γ)(n− |S1|))

⇒ s <
γ(1− γ)n

(γ − α)W

Analogously, in the case when t(S2) > (1− γ)T , we can prove (by substitution of (1− γ) in place of
γ and (1− β) in place of α) that:

s <
(1− γ)(1− (1− γ))n

((1− γ)− (1− β))W
=

γ(1− γ)n

(β − γ)W

We specifically chose γ = α+β
2 so that the two bounds coincide: s < 2γ(1−γ)n

(β−α)W . Hence, it is sufficient to

select s := γ(2−α−β)n
(β−α)W to guarantee that neither of the two events happens and t(S1) < γT ≤ t(S2).

Let us now compute a bound on the total number of tickets:

T ≤ sW + γn =
(α+ β)(1− α)

β − α
n

□

4.9 Exact solution using MIP
The way we formulate WR in section 4.2.1 can be directly translated into an instance of bi-level opti-
mization problem [49]. In such problems, we define an upper level optimization problem which contains
another (lower-level) optimization problem in its constraints, namely:

minimize
n∑

i=1

ti

subject to
n∑

i=1

xiti < αn

n∑
i=1

ti

maximize
n∑

i=1

xiti

subject to
n∑

i=1

wixi < αw

n∑
i=1

wi

n∑
i=1

ti ≥ 1

xi ∈ {0, 1}, ti ∈ {0, 1, 2, . . . }
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Noticing that the inner optimization problem is the Knapsack problem, we can hard-code a dynamic
programming by profits solution to the Knapsack problem into the constraints. Unfortunately, the
resulting MIP has a lot, albeit a polynomial number, of constraints and, thus, is prohibitively slow for
inputs of size larger than a couple of dozens.

4.10 Experiment Results
Figures 3 to 5 demonstrate the results of the experiments on the data from the stake distribution of 4
major blockchain systems: Aptos [14, 15], Tezos [64, 75], Filecoin [62, 95], and Algorand [11, 110]. The
analysis of the experimental results is presented in Section 4.7.

4.11 Related Work
Knapsack. The Knapsack problem and its variations hold huge importance in theoretical computer
science and have numerous applications in both theory and practice. The weight reduction problems
studied in this chapter seem to be related to, or can even be seen as a variation of the famous Knapsack
problem. For example, one can see Weight Restriction as the problem of constructing “worst possible”
profits for a Knapsack instance given the weights and the capacity. We refer to [89] for a comprehensive
survey on the topic.

Virtual users. The simplest solution for creating a weighted threshold cryptographic system is to
simply have a user of weight w become w virtual users and to give one key to each of them. Shamir’s
paper describing his secret sharing scheme [123] puts forward this solution. However, in practice, the total
weight tends to be prohibitively large, and “quantizing” it requires solving weight reduction problems,
which is the main subject of this chapter.

Weighted voting. In [72], Gifford presents the idea of weighted voting for distributed storage systems.
The paper suggests assigning weights to replicas according to the estimated failure probabilities and using
weight-based quorums to store and retrieve data. We discuss the merits and limitations of this approach
in Section 4.1.2. The goal of this chapter is to complement the weighted voting approach and design a
framework for implementing weighted distributed protocols that can benefit from solutions and primitives
that are initially designed for the nominal model. In Sections 4.4 to 4.6, we discuss in detail how to
combine weighted voting and weight reduction to obtain extremely efficient weighted protocols without
sacrificing resilience.

Ad-hoc solutions. There is a large body of work studying ad-hoc weighted cryptographic proto-
cols [21, 23, 45, 51, 69, 84]. Compared to these works, the weight reduction approach studied in this
chapter has a number of benefits, such as simplicity, efficiency, wider applicability, and a wider range of
possible cryptographic assumptions. Moreover, in many cases, ad-hoc solutions can be combined with
and benefit from weight reduction. In this chapter, we also study other, non-cryptographic, applications,
such as erasure and error-corrected distributed storage and broadcast protocols.

Similar work by Benhamouda, Halevi, and Stambler. A recent work [23] mentioned a similar
idea of reducing real weights to integers to construct ramp secret sharing. This project has been started
and the first version of Swiper has been drafted before the online publication and without any knowledge
of [23]. As the main focus of [23] is different, we believe that we do a much more in-depth exploration
of this direction by studying different kinds of weight reduction problems and their applications beyond
secret sharing, as well as providing much tighter bounds and implementing a solver that is not only
linear in the worst case but also allocates very few tickets in empirical evaluations on real-world weight
distributions.

Application in Aptos blockchain. Weight reduction has been recently used in the Aptos blockchain
in their implementation of on-chain randomness [140].
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Figure 2: Experiment results using Aptos (100 samples per data point)
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Figure 3: Experiment results using Tezos (100 samples per data point)
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Figure 5: Experiment results using Algorand (100 samples per data point)
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4.12 Concluding Remarks
In this chapter, we have presented a family of optimization problems called weight reduction that, to
the best of our knowledge, has not been studied before. We provided practical protocols to find good,
albeit not optimal, solutions to these problems. As we have shown, it allows us to obtain efficient
implementations of many weighted distributed protocols.

We believe that weight reduction problems will play an important role in the future of blockchain
systems as they become more sophisticated and the need for threshold cryptography as well as era-
sure coding and protocols like single secret leader election grows. At the time of writing, at least one
major layer-1 blockchain has already integrated a version of Weight Separation for generating on-chain
randomness.

We attempted the first systematic study of this family of problems, but there are still many important
questions being left for future research.

Fairness. Weight reduction naturally leads to slight deviations in the relative weights of the partici-
pants. While in this chapter we focused on safety and liveness properties and showed that they can still
be preserved, we did not consider any kind of fairness properties. However, we believe that, somewhat
counterintuitively, some form of fairness can be preserved as well. To this end, we are considering two
possible directions:

1. Expected fairness: In addition to deterministically assigned tickets, we can allocate some small
number of tickets randomly so that each party gets exactly the same fraction of tickets as its fraction
of weight in expectation. We believe that it can be done while still preserving safety and liveness
deterministically, i.e., even in the worst case, when all the “random” tickets are received by the adversary.

2. Integral fairness: Similarly, one can imagine a deterministic protocol that provides fairness over
time. In such a scheme, the ticket assignment will be updated periodically and each party will get exactly
the right number of tickets on average, over a large enough period.

Incentives. One important aspect of proof-of-stake blockchains is the distribution of incentives, which
should depend on the weight of each party. It is not immediately clear what is the right way to allocate
incentives in a system where weight reduction is being applied.

Other applications. While we covered a wide range of applications, we believe that there must be
others, including ones not related to distributed computing or applied cryptography.

Adversarial attacks. In this chapter, we study the “worst case” weight distributions by providing
the upper bounds and the “organic case” by studying the real-world weight distributions. However, in
practice, under an adversarial attack, the weight distribution will be a hybrid one: the weights of honest
parties will be organic, but the weights of the adversarial parties may be redistributed maliciously. It is
an interesting avenue for future work to study how much an adversary can affect the number of tickets
(and, thus, the performance of the system) by redistributing their weight in a malicious manner.

Complexity and more precise bounds. Finally, there are still many theoretical questions about
these problems. Do they have polynomial-time exact solutions? What are the lower bounds? Can we
derive better upper bounds? Moreover, what are some other interesting and useful weight reduction
problems, apart from the three defined in this chapter?
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Chapter 5

Conclusion

In this dissertation, we discussed three major issues in the design of blockchain systems:

1. How to avoid unnecessary synchronization;

2. How to make consensus fast yet scalable;

3. How to make the protocols work with weighted participation.

At the end of each of the three technical chapters, in Sections 2.14, 3.9 and 4.12, we list open questions
and potential directions for future research related to each of the three problems. Chapter 4 provokes
the most open questions of the three as it establishes several optimization problems that, to the best of
our knowledge, have not been systematically studied before, and demonstrates their applications to a
large variety of problems in distributed computing and applied cryptography.

Furthermore, there are numerous other technological challenges that need to be addressed for
blockchains to flourish and benefit the society in meaningful ways. The author of this dissertation
continues to actively explore these challenges, working, among other things, on increasing throughput,
scaling consensus protocols to more participants for greater decentralization, and enriching the funda-
mental capabilities of blockchains with cryptographic tools. Other interesting directions include the
game-theoretic and socioeconomic side of blockchains, reliable and efficient storage, execution layer,
sharding and other scaling solutions, multilayered system architecture (e.g., rollups and state channels),
interoperability, and more.

Finally, in the development of technologies that create new capabilities, it is essential to take the
responsible approach and invest effort in exploring ways to mitigate negative use-cases and promote the
applications beneficial to the society as well as ensuring fair access to the technology and educating
people to be able to use said technology safely. Among other things, with blockchains, we face the
age-old questions of balancing privacy and personal freedoms with accountability and safety. However,
this time, the problem is especially hard as public blockchains, by design, operate globally and, thus,
require global cooperation to govern and oversee.
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Titre : Le calcul distribué pour la blockchain et plus encore
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la machine d’état, Systèmes asynchrones

Résumé : Dans cette thèse, nous abordons trois défis ma-
jeurs dans la conception des systèmes de blockchain en
particulier et des systèmes distribués tolérants aux pannes
à grande échelle en général. Ce travail vise à améliorer
directement la performance de tels systèmes, ainsi qu’à
fournir des outils utiles pour le développement futur d’algo-
rithmes distribués.
Premièrement, nous explorons les limites de ce qui peut
être réalisé avec une synchronisation minimale en conce-
vant CryptoConcurrency—un système de transfert d’actifs
qui, au lieu d’ordonner totalement toutes les requêtes des
utilisateurs, traite les requêtes concurrentes en parallèle au-
tant que possible. Contrairement à d’autres systèmes simi-
laires, dans CryptoConcurrency, nous permettons aux uti-
lisateurs d’avoir des comptes partagés et ne faisons pas
l’hypothèse irréaliste qu’un compte d’utilisateur honnête
n’est jamais accédé simultanément depuis deux dispo-
sitifs. CryptoConcurrency explore de nouveaux terrains
théoriques en abordant les conflits de transactions de
manière dynamique et non par paires, permettant aux pro-
priétaires de chaque compte de choisir indépendamment
leur mécanisme préféré de résolution de conflits.
Ensuite, nous améliorons la performance du consensus—le

problème de synchronisation au cœur de la plupart des
systèmes distribués pratiques. Nous construisons le pre-
mier protocole de consensus qui parvient à combiner deux
propriétés souhaitables : une terminaison extrêmement ra-
pide dans des conditions favorables et une récupération
gracieuse lorsque ces conditions ne sont pas remplies. La
conception implique un nouveau type de preuves cryptogra-
phiques, avec une implémentation pratique et efficace.
Enfin, nous nous attaquons au problème de la concep-
tion de protocoles distribués efficaces avec une participa-
tion pondérée. À cette fin, nous définissons plusieurs nou-
veaux problèmes d’optimisation, liés à la réduction ou, en
d’autres termes, à la quantification des poids des partici-
pants d’une manière qui préserve d’importantes propriétés
structurelles. Nous montrons comment les appliquer pour
créer des variantes pondérées d’un large éventail de pro-
tocoles distribués avec très peu de surcharge par rap-
port à leurs homologues dans le modèle non pondéré plus
simple. Pour ces problèmes d’optimisation, nous prouvons
des bornes supérieures, fournissons un solveur pratique
open-source approximatif qui satisfait ces bornes, et effec-
tuons une étude empirique sur les distributions de poids
provenant de systèmes de blockchain réels.

Title : Distributed computing for blockchains and beyond

Keywords : Distributed systems, Byzantine fault tolerance, Blockchain, Consensus, State Machine Replica-
tion, Asynchronous Systems

Abstract : In this dissertation, we address three major
challenges in the design of blockchain systems in particu-
lar and large-scale fault-tolerant distributed systems in ge-
neral. This work aims at improving the performance of such
systems directly, as well as providing useful tools for future
development of distributed algorithms.
First, we explore the limits of what can be done with mi-
nimal synchronization by designing CryptoConcurrency—
an asset transfer system that, instead of totally ordering
all users’ requests, processes concurrent requests in pa-
rallel as much as possible. Unlike other similar systems, in
CryptoConcurrency, we allow the users to have shared ac-
counts and do not make the unrealistic assumption that an
honest user’s account is never accessed from two devices
concurrently. CryptoConcurrency explores novel theoretical
grounds by addressing transaction conflicts in a dynamic
and non-pairwise manner, allowing the owners of each ac-
count to independently choose their preferred mechanism
for conflict resolution.
Then, we improve the performance of consensus—the syn-

chronization problem at the heart of most practical distri-
buted systems. We build the first consensus protocol that
manages to combine two desirable properties: extremely
fast termination in favorable conditions and graceful reco-
very when such conditions are not met. The design involves
a novel type of cryptographic proofs, with an efficient practi-
cal implementation.
Finally, we set out to tackle the problem of designing ef-
ficient distributed protocols with weighted participation. To
this end, we define several new optimization problems, re-
lated to reducing or, in other words, quantizing the weights
of the participants in a way that preserves important struc-
tural properties. We show how to apply them to make
weighted-model variants of a large class of distributed pro-
tocols with very little overhead compared to their counter-
parts in the simpler non-weighted model. For these optimi-
zation problems, we prove upper bounds, provide a practical
open-source approximate solver that satisfies these upper
bounds, and perform an empirical study on the weight dis-
tributions from real-world blockchain systems.
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