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Abstract 

In the face of global change, understanding the mechanisms underlying species 

distributions and coexistence is both a priority and a challenge, especially for biodiversity 

hotspots such as the Neotropics. This research work focuses on the emblematic case of 

Müllerian mimicry in two tribes of Neotropical butterflies, the Ithomiini (Nymphalidae: 

Danainae) and Heliconiini (Nymphalidae: Heliconiinae), in which multiple species share a 

similar wing pattern, thereby forming mimicry rings. This evolution is driven by selective 

pressures from predators, which learn to avoid toxic prey more quickly when they encounter 

more frequently individuals with similar warning signals. My PhD thesis aims to unravel effects 

of mimicry on large-scale spatial and evolutionary patterns of biodiversity, employing an 

integrative approach across biogeography, phylogenomics, and community ecology. 

In Chapter 1, I employ species distribution models in order to map the taxonomic, 

phylogenetic and mimetic facets of Ithomiini biodiversity. I identify areas of evolutionary and 

ecological importance for conservation, and evaluate their overlap with current anthropogenic 

threats. I show that tropical montane forests that host high species and mimetic diversity as well 

as rare species and mimicry rings appear particularly under threat. These results support the 

role of ithomiine butterflies as a suitable flagship indicator group for Neotropical butterfly 

diversity, and reinforce the position of the tropical Andes as a flagship region for butterfly 

biodiversity conservation. 

In Chapter 2, I present a new phylogenetic hypothesis for the Ithomiini tribe, building 

upon phylogenomic methods to resolve and support deep evolutionary relationships in the 

group. This phylogeny reinforces the monophyly of the core-group, a clade associated with a 

recent adaptive radiation linked to multiple colonizations of new areas following the demise of 

the Pebas aquatic system in Western Amazonia. It comforts the basal position of the Melinaeina 

subtribe and suggests the Mechanitina subtribe as the sister-group of the core-group. Altogether, 

this new phylogeny provides a stable tool for macroevolutionary analyses in ithomiine 

butterflies. 

In Chapter 3, I describe a new method to quantify similarity in wing patterns in the 

context of mimicry. I build an interactive website to carry out a Citizen Science collection of 

the perception of wing pattern similarity, and adapt the t-STE machine learning algorithm to 

generate 3D perceptual maps of the variation of heliconiine butterfly wing patterns at the 

continental scale. I map the local phenotypic diversity as the degree of clustering in the 



perceptual space, and use Gaussian mixture models to cluster wing patterns in mimicry rings 

reflecting mutualistic interactions. Altogether, the perceptual map approach offers a new tool 

to investigate and quantify similarity in ecological signals in general. 

In Chapter 4, I link all previously explored geographic, evolutionary, and phenotypic 

dimensions of biodiversity, to study the effects of mutualistic interactions on large-scale spatial 

distributions and niche evolution of ithomiine butterflies. I use phylogenetic comparative 

methods to test for spatial congruence and climatic niche convergence among comimetic 

species. I show that mimicry drives large scale spatial association among phenotypically similar 

species, providing new empirical evidence for the validity of Müller’s model at a 

macroecological scale. Additionally, I show that mimetic interactions drive the evolutionary 

convergence of species climatic niche, thereby strengthening the co-occurrence of co-mimetic 

species. 

Overall, my research work provides new insights into the importance of mutualistic 

interactions in shaping both niche evolution and species assemblages at large spatial scales. 

Critically, in the context of global change, it highlights the vulnerability to extinction cascades 

of mimetic communities tied by positive interactions. 



Résumé 

Face au changement global, la compréhension des mécanismes qui sous-tendent la 

distribution et la coexistence des espèces est essentielle, en particulier dans les points chauds 

de biodiversité. Ce travail de recherche se concentre sur le cas du mimétisme Müllérien dans 

deux tribus de papillons néotropicaux, les Ithomiini (Nymphalidae: Danainae) et les Heliconiini 

(Nymphalidae: Heliconiinae), au sein desquelles plusieurs espèces partagent un motif alaire, 

formant ainsi des cercles mimétiques. Ma thèse vise à étudier les effets du mimétisme sur les 

motifs spatiaux et évolutifs de la biodiversité à grande échelle, en utilisant une approche 

intégrative mêlant biogéographie, phylogénomique et écologie des communautés. 

Dans le Chapitre 1, j'utilise des modèles de distribution d'espèces afin de cartographier 

la diversité taxonomique, phylogénétique et mimétique des Ithomiini. Je montre que les forêts 

tropicales de montagne qui abritent la plus grande diversité d'espèces et de motifs mimétiques, 

ainsi que la plupart des espèces et motifs rares, sont particulièrement menacées. Ces résultats 

confirment le rôle des papillons ithomiines en tant que groupe indicateur pour la diversité des 

papillons néotropicaux, et renforcent la position des Andes tropicales en tant que région cruciale 

pour la conservation de la biodiversité. 

Dans le Chapitre 2, je présente une nouvelle phylogénie pour la tribu des Ithomiini 

s'appuyant sur des méthodes phylogénomiques pour résoudre des relations évolutives profondes 

au sein du groupe. Cette phylogénie renforce la monophylie du ‘core-groupe’, un clade associé 

à une radiation adaptative récente concomitante au retrait du système aquatique du Pebas en 

Amazonie occidentale. Elle conforte la position basale de la sous-tribu Melinaeina et suggère 

la sous-tribu Mechanitina comme groupe frère du ‘core-group’. Dans l'ensemble, cette nouvelle 

phylogénie fournit un outil stable pour les analyses macroévolutives chez les papillons 

ithomiines. 

Dans le Chapitre 3, je décris une nouvelle méthode pour quantifier la similarité des 

motifs alaires dans le contexte du mimétisme. J’utilise des données de perception collectées 

dans le cadre d’un projet de Sciences Participatives et j'adapte l'algorithme d'apprentissage 

automatique t-STE pour générer des cartes perceptuelles en 3D de la variation des motifs alaires 

des papillons heliconiines à l'échelle continentale. Je cartographie la diversité phénotypique 

locale tel le degré de regroupement dans l'espace perceptuel, et j'utilise des modèles de mélange 

gaussien pour regrouper les motifs alaires dans des cercles mimétiques reflétant les interactions 



mutualistes. Dans l'ensemble, l'approche de la carte perceptuelle offre un nouvel outil versatile 

pour étudier et quantifier la similarité des signaux écologiques. 

Dans le Chapitre 4, je lie toutes les dimensions géographiques, évolutives et 

phénotypiques de la biodiversité précédemment explorées, afin d'étudier les effets des 

interactions mutualistes sur les distributions spatiales et l'évolution des niches des papillons 

ithomiines. J'utilise des méthodes comparatives phylogénétiques pour tester la congruence 

spatiale et la convergence des niches climatiques entre les espèces co-mimétiques. Je montre 

que le mimétisme entraîne une association spatiale à grande échelle entre des espèces 

phénotypiquement similaires, fournissant ainsi une nouvelle preuve empirique de la validité du 

modèle de Müller à une échelle macroécologique. En outre, je montre que les interactions 

mimétiques mènent à la convergence évolutive de la niche climatique des espèces, renforçant 

ainsi la co-occurrence d'espèces co-mimétiques. 

Dans l'ensemble, mon travail de recherche met en lumière l'importance des interactions 

mutualistes dans l'évolution des niches et des assemblages d'espèces à large échelle spatiale. 

Dans le contexte du changement global, il souligne la vulnérabilité aux cascades d'extinction 

des communautés mimétiques liées par des interactions positives. 
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1 On the study of biodiversity 

Biodiversity is the variety of living organisms on Earth represented by nearly 2 million 

documented species to-date (Costello et al. 2022), each with a specific combination of 

morphological, physiological, behavioral and ecological traits. One of the major objectives of 

natural sciences is the inventory, description, quantification and mapping of this biodiversity, 

as well as the understanding of the mechanisms generating and shaping it. This pursuit of 

knowledge about the natural world surrounding us is worthy per se. In the face of the ongoing 

biodiversity crisis, it become crucial. A large portion of current studies are now dedicated to 

monitor and alert on the global decline of biodiversity, and unravel its causes to promote 

conservation of ecosystems, species, and evolutionary trajectories, ideally before they disappear 

due to anthropogenic threats (Barnosky et al. 2011; IPBES 2019a).  

The study of biodiversity has a long and complex history that can be traced back to the 

work of Aristotle (4th century BC), far before the idea of biodiversity itself emerged as a 

significant concept in the scientific community during the 20th century (Díaz & Malhi 2022). 

Aristotle laid the foundations for the systematic study of biodiversity. In his work Historia 

Animalium, he provided detailed observations of the anatomy, habitat and behavior of living 

organisms and proposed a classification into different groups based on their shared 

characteristics (Fürst von Lieven & Alexander Humar 2008). He established the concept of 

taxonomic hierarchy through its core ideas of eidos, the form of natural beings, and the genos, 

the class of forms reflecting Earth’s natural order (Wilson 2010). 

Following this seminal antique work, a long line of naturalists and taxonomists have 

come to complement this endless task of the description of biodiversity, typically embellishing 

their work with naturalistic illustrations reflecting the complexity of life. Among the most 

significant to my personal aesthetic taste comes the work of Ernst Haeckel (1834-1919), a 

German biologist who, besides proposing some of the most influential early models for the 

‘Tree of Life’, and a definitely less inspiring racial theory of human evolution, created a hundred 

of scientific and artistic prints of biological organisms organized in systematic groups and 

summarized in his Kunstformen der Natur (Fig. 1). His illustrations fulfilled educative, artistic, 

and scientific goals at the same time. They displayed organisms poorly known outside of the 

scientific community, providing a more complete depiction of the diversity of Life than 

commonly thought. They harbored vivid colors and were arranged in visually stunning 

composition for maximum aesthetic impacts. Finally, they also accounted for the diversity of 
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traits and functions, and highlighted the morphological symmetries found in different levels of 

organization, illustrating the strength of comparative qualitative descriptions to carry meanings 

to describe biodiversity. 

 

Figure 1: Lithographic prints from Kunstformen der Natur by Ernst Haeckel illustrating 

the beauty and diversity of the natural world. From left to right: N°43, Nudibranchia ; N°85, 
Ascidiaceae ; N°8, Discomedusae. 

Nowadays, the work of taxonomists still revolves around the description of 

morphological and ecological characters, their informative visual representation with scientific 

sketches, and the production of a diagnosis to describe species. However, the taxonomist toolkit 

has grown exponentially with the addition of diverse data sources and associated analytic 

methods such as phylogeography, comparative geometric morphometrics, population genetics, 

and phylogenetic reconstruction, used to design hypotheses for the delimitations of species in 

an integrative framework (Dayrat 2005). Most of these approaches illustrate the shift from a 

qualitative perspective to describing phenotypic species traits to integrated quantitative 

approaches based on numerical quantifications. The same evolution affects the work of the 

modern ecologists and evolutionary biologists who rely now heavily on statistics, programming 

and computational methods to design their analyses and carry out their daily work (Legendre 

& Legendre 2012; Revell & Harmon 2022). This ‘quiet revolution’ (Bisby 2000) supported by 

the emergence of powerful computer architectures and algorithms, and massive online 

biodiversity-related information systems has led to the characterization of an entire ‘new’ field 

of study: ‘Biodiversity informatics’. (On a personal note, I realize writing those lines that, 

despite not having received any education in informatics, this is probably my scientific field of 
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research, while I have always considered myself a bit of a quantitative ecologist, a (macro-) 

evolutionary biologist, and a biogeographer, and not entirely any of them at the same time)     

Biodiversity informatics thrives in the age of Big Data, a term describing the massive 

increase in the volume of (biodiversity) data available, from all sort of sources (geographic, 

genetic, phenotypic, demographic, phylogenetic, etc.), generated at an increasing rate. 

Accompanying this transformation of the scientific landscape, we have witnessed the 

emergence of numerous online open databases, sometimes coupled with Citizen Science 

projects, aiming to collect, aggregate, organize, harmonize, curate and share publicly this 

heterogeneous and chaotic amount of data, with forefront examples being the Global 

Biodiversity Information Facility (GBIF; https://www.gbif.org) for occurrence data and the 

Gene Bank of the National Center for Biotechnology Information (NCBI; 

https://www.ncbi.nlm.nih.gov/genbank/) for molecular data. This speed up of the acquisition 

and sharing of data has surely accelerated the exploration of biodiversity, but it has also caused 

a new issue with the rate of data accumulation overwhelming our ability to carry out analyses 

and produce sense out of raw information (Johnston et al. 2023). More recent developments in 

data analyses are now lurking toward Data Science to find efficient solutions to handle this 

massive amount of data, with machine learning algorithms emerging as a potential solution 

(Wüest et al. 2020; Lürig et al. 2021). 

My research work builds upon this global revolution of Biodiversity Informatics and 

Big Data in Science to explore three important dimensions of biodiversity patterns (Fig. 1). In 

Chapter 1, I investigate patterns of biodiversity in space applying species distribution models 

in a biogeographic framework to produce large-scale maps of several biodiversity facets. In 

Chapter 2, I explore patterns of diversity in time using state-of-the-art phylogenomics 

approaches to unravel deep evolutionary relationships. In Chapter 3, I propose a new method 

to explore patterns of diversity through phenotypic variation building upon the quantification 

of the perception of ecological signals. Finally, in Chapter 4, I offer to link all three 

dimensions in an integrative perspective investigating the mechanisms behind the effect of 

ecological interactions, mediated by phenotypes, on large scale spatial and evolutionary 

patterns of biodiversity. 

https://www.gbif.org/
https://www.ncbi.nlm.nih.gov/genbank/


GENERAL INTRODUCTION 

5 

Figure 1: The biodiversity triangle with three important dimensions of the study of 

biodiversity explored throughout this research work. Chapter 1 studies patterns of 
biodiversity in space. Chapter 2 studies patterns of diversity in time. Chapter 3 studies 
patterns of diversity through phenotypic variation. Chapter 4 links all three dimensions in 
an integrative perspective. 

2 Biodiversity in space (Chapter 1) 

To my opinion, one of the most synthetic and impactful representation of biodiversity 

patterns are maps. There is a diversity of maps that enable describing the patterns of variation 

of biodiversity in space, each conveying specific information about the spatial organization of 

biologic entities: maps of species distributions, maps of species diversity, maps of bioregions 

delimiting areas of regional endemism, etc. Biogeography, the field of science that produces 

such wonderful maps has a long scientific history that has also been transformed by conceptual, 

technological and methodological revolutions (Lomolino, 2016). 

Early biogeographic studies were largely descriptive in nature, with researchers 

documenting the distribution of organisms and identifying patterns of similarity and differences 

across regions. Alexander von Humboldt (1769-1859) was an inspirational figure of this early 

developments, and is considered as one of the father of Biogeography (Schrodt et al. 2019). In 
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particular, his expeditions in South America led to the recognition of the importance of altitude 

and climate in determining the distribution of organisms. He was the first to propose 

comparisons of the distribution of regional flora along environmental gradients, illustrating the 

strength of maps to connect spatial patterns and the processes generating them (Fig. 2). In 

particular, his work was seminal in highlighting the relationship between climate and large-

scale species distributions, leading to the emergence of the concepts of biomes and latitudinal 

and elevational gradients (Schrodt et al. 2019). 

Figure 2: Illustration from Alexander von Humboldt in De distributione plantarum (1817) 

on which he reported and compared the biotope stratification along the slopes of three 

mountains in different climatic zones: Mont Chimborazo (Ecuador) in the tropical zone, 

Mont Blanc (France) in the temperate zone, and Sulitelma massif (Laponia) in the arctic 

zone. A famous prototypic example for Biogeography with a synthetic and comparative map 
of regional variation of plant distributions in space related to environmental conditions. 

Fascinated by Humboldt's tales of naturalistic and scientific adventures, Alfred Russel 

Wallace (1823-1913) dedicated its life to the exploration of the Tropical lands and their 

extraordinary biodiversity. As a pioneer of biogeography, he proposed one of the first map of 

regional divisions of Earth in six zoogeographic kingdoms based on lists of regional fauna 

encompassing major vertebrate groups, insects and mollusks (Fig. 3). He also offered 

mechanistic explanations to the spatial distribution of biodiversity by suggesting the effects of 
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factors such as the formation of mountains, the depth of oceans, and the historical effects of ice 

ages on the specific characteristics of local fauna (Wallace 1855, 1876). He identified the 

Wallace Line, a sharp turnover of fauna that separates the Indonesian archipelago into two 

distinct parts: a western portion in which the animals are largely of Asian origin, and an eastern 

portion where the fauna reflects the Australasian zooregion. This biogeographic boundary is 

still a relevant feature in modern Biogeography (Rueda et al. 2013).  

Figure 3: Zoogeographic regions according to Alfred R. Wallace in The Geographical 

Distribution of Animals (1876). It described the divisions of Earth in regions based on lists of 
regional fauna encompassing major vertebrate groups, insects and mollusks, and defined by 
the regional occurrence of endemic genera and families of animals. 

In the 20th century, scientists became more focused on understanding the ecological, 

historical and evolutionary factors that shaped the distribution of organisms. For instance, 

Joseph Grinnell (1877-1939) devised the concept of ‘ecological niche’ as the physiological and 

ecological requirements conditioning the presence of a species in a given area such as climate, 

pedology, habitat structure, etc. (Grinnell 1917). Charles Elton (1900-1991) soon refined this 

vision by describing species ecological niches as determined by the interactions with other 

species and resources representing the species’ function in an ecosystem (Elton 1927). Finally, 

George Evelyn Hutchinson (1903-1991) offered a formal mathematical abstraction merging 

both qualitative concepts of Grinnellian and Eltonian niches. He described the niche an 

hypervolume found in a multidimensional continuous ecological space defined by all biotic and 

biotic factors acting on the distribution of species. The species niche was then characterized by 
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its position along multiple environmental and ecological gradients (Hutchinson 1957). Armed 

with this new mathematical description, biogeography became more quantitative, with 

researchers using statistical methods to analyze biogeographic data. One of the most influential 

approaches in evolutionary biogeography was the use of parsimony analysis, which involves 

inferring the minimum number of historical events required to explain the observed distribution 

of species, to propose hypotheses for ancestral range reconstructions (Wiley 1988). The 

emergence of probabilistic methods of phylogenetic inferences later complemented the picture, 

providing more and more complex models to explore the historical dispersal events shaping 

current spatial distribution of biodiversity (Ree & Smith 2008; Albert & Antonelli 2017).  

With the advent of Geographic Information Systems (GIS) and remote sensing in the 

21th century, biogeographers have been able to produce and access large amount of data to 

create detailed maps of habitat types and environmental variables, as well as to track changes 

in vegetation cover and land use over time (Hansen et al. 2013). Taking advantage of the access 

to this new information, scientists developed algorithms defined as “species distribution 

models” that relate environmental data with georeferenced occurrences to offer refine 

continuous predictions of the distribution of species (Guisan & Thuiller 2005). Such 

developments allowed to investigate and map more finely the long-known latitudinal 

biodiversity gradient and its evolution through geological time (Fig. 4; Mannion et al., 2014), 

but also to question atypical patterns that do not follow this rule (Kindlmann et al. 2012). 

 

Figure 4: Distribution of extant terrestrial vertebrate species richness on Earth. Global 
pattern shows a latitudinal biodiversity gradient with species richness concentrated in the 
equatorial regions (red end of color spectrum) and decreasing toward the poles (blue end of 
color spectrum). Figure from Mannion et al. (2014). 
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More recently, the increasing availability of open-access biodiversity databases and data 

sharing platforms has made it easier for researchers to access and analyze large comprehensive 

datasets, facilitating collaboration and enabling researchers to ask new and more complex 

questions about biodiversity (Antonelli 2017). Online platforms and mobile apps have made it 

easier for non-scientists to contribute data to such open-access biodiversity databases, allowing 

researchers to tap into a vast pool of observations from all over the world. As a prime example, 

the Global Biodiversity Information Facility (GBIF; https://www.gbif.org) is an international 

network and data infrastructure that centralizes numerous occurrence databases in a unique 

open access source aiming to encompass the whole taxonomic diversity of Life. 

Complementarily, Map of Life (MoL; https://mol.org) provides an online platform to access to 

species distribution data and species range maps for a wide range of taxa. 

Overall, the evolution of methods and data sources in biogeography has enabled 

researchers to ask increasingly complex questions about the distribution of life on Earth (Jetz 

et al., 2012; Lomolino et al., 2016). For instance, recent studies have aimed to investigate the 

role of niche-based vs. neutral mechanisms in the assembly of species along a latitudinal 

biodiversity gradient (Bosch et al. 2021) as well as to separate the biotic and abiotic factors 

controlling species distributions at multiple spatial scales (König et al. 2021). Meanwhile, 

international collaborations have allowed researchers to unravel the patterns and drivers of 

global distributions of species richness in ants (Kass et al. 2022) and bees (Orr et al. 2021), two 

important steps into helping to address the Wallacean shortfall (i.e., relative paucity of 

geographic information) affecting insects in general, a gap this research work also aims to 

contribute to fill. 

Crucially in the context of global changes and the ongoing biodiversity crisis, 

biogeography can provide new insights into the impacts of human activities on biodiversity 

(Ellis 2019). It becomes now possible to quantify biodiversity responses to land use worldwide 

(Newbold et al. 2015) and to conduct large scale comprehensive assessment of extinction risk 

status for thousands of species at once based on predictions of future distributions under 

scenarios of climate changes (Gomes et al. 2019). Such ambitious researches provide the 

primary resources to produce international assessment of biodiversity trends aiming to support 

the political conservation agenda worldwide (IPBES 2019b). 

https://www.gbif.org/
https://mol.org/
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3 Biodiversity in time (Chapter 2) 

“Nothing in Biology Makes Sense Except in the Light of Evolution”. This is the title of 

a famous essay published by the evolutionary biologist Theodosius Dobzhansky in 1973. To a 

modern biologist, this goes without saying. But this vision has not always being shared by 

naturalists who for centuries promoted fixism: the idea that life forms are fixed in time 

following a natural and typically divine order. 

One of first major revolution in Systematics, the field of science that (very roughly) 

focused on making sense in this ‘natural’ order of living beings, was the work of the Swedish 

botanist Carl Linnæus (1707-1778). He developed in his books Species Plantarum and Systema 

Naturae a system for naming and classifying hierarchically organisms according to their 

similarities and differences that is still in use today. Since he offered to employ a two-part 

naming system for species, with the first part representing the genus and the second part 

defining the species, followed by a diagnostic description, this system has remained known as 

the binomial nomenclature (Linnæus 1753, 1758). The different levels in this ‘Linnæan 

hierarchy’ such as kingdoms, phyla, classes, orders, families, genera, and species are supposed 

to reflect the natural and harmonious order of the products of Creation in Linnæus’s mind 

(Farber 2000). His system of classification allowed scientists to communicate more effectively 

and provided a foundation for the development of modern taxonomy, yet no genealogy between 

its well-ordered species was considered during his time. 

The change of paradigm came a century later with the Theory of Evolution. In his 

milestone book On the Origin of Species by Means of Natural Selection, or the Preservation of 

Favoured Races in the Struggle for Life (Darwin 1859), Charles Darwin (1809-1882) provided 

massive and compelling evidence for the ongoing process of evolution and one of its major 

mechanism: natural selection. Its core idea is that all organisms shared a common ancestor and 

that diversity emerged though the principle of "descent with modification", when organisms 

evolve over time through the accumulation of random heritable changes at each generation that 

may provide a survival advantage in a given environment and be passed to the next generations. 

As such, he provided at the same time a mechanism to explain how species change over time 

(i.e., ‘evolve’), how new species arise from existing ones, and how most of them go extinct at 

some point. Critically, he offered a new perspective to understand the ‘natural order’ of living 

beings described by his predecessors, that in this view reflects the evolutionary relationships 

across species, and can be summarized by the mean of an evolutionary tree (Fig. 5). 
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Figure 5: Darwin’s sketch of evolutionary relationships among lineages from a 

hypothetical genus (labeled A–L on the horizontal axis) across numerous generations and 

time steps (labeled I-XIV on the vertical axis). This is the only illustration in the first Edition 
of On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured 
Races in the Struggle for Life in 1859. It is particularly remarkable how it encapsulates at the 
same time the idea of descent with modification, but also the random appearance of variants, 
the extinction of many, and the selection of a few, typically the variants presenting the most 
divergent phenotype, thus limiting potential interspecific competition, between each 
evolutionary step. 

In the wake of the Darwinian revolution, the figure of the phylogenetic tree has become 

the major representation of the evolutionary order of life. Nevertheless, it was not until the 

1950’s and the brilliant intuition of a German entomologist that a formal analytical framework 

was made available to construct and support the evolutionary hypotheses depicted by these 

phylogenetic trees. Willi Hennig (1913 - 1976) proposed that the hierarchical groups 

represented in phylogenetic trees were not build based on overall similarity among their 

components, but on the increasing number of shared derived states of traits among species, 

founding the cladistic method (Hennig 1950, 1965). In this perspective, the only valid supra-

specific evolutionary units are the monophyletic groups formed by grouping of synapomorphies 

(i.e., shared derived states of traits), which are the only units that must be given a name (Fig. 

6). As such, the long-established fishes, reptiles or protists were not to be considered as valid 

evolutionary groups. With this method, systematists were now able to clearly expose their 

hypotheses and test them in an objective and reproducible statistical framework using a 
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parsimony criterion (i.e., the most likely evolutionary tree is the one that involves the least 

number of state changes across all traits and species). Initially, Hennig’s cladistic method was 

largely employed on morphological and anatomical data, but with the emergence and 

improvement of DNA sequencing, molecular data quickly stepped into the game.  

 

Figure 6: Schematic representation of the different groups formed by similarity of trait 

states (black or white) illustrating the core concept of cladistics. Contrary to previous 
hierarchical biologic classification, the only recognized evolutionary groups in cladistics are 
monophyletic groups regrouped on the basis of synapomorphies (i.e., shared derived states). 
Polymorphic groups are formed when grouping organisms that are similar by convergence (i.e., 
non-homologous states, not inherited from a common ancestor). Paraphyletic groups are formed 
when grouping organisms by synplesiomorphies (i.e., shared ancestral states). Modified from 
Hennig (1965). 

The discovery of the structure of DNA in 1953 by Rosalind Franklin, and its publication 

by James Watson and Francis Crick (Watson & Crick 1953), revolutionized evolutionary 

biology, providing a foundation for the study of genetics and the mechanisms of inheritance. 

The development of increasingly efficient DNA sequencing techniques such as the Sanger 

sequencing (Sanger et al. 1977) later coupled with the Polymerase Chain Reaction (Mullis et 

al. 1992) opened doors for the use of molecular data in phylogenetics. The main asset of 

molecular data is that DNA and derivatives (RNA, proteins, …) are universal in the living 

world. Thus, molecular data enabled the investigation of evolutionary relationship at much 

greater taxonomic scales that morphological data, using routinely thousands of characters (i.e., 

the nucleotide sites). Meanwhile, the American biologist and statistician Joseph Felsenstein 

developed a probabilistic approach to the description of phylogenetic trees and their relation to 

molecular data based on substitution models describing rates of nucleotide changes along the 

tree branches. He proposed the maximum likelihood approach for constructing phylogenetic 
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trees (Felsenstein 1981), later completed with Bayesian inferences employing Monte Carlo 

Markos Chain algorithms (Yang & Rannala 1997; Larget & Simon 1999) that allowed to 

incorporate uncertainty and hypothesis testing in the framework of phylogenetic analyses 

(Felsenstein 1985; Huelsenbeck & Rannala 2004; Posada & Buckley 2004). 

A major limit of molecular phylogenetics resides in the nature of DNA. There are only 

four types of nucleotides, thus four states possible for each position in the sequences. When 

nucleotide substitutions accumulate at a much faster rate than the rate of divergence between 

lineages, a phenomenon known as saturation, it becomes difficult to determine the true ancestral 

states, and differentiate homoplasy (i.e., similarity via convergence) from homology (i.e., 

similarity via inheritance), and thus to reconstruct the deep evolutionary relationships. 

Fortunately, the progress in DNA sequencing never stopped and a new generation of incredibly 

powerful high-throughput sequencing methods (Illumina (Bentley et al. 2008), Oxford 

Nanopore (Jain et al. 2016) , Ion Torrent (Rothberg et al. 2011), etc.) paved the way to the 

current era of phylogenomics (Delsuc et al. 2005). 

Phylogenomics aims to reconstruct the evolutionary history of organisms based on the 

analysis of large-scale molecular dataset encompassing many genes, sometimes entire 

genomes, building upon the opportunities offered by high-throughput sequencing (Young & 

Gillung 2020). In parallel, the deployment of high-performance computing technologies has 

made it possible to process and analyze large amounts of genomic data in a relatively short 

period of time. Similarly to the last developments in the field of Biogeography, such 

breakthroughs have only been made possible because of the development and multiplication of 

open-access databases and data sharing platforms to store, manage and share this stupendous 

amount of molecular data generated on a daily basis by high-throughput sequencers around the 

world (Katz et al. 2022). The most massive one is the NCBI’s GenBank (Benson et al., 2013; 

https://www.ncbi.nlm.nih.gov/) that centralizes and provides public access to annotated 

collection of DNA sequences from any organisms. Complementarily, the Barcode of Life Data 

System (BOLD; https://boldsystems.org/) is an online database that provides a comprehensive 

and centralized repository for DNA barcodes (i.e., genes used to identify taxa).  

Altogether, phylogenomics has made it easier for researchers to access and analyze large 

comprehensive datasets, and provide more accurate and robust phylogenetic reconstructions to 

larger taxonomic scales, opening new opportunities to investigate patterns of diversification, 

divergence times and ancestral state reconstruction across the Tree of Life (Young & Gillung 

2020). Evolutionary biologists can now use the statistical power of thousands of genes and 

https://www.ncbi.nlm.nih.gov/genbank/
https://boldsystems.org/
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millions of nucleotide sites to resolve long-standing debates about the relationships among 

major groups of organisms, such as the origins of animals (Dunn et al. 2008), plants (Wickett 

et al. 2014), and even eukaryotes as a whole (Burki et al. 2020). 

4 Biodiversity through the phenotypes (Chapter 3) 

As previously discussed in this Introduction, the field of taxonomy has witnessed a 

formidable shift from the qualitative approach to describing phenotypic traits to integrated 

quantitative approaches mixing multiple data sources and methods to capture the complex 

multidimensional nature of phenotypic traits (Dayrat 2005). The new challenge for biologists 

is to find efficient ways to integrate these multiple sources of information. A crucial step resides 

in the automation of data acquisition processes in order to increase the rate of data generation 

and provide standardized outputs. Such outputs can be exploited in analytic pipelines to provide 

comprehensive and reproducible analyses, mimicking the strategies at play for geographic and 

molecular data. The field of phenomics has emerged from this realization, aiming to study 

organisms as collections of multidimensional phenotypes acquired with a wide range of 

quantitative and high-throughput methods in order to empower the exploration of relationships 

between genotypes, phenotypes and the environment (Bilder et al. 2009).  

For instance, such large scale collections of phenotypic information allowed researchers 

to identify the combinations of plant functional traits proved evolutionary viable in today’s 

terrestrial biosphere highlighting the strong trade-off driving plant evolution (Díaz et al. 2016), 

or to unravel the relationships between morphological and trophic diversity across virtually all 

species of birds (Pigot et al. 2020) Moreover, phenomics unlock the possibility to test the 

unfolding at large spatial scale of long-established hypothesis such as the thermal melanism 

hypothesis. This hypothesis claims that darker colors, produced by the accumulation of melanic 

pigments, should be positively selected in cold environments, particularly in ectothermic 

organisms whose internal temperature is varying according to external conditions (Clusella 

Trullas et al. 2007). Indeed, darker individuals are expected to heat up faster under similar light 

conditions because they absorb more radiation than lighter individuals, thereby benefiting from 

higher metabolic and physiological activities. This pattern has been supported historically in 

Colias pierid butterflies in North America (Watt 1968). Recently, phenomic approach have 

permitted its detection at large spatial and taxonomic scales for Eurasian vipers (Martínez-

Freiría et al. 2020) and North American and European butterflies as a whole (Stelbrink et al. 

2019; Kang et al. 2021). 
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In latest developments, phenomics have been applied to museum collection as a way to 

rediscover and value this immense biological patrimony thanks to high-throughput 

characterization of phenotypes, mostly based on computer-based image analyses (Lürig et al. 

2021). As such, researchers have been able to obtain not only high-throughput multispectral 

data from specimen collections (Fig. 7; Chan et al., 2022), but also automatized geometric 

morphometrics measurements (Porto & Voje 2020). The extension of such promising phenomic 

pipelines relies on our ability to build comprehensive open-access databases to store, manage 

and share phenomic data, similar to what has been undertaken for geographic and molecular 

data. 

To date, no publicly available online database aims to aggregate and standardized data 

generated from high-throughput phenomic pipelines. Efforts have been mostly concentrated on 

building platforms aggregating information produced from collections of a specific institution 

such as the Data Portal of the Natural History Museum of the United Kingdom 

(https://data.nhm.ac.uk/) or the Museum National d’Histoire Naturelle de Paris 

(https://science.mnhn.fr/). Alternatively, initiatives from international scientific communities 

have focused on providing access to phenomic data on a restricted taxonomic group such as the 

Global Ant Database for ants (Parr et al., 2017) or the LepTraits database for butterflies (Shirey 

et al. 2022). Next avenue for biodiversity research likely lies in the aggregation of all 

biodiversity data source in a single platform facilitating the collection, curation, organization, 

harmonization and sharing of this fundamental knowledge of life on Earth as envisioned by the 

Encyclopedia of Life project (Parr et al., 2014; https://eol.org/).  

 

https://data.nhm.ac.uk/
https://science.mnhn.fr/
https://eol.org/
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Figure 7: Summary of a high-throughput phenomic pipeline based on multi-faceted 

imaging methods applied on specimen collections. The workflow runs from top to bottom, 
starting with multispectral photos of specimens, and ending with the generation of multiple 
complex multivariate traits data encompassing the chromatic and morphologic aspects of the 
phenome. Figure from Chan et al., 2022. 
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5 Ecological interactions: the fourth dimension 

5.1 Crossing frontiers: towards an integrative study of biodiversity 

The Big Data Science revolution have greatly contributed to the extension of our 

knowledge and understanding of biodiversity patterns throughout the Tree of Life. I presented 

in the previous sections a few examples of recent advances in the fields of Biogeography, 

Phylogenomics and Phenomics. Yet, such advances are not restricted to their own field of 

studies and many researchers now conduct ambitious studies at the interface of disciplines, 

integrating geographic, molecular and phenotypic data in the same analytic framework to 

answer complex questions about biodiversity on Earth. 

Bridging phylogenetic reconstructions and biogeographic data, it becomes possible to 

address the mechanisms governing the generation of large scale biogeographic patterns such as 

the latitudinal biodiversity gradient in an evolutionary perspective. For instance, Rolland et al. 

(2014) built upon a comprehensive collection of distribution ranges of mammals species (Jones 

et al. 2009), a newly assembled supertree of the group (Fritz et al. 2009), and recently developed 

models to infer speciation and extinction rates across lineages and associated bioregions 

(Goldberg et al. 2011) to investigate variations in speciation and extinction rates across biomes. 

They showed that the latitudinal biodiversity gradient found in mammals can be explained by 

higher speciation and lower extinction rates in the Tropics, associated with dispersal into higher 

latitudes. Alternatively, Chazot et al. (2021) found that a similar latitudinal diversity gradient 

in brush-footed butterflies (Family Nymphalidae) cannot consistently be explained by 

differences in diversification rates across regions, but is mostly due to niche conservatism 

among tropical lineages. Moreover, improvement of computer performances now allows 

researchers to map phylogenetic diversity in space while encompassing numerous taxa and 

testing for significant patterns against randomization-based hypotheses (Mishler 2023). For 

instance, Murali et al. 2021 carried out a global analysis of phylogenetic endemism patterns of 

land vertebrates and their climatic drivers, allowing to identify crucial areas for the conservation 

of key elements of evolutionary history. 

High throughput phenomic approaches combined with georeferenced specimens or 

remote sensing data now allow to efficiently map functional diversity at large spatial scale. 

Durán et al. (2019) used a combination of field measurements and remote sensing airborne 

images to infer functional canopy traits of tree communities alongside a broad temperature and 

elevation gradient across the Amazon and the Andes. Thereby, they were able to map variation 
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in functional diversity along this environmental gradient but also investigate the climatic drivers 

of such variation. For instance, they detected a signal of scale-dependent trait convergence 

consistent with environmental filtering acting on the phenotypes represented locally and 

corresponding to local adaptations to environmental conditions (Durán et al. 2019). This type 

of workflow combining phenomics and biogeographic data can also be applied to value 

museum collections. Zeuss et al. (2017) estimated body volume of European butterflies, 

damselflies and dragonflies species from images of digitalized and georeferenced specimens. 

They tested for the extension of the Bergmann’s rule, which claim body size should increase in 

cold environments as a thermoregulatory advantage explained by a lower surface-to-volume 

ratio (Bergmann 1848), to ectothermic species. As such, they showed that the average body 

volumes of these communities of ectothermic insect species decreased significantly with 

latitude following temperature gradients contrasting with the predictions from the Bergmann’s 

rule (Zeuss et al. 2017). 

Finally, the increased availability of both molecular and phenotypic data allowed 

scientists to investigate evolution of traits in newly explored taxonomic and evolutionary scales. 

Building upon a crowd-sourced collection of 3D-scanned bill morphology and a species-level 

comprehensive phylogeny of birds, Cooney et al. (2017) explored the evolutionary trajectories 

of bird lineages in the bill morphospace. They found that rates of bill evolution vary among 

lineages while being globally stable through time. In particular, they highlighted the fact that 

bill evolution is characterized by few important rapid transitions followed by morphological 

packing (Cooney et al. 2017). Such macroevolutionary pattern underlies global scale adaptive 

radiations supporting the Darwinian (Reznick & Ricklefs 2009) and Simpsonian (Simpson 

1944) ideas of microevolution within adaptive zones and accelerated evolution between distinct 

adaptive peaks. Beyond the investigation of tempo and mode of evolution, large-scale 

molecular and phenotypic data allow to reconstruct ancestral traits back to previously 

unexplored evolutionary times. For instance, thanks to international collaborative efforts 

aiming to gather plant phenotypic traits to an unprecedent taxonomic scale, we now dispose of 

a 3D model of the predicted ancestral flower of all Angiosperm plants (Sauquet et al. 2017). 

5.2 Disentangling the Network of Life 

Despite the exponential growth of data accessibility that allows the completion of 

ambitious studies merging large taxonomic, phenotypic and geographic scopes, there are still 

many aspects of biodiversity that remain poorly known and understood. In particular, the role 
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of ecological interactions in shaping large-scale biodiversity patterns is often overlooked in 

macroecological studies (Gaüzère et al. 2022; Windsor et al. 2023). Indeed, assessing global 

patterns of ecological interactions is challenging. The sampling of ecological interactions 

typically involved substantial costs in time and resources associated with the detection and 

characterization of the interactions such as in gut content analyses for trophic networks, records 

of flower visitation for pollination networks, curation of camera trap videos to identify plant-

seed dispersers networks, etc. Although we witnessed recent international efforts to aggregate 

and standardize ecological interactions datasets in openly accessible databases (GloBI: Poelen 

et al. (2014); Interaction Web DataBase: www.ecologia.ib.usp.br/iwdb/; Web of Life: 

www.web-of-life.es), there are still many gaps in our global knowledge of the biogeography of 

ecological interactions (Poisot et al. 2021). 

Yet, understanding the organization of ecological interactions at large spatial scales, and 

their effects on the patterns of biodiversity is essential. Ecological interactions affect directly 

the survival and reproductive success of species (Elton 1927), their dispersal abilities (Svenning 

et al. 2014), and organize the flux of nutrients across biological entities (Tilman et al. 2014), 

which in turn determine the structure, resilience and functioning of ecosystems as a whole 

(Grime 1997; Bascompte 2009; Schneider et al. 2016). Crucially in the context of climate 

changes, implementing ecological interactions in the big picture of biodiversity helps to 

improve our understanding of community dynamics to provide reliable predictions to inform 

conservation actions (Tylianakis et al. 2010; McDonald-Madden et al. 2016; Pollock et al. 

2020). For instance, predictions of future species distributions are likely to be overestimated 

when biotic interactions are not implemented in the modeling framework (e.g., Flores-

Tolentino et al. 2020). 

Recent studies have tackled the challenge of integrating ecological interactions in 

biogeographic and macroecological studies. For instance, Gaüzère et al. (2022) built upon a 

recently gathered metaweb of European terrestrial vertebrates (Tetra-UE; Maiorano et al. 2020) 

to explore the diversity of trophic interactions at the continental scale. They highlighted how 

interaction diversity (i.e., the number of local trophic interactions) provides a complementary 

information to the functional and phylogenetic facets of biodiversity (Gaüzère et al. 2022). 

From an evolutionary perspective, Drury et al. (2020) explored the drivers of evolution of 

interspecific competition in birds. They showed that interspecific territoriality is widespread 

among birds and that its maintenance is strongly associated with hybridization and resource 

overlap during breeding season rather that habitat structure. They found that the modality of 

http://www.ecologia.ib.usp.br/iwdb/
http://www.web-of-life.es/
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territorial signals depended on the evolutionary age of the interacting species, with plumage 

phenotypes being mostly selected for interactions within-families, while songs appeared 

prominent in between-families interactions (Drury et al. 2020). Such studies highlight the 

importance of ecological interactions as both a unique component of biodiversity and a driver 

of trait evolution at large spatial and phylogenetic scales. 

These two examples focus on mapping and investing the evolutionary consequences of 

antagonistic interactions (i.e., with a negative outcome for at least one of the interacting 

members) falling into the historical tradition of community and evolutionary ecology to focus 

on the interplay between antagonistic interactions (e.g., competition, predation) and common 

ancestry, and how this interplay drives both the assembly of communities and species trait 

evolution (MacArthur & Levins 1964; Pianka 1981; Brown & Maurer 1989; Webb et al. 2002; 

Kraft et al. 2007). However, many studies have recently extended this vision by documenting 

the importance of positive interactions in determining species coexistence and the stability of 

communities (Okuyama & Holland 2008; Elias et al. 2009a; Thébault & Fontaine 2010; 

Alexandrou et al. 2011; Mougi & Kondoh 2012; Hale et al. 2020), the coevolution of functional 

traits (Guimarães et al. 2011, 2017; Nuismer et al. 2013; Newman et al. 2014; O’Brien et al. 

2021), the support of ecosystem functions such as pollination or seed dispersal (Millennium 

Ecosystem Assessment 2005), and the origins and maintenance of biodiversity (Bascompte & 

Jordano 2007; Gross 2008; Bastolla et al. 2009; Pascual-García & Bastolla 2017). 

Therefore, my research work aims to contribute to resolve this imbalance (Elias et al. 

2009a) by investigating the effect of mutualistic interactions on the spatial, phenotypic and 

evolutionary dimensions of biodiversity. To this end, I employ Müllerian mimicry, an 

emblematic case of mutualism, where co-occurring non-profitable prey species have evolved 

similar warning color patterns (i.e., aposematic patterns; Poulton 1890), thereby sharing the 

cost of educating local predators to their noxiousness (Müller 1879; Sherratt 2008), as a well-

characterized and charismatic case study of mutualistic interactions shaping the spatial 

distributions of species, driving the evolution of the phenotypes, and affecting the assembly of 

species (Jiggins & Lamas 2016). 
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6 Müllerian mimicry as a case study 

6.1 Color patterns under selection 

Among the multiple facets of phenotypes, one of the most striking to the human eye is 

coloration (Sherratt et al. 2015). The evolution of colors, and their associated patterns (i.e., the 

organization of color patches) are under multiple selective pressures associated with abiotic 

environmental conditions, but mostly linked to the functions carried by the visual signal they 

transmit. 

Coloration can be constrained by the abiotic environment, with certain colors providing 

a better fitness under local climatic conditions as described previously with the thermal 

melanism hypothesis in ectotherms linked to thermoregulation and immune defense abilities 

(Clusella-Trullas & Nielsen 2020). Color patterns also evolve under selective pressures applied 

by other organisms as long as they are involved in the transmission of an ecological signal. 

Those pressures can be intra-specific, meaning they are applied by conspecifics, typically the 

reproductive partners, or inter-specific, implying ecological interactions across species such as 

prey-predatory interactions.  

Sexual selection is the most prominent example of intra-specific selection applied on 

coloration. Indeed, exuberant coloration can be positively selected as an honest signal of overall 

good health for an individual following the handicap principle (Zahavi 1975): color pigments 

are costly to produce, thus an individual (typically male) able to harbor greater displays of those 

costly conspicuous signals would be positively selected by its conspecific of the opposite sex 

(typically female). The famously conspicuous colors of the male Paradise birds are a textbook 

example of coloration driven by sexual selection (Fig 8.B; Owens & Short, 1995). Coloration 

can also be under diverging selection between closely-related sympatric species as it favors the 

recognition of conspecifics, thus limit reproductive interferences with other species (Le Roy et 

al. 2021). 

Prey-predatory interactions notoriously affect the trait evolution of species as in the 

academic example of evolutionary arm-race between the gazelles and the cheetahs used to 

explain their running and evasive abilities (Hilborn et al. 2012). Such interactions can also 

strongly affect the evolution of coloration in prey classified under different ecological concepts 

according to the function fulfilled by their color pattern. Deimatic patterns refers to pattern 

involved in the scaring of predators, enabling inoffensive prey to escape predation attempts, 
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such as the colorful head frills displayed by fill-necked lizards facing predators (Fig. 8.A; Shine, 

1990). Cryptic patterns refers to a type of camouflage were the prey is easily confounded with 

the background, reducing the ability of predators to detect them. A classic example in 

evolutionary biology described the increasing frequency of black forms of peppered moths 

(Biston betularia) during the industrial revolution in England in response to the darkening of 

tree bark due to industrial soot (Cook et al. 2012). Another type of camouflage is the case of 

masquerade, where undefended prey resemble inanimate models with no value for predators. 

For instance, some caterpillars of moths are known to closely resemble bird droppings which, 

combined with adaptive bending behaviors increasing the similarity, provides them with an 

efficient protection against predators (Fig. 8.C; Suzuki & Sakurai, 2015). Conversely, color 

patterns can be associated with true predatory-defense abilities as in the case of aposematic 

patterns (Poulton 1890). For instance, toxic dendrobatid frogs harbor highly conspicuous colors 

(Fig. 8.D) that act as warning signals for predators, which learned the hard way to associate 

their color patterns with toxicity (Symula et al. 2001).  

Interestingly, crypsis and aposematism are based on opposite principles inducing 

contrasting modes of selection. Indeed, cryptic species rely on their ability to avoid being 

detected and individuals of those species benefit from the rarity of their phenotype in the 

community because predators are poorly trained to detect them. Therefore, the lowest the 

frequency of the phenotype in the community, the higher the fitness of the individual (Mappes 

et al. 2005), a process known as negative frequency-dependent selection. By contrast, 

aposematism relies on the conspicuousness of the color pattern, and the ability of predators to 

detect, recognize and associate such pattern with a negative experience due to the defense 

ability of the prey (e.g., toxicity, unpalability, evasiveness, etc.), leading them to avoid such 

prey. In this case, the process of predator learning is favored when encounters are common, 

thus when the frequency of the phenotype is high in the prey community. From the prey 

perspective, the more individuals share an aposematic pattern, the smaller the individual cost 

of educating predators. As such, aposematic patterns are under positive frequency-dependent 

selection favoring color pattern similarity not only within, but also across species (Müller 1879; 

Sherratt 2008), eventually leading to distant evolutionary convergence (Vences et al. 2003). 
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Figure 8: Diversity of color patterns under selection. (A) Frill-necked lizard 
Chlamydosaurus kingii in deimatic display showing off its colored head frills to deter predators. 
Credits: Miklos Schiberna. (B) Male specimen of Wilson's Bird of Paradise (Cicinnurus 
respublica) harboring extravagant colors shaped by sexual selection. Credits: Serhanoksay. (C) 

Caterpillar of the Asian moth Macrauzata maxima resembling a bird dropping as example of 
masquerade. Credits: T. Yamamoto. (D) Dyeing poison dart frog (Dendrobates tinctorius) 
displaying colorful examples of aposematic patterns associated with toxicity. Credits: 
Aquàrium de Barcelona. 

6.2 Batesian and Müllerian mimicry in the light of evolution 

Mimicry is the inter-specific consequence of aposematism. It describes similarity in 

phenotypes between organisms favored by natural selection and mediated by biotic interactions. 

Such group of phenotypically similar species are called ‘mimicry rings’ (Weismann 1904; 

Papageorgis 1975). When mimicry evolves in the context of defenses, it does so because at least 

one of the interacting organisms possesses efficient predatory-defense mechanisms. As such, it 

harbors aposematic patterns that predators learn to avoid through experience (Sherratt 2008). 
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Mimicry and one of its evolutionary mechanism was first formally described by Henri Walter 

Bates (1825 - 1892) during his nine-year expedition in the rainforests of Amazonia. He noticed 

that some unprotected palatable pierid butterflies (Dismorphiinae) were locally resembling the 

chemically protected unpalatable nymphalid butterflies (Ithomiini), and seems to benefit from 

fewer predation attempts from local birds, dragonflies and lizards (Bates 1862). These 

butterflies not only looked similar, but they also changed patterns across regions while 

preserving the local resemblance. Thus, he concluded that this phenomenon should be adaptive 

and he offered an explanation that conveniently supported the recently advertised Theory of 

Evolution (Darwin 1859). He argued that natural selection favored the local advergence (i.e., 

directional selection of one pattern towards a stable model) of wing patterns in mimetic pierids 

towards their local nymphalid models as it leads to higher survival due to lower attack rates. 

This form of mimicry where the mimic is unprotected is now called Batesian mimicry. 

Although Bates noticed that protected heliconiine butterflies could be considered 

mimics of the protected ithomiines, he could not explain yet why such unpalatable species 

would converge to a similar warning signal. About twenty years later, Fritz Müller (1822 - 

1897) provided an explanation supported by what is considered as the first mathematical model 

in evolutionary biology (Mallet 2001). Müller argued that pairs of unpalatable species gained 

mutualistic benefits from resemblance since both species would share the burden of losing 

individuals during predator learning. As such, aposematic patterns conveying the warning 

signals must be considered under positive frequency-dependence since the more frequent they 

are, the lower the cost per individual, and the most efficient the learning process of predators 

(Sherratt 2008). This form of mimicry where both interacting species are protected is now called 

Müllerian mimicry. 

Batesian mimicry and Müllerian mimicry represent different types of ecological 

interactions with different evolutionary expectations. In Batesian mimicry, the unprotected 

mimics benefit from cooccurrence with the protected models, while the latter see their 

protection diminished since the presence of palatable prey harboring the same warning signal 

interferes with predator learning. This mimetic interaction is considered parasitic as it is positive 

for the Batesian mimic and negative for the model (Mallet 2001). In Müllerian mimicry, both 

interacting species are protected. Thus, cooccurrence increasing the frequency of their warning 

signal in the community is mutually beneficial for the species. As such Müllerian mimetic 

interactions are mutualistic. These differences in the nature of ecological interactions lead to 

antagonist coevolutionary scenarios. In the case of a pair of protected species, natural selection 
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is expected to favor the local convergence of patterns, increasing the efficiency of the warning 

signal, and the protection of the species involved in mutualistic Müllerian mimicry (Müller 

1879). On the other hand, Batesian mimics and their models are predicted to be stuck in an 

eternal chase-away race with undefended mimics being selected for the advergence of their 

pattern towards the defended model, and the latter being selected to evolve away from their 

parasitic chasers (Huheey 1976). While theoretical models support the chase-away selection in 

Batesian systems (Franks et al. 2009), empirical supports are scarce (Akcali et al. 2018). My 

personal intuition is that chase-away selection rarely occurs because in natural communities 

models of Batesian mimics are typically involved in Müllerian interactions with other defended 

species (Joshi et al. 2017). As such, contradictory selective pressures imped phenotype 

divergence because Müllerian mimicry conversely selects for convergence and stability of the 

phenotype once convergence is achieved. Interestingly, parasitic Batesian and mutualistic 

Müllerian mimicry are now seen as the two extremes of a continuous spectrum with the extent 

of gains and losses from interactions depending on the relative noxiousness of interacting prey 

(Turner 1984; Balogh et al. 2008). 

6.3 Mimicry in space 

We exposed previously how Müllerian mimicry is predicted to drive color pattern 

convergence among defended species in local communities (Müller 1879). However, mimetic 

communities are typically composed of a variety of mimicry rings defined as sets of individuals 

sharing the same (honest or not) warning signals (Weismann 1904; Papageorgis 1975). This 

paradox is mostly explained by the fine-scale structuration of mimicry patterns along different 

ecological dimensions (Joron & Mallet 1998). Theoretical models have showed that 

heterogeneous communities of habitat-specialist predators that select locally for different 

optimal warning signals can induce a segregation of mimicry rings across microhabitats 

(Gompert et al. 2011; Birskis-Barros et al. 2021). In the field, mimetic neotropical butterflies 

demonstrate significant degree of segregation of mimicry rings across nocturnal roosting habitat 

height (Mallet & Gilbert 1995), flight height (Beccaloni 1997b; DeVries et al. 1997), and forest 

structures (Elias et al. 2008; Willmott et al. 2017) explaining the maintenance of local diversity 

of mimicry patterns. 

At the regional scale, the distribution of mimetic species, as for any species, results from 

the interplay of neutral and selective processes such as stochastic dispersion, and adaptation to 

local environmental conditions. However, specific processes applies to Müllerian mimicry 
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systems. Indeed, the availability of interaction partners in potential areas of dispersion can 

affect the probability of success. Translocation experiments showed new patterns are counter-

selected by local naïve predators as expected from frequency-dependent selection (Mallet & 

Barton 1989; Langham 2004), thus limiting the dispersal of mimetic species in areas where 

their pattern in still unknown. A result of such mechanism is the formation of a spatial mosaic 

of mimicry patterns bordered by suture zones where foreign patterns are counter-selected by 

predation from naïve predators (Thompson 2005; Sherratt 2006). On the field, such regional 

segregation of mimicry patterns has been detected along an altitudinal gradient, again for 

neotropical butterflies (Chazot et al. 2014). The geographic association of the different forms 

of Heliconius erato and Heliconius melpomene has been described and studied intensively 

(Brown Jr et al. 1974; Mallet 1993; Hines et al. 2011). However, how mimicry can affect the 

spatial distribution of entire clades of species at continental scales remains to be investigated, 

and will be one of the focus of this research work (see Chapter 4). 

6.4 Müllerian mimicry as a case study for mutualistic interactions 

Historically, community and evolutionary ecology have focused on the interplay 

between antagonistic interactions, such as competition and predation, and species relatedness 

to explain both the assembly of communities and species trait evolution (Pianka 1981; Brown 

& Maurer 1989; Webb et al. 2002; Kraft et al. 2007). However, more recently, many studies 

have extended this vision by documenting the importance of positive mutualistic interactions 

in determining species coexistence and the stability of communities (Thébault & Fontaine 2010; 

Mougi & Kondoh 2012; Hale et al. 2020), the coevolution of functional traits (Guimarães et al. 

2011; O’Brien et al. 2021), and the origins and maintenance of biodiversity (Gross 2008; 

Pascual-García & Bastolla 2017).  

Müllerian mimicry offers an ideal case study to pursue this rehabilitation and further 

investigate the effects of mutualistic interaction on the patterns of biodiversity. Contrary to 

many ecological interactions, Müllerian mimicry is believed to be relatively easy to document 

and straightforward to define: species that share a color pattern and coexist interact 

mutualistically, while those that harbor different color patterns do not. However, this view may 

be a little simplistic and this research work will seek to offer a new reproducible method to 

define these interactions when similarity is questionable (see Chapter 3).  

Moreover, even if most of the empirical work on Müllerian mimicry has been focused 

on neotropical butterflies, instances of Müllerian mimicry can actually be found in many animal 
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lineages around the World. For instance, bees and stinging wasps all over the World are 

engaged in Müllerian mimicry (Fig. 9.1.A-B) with over a hundred described mimicry rings, 

involving a thousand species that belong to 19 aculeate Hymenoptera families (Chatelain et al. 

2023). Similarly, lycid beetles have been suggested to form the largest Müllerian mimicry rings 

known up-to-date with more than 4000 species involved worldwide (Motyka et al. 2021). 

Outside of the insect world, one of the most emblematic example concerns dendrobatid frogs 

in the neotropical forests (Fig. 9.1.C-H; Symula et al. 2001). Müllerian mimicry also occurs in 

catfishes in South American rivers (Alexandrou et al. 2011), in Asian pit vipers (Fig. 9.2.I-J; 

Sanders et al. 2006), and between endemic toxic birds from New Guinea (Fig. 9.2.K-L; 

Dumbacher & Fleischer 2001). 

 

Figure 9.1: Müllerian mimicry across animal lineages. (A-B) Müllerian mimicry across 
families of Hymenoptera: (A) Rhodanthidium sticticum, a megachilid bee found in Turkey and 
close mimic to (B) the common European hornet (Vespa crabro) found all around Europe and 
beyond. Credits: Jelle Devalez, Bernard Sabatier. (C-H) Müllerian mimicry in dendrobatid 
frogs in Peru: C to E are all geographic morphs of Dendrobates imitator mimicking their local 
equivalent in others species such as (F) Dendrobates variabilis in Tarapoto, (G) Dendrobates 
fantasticus in Huallaga Canyon, and (H) Dendrobates ventrimaculatus in Yurimaguas. Credits: 
Symula et al. (2001). 
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Figure 9.2: Müllerian mimicry across animal lineages. (I-J) Müllerian mimicry in Asian pit 
vipers: (I) Trimeresurus popeiorum found in Kaeng Krachan National Park, Thailand, 
presenting the characteristic red band of (J) Viridovipera gumprechti found in a large portion 
of continental South-East Asia. Credits: Rushen, Andy Ana. (K-L) Müllerian mimicry in toxic 
pitohui birds of New Guinea: (K) Northern variable pitohui (Pitohui kirhocephalus) in its 
orange-brown morph matching patterns of (L) the hooded pitohui (Pitohui dichrous) in Varirata 
National Park, Papua New Guinea. Credits: Katerina Sam, John C. Mittermeier. 

7 Ithomiine and heliconiine butterflies as model groups 

Most studies that have so far attempted to describe and understand the mechanisms 

behind large-scale spatial patterns of neotropical diversity have focused on vertebrate and plant 

groups (Ter Steege et al. 2006; Weir 2006; Sedano & Burns 2010; Wesselingh et al. 2010; 

Hughes et al. 2013; Hutter et al. 2013; Bogoni et al. 2021). In comparison, macroecological 

studies about arthropods are scarcer because high-quality and high-density primary geographic 

information is typically lacking, especially in the Tropics. This realization is particularly 

striking given that arthropods may represent 70% of Earth species (Stork 2018), which had led 

geneticist J.B.S. Haldane to declare: "If He exists the creator has an inordinate fondness for 

beetles.”. The relative lack of biodiversity data regarding arthropods in the Tropics illustrates 

the strong taxonomical and geographic biases still existing in the Wallacean shortfall described 

as the paucity of geographic information compare to the vastness of existing biodiversity 

(Lomolino 2004). Yet, Neotropical mimetic butterflies might be a counter-example. 
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We described earlier how neotropical butterflies, and particularly Ithomiini and 

Heliconiini have been instrumental in the emergence of the theory of mimicry in the late 

nineteenth century, thanks to the work of Henry Walter Bates (Bates 1862) and Fritz Müller 

(Müller 1879). The history of those two tribes of mimetic butterflies are entangled despite being 

separated by more than 80 My of evolution (Chazot et al. 2021). Indeed, as reported by Bates, 

those two tribes of toxic butterflies share mimicry patterns. As such, they are engaged in 

mutualistic Müllerian mimetic interactions, within tribes, but also between tribes (Fig. 10). 

They are even at the center of much larger mimetic interaction networks as species belonging 

to Pieridae, Papilionidae or even moth species share wing patterns identical to those harbored 

by Ithomiini and Heliconiini species (Beccaloni 1997a). 

Figure 10: Diversity and convergence of wing patterns within and between ithomiine and 

heliconiine butterflies. Ithomiine butterflies display different degrees of transparency in 
several mimicry rings (1), but also share mimicry patterns with Heliconiini (2). Heliconiini, 
similarly to Ithomiini, demonstrate high degree of polymorphism, even within species as shown 
with examples from Heliconius erato (3). From left to right and top to bottom: (A) Methona 
confusa psamathe (B) Oleria gunilla lerdina (C) Aeria eurimedia pacifica (D) Heliconius 
nattereri (E) Heliconius erato adana (F) Heliconius erato chesteronii (G) Methona themisto 
(H) Pseudoscada florula aureola (I) Melinaea lilis imitate (J) Heliconius ismenius telchinia 
(K) Heliconius erato cyrbia (L) Heliconius erato emma. 

Ithomiines and heliconiines are both brush-footed butterflies (Nymphalidae), whose 

evolutionary history diverged when the Danainae sub-family, comprising the Ithomiini, split 

around 85 My ago from a group that would later gave birth to the Heliconiini (Chazot et al. 

2021). Both tribes have a relatively similar stem age, estimated around 26 My, and are described 

as adaptive radiations considering their rapid diversification across the Neotropics (Ithomiini: 

Chazot et al. 2019; Heliconiini: Kozak et al. 2015). Nevertheless, they present important 

differences in their evolutionary history. While the Heliconiini tribe encompasses 8 genera, 77 

species and around 457 subspecies (Kozak et al. 2015; Jiggins & Lamas 2016) spreading all 
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across America from Canada to Argentina (Rosser et al. 2015), Ithomiini comprises more than 

five times more taxonomic diversity with 396 documented species for around 1476 subspecies 

distributed among 42 genera and 10 subtribes mostly limited to the Neotropics, from Mexico 

to the Brazilian Atlantic forest (Chazot et al. 2019b). Both tribes occupy a diversity of habitats, 

but are mostly found in forests from sea levels up to 3500m in the Andes for some ithomiine 

species (Chazot et al. 2014). They are considered as the numerically dominant component of 

mimetic butterfly communities throughout their spatial range (Beccaloni 1997a). 

All ithomiine and heliconiine butterflies are toxic to predators to some degree. However, 

how they gain their defenses at different life stages differs between the two tribes. Ithomiine 

caterpillars are highly specialized on Solanaceae plant species with a few of exceptions feeding 

on members of the Gesneriaceae and Apocynaceae (Willmott & Mallet 2004). However, 

contrary to most toxic butterflies that sequester toxic compounds from their hostplants, 

ithomiine species acquire most of the pyrrolizidine alkaloids (PAs) that provide them with 

chemical protection during the adult stage while feeding on fresh or rotten flowers and stems 

of Asteraceae and Boraginaceae. Surprisingly, almost only the male ithomiines gather the 

precious chemical compounds during foraging (Trigo & Brown Jr 1990). They use PAs as 

precursors for male pheromones as well as for toxin production (Brown Jr 1984; Schulz et al. 

2004). Females mostly obtain their PAs during fecundation as the spermatophore transmitted 

by males is highly concentrated in PAs (Brown Jr 1984). On the other hand, heliconiine 

butterflies more classically obtain their toxic chemical compounds, mostly cyanogenic 

glucosides, from their hostplants (Castro & Zurano 2019). They are also highly specialized, but 

on passion vine species (Passifloraceae family) with which they are suspected to have 

coevolved in an adaptive mirror radiation (Jiggins & Lamas 2016, p.37). Additionally, 

heliconiines are able to synthetize their own toxins from digested amino-acids (Nahrstedt & 

Davis 1983). 

As a final touch to their portrait, it is worth mentioning that an important portion of 

ithomiine species display different degrees of transparency on their wing (Fig. 10.1). As 

Lepidoptera (lepis = scale + pteron = wing), ithomiines achieve transparency though erection, 

or reduction of size and number of the scales that typically cover the membrane of their wing 

(Binetti et al. 2009), and the addition of nanostructures reducing light reflection (Siddique et 

al. 2015; Pinna et al. 2021; Pomerantz et al. 2021). Transparency can appear quite paradoxical 

for aposematic species whose survival strategy relies on conspicuousness rather than cryptic 

abilities. However, a recent study showed that these transparent sections are also involved in 
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the convergence of wing patterns across mimetic species, and thus can be part of the warning 

signal (Pinna et al. 2021), while also offering a primary cryptic defense against predation (Arias 

et al. 2019; McClure et al. 2019). 

Ever since the initial expeditions of Bates and Müller, ithomiine and heliconiine 

butterflies have fascinated scientists who have continued to collect them on the field, and 

accumulate extensive phenotypic and genetic information. As such we now dispose of the high-

quality data needed to carry out large-scale analyses with comprehensive occurrence databases, 

specimen collections to extract genetic sequences, and databases of wing pattern images. 

Therefore, they appear as ideal models to explore variation in biodiversity patterns from the 

phenotypic, geographic and phylogenetic perspectives in the context of mutualistic interactions, 

illustrated here by Müllerian mimicry. 

8 Main questions and objectives 

During the course of this research work, I employ Müllerian mimicry in ithomiine and 

heliconiine butterflies as a case study to explore the effect of mutualistic interactions on 

biodiversity patterns. I focus mostly on recent methods and approaches developed in the 

framework of Biodiversity informatics to handle large datasets and accommodate multivariate 

quantitative information. 

In the first Chapter, I explore biodiversity patterns in space. I build upon a 

comprehensive database of ca. 30,000 georeferenced occurrences of ithomiine butterflies at 

continental scale gathered from multiple expert-curated sources and employ species distribution 

models to map the different facets of current Ithomiini biodiversity. As such, I intend to test for 

the correlation of the multiple facets of ithomiine diversity, as well as to identify areas of 

evolutionary and ecological importance for conservation, and evaluate their overlap with 

current anthropogenic threats. 

In the second Chapter, I explore biodiversity patterns in time. I employ state-of-the-

art phylogenomics approaches on a large molecular dataset of ca. 11,000 genes across 368 

species out of the 396 documented (i.e., 92.3%) in order to resolve and support deep 

evolutionary relationships in ithomiine butterflies. As such, I aim to generate a phylogeny that 

will be employed as a stable tool for future macroevolutionary analyses of Ithomiini evolution. 

In the third Chapter, I propose a new method to explore patterns of diversity through 

phenotypic variation based on the quantification of the perception of wing pattern variation in 
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heliconiine butterflies. I develop a Citizen Science project in order to gather perception 

information from a diversity of sources, and introduce a machine learning algorithm that 

converts triplets of relative perceptual distances into a perceptual space. I illustrate the 

versatility of such approach to explore the structure of phenotypic diversity at multiple spatial 

scale. First, I investigate the global structure of variation in heliconiine wing patterns and map 

phenotypic diversity at the continental scale. Second, I address the delimitations of mimicry 

rings in local communities to unravel ecological interactions among mimetic species. Overall, 

I intend to provide a new generic tool for the exploration of biodiversity that could be included 

in phenomic pipelines to quantify phenotypic variation in any visual signals through perception. 

Finally, in the fourth Chapter, I offer to link all three dimensions in an integrative 

perspective investigating the effect of ecological interactions acting through phenotype 

similarity (i.e., Müllerian mimicry) on large scale spatial and evolutionary patterns. I aim to 

test for the unfolding at large spatial scale of the predictions of Müller’s model regarding 

convergence of species harboring aposematic patterns. Specifically, I use phylogenetic 

comparative analyses to test for spatial congruence and climatic niche convergence among 

comimetic species of ithomiine butterflies as a way to illustrate the importance of mutualistic 

interactions into shaping macroecological and evolutionary patterns. 
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Abstract 

The biodiversity crisis has highlighted the need to assess and map biodiversity in order 

to prioritize conservation efforts. Clearwing butterflies (tribe Ithomiini) have been proposed as 

biological indicators for habitat quality in Neotropical forests, which contain the world's richest 

biological communities. Here, we provide maps of different facets of Ithomiini diversity across 

the Neotropics to identify areas of evolutionary and ecological importance for conservation, 

and evaluate their overlap with current anthropogenic threats. 

We ran species distribution models on a dataset based on 28,986 georeferenced 

occurrences representing 388 ithomiine species to generate maps of geographic rarity, 

taxonomic, phylogenetic, and Müllerian mimetic wing pattern diversity. We quantified and 

mapped the overlap of diversity hotspots with areas threatened by or providing refuge from 

current anthropogenic pressures. 

The eastern slopes of the Andes formed the primary hotspot of taxonomic, phylogenetic 

and mimetic diversity, with secondary hotspots in Central America and the Atlantic Forest. 

Most diversity indices were strongly spatially correlated. Nevertheless, species-poor 

communities on the Pacific slopes of the Andes also sheltered some of the geographically rarest 

species. Overall, tropical montane forests that host high species and mimetic diversity as well 

as rare species and mimicry rings appeared particularly under threat. 

Remote parts of the Upper Amazon may act as refuges against current anthropogenic 

pressures for a limited portion of Ithomiini diversity. Furthermore, it is likely that the current 

threat status may worsen with ongoing climate change and deforestation. In this context, the 

tropical Andes occupy a crucial position as the primary hotspot for multiple facets of 

biodiversity for ithomiine butterflies, as they do for angiosperms, tetrapods, and other insect 

taxa. Our results support the role of ithomiine butterflies as a suitable flagship indicator group 

for Neotropical butterfly diversity, and reinforce the position of the tropical Andes as a flagship 

region for biodiversity conservation in general, and insect and butterfly conservation in 

particular. 

 

Keywords 

anthropogenic pressures, biodiversity hotspots, geographic rarity, Human Footprint, human 

impacts, Ithomiini butterflies, Müllerian mimicry, phylogenetic diversity, species richness.
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1 Introduction 

The global biodiversity crisis is a critical environmental issue (IPBES 2019a) with 

unprecedented rates of species loss across multiple taxonomic groups, now referred to as the 

sixth mass extinction (Barnosky et al. 2011; Ceballos et al. 2015). Such species loss 

significantly alters biodiversity patterns and affects ecosystem functions worldwide. In 

particular, there is growing evidence for recent massive declines in insects (Cardoso et al. 2020; 

Eggleton 2020; Montgomery et al. 2020), which represent the bulk of current biodiversity 

(Mora et al. 2011; Stork 2018). This loss is concomitant with the global increase in human 

pressures on ecosystems, with currently 75% of the planet’s non-frozen land surface impacted 

(Venter et al. 2016b). These alarming trends are compelling scientists to better assess and map 

biodiversity in order to prioritize conservation efforts given limited time and resources (Brooks 

et al. 2006).  

One early approach towards identifying global priority areas for conservation was the 

delimitation of biodiversity hotspots (Myers et al. 2000): areas with high levels of vascular 

plant species richness and endemism, and significant loss of primary natural habitats. The 

Neotropics encompass seven of these biodiversity hotspots, including the richest of them: the 

Tropical Andes (Myers et al. 2000). However, it is not known how well such hotspots, 

identified on the basis of vascular plant diversity and confirmed for vertebrates, provide 

adequate surrogates for the diversity of other taxa, especially insects (Stork & Habel 2014). 

Indeed, georeferenced primary biodiversity data for insects, particularly in the Neotropics, are 

very scarce due to the challenges of collecting, digitalizing and verifying taxonomic 

identifications for records covering often inaccessible, remote regions (Short et al. 2018; Stork 

2018). Moreover, whether species richness and endemism adequately reflect other facets of 

biodiversity such as phylogenetic and functional diversity may depend on the group considered 

(Prendergast et al. 1993; Williams et al. 1996; Allouche et al. 2006; Devictor et al. 2010; Mazel 

et al. 2014; Zupan et al. 2014; Albouy et al. 2017). There is therefore an urgent need to explore 

to what extent existing hotspots identified for well-studied taxa coincide with those of other 

less well-known groups, and how well those hotspots represent facets of biodiversity beyond 

species richness and endemism. Here, we tackle this issue by investigating the spatial 

distribution of different metrics of biodiversity in an integrative assessment that covers its 

multifaceted nature (Pollock et al. 2017, 2020). We focus our assessment on a diverse insect 
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group, the butterfly tribe Ithomiini Godman & Salvin, 1879 (Nymphalidae: Danainae), in the 

world's biologically richest region, the Neotropics. 

The tribe Ithomiini comprises 396 described species distributed among 42 genera and 

10 subtribes (Chazot et al. 2019b). These butterflies form diverse communities in humid forests 

from sea level to 3000 m, throughout the Neotropics. Their habitats are threatened by high rates 

of deforestation associated with cattle ranches, soybean and oil palm plantations, as well as 

industrial logging, mining, and road building (Armenteras et al. 2017; Fearnside 2017; Sonter 

et al. 2017; Rajão et al. 2020). In this context, ithomiine butterflies have been proposed as 

indicator species for habitat quality and local butterfly diversity (Beccaloni & Gaston 1995; 

Brown Jr 1997; Uehara-Prado & Freitas 2009 but see Brown & Freitas 2000). Ithomiini also 

represent the most diverse radiation of aposematic and Müllerian mimetic butterflies, whereby 

co-occurring unpalatable species display similar wing color patterns that advertise their 

distastefulness to predators. Müllerian co-mimetic species interact mutualistically, because they 

share the cost incurred during the learning process of predators (Müller 1879; Joron & Mallet 

1998; Sherratt 2008). All Ithomiini species engage in Müllerian mimicry, and drive mimicry in 

other distantly related groups of Lepidoptera (Beccaloni, 1997; Brown Jr. & Benson, 1974). 

Remarkably, many ithomiines have partly transparent wings (Papageorgis 1975; McClure et al. 

2019; Fig. 1a), which has inspired their common name of 'clearwing' butterflies. Overall, 

ithomiine butterflies combine their potential role as biological indicators with positive public 

image (e.g., Barua et al. 2012; Sumner et al. 2018), making them candidate flagship species for 

conservation in the Neotropics. Previous studies have already investigated the historical 

biogeography of the tribe. Ithomiini likely originated in the eastern Andean foothills and a 

major clade, composed of the five most species-rich subtribes and comprising 80% of species, 

diversified in Central Andes 20 to 10 My ago (Chazot et al. 2019b). Those areas, which harbor 

heterogeneous landscapes favoring speciation, also coincide with known hotspots of species 

richness for three diverse ithomiine genera (Ithomia, Napeogenes, and Oleria; Chazot et al. 

2016b). However, patterns of species diversity remain to be documented at the level of the 

entire tribe, across the Neotropics. Similarly, patterns of phylogenetic diversity, geographic 

rarity, and mimicry richness remain largely uncharacterized at such scales. 

Phylogenetic diversity has become a fundamental component of biodiversity 

assessments that addresses the evolutionary distinctiveness of species assemblages (Faith 

1992). It is recognized by the Intergovernmental Science-Policy Platform on Biodiversity and 

Ecosystem Services (IPBES) as a key indicator for the maintenance of options in nature’s 
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contribution for people (IPBES 2019a), and is included in conservation tools such as the EDGE 

index for Evolutionarily Distinct and Globally Endangered species (Isaac et al. 2007). High 

phylogenetic diversity reflects the presence of species with distinctive evolutionary pathways, 

which provide a proxy for evolutionary novelties of high value for conservation (Faith 2018). 

Geographic rarity is another component of biodiversity that relates to the spatial 

dimension of rarity, with species with restricted distributions being considered rare compared 

to species with wider ranges (Rabinowitz 1981). Species with small geographic ranges can 

support original functions in ecosystems (Mouillot et al. 2013), while they often face higher 

risks of extinction (Purvis et al. 2000; Cardillo et al. 2008; Böhm et al. 2016). Species range 

size is therefore commonly incorporated into diversity indices (Jetz et al. 2014; Maritz et al. 

2016; Gumbs et al. 2020). Mapping species geographic rarity provides an additional tool for 

conservation prioritization (Cadotte & Davies 2010), as another complementary facet of 

diversity patterns linked to species vulnerability and areas of endemism. 

Biotic interactions, although rarely integrated in biodiversity assessments, represent the 

architecture of life that reflects the interdependence of all units of biodiversity (Bascompte 

2009). For example, mutualistic interactions can shape species distributions and community 

composition (Sherratt 2006; Duffy & Johnson 2017), affecting ecosystem stability (Pascual-

García & Bastolla 2017; Hale et al. 2020), and supporting ecosystem services such as 

pollination function or seed dispersal (Millennium Ecosystem Assessment 2005). Müllerian 

mimicry systems, such as ithomiine butterflies, provide an excellent opportunity to study 

mutualistic interactions, because interacting species can be identified through their similarity in 

warning patterns. Müllerian mimicry is known to affect individual fitness and constrain species 

distribution (Mallet & Barton 1989; Kapan 2001; Langham 2004; Sherratt 2006; Chazot et al. 

2014; Aubier et al. 2017). Additionally, mimetic species form adaptively-assembled mutualistic 

communities that are predicted to suffer more from community disassembly due to the loss of 

those mutualistic interactions (Toby Kiers et al. 2010), and to be more sensitive to co-extinction 

cascades (Dunn et al. 2009). Therefore, Müllerian mimicry systems provide opportunities to 

map patterns of mimicry richness and geographic rarity, which reflect the distribution of 

mutualistic interactions in space, a component of functional diversity that is particularly 

relevant for conservation. 

In this study, (1) we provide modeled distribution maps of taxonomic, phylogenetic and 

mimetic diversity as well as geographic rarity, for the entire tribe Ithomiini across the 
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Neotropics, in order to identify biodiversity hotspots as areas of both evolutionary and 

ecological importance for conservation; (2) we evaluate the spatial relationships among those 

facets of Ithomiini diversity; (3) we assess current anthropogenic threats to Ithomiini 

biodiversity hotspots, highlighting risk areas with high anthropogenic pressures, and potential 

refuges with currently low levels of human influence. 

 
 
Figure 1: Wing patterns in ithomiine butterflies. (a) Specimen of Hypomenitis libethris 
harboring the wing pattern LIBETHRIS with transparent areas. Photo credits: Andrew Neild, 
2016. (b) Illustration of the convergence of wing patterns across Ithomiini. Mimicry ring 
CONFUSA: Methona confusa psamathe (I), Thyridia psidii ino (II), Methona themisto (III). 
Mimicry ring ILLINISSA: Oleria ilerdina priscilla (IV), Napeogenes sylphis ercilla (V), 
Hyposcada illinissa illinissa (VI). Mimicry ring MAELUS: Melinaea satevis cydon (VII), 
Hypothyris anastasia anastasina (VIII), Hypothyris fluonia pardalina (IX). Mimicry ring 
AURELIANA: Napeogenes sylphis corena (X), Hypoleria aureliana (XI), Pseudoscada florula 
aureola (XII). Photo credits: Nicolas Chazot, 2015. 

 

2 Methods 

2.1 Data sources 

We compiled from multiple sources an initial dataset of 28,986 georeferenced 

occurrences for 388 ithomiine butterfly species in their natural habitats, out of the 396 known 

species, spanning 25 countries across the Neotropics (see maps of occurrences, sampling effort, 

sampling completeness and bioregions in Fig. S1.1, S1.2, S1.3 & S1.4). This dataset provided 

19,271 species-grid-cell records for distribution modeling at a 0.25° x 0.25° spatial resolution 
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after removing duplicate records from single grid cells, which are available from Zenodo at 

10.5281/zenodo.4696055. The data come from fieldwork by the authors over the past five 

decades, and records from over 60 museums and private collections detailed in the online 

archive metadata. Each record is associated with its location, its taxonomic identity, and its 

mimicry ring membership (i.e., a wing color pattern shared by individuals reflecting mutualistic 

interactions). The current classification of wing patterns presents 44 mimicry rings (Fig. S2.5) 

updated from previous works (Beccaloni, 1997; Chazot et al., 2014, 2019; Elias et al., 2008; 

Jiggins et al., 2006; Willmott & Mallet, 2004). 

Sets of co-mimetic species (i.e., sharing a wing pattern) form mimicry rings (Fig. 1b). 

Most Ithomiini species comprise several to many subspecies that may belong to distinct 

Müllerian mimicry rings. Additionally, some subspecies show a sexual dimorphism with males 

and females belonging to different mimicry rings. Since we intended to map mimicry ring 

distribution as well as species distribution, we defined Operational Mimicry Units (OMUs) as 

the set of individuals within the same species that shared the same mimicry pattern. An OMU 

may either be equivalent to an entire species, if all individuals of all subspecies of that species 

share the same pattern, or it may represent individuals from a smaller group of subspecies that 

share a common mimicry pattern, in which case a single species may be represented by multiple 

OMUs. A total of 783 OMUs were used as modeling units for distribution models (complete 

list in SI Appendix 4). The mimicry classification of all 1,511 subspecies is available from 

Zenodo at 10.5281/zenodo.5497876. 

To compute indices of phylogenetic diversity, we used a recently published time-

calibrated phylogeny of the Ithomiini (Chazot et al. 2019; Fig. S3.6) which represents 339 out 

of the 388 species with georeferenced records. 

2.2 Data analyses 

2.2.1 Species Distribution Modeling (SDM) 

In order to map the current distributions of ithomiines, we developed species distribution 

models (SDMs) relating occurrence data with a set of environmental variables. We describe our 

SDM methods following the ODMAP (Overview, Data, Model, Assessment, Prediction) 

protocol for species distribution models (Zurell et al. 2020). Here, we provide the Overview of 

the distribution models while the remaining ODMAP sections, providing details in modeling 

https://doi.org/10.5281/zenodo.4696055
https://doi.org/10.5281/zenodo.5497876
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steps, justifications for modeling choices and a more in-depth discussion about potential caveats 

and limits, are detailed in SI Appendix 5. 

We aimed to model the current distribution of species and mimicry rings, as well as to 

infer the current patterns of geographic rarity and taxonomic, phylogenetic, and mimicry ring 

diversity (as described further below) for the whole Ithomiini tribe. We proceeded as follows: 

(1) we retrieved environmental predictors of Ithomiini distribution, (2) we obtained multiple 

environmental suitability maps for each OMU employing a set of SDM algorithms, (3) we 

derived for each OMU a median ensemble model depicting its modeled distribution, (4) we 

stacked these modeled distribution maps in order to obtain in each pixel the predicted 

occurrence of OMUs, while observed binary maps of OMU with less than six occurrences were 

included directly at this step, then we (5) derived species and mimicry ring distribution maps 

and compute various taxonomic, phylogenetic and mimicry diversity and geographic rarity 

indices (Fig. 2). 

Our models encompassed the entire distribution of the tribe in the Neotropics 

(Longitude 120° E - 30° E, Latitude 37° S – 28° N) at a 0.25° x 0.25° spatial resolution. Thus, 

each quarter-degree grid cell (hereafter, pixel) represents a virtual community of ca. 27.8 km × 

27.8 km. This resolution is appropriate for niche models based on large scale predictors such 

as climate (McGill, 2010), limits commission errors (Di Marco et al. 2017), and appears 

sufficient to identify broad geographic patterns of diversity at a scale relevant to biodiversity 

conservation (e.g., Roll et al. 2017; Gumbs et al. 2020; Abreu-Jardim et al. 2021; Robuchon et 

al. 2021). We selected climate, represented by annual temperature and humidity levels and 

seasonality (MERRAclim v.2.0; Vega et al., 2017), elevation (SRTM Dataset v.4.1; Farr et al., 

2007) and vegetation cover (GLCF; Sexton et al., 2013), as environmental predictor variables 

for distribution modeling. Indeed, these environmental dimensions have been regarded as 

important in determining large-scale distribution patterns and structuring ithomiine 

communities (Beccaloni, 1997; Chazot et al., 2014). 

We fitted SDMs for 563 OMUs for which we had at least six occurrences available 

(71.9% of OMUs, encompassing 335 species, i.e. 86.3% of species with known occurrences). 

We included the remaining 220 OMUs (28.1%) in stacks as binary rasters of presences-

absences. We fitted SDMs in biomod2 v.3.4.6 (Thuiller et al. 2020) using three machine 

learning algorithms to cope with small sample sizes: Random Forest, Generalized Boosted 

Models, and Artificial Neural Networks. We drew pseudo-absences from those occurrences in 
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a target group strategy (Mateo et al. 2010), a procedure to increase the likelihood that sampled 

pseudo-absences were effectively located in sites where OMUs were absent. We evaluated 

model performance with maximized Jaccard indices. For 361 OMUs with small sample sizes 

(N < 30; 46.1%), models were evaluated upon the calibration dataset. For 202 OMUs with large 

sample sizes (N ≥ 30; 25.8%), we ran an additional 3-fold spatial block cross-validation step 

(Roberts et al. 2017; Valavi et al. 2019) to improve model evaluation. We discarded models 

with a poor performance (Jaccard index < 0.95 without cross-validation; Jaccard index < 0.6 

with cross-validation), and produced an ensemble model based on the median of predictions. 

We clipped final outputs with OMU-specific buffered alpha-hulls and, where relevant, we 

constrained outputs to the east or west of the Andean continental divide, to limit the extent of 

possible distributions to reasonable areas. 

We derived species and mimicry ring distribution maps from the modeled distribution 

maps of OMUs as the likelihood of finding at least one of the OMUs belonging to the 

species/mimicry ring in the community (i.e., in the pixel). In the final post-processing step we 

computed six diversity and geographic rarity indices based directly on the stack of species and 

mimicry ring maps. Additionally, we present in SI Appendix 9 four additional indices 

evaluating similar facets of diversity with alternative methods to explore the robustness of our 

analyses to index selection. 

 

Figure 2: Species Distribution Model (SDM) workflow depicting the different analytical 

steps performed. Distribution models are computed for each OMU. Depending on sample size, 
modeling steps and settings differed. Clipping step to constrain SDM projections to plausible 
distribution ranges is not shown on the chart. Algo = algorithms used in the study, namely 
random forest (RF), gradient boosting models (GBM), and artificial neural networks (ANN); 
PAs = sets of pseudo-absences; CV = cross-validation folds; mim. rings = mimicry rings. 
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2.2.2 Diversity and geographic rarity indices 

We computed species and mimicry richness as the expected number of species and 

mimicry rings found in our communities (i.e., in each pixel), by summing the continuous 

outputs from models as recommended by Calabrese et al. (2014). To estimate phylogenetic 

diversity, we computed Faith’s Phylogenetic Diversity index (Faith, 1992) based on the 

phylogeny of the Ithomiini tribe (Chazot et al. 2019b) encompassing 339 species and 719 

OMUs. This index estimates the total length of branches connecting all the species within a 

community, capturing the quantity of evolutionary history they represent.  

We assigned geographic rarity weights for each species and mimicry ring based on their 

relative geographic ranges following the threshold-dependent exponentially decaying 

weighting scheme of Leroy et al. (2013). This method assigns weights that exponentially 

increase below the chosen rarity threshold, and rapidly decay to zero above the threshold, 

thereby limiting the impact of common species on community indices. We chose the rarity 

threshold at which the average proportion of rare species in communities was 25%, as detailed 

in Leroy et al. (2012). Next, we used these rarity weights to calculate an index of rarity for each 

community, which was the average rarity weight for all species or mimicry rings. These indices 

can be seen as proxies for relative levels of endemism since they quantify the relative 

importance of species or mimicry ring with small ranges in communities. 

To quantify the importance of mutualistic interactions, we estimated the mean size (i.e., 

number of species) for mimicry rings within each community. Communities with high mean 

mimicry ring size correspond to greater frequencies of mutualistic interactions, while 

communities with low mean mimicry ring size host in average species engaged in fewer 

mutualistic interactions. Assuming that the richest mimicry rings also tend to be the most 

abundant, species belonging to smaller mimicry rings, thus harboring locally rare patterns, are 

likely more vulnerable to predation by naïve predators, and thereby to local extinctions (Müller 

1879). As such, a low mean mimicry ring size may relate to higher vulnerability on average in 

the mimicry community. 

Additionally, we computed indices of effective richness based on Shannon’s diversity 

indices and an index of evolutionary distinctiveness based on Fair-Proportions (Redding, 2003), 

and we mapped the size of the main mimicry ring in each community (see Fig. S9.22). A 

flowchart and additional details on index computation based on our modeled distribution maps 

are provided in SI Appendix 8. The robustness of indices was tested with several sensitivity 
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analyses as described in the ODMAP protocol. Results showed no qualitative difference with 

the results presented in the main text (see Fig. S5.12 to S5.16).  

2.2.3 Estimation of index correlation 

We computed pairwise Spearman’s rho coefficients (ρ) to estimate the spatial 

congruence among our indices. We tested for the significance of these relationships with 

corrected degrees of freedom accounting for the positive spatial autocorrelation among 

observations (Clifford et al. 1989; Haining 1991). Then, we built a heatmap of spatial 

congruence among indices based on the absolute Spearman’s rho coefficients. Additionally, we 

ran a hierarchical clustering analysis based on those same absolute coefficients as distances 

from perfect correlation (i.e., 𝑑𝑑 =  1 – |𝜌𝜌|) with a complete linkage method to produce a 

dendrogram revealing classes of indices showing highly similar patterns. We distinguished four 

classes of indices that represented the main facets of biodiversity while grouping indices that 

were highly correlated and revealed virtually similar hotspots. This resulted in applying a 

threshold of |𝜌𝜌| equal to 0.94 (see details in Results). Then, we selected one index per class for 

subsequent analyses of anthropogenic threats on diversity hotspots. 

2.2.4 Spatial overlap between biodiversity hotspots and anthropogenic threats 

We used the 2009 Human Footprint index (Venter et al., 2016a) as a measure of 

anthropogenic threats to our communities of ithomiine butterflies. Despite representing 

anthropogenic pressures from a decade ago, Human Footprint remains the most comprehensive 

and recent map available for worldwide cumulative human pressures on terrestrial ecosystems 

(see Fig. S6.17). It is still widely used in similar large-scale conservation assessments, which 

allows for standardization and comparative analyses (e.g., Di Marco et al. 2018; Tucker et al. 

2018; Allan et al. 2019; Elsen et al. 2020; Maron et al. 2020). The index combines eight 

variables that measure direct human impacts on the environment, namely, (1) human population 

density, (2) night-time light pollution, (3) extent of built environments, (4) crop landcover, (5) 

pasture landcover, (6) proximity to railways, (7) to major roadways, and (8) to navigable 

waterways. 

We defined two levels of hotspots as the top 5% and 25% of communities showing the 

highest values for each of our indices. Similarly, we defined areas of very high (top 5%), high 

(top 25%), low (bottom 25%) and very low (bottom 5%) threats based on the Human Footprint 

scores of communities. Then, we characterized as risk areas communities showing the highest 

values in a facet of Ithomiini diversity (i.e., hotspots), and the highest levels of anthropogenic 
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pressures. Risk areas should be considered as priorities for reactive conservation with the goal 

of reducing high anthropogenic impact on threatened biodiversity (Brooks et al. 2006). 

Conversely, we characterized refuge areas as communities within hotspots with the lowest 

levels of pressures. Refuges should be prioritized for proactive conservation, with the goal of 

preserving these diverse areas from future anthropogenic threats (Brooks et al. 2006), providing 

shelter for a portion of ithomiine biodiversity. Finally, we mapped risk areas and refuge areas 

for four indices selected to represent our classes of highly correlated indices, namely, (1) species 

richness, (2) mean species geographic rarity, (3) mimicry richness, and (4) mean mimicry 

geographic rarity. 

2.3 Reproducibility and data availability 

We conducted all analyses using R 3.6.2 (R Core Team 2019) with packages ‘raster’ 

3.0-12 (Hijmans 2020), ‘biomod2’ 3.4.6 (Thuiller et al. 2020), ‘sf’ 0.9-0 (Pebesma 2018), 

‘blockCV’ 2.1.1 (Valavi et al. 2019), ‘alphahull’ 2.2 (Pateiro-Lopez & Rodriguez-Casal 2019), 

‘ape’ 5.3 (Paradis & Schliep 2019), ‘geiger’ 2.0.6.1 (Harmon et al. 2008), ‘Rarity’ 1.6.3 (Leroy 

2016) and others. All R scripts are available on GitHub at 

https://github.com/MaelDore/ithomiini_diversity. Species-grid-cell records and the mimicry 

classification used for modeling are available from Zenodo at 10.5281/zenodo.4696055 and 

10.5281/zenodo.5497876. 

3 Results 

We inferred the distribution for each of the 388 species and 44 mimicry rings based on the 

783 OMUs. All OMU/species/mimicry ring modeled distribution maps can be found at 

10.5281/zenodo.4673446. Examples are provided in SI Appendix 7. 

3.1 Index maps 

The Eastern slopes of the Andes appeared as the primary hotspot of Ithomiini 

taxonomic, phylogenetic and mimetic diversity, especially between 500 and 2500 m (Fig. 3a, 

3c, 3d, 3g). We estimated that some quarter-degree grid cells (hereafter referred to as 

communities) may harbor as many as 120 species, representing up to 28 mimicry rings, 

especially in Ecuador and Peru. These species totals partly represent alpha-diversity and partly 

different habitats contained within single quarter-degree grid cells. The Atlantic Forest and the 

highlands of Central America appeared as secondary hotspots but fall far behind in terms of 

https://github.com/MaelDore/ithomiini_diversity
https://doi.org/10.5281/zenodo.4696055
https://doi.org/10.5281/zenodo.5497876
https://doi.org/10.5281/zenodo.4673446
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numbers of species, mimicry richness, and phylogenetic diversity. Conversely, we estimated 

species and mimicry richness, and phylogenetic diversity, to be relatively low in regions with 

low forest cover such as in the Llanos, in the semi-arid Caatinga, in the seasonal Cerrado 

savannas, and the Pantanal wetlands (see map of bioregions in Fig. S1.4). Regions around the 

outer margin of the Ithomiini distribution such as the north of Central America, the Chaco 

region and the Pampas grasslands from Northwest Argentina to Uruguay (see map of bioregions 

in Fig. S1.4), also show relatively low levels of richness and phylogenetic diversity. 

Mean geographic rarity of species and mimicry peaked on the western slopes of the 

Andes facing the Pacific coast and appeared generally high in the Andes (Fig. 3b, 3e, 3h). Mean 

species geographic rarity was also estimated to reach high levels in Central America. 

Conversely, few species and mimicry rings with restricted ranges occurred in the species-poor 

Cerrado savannas, in the Chaco region, and in the semi-arid Caatinga (Fig. 3b, 3e). The Amazon 

basin also hosted few rare species and mimicry rings, with the notable exception of the regions 

around the course of the Amazon river in the Upper Amazon (Fig. 3b, 3e, 3h).  

Communities with the largest mimicry rings on average, that host the highest proportion 

of mutualistic interactions, were estimated to occur in Central America in Panama and Costa 

Rica, on the eastern slopes of the Andes in Ecuador and Peru, along the Amazon river, and in 

the Atlantic Forest (Fig. 3f, 3i). Conversely, communities in the species-poor Llanos, Caatinga, 

Cerrado, and Chaco regions contained the most vulnerable mimicry rings with the fewest 

species on average (Fig. 3f). 
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Figure 3: Heatmaps of the different facets of Ithomiini diversity in the Neotropics for 

quarter-degree grid cells. (a) Species richness. (b) Mean species geographic rarity based on 
species range. (c) Faith’s Phylogenetic Diversity (Faith 1992). (d) Mimicry richness (i.e., 
number of mimicry rings). (e) Mean mimicry geographic rarity based on mimicry ring range. 
(f) Mean mimicry ring size as mean number of species per mimicry ring. Maps g, h & i: Zoom 
on the northwestern Andes region for species richness (g), species geographic rarity (h), and 
mean mimicry ring size (i). Contour lines represent elevation for 500 m (dashed lines) and 2500 
m (solid lines). Political boundaries are displayed in light grey. All maps are projected under 
Mollweide’s projection, centered on the meridian 75°E. 
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3.2 Correlation among indices 

All indices were significantly positively correlated (Table S10.26: Clifford’s correction 

for Spearman’s rank test, all pairwise p-values < 0.001). We distinguished four classes of 

indices based on their levels of correlation (Fig. 4). The dendrogram and correlation heatmap 

for the full set of ten indices are presented in Fig. S9.23. 

The first class represented a set of indices strongly correlated with species richness (Fig. 

4; Table S10.27). Species richness appeared to be a very strong predictor of Faith’s 

phylogenetic diversity (Tables S10.26 & S10.27: ρ = 0.996, t = 84.0, Clifford’s df = 56.7, p < 

0.001), and mean mimicry ring size (Tables S10.26 & S10.27: ρ = 0.941, t = 21.2, Clifford’s 

df = 57.9, p < 0.001). 

Mimicry richness also correlated strongly with species richness (Tables S10.26 & 

S10.27: ρ = 0.934, t = 19.7, Clifford’s df = 56.6, p < 0.001) but it was less strongly correlated 

with the other indices of the first group (Table S10.26: ρ = 0.854 in average). Moreover, the 

relationship between species richness and mimicry richness was not strictly linear: some 

communities with the highest number of mimicry rings are not the most speciose (Fig. 

S10.24c). Since this pattern can lead to differences in hotspot identification, we attributed 

mimicry richness to a second class of indices on its own (Fig. 4). 

Geographic rarity indices (species and mimicry) were more closely correlated with each 

other (Tables S10.26 & S10.27: ρ = 0.657, t = 7.05, Clifford’s df = 65.5, p < 0.001) than with 

any other indices. However, they were less correlated with each other than the first group of 

indices. As such, they formed a third and fourth class of indices (Fig. 4). They were nonetheless 

moderately correlated with species richness (Tables S10.26 & S10.27: ρ = 0.473, t = 4.34, 

Clifford’s df = 65.4, p < 0.001 for mean species geographic rarity; ρ = 0.606, t = 5.98, Clifford’s 

df = 61.5, p < 0.001 for mean mimicry ring geographic rarity). Indeed, species-rich communities 

tended to present high mean geographic rarity values, while species-poor communities 

exhibited the entire range of relative levels of species endemism (Fig. S10.24a & S10.24b). 

Similarly, communities with high mimicry richness showed high mean mimicry geographic 

rarity, while communities with few mimicry rings could exhibit the entire range of relative 

levels of mimicry endemism (Fig. S10.24d). 

Correlations including the four additional indices computed (namely, species Shannon’s 

diversity, mimicry Shannon’s diversity, Evolutionary Distinctiveness, and the maximum 
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mimicry ring size) supported the classification in four classes of indices, and can be found in 

Appendices 9 & 10. 

 

Figure 4: Heatmap of spatial correlations across Ithomiini biodiversity indices with 

associated dendrogram depicting the hierarchical clustering of the indices. Correlations 
are estimated as the absolute values of Spearman’s rho statistics (ρ). Dendrogram built with a 
complete link method. Red dashed lines represent the threshold used to regroup indices with 
strong correlation (|ρ| = 0.94). Sp. = Species. Mim. = Mimicry. PD = Phylogenetic Diversity. 
Rarity as mean geographic rarity. 

3.3 Threat and refuge maps 

Our assessment of current anthropogenic threats on Ithomiini diversity hotspots showed 

that the northern Andean cordilleras combine high taxonomic and mimetic diversity with high 

levels of human impact, making them a region of focus for conservation. Meanwhile, remote 

portions of the Upper Amazon rainforest may act to some extent as refuges for the different 

facets of Ithomiini diversity (Fig. 5). However, the top 5% hotspots consistently demonstrated 

very limited to no overlap with potential refuge areas for all indices (Fig. 5b,d,f,h & Fig. 6b). 

We estimated hotspots of species richness to be under relatively high anthropogenic 

pressures in the Andes, with most of the mountainous areas below 2500 m coinciding with 
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species-rich communities and high human impact levels (Fig. 5a). The Atlantic Forest, as the 

secondary hotspot for Ithomiini species richness, appeared to be the most threatened with a 

large portion of its range falling under high levels of threats, including the top 5% of the most 

threatened communities (Fig. 5a). The Upper Amazon encompassed a significant part of 

potential refuge areas with low levels of threats (Fig. 5a & 6a; 33.3% of hotspots compared to 

the expected 25% overlap) but these areas showed limited overlap with the top 5% of the richest 

communities (Fig. 5b & 6b; 13% of hotspots compared to the expected 25% overlap). 

We estimated mean species geographic rarity hotspots to be relatively more threatened 

than the other facets of Ithomiini diversity, and also to deviate positively from that expected 

from a random distribution of anthropogenic threats (Fig. 5c-d & 6). This trend remained 

detectable when exploring other thresholds to define the hotspots (Fig. S11.28). Hotspots in the 

Andes, the coastal part of the Atlantic Forest, and the mountainous spine of Central America 

showed high to very high levels of threats (Fig. 5e; 42.9% of overlap compared to the expected 

25%, and 10.3% compared to the expected 5% for the highest levels of threats). Meanwhile, 

only a small portion of the Upper Amazon was estimated as a potential refuge area for 

communities with high levels of endemism (Fig. 5c & 6a; 4.5% compared to the expected 25% 

overlap), and virtually none encompassed the top 5% of the communities with the rarest species 

on average (Fig. 5d & 6b). 

Hotspots of mimicry richness showed similar patterns to species richness due to the 

relatively high spatial congruence between the two indices (Fig. 4 & 5). The main difference 

was that the Atlantic Forest did not rank as a hotspot for mimicry diversity, and therefore 

reduced perceived threat levels on mimicry richness hotspots compared to species richness 

hotspots (Fig. 5a, 5e & 6a; 15.8% for mimicry richness and 23.9% for species richness vs. 25% 

expected overlap). 

Likewise, we estimated hotspots for mean mimicry ring geographic rarity to face high 

levels of threats in the Andes, Central America, and the coastal part of the Atlantic Forest. They 

also extend moderately to the relatively less threatened part of the Upper Amazon, along the 

course of the Amazon river (Fig. 5g-h). However, the top 5% hotspots found in the Andes and 

on the Pacific coast coincided with very few potential refuge areas (Fig. 5h & 6b; 1.5% and 

0% vs. 25% and 5% expected overlaps respectively for the low and very low levels of threats) 

while being more threatened than expected from a random distribution of anthropogenic threats 

(Fig. 6b; 34.4% and 6.7% vs. 25% and 5% expected overlaps). 



CHAPTER 1: Biodiversity patterns 

50 

 

 



CHAPTER 1: Biodiversity patterns 

51 

 

Figure 5: Maps of risk and refuge areas for four predicted Ithomiini diversity hotspots. 

Only hotspots are displayed, defined as the top 25% (Panels a, c, e, g, on the left) or top 5% 
(Panels b, d, f, h, on the right) of highest-ranking communities for each index. Anthropogenic 
threat levels are based on the Human Footprint index, classified within quantiles 5% and 25% 
for lower and upper end of the distribution. Risk areas (in red) represent areas of overlap 
between high threat zones and hotspots. Refuge areas (in blue) represent areas of overlap 
between low threat zones and hotspots. Hotspots not falling into areas of high or low threat 
levels are displayed in light color. (a) & (b): Species richness. (c) & (d): Mean species 
geographic rarity based on species range. (e) & (f): Mimicry richness (i.e., number of mimicry 
rings). (g) & (h): Mean mimicry geographic rarity based on mimicry ring range. 

 

 

Figure 6: Comparison of extent of risk and refuge areas between indices. Risk areas 
represent areas of overlap between high anthropogenic pressures and biodiversity hotspots. 
Refuge areas represent areas of overlap between low anthropogenic levels and biodiversity 
hotspots. Y-axis represents the number of communities (i.e., grid cells) within risk and refuge 
areas for each biodiversity hotpots. Species rarity describes mean geographic rarity based on 
species range. Horizontal dashed lines represent the expected size of the overlap for a random 
distribution of anthropogenic threats. Percentages displayed on bars represent the proportion of 
the hotspot overlapping with the threat area. (a) For the top 25% hotspots. (b) For the top 5% 
hotspots. 

4 Discussion 

4.1 Spatial congruence of the facets of Ithomiini diversity 

In our integrative approach to mapping Ithomiini diversity, we found that estimated 

species, mimicry and phylogenetic diversity indices are strongly correlated across the 

Neotropics. All indices peaked on the eastern slopes of the Peruvian and Ecuadorian Andes, 

and in the Upper Amazon region, while the Atlantic Forest and Central American mountains 
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appeared as secondary richness hotspots (Fig. 3a, 3c, 3d). We also uncovered relatively low 

levels of biodiversity in the Llanos, the Guyana Shield and the Cerrado savannas. As is common 

in stack-SDM procedures, these predictions likely overestimate richness and diversity within 

individual grid cells because species are likely absent in at least some environmentally suitable 

grid cells where they are predicted to occur (see ODMAP in SI Appendix 5). However, this 

potential bias affects all cells evenly and therefore does not prevent the generation of 

meaningful insights into the relative patterns of biodiversity and the identification of hotspots. 

Spatial patterns of ithomiine biodiversity likely result from the combined effects of 

historical, ecological and topographical factors. The tribe likely originated in the eastern 

Andean foothills, about 26 My ago and diversified in the Andes throughout the Miocene 

(Chazot et al. 2019b). The demise of the Pebas, a large wetland system that occupied the 

lowlands on the eastern side of the Andes, led to the expansion of the modern Amazonian forest 

(Hoorn & Wesselingh 2010), allowing multiple colonizations and diversification in the Upper 

Amazon during the last 10 My (Chazot et al., 2016, 2018, 2019; De-Silva et al., 2016, 2017; 

Elias et al., 2009). Ithomiini are strongly specialized on their larval hostplants, and hostplants 

are likely a limiting resource (Drummond III & Brown Jr, 1987; Willmott & Mallet, 2004). The 

diversity of Solanaceae, on which most Ithomiini feed as larvae, also peaks in the Andes and 

the Upper Amazon (Knapp 2002; Ulloa Ulloa et al. 2017), thereby potentially enabling greater 

local Ithomiini diversity. This apparent spatial correlation between species diversity in 

ithomiines and their hostplants is consistent with a hostplant-mediated adaptive radiation 

scenario (Willmott & Freitas 2006). Finally, the topological complexity of the Andes and 

adjacent foothills creates high variability in abiotic conditions, habitat and vegetation types 

(Osborne, 2012), which generates species turn-over, mimicry shifts and fosters vicariant 

speciation (Chazot et al., 2014; Elias et al., 2009; Jiggins et al., 2006). Therefore, the tropical 

Andes represent the primary hotspot of alpha-diversity (Fig. 3a), but also beta-diversity with 

high local endemicity (Fig. 3b & 3h) and turn-over across communities, both of high interest 

for conservation. The Upper Amazon, because of its proximity and historical exchanges with 

the Andes, its soil enriched with orogenic sediments, as well as a more variable climate and 

heterogeneous forest structure hosting numerous microhabitats, tends to host more diverse 

communities than the more stable forests found in the Lower Amazon (Fig. 3a ; Sombroek 

2000; Brown Jr. & Freitas 2002; Brown Jr. 2005). 

Conservation efforts focused on hotspots of taxonomic diversity alone may not 

necessarily be effective for conserving a large fraction of species, or other aspects of 
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biodiversity (Devictor et al., 2010; Godoy-Bürki et al., 2014; P. Williams et al., 1996; Williams 

& Humphries, 1994; Zupan et al., 2014). As such, areas that host rare and endangered biological 

features should also be considered (Prendergast et al., 1993; Lawler et al., 2003; e.g., Alliance 

for Zero Extinction: Parr et al., 2009; Key Biodiversity Areas: KBA Standards and Appeals 

Committee 2020). Our mean geographic rarity indices provide a useful tool to predict areas of 

high endemicity that may differ from diversity hotspots. Still, geographic rarity indices 

appeared positively correlated with species and mimicry richness at the continental scale (Fig. 

S10.24a & S10.24d). Species-rich communities that host mostly species with small ranges were 

found in the Andean and Central American mountains (Fig. 3b). These regions harbor steep 

environmental gradients (Osborne 2012) enabling strong hostplant turn-over (Knapp 2002), 

which may limit ithomiine species ranges. Yet, some species-poor communities also coincide 

with high levels of species and mimicry rarity. Such communities are found in the outer edges 

of the global distribution of Ithomiini, especially on the Pacific slopes of the Andes (Fig. 3b, 

3e, 3h). There, a strong environmental gradient and geographic barriers such as the Pacific 

Ocean, the Peruvian coastal desert and the Central Andes could explain the restricted ranges of 

the few resident species and mimicry rings. Moreover, unusual environmental conditions found 

at the outer edges of the Ithomiini range may select for specific lineages and mimicry patterns 

due to environmental filtering. 

Overall, Ithomiini biodiversity hotspots appear fairly congruent with biodiversity 

hotspots based on vascular plant species richness and endemism (Myers et al. 2000). As such, 

the tropical Andes stand out as the primary hotspot for the multiple facets of Ithomiini 

biodiversity. Secondary hotspots of Ithomiini diversity, namely the Atlantic Forest, Central 

American mountains and the Pacific slopes of the Andes, also coincide with areas previously 

recognized as biodiversity hotspots (Myers et al. 2000). Moreover, our inferred patterns of 

diversity and endemism are in line with the trends observed for other taxa in the Neotropics. 

Angiosperms and tetrapods show a peak of diversity and endemism in the western part of 

Amazonia and in the Andean foothills (Ter Steege et al. 2003; Morawetz & Raedig 2007; Kier 

et al. 2009; Jenkins et al. 2013; Roll et al. 2017; Gumbs et al. 2020). Among insect taxa, the 

overall biodiversity patterns of Ithomiini are consistent with those of Cicindelinae beetles 

(Pearson & Carroll 2001), Adelpha butterflies (Mullen et al. 2011), Nymphidiina butterflies 

(Hall 2018) and Heliconiini butterflies (Rosser et al. 2012). Conversely, the distribution of bees 

in the Neotropics presents an opposite trend, with higher richness per area reached in the Chaco 

regions, Caatinga, dry Southern Andes, and Atlantic forest, reflecting the great success of this 
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group in xeric and seasonal habitats (Orr et al. 2021). Overall, these results support the role of 

ithomiine butterflies as suitable flagship indicator group for Neotropical butterfly diversity, and 

reinforce the position of the tropical Andes as the flagship region for biodiversity conservation 

in general and insect and butterfly conservation in particular. 

4.2 Distribution patterns of mimetic interactions 

Mimicry rings displayed strong distinctive geographic patterns, suggesting different 

underlying biogeographical trajectories (see examples in Fig. S7.20; names are provided in 

capital letters hereafter). Central America and the Atlantic Forest are secondary hotspots for 

Ithomiini species richness and host relatively large mimicry rings (Fig. 3a, 3f & 3i), but few of 

those rings are endemic to these regions (Fig. 3e). Only two mimicry rings are endemic to the 

Atlantic Forest (HEMIXANTHE and LYSIMNIA), while in Central America, some mimicry 

rings extend south to the northern Cordilleras of the Andes (DILUCIDA, EXCELSA, 

PARALLELIS), and others span a large part of the entire distribution of Ithomiini (e.g., 

AGNOSIA, EURIMEDIA, MAMERCUS). By contrast, the Amazon forest harbors about ten 

endemic mimicry rings, whose centers of species richness are located in the Upper Amazon 

(e.g., AURELIANA, MAELUS, SINILIA) close to the predicted center of origin of the tribe, 

and along the Amazon river (i.e., DOTO, EGRA). Most narrow-ranging and species-poor 

mimicry rings are found in the Andes (Fig. 3e), where mimicry rings are strongly segregated 

along the altitudinal gradients (Chazot et al. 2014). Lowland communities shelter mostly wide-

ranging rings (e.g., CONFUSA, HERMIAS, LERIDA) while highland communities host rare, 

narrow-ranging rings (e.g., DERCYLLIDAS, HEWITSONI, THEUDELINDA) comprising 

species adapted to higher altitudes. Paradoxically, mimicry rings with transparent patterns tend 

to be found in higher proportions at high elevations (e.g., THABENA-F, PANTHYALE, 

OZIA), in contrast to predictions of the thermal melanism hypothesis that opaque patterns 

should be under positive selection under colder climates (Clusella Trullas et al. 2007; Dufour 

et al. 2018). As such, further research is still needed to better understand the selective 

advantages of these transparent wings that shape the biogeography of mimicry patterns in 

ithomiines. 

Altogether, mimicry richness is expected to follow species richness since more species 

provide greater opportunities to harbor different wing patterns. In parallel, mimicry fuels 

species richness by limiting the exclusion effect of competition among co-occurring co-mimetic 

species (Gross 2008). However, aposematic signals are predicted to converge locally due to 
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positive frequency-dependent selection incurred by predators (Müller 1879). Therefore, 

mimicry richness should increase more slowly than species richness and plateau when all 

ecological niches are occupied and a (set of) wing pattern(s) already dominates each niche 

(Joron & Mallet 1998). The relationship between Ithomiini mimicry and species richness was 

positive (Fig. 4) but it appeared only slightly saturated (S10.24c). This suggests that even in 

species-rich communities there is some free ecological space, or that the effect of selection for 

wing pattern convergence is weaker than thought in Müllerian mimetic communities. For 

instance, the high numbers of mimicry rings found in the most speciose communities in the 

Ecuadorian and Peruvian tropical Andes may arise because the steep environmental and 

altitudinal gradients in these regions create a small scale mosaic of zones within each grid cell, 

hosting locally adapted species and mimicry rings with fuzzy limits (Sherratt 2006; e.g., 

altitudinal bands; Chazot et al. 2014). This dense spatial structuring facilitates the recurrent 

permeation of species and mimicry rings from adjacent zones that may not represent local 

adaptive peaks of the available niches. Yet, such species could persist, rescued by recurrent 

immigration (Brown Jr. & Freitas 2002; Joron & Iwasa 2005), thereby fueling local mimicry 

richness. From a conservation point of view, preserving high species richness should also 

ensure the preservation of mimicry richness. We estimated that rich communities may not only 

harbor the highest number of species, but also the highest proportion of mutualistic interactions 

in the ithomiine butterfly communities, with the largest mimicry rings on average (Fig 3a & 3f, 

Fig. 4). Thus, species in those communities might be better protected against secondary 

extinctions that would result from the loss of mutualistic interactions associated with the 

extirpation of their co-mimetic species. 

4.3 Threats and refuges for Ithomiini diversity hotspots 

In this study, we highlighted areas of high risks for biodiversity loss, of priority interest 

for reactive conservation to reduce high anthropogenic pressures on biodiversity. In parallel, 

we defined refuge areas, of priority interest for proactive conservation to provide shelters for 

biodiversity from human pressures (Brooks et al. 2006). As such, hotspots for species and 

mimicry richness, and phylogenetic diversity, located in the Andes and the Upper Amazon, face 

contrasting situations. While the Upper Amazon has some of the most intact ecosystems in 

remote areas, the Andes, particularly the rich communities in the western foothills in Ecuador 

and the three Andean cordilleras in Colombia, are facing high levels of human impacts (Fig. 

5a-b, 5e-f & 6). The second diversity hotspot, the Atlantic Forest, is also of great concern, 
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demonstrating the highest level of human pressures and relentless fragmentation of its forested 

habitats (Ribeiro et al. 2009). Communities with geographically rare species and mimicry rings 

are found mostly in Andean and Central American mountain ranges, coinciding with areas of 

high human impacts (Fig. 5c-d). Their situation is of particular concern since species with small 

distribution ranges are known to face higher risks of extinction (Purvis et al. 2000; Cardillo et 

al. 2008; Böhm et al. 2016), thereby also impacting the narrowly distributed mimicry rings they 

represent. 

The spatial location of threats and refuges for Ithomiini biodiversity uncovered here 

appear consistent with trends observed for vertebrates in general. The slopes of the northern 

and central Andes and the Atlantic Forest are the regions with the highest number of threatened 

and near-threatened vertebrates (along with South East Asia), while the Amazon rainforest has 

been suggested as the major refuge for vertebrate richness (Allan et al. 2019). Our study 

complements this picture by casting light on the specific situation of tropical highlands in the 

Neotropics. Mountains provide heterogeneous landscapes that host a high diversity of ithomiine 

species and mimicry rings, especially geographically rare and vulnerable ones. They act as a 

refuge for lowland species that become increasingly restricted to higher altitudes by climate 

warming (Chen et al. 2009), while species already adapted to high elevations, with narrow 

physiological specializations, are threatened by the extirpation of their climatic niche 

(Ohlemüller et al. 2008). Yet, many tropical species, with typically narrow niches and slow 

niche evolutionary rate, are suspected to lag behind the shift of their climatic envelope (Jezkova 

& Wiens 2016). In the case of Ithomiini, which rely on local mutualistic interactions with co-

mimics and host plants, the threat of community disassembly due to climate change is even 

more profound (Toby Kiers et al. 2010; Sheldon et al. 2011). Mountain habitats are particularly 

under threat from human activities, with high deforestation rates due mostly to the competition 

for arable lands (Armenteras et al. 2017). Even where human population density is low in 

remote mountain regions, natural habitats may come under threat from road-building and 

mining operations (Sonter et al. 2017; Bax et al. 2019). 

Remote portions of the Upper Amazon forest may currently act as refuges for a fraction 

of Ithomiini diversity. Yet, even within protected areas, landscape level changes can impact 

insect faunas (Hallmann et al. 2017, 2020; Salcido et al. 2020). The Upper Amazon remains 

largely exposed to climate change, notably increases in temperature and drought intensity 

(Malhi et al. 2008; Nobre et al. 2016), and to deforestation threats (Carvalho et al. 2019; 

Escobar 2020). Thus, the potential refuge areas we have mapped represent only the currently 
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less threatened areas of Ithomiini diversity hotspots, but do not guarantee the conservation of 

all the biodiversity facets they currently host, especially in the face of global changes. The next 

avenue for research is therefore to model the effects of climate change and future land use 

changes on the patterns of Ithomiini diversity to refine conservation perspectives in a changing 

world. 
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Abstract 

The most up-to-date knowledge about evolutionary relationships among ithomiine 

butterflies (Nymphalidae family: Danainae sub-family: Ithomiini tribe) has previously been 

inferred from molecular sequences extracted from nine genes. While the existing phylogeny 

offers a relevant tool for comparative phylogenic analyses, uncertainties remain regarding the 

branching of subtribes as the latest topology partly disagrees with the most parsimonious 

evolutionary scenarios regarding important morphological and ecological characters, such as 

hostplant use and caterpillar morphology. 

In order to clarify and provide greater support to the deep evolutionary relationships in 

the Ithomiini tribe, we built a large dataset of ca. 7.8 million nucleotide sites representing over 

11,000 orthologous genes from 155 taxa obtained from whole genome shotgun sequencing. We 

implemented state-of-the-art phylogenomic methods to infer a strongly supported backbone 

phylogeny that we employed to fix the deep topology of a final species-level phylogeny 

encompassing 356 out of the 396 documented species (i.e., 89.9%). 

This final phylogeny confirmed the monophyly of the core-group, a clade comprising the 

five most recent and species-rich subtribes. Our new phylogenetic hypothesis established the 

Mechanitina subtribe as the sister-group of the core-group, a position in agreement with its 

hostplant use and caterpillar morphology. However, it placed the Melinaeina subtribe in a basal 

position within the Ithomiini tribe, while an extensive higher-level phylogeny based on 

morphological characters suggested a clade composed of the subtribes Tithoreina and 

Methonina as sister to all other Ithomiini lineages, a topology more parsimonious with regard 

to hostplant use. Such basal position of Melinaeina, supported by all molecular inferences so 

far, suggests that ithomiine butterflies may have switched at least twice during their evolution 

between Apocynaceae and Solanaceae hostplants, or retained the ability to feed on both plant 

lineages, at least in early evolutionary steps. 

Overall, this new phylogenetic hypothesis provides better agreement with the putative 

evolution of morphological and ecological traits, highlighting the power of phylogenomic 

approaches to resolve previously conflicting deep evolutionary relationships. Altogether, it 

provides a stable tool for further macroevolutionary analyses in ithomiine butterflies. 

Keywords 

ancestral trait reconstruction, backbone phylogeny, clearwing butterflies, Neotropics, niche 

evolution, phylogenomics, Whole-Genome Sequencing. 
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Preamble 

 The work presented in this Chapter is still ongoing. All the phylogenomic part of the 

thesis project had to be delayed due to the COVID health crisis in 2020/2021. The fieldwork 

initially planned for March 2020 to collect samples was finally carried out in November 2021. 

Thus, the results presented here are still in development. In particular, we are finalizing a 

method to better evaluate and select the best topologies obtained through the multiple inference 

methods and molecular datasets. This should allow us to improve the support for the selection 

of the final phylogenies to include in the consensus forming the backbone phylogeny. 

Additionally, we are planning to illustrate the potential of our new species-level phylogeny to 

explore macroevolutionary questions in ithomiine butterflies by mapping ancestral climatic 

niche reconstruction in relation to inferred historical colonization routes of the group (Chazot 

et al. 2019b). 
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1 Introduction 

High-throughput sequencing technologies, also called Next-generation sequencing 

(NGS), relies on massively parallel DNA sequencing to produce vast amount of molecular 

sequences in a relatively short time and at a reduced cost (Slatko et al. 2018). Coupled with 

whole-genome shotgun (WGS) sequencing techniques that involve the random break up of 

DNA extracts into small fragments, efficiently sequenced as reads through NGS, then 

assembled into potentially chromosome-size contiguous sequences (Pareek et al. 2011; Putnam 

et al. 2016), it allows researchers to produce genome-scale molecular datasets for virtually any 

group of organisms, beyond the historical models for genetic exploration (Ellegren 2014). In 

parallel, the deployment of high-performance computing infrastructures (Lampa et al. 2013; 

Ekblom & Wolf 2014), complemented by dedicated powerful genome assembly and 

phylogenetic inference algorithms (Bankevich et al. 2012; Sohn & Nam 2016; Kozlov et al. 

2019; Minh et al. 2020b), has made it possible to process and analyze large amounts of genomic 

data in a relatively short period of time, giving birth to the field of phylogenomics (Delsuc et 

al. 2005). 

Phylogenomics pursues the goal to infer phylogenetic relationships between taxa based 

on large molecular datasets covering significant portion of genomes (Young & Gillung 2020). 

Indeed, researchers can now use the statistical power of thousands of genes and millions of 

nucleotide or amino-acid sites to provide robust phylogenetic hypotheses that resolve long-

standing debates about the relationships among major groups of organisms throughout the Tree 

of Life such as the origins of animals (Dunn et al. 2008), plants (Wickett et al. 2014), and even 

eukaryotes as a whole (Burki et al. 2020). Building upon the opportunities opened by WGS 

technologies and phylogenomics, we aimed here to clarify deep evolutionary relationships in 

clearwing butterflies (Nymphalidae Family: Danainae Sub-family: Ithomiini tribe), a group 

recently emerging as a model for mimicry comparative genetic studies (Gauthier et al. 2023). 

Long-before the advent of comparative genomics, ithomiine butterflies, also coined as 

clearwing butterflies for the remarkable transparent wing sections harbored by many species in 

the group (Fig. 1 & 2.B), have been renowned among naturalists. With few other Neotropical 

butterfly groups, ithomiines have been instrumental in the design of the first theories of mimicry 

by Henri Walter Bates (Bates 1862) and Fritz Müller (Müller 1879) inspired by their respective 

journey in the Amazonian forest in the 19th century. Indeed, adult ithomiine butterflies are 

unpalatable and share warning color patterns throughout the Neotropics (Fig. 1). Their 
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unpalability results from the accumulation of pyrrolizidine alkaloids that are collected by adult 

males feeding on Asteraceae flowers (Fig 2.B) and withered and decaying Boraginaceae plants 

(Brown Jr 1984; Trigo & Brown Jr 1990). Such unpalability is associated with aposematic 

patterns acting as warning for predators (Poulton 1890). Since similarity in warning signals 

facilitates learning from shared local predators and divides the cost of predation among 

comimetic species, Müller predicted the convergence of wing patterns across unpalatable 

species which then form ‘mimicry rings’ (Fig. 1), a phenomenon labeled as Müllerian mimicry 

(Müller 1879). Ithomiine butterflies are found in humid forests from sea level to 3000 m 

altitude, from Mexico to Northern Argentina and across some Caribbean islands, where they 

dominate numerically the mimetic communities (Poole 1970; Beccaloni 1997a). As such, they 

likely act as models for palatable (Batesian mimicry) and unpalatable (Müllerian mimicry) 

species of other butterflies and moths taxa including Heliconiini (Müller 1879), Dismorphiinae 

(Bates 1862; Poulton 1898), Dioptinae (DeVries 1994), Pericopina (Brown Jr 1979), and even 

damselflies (Outomuro et al. 2013; Corral-lopez et al. 2021). 

 

Figure 1: Dorsal view of ithomiine wing patterns illustrating the convergence of patterns across 

four mimicry rings with increasing degree of transparency. HERMIAS ring: (1) Mechanitis 
polymnia veritabilis, (2) Melinaea mneme, (3) Forbestra equicola equicoloides. AURELIANA ring: (4) 
Oleria ilerdina ilerdina, (5) Hypoleria aureliana, (6) Pseudoscada florula aureola. CONFUSA ring: 
(7) Methona confusa psamathe, (8) Paititia neglecta, (9) Thyridia psiidi. AGNOSIA ring: (10) Ithomia 
agnosia pellucida, (11) Episcada philoclea (12) Pteronymia vestilla sparsa. Credit photos: N. Chazot. 

Thanks to their abundance, their conspicuousness, and the relatively important knowledge 

of their taxonomy, biology, and distribution, ithomiines have been the topics of a large body of 

studies encompassing historical biogeography (Brown Jr 1977, 1982; Chazot et al. 2019b), 

diversification patterns (Elias et al. 2009b; Chazot et al. 2016b, 2018), community ecology 

(Beccaloni 1997b; DeVries et al. 1997; Elias et al. 2008; Willmott et al. 2017), chemical 

ecology (Brown Jr 1984; Trigo et al. 1996; Schulz et al. 2004), cytogenetics (Brown Jr et al. 
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2004; McClure et al. 2018), speciation processes (Whinnett et al. 2005; Jiggins et al. 2006), 

insect-plant coevolution (Drummond 1986; Brown & Henriques 1991), and conservation 

(Brown Jr 1977; Uehara-Prado & Freitas 2009; Doré et al. 2022, see Chapter 1). Despite, this 

important corpus of research, there are still uncertainties regarding the evolutionary 

relationships within the group. 

The Ithomiini tribe currently encompasses 396 documented species (Doré et al., 2022; 

See check list in ANNEXE 1, SI Appendix 4) that stands as the largest known radiation of 

Müllerian mimetic butterflies. One of the earliest systematic arrangement attempting to portray 

the evolutionary relationships within the group was the work of Doubleday, who used 

characters of the wing venation and male foreleg to group genera, and sort them from basal to 

derived (Doubleday 1847; Willmott & Freitas 2006). He also identified the presence of patches 

of elongated hair-like androconial scent scales on the costal margin of the dorsal hindwing of 

adult males (Fig. 2.A) as the diagnostic synapomorphy of the group. Following this seminal 

work, D’Almeida (1941) and Fox (1940, 1956) established eight of the ten currently recognized 

subtribes (initially described as tribes within the former Ithomiinae subfamily). The Methonini 

tribe was proposed initially by Mielke and Brown, 1979, and later requalified as subtribe 

Methonina (Brower et al. 2006). Finally, the Athesitina subtribe was jointly identified by 

Willmott & Freitas (2006) from on a phylogeny of 105 species encompassing 45 genera (i.e., 

26% of extant species and 100% of then described genera) based on 306 informative 

morphological and ecological characters, and Brower et al. (2006) from a phylogeny of 81 

species and 41 genera (i.e., 20% of extant species and 91.1% of genera) based on four genes 

(i.e., COI, COII, wingless, EFα). Later, Brower et al. (2014) offered to aggregate the previous 

morphological and molecular datasets to produce a new phylogenetic hypothesis for 87 species 

encompassing all 45 documented genera at that time. Garzón-Orduña et al. (2015) suggested 

an alternative time frame for divergence ages relying on independent secondary calibrations 

from a newly estimated time-calibrated phylogeny of Solanaceae (Särkinen et al. 2013). 

Finally, the most recent attempt into offering a phylogenetic hypothesis for the evolutionary 

relationships among ithomiines employed molecular data obtained from Sanger sequencing 

methods to infer a phylogeny from nine genes encompassing 340 species (i.e., 87% of extant 

species) representing all 48 currently accepted genera (Chazot et al. 2019b). 

Despite this intense systematic activity and recurrent updates building upon the 

availability of new methods and data sources, there are still uncertainties and conflicts between 

parsimonious evolution of morphological and ecological traits, and molecular-based 
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relationships. The monophyly of the different subtribes has become stable across recent 

phylogenetic hypotheses (Brower et al. 2006, 2014; Chazot et al. 2019b), with strong support 

for the monophyly of the most species-rich subtribes (i.e., Ithomiina, Napeogenina, Oleriina, 

Dircennina and Godyridina), which form a strongly supported clade characterized by higher 

diversification rates and labeled as the ‘core-group’ (Chazot et al. 2019b). Yet, branching 

patterns among the five remaining relatively species-poor and most basal subtribes (i.e., 

Tithoreina, Methonina, Melinaeina, Mechanitina, and Athesitina) remain unstable and 

sometimes poorly supported (Brower et al. 2014). In particular, the most up-to-date hypothesis 

based on Sanger sequencing proposed a topology that disagrees with the existence of a clade 

formed by Mechanitina and the core-group, placing Athesitina as the sister-group of the core-

group (Fig. 5; Chazot et al. 2019). Such putative clade, present in the former morphological 

and ecological-based approaches (Willmott & Freitas 2006), regroups all subtribes with 

members feeding on the diverse Solanum genus and also conveniently limit the number of 

inferred independent loss of subdorsal filaments in the last instar caterpillar, a conspicuous 

plesiomorphic feature shared by most basal ithomiines and other danaines, but not found in the 

core-group and Mechanitina species (Fig. 2.C & 2.D; Fig. 5). Moreover, all molecular-based 

phylogenetic hypotheses discard the clade formed by Tithoreina and Methonina as the sister-

group of all ithomiines, favoring Melinaeina for this position (Fig. 5; Brower et al. 2006, 2014; 

Chazot et al. 2019), despite Tithoreina being the only subtribe to share its hostplant family 

Apocynaceae with the Tellervini tribe, the closest relative of ithomiines (Willmott & Freitas 

2006). 
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Figure 2: Key morphological traits of ithomiine butterflies. (A) Male Napeogenes inachia 
disseminating pheromones through its elongated hair-like androconial scent scales. (B) Male 
Pseudoscada timna feeding on an Asteraceae flower providing it with pyrrolizidine alkaloids. (C) Fifth 
and last instar caterpillar of Melinaea menophilus (Melinaeina subtribe) displaying conspicuous 
subdorsal filaments (D) Fourth and last instar caterpillar of Scada karschina delicata (Mechanitina 
subtribe) harboring no subdorsal filaments. Credit photos: K. Willmott and AVL Freitas. 

Therefore, while the most up-to-date phylogeny offers a relevant tool for comparative 

phylogenic analyses (See Chapter 4), uncertainties remain regarding the branching of subtribes 

and the evolution of hostplant use and key morphological features. In this study we aimed to 

address such conflicts and provide greater support to the deep evolutionary relationships in the 

Ithomiini tribe. As such, we built the largest molecular dataset ever assembled for clearwing 

butterflies with ca. 7.8 million nucleotide sites representing over 11,000 genes from 155 taxa 

obtained from whole genome shotgun sequencing. Then, we implemented phylogenomic 

methods to infer a strongly supported backbone phylogeny which we employed to fix the deep 

topology of a final species-level phylogeny encompassing 356 out of the 396 documented 

species (i.e., 89.9%). Finally, we discuss how this new phylogenetic hypothesis may shed new 

lights on our understanding of the evolution of ithomiine butterflies. 

2 Materials & Methods 

The full analytical pipeline to produce the time-calibrated phylogeny from butterfly 

sampled caught in the Neotropical forest is summarized and illustrated in Figure 3. All steps 

are detailed below. 
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Figure 3: Analytic phylogenomic pipeline from wild specimens to a time-calibrated 

phylogeny as carried out in this study. Adapted from Allio et al. (2020b). 
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2.1 Taxon sampling, DNA extraction, and Illumina sequencing 

Ithomiine samples were collected in tropical forests during the course of several field trips 

including Ecuador, Peru, Panama and Brazil over the last twenty years and preserved in DMSO 

at -20°C. The field specimen collection was complemented with specimens from museum 

collections from the Florida National Museum of Natural History in order to cover evenly the 

diversity of species. Final sample collection for WGS analyses encompassed 151 species across 

all 48 currently accepted genera (Doré et al. 2022; See complete check list in ANNEXE 1, SI 

Appendix 4). We added to this collection 12 already assembled high-quality genomes of 

outgroup species spreading across Lepidoptera lineages including two moth species to root the 

tree. Complete metadata associated with specimens used for sequencing and phylogenomic 

inferences can be found in the SI Appendix 1, Table S1. 

 We extracted DNA from thorax or legs. Total genomic DNA extraction was performed 

with DNeasy Blood and Tissue Kits (Qiagen®) on previously ground tissues, digested 

overnight with 20 µL of proteinase K per sample. Extractions yielded DNA with a concentration 

ranging from 2 to 100 ng/µL (mean = 26.9 ng/µL ± 20.4 sd). We used the Illumina® Nextera 

DNA Sample Preparation Kit for library preparation to tag each sample with unique adapter 

sequences. We sequenced DNA through multiple multiplexed runs of Illumina® NovaSeq 6000 

S2 V1.5 (300 cycles on 150 bp paired reads) for an expected coverage depth of 25x. We 

employed Trimmomatic 0.39 (Bolger et al. 2014) to clean reads by removing sections with low 

quality bases within a sliding window (window width = 4bp, minimum mean quality Q-score 

= 15) and reads with short length (below 50 bp). We provide sequencing summary statistics for 

each sample in SI Appendix 1, Table S1. 

2.2 De novo assembly of genomes 

We assembled reads from all 151 ithomiine species independently using the genome 

assembler SPAdes 3.15.4 employing de Bruijn graph heuristics to reconstruct long DNA 

sequences as scaffolds (Bankevich et al. 2012). We ran SPAdes with default parameters 

exploring best assemblies across several k-mer sizes (k = 21, 33, 55, and 77). We favored de 

novo assembly (i.e., without reference) over mapping on a reference genome since our samples 

covered a large taxonomic diversity with different degree of divergence to any ithomiine 

reference genome that would have imped read matches for the most distant sampled, and lead 

to bias across samples. Moreover, de novo assembly allows to recover potentially any section 

of the genome, not only the annotated genes found in a given reference genomes, thus yielding 
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a larger molecular dataset suitable for further genomic exploration. We produced generic 

summary statistic (e.g., N50, number of scaffolds, genome size, GC content, etc.) to evaluate 

the quality of each genome assembly with QUAST 5.0.2 (Mikheenko et al. 2018) and employed 

BUSCO 5.2.2 (Manni et al. 2021b) to quantify the proportion of orthologous genes retrieved 

from a set of 5,286 single-copy orthologous Lepidopteran references genes identified from 16 

reference genomes (Manni et al. 2021; Lepidoptera ODB10 dataset). We provide genome 

assembly statistics for each sample in SI Appendix 1, Table S1. 

2.3 Building and curating alignments of single-copy orthologous coding 

DNA sequences (CDS) 

To build a set of orthologous sequences across our 151 WGS-based genome assemblies 

and the additional 12 outgroups genome assemblies retrieved directly from NCBI GeneBank, 

we performed a BLAST search using the tblastn tool (Gerts et al. 2006) for all genomes against 

all 54,431 available proteins in a recently published annotated high-quality reference genome 

of Melinaea menophilus encompassing ca. 500 Mbp (Gauthier et al. 2023). We removed a 

priori the mitochondrial proteins to avoid mismatch due to the difference in genetic code 

between invertebrate nuclear and mitochondrial genes. We favored the use of a unique reference 

genome to build a unique set of homologous annotated coding sequences while applying a 

sample-specific identify threshold to detect or discard matching scaffolds accounting for the 

variable degree of divergence of samples with respect to the reference genome (See SI 

Appendix 3 for details on the rationale for choosing sample-specific thresholds). We matched 

only scaffolds with more than 50 AA and built strict consensus sequences from all retained hits 

for a given assembly and reference protein. However, prior to create CDS consensus sequences, 

we discarded all scaffolds whose same region matched on several reference proteins to prevent 

risk of paralogs, and removed all hits that were embedded into other scaffolds to limit 

polymorphism leading to uninformative consensus. As such, we obtained pre-aligned sets of 

annotated CDS for each sample that putatively reflected orthologous sequences. 

As we used multiplexed runs to sequence our samples, we were exposed to the risk of 

cross-contamination (i.e., sequenced identified to the wrong sample (Ballenghien et al. 2017)). 

Thus, we used CroCo 1.1 (Simion et al. 2018) to investigate potential cross-contamination in 

our CDS dataset and filter out all dubious sequences that displayed a higher match with raw 

reads from other samples that from its original read pool (See SI Appendix 4). Next, we used 

OrthoFinder 2.5.4 (Emms & Kelly 2019) to assign all CDS sequences to orthogroups that 
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tentatively represent sets of genes descending from a single gene found in a common ancestor. 

Among those genes, orthologs refers to the genes that evolved through cladogenesis, in contrast 

with paralogs that may arise from duplication events within a lineage. Thus, in theory the 

evolutionary history of orthologous genes should depict the evolutionary relationships among 

lineages (Kuzniar et al. 2008). Here, we selected only orthogroups with one gene per species to 

limit gene duplication issues. Additionally, we removed orthogroups with annotated sequences 

associated with multiple reference proteins in the reference genome, and sets of orthogroups 

with sequences matching the same reference protein. In the end, we kept only unique 

orthogroups that encompassed one sequence per species matching a unique reference protein 

corresponding to sets of single-copy orthologous sequences. 

Each set of single-copy orthologs were mapped onto a unique reference protein during 

the BLAST search step so they are already forming alignments. Yet, to ensure the quality of 

such alignments, we ran HMMCleaner 1.8 to detect and remove poorly aligned sections of 

sequences based on hidden Markov models profiles (Di Franco et al. 2019). Additionally, we 

removed sites with few aligned nucleotides due to sequence gaps using trimA1 1.2rev59 

(Capella-Gutiérrez et al. 2009) with the gappyout parameter to detect bimodal distributions of 

gaps across sites and remove the ones falling into the poorly represented portion. Once those 

cleaning steps were achieved, we kept only sample sequences that had 30% of sites overlapping 

with at least 50% of sequences in order to minimize missing data in the final alignments. 

Finally, we used the R package phylter 0.9.3 (de Vienne et al. 2023) to detect overall outlier 

sequences based on gene distance matrices with an adjusted k parameter (k = 4.0) to balance 

the gain in matrix concordance gain with limited data loss. We removed all individual outlier 

sequences from alignments and we got rid of entire alignments with more than 20% of outliers 

detected to be conservative. 

We provide BLAST search, cross-contamination cleaning, orthology assignment, and 

outlier detection statistics for each sample in SI Appendix 1, Table S1. 

2.4 Generating molecular datasets 

2.4.1 WGS datasets 

After all the curation steps, we were left with 16,859 alignments of single-copy 

orthologous genes including from 2 to 153 taxa distributed across 163 species (151 ithomiines 

+ 12 outgroups). We used AMAS (Borowiec 2016) to concatenate genes into datasets with a 
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combination of gene and taxa representativeness thresholds, and compute the number of 

remaining genes, taxa, and informative sites for each threshold combination. Histograms and 

heatmaps summarizing the exploration of dataset features according to threshold choices are 

available in SI Appendix 5. As a result of this exploration, we chose to design two datasets to 

account for the effect of missing data on downstream analyses: (i) an Inclusive dataset aiming 

to maximize the number of genes and taxa involved, even if some gene alignments encompass 

few taxa, and some species record few genes; (ii) a Conservative dataset aiming to limit missing 

data and remove genes with low representativeness. As such, we set a minimum of 4 taxa per 

alignments (the minimum to build quartet trees) in the Inclusive dataset, while we retained only 

genes encompassing at least half of taxa (i.e., 82 species) for the Conservative dataset. In both 

datasets, we removed taxa present in less than 0.5% of the alignments (i.e., with sequences 

recovered for less than 84 genes) to limit missing data while keeping a maximum of taxa. 

2.4.2 A new comprehensive molecular dataset 

Our WGS datasets were designed to produce phylogenetic hypotheses for the backbone 

phylogeny in order to resolve and support deep evolutionary relationships within ithomiine 

lineages. Yet, even the most inclusive dataset covered ‘only’ 143 ithomiines species (i.e., 36.1% 

of extant species). In order to expand the taxonomic scope of our final phylogeny, we extracted 

from our WGS datasets the sequences for the eight protein-coding genes covering 340 species 

in Chazot et al. (2019) and merged both datasets. Since nine former species used in Chazot et 

al. (2019) had been split in two separated taxa since, we retrieved individual sequences for each 

pair of taxa from NCBI GeneBank to replace the former chimeric consensus sequences used by 

Chazot et al. (2019). Additionally, we assembled mitochondrial sequences (mtDNA) from our 

pools of WGS reads using MitoFinder 1.4.1 (Allio et al. 2020a) for all sequenced taxa, and also 

added newly sequenced barcode data for 3 new species (Hypoleria asellia, Hypomenitis nsp4, 

Oleria bifurcata). Then, we used MUSCLE 5.1 (Edgar 2022) to align each newly 

complemented set of gene sequences and used HMMCleaner 1.8 and trimA1 1.2rev59 to curate 

final alignments. 

Complete metadata associated with specimens and sequences used in the Comprehensive 

dataset forming taxa-rich alignments used in final phylogenetic inferences, including 

taxonomic updates for species names and chimera split can be found in the SI Appendix 2, 

Table S2. 
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2.5 Phylogenetic inferences 

For each of the two WGS datasets, we performed SuperTree inferences assembled from 

individual gene trees and SuperMatrix inferences based on concatenated alignments. 

2.5.1 Phylogenetic inferences with SuperTree 

We first estimated the best fitted gene tree for each gene alignment with IQ-TREE 2.2.0.3 

(Minh et al. 2020b) using maximum likelihood optimization and full model selection across all 

available nucleotide substitution models including free rate categories (Parameter settings: -m 

MFP -mrate R) with ModelFinder (Kalyaanamoorthy et al. 2017) to visualize the complexity 

heterogeneity in gene evolution. Free rates categories are a more flexible and generalized 

alternative to discretized Gamma distributions to model heterogeneity in substitution rates 

across sites that allowed to assigned any substitution rate values to each category of sites 

(Soubrier et al. 2012). Since gene trees inferred with GTR models (Tavaré 1986) showed a 

similar global behavior to trees inferred with models selected via ModelFinder, we used the 

best fitted GTR + R models for downstream analyses (See SI Appendix 6 for visualization of 

gene evolution complexity and comparison of substitution models for ML gene tree inferences). 

To avoid poorly supported relationships to have an impact on the SuperTree inferences, we 

collapsed all branches with a length inferior to 0.5 divided by the number of sites in the 

alignment or an Ultrafast Bootstrap support (UFBS) below 10% (Minh et al. 2013). 

Next, we used ASTRAL-III 5.7.8 (Zhang et al. 2018) to infer a SuperTree from both 

Inclusive and Conservative sets of previously inferred gene trees. ASTRAL is a summary 

method : it finds the species tree that maximizes the number of induced quartet trees in unrooted 

gene trees that are shared by the species tree. We estimated normalized quartet scores as support 

values for each node computed as the proportion of induced quartet gene trees satisfied by the 

topology of a given branch (Mirarab et al. 2014). Additionally, we computed local posterior 

probabilities as the probability that the branch were present in the true species tree which 

generated the input gene trees assuming a multispecies coalescence model (Sayyari & Mirarab 

2016). Finally, we assessed the congruence between individual gene trees and the final species 

SuperTrees obtained for each dataset (See SI Appendix 7). 

2.5.2 Phylogenetic inference with SuperMatrix 

We conducted maximum likelihood estimates of best species trees based on concatenated 

alignments in SuperMatrices with IQ-TREE 2.2.0.3 (Minh et al. 2020b). First, we ran a partition 



CHAPTER 2: Ithomiini phylogenomics 
 

73 

 

merging run without inferring the species tree (Parameter settings: -m MF+MERGE), only to 

obtain the partitioning of genes, with a limited set of GTR models with free rates categories 

ranging from 2 to 6 (Parameter settings: -mset GTR -mrate R -cmin 2 -cmax 6) to cover most 

of best model options selected from gene tree inferences (See SI Appendix 6). We obtained 332 

partitions for the 11,012 genes in the Inclusive dataset and 178 partitions for 3,518 genes in the 

Conservative dataset. Second, we ran the final species tree inferences with ModelFinder 

selecting among all available substitution models for nucleotides, using the gene partition 

scheme inferred in the previous step (Parameter settings: -m MFP). We estimated node support 

values with 1000 UFBS and SH-aLRT tests (Guindon et al. 2010). We did not run Bayesian 

inferences to obtain backbone topologies since the size of our datasets made it unrealistic to 

achieve MCMC convergence in reasonable time frames (e.g., Allio et al. 2020b). 

2.5.3 Supporting backbone topologies and building a consensus 

In complement to normalized quartet scores and local posterior probabilities for 

SuperTrees and UFBS and SH-aLRT tests for SuperMatrix-based species trees, we computed 

gene and site concordance factors (gCF and sCF; Minh et al. 2020a) in IQ-TREE to evaluate 

the percentage of gene trees and sites that support a particular branch topology. We also tested 

if gCF and sCF scores for the current local quartet topology were higher than the support 

provided for the two local NNI alternative quartet topologies, known as discordance factors 

(i.e., whether gCF > max(gDF1, gDF2) and sCF > max(sDF1, sDF2); Minh et al. 2020a). Then, 

we compared node support values across all WGS-based phylogenetic hypotheses, for different 

taxonomic levels (i.e., inter-subtribes, subtribes, intra-subtribes). 

Beyond the comparison of node supports values across the four final backbone 

phylogenies (i.e., two datasets × two inference methods), we are planning to compare the 

support values for global topologies using gene-wise phylogenetic signal (ΔGLS) in the 

framework described in Shen et al. (2021). Such index allows us to visualize and compare the 

support provided by each gene alignment to a set of alternative global topology to evaluate. Our 

goal is to compare the mean support for each global topology from the sets of gene alignments 

and associated gene trees based on maximum likelihood and normalized quartet scores. We 

suspect that such framework will provide even stronger support for the selection of the suitable 

backbone topologies than the comparison of node support values already does. 
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Based on the previous support metrics, we selected the two topologies inferred from the 

concatenated SuperMatrices as the most supported topologies. Thus, we build the final 

backbone topology as the strict consensus between these two selected topologies. 

2.5.4 Inferring species tree with all taxa 

We estimated the final comprehensive phylogeny that encompasses all ithomiine species 

with available molecular data via maximum likelihood optimization in IQ-TREE based on the 

Comprehensive dataset encompassing 368 taxa and 9,930 sites across 8 genes. We ran a GTR 

model with gene partition scheme selecting best number of free rate categories for each gene 

model (Parameter settings: -m MFP -mset GTR -mrate R). Crucially, we constrained the tree 

topology exploration to satisfy the backbone consensus topology estimated from WGS data for 

the 155 species included in the backbone, while all other branches could be swapped around 

during optimization (Parameter settings: -g backbone_phylogeny.tree). 

2.6 Estimation of divergence times 

Finally, we performed Bayesian inferences of the node ages using BEAST 2.5.0 

(Bouckaert et al. 2019). Time-calibration of the consensus backbone phylogeny based on the 

top 1% of genes (ca. 150,000 sites across 110 genes) with highest taxa representativeness from 

the WGS dataset is still ongoing due to the important computation time needed (10 million of 

iterations reached in ca. two weeks of CPU-time). The final goal is to use the 95% HPD intervals 

obtained for internal node ages of the in-group of the time-calibrated backbone phylogeny as 

secondary calibrations for the final comprehensive phylogeny. Meanwhile, we ran time 

calibration for the final comprehensive phylogeny using directly the alignments of the 

Comprehensive dataset (9,930 sites across 8 genes). 

For all analyses, we fitted an Optimized Relaxed Clock model (Douglas et al. 2021) with 

uncorrelated substitution rates of branches drawn from a unique log-normal distribution (UCLN 

model) based on a birth-death tree prior for speciation/extinction events. Since no fossil are 

available for ithomiine butterflies, we applied five secondary calibrations on ingroup 

(Ithomiini) internal nodes as uniform priors with upper bounds based on the maximum 

estimated age of the Solanaceae hostplant lineage associated with each ithomiine clade, as 

retrieved from (De-Silva et al. 2017). We applied ten additional secondary calibrations on 

outgroup nodes based on larger phylogenies of Nymphalidae (Chazot et al. 2021), 

Papilionoidea (Chazot et al. 2019a), and Lepidoptera as a whole (Kawahara et al. 2019). These 
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calibrations consisted in normal priors adjusted such as their 95% confidence interval matched 

with the 95% Height Posterior Density (HPD) of node age posterior distributions reported in 

these higher phylogenies (See SI Appendix 8, Table S3 for details on secondary calibrations). 

All Bayesian exploration of parameter space were performed using the ML-inferred 

comprehensive phylogeny as fixed topology: only the branch lengths were allowed to vary. We 

ran two independent MCMC chains with 108 iterations and merged both run after checking for 

convergence and removal of the first 107 iterations as a conservative burn-in. Credible ranges 

of node ages were assessed as the 95% Height Posterior Density (95% HPD) from the posterior 

distributions of nod ages in the remaining trees. 

3 Results 

3.1 WGS sequencing and Genome assembly 

Illumina® NovaSeq WGS sequencing provided an average of 2 × 62.4 million paired-

reads per sample. Once filtered with Trimmomatic 0.39 (Bolger et al. 2014) for high-quality 

reads, we recorded 2 × 50.7 million paired-reads per sample, yielding an average coverage 

depth of 34.4x. We obtained 151 genome assemblies from SPAdes 3.15.4 (Bankevich et al. 

2012) with a mean size of 237.7 Mbp that scales to ca. 47.6% of total genome size in comparison 

to high-quality chromosome-scale genome assemblies from two Melinaea species (Gauthier et 

al. 2023). These assemblies were highly fragmented with 4,922 scaffolds and a N50 of 4,908 

bp in average that yielded a 52.9% recovery rate for complete genes in the BUSCO set. Yet, we 

were able to reconstruct long sequences with the maximum scaffold size being 133.5 Kbp in 

average. Besides, we obtained a high recovery rates for the mitochondrial genome with 13.6 

genes out of 15 (90.7%) recovered per samples representing 11,786 bp in average. We provide 

WGS sequencing and genome assembly statistics for each WGS sample in SI Appendix 1, 

Table S1. 

3.2 Curation of the molecular datasets for phylogenetics 

Using custom BLAST search procedures, we reconstructed 20,534 proteins per sample in 

average, representing 37.7% of the 54,431 suspected genes available in the reference genome 

(Gauthier et al. 2023). We detected 8.8% of dubious sequences via cross-contamination checks 

conducted with CroCo 1.1 (Simion et al. 2018). Contrary to expectations (see Allio et al. 2021), 

this cross-contamination step did not allow us to identify a higher number of orthogroups, but 

it efficiently cleaned sequences initially forming dubious small putative orthogroups with very 
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few sequences/taxa involved (See SI Appendix 4, Figure S2). We retrieved 16,859 alignments 

of single-copy orthologous genes including from 2 to 153 taxa distributed across 163 species 

(151 ithomiines + 12 outgroups). Each taxon was represented in 5,341 alignments in average. 

We further removed 8.7% of sequences detected as outliers on the basis of abnormal distances 

within and between alignments. We removed 8 taxa that were present in less than 0.5% of the 

alignments (i.e., with sequences recovered for less than 84 genes) and we applied two minimum 

taxa representativeness thresholds (i.e., NInclusive ≤ 4 taxa and NConservative ≤ 82 taxa) to design 

our Inclusive and Conservative datasets representing varying degree of missing information. 

As a result, the Inclusive dataset comprised 155 taxa and 11,012 genes for 7,853,694 nucleotide 

sites including 69.1% of missing data, 40.2% of variable sites, and 30.4% of parsimony-

informative sites. In average, each sample was represented by 3,116,928 sites across 3,840 

genes including 26,7% of missing data among available genes with only 0,3% of undefined 

nucleotides. Meanwhile, the Conservative dataset encompassed the same 155 taxa, and 3,518 

genes for 3,327,087 sites including 50.8% of missing data, 50.2% of variable sites, and 40.9% 

of parsimony-informative sites. On average, each sample featured 2,093,747 sites across 2,165 

genes including 27,4% of missing data among available genes with only 0,2% of undefined 

nucleotides. We provide BLAST search, cross-contamination cleaning, orthology assignment, 

and outlier detection statistics for each WGS sample in SI Appendix 1, Table S1. 

 Building upon a previously assembled dataset of eight genes encompassing initially 340 

ithomiine species (Chazot et al. 2019b), we assembled a new Comprehensive dataset 

aggregating the previous data, our WGS data, new barcode information, and additional 

sequences from NCBI GeneBank to generate taxon-rich alignments used to produce the final 

comprehensive phylogeny. This Comprehensive dataset comprised 9,930 sites across 8 genes 

for 368 taxa (356 ithomiines + 12 outgroups) covering 89.9% of the 396 documented ithomiine 

species (Doré et al. 2022). It included 59.7% of missing data, 47.4% of variable sites, and 37.8% 

of parsimony-informative sites. On average, each sample featured 5,648 sites across 4.6 genes 

including 25.8% of missing data among available genes with only 0.2% of undefined 

nucleotides. We provide metadata and summary statistics for each taxon found in the 

Comprehensive dataset in SI Appendix 2, Table S2. 

3.3 Support and selection of backbone topologies 

We obtained four different phylogenetic hypotheses based on WGS data for the backbone 

topology crossing our two datasets (Inclusive vs. Conservative) vs. two phylogenetic inference 
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methods (SuperMatrix with IQ-TREE vs. SuperTree with ASTRAL), provided in SI Appendix 

9 (Fig. S9, S10, S11 & S12). The deep relationships between subtribes were similar for the two 

SuperMatrix-based phylogenies, while the two datasets led to different deep topologies for the 

SuperTrees. All four topologies suggested the existence of a clade formed by Mechanitina and 

the core-group, which encompasses all subtribes with members feeding on the diverse Solanum 

genus, and having lost their subdorsal filaments in the last instar caterpillar (Willmott & Freitas 

2006). However, the branching of the remaining four subtribes (i.e., Melinaeina, Athesitina, 

Tithoreina, and Methonina) varies across topologies. The two SuperTree topologies suggested 

an unusual (i.e., never suspected in previous systematic explorations) unique clade for these 

four tribes, sister to the ‘Solanum-feeders’ clade, while the SuperMatrix topologies both 

featured the Melinaeina tribe as sister to all other ithomiines. Additionally, the SuperTree 

topology based on the Inclusive dataset did not retrieve the well-established 

Tithoreina/Methonina clade found in all modern propositions (Brower et al. 2006, 2014; 

Willmott & Freitas 2006; Chazot et al. 2019b). At a more recent scale, the relationships between 

genera within the subtribes were almost all identical across the four phylogenies. Most genera 

were established as monophyletic, and the few ones that were not (i.e., Hypothyris-Hyalyris 

complex, paraphyletic Hypoleria and Hyalenna, Episcada-Ceratinia complex) were similarly 

problematic across all four phylogenetic hypotheses, hinting for the need of taxonomic 

revisions. 

Altogether, nodes showed high support values across all topologies with mean UFBS 

scores ranging from 98.2% to 98.6% for SuperMatrix-based trees, and mean local posterior 

probabilities ranging from 97.4% and 98.1% for SuperTrees. The nodes suggesting the 

monophyly of the subtribes obtained the highest support, while the conflicting nodes reflecting 

deep evolutionary relationships across subtribes received the lowest support across all four 

phylogenies (Table 1). In particular, SuperTree topologies provided low supports for the 

relationships between subtribes with 4 inter-subtribes nodes out of 10 failing to demonstrate 

higher site supports for their current local topology compare to NNI alternatives, while also 

showing relatively low gCF scores in average (i.e., 20.7 % and 21.7 %; Table 1).  
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Table 1: Node support values across all four WGS-based phylogenetic hypotheses. gCF = 
gene concordance factors as the percentage of decisive gene trees supporting the local branch 
topology from the species tree. sCF = site concordance factors as the percentage of decisive 
sites supporting the local branch topology from the species tree. gDF and sDF relate to support 
to the two alternative NNI topologies of local branches known as discordance factors. We tested 
whether concordance factors scored higher than any discordance factors. UFBS = Ultra-Fast 
Bootstraps. SH-aLRT = alternative likelihood ratio tests. Scores in bold represent the highest 
support across phylogenetic hypotheses for a given set of nodes and support index. Scores in 
red highlight relatively low support values. 

 

SuperMatrix 

(ML with IQ-TREE) 
 SuperTree 

(Summary with ASTRAL) 

 

Inclusive 

dataset 

(N = 11,012) 

Conservative 

dataset 

(N = 3,518) 

 
Inclusive 

dataset 

(N = 11,012) 

Conservative 

dataset 

(N = 3,518) 

gCF Mean ± sd Mean ± sd   Mean ± sd Mean ± sd 

All nodes 46.6 ± 25.8 47.3 ± 26.8    45.7 ± 26.2 47.9 ± 26.9 

Ingroup nodes 47.0 ± 25.9 48.1 ± 27.2  46.8 ± 26.1 49.0 ± 26.9 

Inter-subtribe nodes 40.6 ± 22.8  43.0 ± 23.5   20.7 ± 15.0 21.7 ± 15.4 

Subtribe crown nodes 59.5 ± 30.1  59.9 ± 18.8  56.4 ± 20.8 59.2 ± 20.6 

Intra-subtribe nodes  46.5 ± 25.7  47.1 ± 27.1   47.9 ± 26.1 50.2 ± 26.2 
      

sCF Mean ± sd Mean ± sd   Mean ± sd Mean ± sd 

All nodes 51.3 ± 16.8 51.2 ± 17.0   51.6 ± 16.9 51.3 ± 16.8 

Ingroup nodes 52.4 ± 17.1 51.7 ± 17.2  52.3 ± 17.2 52.1 ± 17.1 

Inter-subtribe nodes 46.3 ± 13.5 46.0 ± 13.2   39.7 ± 8.3 39.7 ± 8.4 

Subtribe crown nodes 61.2 ± 21.3 64.2 ± 19.9  53.0 ± 15.2 52.6 ± 15.2 

Intra-subtribe nodes 51.7 ± 16.7 51.1 ± 16.9   53.2 ± 17.5 53.0 ± 17.4 
      

gCF > max(gDF1, gDF2) 

# support 

(%) # support (%)   

# support 

(%) # support (%) 

All nodes 147 (96.7 %) 144 (94.1 %)   143 (92.9 %) 145 (94.8 %) 

Ingroup nodes 139 (97.9 %) 134 (94.4 %)  134 (94.4 %) 136 (95.8 %) 

Inter-subtribe nodes 9 (100%) 9 (100%)   7 (77.8%) 9 (100%) 

Subtribe crown nodes 10 (100%) 10 (100%)  10 (100%) 10 (100%) 

Intra-subtribe nodes 120 (97.6 %) 116 (94.3 %)   117 (95.1 %) 117 (95.1 %) 
      

sCF > max(sDF1, sDF2) 

# support 

(%) # support (%)   

# support 

(%) # support (%) 

All nodes 136 (89.5 %) 135 (88.2 %)   138 (90.8 %) 137 (90.2 %) 

Ingroup nodes 128 (90.1 %) 125 (88.0 %)  130 (91.5 %) 128 (90.1 %) 

Inter-subtribe nodes 8 (88.9%) 8 (88.9%)   6 (66.7%) 6 (66.7%) 

Subtribe crown nodes 10 (100%) 10 (100%)  10 (100%) 10 (100%) 

Intra-subtribe nodes 110 (89.4 %) 107 (87.0 %)   114 (92.7 %) 112 (91.1 %) 
      

UFBS Mean ± sd Mean ± sd   Mean ± sd Mean ± sd 

All nodes 98.6 ± 5.8 98.2 ± 8.8   NA NA 

Ingroup nodes 98.5 ± 6.0 98.1 ± 9.2  NA NA 
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Inter-subtribe nodes 99.3 ± 1.0 97.3 ± 4.0   NA NA 

Subtribe crown nodes 100 ± 0.0 100 ± 0.0  NA NA 

Intra-subtribe nodes 98.3 ± 6.4 98.0 ± 9.8   NA NA 
      

SH-aLRT Mean ± sd Mean ± sd   Mean ± sd Mean ± sd 

All nodes 99.2 ± 7.1 98.6 ± 6.7   NA NA 

Ingroup nodes 99.1 ± 7.4 98.5 ± 6.9  NA NA 

Inter-subtribe nodes 100 ± 0.0 100 ± 0.0   NA NA 

Subtribe crown nodes 100 ± 0.0 100 ± 0.0  NA NA 

Intra-subtribe nodes 99.0 ± 8.0 98.3 ± 7.4   NA NA 

      
Normalized Quartet 

scores  Mean ± sd Mean ± sd   Mean ± sd Mean ± sd 

All nodes NA NA   65.1 ± 20.8 66.4 ± 21.1 

Ingroup nodes NA NA  65.9 ± 20.9 67.4 ± 21.2 

Inter-subtribe nodes NA NA   55.6 ± 19.6 57.8 ± 21.5 

Subtribe crown nodes NA NA  80.3 ± 16.8 82.8 ± 16.7 

Intra-subtribe nodes NA NA   65.5 ± 20.8 66.9 ± 21.0 

      
Local posterior 

probabilities Mean ± sd Mean ± sd   Mean ± sd Mean ± sd 

All nodes NA NA   98.1 ± 9.9 97.4 ± 11.5 

Ingroup nodes NA NA  98.0 ± 10.3 97.3 ± 11.9 

Inter-subtribe nodes NA NA   99.0 ± 3.0 90.3 ± 29.0 

Subtribe crown nodes NA NA  100 ± 0.0 100 ± 0.0 

Intra-subtribe nodes NA NA   97.8 ± 11.0 97.6 ± 10.2 

 

As a result, we selected the two topologies based on the Inclusive and Conservative 

datasets inferred with IQ-TREE from the concatenated SuperMatrices as the best supported 

topologies. Thus, we built the final backbone topology as the strict consensus between these 

two selected topologies. We elaborate further on the rationale behind this selection in the 

Discussion section. 

The consensus backbone topology encompassed 143 ithomiine species and 12 outgroups 

and comprised four polytomies reflecting minor disagreements between the two selected 

topologies for the consensus (Fig. 3). Such polytomies reflected uncertainties in the branching 

of Mechanitis species, Pteronymia species, the Ceratinia-Episcada complex, and the 

Hypothyris-Hypoleria complex. We aimed to address them with the taxa-rich alignments 

providing higher taxonomic sampling in these groups for the inference of the final 

comprehensive phylogeny (Fig. 4).  
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Figure 3: Consensus topology for the backbone phylogeny inferred from WGS data 

encompassing 143 ithomiine species and 12 outgroups. The strict consensus was obtained 
by merging final topology inferred with IQ-TREE from two SuperMatrices encompassing 
respectively 11,012 genes and 3,518 genes. It includes four polytomies, symbolized with red 
stars, reflecting minor disagreements between the two topologies used for the consensus. 
Branch lengths relates to the inferred mean number of substitutions per site along each branch. 
Colored clades correspond to the ten known subtribes. Node support values are illustrated with 
colored symbols according to mean UFBS scores and gene concordance factors (gCF) tests 
against support for alternative local topologies (i.e., gDF = discordance factors). 

3.4 Time-calibrated comprehensive phylogeny 

The final comprehensive species-level phylogeny inferred from the Comprehensive 

dataset using the fixed backbone topology established from WGS data encompassed 368 taxa 

(356 ithomiines + 12 outgroups) covering 89.9% of the 396 documented ithomiine species 

(Doré et al. 2022). Its topology was generally well supported with 86.0 % supports from UFBS 

in average, even for nodes establishing deep evolutionary relationships across subtribes (mean 

UFBS = 92.7%). 

We performed Bayesian inferences of the node ages of the final comprehensive 

phylogeny using secondary calibrations based on the ages of hostplant lineages for ingroup 

calibrations and reference Lepidopteran phylogenies for the outgroup calibrations. We obtained 

a crown age of 29.8 My for the Ithomiini tribe (95% HDP: 27.3-32.0 My) despite a prior set 

around 24.8 My following the most up-to-date calibration for Nymphalidae butterflies (Chazot 

et al. 2021). All subtribes diverged relatively early (within the first 8 My), but the current extent 

diversity within each subtribe emerged mostly in the late Miocene (ca. 12-8 My) likely 

following the demise of the Pebas aquatic system in Western Amazonia (Fig. 4; Chazot et al. 

2019b). 
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Figure 4: Comprehensive time-calibrated species-level phylogeny encompassing 356 

ithomiine species and 12 outgroups. The topology was inferred with IQ-TREE from the 
SuperMatrix of the Comprehensive dataset encompassing 9,930 sites across 8 genes, using the 
WGS-based backbone phylogeny as constraints for the topology exploration. Node ages were 
estimated from Bayesian inference with BEAST using secondary calibrations from hostplant 
and higher-level phylogenies. Median node ages are shown inside their 95% Height Posterior 
Density intervals obtained through Bayesian inference (red bars). Colored clades correspond to 
the ten known subtribes. Detailed time-calibrated phylogenies zooming on specific clades are 
available in SI Appendix 10. 

Overall, node ages in our phylogeny were generally slightly older but still compatible 

with those inferred in Chazot et al. (2019b). However, they generally proved significantly older 

than in Garzón-Orduña et al. (2015), a study that relied on secondary calibration from unlikely 
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young ages for Solanaceae (Särkinen et al. 2013), the main hostplants of ithomiines (Table 2; 

see Lisa De-Silva et al. (2017) for further discussion of such differences). 

Table 2: Crown age estimates for major ithomiine clades obtained from secondary calibrations in 

this study, compared to previous inferences and initial priors. Calibrations were performed on the 
Comprehensive dataset covering 9,930 sites across 8 genes using an Optimized Relaxed Clock model 
with an uncorrelated log-normal model for substitution rates and based on a birth-death tree prior for 
speciation/extinction events. Ages are shown in My as median estimates with 95% HPD intervals. Priors 
relates to uniform distribution bounded with the maximum age estimates of associated hostplant 
lineages, except for the Ithomiini tribe were a normal distribution based on previous reference estimates 
was used and for which bounds represent the 95% confidence interval (*).  

  This study  Chazot et al., 

2019b 
 Garzón-Orduña           

et al., 2015 
 Set priors 

Node  Median - +  Median - +   Median - +   - + 

Ithomiini   29.8 27.3 32.0   26.4 22.0 31.5   31.04 23.0 39.0   21.8* 27.8* 

Melinaeina  19.8 17.1 27.7  18.4 15.7 21.7  12.5 10.0 14.0  0.0 37.2 

Methonina   11.6 7.2 16.1   6.1 4.6 8.0   10.6 7.0 13.0   0.0 41.3 

Tithoreina  20.8 17.0 24.9  16.8 13.6 20.0  11.1 8.0 14.0  NA NA 

Athesitina   18.8 13.0 24.8   12.9 10.0 16.6   11.6 9.0 13.0   0.0 24.8 

Mechanitina  22.1 17.8 26.3  21.6 16.3 26.3  13.1 11.0 15.1  NA NA 

Core-group   25.9 23.4 28.5   19.1 16.6 22.3   13.7 11.9 15.0   NA NA 

 

4 Discussion 

4.1 Selection of WGS-based backbone topologies 

The uncertainty accompanying the evolutionary relationships across ithomiine subtribes 

is a known phenomenon (Brower et al. 2014) and a primary impulse for this study. Such 

instability observed across the successive phylogenetic hypotheses (Willmott & Freitas 2006; 

Garzón-Orduña et al. 2015; Chazot et al. 2019b) is apparent in the conflicts showed in the 

results of our four different phylogenetic hypotheses for the backbone topology (SI Appendix 

9), and the relatively low support provided to these relationships (See Inter-subtribe nods in 

Table 1). The difficulty to settle on a robust topology for the relationships among ithomiine 

subtribes likely arise from the historical biogeography of the group. Ithomiini are suspected to 

have started diversifying along the early Andean foothills at the transition with Western 

Amazonia, coinciding with the uplift of the eastern cordillera of Central Andes during the late 

Oligocene (Eude et al. 2015; Chazot et al. 2019b). These early lineages underwent a rapid early 

diversification that is reflected in the short branches featured in both the uncalibrated ML 

optimized trees illustrating few substitutions inferred along branches (SI Appendix 9, Fig. S9 
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& S10), and the final time-calibrated tree depicting rapid diversification (Fig. 4). Such rapid 

radiation may have induced high degree of incomplete lineage sorting (ILS) across the subtribes 

that is notably problematic for deep evolutionary inferences (Suh et al. 2015; Esquerré et al. 

2022; Feng et al. 2022). 

Summary methods based on congruency in gene-level phylogenetic signal such as 

ASTRAL (Mirarab et al. 2014) are quick and efficient solutions to deal with large molecular 

dataset. In our case, they provided a final topology in three days against more than 45 days for 

maximum likelihood optimizations, while Bayesian inferences were considered virtually 

infeasible in reasonable time. However, despite being designed to handle ILS by considering a 

consensus among the potentially divergent evolutionary histories produced by independent 

genes, thus being statistically consistent with the multi-species coalescent model (Zhang et al. 

2018), we struggled to come up with robust phylogenetic hypotheses based on a summary 

approach (see gCF, sCF and associated tests for SuperTree phylogenies in Table 1). Such issue 

may hint for large incongruency in phylogenetic signal at gene-level due to high ILS associated 

with the rapid early radiation of subtribes. Indeed, ILS can affect large portion of the genome 

(e.g., 50% of marsupial genomes in Feng et al. (2022); 35% of the analyzed loci of neoavian 

birds in Suh et al. (2015), even if incongruency seems reasonable in our dataset (See SI 

Appendix 7, Fig. S7 & S8). Moreover, the incorporation of alignments encompassing few 

species may have increased the risk of gene tree estimation errors due to fewer available 

information to guarantee homology in the alignment, which could limit the performance of 

summary methods (Molloy & Warnow 2018). 

Altogether, we obtained four different phylogenetic hypotheses for the backbone 

topology based on phylogenomic datasets. While globally well-supported, SuperTrees showed 

inconsistency regarding the branching of subtribes with different hypotheses depending on the 

degree of missing data and the completeness of the gene dataset used (i.e., Inclusive vs. 

Conservative; see SI Appendix 9, Fig. S9 & S10). Both hypotheses yielded relatively poor 

supports with low gCF and sCF associated to relationships among subtribes that were not 

always evaluated as the best alternative for local topologies (see gCF, sCF and associated tests 

in Table 1). They offered unusual topologies involving the grouping of four subtribes (i.e., 

Melinaeina, Athesitina, Tithoreina, and Methonina) in a unique clade never suspected in 

previous systematic studies (Brower et al. 2006, 2014; Willmott & Freitas 2006; Chazot et al. 

2019b). Meanwhile, the SuperMatrix-based trees led to consistent scenarios for the deep 

evolutionary relationships across subtribes, showing robustness to gene sampling with no 
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difference between the Inclusive dataset (ca. 11,000 genes) and the Conservative dataset (ca. 

3,500 genes). As such, the type of inference methods had more effects on our final phylogenetic 

hypotheses than genetic sampling, likely because the scope of the Conservative dataset was 

sufficient to provide relevant and representative phylogenetic signal for site-based inferences 

(e.g., SuperMatrices). In the end, we favored the selection of the two SuperMatrix-based 

phylogenetic hypotheses to build the backbone phylogeny used in downstream analyses. 

4.2 Subtribal classification 

Our final time-calibrated phylogeny offers a new phylogenetic hypothesis that contrasts 

with previous results based on morphological and ecological traits (Willmott & Freitas 2006) 

and the most up-to-date hypothesis based on molecular data obtained from Sanger sequencing 

(Chazot et al. 2019b).  

Our results confirmed the monophyly of the well-established ten ithomiine subtribes 

providing high supports value for all subtribes (Table 1). It also supported the monophyly of 

the core-group, a clade of five subtribes (i.e., Oleriina, Ithomiina, Napeogenina, Dircennina, 

and Godyridina) associated with a shift in diversification dynamics leading to a recent radiation 

associated with multiple colonizations of new areas following the demise of the Pebas aquatic 

system in Western Amazonia during the late Miocene (Elias et al. 2009b; De-Silva et al. 2017; 

Chazot et al. 2019b). Within the core-group, our time-calibrated phylogeny suggested the 

Oleriina subtribe as the sister-group of all others, a topology proposed by Garzón-Orduña et al. 

(2015) based on the recalibration of a previous molecular-based phylogeny (Brower et al. 2006) 

following new inferences of the ages of hostplant lineages (Särkinen et al. 2013).  

Contrary to Chazot et al. (2019b) who suggested Athesitina as the sister-group of the 

core-group, we found that the Mechanitina tribe received the most support for this position. 

From an ecological and morphological perspective, such topology allows to regroup in a clade 

(i.e., Mechanitina and the core-group) all lineages with members feeding on the vast nightshade 

plant genus Solanum (Solanaceae family), which also all share the presence of fused tibia and 

tarsus on the male forelegs (Willmott & Freitas 2006). Conveniently, it also provides a more 

parsimonious evolutionary history for caterpillar morphology by grouping Mechanitina with 

the core-group (Fig. 5), two clades that share (alongside the Methonina subtribe) the loss of the 

conspicuous subdorsal filaments visible on the last instar of many other danaine butterflies 

(albeit sometimes on different segments; Kitching 1985). From the biogeographic perspective, 

the members of the Athesitina subtribe are found in the Central Andes in contrast to 
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Mechanitina species that are mostly Amazonian (See Chapter 1; Doré et al. 2022). While the 

latest reconstruction of ancestral ranges have left undecided the origin of ithomiines between 

the Central Andes and the Western Amazonia (Chazot et al. 2019b), a more basal position of 

Athesitina than previously estimated would provide additional weight for an Andean origin of 

the Ithomiini tribe. 

The evolution of hostplant use in ithomiine butterflies is complex and intimately link to 

their dynamic of diversification. Ithomiine species are highly specialized on their hostplant 

species, whit distinct clades mostly specialized on distinct unique hostplant clades belonging 

mainly to the Solanaceae family (Drummond & Brown Jr 1987), in a pattern known as host-

plant conservatism (Winkler & Mitter 2008). However, evidence for coevolution associated 

with simultaneous cladogenesis are lacking (Drummond 1986; Brown Jr 1987) and tend to 

favor an Escape and Radiate hypothesis (Ehrlich & Raven 1964; Thompson 1989) where the 

early shift to Solanaceae hostplants enabled ecological speciation on newly available niches 

(i.e., already existing Solanaceae lineages; Dupin et al. 2017), thus powering diversification of 

ithomiine butterflies (Brown & Henriques 1991; Peña & Espeland 2015). Indeed, ithomiine 

species feed almost exclusively on Solanaceae plants with the exception of the clade Megoleria-

Hyposcada in Oleriina that feeds on Gesneriaceae (Drummond & Brown Jr 1987), and the 

Tithoreina subtribe members that feed on Prestonia and other Apocynaceae (Brown Jr 1987; 

Brown Jr. & Freitas 1994), a hostplant group shared with the other two tribes of Danainae 

(Ackery & Vane-Wright 1984; Ackery 1987). As such, a basal position of the Tithoreina 

subtribe would suggest a single host shift from Apocynaceae to Solanaceae after the divergence 

of the Tithoreina lineage. Yet, all recent phylogenies found Tithoreina to form a clade with 

Methonina (Willmott & Freitas 2006; Brower et al. 2014; Garzón-Orduña et al. 2015; Chazot 

et al. 2019b), a highly autapomorphic group that feed on Brunfelsia and the only ithomiines to 

feed on any member of the subfamily Petunioideae within the Solanaceae family.  

In our phylogenetic hypothesis, as in all modern molecular-based phylogenies (Brower et 

al. 2006, 2014; Garzón-Orduña et al. 2015; Chazot et al. 2019b), the Melinaeina subtribe 

appears as the most basal lineage, while the Tithoreina/Methonina clade occupies diverse 

positions within the Ithomiini tribe, leaving open the scenario of a single early shift to 

Solanaceae followed by a recolonization of Apocynaceae hostplants by Tithoreina (Fig. 5). 

Alternatively, instead of complete shift(s) to a new plant group, early evolutionary steps of 

ithomiine butterflies could have followed the Oscillation hypothesis (Janz & Nylin 2008). In 

the case of Ithomiini, such scenario would involve the primary expansion of the niche breath 
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with the acquisition of the ability to feed on a new plant group (i.e., Solanaceae) associated with 

the retention of the ability to feed on the ancestral group (i.e., Apocynaceae), followed by 

multiple ecological speciation illustrated by cladogenesis associated with host breath reduction 

among lineages forming the early subtribes, including Melinaeina, Athesitina, Tithoreina, and 

Methonina. Moreover, specialization in the realized niche (i.e., hostplant use) may mask the 

retention of polyphagous abilities as found in host shift experiments (Freitas 1999; McClure & 

Elias 2016). Furthermore, this scenario of ephemeral generalist feeding diet powering 

diversification is compatible with the rapid early diversification of subtribes we observed on 

our time-calibrated phylogeny (Fig. 4), but dedicated investigations involving niche breadth 

evolution are still needed to support either scenario (Jousselin & Elias 2019). 

 
 

Figure 5: Comparison of cladograms built from (A) 306 morphological and ecological 

characters (Willmott & Freitas 2006), (B) Sanger sequencing of 7,083 sites across 8 genes 

(Chazot et al. 2019b), (C) phylogenomic pipeline on ca. 7.8 million nucleotide sites 

representing 11,012 genes (this study). Cladograms depict evolutionary relationships inferred 
across subtribes. The core-group (labeled in grey) represents a strongly supported monophyletic 
group of five subtribes: Oleriina, Ithomiina, Napeogenina, Dircennina, Godyridina. Colored 
marks and framed symbols illustrate parsimonious hypotheses for shifts in hostplant use 
(Apocynaceae or Solanaceae) and presence or absence of subdorsal filaments on the last instar 
caterpillars. Note that a single switch to Solanaceae at the root of Ithomiini associated with the 
recolonization of Apocynaceae by Tithoreina is as parsimonious in the morphology and 
ecology-based tree (A) as the two independent switches to Solanaceae presented here. 
Similarly, independent evolution of subdorsal filaments in polyphyletic groups is as 
parsimonious as loss in their respective sister-group on the Sanger-based tree (B). 
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4.3 Generic classification 

Besides new hypotheses for deep evolutionary relationships, our time-calibrated 

phylogeny shed light on potential issues in the current taxonomy of ithomiine butterflies. As 

we recovered monophyletic groups for most of the 48 currently accepted genera in ithomiines, 

we also found at least four cases, already identified as problematic in previous studies, were the 

current taxonomy is in conflict with the evolutionary relationships inferred from our analyses. 

All cases are found in the most recent taxa-rich subtribes of the core-group, which underwent a 

recent rapid diversification that may impede our ability to retrieve clear evolutionary 

relationships. 

The relationship between the genera Hypothyris and Hyalyris in Napeogenina were left 

with an important polytomy in our backbone phylogeny (Fig. 3) and formed a polyphyletic 

complex in our final time-calibrated phylogeny illustrating the difficulty to classify these 

species. They presented a similar conundrum in previous phylogenetic hypotheses (Brower et 

al. 2014; Chazot et al. 2019b), while Willmott & Freitas (2006) found Hyalyris as monophyletic 

but yet considered “there are no clear synapomorphies” to support it. Overall, the most 

conservative solution may be to lump the two genera in a single genus for which at least 

monophyly is established. 

The genus Hypoleria in the Godyridina subtribe has already been identified as 

paraphyletic with respect to Mcclungia and Brevioleria genera by Brower et al. (2014) 

employing a non-exhaustive sampling. Chazot et al. (2019b) revealed a similar pattern for 

Hypoleria when including the missing taxa, but additionally found Brevioleria as being 

paraphyletic with respect to Pachacutia, despite Brevioleria‘s monophyly being convincingly 

supported by shared morphological derived characters (Willmott & Freitas 2006). Our own 

hypothesis found Hypoleria as paraphyletic with respect to Mcclungia, Brevioleria, and 

Pachacutia but reestablished the monophyly of Brevioleria. Altogether, Hypoleria genus 

deserves more attention to define generic subdivisions that will reflects evolutionary 

relationships as initiated by Willmott & Lamas (2007) with the newly described genus 

Pachacutia. 

We detected the genus Hyalenna as paraphyletic in relation to Dircenna in the Dircennina 

subtribe. In particular, we predicted the clade formed by Hyalenna paradoxa and Hyalenna 

perasippa to have diverged before the split of Dircenna and other Hyalenna species. Such 

relationship was left unresolved in Brower et al. (2014), but was not found in Chazot et al. 
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(2019b), where both genera appeared monophyletic. Besides, the monophyly of Hyalenna is 

well supported by numerous morphological synapomorphies in recent a cladistic revision 

(Willmott & Lamas 2006), casting doubt on our hypothesis. 

 Finally, the Ceratinia genus did not show monophyly in the Dircennina subtribe where 

it was polyphyletic with respect to several Episcada species, such as Episcada hemixanthe (also 

found within Ceratinia in Brower et al. (2014)), E. zajciwi and E. doto. Association of those 

species with the genus Ceratinia was also detected on the basis of morphological characters, 

but also involved Episcada hymenaea (Willmott & Freitas 2006), which appeared within the 

clade sister to Ceratinia with the remaining Episcada species in our phylogeny. Undoubtedly, 

further investigations are needed to obtain a stable list of Episcada species that should be 

incorporated into the Ceratinia genus. 

4.4 Perspectives for studies on the macroevolution of ithomiines 

During the course of this project, we have built a large molecular dataset of ca. 11,000 

orthologous genes to carry out phylogenomic inferences of evolutionary relationships among 

ithomiine butterflies. Such comprehensive dataset offers new opportunities to explore 

macroevolutionary questions that involve genome-wide macroevolutionary signatures of 

selection associated for example with hostplant shift (Allio et al. 2021) or adaptation to 

elevation (Nevado et al. 2016). Additionally, we generated a new robust time-calibrated 

species-level phylogeny encompassing 356 out of the 396 extant species (i.e., 89.9%) that 

resolved previous uncertainties regarding deep evolutionary relationships across the different 

subtribes. Overall, our phylogenetic hypothesis provides better agreement with the putative 

evolution of morphological and ecological traits, highlighting the power of phylogenomic 

approaches to resolve previously conflicting deep evolutionary relationships.  

This comprehensive time-calibrated phylogeny provides a stable tool to empower future 

macroevolutionary analyses in ithomiine butterflies that may help to unravel and test for 

relationships between diversification dynamics and key traits such as wing transparency (Pinna 

et al. 2021), mimetic patterns (Jiggins et al. 2006), climatic niche (See Chapter 1; Doré et al. 

2022) or hostplant shift (Jousselin & Elias 2019). 
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Abstract 

One of the major objectives of natural sciences is the inventory and description of 

biodiversity. In this study, we present a new approach to quantify variation in ecological traits 

that carry visual signals based on perceived similarity. We built upon a Citizen Science project 

to describe phenotypic variation in mimicry patterns of heliconiine butterflies at continental 

scale. Our results support the unfolding to large spatial scales of Müller’s prediction for trait 

convergence between sympatric species in a context of mimicry. We also illustrate the versality 

of our approach by showing its suitability to build individual perceptual maps at local scale as 

well. Altogether, this work opens new perspectives to the study of ecological trait variation at 

multiple geographic and phylogenetic scales, integrating altogether the morphological, 

chromatic, and cognitive dimensions of trait variation. As a new tool for ecologists and 

evolutionary biologists, it may stimulate further studies on the evolution of ecological traits 

whose complexity has so far prevented large scale comparison. 
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Graphical Abstract: Perceptual maps: a new tool to investigate phenotypic variation in visual 
signals from local maps of individual perception to Citizen Science projects aiming to map 
macroecological patterns of functional diversity at continental scale. 

 

Keywords 

Citizen Science, evolutionary convergence, functional diversity, heliconiine butterflies, 

machine learning, Müllerian mimicry, Neotropics, perceptual map, phenomics, visual signals. 
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1 Introduction 

There are about 2 million documented species on Earth (Costello et al. 2022), each with 

a specific niche and set of traits reflecting this incredible biodiversity. One of the major 

objectives of natural sciences is the inventory and description of this diversity. In the last 

century, the evolution of data acquisition methods has been characterized by a shift from a 

qualitative approach to describing phenotypic traits to integrated quantitative approaches 

leading for instance to recent developments in image analysis using convolutional neural 

networks (Schuettpelz et al. 2017; Weinstein 2018; Mäyrä et al. 2021; Irisson et al. 2022). 

Compared to a qualitative description of diversity providing nominal variables (e.g., red vs. 

yellow, ovoid vs. spherical, etc.), a quantitative description of multidimensional complex traits 

such as shape, behavior or color patterns allows to account for intra-group variation, as well as 

providing a quantification of trends and relative positions of groups in a multidimensional space 

(e.g., morphospace, RGB space, phenotypic space, etc.). Numerical quantification also enables 

the use of a vast diversity of methods developed in numerical ecology and evolution (Legendre 

& Legendre 2012; Revell & Harmon 2022). Computers are decisive tools in this numerical 

revolution, yet they may be limited to grasp the specificity of traits involved in ecological 

signals (i.e., traits perceived by other individuals). 

The evolution of traits is driven by multiple integrated selective pressures incurred by 

the abiotic environment and ecological interactions. When ecological interactions involve the 

exchange of information between two individuals, conspecific or not, those interactions are 

typically mediated by a signal involving visual, acoustic, or olfactory modalities (Endler 1992). 

In the case of visual signals, what affects the outcome of the selective pressure is not only the 

photonics of the biological feature underlying the signal, but also the cognitive process of 

perception involving several levels of abstraction between the capture of the physical input, 

through the conception of the mental image of the signal, to the trigger of a behavioral response 

(Farina et al. 2005). 

Müllerian mimicry (hereafter, mimicry) is an iconic example of ecological interactions 

involving a visual signal. Mimicry is predicted to drive the convergence of aposematic signals 

(i.e., conspicuous traits associated with anti-predator defenses in prey, typically toxicity) 

because of positive frequency-dependent selection on those signals: the most common signals 

are favored because the mortality risk entailed by predator learning is shared among a larger 

number of individual prey (Müller 1879; Sherratt 2008). The sets of phenotypically similar 
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species resulting from such evolution are named mimicry rings (Weismann 1904; Papageorgis 

1975). Convergence of aposematic signals is mediated by the perception of predators, which 

may vary in their levels of generalization depending on species-specific visual and cognitive 

abilities, individual experience, condition (e.g. , degree of satiety), as well as the diversity of 

signals they encounter (Bosque et al. 2018). As such, species with moderately similar patterns 

could still be under selection for convergence from picky predators, while they could be 

considered as the same type of prey by another predator and therefore not under selection for 

convergence, potentially explaining instances of imperfect mimicry (Dittrich et al. 1993; 

Kikuchi & Pfennig 2013). 

Based on the knowledge that perception is an essential component of the quantification 

of traits underlying ecological signals, especially in an evolutionary perspective (Endler 1992), 

we propose a new method to quantify similarity in traits that integrate directly perception in its 

framework. We offer to produce multidimensional perceptual spaces in which proximity of 

object/specimen/species coordinates reflect the perceived similarity between their ecological 

signals. Beyond the critical involvement of perception in the process, this type of approach also 

allows to directly integrate the multimodal nature of signal, for instance embracing the 

perception of similarity in shapes and patterns in a single framework, which is technically 

difficult to achieve with computer-based signal processing methods relying on pattern 

alignment (e.g., Le Poul et al., 2014; Van Belleghem et al., 2018). 

To illustrate the potential of this new approach to quantify similarity in phenotypes 

involved in ecological signals, we focused on the emblematic and historical case of Müllerian 

mimicry in heliconiine butterflies (tribe Heliconiini, subfamily Heliconiinae, family 

Nymphalidae). We aimed to study variation in wing patterns reflecting potential mutualistic 

interactions between species for the entire spatial range and taxonomic diversity of heliconiine 

butterflies. The Heliconiini tribe encompasses 8 genera, 77 species and 457 subspecies (Kozak 

et al. 2015; Jiggins & Lamas 2016) with a large diversity of wing patterns. In order to collect 

enough data to cover such diversity of patterns, as well as integrating a diversity of perception 

needed to avoid sampling bias and reflecting the diversity of perceptions of natural predators, 

we designed a Citizen Science project linked to an online survey hosted on a dedicated website 

(http://memometic.cleverapps.io/). 

http://memometic.cleverapps.io/
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Building upon this large collection of perceptual information, we aimed to investigate 

how phenotypical variation of wing patterns in heliconiine butterflies is structured in the 

perceptual and geographical space. Specifically, we: 

(1)  Mapped wing pattern similarity in the perceptual space for 432 subspecies. 

(2)   Mapped the spatial distribution of local phenotypic diversity measured as the degree 

of clustering in the perceptual space. 

(3)   Mapped the spatial variation of mean phenotype across communities. 

(4)   Tested for the convergence of perceived patterns between spatially congruent taxa. 

This description of the structure of phenotypic patterns at large macroecological scale 

can only provide hypotheses on mutualistic interactions acting at local scale. Indeed, subspecies 

with patterns perceived as similar may not co-occur, thus do not interact mutualistically, at least 

not directly. Thus, we also investigated the suitability of our Citizen Science approach to 

address questions for local communities: 

(5)   Is the Citizen Science map suitable to describe local phenotypic variation? 

(6)   Is the Citizen Science map suitable to define local mimicry rings? 

2 Materials and Methods 

2.1 Materials 

2.1.1 Study group 

We focused our study on the textbook case of Müllerian mimicry in heliconiine 

butterflies (Nymphalidae: Heliconiini). This group is well-known for the important variation of 

its aposematic patterns (Jiggins & Lamas 2016) and for the existence of local geographic forms 

reflecting parallel adaptive radiations between species (Brower 1996). Heliconiines are widely 

distributed across the American continent, from Canada to the North of Argentina with peaks 

of diversity in the Andes, in Central America, and in the Amazon basin (Rosser et al. 2015; 

Pérochon et al. 2023). The study of wing patterns of heliconiines, among other groups of 

mimetic neotropical butterflies, has been instrumental in the emergence of the theory of 

mimicry in the late nineteenth century, notably by Henry Walter Bates (Bates 1862) and Fritz 

Müller (Müller 1879) who gave their names to the two major types of mimicry: Batesian 

mimicry and Müllerian mimicry. All species of heliconiine butterflies are engaged in Müllerian 

mimicry which implies some degree of toxicity associated with conspicuous warning signals 
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displayed by wing patterns. Some species share mimicry patterns with other groups of 

Neotropical mimetic butterflies, mostly ithomiine butterflies (Poole 1970; Brown Jr. & Benson 

1974; see ANNEXE 6, Pérochon et al., 2023). 

2.1.2 Image collection 

We retrieved standardized images of dorsal view of specimens in mounting position 

from museum and private collections for 432 subspecies (94.5%) of heliconiines butterflies 

among the 457 described subspecies. The most important contributors were the McGuire Center 

for Lepidoptera and Biodiversity (Gainesville, FL, USA), the Natural History Museum London 

(UK), and the Muséum National d’Histoire Naturelle (Paris, France). Due to the diversity of 

sources needed to retrieve such a collection of images, we included whenever possible a color 

reference chart on images. We standardize all images to achieve similarity in brightness, hue 

and saturation when comparing the color reference charts between images.  

Polymorphism within subspecies is rare since subspecies are typically described on the 

basis of phenotypic variation in wing patterns. However, in the rare cases of polymorphism we 

encountered, we tried to select a specimen for which we considered the pattern to be the most 

representative (the closest to a “mean” phenotype). Heliconiine butterflies notably lack sexual 

dimorphism in wing patterns (Jiggins & Lamas, 2016, p. 73), thus we selected indifferently 

male or female specimens according to availability. A complete list of taxa used for this study, 

with associated metadata is available in Table S1 in SI Appendix 1. 

2.1.3 Online Citizen Science survey 

We designed a website interface presented as a game and linked to an SQL database 

dedicated to the collection of information regarding the perception of similarity in wing patterns 

by thousands of players. The website is accessible in four languages (i.e., English, French, 

Spanish, Brazilian/Portuguese) to encourage people from all around the world, and especially 

in regions were heliconiine butterflies are native, to participate: 

http://memometic.cleverapps.io/. 

This website is presented as a Citizen Science project with three goals: (1) introducing 

a wide public to the basis of ecological and evolutionary concepts involved in Müllerian 

mimicry by offering a short introduction to those concepts; (2) collecting an important and 

diverse amount of data regarding the global perception of similarity in the wing patterns of 

heliconiine butterflies; (3) involving citizens around the world into the collective building of 

http://memometic.cleverapps.io/
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scientific knowledge, and allowing them to access preview of new research development by 

providing feedback on the results acquired thanks to their contribution. 

A typical game session involved 30 random sets of triplets of images drawn from the 

set of 432 subspecies. For each triplet, we asked the player to select the pair of images which it 

perceived as the most similar (see Fig. S2 in SI Appendix 2 for an illustration of the website). 

Therefore, for each vote the player provided a set of relative distances such as if it selected the 

pair A-B, we recorded the following relative distances:  dA-B < dA-C  and  dB-A < dB-C  where 

distances are symmetrical ( dA-B = dB-A ). In case of doubt, we allowed the player to skip the 

triplet and request a new one to evaluate, avoiding accumulation of noise in the data due to 

forced random choices. Each game session included two triplets drawn from a set of controlled 

trials for which the perceived relative similarity was striking (see Fig. S2 in SI Appendix 3 for 

visual illustration of the controlled trials used). Thus, we were able to filter game sessions that 

provided suspicious results by removing those that failed at least one controlled trial. 

Before each game, we recorded demographic information (age, scientific background, 

colorblindness, experience with the game, language, and location), and game statistics (time 

taken per triplets, number of skips, score as a deviation to the mean). All this information is 

summarized and analyzed in the SI Appendix 4. 

Altogether, we recorded 1,422 game sessions from 1,242 distinct players across 53 

countries providing 85,320 triplets of relative distances. We kept 75,240 for downstream 

analyses after filtering of improper game sessions having failed controlled trials, or declared 

colorblindness. 

2.1.4 Spatial distributions 

We retrieved predictions of spatial distributions for 439 subspecies from a soon-to-be-

published research project which built upon a dataset of 77,577 georeferenced occurrences and 

employed species distributions models to map subspecies distributions (See Pérochon et al., 

2023 in ANNEXE 6) at the continental scale for a resolution of 0.25° arc (ca. 30 km). Maps of 

functional mimetic diversity (Fig. 1b) and community mean phenotype (Fig. 2b) encompass 

the 422 (92.3%) subspecies for which we had both distribution patterns and reference image 

available. 
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2.1.5 Local communities 

In order to investigate the power of the Citizen Science dataset to inform on local 

patterns of phenotypic diversity, we produced analyses for a set of local communities based on 

the individual perception of five butterfly experts. We selected five local communities among 

the 23,661 available communities defined as a unique grid-cell in the 30 km × 30 km raster 

maps of subspecies distributions, namely Cayenne (French Guyana), Gamboa (Panama), Jatun 

Sacha (Napo, Ecuador), Manaus (Amazonas, Brazil), and Santa Teresa (Espírito Santo, Brazil). 

Thus, we extracted for each one a list of taxa whose presence was predicted by the spatial 

distributions extracted from Pérochon et al., 2023 (See ANNEXE 6). This selection was made 

in order to (1) present a diversity of geographic location across the heliconiine range, (2) display 

a diversity of phenotypes, (3) display a diversity of level of richness for local species and 

mimicry patterns. The geographic location of each local communities is featured on the maps 

of functional phenotypic diversity (Fig. 1) and local mean phenotype (Fig. 2). A visual list of 

subspecies for each local community can be found in Fig. S13-S17 in SI Appendix 5. 

We generated sets of 600 triplets of relative distances across images of local taxa for 

each expert, for each local community. These sets were used to generate the local individual 

perceptual maps described in the next section. For each community, individual triplet datasets 

were aggregated among all five experts to produce the ‘triplet-aggregated’ local maps described 

in subsequent analyses. 

2.2 Methods 

2.2.1 t-STE 

In order to convert the lists of triplets of relative distances in maps of wing pattern 

(dis)similarity based on perception (i.e., perceptual maps), we adapted the t-distributed 

Stochastic Triplet Embedding method (t-STE; van der Maaten & Weinberger, 2012). t-STE is 

a supervised contrastive machine learning algorithm based on similarity triplets under the form 

“A is more similar to B than to C” that produces an embedding of data whose coordinates in 

the new reduced space agree with the relative distances described in the similarity triplets. In 

the context of the perceptual map, triplets of perceived relative distances among images are 

converted into coordinates in a perceptual space where distances depict perception of 

(dis)similarity among the images. 
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In contrast to a Generalized Non-Metric Multidimensional Scaling (Agarwal et al. 2007) 

which also converts triplets of relative distances into coordinates in a reduced space, t-STE does 

not only favor triplet satisfaction (i.e., A is closer to B than to C in the embedded space), but 

favor triplet optimization by including a stochastic description of how well a triplet is modeled 

in the embedded space (i.e., the probability that the triplet is satisfied under a stochastic 

selection rule; van der Maaten & Weinberger, 2012). As a result, the algorithm tends to keep 

pushing for the clustering of objects for which triplets provide no evidence of dissimilarity and 

to keep pulling apart objects for which triplets provide no evidence that they are similar, even 

once triplet satisfaction is achieved. However, the use of a Student's t-distribution with heavy 

tails to model triplet probabilities allows to smooth the increase of reward/penalization for 

triplet satisfaction/violation until it becomes infinitesimal for large differences (van der Maaten 

& Weinberger 2012). As a result, the influence of outlier triplets (i.e., conveying an unusual 

information relative to the whole dataset) on the optimization gradient is reduced, which is a 

desirable feature to avoid individuals with uncommon perceptions to drive the final topology 

of our perceptual maps aiming to represent the general consensus of perceptions. 

The algorithm starts with a random set of coordinates for each object in a reduced space 

of user-defined number of dimensions (three dimensions in our case, see below). At each step, 

it computes the likelihood for each triplet (the data) to be satisfied given the current coordinates 

of the images (the model). The cost function is the log-likelihood of the current embedded space 

defined as the sum of the log-likelihood of each triplet computed as follows: 

where Labc is the likelihood of the triplet of images A, B, and C, following X, their respective 

coordinates in the embedded space, and adjusted by α, the degree of freedom of the Student-t 

kernel equal to the requested final number of dimensions minus one (van der Maaten & 

Weinberger 2012). As such, the larger is the Euclidean distance between A and C, compare to 

A and B, the higher will be the likelihood of the triplet, and conversely. Following a gradient-

descent optimization, the coordinates of images in the embedded space are modified in order to 

maximize the cost function at each step. Therefore, the algorithm learns iteratively the best 

embedding to optimize the distances of images in the reduced space satisfying the initial triplets. 

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 =
�1 +  

‖𝑋𝑋𝑎𝑎 − 𝑋𝑋𝑎𝑎‖²𝛼𝛼 �− 
𝛼𝛼+12

�1 +  
‖𝑋𝑋𝑎𝑎 − 𝑋𝑋𝑎𝑎‖²𝛼𝛼 �− 

𝛼𝛼+12
+  �1 +  

‖𝑋𝑋𝑎𝑎 − 𝑋𝑋𝑎𝑎‖²𝛼𝛼 �− 
𝛼𝛼+12  (Eqn. 1) 
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In this study, we stopped all runs after 30,000 iterations as a conservative threshold since we 

detected that stability was reached fairly quickly, typically after a couple of hundreds of 

iterations (see Fig. S24 in SI Appendix 7). 

t-STE allows the user to define a priori the final number of dimensions of the 

embedding. A higher number of dimensions offers more possibilities to satisfy triplet 

similarities, but it also prevents easy visualization of the output, and limits performance of 

clustering algorithms in high dimensionality (Wang et al. 2008). With the objective of 

quantifying and visualizing the variation in wing patterns while obtaining hypotheses for 

phenotypic-based mimicry rings issued from clustering, we favored the use of three-

dimensional perceptual spaces as our targeted number of dimensions. Independently to the 

choice of the number of dimensions, it is important to keep in mind that contrary to a PCA, the 

axes of a t-STE are not organized so that they represent successively orthogonal decreasing 

axes of variation. The order of the axes is arbitrary, and they can be correlated such as patterns 

mostly lie on the diagonal of two axes, hinting that less dimensions could be enough to represent 

adequately the information embedded from the similarity triplets. 

The t-STE algorithm has the advantage to allow to retrieve coordinates in space for all 

images despite having information only on a subset of all possible relative distances among the 

images. For instance, for our 432 images, there are 13,343,760 unique combinations of triplets 

of images that could be evaluated, yet we managed to find a stable embedding with less than 

30,000 triplets (see Fig. S18 in SI Appendix 6). Similarly, we studied the stability of individual 

perceptual maps for local community and showed 600 triplets were enough to reach a stable 

embedding for local maps (see Fig. S19 in SI Appendix 6) displaying a fairly reduced diversity 

of phenotypes compared to the macro-scale analyses, with 18 to 44 local patterns vs. 432 

patterns in total. 

Additionally, we carried out complementary analyses exploring the ability for t-STE to 

provide stable topologies and satisfy a maximum proportion of similarity triplets for different 

size of image sets, across ranges of sampling effort as the number of triplets, and learning effort 

as the number of iterations (see SI Appendix 7). 

2.2.2 Gaussian Mixture Models and putative mimicry rings 

To propose hypotheses for local mimicry rings, we ran Gaussian mixture-models 

(GMM; Reynolds, 2015) to cluster wing patterns within groups of phenotypically similar 

patterns. Any clustering method could potentially be applied on the perceptual space to define 
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such hypotheses for mimicry rings, however Gaussian mixture-models offer a couple of 

advantages. Clusters represent Gaussian distributions that can have different size (i.e., number 

of objects), ellipsoidal shapes, and orientations. It allows to detect outliers by forming 

singletons (i.e., group of a single object). In the context of mimicry, the underlying Gaussian 

distributions can be seen as selective values in an adaptive landscape describing an adaptive 

peak for phenotypes (i.e., learned by local predators as associated with toxicity, thus favored 

by selection) as a high probability density. If known, the local abundances of taxa can be used 

to provide weights influencing the clustering outcome. Finally, it allows to fit a model with any 

given number of groups/mimicry rings and to compare them with criteria for goodness-of-fit 

(e.g., likelihood, BIC, AICc). This versatility allows the researcher to define a priori its final 

number of groups according to a required degree of generalization/refinement for the 

phenotypic groups, or to compare results and select the appropriate value according to a chosen 

criterion.  

2.2.3 Map variation of phenotypic patterns at large-scale 

Employing the t-STE algorithm on the similarity triplets gathered from our Citizen 

Science collection of perception data, we obtained a 3D perceptual space with coordinates of 

images representing the aggregated perception of wing pattern similarity in heliconiine 

butterflies for patterns found on the entire range of the group. We decomposed this 3D 

perceptual space into 2D perceptual maps and displayed the images used during the survey on 

their given coordinates (Fig. 1a, 1c, 1d). Combining this information with predicted distribution 

data of each subspecies, we computed within each community (i.e., pixel in the grid-cell) the 

local functional mimetic diversity as the mean pairwise Euclidean distance in the perceptual 

space, reflecting the degree of clustering of local phenotypes in the perceptual space (Fig. 1b). 

By converting each axis on a 0-255 scale, we assigned an RGB color to each image 

based on its coordinates in the perceptual space. We computed the mean local phenotype within 

each community and displayed its associated color on the RGB space decomposed in 2D maps 

(Fig.2a, 2c, 2d), and in the geographic space (Fig.2b). 

2.3 Statistical Analyses 

2.3.1 Tests for similarity and convergence in the perceptual space 

Müller’s theory of mimicry (Müller 1879) predicted the convergence of local toxic prey 

towards a similar aposematic pattern. To evaluate if this prediction could influence large-scale 
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patterns of phenotypic distributions, we tested if the perceptual distances between subspecies 

were correlated with the geographic distances between their spatial distributions. We defined 

pairwise perceptual distances as the Euclidean distances in the perceptual space between pairs 

of subspecies. We computed pairwise geographic distances as 1 - Schoener’s D (Schoener 

1970) in the geographic space as follows: 

where D12 is Schoener’s D, ij is a cell in the geographic raster grid, z1ij the occupancy of taxa 1 

in cell ij, and z2ij the occupancy of taxa 1 in cell ij with the sum of occupancy data for each 

entity summing to 1. As such a distance of 0 relates to a pair of taxa with the exact same 

geographic distribution, a distance of 0.8 relates to a moderate spatial overlap, and a distance 

of 1 relates to no overlap. 

We used Multiple Regression on Distance Matrices (MRM) to test for a relationship 

between pairwise perceptual distances and pairwise geographic distances. Significance of the 

test was based on random permutations of distances in the matrices such as the null hypothesis 

described a random association between perceptual and geographic distances across heliconiine 

subspecies (Fig. 3a & 3b). 

Furthermore, to test for a pattern of wing similarity among spatially co-occurring 

subspecies that goes beyond the expectation from evolutionary relationship across the taxa, 

hinting for a case of evolutionary convergence as described in Müller’s model, we used MRM 

to test for a relationship between pairwise perceptual distances and pairwise geographic 

distances accounting for phylogenetic distances as an additional predictor (Fig 3c & 3d). To 

compute phylogenetic distances, we used pairwise patristic distances on the phylogeny of 

Heliconiini (Kozak et al. 2015) with terminal branches of null length to describe the relative 

position of subspecies in their associated species. 

Because Schoener’s D tend to be sensitive to a threshold effect since any distance 

between two subspecies with no overlap would equals zero independently from their spatial 

adjacency or farness, we also ran complementary analyses describing geographic distances as 

two categories: sympatric vs. allopatric using a threshold of 1 – Schoener’s D = 0.8 to 

discriminate between categories (See Fig. S25 in SI Appendix 8). 

1 − D12 =  
1

2
��𝑧𝑧1𝑖𝑖𝑖𝑖 −  𝑧𝑧2𝑖𝑖𝑖𝑖�𝑖𝑖𝑖𝑖  (Eqn. 2) 
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2.3.2 Compare local perceptions vs. Citizen Science 

We investigated the ability of our macro-scale Citizen Science-based approach of 

mimicry pattern similarity to inform about local patterns of wing similarity within communities. 

We compared perceptual maps obtained from the aggregation of similarity triplets provided by 

a panel of experts evaluating only the patterns of local taxa (labeled as ‘triplet-aggregated’ map) 

vs. coordinates of those same local patterns in the macro-scale Citizen Science perceptual map 

involving all 432 subspecies patterns (labeled as ‘CS’ map). We also compared local maps with 

the individual perceptual maps obtain from the 600 triplets provided by each expert individually 

for each community. In a complementary analysis, we showed that compiling five individual 

perceptions was enough to obtain stable local perceptual maps and mimetic classifications (See 

Fig. S26 & S27 in SI Appendix 8). As a visual comparison, we plotted the perceptual maps 

extracted from CS map vs. the triplet-aggregated map for each local community, displaying 

probability densities associated to GMM clustering applied on those same perceptual maps 

(Fig. 4). 

We compared the topology of the CS map, the triplet-aggregated map, and each 

individual map using the Procrustes correlation statistics obtained from pairwise Procrustes 

Analyses (Gower 1975) minimizing distances across homologous points in two topologies by 

applying scaling, translation and rotation actions on the initial coordinates. Similarly to a 

Pearson coefficient, the Procrustes correlation is computed as follows: 

where SS is the sum of squared distances between Procrustes adjusted coordinates of 

two maps scaled so that the maximum value is 1. We set the triplet-aggregated map as reference, 

and computed such index for each map across all five local communities (Fig. 5a). 

Furthermore, we compared the putative mimicry rings obtained from GMM clustering 

applied on each local map using the Cohen’s Kappa index (Cohen 1960). This index is a 

measurement of agreement between multinomial classifications. It allows to quantify the degree 

of similarity between two classifications were groups are not necessarily paired across 

classifications (i.e., mimicry rings do not have to be equivalent between the two classifications). 

In our case, it was computed from a co-membership confusion matrix summarizing the number 

of pairs of objects found in a similar/different group in one or the two classifications. The more 

the two classifications agreed on whether a pair of objects (e.g., butterfly wing patterns) should 

belong to the same or to a different group, the higher the Cohen’s Kappa was. A Cohen’s Kappa 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃′ 𝑃𝑃 =  √1− SS (Eqn. 3) 
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close to zero reflected a random agreement between the classifications. A Kappa higher than 

0.5 reflected relatively important agreement. A Kappa close to 1 reflected an agreement close 

to perfection. Thus, we computed the Cohen’s Kappa of each map relative to the classification 

obtained for the triplet-aggregated map, for each local community. We ran similar analyses 

based on GMM with a reasonable number of mimetic groups (k) ranging from 5 to 10, and 

aggregated results as the mean across all k (Fig. 5b).  

2.4 Data availability 

All MATLAB and R scripts to carry out analyses are available on GitHub 

at https://github.com/MaelDore/Perceptual_map_Heliconiini. All 2D perceptual maps, 3D 

animated perceptual spaces, mimicry ring lists and subspecies images used in the online survey 

are available in online archives in Zenodo (TBA). 

3 Results 

3.1 Patterns of mimetic diversity at large spatial scale 

We built a 3D perceptual space with coordinates of images representing the aggregated 

perception of wing pattern similarity in heliconiine butterflies from our Citizen Science data. 

We decomposed this 3D perceptual space into 2D perceptual maps (Fig. 1a, 1c, 1d). These 

maps showed that the main axes of variation in perceived mimicry patterns was mostly colors. 

Patterns along the first axis ranged from plain orange patterns such as those of Dryas and Dione 

butterflies, also presenting characteristics elongated and slightly curved forewing tips, to almost 

plain dark patterns of Heliconius melpomene plesseni or Heliconius wallacei wallacei. The 

second axis presented a similar color trend, but also demonstrated a pattern trend from large 

(red or white) bands of Heliconius erato hydara and Heliconius cydno cydno, through stripes 

of tiger heliconiines like Heliconius ethilla ethilla or Eueides isabella eva, to plain patterns of 

Dryas and Dione. The third axes mostly discriminated the Philaethria genus with its distinctive 

light green tone, elongated shape and black stripes. 

We mapped on the geographic space the local functional mimetic diversity as the mean 

pairwise Euclidean distance in the perceptual space reflecting the degree of clustering of local 

phenotypes in the perceptual space (Fig. 1b). Results showed the local clustering of phenotype 

is relatively more important (i.e., functional diversity is low) in Amazonia than in the Andes, 

Central America or Brazilian Atlantic forest. Higher values were found in the USA and in the 

https://github.com/MaelDore/Perceptual_map_Heliconiini
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Peruvian coastal desert, mostly reflecting the predicted presence of very few taxa that display 

different patterns (thus, showing a low clustering and high functional diversity). 

 

Figure 1: Perceptual maps at macro-scale built from Citizen Science data. (a-c-d) 2D 
perceptual maps displaying 432 images of subspecies used during the perception survey to their 
t-STE coordinates in the embedded space. Distances between patterns reflect global perception 
of dissimilarity. (b) Map of functional mimetic diversity computed as the mean pairwise 
Euclidean distance in the perceptual space, reflecting the degree of clustering of local 
phenotypes. Perceptual map of the local communities symbolized with shapes are presented in 
Figure 4: square = Cayenne, up-triangle = Gamboa, diamond = Jatun Sacha, circle = Manaus, 
down-triangle = Santa Teresa. 

By converting the perceptual space in an RGB color space, we assigned a color to each 

community based on the coordinates of its mean phenotype. The distribution of communities 

(a) (b) 

(c) (d) 
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in the perceptual space showed that no community displayed a mean phenotype falling in the 

region of dark patterns with high t-STE 1 and low t-STE 2 and t-STE 3 (Fig. 2a, 2c, 2d). In the 

geographic space, the most species-rich regions of the Andes and Amazonia presented, by 

construction, a mean phenotype close to the centroid of the perceptual space symbolized by a 

brownish tone (Fig. 2b). The Cerrado and Brazilian Atlantic forest demonstrated a trend 

towards a majority of orange and tiger patterns symbolized by the reddish tone (Fig. 2b), and 

illustrated by the relatively marginal position of local community of Santa Teresa in the RGB 

space (down-triangle symbol in Fig. 2). North America was clearly an outlier with its orange 

tone, having a mean phenotype falling among the plain orange patterns since the few heliconiine 

species found in this area are from the Agraulis, Dione, Dryas and Dryadula genera all 

displaying an orange-based pattern, with the notable exception of the stripped Heliconius 

charithonia (Fig. 2b).  
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Figure 2: RGB maps of local mean phenotype built from Citizen Science data. (a-c-d) 2D 
RGB maps displaying the mean phenotype found in the 23,661 communities defined as 30 km 
x 30 km grid cells within the range of heliconiine butterflies. Axes range from 0 to 255 scaled 
on the range of the coordinates of the subspecies in the initial perceptual space (Fig. 1b). 
Distances between communities reflect global perception of dissimilarity in the mean local 
phenotype. (b) Map of mean local phenotype whose color corresponds to its coordinates in the 
RGB space. Differences in color relates to dissimilarity in mean local phenotypes. Symbols 
represents local communities highlighted in Figure 4: square = Cayenne, up-triangle = 
Gamboa, diamond = Jatun Sacha, circle = Manaus, down-triangle = Santa Teresa. 

3.2 Convergence of sympatric taxa in the perceptual space 

We tested if the perceptual distances between subspecies were correlated with the 

geographic distances between their spatial distributions. First, we tested for such a relationship 

without accounting for the effects of phylogenetic relatedness as a test of phenotypic similarity, 

(a) 
(b) 

(c) (d) 
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regardless of its origin (convergence or common ancestry). We showed perceptual distances 

between pairs of taxa were significantly correlated with geographic distances when considering 

spatial distributions at the continental scale (Fig. 3a & 3b; MRM: βobs = 0.078, Q95% = 0.040, 

p = 0.003). 

Second, we tested for a correlation between perceptual distances and geographic 

distances accounting for the effects of phylogenetic relatedness as a test of evolutionary 

convergence. We showed residual perceptual distances between pairs of taxa were significantly 

correlated with geographic distances even when the effect of phylogenetic relatedness was 

accounted for (Fig. 3c & 3d; MRM: βobs = 0.085, Q95% = 0.039, p ≤ 0.001). 

Complementary analyses using categorical groups of spatial distances defined as 

sympatry and allopatry led to similar results (See Fig. S25 in SI Appendix 8). 

 

   

 

(a) (b) 
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Figure 3: Pairwise perceptual distances between heliconiine subspecies correlate with 

geographic distances. (a) Scatter plot for the similarity test showing the positive correlation 
between perceptual distances (Euclidean distances in the perceptual space) and geographic 
distances (1 – Schoener’s D of predicted spatial distributions). (b) Null distribution of the MRM 
statistics (β-coefficient of standardized regression) showing a significant positive relationship 
for the similarity test. (c) Scatter plot for the convergence test showing the positive correlation 
between residual perceptual distances (once accounted for the effect of phylogenetic distances) 
and geographic distances (1 – Schoener’s D of predicted spatial distributions). (d) Null 
distribution of the MRM statistics (β-coefficient of standardized regression) showing a 
significant positive relationship for the convergence test. 

3.3 Mimicry rings in local communities 

We compared perceptual maps obtained from the aggregation of similarity triplets 

provided by a panel of experts evaluating only patterns of local taxa (labeled as ‘triplet-

aggregated’ map) vs. maps of those same local patterns in the macro-scale perceptual map 

involving all 432 subspecies patterns (labeled as ‘CS’ map). We added the probability densities 

associated to GMM clustering applied on those same perceptual maps for a number of groups 

specific to each local community (Fig. 4). Even if the relative position of mimicry groups, and 

sometimes the composition of the groups can vary between the two approaches (cf. lists of 

mimetic groups in Fig. S28-S32 in SI Appendix 10), perceptual maps appeared relatively 

consistent across methods for all local communities with main axes of variation reflecting 

similar perception of local wing pattern similarity. The local community of Manaus displayed 

visibly less mimetic diversity (i.e., higher clustering in the perceptual space) than others, as 

expected from our global map of mimetic diversity (Fig. 1b). 

(c) (d) 
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(e) (f) 

(g) (h) 

(i) (j) 
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Figure 4: Perceptual maps of local communities with GMM probability densities for 

‘triplet-aggregated’ and ‘CS’ maps. Only two axes among the three are displayed. ‘Triplet-
aggregated’ maps were built from similarity triplets based only on local patterns and provided 
by five experts. ‘CS’ maps were extracted from the macro-scale (Fig.1) built from Citizen 
Science data. Axes t-STE 1 and t-STE 3 for the ‘CS’ maps correspond to the axes showed in 
Fig. 1. Axes shown in ‘triplet-aggregated’ maps were selected to represent similar pattern trends 
relative to the axes shown in ‘CS’ maps. Procrustes correlation measures similarity in map 
topology. Cohen’s Kappa measures agreement in GMM classifications. Both metrics are 
symmetric, thus they were identical between the two maps for a given community. N = number 
of local patterns. k = chosen number of mimicry groups. 

3.4 From large-scale Citizen Science data to local perceptions 

We investigated the ability of our macro-scale Citizen Science approach of mimicry 

pattern similarity to inform about local patterns of wing similarity within local communities. 

First, we used Procrutes correlations indices to evaluate the similarity in perceptual map 

topologies across triplet datasets, using as reference for each community the ‘triplet-aggregated’ 

maps based only on local patterns and provided by five experts. We showed that the global 

topologies of the perceptual spaces built from Citizen Science data based on the whole 432 

subspecies patterns are within the range of similarity of the individual perceptual maps built 

from 600 similarity triplets provided by experts (Fig. 5a). As such, the Citizen Science approach 

provided as much information regarding the quantification of local pattern similarity than the 

perception of an individual expert.  

Second, we used Cohen’s Kappa to evaluate the similarity in GMM classifications 

obtained from the different maps across triplet datasets, also employing the ‘triplet-aggregated’ 

maps as reference for each community. We showed again that the mimetic classification 

obtained from CS maps were within the range of agreement of the classification obtained from 

individual perceptual maps (Fig. 5b). As such, the Citizen Science approach provided as much 

information regarding the classification of patterns within mimicry rings than the perception of 

an individual expert. 
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Figure 5: Comparison of topologies of local perceptual maps (a) and mimetic 

classifications (b) between triplet datasets/data source using triplet-aggregated (Triplet-

agg.) maps as reference. CS maps were extracted from the Citizen Science-based maps built 
from 75,240 triplets collected for 432 images. Expert maps were built from 600 triplets of local 
patterns representing the perception of a single expert. Triplet-aggregated maps were built from 
databases aggregating all expert triplets. (a) Procrustes similarity reflects similarity in the global 
topology of perceptual spaces. (b) Cohen’s Kappa measures agreement in mimetic 
classifications. Values presented for Cohen’s Kappa were averaged across a credible range of 
number of groups (k from 5 to 10). Symbols represents the five local communities investigated 
with values for a unique community linked by grey lines across triplet datasets. 

(a) 

(b) 
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4 Discussion 

In this study, we present a new method based on perceived similarity to quantify 

phenotype variation in ecological traits that carry visual signals. We illustrate the potential of 

this method by describing phenotypic variation in mimicry patterns of heliconiine butterflies at 

continental scale. Our results comfort and extend the long-time theorized pattern of trait 

convergence between sympatric species in a context of mimicry to large-scale spatial 

distributions. As such, we show how this method can be applied successfully in a context of 

high pattern diversity, integrating altogether the morphological, chromatic and cognitive 

dimensions of trait variation. Moreover, we demonstrate the versality of this new method by 

carrying out in parallel a Citizen Science project as a proof of concept for its relevant use in 

macroecological analyses involving the collection of a large amount of data, as well as its 

suitability for smaller scale analyses aiming to build local perceptual maps. Altogether, this 

work opens new perspectives to the investigation of ecological trait variation at multiple 

geographic and phylogenetic scales and may stimulate further studies of the evolution of 

ecological traits whose complexity prevented large scale comparison until now. 

4.1 Mimicry: a discrete utopia in a continuous reality? 

The representation of perceived phenotypic variation in wing patterns of heliconiine 

butterflies showed a continuum of patterns spread along the three axes of the perceptual space 

(Fig. 1a, 1c, 1d). This continuum is consistent with results from a previous study addressing 

large-scale pattern variation in mimetic bumblebees (Ezray et al. 2019) and also revealing a 

continuum of patterns in its phenospace. Yet, in the context of mimicry leading to the local 

convergence of patterns, it may seem surprising to obtain a global continuum rather than 

relatively defined clusters of patterns representing mimicry rings. This apparent paradox 

between a theory arguing for a discrete distribution of patterns and the continuous reality we 

quantified can be explained at multiple level. 

At local-scale, within communities, Müller’s model predicts the convergence of 

aposematic patterns mediated by predator perception and learning of pattern similarity and their 

association to toxicity. However, mimicry does not need to be perfect to ensure optimal 

protection (Kikuchi & Pfennig 2013). Small variations could be ignored or even not perceived 

by predators (Dittrich et al. 1993). The diversity of the perceptions of local predators could lead 

to a fuzzy plateau of optimality in the perceptual space where slightly different patterns provide 
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equal protection against attacks from multiple predators. Selection could be relaxed for patterns 

that are relatively rare locally and for which protection and selective pressure are therefore weak 

(Sherratt 2002). Developmental and genetic constraints could also limit the possibility to evolve 

better mimetic signals, even if imperfect signals are sub-optimal (Smith et al. 1985). Local 

imperfect mimicry is illustrated in our perceptual maps of local communities which despite 

demonstrating relatively significant degree of pattern clustering into mimetic groups, also show 

the existence of small pattern variation within mimetic groups (Fig 4). 

Even if local mimicry were perfect (which it is not), the suite of predators applying 

selective pressures varies at regional scale. Consequently, peaks of optimality in the perceptual 

space vary smoothly due to variation in predator assemblages and spatial stochasticity. This 

variation leads to the existence of phenotypic clines at regional scales even within mimicry 

rings (Hill et al. 2013). This variation becomes steeper in suture zones (Mallet & Barton 1989) 

delineating the mosaic of geographical forms arising through a combination of selective and 

neutral processes such as dispersal, genetic drift and local frequency-dependence selection 

(Sherratt 2006). Altogether, local imperfection in mimicry, combined with the geographic drift 

of selected patterns lead to a continuum of patterns in the perceptual space when all 

communities are pooled in a macroecological perspective.  

4.2 From large-scale Citizen Science aggregation to individual local 

perceptions 

We deployed a Citizen Science online platform to collect a diversity of perception data 

from thousands of people in order to address macroecological questions regarding wing pattern 

variation. Our resulting perceptual space combining color, shape, internal patterns, and their 

cognitive integration showed the main feature structuring the perceived wing pattern variation 

is color, with at least two axes organized along a color gradient (Fig. 1). These results 

consolidate previous experimental findings showing that color is a highly salient feature that is 

primarily used by bird predators (Aronsson & Gamberale-Stille 2012) and humans (Sherratt et 

al. 2015) to assess global similarity, over similarity in patterns and shape. 

Moreover, the Citizen Science data collection allowed us to quantify local mimetic 

diversity as the degree of clustering of local patterns in the perceptual space. We showed that 

functional diversity is relatively low in the Amazon basin compared to other species-rich 

regions such as Central America and the Brazilian Atlantic forest (Fig. 2b), similarly to what 

has been highlighted for mimetic richness measured as counts of mimetic groups defined on 
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expert knowledge (Pérochon et al., 2023; see ANNEXE 6). As a consequence, local mimetic 

groups in Amazonia are composed of more (sub)species (see lists of local mimicry rings in Fig. 

S31 in SI Appendix 10). This lower phenotypic diversity could be explained by a more 

homogenous climate in the area coupled with the relative absence of strong geographic barriers 

to dispersal of butterflies and their predators in the Amazonian forest (Melo et al., 2009, but see 

Rosser et al., 2021) leading to relatively homogeneous selective predation pressures across the 

entire region. 

The Citizen Science approach opens major opportunities for biogeographic studies of 

trait variation at large spatial scales. However, in the context of mimicry, the relevant scale to 

define the mutualistic ecological interactions supported by similarity in aposematic patterns is 

the local scale, where individuals can co-occur and ecological interactions are realized (Joron 

& Mallet 1998). Thus, we explored the ability for the Citizen Science dataset to inform on local 

variation of wing patterns and to provide relevant data to define mimetic groups. This ability 

could be impaired by the limited number of similarity triplets in the Citizen Science dataset 

encompassing each independent set of local patterns in local communities. Moreover, 

differences in the pool of patterns evaluated at the global and local scale could influence the 

perception of similarity (Bai et al. 2020). Nonetheless, we showed that perceptual space 

topologies and derived mimetic classifications from Citizen Science data were as much similar 

to those obtained from aggregated expert data on local patterns than the ones from individual 

experts (Fig. 5). As such, large-scale Citizen Science data collection seems a relevant approach 

to describe phenotypic variation, and in this case mimetic interactions, in potentially any local 

community, as long as distribution data are available. 

Altogether, the perceptual approach is a new versatile tool to the ecologist and 

evolutionist’s toolbox that may allow them to study ecological trait variation from the global 

scale integrating a diversity of perceptions, to the local scale focusing on individual perceptions, 

according to the study design and objectives. 

4.3 Uses and advantages of the perceptual approach 

The perceptual approach has been designed to incorporate altogether the morphological, 

chromatic and cognitive dimensions of trait variation. It is particularly suitable to study 

ecological signals mediated through perception such as aposematic patterns in the context of 

mimicry. In addition, it can provide a practical solution to quantify highly complex patterns for 

which image analyses is suboptimal due to difficulties to handle conjointly variations in shapes, 
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colors and patterns. Indeed, a current solution to such issues is to simplify color patterns in 

standardized templates (Ezray et al. 2019; Wilson et al. 2022) or to decompose the complex 

trait in independent features studied in parallel (Ortiz-Acevedo et al. 2020). The perceptual 

approach is not limited by the multidimensional complexity of traits, and allows to quantify any 

trait variation as long as relative similarity between triplets of objects can be informed, opening 

opportunities to study complex trait variation at large phylogenetic scales. 

A classic limitation of convolutional neural networks aiming to summarize variation in 

visual information is that the output has high numbers of dimensions, limiting opportunities for 

clear visualization, and preventing efficient clustering analyses (Wang et al. 2008) and 

macroevolutionary analyses (Adams & Collyer 2018). A typical solution is to apply additional 

downstream dimension reduction techniques to obtain a suitable output in low dimensions. Yet, 

the proportion of the original variance retained in the final selected dimensions may be limited 

(e.g., Hoyal Cuthill et al. 2019), restricting the significance of subsequent analyses. The 

perceptual approach allows to circumvent this issue by letting the user define a priori the final 

number of dimensions of the embedding according to its objectives and needs. Additionally, 

the perceptual approach can be applied in complementarity with convolutional neural networks 

in order to provide a human classifier that can be used to evaluate and train the neural networks. 

In this article, we illustrate how clustering can be applied in the perceptual space to 

generate hypotheses for local mimicry rings based on perceived pattern similarity. We 

recommend the use of Gaussian Mixture-Models (GMM) to achieve clustering (see details in 

dedicated Methods section), but alternative clustering algorithms can be employed such as 

HDBSCAN (Hahsler et al. 2019) or Spectral clustering (Karatzoglou et al. 2004). However, 

the mere use of clustering need to be considered carefully. The perceptual approach produces 

quantitative continuous space or maps of chosen dimensionality, which provides the most 

accurate description of pattern variations as coordinates and distances that are directly suitable 

for downstream biogeographic and macroevolutionary analyses (Revell & Harmon 2022). 

Applying a clustering algorithm leads to discrepancy of information and must be limited to 

questions that require a classification in perceived groups such as defining local mutualistic 

interactions based on mimicry. 
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4.4 Limits and perspectives for the study of phenotypic diversity at 

multiple scales 

One of the main limits when addressing perception is the variation of perception 

between individuals, but also between species. The mimicry patterns of heliconiine butterflies 

are under selective pressures from their natural predators, mostly birds specialized in flying-

insect predation such as jacamars (Chai 1986). Since we could not easily ask jacamars directly 

about their perceived relative distances among triplet of heliconiine butterflies, we did so with 

human subjects as surrogate predators. One could argue that a perceptual space built on human 

perception is not a valid description of perceived similarities by the suite of natural predators. 

Indeed, most birds possess four to five classes of cones receiving photonic wavelengths emitted 

by butterfly wings, including a class of cones specialized in ultraviolet wavelengths invisible to 

the human eye (Cuthill & Bennett 1993). Meanwhile some heliconiine butterflies are known to 

harbor UV-reflecting pigments that could be perceived by birds and not by humans (Bybee et 

al. 2012). Thus, the question to ask is whether human visual perception and associated cognitive 

processing of visual signals are sufficiently close to bird vision to inform us on the selective 

pressures at play in nature. 

A first answer to this interrogation relies on a very pragmatic observation: “our ability 

to detect and describe mimicry shows that our perceptual systems must be fairly similar to those 

of the predators causing such mimicry” (Joron & Mallet 1998). Several experimental findings 

support the idea that human vision and bird vision is sharply similar when it comes to the 

perception of mimicry patterns. For instances, pigeons broadly rank hoverfly mimics similarly 

to humans (Dittrich et al. 1993). Color appears to be a particularly salient feature for both birds 

and humans that can overshadow other discriminative cues such as shape and patterns (Sherratt 

et al. 2015). Finally, humans and great tits demonstrated strikingly quantitatively similar 

abilities to learn and generalized aposematic signals of unpalability (Beatty et al. 2005). As 

such, it seems reasonable to consider human-based quantification of mimetic traits as 

informative and ecologically relevant (Penney et al. 2012). 

Our study aims to describe variation in mimicry patterns of heliconiine butterflies at the 

global and local scales relying on perception of similarity. The distribution and clustering of 

mimicry patterns in the perceptual space way be influenced locally and globally by the pool of 

patterns included in the analysis (Bai et al. 2020). While we focused this study on heliconiine 

butterflies, it is worth considering the existence of other taxonomic groups in communities of 
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Neotropical mimetic butterflies. For instance, ithomiine butterflies (tribe Ithomiini, subfamily 

Danainae, family Nymphalidae) are preponderant members of these mimetic communities, 

sharing mimicry rings with Heliconiini (Bates 1862). Their spatial distributions can influence 

the spatial distributions of heliconiines (Brown Jr 1979; Pérochon et al. 2023; see ANNEXE 

6) but also the perception of pattern similarity. For instance, two species of heliconiine which 

may be considered non-mimetic because they are sufficiently apart in the perceptual space, 

could be reconsidered with the inclusion of an ithomiine species with an intermediate pattern. 

To overcome this limit, we call for future studies involving all members of the mimetic 

communities, independently of taxonomic boundaries. 

Altogether, the perceptual approach opens new perspectives to the investigation of 

ecological trait variation at multiple geographic and phylogenetic scales, especially traits whose 

complexity prevented large scale comparison until now. It will be possible to compare the 

quantification of trait variation between a perceptual and an analytical approach, investigating 

the influence of cognitive processes. Thanks to its versatility the perceptual approach makes it 

also accessible to compare trait perception between individuals and/or social groups (see Fig. 

S10 & S11 in SI Appendix 4 for an example with age and cultural and educational background). 

The fine characterization of the occupation of the perceptual space at multiple scales could 

inform us on constraints and processes acting on the evolution of traits. Finally, by integrating 

the cognitive processes behind the transmission of information through ecological signals, the 

perceptual approach offers an innovative point of view inaccessible to analytical approaches, 

and potentially opens the way to the study of any kind of ecological signal (e.g., colors, shapes, 

songs, smells, behaviors, etc.) for the field of phenomics. 

Data Accessibility Statement 

All MATLAB and R scripts to carry out analyses are available on GitHub 

at https://github.com/MaelDore/Perceptual_map_Heliconiini. All 2D perceptual maps, 3D 

animated perceptual spaces, mimicry ring lists and subspecies images used in the online survey 

are available in online archives in Zenodo (TBA). The online survey for the Citizen Science 

data collection is available on http://memometic.cleverapps.io/.  

https://github.com/MaelDore/Perceptual_map_Heliconiini
http://memometic.cleverapps.io/
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Supplementary Information 

Supplementary Information for CHAPTER 3: “Perceptual maps: a new tool to 

investigate mimicry patterns from Citizen Science to individual perception” can be found in 

ANNEXE 4.  
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Abstract 

 Understanding the mechanisms underlying species distributions and coexistence is both 

a priority and a challenge for biodiversity hotspots such as the Neotropics. Here, we highlight 

that Müllerian mimicry, where defended prey species display similar warning signals, is key to 

the maintenance of biodiversity in the c. 400 species of the Neotropical butterfly tribe Ithomiini 

(Nymphalidae: Danainae). We show that mimicry drives large scale spatial association among 

phenotypically similar species, providing new empirical evidence for the validity of Müller’s 

model at a macroecological scale. Additionally, we show that mimetic interactions drive the 

evolutionary convergence of species climatic niche, thereby strengthening the co-occurrence of 

co-mimetic species. 

This study provides new insights into the importance of mutualistic interactions in 

shaping both niche evolution and species assemblages at large spatial scales. Critically, in the 

context of climate change, our results highlight the vulnerability to extinction cascades of such 

adaptively-assembled communities tied by positive interactions. 

 

Graphical Abstract: Mutualistic interactions shape global spatial patterns and climatic 

niche evolution in Neotropical mimetic butterflies. Mimicry turnover at continental scale 
demonstrates large scale spatial congruence of phenotypically similar ithomiine butterflies 
(Nymphalidae: Danainae) associated with the climatic niche convergence of mimetic species. 

Keywords 

Müllerian mimicry, Neotropical butterflies, evolutionary convergence, climatic niche, spatial 
co-occurrence, community composition, species assemblages, mutualistic interactions, 
biodiversity hotspot, extinction cascade.  
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1 Introduction 

Traditionally, community and evolutionary ecology have focused on the interplay 

between antagonistic interactions (i.e., competition, predation) and common ancestry, and how 

this interplay drives both the assembly of communities and species niche evolution (Pianka 

1981; Brown & Maurer 1989; Webb et al. 2002; Kraft et al. 2007). However, more recently, 

many studies have extended this vision by documenting the importance of positive interactions 

in determining species coexistence and the stability of communities (Okuyama & Holland 2008; 

Elias et al. 2009a; Thébault & Fontaine 2010; Alexandrou et al. 2011; Mougi & Kondoh 2012; 

Hale et al. 2020), the coevolution of functional traits (Guimarães et al. 2011, 2017; Nuismer et 

al. 2013; Newman et al. 2014; O’Brien et al. 2021), the support of ecosystem functions such as 

pollination or seed dispersal (Millennium Ecosystem Assessment 2005), and the origins and 

maintenance of biodiversity (Bascompte & Jordano 2007; Gross 2008; Bastolla et al. 2009; 

Pascual-García & Bastolla 2017). 

Positive and negative interactions are expected to have opposite consequences on the 

evolution of species traits and on the assembly of communities. Competitive interactions may 

drive character displacement (e.g., divergence in traits involved in resource use) and local 

competitive exclusion, leading to a decrease in ecological niche similarity among species within 

communities (Brown & Wilson 1956; Webb et al. 2002; Dayan & Simberloff 2005). By 

contrast, positive interactions are predicted to drive the convergence of traits that enhance the 

local co-occurrence of interacting species, leading to an increase in ecological niche similarity 

within communities (Bruno et al. 2003; Thompson 2005; Elias et al. 2009a; Nuismer et al. 

2013; Aubier & Elias 2020). However, the consequences of this interplay on community 

composition at large spatial scales and on the evolution of species climatic niche, which drive 

species distributions at such scales, remain poorly explored, outside of plant facilitation 

(Valiente-Banuet & Verdú 2007; Brooker et al. 2008). 

Species within ecological guilds are linked by the use of a common resource (e.g., 

trophic resources or microhabitat space), thereby interacting negatively through exploitative 

competition. Yet, many species also engage in positive interactions (Crowley & Cox 2011). For 

instance, birds commonly form multispecies flocks, which increases foraging efficiency (Wiley 

1971) and reduces predation risk (Beauchamp 2004). Mixed-species groups of mammals often 

cooperate through beneficial joint hunting or shared vigilance (Stensland et al. 2003). Beyond 

ubiquitous facilitative interactions (Brooker et al. 2008), co-occurring plants can also benefit 
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from jointly attracting shared pollinators (Moeller 2004), driving convergence in flowering 

phenology (Sakai 2002) as well as in their chemical and visual floral traits acting as cues for 

pollinators (Thomson & Wilson 2008; Kantsa et al. 2017). Because intraguild systems may be 

simultaneously subject to the effects of both mutualistic interactions and competition, they 

appear particularly suited to investigate the outcome of positive and negative interactions in 

shaping community composition and species niche evolution. 

Müllerian mimicry is an emblematic case of intraguild mutualism, where non-profitable 

prey species have evolved similar warning color patterns (i.e., aposematic patterns) under 

positive frequency-dependent selection imposed by predators, which learn more efficiently to 

recognize and avoid patterns that are more common (Müller 1879; Sherratt 2008). Resulting 

sets of co-mimetic species, which share the same warning pattern, are called mimicry rings 

(Joron & Mallet, 1998; Mallet & Gilbert, 1995; Papageorgis, 1975; Weismann, 1904). As such, 

identifying sets of species locally engaged in mutualistic interactions (i.e., co-mimics) is 

relatively straightforward. Those species may often compete for resources (e.g., micro-habitat 

space or trophic resources), despite interacting mutualistically by sharing the cost of educating 

their naïve predators. Thus, Müllerian mimicry offers an excellent case-study to explore the 

interplay between positive and negative interactions on natural communities. While Müllerian 

mimicry (hereafter, mimicry) has been observed independently in numerous taxa around the 

world, such as Hymenoptera (Williams 2007; Wilson et al. 2015), Coleoptera (Muñoz-Ramírez 

et al. 2016; Motyka et al. 2021), frogs (Symula et al. 2001), fishes (Alexandrou et al. 2011), 

snakes (Sanders et al. 2006), and even birds (Dumbacher & Fleischer 2001), it was historically 

described and formalized in the 19th century by Fritz Müller based on observations of 

Neotropical ithomiine and danaine butterflies (Müller 1879). 

The butterflies of the Neotropical tribe Ithomiini Godman & Salvin, 1879 

(Nymphalidae: Danainae), commonly called clearwing butterflies because of the transparent 

wing areas seen in most species (Papageorgis 1975; McClure et al. 2019; Fig. 1), represent the 

most diverse radiation of mimetic butterflies, with 396 species documented to date. All species 

are engaged in Müllerian mimicry (Brown Jr. & Benson 1974; Beccaloni 1997a; Chazot et al. 

2019b), but at the same time may compete for various kinds of resources. Ithomiine larvae are 

almost all confined to the plant family Solanaceae, in some cases sharing the same host plant 

species, which are often understory herbs or vines with limited foliage (Drummond & Brown 

Jr 1987; Willmott & Mallet 2004; Beccaloni et al. 2008). Furthermore, adult males of most 

species may compete for access to composite flowers (Asteraceae) and wilted borages 
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(Boraginaceae) which provide them with the pyrrolizidine alkaloids needed for chemical 

protection against predators (Brown Jr 1984; Trigo & Brown Jr 1990), as well as sex pheromone 

precursors (Schulz et al. 2004).  

Previous works on Ithomiini provided the first evidence that mutualistic interactions can 

partially outweigh competition and drive ecological convergence along multiple ecological 

axes that enhance local co-occurrence, such as microhabitat (DeVries et al. 1999; Elias et al. 

2008; Hill 2010; Gompert et al. 2011; Willmott et al. 2017), flight height (Beccaloni 1997b; 

Elias et al. 2008), and hostplant preferences (Willmott & Mallet 2004), and at broader scales 

across altitudinal gradients (Chazot et al. 2014). However, the extent to which ecological niche 

convergence driven by positive interactions applies at larger spatial scales remains largely 

unknown. Notably, the effects of mimicry on the evolution of species climatic niches, which 

contribute to determining global geographic distribution patterns, is of particular interest in the 

context of current and future climate changes. 

This study aims to examine the impact of intraguild mutualistic interactions on 

community composition and climatic niche evolution of interacting species at a 

macroecological scale, using the butterfly tribe Ithomiini as a study system. Specifically, we 

investigated three questions: 

(1) Does mimicry structure Ithomiini community composition by promoting the spatial 

congruence of phenotypically similar species at the scale of their geographic range? 

(2) Is the climatic niche of species more similar within than between mimicry rings, 

enhancing the spatial congruence of phenotypically similar species? 

(3) If so, does such similarity of climatic niche among phenotypically similar species arise 

from shared ancestry or from evolutionary convergence across distinct lineages? 
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Figure 1: Mimicry ring classification for Ithomiini butterflies. Wing patterns are classified 
into 44 groups defined as mimicry rings. Dorsal view is shown on the left side against a dark 
background to highlight transparency when present. Ventral view is shown on the right side. 
The number of species in each mimicry ring is provided in parenthesis aside the name of each 
ring. ‘Co’ symbolizes the presence (in green) or absence (strikethrough in grey) of a significant 
pattern of species spatial congruence within each mimicry ring. The green solid line frames all 
mimicry rings with significant species spatial congruence. ‘Cv’ symbolizes the presence (in 
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blue) or absence (strikethrough in grey) of a lower variance in species climatic niche within 
each mimicry ring than expected from the phylogeny. When significant, this suggests an 
adaptive convergence of species climatic niche within the mimicry ring. The blue solid line 
frames all mimicry rings with significant signal for climatic niche convergence. The grey 
dashed lines frame all mimicry rings without significant signal for either spatial congruence or 
niche convergence, or both (double frame). Mimicry rings for which the tests could not be 
performed because they encompass only one ithomiine species each are displayed on the last 
line, without associated ‘Co’ and ‘Cv’ symbols associated. Photo credits: K. Willmott. Adapted 
from Doré et al. (2021). 

2  Materials and Methods 

2.1 Data sources 

2.1.1 Study system: the tribe Ithomiini 

Ithomiini (Nymphalidae: Danainae) represents the most diverse radiation of mimetic 

butterflies, with 1542 subspecies distributed among 396 species, 42 genera, and 10 subtribes 

(Chazot et al. 2019; see phylogeny in SI Appendix 1, Fig. S1). All species are engaged in 

Müllerian mimetic interactions. Ithomiini often numerically dominate butterfly communities in 

Neotropical forests from Mexico to northern Argentina (Chazot et al. 2019b) and act as mimetic 

models for other Lepidoptera species (Brown Jr. & Benson 1974; Brown Jr 1988; Beccaloni 

1997b; Joron & Mallet 1998). The classification of wing patterns defined on the basis of pattern 

similarity follows the most recent update (Doré et al. 2022), and comprises 44 mimicry rings 

(Fig. 1; https://doi.org/10.5281/zenodo.5497876). This phenotypic-based classification 

outlines “putative” mimicry rings (e.g., Symula et al. 2001; Sanders et al. 2006) in the sense 

that it delineates groups of biological entities with patterns assumed to be perceived as similar 

by predators (e.g., Symula et al. 2001; Wilson et al. 2015; Hoyal Cuthill et al. 2019). 

Most Ithomiini species contain several subspecies, which often belong to distinct 

mimicry rings (SI Appendix 13, Fig. S12). In order to study the interplay between Müllerian 

mimicry and the distribution and climatic niche of ithomiine butterflies, we defined Operational 

Mimicry Units (OMUs; Doré et al. 2021) as the set of conspecific individuals that share the 

same mimicry pattern (SI Appendix 2, Fig. S2). As such, a mimicry ring typically comprises 

multiple OMUs representing different species. The 783 currently known OMUs in the Ithomiini 

tribe were the ecological units used for our analyses (Doré et al. 2022). For the sake of 

simplicity, we use “co-mimetic species” and “phenotypically similar species” in the text to refer 

to the OMUs sharing the same mimicry pattern. 

https://doi.org/10.5281/zenodo.5497876
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2.1.2 Estimating community composition 

In order to investigate the effect of mimicry on the composition of Ithomiini 

communities, we retrieved maps of the estimated distribution of all 783 OMUs obtained from 

species distribution models based on a dataset of ca. 29,000 georeferenced occurrences (Doré 

et al. 2021; https://doi.org/10.5281/zenodo.4696055; 

https://doi.org/10.5281/zenodo.4673446). These models predicted the distribution of ithomiine 

butterflies based on the relationship between occurrences and associated climatic variables, 

forest cover and elevation. They provided scores interpreted as the likelihood of presence of 

each OMU within each community represented as a quarter-degree grid-cell of ca. 30 km x 30 

km. This approach allowed us to build a complete list of likelihood of presences of species and 

associated putative mimicry rings for each of the 21,415 communities (i.e., quarter-degree grid-

cells) considered within the entire Ithomiini range. We used those scores as predictions of 

OMUs assemblages in each community. A map of Ithomiini species richness based on those 

distribution is provided in SI Appendix 3, Fig. S3. 

2.1.3 Describing the climatic niche of species 

For each OMU, we extracted the set of climatic conditions found at its associated 

georeferenced records in the occurrence database. We defined the climatic niche of each OMU 

as the centroid of these occurrence points within the climatic space expressed in four 

dimensions: mean annual temperature, mean annual specific humidity, temperature seasonality, 

and specific humidity seasonality (Vega et al. 2017; MERRAclim v.2.0,  

https://doi.org/10.5061/dryad.s2v81, accessed on 04/02/2020). As such, each OMU was 

associated with a set of climatic data describing its mean climate, or its bioclimatic optimum 

(e.g., Hof et al. 2010; Barnagaud et al. 2012), strictly reflecting the centroid of its realized niche 

(Hutchinson 1957; Soberón & Nakamura 2009). Despite being a subset of the fundamental 

niche, measurements of the position of the realized niche in the environmental space based on 

occurrences can provide relevant insights on the evolution of the species fundamental niche 

(Gouveia et al. 2014), and are commonly used to investigate climatic niche evolution 

(Broennimann et al. 2012; e.g., Kozak & Wiens 2010a; Castro-Insua et al. 2018; Rolland et al. 

2018). 

https://doi.org/10.5281/zenodo.4696055
https://doi.org/10.5281/zenodo.4673446
https://doi.org/10.5061/dryad.s2v81
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2.2 Data analyses 

R scripts to carry out all analyses are available on GitHub at 

https://github.com/MaelDore/ithomiini_convergence. 

2.2.1 Community structure analyses 

To examine whether phenotypically similar species co-occur more often than expected 

at random in communities, we employed a modified version of a community differentiation 

index: the IST (Hardy & Senterre 2007). IST is analogous to the FST index used in population 

genetics. It quantifies differences in species composition across communities by partitioning 

additively the diversity between its alpha (within communities) and beta (between 

communities) components. In our framework, we apply IST to mimicry rings instead of species, 

using the number of species in each ring as the measure of abundance. As such, IST represents 

the mimicry turnover among our predicted communities, and a high IST reflects the spatial 

clustering of co-mimetic species within communities. This index conveniently allows us to 

quantify mimicry turnover at both global level and between pairs of communities. As such, we 

tested whether observed IST was significantly higher than expectations if mimicry patterns were 

distributed randomly among OMUs (as in Chazot et al. 2014). 

We also developed a complementary approach to investigate if the dissimilarity between 

spatial distributions of species was lower for phenotypically similar species. We computed 

pairwise Bray-Curtis distances (Bray & Curtis 1957) across the predicted distributions, 

obtained from species distribution models, of all pairs of OMUs with the R package vegan 2.5-

4 (Oksanen et al. 2019; see SI Appendix 6). A high Bray-Curtis value corresponds to a large 

dissimilarity in species spatial distributions, while a low value relates to an important spatial 

overlap (Fig. 2). We evaluated the significance of the mean value obtained for pairs of 

phenotypically similar species (i.e., putative co-mimics) by random permutation of mimicry 

patterns among the OMUs. We carried out this analysis for 39 putative mimicry rings for which 

the analysis could be performed since they hosted more than one species/OMU (Fig. 1: mimicry 

rings showing significant spatial congruence are associated with a ‘Co’ symbol in green). In 

this framework, a significant spatial congruence between similar-looking OMUs provides 

evidence that this hypothesized “putative” mimicry ring based on wing pattern similarity likely 

correspond to an “effective” mimicry ring reflecting current positive ecological interactions in 

local communities supported by mimicry (Sanders et al. 2006; Alexandrou et al. 2011; Wilson 

et al. 2022). 

https://github.com/MaelDore/ithomiini_convergence
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Figure 2: Illustration of spatial dissimilarity in distribution range between pairs of species. 

Spatial dissimilarity is quantified with Bray-Curtis distances (BC) based on the comparison of 
species likelihood of presence across each grid-cell. Dircenna jemina within mimicry ring 
DILUCIDA is used as the reference (upper left). The three other species show an increasing 
BC distance (decreasing spatial congruence) with the reference. A co-mimetic species, 
Dircenna dero within mimicry ring DILUCIDA (upper right), shows the highest spatial 
congruence (BC = 0.35). Non co-mimetic Oleria amalda within mimicry ring LERIDA (bottom 
left) and Mechanitis mazaeus within mimicry ring MAELUS (bottom right) display lower 
spatial congruence with the reference (BC = 0.75 and 0.95, respectively). Maps adapted from 
Doré et al. (2021). Photo credits: Nicolas Chazot, 2015. 
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2.2.2 Climatic niche similarity 

Spatial congruence between phenotypically similar species may only be partially due to 

non-climatic dispersal limits (Soberon & Peterson 2005), but a similar climatic niche would 

indicate a potential for future increase in the spatial congruence of such species associated with 

enhanced mutualistic interactions in the context of Müllerian mimicry. Thus, to examine 

whether mimetic interactions have led to the similarity of realized climatic niches between 

phenotypically similar species, thereby reinforcing their pattern of spatial congruence, we 

explored the relationship between mimetic turnover (i.e., pairwise IST) and climatic distances 

(i.e., Euclidian distances in a standardized multivariate climatic space formed by our four 

bioclimatic variables) between pairs of communities. First, we represented mimicry turnover 

and climatic diversity across all communities by projecting community pairwise distances (i.e., 

pairwise IST and Euclidean climatic distances) into three-dimensional RGB color spaces 

employing Nonmetric Multidimensional Scaling (NMDS; Fig. 3). Second, we tested whether 

such mimicry turnover between communities correlated with their climatic distances, hinting 

at an association between mimicry rings and specific climatic niches. We randomly subsampled 

1000 communities in order to limit spatial autocorrelation and limit computation time. We 

applied partial Mantel tests and Multiple Regressions on distance Matrices (MRM; Legendre 

et al. 1994) between pairwise IST and climatic distances taking into account a possible 

confounding effect of geographic distances (as in Chazot et al. 2014; Fig. 4.A-C). A significant 

positive correlation/effect means that communities undergoing similar climatic conditions 

display similar mimicry patterns, and vice versa. We performed these analyses a hundred times 

to ensure random subsampling of communities had no effect on the results (see SI Appendix 7, 

Tables S2 & S3). 

To further investigate the similarity of realized climatic niches of species within each 

putative mimicry ring, we performed a perMANOVA on species climatic niche optimum 

observed from occurrences (i.e., mean bioclimatic conditions at centroids), with the climatic 

space reduced to two dimensions after applying a phylogenetic PCA (pPCA; Revell 2009) on 

the four initial climatic variables (Fig. 4.D). This analysis aimed to detect whether co-mimetic 

OMUs shared their climatic niche optimum more than expected at random. Small mimicry rings 

with less than 10 OMUs were discarded because of their small sample size, which limits 

statistical power. As a result, 23 mimicry rings out of 44 (52.3%) were retained for the analysis, 

encompassing 619 OMUs among the 719 represented on the phylogeny (86.1%; see SI 

Appendix 4, Fig. S4). We also conducted post hoc pairwise comparisons between pairs of 
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mimicry rings. Finally, complementarily to these analyses of niche dissimilarity based on 

distances between niche centroids, we explored differences in climatic niche overlap between 

co-mimetic OMUs (SI Appendix 9, Fig. S9, Table S4). 

2.2.3 Climatic niche evolution 

Spatial congruence and niche similarity within mimicry rings can be caused by adaptive 

convergence (selection favors increased overlap in range, and therefore increased similarity in 

climatic niche, more than predicted by phylogenetic relatedness), but also phylogenetic inertia 

(species inherit color pattern and climatic niche associated with spatial range from their 

common ancestors). Thus, we further took into account the phylogeny in subsequent 

phylogenetic comparative analyses. First, we tested for the presence of phylogenetic signal in 

the evolution of both climatic niche and mimicry patterns (Losos 2008; see SI Appendix 10, 

Fig. S10, Table S5) on a phylogeny of the Ithomiini tribe (Chazot et al. 2019; SI Appendix 1, 

Fig. S1) that includes 339 species (85.6%) out of the 396 found in the clade. Then, we simulated 

the stochastic evolution of species mean bioclimatic conditions observed from occurrences (i.e., 

climatic niches optimum) under the best fitting neutral macroevolutionary model: a Brownian 

Motion with an additional Pagel’s λ parameter (λ = 0.408) to account for the intensity of the 

phylogenetic signal (see SI Appendix 11, Table S6, Fig. S11). 

Next, we performed a phylogenetic MANOVA to test whether any pattern observed 

with the perMANOVA was due to shared ancestry or whether it was caused by evolutionary 

convergence of the niche associated with mimicry. This test compares Wilk’s λ statistics of 

MANOVAs, which quantify the proportion of variance in the climatic niche optimum that is 

not explained by mimicry rings, obtained from the observed climatic niche optimum extracted 

from occurrences, with the null distribution of this statistic obtained from simulated climatic 

niche optimum under the chosen neutral model of macroevolution. The p-value for this test 

corresponded to the probability of obtaining by chance a lower Wilk’s λ statistic than the 

simulated values in the null distribution. As for the perMANOVA, small mimicry rings with 

less than 10 OMUs were discarded from the analysis because of their small sample size, which 

limits statistical power (see SI Appendix 4, Fig. S4). 

Complementarily, we compared the observed pairwise mean climatic distance (i.e., 

Euclidean distances between niche centroids) between the niche optimum of co-mimetic OMUs 

standardized by the overall mean pairwise climatic distance across the entire tribe with the null 

distribution of that same statistic in our simulations. A lower value than the simulated values in 
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the null distribution would indicate that co-mimetic OMUs display more similar climatic niche 

optimum than expected under the sole effect of the phylogenetic signal. We conducted this test 

for all co-mimics, and per putative mimicry ring (see SI Appendix 12, Table S7). 

3  Results 

3.1 Müllerian mimicry shapes community composition 

We tested whether species sharing similar wing patterns (i.e., putative co-mimetic 

species) present significantly congruent distribution patterns at large spatial scales in two ways. 

First, we found a significantly high global mimicry turnover, as assessed by IST based on 

number of species in mimicry rings (Hardy & Senterre 2007), compared to values obtained 

from random permutations of mimicry patterns among OMUs (SI Appendix 5, Fig. S5.A; IST 

obs = 0.164, mean IST null = 0.090, CI 95% = 0.103, p ≤ 0.001). This result is consistent with a 

global spatial clustering of phenotypically similar species within communities. 

Second, we investigated whether phenotypically similar species tend to have similar 

spatial distributions, by examining whether the dissimilarity between the spatial distributions 

of OMUs was lower for co-mimetic OMUs as in Fig. 2. Overall, we found that phenotypically 

similar species exhibited significantly lower mean Bray-Curtis distances (i.e., spatial 

dissimilarity) than expected at random (SI Appendix 5, Fig. S5.B; Mean BC obs = 0.896 across 

all pairs of co-mimics, mean BC null = 0.950, CI 5% = 0.946, p ≤ 0.001). Likewise, when the 

analysis was repeated for each putative mimicry ring comprising at least two species, 33 

mimicry rings out of the 39 for which the analysis could be performed showed a significant 

pattern of spatial clustering (Fig. 1: mimicry rings associated with ‘Co’ symbol in green). The 

remaining six non-significant mimicry rings all had low species richness (i.e., N < 10, except 

for DOTO) which constrains the statistical power of the permutation tests. As such, the pattern 

of large-scale spatial congruence of phenotypically similar species appeared largely ubiquitous 

in all regions of the Neotropics, and most putative mimicry rings qualify as effective mimicry 

rings depicting current mutualistic interactions (SI Appendix 6, Table S1). 

3.2 Mimicry patterns correlate with species climatic niche 

3.2.1 Mimicry turnover correlates with climatic distances across communities 

To investigate whether species belonging to the same mimicry ring tend to have similar 

realized climatic niche, thereby enhancing their potential for spatial congruence, we examined 

whether communities experiencing similar climatic conditions tend to harbor a similar 
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predicted composition in mimicry patterns. The maps of mimicry turnover (Fig. 3.A) and 

climate diversity (Fig. 3.B) tend to show qualitatively similar patterns, with broad regional 

distinctions between the Atlantic Forest, the Pampas, the Cerrado and Caatinga, the Amazon 

Basin, the Andes, and Central America. Yet, the Andes appear as an important geographic 

barrier to dispersal, drawing sharp contrasts in term of mimicry composition between the two 

sides of Cordilleras (Fig. 3.A), while climate appears relatively similar between sides (Fig. 

3.B). Furthermore, we tested whether mimicry turnover between predicted communities 

correlated with the climatic distances between these communities (see SI Appendix 7, Tables 

S2 & S3). In all tests, pairwise IST (i.e., mimicry turnover between communities) was correlated 

with the pairwise climatic distance between communities (Fig. 4.A: MRM: βobs = 0.367, Q95% 

= 0.023, p-value ≤ 0.001). Although pairwise IST was also correlated with geographic distance 

between communities (Fig. 4.B: MRM: βobs = 0.598, Q95% = 0.024, p-value ≤ 0.001), the 

correlation between pairwise IST and pairwise climatic distance between communities persisted 

even when accounting for spatial distance (Fig. 4.C & SI Appendix 5, Fig. S6.A: MRM: βobs 

= 0.216, Q95% = 0.027, p-value ≤ 0.001). All Mantel tests yielded results consistent with MRM 

(see SI Appendix 7, Tables S2 & S3). Therefore, the significant mimicry turnover across 

communities was partially explained by differences in local climatic conditions linked to a 

dissimilarity between the climatic niches of species across mimicry rings. 

 

Figure 3: Mimicry turnover (A) and climate diversity (B) across communities. Colors 
represent coordinates in the RGB color space. They relate to dissimilarity in the predicted 
mimicry composition (A) or climatic conditions (B) across all communities obtained from 
NMDS applied on pairwise mimicry turnover (A) and Euclidean climatic distances (B). Colors 
are not comparable between maps, but they reflect patterns of dissimilarity.  
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3.2.2 Species climatic niches are more similar within than between mimicry rings 

We tested whether species’ realized niches are more similar within than between 

mimicry rings, regardless of the origin of the similarity/difference (i.e., convergent evolution 

or shared ancestry). We found a significant association between species climatic niches and 

their mimicry patterns (Fig. 4.D; perMANOVA: R² = 0.416, Pseudo-F = 19.35, p ≤ 0.001; SI 

Appendix 5, Fig. S6.B). Moreover, perMANOVA post hoc pairwise comparisons of mimicry 

rings revealed that the vast majority of mimicry ring pairs exhibited significantly different 

climatic niches (SI Appendix 8, Fig. S8: 186 out of 253 pairs (73.5%) with a p-value ≤ 0.001; 

226 (89.3%) with a p-value lower than 0.05). Complementary analyses based on climatic niche 

overlap rather than niche centroids led to similar results (SI Appendix 9, Fig. S9, Table S4). 

 



CHAPTER 4: Niche convergence 
 

138 

 

Figure 4: Association between climate and mimicry patterns: mimicry turnover explained 
by climatic and geographic distances across pairs of communities (A, B, C) relates to the 
segregation of species climatic niche between mimicry rings (D). Scatter plots display 
relationship between mimicry turnover and climatic and geographical distances across pairs of 
communities for a random sample of 1000 distances among the 499 500 distances computed 
for clarity. ρ = Spearman’s rho coefficient for non-parametric correlation associated with p-
value from Mantel tests with 999 permutations. βobs = β-coefficient from Multiple Regression 
on distance Matrices (MRM) with 999 permutations; Q95% = quantile used as threshold for 
right-tailed significance tests. (A) Mimicry turnover (pairwise IST) correlates with climatic 
distances. (B) Mimicry turnover (pairwise IST) correlates with geographic distances. (C) 
Mimicry turnover (pairwise IST) correlates with climatic distances after accounting for the effect 
of geographic distance. (D) Ordination of species bioclimatic optimum for the five richest 
mimicry rings in the reduced climatic space resulting from a pPCA (Revell 2009). AGNOSIA 
= 74 species (in black). LERIDA = 63 species (in green). MAMERCUS = 56 species (in 
orange). HERMIAS = 47 species (in blue). BANJANA-M = 43 species (in red). Grey dots 
represent species belonging to other mimicry rings. Tvar = Temperature seasonality. Hvar = 
Specific humidity seasonality. Hmean = Mean specific humidity. Tmean = Mean temperature. 
Ellipses represent normal-probability contours (quantile = 0.8) for each mimicry ring. 

3.3 Müllerian mimicry drives climatic niche convergence 

In subsequent analyses, we built upon the phylogeny of the group (Chazot et al. 2019b) 

to disentangle the effects of shared ancestry and evolutionary convergence in niche similarity 

among co-mimetic species. We found a significant phylogenetic signal in the evolution of 

mimicry patterns: phenotypically similar species were significantly closer than expected by 

chance in the phylogeny (MPD obs = 34.43 My, mean MPD null = 37.16 My, CI 5% = 36.73 

My, p ≤ 0.001; see SI Appendix 10, Fig. S10.A, Table S5 and SI Appendix 13, Fig. S12). In 

parallel, we observed a weak but significant phylogenetic signal in the evolution of species 

climatic niche (Kmult obs = 0.120, mean Kmult null = 0.083, CI 95% = 0.110, p = 0.013; see SI 

Appendix 10, Fig. S10.B). Therefore, the association we revealed between mimicry rings and 

climatic niche could be at least partly explained by common ancestry (Losos 2008). However, 

we found that the association between climatic niche and mimicry patterns was significantly 

stronger than expected given species evolutionary relationships (SI Appendix 5, Fig. S7.A; 

phylogenetic MANOVA, Wilks’ λ obs = 0.271, mean Wilks’ λ null = 0.899, CI 5% = 0.844, p 

≤ 0.001). 

To further assess if climatic niches of co-mimetic species are more similar than expected 

from a process of neutral niche evolution, we computed the standardized mean climatic distance 

(MCD) among co-mimetic species. The observed value was lower than expected under neutral 

evolution where climatic niche was allowed to evolve on the phylogeny in any direction of the 
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climatic space (SI Appendix 5, Fig. S7.B; MCD obs = 0.782, mean MCD null = 0.984, CI 5% 

= 0.959, p ≤ 0.001), again suggesting an evolutionary association between mimicry and climatic 

niche that goes beyond the pattern of niche similarity among co-mimetic species. Additionally, 

32 out of 39 putative mimicry rings for which the analysis could be performed showed a 

significant signal for convergence of the climatic niche (Fig. 1: mimicry rings associated with 

‘Cv’ symbol in blue; see SI Appendix 12, Table S7 for a detailed statistical summary). No 

mimicry ring showed a signal of divergence (i.e., MCD higher than expected under neutral 

climatic niche evolution). Altogether, most mimicry rings (29 out of 44 = 65.9%) exhibited 

both species spatial congruence and climatic niche convergence all across the Neotropics (Fig. 

1). 

4  Discussion  

In this study, we investigated the impact of positive interactions on the composition of 

species assemblages and the evolution of species climatic niche in a diverse clade of 

Neotropical butterflies. We showed that intraguild mutualistic interactions, specifically 

Müllerian mimicry, drive the large-scale spatial association of interacting species and channel 

the convergence of species climatic niche across lineages. As such, we showed that the effects 

of mimicry can outweigh both common ancestry, which promotes similarity among related 

species, and potential competition within ecological guilds, which would promote divergence, 

thereby affecting the global distribution of a highly diverse group at large spatial scales.  

4.1 From large-scale spatial congruence to fine-scale ecological dimensions 

Traditionally, community ecology and biogeography have focused on the interplay 

between antagonistic interactions such as competition and predation, and common ancestry, to 

explain community structure and macroecological patterns of biodiversity (Pianka 1981; Brown 

& Maurer 1989; Webb et al. 2002; Cardillo 2011). Under this paradigm, the importance of 

positive interactions for shaping large-scale species distribution patterns has remained largely 

overlooked, despite a growing literature calling attention to their significance for structuring 

species assemblages and maintaining stability and diversity at the community-level (Bastolla et 

al. 2009; Pascual-García & Bastolla 2017; Hale et al. 2020). As a case-study of the effects of 

intraguild mutualism, we showed here that phenotypically similar ithomiine species co-occur 

at large spatial-scales more often than expected by chance. This result comforts the idea that 

similarity of aposematic patterns in ithomiine butterflies largely arose through adaptive 
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convergence induced by Müllerian mimicry. As such, positive interactions, in this case 

Müllerian mimicry, could outweigh potential effects of competition, notably the geographical 

overdispersion of phylogenetically close and ecologically similar species (Pianka 1981; Webb 

et al. 2002; Kunte 2008). Co-occurrence among phenotypically similar species of Ithomiini has 

already been documented at smaller scales, across microhabitats (Beccaloni 1997b; DeVries et 

al. 1999; Elias et al. 2008; Hill 2010; Willmott et al. 2017) and altitudinal gradients (Chazot et 

al. 2014). Here, we showed that this pattern extends to the entire Ithomiini clade, over its global 

distribution across the Neotropics, supporting the idea that positive interactions can strongly 

affect the global spatial distribution patterns of entire diverse groups. Our study provides new 

empirical evidence at a macroecological scale for the validity of the oldest mathematical model 

of evolution, namely Müller’s prediction of local convergence in warning patterns among toxic 

aposematic species (Müller 1879). 

Our findings further revealed that mutualistic interactions can lead to the convergence 

of climatic niches among co-mimetic species, thereby enhancing co-occurrence, and potentially 

supporting high community diversity (Gross 2008). In turn, enhanced co-occurrence among 

phenotypically similar species also potentially increases competition for local resources. 

Theoretical models showed that while co-mimetic species are expected to use the same trophic 

resources when these resources are highly segregated across microhabitats, they are instead 

expected to partition their diet when multiple types of resources are available in their shared 

microhabitat, thereby lessening the negative effects of competition for resources (Aubier & 

Elias 2020). These predictions are partly confirmed in the field, where co-mimetic species 

sometimes use the same larval host plants, but in other cases do not (Willmott & Mallet 2004). 

At these finer scales, mutualistic interactions can therefore still drive convergence, especially 

in ecological dimensions that favor co-occurrence in the eyes of predators. For example, 

communities of habitat-specialist predators that select locally for different optimal warning 

signals can induce the segregation of mimicry rings across microhabitats (Birskis-Barros et al., 

2021; Willmott et al., 2017). This fine-scale structuring helps explain the apparent paradox of 

high local mimicry richness (Joron & Mallet 1998), with eight or more ithomiine mimicry rings 

co-occurring in west Amazonian communities (Doré et al. 2022), in the context of Müllerian 

mimicry predictions of local convergence in color patterns (Gompert et al. 2011). 

Beyond the emblematic case of ithomiine butterflies and Müllerian mimicry, the 

opposite effects of intraguild positive and negative interactions are found in other biological 

systems, at multiple spatial scales. For instance, co-mimetic catfish species tend to co-occur at 
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the scale of large river basins, while at local scales diet partitioning, coupled with morphological 

dissimilarity, appear to be the main factors structuring species assemblages (Alexandrou et al. 

2011). Likewise, plants that attract similar pollinators benefit from co-occurrence and 

facilitative interactions (Moeller 2004), and may demonstrate convergence for attractive scents 

and floral morphology (Thomson & Wilson 2008; Kantsa et al. 2017), while they can also 

present different mechanisms for pollen deposition (Huang & Shi 2013) and contrasted 

phenologies (Armbruster & Herzig 1984) that limit reproductive interference. 

Altogether, the interplay between positive and negative intraguild interactions on 

community structure and trait evolution may have different outcomes at different spatial scales. 

At large-scales, we found that convergence in climatic niche, strengthening the spatial 

congruence of the distributions of mutualistic species, seems favored. At fine-scales, the 

similarity of species ecological niches may depend on whether the benefits of mutualistic 

interactions outweigh the effects of competition that otherwise promote niche partitioning. 

4.2 A scenario for niche convergence in mutualistic communities 

Our results hint for an adaptive association between climatic niche and mimicry patterns 

in Ithomiini species, thereby reinforcing the local co-occurrence of mutualistic species. Indeed, 

species harboring the same mimicry pattern benefit from evolving towards similar climatic 

niches, since this often results in increased spatial overlap and exposure to the same suite of 

predators within communities (Sherratt 2006). However, a pattern of niche similarity within 

mimicry rings could actually arise from the opposite mechanism: species with a similar climatic 

niche and living at least partly in sympatry are expected to undergo convergence in their 

aposematic patterns (Müller 1879). Both adaptive mechanisms likely act together, as suggested 

by modeling approaches (Gompert et al. 2011).  

A plausible scenario involves an initial partial climatic and spatial overlap of species 

niches, perhaps guided by the spatial congruence of their respective host plants (Fig. 5; Step 1: 

Initial partial overlap). Thus, in the context of Müllerian mimicry, one may expect those species 

to converge towards one mimicry pattern, at least in the area of distribution overlap (Fig. 5; 

Step 2: Pattern convergence). Next, the expansion of the range of each species towards areas 

occupied by co-mimetic species (potentially harboring different climatic conditions) will be 

facilitated, since these new areas offer an increased protection against predators, compared to 

areas where co-mimics are absent (Kapan 2001; Fig. 5; Step 3: Niche expansion). Meanwhile, 

populations retaining the ancestral pattern, where the co-mimetic partner is absent, experience 
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weaker protection from predators and may sometimes go extinct (Mallet & Barton 1989; 

Langham 2004; Fig. 5; Step 4a: Niche thinning). Alternatively, these populations may persist 

to result in the generation of a polymorphic species with two independent sets of mimetic 

individuals (i.e., Operational Mimicry Units (OMUs) as in Doré et al. 2021; Fig. 5; Step 4b: 

Niche partitioning). This coexistence generates a spatial mosaic of aposematic patterns 

bordered by suture zones where hybrids are counter-selected by predation from naïve predators 

(Mallet & Barton 1989; Thompson 2005; Sherratt 2006). Conveniently, this scenario offers an 

explanation for the relatively high prevalence of polymorphism in mutualistic systems, with 

several OMUs per species. In the long run, these OMUs may diverge enough to be considered 

as separated species (Fig. 5; Step 5b: Speciation) and fuel the high diversity typically observed 

in mutualistic clades (Joron & Mallet 1998; Aubier et al. 2017; Motyka et al. 2021). Either way, 

the distributions of the mimetic populations of the species will gradually increase in overlap, 

leading to the convergence of climatic niches (Fig. 5; Step 5a & 5b: Final overlap). Therefore, 

both mechanisms of color pattern and niche convergence likely act jointly to generate the 

adaptive association of species climatic niche and mimicry patterns we detected for ithomiine 

butterflies. 
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Figure 5: Scenarios for niche convergence between co-mimetic species. Five steps to reach 
spatial and environmental overlap between co-mimetic species leading to the predator-driven 
adaptive association of environmental niche and mimicry pattern. Scenario A involves the 
extinction of non-mimetic populations and the convergence of two monomorphic species. 
Scenario B involves the generation of a polymorphic species leading to speciation. Strictly, 
instead of convergence these scenarios describe the likely more frequent case of advergence 
(Mallet 1999) since the lineage in blue, then green, starts with CONFUSA pattern and adverges 
to MOTHONE pattern, while the species in red starts with MOTHONE pattern and maintains 
it over time. 

4.3 Consequences for mutualistic systems in the context of global change 

The power of mimicry to shape large-scale community composition and drive species 

climatic niche convergence illustrates the importance of intraguild mutualistic interactions in 

shaping both the ecology and evolution of interacting species. In the context of global changes, 

the fate of those mutualistic communities is even more uncertain due to the positive nature of 

their interactions. Indeed, climate change and habitat loss force species to migrate at 

unprecedented rates to follow their climatic niches (Pearson 2006; Boeye et al. 2013). 

Mutualistic partners may adapt differently, at different rates, or even impede their respective 

migration rates (Brooker et al. 2007; Svenning et al. 2014). Such effects may quickly lead to 

community disassembly and the loss of the positive mimetic interactions, especially in tropical 

mountainous regions (Uehara-Prado & Freitas 2009; Sheldon et al. 2011), where distribution 

ranges are often narrow and most Ithomiini diversity is found (SI Appendix 3, Fig. S3). 

Mutualistic communities are particularly sensitive to community disassembly because 

of the long-standing history of co-evolution and interdependency between co-occurring species 

(Toby Kiers et al. 2010). They are more prone to extinction cascades, since the local 

disappearance of a species can weaken the network of mutualistic interactions supporting their 

robustness and resilience to perturbations (Dunn et al. 2009; Vidal et al. 2019). Even if climatic 

niche similarity between interacting partners, such as co-mimetic species, may limit community 

disassembly to a certain extent by allowing congruent dispersal trajectories in the face of 

climate change, climatic niche overlap is hardly ever complete (SI Appendix 9, Fig. S9, Table 

S4). Moreover, despite relatively similar climatic niche optima, tolerance to climate change and 

extremes, as well as species dispersal abilities, may still differ among species, limiting 

opportunities for co-dispersal trajectories. Finally, the effects of climate change on biotic factors 

that affect local abundance, such as hostplants (Willmott & Mallet 2004) and parasitoids 

(Gentry 1998) in the case of Ithomiini butterflies, may also differ among interacting species.  
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Altogether, mutualistic communities form tightly coevolved assemblages tied by 

positive interactions, making them particularly vulnerable to global environmental changes 

(Tylianakis et al. 2008). Our results stress the need to include species interactions, illustrated 

here by Müllerian mimicry, in the framework of macroecological and global change studies, as 

well as in species distribution modeling and conservation assessments (Brooker et al. 2007; 

Toby Kiers et al. 2010; Tylianakis et al. 2010; Staniczenko et al. 2017; Windsor et al. 2023). 
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In the face of global change, understanding the mechanisms underlying species 

distributions and coexistence is both a priority and a challenge, especially for biodiversity 

hotspots such as the Neotropics. In this research work, I explored several dimensions of 

biodiversity patterns in Neotropical mimetic butterflies employing an integrative approach 

across biogeography, phylogenomics, and community ecology. Specifically, I focused on two 

tribes engaged in Müllerian mimicry, the Ithomiini (Nymphalidae: Danainae) and Heliconiini 

(Nymphalidae: Heliconiinae), in order to illustrate the importance of mutualistic interactions 

for shaping large-scale spatial and evolutionary patterns of biodiversity. 

In Chapter 1, I employed species distribution models to map the taxonomic, 

phylogenetic and mimetic facets of Ithomiini biodiversity. I identified areas of evolutionary and 

ecological importance for conservation, and evaluate their overlap with current anthropogenic 

threats. I showed that tropical montane forests that host high species and mimetic diversity as 

well as rare species and mimicry rings appear particularly under threat. These results support 

the role of ithomiine butterflies as a suitable flagship indicator group for Neotropical butterfly 

diversity, and reinforce the position of the tropical Andes as a flagship region for butterfly 

biodiversity conservation. 

In Chapter 2, I presented a new phylogeny for the Ithomiini tribe, building upon 

phylogenomic methods to resolve and support deep evolutionary relationships in the group. 

This phylogeny reinforces the monophyly of the core-group, a clade associated with a recent 

adaptive radiation linked to multiple colonizations of new areas following the demise of the 

Pebas aquatic system in Western Amazonia. It comforts the basal position of the Melinaea 

subtribe and suggests the Mechanitina subtribe as the sister-group of the core-group. Altogether, 

this new phylogeny provides a stable tool for macroevolutionary analyses in ithomiine 

butterflies. 

In Chapter 3, I described a new method to quantify similarity in wing patterns in the 

context of mimicry. I built an interactive website to carry out a Citizen Science collection of 

the perception of wing pattern similarity, and adapted the t-STE machine learning algorithm to 

generate 3D perceptual maps of the variation of heliconiine butterfly wing patterns at the 

continental scale. I mapped the local phenotypic diversity as the degree of clustering in the 

perceptual space, and used Gaussian mixture models to cluster wing patterns in putative 

mimicry rings reflecting mutualistic interactions. I illustrated the versatility of the perceptual 

approach showing its suitability to carry out both macroecological analyses and local 
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community-level studies. Altogether, I believe the perceptual approach can become a new 

flexible tool to the ecologist and evolutionist’s toolbox that will allow them to investigate and 

quantify similarity in any ecological signals transmitted through perception. 

Finally, in Chapter 4, I linked all previously explored geographic, evolutionary, and 

phenotypic dimensions of biodiversity, to study the effects of mutualistic interactions on large-

scale spatial distributions and niche evolution of ithomiine butterflies. I used phylogenetic 

comparative methods to test for spatial congruence and climatic niche convergence among 

comimetic species. I showed that mimicry drives large scale spatial association among 

phenotypically similar species, providing new empirical evidence for the validity of Müller’s 

model at a macroecological scale. Additionally, I showed that mimetic interactions drive the 

evolutionary convergence of species climatic niche, thereby strengthening the co-occurrence of 

co-mimetic species. 

Overall, my research work provides new insights into the importance of mutualistic 

interactions in shaping both niche evolution and species assemblages at large spatial scales. 

Here, I offer to shed light on potential limits of this research work that could also affect future 

studies beyond the scope of my case study, discuss ways to overcome them, and outline future 

directions for research:  

(1) I discuss the concept of ‘mimicry ring’, both fundamental and transversal to all my 

research work, in order to clarify its use, and offer a theoretical framework to build upon 

for future studies on mimicry. 

(2) I highlight the importance of multi-taxa approaches in the context of mimicry and I 

illustrate what such integrated comparison can bring to the picture. 

(3) I open a window on the importance of mimetic interactions to understand the assembly 

of ecological communities at large spatial scales. 

(4) Finally, I outline possible consequences of global changes on the biodiversity patterns 

described in this research work and describe opportunities to predict if not prevent them. 
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In the face of global change, understanding the mechanisms underlying species 

distributions and coexistence is both a priority and a challenge, especially for biodiversity 

hotspots such as the Neotropics. In this research work, I explored several dimensions of 

biodiversity patterns in Neotropical mimetic butterflies employing an integrative approach 

across biogeography, phylogenomics, and community ecology. Specifically, I focused on two 

tribes engaged in Müllerian mimicry, the Ithomiini (Nymphalidae: Danainae) and Heliconiini 

(Nymphalidae: Heliconiinae), in order to illustrate the importance of mutualistic interactions 

for shaping large-scale spatial and evolutionary patterns of biodiversity. 

In Chapter 1, I employed species distribution models to map the taxonomic, 

phylogenetic and mimetic facets of Ithomiini biodiversity. I identified areas of evolutionary and 

ecological importance for conservation, and evaluate their overlap with current anthropogenic 

threats. I showed that tropical montane forests that host high species and mimetic diversity as 

well as rare species and mimicry rings appear particularly under threat. These results support 

the role of ithomiine butterflies as a suitable flagship indicator group for Neotropical butterfly 

diversity, and reinforce the position of the tropical Andes as a flagship region for butterfly 

biodiversity conservation. 

In Chapter 2, I presented a new phylogeny for the Ithomiini tribe, building upon 

phylogenomic methods to resolve and support deep evolutionary relationships in the group. 

This phylogeny reinforces the monophyly of the core-group, a clade associated with a recent 

adaptive radiation linked to multiple colonizations of new areas following the demise of the 

Pebas aquatic system in Western Amazonia. It comforts the basal position of the Melinaea 

subtribe and suggests the Mechanitina subtribe as the sister-group of the core-group. This new 

topology provides better agreement with the putative evolution of morphological traits, 

highlighting the power of phylogenomic approaches to resolve previously conflicting deep 

evolutionary relationships. Altogether, this new phylogeny provides a stable tool for 

macroevolutionary analyses in ithomiine butterflies. 

In Chapter 3, I described a new method to quantify similarity in wing patterns in the 

context of mimicry. I built an interactive website to carry out a Citizen Science collection of 

the perception of wing pattern similarity, and adapted the t-STE machine learning algorithm to 

generate 3D perceptual maps of the variation of heliconiine butterfly wing patterns at the 

continental scale. I mapped the local phenotypic diversity as the degree of clustering in the 

perceptual space, and used Gaussian mixture models to cluster wing patterns in putative 
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mimicry rings reflecting mutualistic interactions. I illustrated the versatility of the perceptual 

approach showing its suitability to carry out both macroecological analyses and local 

community-level studies. Altogether, I believe the perceptual approach can become a new 

flexible tool to the ecologist and evolutionist’s toolbox that will allow them to investigate and 

quantify similarity in any ecological signals transmitted through perception. 

Finally, in Chapter 4, I linked all previously explored geographic, evolutionary, and 

phenotypic dimensions of biodiversity, to study the effects of mutualistic interactions on large-

scale spatial distributions and niche evolution of ithomiine butterflies. I used phylogenetic 

comparative methods to test for spatial congruence and climatic niche convergence among 

comimetic species. I showed that mimicry drives large scale spatial association among 

phenotypically similar species, providing new empirical evidence for the validity of Müller’s 

model at a macroecological scale. Additionally, I showed that mimetic interactions drive the 

evolutionary convergence of species climatic niche, thereby strengthening the co-occurrence of 

co-mimetic species. 

Overall, my research work provides new insights into the importance of mutualistic 

interactions in shaping both niche evolution and species assemblages at large spatial scales. 

Here, I offer to shed light on potential limits of this research work that could also affect future 

studies beyond the scope of my case study, discuss ways to overcome them, and outline future 

directions for research:  

(1) I discuss the concept of ‘mimicry ring’, both fundamental and transversal to all my 

research work. The classic definition I used throughout my work implies a hard 

classification of aposematic patterns into independent groups with strict boundaries, 

while in nature ecological interactions are typically fuzzier and lie on continuums. Here, 

I discuss the rationale for a fuzzy classification of mimicry rings, and offer a theoretical 

hierarchical framework to build upon for future studies on mimicry. 

(2) I highlight the limit of using a unique group model in a context of mimicry involving 

convergence across distant lineages. I illustrate how the omission of members of the 

mimetic communities can affect outcomes of analyses, therefore emphasizing the 

importance of multi-taxon approaches in the context of mimicry. 

(3) I discuss the potential of the joint exploration of mimetic and taxonomic diversity 

patterns to open a window on mechanisms driving the assembly of ecological 

communities at large spatial scales. 
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(4) Finally, I consider the potential consequences of global changes on the biodiversity 

patterns described in this research work. In particular, I discuss the limits of identifying 

refuge areas for conservation based on current anthropogenic threats, and I outline 

opportunities to predict future risks, if not prevent them. 

1 Redefining the concept of ‘mimicry ring’ 

1.1 Mimetic classifications: going hard or stay fuzzy? 

Throughout all my research work, I employed the concept of ‘mimicry ring’ which I 

defined as “a set of individuals sharing the same (honest or not) warning signals” (Papageorgis, 

1975; Weismann, 1904). This definition underlies a strict classification of warning signals, and 

the biologic entities that display them (individuals, Operational Mimicry Units, species, etc.), 

into bounded groups that in the end reflect ecological interactions. Indeed, the implied 

consequence here is that in a local community, individuals from the same mimicry ring are 

engaged in mimetic interactions with each other, while individuals from two different mimicry 

rings do not interact, at least through mimicry (Joron & Mallet 1998). 

However, in Chapter 3, I showed that local patterns of mimetic species were not 

perfectly clustered, and that some degrees of uncertainty remained with patterns being 

inconsistently classified in different putative mimicry rings according to the source of the 

dataset used. From the methodological point of view, I designed those hard classifications (i.e., 

with a strict membership defined for each object) applying Gaussian Mixture Models that 

provide as initial outputs the likelihood for each pattern to belong to each group. Therefore, 

they directly quantify the uncertainty inherent to such classifications. Yet, I attributed each 

subspecies to its most likely group in order to define the desired putative mimicry rings. 

In practice, ecologists may not be satisfied with a fuzzy classification that provides 

probabilities of membership to a group instead of a strict membership for each species. Yet, it 

is worth taking the time to think about the biological nature of the ecological interactions these 

mimetic groups aim to represent. When they involve two species, Müllerian mimetic 

interactions represent the fitness gains obtained by the individuals of those species when they 

happen to co-occur such that the species share the cost of educating predators to their 

noxiousness. Such gains (or losses for models in case of Batesian mimicry) are not binary. In 

theoretical modeling they are typically represented by a continuous (possibly bounded) quantity 
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depending on many factors, including the relative frequencies of species, their palatability, their 

degree of phenotypic similarity, the composition, visual abilities, experience and behavior of 

the predator community, the availability of alternative prey and the structuration among 

microhabitat of prey and predators (Kokko et al. 2003; Lindström et al. 2004; Gompert et al. 

2011; Aubier & Elias 2020; Birskis-Barros et al. 2021). For instance, even though predators are 

expected to show a sharp boundary between what they like or always reject according to the 

degree of palatability (Joron & Mallet 1998), thus reflecting a binary interaction (i.e., present if 

always rejected, absent if always eaten), the diversity of predator preferences can be sufficient 

to blur this sharp individual distinction. Beyond the spectrum of palatability (Turner 1984), this 

is also true regarding imperfect mimicry (i.e., the fact some mimics are not perfectly similar to 

models but can still be considered as the same type of prey by predators who tend to generalize 

their aposematic signals; Kikuchi & Pfennig 2013) and the diversity of predator visual abilities 

and foraging choices. Indeed, in a community with a diversity of predators, the protection gains 

of Müllerian mimetic species unknown to the predators is expected to vary in a non-linear and 

non-binary fashion according to their degree of similarity with the local model, if ignoring other 

factors (Fig. 1). 

At large spatial scale, the idea of imposing a hard classification of mimicry rings with 

strong boundaries is even more delicate. Indeed, in Chapter 3 I showed that the perceptual 

space of heliconiine butterflies is filled with a continuum of wing patterns rather than clearly 

defined clusters of mimicry patterns. This continuum can be explained by both the local 

imperfect mimicry, and the geographical drift of patterns selected by the different local 

communities of predators. If zooming out sufficiently in the geographic space, we can 

encounter cases where pairs of species that show high pattern dissimilarity are actually linked 

through a chain of partly overlapping pairs of species showing locally high similarity of patterns 

(Fig. 2). This geographic structure reflects what can be observed for ‘ring species’ where 

subspecies at the extremum of the ‘ring’ cannot reproduce, but are not strictly genetically 

isolated due to gene flow occurring through a chain of partly overlapping intermediate 

subspecies (Stebbins 1949). Such ring structure is also observed in bird songs that may be 

highly similar from short geographic distances, but show a gradual divergence following a 

spatial gradient such as the conspecifics at two extremums of the chain do not recognize each 

other's songs (Irwin et al. 2001). In our case, mimicry rings not only encompass local ecological 

interactions acting at local scale, but also distant connections relying on intermediate forms in 

partial spatial overlap in what can be seen as a network of mimetic interactions.  
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Altogether, it seems reasonable to consider the idea that local mimicry rings and the 

ecological interactions they represent are not always strictly bounded/binary, especially at large 

spatial scales. As such, the use of fuzzy classifications may offer new perspectives to account 

for uncertainty, but also to reflect the true fuzzy nature of the interactions. At local scale, they 

would allow to account for complex variable gains and losses associated with co-occurrence of 

interacting species that may not be simply binary. At regional scale, they would allow to 

account for spatially mediated distant interactions that blur the boundaries between mimicry 

rings. Beyond the case of mimetic interactions, fuzzy classifications appear as a useful tool to 

describe ecological interactions often reduced to their discrete binary expression for operational 

reasons, while their underlying nature is complex and continuous (Bronstein 1994; Drew et al. 

2021; Dracxler & Kissling 2022).  
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Figure 1: The continuous nature of ecological interactions illustrated by the non-binary 

levels of protection experienced by Müllerian mimetic species unknown to the predator 

community according to their similarity to the local model. While some careless predators 
(in red) with possibly a high ability to distinguish visual signals will attack most of the new 
forms, other picky predators with potentially lower ability to discriminate (or just wondering 
how they end up in the Amazonian forest, desperately trying to catch flying butterflies for a 
decent meal while they are stuck on the ground, illustrated with the kiwi bird as the blue 
predator) will attack only the most dissimilar new forms. As such, the fitness gains of the new 
forms from co-occurrence with the local model are not linear nor binary, and illustrate the fuzzy 
nature of boundaries between local mimicry rings aiming to describe mimetic interactions. For 
the sake of simplicity, this illustration ignores the effect of other factors such as relative 
densities and degrees of palatability. 

 

Figure 2: A fictional mimicry ring at regional scale reflecting the geographic organization 

of ‘ring species’. Due to geographic drift, subspecies that show low level of phenotypic 
similarity (red arrow) could still be considered as part of the same mimicry ring since they are 
connected through a chain of partly overlapping pairs of species showing locally high similarity 
of patterns (green arrows). Subspecies patterns of heliconiine butterflies shown here are real 
but the locations are fictional and relate to the location of the species of the Ensatina complex, 
an emblematic case of ring species of salamanders found in California (Stebbins 1949). 
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1.2 A new hierarchical framework 

Beyond the fuzziness entailed by the nature of mimicry rings, the concept itself seems 

to carry a degree of ambiguity since its emergence. The early reference to ‘mimicry rings’ or 

‘mimicry complexes’ found in the literature regrouped species on the basis of phenotype 

similarity, independently from co-occurrence, and considered that local mimicry rings with 

similar patterns in different locations were the ‘same’ (Poole 1970; Papageorgis 1975). Other 

authors adopted an evolutionary perspective and described mimicry rings as “groups of 

unpalatable species, together with some palatable species, that have converged on the same 

warning color pattern” (Mallet & Gilbert 1995). Finally, other studies up to a recent review 

have described mimicry rings on the basis of local ecological interactions such as “a group of 

sympatric species sharing a common warning pattern” (Joron & Mallet 1998) or expressed in a 

more verbose manner as “communities that contain at least one well-defended prey species that 

has a warning signal and experiences reduced predation pressure owing to its aposematism and 

at least one more associated prey species that derives a fitness benefit from mimicking the well-

established aposematic signal” (Kunte et al. 2021). 

Despite these fundamental differences in definitions and their implications for the 

ecological and evolutionary levels, to my surprise no author seem to have yet discussed the 

conceptual blurriness surrounding the commonly applied idea of ‘mimicry ring’. Here, I offer 

to clarify the situation and propose a hierarchical framework to clearly distinguish between the 

different levels of definition of the conceptS of mimicry rings, and how to identify and support 

them. 

I suggest that mimicry rings be defined through three different embedded frameworks 

according to available information and aims of the analyses (Fig. 3). I detail these frameworks 

here from the most inclusive, to the narrowest: 

- 1/ Phenotype-based mimicry rings are defined on the basis of phenotypic similarity 

only (e.g., Poole 1970; Papageorgis 1975; Wilson et al. 2015; Joshi et al. 2017; Hoyal 

Cuthill et al. 2019; Fig. 4.A). They form groups of biological entities whose aposematic 

patterns can be perceived as similar in the eyes of the predator. As such, members of these 

groups can potentially be involved in mimetic interactions if they happen to co-occur. 

These groups of phenotypic similarity, defined as “phenotypic mimicry rings” can be 

seen as hypotheses of mimicry rings or “putative mimicry rings” (e.g., Symula et al. 2001; 

Sanders et al. 2006; Aubier & Elias 2020). They should be typically delineated by 
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investigating pattern variation at large scale, ideally pooling all patterns found within the 

geographical and taxonomic scope of the study. Our perceptual approach to the global 

variation of wing patterns in heliconiine butterflies is a good example of such design (See 

Chapter 3). These rings remain ‘putative’ in the sense that the occurrence of ecological 

interactions between their members remain to be tested and supported by a pattern of 

significance spatial co-occurrence as presented in Chapter 4. 

- 2/ Evolutionary-based mimicry rings are defined in the evolutionary framework as 

groups of biological entities whose patterns have converged and/or have been maintained 

under common selective pressures incurred by predators (Mallet & Gilbert 1995). I 

labeled these groups as “historical mimicry rings”. Support for such types of mimicry 

rings can be explored with joint ancestral reconstruction of phenotypic patterns and 

ranges, a pattern of phenotypic similarity in the same ancestral area observed along the 

phylogeny being a correlative support for such rings (Fig. 4.C). Because local pattern 

convergence can have arisen in the past, and patterns can be conserved along the 

phylogeny even following dispersal events, such mimicry rings may form disjunct areas 

in the present (Fig. 4.D), thus not qualifying as the last and narrower type of mimicry 

rings described below. 

- 3/ Interaction-based mimicry rings are defined in the community ecology framework 

as groups of currently co-occurring biological entities with similar aposematic patterns 

effectively engaged in mimetic interactions (Joron & Mallet 1998; Kunte et al. 2021; Fig. 

4.B). I labeled these groups as “effective mimicry rings”. It is worth noting that 

significant co-occurrence and phenotypic similarity in the present only provides 

correlative support for the existence of ecological interactions. Thus, experimental tests 

of predation and/or fieldwork observations remain necessary to provide empirical 

evidence of such interactions (e.g., Mallet & Barton 1989; Kapan 2001; Langham 2004). 
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Figure 3: Hierarchy of mimicry ring definitions. Phenotypic mimicry rings (in red) are 
based on phenotype similarity. They encompass all biological entities with patterns perceived 
as similar in the eyes of the predator. Historical mimicry rings (in orange) are defined in an 
evolutionary framework. They represent groups of entities whose pattern similarity is due to 
convergence, and/or maintenance, under common selective pressures incurred by predators. 
Effective mimicry rings (in blue) are defined in a community ecology framework. They are 
limited to entities that are currently involved in mimetic interactions due to pattern similarity 
associated with local co-occurrence with a common cohort of predators. These definitions are 
hierarchical: phenotypic rings contain historical rings which contain effective rings. 
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Figure 4: Evidence for the three embedded conceptual frameworks of ‘mimicry rings’. 
(A) A phenotypic map of butterfly aposematic patterns that can be used to suggest hypotheses 
for “phenotypic mimicry rings” on the basis of phenotypic similarity. (B) An illustration of the 
local co-occurrence of comimetic butterflies across microhabitats (adapted from Birskis-Barros 
et al. 2021, with background art by Danilo B. Ribeiro and Rogério Lupo), depicting cases of 
“effective mimicry rings”, where comimics effectively co-occur and interact in the present. (C) 
Evolution of mimicry patterns and habitats displaying cases of “historical mimicry rings” 
involving ancestral pattern convergence during species sympatry (in dashed frames), with (in 
blue) and without (in red) current co-occurrence. (D) Example of the ithomiine mimicry ring 
MESTRA with disjunct distribution that is defined as a “phenotypic mimicry ring” based on 
pattern similarity, but cannot be considered as an “effective mimicry ring” throughout all its 
range because some species do not co-occur currently, and may qualify as “historical mimicry 
ring” only if the similarity of patterns among comimetic species has arisen from common 
selective pressures incurred by predators during former local co-occurrence prior to species 
dispersal across mountain ranges. 
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The three types of mimicry rings are hierarchically embedded (Fig. 3). All mimicry 

rings are “phenotypic mimicry rings” since all biological entities in mimicry rings share a 

similar pattern. Thus, all “historical” and “effective” mimicry rings are “phenotypic rings”. 

However, all “phenotypic mimicry rings” are not “historical mimicry rings”, because similarity 

of patterns between species can arise simply by chance, or though adaptive 

convergence/conservatism not linked to mimicry as in the case of environmental filtering, or 

sexual selection. “Phenotypic mimicry rings” remain putative until sufficient evidence of 

pattern convergence/conservatism driven by selection linked to mimicry, and/or effective 

mimetic interactions in current communities, qualifies them as “historical mimicry rings” 

and/or “effective mimicry rings”. Moreover, not all “historical mimicry rings” are “effective 

mimicry rings”. In some cases, pattern convergence may have been achieved from common 

selective pressures incurred by predators during former local co-occurrence prior to species 

dispersal across different and currently disjunct areas (Fig. 4D). As such, these rings cannot 

qualify as “effective rings” since their entities are not currently involved in ecological (mimetic) 

interactions. Finally, all “effective mimicry rings” are “phenotypic rings” and “historical rings” 

since current mimetic interactions between sympatric species involve a frequency-dependent 

selection for the convergence and maintenance of pattern similarity. 

Throughout my research work, I employed the concept of ‘mimicry ring’ and its 

different declinations according to the available information. In Chapter 1, I used a phenotype-

based classification of mimicry rings in ithomiine butterflies to explore large-scale pattern of 

mimetic diversity as the number of mimicry rings predicted to be found within each grid cell. I 

was very thankful for Keith Willmott to have designed this operational classification from its 

immense expertise built from more than 30 years working with these inspiring butterflies. Yet, 

I was aiming for a more reproducible and quantitative approach to describe the variation in 

mimicry patterns. Thus, with Eddie Pérochon, the Master’s student I supervised, and my 

collaborators on the project, we set to explore a new perceptual approach to quantify pattern 

variation in heliconiine butterflies. Our framework allowed us to design hypotheses for both 

putative phenotype-based mimicry rings at large scale and effective interaction-based mimicry 

rings in local communities (see Chapter 3). Finally, in Chapter 4, I described an analytic 

framework to question putative ‘phenotype-based’ mimicry rings and support their 

qualification as ‘effective’ mimicry rings in case of significant spatial congruence between the 

members of the ring. I hope this work will inspire researchers to apply this new framework for 

the conceptS of mimicry rings in mimicry studies in the future. 
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2 Mimetic communities: a multi-taxon approach 

2.1 On the limits of a unique group model 

In Chapter 1, I presented how to produce distribution maps for ithomiines species and 

their mimicry rings, building on a comprehensive database of georeferenced occurrences and 

an expert-based classification of mimicry patterns. I aggregated these results to map 

biodiversity patterns at continental scale, including mimicry richness as the number of local 

mimicry rings found in each grid cell. Furthermore, in Chapter 4, I used these distribution 

maps to extrapolate local community composition and test for large scale spatial congruence 

among comimetic ithomiine taxa. I chose to focus initially on ithomiine butterflies because they 

are the numerically dominant group in Neotropical mimetic communities, encompassing up to 

half of the species richness, such as they are considered by some authors as the ‘center’ of 

attraction of their mimicry rings (Poole 1970; Beccaloni 1997a). Moreover, ithomiine 

butterflies have been proposed as indicator species for habitat quality and local butterfly 

diversity (Beccaloni & Gaston 1995; Brown Jr 1997; Uehara-Prado & Freitas 2009), making 

them an ideal candidate group for a first exploration of biodiversity patterns in Neotropical 

mimetic communities. However, mimetic communities ignore the taxonomic boundaries, and 

can drive phenotypic convergence across numerous distant butterfly taxa, and even damselfly 

(Beccaloni 1997a; Outomuro et al. 2013; Corral-lopez et al. 2021). Ignoring such diversity can 

have crucial effects on the study of mimetic communities. 

In Chapter 3, I developed a perceptual approach to the study of ecological signal 

variation. Specifically, I built a perceptual space of heliconiine butterfly wing patterns, pooling 

all subspecies documented in the group in a unique macroecological perspective. This 

perceptual space can be used to design hypotheses of ‘phenotype-based mimicry rings’ (see 

section 1). Then, it becomes possible to explore patterns of mimetic richness as the number of 

local mimicry rings (even if a quantitative approach like phenotypic clustering is likely to be 

favored, see Discussion in Chapter 3), or simply map the distribution of such mimicry rings in 

space. The crucial point here is that these hypotheses for phenotype-based mimicry rings, both 

at large and local scale, can be affected by the presence or absence of members of the broader 

mimetic community in the scope of the analyses. Indeed, if butterflies from other mimetic 

groups with an intermediate pattern exists, their inclusion can affect the clustering hypotheses 

raised during the process (Fig. 5). Accordingly, the quantification of phenotypic diversity, 

either from counts of mimicry rings or estimate of phenotypic clustering will be affected. The 
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distribution maps of mimicry rings will adjust to the taxa considered as part of each ring or not, 

potentially presenting a slightly different picture. Finally, as we showed, mimetic interactions 

can drive spatial distributions and niche evolution within the Ithomiini tribe (See Chapter 4), 

it seems highly relevant to explore how these effects extend beyond the ithomiines, and 

eventually affect them. More generally, tests for spatial congruence and niche convergence 

relying on mimicry classification would provide more robust results if a higher proportion of 

the members of the mimetic communities were included. 

 

Figure 5: Hypothetical effect of the inclusion of external taxa to the delineation of mimicry 

rings. (A) Perceptual or phenotypic map of heliconiine butterflies displaying two relatively 
discrete groups of patterns. (B) Similar map including three additional ithomiine butterflies. 
Contour lines represent probability densities of clustering hypotheses. The addition of the three 
intermediate phenotypes of ithomiine butterflies lead to the reconsideration of the clustering 
hypotheses into a single mimetic group. 

2.2 Heliconiini: the twin tribe 

The natural candidate to explore the value of accounting for other members of the 

mimetic communities, beyond the focus on ithomiine butterflies, are the heliconiines 

butterflies. Heliconiines, similarly to ithomiines, form a diverse tribe of New World butterflies 

encompassing 77 species and 457 subspecies distributed across 8 genera (Kozak et al. 2015; 

Jiggins & Lamas 2016). They occur all across America, from Canada to Argentina, but share 

most of their range with ithomiines throughout the forests of the Neotropics, with highest 

diversity spotted in the Andes and Western Amazonia (Rosser et al. 2015). Their caterpillars 

feed on passionflower vines (Passifloraceae family) from which they obtain cyanogenic 

glucosides, the chemical compounds that provide them with protection against predators 

(Jiggins & Lamas 2016). More crucially for us, despite having diverged over 85 My ago from 

ithomiines (Chazot et al. 2021), heliconiine butterflies share numerous mimicry patterns with 
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them (see illustration in the General Introduction). Thus, both tribes are engaged in 

mutualistic interactions in the context of Müllerian mimicry within and between the two groups, 

throughout the rainforests of the New World. 

In order to confront biodiversity patterns of heliconiine and ithomiine butterflies, and 

study the effects of mutualistic interactions in their respective spatial distributions and niche 

evolution, I supervised a Master’s project led by Eddie Pérochon that aimed to explore these 

questions. Interestingly, this research project is what triggered in the first place the creation of 

a new reproducible method to classify wing patterns that later developed in the perceptual 

approach presented in Chapter 3. It resulted in the drafting of an on-going research article 

which I attached to this Thesis (Pérochon et al. 2023; see ANNEXE 6). Here, I outline some of 

the main results to highlight the value of a multi-taxon approach in mimetic studies. 

First, we compared continental-scale biodiversity patterns between the two tribes. The 

two groups showed a peak of species and mimicry richness in the Andes, where the 

heterogeneity of landscapes, the elevation and environmental gradients, and the rigged 

topography is a perfect recipe for environmental structuration and geographic isolation fueling 

speciation (Weir 2006; Chaves et al. 2011; Hutter et al. 2013). However, while taxonomic and 

mimetic diversity of Ithomiini is highly concentrated in the Andes (Fig. 6.A-C), heliconiine 

butterflies show a relatively more balanced pattern with a secondary diversity hotspot found in 

the Amazonian basin with almost as much diversity of species and mimicry patterns (Fig. 6.B-

D). Such differences could be explained by different biogeographic histories, with ithomiine 

butterflies predicted to have emerged in the eastern slopes of the Andes (Chazot et al. 2019b), 

while the heliconiines may have originated from the Amazon basin, hence the location of their 

secondary hotspot, even if studies are still lacking on the matter (Jiggins & Lamas 2016). 
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Figure 6: Biodiversity patterns of ithomiine and heliconiine butterflies showing global 

congruence. (A) Species richness of ithomiines. (B) Species richness of heliconiines. (C) 
Mimicry richness of ithomiines. (D) Mimicry richness of heliconiines. Mimicry richness are 
quantified as the local number or mimicry rings. Heliconiini maps are modified from Pérochon 
et al., 2023 (See ANNEXE 6). 

Taxonomic and mimetic diversity patterns appear globally congruent, yet with 

interesting specificities for each tribe. However, the most significant patterns to explore in a 

context of mimicry are the spatial distributions of the phenotype-based mimicry rings. In 

particular, we showed that species harboring phenotypically similar patterns display a strong 

spatial association within, but also between the two tribes. For instance, species labeled under 

the mimicry ring MOTHONE are only found in the Andes in the two tribes, with strikingly 

(A) (B) 

(C) (D) 

Ithomiini tribe Heliconiini tribe 
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similar distributions (Fig. 7.A-B). Besides, the heliconiine species with the pattern MOTHONE 

show an apparently surprising disjunct distribution across Andean mountain ranges and the 

Amazon basin, which may be hard to explain without further information (Fig. 7.D). 

Meanwhile, the ithomiine species with the ‘same’ MAMERCUS pattern can be found almost 

in all the Neotropics, encompassing largely the whole disjunct distribution of their heliconiine 

twins (Fig. 7.C). As such, the heliconiines benefit from the co-occurrence with their more 

numerous ithomiine counterparts that also link indirectly the different areas where heliconiines 

with MAMERCUS patterns can be found. This phenomenon highlights remarkably the benefits 

of considering all members of the mimetic communities when trying to understand the 

processes driving their spatial distributions. Furthermore, such comparative approach can also 

help to clarify our hypotheses for putative ‘phenotypic mimicry rings’ since in a single case, 

we noted that the distribution of the species we labeled under the same ring MANTINEUS on 

the basis of phenotypic similarity were actually displaying widely divergent distributions that 

tend to disqualify our hypotheses (Fig. 7.E-F). Such similarity in wing pattern is thus likely due 

to chance alone, and does not qualify this group of species as an ‘effective mimicry ring’ 

crossing tribe boundaries. 

 

(B) (A) 

Ithomiini tribe Heliconiini tribe 
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Figure 7: Spatial distributions of phenotype-based mimicry rings across the Ithomiini and 

Heliconiini tribes. (A-B) MOTHONE rings with a restricted Andean distribution (Ithomiini: 
14 species; Heliconiini: 3 species). (C-D) MAMERCUS rings with a wide distribution and 
encompassing a disjunct distribution (Ithomiini: 64 species; Heliconiini: 4 species). (E-F) 
MANTINEUS rings with no overlap (Ithomiini: 5 species; Heliconiini: 3 species). Heliconiini 
maps are modified from Pérochon et al., 2023 (See ANNEXE 6). 

Globally, we detected a significant signal for both spatial congruence and climatic niche 

convergence across species that we classified under the same phenotypic mimicry ring between 

the two tribes (Pérochon et al. 2023; see ANNEXE 6). These results highlight once again the 

importance of mutualistic interactions in shaping large spatial distributions and niche evolution. 

This conclusion is here boldly supported by large spatial and evolutionary associations between 

two clades separated by more than 85 My, that is as much as between us Homo sapiens (if you 

(C) (D) 

(E) (F) 

Ithomiini tribe Heliconiini tribe 
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are not a Homo sapiens and read those lines, I apologies for being so short-minded and 

anthropocentric) and for instance flying lemurs (Order: Dermoptera) (Upham et al. 2019). 

2.3 Enlarging the taxonomic scope 

Heliconiine and ithomiine butterflies are the most emblematic examples of Neotropical 

mimetic butterflies, largely because of their historical role in the emergence of the concept of 

mimicry in the second half of the 19th century (Bates 1862; Müller 1879). However, mimetic 

communities in the Neotropics can encompass a large diversity of distantly related groups of 

butterflies and moths (Poole 1970; Beccaloni 1997a). For instance, in the eastern slopes of the 

Andes in Ecuador, it is possible to find in the same locality a group of mimetic ithomiines and 

heliconiines harboring a ‘tiger’ pattern, as well as metalmark butterflies (Riodinidae: 

Riodininae) and even distantly related noctuid moths (Notodontidae: Dioptinae; Erebidae: 

Arctiinae) (Fig. 8A). Similarly, the common and widely-spread ithomiine species Methona 

confusa displaying large mostly transparent wings likely act as a model for many butterflies 

and moths in distant lineages across the Neotropics (Fig. 8.B). 

 

(A) (B) 
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Figure 8: Phenotypic mimicry rings across neotropical butterflies and moths. (A) ‘Tiger’ 

ring across species found in the Eastern slopes of the Andes in Ecuador. (1) Forbestra 
equicola equicoloides (2) Hypothyris fluonia berna (3) Lycorea halia fasciata (4) Heliconius 
numata lauraI (5) Eueides isabella huebneri (6) Eresia eunice eunice (7) Stalachtis calliope 
voltumna (8) Dismorphia amphione (9) Phaeochlaena hazara hazara (10) Chetone 
histriomorpha. (B) ‘Transparent’ ring with the common and widely-spread Methona 

confusa (11) as main model. (12) Paititia neglecta (13) Thyridia psidii (14) Lycorea ilione 
(15) Patia orise (16) Parides hahneli (17) Notophyson heliconoides (18) Chetone physte (19) 
Gazera heliconioides. Branch lengths are not strictly proportional to time. Node ages are 
approximated from Chazot et al. (2019, 2021) and Kawahara et al. (2019). 

In the face of climate change, such network of interactions ranging all across the 

lepidopteran tree of Life may be critical. Indeed, the disappearance of key-members such as the 

numerically dominant ithomiines could potentially affect numerous lineages and have 

evolutionary far-reaching consequences. With the study of the interplay of spatial distributions 

and niche evolution between ithomiine and heliconiine butterflies, we have laid the first stone. 

Yet, how all these mimicry groups affects each other’s distributions from local (e.g., 

microhabitat), regional (e.g., altitudinal gradient), to continental scale still remain to investigate. 

With the exponential growth of open-access biodiversity databases aiming to aggregate 

geographic, molecular and sometimes phenomic information across large sets if not all taxa 

(Benson et al. 2013; Parr et al. 2014; Antonelli 2017), it becomes possible to imagine designing 

and carrying out in the near future integrative studies aiming to investigate the whole mimetic 

communities of Neotropical insects, first at regional, and ultimately at the continental scale. 

3 Assembly rules in mimetic communities: the ‘saturation 

effect’ 

3.1 Saturation effect in ithomiine butterflies: a spatially structured pattern 

Müller’s famous model predicts the convergence of aposematic patterns between 

species cooccurring in local communities (Müller 1879). Yet, communities of neotropical 

butterflies are typically characterized by the presence of several if not dozens of local mimicry 

rings as illustrated on the map of mimicry richness in ithomiine butterflies across the Neotropics 

(see Chapter 1). This paradox is mostly explained by the fine-scale structuration of mimicry 

patterns along different ecological dimensions (Joron & Mallet 1998). Theoretical models have 

showed that heterogeneous communities of habitat-specialist predators that select locally for 

different optimal warning signals can induce the segregation of mimicry rings across 
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microhabitats (Gompert et al. 2011; Birskis-Barros et al. 2021). In the field, mimetic 

neotropical butterflies demonstrate significant degree of segregation of mimicry rings across 

nocturnal roosting habitat height (Mallet & Gilbert 1995), flight height (Beccaloni 1997b; 

DeVries et al. 1997), and forest structure (Elias et al. 2008). Since predators are also segregated 

by microhabitats (Willmott et al. 2017), selection for convergence across microhabitats is low, 

which explains the maintenance of local diversity of mimicry patterns (Gompert et al. 2011). 

Therefore, the number of local mimicry rings is expected to be restricted by the availability of 

ecological niches. 

With the generation of continental maps for both species and mimicry richness in 

ithomiine butterflies (see Chapter 1), it becomes possible to explore how mimicry patterns can 

affect the assembly of species at large spatial scale. Beyond testing for a pattern of spatial 

congruence among comimetic species (see Chapter 4), we can also investigate the relationship 

between species and mimicry richness and how it is structured in space. Furthermore, we can 

now test for correlation between environmental factors depicting the local complexity of the 

available niche spaces and the extent of the local convergence of aposematic patterns (i.e., how 

much there is a higher or lower mimicry diversity than expected from the local number of 

species).  

The theory predicts that the number of local mimicry patterns should saturate once all 

available niche spaces are occupied by distinct set of predators and prey (Gompert et al. 2011). 

Indeed, the global trend observed in ithomiine across 19,271 communities predicted from 

SDMs in 30 km × 30 km grid cells throughout the Neotropics (see Chapter 1) depicts the 

beginning of a saturation of local mimicry patterns as the number of species keeps increasing 

(Fig. 9). While the number of mimicry rings represented increase sharply across species-poor 

communities where we can presume that not all microhabitats are saturated, mimicry richness 

seems to increase more slowly across species-rich communities where most ecological 

dimensions may be occupied. However, this ‘saturation effect’ has not (yet) reached the 

asymptote, hinting that even in the richest communities, there may be still some 

perceptual/ecological/environmental space available for the emergence or colonization of new 

aposematic patterns. Alternatively, this pattern could support the idea that purifying selection 

acting against the emergence/colonization of new aposematic patterns is weaker than previously 

thought, or simply slower to act than the processes generating taxonomic diversity (Joron & 

Mallet 1998). 
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Figure 9: Relationship between predicted mimicry richness and predicted species richness 

among four bioregions. Each point represents a community as a 30 km × 30 km grid cell on 
the map. Four remarkable bioregions with patterns deviating from the overall trend are 
highlighted with colored points and shown on inset map with associated color. Black points 
correspond to all the other bioregions. ρ = Spearman’s spatial rank correlation coefficient across 
all communities. Smooth red line represents the overall trend as predicted from a Generalized 
Additive Model. Points below the curve demonstrate lower levels of mimicry richness than 
expected from their species richness, and conversely. 

Interestingly, the global ‘saturation’ trend in not homogenous and particular bioregions 

in the Neotropics, as defined by Olson et al. (2001), display a relationship between species and 

mimicry richness significantly divergent from the bulk of communities (Fig. 9 & 10). In 

particular, communities in the Brazilian Atlantic forest (BAF) and Central America (CA) show 

a strong saturation effect that appears to have reached a plateau of mimetic richness (Fig. 9: 

dots in red for CA, dots in purple for BAF). Such saturation produces lower levels of mimicry 

richness than expected relatively to their species richness, compared to other regions (Fig. 9 & 

10; Wilcoxon tests: BAF: W = 27 × 106, p < 0.001; CA: W = 2.1 × 106, p < 0.001). Among 

species richness hotspots found on the eastern slopes of the Andes, the saturation effect seems 

less prominent. However, communities found in Peru were predicted to present lower mimicry 

richness than those found in Ecuador for similar species richness (Fig. 9 & 10; Wilcoxon test, 

W = 32,564, p < 0.001), highlighting regional differences in the size of local mimicry rings. 
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Figure 10: Comparison among bioregions of residuals from GAM fitting the relationship 

between mimicry richness and species richness. Residuals higher than zero correspond to 
communities with higher mimicry richness than expected from their species richness based on 
values observed among all communities. Conversely, residuals lower than zero correspond to 
communities with lower than expected mimicry richness. BAF = Brazilian Atlantic Forest. 
Asterisks represent the significance (i.e., p < 0.001) of pairwise comparisons between 
bioregions evaluated with pairwise Wilcoxon tests. 

3.2 Hypotheses for mechanisms as directions for future investigations 

This spatial structuration of the relationship between mimicry and species richness 

leading to significant differences across bioregions points to underlying assembly mechanisms 

that are also spatially structured at the continental scale. Here, I discuss several hypotheses 

relating to geographic, historical, ecological, and behavioral processes, that could act jointly to 

explain such a striking pattern. 

A first possible explanation for the differences predicted among bioregions in the 

relationship between mimicry and species richness may lie in differences in habitat and 

topographic heterogeneity found within each community represented here by 30 km × 30 km 

grid cells. Indeed, partitioning of predators in a mosaic of habitats can lead to selection for 

different color patterns in each of these habitats and thus help maintain mimicry diversity 

(Gompert et al. 2011; Willmott et al. 2017; Birskis-Barros et al. 2021). Thus, areas with higher 
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topographic and habitat heterogeneity could favor the co-existence of higher richness in 

aposematic patterns if the local diversity of predators and prey is segregated among those 

habitats. As a preliminary analysis for this hypothesis, I compared levels of topographic 

ruggedness (TRI, Riley et al. 1999), presumed to favor habitat heterogeneity, between the four 

bioregions displaying a notable pattern. I showed that, contrary to predictions, the eastern 

Andean slopes present higher topographic heterogeneity in Peru than in Ecuador, despite 

hosting less mimicry rings for a similar species richness (Fig. 11; Wilcoxon test, W = 12,782, 

p < 0.001). Similarly, topographic heterogeneity could not explain the lower than expected 

mimicry richness predicted in Central America and the Brazilian Atlantic forest. Again, 

contrary to predictions, those bioregions harbored significantly higher topographic ruggedness 

than the rest of the communities, mostly represented by the relatively flat Amazonian basin 

which despite this topographic homogeneity harbors higher mimicry richness for a similar 

species richness (Fig. 11; Wilcoxon tests: BAF: W = 25 × 106, p < 0.001; CA: W = 2.1 × 106, 

p < 0.001). In first approximation, it seems that differences in landscape heterogeneity cannot 

explain differences in the intensity of the mimicry saturation effect observed across bioregions. 

However, further studies involving for instance habitat heterogeneity based on vegetation 

indices (e.g., Tuanmu & Jetz 2015), which may better describe the degree of structuration of 

local predator and prey communities, are still needed to assess thoroughly this hypothesis. 
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Figure 11: Comparison of topographic heterogeneity measured as the Terrain 

Ruggedness Index (TRI, Riley et al., 1999) among bioregions. Asterisks represent the 
significance (i.e., p < 0.001) of pairwise comparisons between bioregions evaluated with 
pairwise Wilcoxon tests. Only the three comparisons of interest discussed in the text are 
showed. BAF = Brazilian Atlantic Forest. CA = Central America. 

A second hypothesis to explain regional heterogeneity in the pattern of mimicry 

saturation focuses on a smaller spatial scale. Indeed, we already know that local mimicry 

richness is favored via the segregation of predators and prey along multiple ecological 

dimensions at local scale such as nocturnal roosting habitat height (Mallet & Gilbert 1995), 

flight height (Beccaloni 1997b; DeVries et al. 1997), and forest structures (Elias et al. 2008). 

Possibly, differences in forest microhabitat complexity could vary between bioregions and be 

a driver of differences in mimicry saturation. For instance, the high dense and complex forest 

of the Amazon basin could present a higher availability of microhabitats than the sparser forests 

of the Brazilian Atlantic coast or Central America. This hypothesis seems complex to test at 

large spatial scales, yet proxies such as local plant diversity and particularly forest height, linked 

to segregation among nocturnal roosting habitats and flight height, are readily available for 

continental scale exploration (Ter Steege et al. 2013; Potapov et al. 2021). 
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Third, the biogeographic history of the group could affect the pattern of mimicry 

saturation. Ithomiine butterflies are suspected to have emerged from the eastern slopes of the 

Andes (Chazot et al. 2019b) where their current hotspots of taxonomic and mimetic diversity 

lie (see Chapter 1). Following the cradle hypothesis, older communities would harbor higher 

species diversity, but also higher mimetic diversity, having benefited for more evolutionary 

time to witness both the local emergence of new patterns, and being colonized by species with 

initially foreign patterns (Kunte et al. 2021). As such, Andean communities may have benefited 

from more evolutionary time, as well as a central position for dispersal exchanges and multiple 

recolonizations (Chazot et al. 2016a). On the contrary, communities in Central America and 

the Atlantic forest lie on the outer range of Ithomiini distribution, and were more recently 

colonized (ca. 8-10 My; Chazot et al. 2019). Therefore, they have had less time to allow new 

mimicry rings to get established, while their relative isolation from other regions could have 

limited the recurrent permeation of other spatially distant mimicry rings, similarly to what is 

described in the relatively phenotypic-poor mimetic communities of butterflies in the Western 

Ghats in India (Joshi et al. 2017). However, in the context of mimicry, more time can also imply 

more opportunity for purifying selection to act on rare patterns and lead to more mature 

communities with fewer mimicry rings in the end. Moreover, the age hypothesis does not 

explain differences recorded between Peru and Ecuador. Further investigations based on joint 

inferences of ancestral ranges, colonization events and ancestral aposematic patterns are needed 

to clarify the picture. 

Fourth, the characteristics of the prey species found in the different regional 

assemblages could influence the size of local mimicry rings, thus the spatial pattern of mimicry 

saturation. For instance, the level of prey defense abilities (e.g., toxicity and unpalability) can 

strongly affect the mimetic composition of communities. A highly defended prey is expected 

to trigger a faster associative learning and a stronger rejection of its aposematic pattern from 

predators (Goodale & Sneddon 1977; Lindstrom et al. 1997; but see Chouteau et al. 2019). As 

such, this species would benefit from an enhanced protection umbrella, offering a more efficient 

protection that potentially cover more species as predator would tend to generalize the 

aposematic pattern (Kunte et al. 2021). As a consequence, if the local prey community is mostly 

composed of highly unpalatable species, local mimicry rings may encompass more species than 

in community with mildly-defended models. In addition, the high availability of alternative 

prey is known to impose a relaxed selection on aposematic patterns since predators have less 

incentive to efficiently detect (un)palatable prey (Getty 1985; Lindström et al. 2004), leading 
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to potentially higher number of local mimicry rings with lesser degree of pattern convergence 

(Kunte et al. 2021). 

Finally, the characteristics of predators found in the different regional assemblages 

could also affect the mimicry saturation effect. A higher diversity of predators implies higher 

diversity of perceptual systems potentially diverging in their ability to perceive and select 

specific aposematic patterns, leading to more discrete adaptive peaks in the perceptual space 

(see Chapter 3) associated with more local mimicry rings. For instance, the lower diversity in 

velvet ants’ mimicry rings in Africa compared to North America has been attributed to lower 

diversity in predators and lower environmental heterogeneity (Wilson et al. 2018). The degree 

of generalization (i.e., to which extent species showing imperfect mimicry will be considered 

as a similar type of prey) can also vary among predators (Dittrich et al. 1993). As such a 

predator community composed mostly of acute predators with high discriminative abilities 

would potentially select for more mimicry rings than a community of predators with poorly 

discriminative predators. 

Altogether, all factors, i.e., (1) regional and (2) local structuration, (3) age of 

communities, and ecological and behavioral characteristics of prey (4) and predators (5) could 

affect the assembly of mimetic species and the large-scale spatial heterogeneity observed in the 

relationship between species and mimetic richness. Most hypotheses remain to be investigated 

in ithomiine butterflies, and further so in other mimetic clades such as the heliconiines to 

disentangle between all possible factors at play and support the emergence of general assembly 

rules for mimetic communities. To this end, large-scale maps of taxonomic and mimetic 

biodiversity that allow to predict local community composition, such as those produced for 

ithomiines during this research work, offer an ideal sandbox to play around the question of 

species assembly at large spatial scale in the context of mimetic interactions. 

4 Neotropical mimetic butterflies facing global changes 

In Chapter 1, I identified areas of evolutionary and ecological importance for 

conservation based on hotspots of several facets of biodiversity in ithomiine butterflies, and I 

evaluated their overlap with current anthropogenic threats. I showed that tropical montane 

forests that host high species and mimetic diversity as well as rare species and mimicry rings 

appear particularly under threat. I also pointed out that remote parts of the Upper Amazon may 

act as refuges against current anthropogenic pressures for a limited portion of Ithomiini 
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diversity. However, it is likely that the current threat status of these regions will worsen with 

ongoing climate change and deforestation (Nobre et al. 2016; Armenteras et al. 2017; Bax et 

al. 2019; Escobar 2020), making these refugia potentially irrelevant in the near future (Keppel 

et al. 2015). Here, I want to emphasize on the consequences such changes could have on 

mutualistic communities as neotropical Müllerian mimetic butterflies and outline possible 

analyzes to predict if not prevent them. 

4.1 Biodiversity hotspots in the Neotropics at risk 

Climate change is one of the six main anthropogenic threats on biodiversity identified 

by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services 

(IPBES) alongside habitat changes and fragmentation, direct exploitation, pollution, invasive 

alien species, and disease outbreaks (IPBES 2019a). It is affecting ecosystems and the living 

beings they host worldwide, perturbating biogeochemical cycles (Cusack et al. 2016; Mitchard 

2018), converting habitats (Franklin et al. 2016; Segan et al. 2016), and triggering massive 

species dispersal following the displacement of their environmental envelop, and species 

extinction when the latter fail to follow up (Parmesan & Yohe 2003; Rosenzweig et al. 2008; 

Pecl et al. 2017; Nunez et al. 2019). 

This threat is particularly prominent for species found in tropical mountainous regions 

which encompasses most of biodiversity hotspots on Earth, with the tropical Andes falling at 

the top seat (Myers et al. 2000; Hutter et al. 2017). Indeed, numerous well-studied plant and 

tetrapod groups show a peak of diversity and endemism in the western part of Amazonia and in 

the Andean foothills (Ter Steege et al. 2003; Grenyer et al. 2006; Morawetz & Raedig 2007; 

Kier et al. 2009; Jenkins et al. 2013; Roll et al. 2017; Gumbs et al. 2020). Among insect taxa, 

Cicindelinae beetles (Pearson & Carroll 2001), Adelpha butterflies (Mullen et al. 2011), 

Nymphidiina butterflies (Hall 2018), Heliconiini butterflies (Rosser et al. 2012; Pérochon et al. 

2023; see ANNEXE 6) and, as showed in this research work, ithomiine butterflies (see Chapter 

1), all show peaks of diversity in the Tropical Andes. 

The outstanding biodiversity found in the tropical mountainous regions in general, and 

in the Tropical Andes in particular, is mostly explained by geological and climatic factors. The 

topographical complexity of recent mountain regions facilitates fine-spatial scale variation of 

environmental conditions and provides more opportunities for parapatric and allopatric 

speciation fueled by adaptive radiations across the diversity of environmental niches available 

(Särkinen et al. 2012; Bouchenak-Khelladi et al. 2015; Rangel et al. 2018). Moreover, Tropical 
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Andes have benefited from a relative historical climatic stability thought to reduce species 

extinction rate (Fine 2015) and allowing for the long-term persistence of high levels of species 

diversity and endemism (Araújo et al. 2008; Svenning et al. 2015; Harrison & Noss 2017). 

Meanwhile, current seasonal and diurnal climate variations in tropical mountain ranges are also 

relatively low, particularly in forested landscapes (Trew & Maclean 2021). This current climatic 

stability, combined with long-term stability and steep environmental gradients, permitted the 

accumulation of rare range-restricted species with narrow climatic niches and physiological 

tolerances (Kozak & Wiens 2010b; Antonelli 2015; Pintanel et al. 2019; Zuloaga et al. 2019). 

As a consequence, an important proportion of species found in tropical mountains are 

poorly equipped to survive future climate changes with a low adaptive potential for climatic 

niche evolution (Harrison & Noss 2017; Saupe et al. 2019; Trew & Maclean 2021), and 

restricted geographic ranges making them particularly vulnerable (Malcolm et al. 2006; 

Ohlemüller et al. 2008; Mccain & Colwell 2011). Ironically, the geographic and environmental 

barriers that fueled diversification in the past now appear as obstacles to dispersal, impeding 

the abilities of most species to track climate changes. Indeed, mountainous species facing the 

extirpation of their climatic niche may suffer from the lack of available areas to disperse upward 

if they happen to be stuck at the top of a mountain range or in isolated valleys (Ohlemüller et 

al. 2008; Raxworthy et al. 2008; La Sorte & Jetz 2010). In addition, human activities above the 

tree line, such as cattle grazing and burning in the Andes, may prevent upslope dispersal, 

thereby increasing extinction risks (Peres et al. 2010). 

Overall, species inhabiting hyper-diverse tropical mountain regions, many with narrow 

ranges, low adaptive potential for their climatic niche and limited dispersal opportunities, are 

likely to be exceptionally vulnerable to climate change (Laurance et al. 2011; Trew & Maclean 

2021). 

4.2 Müllerian mimetic communities at risk 

Ithomiine and heliconiine butterflies are found throughout all the Neotropics, but their 

main hotspots of diversity are found in the Tropical Andes (see Chapter 1). Beyond being 

subjected to all the challenges associated to tropical mountain species, they also have to deal 

with the specificities of being mimetic in the face of global changes. 

Müllerian mimicry represents mutualistic interactions since mimetic species benefit 

mutually from co-occurring by sharing the cost of educating local predators to avoid their 
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aposematic patterns (Sherratt 2008). Such positive interactions are beneficial for the individuals 

involved, allowing for instance to compensate for negative effects of competition (Aubier & 

Elias 2020), and fueling higher local richness (Gross 2008; Aubier et al. 2017). However, when 

mutualistic interactions are lost due to species extinction or community disassembly while 

facing global changes, their disappearance can fragilize the community stability and potentially 

trigger local extinction cascades (Dunn et al. 2009; Vidal et al. 2019). Since Müllerian mimetic 

species rely on local mutualistic interactions with co-mimics and host plants, the threat of 

community disassembly due to climate change is even more profound for them (Toby Kiers et 

al. 2010; Sheldon et al. 2011). 

Moreover, the dispersal abilities of Müllerian mimetic species are impeded by the 

purifying selection acting on individuals harboring unknown phenotypes in the newly colonized 

areas. Indeed, local naïve predators that have not yet learnt to avoid a new aposematic pattern 

will apply stronger predation pressures on this rare phenotype and prevent its establishment in 

the community (Mallet & Barton 1989; Langham 2004). As a consequence, I showed that 

comimetic species of ithomiines display a significant spatial association throughout their 

ranges, beyond what could be expected from their phylogenetic relatedness. Similarly, 

comimetic species exhibit significant convergence in their climatic niches (see Chapter 4). 

Such pattern of niche convergence may limit community disassembly to a certain extent by 

allowing congruent dispersal trajectories in the face of climate change (Fig. 12). However, I 

also showed that climatic niche overlap between comimetic species is hardly ever complete 

(see ANNEXE 5, SI Appendix 9). Moreover, despite relatively similar climatic niche optima, 

tolerance to climate change and extremes, as well as species dispersal abilities, may still differ 

among comimetic species, limiting opportunities for co-dispersal trajectories and leading to 

community disassembly (Fig. 12). Finally, the effects of climate change on biotic factors that 

affect local abundance, such as hostplants (Willmott & Mallet 2004) and parasitoids (Gentry 

1998), may also differ among interacting species. 
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Figure 12: Two alternative scenarios for mimetic communities facing climate changes. (A) 
At T0, the two mimetic species display a relatively important spatial overlap where they benefit 
from co-occurring. Following the increase of temperature and the migration of their 
environmental envelops southward, they demonstrate at T0 + 2°C (B) joint dispersal trajectories 
ensuring the preservation of their spatial overlap, thus their mutualistic interactions in 
accordance with their niche similarity (C) diverging dispersal trajectories leading to the 
discrepancy of their spatial overlap, thus mutualistic interactions, illustrating the disassembly 
of the mimetic communities due to many factors including differences in tolerance to climate 
change and extremes, dispersal abilities, and/or availability of host plants. 

Altogether, the consequences of climate changes on Müllerian mimetic communities 

remain uncertain. They form tightly coevolved assemblages tied by positive interactions, 

making them particularly vulnerable to global environmental changes (Tylianakis et al. 2008). 

However, the convergence of climatic niche among comimetic species may offer (limited) 

opportunities for congruent dispersal trajectories that would partly prevent community 

disassembly. This uncertainty stresses the need to produce predictions for future species 

distributions in order to better support the identification of refuge areas for biodiversity 

conservation that are resilient to climate changes (Keppel et al. 2015). Such predictions would 

ideally include species interactions in the modeling framework to account for the specificities 

of mutualistic communities illustrated by Neotropical mimetic butterflies (Brooker et al. 2007; 

Toby Kiers et al. 2010; Tylianakis et al. 2010; Staniczenko et al. 2017). 

(A) 

(B) (C) 
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4.3 Species distribution modeling to the rescue? 

In order to produce predictions for future species distributions of species involved in 

mimetic communities such as ithomiine and heliconiine butterflies, species distribution models 

(SDMs) appear as an ideal tool. In this research work, I employed SDMs to predict current 

distributions of ithomiines linking georeferenced occurrences data with current environmental 

conditions. Next avenue for this research agenda is to build upon such models to predict future 

distributions under several scenarios for climate changes associated with different Shared 

Socioeconomic Pathways (SSPs) depicting future global socioeconomic trajectories for the 

World and their impact on greenhouse gas emission (O’Neill et al. 2017). Each SSP typically 

involve predictions regarding regional demographic trends, energy consumption and economic 

growth, resulting, among other things, in increases in mean global temperature compared to 

pre-industrial levels. The most optimistic (and highly unlikely) scenario combining proactive 

environmental policies and sustainable production and consumption is labeled ‘SSP1-1.9’ and 

predicts temperature increases ranging from 1 to 1.8°C for the horizon 2100. The middle-of-

the-road scenario labeled ‘SSP2-4.5’ implying some advances in the sustainability of our 

economic model, foresees an increase between 2.1°C to 3.5°C for 2100. The currently most 

likely scenario of rapid economic growth and low environmental regulation, labeled ‘SSP5-

8.5’, leads to temperature increases ranging from 3.3°C to 5.7°C. Coupled with a set of General 

Circulation Models (GCMs) simulating the behavior of Earth’s global climate system, 

aggregated and coordinated in the CMIP6 initiative (Eyring et al. 2016), it is now possible to 

produce sets of predictions under the different socioeconomic narratives integrating modeling 

uncertainty to multiple levels (Thuiller et al. 2019). 

 The most straightforward use for SDMs is to map changes is species richness across 

several scenarios (Fig. 13.A-B). Although, it is virtually possible to map changes in every facets 

of biodiversity (i.e., taxonomic, phylogenetic, mimetic, phenotypic, etc.) at different time-steps 

and for any given SSPs allowing to refine the identification of ‘refuge’ areas for biodiversity 

accounting for resilience to climate changes (Keppel et al. 2015). Interestingly in the context 

of mimetic communities, SDMs allow to predict and map changes in community composition. 

For instance, using Non-Metric Multidimensional Scaling methods, it is possible to represent 

in the same 2D space the dissimilarity in species and/or mimetic composition across current 

and future communities in order to highlight changes in community composition, detect the 

ones that will likely disappear, and foresee the assembly of new communities (Fig. 13.C). 

Moreover, it seems accessible to design a metric of global co-cooccurrence between mimetic 
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species (such as a mean spatial overlap computed with Schoener’s D, see Chapter 3), and to 

plot its evolution across time-steps and scenarios (Fig. 13.D). Such analysis would provide a 

strong visual to assess and alert on the risks of community disassembly across mimetic, and 

more generally mutualistic communities. 

   

    

Figure 13: Illustrations of the potential of SDMs to predict changes in local species 

richness (A-B), community composition (C) and investigate the disassembly of mimetic 

communities (D). (A) Hypothetical changes in ithomiine species richness according to the most 
optimistic scenario SSP2-4.5 (B) Hypothetical changes in ithomiine species richness according 
to the most pessimistic scenario SSP5-8.5. (C) Hypothetical changes in community 
composition based on NMDS plot with color gradient representing the density of future 
communities with similar species and/or mimicry composition, and grey dots reflecting current 
composition that are not to be found in the future. Modified from Brown et al. (2020). (D) 
Hypothetical evolution of the index quantifying co-occurrence between co-mimetic species, 

(A)  SSP2-4.5 (B)  SSP5-8.5 

(C) (D) 
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illustrating the degree of disassembly of mimetic communities according to several SSPs. All 
maps and graphs are illustrative and based on simulated made-up data. They do not represent 
real predicted trends. 

Finally, a next generation of SDMs is currently paving the way to the direct integration 

of ecological interactions into the modeling framework. Joint Species Distribution Models (J-

SDMs) offer to bridge the gap between community ecology and macroecology by providing a 

statistical framework to model the distribution of multiple species simultaneously while 

accounting for potential ecological interactions and environmental covariates (Pollock et al. 

2014; Ovaskainen & Abrego 2020). As such, in a context of mimicry, they would theoretically 

allow to model simultaneously all species in the group of interest and highlight the competitive 

or mutualistic interactions at play depending on the sharing or not of aposematic patterns. 

Additionally, J-SDMs provide solutions to refine future projections by accounting for the 

exclusive or facilitative effects of the presence or absence of mimetic interactions between 

species on future distributions. These models are still in development and are, to my knowledge, 

mostly limited to hierarchical-GMM frameworks such as the HMSC (Ovaskainen et al. 2017). 

Such models do not provide (yet?) the flexibility in response curves I was aiming for my 

modeling approach, neither do they have (yet?) the ability to deal properly with low sampling 

data. However, they open an interesting perspective for the study of the fate of Neotropical 

mimetic butterflies, and ecological communities in general, under the ongoing climate changes. 

SDMs are a powerful tool for researchers to open windows on the impacts of climate 

changes on biodiversity. They can be applied to design conservation status for species based on 

the IUCN Red List criteria (Gomes et al. 2019; IUCN 2020), or to generate powerful visuals of 

global biodiversity trends across socio-economic scenarios as a roadmap to follow or not as a 

globalized civilization (IPBES 2019a). Overall, they can be used to convey powerful narratives 

that alert the scientific community and ideally the public opinion, but without international 

political will and important adjustments to the current capitalist and productivist socio-

economical paradigm, they will not yield real positive conservation outcomes. 
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Appendix 1: Data sampling and bioregions 

We compiled from multiple sources an initial dataset of 28,986 georeferenced 

occurrences of 388 ithomiine butterfly species in their natural habitats, out of the 396 known 

species (Fig. S1.1a). The dataset spans across 25 countries and many bioregions of the 

Neotropics (Fig. S1.4). It provided 19,271 species-grid-cell records for distribution modeling 

after removing duplicate records from single grid cells, which are available from Zenodo at 

10.5281/zenodo.4696055. Data come from fieldwork data obtained by the authors over the past 

decades, and records from over 60 museums and private collections detailed in the online 

archive metadata. 

 

Figure S1.1: Occurrences and sampling effort of Ithomiini butterflies. (a) 28,986 
georeferenced occurrences of Ithomiini recorded in their natural habitats in the Neotropics, 
encompassing 388 ithomiine butterfly species among the 396 known species. (b) Sampling 
effort illustrated as sampling density within Thiessen polygons. Each polygon is associated with 
a single sampling site and represents the area that is closer to the focal one than any other sample 
site. Color scale follows Jenks natural breaks. 

Sampling effort is heterogeneous in geographical space and is higher in regions known 

for their high diversity and environmental heterogeneity, such as the Andes and Central 

America (Fig. S1.1b). As a result, sampling effort in environmental space is strongly correlated 

with the distribution of available environmental conditions in the Neotropics (Fig. S1.2) and 

reduces potential bias, due to sampling heterogeneity, in species distribution models based on 

such environmental conditions. 

https://doi.org/10.5281/zenodo.4696055
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Figure S1.2: Sampling effort in environmental space. (a) Distribution of the 24 986 grid cells 
in the two first axes of the environmental space resulting from PCA. (b) Overlay of the 
distribution of the 1718 grid cells with Ithomiini occurrences in environmental space. Both 
distributions are strongly correlated (Spearman’s rho = 0.501; df = 79.4 ; p < 0.001). 

Additionally, we mapped sampling completeness as the proportion of species recorded 

in our dataset relative to the species richness estimated via bootstrap in each region (Smith & 

van Belle 1984), for 10° grid cells and for bioregions (Fig. S1.3). At the global scale, bootstrap 

estimates predicted 395.3 species, close to the 396 known species, for a completeness of 98.4%. 

We estimated an average completeness of 91.5 ± 6.5% within 10° grid cells, ranging from 

77.1% to 100%. In parallel, we recorded an average completeness of 91.9 ± 4.7% within 

bioregions, ranging from 85.3% in the Chaco region to 98.9% in the Atlantic Forest. 
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Figure S1.3: Sampling completeness. Proportion of species recorded in each region relative 
to the species richness estimated via bootstrap (Smith & van Belle 1984). (a) Sampling 
completeness within grid cells at 10° resolution. (b) Sampling completeness within bioregions. 

 

 

Figure S1.4: Map of bioregions cited throughout the manuscript and encompassing the 

range of Ithomiini, based on the aggregation of terrestrial ecoregions defined by Olson et 

al. (2001). Upper Amazon = Western Amazon. Lower Amazon = Central and Eastern Amazon. 

 

Reference: 

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., 
Underwood, E. C., Amico, J. A. D., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, J., 
Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wesley, W., Hedao, P., & 
Kassem, K. R. (2001). Terrestrial Ecoregions of the World: A New Map of Life on 
Earth: A new global map of terrestrial ecoregions provides an innovative tool for 
conserving biodiversity. BioScience, 51(11), 933–938. 
https://doi.org/https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2  

Smith, E. P., & van Belle, G. (1984). Nonparametric estimation of species 
richness. Biometrics, 119-129. 
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Appendix 2: Mimicry ring classification of Ithomiini 

 

Figure S2.5: Illustration of mimicry ring classification for Ithomiini butterflies by Keith 

Willmott. Wing patterns are classified under 44 groups defined as mimicry rings. Dorsal view 
is shown on the left side against a dark background to highlight transparency when present. 
Ventral view is shown on the right side. 
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We based the nomenclature of mimicry rings on the epithet of the "type-taxa" chosen to 
represent each mimicry ring pattern. Suffix ‘M’ for males or ‘F’ for females is added when the 
pattern is displayed only by one sex. Specimens shown in Figure S2.5 belong to these                     
(sub-)species: 

- ACRISIONE: Athesis acrisione acrisione Hewitson, 1869 
- AGNOSIA: Ithomia agnosia agnosia Hewitson, [1855] 
- AMALDA: Oleria amalda amalda (Hewitson, [1857]) 
- AURELIANA: Hypoleria aureliana (H. Bates, 1862) 
- BANJANA-M: Oleria athalina banjana (Haensch, 1903) 
- CONFUSA: Methona confusa confusa A. Butler, 1873 
- DERCYLLIDAS: Patricia dercyllidas dercyllidas (Hewitson, 1864) 
- DILUCIDA: Eutresis dilucida Staudinger, 1885 
- DOTO: Episcada doto doto (Hübner, [1806]) 
- DUESSA: Napeogenes duessa duessa (Hewitson, [1859]) 
- DUILLIA: Godyris duillia (Hewitson, 1854) 
- EGRA: Oleria aegle egra (Hewitson, [1852]) 
- EURIMEDIA: Aeria eurimedia eurimedia (Cramer, 1777) 
- EXCELSA: Hyalyris excelsa excelsa (C. Felder & R. Felder, 1862) 
- HEMIXANTHE: Episcada hemixanthe (C. Felder & R. Felder, 1865) 
- HERMIAS: Tithorea harmonia hermias Godman & Salvin, 1898 
- HEWITSONI: Godyris hewitsoni hewitsoni (Haensch, 1903) 
- HUMBOLDT: Elzunia humboldt humboldt (Latreille, [1809]) 
- ILLINISSA: Hyposcada illinissa illinissa (Hewitson, [1852]) 
- LERIDA: Oleria ilerdina lerida (W. F. Kirby, 1878) 
- LIBETHRIS: Hypomenitis libethris libethris (C. Felder & R. Felder, 1865) 
- LYSIMNIA: Mechanitis lysimnia lysimnia (Fabricius, 1793) 
- MAELUS: Melinaea satevis maelus (Hewitson, 1860) 
- MAMERCUS: Hypothyris mamercus mamercus (Hewitson, 1869) 
- MANTINEUS: Mechanitis menapis mantineus Hewitson, 1869 
- MESTRA: Hyalyris mestra mestra (Hopffer, 1874) 
- MOTHONE: Melinaea marsaeus mothone (Hewitson, 1860) 
- OCNA: Hyalyris ocna ocna (Herrich-Schäffer, 1865)   
- ORESTES: Melinaea menophilus orestes Salvin, 1871 
- OZIA: Pteronymia ozia ozia (Hewitson, 1870)   
- PANTHYALE: Godyris panthyale panthyale (C. Felder & R. Felder, 1862) 
- PARALLELIS: Melinaea lilis parallelis A. Butler, 1873 
- PAVONII: Elzunia pavonii (A. Butler, 1873) 
- POLITA: Episcada polita polita Weymer, 1899 
- PRAESTANS: Olyras insignis praestans Godman & Salvin, 1897 
- PRAXILLA: Hyalyris praxilla praxilla (Hewitson, 1870) 
- QUINTINA: Oleria quintina (C. Felder & R. Felder, 1865) 
- SINILIA: Hyposcada illinissa sinilia (Herrich-Schäffer, 1865) 

https://www.butterfliesofamerica.com/L/t/Hypoleria_aureliana_a.htm


ANNEXE 1: SI for Biodiversity patterns 
  

189 

 

- SUSIANA: Megoleria susiana susiana (C. Felder & R. Felder, 1862) 
- THABENA-F: Pteronymia thabena thabena (Hewitson, 1869) 
- THEUDELINDA: Hypomenitis theudelinda theudelinda (Hewitson, [1861]) 
- TICIDA-M: Pteronymia ticida ticida (Hewitson, 1869) 
- UMBROSA: Hypomenitis depauperata umbrosa (Haensch, 1903) 
- VESTILLA: Pteronymia vestilla vestilla (Hewitson, [1853])  

https://www.butterfliesofamerica.com/L/t/Greta_depauperata_umbrosa_a.htm


ANNEXE 1: SI for Biodiversity patterns 
  

190 

 

Appendix 3: Ithomiini phylogeny 

 

 

 

Figure S3.6: Time-calibrated phylogeny adapted from Chazot et al., 2019. It encompasses 
339 species out of the 396 (85.6%) currently known in the group. Colors highlight the 10 
subtribes. Dashed lines represent evolutionary time at intervals of 5 million years. Inset version 
of this phylogeny can be found in the distribution maps of each Operational Mimicry Unit, 
species and mimicry ring in Appendix 5. 

 

Reference: 

Chazot, N., Willmott, K. R., Lamas, G., Freitas, A. V. L., Piron-Prunier, F., Arias, C. F., Mallet, J., 

De-Silva, D. L., & Elias, M. (2019). Renewed diversification following Miocene landscape 

turnover in a Neotropical butterfly radiation. Global Ecology and Biogeography, 28(8), 

1118–1132. https://doi.org/10.1111/geb.12919 
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Appendix 4: Taxonomic list 

Taxonomic list of all 396 Ithomiini species with associated mimicry patterns (in 

CAPITAL LETTERS), grouped by subtribes. Subtribes are ordered as in the phylogeny. 

Species within subtribes are in alphabetic order. No georeferenced records for the eight species 

followed by an asterisk (*) were available at the time of analysis, and thus they are excluded 

from our study. 

Ithomiini Godman & Salvin 1879 

Melinaeina Clark, 1948 

Athyrtis C. & R. Felder, 1862 

 Athyrtis mechanitis C. Felder & R. Felder, 1862 

  HERMIAS, ORESTES (2) 

Eutresis Doubleday, 1847 

 Eutresis dilucida Staudinger, 1885 
   DILUCIDA (1) 

  Eutresis hypereia E. Doubleday, 1847 

   CONFUSA, DILUCIDA, EXCELSA (3) 

Melinaea Hübner, 1816 

 Melinaea ethra (Godart, 1819) 
  HERMIAS (1) 
 Melinaea idae (C. Felder & R. Felder, 1862) 

   MAMERCUS (1) 
  Melinaea isocomma W. Forbes, 1948 

   MAMERCUS, MOTHONE (2) 
  Melinaea lilis (E. Doubleday, 1847) 

HERMIAS, MAMERCUS, PARALLELIS (3) 
  Melinaea ludovica (Cramer, 1780) 

HERMIAS (1) 

  Melinaea marsaeus (Hewitson, 1860) 

MAELUS, MAMERCUS, MOTHONE, ORESTES (4) 

Melinaea menophilus (Hewitson, [1856]) 

 HERMIAS, MAELUS, MAMERCUS, ORESTES (4) 

Melinaea mnasias (Hewitson, [1856]) 

HERMIAS, LYSIMNIA, MAMERCUS, ORESTES (4) 

  Melinaea mneme (Linnaeus, 1763) 

   HERMIAS, MAMERCUS (2) 

  Melinaea mnemopsis Berg, 1897 

   MAMERCUS (1) 

  Melinaea mothone (Hewitson, 1860) 
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   MAMERCUS, MOTHONE (2) 

  Melinaea satevis (E. Doubleday, 1847) 

HERMIAS, MAELUS, MAMERCUS, ORESTES (4) 

  Melinaea scylax Salvin, 1871 

   MAMERCUS (1) 

Olyras E. Doubleday, 1847 

 Olyras crathis E. Doubleday, 1847 

DILUCIDA, EXCELSA (2) 

Olyras insignis Salvin, 1869 

 DILUCIDA, PRAESTANS (2) 

 Olyras theon H. Bates, 1866 

  DILUCIDA (1) 

Paititia Lamas, 1979 

 Paititia neglecta Lamas, 1979 

  CONFUSA (1) 

Mechanitina Fox, 1949 

Forbestra Fox, 1967 

 Forbestra equicola (Cramer, 1780) 
  HERMIAS, MAMERCUS (2) 
 Forbestra olivencia (H. Bates, 1862) 
  HERMIAS, MAELUS, ORESTES (3) 
 Forbestra proceris (Weymer, 1883) 

HERMIAS (1) 

Mechanitis Fabricius, 1807 

 Mechanitis lysimnia (Fabricius, 1793) 
  HERMIAS, LYSIMNIA, MAMERCUS (3) 
 Mechanitis macrinus Hewitson, 1860 

   MAMERCUS (1) 

  Mechanitis mazaeus Hewitson, 1860 

   HERMIAS, MAELUS, MAMERCUS (3) 

Mechanitis menapis Hewitson, [1856] 
 DILUCIDA, HERMIAS, MAMERCUS, MANTINEUS (4) 
Mechanitis messenoides C. Felder & R. Felder, 1865 
 MAMERCUS, MOTHONE (2) 
Mechanitis polymnia (Linnaeus, 1758) 
 DILUCIDA, EXCELSA, HERMIAS, MAELUS, MAMERCUS (5) 

Sais Hübner, 1816 

Sais browni (Takahashi, 1977) * 
  DOTO (1) 

Sais rosalia (Cramer, 1779) 
  DILUCIDA, HERMIAS, MAELUS, MAMERCUS (4) 
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Scada Kirby, 1871 

 Scada karschina (Herbst, 1792) 
  EURIMEDIA, HEMIXANTHE (2) 
 Scada kusa (Hewitson, 1872) 

EURIMEDIA (1) 

 Scada reckia (Hübner, [1808]) 
EURIMEDIA (1) 

 Scada zemira (Hewitson, 1856) 
  MANTINEUS (1) 
 Scada zibia (Hewitson, 1856) 

EURIMEDIA (1) 

Thyridia Hübner, 1816 

 Thyridia psidii (Linnaeus, 1758) 
  CONFUSA, DILUCIDA, EXCELSA (3) 

Methonina Mielke & Brown, 1979 

Methona Doubleday, 1847 

 Methona confusa A. Butler, 1873 
   CONFUSA (1) 

 Methona curvifascia Weymer, 1883 
   CONFUSA (1) 

Methona grandior (W. Forbes, 1944) 
   CONFUSA (1) 

Methona maxima (W. Forbes, 1944) 
   CONFUSA (1) 

Methona megisto C. Felder & R. Felder, 1860 
   CONFUSA (1) 

Methona singularis (Staudinger, [1884]) 
   CONFUSA (1) 

Methona themisto (Hübner, 1818) 
 CONFUSA (1) 

Tithoreina Fox, 1940 

Aeria Hübner, 1816 

 Aeria elara (Hewitson, 1855) 
   EURIMEDIA (1) 

Aeria eurimedia (Cramer, 1777) 
   EURIMEDIA (1) 

Aeria olena Weymer, 1875 
   EURIMEDIA (1) 

Elzunia Bryk, 1937 

 Elzunia humboldt (Latreille, [1809]) 
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HUMBOLDT, PAVONII (2) 
  Elzunia pavonii (A. Butler, 1873) 
   PAVONII (1) 

Tithorea Doubleday, 1847 

Tithorea harmonia (Cramer, 1777) 
 EXCELSA, HERMIAS, MAELUS, MAMERCUS, ORESTES (5) 
Tithorea pacifica Willmott & Lamas, 2004 
 EXCELSA, HERMIAS (2) 
Tithorea tarricina Hewitson, [1858] 
 EXCELSA, MAMERCUS (2) 

Athesitina Brower et al. 2014 

Athesis Doubleday, 1847 

 Athesis acrisione Hewitson, 1869 
  ACRISIONE, CONFUSA (2) 
 Athesis clearista E. Doubleday, 1847 
  DILUCIDA (1) 
 Athesis vitrala Kaye, 1918 

   HEWITSONI (1)  

Patricia Fox, 1940 

 Patricia demylus (Godman & Salvin, 1879) 
  BANJANA-M, HEWITSONI (2) 

Patricia dercyllidas (Hewitson, 1864) 
 DERCYLLIDAS, HEWITSONI, SUSIANA (3) 
Patricia hewitsonii (Srnka, 1885) 
 HEWITSONI (1) 
Patricia oligyrtis (Hewitson, 1877) 
 BANJANA-M, TICIDA-M (2) 
 

Ithomiina Godman & Salvin, 1879 

Ithomia Hübner, 1816 

  Ithomia adelinda Hewitson, 1868 

   CONFUSA, MESTRA, PRAXILLA (3) 

  Ithomia agnosia Hewitson, [1855] 

   AGNOSIA, LERIDA (2) 

  Ithomia amarilla Haensch, 1903 

   EURIMEDIA (1) 

  Ithomia arduinna R.F. d'Almeida, 1952 

   AGNOSIA (1) 

  Ithomia avella Hewitson, 1854 

   BANJANA-M, HEWITSONI, PANTHYALE, TICIDA-M (4) 



ANNEXE 1: SI for Biodiversity patterns 
  

195 

 

  Ithomia celemia Hewitson, [1854] 

   HERMIAS, PARALLELIS, MAMERCUS (3) 

  Ithomia cleora Hewitson, 1855 

MANTINEUS, HERMIAS (2) 
Ithomia diasia Hewitson, 1854 
 LERIDA, AMALDA (2) 
Ithomia drymo Hübner, 1816 
 LERIDA (1) 
Ithomia eleonora Haensch, 1905 
 BANJANA-M, SUSIANA (2) 
Ithomia ellara Hewitson, 1874 
 BANJANA-M, SUSIANA (2) 
Ithomia heraldica H. Bates, 1866 

MAMERCUS (1) 
Ithomia hyala Hewitson, [1856] 
 AGNOSIA, LERIDA (2) 
Ithomia hymettia (Staudinger, 1885) 
 AGNOSIA, BANJANA-M (2) 
Ithomia iphianassa E. Doubleday, 1847 
 POLITA, MAMERCUS, HERMIAS, DILUCIDA (4) 
Ithomia jucunda Godman & Salvin, 1878 
 AMALDA, LERIDA (2) 
Ithomia lagusa Hewitson, [1856] 
 DILUCIDA (1) 
Ithomia leila Hewitson, 1852 
 LERIDA (1) 
Ithomia lichyi R.F. d'Almeida, 1939 
 AGNOSIA, LERIDA (2) 
Ithomia patilla Hewitson, 1852 

 LERIDA (1) 
Ithomia praeithomia Vitale & Bollino, 2003 
 BANJANA-M, SUSIANA (2) 
Ithomia pseudoagalla Rebel, 1902 
 DILUCIDA (1) 
Ithomia salapia Hewitson, [1853] 
 AGNOSIA, EURIMEDIA (2) 
Ithomia terra Hewitson, [1853] 
 AGNOSIA, LERIDA (2) 
Ithomia terra EAST 
 BANJANA-M, AGNOSIA (2) 
Ithomia xenos (H. Bates, 1866) 
 EXCELSA, DILUCIDA (2) 

Pagyris Boisduval, 1870 

 Pagyris cymothoe (Hewitson, [1855]) 
  AGNOSIA, DILUCIDA (2) 
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 Pagyris priscilla Lamas, 1986 
  OZIA (1) 

Pagyris renelichyi Neild, 2008 * 
  POLITA (1) 
 Pagyris ulla (Hewitson, [1857]) 
  AGNOSIA, HEWITSONI, LIBETHRIS, PANTHYALE, TICIDA-M 
(5)  
Placidina d’Almeida 1928 

 Placidina euryanassa (C. Felder & R. Felder, 1860) 
  LYSIMNIA (1) 

Napeogenina Fox, 1956 

Aremfoxia Real, 1971 

 Aremfoxia ferra (Haensch, 1909) 
  CONFUSA, MESTRA (2) 

Epityches d’Almeida, 1938 

 Epityches eupompe (Geyer, 1832) 
  EURIMEDIA (1) 

Hyalyris Boisduval, 1870 

 Hyalyris antea (Hewitson, 1869) 
  EURIMEDIA, MESTRA, OCNA, PRAXILLA (4) 
 Hyalyris coeno (E. Doubleday, 1847) 
  MAMERCUS, MESTRA, OCNA, OZIA (4) 
 Hyalyris excelsa (C. Felder & R. Felder, 1862) 
  EXCELSA (1) 
 Hyalyris fiammetta (Hewitson, 1852) 
  LYSIMNIA (1) 
 Hyalyris juninensis R. Fox & Real, 1971 
  EURIMEDIA (1) 
 Hyalyris lactea Willmott, Lamas & Hall 2020 
  MESTRA, PRAXILLA (2) 
 Hyalyris latilimbata (Weymer, 1890) 
  EURIMEDIA (1) 

Hyalyris leptalina (C. Felder & R. Felder, 1865) 
 HEMIXANTHE (1) 
Hyalyris mestra (Hopffer, 1874) 
 MESTRA, PRAXILLA (2) 
Hyalyris ocna (Herrich-Schäffer, 1865) 
 MESTRA, OCNA (2) 
Hyalyris oulita (Hewitson, [1859]) 
 DUESSA, HERMIAS, MAMERCUS, OCNA (4) 
Hyalyris praxilla (Hewitson, 1870) 
 PRAXILLA (1) 
Hyalyris schlingeri Real, 1971 
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 OCNA (1) 
Hyalyris yasunina Willmott, Lamas & Hall 2020 

  HERMIAS (1) 

Hypothyris Hübner, 1821 

 Hypothyris anastasia (H. Bates, 1862) 
  HERMIAS, ORESTES, MAELUS, MAMERCUS, MOTHONE (5) 
 Hypothyris cantobrica (Hewitson, 1876)  
  HERMIAS, MAMERCUS (2) 

Hypothyris daphnis R.F. d'Almeida, 1945 
  HERMIAS, MAMERCUS (2) 

Hypothyris euclea (Godart, 1819) 
  DOTO, HERMIAS, MAMERCUS, ORESTES, PARALLELIS (5) 

Hypothyris fluonia (Hewitson, 1854) 
  HERMIAS, MAELUS, MAMERCUS, MOTHONE (4) 

Hypothyris gemella R. Fox, 1971 
  DOTO (1) 

Hypothyris leprieuri (Feisthamel, 1835) 
  DOTO, DUESSA, HERMIAS, MAMERCUS (4) 

Hypothyris lycaste (Fabricius, 1793) 
  DILUCIDA, EXCELSA, HERMIAS, MAMERCUS (4) 

Hypothyris maenas (Haensch, 1909) 
  MAMERCUS, MOTHONE (2) 

Hypothyris mamercus (Hewitson, 1869) 
  MAMERCUS (1) 

Hypothyris mansuetus (Hewitson, 1860) 
  MAMERCUS, MOTHONE (2) 

Hypothyris moebiusi (Haensch, 1903) 
  MAMERCUS, MOTHONE (2) 

Hypothyris ninonia (Hübner, [1806]) 
  DOTO, HERMIAS, LYSIMNIA, MAELUS, MAMERCUS, 

MOTHONE, ORESTES (7) 
Hypothyris nsp [n. sp.] 

  MOTHONE (1) 
Hypothyris semifulva (Salvin, 1869) 

  HERMIAS, MAELUS, MAMERCUS, MOTHONE, ORESTES (5) 
Hypothyris thea (Hewitson, 1852) 

  DUESSA, HERMIAS (2) 
Hypothyris vallonia (Hewitson, [1853]) 

  DOTO, HERMIAS (2) 
Hypothyris xanthostola (H. Bates, 1862) 

  HERMIAS, MAMERCUS (2) 

Napeogenes Bates, 1862 

  Napeogenes aethra (Hewitson, 1869) 
HERMIAS (1) 
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Napeogenes apulia (Hewitson, 1858) 
MESTRA, OCNA (2) 

Napeogenes benigna Weymer, 1899 
PANTHYALE, POLITA (2) 

Napeogenes cranto C. Felder & R. Felder, 1865 
DILUCIDA, EURIMEDIA (2) 

Napeogenes duessa (Hewitson, [1859]) 
DOTO, DUESSA, MAMERCUS (3) 

Napeogenes flossina A. Butler, 1873 
PANTHYALE, TICIDA-M (2) 

Napeogenes garwoodae Willmott & Hall, 2020 
LERIDA (1) 

Napeogenes glycera Godman, 1899 
MESTRA, OCNA, PRAXILLA, SUSIANA (4) 

Napeogenes gracilis Haensch, 1905 
OZIA (1) 

Napeogenes harbona (Hewitson, 1869) 
BANJANA-M, EURIMEDIA, MESTRA, PANTHYALE, SUSIANA 

(5) 
Napeogenes inachia (Hewitson, 1855) 

DOTO, EURIMEDIA, HEMIXANTHE (3) 
Napeogenes larilla (Hewitson, 1877) 

HEWITSONI, PANTHYALE, THEUDELINDA (3) 
Napeogenes larina (Hewitson, [1856]) 

HERMIAS (1) 
Napeogenes lycora (Hewitson, 1870) 

OZIA, PRAXILLA (2) 
Napeogenes nsp1 [n. sp.] 

OCNA, PRAXILLA (2) 
Napeogenes nsp2 [n. sp.] 

BANJANA-M, OCNA (2) 
Napeogenes peridia (Hewitson, [1854]) 

DILUCIDA, EXCELSA, HERMIAS (3) 
Napeogenes pharo (C. Felder & R. Felder, 1862) 

CONFUSA, DOTO, EURIMEDIA, OZIA (4) 
Napeogenes rhezia (Geyer, [1834]) 

DOTO, HEMIXANTHE, HERMIAS, MAMERCUS, MOTHONE (5) 
Napeogenes sodalis Haensch, 1905 

AGNOSIA (1) 
Napeogenes stella (Hewitson, [1855]) 

HERMIAS (1) 
Napeogenes sulphureophila Bryk, 1937  

OCNA (1) 
Napeogenes sylphis (Guérin-Méneville, [1844]) 

AGNOSIA, AURELIANA, EGRA, ILLINISSA, LERIDA (5) 
Napeogenes tolosa (Hewitson, 1855) 
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DILUCIDA, EURIMEDIA, EXCELSA, MAMERCUS (4) 
Napeogenes verticilla (Hewitson, 1874) 

AGNOSIA (1) 
Napeogenes zurippa (Hewitson, [1876]) 

HERMIAS, MAMERCUS, ORESTES (3) 

Oleriina Fox, 1940 

Hyposcada Godman & Salvin, 1879 

Hyposcada anchiala (Hewitson, 1868) 
ILLINISSA, MAELUS, MAMERCUS, MOTHONE, ORESTES, 

PARALLELIS (6) 
Hyposcada attilodes Kaye, 1918 

SUSIANA (1) 
Hyposcada dujardini Brévignon, 1993 

AGNOSIA, LERIDA (2) 
Hyposcada gallardi Brévignon, 1993 

MAMERCUS (1) 
Hyposcada illinissa (Hewitson, [1852]) 

AGNOSIA, AURELIANA, ILLINISSA, LERIDA, PARALLELIS, 
QUINTINA, SINILIA (7) 
Hyposcada kena (Hewitson, 1872) 

AGNOSIA, BANJANA-M, LERIDA, QUINTINA, SINILIA (5) 
Hyposcada nsp [n. sp.] 

AGNOSIA, LERIDA (2) 
Hyposcada schausi R. Fox, 1941 

AMALDA, LERIDA (2) 
Hyposcada taliata (Hewitson, 1874) 

BANJANA-M, SUSIANA (2) 
Hyposcada virginiana (Hewitson, [1855]) 

EXCELSA, HERMIAS, MAMERCUS, PARALLELIS (4) 
Hyposcada zarepha (Hewitson, 1869) 

AGNOSIA, EGRA, LERIDA (3) 

Megoleria Constantino, 1999 

Megoleria orestilla (Hewitson, 1867) 
BANJANA-M, SUSIANA (2) 

Megoleria susiana (C. Felder & R. Felder, 1862) 
SUSIANA (1) 

Oleria Hübner, 1816 

  Oleria aegle (Fabricius, 1776) 
EGRA, LERIDA (2) 

Oleria agarista (C. Felder & R. Felder, 1862) 
LERIDA, SINILIA (2) 

Oleria alexina (Hewitson, [1859]) 
AGNOSIA (1) 
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Oleria amalda (Hewitson, [1857]) 
AMALDA, LERIDA (2) 

Oleria antaxis (Haensch, 1909) 
EGRA, LERIDA, SINILIA (3) 

Oleria aquata (Weymer, 1875) 
LERIDA (1) 

Oleria assimilis (Haensch, 1903) 
AGNOSIA, LERIDA (2) 

Oleria astrea (Cramer, 1775) 
LERIDA (1) 

Oleria athalina (Staudinger, [1884]) 
BANJANA-M, HEWITSONI, SUSIANA (3) 

Oleria attalia (Hewitson, 1855) 
BANJANA-M, MESTRA, SUSIANA (3) 

Oleria baizana (Haensch, 1903) 
BANJANA-M, HEWITSONI, SUSIANA (3) 

Oleria bifurcata Willmott & Lamas, 2020 
BANJANA-M (1) 

Oleria bioculata (Haensch, 1905) 
AGNOSIA (1) 

Oleria boyeri Neild, 2008 
AGNOSIA (1) 

Oleria chimaera Willmott & Lamas, 2020 * 
BANJANA-M (1) 

Oleria cyrene (Latreille, [1809]) 
BANJANA-M, SUSIANA (2) 

Oleria deronda (Hewitson, 1876) 
BANJANA-M, PANTHYALE, SUSIANA, THABENA-F (4) 

Oleria derondina (Haensch, 1909) 
BANJANA-M, HEWITSONI, THABENA-F (3) 

Oleria didymaea (Hewitson, 1876) 
AGNOSIA, LERIDA (2) 

Oleria enania (Haensch, 1909) 
AGNOSIA, LERIDA (2) 

Oleria estella (Hewitson, 1868) 
AGNOSIA, QUINTINA (2) 

Oleria fasciata (Haensch, 1903) 
BANJANA-M, SUSIANA (2) 

Oleria flora (Cramer, 1779) 
EGRA, LERIDA (2) 

Oleria fumata (Haensch, 1905) 
BANJANA-M (1) 

Oleria gunilla (Hewitson, 1858) 
AGNOSIA, AURELIANA, ILLINISSA, LERIDA, QUINTINA, 

SINILIA (6) 
Oleria ilerdina (Hewitson, 1858) 
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ILLINISSA, LERIDA (2) 
Oleria makrena (Hewitson, 1854) 

AGNOSIA, BANJANA-M (2) 
Oleria nsp [n. sp.] 

AGNOSIA (1) 
Oleria nsp1 [n. sp.] 

LERIDA (1) 
Oleria onega (Hewitson, [1852]) 

AGNOSIA, AURELIANA, LERIDA, QUINTINA (4) 
Oleria padilla (Hewitson, 1863) 

AGNOSIA, BANJANA-M (2) 
Oleria paula Weymer, 1883 

AMALDA, LERIDA (2) 
Oleria phenomoe (E. Doubleday, [1847]) 

AGNOSIA (1) 
Oleria quadrata (Haensch, 1903) 

LERIDA (1) 
Oleria quintina (C. Felder & R. Felder, 1865) 

QUINTINA (1) 
Oleria radina (Haensch, 1909) 

BANJANA-M, PANTHYALE, SUSIANA (3) 
Oleria rubescens (A. Butler & H. Druce, 1872) 

LERIDA (1) 
Oleria santineza (Haensch, 1903) 

AGNOSIA, BANJANA-M (2) 
Oleria sexmaculata (Haensch, 1903) 

LERIDA, SINILIA (2) 
Oleria similigena R.F. d'Almeida, 1962 

EGRA, LERIDA (2) 
Oleria synnova (Hewitson, [1859]) 

SINILIA (1) 
Oleria thiemei (Oberthür, 1879) 

AMALDA (1) 
Oleria tigilla (Weymer, 1899) 

AGNOSIA, LERIDA (2) 
Oleria tremona (Haensch, 1909) 

BANJANA-M, PANTHYALE (2) 
Oleria vicina (Salvin, 1869) 

AGNOSIA (1) 
Oleria victorine (Guérin-Méneville, [1844]) 

AGNOSIA, LERIDA (2) 
Oleria zea (Hewitson, [1855]) 

AGNOSIA (1) 
Oleria zelica (Hewitson, 1856) 

EURIMEDIA (1) 

Ollantaya Brown & Freitas, 1994 
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Ollantaya aegineta (Hewitson, 1869) 
BANJANA-M, THABENA-F, THEUDELINDA (3) 

Ollantaya canilla (Hewitson, 1874) 
OZIA (1) 

Ollantaya nsp [n. sp.] 
SUSIANA (1) 

Ollantaya olerioides (R.F. d'Almeida, 1952) 
BANJANA-M, SUSIANA (2) 

Godyridina d’Almeida, 1941 

Brevioleria Lamas, 2004 

Brevioleria aelia (Hewitson, 1852) 
AURELIANA, ILLINISSA, LERIDA, SINILIA (4) 

Brevioleria arzalia (Hewitson, 1876) 
AGNOSIA, AURELIANA (2) 

Brevioleria coenina (Hewitson, 1869) 
OZIA (1) 

  Brevioleria nsp [n. sp.] * 
   Mimicry patterns not known 

Brevioleria nsp1 [n. sp.]  
LERIDA (1) 

Brevioleria plisthenes (R.F. d'Almeida, 1958) 
LERIDA (1) 

Brevioleria seba (Hewitson, 1872) 
AGNOSIA, AURELIANA, LERIDA (3) 

Genus1 [n. genus] 

Genus1 nsp1 [n. sp.]   
BANJANA-M (1) 

Genus2 [n. genus] 

Genus2 andromica (Hewitson, [1855]) 
AGNOSIA (1) 

Genus2 annette (Guérin-Méneville, [1844]) 
AGNOSIA (1) 

Godyris Boisduval, 1870 

Godyris crinippa (Hewitson, 1874) 
PANTHYALE (1) 

Godyris dircenna (C. Felder & R. Felder, 1865) 
CONFUSA (1) 

Godyris duillia (Hewitson, 1854) 
DUILLIA (1) 

Godyris hewitsoni (Haensch, 1903) 
HEWITSONI, PANTHYALE (2) 

Godyris kedema (Hewitson, [1855]) 
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DILUCIDA, MAMERCUS (2) 
Godyris lauta (Haensch, 1910) 

BANJANA-M, UMBROSA (2) 
Godyris nepos (Weymer, 1875) 

LIBETHRIS (1) 
Godyris nero (Hewitson, [1855]) 

AGNOSIA (1) 
Godyris panthyale (C. Felder & R. Felder, 1862) 

BANJANA-M, PANTHYALE (2) 
Godyris sappho (Haensch, 1910) 

BANJANA-M, PANTHYALE (2) 
Godyris zavaleta (Hewitson, [1855]) 

DILUCIDA, DOTO, EURIMEDIA, EXCELSA, HERMIAS, 
MAMERCUS (6) 

Greta Hemming, 1934  

Greta clavijoi Neild, 2008 
AGNOSIA (1) 

Greta cubana (Herrich-Schäffer, 1862) 
AGNOSIA (1) 

Greta diaphanus (Drury, 1773) 
AGNOSIA (1) 

Greta morgane (Geyer, 1837) 
AGNOSIA, LERIDA (2) 

Heterosais Godman & Salvin, 1880 

Heterosais edessa (Hewitson, [1855]) 
LERIDA (1) 

Heterosais giulia (Hewitson, [1855]) 
DILUCIDA, LERIDA, POLITA (3) 

Heterosais nephele (H. Bates, 1862) 
AGNOSIA, LERIDA (2) 

Hypoleria Godman & Salvin 1879 

Hypoleria adasa (Hewitson, [1855]) 
LERIDA (1) 

Hypoleria alema (Hewitson, [1857]) 
AGNOSIA, AURELIANA, EGRA, LERIDA, MESTRA, OCNA, 

PRAXILLA (7) 
Hypoleria asellia (Hopffer, 1874) 

AGNOSIA (1) 
Hypoleria aureliana (H. Bates, 1862) 

AURELIANA (1) 
Hypoleria lavinia (Hewitson, [1855]) 

AGNOSIA, AMALDA, AURELIANA, LERIDA (4) 
Hypoleria mulviana R.F. d'Almeida, 1958 

EGRA (1) 
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Hypoleria ocalea (E. Doubleday, 1847) 
DILUCIDA, HERMIAS (2) 

Hypoleria sarepta (Hewitson, [1852]) 
AGNOSIA, AURELIANA, EGRA, LERIDA (4) 

Hypoleria xenophis Haensch, 1909 
EURIMEDIA (1) 

Hypomenitis Fox, 1945 

Hypomenitis alphesiboea (Hewitson, 1869) 
DUILLIA (1) 

Hypomenitis candida Lamas & Willmott, 2020 
AGNOSIA (1) 

Hypomenitis depauperata (Boisduval, 1870) 
UMBROSA (1) 

Hypomenitis dercetis (Doubleday & Hewitson, 1847) 
LIBETHRIS (1) 

Hypomenitis enigma (Haensch, 1905) 
PANTHYALE (1) 

Hypomenitis esula (Hewitson, 1855) 
PANTHYALE (1) 

Hypomenitis gabiglooris (Brabant & Bischler, 2005) 
AGNOSIA (1) 

Hypomenitis gardneri (Weeks, 1901) 
BANJANA-M, PANTHYALE (2) 

Hypomenitis hermana (Haensch, 1903) 
HEWITSONI, THEUDELINDA (2) 

Hypomenitis jamesiana Willmott, Lamas & Hall, 2020 
PANTHYALE (1) 

Hypomenitis libethris (C. Felder & R. Felder, 1865) 
LIBETHRIS (1) 

Hypomenitis lojana (Vitale & Bollino, 2001) 
BANJANA-M (1) 

Hypomenitis lydia (Weymer, 1899) 
HEWITSONI (1) 

Hypomenitis nsp [n. sp.]  
BANJANA-M (1) 

Hypomenitis nsp4 [n. sp.] * 
LIBETHRIS (1) 

Hypomenitis nspC [n. sp.]  
AGNOSIA (1) 

Hypomenitis nspD [n. sp.]  
PANTHYALE (1) 

Hypomenitis nspE [n. sp.]  
LIBETHRIS (1) 

Hypomenitis ochretis (Haensch, 1903) 
UMBROSA (1) 
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Hypomenitis oneidodes (Kaye, 1918) 
HEWITSONI, THEUDELINDA (2) 

Hypomenitis ortygia (Weymer, 1890) 
PANTHYALE (1) 

Hypomenitis polissena (Hewitson, [1863]) 
AGNOSIA, LIBETHRIS (2) 

Hypomenitis theudelinda (Hewitson, [1861]) 
HEWITSONI, PANTHYALE, THEUDELINDA (3) 

Mcclungia Fox, 1940 

Mcclungia cymo (Hübner, [1806]) 
AGNOSIA, EGRA, EURIMEDIA, MAMERCUS, SINILIA (5) 

Pachacutia Willmott & Lamas, 2007 

Pachacutia baroni Willmott & Lamas, 2007 
DUILLIA (1) 

Pachacutia cleomella (Hewitson, 1874) 
OZIA, THABENA-F (2) 

Pachacutia germaini Lamas & Willmott, 2007 
OZIA (1) 

Pachacutia mantura (Hewitson, 1876) 
CONFUSA (1) 

Pseudoscada Godman & Salvin, 1879 

Pseudoscada acilla (Hewitson, 1867) 
LERIDA (1) 

Pseudoscada erruca (Hewitson, 1855) 
LERIDA (1) 

Pseudoscada florula (Hewitson, [1855]) 
AGNOSIA, AURELIANA, EGRA, LERIDA (4) 

Pseudoscada timna COSTARICA 
LERIDA (1) 

Pseudoscada timna EASTERN 
AGNOSIA, LERIDA (2) 

Pseudoscada timna WESTERN 
AMALDA, LERIDA (2) 

Veladyris Fox, 1945 

Veladyris cytharista (Hewitson, 1874) 
PANTHYALE, THABENA-F (2) 

Veladyris electrea (M. Brabant, 2004) 
PANTHYALE (1) 

Veladyris nsp [n. sp.]  
HEWITSONI (1) 

Veladyris pardalis (Salvin, 1869) 
HEWITSONI, PANTHYALE, THEUDELINDA (3) 
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Velamysta Haensch, 1909 

Velamysta desmondi Kell & Willmott, 2020 
AGNOSIA (1) 

Velamysta nsp [n. sp.]  
PANTHYALE (1) 

Velamysta peninna (Hewitson, 1855) 
BANJANA-M, PANTHYALE, SUSIANA (3) 

Velamysta phengites R. Fox, 1945 
BANJANA-M, PANTHYALE (2) 

Velamysta pupilla (Hewitson, 1874) 
PANTHYALE, THEUDELINDA (2) 

Dircennina d’Almeida, 1941 

Callithomia Bates, 1862 

Callithomia alexirrhoe H. Bates, 1862 
HERMIAS, MAELUS, MAMERCUS (3) 

Callithomia hezia (Hewitson, [1854])  
EXCELSA, MAMERCUS, OCNA (3) 

Callithomia hydra C. Felder & R. Felder, 1865  
EXCELSA, MAMERCUS (2) 

Callithomia lenea (Cramer, 1779) 
CONFUSA, DILUCIDA, DOTO, HERMIAS, MAMERCUS (5) 

Ceratinia Hübner, 1816 

Ceratinia cayana (Salvin, 1869) 
HERMIAS (1) 

Ceratinia iolaia (Hewitson, [1856]) 
HERMIAS (1) 

Ceratinia neso (Hübner, [1806]) 
DILUCIDA, DOTO, HERMIAS, MAELUS, MAMERCUS, ORESTES 

(6) 
Ceratinia poecila (H. Bates, 1862) 

HERMIAS, MAELUS, MAMERCUS, MOTHONE, ORESTES (5) 
Ceratinia tutia (Hewitson, 1852) 

HERMIAS, MAMERCUS, MANTINEUS (3) 

Dircenna Doubleday, [1847] 

Dircenna adina (Hewitson, [1855]) 
AGNOSIA, CONFUSA, DILUCIDA, HEWITSONI, LIBETHRIS, 
MESTRA, OCNA, OZIA (8) 

Dircenna dero (Hübner, 1823) 
CONFUSA, DILUCIDA, DOTO, MAMERCUS (4) 

Dircenna jemina (Geyer, 1837) 
DILUCIDA, MAMERCUS, POLITA (3) 

Dircenna klugii (Geyer, 1837) 
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DILUCIDA (1) 
Dircenna loreta Haensch, 1903 

CONFUSA (1) 
Dircenna olyras (C. Felder & R. Felder, 1865) 

DILUCIDA, EXCELSA, MAMERCUS (3) 

Episcada Godman & Salvin, 1879 

Episcada apuleia (Hewitson, 1868) 
HEWITSONI, PANTHYALE (2) 

Episcada clausina (Hewitson, 1876) 
EURIMEDIA, LIBETHRIS (2) 

Episcada doto (Hübner, [1806]) 
DOTO, EURIMEDIA (2) 

Episcada hemixanthe (C. Felder & R. Felder, 1865) 
HEMIXANTHE (1) 

Episcada hymen Haensch, 1905  
EURIMEDIA (1) 

Episcada hymenaea (Prittwitz, 1865)  
EURIMEDIA, LERIDA, LIBETHRIS, POLITA (4) 

Episcada mira (Hewitson, 1877)  
AGNOSIA, LIBETHRIS (2) 

Episcada nsp [n. sp.]   
AGNOSIA (1) 

Episcada nsp1 [n. sp.]   
OZIA, PANTHYALE (2) 

Episcada philoclea (Hewitson, [1855])  
EURIMEDIA (1) 

Episcada pichita Lamas & Willmott, 2020  
LIBETHRIS (1) 

Episcada polita Weymer, 1899  
AGNOSIA, LIBETHRIS, POLITA (3) 

Episcada salvinia (H. Bates, 1864)  
AGNOSIA, BANJANA-M (2) 

Episcada striposis Haensch, 1909  
EURIMEDIA (1) 

Episcada sulphurea Haensch, 1905  
EURIMEDIA (1) 

Episcada sylpha Haensch, 1905  
POLITA (1) 

Episcada sylvo (Geyer, 1832) 
LERIDA (1) 

Episcada ticidella (Hewitson, 1869)  
PANTHYALE, TICIDA-M (2) 

Episcada trapezula Brabant & Bischler, 2003  
LIBETHRIS (1) 

Episcada vitrea R.F. d'Almeida & O. Mielke, 1967  
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LERIDA (1) 
Episcada zajciwi R.F. d'Almeida & O. Mielke, 1967  

EURIMEDIA, HEMIXANTHE (2) 

Haenschia Lamas, 2004 

Haenschia derama (Haensch, 1905)  
AGNOSIA, LIBETHRIS (2) 

  Haenschia nsp1 [n. sp.] * 
   Mimicry patterns not known 
  Haenschia nsp2 [n. sp.] * 
   OZIA (1) ; Mimicry pattern for females is not known 

Haenschia sidonia (Haensch, 1905)  
AGNOSIA, OZIA (2) 

Hyalenna Forbes, 1942 

Hyalenna alidella (Hewitson, 1869) 
AGNOSIA, DILUCIDA, LIBETHRIS, OZIA, THABENA-F (5) 

Hyalenna buckleyi Willmott & Lamas, 2006  
PANTHYALE (1) 

  Hyalenna hugia (Lamas, 2004) * 
   OZIA (1) ; Mimicry pattern for females is not known 

Hyalenna paradoxa (Staudinger, [1884])  
BANJANA-M, PANTHYALE (2) 

Hyalenna pascua (Schaus, 1902)  
LERIDA (1) 

Hyalenna perasippa (Hewitson, 1877)  
PANTHYALE (1) 

Hyalenna sulmona (Hewitson, 1877)  
LIBETHRIS, PANTHYALE, TICIDA-M (3) 

Pteronymia Butler & Druce, 1872 

Pteronymia alcmena (Godman & Salvin, 1877)  
AGNOSIA (1) 

Pteronymia aletta (Hewitson, [1855])  
DILUCIDA, MAMERCUS, MANTINEUS, POLITA (4) 

Pteronymia alicia Neild, 2008  
AGNOSIA (1) 

Pteronymia alida (Hewitson, 1855)  
BANJANA-M, HEWITSONI, LIBETHRIS, PANTHYALE, 

THABENA-F (5) 
Pteronymia alina Haensch, 1909  

BANJANA-M, HEWITSONI, PANTHYALE (3) 
Pteronymia alissa (Hewitson, 1869)  

AGNOSIA, LERIDA (2) 
Pteronymia andreas (Weeks, 1901)  

AGNOSIA (1) 
Pteronymia artena (Hewitson, [1855])  
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AGNOSIA (1) 
Pteronymia asopo (C. Felder & R. Felder, 1865)  

AGNOSIA (1) 
Pteronymia calgiria Schaus, 1902  

OZIA (1) 
Pteronymia carlia Schaus, 1902  

LERIDA (1) 
Pteronymia cotytto (Guérin-Méneville, [1844]) 

LERIDA (1) 
Pteronymia cuneata Willmott, Lamas & Hall, 2020  

HEWITSONI, TICIDA-M (2) 
Pteronymia dispar Haensch, 1905  

POLITA (1) 
Pteronymia donella (C. Felder & R. Felder, 1865)  

DILUCIDA, MAMERCUS (2) 
Pteronymia dorothyae Neild, 2008  

AGNOSIA (1) 
Pteronymia euritea (Cramer, 1780)  

HEMIXANTHE (1) 
Pteronymia forsteri Baumann, 1985  

AGNOSIA (1) 
Pteronymia fulvimargo A. Butler & H. Druce, 1872  

DILUCIDA (1) 
Pteronymia fumida Schaus, 1913  

DILUCIDA, HERMIAS (2) 
Pteronymia gertschi R. Fox, 1945  

OZIA (1) 
Pteronymia glauca Haensch, 1903  

LERIDA (1) 
Pteronymia granica (Hewitson, 1877)  

HEWITSONI (1) 
Pteronymia hara (Hewitson, 1877)  

AGNOSIA, BANJANA-M, HEWITSONI, LERIDA, LIBETHRIS, 
PANTHYALE (6) 
Pteronymia inania Haensch, 1903  

HEWITSONI, THABENA-F (2) 
Pteronymia latilla (Hewitson, [1855])  

DILUCIDA, HERMIAS, MAMERCUS, PARALLELIS (4) 
Pteronymia laura (Staudinger, 1885)  

AMALDA (1) 
Pteronymia lonera (A. Butler & H. Druce, 1872)  

EXCELSA (1) 
Pteronymia luisa Willmott, Lamas & Hall, 2020  

DILUCIDA (1) 
Pteronymia mariannae Lamas, Willmott & Hall, 2020  

AGNOSIA (1) 
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Pteronymia medellina Haensch, 1905  
AGNOSIA, HEWITSONI (2) 

Pteronymia nsp [n.sp.]  
DILUCIDA (1) 

Pteronymia nsp1 [n.sp.]  
AGNOSIA (1) 

Pteronymia obscuratus (Fabricius, 1793)  
POLITA (1) 

Pteronymia olimba Haensch, 1905  
AGNOSIA, LIBETHRIS (2) 

Pteronymia oneida (Hewitson, 1855) 
HEWITSONI (1) 

Pteronymia ozia (Hewitson, 1870)  
MESTRA, OZIA (2) 

Pteronymia parva (Salvin, 1869)  
LERIDA (1) 

Pteronymia peteri Neild, 2008  
AGNOSIA (1) 

Pteronymia picta (Salvin, 1869)  
DILUCIDA, EURIMEDIA, MAMERCUS (3) 

Pteronymia primula (H. Bates, 1862)  
EURIMEDIA (1) 

Pteronymia rufocincta (Salvin, 1869)  
AGNOSIA (1) 

Pteronymia sao (Hübner, [1813])  
DOTO, EURIMEDIA (2) 

Pteronymia serrata Haensch, 1903  
HEWITSONI, PANTHYALE, THEUDELINDA (3) 

Pteronymia sexpunctata (Bryk, 1953)  
AGNOSIA (1) 

Pteronymia simplex (Salvin, 1869)  
AGNOSIA (1) 

Pteronymia tamina Haensch, 1909  
OZIA, THABENA-F (2) 

Pteronymia teresita (Hewitson, 1863)  
DILUCIDA (1) 

Pteronymia thabena (Hewitson, 1869)  
OZIA, THABENA-F (2) 

Pteronymia ticida (Hewitson, 1869)  
BANJANA-M, HEWITSONI, LIBETHRIS, OZIA, PANTHYALE, 

THABENA-F,  
TICIDA-M (7) 

Pteronymia tucuna (H. Bates, 1862) 
EURIMEDIA (1) 

Pteronymia veia EAST (Hewitson, [1853]) 
HEWITSONI, LIBETHRIS (2) 
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Pteronymia vestilla (Hewitson, [1853]) 
AGNOSIA, EURIMEDIA, VESTILLA (3) 

Pteronymia zerlina (Hewitson, [1856]) 
AGNOSIA, BANJANA-M (2) 
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Appendix 5: ODMAP 

 

See ANNEXE 2. 

 

The ODMAP protocol for species distribution models (Zurell et al. 2020) provides a 

standard protocol to document and report all the modeling steps and decisions undertook during 

the analyses. It ensures transparency and reproducibility, and facilitates peer-review. 

We include in our ODMAP report a more in-depth discussion on the potential caveats 

and limits inherent in SDMs, and provided additional maps to assess the uncertainties and 

robustness to modeling choices of our results. 

 

Reference: 

Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J., Fandos, G., Feng, X., 

Guillera-Arroita, G., Guisan, A., Lahoz-Monfort, J. J., Leitão, P. J., Park, D. S., Peterson, A. 

T., Rapacciuolo, G., Schmatz, D. R., Schröder, B., Serra-Diaz, J. M., Thuiller, W., … Merow, 

C. (2020). A standard protocol for reporting species distribution models. Ecography, 1–

17. https://doi.org/10.1111/ecog.04960 
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Appendix 6: Human Footprint map 

Anthropogenic threats to Ithomiini biodiversity hotspots were estimated with the 2009 

Human Footprint index (Venter et al., 2016a; Fig. S6.17). It combines eight variables which 

measure direct human impacts on the environment, namely, (1) human population density, (2) 

night-time light pollution, (3) extent of built environments, (4) crop landcover, (5) pasture 

landcover, (6) proximity to railways, (7) to major roadways, and (8) to navigable waterways. 

The following map was used to defined areas falling into categories of threats based on quantile 

distribution of Human Footprint across communities: very high (top 5%), high (top 25%), low 

(bottom 25%) and very low (bottom 5%). 

 

Figure S6.17: Human Footprint from Venter et al. (2016). Human Footprint represents 
cumulative human pressures on terrestrial ecosystems worldwide. Color scale is contrasted such 
that high values potentially as high as 100 are capped to 30. 

Reference: 

Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., 

Laurance, W. F., Wood, P., Fekete, B. M., Levy, M. A., & Watson, J. E. M. (2016). Global terrestrial 

Human Footprint maps for 1993 and 2009. Scientific Data, 3(160067), 1–10. https://doi.org/doi: 

10.1038/sdata.2016.67  
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Appendix 7: Examples of distribution maps 

We provide here contrasting examples of distribution maps for four Operational 

Mimicry Units (Fig. S7.18), four species (Fig. S7.19), and four mimicry rings (Fig. S7.20) 

illustrating the diversity of biogeographic patterns found in Ithomiini. All maps of the 783 

OMUs, 388 species, and 44 mimicry rings are available in an online archive at 

10.5281/zenodo.4673446. 

Dircenna dero pattern CONFUSA illustrates the example of a wide-ranging OMU 

extending from the Atlantic forest to the eastern slopes of the Central Andes, up to Central 

America, but showing low habitat suitability in the Northern cordilleras (Fig. S7.18a). It is part 

of a complex of four OMUs belonging to the same species Dircenna dero, yet showing different 

wing patterns. In contrast, Dircenna dero pattern DILUCIDA presents a smaller range, 

encompassing Central America and the Northern Cordilleras in Colombia (Fig. S7.18b). As 

such, these maps show that OMUs from the same species can present different niches with 

different local suitability in a region (i.e., in the Northern Cordilleras), and yet show some 

degree of environmental and spatial overlap in another (i.e., in the highlands of Central 

America). Hyalenna alidella pattern LIBETHRIS is strictly Andean but shows a disjointed 

distribution between the Central Andes in Peru and the Northern Andes in Colombia (Fig. 

S7.18c). Its environmental niche appears similar in both regions and our modeling process 

allows to discriminate between suitable highlands and unsuitable lowlands in the two areas of 

distribution. Oleria similigena pattern EGRA presents a continuous range restricted to the 

region around the mouth of the Amazon river (Fig. S7.18d). 

https://doi.org/10.5281/zenodo.4673446
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Figure S7.18: Four examples of distribution maps for Operational Mimicry Units (OMUs) 

resulting from our environmental niche ensemble modeling process. Position in the 
phylogeny is represented in the top-right corner. (a) = A wide-spread OMU: Dircenna dero 
pattern CONFUSA. (b) = An OMU from Central America and the Northern cordilleras: 
Dircenna dero pattern DILUCIDA. (c) = An Andean OMU with disjointed distribution: 
Hyalenna alidella pattern LIBETHRIS. (d) = A lower Amazonian OMU: Oleria similigena 
pattern EGRA. Photo credits: Nicolas Chazot, 2015. 

Dircenna adina is the ithomiine species that displays the most diversity in mimicry 

patterns with up to eight different patterns (Fig. S7.19a). These patterns (i.e., OMUs) shows 

some degrees of overlap in the highly diverse region of Ecuador and Northern Peru, but overall, 

patterns remained clustered in space along the area of distribution of the species along the 

Andes, in the highlands, from Bolivia to Venezuela and the Guyana shield. In contrast, 

Hypomenitis ortygia, which is also restricted to the highlands along the Andes, displays a single 
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pattern all along its range (Fig. S7.19c). Its mimicry ring itself (PANTHYALE) is restricted to 

these Andean highland habitats. Other species demonstrate a wider environmental niche, yet 

can be restricted to a geographic area. For instance, Greta morgane is found in Central America, 

with high habitat suitability in all conditions, from lowlands to highlands, from the coast to 

central areas (Fig. S7.19b). Finally, Epityches eupompe is widely spread in the Atlantic forest 

(Fig. S7.19d), but restricted to this region despite harboring a mimicry pattern (EURIMEDIA) 

that can be found within the whole range of Ithomiini. 

 

Figure S7.19: Four examples of distribution maps for species resulting from our environmental 
niche ensemble modeling process. Position in the phylogeny is represented in the top-right 
corner. (a) = An Andean species with multiple mimicry wing patterns: Dircenna adina. (b) = 
A species from Central America: Greta morgane. (c) = An Andean species with a single 
mimicry wing pattern: Hypomenitis ortygia. (d) = A species from the Atlantic forest: Epityches 
eupompe. Photo credits: Nicolas Chazot, 2015. 
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The mimicry ring LERIDA is widely spread in the entire range of Ithomiini. Its species 

richness reflects the global pattern of diversity, with hotspots in the Andes, the Atlantic forest, 

and Central America (Fig. S7.20a). In contrast, the mimicry ring HEWITSONI is endemic to 

the highlands in the Central Andes (Fig. S7.20c). Yet, it shows the same maximum local species 

richness (around 15 species) as the widespread LERIDA pattern, despite being represented by 

half as many species (30 species vs. 66 species). The mimicry ring LYSIMNIA is endemic to 

the Atlantic forest (Fig. S7.20b), while the mimicry ring MAELUS is found only in the 

Amazonian forest (Fig. S7.20d). Its species richness peaks in the Upper Amazon, which may 

suggest it originated and spread from this region. 

 

Figure S7.20: Four examples of distribution maps for species resulting from our 

environmental niche ensemble modeling process. Position in the phylogeny of species 
harboring the pattern is represented in the top-right corner. (a) = A wide-ranging mimicry ring: 
pattern LERIDA. (b) = A mimicry ring endemic to the Atlantic forest: pattern LYSIMNIA. (c) 
= An Andean mimicry ring: pattern HEWISTONI. (d) = An Amazonian mimicry ring: pattern 
MAELUS. Photo credits: Nicolas Chazot, 2015. 
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Appendix 8: Biodiversity indices: flowchart and details on 

computation 

 

Figure S8.21: Flowchart of index computation from Species Distribution Models (SDM) 

outputs. pOMU = proxy of probability of presence of an Operational Mimicry Unit (OMU) 
derived from environmental suitability outputs from SDMs. ps/m = proxy of the likelihood of 
presence (LP) of a species or a mimicry ring. Rs/m = richness indices. H’s/m = Shannon’s diversity 
indices. MaxRS = maximum mimicry ring size. MRS = Mean mimicry ring size. grws/m = 
geographic rarity weights from Leroy et al. (2013) with rs/m as rarity thresholds. MGR = Mean 
geographic rarity indices. pbr = likelihood of presence of the phylogenetic tree’s branch in a 
community. pdesc = likelihood of presence of all descending species from a specific branch. Lbr 
= branch’s length. PD = Faith’s Phylogenetic Diversity. FPs = Species Fair-Proportion indices. 
Ndesc = Number of species descending from a specific branch. ED = Evolutionary 
Distinctiveness. Phylogeny based on Chazot et al. (2019). 

We stacked all modeled distribution maps of OMUs in order to obtain in each pixel the 

predicted occurrence of OMUs. Then, we computed a series of ten indices aiming to describe 

Ithomiini diversity in various facets. Thresholding can introduce bias leading to overestimation 

of species richness (Calabrese et al. 2014; Guillera-Arroita et al. 2015), and thus we did not 
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apply any threshold to produce binary outputs from the continuous outputs of modeled 

distribution maps, taken as proxies of likelihood of presence. 

We computed species richness and mimicry richness indices (Rs/m) by summing all 

proxies of likelihood of presence of species or mimicry rings in a community (ps/m) to reach an 

expected richness estimation. 

We estimated species and mimicry diversity firstly as Shannon’s diversity index (H’; 

Shannon 1948) 

where ps/m is the relative frequency of each species or mimicry pattern in the community. For 

species diversity (Ds), the continuous output of each species modeled distribution map was used 

as proxy for the relative abundances of each species since environmental suitability can be a 

reasonable proxy for species abundance (VanDerWal et al. 2009). For mimicry diversity (Dm), 

the number of species/OMUs in each mimicry ring was directly used to compute the relative 

frequencies. Secondly, we transformed our H’ indices following Jost's (2006) 

recommendations, applying an exponential function as 

in order to obtain an effective species or mimicry richness comparable with the richness indices 

computed previously based on the expected number of species and mimicry rings. Diversity 

indices reflect the number of species or mimicry rings in equiprobability (i.e., equal relative 

frequencies) needed to reach such an H’ score. Thus, the more unequal the distribution of 

abundances among the species/mimicry ring in the community, the further from the richness 

index the effective richness value will fall. 

Traditionally, the rarity of a biological entity is evaluated along three dimensions: 

abundance, geographic range, and habitat specificity (Rabinowitz 1981; Gaston 1997). Among 

these three, we only had access to geographic range. Thus, we computed species and mimicry 

geographic rarity based on geographic ranges (ranges/m) as the sum of all environmental 

suitability values representing likelihood of presence within each pixel, times the area of pixels 

(i.e., 27.8 × 27.8 = 772.84 km²). Then, we assigned a relative geographic rarity weight (grwi) 

 𝑅𝑅𝑠𝑠/𝑚𝑚 =  �𝑝𝑝𝑠𝑠/𝑚𝑚 (Eqn. 1) 

 𝐻𝐻𝑠𝑠/𝑚𝑚′ =  −  �𝑝𝑝𝑠𝑠/𝑚𝑚 × ln (𝑝𝑝𝑠𝑠/𝑚𝑚) (Eqn. 2) 

 𝐷𝐷𝑠𝑠/𝑚𝑚 =  exp�𝐻𝐻𝑠𝑠/𝑚𝑚′ � (Eqn. 3) 
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to each species and mimicry ring following a threshold-dependent exponentially decaying 

weighting scheme as in Eqn. 4 from Leroy et al. (2013). This method assigns weights that 

exponentially increase below the chosen rarity threshold (rs/m), and weights rapidly decay to 

zero above the threshold, which limits the impact of common species on community indices. 

We chose the rarity threshold at which the average proportion of rare species in communities 

was 25%, as detailed in Leroy et al. (2012). The rarity threshold (rs) for species representing 

the inflexion point of the weights/range curve was 0.125, corresponding to a total range of 983 

x 103 km². Likewise, the threshold for mimicry rings (rm) was 0.332, corresponding to a total 

range of 4,441 x 103 km². 

Those weights are normalized between 0 and 1 using the maximum range (rangemax) 

and minimum range (rangemin) observed in the data. Therefore, species/mimicry rings with 

range close to the rarity threshold value scored 0.05. Species/mimicry rings with a more 

restricted range scored exponentially higher, up to a score of 1 for the rarest species/mimicry 

ring. Species/mimicry rings with a wider range showed a score close to 0. For our final mean 

geographic rarity (MGR) maps, we computed the weighted mean of the geographic rarity 

indices in communities (weighted by the proxy of likelihood of presence of all species/mimicry 

ring as ps/m). 

We computed two indices of phylogenetic diversity based on the phylogeny of Ithomiini 

(Chazot et al. 2019b) containing 339 species and 719 OMUs. Tree and branch manipulations 

were conducted with the R packages ape 5.3 (Paradis & Schliep 2019) and geiger 2.0.6.1 

(Harmon et al. 2008).  

The Fair-Proportion index (FP; Redding, 2003) is a species evolutionary distinctiveness 

metric calculated first at species level. It aims to represent the portion of the tree attributable to 

a species. It is computed by summing branch lengths (Lbr) as shared branches are apportioned 

equally among all descendant species (Ndesc).  

 𝑔𝑔𝑃𝑃𝑔𝑔𝑖𝑖 =  exp�−� 𝑃𝑃𝑟𝑟𝑟𝑟𝑔𝑔𝑃𝑃𝑠𝑠/𝑚𝑚 − 𝑃𝑃𝑟𝑟𝑟𝑟𝑔𝑔𝑃𝑃𝑚𝑚𝑎𝑎𝑚𝑚𝑃𝑃𝑠𝑠/𝑚𝑚 ×  𝑃𝑃𝑟𝑟𝑟𝑟𝑔𝑔𝑃𝑃𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑃𝑃𝑟𝑟𝑟𝑟𝑔𝑔𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚 × 0.97 + 1.05�2� (Eqn. 4) 

 𝑀𝑀𝑀𝑀𝑅𝑅 =
∑𝑝𝑝𝑠𝑠/𝑚𝑚 ×  𝑔𝑔𝑃𝑃𝑔𝑔𝑠𝑠/𝑚𝑚∑𝑝𝑝𝑠𝑠/𝑚𝑚  (Eqn. 5) 

 𝐹𝐹𝑃𝑃𝑠𝑠 = � 𝐿𝐿𝑎𝑎𝑏𝑏𝑁𝑁𝑑𝑑𝑑𝑑𝑠𝑠𝑎𝑎 (Eqn. 6) 
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In this community-level analysis, we used the sum of species Fair-Proportion (FPs) 

weighted by the proxy of species likelihood of presence (ps) as our measurement of 

Evolutionary Distinctiveness (ED).  

Faith’s Phylogenetic Diversity (Faith 1992) was computed as the total length of 

branches connecting all the species in a given community. In our framework, the proxy of the 

likelihood of presence of each branch in the community (pbr) was estimated as  

where pdesc is the proxy of the likelihood of presence of all species descending from each 

specific branch in the global tree. Thus, we used these values to weight the sum of branch’ 

lengths and retrieve the Faith’s Phylogenetic Diversity. 

To quantify the importance of mutualistic interactions within our communities, we 

estimated the mean size (MRS) of mimicry rings among each community as the weighted mean 

of mimicry ring richness (Rm), weighted by the likelihood of presence of each mimicry ring 

(pm). 

Besides, we also recorded the maximum mimicry ring size (MaxRS) found within each 

community as the highest value for mimicry ring richness (Rm) predicted among all mimicry 

rings.  

We tested the robustness of the patterns obtained by computing the same indices only 

for OMUs included in the phylogeny, only for OMUs with niche models, with different 

thresholds for model selection, and with a different buffer to distribution maps (see Appendix 

5: ODMAP). Results showed no qualitative differences with the results presented in the main 

text. 

 

 𝐸𝐸𝐷𝐷 = �𝑝𝑝𝑠𝑠 × 𝐹𝐹𝑃𝑃𝑠𝑠  (Eqn. 7) 

 𝑝𝑝𝑎𝑎𝑏𝑏 = 1−  �(1− 𝑝𝑝𝑑𝑑𝑑𝑑𝑠𝑠𝑎𝑎) (Eqn. 8) 

 𝑃𝑃𝐷𝐷 = �𝑝𝑝𝑎𝑎𝑏𝑏 × 𝐿𝐿𝑎𝑎𝑏𝑏 (Eqn. 9) 

 𝑀𝑀𝑅𝑅𝑀𝑀 =
∑𝑝𝑝𝑚𝑚 ×  𝑅𝑅𝑚𝑚∑𝑝𝑝𝑚𝑚  (Eqn. 10) 

 𝑀𝑀𝑟𝑟𝑀𝑀𝑅𝑅𝑀𝑀 = max(𝑅𝑅𝑚𝑚) (Eqn. 11) 
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Appendix 9: Alternative index maps and correlations 

In addition to the six main indices presented in main text, we computed four additional 

indices representing similar facets of diversity with alternative methods to explore the 

robustness of our analyses to index selection (Fig. S9.22). 

Complementarily to richness, we calculated diversity indices based on Shannon indices 

(Shannon 1948), thereby also considering the relative frequencies of species or mimicry rings. 

We applied Jost’s transformation (Jost 2006) to obtain diversity indices as effective richness 

indices (see Appendix 8). The more unbalanced the frequencies of species or mimicry rings 

are, the smaller the diversity indices are compared to richness indices. We computed Shannon 

diversity indices for species (Fig. S9.22a) and mimicry rings (Fig. S9.22b). Both maps 

appeared very similar to the patterns observed for classic species and mimicry richness as 

presented in the main text (Fig. 3a & 3d), with peaks of diversity found in the eastern slopes of 

the Andean mountain range, and secondary hotspots of species richness in the Atlantic forest 

and Central America. 

We computed an index closely related to Faith’s phylogenetic diversity (Faith 1992), 

the Fair-Proportion index (FP; Redding, 2003). It is an Evolutionary Distinctiveness metric 

calculated first at species level. It aims to represent the portion of evolutionary history 

attributable to a species within a phylogenetic tree. By summing species Fair-Proportions, we 

retrieve the proportion of evolutionary history attributable to the whole community as its 

Evolutionary Distinctiveness index. As such, conversely to the Faith’s phylogenetic diversity 

index, the length of branches representing evolutionary time are not included fully but 

apportioned relatively to the proportion of descending species found in the focal community. 

Overall, its pattern is highly similar to Faith’s phylogenetic diversity, and the richness indices, 

with again peaks in the eastern slopes of the Andean mountain range, and secondary hotspots 

in the Atlantic forest and Central America (Fig. S9.22c). 

As a complement to the mean mimicry ring size, we computed the maximum ring size 

as a measurement of the importance of the potentially most robust group of mutualistically 

interacting species in each community. As well as for mean ring size, we predicted that the most 

locally speciose mimicry rings occur in Central America in Panama and Costa Rica, on the 

eastern slopes of the Andes in Ecuador and Peru, along the Amazon river, and in the Atlantic 

Forest (Fig. S9.22d). 
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Figure S9.22: Heatmaps of alternative metrics for Ithomiini diversity in the Neotropics at 

quarter-degree resolution. (a) Shannon’s species diversity estimated as effective species 
richness following Jost’s transformation (Jost 2006). (b) Shannon’s mimicry diversity estimated 
as effective mimicry richness following Jost’s transformation (Jost 2006). (c) Evolutionary 
Distinctiveness based on the sum of species Fair-Proportion indices (Redding 2003). (d) 
Maximum mimicry ring size as the number of species harboring the most common wing pattern 
locally. Political boundaries are displayed in light grey. All maps are projected under 
Mollweide’s projection, centered on the meridian 75°E. 

Overall, these alternative methods to estimate facets of Ithomiini diversity yielded 

similar results to the ones we presented in the main text. Correlation among indices reinforced 

our classification of four groups of indices (Fig. S9.23). 
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Shannon’s diversity indices, when converted to represent effective richness, correlate 

very strongly with their respective richness index (Tables S10.26 & S10.27: ρ = 0.999, t 

=169.8, Clifford’s df = 57.8, p < 0.001 for species indices ; ρ = 0.981, t =36.4, Clifford’s df = 

52, p < 0.001 for mimicry indices). Since the effective richness combines the original richness 

and the distribution of species environmental suitability, it implies that the distribution of 

species environmental suitability does not vary widely among communities. Likewise, the 

distribution of species across mimicry rings, which is involved in the computation of the 

Shannon’s mimicry diversity, does not vary widely among communities since the effective 

mimicry richness also correlates strongly with the original mimicry richness. As such, we 

grouped species diversity with the group of indices strongly correlated with species richness, 

while mimicry diversity formed a separated group with mimicry richness (Fig. S9.23). 

Similarly, the Faith’s Phylogenetic Diversity and the Evolutionary Distinctiveness also 

correlate strongly between each other (Tables S10.26 & S10.27: ρ = 0.993, t = 61.6, Clifford’s 

df = 53.8, p < 0.001) and with species richness (Tables S10.26 & S10.27: ρ = 0.993, t = 61.9, 

Clifford’s df = 54.3, p < 0.001 between species richness and Evolutionary Distinctiveness). 

Those indices estimate phylogenetic diversity as a sum of branches depicting the total 

evolutionary time represented in a community defined as a sum of species. Since the richest 

communities comprise a large portion of the total species pool (i.e., up to 135 out of 393 species, 

around a third of the entire tribe), they tend to encompass a larger part of the evolutionary 

history of the Ithomiini tribe, and thus drive a strong correlation between these indices of 

phylogenetic diversity and species richness. As such, they are grouped together with species 

richness (Fig. S9.23). 

Finally, the maximum ring size correlated strongly with the mean ring size (Tables 

S10.26 & S10.27: ρ = 0.957, t = 25.6, Clifford’s df = 60.5, p < 0.001), and is also correlated 

with species richness (Tables S10.26 & S10.27: ρ = 0.948, t = 23.75, Clifford’s df = 63.6, p < 

0.001). Thus, communities harboring the most speciose mimicry ring on average, are also the 

ones harboring the most speciose mimicry rings in absolute, and the highest species richness. 

Indeed, since the positive correlation between mimicry richness and species richness tends to 

saturate in the richest communities (Fig. S10.24c), it is expected that the most speciose 

communities also host the largest mimicry rings. As such, the maximum ring size index is also 

grouped with species richness, alongside the mean mimicry ring size index (Fig. S9.23). 
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Figure S9.23: Heatmap of index correlations based on the absolute values of Spearman’s 

rho statistics (ρ). Dendrogram built with a complete link method. Red dashed lines represent 
the threshold used to regroup indices with strong correlation (|ρ| = 0.94). Sp. = Species. Mim. 
= Mimicry. PD = Phylogenetic Diversity. ED = Evolutionary Distinctiveness as sum of species 
Fair-Proportions (Redding 2003). Ring as mimicry ring. Rarity as geographic rarity.  
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Appendix 10: Correlation between indices 

Overall, relationships between the different facets of Ithomiini diversity show a high 

degree of spatial congruence reflected by significant and high correlation coefficients (Fig. 

S10.25). Yet, this global pattern can hide more subtle relationships that differ for low scoring 

and high scoring communities. 

For instance, species-rich communities tended to present high mean geographic rarity 

values, while species-poor communities exhibited the entire range of relative levels of species 

and mimicry ring endemism (Fig. S10.24a & S10.24b). Similarly, communities with high 

mimicry richness showed high mean mimicry geographic rarity, while communities with few 

mimicry rings could exhibit the entire range of relative levels of mimicry endemism (Fig. 

S10.24d). Despite being positively correlated with species richness, our indices of geographic 

rarity allowed us to highlight communities of high conservation interest harboring few species 

and/or mimicry rings, yet hosting some of the rarest biological features in ithomiine butterflies. 

As such, we classified our two indices of geographic rarity in independent groups in order to 

investigate threats on their hotspots separately, and reveal potential differences in threat levels 

across these different facets of Ithomiini diversity. 

Moreover, a more careful investigation of the relationship between species richness and 

mimicry richness revealed it was not strictly linear: some communities with the highest number 

of mimicry rings are not the most speciose, and the positive correlation between mimicry 

richness and species richness tends to saturate in the richest communities (Fig. S10.24c). As 

discussed, in the main-text, this pattern of ‘mimicry’ saturation is expected from Müllerian 

mimicry theory that predicts the local convergence of wing patterns. Yet, the relationship 

appeared only slightly saturated, which suggests that even in species-rich communities there is 

some free ecological space, or that the effect of selection for wing pattern convergence is 

weaker than thought in Müllerian mimetic communities. 
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Figure S10.24: Relationships between diversity and geographic rarity indices in Ithomiini 

communities in the Neotropics. Each point represents a community (i.e., a pixel on the map). 
Smooth curves obtained from GAM fits with cubic regression splines as smoothing basis. ρ = 
Spearman’s spatial rank correlation coefficient. 

All pairwise scatterplots with associated Spearman’s rho correlation coefficients to 

estimate the spatial congruence across indices are presented in Fig. S10.25. Details on the 

correlation tests for significance with corrected degrees of freedom accounting for the positive 

spatial autocorrelation among observations (Clifford et al. 1989; Haining 1991) can be found 

in Tables S10.26 & S10.27. 

 



ANNEXE 1: SI for Biodiversity patterns 
  

229 

 

 
Figure S10.25: Relationships between all pairs of biodiversity indices. Each point in the 
scatter plots in the lower triangle represents a community (i.e., a pixel on the map). Upper 
triangle represents Spearman’s spatial rank correlation coefficients (ρ). Colored labels 
correspond to index groups as defined on the dendrogram in Figure S9.18. 
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Table S10.26: Spearman’s rho coefficients (lower triangle) and associated p-value (upper 

triangle) for pairwise evaluation of spatial correlation among indices. All values are 
significant (** p < 0.01, *** p < 0.001). Bold indices are the one presented in main text. Bold 
values correspond to indices belonging to the same group. 

 

 

Table S10.27: T-statistics (lower triangle) and corrected degrees of freedom (upper 

triangle) for pairwise spatial correlation test among indices. Bold indices are the ones 
presented in main text. Bold values correspond to indices belonging to the same group. 
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Appendix 11: Threats on biodiversity hotspots: threshold-

independent analysis 

In our analyses, we estimated mean species geographic rarity hotspots to be relatively 

more threatened than the other facets of Ithomiini diversity, and their level of threats to deviate 

positively from those expected from a random distribution of anthropogenic threats (Fig. 5c-d 

& 6). We based our conclusion on analyses based on the top 5% and 25% of communities 

defined as hotspots. To support this finding, we investigated the evolution of the mean threat 

level undergone by communities ranked following their biodiversity scores for several indices, 

independently from the use of a threshold to discriminate biodiversity hotspots. We found a 

similar trend with communities hosting the rarest species showing on average the highest levels 

of anthropogenic threats (higher Human Footprint levels) independently from the threshold 

applied to defined hotspots (Fig. S11.28). Additionally, communities hosting the rarest mimicry 

rings also demonstrated higher levels of threats than expected from a random distribution of 

anthropogenic pressures in space (i.e., the curve remain above the mean threat level within the 

Ithomiini range). In contrast, the communities with the most species did not appear particularly 

under threat, except from the top 5% ones, as previously found in our main analyses. 

Overall, this complementary investigation confirms that ithomiine communities hosting 

the geographically rarest (i.e., with a small range) species and mimicry rings are currently 

facing high levels of anthropogenic threats. This situation is of particular concern since species 

with small distribution ranges are known to face higher risks of extinction (Purvis et al. 2000; 

Cardillo et al. 2008; Böhm et al. 2016), thereby also impacting the narrowly distributed 

mimicry rings they represent. 
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Figure S11.28: Anthropogenic pressures in ranked communities. Evolution of the mean 
Human Footprint level (HF; Venter et al. 2016) undergone by communities (i.e., quarter-degree 
grid cells). Communities are aggregated iteratively following their biodiversity scores starting 
from the higher scores down to the minimum scores to encompass all ithomiine communities. 
Each curve represents the evolution of mean Human Footprint levels following rank based on 
species richness (red), species rarity (blue), mimicry richness (orange), and mimicry rarity 
(green). Horizontal line represents the mean level of anthropogenic threats undergone by all 
Ithomiine communities: mean HF = 10.2 %. As such, this illustrates the expected level of threat 
undergone by any group of communities if the Human Footprint was distributed randomly in 
space. Vertical dashed lines represent thresholds used to designed our two levels of hotspots 
(Top 5% and top 25%) investigated in Fig. 5 & 6 in the main text. 
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1 Overview 

1.1 Authorship 

Authors: Maël Doré, Keith Willmott, Boris Leroy, Nicolas Chazot, James Mallet, André V. L. 
Freitas, Jason P. W. Hall, Gerardo Lamas, Kanchon K. Dasmahapatra, Colin Fontaine, and 
Marianne Elias 

Contact: Maël Doré ; mael.dore@gmail.com 

Title: Anthropogenic pressures coincide with Neotropical biodiversity hotspots in a flagship 
butterfly group 

1.2 Model objective 

Model objectives: Mapping and interpolation. We mapped current potential distribution of 
species and mimicry rings. Additionally, we mapped current potential patterns of different 
facets of rarity and diversity (taxonomic, phylogenetic, and mimicry) for the whole Ithomiini 
tribe. 

Target output: Meeting our objectives required several steps in the post-processing of model 
outputs. (i) We obtained environmental suitability maps depicting potential distributions from 
SDM for each modeling unit (Operational Mimicry Unit, OMU). (ii) We predicted species and 
mimicry ring distribution maps as likelihood of presence of at least one OMU from the 
species/ring. (iii) We obtained richness maps as stacked-SDMs from species and mimicry-ring 
maps. (iv) We computed various taxonomic, phylogenetic and mimicry diversity and rarity 
indices from the previous richness maps.  

1.3 Focal Taxon 

Focal Taxon: Our study group was the Neotropical clearwing butterfly tribe Ithomiini Godman 
& Salvin, 1879 (Nymphalidae: Danainae). This clade represents the most diverse radiation of 
mimetic butterflies known, with 1,511 subspecies distributed among 396 species, 42 genera, 
and 10 subtribes (Chazot et al. 2019b). Our study includes the 388 species with available 
georeferenced occurrences. Our base modeling units were the 783 Operational Mimicry Units 
(OMU) defined as group of subspecies of a unique species sharing the same mimicry pattern. 

1.4 Location 

Location: Neotropics, from Argentina to Mexico, including the Caribbean region, 
encompassing the whole range of the Ithomiini tribe. 

mailto:mael.dore@gmail.com
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1.5 Scale of Analysis 

Spatial extent: Longitude 120° E - 30° E, Latitude 37° S – 28° S 

Spatial resolution:  

Community boundaries were defined as grid cell of 0.25° x 0.25° = 27.8km x 27.8km.  

As a methodological point, this resolution is appropriate for developing niche models based on 
large scale predictors such as climate (McGill 2010). Furthermore, it has been previously 
identified as suitable for reducing the effects of commission errors (where species are thought 
to be present but are not) when working with species range maps (Di Marco et al. 2017), while 
limiting possibilities for individual butterfly ranges to overlap two cells. 

As a practical point, this resolution is sufficient to identify broad geographic patterns of 
diversity at a scale relevant to biodiversity conservation (e.g., Roll et al. 2017; Gumbs et al. 
2020; Abreu-Jardim et al. 2021; Robuchon et al. 2021). For example, it enables identification 
of high priority areas even within specific regions of countries, at a scale comparable, for 
example, to that of individual national protected areas that may span a range of habitats. 

Temporal extent: Field surveys were conducted from 1988 to 2020. The dataset is 
complemented with historical records that span from 1826 to present, with the majority within 
the last 50 years. Considering the scale of spatial resolution of this study, we assumed that visits 
to historical localities (i.e., sites within the same grid cell) would result in finding the same 
species. 

Temporal resolution: We modeled distributions under current environmental conditions: we 
retrieved bioclimatic data for the 2000’s decade, and forest cover data for the year 2010. 

Boundary: We constrained the study area to the spatial extent provided in previous subsection 
in order to encompass the distribution range of the whole Ithomiini tribe. 

1.6 Biodiversity data 

Observation type: Georeferenced occurrences from field surveys and museum collections 

Response data type: An initial set of 28,986 species-locality records as presence data were 
screened to yield 19,271 species-grid-cell records after removing duplicate records from single 
grid cells. We drew pseudo-absences from those occurrences in a target group strategy. See 
details in Data. 

1.7 Predictors 

Predictor types: bioclimatic, topographic (elevation), and habitat (forest cover) 

1.8 Hypotheses 

Hypotheses:  

Ithomiini inhabit mainly moist forest in the Neotropics (Brown, 1979). Thus, their distribution 
is expected to be widely influenced by the local availability of forest cover. Likewise, elevation 
has been shown to shape the species and mimetic composition of Ithomiini communities 
(Chazot et al. 2014). We also used climatic layers as predictors in an exploratory way because 
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climate is known to be an important driver of species distributions at a continental scale in 
general (Thomas et al. 2004). 

1.9 Assumptions 

Model assumptions: We assumed that (i) relevant ecological drivers (or proxies) of species 
distributions are included, (ii) detectability does not change across environmental gradients, 
(iii) predictor measurements are free of error, (iv) the species are at equilibrium with their 
environment, (v) sampling is sufficient and representative, and (vi) environmental suitability 
outputs are valuable proxies to estimate potential distributions. 

1.10 Algorithms 

Modelling techniques: The main issue with our dataset is the low sample size of many 
modeling units. Thus, we chose to limit our methods to machine learning algorithms since, 
unlike regression methods, those algorithms do not rely on parameter estimates burning degrees 
of freedom, thus they have no restriction regarding the sample size vs. the number of predictors 
involved in the modeling process. We employed three different algorithms: Random Forest 
(RF), Generalized Boosted Models (GBM) also known as Boosted Regression Trees (BRT), 
and Artificial Neural Networks (ANN).  

Model complexity: We kept model settings to the default settings in biomod2 v.3.4.6, keeping 
a balance between flexibility of the response curves and overfitting (Merow et al. 2014). The 
only exceptions were the minimum size of leaves that was lowered to two instead of five, and 
the fraction of observations used at each step (0.7 instead of 0.5) to allow tentative runs in GBM 
for OMUs with low sample size. 

Model ensembles: We stacked all models meeting our validation thresholds to produce a single 
“ensemble” model per unit. We computed the ensemble as the median rather than the mean to 
limit influence of models with extreme outputs. We did not use a weighting scheme since we 
considered our evaluation metric (i.e., Jaccard index) a suitable metric to discard low quality 
models, but not adequate to rank best models in the context of pseudo-absences data (Leroy et 
al. 2018). 

1.11 Workflow 

Model workflow: We fitted SDMs for 563 OMUs (72%) representing 325 species (84%), for 
which we had at least six occurrences available. We included the remaining OMUs in stacks as 
binary raster of presence-absences. Workflow also differed between the 361 OMUs with 
restricted sample size (6 ≤ N < 30) and the 202 OMUs with large sample size (N ≥ 30). For 
restricted sample size, we kept all occurrences for calibration and validation and draw 10 
independent pseudo-absences sets. For large sample sizes, we drew three independent pseudo-
absences sets combined with 3-fold spatial block cross-validation to assess predictive model 
performance. We selected valid models for ensemble based on maximized Jaccard indices and 
plausibility checks. Ensemble predictions were derived using ensemble medians. We clipped 
final outputs with OMU-specific buffered alpha-hulls and Andean region masks to constrain 
the extent of possible distributions to reasonable areas. We derived species and mimicry rings 
maps from the OMU maps as the likelihood to find at least one of the related OMU in the 
community. Final post-processing step consisted in the computation of nine diversity and rarity 
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indices based directly on the species or mimicry ring maps. This workflow is depicted in as a 
chart in Figure 2 in the main text, reproduced in Figure S5.5 below. 

 

Figure S5.7: SDM workflow chart depicting the different steps of the analysis performed 

in this study. Depending on sample size, modeling steps and settings differed. Clipping step to 
constrain SDM projections to plausible distribution ranges is not shown on the chart. Algo = 
algorithms used in the study, namely random forest (RF), gradient boosting models (GBM), 
and artificial neural networks (ANN); PAs = pseudo-absences sets; CV = cross-validation folds. 

1.12 Software 

Software: R version 3.6.2 (R Core Team 2019) with packages raster 3.0-12 (Hijmans 2020), 
biomod2 3.4.6 (Thuiller et al. 2020), sf 0.9-0 (Pebesma 2018), blockCV 2.1.1 (Valavi et al. 
2019), alphahull 2.2 (Pateiro-Lopez & Rodriguez-Casal 2019), and others. 

Code availability: All scripts are provided on GitHub at 

https://github.com/MaelDore/ithomiini_diversity 

Data availability: Occurrences data and mimicry ring delimitation used for modeling 

are available from Zenodo at 10.5281/zenodo.4696055 and 10.5281/zenodo.5497876. All 

OMU/species/mimicry ring modeled distribution maps are available from Zenodo at 

10.5281/zenodo.4673446. 
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2 Data 

2.1 Biodiversity data 

Taxon names: Ithomiini tribe (All species and OMUs are listed in the taxonomic list in 
Appendix 4). 

Taxonomic reference system: Current names in use in the most recent published phylogeny 
of the group (Chazot et al. 2019b). 

Ecological level: Operational Mimicry Units (OMU) as subspecies of a unique species sharing 
the same mimicry pattern. We chose to model at OMU-level because (i) we aimed to investigate 
patterns of mimicry rings, and (ii) we suspected OMUs of the same species to show rapid 
divergent evolution of their niche since Müllerian mimicry theory predicts spatial overlap of 
species variants to be selected against (Sherratt 2006). In case of sexual dimorphism (i.e., male 
and females displaying different mimicry patterns), the occurrences were duplicated and the 
output models were assigned to their respective mimicry ring for mimicry ring-level models. 
There are 783 OMUs representing the whole Ithomiini tribe. 

Data sources: Dataset of georeferenced occurrences is a compilation of fieldwork data from 
G. Lamas (Museo de Historial Natural, UNMSM, Peru), K. Willmott (University of Florida, 
USA), A.V.L. Freitas (University of Campinas, Brazil), J. Mallet (UCL, UK), and M. Elias 
(MNHN, France), obtained over the past five decades. 

Additionally, the dataset comprises records from more than 60 museums and private collections 
compiled by K. Willmott and G. Lamas over several decades of research on Ithomiini. The 
main contributors (>200 records each) are the Natural History Museum, London (NHMUK), 
the Museo de Historia Natural, Universidad Mayor de San Marcos, Lima (MUSM), the 
McGuire Center, Florida Museum of Natural History, Gainesville (FLMNH), the United States 
National Museum, Washington D.C. (USNM), the American Museum of Natural History, New 
York (AMNH), and the Zoological Collection of the “Museu da Biodiversidade” at the 
University of Campinas (ZUEC). 

The dataset of the 19,271 species-grid-cell records for distribution modeling is available from 
Zenodo at 10.5281/zenodo.4696055. A map of all occurrences and sampling effort is provided 
in Fig. S1.1. 

Sampling design: During fieldwork, we mainly collected specimens following the same 
protocol: collectors focused efforts on areas of the forest were Ithomiini were observed to be 
abundant, often in tall forest near streams, using hand nets and attempting to collect all 
individuals encountered (Chazot et al., 2014; for further details see Willmott et al., 2020). 

Sample size: Sample size for each OMU, after spatial filtering, varied widely from 1 to 316. 
We employed a different modeling scheme for OMUs falling into different sample size 
categories. We classified the 202 OMUs (28.1%) with sample size lower than six as “rasterized” 
and did not go through the SDM process. We labelled as “restricted” the 361 OMUs (46.1%) 
with sample size between 6 and 29. We modeled these “restricted” OMUs without cross-
validation. The 202 OMUs (25.8%) with sample size greater or equal to 30 underwent the full 
SDM process. See workflow in Fig. S5.7 and distribution of occurrences across OMUs in Fig. 

S5.8. 

https://doi.org/10.5281/zenodo.4696055
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Figure S5.8: Distribution of occurrences across Operational Mimicry Units (OMUs). 

Three groups of model types are defined by sample size (N). Bin width = 3, excluding superior 
values. 

Scaling: We removed spatial duplicates by applying spatial filtering on a 0.25° x 0.25° grid 
used as final modeling resolution whose pixels defined our virtual communities. 

Cleaning: We examined the presence of geographic and environmental outliers prior modeling. 
We considered as geographic outliers all occurrences of a specific OMU with no other 
neighboring points in a 1000km buffer area. These outliers were further scrutinized to decide 
case by case to retain or discard those points from the dataset if considered erroneous or not. 

We automatically removed occurrences with significant Mahalanobis distance (Mahalanobis 
1936) from other points in the environmental space. Those points could be either errors, or real 
abnormal occurrences, due to temporary migration of individuals following an extreme climatic 
event (e.g., individuals migrating temporarily up mountain slopes following an extreme heat 
event). In any case, those occurrences cannot be considered helpful to model the global species 
distribution based on the local average climate, and were therefore discarded. 

Pseudo-absence data: We generated pseudo-absences using a target-group strategy (Mateo et 
al. 2010), employing sampling sites where other OMUs have been detected but not the targeted 
OMUs as a pool for drawing pseudo-absences. In doing so, we increased the likelihood for the 
targeted OMUs to be effectively not present in our pseudo-absence sites, a critical aspect in 
order to produce quantities that approach the actual probability of occurrence of the entity 
modeled as output, as we intended to do (Guillera-Arroita et al. 2015). This approach also 
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allowed us to use confidently the Jaccard index as an evaluation metric to discard poorly 
performing models from the ensemble models despite this measurement being based on 
confusion matrix, thus designed primarily for presence-absence data. 

Additionally, in order to minimize even more the risk of assigning wrongly a pseudo-absence 
in an actual occupied site we applied a minimum buffer of 1° (111.32km at the equator) to 
discard all sites within this minimum range of a presence point from the potential pseudo-
absence pool. Finally, to prevent selecting pseudo-absences too far from any presence points 
while avoiding to have to decide a global arbitrary maximum threshold, we weighted the 
probability for sites to be selected by their inverse distance to any presence point. Therefore, 
we ensure our pseudo-absences were likely to represent real absences, while at the same time 
avoiding to extensively sample too far beyond the range of a species, where absences are likely 
to occur due to non‐bioclimatic reasons (e.g., Biber et al., 2020). 

Following recommendations from Barbet-Massin et al. (2012) for machine-learning algorithms, 
we drew a number of new pseudo-absences equal to the number of presences recorded for the 
target OMU, for each run. For each OMU model with a restricted sample size (6 ≤ N < 30), we 
ran ten independent replicates for each algorithm leading to a total of 30 models per OMU. For 
each OMU model with a large enough sample size (N ≥ 30), we ran three independent replicates 
for each algorithm leading to a total of 27 models per OMU (i.e., 3 algorithms * 3 pseudo-
absence sets * 3 CV-folds), once the 3-fold spatial blocks CV was applied. 

2.2 Data partitioning 

Validation data: We split data between training set and validation sets only for OMUs with 
sample size ≥ 30.  

For models with limited sample size (6 ≤ N < 30), we decided to keep all data points in our 
calibration set in order to yield better estimates from SDMs with low sample size. Using a 
partition scheme would have left fewer points for calibration, decreasing the already scarce 
information available to yield proper SDMs, and even fewer for validation which would have 
become meaningless (Hallman & Robinson 2020). Thus, we evaluated model performances 
with the same dataset used for calibration (« resubstitution » in Roberts et al., 2017). To 
compensate for non-independence between our calibration sets and validation sets, we used 
conservative high thresholds to select models with valid performance to keep for the final 
ensemble. 

For models with sufficient sample size (N >= 30), we applied a 3-folds cross-validation (CV) 
strategy with spatial blocks to define our calibration and validation sets. Spatial blocks CV 
allows to partition dataset into spatially independent blocks that ensure the predictive error of 
the model is not underestimated due to spatial autocorrelation between calibration and 
validation sets (Roberts et al. 2017). We defined our folds for each OMU dataset of presences 
combined with each independent draw of pseudo-absences using the spatialBlock function in 
the R package blockCV 2.1.1 (Valavi et al. 2019). 

Test data: No truly independent dataset was available. 

2.3 Predictor variables 

Predictor variables:  
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Climate is known to widely influence large-scale patterns of species distribution (McGill 2010). 
We selected as predictors four bioclimatic variables among the 19 available in the MERRAclim 
online database (Vega et al. 2017): mean annual temperature, mean annual specific humidity, 
temperature seasonality, and specific humidity seasonality. We selected this subset of climate 
predictors following two aims : (1) representativity of the whole variance in our study region, 
and (2) ease of ecological interpretations. Each variable was included in a different group of 
intercorrelated variables when performing hierarchical clustering. Within each group, we 
selected the most adequate variables for ease of ecological interpretation of effects of climate 
on species distribution. Additionally, we checked that those four variables represented 94.1% 
of the whole climatic variance in the Neotropics (RDA, F-test with 1000 permutations: F = 
39974, df = 4, 9995, p < 0.001), which is expected since most additional variables in the dataset 
are constructed from the one we selected (Vega et al. 2017). 

We used elevation as our topographic predictor since it is known to structure ithomiine 
community composition (Chazot et al. 2014). 

We used percentage of forest cover as our habitat/land use type predictor since Ithomiini species 
are known to be forest specialists (Beccaloni 1997a). 

Data sources:  

For bioclimatic predictors, we downloaded data from MERRAclim v.2.0 (Vega et al., 2017; 
https://doi.org/10.5061/dryad.s2v81, accessed on 04/02/2020). Contrary to WorldClim v2.1 
(Fick & Hijmans 2017), which uses data from land-based meteorological stations to extrapolate 
information, MERRAclim uses hourly measurements from satellite images to produce high 
resolution maps of bioclimatic variables averaged over time. We favored this database since we 
believe they offer more reliable climatic inferences for regions lacking a high-density network 
of meteorological stations (typically the remoted parts of the Andes and the Amazon regions), 
and provide more recent estimates. 

We retrieved elevation from the SRTM Dataset v.4.1 (Farr et al., 2007; 
http://srtm.csi.cgiar.org/, accessed on 03/26/2019). 

We extracted the percentage of land cover per pixel from the Landsat Tree Cover Continuous 
Fields dataset (Sexton et al. 2013) for the year 2010, accessible through Google Earth Engine 
(GLCF: Landsat Tree Cover Continuous Fields in the Earth Engine Data Catalog, accessed on 
03/26/2019). The GLCF tree cover layers contain estimates of the percentage of horizontal 
ground covered by woody vegetation. 

Spatial extent: We clipped all rasters to our study area: Longitude 120° E - 30° E, Latitude 37° 
S – 28° S. 

Spatial resolution: We obtained GLCF and MERRAclim data at a resolution of 5min of arc, 
while SRTM had a resolution of 90m. We aggregated all predictor variables to our final model 
resolution (0.25°) prior to modeling. 

Coordinate reference system: All data were stored under WGS84 (EPSG:4326) 

Temporal extent:  

We downloaded MERRAclim data averaged for the 2000s decade, and GLCF for the year 2010. 

Data processing: We aggregated all predictor variables to our final model resolution (0.25°) 
prior to modeling. We harmonized final predictor rasters to display missing data in pixels where 

http://srtm.csi.cgiar.org/
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at least one predictor was lacking information to avoid modeling points with partial 
environmental information. 

Dimension reduction: We selected four bioclimatic variables among the 19 bioclimatic 
variables available in MERRAclim in order to reduce multicollinearity among bioclimatic 
predictors, and limit the complexity of the models to a reasonable number of predictors (six in 
total).  

We selected bioclimatic variables as the results of a hierarchical agglomerative clustering on 
Spearman’s rho correlation coefficients, using a complete linkage method with the function 
hclust in R base package. We applied a cutoff of |ρ| > 0.7 (Dormann et al. 2013; Brun et al. 
2020) on the resulting dendrogram to highlight groups of multicorrelated variables (Leroy et 
al. 2014). Then, we selected only one variable in each group. Selection criteria for retaining 
variables were (1) their ease to interpret as an ecological factor (e.g., “mean temperature” rather 
than the “mean temperature of the driest quarter”) and (2) their high correlation with the axis 
of a global PCA run on all 19 variables. The final four variables included in the models were 
mean annual temperature, mean annual specific humidity, temperature seasonality, and specific 
humidity seasonality. 

2.4 Transfer data 

We interpolated our final maps of environmental suitability depicting potential distributions 
with the same environmental rasters as the one used for modeling. Thus, the transfer data is 
the same as the predictors. 

3 Model 

3.1 Variable pre-selection 

See Dimension reduction in Data section in Predictor variables (2.3). 

3.2 Multicollinearity 

See Dimension reduction in Data section in Predictor variables (2.3). 

3.3 Model settings 

We did not apply a weighting scheme to our presence data since we ignored the relative 
sampling effort associated with each collection of individuals. 

Model complexity: We kept model settings to the default settings in biomod2 v.3.4.6, since 
models with intermediate levels of complexity have been shown to perform best (Brun et al. 
2020), keeping a balance between flexibility of the response curves and overfitting (Merow et 
al. 2014). The only exceptions to default settings were the minimum size of leaves that was 
lowered to two instead of five, and the fraction of observations used at each step (0.7 instead of 
0.5) to allow tentative runs in GBM for OMUs with low sample size. 

BRT/GBM settings: distribution (bernoulli), nTrees (2500), interactionDepth (7), shrinkage 
(0.001), bagFraction (0.7), trainFraction (1), n.minobsinnode (2), CV.folds (3) 
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randomForest settings: ntree (500), mtry (2), maxnodes (n.obs), sampsize (n.obs), replace 
(TRUE) 

ANN settings: nbCV (5), maxit (200)  
size = 2, 4, 6, or 8. Optimized by CV for best AUC.  
decay = 0.001, 0.01, 0.05, or 0.1. Optimized by CV for best AUC. 

Model extrapolation: Extrapolation was possible but remain limited since we constrained final 
outputs inside the buffer around known presence points. 

3.4 Model estimates 

Variable importance: We assessed variable importance for each calibrated model within the 
R package biomod2 3.4.6 (Thuiller et al. 2020) by looking at the correlation between 
predictions obtained from the real data and predictions from data with randomized values for 
each variable evaluated. 

3.5 Model selection - model averaging - ensembles 

Model selection: We discarded all models that did not reach our thresholds for model quality 
prior to ensemble (See Performance statistics in Assessment section for details on evaluation 
metric choice). We set our threshold to a minimum Jaccard index of 0.6 for complete models 
(N >= 30), and 0.95 for restricted models (6 ≤ N < 30). The threshold for OMU with “restricted” 
sample size was more conservative since they were evaluated on the calibration set, while 
complete models were evaluated on spatially independent validation sets. We chose those 
thresholds since they ensured each OMU retained at least 5 models for the ensemble, while 
keeping quality standard to a relatively high value. We conducted additional plausibility checks 
by inspecting the response curves of each variable for each model following an automatic 
procedure, completed with manual checks (See plausibility checks in Assessment for details). 
We discarded from the ensemble models holding at least one response curve with a non-
ecologically plausible shape. 

Model ensembles: We stacked all models meeting our validation thresholds to produce a single 
“ensemble” model per OMU. We computed the ensemble as the median rather than the mean 
to limit influence of models with extreme outputs. We did not use a weighting scheme since we 
considered our evaluation metric (i.e., Jaccard index) a suitable metric to discard low quality 
models, but not adequate to rank best models in the context of pseudo-absence data (Leroy et 
al. 2018). 

3.6 Analysis and Correction of non-independence 

Spatial autocorrelation: We applied spatial blocks CV to account for spatial autocorrelation 
among calibration and validation sets for models with sufficient sample size (N >= 30). 

3.7 Threshold selection 

Threshold selection: We did not apply a threshold on the final continuous outputs prior 
stacking since it has been proven that thresholding could introduce bias leading to 
overestimation of species richness (Calabrese et al. 2014). For instance, we simply estimated 
species richness as the sum of species environmental suitability maps depicting potential 
distributions as proxies of occurrence probabilities. 
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4 Assessment 

4.1 Performance statistics 

Metric choice: In order to evaluate model performance, we chose to use the Jaccard index, an 
ecological index of similarity which can be directly interpreted as the spatial overlap between 
the observed distribution (valid predicted presences as true positives (TP), and missed presences 
as false negatives (FN)) and predicted distribution (valid predicted presences as true positives 
(TP), and erroneous predicted presences as false positives (FP)). Thus, for each model we 
retained the maximum Jaccard index obtained for a model specific optimized threshold, and 
computed as TP/(TP + FN + FP). Contrary to the TSS, the Jaccard index prevents 
overestimation of model performance due to the inflation of true negatives based on pseudo-
absences drawn far from presences, and appeared to be not biased by prevalence (Leroy et al. 
2018).  

Additionally, despite being primarily designed for presence-absence data, we used the Jaccard 
index as evaluation metric because: (1) we did not have enough occurrence data to use presence-
only evaluation metrics such as the Boyce index (Hirzel et al. 2006) or the hyperTest (Jiménez 
& Soberón 2020) for most of our OMU; (2) we carefully selected our pseudo-absences in a 
target-group strategy (Mateo et al., 2010) to maximize the probability for our pseudo-absences 
to be real absences, thus we are confident the Jaccard index remains informative to discard 
poorly performing models. 

Performance on training data: We set to 0.95 the threshold to meet required quality for 
“restricted” models evaluated directly on the calibration set due to low sample size. 

Performance on validation data: We set to 0.6 the threshold to meet required quality for 
“complete” models (N >= 30) evaluated using spatial CV-blocks. 

 

Following our criteria, we retained 87.3% of sub-models run with Random Forest algorithms, 
96.0% of Gradient Boosted Models, and 56.7% of Artificial Neural Networks (Fig. S5.9). All 
OMU ensemble models retained at least five sub-models, allowing to provide final predictions 
based on ensemble models accounting for uncertainties associated with modeling choices.  
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Figure S5.9: Evaluation of sub-model performances based on Jaccard indices. Sub-models 
are grouped by type of algorithms: Random Forest (RF), Gradient Boosted Models (GBM), and 
Artificial Neural Networks (ANN). Two distinct thresholds (dashed lines) were used to discard 
from ensemble models the sub-models with insufficient performance depending on the type of 
evaluation set used: 0.95 when evaluated on the training set data (“restricted models”, in blue), 
0.6 when evaluated on a validation set designed from spatial CV-blocks (“complete models”, 
in red). 

4.2 Plausibility check 

Response shapes: We designed an automatic procedure to check for multimodality and 
positive quadratic relationships in the response curve of all variables for all models since such 
relationships would have low ecological plausibility. We assessed multimodality through 
Hartigan’s dip test using the R package diptest 0.75-7 (Maechler 2016). We inspected case by 
case the response curves highlighted by the automatic procedure and then manually removed 
models holding non-plausible response curves based on expert judgement. 

5 Prediction 

5.1 Prediction output 

Prediction unit: Models produced environmental suitability maps depicting potential 
distribution for each OMU. 

Clipping: We clipped all final ensemble model per unit using a unit-specific buffer. 

We clipped all final ensemble models to constrain the extent of possible distribution of each 
OMU to a reasonable area accordingly to the limited migration abilities of our butterflies, and 
the degree of certainty we had about the range of the species based on the spread of occurrence 
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points. Thus, we computed alpha-hulls (α = 1000 km) using the function ahull from the R 
package alpha-hull 2.2 (Pateiro-Lopez & Rodriguez-Casal 2019) encompassing all occurrence 
points for each OMU in order to design a smooth surface able to engulf occurrences points but 
that could also generate automatically disjointed distributions when needed. We choose an 
alpha parameter of 1000 km (diameter of the circles used to draw the alpha-hull) to be coherent 
with our threshold for detection of outliers. In parallel, we computed the 80% quantile for the 
distance to the closest occurrence points among occurrence points of each OMU. This measure 
is to be seen as measurement of how confident we are that our records cover extensively the 
range of the OMU studied. The rationale is that an OMU with a clustered set of occurrences is 
more likely to describe accurately the global range of this OMU, while an OMU with a more 
dispersed set of occurrence points could signal a lack of information, or an OMU with a wide 
range. Therefore, we added to our alpha-hull a buffer corresponding to the max value between 
this unit-specific parameter and a distance of 1° assumed to represent a conservative limit for 
Ithomiini dispersion abilities. We used these final polygons to restrict our SDMs predictions 
for each OMU. 

In the specific case of the Andean region, strong environmental gradients can be found 
following the slopes, leading to potentially suitable areas on both sides of the Cordillera across 
limited distances. To avoid false predictions of OMUs known with reasonable confidence to be 
restricted to one side of the Cordillera, we cropped the final maps applying a set of two polygons 
corresponding respectively to each side of the mountain range. We built those polygons by 
aggregating watersheds retrieved from a Digital Elevation Model in ArcGIS. In practice, if an 
OMU presented occurrences falling only in one of the two polygons, we used the other to crop 
out the final map of this OMU. 

Aggregating to higher level: Exploiting the 783 environmental suitability maps depicting 
potential distributions for each OMU, we built potential distribution maps at species and 
mimicry ring levels.  

We assumed outputs from SDMs relate to likelihood of presence of each OMU. Then, for each 
community, the likelihood of presence of a species, or a mimicry ring was computed as the 
likelihood to find at least one of the related OMU in the community such as  𝑝𝑝𝑠𝑠/𝑚𝑚 = 1 −  ∏(1− 𝑝𝑝𝑖𝑖)     (1) 

where ps/m is the likelihood of presence of the species or the mimicry ring, and pi the 
likelihood of presence of each OMUs of this species or mimicry ring. 

Index computation: A final post-processing step consisted in the computation of ten diversity 
and rarity indices based directly on the species or mimicry ring maps. For all computation, we 
used the continuous outputs from SDM since binarization to presence-absences usually 
degrades inference and can introduces bias in community richness evaluation (Calabrese et al. 
2014; Guillera-Arroita et al. 2015). Details on indices computation are provided in Appendix 

8. 

5.2 Uncertainty quantification 

Algorithmic uncertainty: We accounted for algorithmic uncertainty by applying an ensemble 
approach averaging over three different SDM algorithms. 
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Input data uncertainty: We accounted for uncertainty in input data by applying an ensemble 
approach averaging over three (for OMU with additional spatial blocks CV) or ten (for OMU 
without CV) different pseudo-absences draws. 

Global uncertainty: We quantified global modeling uncertainty in two ways. 

We computed standard deviation in ensemble model for each OMU. Then, we mapped the mean 
standard deviation among all OMU models to highlight areas of high model uncertainties (see 

Fig. S5.10 in the ‘Uncertainty maps’ section below). Uncertainties were the highest in the 
Andes but remained fairly low (maximum = 0.08) in comparison to the range of outputs (0-1). 

Additionally, we quantified uncertainties associated with our species richness map due to the 
whole modeling process (i.e., algorithm choices, pseudo-absences draws, and CV). We built 
100 alternative richness maps based on a random selection among all valid models for each 
OMU rather than their ensemble, prior to aggregating to species level, and built S-SDM for 
species richness. Finally, we mapped the standard deviation among those alternative richness 
maps (see Fig. S5.11 in the ‘Uncertainty maps’ section below). In doing so, we quantified the 
uncertainties associated with our modeling choices, including selecting different algorithms, 
drawing different pseudo-absences, or calibrating and evaluating models under different spatial 
CV-block strategies. Again, uncertainties were the highest in the Andes but were negligible 
compared to local estimated richness (maximum around 3, compared to local richness around 
100). 

Novel environments: Predictions to novel environments were limited since we interpolate 
maps inside a buffer encompassing known presence points. 

Robustness assessment: We explored several other modeling options to assess the robustness 
of our results. For instance, we produced two alternative sets of indices. First, a set without 
species not included in the phylogeny. Second, a set without OMUs with no SDMs (N < 6). We 
alternatively selected valid models for ensemble modeling based on TSS rather than Jaccard 
indices, and allowed a wider buffer for clipping using a 0.95 quantile instead of 0.8. Finally, 
we built maps for a higher resolution of 0.083° (ca. 9.3km x 9.3km), applying a simplified 
workflow with a single model per OMU based on Random Forest algorithm, with a unique 
random pseudo-absence draw and no cross-validation. All options explored yielded 
qualitatively similar results for our final diversity and rarity maps (see Fig. S5.12 to S5.16 in 
the ‘Robustness assessment: index maps from alternative stacks’ section below). 

 

6 Additional remarks on SDM caveats and limits: 

We acknowledge outputs from SDM based on presence-only data do not represent direct 

estimation of probability of presences (Guillera-Arroita et al. 2015). Thus, we designed a 

specific protocol to draw carefully pseudo-absences in order to maximize the likelihood of 

selecting real absences and to be able to use confidently our SDM outputs depicting the 

potential distribution of our OMUs as proxy for their likelihood of presence.  

Additionally, we quantified the uncertainties associated with our different modeling 

techniques, which did not prove to be an issue (Fig. S5.10 & S5.11). We also applied a buffer 
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surrounding the known occurrences of each OMU to limit potential overestimation due to the 

fact that SDMs predict distributions based on the fundamental niche in the environmental space, 

when in reality we believe the realized niche, and actual distribution of OMUs, to also be 

constrained by competitive interactions with OMU from a different ring. Therefore, we expect 

most of our richness and diversity indices to be overestimated as it is commonly the case in 

stack-SDM procedures, due for instance to underestimation of habitat saturation effects (Guisan 

& Rahbek 2011, but see Biber et al., 2020; Calabrese et al., 2014). However, we remain 

confident that the relative patterns we describe are robust and provided meaningful insights 

regarding spatial correlation among indices and human impacts on hotspots. Future work should 

aim at fine-tuning predictions employing joint-SDMs and clipping ithomiine distribution with 

that of their host-plants, but more occurrences and knowledge about ithomiine-hostplant 

interactions are still required. 

7 Uncertainty maps 

In this section, we provide maps to quantify the uncertainties associated with our model 

predictions.  

We computed standard deviation in ensemble model for each Operational Mimicry Unit 

(OMU). Then, we mapped the mean standard deviation among all OMU models to highlight 

areas of high model uncertainties (Fig. S5.10). Uncertainties were the highest in the Andes but 

remained fairly low (maximum = 0.08) in comparison to the range of outputs (0-1). 
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Figure S5.10: Mean uncertainties in ensemble models for OMU. Within each pixel, the 
mean uncertainty represents the mean standard deviation of predictions from ensemble models 
of each OMU with a range encompassing the pixel. 

Additionally, we quantified uncertainties associated with our species richness map due 

to the whole modeling process (i.e., algorithm choices, pseudo-absences draws, and CV). We 

built 100 alternative richness maps based on a random selection among all valid models for 

each OMU rather than their ensemble model, prior to aggregating to species level and 

computing species richness. Finally, we mapped the standard deviation among those alternative 

richness maps (Fig. S5.11). In doing so, we quantified the uncertainties associated with our 

modeling choices, if we had selected different algorithms, drawn different pseudo-absences, or 

calibrated and evaluated models under different spatial CV-block strategies. Again, 

uncertainties were the highest in the Andes but were negligible compared to local estimated 

richness (maximum around 3, compared to local richness around 100). 
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Figure S5.11: Uncertainties in species richness predictions based on modeling 

alternatives. Uncertainties represents the standard deviation of predicts from 1000 species 
richness maps built from a random sample of sub-models extracted from ensemble models (1 
random sub-model used per OMU). 

8 Robustness assessment: index maps from alternative 

stacks 

The robustness of index maps was tested with several sensitivity analyses. Results 

showed no qualitative difference with the results presented in the main text (see Fig. 3). 

First, we computed index maps only for the 339 species present in the phylogeny used 

to compute the phylogenetic diversity (Fig. S5.12). No qualitative differences can be observed 

with indices computed on the whole dataset encompassing 388 species. Hence, our results 

appear robust to taxonomic subsampling.  
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Figure S5.12: Heatmaps of the different facets of Ithomiini diversity in the Neotropics for 

quarter-degree grid cells, including only the 339 species present in the phylogeny (Chazot 
et al. 2019b). a = Species richness. b = Mean species geographic rarity based on species range. 
c = Faith’s Phylogenetic Diversity (Faith 1992). d = Mimicry richness (i.e., number of mimicry 
rings). e = Mean mimicry geographic rarity based on mimicry ring range. f = Mean mimicry 
ring size as mean number of species per mimicry ring. Political boundaries are displayed in 
light grey. All maps are projected under Mollweide’s projection, centered on the meridian 75°E. 

Second, we built maps including only OMUs that have undergone SDM process, 

discarding OMUs with low sample size (N < 6) which distribution was only rasterized (Fig. 

S5.13). No qualitative differences can be observed with indices including OMUs with only 

rasterized occurrences. The maximum species richness appeared relatively lower, with ca. 80 

species in the most speciose communities against ca. 120 species when all OMUs are included. 

However, general patterns of distribution and associated biodiversity hotspots remained highly 

similar. Hence, our results appear robust to the inclusion or exclusion of sample-restricted 

OMUs and species. 
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Figure S5.13: Heatmaps of the different facets of Ithomiini diversity in the Neotropics for 

quarter-degree grid cells, including only Operational Mimicry Units with more than five 

occurrences those distribution was modeled following our SDM workflow. a = Species 
richness. b = Mean species geographic rarity based on species range. c = Faith’s Phylogenetic 
Diversity (Faith 1992). d = Mimicry richness (i.e., number of mimicry rings). e = Mean mimicry 
geographic rarity based on mimicry ring range. f = Mean mimicry ring size as mean number of 
species per mimicry ring. Political boundaries are displayed in light grey. All maps are projected 
under Mollweide’s projection, centered on the meridian 75°E. 

Third, we built maps using the True Skill Statistics (TSS) instead of the Jaccard index 

to discard poorly performing models from the ensemble models of OMUs. We applied a 

threshold of TSS > 0.5 for complete models with spatial-block CV, and a threshold of TSS > 

0.95 for restricted models with no CV, evaluated directly on the calibration set (Fig. S5.14). 

Almost no difference was observed with indices computed on ensemble models with selection 

based on Jaccard indices. Indeed, sub-models retained for ensemble under the TSS thresholds 

were almost always the same than the ones retained under the Jaccard thresholds. Hence, our 

analysis appears robust to the choice of evaluation metric to select sub-models to include in 

ensemble models. 
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Figure S5.14: Heatmaps of the different facets of Ithomiini diversity in the Neotropics for 

quarter-degree grid cells, with sub-model selection for ensemble models based on TSS 

thresholds. a = Species richness. b = Mean species geographic rarity based on species range. c 
= Faith’s Phylogenetic Diversity (Faith 1992). d = Mimicry richness (i.e., number of mimicry 
rings). e = Mean mimicry geographic rarity based on mimicry ring range. f = Mean mimicry 
ring size as mean number of species per mimicry ring. Political boundaries are displayed in 
light grey. All maps are projected under Mollweide’s projection, centered on the meridian 75°E. 

Fourth, we built maps using a larger buffer to delineate the area of potential distribution 

for each taxon. We computed the 95% quantile for the distance to the closest occurrence points 

among occurrence points of each OMU to be used as additional buffer distance around our 

alpha-hulls, compare to the 80% quantile used in the main text. This alternative buffer allows a 

wider estimation of the possible range of each OMU, especially when occurrences are sparse 

and widely spread (Fig. S5.15). Again, results showed relatively few qualitative differences 

with the results presented in the main text. The larger buffer size tended to increase slightly 

biodiversity metrics based on overlap of distributions such as species richness, mimicry 

richness, and mean mimicry ring size. This method led to the prediction of occurrence of rare 

ithomiine butterflies along the coast of the dry Peruvian desert which is not known to host 

ithomiine butterflies due to its lack of forest cover. Thus, we decided to present in the main text 

results with the buffer size based on the 80% quantile. Our results may be slightly driven by the 
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choice of buffer size at a small regional scale, but overall, the main patterns remain highly 

similar between the two methods. 

 

Figure S5.15: Heatmaps of the different facets of Ithomiini diversity in the Neotropics for 

quarter-degree grid cells, with buffers for OMU distributions based on 95% quantile for 

the distance to the closest occurrence points among occurrence points. a = Species richness. 
b = Mean species geographic rarity based on species range. c = Faith’s Phylogenetic Diversity 
(Faith 1992). d = Mimicry richness (i.e., number of mimicry rings). e = Mean mimicry 
geographic rarity based on mimicry ring range. f = Mean mimicry ring size as mean number of 
species per mimicry ring. Political boundaries are displayed in light grey. All maps are projected 
under Mollweide’s projection, centered on the meridian 75°E. 

Lastly, we built maps at a higher resolution of 0.083° (ca. 9.3km x 9.3km), applying a 

simplified workflow with a single model per OMU based on Random Forest algorithm, with a 

unique random pseudo-absence draw and no cross-validation (Fig. S5.16). Results showed 

almost no difference with the results presented in the main text for the lower resolution of 0.25° 

(ca. 27.8km x 27.8km). As such our results do not appear to be sensitive to the grid resolution 

used throughout the modeling workflow. 



ANNEXE 2: ODMAP for Biodiversity patterns 
 

 

255 

 

 

Figure S5.16: Heatmaps of the different facets of Ithomiini diversity in the Neotropics for 

twelfth-degree grid cells built with a simplified workflow with a unique model per OMU. 
a = Species richness. b = Mean species geographic rarity based on species range. c = Faith’s 
Phylogenetic Diversity (Faith 1992). d = Mimicry richness (i.e., number of mimicry rings). e = 
Mean mimicry geographic rarity based on mimicry ring range. f = Mean mimicry ring size as 
mean number of species per mimicry ring. Political boundaries are displayed in light grey. All 
maps are projected under Mollweide’s projection, centered on the meridian 75°E. 
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Appendix 1: Metadata and summary statistics for 

specimens employed in WGS analyses 

 

Table S1: Metadata and summary statistics for the 155 specimens employed in WGS 

analyses 

 

This table provides summary information for each specimen involved in the WGS 

datasets regarding its identification, field sampling, NovaSeq sequencing, genome assembly, 

mDNA assembly, CDS annotation, cross-contamination checks, orthology assignment, and 

summary statistics (i.e., number of genes, sites, missing data, undefined nucleotides, etc.) in the 

Inclusive and Conservative dataset. Such table is too vast to be provided here in this document 

but can be found in the GitHub 

repository: https://github.com/MaelDore/Ithomiini_phylogenomics.  

  

https://github.com/MaelDore/Ithomiini_phylogenomics
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Appendix 2: Metadata and summary statistics for 

specimens used in the taxa-rich alignments for 

comprehensive phylogenetic inferences 

 

Table S2: Metadata and summary statistics for the 368 specimens used in the taxa-rich 

alignments for comprehensive phylogenetic inferences 

 

This table provides summary information for each specimen involved in the 

Comprehensive dataset regarding its identification, field sampling, NCBI deposit, taxonomic 

update, and summary statistics (i.e., number of genes, sites, missing data, undefined 

nucleotides, etc.) in the Comprehensive dataset. Such table is too vast to be provided here in 

this document but can be found in the GitHub 

repository: https://github.com/MaelDore/Ithomiini_phylogenomics.  

 

 

  

https://github.com/MaelDore/Ithomiini_phylogenomics


ANNEXE 3: SI for Ithomiini phylogeny 
 

264 

 

Appendix 3: Sample-specific similarity threshold to 

reconstruct CDS sequences from genome assemblies 

 

In order to reconstruct CDS sequences from multiple samples with variable degrees of 

divergence with respect to the reference genome, we used sample-specific similarity thresholds 

to filter scaffolds that matched with the reference protein sequences using the blastn tool. 

Indeed, if we were using a unique similarity threshold for all samples, we would likely miss a 

lot of potentially matching sequences from distant species with lower global similarity, while 

we may not be conservative enough to avoid the matching of recently duplicated genes on the 

same reference protein in closely related species. 

To define such sample-specific threshold, we ran preliminary tests on four samples 

selected for their particular status. The Hyposcada illinissa sample (Voucher: 05-409) showed 

a high quality assembly that recovered 87.7% of complete genes from the BUSCO reference 

set. The Dircenna dero sample (Voucher: 19011C03) showed a low assembly quality with only 

11.2% of complete reference genes recovered. The Hypomenitis theudelinda sample (Voucher: 

19097G09) showed virtually no recovery of complete genes from the BUSCO set while 

producing a very small and fragmented assembly (300K sites and 686 scaffolds) being the 

extreme case of low quality in our dataset. Conversely, we used the chromosome-scale 

assembly of Bombyx mori (NBCI assembly reference: 014905235.1; 460M sites for 697 

scaffolds) as the positive extremum of the quality spectrum, but also as an example for distant 

species. 

We explored how the number of reference proteins that registered a matching scaffold 

via tblastn evolved according to the similarity threshold used to filter hits. By construct, the 

lower the similarity threshold, the more reference proteins register a match, and conversely. 

Thus, we also explored changes in the distribution of the number of scaffolds matching each 

reference proteins with the idea that if some proteins were matching with numerous scaffolds, 

this was likely a source of error as a sign of matching paralogous sequences due to duplication 

or simply noisy short elements matching incorrect reference proteins. We found that the 

distribution changed qualitatively and qualitatively according to the sample. In general, we 

observed that after a particular threshold value, which depends on the quality of the assembly 

and the distance of the sample to the reference species, the number of proteins with a single hit 

do not increase much. Meanwhile, the new hits that passed a lower filter mostly matched on 
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reference proteins with multiple hits, likely adding noise to our sequences (Figure S1). In detail, 

we found this inflexion point to be lower for distant species such as the Bombyx mori (Figure 

S1.D) reflecting its need for a lower similarity threshold to retrieve more sequences. Among 

similarly distant samples, the two assemblies with high and low quality showed relatively 

similar patterns (Figure S1.A & S1.B), while the sample with the lowest quality needed a lower 

similarity threshold to start showing a potentially problematic accumulation of hits on the same 

references. Altogether, as a conservative rule to avoid potential issues with duplicated genes, 

we decided to use as sample-specific similarity threshold the value for which no more than 25% 

of matched proteins show 6 or more hits. 

 

 

Figure S1: Changes in the distribution of numbers of scaffolds matched across each reference 

protein according to the similarity threshold employed to filter hits. (A) High quality sample 
(BUSCO = 87.7%). (B) Low quality sample (BUSCO = 11.2%). (C) Extremely poor quality sample 
(BUSCO = 0%). (D) Chromosome-scale assembly. Sample-specific similarity detected with our rule are 
represented with the dashed vertical red lines. 

A B 

C D 
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Appendix 4: Cross-contamination cleaning step 

 

As we used multiplexed runs to sequences our samples, we were exposed to the risk of 

cross-contamination (i.e., sequenced identified to the wrong sample (Ballenghien et al. 2017)). 

Thus, we used CroCo 1.1 (Simion et al. 2018) to investigate potential cross-contamination in 

our CDS dataset and filter out all dubious sequences that displayed a higher match with raw 

reads from other samples that from its original read pool.  

Contrary to expectations (see Allio et al. 2021), this cross-contamination step did not 

allowed us to identify a higher number of orthogroups, but it efficiently cleaned sequences 

initially forming dubious small putative orthogroups with very few sequences/taxa involved. 

Indeed, we observed a high decrease in the frequencies of orthogroups involving few taxa 

obtained from OrthoFinder after the cross-contamination step compared to what is obtained 

without cross-contamination checks (Fig. S2). As such, cross-contamination checking may still 

be a useful and conservative step to integrate in phylogenomic pipelines in order to limit errors 

in the final alignments.  

 

Figure S2: Distribution of the number of genes found in the final putative orthogroups detected 

by OrthoFinder with or without a preliminary step filtering for potential cross-contamination. 
Red distribution represents the putative orthogroups obtained from OrthoFinder without the cross-
contamination checks. Green and blue distributions represent the distributions obtained after cross-
contamination checks using different degrees of scrutiny regarding what is considered a potential 
contamination (Default = very conservative; Corrected = less conservative).  
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Appendix 5: WGS dataset selection 

After all the curation steps, we were left with 16,859 alignments of single-copy 

orthologous genes including from 2 to 153 taxa distributed across 163 species (151 ithomiines 

+ 12 outgroups). Histograms showed a high heterogeneity of coverage across both genes and 

taxa, with a very few gene alignments encompassing more than 120 species (i.e., 75% of 

available taxa; Fig. S3). 

 

Figure S3: Histograms of gene representativeness across samples/species (A) and taxa 

representativeness across genes (B) showing the heterogeneity of coverage across both taxa and 

single-copy orthologous genes. 

We used AMAS (Borowiec 2016) to concatenate genes into datasets with a combination 

of gene and taxa representativeness thresholds, and computed the number of remaining genes, 

taxa, and informative sites in datasets obtained from each threshold combination (Fig. S4). To 

build the Inclusive dataset, we tried to maximize both the number of taxa and genes involved 

since the percentage of informative sites remained reasonable in any case with a minimum of 

30% even with the least representative taxa involved (Fig. S4.C). For the Conservative dataset, 

we tried to find a balance between reducing the proportion of missing data (i.e., increasing the 

proportion of informative sites) while keeping a maximum of taxa. Since we detected the 

number of remaining genes and informative sites showed a sharp drop beyond a threshold of 

60% for taxa representativeness (Fig. S4.B & 4.C), we decided to use only genes with at least 

50% of taxa representativeness (i.e., 82 species), which corresponded roughly to the top 30% 

of genes ranked according to the number of taxa in their alignment (i.e., 3,518 genes). 

A B 
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Figure S4 : Heatmaps of dataset contents obtained when applying a range of gene and taxa 

representativeness thresholds to select respectively the taxa and the genes to incorporate in the 

final dataset. (A) Number of taxa. (B) Number of genes. (C) Number of informative sites. (D) 
Percentage of informative sites. 
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Appendix 6: Selection of substitution models for ML gene 

tree inferences 

In order to infer the gene trees needed to generate the final species trees using a summary 

approach with ASTRAL-III 5.7.8 (Zhang et al. 2018), we first estimated the best fitted gene 

tree for each gene alignment with IQ-TREE 2.2.0.3 (Minh et al. 2020b) using maximum 

likelihood optimization. We performed a full model selection across all available nucleotide 

substitution models including free rate categories (Parameter settings: -m MFP -mrate R) with 

ModelFinder (Kalyaanamoorthy et al. 2017). We visualized the heterogeneity in complexity of 

gene evolution by summarizing the best models selected across all genes according to their 

number of parameters used to model substitution rates across nucleotides. We found that the 

complexity of gene evolution in our dataset was relatively low with only 3 parameters needed 

in average and less than 10% of best models involving a complete substitution matrix as in a 

GTR or SYM model (Fig. S5.A). Additionally, the heterogeneity of substitution rates across 

sites within a single gene alignment appeared also relatively low, with most best models 

selecting only for two or three categories of free rates, while less than 5% of best models 

suggesting 6 or more categories (Fig. S5.B). As such, we concluded that we did not need to 

carry out codon partition models since most gene evolution revealed to be properly accounted 

with simple substitution models and with few substitution rate categories.  

  

Figure S5: Evaluation of the complexity of best models selected for gene tree inferences using free 

rates to account for substitution rate heterogeneity across sites. (A) Distribution of the number of 
parameters in substitution rate matrices used in best models across all genes. Median = 3 substitution 
rate parameters. (B) Distribution of the number of free rate categories selected in best models across all 
genes. Median = 3 categories. 
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In order to make computationally feasible in a reasonable time the inference of species 

trees from ML approaches based on SuperMatrix, we aimed to obtain a partition grouping genes 

according to similarity in their evolution models. Such grouping is more likely to be achieved 

if authorizing a limited shared set of models across genes. As such, we opted for using GTR 

models with varying degree of free rates (GTR + R) across all genes, but we first investigated 

if individual gene trees inferred with GTR + R models were similar enough to the ones obtained 

with the best selected models typically involving less parameters, thus potentially sensitive to 

overparameterization. We computed the pairwise Robinson-Foulds distances and Normalized 

Quartet distances between gene trees obtained from both full model selection, and selection 

between GTR + R models across all genes. We showed differences in the final topologies were 

low with most pairwise distances below 0.1 for both metrics (Fig. S6). Meanwhile, such 

comparisons also highlighted the important differences with gene trees retrieved from the 

homologous alignments using amino-acids and LG + Γ4 models (Le & Gascuel 2008). We 

concluded that GTR + R models were suitable to model the evolution of all genes, and therefore 

performed a partition merging run (Parameter settings: -m MF+MERGE) with a limited set of 

GTR models with free rates categories ranging from 2 to 6 to cover most of best model options 

selected from individual gene tree inferences (Fig. 5.B). We obtained 332 partitions for the 

11,012 genes in the Inclusive dataset and 178 partitions for 3,518 genes in the Conservative 

dataset saving us important computation time for species tree inferences. 

 

Figure S6: Evaluation of differences of gene tree topologies between different model selections and 

datasets. (A) Robinson-Foulds distances based on comparison of bipartitions. (B) Normalized Quartet 
distances based on quartet comparisons. ‘Free rates’ refer to selection across GTR + R models while 
‘Model selection’ found the best model across all available substitution models in IQ-TREE. We also 
inferred gene trees from homologous amino-acid (AA) alignments. Both nucleotide-based (NT) models 
showed little difference in gene topology while they differ largely with topologies inferred from AA-
alignments. Both distributions against the AA-based gene trees are confounded. The red dashed vertical 
line signals the random expectation for Normalize Quartet distances between two random trees 
encompassing the same species (i.e., 2/3). 
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Appendix 7: Congruence between gene trees and ASTRAL 

SuperTrees 

ASTRAL-III is a summary algorithm aiming to find the species tree topology that 

optimizes its congruency with the phylogenetic signal found in individual gene trees and 

evaluated trough comparison of quartets (Zhang et al. 2018). 

First, we explored the levels of incongruency across gene trees to evaluate if they were 

suitable for summary methods such as ASTRAL-III. We computed the mean distance of each 

gene tree to all other gene tree topologies in the dataset. If this mean distance is low, it implies 

a high level of congruence, and likely a strong phylogenetic signal shared across the gene trees. 

Conversely, if this mean distance is high, it means gene trees topologies tend to disagree and 

may suffer from high degree of incomplete lineage sorting, or simply errors of inferences. We 

observed a medium congruency within gene tree topologies for trees inferred with best 

substitution models and GTR + R models that did not fundamentally preclude to opt for 

summary-based approach to infer our species trees (Fig. 7). The high similarity in the 

distribution of their mean distances confirmed gene tree topologies were only slightly affected 

by the substitution model used. On the other end, gene trees inferred from amino-acid 

alignments showed high degree of incongruency signaling a poor phylogenetic signal, or 

difficulty to carry out correct gene tree inferences (Fig. 7). 

 

Figure S7: Distributions of mean distance of each gene tree relative to all other gene tree topologies 

in the dataset obtained through different model selections and datasets. (A) Robinson-Foulds 
distances based on comparison of bipartitions. (B) Normalized Quartet distances based on quartet 
comparisons. The red dashed vertical line signals the random expectation for Normalize Quartet 
distances between two random trees encompassing the same species (i.e., 2/3). 
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Second, we compared a posteriori the quality of our SuperTree inferences by computing 

the normalized quartet distances between each SuperTree and the set of gene trees used to 

produce this SuperTree. We found that SuperTrees based on the Inclusive and Conservative 

datasets showed relatively similar and moderate levels of congruence with their initial set of 

gene trees (Fig. S8; Normalized Quartet distance modes around 0.12). As such, we may suspect 

that the inclusion of ca. 6,500 additional genes in the Inclusive dataset compared to the 

Comprehensive dataset did not improve nor affected drastically the quality of the phylogenetic 

signal in the dataset. Moreover, we found that the SuperTrees inferred from gene trees based 

on amino-acid sequences showed a low congruency towards their set of gene trees, likely 

because such gene trees showed initially low congruency between each other (Fig. S7). Due to 

this lack of phylogenetic signal and global congruency, analyses based on amino-acid 

sequences were discarded from our analytic framework. 

 

Figure S8: Distributions of pairwise Normalized Quartet distances between species-level 

SuperTree and their respective sets of individual gene trees from which they have been previously 

inferred. Right-skewed distributions indicate low distances, thus high congruency reflecting a strong 
phylogenetic signal and potentially a better supported species tree. The red dashed vertical line signals 
the random expectation for Normalize Quartet distances between two random trees encompassing the 
same species (i.e., 2/3). 
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Appendix 8: Secondary calibrations for node age estimates 

We ran Bayesian inferences for time-calibration in order to estimate nod ages in our 

phylogenies. Since no fossil are available for ithomiine butterflies, we applied five secondary 

calibrations on ingroup (Ithomiini) internal nodes as uniform priors with upper bounds based 

on the maximum estimated age of the Solanaceae hostplant lineage associated with each 

ithomiine clade, as retrieved from De-Silva et al. (2017). We applied ten additional secondary 

calibrations on outgroup nodes based on larger phylogenies of Nymphalidae (Chazot et al. 

2021), Papilionoidea (Chazot et al. 2019a), and Lepidoptera as a whole (Kawahara et al. 2019). 

These calibrations consisted in normal priors adjusted such as their 95% confidence interval 

matched with the 95% Height Posterior Density (HPD) of node age posterior distributions 

reported in these higher phylogenies. The complete list with associated node is presented in 

Table S3. 

Table S3: Secondary calibrations used for Bayesian inferences of node ages. The first five 
calibrations are uniform priors with upper bounds based on the maximum estimated age of the 
Solanaceae hostplant lineage associated with each ithomiine clade. The next ten calibrations 
are normal priors adjusted such as their 95% confidence interval matched with the 95% Height 
Posterior Density (HPD) of node age posterior distributions reported from higher-level 
reference phylogenies. 

Node 

Upper 

bound 

(My) 

Lower bound 

(My) 

host-plant group OR 

higher-taxa 

phylogeny 

Reference 

Ollantaya + Oleria 0 32 Lycianthes De-Silva, et al., 2017 

Melinaeina 0 37.2 Schultesianthus De-Silva, et al., 2017 

Methonina 0 41.3 Brunfelsia De-Silva, et al., 2017 

Athesitina 0 24.8 Capsicum De-Silva, et al., 2017 

Placidina + Pagyris 0 17.3 Brugmansia De-Silva, et al., 2017 

Ithomiini 21.8 27.8 Nymphalidae Chazot et al., 2021 

Ithomiini + Danaiini 36.1 46.9 Nymphalidae Chazot et al., 2021 

Heliconius + Dryas 21.4 28.8 Nymphalidae Chazot et al., 2021 

Heliconiini + 
Argynnini 

42.8 52.9 Nymphalidae Chazot et al., 2021 
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Nymphalini + 
Melitaeini 

38.5 47.1 Nymphalidae Chazot et al., 2021 

Heliconiinae + 
Nymphalinae 

63.8 76.8 Nymphalidae Chazot et al., 2021 

Maniola + Pararge    41.9 50.5 Nymphalidae Chazot et al., 2021 

Nymphalidae + 
Lycaenidae 

80.4 116.5 Papilionoidea Chazot et al., 2019a 

Nymphalidae + 
Lycaenidae + 
Papilionidae 

89.5 129.5 Papilionoidea Chazot et al., 2019a 

Papilionoidea + 
Bombycoidea + 
Zygaenoidea 

94.3 117.3 Lepidoptera Kawahara et al., 2019 
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Appendix 9: Backbone phylogenies inferred from WGS 

datasets 

 

We obtained four different phylogenetic hypotheses based on WGS data for the backbone 

topology crossing our two datasets (Inclusive vs. Conservative) vs. two phylogenetic inference 

methods (SuperMatrix with IQ-TREE vs. SuperTree with ASTRAL). The deep relationships 

between subtribes were similar for the two SuperMatrix-based phylogenies (Fig. S9 & S10), 

while the two datasets led to different deep topologies for the SuperTrees (Fig. S11 & S12). 

All four topologies suggested the existence of a clade formed by Mechanitina and the core-

group, which encompasses all subtribes with members feeding on the diverse Solanum genus, 

and having lost their subdorsal filaments in the last instar caterpillar (Willmott & Freitas 2006). 

However, the branching of the remaining four subtribes (i.e., Melinaeina, Athesitina, 

Tithoreina, and Methonina) varies across topologies. The two SuperTree topologies suggested 

an unusual (i.e., never suspected in previous systematic explorations) unique clade for these 

four tribes, sister to the ‘Solanum-feeders’ clade, while the SuperMatrix topologies both 

featured the Melinaeina tribe as sister to all other ithomiines (Fig. S11 & S12). Additionally, 

the SuperTree topology based on the Inclusive dataset (Fig. S11) did not retrieve the well-

established Tithoreina/Methonina clade found in all modern propositions (Brower et al. 2006, 

2014; Willmott & Freitas 2006; Chazot et al. 2019b). 

Based on the comparison of node support metrics, and the plausibility of proposed 

topologies, we selected the two topologies based on the Inclusive and Conservative datasets 

inferred with IQ-TREE from the concatenated SuperMatrices as the best supported topologies. 

Therefore, we built the final backbone topology as the strict consensus between these two 

selected topologies (Fig. S9 & S10). 
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Figure S9: Phylogenetic hypothesis inferred from SuperMatrix with IQ-TREE based on the 

Inclusive dataset. Branch lengths relate to the inferred mean number of substitutions per site 
along each branch. Colored clades correspond to the ten known subtribes. Node support values 
are illustrated with colored symbols according to UFBS scores and gene concordance factor 
(gCF) tests against support for alternative local topologies (i.e., gDF = discordance factors). 
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Figure S10: Phylogenetic hypothesis inferred from SuperMatrix with IQ-TREE based on the 

Conservative dataset. Branch lengths relate to the inferred mean number of substitutions per site 
along each branch. Colored clades correspond to the ten known subtribes. Node support values 
are illustrated with colored symbols according to UFBS scores and gene concordance factor 
(gCF) tests against support for alternative local topologies (i.e., gDF = discordance factors). 
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Figure S11: Phylogenetic hypothesis inferred with ASTRAL from a set of 11,012 individual gene 

trees based on the Inclusive dataset. Branch lengths are uniformly distributed to obtain an 
ultrametric tree for visualization but do not relate to estimated phylogenetic distances. Colored 
clades correspond to the ten known subtribes. Node support values are illustrated with colored 
symbols according to local posterior probabilities (LPP) and gene concordance factor (gCF) 
tests against support for alternative local topologies (i.e., gDF = discordance factors). 
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Figure S12: Phylogenetic hypothesis inferred with ASTRAL from a set of 3,518 individual gene 

trees based on the Conservative dataset. Branch lengths are uniformly distributed to obtain an 
ultrametric tree for visualization but do not relate to estimated phylogenetic distances. Colored 
clades correspond to the ten known subtribes. Node support values are illustrated with colored 
symbols according to local posterior probabilities (LPP) and gene concordance factor (gCF) 
tests against support for alternative local topologies (i.e., gDF = discordance factors).
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Appendix 10: Time-calibrated phylogenies: clade-level 

Figure S13: Comprehensive time-calibrated species-level phylogeny encompassing 356 

ithomiine species and 12 outgroups. Node ages were estimated from Bayesian inference with 
BEAST using secondary calibrations from hostplant and higher-level phylogenies. Median 
node ages are shown inside their 95% Height Posterior Density intervals obtained through 
Bayesian inference (red bars).Colored clades correspond to the ten known subtribes. Detailed 
time-calibrated phylogenies zooming on specific clades are available in Fig. S14, S15 & S16. 
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Figure S14: Time-calibrated species-level phylogeny zooming on Dircennina and 

Godyridina subtribes. Node ages were estimated from Bayesian inference with BEAST using 
secondary calibrations from hostplant and higher-level phylogenies. Median node ages are 
shown inside their 95% Height Posterior Density intervals obtained through Bayesian inference 
(red bars). Colored clades correspond to the Dircennina and Godyridina subtribes. 
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Figure S15: Time-calibrated species-level phylogeny zooming on Napeogenina, Ithomiina, 

and Oleriina subtribes. Node ages were estimated from Bayesian inference with BEAST using 
secondary calibrations from hostplant and higher-level phylogenies. Median node ages are 
shown inside their 95% Height Posterior Density intervals obtained through Bayesian inference 
(red bars). Colored clades correspond to the Napeogenina, Ithomiina, and Oleriina subtribes. 
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Figure S16: Time-calibrated species-level phylogeny zooming on the basal subtribes: 

Mechanitina, Methonina, Tithoreina, Athesitina, Melinaeina subtribes. Node ages were 
estimated from Bayesian inference with BEAST using secondary calibrations from hostplant 
and higher-level phylogenies. Median node ages are shown inside their 95% Height Posterior 
Density intervals obtained through Bayesian inference (red bars). Colored clades correspond to 
the Mechanitina, Methonina, Tithoreina, Athesitina, Melinaeina subtribes. 
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Appendix 1: Metadata for images of subspecies 

Table S1: Source for images used to represent the 432 heliconiine subspecies in the online 

survey. 

ID Genus Species Subspecies Source Author(s) 

1 Agraulis vanillae galapagensis BOA Gerardo Lamas 

2 Agraulis vanillae incarnata Boyer_Collection Pierre Boyer 

3 Agraulis vanillae insularis Boyer_Collection Pierre Boyer 

4 Agraulis vanillae lucina Boyer_Collection Pierre Boyer 

5 Agraulis vanillae maculosa FLMNH Chris Jiggins 

6 Agraulis vanillae nigrior BOA Andrew D Warren 

7 Agraulis vanillae vanillae Boyer_Collection Pierre Boyer 

8 Dione glycera 
 

FLMNH Chris Jiggins 

9 Dione juno andicola BOA Gerardo Lamas 

10 Dione juno huascuma Boyer_Collection Pierre Boyer 

11 Dione juno juno FLMNH Chris Jiggins 

12 Dione juno miraculosa Boyer_Collection Pierre Boyer 

13 Dione moneta butleri BOA Gerardo Lamas 

14 Dione moneta poeyii FLMNH Chris Jiggins 

15 Dryadula phaetusa 
 

FLMNH Chris Jiggins 

16 Dryas iulia alcionea FLMNH Chris Jiggins 

17 Eueides aliphera aliphera FLMNH Chris Jiggins 

18 Eueides aliphera cyllenella FLMNH Chris Jiggins 

19 Eueides aliphera gracilis Michel_Cast_website Michel Cast 

20 Eueides emsleyi emsleyi Boyer_Collection Pierre Boyer 

21 Eueides heliconioides eanes FLMNH Chris Jiggins 

22 Eueides heliconioides heliconioides FLMNH Chris Jiggins 

23 Dione moneta moneta FLMNH Augusto H. B. Rosa 

24 Eueides isabella dissoluta FLMNH Chris Jiggins 

25 Eueides isabella ecuadorensis FLMNH Chris Jiggins 

26 Eueides isabella hippolinus Boyer_Collection Pierre Boyer 

27 Eueides isabella huebneri FLMNH Chris Jiggins 

28 Eueides isabella isabella FLMNH Chris Jiggins 

29 Eueides isabella melphis Boyer_Collection Pierre Boyer 

30 Eueides isabella nigricornis BOA Andrew D Warren 

31 Eueides lampeto acacetes FLMNH Chris Jiggins 

32 Dryas iulia delila FLMNH Augusto H. B. Rosa 

33 Dryas iulia dominicana Boyer_Collection Pierre Boyer 

34 Eueides lampeto nigrofulva FLMNH Chris Jiggins 

35 Eueides libitina libitina MNHN_Collection Maël Doré 

36 Eueides libitina malleti Michel_Cast_website Michel Cast 

37 Eueides lineata 
 

FLMNH Chris Jiggins 

38 Eueides lybia lybia FLMNH Chris Jiggins 
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39 Eueides lybia lybioides MNHN_Collection Maël Doré 

40 Eueides lybia olympia FLMNH Chris Jiggins 

41 Eueides isabella dianasa Boyer_Collection Pierre Boyer 

42 Eueides isabella eva Boyer_Collection Pierre Boyer 

43 Eueides tales michaeli FLMNH Augusto H. B. Rosa 

44 Eueides pavana 
 

FLMNH Chris Jiggins 

45 Heliconius demeter subspnov FLMNH Keith Willmott 

46 Eueides procula edias FLMNH Chris Jiggins 

47 Eueides procula eurysaces FLMNH Chris Jiggins 

48 Dryas iulia nudeola Boyer_Collection Pierre Boyer 

49 Eueides procula procula FLMNH Chris Jiggins 

50 Eueides procula vulgiformis Boyer_Collection Pierre Boyer 

51 Dryas iulia fucatus Boyer_Collection Pierre Boyer 

52 Eueides tales calathus FLMNH Chris Jiggins 

53 Dryas iulia martinica MNHN_Collection Maël Doré 

54 Eueides tales franciscus Boyer_Collection Pierre Boyer 

55 Eueides lybia orinocensis FLMNH Augusto H. B. Rosa 

56 Eueides tales pseudeanes Boyer_Collection Pierre Boyer 

57 Eueides tales pythagoras FLMNH Chris Jiggins 

58 Eueides tales surdus FLMNH Chris Jiggins 

59 Eueides procula asidia FLMNH Augusto H. B. Rosa 

60 Eueides tales tales MNHN_Collection Maël Doré 

61 Dryas iulia moderata Boyer_Collection Pierre Boyer 

62 Eueides vibilia unifasciatus FLMNH Chris Jiggins 

63 Eueides vibilia vialis FLMNH Chris Jiggins 

64 Eueides vibilia vibilia FLMNH Chris Jiggins 

65 Eueides vibilia vicinalis Boyer_Collection Pierre Boyer 

66 Heliconius antiochus antiochus FLMNH Chris Jiggins 

67 Heliconius antiochus aranea FLMNH Chris Jiggins 

68 Heliconius antiochus araneides Boyer_Collection Pierre Boyer 

69 Heliconius antiochus salvinii FLMNH Chris Jiggins 

70 Heliconius aoede aliciae FLMNH Chris Jiggins 

71 Heliconius aoede aoede FLMNH Chris Jiggins 

72 Heliconius aoede astydamia FLMNH Chris Jiggins 

73 Heliconius aoede ayacuchensis FLMNH Chris Jiggins 

74 Heliconius aoede bartletti FLMNH Chris Jiggins 

75 Heliconius aoede centurius FLMNH Chris Jiggins 

76 Heliconius aoede cupidineus FLMNH Chris Jiggins 

77 Heliconius aoede emmelina Boyer_Collection Pierre Boyer 

78 Heliconius aoede eurycleia Boyer_Collection Pierre Boyer 

79 Heliconius aoede faleria Heliconius.net NA 

80 Heliconius aoede lucretius FLMNH Chris Jiggins 

81 Heliconius aoede manu FLMNH Chris Jiggins 

82 Heliconius aoede philipi FLMNH Chris Jiggins 
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83 Heliconius astraea astraea FLMNH Chris Jiggins 

84 Heliconius astraea rondonia FLMNH Chris Jiggins 

85 Heliconius atthis 
 

FLMNH Chris Jiggins 

86 Heliconius besckei 
 

FLMNH Chris Jiggins 

87 Heliconius burneyi ada Boyer_Collection Pierre Boyer 

88 Heliconius burneyi anjae FLMNH Chris Jiggins 

89 Heliconius burneyi burneyi FLMNH Chris Jiggins 

90 Heliconius burneyi catharinae FLMNH Chris Jiggins 

91 Heliconius burneyi huebneri FLMNH Chris Jiggins 

92 Heliconius burneyi jamesi FLMNH Chris Jiggins 

93 Heliconius burneyi lindigii MNHN_Collection Maël Doré 

94 Agraulis vanillae forbesi FLMNH Keith Willmott 

95 Heliconius burneyi skinneri FLMNH Chris Jiggins 

96 Heliconius charithonia bassleri FLMNH Chris Jiggins 

97 Heliconius charithonia charithonia FLMNH Chris Jiggins 

98 Heliconius charithonia churchi FLMNH Chris Jiggins 

99 Heliconius charithonia ramsdeni FLMNH Chris Jiggins 

100 Heliconius charithonia simulator FLMNH Chris Jiggins 

101 Heliconius charithonia tuckeri FLMNH Chris Jiggins 

102 Heliconius charithonia vazquezae FLMNH Chris Jiggins 

103 Heliconius clysonymus clysonymus FLMNH Chris Jiggins 

104 Heliconius clysonymus hygiana FLMNH Chris Jiggins 

105 Heliconius clysonymus montanus FLMNH Chris Jiggins 

106 Philaethria dido panamensis Remi_Mauxion Remi Mauxion 

107 Heliconius congener aquilionaris MNHN_Collection Maël Doré 

108 Heliconius congener congener FLMNH Chris Jiggins 

109 Philaethria dido dido FLMNH Chris Jiggins 

110 Heliconius cydno alithea FLMNH Chris Jiggins 

111 Heliconius cydno barinasensis FLMNH Chris Jiggins 

112 Heliconius cydno chioneus FLMNH Chris Jiggins 

113 Heliconius cydno cordula FLMNH Chris Jiggins 

114 Heliconius cydno cydnides FLMNH Chris Jiggins 

115 Heliconius cydno cydno FLMNH Chris Jiggins 

116 Heliconius cydno gadouae FLMNH Chris Jiggins 

117 Heliconius cydno galanthus FLMNH Chris Jiggins 

118 Heliconius cydno hermogenes FLMNH Chris Jiggins 

119 Heliconius cydno lisethae FLMNH Chris Jiggins 

120 Heliconius cydno wanningeri FLMNH Chris Jiggins 

121 Heliconius cydno weymeri FLMNH Chris Jiggins 

122 Heliconius cydno zelinde FLMNH Chris Jiggins 

123 Philaethria dido chocoensis Boyer_Collection Pierre Boyer 

124 Heliconius demeter bouqueti FLMNH Chris Jiggins 

125 Heliconius demeter demeter FLMNH Chris Jiggins 

126 Heliconius demeter joroni Michel_Cast_website Michel Cast 
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127 Heliconius demeter karinae FLMNH Chris Jiggins 

128 Heliconius demeter neildi FLMNH Chris Jiggins 

129 Heliconius demeter terrasanta FLMNH Chris Jiggins 

130 Heliconius demeter titan FLMNH Chris Jiggins 

131 Heliconius demeter turneri FLMNH Chris Jiggins 

132 Philaethria diatonica 
 

FLMNH Chris Jiggins 

133 Heliconius doris dives Boyer_Collection Pierre Boyer 

134 Heliconius doris doris FLMNH Chris Jiggins 

135 Heliconius doris obscurus FLMNH Chris Jiggins 

136 Heliconius doris viridis FLMNH Chris Jiggins 

137 Heliconius egeria egeria FLMNH Chris Jiggins 

138 Heliconius egeria egerides Boyer_Collection Pierre Boyer 

139 Heliconius egeria homogena FLMNH Chris Jiggins 

140 Heliconius egeria hyas FLMNH Chris Jiggins 

141 Heliconius egeria keithbrowni FLMNH Chris Jiggins 

142 Heliconius eleuchia eleuchia FLMNH Chris Jiggins 

143 Heliconius eleuchia eleusinus FLMNH Chris Jiggins 

144 Heliconius eleuchia primularis FLMNH Chris Jiggins 

145 Heliconius elevatus bari Michel_Cast_website Michel Cast 

146 Heliconius elevatus elevatus FLMNH Chris Jiggins 

147 Heliconius elevatus lapis FLMNH Chris Jiggins 

148 Heliconius elevatus perchlora FLMNH Chris Jiggins 

149 Heliconius elevatus pseudocupidineus FLMNH Chris Jiggins 

150 Heliconius elevatus roraima FLMNH Chris Jiggins 

151 Heliconius elevatus schmassmanni FLMNH Chris Jiggins 

152 Heliconius elevatus taracuanus FLMNH Chris Jiggins 

153 Heliconius elevatus tumatumari FLMNH Keith Willmott 

154 Heliconius elevatus zoelleri FLMNH Chris Jiggins 

155 Heliconius erato adana FLMNH Chris Jiggins 

156 Heliconius erato amalfreda FLMNH Chris Jiggins 

157 Heliconius erato amazona FLMNH Chris Jiggins 

158 Heliconius erato amphitrite FLMNH Chris Jiggins 

159 Heliconius erato chestertonii FLMNH Chris Jiggins 

160 Heliconius erato colombina Boyer_Collection Pierre Boyer 

161 Philaethria constantinoi 
 

FLMNH Chris Jiggins 

162 Heliconius erato cyrbia FLMNH Chris Jiggins 

163 Heliconius erato demophoon FLMNH Chris Jiggins 

164 Heliconius erato dignus FLMNH Chris Jiggins 

165 Heliconius erato emma FLMNH Chris Jiggins 

166 Heliconius erato erato FLMNH Chris Jiggins 

167 Heliconius erato estrella Boyer_Collection Pierre Boyer 

168 Heliconius erato etylus FLMNH Chris Jiggins 

169 Heliconius erato favorinus FLMNH Chris Jiggins 

170 Heliconius erato guarica FLMNH Chris Jiggins 
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171 Heliconius erato hydara FLMNH Chris Jiggins 

172 Heliconius erato lativitta FLMNH Chris Jiggins 

173 Heliconius erato lichyi FLMNH Chris Jiggins 

174 Heliconius erato luscombei FLMNH Chris Jiggins 

175 Heliconius erato magnifica FLMNH Chris Jiggins 

176 Heliconius erato microclea FLMNH Chris Jiggins 

177 Heliconius erato notabilis FLMNH Chris Jiggins 

178 Heliconius erato phyllis FLMNH Chris Jiggins 

179 Heliconius erato reductimacula FLMNH Chris Jiggins 

180 Heliconius erato tobagoensis FLMNH Chris Jiggins 

181 Heliconius erato venus FLMNH Chris Jiggins 

182 Heliconius erato venustus FLMNH Chris Jiggins 

183 Philaethria andrei andrei BOA Christian Brevignon 

184 Heliconius eratosignis tambopata FLMNH Keith Willmott 

185 Heliconius eratosignis ucayalensis FLMNH Chris Jiggins 

186 Heliconius eratosignis ulysses FLMNH Chris Jiggins 

187 Heliconius ethilla adela FLMNH Chris Jiggins 

188 Heliconius ethilla aerotome FLMNH Chris Jiggins 

189 Heliconius ethilla cephallenia Boyer_Collection Pierre Boyer 

190 Heliconius ethilla chapadensis FLMNH Chris Jiggins 

191 Heliconius ethilla claudia FLMNH Chris Jiggins 

192 Heliconius ethilla ethilla FLMNH Chris Jiggins 

193 Heliconius ethilla eucoma FLMNH Chris Jiggins 

194 Heliconius ethilla flavofasciatus FLMNH Augusto H. B. Rosa 

195 Heliconius ethilla flavomaculatus FLMNH Chris Jiggins 

196 Heliconius ethilla hyalina FLMNH Keith Willmott 

197 Heliconius ethilla jaruensis FLMNH Chris Jiggins 

198 Heliconius ethilla latona FLMNH Chris Jiggins 

199 Heliconius ethilla mentor Boyer_Collection Pierre Boyer 

200 Heliconius ethilla metalilis FLMNH Chris Jiggins 

201 Heliconius ethilla michaelianius FLMNH Chris Jiggins 

202 Heliconius ethilla narcaea FLMNH Chris Jiggins 

203 Heliconius xanthocles zamora FLMNH Chris Jiggins 

204 Heliconius ethilla numismaticus FLMNH Chris Jiggins 

205 Heliconius ethilla penthesilea FLMNH Chris Jiggins 

206 Heliconius ethilla polychrous FLMNH Chris Jiggins 

207 Heliconius ethilla semiflavidus FLMNH Chris Jiggins 

208 Heliconius ethilla thielei FLMNH Chris Jiggins 

209 Heliconius ethilla tyndarus FLMNH Chris Jiggins 

210 Heliconius ethilla yuruani FLMNH Chris Jiggins 

211 Heliconius godmani 
 

FLMNH Chris Jiggins 

212 Heliconius hecale anderida FLMNH Chris Jiggins 

213 Heliconius hecale annetta FLMNH Chris Jiggins 

214 Heliconius hecale australis FLMNH Chris Jiggins 
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215 Heliconius hecale barcanti MNHN_Collection Maël Doré 

216 Heliconius hecale clearei FLMNH Chris Jiggins 

217 Heliconius hecale ennius FLMNH Chris Jiggins 

218 Heliconius hecale felix FLMNH Chris Jiggins 

219 Heliconius hecale fornarina FLMNH Chris Jiggins 

220 Heliconius hecale hecale FLMNH Chris Jiggins 

221 Heliconius hecale holcophorus FLMNH Chris Jiggins 

222 Heliconius hecale humboldti FLMNH Chris Jiggins 

223 Heliconius hecale ithaca FLMNH Chris Jiggins 

224 Heliconius hecale latus FLMNH Chris Jiggins 

225 Heliconius hecale melicerta FLMNH Chris Jiggins 

226 Heliconius hecale metellus FLMNH Chris Jiggins 

227 Heliconius hecale nigrofasciatus FLMNH Chris Jiggins 

228 Heliconius hecale novatus FLMNH Chris Jiggins 

229 Heliconius hecale paraensis FLMNH Keith Willmott 

230 Heliconius hecale paulus FLMNH Chris Jiggins 

231 Heliconius hecale quitalena FLMNH Chris Jiggins 

232 Heliconius hecale rosalesi FLMNH Keith Willmott 

233 Heliconius hecale shanki FLMNH Chris Jiggins 

234 Heliconius hecale sisyphus FLMNH Chris Jiggins 

235 Heliconius hecale sulphureus FLMNH Chris Jiggins 

236 Heliconius hecale vetustus FLMNH Chris Jiggins 

237 Heliconius hecale zuleika FLMNH Chris Jiggins 

238 Heliconius hecalesia eximius Boyer_Collection Pierre Boyer 

239 Heliconius hecalesia formosus FLMNH Chris Jiggins 

240 Heliconius hecalesia gynaesia FLMNH Chris Jiggins 

241 Heliconius hecalesia hecalesia FLMNH Chris Jiggins 

242 Heliconius hecalesia longarena FLMNH Chris Jiggins 

243 Heliconius hecalesia octavia FLMNH Chris Jiggins 

244 Heliconius hecalesia romeroi FLMNH Chris Jiggins 

245 Heliconius hecuba cassandra Boyer_Collection Pierre Boyer 

246 Heliconius hecuba choarina FLMNH Chris Jiggins 

247 Heliconius hecuba creusa FLMNH Chris Jiggins 

248 Heliconius xanthocles xanthocles FLMNH Chris Jiggins 

249 Heliconius hecuba flava FLMNH Chris Jiggins 

250 Heliconius hecuba hecuba FLMNH Chris Jiggins 

251 Heliconius hecuba tolima FLMNH Chris Jiggins 

252 Heliconius hermathena curua FLMNH Augusto H. B. Rosa 

253 Heliconius hermathena duckei FLMNH Augusto H. B. Rosa 

254 Heliconius hermathena hermathena FLMNH Chris Jiggins 

255 Heliconius hermathena renatae FLMNH Chris Jiggins 

256 Heliconius hermathena sabinae FLMNH Chris Jiggins 

257 Heliconius hermathena sheppardi FLMNH Augusto H. B. Rosa 

258 Heliconius hermathena vereatta FLMNH Augusto H. B. Rosa 
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259 Heliconius heurippa 
 

FLMNH Chris Jiggins 

260 Heliconius hewitsoni 
 

FLMNH Chris Jiggins 

261 Heliconius hierax hierax FLMNH Chris Jiggins 

262 Heliconius xanthocles vala FLMNH Chris Jiggins 

263 Heliconius himera 
 

FLMNH Chris Jiggins 

264 Heliconius hortense 
 

FLMNH Chris Jiggins 

265 Heliconius ismenius boulleti FLMNH Chris Jiggins 

266 Heliconius ismenius clarescens FLMNH Chris Jiggins 

267 Heliconius ismenius fasciatus MNHN_Collection Maël Doré 

268 Heliconius ismenius ismenius FLMNH Chris Jiggins 

269 Heliconius ismenius metaphorus FLMNH Chris Jiggins 

270 Heliconius ismenius occidentalis FLMNH Chris Jiggins 

271 Heliconius ismenius telchinia FLMNH Chris Jiggins 

272 Heliconius ismenius tilletti FLMNH Keith Willmott 

273 Heliconius lalitae 
 

FLMNH Chris Jiggins 

274 Heliconius leucadia leucadia FLMNH Chris Jiggins 

275 Heliconius leucadia pseudorhea FLMNH Chris Jiggins 

276 Heliconius xanthocles similatus FLMNH Chris Jiggins 

277 Heliconius luciana watunna FLMNH Chris Jiggins 

278 Heliconius melpomene aglaope FLMNH Chris Jiggins 

279 Heliconius melpomene amandus FLMNH Chris Jiggins 

280 Heliconius melpomene amaryllis FLMNH Chris Jiggins 

281 Heliconius melpomene anduzei FLMNH Chris Jiggins 

282 Heliconius melpomene bellula FLMNH Chris Jiggins 

283 Heliconius melpomene burchelli FLMNH Chris Jiggins 

284 Heliconius melpomene cythera FLMNH Chris Jiggins 

285 Heliconius melpomene ecuadorensis FLMNH Chris Jiggins 

286 Heliconius melpomene euryades FLMNH Keith Willmott 

287 Heliconius melpomene flagrans FLMNH Chris Jiggins 

288 Heliconius melpomene intersectus FLMNH Keith Willmott 

289 Heliconius melpomene madeira Boyer_Collection Pierre Boyer 

290 Heliconius melpomene malleti FLMNH Chris Jiggins 

291 Heliconius melpomene martinae Michel_Cast_website Michel Cast 

292 Heliconius melpomene melpomene FLMNH Chris Jiggins 

293 Heliconius melpomene meriana Boyer_Collection Pierre Boyer 

294 Heliconius melpomene michellae FLMNH Chris Jiggins 

295 Heliconius melpomene nanna FLMNH Chris Jiggins 

296 Heliconius melpomene penelope FLMNH Chris Jiggins 

297 Heliconius melpomene plesseni FLMNH Chris Jiggins 

298 Heliconius melpomene pyrforus FLMNH Chris Jiggins 

299 Heliconius melpomene rosina FLMNH Chris Jiggins 

300 Heliconius melpomene schunkei FLMNH Chris Jiggins 

301 Heliconius melpomene tessa FLMNH Chris Jiggins 

302 Heliconius melpomene thelxiope FLMNH Chris Jiggins 
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303 Heliconius melpomene thelxiopeia Boyer_Collection Pierre Boyer 

304 Heliconius melpomene vicina FLMNH Chris Jiggins 

305 Heliconius melpomene vulcanus FLMNH Chris Jiggins 

306 Heliconius melpomene xenoclea FLMNH Chris Jiggins 

307 Heliconius metharme makiritare FLMNH Chris Jiggins 

308 Heliconius metharme metharme FLMNH Chris Jiggins 

309 Heliconius metharme perseis FLMNH Chris Jiggins 

310 Philaethria ostara ostara BOA Keith Willmott 

311 Heliconius nattereri 
 

FLMNH Chris Jiggins 

312 Heliconius numata arcuella FLMNH Chris Jiggins 

313 Heliconius numata aristiona FLMNH Chris Jiggins 

314 Heliconius numata aulicus FLMNH Chris Jiggins 

315 Heliconius numata aurora FLMNH Chris Jiggins 

316 Heliconius numata bicoloratus FLMNH Chris Jiggins 

317 Heliconius numata elegans Boyer_Collection Pierre Boyer 

318 Heliconius numata ethra FLMNH Chris Jiggins 

319 Heliconius numata euphone FLMNH Chris Jiggins 

320 Heliconius numata euphrasius Boyer_Collection Pierre Boyer 

321 Heliconius numata geminatus Boyer_Collection Pierre Boyer 

322 Heliconius numata holzingeri FLMNH Chris Jiggins 

323 Heliconius numata ignotus FLMNH Chris Jiggins 

324 Heliconius numata illustris FLMNH Chris Jiggins 

325 Heliconius numata isabellinus NHMUK B. Huertas & R. Crowther 

326 Heliconius numata jiparanaensis FLMNH Chris Jiggins 

327 Heliconius numata laura Boyer_Collection Pierre Boyer 

328 Heliconius numata lenaeus FLMNH Chris Jiggins 

329 Heliconius numata lyrcaeus FLMNH Chris Jiggins 

330 Heliconius numata mavors FLMNH Chris Jiggins 

331 Heliconius numata messene FLMNH Chris Jiggins 

332 Heliconius numata mirus FLMNH Chris Jiggins 

333 Heliconius numata nubifer FLMNH Chris Jiggins 

334 Heliconius numata numata FLMNH Chris Jiggins 

335 Heliconius numata peeblesi Boyer_Collection Pierre Boyer 

336 Heliconius numata pratti FLMNH Chris Jiggins 

337 Heliconius numata robigus FLMNH Chris Jiggins 

338 Heliconius numata silvana FLMNH Chris Jiggins 

339 Heliconius numata sourensis FLMNH Chris Jiggins 

340 Heliconius numata superioris FLMNH Chris Jiggins 

341 Heliconius numata talboti FLMNH Chris Jiggins 

342 Heliconius numata tarapotensis Boyer_Collection Pierre Boyer 

343 Heliconius numata timaeus Boyer_Collection Pierre Boyer 

344 Heliconius numata zobrysi FLMNH Chris Jiggins 

345 Heliconius pachinus 
 

FLMNH Chris Jiggins 

346 Podotricha telesiphe telesiphe FLMNH Chris Jiggins 
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347 Heliconius pardalinus butleri Boyer_Collection Pierre Boyer 

348 Heliconius pardalinus dilatus Boyer_Collection Pierre Boyer 

349 Podotricha telesiphe tithraustes BOA Gerardo Lamas 

350 Heliconius pardalinus lucescens MNHN_Collection Maël Doré 

351 Heliconius pardalinus maeon FLMNH Chris Jiggins 

352 Heliconius pardalinus orteguaza FLMNH Keith Willmott 

353 Heliconius pardalinus pardalinus FLMNH Chris Jiggins 

354 Heliconius pardalinus radiosus FLMNH Keith Willmott 

355 Heliconius pardalinus sergestus FLMNH Chris Jiggins 

356 Heliconius pardalinus tithoreides FLMNH Chris Jiggins 

357 Heliconius peruvianus 
 

FLMNH Chris Jiggins 

358 Heliconius ricini insulanus FLMNH Chris Jiggins 

359 Heliconius ricini ricini FLMNH Chris Jiggins 

360 Heliconius sapho candidus FLMNH Chris Jiggins 

361 Heliconius sapho chocoensis FLMNH Chris Jiggins 

362 Heliconius sapho leuce FLMNH Chris Jiggins 

363 Heliconius sapho sapho FLMNH Chris Jiggins 

364 Heliconius sara apseudes FLMNH Chris Jiggins 

365 Heliconius sara brevimaculata Boyer_Collection Pierre Boyer 

366 Heliconius sara elektra FLMNH Chris Jiggins 

367 Heliconius sara fulgidus FLMNH Chris Jiggins 

368 Heliconius sara magdalena FLMNH Chris Jiggins 

369 Heliconius sara sara FLMNH Chris Jiggins 

370 Heliconius sara sprucei FLMNH Chris Jiggins 

371 Heliconius sara theudela FLMNH Chris Jiggins 

372 Heliconius sara veraepacis FLMNH Chris Jiggins 

373 Heliconius sara williami FLMNH Chris Jiggins 

374 Heliconius telesiphe cretacea FLMNH Chris Jiggins 

375 Heliconius telesiphe sotericus FLMNH Chris Jiggins 

376 Heliconius telesiphe telesiphe FLMNH Chris Jiggins 

377 Philaethria wernickei 
 

Boyer_Collection Pierre Boyer 

378 Podotricha judith straminea Boyer_Collection Pierre Boyer 

379 Heliconius timareta thelxinoe Boyer_Collection Pierre Boyer 

380 Heliconius timareta timareta FLMNH Chris Jiggins 

381 Podotricha judith caucana Boyer_Collection Pierre Boyer 

382 Podotricha judith judith Boyer_Collection Pierre Boyer 

383 Podotricha judith mellosa BOA Gerardo Lamas 

384 Heliconius wallacei colon Boyer_Collection Pierre Boyer 

385 Heliconius wallacei flavescens FLMNH Chris Jiggins 

386 Heliconius wallacei kayei FLMNH Chris Jiggins 

387 Heliconius wallacei mimulinus Boyer_Collection Pierre Boyer 

388 Heliconius wallacei wallacei FLMNH Chris Jiggins 

389 Heliconius xanthocles buechei FLMNH Chris Jiggins 

390 Heliconius xanthocles cleoxanthe FLMNH Chris Jiggins 
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391 Heliconius xanthocles donatia Boyer_Collection Pierre Boyer 

392 Heliconius xanthocles explicata FLMNH Chris Jiggins 

393 Heliconius xanthocles hippocrene FLMNH Chris Jiggins 

394 Heliconius xanthocles melete FLMNH Chris Jiggins 

395 Heliconius xanthocles melior FLMNH Chris Jiggins 

396 Heliconius xanthocles melittus FLMNH Chris Jiggins 

397 Heliconius xanthocles napoensis FLMNH Chris Jiggins 

398 Heliconius xanthocles paraplesius FLMNH Chris Jiggins 

399 Heliconius xanthocles quindecim FLMNH Chris Jiggins 

400 Heliconius xanthocles rindgei FLMNH Chris Jiggins 

401 Eueides isabella cleobaea MNHN_Collection Maël Doré 

402 Heliconius hecuba crispus MNHN_Collection Maël Doré 

403 Heliconius erato petiverana MNHN_Collection Maël Doré 

404 Dione juno suffumata NHMUK B. Huertas & R. Crowther 

405 Dryas iulia carteri NHMUK B. Huertas & R. Crowther 

406 Dryas iulia framptoni NHMUK B. Huertas & R. Crowther 

407 Dryas iulia warneri NHMUK B. Huertas & R. Crowther 

408 Dryas iulia lucia NHMUK B. Huertas & R. Crowther 

409 Eueides lampeto apicalis NHMUK B. Huertas & R. Crowther 

410 Eueides lampeto lampeto NHMUK B. Huertas & R. Crowther 

411 Eueides procula kuenowii NHMUK B. Huertas & R. Crowther 

412 Eueides tales barcellinus NHMUK B. Huertas & R. Crowther 

413 Eueides tales cognata NHMUK B. Huertas & R. Crowther 

414 Eueides tales tabernula NHMUK B. Huertas & R. Crowther 

415 Eueides tales xenophanes NHMUK B. Huertas & R. Crowther 

416 Heliconius luciana luciana NHMUK B. Huertas & R. Crowther 

417 Heliconius pardalinus julia NHMUK B. Huertas & R. Crowther 

418 Heliconius wallacei araguaia NHMUK B. Huertas & R. Crowther 

419 Eueides emsleyi esmeraldensis Michel_Cast_website Yves Lever 

420 Eueides heliconioides koenigi Michel_Cast_website Yves Lever 

421 Eueides lampeto brownsbergensis 10.18473/lepi.v64i3.a7 H. Gernaat  

422 Eueides procula browni Michel_Cast_website Yves Lever 

423 Eueides vibilia louisi Michel_Cast_website Yves Lever 

424 Heliconius aoede auca Michel_Cast_website Michel Cast 

425 Heliconius burneyi boliviensis Michel_Cast_website Michel Cast 

426 Heliconius burneyi koenigi Michel_Cast_website Michel Cast 

427 Heliconius burneyi mirtarosa Michel_Cast_website Michel Cast 

428 Heliconius hecuba lamasi Michel_Cast_website Pierre Boyer 

429 Heliconius metis 
 

ISSN 0723-9912 G. Moreira & C. Mielke 

430 Heliconius timareta florencia 10.1186/1471-2148-8-324 Chris D. Jiggins 

431 Heliconius timareta linaresi IIRB Chris D. Jiggins 

432 Heliconius timareta tristero Michel_Cast_website D. Lacomme 
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Appendix 2: Online survey of wing pattern perception from 

similarity triplets 

     

Figure S1: Interface for triplet selection in the online Citizen Science survey. The player is 
invited to select the pair of butterflies that displays the more similar color patterns according to 
its own perception. A skip button is available in case the player is undecided about a particular 
triplet. The website was made available in multiple languages. Left: English interface. Right: 
Brazilian Portuguese interface. 

  



  

 

297 

 

Appendix 3: Controlled trials of similarity triplets for the 

online survey 

       

Figure S2: Triplets of images used as controlled trials in the online survey. For each game 
session, two random controlled trials were presented. The expected chosen pair for maximum 
similarity are the first two columns of each triplet. Images in a controlled trial are displayed at 
random to avoid positional bias. Game session that failed at least one controlled trial were 
removed from the triplet dataset. 
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Appendix 4: Online survey: demographics and game 

analytics 

Website logs: 

During the course of the online survey, we recorded 1,422 game sessions from 1,242 

distinct players in 474 locations across 53 countries in 5 continents (Fig. S3), including 337 

locations in 22 countries within Europe (Fig. S4).  

 

 

Figure S3: Location of the 1,422 connections recorded across 474 cities in 53 countries 

worldwide. 
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Figure S4: Location of the 1,010 connections recorded across 337 cities in 22 countries 

within Europe. 

 

Data collection was open for six weeks from November 09th to December 18th 2022. We 

recorded two massive peaks of connections associated with the diffusion of the project to 

important French and international mailing lists of the community of evolutionary biologists 

(Fig. S5). Clearly, the effect of online publication did not last in time with a poor repeatability 

of play. 
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Figure S5: Frequencies of connections to the online survey 

(http://memometic.cleverapps.io/). Records show two massive peaks associated with the 
timing of publications advertising the project on important French and international mailing 
lists for evolutionary biologists. 

Playstyle: 

The repeatability of play was fairly poor with a fast majority of players playing only 

once despite incentive to play multiple times displayed in the online survey. The median 

number of games was 1.1 (Fig. S6.a). This low fidelity is likely due to the fact we decided not 

to provide any direct feedback such as a score at the end of a game session because we did not 

want to influence the play style of people by guiding them towards more average choices 

rewarded with an increasing score measuring the degree of closeness to the norm. We recorded 

time spent per triplet showing most players took around 5 to 10 seconds to examine a triplet 

(Fig. S6.b). Most people rarely use the ‘Skip option’ with 4.4 skips per game in average (Fig. 

S6.c), with an important proportion of games without any skip (643 games = 46.1%). It seems 

likely players perceived the Skip option as a negative action, while it actually can help to 

http://memometic.cleverapps.io/
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eliminate noise in the dataset. A next version of the survey interface should emphasize on the 

benefits from using skips as it is shown to decrease the degree of abnormal triplets recorded 

(see Fig. S9.a: normality-score increases with number of skips). Finally, only 45 game sessions 

(3.2%) failed at least one controlled trial (Fig. S6.d) and were subsequently removed from the 

triplet dataset. 

 

    

Figure S6: Analytics for game sessions. (a) Number of games per player. (b) Mean time spent 
to examine each triplet in a game session (c) Number of uses of the ‘skip’ option per game 
session. (d) Percentage of game sessions according to the number of failed controlled trials in 
the game session. 

Player diversity: age, background, geography, language 

We reached a diverse audience of surrogate ‘predators’ with declared age ranging from 

4 years old to 92 years old. The distribution of age shows the survey reached mostly adults, 

likely students, researchers, and their family members (Fig. S7.a). The four different languages 

of the interface were used with varying degrees of success. The Spanish and Portuguese 

interfaces were rarely used (< 4% ; Fig. S7.b), also because native speakers who played were 

(a) (b) 

(c) (d) 
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researchers familiar with English who likely used the English interface. Most players had a 

biological scientific background (785 players = 55.2%; Fig. S7.c) due to the use of scientific 

diffusion channels to advertise the game. However, having almost half of players who do not 

have a biological scientific background is a nice pointer to the fairly efficient diffusion of the 

survey outside of the scientific community despite not having being targeted during diffusion. 

 

   

Figure S7: Analytics for player demographics. (a) Distribution of age of players.                      
(b) Language interface used in game sessions (c) Biological scientific background of players. 

(a) 

(b) (c) 
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Normality scores: 

In order to evaluate the dissimilarities across game sessions, we designed two normality 

scores reflecting the degree of agreement between the set of similarity triplets provided during 

a game session, and the final perceptual space built on all similarity triplets. The triplet-based 

score simply quantifies the percentage of triplets whose distance between images A and B, 

perceived as the most similar pair, is indeed inferior to the distance between images A and C in 

the final perceptual space (i.e., dA-B  > dA-C). The distance-weighted score adjusts the triplet-

based score according to relative distances of the images in each triplet as follows:  

where dA-B is the distance between the images perceived as the most similar and dA-C is the 

distance between the images not labeled as the most similar. As such, satisfied triplets score 

one and unsatisfied triplets with a high relative difference in pairwise distances score lower to 

account for the high abnormality of this triplet compared to the global perceptual space. The 

score for a game session is the sum of score for each triplet and range from 0 to the number of 

triplets. Final scores were converted in percentages. Importantly, they are not scores of 

performance but scores of similarity to the norm, thus we coined them as “normality scores”. 

In average, a game session provided 86.1% of similarity triplets in agreement with the 

coordinates of images in the final perceptual space built on all similarity triplets (Fig. 8.a). Once 

weighted for relative differences in distances, the mean score increase to 96.3% (Fig. 8.b) which 

hints that most unsatisfied triplets show a small relative distance in the final perceptual space, 

reflecting small variation in perception. 

 

 𝑀𝑀𝑡𝑡𝑏𝑏𝑖𝑖𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡 =  min(
𝑑𝑑𝐴𝐴−𝐶𝐶𝑑𝑑𝐴𝐴−𝐵𝐵  , 1) (Eqn. 4) 

(a) (b) 
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Figure S8: Distribution of normality scores across games. (a) Triplet-based score evaluating 
the percentage of triplets provided during a game session in accordance with the final perceptual 
space produced using all similarity triplets. (b) Distance-weighted score adjusting the triplet-
based score according to pairwise distances of the image in each triplet. Unsatisfied triplets 
with a high relative difference in pairwise distances score lower to account for the high 
abnormality of this triplet compared to the global perceptual space. 

Effects of skip option and controlled trials: 

Using the distance-weighted normality scores, we explored the effect of the skip option 

and the number of failed controlled trials on the score of a game session. We showed the 

usefulness of the skip option by highlighting a positive correlation between the number of skips 

and the normality score (Spearman’s ρ = 0.292, p < 0.001; Fig. S9.a) reflecting a higher number 

of abnormal triplets recorded in games with low to no skip uses. Games with failed controlled 

trials appeared to score significantly lower than games without fails (Kruskal-Wallis, χ = 59.9, 

p < 0.001; Fig. S9.b) illustrating the ability of controlled trials to detect abnormal game 

sessions. Altogether, both features seem to fulfill their purpose of filtering triplets and game 

sessions which are strong suspicious outliers relative to the global perception of players. 

  

Figure S9: Tests for the effects of the skip option and the number of failed controlled trials 

on normality scores. (a) Positive correlation between normality scores and number of skips in 
a game session. (b) Negative relationship between normality scores and number of failed 
controlled trials in a game session. 

Effects of Age and Colorblindness: 

We explored the effect of age and colorblindness on game performance. Age did not 

have any significant effect on normality scores (Spearman’s ρ = 0.009, p = 0.741; Fig. S10.a), 

(a) 

(b) 
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neither on the mean time taken to answer a triplet (Spearman’s ρ = -0.021, p = 0.431; Fig. 

S10.b). However, older players tended to use more the skip option than younger players 

(Spearman’s ρ = 0.077, p = 0.033; Fig. S10.c). This mild trend could reflect the idea that older 

players trust less their perceptual abilities, or are more careful in their choices. A few colorblind 

people participated in the survey (N = 17). This low number of games did not allow to find a 

statistically significant difference in normality scores, however we visualized a slight tendency 

for the few colorblind players to score lower reflecting their particular visual perception (Mann-

Whitney, W = 9395, p = 0.16; Fig. S10.d). 

  

Figure S10: Tests for the effects of age and colorblindness on game performances. (a) No 
effect of age on normality scores. (b) No effect of age on the mean time taken to answer a 
triplet. (c) Positive correlation between age and number of skips. (d) No significant effect of 
colorblindness on normality score, yet we detect a slight tendency for the few colorblind players 
to score lower reflecting their particular visual perception. 

(a) (b) 

(c) 

(d) 
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Effects of cultural and scientific background: 

We explored the effect of cultural and scientific background on game performance. 

Biologists appeared to play quicker (Mann-Whitney: W = 21,812, p < 0.001; Fig. S11.a) and 

score significantly higher than non-biologists (Mann-Whitney: W = 29,743, p < 0.001; Fig. 

S11.c), but they did not show any difference in their frequency of use of the skip option (Mann-

Whitney: W = 66,464, p = 0.48; Fig. S11.c). Since scores are normality scores and not 

performance scores, these results mostly tell us that experience affects the perception of 

similarity in wing patterns and that non-biologists tend to perceive similarity patterns that are 

outside the norm more frequently than trained biologists are. In parallel, Brazilian-Portuguese 

speakers were scoring significantly higher than other languages (Kruskal-Wallis: χ = 14.7, p < 

0.001; Fig. S11.d). This trend is likely due again to the effect of experience: almost all 

respondents for this language were scientists working with neotropical butterflies, native to 

their country (i.e., Brazil). Altogether, these results hint for a strong effect of experience in task 

requiring abilities to detect differences in neotropical butterflies. However, this conclusion need 

to be tempered by the significantly lower scores obtained by Spanish speaking speakers, mostly 

from Latin America, for which the same positive effect of experience could have been expected 

(Fig. S11.d). 

 

 

(a) (b) 
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Figure S11: Tests for the effects of cultural and scientific background on game 

performances. (a) The scientific background affects the response time: biologists are 
significantly faster to answer. (b) No effect of scientific background on the use of the skip 
option. (c) Positive relationship between scientific background and normality scores: biologists 
score higher. (d) Significant effect of the language on normality scores with Brazilian-
Portuguese speakers scoring significantly higher than other languages, hinting for an effect of 
experience in task requiring abilities to detect differences in native neotropical butterflies. 

Effect of learning: 

We explored the effect of learning through multiple game sessions on game 

performance. Globally, first game sessions were slower than the next game sessions (Mann-

Whitney: W = 17,205, p < 0.001; Fig. S12.a). This effect persisted when comparing for a given 

player the time taken during the first game session and the average time for the next game 

sessions (Wilcoxon V = 3,42848, p < 0.001; Fig. S12.b). As such, players seems to learn to be 

more efficient (and maybe more confident) at selecting the pair they perceived as the most 

similar highlighting the importance of memorization and experience in perception. Globally, 

first game sessions provide lower normality scores than the next game sessions (Mann-

Whitney: W = 11,928, p = 0.003; Fig. S12.c). However, at player-level, we detected no 

significant increase of the normality score between the first game session and the average of all 

next sessions (Wilcoxon V = 2,865, p = 0.24; Fig. S12.d). Thus, players who play the most 

were the ones the least susceptible to show a perception out of the ordinary, but they did not 

seem to provide similarity triplet closer to the global average as much as they played. 

Altogether, we did not show a clear effect of training experience on the evolution of perception 

towards the norm during game sessions, but trained players definitely played faster. 

(c) (d) 
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Figure S12: Tests for the effects of learning through multiple game sessions on game 

performance. (a) Globally, first game sessions are slower than the next game sessions (b) At 
the player level, first game sessions are slower than the next game sessions. (c) Globally, first 
game sessions provide lower normality scores than the next game sessions. (d) At player-level, 
there is no significant increase of the normality score between the first game session and the 
average of all next sessions. 

  

(a) (b) 

(c) (d) 
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Appendix 5: Visual lists of subspecies in local communities 

We produced analyses of perceived wing pattern variation in five local communities. 

We present here the subspecies found in each of this community: Cayenne, French Guyana 

(Fig. S13), Gamboa, Panama (Fig. S14), Jatun Sacha, Napo, Ecuador (Fig. S15), Manaus, 

Amazonas, Brazil (Fig. S16), and Santa Teresa, Espírito Santo, Brazil (Fig. S17). 

 
Figure S13: Visual taxonomic list of the 32 subspecies of heliconiine butterflies found in 

Cayenne, French Guyana. 
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Figure S14: Visual taxonomic list of the 21 subspecies of heliconiine butterflies found in 

Gamboa, Panama. 
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Figure S15: Visual taxonomic list of the 40 subspecies of heliconiine butterflies found in 

Jatun Sacha, Napo, Ecuador. 
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Figure S16: Visual taxonomic list of the 44 subspecies of heliconiine butterflies found in 

Manaus, Amazonas, Brazil. 
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Figure S17: Visual taxonomic list of the 18 subspecies of heliconiine butterflies found in 

Santa Teresa, Espírito Santo, Brazil. 
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Appendix 6: How many triplets to obtain a stable 

perceptual space? 

In order to assess whether our sampling effort was sufficient to obtain a proper 

representation of the average global perception of wing pattern similarity, we designed a 

criterion to study the stability of the perceptual space across sampling effort as the number of 

similarity triplets incorporated in the dataset increased. We computed the degree of similarity 

between the topologies of perceptual space obtained for different levels of sampling effort using 

the Procrustes’s correlation index (See Eqn. 3 in main text). Then, we plotted the evolution of 

the Procrustes’s correlation along sampling effort in order to detect a plateau of stability which 

would reflect the stability of the final perceptual space obtained. The stability threshold 

represented the minimal sampling effort needed to obtain a proper representation of global 

perception since adding more triplets would not change much the final output. We considered 

stability reached once adding any number of triplets will not decrease Procrustes’s correlation 

below 0.95. 

In the Citizen Science dataset, the stability threshold was reached for 22 572 triplets 

(30% of the total available number of triplets), demonstrating our sampling effort was sufficient 

to guarantee a suitable representation of global perception and support reproducibility of the 

results (Fig. S18). 
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Figure S18: Evaluation plot to define stability threshold across sampling effort for the 

Citizen Science dataset. N images = 432, N triplets = 75,240. Evaluation was made on 10 
independent series of random nested subsets of triplets. Stability, symbolized by the vertical 
red dashed line, was reached for 22 572 triplets (30%) since in average Procrustes’s correlation 
never decrease below 0.95 beyond this point, independently of the number of similarity triplets 
added to the triplet dataset.  

We used the same protocol to evaluate stability and define the minimum number of 

triplets needed to produce the individual perceptual maps of local community based on sets of 

similarity triplets provided by a single expert. First, we ran a test set with 1000 triplets and 

plotted the evolution of Procrustes’s correlation along sampling effort for series of random 

nested subsets. We observed the large fulfillment of the stability criterion after 600 triplets (Fig. 

S19). Thus, we used 600 triplets as our sampling effort for individual local perceptual maps. 

 

  

Figure S19: Evaluation plot to define stability threshold across sampling effort for local 

individual maps. Local community = Jatun Sacha, N images = 40, N triplets = 1,000. 
Evaluation was made on 10 independent series of random nested subsets of triplets. Stability, 
symbolized by the vertical red dashed line, was largely reached for 600 triplets (60%) since in 
average Procrustes’s correlation never decrease below 0.98 beyond this point, independently of 
the number of similarity triplets added to the triplet dataset.  
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Appendix 7: Test the limits of the method via simulations 

We designed simulation tests to explore the limits of the t-STE in the context of the 

perceptual approach. Specifically, we aimed to: 

(1)  Define the minimal number of triplets needed to reach stability according to the size 

of the dataset (i.e., the number of images to evaluate) 

(2)  Quantify the levels of inconsistency (i.e., percentage of unsatisfied triplets) inherent to 

the method vs. accounting for true inconsistency in the dataset of triplet similarity 

reflecting diversity of perceptions that are sometimes contradictory 

(3)  Study the learning effort (i.e., number of iterations) needed to reach stability during 

the running of the t-STE algorithm. 

We designed three types of simulations. The first types are labeled as ‘Informative’. 

These datasets are subsets of images drawn randomly from our collection of 432 images. For 

each random subset of images, we extracted the available similarity triplets that encompass the 

selected images from our Citizen Science collection of 75,240 informative triplets. Then, we 

created random nested subsets of triplets for different levels of sampling effort (i.e., for different 

number/percentage of triplets). We used ten replicates per image set size, and five replicates 

per sampling effort for a given image set. This approach was limited by the availability of 

similarity triplets for small subsets of images. Indeed, below 200 images, we were not able to 

retrieve enough similarity triplets encompassing only the focal subset of images to create 

meaningful subsets and study effects of sampling effort.  

Therefore, we designed in parallel a second types of simulations labeled as ‘Perfect 

triplets’ with the aim of representing situations where there is no inconsistency in the set of 

similarity triplets (i.e., it exists a perceptual space topology that satisfies all triplets at once). In 

these datasets, the similarity triplets were not drawn from our Citizen Science collection of 

75,240 informative triplets, but they were created directly from our Citizen Science-based 

perceptual space. We used the coordinates of images in this perceptual space to draw random 

set of triplets that were all satisfied by this topology. Similarly to ‘Informative’ datasets, we 

made replicates for ten image set size across five replicates per sampling effort. Since we were 

not limited by the number of triplets, we used subsampled datasets with the maximum size (i.e., 

all possible triplets) or a maximum of 75,240 triplets as in our Citizen Science dataset. Those 

datasets are labeled as ‘full’. Complementarily, we designed subsampled triplet datasets with 
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size adjusted to the one of ‘Informative datasets so we could compare directly their results while 

accounting for variation in triplet dataset size. Those later datasets are labeled as ‘adjusted’. 

Finally, we complemented this analysis with a ‘Null model’ using sets of random triplets 

with no information (i.e., in those triplets, images and their order were selected randomly), 

producing random nested subsampled dataset with ‘full’ size and ‘adjusted’ size. 

We showed the number of images to evaluate and the level of inconsistency across 

similarity triplets affect the number of triplets needed to obtain a stable perceptual space. 

Indeed, datasets of perfect triplets reach stability faster than the informative datasets inherently 

including some degree of true inconsistency. For instance, for 200 images, stability was reached 

in 2,800 perfect triplets vs. 7,500 informative triplets. For 400 images, around 20,000 

informative triplets were need while only 7,000 perfect triplets could achieve stability (Fig. S20 

& S21). The relation appeared almost linear for perfect triplets with around 15 triplets per image 

needed. For informative triplets, the relation was also relatively linear for the range we could 

explored with our data (from 200 to 432 images), with around 60 triplets per additional image 

needed. It is worth noted we also recorded stability to be reached for 600 triplets on the 40 

images of local communities (see Fig. S19 in SI Appendix 6), hinting than the relationship get 

close to the one observed for perfect triplets (i.e., 15 triplets per image) when the number of 

images is low, since less true inconsistency is expected in the set of similarity triplets. Null 

models showed no stability as the sampling effort increase, as expected from dataset which 

contains no congruent information across triplets (Fig. S20 & S21). 
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Figure S20: Evaluation plot to define stability threshold across sampling effort and image 

set size for simulated data. Plain lines refers to subsets of informative triplets drawn from the 
Citizen Science data collection. Dashed lines refers to subsets of perfect triplets with no 
inconsistency. Dotted lines refers to null model of random triplets with no coherent information. 
Each curve shows the evolution of the Procrustes’s correlation of the current perceptual space 
relative to the final space built with all triplets, with increasing sampling effort (i.e., number of 
triplets), for a given type of simulation and number of images, aggregated over all ten replicates. 
Color represents the range of image set size from 10 to 432 images. 
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Figure S21: Evaluation of stability threshold across image set size for simulated data in 

datasets with 100% of triplets. Plain lines refers to subsets of informative triplets drawn from 
the Citizen Science data collection. Long-dashed lines refers to subsets of perfect triplets with 
no inconsistency using full triplet datasets and adjusted triplet datasets which size is similar to 
those for informative triplets. Short-dashed and dotted lines refers to null model of random 
triplets with no coherent information, using again full and adjusted datasets. Null-model 
datasets never reach stability, and the points show on the graph refer only to the size of their 
triplet sets. Color represents the range of image set size from 10 to 432 images. 

Parallelly, we explored the influence of sampling effort and image set size on the degree 

of inconsistency in the final perceptual space quantified as the percentage of unsatisfied triplets. 

We showed the number of images evaluated had relatively light impacts on the final degree of 

inconsistency in the perceptual space once a stable topology is reached, contrary to the degree 

of conflictual information across similarity triplets. Indeed, informative datasets, with triplets 

drawn from the Citizen Science data collection, tend to reach a maximum percentage of 15% 

of unsatisfied triplets beyond 250 images (Fig. S22 & S23). On the other hand, datasets of 

perfect triplets led to 5% of unsatisfied triplets in the final perceptual space for any number of 

images, despite being 100% consistent by design (Fig. S22 & S23). Null models with no 

coherent information showed relatively low inconsistency for any number of images (below 
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2.5%; Fig. S22 & S23), reflecting the fact we had enough dimensions to accommodate triplets 

that describe random similarity patterns. As such, it seems the t-STE have an inherent 5% error 

rate when it comes to accommodate informative triplets, even if they present no internal 

inconsistency such as our ‘perfect’ triplets. We conclude there is around 10% of natural 

inconsistency in our informative dataset which reflect true differences across individual 

perception, while the remaining 5% are due to the resolution limit of the algorithm in our 

specific context. 

 

Figure S22: Evolution of the percentage of unsatisfied triplets in the final perceptual 

spaces across sampling effort and image set size for simulated data. Plain lines refers to 
subsets of informative triplets drawn from the Citizen Science data collection. Dashed lines 
refers to subsets of perfect triplets with no inconsistency. Dotted lines refers to null model of 
random triplets with no coherent information. Each curve shows the evolution of the percentage 
of unsatisfied triplets of the current perceptual space with increasing sampling effort (i.e., 
number of triplets) for a given type of simulation and number of images, aggregated over all 
ten replicates. Color represents the range of image set size from 10 to 432 images. 
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Figure S23: Evaluation of the percentage of unsatisfied triplets in the final perceptual 

spaces across image set size for simulated data in datasets with 100% of triplets. Plain lines 

refers to subsets of informative triplets drawn from the Citizen Science data collection. Long-
dashed lines refers to subsets of perfect triplets with no inconsistency using full triplet datasets 
and adjusted triplet datasets which size is similar to those for informative triplets. Short-dashed 
and dotted lines refers to null model of random triplets with no coherent information, using 
again full and adjusted datasets. Color represents the range of image set size from 10 to 432 
images. 

Finally, we explored the effect of learning effort (i.e., number of iterations) on the 

stability of the perceptual space topology. At each iteration of the t-STE, the algorithm tries to 

optimize the coordinates of images so a maximum of triplet are satisfied, following a stochastic 

cost function providing more weights to improvement of short distances than long distances 

(i.e., optimizing clustering and local topologies). Therefore, the algorithm learns iteratively the 

best embedding to optimize the distances of images in the reduced space satisfying the initial 

set of similarity triplets. 

We compared the evolution of the Procrustes’s correlation between the current topology 

and the final one obtained after 30,000 iterations for the complete Citizen Science dataset with 
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75,240 triplets. We showed that stability is reached fairly quickly with almost no perceptible 

differences after 200 iterations (Fig. S24). In practice, the algorithm was observed to proceed 

in distinct steps. First, it initialized with random agglomerated coordinates for all images. 

Second, it pushed far away the images that are considered different by most triplets since it is 

the easiest way to decrease the cost function quickly at first, when all images are agglomerated. 

Third, it aggregated core groups and tuned distances of highly dissimilar images. Forth, it 

adjusted individual images that were not yet well optimized, maybe due to conflicting triplets. 

Fifth, it reached a state of sub-stability by dangling around but keeping global structure highly 

similar (i.e., coordinates can rotate but the topology remains the same). 

 

Figure S24: Evolution of the global topology of the perceptual space during learning 

process of the t-STE for the Citizen Science dataset of 75,240 similarity triplets for 432 

images. Procrustes’s correlations are computed between the current topology and the final one 
reached after 30,000 iterations. Stability is reached fairly quickly after 200 iterations. 
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Appendix 8: Categorical tests for effect of sympatry on 

perceptual distances 

Müller’s theory of mimicry (Müller 1879) predicted the convergence of local toxic prey 

towards a similar aposematic pattern. To evaluate if this prediction could influence large-scale 

patterns of phenotypic distributions, we tested if the perceptual distances between subspecies 

were correlated with the geographic distances between their spatial distributions. 

Complementary to analyses based on Schoener’s D as a continuous measurement of geographic 

distances, we designed analyses based on sympatric and allopatric categories for geographic 

status of pair of subspecies. We defined as sympatric all pairs of subspecies with a Schoener’s 

D higher than 0.2 (thus a geographic distance lower than 0.8). All other pairs were considered 

allopatric. 

First, we tested for differences in perceptual distances across geographic status of pair 

of heliconiine subspecies. To test for higher perceived similarity between sympatric species 

than allopatric species, we used non-parametric Wilcox tests to compare perceptual distances 

across geographic status. In order to account for the effect of phylogeny, we ran the same tests 

on the residuals of perceptual distances regressed on phylogenetic distances. We computed 

phylogenetic distances as the pairwise patristic distances on the phylogeny of Heliconiini 

(Kozak et al. 2015) with terminal branches of null length to describe the relative position of 

subspecies in their associated species. 

Second, we designed permutation tests aiming to test for a signal of perceived similarity 

and convergence higher than expected at random, if patterns were distributed randomly along 

the phylogeny. Thus, we computed the mean perceptual distance (for similarity) and residual 

perceptual distances (for convergence) in sympatric and allopatric pairs. We compared the 

observed statistics with a null distribution obtained from random permutation of distances 

across pairs of subspecies. As such, an observed statistic falling in the lower tail of the null 

distribution relates to a significant signal of perceived similarity/convergence in the group, and 

conversely. 

As a result, we showed that subspecies in sympatry have significantly lower perceived 

similarity than allopatric species (Wilcox test: W = 210 × 106, p < 0.001; Fig. S25.a), and lower 

than if patterns were distributed randomly (Permutation test: Dobs = 104.0, Q5% = 113.1, p < 

0.001; Fig. S25.b). Once accounted for evolutionary relationships across subspecies, we 

showed that subspecies in sympatry have significantly lower perceived residual similarity than 
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allopatric species (Wilcox test: W = 214 × 106, p < 0.001; Fig. S25.c), and lower than if patterns 

were distributed randomly (Permutation test: Dobs = -11.2, Q5% = -3.33, p < 0.001; Fig. 

S25.d). Altogether, these results comfort our conclusion from the continuous analyses 

presented in the main text: spatially congruent species show significant degree of pattern 

similarity that goes beyond expectation from phylogenetic relatedness, hinting for the local 

convergence of aposematic patterns following Müller’s predictions (Müller 1879). 

  

   

Figure S25: Tests for similarity (a-b) and convergence (c-d) of perceived wing patterns in 

sympatry. (a) Comparison of perceptual distances between pair of subspecies according to 
their geographic status. (b) Null distribution of mean perceptual distances in sympatric and 
allopatric pairs of species obtained through random permutation of perceptual distances. (c) 
Comparison of residual perceptual distances accounting for phylogeny between pair of 
subspecies according to their geographic status. (d) Null distribution of mean residual 
perceptual distances accounting for phylogeny in sympatric and allopatric pairs of species 
obtained through random permutation of perceptual distances. 

(a) (b) 

(c) (d) 
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Appendix 9: How many players to obtain a stable 

perceptual space? 

When exploring the ability of the perceptual method to build a perceptual space 

illustrating the perceived variance in wing patterns of heliconiine butterflies for local 

communities, we aggregated sets of similarity triplets provided by five independent experts into 

a shared triplet dataset (3,000 triplets per local community as 600 triplets × 5 experts). The 

maps built from such aggregated sets of triplets were labeled as ‘Aggregated-triplets’ and were 

used as the reference to compute Procrustes’s correlation and Cohen’s Kappa dissimilarity with 

the CS-based maps and the individual maps. 

Here, we explored the effect of aggregating individual perceptions from different 

people. Specifically, we inspect how many independent perceptions are needed to obtain a 

stable perceptual space and an associated classification such as adding more individual 

perception data will not change significantly the final output, supporting the idea that the final 

space and classification are fairly representative. 

By aggregating perceptions across a range of number of players, we showed that five 

players were already enough to reach stability in the perceptual space for all but one local 

community (Fig. S26). The only exception was the community from Cayenne in which the 

location in the perceptual space of the outlier pattern/subspecies Philaethria dido dido was 

relatively conflictual across the five experts leading to an absence of stability (Fig. S26). 
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Figure S26: Evaluation plot for the stability of the local perceptual space while 

aggregating an increasing number of sets of similarity triplets provided by independent 

experts. Topological similarity of the perceptual spaces was evaluated with Procrustes’s 
correlation. The dataset encompassing all five independent perceptions was used as the 
reference. Grey lines link scores obtained for a given local community. Scores are averaged 
across all possible combinations of experts for a given number of players for a given 
community. 

Similarly, we showed that five players were already enough to reach stability in the 

mimetic classifications obtained for all local communities (Fig. S27). Cohen’s Kappa scores 

were not perfect, but already reflected a strong agreement (all scores above 0.5). More 

importantly, similarity to the reference classification using data from all five experts did not 

seems to improve much beyond three players (Fig. S27). 

Altogether, these results support the idea that gathering perception data from five 

independent people may be sufficient to produce rather stable and representative local 

perceptual spaces and associated classifications. 
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Figure S27: Evaluation plot for the stability of the local mimetic classification while 

aggregating an increasing number of sets of similarity triplets provided by independent 

experts. Classification agreement was evaluated with Cohen’s Kappa. The dataset 
encompassing all five independent perceptions was used as the reference. Grey lines link scores 
obtained for a given local community. Scores are averaged across all possible combinations of 
experts for k ranging from 5 to 10 groups, for a given number of players for a given community. 
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Appendix 10: Lists of local mimetic groups 

We built mimetic classifications of wing patterns in local community from GMM 

clustering applied on different perceptual maps. ‘Triplet-aggregated’ maps were obtained from 

the aggregation of similarity triplets provided by a panel of experts evaluating only the patterns 

of local taxa. ‘CS’ maps were obtained by extracting coordinates of those same local patterns 

from the macro-scale perceptual map involving all 432 subspecies patterns. We present here 

the mimicry classification resulting from such clustering for each local community: Cayenne, 

French Guyana (Fig. S28), Gamboa, Panama (Fig. S29), Jatun Sacha, Napo, Ecuador (Fig. 

S30), Manaus, Amazonas, Brazil (Fig. S31), and Santa Teresa, Espírito Santo, Brazil (Fig. 

S32). 
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Figure S28: Visual list of local mimetic groups in Cayenne, French Guyana. Left: From 
the ‘triplet-aggregated’ perceptual space. Right: From the ‘CS’ perceptual space. The eight 
mimetic groups are ordered by similarity but they may not be equivalent. 
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Figure S29: Visual list of local mimetic groups in Gamboa, Panama. Left: From the ‘triplet-
aggregated’ perceptual space. Right: From the ‘CS’ perceptual space. The eight mimetic 
groups are ordered by similarity but they may not be equivalent. 
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Figure S30: Visual list of local mimetic groups in Jatun Sacha, Napo, Ecuador. Left: From 
the ‘triplet-aggregated’ perceptual space. Right: From the ‘CS’ perceptual space. The six 
mimetic groups are ordered by similarity but they may not be equivalent. 
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Figure S31: Visual list of local mimetic groups in Manaus, Amazonas, Brazil. Left: From 
the ‘triplet-aggregated’ perceptual space. Right: From the ‘CS’ perceptual space. The six 
mimetic groups are ordered by similarity but they may not be equivalent. 

  



  

 

333 

 

 

  

Figure S32: Visual list of local mimetic groups in Santa Teresa, Espírito Santo, Brazil. 

Left: From the ‘triplet-aggregated’ perceptual space. Right: From the ‘CS’ perceptual space. 
The seven mimetic groups are ordered by similarity but they may not be equivalent. 
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Appendix 1: Phylogeny of Ithomiini butterflies 

 

 

 

Figure S1: Time-calibrated phylogeny adapted from Chazot et al., 2019. The tree includes 
339 species out of the 396 species (85.6%) currently known in the group. Colors highlight the 
10 subtribes. Dashed lines represent evolutionary time at intervals of 5 million years. 

 

Reference: 

Chazot, N., Willmott, K. R., Lamas, G., Freitas, A. V., Piron‐Prunier, F., Arias, C. F., ... & 
Elias, M. (2019). Renewed diversification following Miocene landscape turnover in a 
Neotropical butterfly radiation. Global Ecology and Biogeography, 28(8), 1118-1132. 
https://doi.org/10.1111/geb.12919   

https://doi.org/10.1111/geb.12919
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Appendix 2: Definition of Operational Mimicry Units 

(OMUs) 

In this study, we aimed to investigate the interplay between Müllerian mimicry and the 

distribution and climatic niche of ithomiine butterflies. As such, we defined Operational 

Mimicry Units (OMUs) as the set of conspecific butterflies that share the same mimicry pattern. 

Therefore, a species may either be equivalent to an OMU, if all individuals of both sexes and 

all subspecies of that species share the same pattern (Species A in Figure S2), or may be 

represented by multiple OMUs if different subspecies belong to different putative mimicry 

rings, or if there is sexual dimorphism (Species B in Figure S2). Cases of sexual dimorphism 

are rare occurrences in Ithomiini (70 cases across the 1542 subspecies = 4.5%), while species 

polymorphism is common (202 cases across the 396 species = 51%). We employed the 783 

currently known OMUs in the Ithomiini tribe as the ecological units for our analyses (Doré et 

al. 2022). For the sake of simplicity, we use “comimetic species” in the main text to refer to the 

OMUs sharing the same mimicry pattern. 

Members of a putative mimicry ring are all the OMUs displaying its associated 

aposematic pattern. It could include OMU representing entire monomorphic species (OMU A 

- LYSIMNIA in Figure S2), or OMUs that are part of polymorphic species (OMU B - 

LYSIMNIA in Figure S2). Therefore, a putative mimicry ring encompasses all individuals 

displaying its associated aposematic pattern. 

 

Reference: 

Doré, M., Willmott, K., Leroy, B., Chazot, N., Mallet, J., Freitas, A. V. L., Hall, J. P. W., Lamas, 
G., Dasmahapatra, K. K., Fontaine, C., & Elias, M. (2022). Anthropogenic pressures 
coincide with Neotropical biodiversity hotspots in a flagship butterfly group. Diversity 
and Distributions, 28(12), 2912–2930. https://doi.org/10.1111/ddi.13455 

 

https://doi.org/10.1111/ddi.13455
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Figure S2: Hierarchal relationships between taxonomic groups in plain lines with four 
subspecies and two species, and mimicry groups in dashed lines with three Operational Mimicry 
Units (OMUs) and two mimicry rings. Subspecies B2 displays a case of sexual dimorphism 
with both sexes belonging to different OMUs and mimicry rings.  
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Appendix 3: Map of Ithomiini species richness 

 

Figure S3: Map of Ithomiini predicted species richness. The map was built from the 
distribution maps of 393 species produced by Doré et al. 2021. 

 

Reference: 

Doré, M., Willmott, K., Leroy, B., Chazot, N., Mallet, J., Freitas, A. V. L., Hall, J. P. W., Lamas, 
G., Dasmahapatra, K. K., Fontaine, C., & Elias, M. (2022). Anthropogenic pressures 
coincide with Neotropical biodiversity hotspots in a flagship butterfly group. Diversity 
and Distributions, 28(12), 2912–2930. https://doi.org/10.1111/ddi.13455  

https://doi.org/10.1111/ddi.13455
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Appendix 4: Distribution of OMUs among mimicry rings 

 

Figure S4: Distribution of Operational Mimicry Units (OMUs) among the 44 putative 

mimicry rings. Small mimicry rings (i.e., with less than 10 OMUs) inside the red area were 
discarded from the perMANOVA and phylogenetic MANOVA analysis because of their 
reduced sample size. As a result, 24 out of 44 mimicry rings (54.5%) were retained in the 
analysis, encompassing 322 species (95.0%) and 619 OMUs (86.1%) among the 339 species 
and 719 OMUs represented in the phylogeny. 
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Appendix 5: Histograms of null distributions for statistical 

tests 

 

Figure S5: Tests for community structure. (A) Distribution of global IST under 999 
randomizations of mimicry patterns among species in communities. CI 95% = threshold of 
significance for this test. Black arrow indicates the position of the observed value. (B) 
Distribution of the mean Bray-Curtis distance among all comimetic species under 999 
randomizations of mimicry patterns among species in communities. CI 5% = threshold of 
significance for this test. Black arrow indicates the position of the observed value. 

 

Figure S6: Test for association between climate and mimicry patterns: mimicry turnover 
(pairwise IST) correlates with climatic distances beyond the effect of geographic distance (A) 
while species climatic niches are segregated among mimicry rings (B). (A) Null distribution of 
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the Spearman’s rho correlation statistics generated during the permutation process for the 
partial Mantel test investigating the relationship between mimicry turnover (pairwise IST) and 
climatic distances accounting for effects of geographic distance. We performed this partial 
Mantel test on a random sample of 1000 communities to limit spatial autocorrelation. (B) 
Distribution of the pseudo-F generated during the permutation process (n = 999) of the 
perMANOVA which tests for the significance of the relationship between mimicry rings and 
climatic niches. X-axis is on log-scale. The observed pseudo-F is higher than all the pseudo-F 
values in the null distribution (pseudo-F obs = 19.35, p ≤ 0.001), thus indicating a significant 
divergence between the climatic niche of species belonging to different putative mimicry rings, 
compared to a random association of mimicry patterns to species and their climatic niche. 

 

Figure S7: Tests for niche convergence among mimicry rings. (A) Null distribution of the 
Wilks’ λ statistic of the phylogenetic MANOVA testing for divergence of climatic niches 
among putative mimicry rings while the evolution of niche is simulated 999 times on the 
phylogeny. An observed Wilks’ λ lower than the 5% quantile shows that the climatic niches of 
the different mimicry rings diverge more than expected under a neutral model of evolution. (B) 
Null distribution of the mean climatic distance (MCD) among comimetic species while climatic 
niches are simulated 999 times on the phylogeny. An observed MCD lower than the 5% quantile 
shows that the evolutionary convergence between climatic niche and mimicry patterns of 
species is greater than expected under a neutral model of evolution.  
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Appendix 6: Bray-Curtis distances per mimicry ring 

In order to investigate if the dissimilarity between spatial distributions of species was 

lower for phenotypically similar species, we computed pairwise Bray-Curtis distances (Bray & 

Curtis 1957) across the distributions of all pairs of OMUs with the R package vegan 2.5-4 

(Oksanen et al. 2019). The pairwise Bray-Curtis distances were computed as follows: 

where j and k are two species evaluated, i is one community among p communities, and N is 

the species likelihood of presence (traditionally, the species abundance). Bray-Curtis distances 

range from 0 to 1 and can be interpreted as the opposite of a proportion of overlap weighted by 

the likelihood of presence of both species within grid-cells across their range. As such, a high 

Bray-Curtis value correspond to a large dissimilarity in species spatial distributions, while a 

low value relates to an important spatial overlap (Fig. 2).  
 

We evaluated the significance of the mean value obtained for pairs of phenotypically 

similar species (i.e., putative co-mimics) by permutation of mimicry patterns among the OMUs. 

We carried out this analysis for 39 putative mimicry rings for which the analysis could be 

performed since they hosted more than one species (Fig. 1: mimicry rings showing significant 

spatial congruence are associated with a ‘Co’ symbol in green ; Table S1: statistical summary 

for species spatial congruence within each putative mimicry ring). 

 

References: 

Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern 
Wisconsin. Ecological monographs, 27(4), 326-349. 
https://www.jstor.org/stable/1942268  

Oksanen, J. R., et al. (2019). vegan: Community Ecology Package. R package version 2.5-4. 
https://cran.r-project.org/package=vegan 

 
 
 
 
 
 
 
 

 𝐵𝐵𝐵𝐵𝑖𝑖𝑗𝑗 = 1 − 2∑ 𝑚𝑚𝑚𝑚𝑟𝑟�𝑁𝑁𝑖𝑖𝑖𝑖,𝑁𝑁𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖=1∑ �𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖=1  (Eqn. 1) 

https://www.jstor.org/stable/1942268
https://cran.r-project.org/package=vegan
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Table S1: Summary of randomization tests for community composition based on mean Bray-
Curtis distance among comimetic Operational Mimicry Units (OMUs) from each putative 
mimicry ring. N OMUs = Number of OMUs in the mimicry ring. N pairs = Number of pairs 
tested for this mimicry ring. Mean BC obs = Mean Bray-Curtis distance among comimetic 
OMUs observed. Mean null BC = Average mean Bray-Curtis distance among comimetic OMUs 
for 999 randomizations of mimicry patterns among OMUs. CI 2.5% = Bray-Curtis value for 
quantile 2.5% in the null distribution. CI 97.5% = Bray-Curtis value for quantile 2.5% in the 
null distribution. Bold p-values are significant for an α = 0.05. 

Mimicry ring 
N 

OMUs 
N pairs 

Mean     

BC obs 

Mean 

null BC 

CI 

2.5% 

CI 

97.5% 
p-value 

ACRISIONE 1 0 NA NA NA NA NA 
AGNOSIA 85 3570 0.924 0.95 0.932 0.964 0.004 

AMALDA 9 36 0.849 0.949 0.877 0.994 0.009 

AURELIANA 12 66 0.74 0.948 0.885 0.986 0.001 

BANJANA-M 45 990 0.899 0.949 0.923 0.969 0.002 

CONFUSA 20 190 0.843 0.949 0.904 0.98 0.001 

DERCYLLIDAS 1 0 NA NA NA NA NA 
DILUCIDA 40 780 0.844 0.95 0.922 0.969 0.001 

DOTO 15 105 0.922 0.949 0.894 0.985 0.127 
DUESSA 4 6 0.96 0.948 0.802 1 0.477 
DUILLIA 3 3 0.829 0.949 0.728 1 0.093 
EGRA 11 55 0.872 0.95 0.884 0.99 0.014 

EURIMEDIA 35 595 0.906 0.949 0.918 0.972 0.007 

EXCELSA 18 153 0.844 0.949 0.901 0.981 0.001 

HEMIXANTHE 7 21 0.543 0.948 0.857 0.998 0.001 

HERMIAS 53 1378 0.918 0.949 0.925 0.968 0.006 

HEWITSONI 30 435 0.807 0.948 0.915 0.974 0.001 

HUMBOLDT 1 0 NA NA NA NA NA 
ILLINISSA 6 15 0.585 0.947 0.826 1 0.001 

LERIDA 66 2145 0.925 0.95 0.929 0.966 0.015 

LIBETHRIS 21 210 0.901 0.949 0.905 0.978 0.022 

LYSIMNIA 5 10 0.787 0.95 0.806 1 0.017 

MAELUS 16 120 0.662 0.949 0.901 0.983 0.001 

MAMERCUS 64 2016 0.916 0.95 0.929 0.968 0.002 

MANTINEUS 5 10 0.315 0.949 0.826 1 0.001 

MESTRA 14 91 0.741 0.949 0.894 0.986 0.001 

MOTHONE 14 91 0.802 0.95 0.896 0.986 0.001 

OCNA 13 78 0.902 0.951 0.896 0.986 0.036 

ORESTES 16 120 0.695 0.95 0.902 0.983 0.001 

OZIA 19 171 0.894 0.949 0.908 0.978 0.014 

PANTHYALE 39 741 0.908 0.95 0.921 0.972 0.005 

PARALLELIS 7 21 0.694 0.951 0.856 0.999 0.001 

PAVONII 2 1 1 0.95 0.552 1 1 
POLITA 10 45 0.877 0.949 0.875 0.992 0.03 
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PRAESTANS 1 0 NA NA NA NA NA 
PRAXILLA 9 36 0.768 0.949 0.868 0.994 0.001 

QUINTINA 6 15 0.88 0.95 0.843 1 0.066 
SINILIA 9 36 0.883 0.951 0.881 0.994 0.028 

SUSIANA 20 190 0.829 0.949 0.903 0.978 0.001 

THABENA-F 11 55 0.875 0.95 0.884 0.99 0.018 

THEUDELINDA 8 28 0.686 0.951 0.875 0.997 0.001 

TICIDA-M 8 28 0.285 0.95 0.867 0.996 0.001 

UMBROSA 3 3 0.876 0.949 0.73 1 0.162 
VESTILLA 1 0 NA NA NA NA NA 
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Appendix 7: Investigating the effect of random subsampling 

on Mantel tests and Multiple Regression on distance 

Matrices 

To examine whether mimetic interactions have led to the similarity of climatic niches 

between phenotypically similar species, thereby reinforcing their pattern of spatial congruence, 

we explored the relationship between mimetic turn-over (i.e., pairwise IST) and climatic 

distances (i.e., Euclidian distances in a standardized multivariate climatic space formed by our 

four bioclimatic variables) between pairs of communities. We randomly subsampled 1000 

communities in order to limit spatial autocorrelation and reduce computation time. We applied 

partial Mantel tests and Multiple Regressions on distance Matrices (MRM ; Legendre et al. 

1994) between pairwise IST and climatic distances taking into account a possible confounding 

effect of geographic distances. We performed these analyses a hundred times to ensure random 

subsampling of communities had no effect on our results. Table S2 summarizes the distribution 

of Spearman’s rho statistics and p-values obtained from the hundred replicates of Mantel tests. 

Table S3 summarizes the distribution of β-coefficients quantifying the strength of the 

relationship between distance matrices, and their associated p-values, obtained from the 

hundred replicates of MRM tests. Variability in the results appeared low in both cases (i.e., 

between 3.3 and 12.4% of variation in estimates of Spearman's ρ and β-coefficients) and tests 

always led to high significance (all p-values ≤ 0.001), which ensures that the significance of the 

Mantel tests and MRM tests presented in the main text (Fig. 4) is robust to the random 

subsampling of communities applied prior the analyses. 

 

Reference: 

 

Legendre, P., Lapointe, F. J., & Casgrain, P. (1994). Modeling brain evolution from behavior: 
a permutational regression approach. Evolution, 48(5), 1487-1499. 
https://doi.org/10.1111/j.1558-5646.1994.tb02191.x 

 

 

 

https://doi.org/10.1111/j.1558-5646.1994.tb02191.x
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Table S2: Summary statistics of Spearman's ρ correlation coefficients and associated p-

values for the 100 replicates of Mantel tests performed on different subsamples of 

Ithomiini communities (n = 1000). IST = pairwise mimicry turnover. Dclim = standardized 
climatic distances. Dgeo = geographic distances. SD = Standard deviation. CV = coefficient of 
variation. Q = quantile.  

  

IST ~ Dclim                   
(n = 100) 

  
IST ~ Dgeo                   
(n = 100)   

IST ~ Dclim + cov(Dgeo)  
(n = 100) 

Summary 
stats 

 Spearman's ρ p-value  Spearman's ρ p-value  Spearman's ρ p-value 
 

In Fig. 4  0.351 0.001  0.517 0.001  0.195 0.001  

mean ± 

SD 
 0.362 ± 0.016 0.001  0.534 ± 0.016 0.001  0.204 ± 0.022 0.001 

 

CV (%)  4.3 0  3.3 0  10.7 0  

Q 2.5%  0.333 0.001  0.504 0.001  0.159 0.001  

Q 97.5%  0.393 0.001  0.572 0.001  0.249 0.001  

min  0.316 0.001  0.492 0.001  0.156 0.001  

max  0.403 0.001  0.575 0.001  0.252 0.001  

 

 

Table S3: Summary statistics of β-coefficients quantifying the strength of the relationship 

between distance matrices, and their associated p-values for the 100 replicates of Multiple 

Regressions on distance Matrices (MRM) tests performed on different subsamples of 

Ithomiini communities (n = 1000). IST = pairwise mimicry turnover. Dclim = standardized 
climatic distances. Dgeo = geographic distances. SD = Standard deviation. CV = coefficient of 
variation. Q = quantile. § β-coefficients for IST ~ Dclim + cov(Dgeo) relates to the effect of climatic 
distances while accounting for the effect of geographic distances. 

  

IST ~ Dclim 

(n = 100)   
IST ~ Dgeo 

(n = 100)   
IST ~ Dclim + cov(Dgeo)     

(n = 100) 
Summary 

stats 
 β-coefficient 

p-
value 

 β-coefficient 
p-

value 
 β-coefficient 

§ 
p-value 

In Fig. 4  0.367 0.001  0.598 0.001  0.216 0.001 

mean ± SD   0.382 ± 0.020 0.001   0.632 ± 0.020 0.001   0.216 ± 0.027 0.001 

CV (%)  5.4 0  4.6 0  12.4 0 

Q 2.5%   0.344 0.001   0.583 0.001   0.165 0.001 

Q 97.5%  0.418 0.001  0.693 0.001  0.270 0.001 

min   0.336 0.001   0.567 0.001   0.161 0.001 

max   0.447 0.001   0.712 0.001   0.283 0.001 
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Appendix 8: Heatmap of climatic niche (dis)similarities 

among mimicry rings 

 

Figure S8: Heatmap of the p-values resulting from the post-hoc pairwise perMANOVA 

assessing the dissimilarity between the climatic niche of mimicry rings. The lower the p-
value, the more dissimilar the climatic niches of the two mimicry rings. Scale has been 
transformed as y = x5.8 to increase the contrast among low p-values. 186 out of 253 pairs (73.5%) 
show a p-value ≤ 0.001 (in blue); 210 (83.0%) show a p-value lower than 0.01; 226 (89.3%) 
show a p-value lower than 0.05. The dendrogram represents relationships between the mimicry 
rings based on their climatic niche. It was obtained with the hclust function, based on the 
standardized climatic Euclidian distances and a complete linkage method. 
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Appendix 9: Niche overlap among mimicry rings 

Complementarily to analyses of niche dissimilarity based on Euclidean centroid 

distances (Fig. 4.D ; SI Appendix 5, Fig. S6.B ; SI Appendix 8, Fig. S8), we explored 

differences in climatic niche overlap between co-mimetic OMUs. 

 First, we applied a PCA on environmental data extracted from the entire Ithomiini range 

in order to build a 2D orthogonal environmental space. We projected occurrences from OMUs 

in this environmental space. Then, we applied gaussian kernel density smoother on the 

occurrence points of each OMU using the R package hypervolume 3.1.0 (Blonder et al. 2022) 

in order to build a density function that model the environmental niche of each OMU 

(Broennimann et al. 2012). We applied a 95% probability threshold to delineate each 

hypervolume. We estimated niche overlap between pairs of OMUs as the Jaccard index which 

in this context represents the weighted portion of overlap across two hypervolumes. 

In order to test for the similarity of niche between comimetic OMUs, we compared the 

observed pairwise mean Jaccard index of niche overlap (i.e., Euclidean distances between niche 

centroids) between the niche optimum of pairs of co-mimetic OMUs with the null distribution 

of that same statistic obtained from 999 permutations of mimicry patterns across OMUs. A 

higher observed Jaccard index than the values in the null distribution would indicate that co-

mimetic OMUs display more similar climatic niche (i.e., show higher niche overlap) than 

expected at random. We conducted this test globally for all co-mimics, and per putative mimicry 

ring. 

 As a result, we showed that, similarly to PerMANOVA based on centroid distances, 

climatic niche overlap is significantly more important between co-mimetic OMUs than 

expected at random (Figure S9 ; Jobs = 0.230, CI 95% = 0.154, p-value ≤ 0.001). Moreover, 

28 putative mimicry rings (i.e., 71.8%) out of the 39 rings for which the test could be performed 

showed a significant pattern of niche similarity (Table S4). Altogether, this complementary 

analysis is in accordance with what was observed for niche dissimilarity based on Euclidean 

centroid distances (Fig. 4.D ; SI Appendix 5, Fig. S6.B: PerMANOVA : R² = 0.416, Pseudo-

F = 19.35, p ≤ 0.001 ; SI Appendix 8, Fig. S8). 
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https://doi.org/10.1111/j.1466-8238.2011.00698.x  

 

 

 

Figure S9: Distribution of global mean Jaccard’s niche overlap between co-mimetic OMUs 
under 999 randomizations of mimicry patterns. CI 95% = threshold of significance for this test. 
Black arrow indicates the position of the observed value (J obs). 

 

 

 

 

https://cran.r-project.org/package=hypervolume
https://doi.org/10.1111/j.1466-8238.2011.00698.x
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Table S4: Summary of permutation tests for the similarity of the climatic niche following 

mimicry patterns based on Jaccard’s niche overlap (J) among comimetic Operational 

Mimicry Units (OMUs) from each mimicry ring. N OMUs = Number of OMUs in the 
mimicry ring. N pairs = Number of pairs tested for this mimicry ring. Mean Jobs = Mean 
Jaccard’s niche overlap among comimetic OMUs observed. Mean Jnull = Average mean 
Jaccard’s niche overlap among comimetic OMUs for 999 permutations of mimicry patterns 
across OMUs. Q 5% = Jaccard’s niche overlap for quantile 5% in the null distribution. Q 95% 
= Jaccard’s niche overlap for quantile 95% in the null distribution. Bold p-values are 
significative for an α = 0.05. P-values are computed for a right-tail test assessing niche 
similarity, except for p-values with an asterisk which are computed for a left-tail test assessing 
dissimilarity of the climatic niche. 

Mimicry ring 
N 

OMUs 
N pairs 

Mean 

Jobs 

Mean 

Jnull 
Q 5% Q 95% p-value Pattern 

ACRISIONE 1 0 NA NA NA NA NA NA 

AGNOSIA 85 3570 0.191 0.147 0.126 0.17 0.002 similarity 

AMALDA 9 36 0.282 0.147 0.075 0.237 0.016 similarity 

AURELIANA 12 66 0.324 0.149 0.085 0.225 0.001 similarity 

BANJANA-M 45 990 0.194 0.148 0.115 0.182 0.013 similarity 

CONFUSA 20 190 0.279 0.147 0.098 0.204 0.001 similarity 

DERCYLLIDAS 1 0 NA NA NA NA NA NA 

DILUCIDA 40 780 0.345 0.148 0.113 0.187 0.001 similarity 

DOTO 15 105 0.223 0.149 0.094 0.214 0.034 similarity 

DUESSA 4 6 0.036 0.145 0.026 0.306 0.079 dissimilarity 

DUILLIA 3 3 0.374 0.149 0.006 0.368 0.046 similarity 

EGRA 11 55 0.221 0.148 0.081 0.228 0.066 similarity 

EURIMEDIA 35 595 0.216 0.147 0.112 0.185 0.001 similarity 

EXCELSA 18 153 0.288 0.148 0.097 0.209 0.001 similarity 

HEMIXANTHE 7 21 0.414 0.148 0.064 0.253 0.001 similarity 

HERMIAS 53 1378 0.254 0.147 0.119 0.178 0.001 similarity 

HEWITSONI 30 435 0.244 0.148 0.106 0.191 0.001 similarity 

HUMBOLDT 1 0 NA NA NA NA NA NA 

ILLINISSA 6 15 0.181 0.151 0.054 0.273 0.312 similarity 

LERIDA 66 2145 0.222 0.148 0.121 0.176 0.001 similarity 

LIBETHRIS 21 210 0.187 0.15 0.103 0.205 0.132 similarity 

LYSIMNIA 5 10 0.268 0.144 0.043 0.284 0.067 similarity 

MAELUS 16 120 0.277 0.146 0.092 0.208 0.003 similarity 

MAMERCUS 64 2016 0.233 0.147 0.12 0.177 0.001 similarity 

MANTINEUS 5 10 0.48 0.147 0.048 0.281 0.001 similarity 

MESTRA 14 91 0.247 0.149 0.09 0.22 0.014 similarity 

MOTHONE 14 91 0.303 0.147 0.086 0.218 0.001 similarity 

OCNA 13 78 0.216 0.149 0.084 0.221 0.066 similarity 

ORESTES 16 120 0.386 0.146 0.093 0.205 0.001 similarity 

OZIA 19 171 0.166 0.147 0.098 0.207 0.266 similarity 

PANTHYALE 39 741 0.205 0.148 0.113 0.185 0.012 similarity 

PARALLELIS 7 21 0.359 0.147 0.065 0.256 0.005 similarity 
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PAVONII 2 1 0.141 0.145 0 0.469 0.384* dissimilarity 

POLITA 10 45 0.221 0.151 0.081 0.236 0.088 similarity 

PRAESTANS 1 0 NA NA NA NA NA NA 

PRAXILLA 9 36 0.245 0.15 0.072 0.245 0.048 similarity 

QUINTINA 6 15 0.325 0.148 0.051 0.267 0.013 similarity 

SINILIA 9 36 0.113 0.146 0.074 0.233 0.285* dissimilarity 

SUSIANA 20 190 0.252 0.148 0.103 0.209 0.005 similarity 

THABENA-F 11 55 0.231 0.148 0.085 0.228 0.044 similarity 

THEUDELINDA 8 28 0.395 0.147 0.072 0.242 0.001 similarity 

TICIDA-M 8 28 0.525 0.147 0.069 0.247 0.001 similarity 

UMBROSA 3 3 0.243 0.153 0.006 0.361 0.188 similarity 

VESTILLA 1 0 NA NA NA NA NA NA 
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Appendix 10: Phylogenetic signal in the evolution of 

climatic niches and mimetic wing patterns 

The pattern of correlation between climatic conditions and mimicry rings could arise 

from phylogenetic inertia in both the evolution of mimicry patterns and the climatic niche of 

species (Losos 2008). Therefore, we tested for the presence of phylogenetic signal in those two 

ecological aspects. 

To test for phylogenetic signal in wing patterns, we computed the mean phylogenetic 

distance (MPD) among comimetic Operational Mimicry Units (OMUs). To assess the 

significance of the MPD, we generated via permutations a null distribution of this statistic 

modeling the absence of phylogenetic signal. The p-value of this test corresponds to the 

probability of obtaining a lower value for the MPD of comimetic OMUs than the values in the 

null distribution. Mimicry patterns did indeed show a significant phylogenetic signal. The mean 

pairwise phylogenetic distance between comimetic OMUs was lower than expected at random 

(i.e., when mimicry patterns are shuffled among OMUs; Fig. S10.A. MPD = 34.43 My, 999 

permutations, p ≤ 0.001). Twenty-three putative mimicry rings among the 39 for which the 

analysis could be performed (i.e., those having more than one OMU and thus with at least one 

pair) showed a significant phylogenetic signal in the distribution of their pattern in the 

phylogeny. Six mimicry rings showed the opposite pattern of significant phylogenetic 

overdispersion. A detailed summary for each mimicry ring is available in Table S5. 

To assess the presence of phylogenetic signal in the evolution of climatic niche, we 

computed the generalized version of Blomberg’s K statistic for multivariate traits (Kmult ; 

Blomberg et al. 2003; Adams 2014) using the R package geomorph (Adams et al. 2018). The 

original univariate statistic estimates the phylogenetic signal as the ratio of observed to expected 

phenotypic variation, given the phylogeny and a Brownian motion (BM) model of evolution 

(Blomberg et al. 2003). Its expected value under BM is K = 1, while a lower value indicates 

higher phenotypic variation among closely related species and a higher value shows 

phylogenetic conservatism (i.e., when traits across closely related species are even more similar 

than expected following evolution under BM). Its multivariate counterpart, the Kmult, takes into 

account the covariation between the different dimensions of a trait (i.e., the bioclimatic 

variables defining the climatic niche). Similarly to the K statistic, the significance of the Kmult 

is assessed by permuting data on the tips of the phylogeny and generating a null distribution 

that models the absence of phylogenetic signal. The p-value of this test corresponds to the 
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probability of obtaining a higher value for Kmult in the null distribution than the observed value, 

thereby indicating that the climatic niche is more similar among closely related species than 

expected at random (Adams 2014). The Kmult appeared to be higher than expected under the 

null hypothesis (i.e., permutations of climatic niches among species on the phylogeny; Fig. 

S10.B. Kmult obs = 0.120, 999 permutations, p = 0.013). Similarly, the likelihood ratio test 

between a macroevolutionary model of the climatic niche with an optimized λ (H1) and a null 

model with a λ fixed to zero (H0) revealed a low (λ = 0.41) yet significant phylogenetic signal 

(LRT - Khi² test, χ = 20.57, df = 1, p < 0.001). 
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Figure S10: Tests for phylogenetic signal in the evolution of mimicry pattern and climatic 

niche. (A) Null distribution of the mean pairwise phylogenetic distance (MPD) among 
comimetic species with mimicry pattern randomized 999 times on the phylogeny. An observed 
MPD lower than the 5% quantile shows the presence of phylogenetic signal in the evolution of 
mimicry patterns. (B) Null distribution of the Kmult statistic (103) with 999 permutations of 
climatic niche on the phylogeny. An observed Kmult higher than the 95% quantile shows the 
presence of phylogenetic signal in the evolution of climatic niche. 

 

Table S5: Permutation tests for phylogenetic signal in the evolution of each mimicry ring. 

Tests were based on mean pairwise phylogenetic distance (MPD) among comimetic 
Operational Mimicry Units (OMUs) within each mimicry ring. N OMUs = Number of OMUs 
in the mimicry ring. N pairs = Number of pairs tested for this mimicry ring. Mean MPD obs = 
Average mean pairwise phylogenetic distance among comimetic OMUs observed. Mean null 
MPD = Average mean pairwise phylogenetic distance among comimetic OMUs for 999 
randomizations of mimicry patterns among OMUs. CI 2.5% = MPD value for quantile 2.5% in 
the null distribution. CI 97.5% = MPD value for quantile 97.5% in the null distribution. Bold 
p-values are significative for an α = 0.05. p-values with an asterisk are computed for a right-tail 
test (i.e., p-value* = 1 – p-value) meaning they are assessing presence or absence of 
phylogenetic overdispersion in the mimicry ring pattern, while initial p-values are assessing 
presence or absence of phylogenetic clustering (i.e., phylogenetic signal). Green p-values are 
significant for clustering. Blue p-values are significant for overdispersion. 

Mimicry ring 
N  

OMUs 

N  

pairs 

Mean 

MPD obs 

Mean 

null 

MPD 

CI 2.5% 
CI 

97.5% 
p-value 

ACRISIONE 1 0 NA NA NA NA NA 
AGNOSIA 74 2701 31.784 37.16 34.928 39.277 0.001 

AMALDA 9 36 33.275 37.104 30.327 43.517 0.158 
AURELIANA 12 66 25.939 37.213 31.697 42.859 0.001 

BANJANA-M 43 903 32.787 37.127 34.193 39.974 0.001 
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CONFUSA 19 171 41.67 37.176 32.699 41.654 0.025* 

DERCYLLIDAS 1 0 NA NA NA NA NA 
DILUCIDA 35 595 37.864 37.14 33.967 40.138 0.334* 
DOTO 12 66 31.553 37.152 31.552 42.729 0.025 

DUESSA 3 3 23.002 37.393 23.579 50.981 0.023 

DUILLIA 3 3 20.439 37.415 24.417 48.155 0.018 

EGRA 10 45 30.232 37.213 30.583 43.369 0.023 

EURIMEDIA 33 528 36.452 37.074 33.566 40.189 0.358 
EXCELSA 17 136 43.615 37.025 32.305 41.653 0.001* 

HEMIXANTHE 5 10 38.464 37.206 27.681 46.539 0.439* 
HERMIAS 47 1081 41.073 37.129 34.444 39.866 0.001* 

HEWITSONI 27 351 30.914 37.117 33.227 40.707 0.001 

HUMBOLDT 1 0 NA NA NA NA NA 
ILLINISSA 6 15 32.855 37.302 29.033 45.084 0.157 
LERIDA 63 1953 31.529 37.144 34.774 39.366 0.001 

LIBETHRIS 20 190 24.444 37.071 32.763 41.437 0.001 

LYSIMNIA 4 6 48.133 37.373 25.917 48.543 0.033* 

MAELUS 15 105 42.965 37.132 32.389 42.117 0.008* 

MAMERCUS 56 1540 40.479 37.246 34.894 39.602 0.003* 

MANTINEUS 5 10 41.883 37.042 27.626 46.551 0.192 
MESTRA 14 91 31.47 37.321 32.281 42.597 0.012 

MOTHONE 12 66 36.728 37.22 31.793 42.728 0.441 
OCNA 13 78 28.457 37.026 31.595 42.333 0.001 

ORESTES 15 105 41.555 37.127 32.248 42.221 0.05* 
OZIA 16 120 30.628 37.183 32.688 42.132 0.001 

PANTHYALE 38 703 30.591 37.199 34.053 40.232 0.001 

PARALLELIS 7 21 39.086 37.394 29.93 45.421 0.339* 
PAVONII 2 1 12.271 37.314 11.078 52.878 0.028 

POLITA 9 36 29.048 37.128 30.806 43.569 0.011 

PRAESTANS 1 0 NA NA NA NA NA 
PRAXILLA 9 36 27.626 37.395 30.661 44.486 0.003 

QUINTINA 6 15 22.756 37.264 28.592 45.14 0.001 

SINILIA 8 28 28.209 37.473 31.015 44.202 0.005 

SUSIANA 18 153 31.503 37.219 32.761 41.624 0.006 

THABENA-F 10 45 27.166 37.217 30.94 43.474 0.002 

THEUDELINDA 8 28 30.391 37.113 30.351 44.293 0.028 

TICIDA-M 8 28 35.186 37.339 30.189 44.34 0.325 
UMBROSA 3 3 16.834 36.915 21.843 48.056 0.012 

VESTILLA 1 0 NA NA NA NA NA 
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Appendix 11: Simulation of neutral evolution of the 

climatic niche 

In order to disentangle similarity in wing patterns and climatic niches due to shared 

ancestry from that due to evolutionary convergence (i.e., exceeding expectations from shared 

ancestry alone), we took phylogeny into account in our analyses. We used comparative 

phylogenetic methods based on the simulation of stochastic evolution of continuous characters 

(Elias et al. 2008; Chazot et al. 2014) to simulate random evolution of the mean bioclimatic 

conditions of our species with the R package phylocurve 2.1.1 (Goolsby 2015). We applied first 

a phylogenetic PCA transformation (pPCA; Revell 2009) on our four bioclimatic variables in 

order to limit the number of dimensions and reduce risks of model misspecification (Adams & 

Collyer 2018). Then, we used the R package motmot.2.0 1.1.2 (Puttick et al. 2018) to test for 

the fit of several neutral multivariate macroevolutionary models.  

A classic Brownian Motion model (BM) simulating evolution in random direction of 

the niche space may not be optimal to model the neutral evolution of the climatic niche. For 

instance, punctuated evolution patterns can arise from the interaction between geographic 

barriers and dispersal (Boucher et al. 2014). Therefore we tested fits for models involving 

branch length transformations on the phylogenetic tree by implementing Pagel’s Lambda (λ) 

and/or Pagel’s Kappa (κ ; Pagel 1994, 1999) parameters. λ quantifies the intensity of 

phylogenetic signal in the data. In practice, all internal branches are multiplied by λ, and the 

value providing the best fit to the trait data is estimated. λ close to 1 (i.e., no transformation) 

equals a BM and is a sign of phylogenetic signal, while λ close to 0 illustrates the absence of 

phylogenetic structure. κ models the extent of punctuated evolution associated with 

cladogenesis. In practice, all branch lengths are raised to the power κ, and the value best fitting 

the trait data is estimated. For κ close to 0, all branch lengths are equal to 1 and trait evolution 

is strictly associated with cladogenesis. For κ close to 1, trait evolution follows a BM. All model 

fits were compared using AICc and Likelihood Ratio Tests. The best model according to the 

minimum AIC was the model including both a κ and a λ parameter for branch lengths 

transformation (Table S6). 
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Table S6: Comparison of the fit and estimated parameters of multivariate 

macroevolutionary models to the first two principal components of the pPCA applied on 

our four bioclimatic variables. BM = Brownian Motion model. p = number of parameters 
additionally to a BM, included in the AICc penalization. AICc = Akaike’s corrected 
Information Criterion. 

Evolutionary 

model p Likelihood AICc lambda (λ) kappa (κ) 
BM 0 -1689.36 3382.756 - - 
Lambda 1 -1506.043 3018.158 0.408 - 
Kappa 1 -1553.857 3113.786 - 0.169 
Kappa - Lambda 2 -1503.552 3015.224 0.01 0.39 

 

The likelihood ratio test between the Lambda model (H0) and the Kappa – Lambda 

model (H1) confirmed the significance of the improvement achieved by the inclusion of a kappa 

parameter (LRT - Khi² test, χ = 4.18, df = 1, p = 0.041). However, since the optimal λ parameter 

estimated for the Kappa – Lambda model tended to be very close to zero (i.e., λ = 0.01) and 

would have led to a phylogenetic tree harboring a unique basal polytomy denying the existence 

of phylogenetic signal in climatic niche, we decided to keep the Lambda model for our 

simulations.  

The reason behind the odd value for the estimated λ in the Kappa-Lambda model can 

be found in the topography of the likelihood landscape of the Kappa-Lambda model, since this 

model presents a wide plateau of optimality (Fig. S11). In consequence, combination of λ = 0.4 

and κ = 0.8 were nearly suboptimal in comparison to the actual estimated optimum for λ = 0.01 

and κ = 0.39. However, those two combinations of parameters describe a very different 

macroevolutionary reality, the former showing rather strong phylogenetic signal while the 

latter, and optimal one denies the presence of phylogenetic signal. Therefore, because of this 

plateau in the optimization of the likelihood, we cannot be confident in the estimation of the 

lambda and kappa parameters for this model. This exploration confirms our choice to keep the 

simpler Lambda model (with λ = 0.408) rather than this uncertain Kappa – Lambda model. 
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Figure S11: Likelihood landscape of the Lambda-Kappa multivariate macroevolutionary 

model while varying the lambda (x-axis) and kappa (y-axis) parameters. The red dot 
represents the estimated optimal combination of parameters to maximize the likelihood (i.e., 
lambda = 0.01 & kappa = 0.39). 

Finally, we selected a Brownian Motion with an additional Pagel’s λ parameter (λ = 

0.408) to simulate the neutral evolution of the climatic niche accounting for the intensity of the 

phylogenetic signal. To account for differences between OMUs of the same polymorphic 

species, we first simulated data at species-level on the phylogeny then added an intra-species 

variance component drawn for gaussian distributions based on observed variance of niches 

within each species to simulate data for each OMU. 
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Appendix 12: Climatic niche convergence per mimicry 

ring 

Table S7: Summary of simulation tests for the convergence of the climatic niche following 

mimicry patterns based on standardized climatic distance (MCD) among comimetic 

Operational Mimicry Units (OMUs) from each mimicry ring. N OMUs = Number of OMUs 
in the mimicry ring. N pairs = Number of pairs tested for this mimicry ring. Mean MCD obs = 
Mean climatic distance among comimetic OMUs observed. Mean null MCD = Average Mean 
climatic distance among comimetic OMUs for 999 simulations of climatic niche evolution. CI 
2.5% = MCD value for quantile 2.5% in the null distribution. CI 97.5% = MCD value for 
quantile 97.5% in the null distribution. Bold p-values are significative for an α = 0.05. The p-
value with an asterisk is computed for a right-tail test (i.e., p-value* = 1 – p-value) meaning it 
is assessing divergence of the climatic niche, while initial p-values are assessing convergence. 
Green p-values are significant for convergence. 

Mimicry ring 
N 

OMUs 

N 

pairs 

Mean 

MCD 

obs 

Mean 

null 

MCD 

CI 

2.5% 

CI 

97.5% 
p-value 

ACRISIONE 1 0 NA NA NA NA NA 
AGNOSIA 74 2701 0.913 0.954 0.851 1.069 0.239 
AMALDA 9 36 0.439 0.92 0.615 1.244 0.002 

AURELIANA 12 66 0.657 1.01 0.726 1.362 0.008 

BANJANA-M 43 903 0.673 0.934 0.795 1.09 0.001 

CONFUSA 19 171 0.867 0.984 0.761 1.242 0.17 
DERCYLLIDAS 1 0 NA NA NA NA NA 
DILUCIDA 35 595 0.366 0.986 0.817 1.149 0.001 

DOTO 12 66 0.616 1.086 0.789 1.425 0.001 

DUESSA 3 3 0.823 0.992 0.358 1.696 0.339 
DUILLIA 3 3 0.159 0.913 0.355 1.61 0.002 

EGRA 10 45 0.319 1.035 0.68 1.419 0.001 

EURIMEDIA 33 528 0.947 0.976 0.799 1.156 0.387 
EXCELSA 17 136 0.588 1.049 0.785 1.31 0.001 

HEMIXANTHE 5 10 0.14 1.153 0.63 1.776 0.001 

HERMIAS 47 1081 0.771 1.054 0.898 1.212 0.001 

HEWITSONI 27 351 0.404 0.951 0.773 1.146 0.001 

HUMBOLDT 1 0 NA NA NA NA NA 
ILLINISSA 6 15 0.31 1.188 0.682 1.804 0.001 

LERIDA 63 1953 1.014 0.953 0.834 1.074 0.173* 
LIBETHRIS 20 190 0.733 0.905 0.704 1.139 0.049 

LYSIMNIA 4 6 0.481 1.177 0.542 1.942 0.013 

MAELUS 15 105 0.628 1.132 0.839 1.45 0.002 

MAMERCUS 56 1540 0.867 1.076 0.928 1.22 0.003 

MANTINEUS 5 10 0.286 0.948 0.494 1.451 0.001 

MESTRA 14 91 0.42 0.917 0.687 1.16 0.001 

MOTHONE 12 66 0.532 1.054 0.728 1.377 0.001 
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OCNA 13 78 0.535 0.922 0.656 1.184 0.001 

ORESTES 15 105 0.428 1.115 0.825 1.438 0.001 

OZIA 16 120 0.62 0.917 0.68 1.159 0.006 

PANTHYALE 38 703 0.574 0.949 0.8 1.116 0.001 

PARALLELIS 7 21 0.478 1.089 0.668 1.548 0.003 

PAVONII 2 1 0.63 0.864 0.156 1.884 0.339 
POLITA 9 36 0.583 0.885 0.597 1.224 0.019 

PRAESTANS 1 0 NA NA NA NA NA 
PRAXILLA 9 36 0.357 0.873 0.577 1.199 0.002 

QUINTINA 6 15 0.349 1.05 0.576 1.598 0.001 

SINILIA 8 28 0.234 1.146 0.732 1.633 0.001 

SUSIANA 18 153 0.489 0.902 0.692 1.125 0.001 

THABENA-F 10 45 0.502 0.973 0.656 1.322 0.001 

THEUDELINDA 8 28 0.098 1.001 0.632 1.444 0.001 

TICIDA-M 8 28 0.114 0.993 0.626 1.427 0.001 

UMBROSA 3 3 0.595 0.819 0.318 1.469 0.233 
VESTILLA 1 0 NA NA NA NA NA 
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Appendix 13: Distribution of mimicry patterns on the 

phylogeny 
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Figure S12: Heatmap of the 44 mimicry patterns on the phylogeny of the tribe Ithomiini. 

The phylogeny from Chazot et al., 2019 includes 339 out of the 396 known species (85.6%). 

Mimicry rings are ordered from left to right by frequency of occurrences across the species. 
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ANNEXE 6  

Müllerian mimicry : one ring to bring them all, and in the 

jungle bind them 
 

 

The draft article presented here is the product of an on-going collaboration that followed 

the completion of a Master’s project led by Eddie Pérochon under my supervision during the 

course of my own PhD research. The project aimed to build upon my findings regarding the 

patterns of distribution of ithomiine butterflies presented in Chapter 1 to enlarge the taxonomic 

scope of the study to another emblematic clade of Neotropical mimetic butterflies involved in 

mutualistic interactions with ithomiines: the heliconiines (Nymphalidae: Heliconiinae: 

Heliconiini tribe). Specifically, we confronted biodiversity patterns of heliconiine and 

ithomiine butterflies throughout the Neotropics, and studied the effects of mutualistic 

interactions in their respective spatial distributions and niche evolution.  

Interestingly, this research project is what triggered in the first place the creation of a 

new reproducible method to classify wing patterns that later developed in the perceptual 

approach presented in Chapter 3. It resulted in the drafting of a research article which I present 

below in its current on-going progress.
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Abstract 

In the face of global change, understanding the mechanisms underlying species 

distributions and coexistence is essential to predict and prevent future disturbances, even more 

so for biodiversity hotspots such as the Neotropics. In particular, the effect of biotic interactions 

may be challenging to investigate at large spatial scales. Taking advantage of the well-

characterized Müllerian mimetic systems of neotropical butterflies, we investigated the effects 

of mutualistic mimetic interactions on large-scale spatial distributions and species niche 

evolution within and between two emblematic tribes of unpalatable neotropical butterflies 

separated by 85 My of evolutionary time, yet harbouring similar warning signals: the 

Heliconiini (Nymphalidae: Heliconiinae) and the Ithomiini (Nymphalidae: Danainae). 

We showed that both tribes display high diversity and concentration of rare species and 

mimicry patterns in the Tropical Andes, where anthropogenic pressures levels are high. 

Although, we detected differences in global biodiversity patterns between the two tribes likely 

due to differences in biogeographic histories, we showed that mimicry drives large scale spatial 

association among phenotypically similar species, both within and between tribes, providing 

new empirical evidence for the unfolding of Müller’s model at a macroecological scale. 

Furthermore, comparative phylogenetic analyses suggested that mimetic interactions drive the 

evolutionary convergence of the climatic niche of comimetic species within and even across 

tribes, thereby strengthening their co-occurrence. 

Altogether, our study highlights the power of mutualistic interactions in shaping large 

scale distribution patterns and driving species niche convergence across evolutionary distant 

lineages. Critically, our findings emphasize the vulnerability of mutualistic communities tied 

by positive interactions to community disassembly induced by climate change. 

 

Keywords 

biodiversity hotspots, comparative phylogenetic analyses, heliconiines, ithomiines, mimicry 

rings, Müllerian mimicry, Neotropical butterflies, niche convergence, spatial co-occurrence. 

  



ANNEXE 6: Heliconiini, the twin tribe 
 

 

370 

 

1 Introduction 

Biotic interactions known to structure ecological communities (Bascompte 2009) but, 

counterintuitively, their impact on biodiversity patterns remains difficult to quantify, especially 

at large spatial scales (Gaüzère et al. 2022; Windsor et al. 2023). There is a large diversity of 

biotic interactions, typically characterized by their effects on the fitness of interacting partners 

with negative effects such as exploitative competition, positive effects such as facilitation, or 

both such as predation. Ecologists also distinguish between intra-guild interactions occurring 

among species from the same ecological guild (i.e., sharing similar ecological roles or functions 

in the ecosystem) such as competition between predators for a similar prey resource, and 

interguild interactions occurring between species from different ecological guilds, such as 

predators and prey. Ecological interactions underlies numerous complex ecological and 

evolutionary processes that involves virtually all organisms on Earth forming what have been 

labeled as the web of Life (Bascompte 2009). 

Among this diversity of ecological interactions, intraguild mutualistic interactions 

remains some of the most understudied ones, particularly compared to other interactions such 

as predation and competition (Elias et al. 2009a). Such interactions within communities may 

involve from two unique individuals, such as a grouper and a moray eel patrolling the coral reef 

together, taking advantage of the complementary nature of their hunting abilities (Bshary et al. 

2006), to entire communities such as multispecies assemblages of frugivorous monkeys in the 

African equatorial forest, cooperating for food detection and predator warning (Stensland et al. 

2003). Despite their relative oversight, intraguild mutualistic interactions can have important 

consequences on both trait evolution and geographic distributions of involved organisms. They 

are predicted to favor evolutionary convergence of traits that enhance the co-occurrence of 

species, hence increasing benefits from such positive interactions, and leading to higher species 

ecological similarity in communities (Bruno et al. 2003; Thompson 2005; Elias et al. 2009a; 

Nuismer et al. 2013; Aubier & Elias 2020; Doré et al. 2023) in contrast to spatial and 

phenotypical divergence driven by negative intraguild interactions (Brown & Wilson 1956; 

Webb et al. 2002; Dayan & Simberloff 2005).  

The sampling of ecological interactions involved substantial costs in time and resources 

associated with the detection and characterization of the interactions such as in gut content 

analyses for trophic networks, records of flower visitation for pollination networks, curation of 

camera trap videos to identify plant-seed dispersers networks, etc. Although we witnessed 
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recent international efforts to aggregate and standardize ecological interactions datasets in 

openly accessible databases (GloBI: Poelen et al. (2014); Interaction Web DataBase:  

www.ecologia.ib.usp.br/iwdb/; Web of Life: www.web-of-life.es), there are still many gaps in 

our global knowledge of the biogeography of ecological interactions (Poisot et al. 2021). 

In order to partly fill this gap, and address the effect of intraguild mutualistic interactions 

at large spatial scales, Müllerian mimicry appears as an ideal case study. Müllerian mimicry is 

a type of mutualistic interactions that involves species that evolved similarity in traits associated 

with predator deceiving characteristics. This similarity is characterized by shared visual, 

behavioral, chemical or acoustic signals, which are labeled as “honest” because they are used 

to warn predators for existing predatory-deceiving traits such as unpalatability, harmfulness, 

and evasiveness (Ruxton et al. 2004; Sherratt 2008). Species that interact through mimicry form 

groups called ‘mimicry rings’ (Papageorgis 1975; Joron & Mallet 1998). Such interactions are 

considered mutualistic because the species involved are sharing the cost of educating predators 

to avoid their pattern. The more abundant are the individuals that are sharing warning patterns, 

the less the cost for each species (Müller 1879). Müllerian mimicry has been described in many 

groups including birds, several taxonomic orders of insects, snakes, fishes, and amphibians 

(Dumbacher & Fleischer 2001; Symula et al. 2001; Williams 2007; Alexandrou et al. 2011; 

Wilson et al. 2015; Muñoz-Ramírez et al. 2016; Motyka et al. 2021). This wide taxonomic 

distribution and numerous independent emergences reinforce the idea that Mullerian mimicry 

represents a selective advantage for defended prey (Sherratt 2008). Contrary to many ecological 

interactions, Müllerian mimicry relatively straightforward to characterize: in a given 

community, individuals sharing their warning signal (i.e., from the same mimicry ring) are 

engaged in mimetic interactions with each other, while individuals from different mimicry rings 

do not interact, at least through mimicry. Therefore, in this study we offer to use Müllerian 

mimicry as a case study to investigate the consequences of intraguild mutualistic interactions 

on community structures and species niche evolution at large spatial scales. 

Both founders of the theoretical background for the two main documented types of 

defensive mimicry, Fritz Müller (Müllerian mimicry) and Henri Walter Bates (Batesian 

mimicry), studied the neotropical Heliconiine and Ithomiine butterflies (Nymphalidae: 

Heliconiini & Ithomiini tribes), which were instrumental in building their respective theories. 

All species in these tribes appear unpalatable to predators. They acquire this defensive ability 

through the accumulation of toxic chemical compounds retrieved as caterpillars from their 

Passifloraceae host plants in the case of heliconiines (Castro & Zurano 2019), and from feeding 

http://www.ecologia.ib.usp.br/iwdb/
http://www.web-of-life.es/
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on decaying Boraginaceae and Asteraceae flowers for Ithomiini (Brown Jr 1984). Both tribes 

are widely distributed across the American continent, from Canada (Heliconiini) and Mexico 

(Ithomiini) to the North of Argentina. Throughout this wide range, many species are interacting 

via Müllerian mimicry harboring locally similar wing patterns making them ideal candidates to 

study the effects of intraguild mutualistic interactions at large spatial scales. 

The tribe Heliconiini contains 8 genera, 77 species and 457 subspecies (Kozak et al. 

2015; Jiggins & Lamas 2016). There is a large diversity of wing patterns in this tribe and some 

species like Heliconius erato shows a striking intra-specific diversity of forms (Fig. 1.a). The 

tribe Ithomiini contains 42 genera, 396 species and 1542 subspecies (Chazot et al. 2019b). They 

are well-known for some species like Greta morgane which possess partly transparent wings 

(Fig. 1.a). Despite being phylogenetically distant by approximately 86 My (Fig. 1.b; Espeland 

et al. 2018; Chazot et al. 2019a), the same distance from humans to flying lemurs (Order: 

Dermoptera; Upham et al. 2019), the two tribes share numerous warning patterns, thus still 

interact through mimetic interactions (Fig. 1.a). 

 

Figure 1. (a) Illustration of the diversity of wing patterns within and between tribes for Ithomiini 

and Heliconiini. The four central subspecies represent examples of subspecies that share similar 

wing patterns and take part into Müllerian mimicry interactions. From 1 to 12 : Heliconius erato 
adana, Heliconius erato chestertonii, Heliconius numata bicoloratus, Melinaea isocomma simulator, 
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Hypothyris ninonia daeta, Veladyris pardalis christina, Heliconius erato cyrbia, Heliconius erato 
luscombei, Eueides isabella dissoluta, Mechanitis lysimnia utemaia, Tithorea harmonia helicaon, Greta 
morgana oto. (b) Phylogeny of the Nymphalidae family (Espeland et al. 2018). Tip labels represent 
butterfly subfamilies except for Danainae and Heliconiinae which are divided in tribes. The red-dotted 
line represents the estimated divergence time between Heliconiini and Ithomiini tribes. 

Previous studies have investigated independently the macroecological patterns of 

diversity in ithomiine (Doré et al. 2022) and heliconiine butterflies. A recent study on Ithomiini 

showed that mutualistic interactions has led to both large scale spatial associations and climatic 

niche evolutionary convergences between co-mimetic species (i.e., species that are in the same 

mimicry ring) in this clade (Doré et al. 2023). Nevertheless, no study has yet investigated in an 

integrated framework the two tribes, a crucial step to jointly define mimicry rings, and to 

understand the role of mimetic interactions into shaping the continental-scale distribution of 

interacting species, as such defining the structure and composition of communities. 

Considering the lack of knowledge in the importance of mutualistic interactions in 

shaping global diversity patterns, the present study aims to: 

(1) Map Heliconiini diversity patterns and to investigate potential differences and 

similarities with Ithomiini.  

(2) Test whether mutualistic interactions between Heliconiini and Ithomiini shape co-

occurrence of co-mimetic species at large spatial scales, within and between tribes. 

(3)  Test whether mutualistic interactions jointly drives the convergence of the climatic 

niche of co-mimetic species within and between tribes. 

2 Materials and Methods 

2.1  Mimicry classification 

We classified butterfly wing patterns in groups of phenotypically similar patterns (i.e., 

hypothesized phenotypic mimicry rings as in Doré et al. 2023). Such mimicry rings may not 

represent mutualistic interactions, because the members of the ring may not actually cooccur. 

As such, they are hypotheses of ‘putative mimicry rings’. If a significant signal of spatial co-

occurrence is detected, then they can qualify as ‘effective mimicry rings’ tentatively depicting 

true ecological interactions (Sanders et al. 2006; Wilson et al. 2022). We collected at least one 

picture of dorsal wing patterns for 435 out of 457 subspecies of Heliconiini, taken from Museum 

and private collection specimens thanks to our network of collaborators. We ordinated and 

clustered visually all Heliconiini pictures based on perceived similarity in their dorsal wing 
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similarity of color, patterns, and shape. Geographic distributions of taxa were not taken into 

account during this process. For Ithomiini, we used the currently accepted classification of 

mimicry patterns (Doré et al. 2022), built following the same rationale of phenotypic similarity 

independent from geographical distributions. Then, we matched the identity of ‘phenotype-

based mimicry rings’ represented in the two tribes. The comprehensive mimicry classification 

of heliconiine subspecies is available in Supplementary (Table SX in SM). 

2.2  Occurrence database and phylogenies 

In order to map biodiversity patterns of heliconiine butterflies, we employed a database 

of 77,577 georeferenced occurrences collected on the field and complemented by records from 

Museum collections. We updated the taxonomic identity of records in agreement with the latest 

publications (Kozak et al. 2015; Jiggins & Lamas 2016). This database covered 73 out of 77 

species of the tribe (94.8 %) and 418 out of 457 subspecies (91.4 %). 

To estimate indices of phylogenetic diversity and evaluate niche convergence we 

merged three phylogenies: the Heliconiini phylogeny by Kozak et al. (2015) that encompasses 

67 of the 77 species (87 %) of the tribe; the Ithomiini phylogeny by Chazot et al. (2019b) that 

encompasses 339 of the 396 species (85.6 %); and the Nymphalidae phylogeny by Espeland et 

al. (2018) as the backbone used to graft the two tribe-level phylogenies. 

2.3  Species Distribution Modeling (SDM) 

To predict spatial distributions, we performed independently Species Distribution 

Modeling (SDM) for each subspecies of Heliconiini. The output of the SDM process was a 

single consensus model (Ensemble model) for each subspecies that quantifies habitat suitability 

on a realistic taxa-specific range and provides a proxy of likelihood of presence of each 

subspecies in each grid cell (i.e., community).  

As predictors of species distributions, we used environmental variables that are relevant 

for butterfly ecology according to literature. Temperatures and precipitation are known to 

influence the development of host plants for butterflies (Boggs et al. 2003), while elevation 

(Chazot et al. 2014; Montejo-Kovacevich et al. 2020) and forest cover (Brown Jr 1997) are 

important factors shaping heliconiine butterfly distribution. We extracted annual mean 

temperature, mean diurnal range, annual precipitation levels, and precipitation seasonality from 

WorldClim bioclimatic variables dataset (v2.1, accessed 02/2021; Fick & Hijmans 2017) and 

from forest cover from the Landsat Tree Cover Continuous Fields dataset (Sexton et al. 2013) 

aggregated at a quarter-degree cell resolution (i.e., pixel of ca. 30 km × 30 km). 
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We performed modelling for each subspecies by using three different algorithms 

(Random Forest, Gradient Tree Boosting and Artificial Neural Network) crossed with three 

independent sets of pseudo-absences and three spatially-structured cross-validation blocks. . 

We calculated the median of all models that passed our quality evaluation process to create an 

ensemble model for each subspecies. We cropped each subspecies predicted distribution to a 

relevant area according to its occurrences using a taxa-specific buffered alpha-hull. Finally, we 

merged ensemble models to acquire predicted distribution maps for species, mimicry rings, and 

Operational Mimicry Units (OMUs). OMUs are defined as all individuals of a unique species, 

eventually spread among several sub-species, that belong to the same mimicry ring (Doré et al. 

2022). 

More details about the modelling process are available in the ODMAP form (Zurell et 

al. 2020) in Supplementary Materials (Appendix X in SM). Similar models were already 

performed for Ithomiini at the OMU-level in Doré et al. (2022). These predictions were used 

to compare diversity patterns and investigate spatial associations between the two tribes. 

2.4  Diversity indices 

We computed a series of indices for each community (represented by 30 km × 30 km 

grid cell) and mapped for the whole distribution range of the two tribes:  

- Species & mimicry richness as the number of predicted species/mimicry ring per 

community. 

- Faith's Phylogenetic Diversity (Faith 1992) as the sum of branch lengths of the 

phylogenetic tree including all taxa found in a community. 

- Mean species & mimicry ring geographic rarity (Leroy et al. 2012) as the weighted 

proportion of species or mimicry ring with small geographical range per community. These 

indices inform on the areas where species/mimicry ring with the smallest range are 

concentrated.  

- Mean ring size as the mean number of species per mimicry ring for each community. This 

index provides insights on the degree of pattern convergence in the community as a high mean 

ring size implies high number of species harboring the same mimicry patterns locally. 

2.5  Test for spatial association among comimetic species 

In order to detect effects of mimicry ring membership, thus of mutualistic interactions, 

on the spatial distribution of Heliconiini and Ithomiini, we investigated the degree of co-
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occurrence of co-mimetic species (species of the same mimicry ring) across grid cells. We 

computed pairwise Bray-Curtis (Bray & Curtis, 1957) distances, an index that quantifies 

dissimilarity between the distribution of two entities, in our case between pairs of OMUs. Thus, 

we calculated the mean Bray-Curtis distance of all co-mimetic OMUs and within each mimicry 

ring, representing the average degree of co-occurrence of co-mimetic units. To test the 

significance of these statistics, we used permutation tests under the null hypothesis that mimicry 

ring membership has no effect on co-occurrence. Therefore, for each permutation, we 

randomized the mimicry ring membership of all OMUs to investigate whether co-mimics 

species co-occur more than expected at random globally, and within each mimicry ring. As 

such, an observed BC lower than 95% of null statistics indicates a significant signal for spatial 

congruence. These analyses were performed for Ithomiini and Heliconiini independently and 

for pairs of comimetic OMUs formed between the two tribes (labeled as ‘Inter’ in subsequent 

analyses). 

2.6  Test for niche evolution among co-mimetic species 

In order to investigate whether mimicry led to niche convergence between co-mimetic 

species (i.e., Ithomiini only, Heliconiini only and Inter-tribe comimics), we performed 

comparative phylogenetic analyses. Climatic niche was described as the centroid of OMUs 

occurrences using bioclimatic variables employed during niche modeling (i.e., annual mean 

temperature, mean diurnal range, annual precipitation levels, precipitation seasonality). 

First, we fit multivariate neutral evolution models to explain the distribution of niche 

centroid values on the phylogeny. We compared AICc of a Brownian motion model with 

models implementing additional Pagel’s lambda or/and Pagel’s kappa parameters accounting 

respectively for presence of phylogenetic signal and punctuated evolution associated with 

cladogenesis (Pagel 1994, 1999), to select for the best fitted option. Additionally, we tested for 

the presence of phylogenetic signal in the evolution of the climatic niche, and mimetic patterns. 

We used mean climatic distances (MCD) as the pairwise Euclidean distances in the 

climatic space to measure the similarity of niches between co-mimetic species. To test for an 

effect of mimicry membership of climatic niche evolution, we simulated the evolution of the 

climatic niche under the neutral evolutionary model (n = 999) to obtain a null distribution for 

MCD between co-mimetic OMUs. As such, an observed MCD lower than 95% of null statistics 

indicates a significant signal for niche convergence. 
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3 Results 

3.1 Diversity patterns  

We mapped several diversity indices that represent different facets of Heliconiini and 

Ithomiini diversity (Fig. 2). As a reference, a map of South American regions mentioned in this 

study are available in Supplementary (Fig. SX in SM).  

We predicted a peak of species richness in the Andes for Heliconiini with up to 35 

species (Fig. 2.a), which is almost half of the total species count in the group (35 out of 77 

species; 45.5%). We also observed a high richness in the Amazon basin (especially along the 

Amazon River) and in the south of Central America. The regions of Cerrado, Northern 

Argentina, Northern Central America, Caribbean islands, and the United States appeared less 

rich with generally the presence of one to six species predicted. Zooming on the Andean region, 

we observed that the most important species richness is found at mid-elevation, between 500 

and 2,500 meters, with a significant drop beyond 2,500 meters (Fig. SX in SM). These 

biodiversity patterns are close to what was predicted for Ithomiini that present also a peak of 

richness in Andes and Southern Central America, but proportionally less species along the 

Amazon River and more in the Atlantic Forest. Also, Heliconiini are present in North America 

where Ithomiini do not go higher than Mexico. 

We predicted a high geographical rarity (i.e., many species with restricted geographical 

ranges) not only in the Andes, but also in the North of Argentina and in the Caatinga in Brazil 

(Fig. 2.b). In this last region, up to 50% of the species present are among those considered as 

rare regarding of their restricted geographic range. The minimum geographic rarity is found in 

the United States because they host few species (e.g., Agraulis vanillae and Dryas iulia) with 

wide geographical distributions. Proportionally, more rare species are present at higher 

altitudes, especially above 2,500 meters, in contrast to species richness that declines sharply 

above that limit (Fig. SX in SM). In contrast, Ithomiini species with restricted ranges are 

concentrated along the Andes and in Central America. 

Phylogenetic diversity was highly correlated with species richness for both tribes with 

peaks in the Andes and around the Amazon River (Fig. 2.c). However, a more homogeneous 

phylogenetic diversity is predicted in the Amazon basin for Heliconiini, not only around the 

Amazon river and main streams, but also in the heart of the forest. Phylogenetic diversity is 

also high in Central America and near the Atlantic Forest. 
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Mimetic richness (i.e., the number of mimicry rings present at a given location) has a 

pattern close to that of species richness. However, there is an even higher contrast between the 

Andes and the rest of America, the maximum richness being reached in the Northern Andes 

where 24 of the 39 Heliconiini mimicry rings and 29 of the 44 Ithomiini mimicry rings are 

predicted to cooccur. The mimicry richness of the Amazon basin stands out much less for 

Heliconiini due to an average ring size estimated between 1.5 and 3 species per ring, more 

important in the Amazon basin compared to the Andes with up to 1.5 species per ring only (Fig. 

2.f). Furthermore, mimetic rarity shows rings with smaller distribution ranges in these regions 

compared to the rest of the continent (Fig. 2.e). Ithomiini patterns are quite different in terms 

of mimicry ring size. Species are forming larger mimicry rings in Eastern Andes, Western 

Amazon, Panama, Guyana Shield and Atlantic Forest, with between 3.5 to 7 species per ring in 

average. However, it is similar in terms of mimicry rings rarity with largely distributed mimicry 

rings in Amazonia and rings with restricted distributions in the Andes. 

 

Figure 2: Heatmaps of the different facets of Heliconiini and Ithomiini diversity at the continental 

scale. (a) Species richness. (b) Mean species rarity. Rarity index based on species range. (c) Faith’s 
Phylogenetic Diversity (Faith, 1992). (d) Mimicry richness (i.e., number of mimicry rings). (e) Mean 
mimicry rarity. Rarity index based on mimicry ring range. (f) Mean mimicry ring size (i.e., mean number 
of species per ring). 
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3.2 Mimicry drives spatial congruence of comimetic species 

To explore whereas mutualistic interactions have an effect on species distributions we 

used the Bray Curtis index to measure large-scale co-occurrence of comimetic species. We 

detected that Heliconiini (BCobs = 0.892, BCnull 5% = XXX, p ≤ 0.001), Ithomiini (BCobs = 

0.724, BCnull 5% = XXX, p ≤ 0.001) and inter-tribe comimics (BCobs = 0.882, BCnull 5% = XXX, 

p ≤ 0.001) all display significant congruent spatial distributions. Hence, comimetic species tend 

to cooccur more than at random at large spatial scale, within and between tribes. 

At mimicry ring-level, we observed that our hypothesized phenotypic mimicry rings 

display a variety of spatial distributions, mostly supporting their qualification as ‘effective 

mimicry rings’ in case of significant signal for spatial congruence. For instance, the 

MOTHONE ring showed an important and significant overlap between the tribes (Fig. 3.a; 

Permutation test: BCobs = XXX, BCnull Q5% = XXX, p ≤ 001), with most species found in the 

Andes. On the contrary, the ring MANTINEUS showed no overlap between the two tribes (Fig. 

3.b; Permutation test: BCobs = 0, BCnull Q5% = XXX, p = 1), with Ithomiini species only found 

in the Western lowlands across Ecuador and Colombia, and Heliconiini species found in 

contrast in the Atlantic Forest, the Caatinga, the Lower Amazon and the Guyana Shield. The 

MAMERCUS ring presented a remarkable pattern where Ithomiini taxa showed a wide range 

from Central America to Argentina, covering almost the entirely the disjunct distribution of 

Heliconiini species spread between the Lower Amazon and several mountain ranges in the 

Andes (Fig. 3.c). Despite this important overlap, the non-significance of the spatial congruence 

test for this mimicry ring hypothesis (Permutation test: BCobs = 0, BCnull Q5% = XXX, p > 0.05) 

was likely due to the small number of Heliconiini taxa (4) compared to Ithomiini (64) limiting 

the power of permutation tests. 

 

Figure 3: Comparative maps of predicted habitat suitability for Heliconiini and Ithomiini putative 

phenotypic mimicry rings. (a) MOTHONE ring. (b) MANTINEUS ring. (c) MAMERCUS ring. 
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Overall, we observe that 14 out of 31 (45.2%) of our phenotypic mimicry ring 

hypotheses are supported by the spatial congruence test for Heliconiini (8 patterns were not 

tested because only one species harbors it). This proportion rise to 32 out of 39 (82.1%) rings 

supported for Ithomiini (5 patterns not tested for similar reasons). For Inter-tribe mimicry ring 

hypotheses, 6 out of 8 (75%) are supported by our tests (Table SX in SM).  

3.3 Mimicry is associated with niche convergence of comimetic species 

We investigated the significance of niche convergence between phenotypically similar 

species by computing MCD for each group of comimetic species (Heliconiini, Ithomiini, Inter-

tribe comimics). Mean climatic niche similarity (i.e., MCD) in Ithomiini, Heliconiini and Inter-

tribe was significantly lower than the distribution of climatic distances simulated under our null 

evolution model, for all three groups (Ithomiini only: MCDobs = 0.788, MCDnull Q5% = XXX, 

p ≤ 001; Heliconiini only: MCDobs = 0.670, MCDnull Q5% = XXX, p ≤ 001; Inter-tribe: MCDobs 

= 0.782, MCDnull Q5% = XXX, p = 0.024). Therefore, comimetic species in all three groups 

tends to have more similar climatic niches than expected if niche evolution was neutral. As 

such, climatic niche of comimetic species tend to converge within and between tribes. 

Overall, we observed that XX out of 31 (XX%) of our phenotypic mimicry ring 

hypotheses showed significant niche convergence in Heliconiini, and 33 out of 39 (84.6%) rings 

in Ithomiini. For Inter-tribe mimicry ring hypotheses, niche convergence was supported for XX 

out of 8 (XX%) mimicry rings (Table SX in SM). 

4 Discussion 

Taking advantage of the well-characterized Müllerian mimetic systems of neotropical 

butterflies, we investigated the effects of mutualistic mimetic interactions on large-scale spatial 

distributions and species niche evolution within and between two emblematic tribes of 

unpalatable neotropical butterflies separated by 85 My of evolutionary time, yet harbouring 

similar warning signals: the Heliconiini (Nymphalidae: Heliconiinae) and the Ithomiini 

(Nymphalidae: Danainae). We showed that both tribes display high diversity and concentration 

of rare species and mimicry patterns in the Tropical Andes, where anthropogenic pressures 

levels are high. Although, we detected differences in global biodiversity patterns between the 

two tribes likely due to differences in biogeographic histories, we showed that mimicry drives 

large scale spatial association among phenotypically similar species, both within and between 

tribes, providing new empirical evidence for the unfolding of Müller’s model at a 
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macroecological scale. Furthermore, comparative phylogenetic analyses suggested that 

mimetic interactions drive the evolutionary convergence of the climatic niche of comimetic 

species within and even across tribes, thereby strengthening their co-occurrence. 

Altogether, our study highlights the power of mutualistic interactions in shaping large 

scale distribution patterns and driving species niche convergence across evolutionary distant 

lineages. Critically, our findings emphasize the vulnerability of mutualistic communities tied 

by positive interactions to community disassembly induced by climate change. 

4.1 Biogeographic history, topographic heterogeneity, and host plant 

distributions may explain global biodiversity patterns  

The species richness and phylogenetic diversity of Heliconiini are particularly high 

around the Amazon River and in the eastern Andes (Fig. 2), which is consistent with previous 

study about Heliconiini (Rosser et al., 2012, 2021). It also correlates with biodiversity patterns 

observed in other taxa including angiosperms (Ter Steege et al. 2003), beetles (Pearson & 

Carroll 2001), birds (Orme et al. 2005), mammals (Kaufman & Willig 1998), reptiles (Roll et 

al. 2017), and amphibians (Hutter et al. 2017). As such, the Amazon basin and Tropical Andes 

are one of the highest, if not the highest biodiversity hotspot on Earth (Myers et al. 2000; Hutter 

et al. 2017). This outstanding biodiversity can mostly be explained by geological and climatic 

factors. The topographical complexity of recent mountain regions such as the Tropical Andes 

facilitates fine-spatial scale variation of environmental conditions and provides more 

opportunities for parapatric and allopatric speciation fueled by adaptive radiations across the 

diversity of environmental niches available (Särkinen et al. 2012; Bouchenak-Khelladi et al. 

2015; Rangel et al. 2018). Moreover, Tropical Andes and the Amazon basin have benefited 

from a relative historical climatic stability thought to reduce species extinction rate (Fine 2015) 

and allowing for the long-term persistence of high levels of species diversity and endemism 

(Araújo et al. 2008; Svenning et al. 2015; Harrison & Noss 2017). Noticeably, the Brazilian 

Atlantic forest that, although far away from the other hotspots, presents a relatively important 

diversity, which could be explained by multiple colonization events followed by local 

diversification facilitated by an adequate environment (i.e., dense forest cover, similar to the 

Amazon forest). 

While both the Andes and the area surrounding the Amazon River harbor a high species 

richness, mimicry richness is reduced in the Amazon compared to that of the Andes. Thus, 

mimicry rings comprise more species along the Amazon River than in the Andes, while also 
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having larger geographic ranges, as illustrated by the low geographic rarity index in this region. 

Although there are more mimicry rings in the Andes, they tend to harbor fewer species per ring 

and smaller distribution ranges (Fig. 2). This mimicry richness and distribution pattern suggests 

two contrasting evolutionary histories for those two regions. In the Amazon forest, a few large-

range mimicry rings dominate heliconiine communities, which may advocate for important 

convergence of wing patterns, and an efficient frequency-dependent selection purging less 

frequent rings at large scale. In the Andes, where mimicry rings have a smaller area and are 

composed of fewer species, there is no dominance of a few large-range patterns. This is likely 

due to important environmental gradients and geographic barriers present in these regions that 

favor local scale partitioning of predator communities and consequently the presence of local 

scale selection of various mimicry patterns. 

Altogether, Heliconiini large-scale diversity patterns show some disparities with are 

those of Ithomiini (Doré et al. 2022). Overall, Ithomiini diversity is more important all over the 

continent with more species and mimicry patterns. Ithomiini present very dominant richness 

and rarity hotspots in the Andes while heliconiines show relatively high richness in the Amazon 

forest too. This disparity could be explained by the different origin of those lineages: Ithomiini 

in the Andes (Chazot et al. 2019b) and Heliconiini in the Amazon basin (Rosser et al. 2012) 

where they had more time to speciate and accumulate richness respectively. Moreover, both 

tribes are composed of highly specialized species which typically nest on a single host plant 

species (Willmott & Mallet 2004; Jiggins & Lamas 2016). However, heliconiines and 

ithomiines are specialized on two distinct families of plants, respectively the Passifloraceae and 

the Solanaceae, with which they are suspected to have tightly coevolved (Willmott & Mallet 

2004; Jiggins & Lamas 2016). Thus, differences in the biogeographic histories of the two 

hostplant lineages could partly explained the current dissimilarities observed between global 

biodiversity patterns of heliconiine and ithomiine butterflies. Overall, further investigations 

based on joint inferences of ancestral ranges of butterflies and their respective hostplants, 

colonization events and ancestral aposematic patterns are needed to clarify the picture. 

4.2 Strong spatial and climatic niche associations over 85 My of 

independent evolution 

Despite showing some disparities in global biodiversity patterns, the two tribes are still 

strongly linked through mimetic interactions. We showed an important proportion of the 

phenotypic mimicry rings we hypothesized within and between both tribes are actually showing 

significant spatial congruence (e.g., MOTHONE ring in Fig. 3.a), thus are likely involved in 
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mutualistic interactions in local communities where they share the cost of educating predators 

to their unpalability. 

Our study also highlighted the importance of considering the whole mimetic community 

into account when investigating how mutualistic interactions shape the distribution of species, 

even when those are evolutionary distantly related. For example, when studying the Heliconiini 

mimicry ring MAELUS, we found no evidence of co-occurrence nor climatic niche 

convergence among species for this hypothesized ring. Yet, once accounting for the Ithomiini 

members of such inter-tribe phenotypic ring, we detected an overall significant signal for spatial 

congruence and niche convergence. Similarly, the Heliconiini mimicry ring MAMERCUS 

presented a disjunct distribution pattern (Fig. 3.c) that seemed hardly coherent at first sight. 

Yet, once studied in relation to its Ithomiini counterpart, it formed a continuous coherent pattern 

since the range of comimetic ithomiine species encompasses the different patches of 

heliconiines (Fig. 3.c). 

Moreover, we found a significant pattern of climatic niche convergence within and 

between phenotypically similar species that unfolds at continental scale. A pattern of niche 

convergence across comimetic species of mimetic neotropical butterflies had already been 

detected for ecological dimensions acting at local scales, such as nocturnal roosting habitat 

height (Mallet & Gilbert 1995), flight height (Beccaloni 1997b; DeVries et al. 1997), and forest 

structure (Elias et al. 2008). Yet, here we show such convergence can arise for niche dimensions 

(i.e., climatic niche) that affect directly large scale biodiversity patterns and link the faith of   

two tribes separated by over 85 My of independent evolution. Indeed, mimetic interactions 

appeared powerful enough that even species that have diverged in a time where Tyrannosaurid 

were still on Earth (Brusatte et al. 2010), are currently sharing very similar phenotype, spatial 

distributions and climatic niches. 

Such strong adaptive bounding going across millions of years of evolution may have 

crucial consequences in the face of the ongoing climate change. Indeed, Müllerian mimicry 

represents mutualistic interactions that are beneficial for the individuals involved, allowing for 

instance to compensate for negative effects of competition (Aubier & Elias 2020), and fueling 

higher local richness (Gross 2008; Aubier et al. 2017). However, when mutualistic interactions 

are lost due to species extinction or community disassembly while facing global changes, their 

disappearance can fragilize the community stability and potentially trigger local extinction 

cascades (Dunn et al. 2009; Vidal et al. 2019). Since Müllerian mimetic species rely on local 
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mutualistic interactions with co-mimics and host plants, the threat of community disassembly 

due to climate change is even more profound for them (Toby Kiers et al. 2010; Sheldon et al. 

2011). The dispersal abilities of Müllerian mimetic species are impeded by the purifying 

selection acting on individuals harboring unknown phenotypes in the newly colonized areas 

(Mallet & Barton 1989; Langham 2004). Moreover, despite relatively similar climatic niche 

optima, tolerance to climate change and extremes, as well as species dispersal abilities, may 

still differ among comimetic species, limiting opportunities for co-dispersal trajectories and 

leading to community disassembly. Finally, the effects of climate change on biotic factors that 

affect local abundance, such as hostplants (Willmott & Mallet 2004) and parasitoids (Gentry 

1998), may also differ among interacting species. 

Altogether, the consequences of climate changes on Müllerian mimetic communities 

remain uncertain. They form tightly coevolved assemblages tied by positive interactions, 

making them particularly vulnerable to global environmental changes (Tylianakis et al. 2008). 

However, the convergence of climatic niche among comimetic species may offer (limited) 

opportunities for congruent dispersal trajectories that would partly prevent community 

disassembly. This uncertainty stresses the need to produce predictions for future species 

distributions in order to better support the identification of refuge areas for biodiversity 

conservation that are resilient to climate changes (Keppel et al. 2015). Such predictions would 

ideally include species interactions in the modeling framework (Brooker et al. 2007; Toby Kiers 

et al. 2010; Tylianakis et al. 2010; Staniczenko et al. 2017) to account for their importance in 

shaping large biodiversity patterns as illustrated here with Neotropical mimetic butterflies. 

4.3  Limits and perspectives 

Despite a high proportion of putative phenotypic ring showing significant spatial co-

occurrence, thus likely representing current mimetic interactions among members of the rings, 

there are groups of species that we hypothesized to cooccur because of similarity in wing 

patterns that actually displayed disjunct distribution areas (i.e., MANTINEUS ring in Fig 3.b). 

In these cases, the similarity of patterns could tentatively be explained by cooccurrence in the 

past that led to local pattern convergence followed by different dispersal trajectories leading to 

current disjunct areas. However, this is unlikely for the MANTINEUS rings considering the 

important geographic distances and topographic barriers separating the two groups. Thus, the 

similarity in phenotypes may have arisen by chance. 
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Such similarity observed between geographically separated group of species could also 

illustrate the limit of our mimetic classification approach. Indeed, our classification is based on 

expert decision and perception which may differ from those of the communities of predators 

that are selecting the patterns of these butterflies. What is perceived has similar by the expert, 

may not be considered as such by a wild predator (e.g., Dittrich et al. 1993). Research about 

mimicry would greatly benefit from a standardized and reproducible analytic framework to 

classify patterns. Recent advances in machine learning-based algorithms adapted to visual 

signal treatment could pave the way for such standards (e.g., Ezray et al. 2019; Hoyal Cuthill 

et al. 2019). 

Finally, this study has highlighted the importance of accounting for the whole 

community of interacting species when investigating mutualistic interactions. This is 

particularly true for macroecological studies that are often focused on specific taxonomic 

groups and tend to overlook the ecological and evolutionary importance of interactions 

(Windsor et al. 2023). Heliconiines and ithomiines forms the bulk of the insect mimetic 

communities in the Neotropics (Poole 1970; Beccaloni 1997a), yet they also interact with a 

wide range of other mimetic butterflies and moths such as the Dismorphiinae (Poulton 1898), 

the Dioptinae (DeVries 1994), the Pericopina (Brown Jr 1979), and even damselflies 

(Outomuro et al. 2013; Corral-lopez et al. 2021). How these relatively less explored 

components of mimetic communities affect the whole distribution and niche evolution of 

interacting species is virtually unknown. Thus, future directions on this research topic may aim 

to enlarge the taxonomic scope and shed an even brighter light on the importance of mimetic 

interactions into shaping large spatial biodiversity patterns across evolutionary distantly related 

lineages. 
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Biodiversity and evolution in                      

Neotropical mimetic butterflies 

In the face of global change, understanding the mechanisms underlying species distributions 

and coexistence is both a priority and a challenge, especially for biodiversity hotspots such as 

the Neotropics. This research work aims to unravel effects of Müllerian mimicry on large-scale 

spatial and evolutionary patterns of biodiversity in two tribes of Neotropical butterflies, the 

Ithomiini (Nymphalidae: Danainae) and Heliconiini (Nymphalidae: Heliconiinae), employing 

an integrative approach across biogeography, phylogenomics, and community ecology. 

I map the taxonomic, phylogenetic and mimetic facets of Ithomiini biodiversity and identify 

areas of evolutionary and ecological importance for conservation. I show that tropical montane 

forests that host high species and mimetic diversity as well as rare species and mimicry patterns 

appear particularly under threat. I present a new phylogeny that resolves deep evolutionary 

relationships, providing a stable tool to study evolution in ithomiine butterflies. I describe a 

new method to generate 3D perceptual maps of the variation of heliconiine butterfly wing 

patterns. I map the local phenotypic diversity as the degree of clustering in the perceptual space 

and define local mimicry groups. Finally, I show that mimicry drives large scale spatial 

association and evolutionary convergence of the climatic niche of co-mimetic species, 

highlighting the importance of mutualistic interactions in shaping both niche evolution and 

species assemblages at large spatial scales. 

Keywords: biodiversity indices, Citizen Science, climatic niche, ecological signals, 
evolutionary convergence, machine learning, macroevolution, Müllerian mimicry, Neotropical 
butterflies, perceptual maps, phylogenomics, species assemblages, species distribution models. 
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