
HAL Id: tel-04920798
https://theses.hal.science/tel-04920798v1

Submitted on 30 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust optimal shape design strategies for systems with
friction-induced instabilities and uncertain parameters

Achille Jacquemond

To cite this version:
Achille Jacquemond. Robust optimal shape design strategies for systems with friction-induced in-
stabilities and uncertain parameters. Other. Ecole Centrale de Lyon, 2024. English. �NNT :
2024ECDL0039�. �tel-04920798�

https://theses.hal.science/tel-04920798v1
https://hal.archives-ouvertes.fr


 

 

N° d’ordre NNT : 2024ECDL0039 

 

 

THESE de DOCTORAT DE L’ECOLE CENTRALE DE LYON 

membre de l’Université de Lyon 

 
 

École Doctorale N°162  

MEGA – Mécanique, Énergétique, Génie Civil, Acoustique 
 

Spécialité de doctorat : Génie mécanique 
 

Soutenue publiquement le 17/10/2024, par : 

 

Achille JACQUEMOND 
 

Robust optimal shape design strategies 
for systems with friction-induced 

instabilities and uncertain parameters 
 

 

Devant le jury composé de : 

 

LALLART, Mickaël, Professeur, INSA Lyon                                    Examinateur, Président 

AUGER, Anne, Directrice de recherche, Inria RandOpt Team, CMAP,              Rapporteure 

École Polytechnique 

BERGER, Sébastien, Professeur, INSA Centre Val de Loire                       Rapporteur 

MAHMOUDI, Sonia, Maitresse de conférences, Advanced Institute for          Examinatrice 

Materials Research, Tohoku University 

SHIMOYAMA, Koji, Professeur, Kyushu University                                Examinateur 

BESSET, Sébastien, Maitre de conférences HDR,                                 Directeur de thèse 

École Centrale de Lyon 

GILLOT, Frédéric, Maitre de conférences, École Centrale de Lyon   Co-encadrant de thèse 
 
 
 
Unité de recherche : LTDS – Laboratoire de Tribologie et Dynamique des Systèmes 





Remerciements
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au Japon, lors d’une année qui a été particulièrement enrichissante.
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Abstract

The design of mechanical systems is a challenging subject for industrial manufacturers,
with ever-increasing demands for high performance, precision, and speed. Numerical
shape optimization is becoming more and more popular for design of mechanical sys-
tems for its effectiveness when compared to creating and adjusting designs sequentially,
but problems such as absence of gradient, nonlinearity, and computational cost of the
performance metrics constitute major difficulties. Moreover, geometric uncertainties can
have considerable impact on system performance, and must be mitigated to ensure ro-
bustness of the proposed solutions. Disc brakes, used in various types of vehicles, are
complex systems which exhibit squeal noise due to friction-induced instabilities. Numer-
ically quantifying squeal noise leads to gradient-free, nonlinear, and costly performance
functions which are characteristic of the overall challenges in industrial design of me-
chanical systems. The presented PhD research introduces new ways of conducting robust
shape optimization for industrial design combining modern numerical tools, applied to
the case of a disc brake under squeal noise criterion. Based on the Isogeometric Analysis
method for shape parametrization and mechanical analysis, two approaches are proposed
to search for optimal designs which balance performance and robustness to uncertain-
ties. The first method uses sparse Polynomial Chaos Expansions to get an estimation
of output variability to uncertainties and combines it with a genetic algorithm to search
for optimal solutions. This approach is shown to provide solutions which balance perfor-
mance and robustness at a reasonable computational cost and with satisfactory accuracy.
The second method uses a variant of the Kriging surrogate modeling method capable
of taking into account noisy observations for uncertainty propagation, combined with a
Bayesian Optimization-inspired enrichment strategy. This approach shows potential for
great computational cost reduction although more efforts are to be made to increases ap-
plicability in high dimensions and accuracy of the associated robustness metric. Overall
the conducted research demonstrates the difficulties of carrying out shape optimization
of mechanical systems while taking into account the impact of uncertainties, with com-
promise between computational cost and accuracy being the key aspect. Nonetheless,
both proposed methods show great potential and open new perspectives in the current
context of industrial design of mechanical systems.

Keywords: shape optimization, uncertainty quantification, robustness, mechanical de-
sign, multi-objective optimization, blackbox functions, Isogeometric Analysis, Polyno-
mial Chaos Expansions, Kriging, nonlinear mechanics, disc brake, squeal noise.
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Résumé en français

La conception de systèmes mécaniques est un défi pour les industriels, avec des exigences
croissantes en performance, en precision, et en temps de calcul. L’optimisation de forme
numérique devient de plus en plus utilisée de par son efficacité par rapport à la conception
par création et modification séquentielle de la géometrie des pièces mécaniques. Cepen-
dant, plusieurs problèmes tels que l’absence de gradient, la non-linearité, et le coût de
calcul des fonctions numériques utilisées pour quantifier la performance, constituent des
difficultés majeures. De plus, la présence d’incertitudes géometriques pouvant avoir un
impact considérable sur la performance des systèmes mécaniques, celles-ci doivent être
prises en compte. Les freins à disque, presents dans de nombreux types de véhicules, sont
des systèmes mécaniques complexes qui ont tendance à émettre un bruit de crissement
dû à un phénomène complexe d’instabilités vibratoires induites par frottement. La quan-
tification numérique du bruit de crissement pour sa minimisation mène à une fonction de
performance sans gradient, coûteuse en temps de calcul et non-linéaire, qui représente
fidèlement les principaux défis en conception optimale de systèmes mécaniques. Le
travail de thèse présenté introduit de nouvelles approches pour l’optimisation robuste
de forme de systèmes mécaniques, en combinant des méthodes numériques modernes,
appliquées au cas d’un frein à disque sous critère de minimisation de bruit. En se bas-
ant sur la méthode d’Analyse Isogéometrique pour la paramétrisation de la forme et
l’analyse du comportement mécanique, deux approches qui permettent de rechercher
des conceptions optimales équilibrant performance et robustesse aux incertitudes, sont
proposées. La première approche utilise la méthode du Chaos Polynomial creux afin
d’obtenir une estimation de la variabilité de la fonction de performance aux incertitudes
géometriques, combinée avec un algorithme génétique pour la recherche de solutions
optimales. La capacité de cette approche à fournir des conceptions équilibrant perfor-
mance et robustesse avec un coût de calcul raisonnable et une précision satisfaisante, est
démontrée. La deuxième approche utilise la méthode du Krigeage bruité, méthode de
meta-modélisation avec la possibilité de prendre en compte du bruit dans ses observa-
tions, pour la quantification d’incertitudes, combinée avec une stratégie d’enrichissement
inspirée de l’Optimisation Bayésienne. Les résultats obtenus démontrent le grand po-
tentiel de cette approche à réduire le coût de calcul de l’optimisation robuste, bien que
des efforts soient nécessaires pour généraliser la méthode proposée en grande dimension,
ainsi que pour assurer la fiabilité de l’estimation de robustesse. Généralement, l’étude
présentée illustre les difficultés associées à l’optimisation de forme robuste de systèmes
mécaniques complexes, dans le cas du frein à disque sous critère de bruit, l’aspect clé
étant le compromis entre coût de calcul et précision des solutions obtenues. Les deux
approches proposées constituent une contribution significative en optimisation de forme
robuste et ouvrent de nouvelles perspectives dans le domaine.

Mots-clés: optimisation de forme, quantification d’incertitudes, robustesse, conception
mécanique, optimisation multi-objectifs, fonction bôıte noire, Analyse Isogéométrique,
Chaos Polynomial, Krigeage, mécanique non-linéaire, frein à disque, bruit de crissement.

5





Contents

Nomenclature 11

List of Figures 17

List of Tables 19

Introduction 21

1 State of the art 25
1.1 Multi-objective optimization of blackbox functions . . . . . . . . . . . . . 25

1.1.1 Multi-objective optimization . . . . . . . . . . . . . . . . . . . . . 25
1.1.2 Bayesian optimization . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 Shape optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.1 Finite Element Method-based shape optimization . . . . . . . . . . 28
1.2.2 Isogeometric Analysis-based shape optimization . . . . . . . . . . . 29
1.2.3 Topology Optimization . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 Uncertainty quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.1 Uncertainty classification, quantification and propagation . . . . . 31
1.3.2 Reliability-based approaches . . . . . . . . . . . . . . . . . . . . . 33
1.3.3 Sampling methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.3.4 Stochastic expansions . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.4 Friction-induced instabilities and squeal noise . . . . . . . . . . . . . . . . 40
1.4.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.2 Origin of squeal noise . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.4.3 Quantifying squeal noise . . . . . . . . . . . . . . . . . . . . . . . . 43

1.5 Situation of the PhD research . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 Friction-induced instability model 49
2.1 Disc-pad IGA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.1.1 IGA formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1.2 Simplified disc-pad model . . . . . . . . . . . . . . . . . . . . . . . 52
2.1.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.1.4 Contact formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2 Model reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.2.1 Craig & Bampton . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.2.2 Application to the disc-pad model . . . . . . . . . . . . . . . . . . 63

2.3 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7



Contents

2.4 Equations of motion & Complex Eigenvalue Analysis . . . . . . . . . . . . 65
2.4.1 Treatment of the nonlinear forces . . . . . . . . . . . . . . . . . . . 65
2.4.2 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.4.3 Equilibrium point . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.4.4 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.4.5 Eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.4.6 State system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5 Stability function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.6 Physical insight and model validation results . . . . . . . . . . . . . . . . 70

2.6.1 Hopf bifurcation & dynamical instability identification . . . . . . . 70
2.6.2 Effect of damping . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.6.3 Linear vs nonlinear contact stiffness . . . . . . . . . . . . . . . . . 73
2.6.4 Effect of the number of contact points . . . . . . . . . . . . . . . . 75
2.6.5 Material and pad thickness considerations . . . . . . . . . . . . . . 76

2.7 Important takeaways from the disc brake modeling process . . . . . . . . 80

3 Optimization problem setting 83
3.1 Input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.1 Deterministic shape parameters . . . . . . . . . . . . . . . . . . . . 83
3.1.2 Uncertain parameters . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2.1 Performance function . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2.2 Robustness to uncertainties . . . . . . . . . . . . . . . . . . . . . . 88

3.3 Constraint functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4 Optimization problem recap . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 PCE-based strategy 89
4.1 Polynomial chaos mathematical background . . . . . . . . . . . . . . . . . 89

4.1.1 Polynomial chaos expansion . . . . . . . . . . . . . . . . . . . . . . 89
4.1.2 Basis truncation schemes . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.3 Basis-adaptive PCE . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.4 A-posteriori error approximation . . . . . . . . . . . . . . . . . . . 92
4.1.5 Calculation of the PCE coefficients . . . . . . . . . . . . . . . . . . 93
4.1.6 Moments of a PCE and interest for uncertainty quantification . . . 95

4.2 Application to the disc brake optimization problem . . . . . . . . . . . . . 95
4.2.1 Problem setting and resolution . . . . . . . . . . . . . . . . . . . . 95

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.1 PCE output variance convergence . . . . . . . . . . . . . . . . . . 98
4.3.2 Bi-objective optimization results: case 1 . . . . . . . . . . . . . . . 102
4.3.3 Bi-objective optimization results: case 2 . . . . . . . . . . . . . . . 106

4.4 Important takeaways from the PCE-based strategy . . . . . . . . . . . . . 110

8



Contents

5 Kriging-based strategy 113
5.1 Kriging background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1.1 Kriging formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1.2 Steps of Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Noisy Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3 Bayesian Optimization background . . . . . . . . . . . . . . . . . . . . . . 117

5.3.1 Theoretical background of EI . . . . . . . . . . . . . . . . . . . . . 118
5.4 Noisy Kriging based robust optimization strategy . . . . . . . . . . . . . . 119

5.4.1 Noise computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.4.2 Enrichment strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Implementation and results . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5.1 Comparison between Kriging and noisy Kriging . . . . . . . . . . . 121
5.5.2 Results of the enrichment strategy . . . . . . . . . . . . . . . . . . 123

5.6 Kriging limitations in high dimensions . . . . . . . . . . . . . . . . . . . . 126
5.6.1 Kriging validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.6.2 Testing a deep learning tool for comparison . . . . . . . . . . . . . 128

5.7 Important takeaways from the Kriging-based strategy . . . . . . . . . . . 133

Conclusion 135

Bibliography 139

9





Nomenclature

Disc brake model

αd First coefficient for Rayleigh damping

βd Second coefficient for Rayleigh damping

µ Range of studied eigenvalues for the sta-
bility function

Φ Vector of modes of the fixed-interface
structure

ϕeig System eigenvector

Ψ Vector of static modes

C Damping matrix

FC Vector of external forces applied to the
contact interface degrees of freedom

Fext External force vector after Craig &
Bampton reduction

Fext Vector of external forces

Ffull External force vector of the full sys-
tem before Craig & Bampton reduction

FNL Vector of non linear contact forces

I Identity Matrix

JFNL
Jacobian matrix of the nonlinear

forces for the whole system

J∗
FNL

Jacobian matrix of the nonlinear
forces for one contact point pair

K Stiffness matrix after Craig & Bampton
reduction

KC,C Full mass matrix’s components
which link internal degrees of freedom
together

KC,I Full mass matrix’s components
which link contact degrees of freedom
to internal degrees of freedom

Kd,init Initial stiffness matrix of the disc

Kd Stiffness matrix of the disc after appli-
cation of displacement interpolation

Kfull Stiffness matrix of the full system
before Craig & Bampton reduction

KI,C Full mass matrix’s components
which link internal degrees of freedom
to contact degrees of freedom

KI,I Full mass matrix’s components which
link internal degrees of freedom together

M Mass matrix after Craig & Bampton re-
duction

MC,C Full mass matrix’s components
which link contact degrees of freedom to-
gether

MC,I Full mass matrix’s components
which link contact degrees of freedom
to internal degrees of freedom

Md,init Initial mass matrix of the disc

Md Mass matrix of the disc after applica-
tion of displacement interpolation

Mfull Mass matrix of the full system be-
fore Craig & Bampton reduction
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Nomenclature

MI,C Full mass matrix’s components
which link internal degrees of freedom to
contact degrees of freedom

MI,I Full mass matrix’s components
which link internal degrees of freedom
together

qg Vector of generalized degrees of freedom
associated to each mode of the structure

Qc,tot Total transfer matrix for contact
correspondence between disc and pad

Qc Transfer matrix for contact correspon-
dence between disc and pad

Qred Transfer matrix for Craig & Bampton
reduction

RNR Newton Raphson residue vector

S State matrix for the equations of motion

U Vector of the full system’s degree of free-
dom displacements

UC Vector of the full system’s contact in-
terface degree of freedom displacements

UI Vector of the full system’s internal de-
gree of freedom displacements

U0 Equilibrium point displacements

Uint Vector of non contact point displace-
ments of the disc

Unew Vector of new contact point displace-
ments of the disc

Uold Vector of old contact point displace-
ments of the disc

V State variable for the equations of mo-
tion

δ Relative displacement between the disc
and pad contact point pair

δU Small perturbation of the equilibrium
point

Γ Displacement interpolation function for
contact correspondence between disc and
pad

λ System eigenvalue

µ Friction coefficient

ν Poisson coefficient of the pad material

ωi i-th structural mode frequency

ωmax Maximum frequency of the studied
interval for damping

ωmin Minimum frequency of the studied
interval for damping

ℜ+ Positive part of the real part operator

ρ Density of the pad material

θ Angle between the friction force direction
and u⃗x

F⃗n,d Vector of the disc contact force nor-
mal to the contact surface

F⃗n,p Vector of the pad contact force normal
to the contact surface

F⃗t,d Vector of the disc contact force tan-
gential to the contact surface

F⃗t,p Vector of the pad contact force tan-
gential to the contact surface

F⃗x,d Disc contact force along u⃗x

F⃗x,p Pad contact force along u⃗x

F⃗y,d Disc contact force along u⃗y

F⃗y,p Pad contact force along u⃗y

F⃗z,d Disc contact force along u⃗z

F⃗z,p Pad contact force along u⃗z
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Nomenclature

u⃗n Unit vector in the normal direction to
the contact surface

u⃗t Unit vector in the tangential direction
to the contact surface

u⃗x Unit vector of the first Cartesian coor-
dinate

u⃗y Unit vector of the second Cartesian co-
ordinate

u⃗z Unit vector of the third Cartesian coor-
dinate

ξd Damping rate

Cs Disc brake stability function

CNL Constant for simplification of the
non-linear contact force expression

d0 Shift parameter for the stability crite-
rion

E Young’s modulus of the pad material

kL Linear contact stiffness

kNL Non-linear contact stiffness

n Number of displacement interpolation
functions

neig Number of eigenvalues of the system

nmodes Number of structural modes con-
sidered for the Craig & Bampton reduc-
tion

Re External radius of the disc geometry

re External radius of the pad geometry

Ri Internal radius of the disc geometry

ri Internal radius of the pad geometry

T Thickness of the disc geometry

t Thickness of the pad geometry

u Brake model control point displacement
along the first direction of the Cartesian
coordinate system

Un,d Disc contact point displacement along
the normal to the contact surface

Un,p Pad contact point displacement along
the normal to the contact surface

Ux,d Disc contact point displacement along
u⃗x

Ux,p Pad contact point displacement along
u⃗x

Uy,d Disc contact point displacement along
u⃗y

Uy,p Pad contact point displacement along
u⃗y

Uz,d Disc contact point displacement along
u⃗z

Uz,p Pad contact point displacement along
u⃗z

v Brake model control point displacement
along the second direction of the Carte-
sian coordinate system

Vr Disc-pad relative sliding speed

w Brake model control point displacement
along the third direction of the Cartesian
coordinate system

x First coordinate of the brake model’s
control points on the contact surface
plane

y Second coordinate of the brake model’s
control points on the contact surface
plane

Isogeometric Analysis

B Strain-displacement matrix
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Nomenclature

CBC B-spline curve

CNC NURBS curve

CNS NURBS surface

E Material property matrix

Jξη Jacobian matrix for the mapping of the
master element to the parametric space

Jst Jacobian matrix for the mapping of the
physical space to the master element

Kinit Stiffness matrix of a NURBS model

Pi vector of coordinates of the i-th control
point

s NURBS knot vector

W Vector of weights for Gauss quadrature

γi Weight associated to i-th control point

k NURBS knot multiplicity

mc Number of NURBS control points
along the second geometric direction

nc Number of NURBS control points along
the first geometric direction

Ni,p i-th B-spline basis function of order p

NINT Number of integrations for Gauss
quadrature

p Order of NURBS basis functions along
the first geometric direction

q Order of NURBS basis functions along
the second geometric direction

si NURBS knot value

Kriging

Ŷ Kriging output prediction

βj j-th unknown coefficient for the Kriging
trend

∆ Noisy Kriging sample outputs

η Main parameter of the Matérn 5/2 cor-
relation function

β̂ Vector of Kriging coefficients

λK Linear predictor coefficients

f Vector of all regression functions

FX Vector of regression functions evalu-
ated at all the sample points

RX Spatial correlation matrix

XK Matrix of Kriging observations inputs

Xp Prediction input vector

YK Vector of Kriging observation outputs

ϵi Noisy Kriging i-th output noise compo-
nent

ηk Hyperparameter of the Matérn 5/2 cor-
relation function

E Expected value operator

MSE Mean square error operator

ỸK Noisy Kriging sample outputs

σK Kriging prediction standard deviation

σZ Standard deviation of random process
Z

dX Number of deterministic input param-
eters of the physical model

fj j-th fixed regression function for the
Kriging trend

fcdf Cumulative distribution function of
the normal distribution
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Nomenclature

fpdf Probability density function of the
normal distribution

IEI Expected improvement function

kr Number of regression functions for the
Kriging trend

ns Number of samples used to build the
Kriging model

R Spatial correlation function

RM52 Matérn 5/2 correlation function

Ymin Minimum value among the Kriging
sample outputs

Z Kriging systematic deviation from the
linear part

Optimization problem

Xd Vector of pad shape parameters

Xu Vector of pad shape parameters which
are considered uncertain

X
u
i i-th uncertain parameter average value

σu Uncertain parameters’ standard devia-
tion

σCs Standard deviation of the stability cri-
terion output due to uncertainties

θj Angular cylindrical coordinate of the j-
th pad control point for shape modifica-
tion

A Area of the disc-pad contact surface

Amin Minimal area of the disc-pad con-
tact surface for the braking capacity con-
straint

g1 First objective function of the optimiza-
tion problem

g2 Second objective function of the opti-
mization problem

h1 Constraint function of the optimization
problem

nu Number of uncertain parameters

rj Radial cylindrical coordinate of the j-th
pad control point for shape modification

Xu
i i-th uncertain parameter

Polynomial Chaos Expansion

â Final vector of PCE coefficients obtained
by least-squares

α Multi-index which identifies the compo-
nents of the polynomial basis

Ψt Vector which gathers orthonormal
polynomials Ψα

A Regression matrix containing the values
of the basis polynomials at the experi-
mental design points

a Vector of variable PCE coefficients

X Random vector representing the un-
certain input parameters of the physical
model

x Input parameters of the physical model

Xexp Set of experimental design points for
PCE construction

y Outputs of the physical model

Yexp Set of experimental outputs for PCE
construction

δαβ Multidimensional Kronecker delta

δjk Kronecker delta

ϵemp Normalized empirical estimation of
the generalization error
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Nomenclature

ϵgen Generalization error

ϵLOO Leave-one-out cross-validation error

ϵval Generalization error evaluated
through a validation set

λpen Penalization term for Least Angle Re-
gression

A Subset of NM which contains the se-
lected multi-indices α

A M,p,q q-norm truncation scheme basis

A M,p,r Maximum interaction truncation
scheme basis

A M,p Standard truncation scheme basis

M Considered physical model

M PC Truncated polynomial expansion

µPCE Mean value of the PCE

ϕj Univariate orthonormal polynomials

Ψα Multivariate polynomials orthonormal
with respect to fX

σPCE Standard deviation of the PCE

aα Deterministic coefficients of the PCE

fX Probability density function of random
vector X

fxu
k
Probability density function of the k-

th PCE uncertain input parameter

M Number of uncertain input parameters

Nval Size of the validation set for error es-
timation

P Number of elements of A M,p

p Maximum polynomial order of the trun-
cated PCE

q Parameter for the q-norm truncation
scheme

r Parameter for the maximum interaction
scheme

W (i) Gaussian quadrature weights for
PCE coefficient calculation

x(i) Gaussian quadrature quadrature
points for PCE coefficient calculation

xival i-th input validation point for error es-
timation

Y Random variable representing the model
output in the uncertain case

State of the art

xj Potential solution of a multi-objective
optimization problem

fobj
i Objective function of a multi-
objective optimization problem

fls Limit-state function

Fst Safety factor of a structure

Lst Load of a structure

Pf Probability of failure

Rst Resistance of a structure

S Space of input parameters of a multi-
objective optimization problem
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Introduction

Optimizing the performance of mechanical systems is a major goal for manufacturers.
One important way to affect the performance of any system is to modify the shape of its
mechanical parts. In other words, the design process is a key step in the production of
mechanical systems. Creating and adjusting the design of mechanical parts sequentially
has been the norm for decades, but this type of approach is very restrictive in terms
of exploring the full space of possible designs. For this reason, shape optimization pro-
cesses have become increasingly popular and are being implemented in various industries.
Shape optimization consists in finding shapes of mechanical parts which maximize certain
predefined performance metrics, using sophisticated numerical techniques. In the indus-
trial context, simulation tools such as FEM are commonly used to quantify performance.
The performance functions originating from such simulation tools are often gradient-free,
nonlinear, and computationally costly. Optimization methods allowing to handle such
complex cases, for example Efficient Global Optimization (EGO), have been the object
of abundant research in recent years. Additionally, it is not uncommon to have multiple
competing performance metrics in which case Multi-objective Optimization (MOBO)
approaches must be considered, which attempt to find sets of solutions representing the
best compromises between the different objectives (Pareto optimality). Moreover, the
design and manufacturing processes inevitably include various sources of uncertainty
which can have a considerable effect on system performance. In particular, performance
can be very sensitive to geometrical discrepancies between numerically optimized designs
and actual manufactured parts. Under such conditions, robustness of optimal solutions
is a predominant challenge associated to shape optimization. Reliability-based Design
Optimization (RBDO), which optimizes performance functions subject to probabilistic
constraints such as reliability indicators or failure probability, is currently the most com-
monly applied method to deal with design optimization under uncertainty. Tackling the
challenges related to modern design of real mechanical systems, namely the presence
of uncertainties, non-linearity, computational cost and gradient-free character of perfor-
mance metrics, and the multiplicity of these metrics, requires the development of ever
more sophisticated and complex numerical methods. Given the current state of research
on this topic, there are currently three crucial methodology aspects which will be deci-
sive for the future of design optimization of mechanical systems under uncertainties.

Firstly, how designs are modified forms the basis of the design optimization process.
There are currently several ways of describing the shapes of mechanical systems in the
aim of optimizing performance. Size optimization modifies the dimensions of geometrical
parameters which define the shape. Its main advantage is its ease of implementation, in
particular in conjunction with simulation methods such as the Finite Element Method
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(FEM) without creating troublesome meshing issues. Its main drawback is the lack of
exploration of the design space since the overall shape of the system is predetermined.
Topology optimization (TO) is the exact opposite, where the distribution of a material
is freely optimized within a defined bounding domain in order to minimize some cost
function. In theory, this method is attractive as it allows complete exploration of the
design space, however in practice, issues such as how to combine it with Computer-Aided
Engineering (CAE) tools, the manufacturability of the obtained designs, and necessity
of the cost function’s gradient make it a questionable choice in some settings especially
for gradient-free design under uncertainties. Generative design, a method similar to
topology optimization but which employs artificial intelligence and which is generally
used earlier in the design process, suffers from some of the same problems. Shape opti-
mization, which is somewhere in between size optimization and topology optimization,
is often combined with FEM where difficulties related to meshing are common dur-
ing the shape modification process. Nonetheless a relatively recent alternative to FEM
called Isogeometric Analysis (IGA) has made it possible to overcome the meshing com-
plications, and presents itself as an interesting candidate for design optimization under
uncertainties.

How optimal solutions are searched for is the second key aspect. There are two main
categories of methods used to solve continuous optimization problems. Gradient-based
methods compute the objective functions’ derivatives in order to follow the direction of
descent (or ascent) of the considered functions and lead to optimal solutions. Their main
drawbacks are that they require access to the gradient and that they do not guarantee
global optimal solutions. On the other hand, heuristic (and meta-heuristic) methods do
not require the gradient and are capable of finding global optimal solutions, however,
they require higher computational cost compared to gradient-based methods. Also,
surrogate modeling methods which replace expensive objective functions with cheap ap-
proximation models in the optimization process, have gained popularity in recent years
for dealing with computationally costly applications.

The third important aspect is taking into account uncertainties for which there are
again two main methodologies. The above-mentioned RBDO is based on considering
the effect of uncertainties as a limit-state function, in other words as a constraint which
must be avoided. The other main method, “robust design optimization”, considers the
effect of uncertainties as an optimization objective which must be minimized. RBDO
has been largely predominant in the past few decades, but is computationally demand-
ing when applied to real engineering problems and is better suited for cases where the
gradient is available. Robust optimization has been far less studied, but presents itself
as a conceptually attractive method as it has the potential to provide a set of Pareto
optimal solutions which balance performance objectives and robustness.

In light of the current state of design optimization of mechanical systems under un-
certainties, the presented PhD research places great importance on the following ideas:
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• Dealing with the gradient-free character of performance metrics without using
gradient approximation methods which are very costly

• Mitigating computational cost while guaranteeing sufficient accuracy of the pro-
posed optimal solutions, in the context of uncertainties which automatically make
the computational cost substantially higher

• Proposing methodologies for solving uncertain gradient-free design optimization
problems with an efficient combination of modern numerical tools

There is a plethora of mechanical systems used in everyday life which exhibit complex
behavior and whose performance must be evaluated using numerical tools leading to
costly gradient-free objective functions. The disc brake systems present in automotive,
rail and aeronautic vehicles are one such system. Disc brake systems exhibit squeal
noise which poses a challenge for manufacturers who have been searching for ways of
reducing or eliminating such noises. The vibrational phenomenon which leads to squeal
noise, known as friction-induced instability, is extremely complex, highly nonlinear, and
has not yet been fully understood although it has been the subject of considerable re-
search efforts for several decades. There are different numerical ways of predicting and
quantifying squeal noise, which require intricate modeling strategies and often lead to
nonlinear, blackbox, and costly figures of merit. Design optimization of a disc brake
system for squeal noise minimization has been studied previously in the deterministic
case, but robust optimization has not yet been explored in depth. Studies on the effect
of various sources of uncertainty (for instance sensitivity analysis-based) on squeal noise
propensity have nonetheless been carried out. The state of current research on numeri-
cal modeling of squeal noise in disc brake systems and related uncertainties presents the
perfect opportunity to study a full robust shape optimization process under squeal noise
minimization criterion, as an application of robust design optimization under nonlinear
expensive gradient-free performance metrics.

The presented PhD research is organized as follows. Chapter 1 gathers the litera-
ture relevant to our research, which includes background on friction-induced instabilities
and disc brake squeal noise modeling techniques, multi-objective optimization of black-
box functions, geometrical description methods for shape optimization, and uncertainty
quantification in the context of optimization. Chapter 2 presents the numerical modeling
strategy for the disc brake squeal noise problem. First the geometrical model of the disc
brake and underlying mathematical framework are presented, followed by the equations
of motion necessary for friction-induced instability analysis to lead to the definition of
the squeal noise quantifying criterion which will be used as the main figure of merit for
the considered application. Additionally, some physical insight and validation elements
for the developed model are given. Chapter 3 describes the robust shape optimization
problem tackled in our research, including input parameters, objective functions and
constraint functions. Chapter 4 introduces a first strategy for robust shape optimization
applied to the disc brake problem based on the use of Polynomial Chaos Expansions
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and specifically their sparse counterpart for uncertainty quantification, combined with a
genetic algorithm in order to search for solutions balancing robustness and squeal noise
minimization. Chapter 5 introduces an alternative strategy for robust shape optimiza-
tion, based on a variant of the Kriging surrogate modeling technique originally designed
to consider measurement error, in an attempt to take into account geometrical uncer-
tainties, applied to the disc brake problem. Finally, the conclusion discusses important
takeaways and perspectives of the presented research.
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1 State of the art

This chapter is a summary of the current literature in the fields related to the topic
of the PhD research. It contains background on multi-objective optimization of black-
box functions, shape optimization, uncertainty quantification and optimization in the
presence of uncertainties, and friction-induced instability phenomena and modeling. It
also explains where the presented PhD research is positioned with respect to the current
literature.

1.1 Multi-objective optimization of blackbox functions

Optimization problems which involve nonlinear blackbox objective functions which are
expensive to evaluate, present several challenging aspects which make them particularly
difficult to solve. Blackbox functions have no analytical expression and their deriva-
tives cannot be computed, which eliminates any gradient-based optimization methods.
Population-based methods, which require more objective function evaluations to reach
global optima, must be considered. However, the high computational cost of each func-
tion evaluation is a bottleneck when coupled with such population-based algorithms.

1.1.1 Multi-objective optimization

Multi-objective optimization is an area of mathematical optimization which deals with
problems involving the simultaneous minimization or maximization of more than two
or more objective functions. The most common way to formulate a multi-objective
optimization problem is:

min
xj∈S

(fobj
1 (xj), f

obj
2 (xj), ..., f

obj
kobj

(xj)) (1.1)

Where xj is a potential solution (usually a vector with size corresponding to the

number of input parameters), S is the space of input parameters, and fobj
1 , fobj

2 , ..., fobj
k

are the objective functions. Also, note that maximization of an objective function can
always be expressed as the minimization of its negative. The objective functions are
usually antagonistic, which means that there is no single solution which optimizes all
objectives. Rather, there is a set of solutions which represent different trade-offs between
the conflicting objective functions. In order to find the best set of solutions, the notion
of domination is used, which allows one to rank different potential solutions to a multi-
objective problem. A solution x1 is said to dominate a solution x2 if:
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∀i ∈ 1, ..., k, fobj
i (x1) ≤ fobj

i (x2)

∃i ∈ 1, ..., k, fobj
i (x1) < fobj

i (x2)
(1.2)

A “Pareto optimal” solution is defined as a solution which is not dominated by any
other solution, or in other words, it is a solution which cannot be improved in any of
the objective functions without degrading at least one of the other objective functions.
The set of all Pareto optimal solutions (made of vectors of input parameter values) is
called the “Pareto set”, while the set of objective function outputs corresponding to
these inputs is called the “Pareto front”. Constraint functions can also be considered
in multi-objective optimization. Solutions which violate at least one of the constraint
functions are called “non-feasible” solutions. There are many types of methods for the
resolution of multi-objective problems and their classification can be challenging [1].
One classification consists in differentiating two main types of algorithms: gradient-
based methods and gradient-free methods. This classification is specifically relevant in
this PhD work since we focus on applications with gradient-free objective functions.
Gradient-based methods are generally faster than gradient-free methods, but since they
require the gradient and do not guarantee convergence to global optimal solutions, we do
not consider them in this research work. Among gradient-free methods, meta-heuristic
methods have gained popularity in the past years for their efficiency in many types of
difficult problems with large and complex search spaces, discontinuous Pareto fronts,
and for their ability to reach global near-optimal solutions. The main idea of meta-
heuristic methods is to iteratively improve an initial solution, by using a set of rules or
“heuristics” to modify the solution. The process is repeated until a satisfactory solution
is found, and in practice, several potential solutions are iteratively improved at the same
time. Many meta-heuristic methods are inspired by natural processes such as animal
behavior, evolution, and genetics. Some examples of popular algorithms include the
particle swarm algorithm [2], the bat algorithm [3], Non-dominated Sorting Genetic
Algorithm II (NSGAII) [4], artificial bee colony algorithm [5], and simulated annealing
[6]. A comprehensive overview of meta-heuristic methods can be found in [7]. In this
PhD work, we opt for genetic algorithms for Pareto front search.

1.1.2 Bayesian optimization

Bayesian Optimization (BO), also known as Efficient Global Optimization (EGO) is an
approach designed to overcome the issues related to expensive blackbox objective func-
tions, which aims at finding a global optimum in a minimum number of steps through
surrogate modeling paired with an appropriate acquisition function. It was first intro-
duced by Mockus [8, 9] and was then popularized as EGO by Jones [10]. It is based on
the idea of prior and posterior in probability theory, formalized by Bayes’ theorem. The
objective function is treated as a random function and a prior belief is placed over it
which captures the beliefs about the function’s behavior. Then a posterior which better
approximates the function is constructed using new samples drawn from the objective
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function. This mechanism requires some technique to approximate the function based
on a restricted number of expensive function evaluations. The approximation model
is usually referred to as “surrogate model” or “metamodel”. The process is iteratively
repeated, and at each iteration new samples drawn from the blackbox function are used
to update the surrogate model. These samples are determined through a sophisticated
selection method called acquisition function or infill sampling criterion. At each itera-
tion, the optimum as given by the current surrogate model is determined using some
optimization algorithm, and the acquisition function is then used to determine new sam-
ple points to enrich the surrogate model. In order to get closer to the global optimum
at each iteration, the surrogate model must be improved where the quality of solution is
high, but also where the objective function has not yet been sampled. The acquisition
function is designed to find the compromise between so-called “exploitation” of promis-
ing areas and “exploration” of untouched areas of the design space. The different steps
of BO can be summarized as follows:

1. Construct an initial surrogate model based on blackbox samples well-distributed
throughout the multi-dimensional design space

2. Find the optimum of the surrogate model using some efficient optimization algo-
rithm

3. Determine the next query point(s) using the acquisition function

4. Update the surrogate model with the new query point

5. Repeat steps 2 to 4 until some convergence criterion is met

A popular choice of metamodeling technique for engineering applications is the Krig-
ing method [11, 12, 13] also known as Gaussian process regression (GPR) [14] (depending
on the context), which is based on the assumption that there is spatial correlation be-
tween function samples, and whose main advantage is its built-in uncertainty estimation
for each prediction, which is particularly useful for the acquisition function. Other
metamodeling techniques such as polynomial response surfaces [15, 16], artificial neural
networks [17, 18], support vector machines [19, 20, 21], have also been somewhat suc-
cessfully applied to engineering optimization problems for computational cost reduction.

For the selection of new samples, there are three main well-known acquisition func-
tions: upper confidence bound (UCB), probability of improvement (PI), and expected
improvement (EI). UCB contains explicit exploitation and exploration terms and is easy
to tune towards one component or the other. PI calculates the probability of improving
the current best estimate without taking into account the magnitude of the improve-
ment whereas expected improvement uses the expected value of the improvement which
contains information about the quality of the mean value of the Gaussian process as well
as the associated uncertainty at the considered point. Since being proposed in 1978 [22]
and popularized by Jones [10], EI has become the most prevalent acquisition strategy
and the standard in BO [23, 24, 25, 26, 27, 28].
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1.2 Shape optimization

Shape optimization encompasses methods which aim to find the shape of a system which
minimizes a certain cost or performance function, while possibly satisfying some con-
straints. The way that the geometries of mechanical parts are described and modified
is one of the key aspects of shape optimization for mechanical design. The precursor of
shape optimization for mechanical design is sizing optimization, where the geometrical di-
mensions of mechanical parts are taken as optimization parameters. Sizing optimization
has been extensively researched for various engineering applications [29, 30, 31, 32, 33].
It has in particular been used for the minimization of squeal noise in disc brake systems
[34]. Sizing optimization can at best be considered as the most basic form of shape
optimization, since the shape is always predefined and only the dimensions are modified,
which highly restricts the range of potential design possibilities. Shape optimization
is a class of methods which seek to minimize a certain cost function (while possibly
satisfying given constraints) by modifying the shape using smooth modifications of the
mechanical parts’ domain boundaries. In order to control and affect the shape within
the optimization process, parametrization of the geometry is necessary, and needs to be
combined with mechanical design and analysis techniques.

1.2.1 Finite Element Method-based shape optimization

So far, the most commonly applied strategy has been to describe the shape within the
FEM framework, which is the most prevalent tool for mechanical analysis. The idea in
this case is to take the FEM model’s nodal locations as geometric parameters and to
displace them by scalar amounts in order to modify the shape. Because this approach
allows the modification of many individual boundary-defining points, it can potentially
yield diverse and original shapes. Typically, this method is performed on the CAD ge-
ometry with full automation of the subsequent meshing process.

This strategy has been applied to many structural mechanics engineering applications
[35, 36, 37, 38, 39, 40, 41, 42], however, it comes with some major disadvantages. The
primary issue is the inconsistency between the design and analysis geometries. The de-
sign geometry, usually spline-based, is transformed into a discretized analysis-compatible
geometry made of elements and nodes. This difference poses problems in terms of accu-
racy [43, 44] as any CAD optimized shape is selected based on the performance of the
analysis geometry. Another important issue is that re-meshing the analysis geometry
is necessary every time the CAD geometry is modified to avoid accuracy problems due
to mesh distortion. Since meshing accounts for a large portion of computational cost
in FEM, re-meshing becomes a major bottleneck [45, 46]. Other issues linked to mesh
topology maintenance [47, 48] and to the order of continuity of approximation functions
[47] can lead to undesirable accuracy problems for sensitivity calculations. To address
the difficulties related to shape optimization with traditional FEM, various new methods,
mostly variants or extensions of FEM-based shape optimization, have been proposed.
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Mesh morphing [49, 50] is a technique which resolves re-meshing related problems by
defining the shape parametrization after the meshing step, on the analysis geometry.
Mesh morphing techniques can be either mesh-based, where computational node loca-
tions are updated while maintaining mesh topology, or meshless, where mesh topology
is ignored and grid cell points are modified. Several algorithms have been proposed for
mesh morphing such as radial basis function, deforming volumes, or pseudosolids. The
main advantages of mesh morphing are the gain in computational efficiency, the conser-
vation of mesh quality, and the fact that no nodes or elements are added or removed
during the process. Disadvantages include limited shape modification possibilities in the
mesh-based case and grid cell distortions in the meshless case. Adaptive mesh refine-
ment (AMR) is a strategy which has been used for decades [51, 52, 53, 54] to avoid mesh
distortion and ensuing degradation of analysis results in FEM-based shape optimization
processes. Three types of refinement are commonly used, p-, h- and r-refinements. h-
refinement controls element size and is applied by decreasing the size of the elements
while keeping polynomial order fixed. p-refinement allows more shape distortion and
fixed mesh topology by using coarse elements and increasing polynomial order [55]. r-
refinement consists in node repositioning and is usually used together with either p- or
h-refinement. AMR works best when coupled with error estimation to limit refinement
to areas of the geometry where it is needed [56]. The main drawback of AMR is that
it requires smooth connection between CAD and analysis geometries which makes it
difficult to apply to industrial applications. XFEM is a technique initially proposed to
deal with crack problems and model cracks independently from the rest of the mesh to
avoid remeshing issues [57]. It was later combined with the level set technique, a numer-
ical moving interface tracking method, to be applied to shape optimization in order to
increase the flexibility of the geometric description while avoiding remeshing [58]. Fixed
grid techniques are another class of methods used to address mesh distortion issues. The
idea is to cover the initial shape of the system with a Finite Element discretized grid of
quadrilateral elements, with each element being located either inside, outside or on the
boundary of the design space. When the shape is changed, the material properties of
the FE elements are altered to reflect the varying boundary of the geometry and how
much of the structural shape is contained in each grid cell. Fixed-grid FEM (FG-FEM)
[59, 60] and Interface Enriched Generalized FEM (IGFEM) [61, 62, 63] are two examples
of such methods. Finally, the Finite Cell Method (FCM) [64, 65] combines a fictitious
domain of adaptive quadrature points for geometry description and approximation of
the numerical solution with an unfitted structured mesh of higher-order finite elements.
Its advantages are that it does not require boundary conforming meshes, and that it can
achieve high accuracy with refinement (mesh and polynomial order). It has been shown
capable of integrating complex geometric models into FEM analysis.

1.2.2 Isogeometric Analysis-based shape optimization

Isogeometric Analysis (IGA) is a variant of FEM proposed by Hughes [66] which smoothly
connects the design and analysis processes by employing the shape functions used to
describe the CAD geometry for the analysis step as well. Since FEM-based shape op-
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timization suffers from issues due to the lack of a seamless connection between design
and analysis, IGA appears as an elegant solution. The building blocks of CAD have
been integrated in FEM in the past [67, 68], and the progress in this area of research led
to the development of IGA. CAD geometric descriptions usually make use of different
types of spline functions, most commonly Non-Uniform-Rational-B-Splines (NURBS).
In IGA, these functions are reused in the analysis step to approximate the solution across
the domain. In addition to the smooth connection between design and geometry, IGA
presents several advantages. The analysis geometry is not an approximation of the real
geometry, it is the exact geometry. There is no need for complex meshing procedures,
which means that overall modeling time is greatly reduced compared to FEM. Accuracy
of solutions is also generally improved compared to FEM due to the higher order of the
basis functions. The benefits of IGA not only make it a good alternative to FEM for
structural analysis in many engineering applications, but also make it particularly well-
suited to shape optimization because the geometry being optimized is directly the design
geometry. The use of splines also makes it possible to generate very original yet smooth
potential shape solutions. The application of IGA to shape optimization problems has
already received considerable attention [69, 70, 71, 72]. The main drawback of IGA is
related to mesh refinement and particularly local refinement, which generally requires
splitting the IGA geometry into sections called “patches” in order to apply different
levels of refinement to different patches. The connection of nonconforming patches then
becomes a difficult challenge [73, 74]. An alternative to NURBS called T-splines which
allow local refinement without the nonconforming patch issue, appear as an attractive
option in this regard [75, 76].

1.2.3 Topology Optimization

Opposite to sizing optimization, Topology Optimization (TO) is a mathematical tech-
nique which spatially optimizes the distribution of material within a bounded domain
while keeping total freedom in the shape definition. TO is the purest form of shape
optimization in the sense that the design space is explored to its fullest and it does
not depend on the initial configuration. Since it was initially proposed in 1988 [77],
several variants of TO have been proposed, which use different formulations for shape
description. Density-based TO applies penalization to the mechanical properties of each
element of a FE mesh to find the distribution of material which optimizes the objective
function. The Solid Isotropic Material Penalization method (SIMP) [78, 79] is the most
common variant of density-based topology optimization and has been implemented in
various commercial software [80, 81, 82]. Evolutionary Structural Optimization (ESO) is
a different strategy which implements topology optimization using heuristic strategies to
progressively remove material volume [83]. Bi-directional Evolutionary Structural Opti-
mization (BESO) is an improved version of ESO where material can also be added thus
overcoming some of the shortcomings of ESO [84]. Another class of topology optimiza-
tion methods is the so-called Level-set Method (LSM) which describes and smoothly
modifies the structural boundary of the shape using level set functions and iteratively
solving the Hamilton-Jacobi equation to find the optimal configuration [85]. LSM has

30



1.3. UNCERTAINTY QUANTIFICATION

notably been shown to reduce the number of design variables and mitigate boundary
problems compared to density-based topology optimization [86, 87].

In light of its freedom of shape description, TO continues to be applied to engineer-
ing problems in diverse fields [88, 89, 90, 91, 92, 93]. Nonetheless, TO suffers from
one important drawback which is the difficulty to manufacture the optimized shapes
and the necessity for adjustments to improve manufacturability. Although progress in
additive manufacturing (AM) [94, 95], which overcomes the limitations of traditional
manufacturing by joining material layer by layer, has made it more and more feasible to
manufacture shapes originating from TO processes [89], TO is still considered and used
as a conceptual design method.

1.3 Uncertainty quantification

The relevant background and literature on uncertainty quantification in the context of
optimization in the presence of uncertainties is introduced in the following sub-sections.

1.3.1 Uncertainty classification, quantification and propagation

There are multiple sources of uncertainties in real-world systems and their numerical
models. Classifying uncertainties can be a challenging task, but is important in order to
apply the appropriate uncertainty quantification and propagation techniques to a certain
problem. Mechanical systems can be described by numerical models and associated
parameters. However, the value of these parameters is not usually precisely known.
Taking into account uncertainties in different parts of a mechanical system can lead to
considerable fluctuations in performance predictions, and therefore should be carried out
with care. Some examples of common uncertainty sources are:

• model input parameters which are not precisely known or which can vary. In our
case geometric shape parameters can vary due to manufacturing errors (between
model and reality). The material properties are also an example of uncertain
parameters

• experimental uncertainties can arise when uncertain experimental measurements
are used in a modeling strategy

• numerical models are based on equations which are approximations of reality and
represent uncertainty linked to insufficient knowledge

• numerical uncertainties are introduced in the model results when numerical meth-
ods are used to solve the model equations

There are many more ways to describe uncertainty sources, and it is important to un-
derstand and characterize the types of uncertainties we are dealing with before selecting
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the methods used to take them into account. It can also be useful to compare the im-
portance of different uncertainties in order to prioritize the predominant sources.

Generally, uncertainties are classified into two main categories: epistemic and aleatory.
Epistemic uncertainties are due to a lack of knowledge, and can be reduced by adding
more knowledge to the model, but this can be complex or computationally expensive. On
the other hand, aleatory uncertainty is linked to the unpredictable character of outcomes
of an event which is treated as random. Aleatory uncertainty can usually be described
by a probability distribution function. Figure 1.1 shows an example of uncertainty quan-
tification centered on the distinction between epistemic and aleatory uncertainties. In
the context of the probability theory and statistics of uncertainty quantification, there is
not necessarily a need to differentiate between these two types of uncertainties because
the main available tools are the same in both cases (stochastic modeling and analysis
of uncertainty propagation). A more important distinction should be made between
parameter uncertainties and modeling uncertainties. Designing a mechanical system
usually starts from a conceptual or theoretical system, which is then numerically mod-
eled, and leads to a final real-life manufactured system. Modeling approximations are
inevitable and create differences in system behavior between the computational model
and the manufactured system. According to [96], approximations inherent to the mod-
eling method (e.g. FEM) should not be considered as uncertainties, however, errors due
to model reduction (which is often necessary to reduce computational cost) should be
taken into account as uncertainties. On the other hand, parameter uncertainties are di-
rectly related to parameters of the numerical model, for example geometric parameters
whose value may differ between the model and the real system, due to the manufacturing
process. Nonetheless, in general, it is difficult to define precise guidelines on the way to
take into account different types of uncertainty, which usually depends on the context
of each studied application.

Classical uncertainty quantification and propagation methods are usually classified
into two types: probabilistic and non-probabilistic. In both cases the idea is to first
characterize the uncertainties, then inject them into the model and propagate them to
the model outputs. Probabilistic methods aims at describing the uncertainties with prob-
ability distribution functions. Non-probabilistic methods use the interval information of
random variables to characterize uncertainty. Non-probabilistic methods are commonly
better suited to incomplete, imperfect data and knowledge. For example, interval arith-
metic defines the parameters as intervals. Fuzzy logic, possibility theory, and evidence
theory are types of non-probabilistic methods.

In the context of computationally expensive models, classical methods can be pro-
hibitive because they often require many model runs, which is why surrogate model-
based methods have been introduced and are now widely used for uncertainty prop-
agation. Surrogate-based methods are sometimes presented as separate from classical
methods, but they are also either probabilistic or non-probabilistic. Also, certain surro-
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gate modeling techniques contain built-in statistical properties and tools which can be
advantageously used for uncertainty propagation.

Figure 1.1: Example of uncertainty classification

1.3.2 Reliability-based approaches

Deterministic models are used when uncertainty is relatively small. When uncertain-
ties are large, stochastic models are needed. The deterministic approach requires a
safety factor and results in an under- or over-designed system. On the other hand, the
stochastic approach uses the statistical properties of the system response (mean value,
variance, confidence interval) to describe it comprehensively, and results in a robust sys-
tem design. Probability theory has been incorporated into the engineering community
for complex systems thanks to high-powered computers, which enable the combination
of traditional analysis methods with uncertainty quantification. Reliability-based ap-
proaches are founded on the concept of reliability which is comprehensively discussed in
[97]. Reliability can be simply defined as “the probability that a system will perform its
function over a specified period of time and under specified service conditions” [98], and
the system design is deemed appropriate when each requirement on the output struc-
tural behavior is met within a sufficient degree of certainty.

Structural reliability approaches are based on the calculation of the probability of
violation of the limit-state function(s) of a structure during its life, the goal being to
minimize this probability through design choices. Such approaches yield structures which
account for uncertainties and thus have a lower probability of failure than if designed
with deterministic methods, at equivalent cost. The limit-state is defined as the limit of
a structure which when exceeded renders the structure unable to perform as required.
If the probability of failure is above a predefined required value the structure is deemed
unreliable. Any system can have multiple limit-state functions depending on the perfor-
mance objectives defined for design. There are two main types of limit-states. So-called
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“ultimate” limit-states are related to a collapse of part or all of the structure, whereas
“serviceability” limit-states, if violated, entail only disruption of the normal use of the
structure. The limit-state function fls also indicates the margin of safety between the
resistance Rst and the load Lst of a structure. The probability of violating the limit-state
is denoted as the probability of failure Pf . Thus, three regions can be defined according
to the value of fls:

• fls > 0 safe region

• fls = 0 failure surface

• fls < 0 failure region

These three regions are illustrated in figure 1.2. From the mean and standard deviation of
function fls, the reliability (or “safety”) index can be computed. This quantity indicates
the distance of a design from the failure surface fls = 0 and provides a good measure
of reliability. The safety factor Fst =

Rst
Lst

is another well-known, simpler parameter for
reliability analysis.

Figure 1.2: Illustration of the limit-state in reliability-based approaches

Random field

There are many sources of uncertainties in engineering structures (loads, materials, ge-
ometry, manufacturing, . . . ) and these uncertainties fluctuate over space and time,
which means the responses of the structure fluctuate accordingly. The resulting space
and time-varying data must be estimated to be incorporated in realistic simulations
which consider uncertainty analysis. The random field is what characterizes the math-
ematical model of the variability which is parametrized by the correlation between the
different locations. Random fields [99] are random functions of one or more variables,
which can be used for instance to characterize distributed property inputs in structural
problems. The goal is to realistically model the variability of the inputs, in order to
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facilitate the estimation and analysis of the corresponding random outputs. This should
allow to assess the allowable bounds of the inputs to guarantee safety bounds for the
outputs. Deterministic analysis is not sufficient to characterize the system under varying
input properties. The random field or random process is what characterizes the spatial
variability. The main idea when manipulating random processes is that the outcome of
one experiment is not one point, but a function over an interval of the domain (or inter-
vals of multiple domains). The resulting function is called a realization of the random
process. A collection of realizations is called an ensemble. When the random process
is based on a set of samples over an interval, n random variables and their joint proba-
bility distributions can be used. The moments of the joint probability distribution are
defined (mean, auto-covariance, auto-correlation). The concept of random field is thus
very important in reliability-based approaches. A random process can be thought of as
a random function which is more difficult to manipulate than random variables. For
this reason, in practice, random variables are generated using deterministic functions
with random coefficients, which is equivalent to discretizing the corresponding random
process, which becomes an indexed set of an infinite number of random variables. The
proper discretization, characterization and representation of the statistical correlation
between each random variable is critical and can be specified by covariance functions.
Many different methods have been proposed to implement the random variable-based
approach [100], the most prevalent being Taylor series representation, and orthogonal
polynomial expansion.

First and second order reliability methods

The origin of these methods stems from the curse of dimensionality in the calculation
of the probability of failure which requires simplification of the analytical integral ex-
pression. This can be done by linearizing the limit-state function at the failure surface
fls = 0 using Taylor expansions. Initially, this idea led to the implementation of the
so-called First Order Second Moment method (FOSM) and the Second Order Second
Moment method (SOSM), which respectively use the first-order and second-order Tay-
lor expansions of the limit-state function. Generally, FOSM is easy to implement but
it was shown to be inaccurate for small probabilities of failure and for highly nonlinear
responses. SOSM is computationally more expensive because of the added term, though
the accuracy improvement is in most cases minimal.

FOSM was improved based on a geographical interpretation of the safety index by
Hasofer and Lind [101] which lead to the notion of most probable failure point (MPP)
by using a transformation of the design variables from the original space to the space
of normalized independent variables (HL transformation), which yields the more com-
monly known First Order Reliability Method (FORM) [102] and Second Order Reliability
Method (SORM), which respectively rely on first and second order approximations at
the MPP. The basic idea is that the limit-state is approximated by a tangent plane at
the MPP, then a bound can be specified based on the probability of failure. If the ap-
proximation at the MPP is accurate then the bound will lead to good results. Otherwise,
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inaccurate approximation can lead to large errors (example: nonlinear failure surface).

There are multiple variants of the FORM method depending on different factors. For
instance, several options are possible to solve the reliability index minimization problem
(primal methods, penalty methods, Lagrange multipliers, ...). The HL-RF method is
designed to deal with cases where the random variables are not randomly distributed
by transforming them to an equivalent normal distribution [103, 104, 105]. Two-Point
Adaptive Nonlinear Approximation methods (TANA) [106] can help accelerate conver-
gence for nonlinear cases. FORM also includes built-in sensitivity factors which provide
interesting insight into the random variables. Firstly, they show the relative contribu-
tion of different random variables to the failure probability, and secondly, the sign of the
sensitivity factors indicates the relationship between the performance function and each
physical variable (increasing or decreasing).

When the failure surface has high nonlinearity in the neighborhood of the design
point, FORM can produce inaccurate results [107], in which case SORM [108, 109, 110,
111] may sometimes be more effective. Instead of the space of normalized independent
random variables, the “rotated new standard normal” space is used, which facilitates
the integration of the probability of failure in the multi-dimensional case. Since this
method requires computation of the second derivatives of the limit-state function, it is
computationally more expensive. Breitung’s formulation [108] yields the probability of
failure from the main curvatures of the failure surface. SORM also has multiple variants
depending on the details of the resolution strategy. Tvedt’s formulation [111, 112] is an
alternative to Breitung’s formulation based on a more accurate three-term approximation
based on a power series expansion. SORM with adaptive approximations [113] alleviates
computational cost by using approximations of the second order derivatives, which also
makes it suitable for implicit performance functions.

Reliability-based Design Optimization

Reliability-based Design Optimization (RBDO) is an approach which encompasses the
reliability concepts presented in the previous sub-sections and uses them to solve opti-
mization problems subject to uncertainties [114, 115, 116, 117, 118]. The main idea is to
optimize system performance functions under probabilistic constraints such as a limit on
the probability of failure or reliability index. This method was first applied to systems
using classical methods for solving constrained optimization. These approaches can be
divided into two main groups, direct approaches which handle constraints in an explicit
manner (generalized reduced gradient method, feasible directions method), and indirect
approaches where the constrained problem is solved as a sequence of unconstrained min-
imization problems (penalty methods, Lagrange multipliers). RBDO can nonetheless be
applied with various methods such as evolutionary algorithms, as long as the constraints
for reliability are well taken into account. Compared to the deterministic optimization
case, an RBDO solution not only provides an optimized design with respect to the per-
formance functions, but also a design with a high degree of confidence. One of the main
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drawbacks of RBDO is related to the curse of dimensionality which restricts its use in
higher dimensions. Also, calculation of the limit-state is costly and requires the gradient
information. Another problem is that even though the retained optimal solutions will
have a guaranteed minimal level of reliability, the method does not focus explicitly on
finding solutions with the highest level of reliability or robustness.

1.3.3 Sampling methods

Sampling methods consist in the direct use of experiments to obtain mathematical so-
lutions or probabilistic information for difficult-to-solve systems, and are usually paired
with the strategies described in sections 1.3.2 and 1.3.4 for improved efficiency.

Monte Carlo Simulation (MCS) [119], also known as “simple random sampling” is the
most basic and straightforward sampling method available and consists in computing
realizations based on randomly generated large sampling sets for uncertain variables,
which became practical for structural numerical analysis with the advent of digital com-
puters. MCS is a powerful tool to determine the approximate probability of a specific
event which is the outcome of a series of stochastic processes. It consists in digital
generation of random variables for subsequent statistical analysis of trial outputs. The
total number of samples and boundary limits are important factors which affect the ef-
ficiency of the method. MCS can be used to directly compute the probability of failure
in reliability-based methods, for instance as the ratio of the number of failed samples
(violated the limit-state) by the total number of samples. It is worth using when the
number of trials of simulation is less than the number of integration points required in
numerical integration. More generally, MCS is used in optimization as a brute-force
reference result with guaranteed converged results given a sufficiently large number of
samples. Random selection of points assumes that the function will be well-represented
in an unbiased manner. For a large number of random variables, a comparatively large
sampling set is required for convergence, which leads to prohibitive computational effort.

To predict risk accurately, especially when the probability of failure is relatively small,
MCS becomes inefficient. The tail of the distribution is the most important factor. Con-
centrating sampling in this part can be a good strategy to decrease execution times and
minimize computer storage requirements. Variance reduction techniques (importance
sampling, systematic sampling, stratified sampling, ...) [120] are a way to deal with the
slow convergence of MCS. Importance sampling, for instance, introduces the importance
sampling probability density function (PDF). This function has to be chosen in such a
way that an unbiased estimate of the probability of failure can be obtained with many
fewer observations than in the case of the regular PDF-based calculation. The ideal
choice of importance sampling PDF can be obtained through calculus. Another popular
alternative to MCS is Latin Hypercube Sampling (LHS) [120, 121, 122], which is an
extension of the Latin Square concept to higher dimension, also known as “stratified
sampling”. LHS guarantees non-overlapping designs, with a fairly straightforward con-
struction process, based on dividing the distribution of each random variable into equal
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probability bins. The regularity of the bins ensures that all portions of the range of
each random variable are well represented and results in small variance in the response.
LHS is less expensive to generate than MCS and allows more flexible sample sizes while
ensuring stratified sampling.

1.3.4 Stochastic expansions

Stochastic expansions are a tool which represent uncertainties of systems by using poly-
nomials for the characterization of the stochastic system, and come with useful conver-
gence properties in the context of stochastic analysis [123]. Stochastic expansions origi-
nally stem from the study of irregularities in Brownian motion (also called “Wiener pro-
cess”) which lead to the “multiple stochastic integral with homogeneous chaos” method
[124]. Then, it was shown that any stochastic process can be described in terms of the
Wiener process which is the simplest stochastic process, concept which is at the root
of the Polynomial Chaos Expansion (PCE) method. Stochastic expansions can be cat-
egorized into two main types, intrusive and non-intrusive formulations. In the intrusive
formulation the representation of uncertainty is explicitly expressed within the analy-
sis of the system, and thus requires access to the structural analysis (e.g. FEM). The
non-intrusive formulation uses results from the structural analysis to characterize the
stochastic system’s behavior, and consequently the structural analysis can be considered
as a blackbox function in this case.

PCE is nowadays the most well-known non-intrusive stochastic expansion method and
uses orthogonal polynomials of random variables, which are most of the time standard
normally distributed. PCE is convergent in the mean square sense and enables a simpli-
fied calculation of the statistical moments due to the fact that any order PCE consists
of orthogonal polynomials. Probabilistic collocation methods are a variant of stochastic
expansion-based methods where responses of stochastic systems are projected onto the
PCE [125]. Their limitations for large-scale models led to the stochastic response surface
method which uses partial derivatives of the model outputs with respect to the model
inputs [126]. Stochastic approximation is a non-intrusive approach which uses PCE to
create a surrogate model of the stochastic responses. For regression of unknown or com-
plex nonlinear relationships, common polynomial models can be used, but the use of
orthogonal polynomials (i.e. PCE) is better in order to avoid ill-conditioned problems.
The added advantage of PCE lies in the direct access to various statistics including
mean, variance, confidence interval, etc. The main idea of stochastic approximation is
to select an appropriate basis function to represent the response of uncertain systems.
Cases where the random variables are not standard normal can be handled in two ways.
Firstly, the Askey scheme can be used to determine which type of polynomials is more ap-
propriate according to the PDF of the considered random variables [127, 128], as several
orthogonal polynomials have orthogonality weighting functions which match well-known
PDFs. The Askey scheme classifies the hypergeometric orthogonal polynomials and in-
dicates the limit transition relations between them (Laguerre and Hermite polynomials
can be obtained from Jacobi polynomials). The second option is to transform the ran-
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dom input variables into standard normal random variables, then the original PCE can
be applied [129, 126]. Determining if a constructed PCE model is acceptable is an im-
portant step of the stochastic expansion process and can be done with the help of tools
such as analysis of variance (ANOVA) and residual plots. One major drawback of PCE
is that it can be computationally prohibitive when there are many input parameters
and when the numerical model is expensive to evaluate. So-called sparse PCE methods
[130, 131] offer a potential solution to this problem by truncating the PCE to keep only
the significant coefficients. Least angle regression PCE (LARS-PCE) is an example of
such methods [132]. Figure 1.3 shows an example of the comparison of sparse and non-
sparse PCE coefficient distributions [133].

Another prominent type of stochastic expansion is the Karhunen Loeve (KL) ex-
pansion which is useful when a large number of highly-correlated and/or superfluous
variables are used to describe the stochasticity of a system which causes a decrease in
accuracy and reliability of the predictions. The KL expansion provides a way of generat-
ing correlated random variables while ensuring reduction of dimensionality and minimal
loss in accuracy. The KL transform stems from works by Karhunen, Loeve and Hotelling
on the orthogonal transform, the Hotelling transform and principal component analysis
(PCA) [134], which all employ similar concepts. After the effectiveness of LHS sampling
was displayed [121], various approaches to control correlation structures were proposed
[135, 136], and multiple studies showed the effectiveness of the KL transform for gener-
ating correlated random variables paired with the LHS sampling scheme [137, 138].

The Spectral Stochastic Finite Element Method (SSFEM) [139] is the most well-known
stochastic expansion-based intrusive method, and consists in using PCE to represent the
stochastic responses and the KL expansion to represent the random variable inputs. This
method has been shown effective for different applications and their associated random
behavior. The KL expansion cannot usually be used to represent the response because
it requires known covariance functions to be constructed, which is most of the time not
the case for response functions.
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Figure 1.3: Example of comparison between ordinary (left) and sparse (right) PCE co-
efficient distributions

1.4 Friction-induced instabilities and squeal noise

The necessary background and literature on friction-induced instabilities and squeal
noise, including general context, origin, and quantification of squeal noise are introduced
in the following sub-sections.

1.4.1 Context

Friction related vibrational and tribological phenomena can lead to many different types
of sounds and noises. Although some of these sounds can be intentionally produced, for
instance in the case of some musical instruments, many industrial systems exhibit unde-
sirable noises, which need to be studied and modeled in order to reduce them as much
as possible. Disc brake systems are a typical example of such systems, predominantly
present in the automotive, rail transport, and aviation industries. Disc brakes are a type
of braking system which uses friction between different mechanical parts when squeezed
together in order to slow down or stop the rotation of the rotor. Through this process
the energy due to motion is mostly dissipated as heat.

In the automotive industry, disc brakes include three main components, the rotor disc
which rotates with the wheels, the brake pads, which generate friction when pushed
against the rotor, and the calipers which hold the pads into place and generate pressure
(through actuation of a piston) to clamp the pads against the disc. Disc brake squeal
noise in the automotive industry can be a problem in terms of noise pollution, but not
to the extent of creating health problems for the general public. Vibrational levels as-
sociated to squeal noise in car brakes are also not sufficient to inflict structural damage
on the mechanical system. Rather, noise during braking operations in new vehicles is
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often associated to malfunction by customers, which is the cause of many vehicle returns
which are highly undesirable for automobile manufacturers from a sales point of view.
Figure 1.4 illustrates the complexity of an automotive disc brake, showing a side view
of its main components [140].

Disc brake systems in trains have the same basic components as in cars: a disc ro-
tating with the shaft, brake pads, and a caliper type structure holding and compressing
the disc and pads together. One notable difference is in the construction of the brake
pads, which are often made of several distinct pieces of friction material (friction pins)
fixed to a supporting backplate rather than a single friction material portion. In the
rail transport industry, squeal noise due to braking operations can reach extremely high
levels (as high as 120 dB in some cases) and is a problem from a health perspective.

In the commercial aircraft industry, more heavy-duty disc brakes are used, made of a
series of several discs rotating with the wheel interleaved with stationary discs. The ro-
tating discs and stationary discs are squeezed against each other on the axle by multiple
pistons placed around the discs which creates friction and slows down the wheel rotation.
Squeal noise in commercial aircraft is not a concern as noise levels from other parts of
the aircraft (mostly the engine) are much higher and drown out any noise coming from
the brake system.

In order to model and propose ways of reducing squeal noise in disc brake systems, it
is necessary to understand the phenomena from which they originate. Friction-induced
vibrations have been extensively studied throughout the years, but there is no univer-
sally accepted theory concerning the mechanisms giving rise to this phenomenon. Many
experimental studies which suggest different interpretations and explanations for the
presence of noise and vibrations in various systems with friction interfaces have been
summarized [141, 142, 143, 144, 145, 146, 147].

Friction instabilities can arise either from so-called “forced” vibrations or “self-excited”
vibrations. In this PhD research we focus on self-excited vibrations which are responsible
for noise in brake systems most of the time. Different types of friction-induced noise
have been classified and characterized according to their frequency spectrum and their
mechanism of appearance [141, 148, 149]. For instance, “groan” is a low frequency noise
induced by instabilities due to stick-slip at low rotation speeds or to friction coefficient
decrease with sliding speed. “Hum” is another type of noise which appears between 100
and 500 Hz, which originates from coupling of rigid body modes. “Judder”, exhibited at
low frequencies and due to forced oscillations induced by a variation of contact force at
the interface, is another example of instability-related noise in disc brake systems. Squeal
noise, usually exhibited at higher frequencies (1-20 kHz), is known to be linked mostly
to coupling of distinct structural modes (see section 1.4.2), and can reach very high
levels. In some cases, it can be difficult to distinguish and classify different instability-
induced sounds because their mechanisms of appearance are not always clear and their
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frequency ranges can overlap. The presented applicative work focuses on self-excited
friction-induced instabilities linked to mode coupling or in other words, squeal noise
inducing instabilities.

Figure 1.4: Scheme of an automotive disc brake system

1.4.2 Origin of squeal noise

The origin of squeal noise has been researched experimentally, analytically and numeri-
cally for decades and is still being studied to this day. Friction-induced instabilities have
been extensively studied at different scales, using models and experimental means with
greatly varying complexity, and resulting in various explanations for the origin of squeal
noise. In particular, a distinction is to be made between phenomena resulting from a
tribological analysis of the problem, and phenomena linked to geometrical and structural
mechanics’ considerations. The diverse research concerning the mechanism responsible
for squeal noise occurrences in systems with friction interfaces can be grouped into four
main theories.

Firstly “stick-slip”, which arises from a tribological analysis of frictional phenomena,
has long been considered the main explanation for squeal noise in frictional systems.
Stick-slip results from the distinction of static and dynamic coefficients of friction and
consists in the alternation of “sticking” and “slipping” phases between two solids in
contact, which results in self-excited vibrations. This behavior has been largely studied
experimentally and through analytical models [150, 151, 152, 153, 154]. However, stick-
slip has since been shown to be insufficient to explain many instances of squeal noise.

42



1.4. FRICTION-INDUCED INSTABILITIES AND SQUEAL NOISE

Stick-slip suggests the existence of periods of time where there is no relative movement
between the two solids in contact, whereas this is not realistically compatible with the
high speed nature of brake squeal phenomena. Also, several experimental studies have
shown instabilities in systems with a constant coefficient of friction [155, 156].

Another tribological analysis based theory is the variation of the friction coefficient
with sliding speed. Decreasing and continuous variation of the friction coefficient as a
function of the sliding speed has been shown equivalent to a negative damping term
which causes self-excited vibrations. This has been illustrated on a simple two degree of
freedom analytical model [157].

Sprag-slip was introduced in response to the inability of stick-slip and friction co-
efficient variation to fully explain the instabilities which cause squeal noise, and is a
geometrical interpretation of friction-induced instabilities. It was first presented intu-
itively through a simple system: an inclined flexible bar maintained in contact with
a treadmill [144]. With a constant coefficient of friction, the tangential friction force,
which approaches infinity when the inclination angle of the bar reaches a specific value,
gives rise to an alternation of “sprag” and “slip” periods which in turn cause vibrations.

Lastly, mode coupling [150, 158, 159, 160, 161, 162], is now the most widely accepted
theory for the origin of squeal noise. It is characterized by the coupling of the behavior
along two separate directions of the system, and results in an asymmetric contribution
to the stiffness matrix, which can lead to instability. It can also be interpreted as a
generalization of sprag-slip to systems with a large number of degrees of freedom. This
type of instability is also known as “mode lock-in” or “flutter” instability. The presented
PhD work focuses on this type of instability.

1.4.3 Quantifying squeal noise

There are multiple ways of gaining insight into squeal noise generated by frictional sys-
tems, assuming the noise is linked to friction-induced mode coupling behavior. Usually,
the equations of motion containing nonlinear friction and contact terms, are linearized
around an equilibrium point. During this process the Jacobian of the nonlinear friction
and contact terms is computed and taken into account in the stiffness matrix of the whole
system, which produces an asymmetry. From this point there are two main methods for
gaining information on squeal noise propensity. Firstly, computing the complex eigen-
values of the asymmetric system provides information about the stability of the system
which is directly linked to potential squeal noise occurrences. Secondly, the equations of
motion can be solved through time integration, and vibrational (i.e. noise) levels can be
obtained after the steady state is reached [163, 147, 164, 165, 146]. The next logical step
of this type of approach is then to study the acoustic waves created when the vibrations
are transmitted to ambient air [166, 167, 146]. There is a crucial difference between the
two types of approaches. Stability analysis assumes that the probability that noise will
occur is linked to the presence and amount of unstable eigenvalues based on Lyapunov’s
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theory of dynamical stability [168]. In other words, it yields a level of confidence that
noise will occur. On the other hand, time integration-based approaches aim to obtain
actual vibrational levels. It is difficult to say that one type of method is superior to
the other and the choice of approach depends more on the goals and constraints in the
context of each study. One main advantage of stability analysis consists in the low com-
putational cost comparatively to methods which integrate the equations of motion over
time, and is one of the reasons why the presented research focuses on stability-based
noise prediction.

The term Complex Eigenvalue Analysis (CEA) is used to refer to stability analysis
based methods. CEA has repeatedly been successfully used to predict noise in frictional
systems [169, 170, 171, 172, 173, 174]. Based on the linearization of the equations of
motion which leads to an asymmetrical equivalent stiffness contribution, the eigenvalues
are assumed complex, and their real part allows to conclude on the stability of the fixed
point: if at least one eigenvalue has a positive real part, the fixed point is unstable.
Instability analysis is commonly carried out with respect to a control parameter, often
the friction coefficient, damping, or some geometric or material parameter. This leads
to the notion of Hopf bifurcation [168], where as a function of the control parameter,
the real part of an eigenvalue becomes positive at the bifurcation point, in other words,
it is the transition between stable and unstable behavior. At the same time, the corre-
sponding imaginary parts (i.e. frequencies) converge, which characterizes the coupling of
initially distinct structural modes. Similar methods like the Routh-Hurwitz criterion can
be used to characterize stability of smaller systems [175] but CEA is the most effective
when dealing with large Finite Element models. The mathematical background for the
notion of stability of a fixed point of a non-linear ordinary differential equation is well
known [147] and relies on Lyapunov’s theorem which ensures stability of the non-linear
system given stability of the linearized system.

While CEA is an excellent tool to identify potentially problematic instabilities in the
system, it has some drawbacks which should be mentioned. Since it only provides a
potential of noise occurrence, it does not give any information about which modes are
actually most harmful (amplitude of vibration in steady state for example) [176, 165, 177,
164]. Also, the importance of certain unstable modes of the system can be overestimated
or underestimated, and some unstable modes appearing in the transient state can be
absent from CEA. There are additional tools, complementary to CEA, which can be
useful to help effectively avoid instabilities. For instance, harmonic balance [178, 179]
and shooting methods [165] can be used to obtain stationary solutions without computing
the transient state. The modal absorption index method (MAI) can also be mentioned,
which eliminates modes less likely to appear in a time simulation [180]. And lastly,
modal amplitude stability analysis (MASA) can predict unstable modes not calculated
by CEA, but predominant in the time response [181].
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Figure 1.5: Example of a Hopf bifurcation in the case of a disc brake system with the
friction coefficient as a control parameter (left-hand side: real parts, right-
hand side: imaginary parts)

1.5 Situation of the PhD research with respect to the literature

The presented PhD research focuses on designing robust shape optimization methods
for complex mechanical systems with nonlinear, costly, and gradient-free performance
metrics, applied to the case of a disc brake system under dynamical criterion. The main
quantity of interest in the studied applicative case is the measure of potential squeal
noise occurrence due to friction-induced dynamic instabilities. The choice of method for
its quantification is a crucial aspect which greatly impacts the behavior of the considered
objective function and its computational cost. In light of its computational efficiency
compared to time integration-based methods, we have chosen CEA to quantify the squeal
noise propensity of the studied system. This method directly links noise propensity to
the extent of dynamic instabilities and therefore consists in giving a measure of the
possibility of noise occurrence rather than a measure of noise levels. Moreover, the un-
predictable behavior of friction-induced instabilities makes for an extremely interesting
case of complex nonlinear functions in mechanical systems.

The choice of method for shape parametrization is a key aspect in the studied problem
as it does not only impact the diversity of shapes which can be obtained, but also the
adequate consideration of geometric uncertainties and the structural analysis results.
FEM-based shape optimization techniques greatly suffer from the issues linked to mesh-
ing such as the fact that the analysis and design geometries are not strictly the same
which means that optimal solutions in terms of analysis geometry may not be optimal in
terms of design (and thus manufactured) geometry. For the same reason, taking into ac-
count geometric uncertainties which affect the shape of the optimized mechanical parts is
difficult if not impossible. Alternative FEM-based methods which mitigate or eliminate
mesh issues are an interesting option but difficulty of implementation becomes a disad-
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vantage. Consequently, we have decided to exclude FEM-based shape optimization in
the context of this PhD research. TO is an interesting formulation of the shape optimiza-
tion problem notably because of the extreme freedom for potential shapes which allows
one to fully explore the optimization solution space. Nonetheless, the difficulty to manu-
facture shapes obtained with TO without using subsequent adjustments of the geometry
make it difficult to apply in a robust optimization setting where it is highly desirable
that the optimized shapes correspond to the final designs. In this context, IGA appears
as a good balance between the disadvantages of FEM and TO, where meshing issues
are not a problem and freedom of shape definition is moderate compared to TO while
allowing more originality than FEM. Additionally, IGA offers the advantage of higher
computational efficiency thanks to the elimination of the meshing steps and potentially
offers a higher degree of analysis accuracy owing to the higher order of continuity of its
basis functions. For these reasons, we have chosen to apply IGA for the robust shape
optimization problem presented in this research.

In the context of optimizing quantities of interest in mechanical systems subject to
uncertainties, reliability-based methods have been largely prevalent so far. These ap-
proaches provide the advantage of having been well-documented and tested in the past,
and more importantly it guarantees a minimal level of reliability for the resulting de-
signs. However, these approaches are also susceptible to the curse of dimensionality and
in gradient-free cases or cases when the quantities of interest are blackbox functions, it
can be more difficult to implement or even infeasible. From the broader perspective of
robust optimization, it does not explicitly search for the most robust possible solutions
but rather only for the best solutions which comply with a predefined minimal degree of
reliability.

Multi-objective methods are another class of approach for optimization problems un-
der uncertainty, where robustness to uncertainties is considered as an additional op-
timization objective, rather than as a constraint as in the case of RBDO. This type
of approach is commonly known as “robust optimization” and yields a Pareto front of
solutions which represent compromises between the performance objectives and the ro-
bustness of these objectives to uncertainties. Thus, the final design can be designated
among the set of compromises, and the balance between high robustness and best per-
formance can be freely chosen, taking into account the operating conditions and risks
for the mechanical system under study. This method formulates the robust optimization
problem in a way that constitutes an interesting alternative to reliability-based meth-
ods. Additionally, it provides more freedom for handling tedious cases with blackbox
nonlinear functions, which is the object of our research. The main challenge resides
in quantifying the robustness of the system, which requires proper quantification and
propagation of the considered uncertainties. In this case the idea is to consider that the
quantity of interest has statistical properties which allows one to express its first and
second moments as antagonistic functions, according to the information theory (bias-
variance tradeoff [182]). The multi-objective approach has been successfully carried out
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in cases where the gradient of performance functions was available, however, when no
gradient is available, the variance of the quantity of interest is more dependent on the
computational power required to reach sufficient evaluations during the optimization
process. Some recent results point to the use of meta-models able to reconstruct the sta-
tistical information of the output, to mimic the classical Efficient Global Optimization
scheme (EGO) [10]. Given the advantages of the more novel MOO-type approaches, the
PhD research will focus on the robust optimization approach, rather than reliability-
based methods.

The undertaken robust optimization problem must balance minimization of the main
quantity of interest and maximization of the quantity of interest’s robustness to un-
certainties. With this in mind, and in the present-day context where production of
mechanical systems must be carried out in a way which minimizes cost, the main chal-
lenge is to find the right compromise between computational cost and accuracy, which
are antagonistic quantities. Methods based on surrogate models, which do not neces-
sarily lead to satisfactory results as could be obtained with extremely expensive Monte-
Carlo-type simulations, must nevertheless be explored and analyzed. Some drawbacks
of such methods may include: generation of robust solution sets which represent only
subsets of the “real” full Pareto front, and inevitable introduction of approximations
in the quantification of robustness. Nonetheless, such solutions can still be effectively
used for the design of mechanical systems if there is some control over the induced errors.

Among the MOO-type approaches, there are multiple options which are worth imple-
menting and testing for the disc brake squeal noise application, depending on the way the
uncertainties are considered or on the type of surrogate model. Firstly, the PhD research
follows work on the same applicative system in the deterministic case [34, 183]. This
research suggested that a Kriging-type metamodel was useful in describing the squeal
noise propensity function derived using FEM, and could be used in the multi-objective
Bayesian shape optimization scheme for minimization of squeal noise and maximization
of contact surface area, with an associated enrichment strategy. Even though uncertain-
ties were not taken into account, a Kriging-based approach is an interesting perspective
for our robust optimization research in the case of a nonlinear expensive blackbox figure
of merit. Particularly, the ability of so-called “noisy” Kriging [184] to take into account
heterogeneous noise in the samples used to build the Kriging model, is a potentially
promising prospect for treating uncertainties. Secondly, the aforementioned stochastic
expansion method can be used in its non-intrusive version, as a surrogate model of the
stochastic performance function and simultaneously provides statistical information on
the outputs. Integrating this method into a multi-objective optimization scheme may be
one of the best options for robust optimization in such conditions. Intrusive stochastic
expansion approaches could be used to quantify and propagate the uncertainties directly
from inside the structural mechanics numerical model. This approach has been applied
to FEM models in the past but only recently in the context of isogeometric analysis
[185].
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2 Friction-induced instability model

In the presented PhD research, the main goal is to design robust shape optimization
strategies for complex mechanical systems under gradient-free, nonlinear and costly per-
formance metrics, applied to a simplified disc brake system under dynamical criterion.
This chapter presents the modeling process used to represent the disc brake system and
associated friction-induced instabilities, including elementary mathematical background
of IGA, the description of the simplified disc-pad structure’s IGA model, contact and
friction formulation, model reduction, damping consideration, and the mechanical equa-
tions which lead to mode coupling. The criterion used to evaluate instability and noise,
which is subsequently used as the main performance metric in the robust optimization
process, is then introduced, followed by insight into the physical behavior and computa-
tional cost of the developed model.

2.1 Disc-pad IGA model

This section presents the geometrical model of the disc brake, based on the IGA method.

2.1.1 IGA formulation

As explained in section 1.2.2, IGA fills the gap between design and analysis in traditional
FEM and provides flexibility in shape definition. In this research we use the most
common formulation of IGA, which employs Non-Uniform-Rational-B-Splines (NURBS)
as basis functions. Other types of basis functions such as T-splines can also be used
[186]. We briefly recall the basic principles of NURBS below, more relevant details can
be found in [66, 187]. IGA uses B-spline basis functions which are characterized by
their order, a set of knots, and associated control points. The control points are a set
of points which when linked by piecewise linear interpolation define what is called the
control mesh, which can then be used to control the shape of the system. The control
points also represent degrees of freedom. The physical mesh is distinct from the control
mesh and consists of “knot spans” and “patches”. Each patch represents a portion of
the computational domain and can be broken down into knot spans which are points,
lines, or surfaces depending on whether the considered geometry is in 1D, 2D or 3D.
Elements of the physical mesh are defined by inserting knots into each knot span. The
basis functions have Cp−k continuity across each knot, k being the knot multiplicity.
The so-called “knot vector” is defined as:

s = [s0, s1, ..., snc+p] (2.1)
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where nc and p are respectively the number of control points (or number of basis
functions) and the order of the basis functions. One knot vector defines what is called a
“patch”, and each interval [si, si+1] of a knot vector defines a “knot span”. A B-spline
basis function is defined recursively (note that it is necessary to consider that 0

0
:= 0 for

the definition to work properly):

Ni,0(s) =

{
1 si ≤ s < si+1,

0 otherwise

Ni,p(s) =
s− si

si+p − si
Ni,p−1(s)

+
si+p+1 − s

si+p+1 − si+1
Ni+1,p+1(s)

(2.2)

A B-spline curve of order p is expressed using the coordinates of the control points
Pi:

CBC(s) =

nc∑
i=1

Ni,p(s)Pi (2.3)

NURBS are a generalization of B-splines which are commonly used for IGA, and
which employ rational B-spline functions with weights γi associated to each control
point. NURBS curves are defined by:

CNC(s) =

nc∑
i=1

γiNi,p(s)∑nc
j=1 γjNj,p(s)

Pi. (2.4)

The NURBS surface is written similarly as:

CNS(s) =

nc∑
i=1

mc∑
j=1

γijNi,p(s)Nj,q(t)∑nc
k=1

∑mc
l=1 γklNk,p(s)Ml,q(t)

Pij . (2.5)

The NURBS volume description is expressed in a similar manner, by generalizing the
above equations to the 3D case.

Properties of B-spline and NURBS basis functions include partition of unity (
∑n

i=1Ni,p(s) =
1), local support (Ni,p(s) = 0 for s /∈ [si, si+p+1]), non-negativity (Ni,p(s) ≥ 0) and high
order of continuity (Cp−k).

Three mesh refinement techniques are possible in IGA. “Knot insertion” consists in
inserting additional knots in knot spans and can be used to split the domain into smaller
parts while keeping inter-element continuity. Inserting knots implies an increment in the
number of control points and basis functions. It is similar to h-refinement in classical
FEM. “Degree elevation” consists in increasing the polynomial order of the basis func-
tions and is equivalent to p-refinement in FEM. When increasing the polynomial order,
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knot multiplicity must be increased (adding existing knot values in the knot vector) ac-
cordingly in order to maintain the initial continuity of the basis functions across element
boundaries. The third type of refinement is known as “k-refinement” and combines poly-
nomial order elevation with subsequent knot insertion. k-refinement has no counterpart
in classic FEM and has been shown to potentially outperform p-refinement [188]. The
advantage of global mesh refinement in IGA compared to classic FEM is that it does not
affect the geometry itself. The main disadvantage of NURBS-based IGA with respect
to refinement is that it does not enable straightforward local refinement. T-spline-based
IGA is a more recent strategy which enables smooth local refinement in any geometry
[186].

The basic main steps of the IGA modeling procedure are as follows:

1. Construct the CAD geometry

2. Apply global refinement

3. Map the parametric space (where the basis functions are defined) to a master
element

4. Apply numerical integration to obtain the characteristic matrices of the problem,
using Gauss quadrature

5. Set boundary conditions (uniform displacement and traction applied similarly to
FEM)

The numerical integration for the stiffness contributionKinit is briefly described below:

Kinit =

∫
BTEB dΩ (2.6)

=

∫ tj+1

tj

∫ si+1

si

BTEB|Jdt| dsdt (2.7)

=

∫ 1

−1

∫ 1

−1
BTEB|Jdt||Jξη| dξdη (2.8)

=

NINT∑
k=1

BT
kEBk|Jdt|k|Jξη|kWk (2.9)

where E is the material property matrix, B is the strain-displacement matrix, W are
weights for Gauss quadrature, Jst and Jξη are the Jacobian matrices which respectively
map the physical space to the master element and the master element to the parametric
space (more details in [187]).

51



CHAPTER 2. FRICTION-INDUCED INSTABILITY MODEL

2.1.2 Simplified disc-pad model

The disc brake model is constructed based on an open source Matlab code called NLIGA
[189] which implements IGA on a variety of continuum mechanics example problems ap-
plied to relatively basic geometries. The disc and pad geometries are constructed based
on the provided example cases. The main objective of the presented work being the
robust optimization of gradient-free nonlinear functions, applied to disc brake friction-
induced instabilities, we focus on simplifying the disc brake model as much as possible
while providing faithful representation of said instabilities from a physical point of view.
Nonetheless, the simplifications applied throughout the modeling process will be prop-
erly justified. The first important simplification is that only two mechanical parts are
modeled, the disc and one pad. Most disc brake systems usually consist of two pads
pressing on either side of the disc. However, in the aim of modeling friction-induced
instabilities, it is not necessary to model both pads, which would further complexify
the model and increase computational cost. Also, any surrounding mechanical parts
which are present in real disc brake systems, such as calipers which hold the pads in
place, the hydraulic system used to apply pressure to the pads or the rotor shaft, are not
modeled but are replaced by appropriate boundary conditions. Also note that the shape
optimization problem considered in the presented PhD research is limited to the pad
geometry which means the shape of the pad will be varied throughout the optimization
process but the disc shape will remain fixed.

Disc brake systems have been modeled with analytical two-dimensional plate formula-
tions [190, 191] which turned out to be insufficient for break squeal analysis since modal
coupling links modes inside and outside the plane [192]. Thus, three-dimensional models
were introduced and particularly using FEM [193], able to take into account complex
geometries and multiple phenomena. In this research we construct a three-dimensional
model using three translational degrees of freedom per control point.

Disc

The disc is a cylindrical geometry characterized by thickness T = 2cm, defined by
internal radius Ri = 4cm and external radius Re = 16cm. When constructing the disc
model, the method to enable contact between the disc and the pad must be considered.
The contact formulation described later in section 2.1.4 employs a node-to-node strategy,
which implies the number of contact points is dependent on the level of refinement of
the disc NURBS geometry. For this reason, we opted for a highly refined disc in order
to be able to increase the number of contact points somewhat freely if needed. A highly
refined disc also has the added advantage of higher accuracy of the analysis results. The
challenging aspect when applying refinement to the disc is that only the portion of the
disc where the pad comes into contact actually needs to be refined. Applying refinement
to the whole disc may be inefficient. Multiple options were considered for this issue:

• Make a single cylindrical NURBS geometry for the disc and refine the whole disc.
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In this case global deformation will also be well represented but most of the disc
will be over-refined, which is not ideal in terms of computational cost

• Divide the disc into two NURBS patches: a highly-refined quarter cylinder where
it is assumed the pad will come in contact, and a coarse 3/4 cylinder where it
is assumed there is no contact. The two non-conforming patches must then be
connected using an adequate nonconforming patch coupling method

• Use T-spline based IGA instead of NURBS and make a single geometry for the disc,
with a highly refined portion for contact (T-Splines have the advantage of allowing
local refinement without having to construct and connect different patches).

• Instead of modeling a full-disc, only model a quarter-disc with NURBS and refine
the whole geometry

For the gain in terms of computational cost and ease of implementation, restricting the
disc model to a quarter-disc was retained. Considering the fact that properly modeling
friction-induced instabilities (in particular the nonlinear complex character of the result-
ing performance metric) is the primary purpose of the disc brake model, modeling the
full disc appears as counter-productive given the necessity to consider non-conforming
mesh coupling or T-spline strategies in this case. Figure 2.1 shows a comparison of the
full disc NURBS geometry vs the retained quarter-disc NURBS geometry.

Figure 2.1: NURBS full disc geometry (left) and quarter-disc geometry (right) (the
NURBS control points are not displayed)
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Pad

The initial pad geometry is designed using the same principle as the disc geometry, with
thickness t = 1.5cm, internal radius ri = 9cm, external radius re = 12cm and an angular
length of 50°. Since the considered shape optimization problem focuses on varying the
pad geometry, the parametrization which allows us to modify the pad geometry is a
key aspect. Similarly to the disc geometry, refinement must also be applied to the pad
in order to model contact. The initial default geometry before and after refinement is
shown in figure 2.2. Figure 2.3 shows the quarter-disc geometry and the pad geometry
together. In our shape optimization context, the pad geometry will be modified by
changing the position of certain well-chosen control points, in order to access a nearly
topological design space for the pad.

Figure 2.2: NURBS pad geometry (left:non-refined, right: refined)

2.1.3 Boundary conditions

Boundary conditions are applied to each part of the system in order to represent a real
disc brake’s behavior as accurately as possible, given the simplified two-part system.
Fixed degrees of freedom are imposed directly to the NURBS control points, as zero
displacement boundary conditions do not require the control points to interpolate the
geometry. In order to model a fixed link between the inner surface of the disc and the
wheel shaft which is not modeled in our case, all degrees of freedom of the innermost
control points along the radial direction of the disc geometry are fixed. The two trans-
lational degrees of freedom of all control points in the plane of the top surface of the
pad geometry are fixed as well. The remaining degrees of freedom normal to the pad
surface are left free in order to model the contact forces. Moreover, a uniform pressure is
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Figure 2.3: NURBS quarter-disc and pad geometries

applied to the face of the pad opposite to the contact face, by distributing an equivalent
external force between the control points of the surface.

2.1.4 Contact formulation

This section presents the contact formulation used to model contact and friction between
the disc and pad, starting from a brief overview of contact methods in IGA, and then
explaining the adopted method in the specific case of the disc brake system.

Contact in IGA

Classical FEM approaches have been tested to enable contact between isogeometric
elements [194]. Many classical approaches have been transferred from FEM to IGA, for
instance the mortar approach [187]. There are three main contact strategies in FEM
which can be potentially adapted for IGA:

• Node to node (NTN)

• Node to surface (NTS)

• Surface-to-surface (STS) (Gauss-point-to-surface and mortar method)

The NTN enforces contact directly between the FEM nodes of the mesh [195, 196].
Its main advantage is that it can accurately model the effect of the contact pressure.
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However, it cannot be used for large sliding problems where the contact nodes are greatly
displaced from their initial position. Also, it has been scarcely applied to IGA due to
the fact that the control points (equivalent to FEM nodes) often do not interpolate the
geometry.

The NTS method [197] (“node-to-segment” in 2D) enforces the contact constraints
between a node of one contact surface, designated as the slave surface, and the corre-
sponding surface on the other contact surface, the master. This means that the contact
integrals are collocated at the slave’s nodes. In IGA, the challenge of this method is
to collocate the contact contribution at appropriate physical nodes, knowing that the
control points are not interpolatory. Two main methods have been implemented in pre-
vious research. The first, “single-pass” [198], collocates the contact integrals at physical
points in one-to-one correspondence with the control points associated to the surface.
The second, “double-pass” [199], approximates the slave surface with interpolation el-
ements and the master surface also, or taken as the actual NURBS surface and using
a closest point projection algorithm. The main problems of NTS are inability to pass
the contact patch test, strong dependency of results on discretization for the single-pass,
and over-constraint for the double-pass.

The STS method (STS), does not collocate the contact integrals at the slave nodes,
but rather enforces the contact constraints in an integral manner. One common ver-
sion of STS is the mortar method [200, 201] which evaluates the weak form of contact
constraints by numerical integration, rather than using collocation. In IGA, the contact
constraints are projected to the degrees of freedom of the slave surface so that the right
number of constraints is obtained. The mortar method satisfies both the patch test
and the “inf-sup” stability requirements. Its main disadvantages are computational cost
(computation and storage of mortar integrals) and its difficulty to implement.

Choice of method for the studied case

The proposed method must be adapted to the three-dimensional problem with friction
taken into account. However, we have a simplified problem compared to most general
contact problems in IGA. In our case:

• both contact surfaces are plane,

• the IGA mesh control points on the contact surfaces interpolate the geometry
(except for some close to the boundary), so we can enforce contact in a regularized
sense at control points directly,

• we do not need to consider the time-dependent problem or simulate relative mo-
tion between the two parts, since we are only interested in conducting Complex
Eigenvalue Analysis of the system in a frictional contact state.
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Given these assumptions NTN adapted to the case of IGA appears as the most
straightforward and appropriate technique to apply contact constraints in our case. Ap-
plying NTS or STS, whose implementation is more difficult, would be counter-productive
since modeling relative motion is not needed. In order to apply NTN contact to our nu-
merical model, the first main challenge is connecting the two contact surfaces at points
which make sense physically, in other words dealing with the non-conforming IGA meshes
of the disc and the pad. After one-to-one correspondence between the disc and pad con-
tact points is enabled, the penalty method is applied in order to enforce the contact
constraints.

Enabling one-to-one correspondence between disc and pad contact points

First, the coordinates of control points located on the bottom surface of the pad (which
is assumed in contact with the disc) are identified. The points which define the edges in
the radial direction are discarded because they do not interpolate the geometry. Then,
these contact points are “projected” onto the top surface of the disc, in reality the
coordinates of the obtained points on the disc along the normal direction to the contact
surface are exactly the same as those of the pad contact points since the bottom surface
of the pad is situated on the same plane as the top surface of the disc. However, in the
characteristic matrices of the disc-pad system, these points will appear twice, on one
hand those of the disc and on the other hand those of the pad. For each contact point
on the pad, the closest control point on the disc is found and the idea is to displace this
point on the disc surface so that it has the same coordinates as the pad point. No new
points are added to the disc, certain existing points are selected and displaced to make
them line up (in terms of coordinates in the contact plane) with the contact points of
the pad. Figure 2.4 shows a schematic view of how the closest disc control points are
displaced towards each pad contact point on the contact surface.
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Figure 2.4: Illustration of the pad contact points being displaced towards the closest disc
top surface contact points to enable one-to-one correspondence

To achieve this, we interpolate between the displacements of the “initial” disc con-
tact points (u1 u2 ... un)

T to obtain the displacements of the new replacement points
(un+1 un+2 ... u2n)

T . The displacement of any point can be expressed as a combination of
those of the initial points:

u(x, y) = u1Γ1(x, y) + u2Γ2(x, y) + ...+ unΓn(x, y) (2.10)

where Γk , (k = {1, ..., n}) are displacement interpolation functions chosen such that
their evaluation at the initial points’ coordinates (xi, yi) is:

Γk(xi, yi) =

{
1 i = k

0 i ̸= k
∀i, k ∈ {1, ..., n} (2.11)

At an arbitrary new point j, that is ∀ j ∈ {n+ 1, ..., 2n}, equation 2.10 yields:

uj(xj , yj) =
[
Γ1(xj , yj) Γ2(xj , yj) . . . Γn(xj , yj)

]

u1
u2
...
un

 (2.12)
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Then, the displacements of the new points can be expressed from those of the initial
points in matrix form: 

un+1

un+2
...

u2n

 =


Γ1(xn+1, yn+1)
Γ2(xn+2, yn+2)

...
Γn(x2n, y2n)



u1
u2
...
un

 (2.13)

Thus, a transfer matrix Qc is defined between initial points and new points :

Qc =


Γ1(xn+1, yn+1)
Γ2(xn+2, yn+2)

...
Γn(x2n, y2n)

 (2.14)

And a total transfer matrix is defined in order to apply the transformation to the disc
global matrices:

Qc,tot =

[
I 0
0 Qc

]
(2.15)

The non-contact displacements of the disc Uint and the new contact point displace-
ments Unew can be expressed in terms of themselves and the initial disc contact points
(the closest points to each pad contact point):[

Uint

Unew

]
= Qc,tot

[
Uint

Uold

]
(2.16)

The new mass and stiffness matrices of the disc Kd and Md can be computed from
their initial versions Kd,init and Md,init with the old points as follows:

Kd = QT
c,totKd,initQc,tot

Md = QT
c,totMd,initQc,tot

(2.17)

Equations 2.10 to 2.14 describe the procedure for one degree of freedom per con-
trol point. However, our model uses three degrees of freedom (translations) per con-
trol point, in which case equation 2.12 can be extended to three degrees of freedom
(u(xj ,yj) v(xj ,yj) w(xj ,yj))

T :

u(xj , yj)v(xj , yj)
w(xj , yj)

 =

Γ1(xj , yj) 0 0 Γ2(xj , yj) 0 0 . . . Γn(xj , yj) 0 0
0 Γ1(xj , yj) 0 0 Γ2(xj , yj) 0 . . . 0 Γn(xj , yj) 0
0 0 Γ1(xj , yj) 0 0 Γ2(xj , yj) . . . 0 0 Γn(xj , yj)





u1
v1
w1

u2
v2
w2
...
un
vn
wn


(2.18)

59



CHAPTER 2. FRICTION-INDUCED INSTABILITY MODEL

The choice of interpolation functions is not trivial. In order to provide a full rank
transfer matrix, the order of the polynomials has to be high enough, more particularly
its number of terms needs to be at least equal to the number of contact points on the
disc. For instance, for our test case which consisted of 14 contact points, selecting a
polynomial of degree 2 or 3 was not sufficient, but degree 4 provided enough terms (in
2D).

Contact and friction laws

In this section the contact and friction formulation is described for one pair of contact
points. The non linear contact forces applied at the interface are separated into normal
contact forces F⃗n,d, F⃗n,p and tangential contact forces (friction) F⃗t,d, F⃗t,p (subscript d
designates the force applied to the disc while subscript p indicates the pad). To enforce
contact constraints, we apply a penalty-based regularized strategy. Regularized laws
do not respect the no-penetration condition but this can be interpreted as asperities
being crushed at the microscopic scale. They are less realistic than non regular laws
(where contact points are not fixed), however, they are less time-consuming and easier
to implement. The applied regularized law is based on the force/displacement curve of
a pad compressed onto a disc [179, 177]:

F⃗n,d =

{
(kLδ + kNLδ

3)u⃗n δ < 0

0⃗ δ ≥ 0
(2.19)

F⃗n,p = −F⃗n,d (2.20)

where kNL is the non-linear stiffness, kL is the linear stiffness, δ = Un,d − Un,p is
the relative displacement between the disc and the pad along the normal to the contact
surface, and u⃗n is the unit vector in the normal direction to the contact surface.

When using penalty-based contact enforcement, care must be taken in the choice of
stiffness parameters such as kNL and kL. Low stiffnesses will lead to behavior similar to
that of a simple spring-mass (often used to explain harmonic motion) characterized by
low frequency oscillations. On the other hand, increasing contact stiffnesses too much
will tend to resemble a fixed link and will not allow relative motion along the normal to
the contact surface between the two parts in contact.

For friction, the well-known Coulomb law is sufficient to model mode coupling based
instabilities which is our main interest in this research. More elaborate laws with de-
pendency of the coefficient of friction on sliding speed are out of the scope of our model
(need to be derived through experimental tests and are more adapted to describe stick-
slip type instabilities at low speeds). The radial component of the friction force is
neglected. Coulomb’s law in our case yields the following expressions for the friction
force on the disc and the pad:
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F⃗t,d = ∥F⃗n,d∥sign(Vr)u⃗t (2.21)

F⃗t,p = −F⃗t,d (2.22)

where µ is the friction coefficient, sign(Vr) is the sign of the relative sliding speed,
which we set as positive, and u⃗t is the unit vector in the tangential direction to the
contact surface.

Figure 2.5 shows a schematic view of the contact and frictional forces for one contact
pair.

Disc

Pad

U i
n,p

U i
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ut
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δi kL, kNL
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F i
n,d

F i
t,p

F i
n,p

Figure 2.5: Scheme of the disc-pad contact model for one contact pair

2.2 Model reduction

This section presents the theory behind Craig & Bampton model reduction for systems
containing contact interfaces, and its application in the case of the simplified disc brake
model.

2.2.1 Craig & Bampton

In the context of Finite Element modeling, computational cost can become very large,
especially when high mesh refinement is needed for modeling precise phenomena, as is
the case with our model due to contact and friction. Additionally, in optimization prob-
lems which require multiple calls to the objective function, Finite Element models with a
large number of degrees of freedom can be a bottleneck. An efficient way to mitigate this
problem is to use model reduction techniques, which consist in projecting the model onto
a basis made of fewer physical degrees of freedom, thus drastically reducing the problem
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size. Nevertheless, the choice of the basis is a crucial aspect because it conditions the
accuracy of the reduced model with respect to the original. In our case, in addition
to the computational cost problem, the model reduction helps limit the problem to the
interface degrees of freedom as explained below. Ritz methods are the most well-known
reduction methods, which decompose the solutions into a linear combination of shape
functions weighted by so-called generalized degrees of freedom. This is equivalent to
projecting the solutions on a vectorial space which dimension depends on the choice of
shape functions. The most common version of Ritz methods is the projection onto the
modal basis which uses the mode shapes as shape functions.

When a model includes contact and friction, simple Ritz methods are not adequate
because the displacements of the contact interface degrees of freedom UC need to be
treated separately from those of the rest of the degrees of freedom UI , called internal de-
grees of freedom. This differentiation of the degrees of freedom is called sub-structuring
and each substructure can be reduced separately. These methods can be divided into
two main types: fixed-interface which are more adapted to systems where the contact
interface is rigid and free-interface which are used when the contact interface is flexible.

In this case we use the most well-known fixed interface reduction method: Craig
& Bampton method. The following equations describe the general procedure for this
method. First, the displacements are rearranged by splitting the degrees of freedom into
contact interface degrees of freedom and internal degrees of freedom:

U =

[
UC

UI

]
(2.23)

Then, the rearrangement of the system’s full mass and stiffness matrices comes natu-
rally:

Mfull =

[
MC,C MC,I

MI,C MI,I

]
Kfull =

[
KC,C KC,I

KI,C KI,I

]
(2.24)

The idea is to remove the internal degrees of freedom and replace them with some
equivalent contribution of much smaller size. Thus, the problem size will be that of the
contact degrees of freedom plus that of the equivalent contribution. The displacements
of the internal degrees of freedom are projected onto a combination of fixed-interface
modes and the static behavior of the interface:

UI = Φqg +ΨUI (2.25)

where Φ =
[
Φ1Φ2 . . .Φnmodes

]
are the nmodes first modes of the structure with fixed

interface degrees of freedom, obtained by solving the following equation:

(KI,I − ω2
iMI,I)Φi = 0 ∀i ∈ {1...nmodes} (2.26)
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where qg contains the generalized degrees of freedom associated to each mode in Φ,
also called modal contributions. Ψ is calculated by solving the static problem at the
interface: [

KI,I KC,I

KI,C KI,I

] [
UC

UI

]
=

[
FC

0

]
(2.27)

The second line of this matrix system leads to the expression of the internal degrees
of freedom as a function of the interface degrees of freedom, and to the extraction of the
static modes Ψ (see equation 2.28). This is equivalent to moving each degree of freedom
of the interface and observing how the rest of the structure deforms. Furthermore, special
attention needs to be taken with the external forces, as the external forces applied to the
internal degrees of freedom must be zero, or the internal degrees of freedom where force
is applied must artificially be added to the interface degrees of freedom and treated as
such. In our case we apply the second option for the pad which has pressure applied to
the face opposite to the contact face.

KI,CUC +KI,IUI = 0

UI = (−K−1
I,IKI,C)UC = ΨUC

(2.28)

Finally, the initial degrees of freedom are re-written as a function of the reduced
degrees of freedom, and a transfer matrix Q is introduced:[

UC

UI

]
=

[
I 0
Ψ Φ

] [
UC

qg

]
= Qred

[
UC

qg

]
(2.29)

And the original full system matrices Mfull,Kfull,Ffull can be reduced into matrices
M,K,Fext:

M = QT
redMfullQred

K = QT
redKfullQred

Fext = QT
redFfull

(2.30)

2.2.2 Application to the disc-pad model

As explained in section 2.1.2, the disc model is highly refined in order to be able to
impose contact in a one-to-one manner between disc and pad contact points even when
the pad is also relatively highly refined (in which case the number of contact points is
high). The Craig & Bampton method is applied in order to reduce the total number
of degrees of freedom. The main idea is to reduce the disc and pad at the same time
using the Craig & Bampton method, after having identified the contact points. This
reduction uses only the contact points as junction points. However, the main purpose

63



CHAPTER 2. FRICTION-INDUCED INSTABILITY MODEL

of the disc brake model is to be used inside an optimization process where the shape
of the pad is varied many times. Taking this into account, the reduction can only be
done once the contact points on the pad have been identified, i.e. inside the optimization
loop (because the contact points’ position varies with the pad shape). The disc reduction
using only its contact points also follows this rule since the location of disc contact points
is dependent on those of the pad. Nonetheless, because of the large number of degrees
of freedom of the refined disc, reducing it inside the optimization loop is not feasible
since the calculation of the static junction modes is too time-consuming and presents
a bottleneck in terms of computational cost. For this reason, we reduce the disc brake
model in two steps:

• First, Craig & Bampton is applied to the disc only, using the points of the potential
contact surface of the disc (control points located on the top surface) as junction
points. This can be thought of as a preliminary calculation, which is carried out
once and never takes place inside the optimization loop.

• Then, Craig & Bampton is applied to the once-reduced disc and the pad at the
same time, using the identified pad contact points and the corresponding disc
contact points as the junction (inside the optimization loop).

This process was found to be the best way to incorporate the highly refined disc model
inside the calculation of the dynamical objective while keeping computational cost to a
minimum.

To verify that the reduction process works, a certain number of vibrational modes
before and after the both model reductions are compared and show good correspondence.
The second reduction in particular is interesting to verify since it uses non physical
degrees of freedom resulting from the first reduction as inputs. The frequencies of the
first 10 modes before and after the second Craig & Bampton reduction were computed
(f1 = 0 Hz, f2 = 0 Hz, f3 = 0 Hz, f4 = 930.8 Hz, f5 = 960.7 Hz, f6 = 1041.1 Hz,
f7 = 1057.1 Hz, f8 = 1237.3 Hz, f9 = 1606.9 Hz, f10 = 2133.8 Hz). The frequencies
before and after reduction were found to be identical to one decimal place, which shows
that the reduction works well. Note that the first three modes have a zero frequency
because they are rigid body modes which originate from the pad model. The boundary
conditions applied to the pad do not block all its movements, however, after applying
the contact constraints between disc and pad contact points, these rigid body modes
disappear (the remaining free movements of the pad are eliminated by linking it to the
disc).

2.3 Damping

Damping is an important and complex aspect of structural dynamics modeling. It cor-
responds to the physical phenomenon of energy dissipation through various media, for
example through heat. There are three main well-known methods to model damping:
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Rayleigh damping, modal damping, and hysteretic damping. Hysteretic damping is very
simple but not applicable to numerical methods since it involves a complex imaginary
term. Modal damping is very effective to apply more or less damping to different modes,
but can be relatively time-consuming to implement because it requires an eigenvalue
computation. Rayleigh damping applies the same level of damping to a well-chosen
range of frequencies, and is very simple to implement. In the case of the simplified disc
brake system, Rayleigh damping is applied. It consists in a damping matrix C, made
of a linear combination of the stiffness matrix K and the mass matrix M, as shown in
2.31:

C = αdK+ βdM

αd = 2ξd
ωminωmax

ωmin + ωmax

βd = 2ξd
1

ωmin + ωmax

(2.31)

where ωmin and ωmax are the minimum and maximum frequencies of the studied
interval, and ξd is the damping rate applied at ωmin and ωmax. The matrix C is then
incorporated into the system equations (see equation 2.36).

2.4 Equations of motion & Complex Eigenvalue Analysis

This section presents the equations of motion which lead to the calculation of coupled
complex eigenvalues due to friction-induced instability.

2.4.1 Treatment of the nonlinear forces

Similarly to section 2.1.4, the nonlinear forces are described for only one contact point
pair. By projecting the friction forces (see section 2.1.4) along the Cartesian coordinates
in the plane of the contact interface along u⃗x and u⃗z, in addition to the contact forces
along u⃗y, the components of the non linear frictional contact forces can be expressed in
the Cartesian coordinate system (equation 2.32). Angle θF which is the angle between

the friction force direction and (⃗u)x, is schematically represented in figure 2.6.

F⃗y,d = F⃗n,d =
[
kL(Un,p − Un,d) + kNL(Un,p − Un,d)

3
]
u⃗y

F⃗y,p = −∥F⃗y,d∥u⃗y
F⃗x,d = −µcos(θF )× ∥F⃗y,d∥u⃗x
F⃗z,d = µsin(θF )× ∥F⃗y,d∥u⃗z
F⃗x,p = µcos(θF )× ∥F⃗y,d∥u⃗x
F⃗z,p = −µsin(θF )× ∥F⃗y,d∥u⃗z

(2.32)
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Figure 2.6: Scheme representing angle θF and the friction force for one contact point on
the simplified disc brake system

The Jacobian matrix of the non linear forces can then be expressed on one contact
pair as:

J∗
FNL

=



∂Fx,d

∂Ux,d

∂Fx,d

∂Uy,d

∂Fx,d

∂Uz,d

∂Fx,d

∂Ux,p

∂Fx,d

∂Uy,p

∂Fx,d

∂Uz,p

∂Fy,d

∂Ux,d

∂Fy,d

∂Uy,d

∂Fy,d

∂Uz,d

∂Fy,d

∂Ux,p

∂Fy,d

∂Uy,p

∂Fy,d

∂Uz,p

∂Fz,d

∂Ux,d

∂Fz,d

∂Uy,d

∂Fz,d

∂Uz,d

∂Fz,d

∂Ux,p

∂Fz,d

∂Uy,p

∂Fz,d

∂Uz,p

∂Fx,p

∂Ux,d

∂Fx,p

∂Uy,d

∂Fx,p

∂Uz,d

∂Fx,p

∂Ux,p

∂Fx,p

∂Uy,p

∂Fx,p

∂Uz,p

∂Fy,p

∂Ux,d

∂Fy,p

∂Uy,d

∂Fy,p

∂Uz,d

∂Fy,p

∂Ux,p

∂Fy,p

∂Uy,p

∂Fy,p

∂Uz,p

∂Fz,p

∂Ux,d

∂Fz,p

∂Uy,d

∂Fz,p

∂Uz,d

∂Fz,p

∂Ux,p

∂Fz,p

∂Uy,p

∂Fz,p

∂Uz,p



(2.33)

The highlighted elements are the only non-zero elements of the Jacobian, since all
the non linear force components depend only on the displacements of the disc and pad
along the u⃗y direction. Thus, we can see the asymmetry of the Jacobian which is due to
the derivatives of the tangential forces (friction). When detailing the expressions of the
different non-zero partial derivative terms of the Jacobian we notice that they all have
similar expressions. In particular, if we define a number CNL:

CNL = −kL + kNL(−3U2
y,d − 3U2

y,p + 6Uy,pUy,d) (2.34)

The partial derivatives are expressed below:
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∂Fx,d

∂Uy,d
=

∂Fx,p

∂Uy,p
= −CNLµcos(θF )

∂Fy,d

∂Uy,d
=

∂Fy,p

∂Uy,p
= CNL

∂Fz,d

∂Uy,d
=

∂Fz,p

∂Uy,p
= CNLµsin(θF )

∂Fx,p

∂Uy,d
=

∂Fx,d

∂Uy,p
= CNLµcos(θF )

∂Fy,p

∂Uy,d
=

∂Fy,d

∂Uy,p
= −CNL

∂Fz,p

∂Uy,d
=

∂Fz,d

∂Uy,p
= −CNLµsin(θF )

(2.35)

2.4.2 Equation of motion

The equation of motion of the brake system with friction interface is the following:

MÜ+CU̇+KU = Fext + FNL(U) (2.36)

2.4.3 Equilibrium point

The equilibrium point is defined by:

KU0 = Fext + FNL(U0) (2.37)

U0 is determined iteratively using the Newton Raphson method until the components
of the residue vector RNR are close enough to zero. The equilibrium point at each
iteration U0

i+1 is determined from the equilibrium point at the previous iteration U0
i,

and the residue is computed:

U0
i+1 = U0

i − (K− JFNL
(U0

i))−1(Fext + FNL(U0
i))

RNR(U0
i) = KU0

i − Fext − FNL

(2.38)

with JFNL
(U0

i) = ∂FNL
∂U (U0

i).

2.4.4 Linearization

The non linear friction forces can be linearized around the equilibrium, using the 1st
order Taylor expansion:

FNL(U0 + δU) ≈ FNL(U0) +
∂FNL

∂U
(U0)δU

≈ FNL(U0) + JFNL
(U0)δU

(2.39)
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where δU is a small perturbation of the equilibrium point. The linearized global
equation becomes:

MδÜ+CδU̇+ (K− JFNL
)δU = 0 (2.40)

2.4.5 Eigenvalue problem

Expressing the perturbation as:

δU = ϕeige
λt

δU̇ = ϕeigλe
λt

δÜ = ϕeigλ
2eλt

(2.41)

The following eigenvalue problem is obtained:

(λ2M+ λC+ (K− JFNL
))ϕeig = 0 (2.42)

2.4.6 State system

In order to solve the eigenvalue problem stated above, which takes into account damping,
state variable V is introduced:

V =

[
δU

δU̇

]
(2.43)

Equation 2.40 can then be re-written under the so-called state system form:[
K 0
0 M

] [
δU̇

δÜ

]
+

[
0 −K
K C

] [
δU

δU̇

]
=

[
0
0

]
(2.44)

which then yields the first-order differential equation V̇ = SV, with:

S = −
[

K 0
0 M

]−1 [
0 −K
K C

]
=

[
0 I

−M−1K −M−1C

]
(2.45)

The unstable modes can then be identified by calculating directly the eigenvalues of
matrix S.

2.5 Stability function

As explained in section 1.4.3, there are multiple methods that can be used to predict the
noise propensity of frictional systems. The most common way is to use time integration
to obtain the vibrational (and thus noise) levels. However, this approach is usually very
time consuming. In the interest of providing a time-efficient quantification of noise, we
select a CEA-based approach. This method is different from time integration and similar
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methods where the goal is to determine the level of noise generated, as the noise levels are
not obtained. The idea is rather to predict the possibility of noise occurrence by assuming
noise occurrence is directly related to the number and magnitude of positive real parts of
complex eigenvalues. According to Lyapunov’s theory of dynamical stability, instability
can be identified when the real part of complex eigenvalues becomes positive. In our case,
the asymmetry in the stiffness matrix caused by the friction force terms leads to complex
eigenvalues and mode coupling phenomenon, which induces half of the coupled real parts
to become positive. In general, the complex eigenvalues are computed over a range of a
certain control parameter in order to get an overall idea of the extent of instability. This
leads to the notion of Hopf bifurcation. Here we use the friction coefficient as a control
parameter, which means we can quantify instability and therefore noise propensity for a
range of friction coefficients. This means the measure of noise is representative of several
operating conditions rather than one nominal case. The proposed noise quantification
criterion is defined as:

Cs(X) =

neig∑
i=1

(∫
µ
max (ℜ{λi(Xd,µ)}+ d0, 0)

)
, (2.46)

where neig is the number of eigenvalues, µ is the range of friction coefficients, Xd is
the set of parameters which describe the shape of the disc brake system (explained in
detail in chapter 3), λi is the i-th eigenvalue, and ℜ+ is the positive part of the real part
operator. This criterion basically translates to taking the sum of all the areas under the
positive real part curves on the stability (real part) diagram. Figure 2.7 illustrates the
criterion in the most simple case with one coupled mode pair, and no damping. Note
that parameter d0, which is by default set to zero, can be used to shift the whole stability
diagram along the y-axis, which can be useful in order to differentiate between several
very low instability cases in terms of potential noise propensity. Furthermore, the noise
criterion only takes into account modes in the audible frequency range (20Hz-20kHz),
as modes outside this range will not produce any human-audible sound. From now
on and until the end of this dissertation, the criterion defined in equation 2.46 will be
named “stability function”, with minimization of the stability function being equivalent
to minimization of noise occurrence.
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Figure 2.7: Graphical illustration of the stability function (in orange) in a simple case
with only one unstable mode pair and no damping

2.6 Physical insight and model validation results

This section presents friction-induced instability results obtained with the model de-
scribed in the previous sub-sections. These results evidence the capability of our model
to reproduce friction-induced instability behavior, and give insight into the physical ef-
fect and computational impact of various parameters such as damping, the number of
contact points, and material properties.

2.6.1 Hopf bifurcation & dynamical instability identification

Figure 2.8 shows the variation of the real part of the eigenvalues of the three first pairs
of unstable modes as a function of the friction coefficient. The Hopf bifurcation obtained
at a certain value of friction coefficient for each mode pair is a clear indication of the
unstable behavior. Amongst the three first unstable mode pairs, only one is located in
the audible frequency range. Note that for the prediction of squeal noise, the two mode
pairs whose frequency is above 20 kHz would not be taken into account.
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Figure 2.8: Real part of the eigenvalues of three unstable mode pairs as a function of the
friction coefficient µ

Figure 2.9 shows the variation of the real part and the imaginary part of the eigenvalues
of the first unstable mode pair as a function of the friction coefficient, as well as the
imaginary part as a function of the real part. These plots are a good example of typical
friction-induced instabilities.
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Figure 2.9: Eigenvalues of the first unstable mode pair (top left: real part verses friction
coefficient, bottom left: imaginary part verses friction coefficient, top right:
imaginary part verses real part)

2.6.2 Effect of damping

Figure 2.10 shows the effect of damping on one unstable mode pair. As expected, adding
damping to the structure shifts the real part of the unstable pair towards negative values,
thus reducing instability. Also, the bifurcation appears at a slightly lower value of friction
coefficient when considering damping, and the initial real parts of the two coalescent
eigenvalues are not exactly at the same value as they are in the case without damping.
These effects are consistent with what is observed in previous studies of this phenomenon
[202, 175]. The settings used for the Rayleigh damping (described in section 2.3) are
: ω1 = 2e4 rad/s, ω2 = 7e5 rad/s, ξ = 5 %. Taking into account damping does not
considerably affect the computational cost of determining unstable modes.
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Figure 2.10: Effect of damping on the real part of the first pair unstable modes

2.6.3 Linear vs nonlinear contact stiffness

The computational cost being a crucial aspect in an optimization problem, it has to
be taken into account at every step of the implementation process. In the optimiza-
tion scheme, since the calculation of the stability function is potentially carried out
thousands of times, the computational cost of the function for a single pad geometry
must be reduced as much as possible. In this context, the question of including con-
tact non-linearities is important. Given that the friction-induced instability is not due
to non-linearities (it is due to the asymmetric friction terms in the stiffness matrix),
and that modeling non-linear contact has considerable computational cost (because the
equilibrium point needs to be calculated) the prospect of limiting the model to linear
contact is worth investigating.

The results of this section were computed with the following values for the linear and
non-linear contact stiffness constants: kL = 1e7 N/m and kNL = 1e14 N/m (refer to
section 2.1.4 for more details on how these two constants are taken into account). If
we compare the results using these settings with a case where only linear stiffness terms
are taken into account (see figure 2.11), we observe that even a high value of nonlinear
stiffness has minimal effect on the unstable behavior. This makes sense because when
using non-linear contact stiffnesses, at equal linear and non-linear stiffness constants, the
cubic stiffness term (which is a function of the δ introduced in section 2.1.4) is negligible
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compared to the linear stiffness term. Thus, the effect of the nonlinear term is low
enough to consider that the completely linear model is sufficient in our case, given that
we are only using it for stability analysis through eigenvalue determination. We recall
that taking non-linear contact stiffnesses into account is crucial in more sophisticated
models used to describe the behavior of the system over time since the non-linearities
are needed to obtain a non-zero amplitude level in the time response.
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Figure 2.11: Effect of including a non-linear contact stiffness constant compared to the
linear case, on the real part of the first unstable mode as a function of the
friction coefficient µ

Using only a linear contact stiffness, the computational cost was reduced to approxi-
mately 25 seconds, compared to 109 seconds with the linearization process. Analyzing
the distribution of computation cost to different tasks, it appears that approximately
80% of computation time corresponds to the search for the equilibrium point whereas the
remaining 20% is attributed to the other tasks (contact point determination, disc ma-
trix transformation, Craig & Bampton reduction, eigenvalue calculation, etc.). In light
of these results, the linear stiffness contact model is used for the optimization problem
& the rest of the presented research. Note that the computational cost results in this
sub-section were obtained using a machine equipped with a 16-core 2.25 GHz processor
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and 94 GB of RAM.

2.6.4 Effect of the number of contact points

The number of contact points is important when modeling friction-induced instabilities
and friction in general, and we can speculate that more contact points provide a more
precise model. However, the overall objective of this work being to design efficient robust
optimization approaches, the precision of the contact model is not paramount, whereas
computational cost is a key point of the disc brake model. Since the computation time
increases substantially with the number of contact points, we choose to limit ourselves
to a model with fewer contact points, the primary aim for the model being that it
reproduces instability. We also verify the effect of the number of contact points on
dynamic instability behavior. Figure 2.12 shows the imaginary parts as a function of the
real parts for one coupled mode pair (still over a range of friction coefficients), which is
a good way of visualizing both the frequency-related and stability related information
in one graph, for different numbers of contact points. As the number of contact points
increases we notice a convergence phenomenon. Furthermore, figure 2.13 shows the
evolution of the computational cost of evaluating the stability function as the number of
contact points is increased, carried out with a standard computer (64-bit, 4-core 1.50GHz
base speed CPU, 16 GB RAM). For the rest of the disc brake study we use 28 contact
points (unless specified otherwise), which is a number of points where the convergence
phenomenon is well-advanced while computational cost is mitigated.
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Figure 2.12: Stability plot convergence for one pair of coupled modes as the number of
contact points is increased
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Figure 2.13: Evolution of the computational cost of one stability function evaluation as
the number of contact points is increased

2.6.5 Material and pad thickness considerations

While steel is widely used for the disc material in brake systems, many friction materials
are available for the brake pad which differ in their mechanical properties. Friction ma-
terials are specifically designed to produce friction when in contact with other solids in
order to stop or control motion in mechanical systems. Friction materials can be made
of various substances such as metals, ceramics, rubber or resins. These materials tend
to wear down with use which makes analyzing brake pad thickness an important aspect.
This section presents a parametric study of the effect of the pad’s material properties on
squeal noise occurrence according to the stability function presented in section 2.5. The
Poisson coefficient ν (ranging from 0.17 to 0.28), Young modulus E (ranging from 2.5
to 16.22GPa), and density ρ (ranging from 1210 to 2700kg/m3) of 21 different friction
materials were collected from two industrial friction material manufacturers [203, 204].
The detailed properties of the studied materials are listed in Table 2.1. First the noise
propensity of all 21 materials was evaluated. Secondly, parametric studies of ν, E and ρ
independently, around nominal material properties corresponding to 4 of the 21 differ-
ent friction materials, are carried out. The goal is to gain insight into the effect of each
parameter, even though in an industrial setting material properties cannot be varied in
a continuous manner. Finally, the effect of pad thickness on squeal noise for the same
4 materials is also analyzed. The thickness cannot be optimized, as it is progressively
reduced through wear during brake usage, but the effect of thickness is relevant to overall
disc brake design and maintenance.
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The stability function calculated for the 21 pad friction materials is displayed in figure
2.14. Material MI00950 yields the lowest stability function value at around 929 while
material MI00704 yields the highest value at approximately 1235. Moreover, materials
MI00950, FTL087, MI00608 and FTL180, which exhibit relatively diverse noise outputs,
are used for the parametric study.

The variation of the stability function as a function of E, ν, ρ and the pad thickness,
around nominal material properties of 4 friction materials (FTL180, FLT087, MI00620,
MI00950) is shown in figure 2.15. Firstly, we observe that the variation with respect
to each studied material property always has the same global trend irrespective of the
studied material. This suggests that the effect of each material property is independent
from the others. The variation with respect to E consists of a steep decreasing trend
below 0.4GPa and a much flatter decreasing trend for E > 0.4GPa. The variation
as a function of ν is small (less than 30 in the studied range), with a linear increasing
trend. The variation of the stability function as the density increases is a relatively steep
decreasing trend with a discontinuity at 2000kg/m3. Although the stability function does
not seem much affected by variations in the Poisson coefficient, the Young’s modulus
and density do have a substantial effect. Generally, the obtained results suggest that
friction materials with a higher Young’s modulus and with a lower density are less prone
to friction induced instabilities and squeal noise occurrences. An increase in thickness of
the pad geometry from 1mm to 5mm causes a steep increase in stability function while
in the 1mm to 5mm range the stability function decreases slowly. This suggests that
with repeated braking operations, as the pad wears down to 5mm thickness, squeal noise
may occur slightly more frequently, whereas if the pad wears down further, approaching
1mm, there may be a sudden decrease in noise occurrence.
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Table 2.1: List of pad friction materials and their properties

Material reference Young’s modulus (GPa) Poisson coefficient Density (kg/m3)

FTL087 5.5 0.24 1720
FTL098 5.2 0.25 2200
FTL171 13.4 0.252 1570
FTL171M 8.5 0.19 1420
FTL172 7.52 0.17 2000
FTL175 2.54 0.21 1850
FTL180 7.29 0.28 1210
FTL180HF 7.3 0.28 1280
MI00850 7.042 0.19 1900
MI00201 5.2 0.25 1850
MI00401 13.354 0.255 1600
MI00402 8.432 0.19 1450
MI00501 8.4 0.24 1900
MI00601 2.5 0.18 1800
MI00604 3.896 0.27 1800
MI00606 2.413 0.23 1850
MI00608 5.506 0.24 1750
MI00620 9.19 0.24 1800
MI00704 7.26 0.27 1200
MI00801 5.381 0.24 2100
MI00950 16.22 0.22 2700
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Figure 2.14: Stability function output for 21 different pad friction materials
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Figure 2.15: Variation of the stability function as a function of E (top left), ν (top right),
ρ (bottom left) and the thickness (bottom right) around nominal properties
of 4 friction materials

2.7 Important takeaways from the disc brake modeling process

This chapter constitutes the basis for numerically modeling the application studied in
this research work on robust shape optimization. The disc brake model is used to
quantify squeal noise occurrence in a simplified disc brake system based on dynamic
instability and yields a gradient-free performance function which is the central aspect
of the studied uncertain optimization problem. The performance function is based on
CEA, in a similar manner to a few past studies. The unavailability of this function’s
gradient, its non-negligible computational cost, and its potentially complex nonlinear
behavior represent important challenges in view of integrating it in a shape optimization
process which considers uncertainties.

The presented modeling strategy is focused on correctly reproducing friction-induced
instability behavior while mitigating the computational cost as much as possible and al-
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lowing flexible geometric parametrization in the context of robust shape optimization, by
concentrating on a few key aspects which also make the modeling strategy unique when
compared to previous research. First, we employ the IGA method for its convenience
in shape optimization problems and for its computational cost-saving characteristics.
Our model is one of the first IGA-based friction-induced instability disc brake models.
Secondly, the simple penalty-based contact formulation which takes advantage of the
studied problem’s unique configuration by applying contact constraints directly between
IGA control points, demonstrates the ability to reproduce friction-induced instabilities
with fairly basic tools and is one of the first implementations of node-to-node contact
strategies in IGA. Also, the Craig & Bampton reduction, applied in two successive steps,
is another key aspect which further reduces the computational cost of the stability func-
tion.

Initial tests suggest that the friction-induced instability phenomenon is well repre-
sented. Analyzing the effect of damping, the number of contact points, the effect of
nonlinear contact stiffnesses, and the effect of material parameters allows to deepen our
understanding of such parameters’ importance when modeling friction-induced instabil-
ities, and to offer insight into how to select such parameters.
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3 Optimization problem setting

The aim of this PhD research is to provide ways of optimizing the shape of mechani-
cal structures under a performance criterion while taking into account and minimizing
the impact of geometric uncertainties on said performance criterion. Before attempting
to solve this optimization problem, it is important to clearly define its characteristics.
Multi-objective constrained optimization problems are commonly defined using three
main components: inputs parameters, objective functions and constraint functions. In
the case of robust optimization, it is additionally necessary to clearly define which param-
eters are considered uncertain, in addition to the deterministic input parameters. This
chapter describes the different components of the robust shape optimization problem in
the case of the simplified disc brake system.

3.1 Input parameters

This section presents the considered optimization problem’s input parameters, with a
distinction between deterministic and uncertain input parameters.

3.1.1 Deterministic shape parameters

The input parameters have been chosen to effectively control the shape of the studied
mechanical structure. As presented in section 2.1.2, the disc brake numerical model is
made of two main parts which are the disc and the pad. The shape optimization problem
focuses on modifying the shape of the pad only. In order to affect the IGA model’s
geometry, the coordinates of the IGA control points are directly modified. However, the
pad geometry is refined in order to increase the number of contact points with the disc,
which means that the number of control points increases substantially. For this reason,
we use the control points before refinement (only six points) in order to modify the pad
geometry. The cylindrical coordinates (radial and angular) in the plane of contact are
used which makes a total of twelve input parameters Xd = [r1, ...r6, θ1, ..., θ6]

T . Figure
3.1 shows a schematic view of the IGA control point coordinates used to affect the initial
shape. Figure 3.2 shows examples of 10 IGA pad geometries (after refinement) obtained
from a Latin Hypercube Sampling over the 12 design parameters.
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Figure 3.1: Scheme of the initial unrefined IGA pad model with the control points used
for shape modification and their corresponding coordinates
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Figure 3.2: Example of 10 pad geometries obtained with the proposed IGA parametriza-
tion
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3.1.2 Uncertain parameters

There are many possible sources of uncertainty in the numerical modeling process of
mechanical systems (see section 1.3.1). In the presented PhD research, we focus on
geometric uncertainties, commonly related to manufacturing processes which can affect
the geometry of the numerically modeled mechanical parts and in turn influence the
performance in real operating conditions as compared to what is predicted by simulation.
However, in the context of the studied application (squeal noise phenomenon exhibited
in disc brakes) and taking into account the fact that a number of assumptions were made
during the modeling process, we will consider that the modeled geometric uncertainties
encompass errors due to manufacturing processes as well as errors due to the inaccuracies
in the modeling process. In order to quantify and define these geometric uncertainties,
we opt to consider uncertainties directly on the deterministic parameters described in the
previous section which are the cylindrical coordinates of the IGA control points before
refinement. A set of nu uncertain parameters Xu = [Xu

1 , ..., X
u
nu
]T is thus considered.

Each uncertain parameter Xu
i follows a Gaussian distribution around an average value

X
u
i and all uncertain parameter values lie in the interval X

u
i ± 3σu. This corresponds to

geometric tolerancing as described for instance in the ISO-8015 standards. The specific
parameters that are considered uncertain are determined in chapter 4 through sensitivity
analysis.

3.2 Objective functions

This section describes the objective functions considered for the robust optimization
problem, in the case of the disc brake model. Two objective functions g1 and g2 are
considered.

3.2.1 Performance function

The first objective function g1 and main performance function is the stability function
Cs defined in section 2.5, which varies with parameters Xd. This function is to be mini-
mized in order to minimize squeal noise occurrence. This function’s blackbox character,
its relatively high computational cost and its nonlinear behavior make it particularly
difficult to study in the context of robust shape optimization. Figure 3.3 shows exam-
ples of performance function values and the associated real part stability diagrams (note
that only the positive real parts are plotted in this case) for the 10 different pad shapes
displayed previously in figure 3.2.
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Figure 3.3: Stability function values and the associated positive real part stability dia-
grams for 10 different pad shape designs
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3.2.2 Robustness to uncertainties

The second optimization function g2 is centered around minimizing the impact of ge-
ometric uncertainties on the stability function. In order to quantify this, we opt to
compute the variance of the performance function output σ2

Cs
(Xd) due to the input un-

certainties. How this variance is numerically computed is one of the main challenges of
this PhD research and will be addressed in the following chapters.

3.3 Constraint functions

In the context of disc brake design, braking capacity is an important aspect. Since the
main objective is to minimize squeal noise by affecting the shape of the pad, shapes
with a very small surface area may appear during the optimization process. However,
such shapes are highly undesirable due to their low braking capacity. For this reason we
consider one constraint on the pad surface area (equivalent to the contact surface area)
A(Xd) which much be greater than a predefined minimum value Amin.

3.4 Optimization problem recap

The optimization problem applied to the robust disc brake squeal noise minimization
case can be summarized as follows:

• Objectives:

1. Minimization of the stability function: g1(Xd) = Cs(Xd),

2. Minimization of stability function variance with respect to uncertainties (max-
imization of robustness): g2(Xd) = σ2

Cs
(Xd).

• Constraint:

1. Insure good braking capacity: h1(Xd) = A(Xd) ≥ Amin.

• Input parameters: The (r, θ) cylindrical coordinates of 6 pad shape-defining
NURBS control points (12 parameters total, see figure 3.1),Xd = [r1, ...r6, θ1, ..., θ6]

T .

• Uncertain parameters: Each uncertain parameter Xu
i follows a Gaussian dis-

tribution around an average value X
u
i and all uncertain parameter values lie in the

interval X
u
i ± 3σu (ISO-8015 standards).
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4 PCE-based strategy

In order to carry out robust shape optimization of complex mechanical structures, mul-
tiple challenging aspects must be addressed. In particular, the computational cost of
the main performance function and the quantification of its variance due to geometric
uncertainties are key aspects to consider when selecting an optimization strategy. In
order to tackle these difficulties, we first propose a robust optimization strategy based
on sparse Polynomial Chaos Expansions for uncertainty quantification, applied to the
simplified disc brake model. This chapter presents the necessary background on PCE,
followed by a description of the proposed strategy, and the obtained results in the case
of the optimization problem described in chapter 3.

4.1 Polynomial chaos mathematical background

This section presents mathematical background on Polynomial Chaos Expansions, how
they are constructed and how their outputs can be used for robust optimization.

4.1.1 Polynomial chaos expansion

First we consider a deterministic physical model M with finite variance which maps
various input parameters x (geometric, material properties, etc.) to a set of outputs y
such that y = M (x). The outputs y are also referred to as model response and represent
any output quantity of interest of the physical model. In the probabilistic context, that
is when x is considered uncertain, the inputs are represented as a random vector X with
associated PDF fX(x). In this case the response is also a random variable Y = M (X).
In the following we will consider the simpler case where Y is a scalar (only one quantity
of interest) which is the case of our studied application. Note that the derivations in the
scalar case can be somewhat extended component-wise to the case of a vector-valued
response. The finite variance of the model is expressed with the following equation:

E[Y 2] =

∫
M 2(x)fX(x)dx < ∞ (4.1)

The polynomial expansion of Y is then carried out by expanding Y onto an orthogonal
polynomial basis:

Y = M (X) =
∑

α∈NM

aαΨα(X) (4.2)

where α ∈ NM is a multi-index which identifies the components of the polynomial
basis, Ψα are multivariate polynomials orthonormal with respect to fX , and aα are the
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corresponding unknown deterministic coefficients. Notice that the above expansion is
an infinite sum, however, for practical applications it must be truncated to a finite sum,
the so-called truncated polynomial expansion M PC , defined as:

M (X) ≈ M PC(X) =
∑
α∈A

aαΨα(X) (4.3)

where A is a subset of NM which contains the selected multi-indices α. The mul-
tivariate polynomials Ψα(X) are built starting from a set of univariate orthonormal

polynomials ϕ
(i)
k (xi). The univariate polynomials are associated to an inner product

which defines their orthogonality properties. A pair of polynomials is orthogonal if:

⟨ϕ(i)
j (xi), ϕ

(i)
k (xi)⟩

def
=

∫
DXi

ϕ
(i)
j (xi)ϕ

(i)
k (xi)fXi(xi)dxi = 0 (4.4)

A sequence of orthonormal polynomials verifies:

⟨ϕ(i)
j (xi), ϕ

(i)
k (xi)⟩ = δjk (4.5)

where δjk is the Kronecker delta, i identifies the input variable with respect to which
the polynomials are orthogonal and the corresponding polynomial family, j, k are the
associated polynomial degrees, fXi(xi) is the i-th input marginal distribution, and ⟨., .⟩
can be interpreted as the expectation value of the product of its components. The multi-
variate polynomials Ψα(X) are then assembled as the tensor product of their univariate
counterparts:

Ψα(x)
def
=

M∏
i=1

ϕ(i)
αi
(xi) (4.6)

Orthonormality of the univariate polynomials leads to orthonormality of the multi-
variate polynomials:

⟨Ψα(x),Ψβ(x)⟩ = δαβ (4.7)

where δαβ is the multidimensional Kronecker delta.

There are multiple families of univariate orthogonal polynomials which are orthogonal
to a certain type of probability distribution function. Thus, the univariate polynomials
used to build the multivariate polynomial basis can be selected in order to correspond
to the probability distribution of the associated univariate random variable. Table 4.1
shows the correspondence between the orthogonal polynomial families and the associated
types of probability distributions.
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Table 4.1: Common probability distributions and their associated orthogonal polynomial
families

Probability distribution Polynomial family

uniform Legendre
gaussian Hermite
gamma Laguerre
beta Jacobi

4.1.2 Basis truncation schemes

The previous section explained the need to truncate the PCE to a finite sum in prac-
tice. Multiple methods, so-called “truncation schemes”, are available to carry out the
truncation. The most straightforward method, called the standard truncation scheme,
reduces the set NM into subset A M,p as follows:

A M,p =
{
α ∈ NM : |α| ≤ p

}
(4.8)

The number of elements of A M,p is then:

cardA M,p ≡ P =

[
M + p

p

]
(4.9)

The maximum interaction truncation scheme is another method which keeps a subset
of the standard truncation terms such that the α’s have at most r non-zero elements:

A M,p,r =
{
α ∈ A M,p : ||α||0 ≤ r

}
(4.10)

Another common truncation scheme is the q-norm truncation scheme (see equation
4.11) (or hyperbolic truncation scheme) which uses the q-norm defined in 4.12 to deter-
mine the truncation.

A M,p,q =
{
α ∈ A M,p : ||α||q ≤ p

}
(4.11)

||α||q =

(
M∑
i=1

αq
i

)1/q

(4.12)

4.1.3 Basis-adaptive PCE

Basis-adaptive PCE is a process through which the best basis of polynomials is chosen
from a set of possible bases, by checking which basis yields the best accuracy given the
available experimental design samples. Usually this process involves gradually increasing
the maximum polynomial degree (in a predefined range), and thus the number of basis
elements, until an acceptable value of generalization error is reached. The generalization
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error is commonly approximated using one of several methods described in section 4.1.4
which are designed to retrieve the error without using any additional experimental sam-
ples. Two main types of basis-adaptive processes are commonly used: degree-adaptivity
and q-norm-adaptivity, where the available data drives respectively the maximum degree
and maximum q-norm of the PCE.

4.1.4 A-posteriori error approximation

A-posteriori error evaluation is an essential aspect when constructing PCE models.
Firstly, as stated in the previous sub-section, error approximation is necessary for basis-
adaptive PCE, where it conditions the choice of the best candidate PCE. More generally,
in surrogate modeling, error estimation is crucial for verifying predictive accuracy, and
methods which do not require additional function evaluations compared to those used
for surrogate model construction are particularly convenient for computationally ex-
pensive models. The so-called generalization error, which is commonly evaluated or
approximated in order to quantify the accuracy of the surrogate model, can be defined
as follows:

ϵgen =
E
[
(M (X)− M PC(X))2

]
V ar(Y )

(4.13)

In some cases, for instance when comparing different types of surrogate models built
on the same training data, a validation set of function evaluations may be available in
which case the generalization can be evaluated directly as:

ϵval =
Nval − 1

Nval

∑Nval
i=1

(
M (xival)− M PC(xival)

)2∑Nval
i=1

(
M (xival)−

1
Nval

∑Nval
i=1 M (xival)

)2 (4.14)

However, in most cases, high computational cost of the original model prevents use of
a validation set, and other methods must be used. A normalized empirical estimation of
the generalized error can be used, which evaluates how accurately the surrogate model
predicts experimental samples:

ϵemp =

∑Nval
i=1

(
M (xi)− M PC(xi)

)2∑Nval
i=1

(
M (xi)− 1

Nval

∑Nval
i=1 M (xi)

)2 (4.15)

Another, more popular option is the leave-one-out cross-validation error which consists
in creating surrogate models using a reduced experimental set which excludes one point
from the original full set, and then quantifying the prediction error at the excluded
point. This is done successively excluding each point of the experimental set once, and
yields the following expression for the approximated generalized error or “leave-one-out
cross-validation error”:
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ϵLOO =

∑Nval
i=1

(
M (xi)− M PC\i(xi)

)2∑Nval
i=1

(
M (xi)− 1

Nval

∑Nval
i=1 M (xi)

)2 (4.16)

A generalized version of leave-one-out cross-validation, known as leave-k-out cross
validation can also be used, where k points (instead of 1 point) are successively excluded
from the experimental set. Over-fitting problems with the normalized empirical estimate
have led to use of leave-one-out cross-validation in most cases. There are also techniques
which can help to avoid underestimation of the error estimation in the case of leave-one-
out and normalized empirical errors by applying a correction factor to the original error
to obtain a corrected error.

4.1.5 Calculation of the PCE coefficients

This section presents the different available methods for the calculation of the PCE
coefficients.

Projection method

The most direct way to determine the coefficients from the definition of the PCE, is to
multiply equation 4.2 by Ψβ and take the expected value of the result:

aα = E [Ψα · M (X)] =

∫
DX

M (x)Ψα(x)fX(x)dx (4.17)

The integral is then usually computed using Gaussian quadrature:

aα ≈
N∑
i=1

W (i)M (x(i))Ψα(x
(i)) (4.18)

where W (i) are weights and x(i) are the quadrature points, which represent the roots
of the corresponding univariate polynomial basis functions. The main drawback of this
calculation method is related to the fact that the number of model evaluations needed is
equal to the number of quadrature points, and thus increases rapidly with the number
of input variables. To alleviate this drawback, a more advanced quadrature method
requiring fewer integration points, Smolyak sparse quadrature, can be used. An estimate
of the quadrature error on the PCE coefficients can also be obtained.

Regression methods (Ordinary least-squares)

The second main method to determine the PCE coefficients is least-squares regression
which consists in formulating the coefficients’ calculation as a least-squares minimization
problem of the residual between the infinite series M (X) introduced in equation 4.2 and
its truncated version M PC from equation 4.3:

93



CHAPTER 4. PCE-BASED STRATEGY

â = argmin E
[(

M PC(X)− M (X)
)2]

(4.19)

which can be written more conveniently as:

â = argmin E
[(
aTΨt(X)− M (X)

)2]
(4.20)

where â is the final vector of PCE coefficients, a is the vector of variable PCE coef-
ficients, Ψt is the vector which gathers the orthonormal polynomials Ψα, and P is as
introduced in equation 4.9.

The minimization problem is most commonly solved using Ordinary Least-Squares
(OLS), in which case the solution is given directly by:

â =
(
ATA

)−1
ATYexp (4.21)

where Yexp = {y(1)e , ..., y
(N)
e } is a set of experimental outputs corresponding to a set

of N inputs Xexp = {x(1)e , ..., x
(N)
e }, and A is the “regression matrix” made up of the

values of the basis polynomials at the experimental design points i.e., Aij = Ψj(x
(i)
e ), i =

1, ..., N, j = 0, ..., P − 1

Sparse regression methods

Sparse regression methods aim at constructing sparse polynomial chaos expansions, i.e.
limiting the number of expansion elements, while keeping high prediction accuracy, in
high dimension. The idea is to retain only the most significant polynomial terms in the
expansion. Various sparse algorithms have been proposed, the most popular method
being Least Angle Regreession (LAR) which is described in the following section. Other
recently popular algorithms can be found in [205]. LAR is based on a reformulation of
the minimization problem introduced in equation 4.22 by adding a penalization term
λpen||a||1 =

∑
α∈A |aα| which favors low-rank solutions:

â = argmin E
[(
aTΨ(X)− M (X)

)2]
+ λpen||a||1 (4.22)

The LAR algorithm operates on the idea of moving potential sets of coefficients or
“regressors” between a “candidate set” and an “active set”. In particular, it uses cor-
relation with the current residual to select new regressors and equi-correlation with the
current residual (through analytical relations) to determine the best set of coefficients for
each active set. A-posteriori error estimation (leave-one-out) is necessary to select the
best sparse polynomial basis once all the iterations are finished. Disadvantages of the
LAR method are that it requires re-building models to compute the leave-one-out error,
and only non-constant regressors are handled. Hybrid-LAR, which uses OLS for the
surrogate model building portions of the algorithm, was introduced to overcome these
drawbacks, and is now commonly used. In terms of performance, LAR has been shown
to deliver particularly accurate PCE models even with relatively modest experimental
designs.
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4.1.6 Moments of a PCE and interest for uncertainty quantification

The orthonormality property of the polynomials used to construct a PCE model is
extremely interesting from an uncertainty quantification point of view, as it means that
the mean value and the variance of the modeled function can be obtained directly from
the coefficients of the PCE. They are given by:

µPCE = E
[
M PC(X)

]
= a0 (4.23)

σ2
PCE = E

[(
M PC(X)− µPCE

)2]
=

∑
α∈A \0

a2α (4.24)

The total variance of the model due to uncertainties defined by a probability distri-
bution function, can be obtained through the coefficients of a PCE model constructed
with a relatively small sample set, in other words it can be obtained at a much lower
cost compared to the traditionally required Monte-Carlo simulation. PCE can also be
effectively used for sensitivity analysis, for instance with the Sobol method [206], where
the Sobol indices can also be obtained directly from the PCE coefficients.

4.2 Application to the disc brake optimization problem

The goal is to evaluate the ability of the proposed PCE-based approach to solve a
robust shape optimization problem under gradient-free nonlinear performance metric,
by applying it to the disc brake optimization problem formalized in chapter 3. The main
idea is to use the uncertainty quantification capabilities of the PCE method to quantify
the effect of uncertainties on the stability function output. Note that implementation of
PCE was carried out using UQLab [207], which is an open-source Matlab framework for
uncertainty quantification.

4.2.1 Problem setting and resolution

First we recall the optimization problem described in chapter 3 while integrating the
components used for the proposed PCE-based approach. The Nd input parameters Xd =
[xd1, ..., x

d
nd
]T are the coordinates of the IGA control points xi = Pi,j , i = 1...nd chosen

for shape modification. j = 1...ds identifies the components of each coordinate vector, ds
being the dimension of the shape description. Among these parameters, nu parameters
Xu = [xu1 , ..., x

u
nu
]T are considered uncertain and each parameter’s uncertainty is defined

through a PDF fxu
k
, k = 1...nu around the deterministic nominal parameter value.

Objective function g1 is the studied system’s main performance function which is the
stability function Cs(Xd). In the proposed PCE-based approach we do not attempt to
relieve the computational cost of the stability function and thus use it directly in the
optimization process without applying any metamodeling strategy. Objective function
g2 quantifies the variability of function g1 to uncertainties. Function g2 is evaluated
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using the output variance (see equation 4.24) given by a local PCE model constructed
around each potential uncertain input associated to the joint uncertain input PDF fXu :

g2(Xd) = σ2
PCE(Xu) (4.25)

Constraint function h1 guarantees sufficient braking capacity by constraining the con-
tact surface area, and is taken into account as an inequality h1(Xd) = A(Xd) ≥ Amin.

The bi-objective optimization problem is finally solved using the NSGAII [208] method.
Figure 4.1 schematically shows how the different components of the proposed strategy
are combined to obtain a Pareto front of robust optimal solutions. The IGA model
described in chapter 2 yields parameters which describe the shape of the system which
are then used as input parameters for the optimization problem. It also yields the anal-
ysis of the system which in turn provides the main performance function which can
then be evaluated for different input parameter combinations (objective function g1). A
PCE model is constructed to obtain the variance to uncertainties around each potential
optimization solution (objective function g2). The optimization problem described in
section 3 is then solved using NSGAII [4] to obtain a Pareto front of solutions which
balance performance and robustness of the performance function to uncertainties. The
parameters of NSGAII used for resolution are summarized in table 4.2. Constraints are
not represented on figure 4.1 but are considered through NSGAII.

Figure 4.1: Scheme of the resolution process used to obtain a Pareto front of robust
optimal solutions with the PCE-based approach
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Table 4.2: NSGA2 parameters

Parameter Parameter value

crossover probability 0.9
mutation probability 0.5
crossover distribution index 10
mutation distribution index 20

Sensitivity analysis

For the proposed PCE-based approach, we consider Nu = 4 uncertain parameters. In
order to select which out of the 12 shape parameters have the most effect on the response
when considered uncertain, we conduct sensitivity analysis. We opt for the Sobol total
indices calculated through PCE approximation as sensitivity indicators. Details on the
Sobol total indices can be found in [206]. The uncertain parameters must be varied
during the optimization process, which means that the sensitivity of the output to each
parameter cannot be measured for uncertainties around only one nominal value for each
parameter. Rather, the sensitivity to uncertainties should be taken around multiple
deterministic samples representative of the whole design space. For this reason, 100
samples of the 12 deterministic parameters are drawn across the design space, using an
LHS sampling strategy, and the sensitivity due to uncertainties around each of these
samples and associated to each individual shape parameter is evaluated through Sobol
total indices. The Sobol indices are calculated by constructing a PCE model based on
a Gaussian distribution of uncertainties around each sample. The Sobol total indices
are then stacked (summed) for each of the 12 input parameters. Figure 4.2 shows the
obtained result. The result shows that all 12 parameters have substantial effect, with
parameters r2, r6, θ1, and θ6 having overall the most effect on the response. These
4 parameters are thus chosen as the uncertain parameters in the robust optimization
problem. Note that all PCE models used for the computation of the Sobol indices were
constructed with a sufficient number of experimental data (for representation of the
uncertainties) in order to guarantee leave-one-out error not greater than 1%.
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sample 1

sample 2

sample 3

...

sample 100

Figure 4.2: Sensitivity analysis of the stability function with respect to the twelve op-
timization parameters, over 100 experimental samples representative of the
design space, summed for each input parameter

4.3 Results

This section presents the main results obtained using the PCE-based optimization ap-
proach.

4.3.1 PCE output variance convergence

In this section we observe the evolution of the stability function output variance as pre-
dicted by the PCE model as the number of function samples used to build the PCE
model is progressively increased, and we compare it to a reference Monte-Carlo-based
variance value, in order to get an idea of the attainable precision on the variance and of
the number of function samples necessary to obtain said precision. Figure 4.3 shows the
stability function’s PCE model output variance due to input uncertainties on the four
selected uncertain parameters, as a function of the number of experimental samples for
one arbitrarily selected pad geometry design. This is plotted in the case of the OLS (top
left) and LARS (bottom left) methods, and in each case, PCE model error indicators
are also plotted as a function of the number of samples (top right and bottom right).
A reference value for the output variance, computed using 10000 Gaussian-distributed
uncertain Monte-Carlo (MC) experimental samples, is also displayed. For both PCE
methods general convergence of the output variance towards the reference value is ob-
served, however, the results for the arbitrarily selected geometry do indicate that the
LARS-PCE model’s variance may converge somewhat faster than that of the OLS-based
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model, which would suggest better overall performance for LARS compared to OLS at
an equivalent number of training samples. Moreover, it can be seen that the output
variance and the error indicator variations are not smooth with respect to the number
of experimental samples, which makes it difficult to select a number of samples which
guarantees sufficient convergence of the variance estimation for any given pad geometry.

Figure 4.4 shows an analysis of the coefficient distribution for the OLS and the LARS
PCE models used in the above variance convergence test, in the case of 100 training
samples. The PCE-coefficient analysis consists in plotting the magnitude of the PCE
coefficients (in log scale) as a function of their enumeration (i.e. aα in equation 4.3). The
coefficients with the lowest polynomial degree appear on the left-hand side of the graph
whereas the polynomial degree gets higher towards the right-hand side. Since the basis of
polynomials is orthonormal, it is possible to compare the coefficient magnitudes. In this
case we can observe that the OLS-PCE model actually uses a relatively restricted number
of coefficients, with a polynomial degree of at most 2, which would suggest there is no
need to use sparse PCE. However, in the case of the LARS-PCE model, the distribution
of coefficients is significantly different. The number of degree 2 coefficients decreases from
10 to 3, and 8 coefficients of degree 3 with a significant magnitude appear. This suggests
that the LARS algorithm is able to find a more effective set of PCE coefficients than
the basic OLS method, which seemingly increases the accuracy of the output function’s
variance prediction.
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Figure 4.3: Evolution of the stability function PCE model variance (top) and LOO error
(bottom), for the OLS (left) and LARS (right) methods, as a function of the
number of experimental samples, for one arbitrary pad shape design
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(a) OLS

(b) LARS

Figure 4.4: Coefficient distribution for a PCE model of the stability function constructed
with OLS (top) and with LARS (bottom)
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4.3.2 Bi-objective optimization results: case 1

The proposed PCE-based strategy is first tested with two different algorithms for the
PCE coefficient search: OLS and LARS. The idea is to compare a non-sparse and a
sparse regression method in terms of accuracy for the prediction of robustness to uncer-
tainties. In this case, the material parameters used for the pad part are: E = 2GPa,
ν = 0.1, ρ = 2500kg/m3. For each PCE-model construction, 100 experimental samples
are used, knowing that one PCE model per potential pad geometry is necessary to eval-
uate the stability function’s variance to uncertainties.

Figures 4.5 and 4.6 show the Pareto front after 10 NSGAII generations respectively
when using the OLS method and the LARS method for the output variance estimation.
The Pareto front contains the set of non-dominated solutions after 10 generations with
a population of 30 individuals per generation, and represents different levels of compro-
mise between the stability function minimization (i.e. noise occurrence minimization)
and stability function variance minimization (i.e. maximization of robustness to un-
certainties). The full optimization process, in the case of each coefficient calculation
method, required roughly 9 days using a computational machine with a 32-core 2.895
GHz processor and 1 TB of RAM, and using 12 workers on Matlab’s parallel pool. In
each case we computed validation points for the variance estimation (three for the OLS
method and four for the LARS method), using Monte Carlo simulations of 10000 sam-
ples for each point as a reference, in order to verify the accuracy of each PCE method
in predicting the output variance to uncertainties. The number of validation points is
limited by the fact that each point requires considerable computational cost. In the case
of the OLS method (see figure 4.5), all three validation points’ variances are badly pre-
dicted, which means that the obtained Pareto front is extremely unreliable. Notice that
the variance is underestimated for all three points which may explain the low number
of total individuals in the Pareto front, as entire portions of the real Pareto front may
be eliminated by the individuals with non-converged underestimated variance. On the
other hand, the LARS method (see figure 4.6) delivers a more regular Pareto front with
a wider range of stability function and variance values. All four validation points are
predicted well enough to consider that the obtained Pareto front approaches to some
extent the “real” Pareto front. However validation points 2 and 3 (pink and red) do
suggest that the variance estimation could still be improved. Overall, the LARS method
delivers better results than the OLS method, which is coherent with the result of section
4.3.1, although this result was only based on a single potential solution (i.e. one pad
shape).

Figure 4.7 shows the disc brake pad shapes corresponding to different optimization
solutions in the Pareto front obtained with the LARS-PCE method for the variance esti-
mation (not all the solutions’ shapes are plotted to avoid overcrowding the figure), with
the corresponding pad surface areas summarized in table 4.3. The first observation is
that there are three main types of obtained shapes, which correspond to three “clusters”
of solutions within the Pareto front. Secondly, among these three types of shapes, we
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can observe that shapes with higher contact surface area are more prone to noise but
also more robust to uncertainties, which is intuitively a physically sound result. Shapes
with lower contact surface area are conversely less to prone to noise but more sensitive to
uncertainties. Finally, it is important to highlight the originality and diversity of shapes
enabled by the IGA shape description.
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Figure 4.5: Pareto front of solutions which balance minimization of the stability function
and its variance to uncertainties, obtained after 10 NSGAII generations,
using the OLS-PCE method for variance estimation, and with three Monte-
Carlo validation points for variance estimation verification (case 1)
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Figure 4.6: Pareto front of solutions which balance minimization of the stability function
and its variance to uncertainties, obtained after 10 NSGAII generations,
using the LARS-PCE method for variance estimation, and with four Monte-
Carlo validation points for variance estimation verification (case 1)
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Figure 4.7: Pareto front of solutions which balance minimization of the stability function
and its variance to uncertainties, obtained after 10 NSGAII generations,
using the LARS-PCEmethod for variance estimation, with the corresponding
pad shape designs for 16 out of 26 solutions (case 1)
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Table 4.3: Pad shape solution surface areas for optimization case 1

Shape number Surface area (cm2)

1 57.13
2 56.51
3 53.93
4 54.66
5 53.85
6 45.69
7 45.63
8 45.83
9 35.83
10 38.71
11 36.80
12 36.63
13 35.96
14 34.53
15 36.00
16 35.77

4.3.3 Bi-objective optimization results: case 2

In this section we test the same PCE-based strategy with the LARS method only on a
slightly different optimization problem where the pad material has been changed com-
pared to section 4.3.2. The material parameters used for the pad in this section are:
E = 16.22GPa, ν = 0.22, ρ = 2700kg/m3. For each PCE-model construction, 100
experimental samples are used similarly to the previous section.

The Pareto front of solutions which balance low noise potential and robustness to
geometric uncertainties after 15 NSGA2 generations with 50 individuals per generation,
is shown in figure 4.8. Note that the settings used for NSGA2 are the same as in case 1
(see table 4.2). The full optimization process required roughly 21 days using the same
computational machine as in case 1 (see section 4.3.2). Firstly, we notice that validation
points 1 to 4, all located in the low variance region of the obtained Pareto front, are very
well predicted by LARS-PCE. Then, as we progress along the Pareto front towards solu-
tions with higher variance and less potential for noise, the validation points’ prediction
accuracy appears to deteriorate. The obtained result suggests that LARS-PCE is more
efficient in predicting low variance solutions, which may seem slightly counter-intuitive
as one may expect higher variance solutions to be easier to predict. Overall, even though
the poorly predicted variance suggests that the proposed LARS-PCE-based method may
be inaccurate in some cases, the obtained result is still very positive in the context of
industrial mechanical design, as considerable gains in terms of computational cost are
obtained compared to directly applying Monte-Carlo for the variance prediction inside
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the optimization loop. However, the lack of accuracy observed for some of the Pareto
front solutions suggests that the proposed method should be applied in conjunction with
Monte-Carlo validation if applied in an industrial context.

For analysis of the Pareto front from a physical point of view, figure 4.9 shows 13 out
of the 49 optimal solution shapes, while table 4.4 lists the corresponding pad surface
areas. Similarly to case 1, the shapes with higher surface area tend to be more prone
to noise but more robust to uncertainties while the shapes with lower surface area are
less prone to noise but less robust to uncertainties. This is physically consistent with
what is expected. Again, the diversity and originality of shapes obtained through IGA
is confirmed with at least four different pad shape types in the Pareto front in this case.
Note that the overall values of the stability function are lower than in case 1, which is
consistent with the change of pad material and the results on the impact of the pad
material of section 2.6.5.
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Figure 4.8: Pareto front of solutions which balance minimization of the stability function
and its variance to uncertainties, obtained after 15 NSGAII generations,
using the LARS-PCE method for variance estimation, and with eight Monte-
Carlo validation points for variance estimation verification (case 2)
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Figure 4.9: Pareto front of solutions which balance minimization of the stability function
and its variance to uncertainties, obtained after 15 NSGAII generations,
using the LARS-PCEmethod for variance estimation, with the corresponding
pad shape designs for 13 out of 49 solutions (case 2)
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Table 4.4: Pad shape solution surface areas for optimization case 2

Shape number Surface area (cm2)

17 41.24
18 39.79
19 39.79
20 38.44
21 39.09
22 41.30
23 38.75
24 28.31
25 29.30
26 24.36
27 24.77
28 27.66
29 26.85

4.4 Important takeaways from the PCE-based strategy

This chapter presented a full robust shape optimization methodology, based on a com-
bination of sparse polynomial chaos expansions to address the robustness aspect and a
genetic algorithm to search for optimal solutions, applied to the disc brake instability
problem.

The proposed approach was shown effective in providing a Pareto front of solutions
which balance low noise potentiality (low instability) and high robustness to geometric
uncertainties. The quantification of robustness through estimation of output variance to
uncertainties was achieved at a significantly lower cost using PCE compared to classical
Monte Carlo simulation which requires thousands of output evaluations, even though
some loss in precision is inevitable.

The comparison of two variants of the PCE method, OLS and LARS, showed the
high efficiency of LARS which was able to approach true output variances to a satisfac-
tory extent in the pursuit of the bi-objective Pareto front, while OLS was insufficient
in this aspect, at an equivalent number of training samples. The superiority of LARS
compared to OLS is coherent with the literature on sparse polynomial chaos methods.
However, the LARS method was found to produce polynomial expansions with a larger
number of coefficients than with OLS which yields a relatively low number of coefficients,
which goes against what is expected when comparing sparse and non-sparse PCE. It was
observed that some of the degree 2 coefficients appearing in the OLS distribution are
replaced by degree three contributions with similar magnitude in the LARS case. These
coefficients are most likely the source of the higher accuracy achieved by LARS in terms
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of output variance prediction.

Inaccuracy in the prediction of variance to geometric uncertainties using LARS-PCE
is noticed for some Pareto front solutions, which suggests that the proposed method
should be used in conjunction with Monte-Carlo validation in the context of industrial
design.

Additionally, physical insight on the disc brake robust noise minimization problem
was obtained, namely that pad geometries with higher contact surface area are more
prone to noise but also more robust to uncertainties, and vice versa. The efficiency of
the IGA formulation for shape description, particularly in comparison to classical FEM,
is to be noted even though it is not clearly demonstrated in the results. Nonetheless, its
ability to produce diverse and original shapes is shown to some extent.

The obtained results also highlight three main issues linked to the high computa-
tional burden involved in robust optimization problems for complex gradient-free func-
tions. Firstly, the available computational resources combined with the complexity of
the problem restricts the number of generations, the population sizes (for genetic opti-
mization) and the number of reference points that can be used. Higher computational
resources would allow to perform the optimization process with more generations, in-
dividuals and reference points, and would give further insight into the efficiency of the
proposed approach. Secondly, the variance estimations were all performed using PCE
models constructed with a fixed number of experimental samples. In the interest of
reducing computational cost and potentially increasing accuracy, it would be interest-
ing to attempt progressively increasing the number of experimental samples until some
tolerance on the PCE model error (e.g. LOO error) is reached. The main difficulty in
this case would be the definition of the tolerance. Finally, from a broader perspective,
in the context of robust optimization, a clear takeaway of this chapter is that taking
into account uncertainties in an optimization process requires considerable compromise
between computational cost and accuracy. Although the proposed PCE-based variance
estimation is much less costly than Monte Carlo simulation, the gain in cost comes at the
price of a decrease in accuracy on the estimated variances. When considering uncertain-
ties in complex optimization problems, computational cost related aspects such as those
highlighted above will continue to be an inevitable challenge, at least until substantial
advances are made in the development of more powerful computational means.
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5 Kriging-based strategy

This chapter presents an alternative robust optimization strategy based on Bayesian
Optimization and the Kriging metamodeling technique. The idea is to replace the eval-
uation of the costly objective function by a less expensive metamodel, and then use
concepts from BO in order to enrich the metamodel in regions of the design space which
are the most interesting in terms of the optimization objectives. One of the main ad-
vantages of the Kriging method for metamodeling is that it includes an estimation of
the prediction error through output variance. For the quantification of the variance due
to uncertainties we attempt to use a variant of the Kriging model called noisy Kriging
originally designed to take into account measurement errors into the Kriging variance in
addition to the effect of the prediction error. This chapter first introduces the theoretical
background of the Kriging method and its “noisy” counterpart, before presenting the
proposed strategy for robust optimization and the obtained results, in the case of the
simplified disc brake system.

5.1 Kriging background

Kriging was originally used in the geostatistical and mining field and mathematically
formalized by Matheron in 1963 [209] following the empirical work of Danie G. Krige aim-
ing at determining the geographical distribution of gold locations based on a restricted
number of boreholes. Kriging has since been largely extended to diverse engineering
problems and in higher dimensions. In the machine learning context it is also known as
“Gaussian Process Regression” (GPR).

Kriging can be thought of as spatial prediction, that is, predicting values at locations
for which we do not have observations based on available samples. The main idea is that
the way that a process varies across space can be characterized by two main components:
a large scale variation called the trend, and a small scale spatial auto-correlation called
the error term. It can also be interpreted as a signal-noise type of decomposition where
the signal captures the large scale variation and the noise is what’s left. Under suitable
assumptions, Kriging is the Best Linear Unbiased Predictor (BLUP). This notion arises
when the assumption that the variance is constant and that there is no covariance be-
tween the different observations, is false. A “linear” predictor is one where the prediction
is a linear combination of the observation outputs. “Unbiased” means that the predictor
has no systematic error and that the mean prediction error is zero, or in other words
that the expected value is on average equal to the true value. The term “best” has to
do with the precision of the prediction, in other words the variability of the prediction
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error. Among all linear unbiased predictors, Kriging gives the most precise prediction.
To obtain the BLUP, the prediction is expressed as a weighted sum of the observations.
An optimality criterion is used which guarantees that on average the deviation between
the observed value and the predicted value is zero (unbiasedness) and that the variance
of the prediction error is the smallest possible. The specificity of Kriging with respect
to generic weighted interpolation is that the weights are connected to the spatial covari-
ance. The BLUP is used by exploiting the covariance matrix between all the observed
locations as well as the covariance between the new location and the observed locations.
The basic idea is to use the fact that there is a structure in the covariation between
pairs of locations and that this structure depends on the distance between the locations.
In addition to the predicted values, Kriging also provides an explicit expression for the
prediction error, formalized as the prediction variance, which indicates the quality of the
prediction. Since two observations which are further apart from each other have smaller
covariance, the improvement to the precision is greater from observations which are close
together.

There are different main variants of the Kriging method. The classification depends
not on the error term but rather on the way that the large scale variation (trend) is
modeled. The three main types of Kriging are:

• Simple Kriging

• Ordinary Kriging

• Universal Kriging

Simple Kriging assumes that there is no large scale variation, i.e., that the mean is
constant and known, so it does not need to be estimated. Ordinary Kriging also assumes
a constant mean but unknown, in other words it needs to be estimated. The model in
this case focuses on prediction of deviations from the unknown mean. In practice the
mean is not constant, it varies with the location, in which case Universal Kriging is
used. In this case the model focuses on the covariances among the errors terms of the
regression model using the residuals.

5.1.1 Kriging formalism

The main equations for the Kriging prediction are detailed in [210]. A brief summary
is repeated here. Equation 5.1 shows the two parts of the Kriging model, the first is
the simple linear regression of the data, or “trend” and the second is the systematic
deviation from the linear part:

Ŷ (XK) =

kr∑
j=1

βjfj(XK) + Z(XK) (5.1)

where Z(XK) is a random process assumed stationary and with zero mean. Its co-
variance is given in the following:
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cov(X1,X2) = σ2
ZR(X1 −X2) (5.2)

where σ2
Z is the variance of Z(XK), and R is the spatial correlation function which

controls the smoothness, the influence of nearby points, and the differentiability of the
model. The choice of correlation function R is important and must be made carefully
depending on the application at hand. There are several common types of correlation
functions which are summarized in [211]. In this study, we apply the Matérn 5/2 cor-
relation function, which we chose through trial-and-error on the simplified disc brake
model. The Matérn 5/2 correlation function is defined below:

R(X1 −X2) = RM52(η) =

dX∏
k=1

(
1 +

√
5|ηk|
τk

+
5η2k
3τ2k

)
e

(
−

√
5|ηk|
τk

)
(5.3)

where X1 − X2 = η = {η1, ..., ηdX}, dX is the size of X1 and X2 (number of deter-
ministic input parameters of the physical model), RM52 is the Matérn 5/2 correlation
function, and the τk values are hyperparameters of the Matérn 5/2 correlation function
commonly called “characteristic length scales” which are tuned during the Kriging model
construction process.

In order to construct a Kriging model, a set of ns samples or “observations” of the
modeled function are needed, characterized by inputsXK , and the corresponding outputs
YK :

XK = {X1, ...,Xns}
YK = {Y1, ..., Yns}

(5.4)

The Kriging model is first and foremost a linear predictor, that is each prediction is a
linear combination of the observation outputs:

Ŷ (XK) = λT
K(XK)YK (5.5)

The specificity of the Kriging approach is to find the BLUP considering Ŷ (XK) as a
random variable and by searching for the optimal set of “weights” λK . The “best” pre-
dictor is found by minimizing the mean square error of the prediction (see equation 5.6)
while guaranteeing unbiasedness with the constraint on the expected value in equation
5.7.

MSE
[
Ŷ (XK)

]
= E

[
λT
K(XK)YK − Ŷ (XK)

]2
(5.6)

E
[
λT
K(XK)YK

]
= E

[
Ŷ (XK)

]
(5.7)

A vector FX of the set of regression functions evaluated at all the observation points
is defined, f being the vector of all regression functions:
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FX =



f1(X1)
...

fk(X1)
f1(X2)

...
fk(X2)
...f1(Xns)

...
fk(Xns)


=


f(X1)
f(X2)

...
f(Xns)

 (5.8)

The correlation matrix, which is constituted of the evaluation of the spatial correlation
function at all pairs of known points is also defined:

RX =

R(X1,X1) . . . R(X1,Xns)
...

. . .
...

R(Xns ,X1) . . . R(Xns ,Xns)

 (5.9)

This matrix is positive semi-definite and has ones on the diagonal.
Finally, vector r contains the correlation function evaluated between each observation
point and a new unknown point which we want to predict:

r(Xp) =

R(Xp,X1)
...

R(Xp,Xns)

 (5.10)

By solving the constrained minimization problem (see equations 5.6 and 5.7), the
BLUP is obtained as:

ŶXp = fT (Xp)β̂ + rT (Xp)R
−1
X

(
YK − FX β̂

)
(5.11)

with:

β̂ =
(
FT
XR−1

X FX

)−1
FT
XR−1

X YK (5.12)

Finally, the mean square error of the estimate is:

MSE
[
Ŷ (Xp)

]
= σ2

Z

(
1−

[
fT (Xp) rT (Xp)

] [ 0 FT
X

FX RX

] [
f(Xp)
r(Xp)

])
(5.13)

Note that Ŷ (Xp) is also known as the Kriging prediction mean which represents the
prediction’s nominal value, while the mean square error of the estimate is also known
as the Kriging variance (square of the Kriging standard deviation which we denote σK)
which represents an estimation of the error on each Kriging prediction.

116



5.2. NOISY KRIGING

5.1.2 Steps of Kriging

The process for constructing a Kriging model can be divided into the following steps:

1. Gather observations with inputs XK and outputs YK

2. Select the set of regression functions which define the process mean over the domain

3. Select the correlation function used for the random process portion of the model

4. Optimize the correlation function hyperparameters through optimization of the
Maximum Likelihood Estimate (MLE) [212] and deduce the regression coefficients

5. Construct the Kriging model based on the minimization of the mean square error
of the prediction and the unbiasedness constraint, which yields the expression for
the BLUP

6. Assess the capability of the Kriging model to predict the original model using
validation

5.2 Noisy Kriging

Noisy Kriging is a variant of Kriging which was designed for the case of non-exact ob-
servations, which can arise for instance when there are measurement errors, or when the
observations rely on non-converged numerical models. A comprehensive description of
noisy Kriging can be found in [184]. For noisy Kriging, the observations no longer con-
form to equation 5.4 because the outputs ỸK contain heterogeneous noise components
{ϵ1, ..., ϵns}:

XK = {X1, ...,Xns}
ỸK = {Y1 + ϵ1, ..., Yns + ϵns}

(5.14)

Thus, in the noisy case, the equations are slightly modified compared to the description
in section 5.1.1 by adding the diagonal matrix ∆ of noise components {ϵ1, ..., ϵns} to the
correlation matrix RX . The noisy Kriging model does not interpolate the observations
and its variance is non-zero at these points. The idea is then to use the ability of noisy
Kriging to take into account heterogeneous noise in its observations in order to model
the variability of the studied function induced by uncertainties. This is detailed in the
next sections.

5.3 Bayesian Optimization background

In the context of Kriging-based BO, the idea is to sequentially update a surrogate model
with new function observations in order to get high quality predictions in regions of the
design space which are interesting in terms of the optimization objectives, while regions
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which show low potential are minimally enriched. The main goal of such a strategy
is to approach the global minimum faster and to minimize calculation of unnecessary
costly observations. The enrichment process is usually carried out iteratively until some
stopping criterion is met. One challenge of this process resides in the smart selection
of the new observation points used to update the surrogate model, the goal being to
simultaneously exploit parts of the design space where the optimization objective is of
good quality (the lowest in a minimization problem) and sample at locations of the design
space where uncertainty is high which has the advantage of exploring new potentially
promising areas. The methods used to find new sampling points are called acquisition
functions, or infill sampling criteria. Proposed in 1978 [22] and popularized by Jones
[10], Expected Improvement is the most prevalent acquisition function in Kriging-based
BO [23, 24, 25, 26]. EI uses the expected value of the improvement which contains
information about the quality of the mean value of the Kriging model as well as the
associated uncertainty at the considered point.

5.3.1 Theoretical background of EI

In a minimization problem, solved through BO, Ymin = min (Y1, ..., Yns) represents the
best function value among all observations at the current iteration. The “improvement”
IEI(Xp) at unsampled point Xp is defined as:

IEI(Xp) = max(Ymin − Ŷ (Xp), 0) (5.15)

Expected improvement is then just the expected value operator applied to the im-
provement:

E [IEI(Xp)] = E
[
max(Ymin − Ŷ (Xp), 0)

]
(5.16)

which can be expressed in an integral form and then simplified to a closed form using
integration by parts:

E [IEI(Xp)] =
(
Ymin − Ŷ (Xp)

)
fpdf

(
Ymin − ŷ

σK

)
+ σKfcdf

(
Ymin − ŷ

σK

)
(5.17)

where fpdf and fcdf are respectively the PDF and the cumulative distribution function
(CDF) of the normal distribution N (0, 1):

fpdf (ζ) =
1√
2π

e−
ζ2

2

fcdf (ζ) =
1

2

[
erf(

ζ√
2
) + 1

] (5.18)

In order to determine the next infill point at a certain iteration, the expected im-
provement is then maximized over the design space. The closed form of EI is practical
to optimize since it is cheap-to-evaluate and its derivatives can be determined.
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5.4 Noisy Kriging based robust optimization strategy

The overall objective of this research is to design a robust shape optimization method-
ology under uncertain input parameters by taking into account robustness as an opti-
mization objective. This method proposes to take advantage of the properties of noisy
Kriging to retrieve the prediction of the performance function as well as a measure of
its robustness to uncertainties using a single Kriging model and a suitable enrichment
strategy. The general concept of BO is to construct a metamodel of the quantity to
be optimized and iteratively add observations in order to increase prediction accuracy
in regions of the design space which are most promising in terms of the optimization
objectives, and progressively approach the global optimum while mitigating the number
of necessary observations. In our case, we take the idea of BO and adapt it to the robust
optimization case with the noisy Kriging metamodel.

5.4.1 Noise computation

We recall that the considered uncertain shape parameters follow a Gaussian distribution
around an average value X

u
i and that all uncertain parameter values lie in the interval

X
u
i ± 3σu (see section 3.1.2). In this way, the variability of the output function to

such uncertainties can be quantified using the variance of the output corresponding to
a Gaussian distribution of each input parameter with average value the nominal value
of said parameter. To approximate this variance in a computationally reasonable way,
we reuse the sparse PCE method used in chapter 4, with 100 observations per potential
solution. The obtained variance is then directly used as observation noise ϵi associated
to each deterministic observation in the noisy Kriging formulation.

5.4.2 Enrichment strategy

Using only classical acquisition functions like EI may be ineffective because the main
goal is to retrieve a measure of robustness from the noisy Kriging model, in which
case the enrichment process must also target robust regions of the design space, where
observation noise would be the lowest. Thus, enrichment of the noisy Kriging model is
carried out along two components:

1. Maximization of EI for exploitation and exploration in terms of Kriging prediction
mean

2. Maximization of robustness through minimization of Kriging prediction standard
deviation

The two components are then combined by solving a two-objective optimization prob-
lem with NSGAII [208], and selecting three relevant points on the obtained Pareto front
as new infill points, in order to have two points which respectively favor each objective,
and one point which represents a compromise. A scheme of the proposed enrichment
and optimization process is shown in figure 5.1. An optimization constraint is also added
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in order to prevent new infill points from being too close to existing observations, which
may otherwise happen in some cases because of the second objective (minimization of
the standard deviation).

Figure 5.1: Basic diagram of the proposed enrichment and optimization process

The robustness criterion is then taken directly as the enriched noisy Kriging predic-
tion standard deviation. In non-enriched regions of the design space this measure of
robustness is very inaccurate since in these regions the portion of the standard deviation
due only to the Kriging approximation (not to the noise) is predominant. However, since
enrichment targets highly robust regions, the accuracy of the non-enriched regions is not
important, given that the presence of uncertainty due to the Kriging approximation en-
sures that any inaccurate prediction of robustness should most of the time underestimate
robustness. In other words, the proposed robustness should mostly be an approximation
by excess of the noise level, and the idea is to minimize the error of this approximation
in regions of the design space which show good potential for robustness.

5.5 Implementation and results

In this section the noisy Kriging strategy is applied to the simplified disc brake model in
the case of only one deterministic input parameter (r3). This allows to test the proposed
strategy on a simple case and easily observe the behavior of the noisy Kriging model
which becomes more difficult in higher input parameter dimension. The geometrical
parameters considered uncertain are the same as in chapter 4. Note that for imple-
mentation of noisy Kriging, we used the Python machine learning library scikit-learn
[213].

120



5.5. IMPLEMENTATION AND RESULTS

5.5.1 Comparison between Kriging and noisy Kriging

First we carried out a comparison of regular Kriging (non-noisy) and noisy Kriging mod-
els, using 10 stability function observations obtained through LHS, in the case of a single
input shape parameter. The comparison is displayed in figure 5.2, with the top graph
showing the regular Kriging while the bottom graph shows the noisy Kriging model. In
both graphs, the red points represent the stability function observations used to con-
struct the Kriging model. However, the observations in the noisy case come with error
bars which display the observation noise under the form of a standard deviation, used
to model the variability of the stability function due to geometric uncertainties. The
dark blue line represents the Kriging model prediction mean, while the light blue area
represents the Kriging model standard deviation which in simple terms is an estimation
of the error committed on the Kriging prediction mean.

Two main differences are observed between both types of Kriging models. Firstly,
the Kriging model standard deviation is much larger (wider confidence interval) in the
case of noisy Kriging. This is due to the presence of noise, in which case the Kriging
standard deviation not only contains a contribution due to lack of observations, but
also a contribution due to the presence of noise, and both contributions are blended
into one mathematical quantity. The purpose of the proposed enrichment strategy is to
add observations in promising regions of the design space in order to reduce the Kriging
standard deviation to only the noise-induced contribution, and thus use it as an estimate
of variability due to uncertainties. The second main difference between the two graphs is
that in the noisy case the Kriging prediction mean is also considerably affected compared
to the non-noisy case, and it does not interpolate the observations.
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Figure 5.2: Comparison of regular (top) and noisy (bottom) Kriging models of the disc
brake stability function for one input parameter, constructed with 10 obser-
vations
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5.5.2 Results of the enrichment strategy

In this section we compare two noisy Kriging models, one constructed with 40 noisy
observations determined by LHS, and the other based on 10 initial LHS observations to
which are added 30 observations obtained through 10 iterations of the proposed enrich-
ment strategy (3 observations per iteration) described in section 5.4.2. Both models are
displayed in figure 5.3. The aim of this comparison is to observe whether the enrichment
strategy is effective in producing a noisy Kriging model which is adapted for the purpose
of subsequently performing robust optimization.

Compared to the LHS-based model, the enriched model’s graphical representation is
very different and can be clearly divided into three parts exhibiting different character-
istics and behavior, with notably two intervals specifically targeted for enrichment:

• 0.05 < r3 < 0.065: this region is relatively highly enriched with 13 out of 30
enrichment observations included, most likely due to the fact that it exhibits low
Kriging variance overall, which is one of the objectives of the enrichment strategy.

• 0.065 < r3 < 0.084: this region contains no enrichment samples, which makes sense
because it does not have any particular potential in terms of stability function
minimization (included in EI maximization) or in terms of low Kriging standard
deviation. Even though it is an unexplored region, the exploration component of
EI did not lead to any observations being added to it.

• 0.084 < r3 < 0.1: this region is highly enriched (17 out of 30 enrichment obser-
vations), most likely due to the fact that it shows potential in terms of stability
function minimization. The increase in observation noise as r3 increases appears
to translate to an increase in the width of the confidence interval (light blue area)
which is promising as it suggests that adding noisy observations tends to make
the surrounding Kriging standard deviation proportional to the actual variance
due to uncertainties, in the enriched region. This region is also characterized by
a considerable gap between noisy Kriging prediction mean and the observations’
nominal value for 0.095 < r3 < 0.1.

Moreover, several more general observations can be made. Firstly, there is a clear
difference in the width of the confidence interval between regions 0.05 < r3 < 0.065 and
0.084 < r3 < 0.1, which appears somewhat proportional to the difference in observation
noise between these regions. This suggests that the Kriging standard deviation could
potentially be used as an approximation of variability to uncertainties when surrounding
enrichment is sufficient. Secondly, the fact that region 0.065 < r3 < 0.084 is not enriched
while the two other regions are highly enriched means that when applying robust opti-
mization with an enriched noisy Kriging model, optimal solutions which strongly favor
one of the optimization objectives will be advantaged, while solutions which are very
balanced in terms of optimization objectives will most likely not be found. Thirdly, the
extremities of a noisy Kriging model, even when enriched, may be affected by typical
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Kriging extrapolation behavior at the extremities where the confidence interval typically
becomes wider (e.g. r3 < 0.053). Also note that highly enriched regions are characterized
by relatively evenly spaced observations which is due to the constraint on the spacing
between adjacent observations applied during the enrichment process (see section 5.4.2).
Finally, building the enriched noisy Kriging model with a total of 40 noisy observations
required roughly 30 hours, using the same computational machine as in chapter 4 (32-
core 2.895 GHz processor, 1 TB of RAM, 12 workers on Matlab’s parallel pool). The
computational cost required to build the enriched noisy Kriging was only marginally
higher than for the LHS-based model, because the enrichment process uses objective
functions which are based on the existing surrogate model and is thus cheap to evaluate.
For the same reason, although the full robust optimization process was not carried out
following the construction of the noisy Kriging model, it is clear that this step would be
very computationally efficient.
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Figure 5.3: Comparison of a noisy Kriging model constructed with 40 LHS observations
(top) and one constructed with 10 initial LHS observations and 30 observa-
tions determined using the proposed enrichment strategy (bottom), of the
disc brake stability function for one input parameter
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5.6 Kriging limitations in high dimensions

This section investigates the limitations of the Kriging method applied to the simplified
disc brake system in higher dimension of input parameters.

5.6.1 Kriging validation

Although the enriched noisy Kriging strategy shows potential for robust shape optimiza-
tion of the simplified disc brake model, it shows limitations in higher dimensions, i.e.,
when increasing the number of deterministic input parameters. These limitations, which
have prevented us from applying the noisy Kriging strategy and full robust optimization
to the full 12 shape parameter case, are described in this section. Validation of non-noisy
Kriging models in the case of 1, 2, 6, and 12 input shape parameters was carried out
for an increasing number of stability function observations (LHS). The rule of thumb
for constructing Kriging models is to take a number of function observations equal to
ten times the number of input parameters [214]. For the simplified disc brake stabil-
ity function, we purposely overestimated this number and constructed Kriging models
based on a number of observations equal to 10, 100, and 1000 times the number of in-
put parameters. 1000 stability function observations were computed for validation, and
their predictions by the constructed Kriging models were plotted against the true val-
ues. Figure 5.4 compiles the validation results. The closer each point is to the identity
line (abscissa=ordinate line), the better the accuracy of the Kriging model. We first
notice that as the number parameters is increased, the validation points are more and
more spread-out around the identity line, which clearly shows degradation of the Kriging
model’s prediction accuracy as the number of input parameters is increased. Secondly,
in the cases of 6 and 12 input parameters, even though the number of observations is
drastically increased, the improvement in prediction accuracy is not satisfactory in a
context where quantification of robustness to uncertainties is a major challenge. Over-
all, the obtained validation results suggest that Kriging-based strategies are not scalable
to higher input dimension in the case of the studied simplified disc brake model stability
function, most likely due to the complexity and nonlinearity of the underlying physical
phenomenon, coupled with the curse of dimensionality, a well-known effect where com-
putational cost required for building surrogate models or for processing data in general,
increases exponentially when the input dimensions are increased [215].
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Figure 5.4: Kriging prediction values versus true values of the disc brake stability func-
tion, for an increasing number of observations, and for an increasing number
of input parameters (1, 2, 6, 12)
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5.6.2 Testing a deep learning tool for comparison

This section presents an attempt to apply an alternate surrogate modeling tool to the
studied simplified disc brake model. The main goal is to see if a different surrogate
modeling technique yields better prediction accuracy than Kriging in high dimensions.
The considered surrogate modeling tool is Deep Neural Networks (DNNs), which have
gained great popularity and have shown to be a powerful tool in the field of artificial
intelligence in recent years. This section is not an in-depth study of DNNs applied to
our disc brake model, but rather an opening to the Kriging-based strategy in the aim
of providing insight on the possibility of creating models which accurately predict the
studied complex disc brake stability function, using modern numerical tools. As such,
this section does not include any in-depth mathematical background on DNNs. First, we
provide general background and important concepts for DNNs, followed by a description
of the main parameters and settings which we focused on in order to tune DNNs to our
applicative function, and finally we expose the obtained prediction validation results.

Deep neural networks

A Neural Network (NN) (also known as Artificial Neural Network) is a type of model
used in machine learning inspired by biological neural networks in the brain. Neurons in
the brain are modeled by “nodes” while synapses which connect the neurons are modeled
by “edges”. The nodes are organized into layers, with the first layer being the “input
layer” and the last layer being the “output layer”. Between the input layer and the
output layer, there are intermediate layers of nodes called “hidden layers”. The signal
which travels between neurons is a real number which passes between nodes through
the edges. As the signal passes through different layers, the corresponding real number
is transformed by a nonlinear function, called “activation function” which determines
the output of a node from the sum of its inputs. “Weights” at each connection are
used to adjust the strength of the signal between two nodes. The type of layer of a
node also affects the type of calculation performed on the signals which pass through
it. A Deep Neural Network is a NN which has more than one hidden layer. Figure 5.5
shows the basic structure and elements of a NN. There are many types of NNs suited
to different problems and applications [216]. In our case, we study what is known as a
“regression” problem in artificial intelligence, where the goal is to build a model able to
predict continuous real-valued outputs. For the studied disc brake application, we use
feedforward NNs where information only travels in one direction, from the input node
through the hidden layer nodes, to the output nodes. Since the stability function only
has one output, we consider NNs with only one output node.
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Figure 5.5: Basic structure of a Neural Network

Important parameters and settings

For the application of DNNs to the studied disc brake stability function, we have chosen
to use the Python tool Tensorflow [217] with Keras [218], which is the associated high-
level API for building NNs. With this tool, there are several different settings and
parameters that can be modified to tune the NN to the studied application. We chose
to build a fully connected model, where each node from the previous layer is connected
to each node of the current layer which allows this type of model to capture complex
patterns in training data [219]. With fully connected networks, no assumptions need
to be made on the structure of the inputs, which makes them more broadly applicable
to diverse problems. On the other hand, they may yield lower accuracy than networks
specially selected and calibrated to the structure of a certain problem’s inputs. Moreover,
the main settings of the constructed NNs which were tuned for application to our disc
brake stability function are listed and described below:

• The activation function determines whether or not a node is activated by comput-
ing the weighted sum of its inputs and adding bias to it. As stated earlier, the role
of the activation function is to introduce nonlinearity into the output of a node.
The activation functions available in Keras are listed and described in [220]. For
application to the disc brake stability function, the activation function is deter-
mined by trial-and-error for each case in terms of number of input parameters and
number of observations.

• The loss function measures how well the NN models the training data during the
training process by comparing true and predicted output values. We have chosen
to use the mean squared error loss function which computes the average of the
squared differences between true and predicted outputs.
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• The loss function optimizer determines how the loss function is minimized through-
out the training process by adjusting the weights at the connections between nodes.
There are two main types of optimizers: gradient-based and so called “adaptive”
optimizers. The optimizers available in Keras are described in [221]. In our case,
the loss function optimizer is determined by trial-and-error.

• The number of hidden layers determines the depth of the NN. The optimal number
of hidden layers is a subject of debate. It is application-dependent, and most of the
time determined by trial-and-error, although recently more sophisticated methods
have been proposed [222]. For simplicity, in our applicative case, we determine the
number of hidden layers by trial-and-error.

• The number of “epochs” is the number of training iterations carried out through
the training data, with every sample from the training data being used once per
epoch.

• Early stopping is a process through which the training process is stopped after
a certain number of epochs when the model stops improving, in order to prevent
overfitting. In addition, early stopping can help mitigate model training cost.

Application to the simplified disc brake model

This section presents the results of applying NNs for prediction of the disc brake stability
function. NNs were built for each of the same cases as in the Kriging validation section
5.6.1, i.e., for 1, 2, 6, and 12 input shape parameters and for an increasing number of
function observations (10, 100, 1000 times the number of input parameters). For each
case, the NN settings mentioned in the previous section (5.6.2) (activation function,
number of hidden layers, loss function optimizer, number of epochs, early stopping)
were selected by trial-and-error. The settings used for each case are summarized in table
5.1. Figure 5.6 shows the validation results using the same validation set as for the
Kriging validation. We observe the same general trends as in the case of the Kriging
model, namely that as the number of input parameters increases the prediction accu-
racy deteriorates substantially, and that as the number of observations in increased the
prediction accuracy improves. Overall, the constructed DNN models do not perform
substantially better than the Kriging models. A slight improvement in performance is
noticeable in the case of 6 and 12 input parameters and for a high number of observations
(respectively 6000 and 12000), however, prediction accuracy is not nearly sufficient to
contemplate application to robust optimization in high dimensions of input parameters.
Moreover, the trial-and-error process used to determine the NN settings gives some el-
ementary insight into which settings are adapted to the studied disc brake application.
Activation functions “gelu”, “swish”, “selu” and “elu” yield better prediction accuracy
among all the activation functions available in Keras. Loss function optimizers “Adam”
and “RMSprop” show the best performance with “Adam” being slightly more efficient
in most cases. In general, an increase in the number of hidden layers provides better
prediction accuracy as the number of input parameters is increased, to the exception of
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the 12 parameter case, where most of the NN settings have only modest impact on the
validation results, which incidentally upholds the idea that building surrogate models
of the disc brake stability function is more and more difficult as the number of input
parameters increases.

Table 5.1: List of parameters used for building NNs applied to the disc brake stability
function, for different numbers of input parameters and observations

Number
of

input
parameters

Number
of

function
observations

Activation
function

Number
of

hidden
layers

Loss
function
optimizer

Number
of

epochs

Early
stopping

1
10 “gelu” 4 “RMSprop” 500 no
100 “gelu” 3 “Adam” 500 no
1000 “gelu” 2 “Adam” 500 no

2
20 “gelu” 5 “Adam” 500 no
200 “gelu” 4 “Adam” 500 no
2000 “swish” 5 “Adam” 500 no

6
60 “selu” 8 “Adam” 500 no
600 “swish” 7 “Adam” 1000 yes
6000 “swish” 5 “Adam” 500 no

12
120 “elu” 2 “Adam” 500 no
1200 “selu” 5 “Adam” 1000 yes
12000 “gelu” 4 “Adam” 1000 yes
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Figure 5.6: Deep Neural Network prediction values versus true values of the disc brake
stability function, for an increasing number of observations, and for an in-
creasing number of input parameters (1, 2, 6, 12)
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5.7 Important takeaways from the Kriging-based strategy

The proposed noisy Kriging-based approach shows potential in the particularly difficult
case tackled in this PhD research where the blackbox stability function which quantifies
squeal noise propensity provides no gradient, is computationally expensive, and proves
troublesome to approximate using surrogate modeling. As shown in this chapter, the
proposed method succeeds in enriching regions of the noisy Kriging model which show
potential in terms of high robustness and stability function minimization. Furthermore,
in the highly enriched regions, the Kriging standard deviation somewhat follows the trend
in observation noise variations, which suggests that the Kriging standard deviation in
these regions may be used as a coarse approximation of the variability to uncertainties.
Nonetheless, the proposed approach may lead to optimal solutions which represent only
a subset of the “true” full Pareto front in some cases, because regions of the design
space which balance the optimization objectives equally may not be enriched. Also, the
approach is not scalable to higher dimensions in the case of the disc brake squeal noise
minimization problem, because of the degradation in prediction accuracy of the Kriging
method as the number of input parameters grows, even with a very high number of
observations. Attempting to metamodel the disc brake stability function with DNNs
mostly confirmed that the inability to construct accurate metamodels for this applica-
tion in high dimensions is due to the stability function’s complex behavior. Incidentally,
this attempt also provides initial insight into tuning NNs for this type of application.

The results obtained with the noisy Kriging based strategy introduce interesting out-
looks for further research in this direction. A two-dimensional study of the proposed
method, which would provide a larger design space and more possibilities in terms of
enrichment diversity, may give more insight into the efficiency of the proposed method,
even though visualization and analysis of the Kriging approach become more challenging
when more than one input parameters are considered. The presented enrichment pro-
cedure may also potentially benefit from some adjustments. For instance, investigating
the effect of the initial observation set, or testing different enrichment objectives, could
provide insight into increasing efficiency. Finally, the main concept of the noisy Kriging
method being non-specific to the studied application, it may be worthwhile to test it on
different applicative systems.

Overall, the undertaken robust optimization problem must balance minimization of
the main quantity of interest and maximization of the quantity of interest’s robustness
to uncertainties. With this in mind, and in the present-day context of production of
mechanical systems requiring increasing precision and speed, the problem from a broader
perspective becomes a compromise between computational cost and accuracy, which are
highly antagonistic. Methods such as noisy Kriging, which do not necessarily lead to
satisfactory results as could be obtained with extremely expensive Monte-Carlo-type
simulations, must nevertheless be considered.
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Conclusion

The presented PhD research has successfully proposed two new methodologies which
combine modern numerical tools for robust shape optimization of mechanical systems
under gradient-free, nonlinear, and costly performance functions, applied to the case of
the disc brake squeal noise minimization problem. An efficient modeling strategy for
the simplified disc brake system, which takes advantage of the benefits of IGA for shape
optimization, combined with straightforward yet effective modeling of friction-induced
instabilities, provides the main figure of merit which constitutes the basis of the robust
shape optimization problem and of the two resolution strategies. Both strategies were
designed with uncertainty quantification as a central aspect, as it poses the biggest chal-
lenges in terms of computational cost and accuracy.

The idea of the first strategy was to capitalize on the built-in output variance esti-
mation of the PCE method, in order to obtain a relatively cheap estimation of output
variability to geometric uncertainties. The search for optimal solutions which balance
stability function minimization and robustness to uncertainties was then carried out by
building local PCE models of the disc brake stability function for uncertainty quantifi-
cation inside a genetic optimization loop. The superiority of sparse PCE compared to
non-sparse PCE in terms of output variance estimation was as expected, although anal-
ysis of the polynomial coefficient distributions revealed an unexpected result with the
sparse method containing a larger number of coefficients. Implementation showed that
although using a relatively restricted number of function samples for PCE model con-
struction, very reasonable estimations of output variance to uncertainties were provided.
The number of function samples appears as the key parameter to balance computational
cost and accuracy of the obtained solutions. Nonetheless, in an industrial design process,
using the proposed method paired with Monte-Carlo validation of the optimal solutions
is recommended. Moreover, use of IGA to generate potential solution shapes was ex-
tremely smooth in terms of implementation and combination with numerical analysis,
even though this does not appear explicitly in the results, and it provided a great variety
of original shapes, as expected. Lastly, analysis of the obtained optimal solutions was
coherent with expectations in terms of physical behavior.

The underlying concept for the second main strategy was to apply surrogate mod-
eling over the whole design space in order to reduce overall computational cost, while
exploiting Kriging’s built-in error estimation metric and the ability of its noisy counter-
part to take into account measurement error. Combining noisy Kriging with a Bayesian
Optimization-inspired enrichment strategy would allow to pinpoint regions of the de-
sign space with high potential in terms of robustness to uncertainties and performance.
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Implementation on the disc brake stability function in a simple one-dimensional case
revealed that the proposed strategy behaves satisfactorily, with targeted regions of the
design space being enriched and resulting in a potentially exploitable estimation of ro-
bustness to uncertainties. On the other hand, the inability to construct accurate Kriging
models in higher dimensions of input parameters was a surprising result which suggests
very high complexity of the studied application’s behavior. This was confirmed by un-
successfully testing a different, Neural Network-based surrogate modeling strategy on
the same application system.

The proposed research and obtained results bring forward several prospects for future
development. Regarding the PCE-based strategy, attempting to apply the method with
a higher number of uncertain parameters is the next step in terms of robust optimization
problem complexity. Moreover, tuning the number of samples for construction of each
PCE model is a promising aspect since it could potentially allow further reduction in
computational cost. Considering a tolerance on the a-posteriori error (LOO error for
instance) is the first possibility which comes to mind. Also, an in-depth study of the dif-
ference between sparse and non-sparse PCE when applied to the disc brake application
would allow to understand why the LARS algorithm yielded more polynomial coefficients
than the non-sparse variant, and testing other sparse methods for the calculation of the
coefficients could provide some interesting insight. In addition, although in this PhD
research we have only used non-intrusive Polynomial Chaos methods, the application
of intrusive methods (see section 1.3.4) could be potentially beneficial in terms of un-
certainty quantification accuracy and computational effectiveness. With respect to the
noisy Kriging-based method, there is considerable room for improvement. First, testing
the method with two input parameters or in general on a broader region of the design
space where there are more stability function variations would provide better under-
standing of the enrichment strategy’s efficiency. Another possibility consists in verifying
whether the enriched noisy Kriging’s standard deviation can be used as a reliable indi-
cator of robustness to uncertainties. If these aspects prove successful, the next obvious
step is considering resolution of the robust optimization problem based on an enriched
noisy Kriging model. More generally, the inability to build accurate surrogate mod-
els of the considered stability function remains an open problem which deserves more
investigation. Finally, applying and adapting the two proposed strategies to different
application systems is a major prospect, in order to further study their effectiveness in
the field of engineering in a broader sense.

The proposed methods constitute two new and original ways of conducting shape
optimization in the presence of uncertainties and in the difficult case of gradient-free,
nonlinear, and computationally costly performance metrics. Contrarily to the so far pre-
dominant RBDO approach which is centered around determining probability of failure,
the presented methods adopt the less common robust optimization scheme thus provid-
ing Pareto optimal solutions which balance robustness and performance. With respect
to robust optimization, where the challenge resides in accurately estimating the output
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variability to uncertainties, each proposed method introduces a new way of dealing with
this issue by leveraging the specific properties of sophisticated surrogate modeling tech-
niques for uncertainty quantification. The advantageous combination of IGA for shape
manipulation and mechanical analysis, surrogate modeling for uncertainty quantification
and computational cost reduction, and a genetic algorithm for gradient-free exploration
of optimal solutions, brings a novel contribution to the field of design optimization for
industrial systems in the presence of uncertainties. Regarding the studied applicative
system, the presented research constitutes the first full robust shape optimization process
applied to the complex friction-induced instability phenomenon responsible for undesir-
able squeal noise in industrial disc brake systems. Overall, this research project confirms
the idea that taking into account uncertainties in the optimization of mechanical sys-
tems is a tremendous challenge in terms of added computational cost. Efforts made to
minimize this cost inevitably lead to deterioration in accuracy of the proposed solutions
which causes the problem to shift towards finding the best possible compromise between
cost and accuracy given the industrial context and constraints of the studied application.
Only radical improvements in computational power can bring ground breaking change
to the paradigm of robust design optimization of industrial systems.
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[8] J. Močkus. On bayesian methods for seeking the extremum. In Optimization
techniques IFIP technical conference, pages 400–404. Springer, 1975.

[9] J. Mockus, V. Tiesis, and A. Zilinskas. The application of bayesian methods for
seeking the extremum. Towards global optimization, 2(117-129):2, 1978.

[10] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13(4):455–492,
1998.

[11] N. Cressie. Spatial prediction and ordinary kriging. Mathematical geology, 20:405–
421, 1988.

[12] N. Cressie. The origins of kriging. Mathematical geology, 22:239–252, 1990.

[13] J. P. Kleijnen. Kriging metamodeling in simulation: A review. European journal
of operational research, 192(3):707–716, 2009.

139



Bibliography

[14] J. Quinonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate
gaussian process regression. The Journal of Machine Learning Research, 6:1939–
1959, 2005.

[15] S. Hosder, L. T. Watson, B. Grossman, W. H. Mason, H. Kim, R. T. Haftka, and
S. E. Cox. Polynomial response surface approximations for the multidisciplinary
design optimization of a high speed civil transport. Optimization and Engineering,
2:431–452, 2001.

[16] E. Immonen. Shape optimization of annular s-ducts by cfd and high-order poly-
nomial response surfaces. Engineering Computations, 35(2):932–954, 2018.

[17] J. P. Janet, S. Ramesh, C. Duan, and H. J. Kulik. Accurate multiobjective design
in a space of millions of transition metal complexes with neural-network-driven
efficient global optimization. ACS central science, 6(4):513–524, 2020.

[18] P. Koratikere, L. T. Leifsson, L. Barnet, and K. Bryden. Efficient global optimiza-
tion algorithm using neural network-based prediction and uncertainty. In AIAA
SCITECH 2023 Forum, page 2683. 2023.

[19] A. Basudhar, S. Lacaze, and S. Missoum. Constrained efficient global optimiza-
tion with probabilistic support vector machines. In 13th AIAA/ISSMO multidis-
ciplinary analysis optimization conference, page 9230. 2010.

[20] A. Basudhar, C. Dribusch, S. Lacaze, and S. Missoum. Constrained efficient global
optimization with support vector machines. Structural and Multidisciplinary Op-
timization, 46:201–221, 2012.

[21] D. Wang, C. Wang, J. Xiao, Z. Xiao, W. Chen, and V. Havyarimana. Bayesian
optimization of support vector machine for regression prediction of short-term
traffic flow. Intelligent data analysis, 23(2):481–497, 2019.

[22] J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for
seeking the extremum. Towards Global Optimization, 2(117-129):2, 1978.

[23] H.-M. Gutmann. A radial basis function method for global optimization. Journal
of global optimization, 19(3):201–227, 2001.

[24] K. Holmström. An adaptive radial basis algorithm (arbf) for expensive black-box
global optimization. Journal of Global Optimization, 41(3):447–464, 2008.

[25] H. Jie, Y. Wu, and J. Ding. An adaptive metamodel-based global optimization
algorithm for black-box type problems. Engineering optimization, 47(11):1459–
1480, 2015.

[26] J. Müller and C. A. Shoemaker. Influence of ensemble surrogate models and
sampling strategy on the solution quality of algorithms for computationally ex-
pensive black-box global optimization problems. Journal of Global Optimization,
60(2):123–144, 2014.

140



Bibliography

[27] R. G. Regis and C. A. Shoemaker. Constrained global optimization of expensive
black box functions using radial basis functions. Journal of Global optimization,
31(1):153–171, 2005.

[28] Suprayitno and J.-C. Yu. Evolutionary reliable regional kriging surrogate for ex-
pensive optimization. Engineering Optimization, 51(2):247–264, 2019.

[29] L. Cavagna, S. Ricci, and L. Riccobene. A fast tool for structural sizing,
aeroelastic analysis and optimization in aircraft conceptual design. In 50th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference 17th AIAA/ASME/AHS Adaptive Structures Conference 11th AIAA
No, page 2571. 2009.

[30] L. Simões and J. Negrão. Sizing and geometry optimization of cable-stayed bridges.
Computers & structures, 52(2):309–321, 1994.

[31] A. Kaveh and V. Kalatjari. Size/geometry optimization of trusses by the force
method and genetic algorithm. ZAMM-Journal of Applied Mathematics and Me-
chanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathe-
matics and Mechanics, 84(5):347–357, 2004.

[32] G. Rozvany and M. Zhou. The coc algorithm, part i: cross-section optimization or
sizing. Computer Methods in Applied Mechanics and Engineering, 89(1-3):281–308,
1991.

[33] Z. Tian and D. Jiao. Discrete sizing optimization of stepped cylindrical silo us-
ing pso method and implicit dynamic fe analysis. Engineering with Computers,
37(2):1015–1047, 2021.

[34] P. Mohanasundaram, F. Gillot, K. Shimoyama, and S. Besset. Shape optimization
of a disc-pad system under squeal noise criteria. SN Applied Sciences, 2(4):547,
2020.

[35] S. Y. Woon, O. M. Querin, and G. P. Steven. Structural application of a shape op-
timization method based on a genetic algorithm. Structural and Multidisciplinary
Optimization, 22:57–64, 2001.

[36] P. Fourie and A. A. Groenwold. The particle swarm optimization algorithm in size
and shape optimization. Structural and Multidisciplinary Optimization, 23:259–
267, 2002.

[37] N. Camprub́ı, M. Bischoff, and K.-U. Bletzinger. Shape optimization of shells and
locking. Computers & structures, 82(29-30):2551–2561, 2004.

[38] M. Edke and K. Chang. Shape optimization of heavy load carrying components for
structural performance and manufacturing cost. Structural and Multidisciplinary
Optimization, 31:344–354, 2006.

141



Bibliography

[39] D. Peng and R. Jones. An approach based on biological algorithm for three-
dimensional shape optimisation with fracture strength constrains. Computer meth-
ods in applied mechanics and engineering, 197(49-50):4383–4398, 2008.

[40] D. Brujic, M. Ristic, M. Mattone, P. Maggiore, and G. P. De Poli. Cad based shape
optimization for gas turbine component design. Structural and Multidisciplinary
Optimization, 41:647–659, 2010.

[41] K. Shintani and H. Azegami. Shape optimization for suppressing brake squeal.
Structural and Multidisciplinary Optimization, 50(6):1127–1135, 2014.

[42] L. Jiang, W. Zhang, G. Ma, and C. Wu. Shape optimization of energy storage
flywheel rotor. Structural and multidisciplinary optimization, 55:739–750, 2017.

[43] U. Schramm and W. D. Pilkey. The coupling of geometric descriptions and finite
elements using nurbs—a study in shape optimization. Finite elements in analysis
and design, 15(1):11–34, 1993.

[44] Y.-D. Seo, H.-J. Kim, and S.-K. Youn. Shape optimization and its extension to
topological design based on isogeometric analysis. International Journal of Solids
and Structures, 47(11-12):1618–1640, 2010.

[45] R. Haftka. Structural optimization with aeroelastic constraints: a survey of us
applications. International Journal of Vehicle Design, 7(3-4):381–392, 1986.

[46] G.-W. Jang, Y. Y. Kim, and K. K. Choi. Remesh-free shape optimization using
the wavelet-galerkin method. International journal of solids and structures, 41(22-
23):6465–6483, 2004.

[47] D. Lacroix and P. Bouillard. Improved sensitivity analysis by a coupled fe–efg
method. Computers & structures, 81(26-27):2431–2439, 2003.

[48] K. K. Choi and N.-H. Kim. Structural sensitivity analysis and optimization 1:
linear systems. Springer Science & Business Media, 2004.

[49] M. L. Staten, S. J. Owen, S. M. Shontz, A. G. Salinger, and T. S. Coffey. A
comparison of mesh morphing methods for 3 d shape optimization. In Proceedings
of the 20th international meshing roundtable, pages 293–311. Springer, 2012.
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[64] J. Parvizian, A. Düster, and E. Rank. Finite cell method: h-and p-extension
for embedded domain problems in solid mechanics. Computational Mechanics,
41(1):121–133, 2007.

[65] D. Schillinger and M. Ruess. The finite cell method: A review in the context of
higher-order structural analysis of cad and image-based geometric models. Archives
of Computational Methods in Engineering, 22:391–455, 2015.

143



Bibliography

[66] T. J. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: Cad, finite el-
ements, nurbs, exact geometry and mesh refinement. Computer methods in applied
mechanics and engineering, 194(39-41):4135–4195, 2005.

[67] P. Kagan, A. Fischer, and P. Z. Bar-Yoseph. New b-spline finite element approach
for geometrical design and mechanical analysis. International Journal for Numer-
ical Methods in Engineering, 41(3):435–458, 1998.

[68] P. Kagan, A. Fischer, and P. Z. Bar-Yoseph. Integrated mechanically based cae
system. In Proceedings of the fifth ACM symposium on Solid modeling and appli-
cations, pages 23–30. 1999.

[69] W. A. Wall, M. A. Frenzel, and C. Cyron. Isogeometric structural shape optimiza-
tion. Computer methods in applied mechanics and engineering, 197(33-40):2976–
2988, 2008.

[70] H. Azegami, S. Fukumoto, and T. Aoyama. Shape optimization of continua using
nurbs as basis functions. Structural and Multidisciplinary Optimization, 47:247–
258, 2013.

[71] K. Kostas, A. Ginnis, C. Politis, and P. Kaklis. Ship-hull shape optimization with
a t-spline based bem–isogeometric solver. Computer Methods in Applied Mechanics
and Engineering, 284:611–622, 2015.

[72] L. Chamoin and H. Thai. Certified real-time shape optimization using isogeometric
analysis, pgd model reduction, and a posteriori error estimation. International
Journal for Numerical Methods in Engineering, 119(3):151–176, 2019.

[73] X. Du, G. Zhao, W. Wang, and H. Fang. Nitsche’s method for non-conforming mul-
tipatch coupling in hyperelastic isogeometric analysis. Computational Mechanics,
65:687–710, 2020.

[74] M. Chasapi, W. Dornisch, and S. Klinkel. Patch coupling in isogeometric anal-
ysis of solids in boundary representation using a mortar approach. International
Journal for Numerical Methods in Engineering, 121(14):3206–3226, 2020.

[75] Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton,
M. A. Scott, and T. W. Sederberg. Isogeometric analysis using t-splines. Computer
methods in applied mechanics and engineering, 199(5-8):229–263, 2010.

[76] M. Guo, G. Zhao, W. Wang, X. Du, R. Zhang, and J. Yang. T-splines for iso-
geometric analysis of two-dimensional nonlinear problems. Computer Modeling in
Engineering & Sciences, 123(2):821–843, 2020.

[77] M. P. Bendsøe and N. Kikuchi. Generating optimal topologies in structural design
using a homogenization method. Computer methods in applied mechanics and
engineering, 71(2):197–224, 1988.

144



Bibliography

[78] M. Zhou and G. I. Rozvany. The coc algorithm, part ii: Topological, geometrical
and generalized shape optimization. Computer methods in applied mechanics and
engineering, 89(1-3):309–336, 1991.

[79] M. P. Bendsoe and O. Sigmund. Topology optimization: theory, methods, and
applications. Springer Science & Business Media, 2003.

[80] K. D. Tsavdaridis, J. J. Kingman, and V. V. Toropov. Application of structural
topology optimisation to perforated steel beams. Computers & structures, 158:108–
123, 2015.

[81] W.-h. Choi, J.-m. Kim, and G.-J. Park. Comparison study of some commercial
structural optimization software systems. Structural and multidisciplinary opti-
mization, 54:685–699, 2016.

[82] T. Van Truong, U. Kureemun, V. B. C. Tan, and H. P. Lee. Study on the structural
optimization of a flapping wing micro air vehicle. Structural and Multidisciplinary
Optimization, 57:653–664, 2018.

[83] Y. M. Xie and G. P. Steven. A simple evolutionary procedure for structural opti-
mization. Computers & structures, 49(5):885–896, 1993.

[84] X. Y. Yang, Y. M. Xie, G. P. Steven, and O. Querin. Bidirectional evolutionary
method for stiffness optimization. AIAA journal, 37(11):1483–1488, 1999.

[85] M. Yulin andW. Xiaoming. A level set method for structural topology optimization
and its applications. Advances in Engineering software, 35(7):415–441, 2004.

[86] W. Zhang, Y. Zhou, and J. Zhu. A comprehensive study of feature definitions
with solids and voids for topology optimization. Computer Methods in Applied
Mechanics and Engineering, 325:289–313, 2017.

[87] Y. Zhou, W. Zhang, J. Zhu, and Z. Xu. Feature-driven topology optimization
method with signed distance function. Computer Methods in Applied Mechanics
and Engineering, 310:1–32, 2016.

[88] J.-H. Zhu, W.-H. Zhang, and L. Xia. Topology optimization in aircraft and
aerospace structures design. Archives of computational methods in engineering,
23:595–622, 2016.

[89] S. Guanghui, G. Chengqi, Q. Dongliang, W. Dongtao, T. Lei, and G. Tong. An
aerospace bracket designed by thermo-elastic topology optimization and manufac-
tured by additive manufacturing. Chinese Journal of Aeronautics, 33(4):1252–
1259, 2020.

[90] D. Jankovics and A. Barari. Customization of automotive structural components
using additive manufacturing and topology optimization. IFAC-PapersOnLine,
52(10):212–217, 2019.

145



Bibliography

[91] J. L. Jewett and J. V. Carstensen. Topology-optimized design, construction and
experimental evaluation of concrete beams. Automation in Construction, 102:59–
67, 2019.

[92] S. Wu, Y. Zhang, and S. Liu. Topology optimization for minimizing the maximum
temperature of transient heat conduction structure. Structural and Multidisci-
plinary Optimization, 60:69–82, 2019.

[93] Y. Li, Y. Lai, G. Lu, F. Yan, P. Wei, and Y. M. Xie. Innovative design of long-
span steel–concrete composite bridge using multi-material topology optimization.
Engineering Structures, 269:114838, 2022.

[94] U. M. Dilberoglu, B. Gharehpapagh, U. Yaman, and M. Dolen. The role of additive
manufacturing in the era of industry 4.0. Procedia manufacturing, 11:545–554,
2017.

[95] A. Paolini, S. Kollmannsberger, and E. Rank. Additive manufacturing in construc-
tion: A review on processes, applications, and digital planning methods. Additive
manufacturing, 30:100894, 2019.

[96] C. Soize. Uncertainty quantification. Springer, 2017.

[97] I. Elishakoff. Safety Factors and Reliability: Friends or Foes?: Friends Or Foes?
Springer Science & Business Media, 2004.

[98] S.-K. Choi, R. A. Canfield, and R. V. Grandhi. Reliability-Based Structural Opti-
mization. Springer, 2007.

[99] E. Vanmarcke. Random fields: analysis and synthesis. World scientific, 2010.

[100] H. G. Matthies, C. E. Brenner, C. G. Bucher, and C. G. Soares. Uncertainties in
probabilistic numerical analysis of structures and solids-stochastic finite elements.
Structural safety, 19(3):283–336, 1997.

[101] A. M. Hasofer and N. C. Lind. Exact and invariant second-moment code format.
Journal of the Engineering Mechanics division, 100(1):111–121, 1974.

[102] M. Hohenbichler and R. Rackwitz. First-order concepts in system reliability. Struc-
tural safety, 1(3):177–188, 1982.

[103] M. Hohenbichler and R. Rackwitz. Non-normal dependent vectors in structural
safety. Journal of the Engineering Mechanics Division, 107(6):1227–1238, 1981.

[104] M. Rosenblatt. Remarks on a multivariate transformation. The annals of mathe-
matical statistics, 23(3):470–472, 1952.

[105] B. Fiessler, H.-J. Neumann, and R. Rackwitz. Quadratic limit states in structural
reliability. Journal of the Engineering Mechanics Division, 105(4):661–676, 1979.

146



Bibliography

[106] L. Wang and R. V. Grandhi. Improved two-point function approximations for
design optimization. AIAA journal, 33(9):1720–1727, 1995.

[107] R. E. Melchers and A. T. Beck. Structural reliability analysis and prediction. John
wiley & sons, 2018.

[108] K. Breitung et al. Asymptotic approximations for multinormal integrals. Journal
of Engineering Mechanics, 110(3):357–366, 1984.

[109] G. Cai and I. Elishakoff. Refined second-order reliability analysis. Structural
Safety, 14(4):267–276, 1994.

[110] M. Hohenbichler and R. Rackwitz. Improvement of second-order reliability esti-
mates by importance sampling. Journal of Engineering Mechanics, 114(12):2195–
2199, 1988.

[111] L. Tvedt. Two second-order approximations to the failure probability. Veritas
report RDIV/20-004083, 1983.

[112] L. Tvedt. Distribution of quadratic forms in normal space—application to struc-
tural reliability. Journal of engineering mechanics, 116(6):1183–1197, 1990.

[113] A. Der Kiureghian, H.-Z. Lin, and S.-J. Hwang. Second-order reliability approxi-
mations. Journal of Engineering mechanics, 113(8):1208–1225, 1987.

[114] H. Agarwal and J. Renaud. Reliability based design optimization using response
surfaces in application to multidisciplinary systems. Engineering Optimization,
36(3):291–311, 2004.

[115] I. Enevoldsen and J. D. Sørensen. Reliability-based optimization in structural
engineering. Structural safety, 15(3):169–196, 1994.

[116] Y. Aoues and A. Chateauneuf. Benchmark study of numerical methods for
reliability-based design optimization. Structural and Multidisciplinary Optimiza-
tion, 41(2):277–294, 2010.

[117] A. J. Torii, R. H. Lopez, and L. F. F. Miguel. A general rbdo decoupling ap-
proach for different reliability analysis methods. Structural and Multidisciplinary
Optimization, 54(2):317–332, 2016.

[118] X. Zhang. Review of reliability-based design optimization approach and its inte-
gration with bayesian method. IOP Conference Series: Earth and Environmental
Science, 128(1):012109, 2018.

[119] I. M. Sobol. A primer for the Monte Carlo method. CRC press, 2018.

[120] G. D. Wyss and K. H. Jorgensen. A users guide to lhs: Sandias latin hyper-
cube sampling software. Technical report, Sandia National Lab.(SNL-NM), Albu-
querque, NM (United States), 1998.

147



Bibliography

[121] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer
code. Technometrics, 42(1):55–61, 2000.

[122] J.-S. Park. Optimal latin-hypercube designs for computer experiments. Journal
of statistical planning and inference, 39(1):95–111, 1994.

[123] R. H. Cameron and W. T. Martin. The orthogonal development of non-linear
functionals in series of fourier-hermite functionals. Annals of Mathematics, pages
385–392, 1947.

[124] N. Wiener. The homogeneous chaos. American Journal of Mathematics, 60(4):897–
936, 1938.

[125] M. A. Tatang. Direct incorporation of uncertainty in chemical and environmental
engineering systems. 1996.

[126] S. S. Isukapalli. Uncertainty analysis of transport-transformation models. Rutgers
The State University of New Jersey-New Brunswick, 1999.

[127] D. Xiu and G. E. Karniadakis. The wiener–askey polynomial chaos for stochastic
differential equations. SIAM journal on scientific computing, 24(2):619–644, 2002.

[128] D. Xiu, D. Lucor, C.-H. Su, and G. E. Karniadakis. Stochastic modeling of
flow-structure interactions using generalized polynomial chaos. J. Fluids Eng.,
124(1):51–59, 2002.

[129] L. Devroye. Sample-based non-uniform random variate generation. In Proceedings
of the 18th conference on Winter simulation, pages 260–265. 1986.

[130] C. Hu and B. D. Youn. Adaptive-sparse polynomial chaos expansion for reliability
analysis and design of complex engineering systems. Structural and Multidisci-
plinary Optimization, 43(3):419–442, 2011.

[131] N. Luthen, S. Marelli, and B. Sudret. Sparse polynomial chaos expansions: Liter-
ature survey and benchmark. SIAM/ASA Journal on Uncertainty Quantification,
9(2):593–649, 2021.

[132] G. Blatman and B. Sudret. Adaptive sparse polynomial chaos expansion based on
least angle regression. Journal of computational Physics, 230(6):2345–2367, 2011.

[133] S. Chair of Risk and E. Z. Uncertainty Quantification. Pce metamod-
eling: comparison of pce calculation strategies. https://www.uqlab.com/

pce-calculation-strategies, 2024. Accessed on May 14, 2024.

[134] H. Hotelling. Analysis of a complex of statistical variables into principal compo-
nents. Journal of educational psychology, 24(6):417, 1933.

148

https://www.uqlab.com/pce-calculation-strategies
https://www.uqlab.com/pce-calculation-strategies


Bibliography

[135] R. L. Iman and W.-J. Conover. A distribution-free approach to inducing rank
correlation among input variables. Communications in Statistics-Simulation and
Computation, 11(3):311–334, 1982.

[136] M. Stein. Large sample properties of simulations using latin hypercube sampling.
Technometrics, 29(2):143–151, 1987.

[137] A. Olsson, G. Sandberg, and O. Dahlblom. On latin hypercube sampling for
structural reliability analysis. Structural safety, 25(1):47–68, 2003.

[138] E. J. Pebesma and G. B. Heuvelink. Latin hypercube sampling of gaussian random
fields. Technometrics, 41(4):303–312, 1999.

[139] R. G. Ghanem and P. D. Spanos. Stochastic finite elements: a spectral approach.
Courier Corporation, 2003.

[140] I. The MathWorks. Disc brake. https://fr.mathworks.com/help/sdl/ref/

discbrake.html, 2019. Accessed on May 14, 2024.

[141] A. Akay. Acoustics of friction. The Journal of the Acoustical Society of America,
111(4):1525–1548, 2002.

[142] R. A. Ibrahim. Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part I:
Mechanics of Contact and Friction. Applied Mechanics Reviews, 47(7):209–226,
1994.

[143] R. A. Ibrahim. Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part II:
Dynamics and Modeling. Applied Mechanics Reviews, 47(7):227–253, 1994.

[144] R. T. Spurr. A theory of brake squeal. Proceedings of the Institution of Mechanical
Engineers: Automobile Division, 15(1):33–52, 1961.
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