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Résumé

Les réseaux de transport jouent un rôle clé dans nos économies modernes en fa-
cilitant la circulation des personnes et des marchandises. Cependant, malgré leur
importance, ces réseaux sont confrontés à des problèmes de congestion, qui affectent
l’économie, la qualité de vie, l’environnement et l’équité sociale. La demande crois-
sante et la complexité des réseaux rendent la congestion toujours plus probléma-
tique.

Pour répondre à ce défi, la mobilité intelligente a émergé comme une solution
efficace ces dernières années. Les innovations dans les technologies de l’information
et la diffusion des appareils GPS et smartphones ont favorisé l’apparition de services
de mobilité qui transforment les systèmes de transport urbains. Des services comme
les applications de navigation et les VTC sont devenus omniprésents, modifiant
profondément les réseaux de transport.

Le routage informé, qui exploite les données de trafic en temps réel pour op-
timiser les itinéraires, est un élément central de cette révolution. Ce concept est
crucial pour les services de mobilité, de la navigation aux plateformes de VTC.
L’impact du routage informé sur l’efficacité des réseaux de trafic est de plus en
plus étudié, en se demandant si ces usagers informés, en cherchant à optimiser leur
parcours, génèrent des gains globaux ou de nouvelles inefficacités.

Parmi les premiers modèles de réseaux de trafic les plus utilisés figurent les
jeux de routage, des modèles statiques dont l’objectif est de caractériser les flux
d’équilibre de trafic d’un réseau de transport, en se basant sur des hypothèses con-
cernant le comportement des voyageurs, notamment celle selon laquelle tous les
utilisateurs cherchent à minimiser leur propre temps de parcours (routage égoïste).
Bien que ces modèles aient considérablement enrichi notre compréhension des flux
et de l’efficacité du trafic, ils présentent des limites importantes lorsqu’ils sont ap-
pliqués aux réseaux modernes. Cette thèse étend le cadre traditionnel des jeux
de routage égoïste afin de surmonter ces limites et de mieux capturer les effets du
routage informé.

Ci-dessous, un résumé est proposé pour chacun des chapitres de la thèse, incluant
les méthodologies utilisées, les résultats obtenus, ainsi que les perspectives futures
concernant le travail réalisé dans cette thèse.

Chapitre 3: Routage égoïste sur des réseaux avec contraintes
d’offre et démande
Les jeux de routage non atomiques classiques [1, 2] ont prouvé leur utilité pour
comprendre divers aspects des réseaux de trafic. Néanmoins, leur formulation de
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base présente certaines limites lorsqu’ils sont appliqués aux réseaux de trafic. Tout
d’abord, les liens des réseaux n’ont pas de contraintes de capacité limitant la quan-
tité de flux qu’ils peuvent accueillir. Cela ne permet pas de saisir correctement les
phénomènes de congestion typiques des réseaux de trafic. De plus, les coûts des
liens sont généralement modélisés comme des fonctions croissantes du flux. Étant
donné que les coûts des liens représentent généralement les temps de trajet des liens
dans la plupart des applications aux réseaux routiers, cela n’est pas cohérent avec
la modélisation du trafic, selon laquelle la relation entre le flux de trafic et le temps
de trajet est non monotone.

Dans ce chapitre, nous proposons un nouveau type de jeu de routage non atom-
ique en exploitant des concepts du modèle CTM de Daganzo [3, 4] pour définir
une structure de réseau. L’innovation clé réside dans l’incorporation de variables
de densité aux côtés des flux de trafic traditionnels. En considérant à la fois les
flux (nombre de véhicules par unité de temps) et les densités (nombre de véhicules
par unité de longueur) sur chaque lien, nous pouvons définir un mécanisme d’offre
et de demande qui impose des contraintes de capacité. Ce mécanisme limite le
flux qui peut traverser un lien en fonction de sa densité actuelle, permettant ainsi
d’identifier les sections congestionnées. De plus, les temps de trajet sur chaque lien
deviennent directement dépendants de sa densité, conformément à la modélisation
du trafic [5]. Cette approche combinée fournit une représentation plus précise des
phénomènes réels du trafic.

Ce modèle permet d’identifier une conséquence critique du routage égoïste qui
va au-delà du problème bien connu de l’efficacité réduite du trafic en raison de
l’augmentation du temps total de trajet : le transfert partiel des flux d’équilibre,
aussi connus comme équilibres de Wardrop (WE). Plus précisément, dans certains
cas, le WE résultant de l’interaction des usagers égoïstes consiste en un modèle de
congestion qui permet seulement à une partie du flux exogène auquel le réseau est
soumis d’entrer dans le réseau et de le traverser.

Les principales contributions de ce chapitre sont les suivantes :

1. Nous proposons un nouveau type de jeu de routage égoïste mieux adapté à la
modélisation des réseaux routiers basé sur le CTM. Dans ce modèle, les liens
sont traités comme des cellules avec des contraintes de capacité qui dépendent
de la densité au sein de la cellule, et les temps de trajet des liens sont des
fonctions croissantes de la densité plutôt que du flux. Nous nous concentrons
sur les réseaux parallèles, où le réseau est constitué de N routes parallèles,
chacune composée de plusieurs liens.

2. Nous caractérisons les WE et l’optimum social (SO) de ce jeu et prouvons
leur unicité essentielle.

3. Enfin, nous introduisons le concept de transfert partiel des WE et montrons
que, sous certaines conditions, le WE unique du jeu peut être partiellement
transférant, même lorsque la demande exogène du réseau est inférieure à la
capacité de min-cut. Cela fournit de nouvelles preuves de l’inefficacité du
routage égoïste.
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Chapitre 4: Impact des systèmes de navigation : recomman-
dations en temps réel

Dans ce chapitre, nous allons au-delà d’une description statique du trafic et pro-
posons une modélisation dynamique, dans le but d’offrir une représentation plus
réaliste des réseaux de transport. Nous modélisons l’impact de l’utilisation des ap-
plications de navigation sur l’efficacité des réseaux de trafic. Pour ce faire, nous
définissons un modèle dynamique de flux sur un réseau qui décrit la dynamique
du trafic d’un réseau parallèle soumis à un flux de trafic exogène. Nous supposons
qu’une partie du trafic est constituée d’usagers qui suivent les recommandations
d’une application de navigation, qui les dirige vers l’itinéraire ayant le temps de
trajet le plus court, tandis que l’autre partie choisit ses itinéraires en fonction de
croyances préalables. Contrairement aux travaux précédents et en continuité avec
le chapitre précédent, le modèle est défini sur un réseau soumis à des contraintes
d’offre et de demande sur ses liens. Ainsi, similaire au chapitre 3, notre analyse
de l’efficacité se concentrera principalement sur la question du transfert partiel de
demande introduit précédemment, en mettant l’accent sur le rôle que jouent les
applications de navigation dans l’émergence de ce phénomène.

Le modèle présenté dans ce chapitre peut être considéré, dans une certaine
mesure, comme une extension dynamique du modèle présenté au chapitre 3, bien
qu’il soit restreint à un réseau avec seulement deux itinéraires, chacun composé
d’un seul lien. La demande de trafic est divisée en deux classes : l’une suit une
stratégie de routage fixe, tandis que l’autre utilise une application de navigation
pour minimiser le temps de trajet. Nous démontrons la stabilité asymptotique glob-
ale pour une large famille de dynamiques des préférences des utilisateurs. Ensuite,
nous étudions les propriétés de l’équilibre unique en supposant que les préférences
des utilisateurs suivent le modèle de choix logit. Cette analyse est effectuée dans
deux régimes limites. Dans le régime de forte conformité aux recommandations
de l’application, nous montrons que l’équilibre approche l’équilibre de Wardrop de
l’instance correspondante du jeu de routage non atomique défini dans le chapitre
3. Dans le régime de faible conformité, nous dérivons une approximation linéaire
des dynamiques des préférences des utilisateurs. Cette étude en deux volets montre
que les applications de navigation peuvent dégrader l’efficacité du réseau, en aug-
mentant le temps de trajet moyen (en accord avec les travaux précédents [6, 7]) et
en menant à un transfert partiel de demande. La variable clé dans notre analyse
à l’état stationnaire est le taux de pénétration, c’est-à-dire la part des utilisateurs
informés par l’application dans la demande totale. Notre analyse montre qu’un
taux de pénétration élevé est susceptible de dégrader l’efficacité du réseau lorsque
la conformité est élevée. Ce constat est également confirmé par l’analyse numérique
du modèle dans une étude de cas réaliste basée sur la ville de Grenoble, France.

Chapitre 5: Impact des systèmes de navigation : recomman-
dations de routage retardées

Les recommandations de routage fournies par les applications de navigation à leurs
utilisateurs sont dérivées des données de trafic collectées par l’application. Il ex-
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iste un délai inévitable entre le moment où les données de trafic sont collectées et
le moment où les recommandations basées sur ces données sont fournies aux util-
isateurs. Ce retard est dû au temps nécessaire pour les opérations de collecte, de
communication et de traitement des données.

Dans ce chapitre, nous cherchons à évaluer quel impact les retards affectant les
recommandations de routage peuvent avoir sur l’efficacité du trafic. Pour ce faire,
nous utilisons une version légèrement modifiée du modèle développé dans le chapitre
4, en tenant compte de ce délai.

En supposant que les deux itinéraires du réseau ont la même longueur et la même
vitesse, nous réduisons le problème à une équation différentielle ordinaire scalaire
en considérant la différence de temps de trajet entre les deux itinéraires. En menant
une analyse de stabilité de cette dynamique scalaire, nous pouvons caractériser de
manière exhaustive l’impact du retard informationnel sur la stabilité et l’efficacité
du système de trafic. Cette analyse implique trois paramètres clés : le flux exogène à
travers le réseau, le taux de pénétration des utilisateurs informés et leur conformité.

Nos résultats indiquent que lorsque ces trois paramètres sont suffisamment faibles,
le retard dans les recommandations de routage n’altère pas le comportement asymp-
totique du système de trafic. Cependant, lorsque le produit de ces paramètres
dépasse un certain seuil, qui peut être exprimé en termes d’autres paramètres du
système, des retards suffisamment importants entraînent une déstabilisation du sys-
tème. Cela provoque un état de trafic oscillant et peut entraîner un transfert partiel
de demande périodique.

Chapitre 6: Routage coordonné

Ce chapitre explore l’impact de la présence d’une flotte centralisée sur l’efficacité
du trafic. Chaque flotte, sous le contrôle d’un opérateur centralisé, optimise ses
opérations grâce au routage coordonné des véhicules. Nous modélisons le problème
comme une instance des jeux de routage à comportement mixte [8], impliquant deux
classes d’utilisateurs distinctes. La première classe comprend des utilisateurs indi-
viduels, égoïstes, cherchant à minimiser leurs propres temps de parcours. La deux-
ième classe est composée de véhicules qui coordonnent leurs décisions de routage
afin de minimiser le temps de parcours moyen de la flotte.

Cette étude vise à améliorer notre compréhension de la manière dont les ser-
vices de mobilité récemment nés, notamment les VTC, influencent l’efficacité du
trafic. Les entreprises de ce secteur exploitent les données de trafic en temps réel
pour développer des plans de déploiement de flotte stratégiques qui rationalisent
les opérations, garantissent un service de qualité et maximisent la rentabilité, tout
en utilisant des stratégies de routage coordonné pour optimiser les performances
de la flotte. Il est important de noter que cette étude se concentre exclusivement
sur les stratégies de routage et ne fournit pas une analyse exhaustive des impacts
plus larges de ces services sur l’efficacité du trafic, tels que la prise en compte des
kilomètres de véhicules vides ou des effets potentiels sur l’utilisation des transports
publics.

Les principales contributions de ce chapitre sont les suivantes. Après avoir ob-
servé que, sous des hypothèses légères, ce jeu à deux classes est équivalent à un jeu



vii

convexe à deux joueurs, nous exploitons une reformulation bien connue en termes de
solution à une inéquation variationnelle (IV) pour étudier le problème (voir [9, 10]).
Plus précisément, nous identifions des conditions suffisantes pour que l’opérateur de
l’IV soit fortement monotone. D’une part, la monotonie forte garantit l’unicité de
l’équilibre. D’autre part, elle permet de fournir des aperçus significatifs sur l’impact
de la part de la flotte coordonnée sur l’efficacité globale du trafic dans les réseaux
à deux terminaux.

Nous utilisons le Prix de l’Anarchie (PoA) comme métrique de l’efficacité du
trafic. Nous démontrons que l’équilibre unique et le PoA présentent une continuité
de Lipschitz par rapport à la part des véhicules coordonnés. De plus, nous étab-
lissons des conditions garantissant un seuil minimum pour cette part. En dessous
de ce seuil, la présence de véhicules coordonnés n’a aucun impact sur l’efficacité du
trafic.

Enfin, pour les réseaux parallèles, nous montrons que le PoA, les flux des util-
isateurs individuels et le temps de trajet le plus court à l’équilibre diminuent tous
lorsque la part de véhicules coordonnés augmente. Cela suggère que de plus grandes
flottes coordonnées conduisent à une meilleure efficacité.

Conclusion

Cette thèse explore le routage informé et son impact sur l’efficacité des réseaux de
trafic. En étendant les modèles et théories existants, elle permet de proposer une
analyse plus complète sur la manière dont les technologies modernes et les services
basés sur le routage informé, tels que les applications de navigation et les services
de VTC, influencent la dynamique du trafic.

Plusieurs pistes de recherche prometteuses s’ouvrent pour étendre et affiner les
travaux présentés dans cette thèse. Une extension clé est la généralisation des
modèles à des topologies de réseaux plus complexes. Les modèles développés se
sont concentrés sur des réseaux simplifiés, mais les réseaux réels, avec une diver-
sité de paires origine-destination et de routes croisées, nécessitent des modèles plus
généraux pour mieux caractériser les phénomènes observés et étendre leur applica-
bilité.

La généralisation des jeux de routage non atomiques avec contraintes d’offre et de
demande nécessitera de formaliser ces modèles comme des problèmes d’optimisation,
en tenant compte des spécificités de chaque itinéraire, notamment les limites de
capacité des liens et intersections imposées par le méchanisme d’offre et demande.

Les modèles dynamiques avec contraintes d’offre et de demande posent des défis
supplémentaires. L’intégration d’informations en temps réel rend la dynamique des
flux plus complexe, nécessitant de nouvelles approches pour analyser la stabilité des
systèmes.

Une fois ces modèles dynamiques développés, une voie importante de recherche
consistera à comprendre comment l’introduction de contraintes de capacité modi-
fie notre compréhension des problèmes de routage. L’incorporation de contraintes
réalistes pourra améliorer la gestion du trafic, en particulier dans les réseaux à us-
agers égoïstes, et nécessitera une évaluation des mécanismes existants comme la
tarification et les incentives.
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La validation des modèles à travers des simulations microscopiques est essentielle
pour garantir la précision des résultats théoriques. Ces simulations, réalisées avec
des plateformes de micro-simulation, permettront de tester les modèles sur des
réseaux et dynamiques de trafic réalistes.

Enfin, l’étude du routage coordonné dans des systèmes de transport basés sur
des flottes offre un grand potentiel. Le routage coordonné pourrait être crucial
pour optimiser l’efficacité des réseaux, notamment dans les systèmes de VTC ou de
livraison. Ces recherches pourraient aboutir à de nouvelles approches de contrôle
du trafic.
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Chapter 1

Introduction

1.1 The rise of information-aware routing

Navigating through traffic networks has become increasingly challenging in recent
years. Urban areas are often plagued with heavy congestion, and the complexity
of modern traffic networks adds another layer of difficulty for commuters. As cities
grow and populations increase, the demand for efficient movement intensifies.

In response to this challenge, a plethora of services aimed at simplifying trans-
portation have emerged. Navigation apps like Google Maps and Waze provide
real-time guidance, while ride-hailing services such as Uber and Lyft offer conve-
nient alternatives to traditional taxis. Car-pooling and car-sharing platforms like
BlaBlaCar and Zipcar encourage shared usage of vehicles, reducing the number of
cars on the road. Collectively, these services aim to enhance the mobility experience
of urban commuters by offering flexible, on-demand solutions, that are often more
efficient and cost-effective than traditional methods.

A common thread among many of these modern transportation solutions is their
reliance on information-aware routing. Much of these solutions, in fact, rely on real-
time traffic data to maximize the quality of the service offered and the efficiency of
their operations. This is particularly the case for navigation apps and ride-hailing
services, which critically rely on information-aware routing.

1.1.1 Overview of practices

Navigation apps

Navigation apps are software designed to help travellers find the most efficient
routes to their destinations. Using GPS technology, digital maps, and real-time
traffic data, these apps provide optimized routing recommendations to minimize
travel time by avoiding slowdowns and bottlenecks. Navigation apps have achieved
near-ubiquitous adoption. This is evident in the staggering user base of popular
navigation apps, with Google Maps surpassing 23 million downloads in the US for
2023 alone, and Gaode Map boasting a colossal 730 million monthly active users in
China as of 2022 [11, 12].

3
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Figure 1.1: Source: AppMagic, Statista.

Ride-hailing services

Ride-hailing services, such as Uber and Lyft, operate through a digital platform
that connects passengers with drivers via a mobile application. When a passenger
requests a ride, the app matches them with a nearby driver who accepts the request.
The app then provides the driver with the passenger’s location and destination,
and the driver uses this information to navigate to the pick-up point, transport the
passenger to their destination, and complete the ride.

Information-aware routing is crucial for enhancing the efficiency and effective-
ness of ride-hailing services. These services exploit real-time traffic data to optimize
their fleet deployment, in order to ensure efficient passenger transportation and min-
imizing driver downtime between pick-up points. This approach not only improves
service reliability but also maximizes profitability by streamlining operations.

Similarly to navigation apps, ride-hailing services are witnessing parallel growth,
driven by increasing urbanization and disposable income. Forecasts predict their
user base will reach 1.97 billion by 2028 (Statista [13]).

1.1.2 Unexpected consequences
Initially, the proliferation of services based on information-aware routing was met
with great optimism. Information-aware routing was then considered a tool that
would certainly improve traffic flow and reduce congestion phenomena. However,
these expectations have largely been unmet. Despite the widespread adoption of
these services, significant improvements in traffic congestion have not been materi-
alized. Instead, unexpected and undesirable phenomena associated with navigation
apps and ride-hailing services have emerged.

Notably, navigation apps have been accused of contributing to the rise of cut-
through traffic in residential areas across the United States and Europe. Many
municipalities have reported a marked increase in traffic volumes on their local
roads as navigation apps direct users through quieter suburban streets to avoid
congested highways [14, 6, 15, 16]. This phenomenon has prompted action from
authorities. In the US, municipalities have tried various solutions, such as limiting
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road use to residents [17] or implementing tolls [18], while France has issued a
national decree regulating navigation apps [19].

Ride-hailing services have also been criticized for being responsible of increasing
urban congestion [20, 21, 22, 23]. While factors like no passenger travels and com-
petition with public transportation are often cited, the role of information-aware
routing in fleet deployment deserves scrutiny. Just as navigation apps have shown,
these routing strategies, designed to optimize individual rides, may inadvertently
contribute to traffic flow inefficiencies.

The proliferation of navigation apps and mobility services such ride-hailing ser-
vices and the unexpected effects stemming from their use underline the necessity
of a more comprehensive assessment of the implications of information-aware rout-
ing. Such an analysis should aim to comprehend the full range of consequences
associated with it, highlighting potential shortcomings and drawbacks.

The aim of this thesis is to contribute to the analysis of the impact of information-
aware routing on traffic efficiency in traffic networks, with a specific focus on navi-
gation apps and ride-hailing services. We consider information-aware routing in two
primary contexts. First, we model the impact of users leveraging traffic informa-
tion provided by navigation apps to minimize their travel time. Second, we assess
the effects of coordinated routing within ride-hailing service fleets, controlled by a
central operator aiming to optimize overall fleet metrics, on overall traffic efficiency.

1.2 Previous work

The impact of information-aware routing on traffic efficiency has received significant
attention in recent years. This section reviews relevant studies to provide context
for our analysis.

The problem has been tackled primarily through the lens of macroscopic traffic
network models (MTNM). MTNMs aim to provide a mathematical representation
of a traffic network capable of describing the behavior of traffic flows. At their
core, MTNMs represent a road network by means of a directed graph. Graph links
represent the network roads, and nodes represent the junctions between them. Links
are assigned a number of attributes, such as length and capacity, and a travel time
function, quantifying the amount of time it takes to traverse the link given a certain
level of traffic volume on that link. Each ordered pair of nodes in the network is
assumed to have a non-negative demand of traffic of users, who aim to cross the
network in order to move between the origin node and the destination node of that
pair. MTNMs focus on the bigger picture: the number of users is assumed to be
very large and each user controls a negligible fraction of traffic, so traffic is modeled
in an aggregate, continuous manner by link flows and densities.

In MTNMs, the behavior of traffic flows is modeled through the imposition of
mathematical conditions that reflect specific behavioral assumptions. The deriva-
tion of such mathematical conditions is done through the adoption of a game-
theoretic approach, that allows for elegantly capture the reactive behavior to con-
gestion of users informed about traffic conditions over the network. Typically, these
conditions translate into users favouring routes associated with shorter travel times.
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1.2.1 Navigation apps
The impact of navigation apps’ usage has been studied through two main families
of models: heterogeneous non-atomic routing games and dynamical network flows.

Non-atomic heterogeneous routing games

Non-atomic routing games (NRG) represent one of the most widely used MTNMs.
NRGs are static models, so their goal is to identify steady-state traffic patterns
emerging from individual user behavior. In their older and arguably most studied
variant, NRGs assumes that all users behave according to the selfish routing model:
all of them has complete information about traffic conditions and their goal is to
minimize their own traversal time. This core assumption aligns perfectly with the
behavior of users of navigation apps, who rely on the routing recommendations
allowing them to minimize their travel time. In this model, equilibrium configu-
rations are those traffic patterns such that no user can improve their travel time
by unilaterally changing routes. These traffic patterns are known in the literature
as Wardrop equilibria [24]. The study of the efficiency of Wardrop equilibria has
demonstrated that selfish routing is generally inefficient. Users act in an uncoor-
dinated manner and disregard the impact of their actions on other users, leading
to sub-optimal traffic configurations in terms of total travel time on the network
[1]. Various metrics have been developed to evaluate the inefficiency of Wardrop
equilibria, with the Price of Anarchy being one of the most widely used [1].

Originally, the selfish routing model assumed complete homogeneity in user
behavior. However, it was later generalized to account for heterogeneity in the
traffic information available to users [2]. This generalization introduced multiple
classes of users, each characterized by a specific set of travel time functions. This
heterogeneity is particularly valuable for investigating the impact of navigation
apps. Firstly, it allows for addressing cases where not all users rely on routing
recommendations or on the same navigation apps, resulting in varying levels of
knowledge. Secondly, it allows for the assessment of selfish routing impacts at
different levels of navigation app penetration among users. For this reason, all
relevant work that focused on assessing the impact of information-aware routing
included heterogeneity in their models.

The impact of navigation apps was first investigated within the framework of
heterogeneous non-atomic routing games in [25]. In this work, users are divided into
two classes: app-informed users, who follow navigation app recommendations, and
non-routed users who do not. Network roads are also divided into high-capacity and
low-capacity roads. The two classes have different travel time functions. Routed
users’ travel time functions represent actual link travel times without differentiating
by road capacity, whereas non-routed users’ functions lead them to favor high-
capacity roads most of the time, even when low-capacity routes had lower travel
times. Two important facts emerge from the numerical experiments performed on
the model in [25]. First, the introduction of app-informed users on the network
leads to an improvement in traffic efficiency, alleviating traffic congestion on high-
capacity roads. On the other hand, reduced pressure on high-capacity roads comes
at the cost of significantly increasing congestion on secondary roads. The first
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fact suggests that although selfish routing behaviors are sub-optimal in terms of
traffic efficiency, information-aware selfish routing can help to relieve congestion
when routing is performed under biased or incomplete information. The second
fact, instead, provides a clear explanation for the emergence of the phenomenon of
cut-through traffic1.

The idea that providing users with more information always leads to an efficiency
improvement was contradicted a few years later. In [7], the concept of Informational
Braess’ Paradox (IBP) was introduced. To investigate the impact of additional
route information provided through navigation apps, a non-atomic routing game
was developed where users have varying information sets about available routes
and can only use routes within their information set. The focus is on whether
increasing the information set of one of the classs can be detrimental by increasing
total travel times. It is shown that in networks outside a rather narrow class of
networks (series of linearly independent networks), there exists a configuration of
link travel time functions where IBP will occur. Interestingly, it is also shown that
the maximum inefficiency occurs when all users’ information sets correspond to the
entire network.

In line with this work, Cabannes considered a two-class non-atomic routing game
with app-informed users and non-informed users [6]. Utilizing the concept of average
marginal regret, it is proved that increasing the penetration level of navigation
apps steers traffic patterns towards Wardrop equilibria, potentially degrading traffic
efficiency through increasing total travel time and causing cut-through traffic on
secondary roads.

This body of work underscores the complexity and potential unintended con-
sequences of information-aware selfish routing, highlighting the need for careful
consideration in their use.

Finally, another model offering interesting insights on the use of navigation
apps is presented in [26] through the framework of Bayesian routing games. In
that work, the authors examine a heterogeneous NRG, where each class of users
is associated with a distinct navigation app, and the network is influenced by an
uncertain state affecting traffic conditions. Each navigation app sends a noisy signal
about the state to its users, who then make route choices based on their own beliefs
and the information received from the app. In this scenario, users select their
routes to minimize their expected travel time. The authors fully characterize the
equilibrium structure and analyze how population sizes influence the difference in
expected travel times between different populations, essentially the advantage that
one population has over another. They identify population-specific size thresholds
for each pair of populations, showing that one population benefits more than another
if and only if its size is below the corresponding threshold. The key takeaway is
that users within a class significantly benefit from the information provided by their
navigation app only when a relatively small number of users are utilizing that same
information.

1Cut-through traffic means traffic that passes through a given residential neighborhood that
has neither an origination nor destination point in that neighborhood.
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Dynamical network flows

While NRGs have proven to be a highly useful tool for evaluating the impact of real-
time routing recommendations, they present a crucial limitation. The equilibria
of an NRG are assumed to be the traffic pattern naturally resulting from user
interaction. However, since NRGs do not provide any dynamic description of traffic,
it is unclear whether the network will converge to any of these equilibria from a
given initial condition. In an effort to provide a more comprehensive analysis of the
implications of navigation apps’ usage, researchers have explored the use of dynamic
models to investigate the problem.

To study the stability of Wardrop equilibria in NRGs, evolutionary dynamics
[27] have been proposed. Evolutionary dynamics consist of an ODE system that
describes the evolution of user preferences over time, where the portion of users
choosing a specific route decreases as its cost (e.g. travel time) increases. Two
evolutionary dynamics that have received attention for traffic applications are the
replicator dynamics and the logit dynamics. Briefly, according to the replicator
dynamics, users tend to update their route choice when the route travel time exceeds
the average travel time. In contrast, the logit dynamics is a perturbed best-response
dynamic: users always aim for the shortest travel time route, but the costs they
perceive are affected by noise, which can lead them to choose a sub-optimal strategy.
The stability of Wardrop equilibria under general evolutionary dynamics has already
been established for potential games, as homogeneous NRGs are [27, Chapter 7].
For heterogeneous games, no such general result is available. To the best of the
authors’ knowledge, until now, stability results in heterogeneous settings have only
been proposed for the logit dynamics [28]. This work proved that a subclass of the
Wardrop equilibria of the NRG is asymptotically stable. Despite their attempt to
dynamically characterize the problem, evolutionary dynamics do not really model
actual traffic dynamics, as they assume that traffic flows propagate instantaneously
across the network.

Another approach in the literature relies on dynamical network flow models
[29]. Dynamical network flows are inspired by compartmental models [30, 31]. The
intuition behind these models is to think of the links of a traffic network as a set of
interconnected cells exchanging mass with each other. The flows from one cell to
another are determined by a supply and demand mechanism, inspired by Daganzo’s
cell transmission model (CTM) [3, 4]. Unlike evolutionary dynamics, these models
not only capture the dynamics of user preferences, but also of the traffic dynamics
over each network link. Recent works [32, 33] have provided results concerning the
stability of Wardrop equilibria under the replicator and logit dynamics for dynamical
network flows.

In [32], user preferences are modeled through the logit dynamics. The authors
show that the traffic system admits a unique globally asymptotically stable fixed
point, which converges to the Wardrop equilibrium, as the noise vanishes. In [33],
the evolution of route preferences is modeled through the well-known replicator
dynamics. Sufficient conditions for convergence to a Wardrop equilibrium are pro-
vided, and numerical simulations also show that when such conditions are not met,
user strategic behavior can lead to instability, causing the traffic state to oscillate.
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In both of these works, information is homogeneous across users, meaning all users
have full knowledge of the traffic state in real-time.

The problem of assessing the impact of selfish routing induced by real-time
information and recommendations has also been explored through macroscopic PDE
models. These models couple a mass conservation law with a Hamilton-Jacobi
equation to model both the traffic dynamics and the strategic choices of users. In
[34, 35, 36], it is shown that these types of models can capture the inefficiencies
previously highlighted in static frameworks (sub-optimality with respect to total
travel time, Braess’ Paradox). In [35, 36, 37], the case of heterogeneous class of
users characterized by different levels of information is considered. The conclusions
drawn are analogous to those stemming from their static counterparts [6, 25, 7]: real-
time information provision can help to relieve network congestion, but increasing
levels of penetration of information-aware routing lead to Wardrop equilibria and
typically result in higher pressure on secondary roads.

1.2.2 Ride-hailing services

The assessment of the impact of routing policies adopted by ride-hailing services
has been addressed through mixed behavior non-atomic routing games and coordi-
nated routing. Similarly to heterogeneous NRGs, mixed behavior NRGs also involve
dividing traffic flow into separate users classes, only this time classes are character-
ized by different behavioral assumptions, rather than different sets of travel time
functions. Mixed behavior NRGs were considered for the first time in [8], which
introduced the concept of coordinated routing within classes. The mixed behavior
NRG developed in that work is characterized by a class of selfish users and several
coordinated classes, consisting of users that act coordinately in order to minimize
the fleet total travel time, instead of seeking to minimize their own travel time. Suf-
ficient conditions for equilibrium existence and uniqueness are established. More
general conditions have been provided later in [38].

However, the above works do not investigate the impact that coordination among
users in a same class has on the overall traffic efficiency. The first work to consider
this problem is [39], where the authors consider a three-class problem with a class
of selfish users, a coordinated fleet (aiming at reducing fleet average travel time)
and a system optimum fleet (aiming at reducing the system’s average travel time).
The provided numerical experiments show that sufficiently large coordinated and
system-optimal fleets can lead to system optimality, even in the presence of indi-
vidual users, thus improving the overall traffic efficiency.

More recently, the impact on overall efficiency has been analyzed within the
framework of two-class problems. Studies such as [40, 41] consider a two-class
problem, where one class consists of selfish users and the other comprises coordi-
nated vehicles. In [40], the authors develop an algorithm to compute the traffic
equilibrium resulting from the interaction of selfish users and the coordinated fleet.
Through numerical experiments, they highlight that traffic efficiency improves as
the fraction of coordinated vehicles on the total increases.

In [41], the authors study the impact of coordinated fleets on traffic efficiency.
First, they provide an example on a network with multiple origin-destination pairs
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and show that coordinated fleets can have detrimental effects on efficiency. Then,
they investigate the minimum fleet size necessary to achieve system optimality and
the maximum fleet size for which the user equilibrium persists, developing mathe-
matical programs to compute them. They also provide analytical results about the
threshold effect associated with the coordinated fleet size on efficiency, but only for
parallel networks.

This review focused only on how information-aware routing strategies affect traf-
fic efficiency. However, a complete picture of ride-hailing services’ impact requires
considering additional factors. These factors include, for example, no passenger
trips and a shift away from public transportation. While these aspects are beyond
the scope of this thesis, the provided references [23, 42, 43, 44, 45] offer starting
points for further exploration.

1.3 Thesis contributions
This thesis investigates the impact of information-aware routing on the efficiency
of traffic network.

1.3.1 Navigation apps & selfish routing
Despite the valuable insights provided by the studies mentioned in Section 1.2,
many existing models have design limitations that may prevent them from fully
capturing the complexities of traffic phenomena. For example, all cited works do
not incorporate capacity constraints at all [6, 25, 7], or only include partial con-
straints [32, 33]. Instead, traffic networks have inherent limitations in the number of
vehicles they can handle: the traffic volume on a road is limited upwards and affects
the link’s ability to accommodate additional traffic. Neglecting these constraints
raises questions about the completeness of the investigations carried out with these
models.

In Part II, we address this gap by investigating information-aware routing as-
sociated with navigation apps using traffic network models that more accurately
describe road networks, incorporating the aforementioned capacity constraints. We
next summarize out three main contributions on this topic.

Selfish routing on networks with supply and demand constraints

In their standard formulation, non-atomic selfish routing models do not consider
any capacity constraints on the network links. In this thesis, we extend upon pre-
vious work [1] the analysis of these models, applying them to networks that better
represent road networks. We propose a new model that addresses the limitations
of standard routing games by incorporating several key features, inspired by the
well-established Cell Transmission Model (CTM) by Daganzo [3, 4]. By including
traffic density in the state description, the model surpasses the constraints of flow-
based models. Network links are characterized by a supply and demand mechanism
that regulates capacity constraints based on density, reflecting the fact that con-
gestion affects available capacity. Additionally, link travel times are now functions
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of density, rather than flow [5]. Focusing on parallel networks and assuming users’
homogeneity, we comprehensively characterize Wardrop Equilibria (WE) and so-
cial optima (SO). Significantly, the model uncovers a potential drawback of selfish
routing behavior: the presence of partially transferring Wardrop equilibria. With
partially transferring, we mean that the WE consists in a congestion pattern that
allows only a part of the exogenous flow which the network is subject to to enter
the network and cross it. We provide sufficient conditions for this phenomenon to
occur.

Assessing the impact of navigation apps’ usage in networks with supply

and demand constraints

Most studies on traffic dynamics with information-aware routing assume overly sim-
plistic capacity constraints. In [32, 33], for example, although the outgoing flow is
limited by the link’s capacity, the incoming flow can exceed this threshold. In this
thesis, we study this problem through dynamical network flow that incorporates the
same supply and demand mechanism of the above non-atomic routing game. This
model can be thought of as its dynamic counterpart, offering a more comprehensive
representation of traffic flow over time. Furthermore, in this case we account for
heterogeneity among users. Specifically, we assume that the traffic demand is di-
vided into two classes, where one class splits on the two routes according to a fixed
routing strategy, whereas the second class relies of the routing recommendations of
a navigation app and strategically select the route to minimize travel time. The
analysis focuses on a network with two alternative routes. We begin by proving
that the system exhibits global asymptotic stability for a broad family of user pref-
erence dynamics. Next, we investigate the characteristics of the unique equilibrium
under the assumption that user preferences adhere to the logit choice model. This
examination is conducted in two different compliance regimes to the app’s recom-
mendations. First, in the scenario of high compliance regime, we demonstrate that
the equilibrium approximates the Wardrop equilibrium of a non-atomic routing
game analogous to the one described in Chapter 3. In the low compliance regime,
we derive a linear approximation for the dynamics of user preferences. This dual
approach reveals that navigation apps can lead to traffic states affected by partial
transfer of demand. A critical factor in our steady-state analysis is the level of
penetration of app-informed users within the total demand. Our analysis indicates
that the higher the level of penetration, the more likely partial demand transfer
will emerge (particularly when user compliance is high). Additionally, corroborat-
ing previous findings [6, 25, 7], we show that an excessive penetration rate can also
negatively affect efficiency, by increasing total travel time.

The impact of navigation apps’ usage under informational delay

Although navigation apps increasingly rely on real-time traffic data, there is in-
evitably a time lag in information provision due to the need for data collection,
communication, and processing before it can be used. Therefore, it is crucial to
evaluate the impact that delays in routing recommendations can have on traffic
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efficiency. This issue has not been addressed in previous studies, making our inves-
tigation the first to consider informational delays. We consider the aforementioned
dynamical network flow model with user preferences modeled through the logit dy-
namics, and we modify it to account for delay affecting information communication,
i.e., app-informed users base their choice on a past traffic state. Through the stabil-
ity analysis of this model, we show that informational delays can negatively impact
traffic efficiency, fully characterizing this phenomenon. Specifically, we show that
for when the exogenous flow, the noise level and the fraction of app-informed users
are low, the system admits a globally asymptotically stable equilibrium, regardless
of the delay. However, when these parameters are sufficiently high, there exists a
critical delay threshold beyond which the delay destabilizes the traffic dynamics
and the trajectories becomes oscillatory. Finally, through numerical experiments,
we show that in some cases the oscillations in the traffic state are so pronounced to
lead to a periodic partial transferring of demand.

1.3.2 Ride-hailing services & coordinated routing

Although the problem of assessing the impact of ride-hailing services has already
been considered in the literature and studied through the lens of coordinated rout-
ing, existing works have mostly been limited to quantitative approaches [39, 40, 44,
41]. In this thesis, we propose an analytical study of the problem.

The impact of coordinated routing on traffic efficiency

We formulate the problem as a mixed behavior non-atomic routing game with two
user classes, where the first class consists of selfish users, whereas the second one
consists in a coordinated fleet of vehicles that strategically select their route to
minimize the average travel time of the whole fleet. We show that this game is
equivalent to a two-user game, where one user is associated with the individual
users and the other with the coordinated fleet. We study this game by using a well-
known reformulation in terms of solution to a variational inequality (VI) (see [9, 10]).
Specifically, we establish conditions ensuring that the operator of the VI associated
to our game is strongly monotone. On the one hand, strong monotonicity ensures
equilibrium uniqueness. On the other hand, through this property we are able to
provide meaningful insights about the relationship between traffic efficiency and the
share of the coordinated fleet in two-terminal networks. Using the Price of Anarchy
(PoA) as a measure of traffic efficiency [1], we prove that the unique equilibrium
and the PoA are Lipschitz continuous functions of the fleet share. Additionally, we
derive sufficient conditions for the existence of a minimum share below which the
presence of a coordinated fleet has no effect on traffic efficiency. Finally, for parallel
networks, we show that the PoA, the flow of individual users, and the shortest travel
time at equilibrium are monotonically non-increasing functions of the fleet share,
suggesting improved efficiency for larger fleet share. Notice that in this analysis, we
do not take into consideration the capacity constraints used for the analysis of the
impact of navigation apps.
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1.4 Thesis outline

This section provides the reader with an overview of the thesis. The thesis consists
of four parts:

• Introduction & Preliminaries,

• Selfish routing & navigation apps,

• Coordinated routing & optimized fleets,

• Conclusion.

This chapter is part of the first section of the thesis. Within it, we detail the
content and contributions of each chapter, highlighting the publications which they
are based on.

Chapter 2: Preliminaries

In this chapter, the reader is provided with an overview on the main approaches
adopted in this thesis to address the problem of traffic modeling. Section 2.1 briefly
introduces multi-digraphs. Section 2.2 is dedicated to static models, specifically
non-atomic routing games. Section 2.3 briefly describes Daganzo’s CTM. Finally,
Section 2.4, instead, delves into dynamic traffic modeling, presenting dynamical
network flows.

Part II: Selfish routing & navigation apps

Chapter 3: Selfish routing on networks with supply and demand con-

straints

The second part of the thesis focuses on the modeling of selfish routing. In this
chapter, the non-atomic routing game on networks with supply and demand con-
straints is presented and analyzed. Section 3.1 opens the chapter, summarizing the
main contributions and briefly discussing related works. In Section 3.2, we detail
the network structure. We describe the supply and demand mechanism for each
link, define feasible traffic assignments, and introduce density-dependent link travel
times. In Section 3.3, we define a non-atomic selfish routing game on the network.
Here, we also fully characterize the Wardrop equilibria and social optima of this
game and provide necessary and sufficient conditions for the emergence of partially
transferring Wardrop equilibria. Section 3.4 presents an example showing that par-
tial demand transfer persists also in non-parallel networks. Section 3.5 terminates
the section with some concluding remarks.

• T. Toso, A. Y. Kibangou, and P. Frasca, “Selfish routing on transportation
networks with supply and demand constraints,” under review in IEEE Trans-
actions on Intelligent Transportation Systems, 2024.
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Chapter 4: Impact of navigation systems: real-time routing recommen-

dations

This chapter offers insights about the impact exerted by the presence of app-
informed users on traffic efficiency. Section 4.1 introduces the main contributions
and related works. In Section 4.2, the dynamical network flow model is presented.
In Section 4.3, it is proved that the system exhibits global asymptotic stability for
a wide range of user behavior models. In Section 4.4, the properties of the unique
equilibrium of the system are analyzed, assuming that user preferences follow the
logit choice model. We characterize the phenomenon of partial transfer demand
and the impact on total travel time with respect to the fraction of informed users.
This is done both in the high user compliance and low noise regimes. Section
4.5 proposes simulations against which the theoretical findings are validated. Sec-
tion 4.6 presents further experiments demonstrating that our findings apply beyond
the specific setup analyzed in this chapter. Section 4.7 concludes the chapter.

The chapter is based on the following publication:
• T. Toso, A. Y. Kibangou, and P. Frasca, “Modeling the impact of route

recommendations in road traffic,” IFAC-PapersOnLine, vol. 56, no. 2, pp.
4179–4185, 2023. 22nd IFAC World Congress.

• T. Toso, A. Y. Kibangou, and P. Frasca, “Potential detrimental effects of real-
time routing recommendations in traffic networks,” under review in Trans-
portation Research: Part C, 2024.

Chapter 5: Impact of navigation systems: delayed routing recommenda-

tions

In this chapter, we propose a dynamical network flow model to analyze the impact of
delayed traffic information on traffic efficiency. First, Section5.1 opens the chapter.
In Section 5.2, we introduce the model. This model is analogous to the one presented
in Chapter 4, but now also accounts for informational delay. In Section 5.3, we show
that, under a route homogeneity assumption, the system can be reduced to a scalar
dyanmics, simplifying the analysis. In Section 5.4, we conduct the stability analysis
of the model and provide a sufficient condition for delay-independent stability, as
well as a sufficient condition for destabilization caused by delay. In Section 5.5, we
present some numerical experiments confirming our theoretical findings. Section 5.6
concludes the chapter.

The chapter is based on the following publication:
• T. Toso, A. Y. Kibangou, and P. Frasca, “Impact on traffic of delayed in-

formation in navigation systems,” IEEE Control Systems Letters, vol. 7, pp.
1500–1505, 2023.

Part III: Coordinated routing & optimized fleets

Chapter 6: The impact of coordinated routing on traffic efficiency

The third part of the thesis delves into coordinated routing. In this chapter, we
study the impact that the presence of a coordinated fleet has on traffic efficiency.
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Section 6.1 opens the chapter. In Section 6.2, the model and the main concepts
are defined. In Section 6.3, we give strong monotonicity, existence and uniqueness
conditions. Section 6.4 discusses the effect of a coordinated fleet on traffic efficiency
as a function of the fleet size, leveraging strong monotonicity. Section 6.5 proposes
numerical experiments corroborating the findings reported in the previous sections.
Section 6.6 contains concluding remarks.

The chapter is based on the following publication:

• T. Toso, F. Parise, P. Frasca and A. Y. Kibangou, “On the impact of coordi-
nated fleets size on traffic efficiency,” accepted for presentation in 63rd IEEE
Conference on Decision and Control (CDC), Milan, Italy, 2024.

Conclusion

The thesis concludes with a summary of the work presented in the previous chapters
and an outline of future research directions.





Chapter 2

Preliminaries

This chapter provides a foundation in mathematical models that will be instru-
mental in understanding the analysis presented in this thesis. In Section 2.1 the
mathematical representation of a traffic network is provided. Section 2.2 consists
in an overview on non-atomic routing games. Section 2.3 describes Daganzo’s Cell
Transmission Model. Finally, Section 2.4 introduces dynamical network flows.

2.1 Traffic networks as multi-digraphs
The models adopted in this thesis rely on a mathematical representation of traffic
networks based on multi-digraphs.

Definition 2.1. A multi-digraph (directed multigraph) is a pair G = (N ,L),
where:

• N is the set of nodes with cardinality |N |;

• L is the set of links with cardinality |L|. Each link l is an ordered pair of
nodes, i.e., l = (u, v), u, v 2 N . u is called the tail, whereas v the head.

Let a, b be the tail and head functions, associating each link with its head and
its tail, respectively. Being ordered pairs of nodes, links have a direction, i.e, each
link connects its tail to its head. Links are not univocally determined by their tail
and head, as multiple links can share the same tail-head pair. Nodes which are not
directly connected by a link can be connected through a route. Given a node u, let
u+ indicate the set of l 2 L such that b(l) = u and let u� indicate the set of l 2 L

such that a(l) = u.

Definition 2.2. A route p between two nodes u, v is a sequence of non-repeating
links (l1, . . . , ln), li 6= lj, 8i 6= j, such that b(l1) = u, a(ln) = v and a(li) =
b(li+1), i = 1, . . . , n� 1.

Let P(u,v) be the set of all routes connecting u to v. The multi-digraph is also
equipped with a set of origin-destination pairs (OD pairs) K = {(u, v) : u, v 2

N} ✓ N ⇥N . Given an OD pair k, Pk is the set of all routes connecting its origin
to its destination. It is rather straightforward how to interpret a multi-digraph as

17
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a traffic network. The links of the multi-digraph stand for the roads of the network
and nodes for junctions between them. Routes between a pair of nodes are all the
possible routes connecting the starting node to the end node. OD pairs account
for those pairs of nodes subject to an exogenous traffic demands aiming to go from
the origin to the destination by crossing the network. From now on, we will always
refer to a multi-digraph as network. In this thesis, special attention will be devoted
to the following classes of networks.

Definition 2.3. A two-terminal network is a network with a single OD pair (o, d).

Definition 2.4. A network G is a parallel network if its routes are all parallel, i.e.,
each of its links belongs to one route only.

2.2 Non-atomic routing games
Non-atomic routing games provide a powerful framework for analyzing traffic net-
works, specifically for identifying traffic patterns that emerge from the interactions
of strategic network users. Users adapt their routing strategy (which route to take)
based on their knowledge of the current traffic state in the network. NRGs are
macroscopic traffic models. As the identifier non-atomic suggests, the number of
users is assumed to be very large, so that each user controls only a negligible fraction
of traffic, and traffic is modeled in an aggregate continuous manner by link flows.
Also, user interaction is anonymous, i.e., these games only account for the fractions
of users using each route, rather than who is choosing what.

2.2.1 Homogenous NRGs
Homogeneous NRGs, also known as selfish routing games [1], represent the founda-
tion and the simplest instance of NRGs. In this setting, users are modeled as selfish
agents seeking to minimize their own travel time. Consider a network G = (N ,L),
with set of OD pairs K. Each OD pair k is subject to fixed non-negative traffic
demand �k. Again, each traffic demand consists of a very large number of users,
each of them corresponding to an infinitesimal part of the total demand. Let also
P = [

|K|

i=1Pk be the set of all routes on G. The way traffic is distributed over the
network is described by the route flow vectors z 2 R|P|

�0. Given p 2 Pk, zp allocated
on route p. The set of feasible flows is

Z :=

⇢
z 2 R|P|

�0 :
X

p2Pk

zp = �k

�
.

After defining the link-route incidence matrix A 2 {0, 1}|L|⇥|P as

Alp =

(
1 if l 2 p

0 otherwise
,

it is possible to define the link flow vectors f 2 R|L|

�0 as f = Az. These vectors
quantify the link flow on each link. Each link is also characterized by a travel time
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⌧l : R�0 ! R�0, which is assumed to be continuous, non-negative and increasing
functions of the link flow fl. Typically, link travel times are separable, i.e., the travel
time on link l depends on the flow on link l only. From the definition of link travel
time, it easily follows that of route travel time p 2 P , which is nothing but the
sum of all travel times ⌧l such that l 2 p. The interest of homogeneous NRGs is to
determine equilibrium patterns emerging from the interaction of selfish users.
Definition 2.5 (Wardrop equilibrium (WE)). A route flow zW 2 Z is called an
WE for the heterogeneous NRG if

8k 2 K, 8p, q 2 Pk, zWp > 0 ) ⌧p(f
W )  ⌧q(f

W ).

In words, a WE is route flow vector such that users choose only minimum travel
time routes and none of them has an incentive to modify its choice. The WEs
admit an alternative characterization as the solutions to the following optimization
problem:

min
z

X

l2L

Z fl

0

⌧l(r) dr

s.t.
X

p2Pk

zp = �k, 8k

fl =
X

p : l2p

Alpzp

zp � 0, 8p 2 P .

(2.1)

The objective function in (2.1) is a Rosenthal-like potential and it is called the
Beckmann transformation [46]. To see that the solutions to Problem (2.1) satisfy
to the definition of WE, it suffices to derive the Kuhn-Tucker conditions associated
to the problem [47]. Because of the assumptions on the link travel times, (2.1) is
a convex separable optimization problem, it is ensured that a homogeneous NRG
always admits a WE, and if the link travel time functions are strictly increasing,
then there exists a unique link equilibrium flow fW .

One of the main concerns with WEs is assessing their efficiency with respect to
a measure that a hypothetical network manager is interested in optimizing, which
also depends on the network’s congestion. This measure typically corresponds to
the total travel time realized at equilibrium:

S(z) =
X

p2P

zp · ⌧p(z) =
X

l2L

fl · ⌧l(fl).

A route flow minimizing S(z) is called system optimum (SO). The SO can be re-
trieved as the solution to the following optimization problem:

min
z

X

l2L

fl · ⌧l(fl)

s.t.
X

p2Pk

zp = �k, 8k

fl =
X

p : l2p

Alpzp

zp � 0, 8p 2 P .

. (2.2)



20 Chapter 2. Preliminaries

The efficiency of a WE is then assessed by calculating its Price of anarchy (PoA)
[1, 48], which corresponds to the ratio between the total travel time attained by the
WE and the minimum attained by the SO:

PoA(zW ) =
S(zW )

min
y2Z

S(y)
.

While homogeneous NRGs have proven useful in studying road traffic, they have
certain limitations that subsequent works have attempted to address. Among these,
the homogeneity among network users has garnered the most attention. The next
section will focus on heterogeneous games. The literature also includes refinements
of the model that remove other limiting assumptions, such as the separability of
travel time functions. However, this goes beyond the scope of the current discussion,
and we refer interested readers to the following references [49, 50].

2.2.2 Heterogeneous NRGs

The heterogeneous routing framework was initially introduced in [2]. In this case,
traffic consists of multiple classes of users, each of them associated with a different
set of travel time functions. Users are still assumed to behave selfishly, according to
the travel time functions associated with the user class it belongs to. Heterogene-
ity allows to model more complex scenarios, where users have diverse or limited
knowledge of the network or of the traffic conditions, or where users have different
preferences beyond travel time minimization, e.g., monetary tolls. In the following,
we define the setting proposed in [2].

Consider the same network G = (N ,L), with set of OD pairs K, defined for
homogeneous NRGs, only this time each OD pair k is subject to fixed non-negative
traffic demands from I different classes of users. Let �i

k � 0 be the traffic demand
of each class. The way traffic is distributed over the network is now described by
class-specific route flow vectors zi 2 R|P|

�0. Given p 2 Pk, zip allocated on route p
associated with class i. For every class, the set of feasible flows is

Z
i :=

⇢
zi 2 R|P|

�0 :
X

p2Pk

zip = �
i
k

�
.

Let f i
2 R|L|

�0, f i = Azi be the class-specific link flow vectors. This vectors gives
information on what is the link flow which each link of network is subject to for
each class. Let z and f be the concatenation of class route flows and link flows,
respectively, and let Z =

P
i2I z

i, F =
P

i2I f
i. Finally, each class is characterized

by a set of link travel times ⌧ il : R�0 ! R�0, which, again, are assumed to be
continuous, non-negative, increasing and separable functions of link flow Fl. Notice
that congestion is not class-specific, meaning that any class affect the link travel
time in the same way as the others. The route travel time p 2 P for class i, ⌧ ip, is
the sum of all the travel time functions ⌧ il such that l 2 p.

For heterogeneous NRGs, WEs are defined as follows:
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Definition 2.6 (Wardrop equilibrium). A route flow zW 2 Z is called a WE for
the heterogeneous NRG if

8k 2 K, 8i 2 I, 8p, q 2 Pk, (zW )ip > 0 ) ⌧ ip(F
W )  ⌧ iq(F

W ).

In words, for all classes, all used routes share the same travel time, which is the
minimum travel time for that OD pair. Heterogeneous NRG can be seen as I-person
games, where each user corresponds to a specific class and aims to minimize the
following cost function:

U i(f) =
X

l2L

Z f i

l

0

⌧ il (r + f�i
l ) dr, f�i :=

X

j 6=i

f j
l , i 2 I.

Then, the I-person game correspond to the following interconnection of optimiza-
tion problems:

min
zi

X

l2L

Z f i

l

0

⌧ il (r + f�i) dr

s.t.
X

p2Pk

zip = �
i
k, 8k

f i
l =

X

p : l2p

Alpz
i
p

zip � 0, 8p 2 P .

, i = 1, . . . , I. (2.3)

Again, to see that the solutions to Problem (2.3) satisfy to the definition of WE, it
suffices to derive the Kuhn-Tucker conditions associated to the problem. Although
existence is guaranteed also for heterogeneous NRGs, uniqueness does not, even
when user travel times are strictly increasing, in general [28, 51].

2.2.3 Mixed behavior NRGs

The heterogeneous setting inspired the definition of a more general problem, where
some of classes consists of users that, instead of adopting a selfish behavior, act
coordinately to achieve a common goal, e.g., minimizing the class total travel time.
Coordination within classes of vehicles was initially introduced in [8]. Let C ✓ I
indicate the set of coordinated classes. Resorting once again the a I-person game
formulation, the cost function of users in C takes the form

U i(f) =
X

l2L

f i
l · ⌧

i
l (f

i
l + f�i

l ).

The expression mixed behavior aims to highlight the presence of both selfish and
coordinated behavioral instances. The equilibrium flows of a mixed behavior NRG
can be defined as follows.
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Definition 2.7 (Mixed equilibrium (ME)). A route flow z⇤ 2 Z is called an ME
for the mixed behavior NRG if

zi
⇤

= min
zi

X

l2L

Z f i

l

0

⌧ il (r + f�i) dr

s.t.
X

p2Pk

zip = �
i
k, 8k

f i
l =

X

p : l2p

Alpz
i
p

zip � 0, 8p 2 P .

, i 2 I \ C; (2.4)

zi
⇤

= min
zi

X

l2L

f i
l · ⌧

i
l (f

i
l + f�i

l )

s.t.
X

p2Pk

zip = �
i
k, 8k

f i
l =

X

p : l2p

Alpz
i
p

zip � 0, 8p 2 P .

, i 2 C. (2.5)

If existence is guaranteed after simply imposing conditions to guarantee that the
optimization problem associated with each user is convex, uniqueness requires more
tight conditions on the travel time functions, in general. Existence and uniqueness
conditions for mixed behavior NRGs where first studied in [8], and then further
explored in later works [38, 52].

2.2.4 Bayesian routing games
In Bayesian routing games, the network is characterized by a state described by a
random variable s, aiming to reflect conditions of the network, which takes values
on a probability space (S,A,P). Each edge l 2 L has a state-dependent travel time
function ⌧ sl (·), which is a positive, increasing, and differentiable function of the link
flow. For simplicity, we consider the case of two-terminal networks.

The network serves an exogenous flow � of non-atomic users. All travelers
receive information from a navigation app, which provides a signal � : S ! �(P)
that, for each network state, provides the portion of exogenous flow recommended
to take each route [53]. As the noisy signal and the prior distribution of the network
state are known to users, users are then able to form beliefs about the network state
s based on the received signal �p, according to Bayes’ formula:

dPp(s) =
�p(s)dP(s)R
S
�p(r)dP(r)

.

Let Ep(·) =
R
S
· dPp(r) indicate the expected value after receiving recommendation

p. Users are provided with a recommendation each, but they follow the recom-
mendation only if they think it is a best response according to their belief. Let
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c 2 R|P|

�0 ⇥R|P|

�0 be a matrix such that each entry cpq represents the fraction of users
that received recommendation p but take route q. Then, in this case the route and
link flow vectors take the following form:

z�,c(s) = c0�(s), f�,c(s) = Az�,c(s).

Definition 2.8 (Bayesian Wardrop Equilibrium (BWE)). Given a signal �, a route
flow vector z�,c(s) = c0�(s) is said to be a BWE if

�p(s)cpq > 0 ) Ep(⌧
s
q (f

�,c(s)))  Ep(⌧
s
k(f

�,c(s))) 8p, q, k 2 P .

Bayesian routing games model user decision-making under uncertain network
conditions. This approach is particularly useful when considering the accuracy of in-
formation provided to app users, addressing scenarios with incomplete information.
However, for this specific thesis, the focus was on other aspects, and incomplete
information was not the main area of investigation.

2.3 Cell Transmission Model

Daganzo’s Cell transmission Model was introduced in [3, 4]. For a given stretch
of road divided into N cells of length Ln, the model describes the evolution of the
traffic density in each cell as the difference between the cell’s inflow and outflow:

ẋn(t) = f in
n (t)� f out

n (t).

By connecting in series such that f out
n (t) = f in

n+1(t), one recovers the following
equation for the evolution of the traffic density on cell n:

ẋn(t) =
1

Ln
(fn�1(t)� fn(t)) ,

where now fn(t) is the flow from cell n to cell n + 1. The flow fn(t) is determined
as the minimum between the demand of cell n and the supply of cell n+ 1:

sl(xl) = min{f l, wl(xl � xl)}, (2.6)

dl(xl) = min{vlxl, f l}, (2.7)

where f l stands for the capacity of the cell, i.e., the maximum flow that can flow
through the cell. Supply and demand functions represent the maximum possible
inflow and outflow for cell n when the density equals xn, respectively.

2.4 Dynamical network flows

Dynamical network flows are inspired by compartmental models [30, 31]. The idea
is to think of the links of a traffic network as a set of interconnected cells exchanging
mass with each other. The flows from one cell to another are determined by a supply
and demand mechanism, inspired by the CTM.
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Consider a network topology similar to the one defined in Section 2.1, but this
time with only one OD pair, for simplicity. Let the origin node be equipped with an
on-ramp o, through which the travel demand �(t) has access to the network G. Let
also L

out be the set of links such that b(l) is the destination node of the network. In
addition, each link of the network is now characterized by a capacity f l. Let xl(t)

represent the traffic density of link l at time t. By letting x 2 R|L|+|O|

�0 represent the
state of the traffic system, then its rate of change is determined by the following
ODE:

ẋl(t) =
1

Ll

�
f in
l (x(t))� f out

l (x(t))
�
, l 2 L.

Each link l is associated with a demand function dl(xl) that represents the ideal
outflow from the link. This function is Lipschitz-continuous, non-decreasing, and
concave, with dl(0) = 0. This implies that the function is smooth, the outflow does
not decrease as the density increases, and it exhibits diminishing returns, meaning
the rate of increase of the outflow slows down as xl increases. Additionally, the
function has an upper bound for the outflow, denoted by f l:

sup
xl�0

dl(xl) = f l.

This means that regardless of how large xl becomes, the outflow cannot exceed
f l. For the on-ramps o 2 O, do(t) = �(t). Each link l is also associated with a
supply function sl(xl), standing for the maximum flow that can enter the link when
its density equals xl. Supply functions are designed to capture spill-back effects
and back-propagation of congestion. These functions are chosen to be Lipschitz-
continuous, non-increasing, concave, upper-bounded the link capacity f l and such
that sl(xl) = 0. Typically, supply and demand are chosen so as to satisfy to
sl(xc

l ) = dl(xc
l ) = f l.

The splitting onto downstream nodes at each diverge non-destination node oc-
curs according to routing ratios Rjl(x(t)) 2 R�0. These can be either fixed quanti-
ties or time-varying feedback control variables (either static or dynamic), evolving
according to a specific routing policy. Routing ratios provide significant flexibility
in designing the routing policy according to specific modeling preferences and needs.

Now, the expression of the inflow and outflow terms of each link is

f in
l =

(
�(t), l = o
P

j2a(l)+ fjl(x), l 2 L
,

f out
l =

(
dl(xl), l 2 L

out

P
j2a(l)� flj(x), l 2 L

.

The function fjl(x) represents the flow from link j directed toward link l, and takes
the following form:

fjl(x) = �l(x)Rjl(x)dj(xj).

The terms �l(x) account for supply constraints, and they are designed so as to
guarantee that

X

j2a(l)+

�l(xl)Rjl(x)dj(xj)  sl(xl), 8t � 0, 8l 2 L,
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by both implementing both FIFO or non-FIFO rules (see [29] for more details). For
example, if one were to choose a non-FIFO rule, wanting to capture the fact that
the supply constraint of a link do not affect the flow directed toward other links,
then �l(x) can be written as

�l(x) = min

⇢
1,

sl(xl)P
j2a(l)+ Rjl(x)dj(xj)

�
,

so that
fjl(x) = min

⇢
Rjl(x)dj(xj),

Rjl(x)dj(xj)P
j2a(l)+ Rjl(x)dj(xj)

sl(xl)

�
.

From the brief description above, it is evident that dynamical network flows offer
several key advantages. Firstly, the traffic system is modeled using a ODE system,
which is even autonomous when the traffic throughput vector is constant. Plenty
of tools are available to perform qualitative analysis of its asymptotic behavior.
Secondly, the incorporation of supply and demand constraints allows for the impo-
sition of capacity limitations, enabling to capture of significant traffic phenomena
such as spill-backs, thereby enhancing the realism of traffic dynamics. Lastly, rout-
ing ratios provide a direct and highly flexible way to model the routing dynamics
at non-destination nodes.

2.4.1 Alternative dynamical network flows
The literature also provides models that offer a more faithful description of traffic
dynamics by defining a law that governs traffic propagation on a link. This can be
achieved through models based on ODE systems [54, 55] as well as PDE systems
[56, 57]. Briefly, in the case of ODE systems, this is done by establishing a temporal
link between incoming and outgoing flows of a link:

8
><

>:

ẋl(t) = f in
l (t)� f out

l (t),

⌧(t) = ⌧(x(t), t),

f out
l (t+ ⌧(t)) =

f in
l
(t)

1+⌧̇(t) .

PDE models provide a much more detailed description of the traffic dynamics,
allowing to describe the variation in the traffic density on a link not only over time,
but also at each position s of the road. This is done by resorting to the well-know
Lighthill-Whitman-Richards (LWR) model [58, 59]:

@tx(t, s) + @s'(x(t, s)) = 0.

The function ' is the called the flux function and it is taken as the product of
the traffic density and the traffic speed, i.e., ' = x · v(x). The traffic speed is a
function of the traffic density and it is chosen so that the relationship between the
traffic density and the flux function is consistent with the fundamental diagram of
traffic [5]. Notice that The CTM can be seen as a space discretization of the LWR
[60].A even more accurate modeling of the traffic dynamics can be done by using
the Aw-Rascle-Zhang (ARZ) model [61], which exploits second-order PDEs.
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While these models offer advantages over dynamic network flows (Section 2.4),
they also present challenges that have led us to refrain from using them. First,
it is difficult for these models to complete a qualitative analysis of their dynamic
behavior. Second, in both cases, routing is derived from defining an optimal control
problem implying the minimization over a certain time horizon of a cost functional
or through the imposition of time-dependent Wardrop conditions in the form of
variational inequalities. Although this solution is well suited for modeling certain
scenarios, it certainly represents a less flexible solution than routing ratios. Finally,
in the case of models using ODEs, it is not clear how to include supply and demand
mechanisms. Some models include a point-queue model at non-destination nodes,
which involve increasing a buffer whenever the outgoing flow exceeds the link ca-
pacity. However, this approach still has limitations, as the accumulation of vehicles
in the buffer does not alter traffic dynamics on the link.
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Chapter 3

Selfish routing on networks with
supply and demand constraints

3.1 Introduction

Standard non-atomic routing games [1, 2] have proven useful in understanding var-
ious aspects of traffic networks. Nevertheless, their basic formulation presents some
shortcomings when addressing traffic networks. Firstly, networks links have no ca-
pacity constraints limiting the amount of flow that they can accommodate. This
does not allow for properly capturing congestion phenomena typical of traffic net-
works. Additionally, link costs are generally modeled as increasing functions of
flow. As link costs typically represent link travel times in most applications to
road networks, this is not consistent with traffic modeling, according to which the
relationship between traffic flow and travel time is non-monotonic.

In this chapter, we propose a novel type of non-atomic routing game by lever-
aging concepts from Daganzo’s CTM [3, 4] to define a network structure. The key
innovation lies in incorporating density variables alongside traditional traffic flows.
By considering both flows (number of vehicles per unit time) and densities (num-
ber of vehicles per unit length) on each link, we can define a supply and demand
mechanism that enforces capacity constraints. This mechanism limits the flow that
can traverse a link based on its current density, essentially allowing us to identify
congested sections. Furthermore, travel times on each link become directly depen-
dent on its density, consistently with traffic modeling [5]. This combined approach
provides a more accurate representation of real-world traffic phenomena.

This model allows for identifying a critical consequence of selfish routing that
goes beyond the well-known problem of reduced traffic efficiency due to increased
total travel time: partially transferring WE. Specifically, in some cases, the WE
resulting from the interaction of selfish users consists in a congestion pattern that
allows only a part of the exogenous flow which the network is subject to enter the
network and cross it.

29
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3.1.1 Summary of results
First, we propose a novel type of selfish routing game that is more suitable for
modeling road networks based on the CTM. In this model, links are treated as
cells with capacity constraints that depend on the density within the cell, and
link travel times are increasing functions of density rather than flow. We focus on
parallel networks, where the network consists of N parallel routes, each composed of
multiple links. Second, we characterize the WE and the SO of this game and prove
their essential uniqueness. Finally, we introduce the concept of partially transferring
WE and demonstrate that under certain conditions, the unique WE of the game
can be partially transferring, even when the exogenous demand on the network is
less than the min-cut capacity. This provides further evidence of the inefficiency of
selfish routing.

3.1.2 Related work
To the best of the authors’ knowledge, non-cooperative routing games accounting
for capacity constraints and congested traffic regimes have only been proposed in
[62], so far. In this work, the authors analyze a Stackelberg routing game on a
parallel network, where a central authority can control a fraction of the total traffic
demand to improve the total cost on the network, thus improving efficiency. From
the point of view of the network design, their model differs from ours in that it does
not entail any supply and demand mechanism. Although their model anticipates the
possibility that a WE might not be able to fully satisfy the exogenous traffic flow, the
absence of a supply and demand mechanism does not allow for the characterization
of partially transferring equilibria. Their analysis is therefore limited to the case
where the exogenous flow is guaranteed to admit fully transferring WEs.

Capacitated networks cannot accommodate any exogenous flow. It is a well-
known fact that for networks with capacitated links, assuming that the link capacity
does not depend on the flow traversing the link, the maximum exogenous flow that
can be successfully transferred through the network equals its min-cut capacity
[63, 64]. Specifically, there exists a flow allocation that transfers this maximum
flow. The problem of identifying routing policies that prompt fully transferring
flow allocations has received significant attention in the last years, mostly through
dynamical models [65, 66, 67, 68, 69, 70]. In particular, in [68] the authors study the
behavior of a dynamical network flow model governed by a distributed local routing
policies allowed to depend on the network state. These policies are characterized by
the routing decisions at each non-destination node being made independently based
only on the state of incoming and outgoing links, without considering the state of
other nodes in the network. Nonetheless, capacity constraints are only applied at the
exits of the links, allowing any amount of flow to enter a link. It is shown that if the
exogenous flow which the network is subject to does not exceed the min-cut capacity,
then the class of monotone distributed routing policies ensures that the system
globally asymptotically converges to a state where the flow is fully transferred.
In [69, 71], the authors propose a dynamical network flow model encompassing
the CTM with fixed routing policies (not necessarily fully transferring) at non-
destination nodes. The main results concern convergence to equilibria. In [69], the
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authors develop a ramp metering control strategy for maximizing the transferred
flow.

3.1.3 Chapter organization
Section 3.2 delves into the details of the proposed network structure. Here, we
describe the mechanism for supply and demand on each link, define what consti-
tutes valid traffic assignments, and introduce factors influencing travel time based
on link density. Section 3.3 establishes a non-atomic selfish routing game on the
network. We comprehensively analyze the Wardrop equilibria and social optima
of this game, identifying necessary and sufficient conditions for the occurrence of
partially transferring Wardrop equilibria. In Section 3.4, we provide an example
showing that the problem of partial demand transfer occurs also in more complex
network topologies. Finally, Section 3.5 concludes the chapter with some closing
remarks

3.2 Network modeling
We consider a parallel network consisting of a single OD pair and N distinct non-
intersecting routes connecting them. Each route p is composed of np links. The
network is subject to a constant positive exogenous flow of vehicles � that dis-
tributes among its routes. In the following, we describe the functioning of each
network link in relation to the traffic density within it.

3.2.1 Characterization of the network links
Given a link l 2 L, let xl and fl indicate its density, corresponding to the number
of vehicles per unit of length, and its flow, corresponding to the number of vehicles
per unit of time. Let xl (veh/km), f l (veh/h), vl (km/h) and Ll (km) be positive
finite constants representing the jam density (maximum attainable density), the
capacity (maximum attainable flow), the free-flow speed and the length of the link.
Now, associate with each link supply and demand functions sl(xl), dl(xl), depend-
ing on the link density. Supply and demand functions are inspired by Daganzo’s
fundamental diagram [5] and take the following form:

sl(xl) = min{f l, wl(xl � xl)}, (3.1)

dl(xl) = min{vlxl, f l}. (3.2)

Both functions are continuous and piece-wise linear. The supply function is non-
increasing with density, reflecting the fact that as more vehicles occupy the link,
the fewer additional vehicles the link can accommodate. In contrast, the demand
function is non-decreasing, meaning that as more vehicles are on the link, the higher
the number of vehicles aiming to leave it. If we define the critical density of a link
as xc

l := f l/vl, then wl = f l/(xl � xc
l ), so as to guarantee

sl(xc
l ) = dl(xc

l ) = f l.
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Figure 3.1: From left to right: supply function as in (3.1), demand function as in
(3.2), Daganzo’s fundamental diagram of traffic.

When xl  xc
l , we say that the link is in free-flow or free-flow regime, whereas if

xl > xc
l , the link is said to be congested or in congested regime.

In the following section, we characterize the feasible density and flow vectors for
a network whose links exhibit such a supply and demand mechanism.

3.2.2 Traffic assignments

Definition 3.1. A vector R = (R1, . . . , RN) 2 RN
�0 such that

PN
i=1 Ri = 1 is called

a routing vector. Each element of R is called routing ratio.

The supply and demand functions determine the exchange flow at the interface
between contiguous cells. Let x 2 Rn1+···+nN

�0 , f 2 Rp+n1+···+nN

�0 be the density and
flow vectors, respectively. Consider a route p and two of its consecutive links, lp
and (l + 1)p. Then, the inflow from link lp to link (l + 1)p is

flp(x) = min{dlp(xlp), s(l+1)p(x(l+1)p)}. (3.3)

The inflow of the first link of a route is

f0p(x) = min{�Rp, s0p(x0p)}, (3.4)

Finally, since the final link of each route is not connected to any other link,

fnp
(x) = dnp

(xnp
). (3.5)

With abuse of notation, we will indicate the density and flow vectors associated
with route p as xp 2 Rnp

�0, fp 2 Rnp+1
�0 .

Given a routing vector, we are interested in identifying all the density vectors
associated with it.

Definition 3.2. Given a routing vector R, a consistent density vector xR is a
density vector satisfying to

f0p(x
R) = f1p(x

R) = · · · = fnp
(xR), p = 1, . . . , N. (3.6)

Let C(R) be the set of all consistent density vectors associated with R.
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Figure 3.2: Structure of route p.

Consistent density vectors are density vectors such that the inflow and the out-
flow of each link correspond and this flow is equal for all the links of the route.

Definition 3.3. A traffic assignment is a pair (R, xR), where R is routing vector
and xR is a consistent density vector of it.

Depending on the routing vector, the associated consistent density vectors might
be characterized by some congested links or not.

Definition 3.4. The capacity of route p, zp, is the capacity of the route’s lowest
capacity link:

zp := min
l2p

f l. (3.7)

Given an exogenous flow � and a routing vector R, consider the following sets:

PF = {p 2 {1, . . . , N}|�Rp < zp},

PC = {p 2 {1, . . . , N}|�Rp = zp},

PS = {p 2 {1, . . . , N}|�Rp > zp}.

(3.8)

The set PF consists of the routes assigned a fraction of exogenous flow smaller than
their capacity. The set PC consists of the routes assigned a fraction of exogenous
flow equal to their capacity. Finally, The set PS consists of the routes assigned a
fraction of exogenous flow exceeding their capacity. Then, let us discuss about the
shape of the consistent density vectors for a given routing vector.

To ease the discussion, we assume that each route has a unique link of minimum
capacity.

Assumption 3.1. Route p has a unique minimum capacity link bp 2 {1p, . . . , np},
p = 1, . . . , N .

This assumption, while simplifying the model, will not undermine the relevance of
the findings presented in the following sections. Instead, it allows us to focus on
specific aspects of the problem and draw conclusions that are still applicable to a
wide range of scenarios.
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Proposition 3.1. Let Assumption 3.1 hold. Then, 8p 2 PF , there exists a unique
consistent density vector for route p which is as follows:

xR
lp =

�Rp

vlp
, lp = 1p, . . . , np,

flp(x
R) = �Rp, lp = 1p, . . . , np;

(3.9)

8p 2 PS, there exists a unique consistent density vector for route p which is as
follows:

xR
lp = xlp �

zp
wlp

, lp = 1p, . . . , (b� 1)p

xR
lp =

zp
vlp

, lp = bp, . . . , np,

flp(x
R) = zp, lp = 1p, . . . , np;

(3.10)

Finally, 8p 2 PC, a consistent density vector on p is any vector such that, given
kp 2 {1, . . . , (b� 1)p}:

xR
lp =

zp
vlp

, lp = 1p, . . . , (k � 1)p;

xR
kp 2


xc
kp , xlq �

zp
wlp

�
,

xR
lp = xlp �

zp
wlp

, lp = (k + 1)p, . . . , (b� 1)p,

xR
lp =

zp
vlp

, lp = bp, . . . , np,

flp(x
R) = zp, lp = 1p, . . . , np.

(3.11)

Remark 3.1. It follows from (3.1) and (3.2) that, for any link lp,

xR
lp =

�Rp

vlp
< xc

lp , xR
lp = xlp �

zp
wlp

> xc
lp .

This means that if p 2 PF , then all links of route p are in free-flow regime. Contrar-
ily, if p 2 PS, then the first b�1 links of route p are in congested regime. Finally, if
p 2 PC, depending on the value of kp, the route might present links with congested
regime or not, extending backward from the least capacity link to the origin.

Proof. The proof is split into three parts, each for one of the sets PF , PC and PS.

1. Consider a route p 2 PF . Suppose that f0p = �Rp. Then, from (3.6), flp =
�Rp, lp = 1p, . . . , np. This implies that

dlp(xlp) = �Rp or s(l+1)p(x(l+1)p) = �Rp.

Suppose that flp = dlp , lp = 1p, . . . , np. Then, it is straightforward that (3.9)
is the only possible density vector with this form satisfying to (3.6). Suppose
now that there exists kp 2 p such that fkp(xp) = s(k+1)p(x(k+1)p). Since

fkp(xp) = �Rp < f (k+1)p ,
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it must be that
x(k+1)p > xc

(k+1)p ,

so that
s(k+1)p(x(k+1)p) < d(k+1)p(x(k+1)p).

From (3.6), the last inequality implies that f(k+1)p(xp) = s(k+2)p(x(k+2)p). The
same argument can be applied inductively to the subsequent route links, up
to the final link of the route. Nevertheless, since f(n�1)p(xp) = snp

(xnp
), then

xnp
> xc

np
, which in turn implies that outflow of link np is equal to fnp

. As this
violates (3.6), we proved that there exists no consistent density vector where
some links are in congested regime. Hence, the consistent density vector is
unique and as in (3.9). Using the same argument, it follows that any density
vector such that f0p < �Rp is not a consistent density vector.

2. Consider a route p 2 PS. Clearly, since �Rp > zp, only part of �Rp can be
accommodated. Suppose that f0p = zp. This imposes that all links preceding
bp, which have higher capacity, must be in congested regime so as to guarantee
that the flow transferred from a link to the following is zp:

xlp = xlp �
zp
wlp

, f(l�1)p(x) = slp(xlp) = zp,

lp = 1p, . . . , (b � 1)p. Then, the density on bp must be equal to zp/vlp . As
for the links from (b + 1)p to nq, one can apply the same argument as in
1. to the sub-route they form. Again, similarly to 1, density vectors such
that f0p < zp are not consistent density vectors, as they do not fulfil to (3.6).
Finally, density vectors such that f0p > zp cannot be consistent, as this implies
f0p > f bp , which contradicts (3.6).

3. Consider a route p 2 PC . Since �Rp = zp, all the inflow can be accommo-
dated. It is easy to verify that all density vectors of the form as in (3.11)
satisfy (3.6) and entirely accommodate �Rp. All consistent density vectors
cannot take any different form. For the same argument in 1 and 2, links from
(b + 1)q to nq cannot be in a congested regime. As for the links preceding
bq, from (3.3), any congested link must be followed by a congested link that
limits the incoming flow from its predecessor to be equal to zp. Finally, also in
this case density vectors such that f0p < zp are not consistent density vectors,
as they do not fulfil to (3.6).

Proposition 3.1 prescribes that when a routing vector R violates the capacity
constraints of some routes, i.e., PS 6= ;, then the unique consistent density vec-
tor associated with it is characterized by congested links. As implied by equation
(3.11), these traffic assignments transfer only a fraction of the exogenous flow di-
rected to that route. We call such traffic assignments partially transferring. On the
other hand, traffic assignments such that PS are called fully transferring. Given an
exogenous flow � exceeding the min-cut capacity of the network, which in our case



36 Chapter 3. Selfish routing on networks with supply and demand constraints

Figure 3.3: Congestion patterns for routes in PF , PC , PS. Green links are in free-
flow regime, red links are congested.

Figure 3.4: A two-route network. Route 1 consists of three links, whereas Route 2
of four.

simply corresponds to the sum of all route capacities, clearly all of its traffic as-
signments are partially transferring. Therefore, we turn our attention to exogenous
flows that do not exceed the min-cut capacity of G.

Assumption 3.2. The exogenous flow � does not exceed the min-cut capacity of
G:

� 

NX

p=1

zp.

Although any � satisfying to Assumption 3.2 admits a fully transferring traffic
assignment, such exogenous flows still admit partially transferring traffic assign-
ments, in general.

Example 3.1. Consider the network in Figure 3.4, and assume it is characterized
as follows:

f = (1500, 1500, 1000, 1500, 1500, 1500, 1500),

z = (1000, 1500),

x = (187.5, 187.5, 125, 187.5, 187.5, 187.5, 187.5),

vl = 40, 8l 2 L.

(3.12)

Suppose that the network is subject to a constant exogenous flow � = 1500, which
satisfies Assumption 3.2. Consider the three following routing vectors:

R(1) = (1/3, 2/3), R(2) = (3/4, 1/4) R(3) = (2/3, 1/3).
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Figure 3.5: Link travel time as a function of the link density (left) and the relation-
ship between link travel time and link flow (right).

When � is assigned according to R(1), then both routes belong to PF , and the unique
consistent density vector is

xR(1)
= (12.5, 12.5, 12.5, 25, 25, 25, 25).

Hence, the traffic assignment (R(1), xR(1)
) is unique and fully transferring.

When � is assigned according to R(2), then route 1 belongs to PS, whereas route
2 to PF . The unique consistent density vector associated with this routing vector is

xR(2)
= (87.5, 87.5, 25, 9.375, 9.375, 9.375, 9.375).

The assignment (R(2), xR(2)
) is clearly partially transferring, and the amount of flow

that does not get transferred equals 375 veh/h.
Finally, when � is assigned according to R(3), then route 1 belongs to PC, whereas

route 2 to PF . In this case, there exist multiple consistent density vectors, which
take one of the two following form:

xR(3)
= (25, xl2 2 [25, 87.5], 25, 12.5, 12.5, 12.5, 12.5),

xR(3)
= (xl1 2 [25, 87.5], 87.5, 25, 12.5, 12.5, 12.5, 12.5).

In this case, all possible traffic assignments (R(3), xR(3)
) are fully transferring.

3.2.3 Link travel times
Consistently with the fundamental diagram of traffic, we model travel times as in
[62]:

⌧l : [0, xl] ! R>0 [+1

xl 7! ⌧l(xl) = Ll
xl

fl(xl)
, l 2 L, (3.13)

where Ll is the length of link l. From the shape of the travel time functions, for a link
lp, when flp(xlp) = dlp(xlp), then ⌧lp(xlp) = Llp/vlp . Thus, when the link is in free-
flow, its travel time is constant and equal to the free-flow travel time ⌧Flp := Llp/vlp .
On the contrary, when flp(xlp) = slp(xlp), ⌧lp � ⌧Flp and it is increasing in xlp .
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The travel time of each route ⌧p(x) is simply defined as the sum of the link travel
times of all route links:

⌧p(xp) =
X

l2p

⌧l(xl), p = 1, . . . , N. (3.14)

For a given routing vector, the travel time of a route p, depending on which among
the sets PF , PS and PC it belongs to, will be as follows:

• if p 2 PF , then the route attains the lowest possible value of travel time, the
free-flow route travel time:

⌧Fp :=
X

l2p

⌧Fl ;

• if p 2 PS, then the route attains the following value of travel time:

⌧Sp :=

(b�1)pX

l=1p

⌧l

✓
xl �

zp
wl

◆
+

npX

l=bp

⌧Fl ;

• if p 2 PC , then the route can attain any value of travel time between ⌧Fp and
⌧Sp , precisely

⌧p(xp) =

(k�1)pX

l=1p

⌧Fl + ⌧kq(x
R
kq)+

+

(b�1)pX

l=(k+1)p

⌧l

✓
xl �

zp
wl

◆
+

npX

l=bp

⌧Fl .

Before moving to the next section, it proves convenient to define the following quan-
tities. Given a route p 2 {1, . . . , N}, with abuse of notation, let ⌧�1

p : [⌧Fp , ⌧
S
p ] ! Rnp

�0

be the function that, given ⌧ 2 [⌧Fp , ⌧
S
p ], returns a unique consistent density vector

x⌧
p of the form (3.11) such that

⌧p(x
⌧
p) = ⌧.

3.3 Non-atomic routing game (NRG)

Let us indicate the NRG as (G,�). Each vehicle chooses its route to minimize
its travel time according to the link travel time functions ⌧l. We assume that the
routes are ordered by increasing free-flow travel time, and, to ease the discussion,
the travel times ⌧Sp are assumed to be distinct.

Assumption 3.3. The free-flow travel times ⌧Fp and the travel times ⌧Sp are all
distinct, and routes are ordered by increasing free-flow travel times:

⌧F1 < ⌧F2 < · · · < ⌧FN ,

⌧Sp 6= ⌧Sq , 8p, q 2 {1, . . . , N}.
(3.15)
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3.3.1 Wardrop equilibrium
Now, we formalize the notion of Wardrop equilibrium in our setting.

Definition 3.5 (Wardrop equilibrium). A Wardrop equilibrium (WE) of the NRG
(G,�) is a traffic assignment (RW , xW ) such that

RW
p > 0 ) ⌧p(x

W )  ⌧q(x
W ), 8q = 1, . . . , N. (3.16)

The following result states characterizes the WE of the NRG (G,�), and estab-
lishes whether they are fully or partially transferring. In order to state it, let us
define

k := min

⇢
p 2 {1, . . . , N}

������

kX

j=1

zj  0

�
,

U :=
�
p 2 {1, . . . , k}

�� ⌧Sp  ⌧Fj , for some j 2 {p+ 1, . . . , k}
 
.

The index k represents how many of the most efficient routes, i.e., routes with
smallest travel time, it takes to fully accommodate the exogenous flow �, while the
set U consists of those routes such that their free-flow travel time exceeds ⌧Sp , for
some p among the first k most efficient routes.

Theorem 3.1 (Characterization of the WEs). Consider the NRG (G,�) and sup-
pose that Assumption 3.1, 3.2 and 5.2 hold. Then, if U = ;, the game admits a
unique fully transferring WE (RW , xW ), such that

�RW
p =

8
><

>:

zp, p = 1, . . . , k � 1

��
Pz�1

p=1 zp, p = k

0, p = k + 1, . . . , N

,

xW
p = ⌧�1

p (⌧Fk ), p = 1, . . . k � 1,

xW
k =

 
��

Pk�1
p=1 zp

v1k
, . . . ,

��
Pk�1

p=1 zp

vnk

!
,

(3.17)

and all used routes share the same travel time ⌧Fk .
If U 6= ;, let u := minU and let

j := min{p = u+ 1, . . . , k | ⌧Fp � ⌧Su }.

Then,

• if ⌧Fj > ⌧Su , then the game admits a unique partially transferring WE (RW , xW ),
such that

�RW
p =

8
><

>:

zp, p 2 {1, . . . , j � 1} \ u

��
Pj�1

p=1,p 6=u zp, p = u

0, p = j, . . . , N

,

xW
p = ⌧�1

p (⌧Su ), p = 1, . . . , j � 1,

(3.18)

and all used routes share the same travel time ⌧Su ;
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• if ⌧Fj = ⌧Su , then (RW , xW ) reads

�RW
p =

8
>>><

>>>:

zp, p 2 {1, . . . , j � 1} \ u

�RW
u , p = u

�(1�
Pj�1

i=1 R
W
j ), p = j

0, p = j + 1, . . . , N

,

�RW
u 2

"
��

jX

p=1,p 6=u

zp,��

j�1X

p=1,p 6=u

zp

#
,

xW
p = ⌧�1

p (⌧Su ), p = 1, . . . , j � 1,

xW
j =

 
�(1�

Pj�1
i=1 R

W
j )

v1j
, . . . ,

�(1�
Pj�1

i=1 R
W
j )

vnj

!
.

(3.19)

If j < k, then (RW , xW ) is partially transferring, and all used routes hare the
same travel time ⌧Fj = ⌧Su . If j = k, then (RW , xW ) is fully transferring if and
only if �RW

u = zu, and all used routes hare the same travel time ⌧Fk = ⌧Su .

Before providing the proof of the theorem, we provide the reader with some
intermediate results.

Lemma 3.1. Suppose (RW , xW ) is a WE of (G,�). If RW
p > 0, then �RW

q �

zq, 8q < p.

Proof. By contradiction, assume that �RW
q < zq for some q < p. Then, for any

consistent density vector xW of RW , ⌧q(xW ) = ⌧Fq < ⌧Fp  ⌧q(xW ), which contradicts
(3.16).

Lemma 3.2. Suppose (RW , xW ) is a WE of (G,�). Then, supp(RW ) ✓ {1, . . . , k}.

Proof. By contradiction, suppose that max supp(RW ) > k. By Lemma 3.1, it should
be that �RW

q � zq, 8q < max supp(RW ), which contradicts the definition of k.

We are now ready to provide the proof of Theorem 3.1.

Proof. Lemmata 3.1 and 3.2 imply that any WE of the game has support of the form
{1, . . . , p}, p  k. We split the proof into three parts: the first part is dedicated
to characterize the WE of (G,�) when U = ;, the second one addresses the case
U 6= ; and ⌧Fj > ⌧Su , and the third one the case U 6= ; and ⌧Fj = ⌧Su .

1. U = ;: in this case, there cannot be any routes such that �RW
q > zq, as this

would imply that
⌧q(x

W
q ) = ⌧Sq > ⌧Fk , 8q < k,

contradicting the Wardrop condition (3.16). This also implies that supp(RW ) =
{1 . . . , k}, as if supp(RW ) = {1 . . . , p}, with p < k, them by definition of k,
there should exist q 2 {1 . . . , p} such that �RW

q > zq. By combining these
facts with Lemma 3.1, it becomes straightforward that the only possible traf-
fic assignment (RW , xW ) satisfying to the Wardrop condition (3.16) is that in
(3.17). Clearly, the traffic assignment in (3.17) is fully transferring.
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2. U 6= ;, ⌧Fj > ⌧Su : we start by observing that supp(RW ) ✓ {1 . . . , j � 1}, as all
routes q 2 {j, . . . , k} have free-flow travel time greater than ⌧Su . Observe also
that there cannot be any routes such that �RW

q > zq, q 2 {1 . . . , j � 1} \ u.
In fact, as u = minU and all maximum route travel time are distinct, it holds
that

⌧Su = min
p
⌧Sp .

Thus, �RW
q > zq, q 2 {1 . . . , j � 1} \ u, would imply

⌧q(x
W
q ) = ⌧Sq > ⌧Su ,

violating the Wardrop condition (3.16). These facts, combined with Lemma 3.1,
imply that the only possible traffic assignment (RW , xW ) satisfying to the
Wardrop condition (3.16) is that in (3.18).

3. U 6= ;, ⌧Fz = ⌧Su : analogously to the previous case, supp(RW ) ✓ {1 . . . , j},
as all routes q 2 {j + 1, . . . , k} have free-flow travel time greater than ⌧Su ,
and there cannot be any routes such that �RW

q > zq, q 2 {1 . . . , j} \ u, as
it would result in contradicting the Wardrop condition (3.16). By combining
these facts with Lemma 3.1, it follows that all traffic assignments (RW , xW )
that take the form in (3.19) satisfy to the Wardrop condition (3.16). As all
such routing vectors satisfy to �RW

u � zu and �RW
j  zj, so they attain

the maximum travel time on route u and the free-flow travel time on route
j. Among these traffic assignments, it is straightforward to see that the only
one which is fully transferring is the one associated with the case j = k and
such that �RW

u = zu.

Theorem 3.1 highlights a potential drawback of selfish routing: partially trans-
ferring Wardrop equilibria. Even when the network is subject to an exogenous flow
smaller than its min-cut capacity, users’ selfish behavior can lead to traffic assign-
ments that only partially transfer the exogenous demand. In a sense, we might
think of this as selfish routing reducing the effective capacity of the network, as ve-
hicles would never use routes that are sub-optimal in terms of travel time. Because
all users aim for the shortest travel time routes and share the same queue before
entering the network, the exogenous flow may be accommodated only partly, lead-
ing to congestion at the origin. In the following, we characterize the exact amount
of exogenous flow loss due to partial demand transfer.

Corollary 3.1. Consider a partially transferring WE (RW , xW ). Let us indicate
 the amount of non-transferred exogenous flow. Then:

• if (RW , xW ) takes the form in (3.18), then

 = ��

j�1X

p=1

zp; (3.20)

• if (RW , xW ) takes the form in (3.19), then:
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– if j < k, then

 2

"
��

jX

p=1

zp,��

j�1X

p=1

zp

#
; (3.21)

– if j = k, then

 2

"
0,��

k�1X

p=1

zp

#
; (3.22)

Example 3.2. Consider the network in Figure 3.4 with capacities, jam densities
and speeds as in (3.4). Suppose also that link lengths are as follows:

L = (1, 1, 0.5, 2, 2, 2, 2) .

Suppose that � = 1000, so that Assumption 3.1 is satisfied. In this case, k = 1 and
U = ;, so the unique WE (RW , xW ) is

RW = (1, 0) , xW = (25, 25, 25, 0, 0, 0, 0) .

Now, assume that � = 1500, which still satisfies to Assumption 3.1. In this other
case, k = 2, but U = {1}, since

⌧S1 = 11.25 min < 12 min = ⌧F2 .

As a result, the unique WE of the game is the following partially transferring traffic
assignment:

RW = (1, 0), xW = (87.5, 87.5, 25, 0, 0, 0, 0) .

The amount of non-transferred flow  amounts to 500.

Wardrop equilibria are said to be essentially unique when they all share the
same minimum travel time [1]. Theorem 3.1 implies that the game (G,�) exhibits
essential uniqueness. Specifically, when U = ;, the WE is unique. When U 6= ;,
if ⌧Fj > ⌧Su , the WE is unique; however, if ⌧Fj = ⌧Su , the WE is not unique, but all
WEs have the same travel time.

Remark 3.2. Assumptions 3.1 and 5.2 were made to simplify the analysis of the
Wardrop Equilibria (WEs) of (G,�). Assumption 3.1 certainly limits the general-
ity of the model. Without Assumption 3.1, routes can be characterized by multiple
minimal capacity links. In this more general case, routes would have multiple bot-
tlenecks, and the categories of consistent density vectors for routes in sets PC and
PS would become richer, encompassing a wider variety of congestion patterns. On
the other hand, Assumption 5.2 imposes minimal limitations on the set of parame-
ters. We underscore that these two assumptions allow for capturing the problem of
partial demand transfer and are not the cause of it. As we will show in one of the
next sections with an example, this issue also presents in networks where these two
assumptions do not hold.
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Remark 3.3 (Comparison with [62]). As mentioned in Section 3.1.2, a non-atomic
selfish routing game relying on a description of the traffic state based both on den-
sity and flow, accounting for capacity constraints and congested traffic regimes has
already been proposed in [62], but that model does not include a supply and demand
mechanism. This leads to two important differences. First, our model exhibits es-
sential uniqueness, whereas that model does not. Second, in some cases, that model
does not admit a WE for certain values of exogenous flow, even when the latter is
less than the min-cut capacity of the network. In contrast, our model admits a WE
for any possible exogenous flow.

3.3.2 Social optimum

In general, social optima are assignments minimizing some system cost. Here, we
provide a definition of social optimum that accounts for both the minimization of
the total travel time over the network and the full transfer of the exogenous flow �.

Definition 3.6. Given an exogenous flow � satisfying to Assumptions 3.1 and 3.2,
a social optimum (SO) of the game (G,�) is a traffic assignment (RO, xO) such
that

(RO, xO) = argmin
z,x

NX

p=1

�Rp⌧p(x) =
NX

p=1

�Rp

0

@
npX

lp=1p

⌧lp(xlp)

1

A

s.t. x 2 C(R),

�Rp  zp,
NX

p=1

Rp = 1.

(3.23)

We prove that, in our setting, there exists a unique SO.

Proposition 3.2. Suppose that Assumption 3.1 is satisfied. Then, the NRG (G,�)
admits a unique SO (RO, xO), whose expression is as follows:

�RO =

 
z1, . . . , z(k�1),��

k�1X

p=1

zp, 0 . . . , 0

!
,

xO
p =

✓
zp
v1p

, . . . ,
zp
vnp

◆
, p = 1, . . . , k � 1,

xO
k =

 
��

Pk�1
p=1 zp

v1k
, . . . ,

��
Pk�1

p=1 zp

vnk

!
.

(3.24)

Proof. Suppose that (RO 0,xO
p
0) is a social optimum of the NRG and suppose that

RO 0
> 0. It is straightforward that every link of route p is in free-flow. In fact, since

�RO 0
 zp, p 2 F [ S, which means RO 0 admits a consistent flow vector such that
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all links are in free-flow. Hence, xO
p
0 cannot present saturated links, as otherwise

would not be minimizing the cost in (3.23). Then, (3.23) reduces to

(RO, xO) = argmin
z,x

NX

p=1

�Rp⌧
F
p

s.t. xp =

✓
�Rp

v1p
, . . . ,

�Rp

vnp

◆
, p = 1, . . . , N,

�Rp  zp.
NX

p=1

Rp = 1.

It follows immediately that the unique SO is the one using the first k routes as in
(3.24).

One of the measure most commonly used to quantify the inefficiency of WEs in
routing games is the Price of Anarchy (PoA) [72]. The PoA of a WE corresponds
to the total travel time realized by the WE and the minimum total travel time
achievable, the one realized by the SO:

PoA(RW , xW ) =

PN
p=1�R

W
p ⌧p(x

W )
PN

p=1�R
O
p ⌧p(x

O)
.

In our model the PoA turns out not to be the most appropriate measure of ineffi-
ciency. In fact, for partially transferring WEs, the PoA loses its significance, as the
WE is transferring a flow less than that transferred by the SO. In this case, a WE
might even realize a total travel time smaller than the SO, but this comes from the
fact that the WE is transferring less flow. On the other hand, when (RW , xW ) is
fully transferring, the PoA is well-defined and takes the following form:

PoA(RW , xW ) =
� · ⌧Fk

Pk�1
p=1 zp · ⌧

F
p +

⇣
��

Pk�1
p=1 zp

⌘
⌧Fk

� 1. (3.25)

Another interesting fact to remark is that if the WE of the NRG is fully trans-
ferring, then the WE and the SO share the same routing vector, i.e., RW = RO

(see (3.17) and (3.24)). As this might sound contradictory, let us discuss it more in
detail.

Example 3.3. Consider the network in Figure 3.4 with capacities, jam densities
and speeds as in (3.4) and link lengths

L = (1.5, 1.5, 1.5, 2, 2, 2, 2) .

as in (3.2). Assume that � = 1500, so that Assumption 3.1 is satisfied. The WE
in this case is unique and corresponds to

RW =

✓
2

3
,
1

3

◆
, xW = (25, 83.3, 25, 12.5, 12.5, 12.5, 12.5) .
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Indeed, such traffic assignment implies that the two route travel times satisfy two

⌧1(x
W ) = ⌧2(x

W ) = 12 min. (3.26)

On the other hand, the SO corresponds to

RO =

✓
2

3
,
1

3

◆
, xO = (25, 25, 25, 12.5, 12.5, 12.5, 12.5) .

In this case,
PoA(RW , xW ) =

24

17
The SO fully transfer the whole exogenous demand, while also minimizing the total
travel time, keeping all used routes in free-flow regime. We can provide the follow-
ing explanation to this phenomenon. under Wardrop Equilibrium (WE), each user
selfishly chooses their route to minimize their own travel time. This selfish behavior
leads to a density vector xW as given in (3.3). Consequently, the flow at the ori-
gin is split between the two roads in a way that results in the routing vector RW .
Conversely, in the SO scenario, the objective is to minimize the overall travel time
for all users. A central planner determines the optimal routing vector RO, which
results in a specific density vector xO. The density vector xO ensures that all traffic
routes used are in the free-flow regime, meaning they are not congested.

Therefore, even though the two routing vectors coincide, RW can be seen as the
routing vector imposed by the Wardrop condition to ensure that the used routes
have the same travel time, while RO is the routing vector that induces an optimal
utilization of the network.

3.4 Beyond parallel networks
In the previous sections, we analyzed selfish routing on parallel networks. This
section aims to provide an example showing that selfish routing can cause the same
type of issues, such as partial demand transfer, in more complex network topologies
beyond parallel networks. Consider the network in Figure 3.6 and suppose that the
network geometry is the following:

f = (1500, 1500, 800, 1500, 1500),

x = (187.5, 187.5, 100, 187.5, 187.5),

vl = 40, 8l 2 L,

L = (8, 16, 4, 16, 8)

Suppose that the network is subject to an exogenous flow � = 1600. A WE for this
network is given by

RW =

✓
0,

9

16
,
7

16

◆
, xW = (107.5, 51.41, 20, 0, 37.5)

From the expression of xW , one can see that both link 1 and 2 are in congested
regime. The travel times of the used routes, Route 2 and Route 3, is 1 h 23 min,
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Figure 3.6: Wheatstone’s network.

approximately. The travel time of the unused route, Route 1, is 1 h 29 min, instead.
Then, one can notice that (RW , xW ) is a partially transferring. Indeed, from (3.1),
the supply of link one is exactly 800 veh/h. As the fraction of exogenous flow
aiming to use Route 2 must pass through link 1, it is clear that the exogenous flow
cannot be fully accommodated. Also in this case, users’ selfish behavior leads to an
inefficient traffic pattern that causes partial demand transfer.

This example demonstrates that partial demand transfer is a fundamental issue
of selfish routing. Moreover, its occurrence is not limited to parallel networks but
can also arise in more complex network topologies.

3.5 Concluding remarks

The main contribution of this chapter lies in the analysis of the selfish routing
model in a network subject to supply and demand constraints on its links, inspired
by Daganzo’s cell transmission model. This approach effectively characterizes the
congestion phenomena typical of traffic networks. Our analysis highlights that the
issues associated with selfish routing extend beyond a mere reduction in traffic ef-
ficiency in terms of total travel time. We have demonstrated that selfish routing
can lead to suboptimal utilization of the road network’s capacity. Even when the
network is subject to an exogenous flow less than its min-cut capacity, which can
theoretically be fully transferred across the network, the traffic distribution caused
by the selfish behavior of users results in only a portion of the traffic being trans-
ferred, leaving part of the exogenous flow unserved at the network’s origin.

This study opens several avenues for further research. The first potential ex-
tension involves applying the model to more complex network topologies beyond
the family of parallel networks. This would significantly enhance the model’s ap-
plicability to real-world scenarios. The main challenge in generalizing to arbitrary
networks lies in computing the Wardrop equilibria. In the current setting, we found
that these equilibria can be computed easily, and an algorithm for their computa-
tion is straightforward. This is not the case for more complex networks. Therefore,
a primary future objective will be to determine if the calculation of Wardrop equi-
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libria can be framed as an optimization problem similar to how Wardrop equilibria
are calculated in the classical routing games formulation (see Section 2.2.1).

A second important extension involves analyzing scenarios where the manage-
ment of exogenous flow at the network’s origin differs from what we have consid-
ered. In our model, the flow is assumed to access the network through a single entry
point, with all routes sharing the same queue before entering the network. While
this situation may correspond to certain real-world cases, there are scenarios that
fall outside this framework and would be better modeled if each road had its own
queue, i.e., the entry to one route does not depend on the others. In such cases, the
travel time for each route should account for the waiting time in the queue to enter
that route. In this case, the problem of partial demand transfer would probably be
mitigated, as excessively long waiting times for one route would prompt users to
consider alternative routes.

Future work should also aim to encompass heterogeneity, so as to account for
users with different levels of information or preferences, and mixed behaviors, to
capture the presence of user classes that act coordinately. Heterogeneity will be
addressed in Chapters 4 and 5.

The final extension of the model involves its dynamization. Throughout this
thesis, we have repeatedly emphasized the importance of studying the stability of
Wardrop equilibria. The current model is entirely static, making it unclear whether
traffic dynamics actually converge to these traffic assignments. To address this,
we need to design dynamic network flows based on CTM principles, similar to the
approaches used in previous works by [69, 71]. However, it is crucial to incorporate
routing policies that reflect the selfish behavior of users. A few steps toward this
direction have already been made and they are presented in Chapters 4 and 5.





Chapter 4

Impact of navigation systems:
real-time routing recommendations

4.1 Introduction

In this chapter, we model the impact of using navigation apps on the efficiency of
traffic networks. To do this, we will define a dynamic flow model on a network that
describes the traffic dynamics of a parallel network subject to exogenous traffic flow.
We assume that part of the traffic consists of users who follow the recommendations
of a navigation app, which directs them to the route with the shortest travel time,
while the remaining part selects routes based on prior beliefs. Unlike previous works
and in continuity with the previous chapter, the model is defined on a network
subject to supply and demand constraints on its links. Thus, similar to Chapter 3,
our analysis of efficiency will focus primarily on the issue of partial demand transfer
introduced earlier, emphasizing the role that navigation apps play in the emergence
of this phenomenon.

4.1.1 Summary of results
The model can be considered, to some extents, as the extension to the dynamic
framework of the model presented in Chapter 3, albeit restricted to a network with
only two routes, each consisting of a single link. Traffic demand is divided into two
classes: one follows a fixed routing strategy, while the other uses a navigation app
to minimize travel time. We demonstrate global asymptotic stability for a broad
family of user preference dynamics. Then, we study the properties of the unique
equilibrium assuming that user preferences follow the logit choice model. This
analysis is performed in two limit regimes. In the regime of high compliance to
app’s recommendations, we show that the equilibrium approximates the Wardrop
equilibrium of the corresponding instance of the non-atomic routing game defined
in Chapter 3. In the low compliance regime, we derive a linear approximation of
the user preferences’ dynamics. This twofold study shows that navigation apps can
degrade the network efficiency, by increasing the average travel time (in line with
previous works [6, 7]) and by leading to partial demand transfer. The key variable in
our steady-state analysis is the penetration rate, that is, the share of app-informed
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Figure 4.1: The origin-destination pair G.

users in the total demand. Our analysis shows that a high penetration rate is likely
to degrade the network efficiency when compliance is high. This picture is also
confirmed by the numerical analysis of the model in a realistic case study based on
the city of Grenoble, France.

4.1.2 Related work
The stability of dynamical network flows has been extensively studied in the litera-
ture [29, 65, 66, 73, 68, 70, 33], often relying on monotonicity [74] and contractivity
[75] properties to demonstrate asymptotic stability. However, these studies typi-
cally overlook supply and demand mechanisms that regulate capacity constraints
on network links. Unlike traffic networks, these models assume unconstrained link
inflows, which can be arbitrarily high but are constrained only by link capacities
for outflows. This setup ensures that traffic dynamically adjusts to minimize travel
times, facilitating complete transferability of exogenous flows up to the network’s
min-cut capacity. In contrast, our model incorporates a realistic supply and demand
mechanism on each link. This addition fundamentally alters the traffic dynamics
and disrupts the monotonicity and contractivity properties. Supply and demand
models are also present in [69, 71]. However, in those works, user preferences are
kept fixed and do not evolve according to the state of the network.

4.1.3 Chapter organization
Section 4.2 introduces the model for dynamical network flow. In Section 4.3, we
demonstrate that the system exhibits global asymptotic stability under a broad
range of user behavior models. Section 4.4 focuses on the properties of the unique
equilibrium when user preferences follow the logit choice model. Here, we compre-
hensively analyze the phenomenon of partial transfer demand and analyze the im-
pact on total travel time, considering both high and low noise scenarios. Section 4.5
contains numerical experiments corroborating the theoretical findings. Section 4.6
proposes additional experiments showing that our findings extend beyond the setup
analyzed in this chapter. Finally, Section 4.7 concludes the chapter.

4.2 Model description

Consider an origin-destination pair G connected by two parallel routes (see Fig-
ure 4.1), each of them consisting in a single link. Let xl, f l, vl and Ll be the jam
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density, the capacity, the free-flow speed and the length of link l. We assume that
a constant exogenous flow � > 0 (veh/h) enters the network from the origin to
reach the destination. The traffic demand � splits on the two routes according to
the routing ratios R1, R2, corresponding to the fraction of exogenous flow directed
toward Route 1 and Route 2, respectively. The traffic dynamics over the network is
captured by the following ODE system, consisting in a conservation law describing
how the density xl 2 [0, xl] of Route l evolves according over time:

ẋl =
1

Ll
(min{�Rl(⌧(x)), sl(xl)}� dl(xl)) , l = 1, 2, (4.1)

where x = (x1, x2)T in ⌦ := [0, x1]⇥ [0, x2]. Equation (4.1) states that the instant
variation of traffic density on a route equals the difference between its inflow and
its outflow. The inflow term corresponds to the minimum between the fraction of
exogenous flow directed toward the route and the route supply. On the other hand,
the route outflow corresponds to the route supply. The definitions of supply and
demand functions is analogous to those provided in Chapter 3:

sl(xl) = min{f l, wl(xl � xl)}, (4.2)

dl(xl) = min{vlxl, f l}, (4.3)

where wl = f l/(xl � xc
l ), with xc

l := f l/vl.

Partial demand transfer and congestion

As in Chapter 3, the supply and demand mechanism naturally allows to define
states that exhibit partial demand transfer and congestion. When �Rl(x)  sl(xl),
then the demand can enter the route freely; the demand is satisfied (S). On the
contrary, if �Rl(x) > sl(xl), then the first term in (4.1) gets saturated. In this
case, the exogenous flow is partially transferred. When the route supply equals its
capacity, i.e., xl  xc

l , then the route is in free-flow (F), otherwise, when xl > xc
l , it

is congested (C). Therefore, each route is characterized by four possible route modes
(see Table 4.1), allowing to rewrite (4.1)-(4.3) as follows:

ẋl =

8
>>>><

>>>>:

�Rl(⌧(x))�vlxl

Ll

, if xl  xc
l , Rl(⌧(x)) 

sl(x)
� , SF

f l�vlxl

Ll

, if xl  xc
l , Rl(⌧(x)) >

Sl(x)
� , UF

�Rl(⌧(x))�f l

Ll

, if xl > xc
l , Rl(⌧(x)) 

Sl(x)
� , SC

f l(x
c

l
�xl)

Ll(xl�xc

l
) , if xl > xc

l , Rl(⌧(x)) >
sl(x)
� , UC,

l = 1, 2. (4.4)

In order to avoid discussing uninteresting cases, we shall assume that demand does
not exceed the network capacity, that is, it is possible to divide the demand so as
to satisfy it completely.

Assumption 4.1 (Satisfiable traffic demand). Traffic demand is such that

� < f 1 + f 2. (4.5)
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Table 4.1: Notation for the four route modes in (4.4).

Route demand Traffic regime
SF satisfied free-flow
UF unsatisfied free-flow
SC satisfied congested
UC unsatisfied congested

4.2.1 Routing ratios and travel times
Each route is characterised by a travel time that is assumed to be a strictly increasing
C1 function ⌧l : [0, xl] ! R>0 of density xl, l = 1, 2. Routing ratios Rl quantify
the ratio of demand directed toward each route and they are modeled in order
to account for the presence of users that rely on the routing recommendations of a
navigation system to choose which route to take (informed users). Assuming that a
fraction of users ↵ 2 (0, 1], which we refer to as the penetration rate, is influenced by
the routing recommendations, whereas the remaining fraction 1�↵ splits according
to fixed routing ratios r0 = (r01, r02), r01 + r02 = 1, we write routing ratios as follows

Rl(⌧(x)) := (1� ↵)r0l + ↵rl(⌧(x)), l = 1, 2. (4.6)

The second term in (4.6) captures the behavior of the informed users with respect
to travel times, where rl(⌧) : R2

>0 ! [0, 1] is a globally Lipschitz C1 function,
l = 1, 2. These functions are assumed to satisfy r1(⌧) + r2(⌧) = 1, 8⌧ 2 R2

>0, so
that 0  Rl(⌧)  1, 8⌧ 2 R2

>0, i = 1, 2, and that R1(⌧) +R2(⌧) = 1.
We now focus on a special class of routing ratios, monotone routing ratios,

originally introduced in [65].

Definition 4.1 (Monotone ratios). Routing ratios (4.6) are said to be monotone if

@Rl

@⌧j
� 0, l 6= j, l = 1, 2. (4.7)

If the inequality in (4.7) is strict, then they are strictly monotone.

Monotone routing ratios ensure that the higher the travel time on a route, the
fewer informed users are directed toward it. This dependence captures the fact
that app-informed users seek to minimize their travel time. Since travel times are
strictly increasing in the traffic densities, for monotone routing ratios we have

@Rl(⌧(x))

@xj
� 0,

@Rl(⌧(x))

@xl
 0, l 6= j, l = 1, 2. (4.8)

In what follows, we assume:

Assumption 4.2 (Strict monotonicity). Routing ratios (4.6) are strictly monotone.
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A well-established model of routing ratios, which falls under this assumption, is
the logit routing ratios:

Rl(⌧) = (1� ↵)r0l +
↵

1 +
r0
j

r0
l

exp
⇣

1
⌘ (⌧l � ⌧j)

⌘ , (4.9)

l 6= j, l = 1, 2. The state-dependent term takes the form of the logit choice model
[27, 76, 77], where ⌘ > 0 is the so-called noise parameter. When ⌘ approaches
zero, the logit model approximates a best response dynamics. The noise parameter
can be interpreted as measuring how reliable or how accurate is the travel-time
information provided by the navigation app. In this work, we mainly interpret the
parameter 1/⌘ > 0 as measuring the users’ compliance. When 1/⌘ ! 0, i.e., users’
compliance is very low, users do not really exploit the information and the demand
splitting stays close to r0. On the contrary, when 1/⌘ ! +1, all users tend to take
the route with shortest travel time.

4.3 Equilibria and stability analysis

Existence and uniqueness of the solutions of (4.4) are ensured by the fact that the
system is Lipschitz continuous. We remark that (4.4) is well-posed with respect to
⌦ = [0, x1]⇥ [0, x2], i.e., ⌦ is positively invariant. Indeed, the vector field is always
pointing inward on the boundaries of ⌦. Hence, if x0 2 ⌦ and x(t, x0) is the solution
issuing from x0, then x(t, x0) 2 ⌦, 8t � 0.

Observe that (4.4) is a state-dependent switched system, where each system
mode is a combination of route modes M1-M2, where M1,M2 2 {SF,UF, SC,UC}
indicate the modes of Route 1 and Route 2, respectively. We will refer to the sub-
system associated with system mode M1-M2 with the notation ⌃M1-M2 and we will
indicate as ⌦M1-M2 the open region of the state space where sub-system ⌃M1-M2 is
active. Notice that ⌦UF-UF will always be empty because of Assumption 4.1.

We are now going to present some preliminary results that allow us to simplify
the stability analysis of (4.4). Before presenting them, let us define the two following
regions:

P := {x 2 ⌦| 0  x1  xc
1, 0  x2  xc

2}, Q := ⌦ \ P. (4.10)

Notice that P = ⌦
SF-SF

[ ⌦
UF-SF

[ ⌦
SF-UF, and that all regions ⌦M1-M2 such that

M1 2 {SC,UC} or M2 2 {SC,UC} are contained in Q.

Lemma 4.1 (Properties of region P ). Given Assumption 4.1, region P is positively
invariant and globally attractive.

Proof. For positive invariance, let x(t) be a solution. If x(t) enters P , both routes
will be either in mode SF or UF. From (4.4), we see that xl = xc

l ) ẋl  0, l = 1, 2,
ensuring that trajectories cannot escape P .

For global attractivity, consider now x 2 Q. Then, from the definition of Q, at
least one of the two routes is in mode SC or UC. If Route i is in mode SC or UC,
we can write

ẋl  �
f l

Ll(xl � xc
l )
(xl � xc

l ) .
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This inequality implies the convergence to P .

Remark 4.1 (Traffic interpretation of the properties of region P ). From a traf-
fic perspective, the positive invariance of P implies that, in our model, congestion
cannot arise from a free-flow condition. Also, global attractiveness implies that con-
gestion always vanishes over time. This property is due to the implicit assumption
of infinite capacity at the destination node and unconstrained route outflows.

We shall prove that system (4.4) admits a globally asymptotically stable equi-
librium, contained in region P . The proof relies on the fact that (4.4) admits a
unique equilibrium and is monotone.

Definition 4.2 (Monotone system). A system ẏ = h(y) with h : Rd
! Rd is said

to be monotone if y0  ỹ0 implies that 't(y0)  't(ỹ0), 8t � 0, where 't(y�) is the
solution to ẏ = h(y) with initial condition y(0) = y�.

Proposition 4.1 (Monotonicity). Given Assumptions 4.1 and 4.2, System (4.4) is
monotone.

Proof. See Appendix A.1.

Monotonicity imparts a high degree of structure to the system, making it easier to
establish its stability properties. Before proceeding, we make the following assump-
tion.

Assumption 4.3 (Demand upper-bound). The following conditions hold:

� < vlxl, l = 1, 2. (4.11)

Although representing a formal constraint, condition (4.11) will not prove to be
restrictive at all in practical cases.

Theorem 4.1 (Global Asymptotic Stability). Given Assumptions 4.1, 4.2, and
4.3, system (4.4) admits a globally asymptotically stable equilibrium x⇤

2 P .

Proof. See Appendix A.1

Theorem 6.2 characterizes the asymptotic behavior of (4.4), guaranteeing con-
vergence of all solutions to a unique equilibrium x⇤

2 P in free-flow regime. There-
fore, we can study its properties to draw conclusions about the impact of the app’s
recommendations on traffic and network efficiency at steady-state.

Remark 4.2 (Beyond piece-wise linear supply and demand functions). Theorem 4.1
assumes that the supply and demand functions are piece-wise linear as per Equations
(4.2)-(4.3). However, this result can be extended to more general supply and demand
functions. Specifically, it is possible to show (with minor changes to the proof) that
the result still holds when the supply and demand functions for l = 1, 2 take the
form

sl(xl) = min{f l, s̃l(xl)}, dl(xl) = min{d̃l(xl), f l}

where s̃l : [0, xl] ! R>0 is a strictly decreasing C1 function such that s̃l(xc
l ) =

f l, s̃l(xl) = 0, and d̃l : [0, xl] ! R>0 is a strictly increasing and d̃l(0) = 0, d̃l(xc
l ) =

f l. In this case, Assumption 4.3 should be replaced by � < d̃�1
l (xl).
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4.4 Equilibrium efficiency for logit routing
This section is dedicated to the analysis of the traffic implications of the model,
focusing on the study of its unique equilibrium: the latter being globally asymptot-
ically stable, its properties fully describe the steady-state of the system. Studying
these properties in full generality is made hard by the lack of an analytic character-
ization of the equilibrium. For this reason, in the following, we shall study system
(4.4) with logit routing ratios (4.9) and affine travel times, i.e.,

⌧l(xl) =
al
xl
xl +

Ll

vl
, l = 1, 2. (4.12)

The choice of affine travel time functions is largely used in the traffic literature,
especially when considering a free-flow regime [44, 45, 54]. Although explicit ex-
pressions of x⇤ are not available, a detailed analysis becomes possible in the high
compliance and low compliance regimes. Under high user compliance, i.e., when
⌘ ! 0, we will prove that the equilibrium converges to the Wardrop equilibrium of
an underlying routing game almost identical to those introduced in Chapter 3. The
properties of this Wardrop equilibrium can be extended by continuity to the equi-
librium1. For low compliance, we will show that a linearization of (4.4) equipped
with (4.9) provides a suitable approximation.

We will evaluate the efficiency of the equilibrium by establishing whether the
equilibrium features partial demand transfer or not. In the case where demand is
fully transferred, we will also evaluate the Price of Anarchy at equilibrium:

PoA(x⇤) =

P
l=1,2�Rl(x⇤)⌧l(x⇤

l )P
l=1,2�R

O
l ⌧l(x

O
l )

, (4.13)

where (RO
l , x

O) is such that RO
l =

vlxO

l

� , �Rl  f l, l = 1, 2, and minimizes the total
travel time. As we will see, this second type of analysis will lead us to conclusions
similar to those in [6, 25, 7]. In order to disregard trivial cases in which unsatisfied
demand arises independently of routing recommendations, we make the following
assumption.

Assumption 4.4 (Fixed routing ratios). The following condition holds:

r0l <
f l

(1� ↵)�
, l = 1, 2, 8↵. (4.14)

4.4.1 High users’ compliance
As anticipated, when user compliance is very high, the properties of the equilibrium
of (4.4) are inferred from those of the Wardrop equilibrium of an underlying routing
game, whose structure is almost identical to that of the non-atomic routing games
introduced in Chapter 3.

1The fact that the equilibria of a logit-based dynamics converge to the Wardrop equilibria of
an associated game has already been exploited in the literature [27], including for similar traffic
models that did not account for route’s capacity saturation [28].
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Underlying routing game

Consider the instance of NRGs introduced in Section 3.3 for the network with two
parallel single-link routes which (4.4) is defined on. Suppose this network is subject
to an exogenous flow � > 0. Differently from Section 3.3, suppose that � consists
of both informed users and non-informed users. Informed users represent a fraction
↵ 2 [0, 1], whereas the remaining part is represented by non-informed users. As for
system (4.4), non-informed users split on the two routes according to prior beliefs
r0 = (r01, r

0
2), while informed users choose their route to minimize their travel time,

but this time according to the travel time functions (4.12).
We start by observing the routing vectors of this game take the form

R1 2 [(1� ↵)r01, (1� ↵)r01 + ↵], R2 = 1�R1, (4.15)

due to the fact that the splitting of non-informed users is fixed. Also, condition 3.6,
that allows for identifying consistent density vectors, in this case reduces to

min{�Rl, sl(xl)} = dl(xl), l = 1, 2,

implying that the consistent density vector xR for a given routing vector R takes
the form

xR
l =

(
�Rl

vl
, �Rl < f l

xc
l , �Rl � f l

, l = 1, 2. (4.16)

Hence, as (4.4), this NRG does not present traffic assignments with congested links.
Definition (3.16) needs to be slightly modified in order to account for the fact that
now only a fraction of the exogenous flow behaves strategically with respect to travel
times.

Definition 4.3 (Wardrop equilibrium (WE)). A traffic assignment (RW (↵), xW (↵))
of the NRG defined on the network with two parallel single-link routes and affine
travel times (4.12) is a Wardrop equilibrium (WE) if and only if

RW
l (↵) > (1� ↵)r0l ) ⌧l(x

W
l (↵))  ⌧k(x

W
k (↵)), k 6= l, l = 1, 2. (4.17)

In this case, the WE is expressed as a function of ↵, to emphasize the influence
of the penetration rate on its shape. We next characterize the Wardrop equilibrium
WE(↵) of the NRG. Let us define the following quantities to ease the notation:

cl :=
al
vlxl

, bl :=
Ll

vl
, l = 1, 2.

For convenience, similarly to what we have done in Chapter 3, we make the following
assumption on the route travel times.

Assumption 4.5 (Route labeling). Route 1 has the shortest travel time route for
↵ = 0, i.e., b1 + c1�r01  b2 + c2�r02.

For convenience in stating our results, we also define the following quantities:

� := f 1

✓
1 +

c1
c2

◆
�

b2 � b1
c2

, (4.18)
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↵M :=
1

�r02

c2�r02 � c1�r01 + b2 � b1
c1 + c2

, (4.19)

↵U :=
f 1 � �r

0
1

�r02
, (4.20)

↵UM := 1�
1

�r02

✓
c1
c2
f 1 �

b2 � b1
c2

◆
. (4.21)

Lemma 4.2 (Unsatisfied demand, Wardrop equilibrium). Suppose Assumptions
4.1, 4.3, 4.4 and 4.5 holds. Then, the underlying routing game admits a unique
Wardrop equilibrium (RW (↵), xW (↵)) and the following characterization holds:

• If �  �, then no route is affected by unsatisfied demand. Moreover,

– if ↵  ↵M, then

RW
1 (↵) = ↵ + (1� ↵)r01,

RW
2 (↵) = (1� ↵)r02,

xW (↵) =

✓
�RW

1 (↵)

v1
,
�RW

2 (↵)

v2

◆
;

(4.22)

– if ↵ > ↵M, then

RW
l (↵) =

ck�+ bk � bl
cl + ck

, k 6= l, l = 1, 2,

xW (↵) =

✓
�RW

1 (↵)

v1
,
�RW

2 (↵)

v2

◆
.

(4.23)

• If � > �, then Route 1 will be affected by unsatisfied demand for ↵ > ↵U.
Moreover:

– if ↵  ↵U, then (RW (↵), xW (↵)) is as in (4.22);

– if ↵  ↵U, then RW (↵) is as in (4.22) and

xW (↵) =

✓
xc
1,
(1� ↵)�r02

v2

◆
; (4.24)

– if ↵ > ↵UM, then

RW
1 (↵) = ��

c1
c2
f 1 +

b2 � b1
c2

,

RW
2 (↵) =

c1
c2
f 1 �

b2 � b1
c2

,

xW (↵) =

✓
xc
1,
(1� ↵)�r02

v2

◆
;

(4.25)
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Proof. From the definition of Wardrop equilibrium, informed users distribute only
on shortest travel time routes. From Assumption 4.5, it is clear that for ↵ small
enough, ↵� will distribute entirely on Route 1. As ↵ increases, the demand routed
toward Route 1 increases as well, until either travel times equalize or Route 1
gets saturated. ↵M in expression (4.19) is the maximum value of ↵ such that, by
allocating all informed users on Route 1, Route 1 still is the shortest travel time
route, and can be calculated by solving ⌧1((1� ↵)�r01 + ↵�) = ⌧2((1� ↵)�r02). ↵U

in expression (4.20), instead, is the maximum value of ↵ such that, by allocating
all informed users on Route 1, the capacity on Route 1 is not exceeded and can be
calculated by solving (1�↵)�r0l +↵� = f l. One can verify that �  � () ↵M



↵U.
This leads to consider two cases, depending on the value of �. If �  �,

then by increasing ↵, travel times equalize before Route 1 gets congested, since
↵M

� ↵U. Once travel times are equal, RW (↵) takes the form in (4.23), which no
longer depends on ↵. Hence, increasing ↵ will affect no more the shape of RW (↵),
as the additional app-informed users will distribute on the two routes so as to keep
travel times even. Expression (4.23) can be retrieved by imposing the two routes’
travel times to be equal. On the contrary, if � > �, then Route 1 gets congested
before travel times equalize. Nevertheless, analogously to the previous case, the
informed demand keeps selecting Route 1, which is still the shortest travel time
route, until travel times equalize, which now happens at ↵UM. Again, one can
verify that � � � () ↵U

 ↵UM. After travel times even out, RW (↵) takes the
form in (4.25) and further increase do not affect the demand distribution anymore.
Expression (4.25) can be retrieved by imposing the two routes’ travel times to be
equal, accounting for the fact that Route 1 is saturated.

The uniqueness of RW (↵) follows from the fact that the above cases are exhaus-
tive and mutually exclusive. To conclude, the expressions of xW (↵) easily follow
from (4.16).

Convergence to the Wardrop equilibrium

We now prove how x⇤ converges to xW (↵).

Proposition 4.2 (Equilibrium approximation). Let Assumptions 4.1, 4.3, 4.4 hold.
The unique equilibrium x⇤ of (4.4) equipped with logit routing ratios (4.9) converges
to xW (↵), as ⌘ ! 0.

Proof. From the proof of Theorem 4.1, the unique equilibrium of (4.4) corresponds
to the fixed point of the map

Gl(xl, ⌘) =
min{�Rl(⌧(xl)), f l}

vl
, l = 1, 2,

with Rl(⌧(x)) as in (4.9). Consider a sequence (⌘n)n2N|⌘n ! 0. Let x⇤(n) the
unique equilibrium associated with the corresponding instance of (4.4). Since
x⇤(n)

2 P, 8n, and P is compact, the sequence {x⇤(n)
}n2N is bounded. From

compactness, every sequence admits a converging sub-sequence. Let E ✓ P be the
set of accumulation points of all converging sequences of equilibria of (4.4). Pick
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e 2 E and the corresponding sequence {x⇤(nk)}k2N. Assume that one of the two
routes is sub-optimal at e, i.e., 9l | ⌧̃l(el) > ⌧̃l0(el0), for some l. Then

el = lim
⌘!0

x⇤(nk) = lim
⌘!0

Gl(x
⇤(nk), ⌘) =

(1� ↵)�r0l
vl

. (4.26)

Hence, e corresponds to xW (↵), since none of the informed demand ↵� is allocated
on the sub-optimal route l. Since (RW (↵), xW (↵)) is the unique WE of the under-
lying routing game, it follows that all sequences converge to e = xW (↵). Again,
compactness ensures that all the sub-sequences of {x⇤(nk)}n2N admit a sub-sequence
converging to xW (↵). This is equivalent to say that {x⇤(nk)}n2N converges to xW (↵),
as well.
Remark 4.3 (Relationship to non-atomic routing games). The relationship between
our model and NRGs actually represents an important element that justifies their
validity. On the one hand, it proves that our dynamical model is coherent with the
Wardrop’s framework. On the other hand, it clarifies the stability properties of the
WE of this NRG, showing that it is globally asymptotically stable.

Since x⇤ converges to xW (↵), by continuity we can extend the properties of the
latter to the former.
Corollary 4.1 (Unsatisfied demand for high compliance). Let Assumptions 4.1,
4.3, 4.4 and 4.5 hold. If � > � and ↵ > ↵U, then, for small enough ⌘, the
equilibrium x⇤ of (4.4) equipped with logit routing ratios (4.9) presents unsatisfied
demand on Route 1.

Lemma 4.2 and Corollary 4.1 showcase the relevance of parameter ↵ to the
problem at hand. Nevertheless, these results also highlight the importance of �.
Indeed, a higher traffic demand makes the system more sensitive to the penetration
rate, lowering the threshold ↵U of penetration rate beyond which unsatisfied demand
emerges.

Price of Anarchy

We now investigate what impact the penetration rate has on the Price of An-
archy, under Assumptions 4.5 and 4.4. We will first perform the analysis on
(RW (↵), xW (↵)) and then extend it by continuity to x⇤ when (4.4) is equipped
with logit routing ratios and affine travel times, in the limit of high compliance.
Since we consider PoA meaningful only when there is full demand transfer, we
assume �  �. With abuse of notation, we will write

PoA(↵) =

P
l=1,2�R

W
l (↵)⌧l(xW

l (↵))
P

l=1,2�R
O
l ⌧l(x

O
l )

.

Proposition 4.3 (Price of anarchy in URG(↵)). Suppose that Assumptions 4.4
and 4.5 holds and that �  �. Then, PoA(↵) is strictly convex in ↵ in [0,↵M] and
constant for ↵ > ↵M. Moreover, let

↵opt :=
1

�r02

2c2�r02 � 2c1�r01 + b2 � b1
2(c1 + c2)

. (4.27)

Then,
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• if ↵opt < 0, then PoA(↵) is increasing in [0,↵M] and constant in [↵M, 1];

• if ↵opt
2 [0,↵M], then PoA(↵) attains its minimum at ↵opt;

• if ↵opt > ↵M, then PoA(↵) is decreasing in [0,↵M] and constant in [↵M, 1].

Proof. Strict convexity in [0,↵M] can be checked through a second order condition.
The fact that PoA(↵) is constant for ↵ > ↵M follows from RW (↵) is constant for
↵ > ↵M. The expression of ↵opt can be retrieved by solving @↵ PoA(↵) = 0.

One can verify that ↵opt < ↵M if and only if b1 < b2, which means that Route
1 is faster than Route 2 when both are empty. Therefore, in this case an excessive
penetration rate, notably ↵ > ↵opt, leads to an increased number of users favoring
the shortest travel time route. Consequently, this elevates the average travel time
for users, thereby reducing the efficiency of the network.

Considering Proposition 2 and that the PoA is a continuous function of the
density, the above characterization of the average travel time at Wardrop equilib-
rium as a function of the penetration rate constitutes a good approximation of the
average travel time at the equilibrium x⇤ of (4.4) equipped with logit routing ratios
(4.9), for sufficiently small ⌘. This fact is confirmed by the simulations proposed in
Section 4.5.

4.4.2 Low users’ compliance

So far we have analyzed the equilibrium of (4.4) equipped with logit routing ra-
tios (4.9) under the assumption of high users’ compliance. The opposite case of
low compliance can be addressed by studying a suitable linearization of the sys-
tem. Its analysis yields results that are qualitatively consistent with those for high
compliance.

Assume that |⌧1 � ⌧2|/⌘ ! 0, i.e., the argument of the exponential in (4.9)
approaches zero. Then, (4.9) admits the following first order approximation:

Rl(⌧) = r0l +
↵r0l r

0
k

⌘
(⌧k � ⌧l) , l 6= k, l = 1, 2. (4.28)

For Eq. (4.28) to be a valid approximation of (4.9), i.e., to guarantee that (4.28)
satisfies to 0  Rl(⌧)  1, l = 1, 2, it is necessary that

1

⌘


1

↵�maxl r0l
(4.29)

where � := maxx2P |⌧1(x1)� ⌧2(x2)|.
Since (4.28) falls within the category of monotone routing ratios, Theorem 4.1

holds and (4.4) admits a globally asymptotically stable equilibrium, which can now
also be calculated explicitly. So, we can proceed to analyse demand satisfaction and
network performance.
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Proposition 4.4 (Partial demand transfer for low compliance). Let us assume that
Assumptions 4.1, 4.3, 4.4 and condition (4.29) hold. If � > � and

↵ > ↵̃U :=
⌘

r01(c2�+ b2 � b1 � f 1(c1 + c2))
↵U, (4.30)

then the equilibrium x⇤ of (4.4) equipped with routing ratios as in (4.28) presents
unsatisfied demand on Route 1.

Proof. In this case,

x⇤

l =
⌘�r0l + ↵�r0l r

0
k(ck�+ bk � bl)

vl(⌘ + ↵�r0l r
0
k(cl + ck))

, l = 1, 2.

Unsatisfied demand emerges on Route 1 when v1x⇤

1 > f 1. By plugging into the
latter condition the above expression of x⇤

1, after rearranging some terms one finds
the following equivalent condition:

↵�r01r
0
2(c2�+ b2 � b1 � f 1(c1 + c2)) > ⌘(f 1 � �r

0
1).

This condition is met if and only if � > � and (4.30) holds.

Proposition 4.4, akin to Lemma 4.2 and Corollary 4.1, demonstrates that a
higher traffic demand increases the system’s sensitivity to the penetration rate. In
fact, ↵̃U is decreasing in �.

We omit the proof of next result, since it is analogous to that of Proposition 4.3.

Proposition 4.5 (Price of Anarchy for low compliance). Defining

↵̃opt :=
2⌘

r01(b2 � b1)
↵opt, (4.31)

if assumptions 4.1, 4.3, 4.4, 4.5 and condition (4.29) hold then, the average travel
time of equilibrium x of (4.4) with routing ratios (4.28), PoA(↵), is convex in ↵.
Moreover

• if ↵̃opt < 0, then PoA(↵) is increasing in ↵;

• if ↵̃opt
2 [0, 1], then PoA(↵) attains its minimum at ↵̃opt;

• if ↵̃opt > 1, then PoA(↵) is decreasing in [0, 1].

One can notice the similarity in the conditions provided in Propositions 4.3
and 4.5. Another interesting aspect is that ↵̃opt is proportional to ⌘, which means
that for lower levels of compliance, it takes a higher penetration rate to attain the
optimum.
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Figure 4.2: Two possible routes connecting the Crolles basin to the Minatec area
in Grenoble, France.

4.5 Case study: two crossings of Grenoble (France)

In this section, we propose numerical simulations that confirm and complement the
theoretical results previously presented. We consider the following set of parame-
ters:

f 1 = 1700 veh/h, f 2 = 3500 veh/h
v1 = 50 km/h, v2 = 70 km/h
x1 = 170 veh/km, x2 = 250 veh/km,

L1 = 7.5 km, L2 = 21 km,

a1 = 1 h, a2 = 0.5 h, r0 = (0.25, 0.75).

These parameters have been chosen to represent realistic travel conditions in Greno-
ble (France), based on data from the GTL traffic platforms [78, 79]. Route 1 corre-
sponds to an urban itinerary crossing the city center, whereas Route 2 emulates the
Grenoble South Ring (see Figure 4.2). The choice of r0 is motivated by the obser-
vation that non-informed users typically prefer main routes with higher capacity.

Figures 4.3 and 4.4 show simulations for two realistic values of demand (� =
2000 and � = 4000) and for three values of compliance (1/⌘ = 10, 1/⌘ = 100
and 1/⌘ = 500), which cover both high compliance and low compliance cases. As
expected, the approximation given by (RW (↵)), xW (↵)) better suits the logit model
for high values of compliance, whereas the linearized model better captures low
compliance scenarios. As for the qualitative behavior of the equilibrium point x⇤ as
a function of ↵, the experiments are in line with the results provided in Section 4.4.
To see this, let us comment upon Figures 4.3 and 4.4 more in detail. Notice that
�1 = 3450 veh/h, and that Assumption 4.5 is satisfied for both values of demand.

The case of � = 2000 is illustrated in Figure 4.3: in this case, ↵opt
⇡ 0.29, ↵M

⇡

0.61. Consistently with the theoretical results, unsatisfied demand does not arise
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on any route, for any of the parameter configurations. For high compliance, the
PoA reaches its minimum for low values of penetration rates, but grows rapidly for
higher values. For low compliance, instead, the PoA reaches its minimum for higher
values of ↵, but stays relatively low afterwards. This is consistent with the general
observation that high compliance and high penetration rates have compounding
effects on the network efficiency.

The case of � = 4000 is shown in Figure 4.4: in this case, � > � and unsatisfied
demand emerges on Route 1 for 1/⌘ = 100 and 1/⌘ = 500, in a neighborhood of
↵U

⇡ 0.23. Instead, the curve associated with 1/⌘ = 10 is not affected by unsatisfied
demand, in that the demand directed toward to Route 1 does not exceed its capacity.
This is consistent with the fact that ↵̃U > 1. Again, the average travel time stays
low for high penetration rate in the case of low compliance.

A relevant fact emerging from these simulations is that greater users’ compliance
can result in a decrease in the efficiency of the equilibrium, especially for high
penetration rates. This finding is further supported by the plots in Figure 4.5.
These plots depict the variation of two key metrics, ↵U and ↵̃U for 1/⌘ = 10, with
respect to increasing exogenous flow �.

In the high compliance regime, the critical penetration rate – the minimum pro-
portion of compliant users needed to trigger partial demand transfer – plummets
rapidly as the exogenous flow increases. Conversely, the low compliance regime ex-
hibits a more resilient behavior. The critical penetration rate only starts to decrease
for very high exogenous flow values. Even then, the network can tolerate signifi-
cantly higher penetration rates of compliant users compared to the high compliance
scenario.

Since both high penetration rate and high compliance imply more sharing of
information, these results align with the evidence in the literature about the infor-
mation paradoxes in traffic networks [7, 26].

4.6 Beyond parallel single-link networks
In the previous sections, we analyzed the impact of app-informed users using a
simplified network model consisting of two parallel routes, each with a single link.
This framework allowed for analytical tractability and initial exploration of key
concepts. However, real-world traffic networks exhibit far greater complexity. To
assess the generalizability of our findings and their applicability to broader scenarios,
we conducted numerical simulations using a more complex network structure.

Consider the network in Figure 4.6 and suppose that the network structure is
determined by the following parameters:

f = (1500 veh/h, 1500 veh/h, 800 veh/h, 1500 veh/h, 1500 veh/h),
vl = 40 km/h, 8l 2 L,

x = (187.5 veh/km, 187.5 veh/km, 100 veh/km, 187.5 veh/km, 187.5 veh/km),
L = (8 km, 16 km, 4 km, 16 km, 8 km).

The network parameters were chosen to create a scenario where Routes 1 and 3
are high-capacity routes with similar travel times. There is also a connection be-
tween these routes that saves time but has a lower capacity. The network faces
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Figure 4.3: Simulations for � = 2000. The three plots respectively show the demand
directed toward Route 1 (left), average travel time T (middle) and route travel times
(right) at equilibrium, as functions of penetration rate ↵. The diamond-marked
lines are the logit routing ratios, while the dashed lines correspond to the linearized
model. We draw the curves for 1/⌘ = 10 in orange, for 1/⌘ = 100 in light-blue, and
for 1/⌘ = 500 in green. The limit Wardrop equilibrium (RW (↵), xW (↵)) is drawn
as solid violet lines. In the left-most plot, the area highlighted in red identifies the
cases in which the demand toward Route 1 is unsatisfied. In the right-most plot,
the increasing travel time refers to Route 1, the decreasing one to Route 2.

Figure 4.4: Simulations for � = 4000. The three plots respectively show the demand
directed toward Route 1 (left), average travel time T (middle) and route travel times
(right) at equilibrium, as functions of the penetration rate ↵. The diamond-marked
lines are the logit routing ratios, while the dashed lines correspond to the linearized
model. We draw the curves for 1/⌘ = 10 in orange, for 1/⌘ = 100 in light-blue, and
for 1/⌘ = 500 in green. The limit Wardrop equilibrium (RW (↵), xW (↵)) is drawn
as solid violet lines. In the left-most plot, the area highlighted in red identifies the
cases in which the demand toward Route 1 is unsatisfied. In the middle plot, the
lines are truncated at the value of ↵ at which unsatisfied demand emerges. In the
right-most plot, the increasing travel time refers to Route 1, the decreasing one to
Route 2.

an exogenous demand � = 2500 vehicles per hour, with a fraction ↵ 2 [0, 1] of
this demand consisting of users following navigation app recommendations. Let A
represent the informed users and N the non-informed users. Non-informed users
do not change routes once chosen and split among the three routes according to
fixed ratios RN = (RN

p1 , R
N
p2 , R

N
p3). Informed users can update their route choices
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Figure 4.5: The partial demand transfer phenomenon in high and low compliance
regimes is illustrated in the following manner. The green zones represent the re-
gions of the (�,↵) plane where the network equilibrium is unaffected by partial
demand transfer. Conversely, the red zones indicate the regions where the network
equilibrium is affected by partial demand transfer. The plot on the left depicts
the Wardrop equilibrium (RW (↵), xW (↵)), which approximates the high compli-
ance regime. The plot on the right illustrates the linearized system for 1/⌘ = 10.
When user compliance is high, the network shows significantly more sensitivity to
penetration rates as the exogenous flow increases.

Figure 4.6: Wheatstone’s network.
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at each non-destination node. Let �A = ↵�, �N = (1 � ↵)�, and let xA
l indicate

the density of informed users on link l and xN
l that of non-informed users, then the

evolution of the system may be described through the following set of ODEs (see
Section 2.4):

ẋi(t) = f in,i(xi(t))� f out,i(xi(t)), (4.32)

f in,i
l =

(
�i(t), l = o
P

j2a(l)+ f i
jl(x), l 2 L

, (4.33)

f out,i
l =

(
dl(xi

l), l 2 L
out

P
j2a(l)� f i

lj(x), l 2 L
, (4.34)

xl = xA
l + xB

l , (4.35)

f i
jl(x) = �l(x)R

i
jl(x)dj(x

i
j). (4.36)

�l(x) = min

⇢
1,

sl(xl)P
i=A,N

P
j2a(l)+ Ri

jl(x)dj(x
i
j)

�
, (4.37)

i = A,N . Each equation describes the evolution of one user class on one network
link. The density variation on a link for each class depends only on the inflow and
outflow of that class. However, congestion on links is determined by the aggregate
state and is not class-specific, as indicated by the terms �l(x) being the same for
both classes on each link l 2 L. Notably,

• link 1 receive the flows of the two user classes using Route 1 and 2;

• link 2 receive the flows of the two user classes using Route 3;

• link 4 receives the outflow of link 1 that decided for Route 1;

• link 3 receives the outflow of link 1 that decided for Route 2;

• link 5 receives the outflows of link 2 and 3.

Non-informed users split on the three routes according to the following routing
ratios:

RN
p1 = RN

p3 = 0.475, RN
p2 = 0.05,

which result in the following routing ratios at the non-destination nodes:

RN
o1 = RN

p1 +RN
p2 = 0.525, RN

o3 = RN
p3 = 0.475, RN

14 ⇡ 0.905, RN
13 ⇡ 0.095,

Informed users’ routing preferences follow the logit choice model:

RA
o1(x) =

RN
p1 exp(�⌧p1(x)/⌘) +RN

p2 exp(�⌧p2(x)/⌘)P3
j=1 R

N
pj exp(�⌧pj(x)/⌘)

,

RA
o3(x) =

RN
p3 exp(�⌧p3(x)/⌘)P3

j=1 R
N
pj exp(�⌧pj(x)/⌘)

,
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Figure 4.7: Simulations of dynamics (4.32)-(4.37) on the Wheatstone graph (Fig-
ure 4.6). The left column corresponds to ↵ = 0.1, the right column to ↵ = 0.3. The
top row shows the aggregate link density plots. The second row displays the route
travel times. The third row presents the fraction of exogenous demand directed
towards each route. The bottom row illustrates the cumulative number of unserved
vehicles stuck at the network entrance.
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RA
13(x) =

RN
p2 exp(�(⌧l3(x) + ⌧l5(x))/⌘)

RN
p1 exp(�⌧l4(x)/⌘) +RN

p2 exp(�(⌧l3(x) + ⌧l5(x))/⌘)
,

RA
14(x) = 1�RA

13(x).

This time, link travel are modeled as [80]:

⌧l(xl) =
Ll

vl
�
1� xl

x

� ,

and the travel time for a route is the sum of the travel times for its links.
Figure 4.7 displays the results of a numerical experiment conducted on the

Wheatstone network (Figure 4.6), with ↵ = 0.1 and ↵ = 0.3, 1/⌘ = 100, and
initial conditions xi

l(0) = (0, 0, 0, 0, 0) for i = A,N . The left column shows the
results for ↵ = 0.1, while the right column shows the results for ↵ = 0.3.

In both experiments, the traffic state eventually converges to a steady state.
Comparing the two sets of plots, we observe how the increase in the fraction of in-
formed users negatively impacts traffic efficiency, leading to congestion and partial
demand transfer. For ↵ = 0.1, most users do not follow the routing recommenda-
tions, favoring higher capacity routes even if they are sub-optimal in travel time.
Nonetheless, the network remains in a free-flow regime, fully accommodating the
exogenous demand. However, increasing ↵ to 0.3 significantly worsens the condi-
tions. Most informed users take Route 2, causing significant congestion on links 1,
2, and 3. Link 5 cannot handle the increased flow from Routes 2 and 3, resulting
in spill-backs and eventual congestion up to the network origin. Consequently, the
exogenous flow is not fully transferred, and congestion builds at the origin, as shown
in the bottom-right plot.

This experiment demonstrates that the negative impact of increased proportions
of informed users on traffic efficiency, as well as partial demand transfer due to
navigation apps, holds true even in more complex network configurations.

4.7 Concluding remarks
The contribution of this chapter is twofold. First, the proposed model represents
an initial attempt to dynamize the model presented in Chapter 3. Although this is
done on a very simple network, the results suggest that the Wardrop equilibria of
the game developed in that chapter are stable and reachable by the traffic system
when the traffic consists of selfish users interacting in an uncoordinated manner.

The second contribution is successfully linking the study of the impact of nav-
igation apps to the theoretical framework developed in Chapter 3, specifically the
issue of partial demand transfer. It is shown here how a too high penetration rate
of informed users can lead to unsatisfied demand, as informed users, all directed
towards the route with the shortest travel time, create a bottleneck at the origin of
the network. Finally, we also emphasize that our study highlights results aligned
with those proposed in previous works ([6, 25, 7]) regarding the effect of the pene-
tration rate on network efficiency in terms of total travel time. We show that as the
penetration rate of informed users increases, the total travel time in the network
can also increase.
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As with the model proposed in Chapter 3, the main directions for improving
the model are twofold. The first is the generalization to more complex topologies
to increase the applicability of the model. The second is to generalize the traffic
dynamics at the origin node of the network to describe more realistic cases, not just
those where entry to the network is through a single road, with each user forced to
wait in the same queue regardless of the road they want to select.

The model can be easily extended to networks with multiple multi-link routes,
such as those considered in Chapter 3. However, beyond the case studied in this
chapter (Figure 4.1), the properties of equilibrium uniqueness and monotonicity are
not satisfied. As a result, analyzing stability for these and more complex networks is
challenging. Furthermore, as noted at the beginning of the chapter, the supply and
demand constraints mean that many techniques used in previous works, which are
based on the contractivity property [65, 66, 68, 73], are not applicable in our case.
Our system does not possess these properties. Therefore, efforts will be directed
towards identifying new techniques for stability analysis.





Chapter 5

Impact of navigation systems:
delayed routing recommendations

5.1 Introduction

The routing recommendations provided by navigation apps to their users are derived
from traffic data collected by the app. There is an inevitable time lag between the
moment the traffic data is collected and the moment the recommendations based
on this data are provided to users. This delay is due to the time required for the
operations of data collection, communication, and processing. In this chapter, we
aim to evaluate what impact delays affecting routing recommendations can exert
on traffic efficiency. To do this, we use a slightly modified version of the model
developed in Chapter 4, accounting for this delay.

5.1.1 Summary of the results
Assuming the two routes in the network have the same length and speed, we reduce
the problem to a scalar ODE by considering the difference in travel times between
the two routes. By conducting a stability analysis of this scalar dynamic, we can
comprehensively characterize the impact of informational delay on the stability and
efficiency of the traffic system. This analysis involves three key parameters: the
exogenous flow through the network, the penetration rate of informed users, and
their compliance.

Our findings indicate that when these three parameters are sufficiently small, the
delay in routing recommendations does not compromise the asymptotic behavior of
the traffic system. However, when the product of these parameters exceeds a certain
threshold, which can be expressed in terms of other system parameters, sufficiently
large delays lead to system destabilization. This results in an oscillating traffic state
and can cause periodic partial transfer of demand.

5.1.2 Related works
In the literature, almost all relevant works within the macroscopic dynamic routing
framework do not consider information delay affecting routing [32, 33, 35, 36, 68].

71
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Figure 5.1: Graph representation of the origin-destination pair considered.

It is worth to mention that in [81] the authors propose a framework that allows for
dynamic routing of users based on delayed information, but they do not elaborate
on the effects caused by the latter. In [82, 83], simulations using a microscopic
traffic model demonstrated that information based on floating car data, which is
intrinsically affected by delay, can lead to oscillating trajectories of the system.
However, these works do not address the problem of partial demand transfer.

5.1.3 Chapter organization
In Section 5.2, we introduce the model, which is similar to the one described in
Chapter 4, but now includes informational delay. In Section 5.3, under the assump-
tion that routes are homogeneous (same length and free-flow speed), we show that
the system introduced in the previous section can be reduced to a scalar dynamics.
In Section 5.4, we analyze the stability of the model by studying the asymptotic be-
havior of the scalar dynamics retrieved in the previous section, offering a sufficient
condition for delay-independent stability and another for destabilization due to de-
lay. Section 5.5 presents numerical experiments that both support our theoretical
results and suggest that they extend beyond the set up analyzed in this chapter.
Finally, Section 5.6 concludes the chapter.

5.2 Model definition
The model proposed in this chapter extends the one analyzed in Chapter 4 so as to
account for the presence of delay affecting the routing recommendations provided
by the navigation system. Once again, we consider a network with two parallel
single-link routes, subject to an exogenous flow �, whose traffic dynamics on the
two routes is described by the following conservation law:

ẋl(t) =
1

Ll
(min{�Rl(⌧(x(t� ✓))), sl(xl(t))}� dl(xl(t))) , l = 1, 2. (5.1)

Equation (5.1) almost coincides with Equation (4.1), except for the fact that in this
case the routing ratios depend on the route travel times associated with a delayed
state of the system x(t � ✓), capturing the fact that routing recommendations
provided to informed users are affected by a delay ✓ � 0. This delay is due to the
time required for collecting, communicating, and processing the traffic data.

Supply and demand function take the same form as in (4.2), (4.3) and establish
analogous capacity constraints on the two routes. Also in this case, the system can
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be rewritten in the following form:

ẋl(t) =

8
>>>><

>>>>:

�Rl(⌧(x(t�✓)))�vlxl(t)
Ll

, if xl(t)  xc
l , Rl(⌧(x(t� ✓)))  sl(x(t))

� ,
f l�vlxl(t)

Ll

, if xl(t)  xc
l , Rl(⌧(x(t� ✓))) > sl(x(t))

� ,
�Rl(⌧(x(t�✓)))�f l

Ll

, if xl(t) > xc
l , Rl(⌧(x(t� ✓)))  sl(x(t))

� ,
f l(x

c

l
�xl(t))

Ll(xl�xc

l
) , if xl(t) > xc

l , Rl(⌧(x(t� ✓))) > sl(x(t))
� ,

l = 1, 2.

(5.2)
Routing ratios are also analogous to those in (4.6), but they now account for

the delay affecting recommendations:

Rl(⌧(x(t� ✓))) = (1� ↵)r0l + rl(⌧(x(t� ✓))). (5.3)

We still assume that only a part of the exogenous flow � consists of informed users
that rely on the recommendations of a navigation system. The remaining part of
users, the non-informed users, splits according to fixed preferences r0 = (r01, r

0
2).

Again, we assume that the demand can be fully accommodated, i.e., � < f 1 + f 2.
We are interested in analyzing the stability of the system (5.1) to understand how
the presence of the delay ✓ affects traffic efficiency.

We start by observing that the right-hand side of (5.1) is Lipschitz continuous.
Hence, there exists a unique solution to (5.1) that continuously depends on the
initial data for every initial condition x(!) = �(!), ! 2 [�✓, 0], where �(!) 2

C([�✓, 0],⌦) and ⌦ := [0, x1]⇥ [0, x2] [84][Section 1.3.1].
Now, consider the region P = [0, xc

1]⇥ [0, xc
2] introduced in Section 4.3.

Proposition 5.1. P is a positively invariant and attractive region for (5.1).

Proof. The proof is analogous to that of Lemma 4.1.

Proposition 5.1 allows us for restricting the stability analysis of (5.1) to region P
only, as we did for the traffic system influenced by real-time recommendations (4.1).
Within region P , (5.2) reduces to the following differential system of equations,
stating that each route is characterized by two possible modes :

ẋl(t) =

(
1
Ll

(�Rl(⌧(x(t� ✓)))� vlxl(t)) , if Rl(⌧(x(t� ✓)))  f l

� ,
1
Ll

�
f l � vlxl(t)

�
, if Rl(⌧(x(t� ✓))) > f l

� ,
, l = 1, 2.

(5.4)
The first equation represents traffic dynamics when the exogenous flow assigned to
the route doesn’t exceed its capacity. In contrast, the second equation captures
dynamics when the assigned flow surpasses the route’s capacity.

5.2.1 Routing ratios and travel time
In this chapter, the stability analysis of the system will be conducted assuming from
the outset that routing ratios follow the logit choice model and that the route travel
times are linear function of the route densities:

R1(�(t� ✓)) := (1� ↵)r01 + ↵
1

1 + r02
r01
exp

⇣
�

1
⌘�(t� ✓)

⌘ ,

R2(�(t� ✓)) = 1�R1(�(t� ✓)),

(5.5)
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where
�(t) := ⌧2(x2(t))� ⌧1(x1(t)),

and
⌧l(xl(t)) = al

xl(t)

xl
+

Ll

vl
, al > 0, l = 1, 2. (5.6)

As in Chapter 4, we interpret 1/⌘ > 0 as the users’ compliance, which quantifies
the tendency of informed users to actually follow the routing recommendations from
the navigation system. Again, when 1/⌘ ! 0, i.e., users’ compliance is very low,
users do not really exploit information and the demand splitting stays close to r0.
On the contrary, when 1/⌘ ! +1, all users tend to take the shortest travel time
route recommended by the navigation system.

5.3 The case of homogeneous routes
Section 5.4 is dedicated to the stability analysis of the model introduced in Sec-
tion 5.2. In this section, we will introduce an assumption that allows for, at the
cost of losing some generality, to reduce (5.4) to a scalar dynamics.

Assumption 5.1 (Homogeneous free-flow speeds and route lengths). The free-flow
speed and the route length are the same for both routes:

vl = v, Ll = L, l = 1, 2. (5.7)

From now on, we will work on this special case. Assumption 5.1 refers to a
scenario in which the two routes are of similar length and subject to the same speed
limit but can have different capacities, e.g., two different itinerary in a urban road
network.

Now, let us multiply ẋl(t) by al/xl, l = 1, 2 in (4.1), and then subtract the first
equation from the the second one. Thanks to Assumption 5.1, we get the following
scalar delay-differential equation in d(t):

�̇(t) = �
v

L
�(t) + g(�(t� ✓)), (5.8)

where

g(�(t� ✓)) :=
1

L

✓
a2
x2

min
�
f 2,�(1�R1(�(t� ✓)))

�
�

a1
x1

min
�
f 1,�R1(�(t� ✓))

�◆

(5.9)
is a globally Lipschitz continuous function with Lipschitz constant

K =
↵�

4⌘L

✓
a2
x2

+
a1
x1

◆
. (5.10)

From Proposition 5.1, the state space of (5.8) is given by [�a1xc
1/x1, a2xc

2/x2].
Observe that because of the one-to-one correspondence between R1(�(t)) and

�(t), any conclusion about the stability of the trajectories of �(t) will be valid for
the stability of the trajectories of R1(�(t)), as well.
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5.4 Stability analysis

In this section, we analyze the stability of (5.8). First, we demonstrate that (5.8) has
a single equilibrium point. Next, we use a Lyapunov approach to provide sufficient
conditions for this equilibrium point to be globally asymptotically stable. Finally,
we identify sufficient conditions under which the system becomes unstable when the
delay ✓ is sufficiently large. Special emphasis is placed on the relationship between
these conditions and the parameters �, ↵, and 1/⌘.

Proposition 5.2 (Uniqueness of the equilibrium point). The dynamics (5.8) admits
a unique equilibrium point.

Proof. Define G(�) := Lg(�)/v. We observe that �⇤ is an equilibrium of (5.8)
if and only if is a fixed point of G(�). Since G(�) is a continuous and strictly
decreasing function in �, it admits a unique fixed point. Therefore, (5.8) has a
unique equilibrium point �⇤.

5.4.1 Delay-independent global asymptotic stability
In the following, we provide a sufficient condition for the delay-independent global
asymptotic stability (GAS) of (5.8).

Theorem 5.1 (Delay-independent GAS). The unique equilibrium point �⇤ of the
dynamics (5.8) is globally asymptotically stable for all ✓ � 0 if K < v/L.

Proof. For convenience, consider the dynamics obtained by shifting (5.8) so that �⇤
is at the origin of the system:

u̇(t) = �
v

L
u(t)� h(u(t� ✓)), (5.11)

where u(t) = �(t) � �⇤, h(u(t)) := g(u(t) + �⇤) � x(�⇤). Clearly, the asymptotic
properties of (5.8) coincide with those of (5.11). Define now the following Lyapunov
functional:

V (t) :=
1

2
u2(t) +

v

2L

Z t

t�✓

u2(s)ds. (5.12)

First of all, notice that

V (u(t)) �
1

2
|u(t)|2, V (u(t)) 

1

2

⇣
1 +

v

L
✓
⌘

max
s2[t�✓,t]

|u(s)|2.

Moreover, by taking its derivative, we find that

V̇ (t) = u(t)u̇(t) +
v

2L

�
u2(t)� u2(t� ✓)

�


 �
v

2L
u2(t)�

v

2L
u2(t� ✓) +K|u(t)||u(t� ✓)| =

= �
�
|u(t)| |u(t� ✓)|

�
0

@
v
2L �

K
2

�
K
2

v
2L

1

A

0

@
|u(t)|

|u(t� ✓)|

1

A .
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Figure 5.2: Stability regions of the dynamics (5.8) on the (�,↵)-plane are depicted.
The plots on the left refer to the case where 1/⌘ = 10, while the plots on the
right correspond to the case where 1/⌘ = 100. The green areas indicate regions
of the plane where the dynamics are guaranteed to be delay-independent globally
asymptotically stable. In contrast, the red areas indicate regions where stability is
not guaranteed. In this example, the values assigned to the other system parameters
were taken from Section 5.5. The plots support the observation that increasing any
of the following factors – exogenous flow, penetration rate, or user compliance – can
undermine the stability of the system.

If the matrix defining the quadratic form above is positive definite, then there exists
� > 0 such that V̇ (t) < ��|u(t)|2 and global asymptotic stability of (5.8) comes
from [84][Theorem 3.1]. The matrix is positive definite if and only if v/L > K.

The inequality K < v/L can be rewritten equivalently as follows:

↵�

⌘
<

4vx1x2

a2x1 + a1x2
. (5.13)

Then, some considerations can be made about Theorem 5.1. Condition (5.13)
clearly highlights how the stability of the system and its sensitivity to delays cru-
cially depend on the traffic demand on the network �, the penetration rate ↵, and
the user compliance 1/⌘. Specifically, a sufficiently high number of users following
the recommendations makes the system sensitive to delays, potentially compromis-
ing its stability.

5.4.2 Instability and oscillations for large demand and delay

When condition (5.13) is not met, the system may become unstable if the delay
is sufficiently large. In the following, we perform a local stability analysis around
the unique equilibrium point �⇤ of the system to investigate its stability properties
when condition (5.13) does not hold.

We will focus on a relevant subset of the parameter set, in which the following
three facts hold.
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1. There is no unsatisfied demand when the penetration rate is zero, which is
equivalent to

�r0l < f l, l = 1, 2. (5.14)

2. There is no unsatisfied demand at equilibrium, which is equivalent to

1�
f 2

�
< R1(�

⇤) <
f 1

�
. (5.15)

3. The user demand � and the penetration rate ↵ are large enough to allow
unsatisfied demand to emerge on one of the two routes. This requirement will
be satisfied by the following condition:

� > f l, ↵ > ↵l :=
f l � �r

0
l

�(1� r0l )
, l = 1, 2. (5.16)

Assumption 5.2. Conditions (5.14), (5.15) and (5.16) are satisfied.

Theorem 5.2 (Local stability). Suppose Assumption 5.2 holds. Then, the following
assertions hold true for dynamics (5.8):

1. if |g0(�⇤)| < v
L , then �⇤ is asymptotically stable for all ✓ � 0.

2. if g0(�⇤) < �
v
L , then �⇤ is asymptotically stable for ✓ < ✓⇤ and unstable for

✓ > ✓⇤, where

✓⇤ :=
1q

(g0(�⇤))2 � v2

L2

arccos

✓
v

Lg0(�⇤)

◆
, (5.17)

undergoing a Hopf bifurcation at � = �⇤ when ✓ = ✓⇤.

Proof. Assumption 5.2 ensures that no terms of (5.9) are saturated at equilibrium.
Then, (5.8) can be rewritten as follows:

�̇(t) = �
v

L
�(t) +

�

L

✓
a2
x2

�

✓
a1
x1

+
a2
x2

◆
R1(�(t� ✓))

◆
. (5.18)

Since the inequalities in (5.15) are strict, we are able to find a neighborhood I ⇢ R of
�⇤ where (5.8) takes the form (5.18), with a differentiable right-hand side. Therefore,
we are able to perform a local stability analysis within I, by linearizing (5.18) in I
and studying the behavior of its eigenvalues. The linearization of (5.18) in I takes
the form

�̇(t) = �
v

L
�(t) +

�

L

✓
a1
x1

+
a2
x2

◆
R0

1(�
⇤)(�(t� ✓)� �⇤),

and it scharacteristic equation is given by

� = �
v

L
+
�

L

✓
a1
x1

+
a2
x2

◆
R0

1(�
⇤)e��✓.

The statement follows after applying [85][Theorem 2.3] to (5.8).
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This result provides a necessary and sufficient condition for instability. However,
it involves several conditions that cannot easily be tested, as the equilibrium �⇤ is not
known in closed form. In order to obtain testable conditions, we begin by deriving
a sufficient condition to replace (5.15), always assuming to be in a sufficiently small
neighborhood of �⇤ where (5.8) reads as (5.18), as in the proof of Theorem 5.2. To
this purpose, one can readily verify that condition (5.15) is equivalent to

�FC < �⇤ < �CF , (5.19)

where
�CF := ⌘ log

✓
r02
r01

�1
↵�� �1

◆
, �FC := ⌘ log

✓
r02
r01

↵�� �2
�2

◆
,

with �l := f l/� � (1 � ↵)r0l , l = 1, 2. Next, we derive the following sufficient
condition.

Lemma 5.1. Given � > 0 satisfying (5.14) and (5.16). Then, (5.19) is satisfied
for all ↵ > max{↵1,↵2} and 1/⌘ > 0, if the following condition hold:

r01 <
a2x1

a1x2 + a2x1
<

f 1

�
or r02 <

a1x2

a1x2 + a2x1
<

f 2

�
. (5.20)

Proof. See Appendix A.2

Based on this analysis, we can now state the following assumption, which can
be tested on the system parameters.

Assumption 5.3. Conditions (5.14), (5.16) and (5.20) are satisfied.

Finally, we combine Theorem 5.2 with the following lower and upper bounds on
the absolute value of g0(�).

Lemma 5.2. Suppose that Assumption 5.3 holds. Then, the following inequalities
hold:

Q < |g0(�⇤)| < K, Q := min(|g0(�CF )|, |g
0(�FC)|) (5.21)

where
|g0(�CF )| =

�

⌘L

✓
a1
x1

+
a2
x2

◆
�1
⇣
1�

�1
↵

⌘
,

|g0(�FC)| =
�

⌘L

✓
a1
x1

+
a2
x2

◆
�2
⇣
1�

�2
↵

⌘
.

(5.22)

Proof. See Appendix A.3.

We thus get the following result only involving testable conditions.

Corollary 5.1. Under Assumption 5.3, the following assertions hold:

1. if K < v
L , then �⇤ is asymptotically stable for any ✓ � 0.
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Figure 5.3: Qualitative behavior of ✓⇤Q with respect to ↵ and 1/⌘. The left plot
shows the behavior of ✓⇤Q with respect to ↵ for a fixed 1/⌘ = 100, while the right
plot shows the behavior of ✓⇤Q with respect to 1/⌘ for a fixed ↵ = 0.4. The green
zones indicate intervals of ↵ and 1/⌘ where delay-independent globally asymptotic
stability is guaranteed, whereas the red zones indicate intervals where stability is
not guaranteed. Note that ✓⇤Q cannot be computed over the entire red intervals. For
these values of ↵ and 1/⌘, we are unable to characterize the stability properties of
the dynamics (5.8).

2. if v
L < Q, then the second assertion of Theorem 5.2 holds and the critical

delay value satisfies

✓⇤ < ✓⇤Q :=
1q

Q2 �
v2

L2

arccos

✓
�

v

LQ

◆
. (5.23)

Proof. The first assertion follows trivially from the first assertion of Theorem 5.2
and the second inequality in (5.21). Similarly, the second assertion follows directly
from the second assertion of Theorem 5.2, the first inequality in (5.21) and the fact
that ✓⇤ is an increasing function of g0(�) when g0(�) < �v/L.

The first assertion of Corollary 5.1 is in fact a special case of Theorem 5.1.
The second assertion, instead, provides a sufficient condition for the instability of
d⇤ and an upper bound for the critical delay ✓⇤, which are explicitly written as
functions of the system parameters. We can easily deduce from (5.22) that Q is
increasing in ↵ and 1/⌘ and therefore ✓⇤Q is decreasing ↵ and 1/⌘. This fact provides
us with some indications about the qualitative behavior of ✓⇤ with respect to the
above mentioned parameters, suggesting that increases in the penetration rate and
in users’ compliance reduce the delay threshold after which the system equilibrium
is sure to loose its stability (see Figure 5.3). One can also verify that ✓⇤ is decreasing
in �, even though the relevance of this observation is tempered by the fact that too
large demand can lead outside the set of assumptions under consideration.

Overall, the results provided in this section are consistent with those presented
in Section 5.4.1: increases in �, ↵ and 1/⌘ negatively affect the system stability.
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Remark 5.1. Assumptions 5.2 and 5.3 have two interesting features. First, they
select a set of parameters that is large enough to include realistic traffic scenarios,
as will be demonstrated in the next section. Second, they focus on a very interesting
situation, in which despite not having unsatisfied demand conditions both at equilib-
rium and in the absence of informed users, the destabilising effect of delays might
lead to emergence of partial demand transfer, as we are going to show in the next
section.

5.5 Numerical examples

5.5.1 Homogeneous routes
Consider a network as the one in Figure 5.1 characterized by the following param-
eters:

f 1 = 1200 veh/h, f 2 = 600 veh/h,
xc
1 = 24 veh/km, xc

2 = 12 veh/km,
x1 = 120 veh/km, x2 = 60 veh/km,

a1 = a2 = 0.1 h (6 min), r01 = 0.66, r02 = 0.34.

Suppose that the network is subject to a constant user demand of � = 1750
veh/km, the length of the two routes is L = 1.5 km and the average free-flow speed
is 50 km/h. These parameters have been chosen to represent a generic two-lane
urban route and a generic one-lane urban route. Consider now two distinct values
of ✓, 1 minute and 6 minutes (which are realistic in a real world scenario [86, 87]),
two distinct values of ↵, 0.4 and 0.7, and two values of 1/⌘, 100 and 200. The
numerical simulations in Figure 5.4 show the system behavior for the delays taken
into consideration in three different cases:

• ↵ = 0.4, 1/⌘ = 100: in this case, K ⇡ 29.17, less than v/L = 33.33. Hence,
Proposition 5.1 holds and, as one can see from the plots in the first column of
Figure 5.4, the increase of delay does not alter the stability of the equilibrium
point of the system.

• ↵ = 0.7, 1/⌘ = 100: in this case, K ⇡ 51.04 and Proposition 5.1 is no
longer applicable. Moreover, Q ⇡ 43.14 and exceeds v/L = 33.33. Hence,
by Corollary 5.1, we know that sufficiently high delays destabilise the system.
Indeed, since ✓⇤Q ⇡ 5 min and 22 s, for ✓ = 6 min the equilibrium point of the
system is unstable and the trajectory of the system is oscillating.

• ↵ = 0.4, 1/⌘ = 200: similarly to the previous case, the decrease of noise
destabilises the equilibrium point of the system when the system is affected
by a delay of 6 minutes. Consistently with Corollary 5.1, in this case K ⇡

58.33 and Q ⇡ 46.60, which are both greater than v/L = 33.33, and ✓⇤Q ⇡

4 min and 22 s.

Observe how in the two cases in which the equilibrium point gets destabilised, the
oscillations characterising the system trajectories cause periodic partial demand
transfer.
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Figure 5.4: Each column of plots is associated with different values of the pair of
parameters ↵, 1/⌘, each line with different delay ✓. The red dashed lines delimit
the states for which unsatisfied demand is absent (in-between) or present (outside).
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5.5.2 Beyond homogeneous routes
Although Assumption 5.1 allows us to reduce the system (5.4) to the scalar dy-
namics (5.8), greatly simplifying the stability analysis, this assumption limits the
generality of the model. In this section, we propose numerical experiments to show
that the qualitative behavior of the system with respect to the delay ✓ remains the
same, even when Assumption 5.1 is not satisfied.

Consider a network as the one in Figure 5.1 characterized by the following
parameters:

f 1 = 1200 veh/h, f 2 = 600 veh/h,
xc
1 = 24 veh/km, xc

2 = 12 veh/km,
x1 = 120 veh/km, x2 = 60 veh/km,

L1 = 2 km, L2 = 1.5 km, v1 = 60 km/h, v2 = 50 km/h,
a1 = a2 = 0.1 h (6 min), r01 = 0.66, r02 = 0.34.

Clearly, this set of parameters does not satisfy Assumption 5.1, and therefore, one
cannot reduce (5.4) to (5.8). Nevertheless, the plots in Figure 5.5 show that the
behavior of the dynamics (5.4) is analogous to that of dynamics (5.8) in Section 5.5.
When ↵ = 0.4, 1/⌘ = 100, increasing the delay affecting routing recommendations
does not compromise the stability of the traffic dynamics. However, by either
increasing ↵ to ↵ = 0.7 or 1/⌘ to 1/⌘ = 200, the equilibrium of the dynamics gets
destabilised when the delay ✓ is increased from 1 min to 6 min.

This demonstrates that the destabilizing effect of delay on the traffic dynamics,
along with the relationships between delay, penetration rate, and user compliance,
persist even in more general network topologies that violate Assumption 5.1.

5.6 Concluding remarks
This chapter characterizes the impact of users who base their routing choices on
recommendations affected by delays on the efficiency of a traffic network. The
stability analysis of the model proposed in this chapter has shown that the impact of
delay depends crucially on the penetration rate of informed users, their compliance,
and the exogenous flow to which the network is subjected. For sufficiently high
values of these parameters, the delay in routing recommendations can negatively
affect the stability of the traffic state, causing destabilization. Such instability can
adversely affect traffic flow efficiency, resulting in periodic partial demand transfer.

The results presented here closely align with those in Chapter 4. In both cases,
it is evident that the penetration rate of informed users, their compliance, and the
exogenous flow are directly related to network efficiency. Excessively high values for
these parameters are likely to cause problems, specifically traffic state oscillations
and partial demand transfer.

As with the model studied in Chapter 4, the primary direction for expanding
this work involves an analysis of the proposed model for more complex network
families. Again, the main challenge lies in conducting the stability study for this
model, which is further complicated by the presence of delay.
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Figure 5.5: Each column of plots is associated with different values of the pair of
parameters ↵, 1/⌘, each line with different delay ✓. The red dashed lines delimit
the states for which unsatisfied demand is absent (in-between) or present (outside).
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Chapter 6

Coordinated routing

6.1 Introduction

This chapter delves into evaluating the impact of the presence of centralized fleet on
traffic efficiency. Each fleet, under the control of a centralized operator, optimizes
its operations through coordinated vehicle routing. We model the problem as an
instance of the mixed behavior NRGs introduced in Section 2.2.3, involving two
distinct user classes. The first class comprises individual, self-interested users aiming
to minimize their personal travel times. The second class consists of vehicles that
coordinate their routing decisions to minimize the fleet’s average travel time.

This study aims to enhance our understanding of how recently born in mobility
services, particularly ride-hailing, influence traffic efficiency. Companies in this
sector leverage real-time traffic data to develop strategic fleet deployment plans
that streamline operations, ensuring quality service and maximizing profitability,
and employ coordinated routing strategies to optimize fleet performance. It is
important to note that this study focuses exclusively on routing strategies and does
not provide a comprehensive analysis of the broader impacts of these services on
traffic efficiency, such as considerations of empty vehicle miles or potential effects
on public transportation usage (see [23, 42, 43, 44, 45]).

The content presented in this chapter arises from a productive research visiting
period at Cornell University. During my time there, from September to November
2023, I had the opportunity to collaborate with Professor Francesca Parise.

6.1.1 Summary of result
After observing that, under mild assumptions, this two-class game is equivalent to a
two-person convex game, we exploit a well-known reformulation in terms of solution
to a Variational Inequality (VI) to study the problem (see [9, 10]). Specifically, we
identify sufficient conditions for the operator of the VI to be strongly monotone. On
the one hand, strong monotonicity ensures equilibrium uniqueness. On the other
hand, it allows for providing meaningful insights about the impact of the share of
the coordinated fleet on the overall traffic efficiency in two-terminal networks. We
employ the Price of Anarchy (PoA) as a metric for traffic efficiency. We demonstrate
that both the unique equilibrium and the PoA exhibit Lipschitz continuity with

87
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respect to the share of coordinated vehicles. Additionally, we establish conditions
that ensure a minimum threshold for this share. Below this threshold, the presence
of coordinated vehicles has no impact on traffic efficiency. Finally, for parallel
networks, we show that the PoA, individual user flows, and the shortest travel time
at equilibrium are all decreasing in the share of coordinated vehicles increases. This
suggests that larger coordinated fleets lead to improved efficiency.

6.1.2 Related works
To the best of the authors’ knowledge, information-aware coordinated routing has
primarily been studied through mixed behavior NRGs. The concept of coordinat-
ing users within the same class was first introduced in [8]. The NRG in this study
features a class of selfish users and a finite number of optimized fleets, establishing
sufficient conditions for equilibrium existence and uniqueness. More genral condi-
tions were later provided in [38].

Prior to [39], existing studies did not explore the overall impact on traffic ef-
ficiency. In [39], the authors address this gap by examining a three-class prob-
lem: selfish users, a coordinated fleet aiming to reduce fleet average travel time,
and a system-optimal fleet aiming to minimize system-wide travel time. Numeri-
cal experiments from this work demonstrate that sufficiently large coordinated and
system-optimal fleets can achieve system optimality, thereby enhancing overall traf-
fic efficiency.

Recent attention has focused on two-class problems. Specifically, [88, 89, 90]
investigate scenarios with selfish users and a system-optimal fleet. [88] and [89]
derive methods to calculate the minimum proportion of system-optimal users needed
to achieve system optimality, while [90] examines the trade-off between improvement
magnitude and deployment costs for network managers.

In contrast, in [40, 41, 52] authors address two-class problems with selfish users
and a coordinated fleet. In [40], an algorithm to compute traffic equilibrium re-
sulting from interactions between selfish users and a coordinated fleet is developed,
illustrating improved traffic efficiency with higher fractions of coordinated vehicles.

In [41], the authors initially provide an example in a network with multiple
origin-destination pairs, demonstrating that coordinated fleets may adversely affect
efficiency. They also develop mathematical programs to compute the minimum fleet
size required for achieving system optimality and the maximum fleet size allowing
user equilibrium to persist. Additionally, they offer analytical insights into the
threshold effect of coordinated fleet size on efficiency, but for parallel networks
only.

In [52], sufficient conditions for equilibrium existence and uniqueness are derived.
Their work also proposes two algorithms for the computation of the equilibrium and
a control scheme to converge to the equilibrium in a dynamical framework.

6.1.3 Chapter organization
Section 6.2 outlines the model and introduces the key concepts. Section 6.3 presents
the conditions for strong monotonicity, existence, and uniqueness. In Section 6.4,
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we analyze how the size of a coordinated fleet impacts traffic efficiency. Section 6.5
offers numerical experiments that support the findings from the previous sections.
Finally, Section 6.6 provides concluding remarks.

6.2 Model definition

Consider a network G = (N ,L). Let K := {k|k = (u, w), u, w 2 N} be the set of
OD pairs. Let P = [

|K|

i=1Pk be the set of all routes on G. Suppose that G supports
two classes of demand, namely class S and class C. Class S consists of selfish
individual users, whereas class C consists of a coordinated fleet of vehicles.

Let �i be the total demand of class i, i = S, C. Each OD pair k is subject to
fractions �i

k > 0, i = S, C, of the total demand over Pk, i.e,
P

k2K �
i
k = �i. Let

� := �S +�C be the total demand. For each class i 2 {S, C}, define the route flow
vector of class i zi 2 RP

�0 representing the traffic assignment of traffic demand �i

over the network routes. The set of feasible route flows of class i is

Z
i :=

⇢
zi 2 RP

�0 :
X

p2Pk

zip = �
i
k, 8k 2 K

�

and let Z = Z
S
⇥ Z

C . Each flow vector zi is associated with the link flow vector
of class i, f i := Azi, i = S, C representing the flow on each link of the network for
class i, where A is the link-route incidence matrix:

Alp =

(
1 if l 2 p

0 otherwise
.

Then, the set of feasible link flows of class i is

F
i := {f i

2 RL
�0 : f i = Azi, for some zi 2 Z

i
}

and let F = F
S
⇥ F

C . Let the route flow vector z := (zS, zC) and the link flow
vector f := (fS, fC) be the concatenations of the route and link flow vectors of
the two classes and let Z := zS + zC , F := fS + fC be the aggregate route flow
and aggregate link flow vectors, respectively. The assignment of the two classes of
vehicles is determined by the link travel time functions ⌧l, l 2 L, which are assumed
to be the same for the two classes of vehicles.

Assumption 6.1. For every l 2 L, the link travel time ⌧l : R�0 ! R�0 is a non-
negative, strictly increasing and C2([0,+1)) function of the aggregate load Fl with
⌧ 0l (0) > 0.

Assumption 6.1 imposes that link travel times are separable and that congestion
is not-class specific. Therefore, the travel time of link l depends on the aggregate
flow of link l only.

We are interested in characterizing the equilibrium link flow vectors of the traffic
assignment problem emerging from the interaction of the vehicle classes S and C.
To do this, we reformulate the problem as a two-player game, by associating each
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Figure 6.1: A multi-origin multi-destination network. This network has two origin
nodes and two destination nodes, which amounts to four OD pairs: k1 = {O1, D1},
k2 = {O1, D2}, k3 = {O2, D1} and k4 = {O2, D2}. Each OD pair k is assigned
traffic demands �S

k , �C
k , from the two user classes S and C.

class to a strategic player (see Chapter 2). The strategy of each player corresponds
to the link flow vector f i with strategy set F

i, i = S, C, respectively. The cost
functions that player S and player C have to minimize in order to attain the goals
of the traffic assignment problem are the following:

US(f) :=
X

l2L

Z fS

l

0

⌧l(r + fC
l )dr, (6.1)

UC(f) :=
X

l2L

fC
l · ⌧l(Fl). (6.2)

Definition 6.1 (Equilibria). An equilibrium link flow of the two-class congestion
game is a link flow vector f ⇤ = (fS⇤

, fC⇤
) such that

fS⇤

:= argmin
fS2FS

US(fS, fC⇤

),

fC⇤

:= argmin
fC2FS

UC(fS⇤

, fC).
(6.3)

All the feasible route flows z⇤ = (zS
⇤
, zC

⇤
) such that f i⇤ = Azi

⇤
, i = S, C are called

equilibrium route flows.

Observe that,

fC
l · ⌧l(Fl) =

Z fC

l

0

(⌧l(f
S
l + r) + r · ⌧ 0l (f

S
l + r)) dr.

Hence (6.2) can be rewritten as

UC(f) =
X

l2L

Z fC

l

0

(⌧l(f
S
l + r) + r · ⌧ 0l (f

S
l + r)) dr. (6.4)
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The functions inside the integral in (6.4), that is,

µl(fl) := ⌧l(Fl) + fC
l · ⌧ 0l (Fl). (6.5)

are known as marginal travel time functions [1, Chapter 18].
We prove that under appropriate assumptions on the marginal travel times

µl(fl), the game in (6.3) is convex.

Lemma 6.1. US(f) is convex in fS for any fC. Moreover, if

@µl(fl)

@fC
l

> 0, 8fS
l , f

C
l � 0, 8l 2 L, (6.6)

then UC(f) is convex in fC for any fS.

Proof. First, since ⌧l is twice continuously differentiable, 8l 2 L, the same is true
for U s. The Hessian matrix of US with respect to fS is

r
2US(f) = diag (⌧ 0l (Fl)) � 0

Hence, US is convex in fS, for any fC . As for UC , condition (6.6) ensures that its
Hessian matrix with respect to fC is positive definite:

r
2UC(f) = diag

✓
@µl(fl)

@fC
l

◆
� 0

Hence, UC is convex in fC , for any fS.

Remark 6.1. The convexity of the cost functions (6.1) and (6.2) implies that any
equilibrium route flow z⇤ must satisfy the following Wardrop conditions [47, Chapter
3]:

zSp
⇤

> 0 )

X

l2L

Alp⌧l(F
⇤

l ) 
X

l2L

Alr⌧l(F
⇤

l ), 8r 2 P , (6.7)

zCp
⇤

> 0 )

X

l2L

Alpµl(f
⇤

l ) 
X

l2L

Alrµl(f
⇤

l ), 8r 2 P . (6.8)

In words, at equilibrium, each vehicle in class S uses a route among those of shortest
travel time, whereas each vehicle in class C uses a route among those of shortest
marginal travel time. Conditions (6.7) and (6.8) will be of key importance when
proving the results in Section 6.4.

6.3 Variational inequality formulation

Under condition (6.6), the two-class routing game is convex and is equivalent to the
following variational inequality [9, Proposition 1.4.2]:

(�� f ⇤)>H(f ⇤) � 0, 8� 2 F , (6.9)

where
H(f) = ((⌧l(Fl))l2L, (µl(fl))l2L) , (6.10)
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that is, equilibria of the two-class routing game correspond to solutions of (6.9).
The main result of this section consists in providing sufficient conditions for the

operator H of such VI to be strongly monotone on ⌦ := [0,�]2|L| � F , that is, for
guaranteeing that

9c > 0 : (H(x)�H(y))>(x� y) � c||x� y||2, 8x, y 2 ⌦. (6.11)

The strong monotonicity of H not only ensures the uniqueness of the solution of
(6.9) [9, Theorem 2.3.3], but also allows us to assess the impact of the fleet size
onto traffic efficiency, as we shall demonstrate in the next section.

Proposition 6.1. The operator H in (6.10) is strongly monotone on ⌦ if (6.6)
holds and

⌧ 0l (Fl) >
1

4

@µl(fl)

@fC
l

, 8fS
l , f

C
l � 0, 8l 2 L. (6.12)

Proof. From [9, Proposition 2.3.2], the operator H is strongly monotone on an open
set U if and only if its jacobian matrix is uniformly positive definite on U , i.e.,

9⇣ > 0 : �>JH(f)� � ⇣||�||2, 8� 2 R2·|L|
+ , 8f 2 U .

The condition above is equivalent to

9⇣ > 0 : JH(f)� ⇣I ⌫ 0, 8f 2 U . (6.13)

The proof proceeds in two steps: i) using the fact above we show that (6.12) implies
that H is strongly monotone on int(⌦), ii) we show that strong monotonicity extends
to ⌦ by continuity.

i) We study the positive semi-definiteness of JH�⇣I by examining its symmetric
part J sym

H (f)� ⇣I, where J sym
H (f) is the symmetric part of JH . Define

⌃1(f) := diag(⌧ 0l (Fl))� ⇣I, ⌃2(f) := diag

✓
1

2

@µl(fl)

@fC
l

◆
,

⌃3(f) := diag

✓
@µl(fl)

@fC
l

◆
� ⇣I,

then
J sym
H (f)� ⇣I =

✓
⌃1(f) ⌃2(f)
⌃2(f) ⌃3(f)

◆
,

where we used the identity ⌧ 0l (Fl) +
@µl(fl)
@fS

l

= @µl(fl)
@fC

l

. If ⌃1(f) is positive definite,
then J sym

H (f) � ⇣I is positive semi-definite if and only if its Schur complement
⌃(f) := ⌃3(f) � (⌃1(f))�1⌃2

2(f) is. ⌃1(f) and ⌃(f) are positive definite and
positive semi-definite in int(⌦), respectively, if the following conditions hold for all
l 2 L:

⌧ 0l (Fl)� ⇣ > 0, 8fS
l , f

C
l 2 (0,�), (6.14)

@µl(fl)

@fC
l

� ⇣ �

⇣
@µl(fl)
@fC

l

⌘2

4(⌧ 0l (Fl)� ⇣)
� 0, 8fS

l , f
C
l 2 (0,�). (6.15)
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By Assumption 6.1,

9⇣1 > 0 : ⇣1 < min
l2L

min
fS

l
, fC

l
2[0,�]

⌧ 0l (Fl).

Hence (6.14) holds for any ⇣  ⇣1. Now, let

Kl(⇣, fl) =
@µl(fl)

@fC
l

� ⇣ �

⇣
@µl(fl)
@fC

l

⌘2

4(⌧ 0l (Fl)� ⇣)
,

K(⇣) := min
l2L

min
fS

l
, fC

l
2[0,�]

Kl(⇣, fl).

We aim at proving that K(⇣) > 0 for ⇣ small enough, as that would imply (6.15).
To this end, observe that given (6.6), (6.12) is equivalent to

@µl(fl)

@fC
l

�

⇣
@µl(fl)
@fC

l

⌘2

4⌧ 0l (Fl)
> 0, 8fS

l , f
C
l � 0, 8l 2 L.

Since the left-hand side of the above condition is continuous in fl and the condition
holds strictly for every l 2 L and any fS

l , f
C
l 2 [0,�], then K(0) > 0. We next

prove that K(⇣) is continuous in ⇣ 2 I = [0, ⇣1) by showing that

Kl(⇣) := min
fS

l
, fC

l
2[0,�]

Kl(⇣, fl)

is continuous, for every l. By continuity in both arguments of Kl(⇣, fl), for every
✏ > 0,

9� > 0 : |⇣ � %|+ ||fl � gl|| < � ) |Kl(⇣, fl)�Kl(%, gl)| < ✏. (6.16)

Take ⇣3, ⇣4 2 I such that |⇣3 � ⇣4| < � and define the minimizers f ⇣i
l 2 [0,�]2 :

Kl(⇣i, f
⇣i
l ) = Kl(⇣i). Then, by (6.16) with fl = gl = f ⇣i

l we obtain

0  |Kl(⇣i, f
⇣i
l )�Kl(⇣j, f

⇣i
l )| < ✏, i = 3, 4, i 6= j.

Hence,
Kl(⇣i, f

⇣i
l ) > Kl(⇣j, f

⇣i
l )� ✏ � Kl(⇣j)� ✏, i = 3, 4, i 6= j.

The above implies
Kl(⇣i) > Kl(⇣j)� ✏, i = 3, 4, i 6= j.

Combining the two conditions above we get

|Kl(⇣3)�Kl(⇣4)| < ✏.

Hence, Kl(⇣) is continuous, 8l 2 L, thus K(⇣) is continuous, as it is point-wise
minimum of continuous functions.

The continuity of K(⇣) together with K(0) > 0, implies that there exists ⇣2
such that (6.15) is satisfied for all l 2 L, for any ⇣ 2 [0, ⇣2). The existence of ⇣1
and ⇣2 ensure the existence of ⇣ > 0 such that (6.14) and (6.15) hold for all l 2 L.
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Therefore, there exists a ⇣ small enough such that (6.13) holds on int(⌦), thus H
is strongly monotone in int(⌦):

9c > 0 : (H(x̃)�H(ỹ))>(x̃� ỹ) � c||x̃� ỹ||2, 8x̃, ỹ 2 int(⌦). (6.17)

ii) Now, observe that cl(int(⌦)) = ⌦. Then, consider any x, y 2 ⌦ and let
{x(n)

}, {y(n)} ⇢ int(⌦) be two sequences converging to x and y, respectively. Then,

(H(x(n))�H(y(n)))>(x(n)
� y(n)) � c||x(n)

� y(n)||2, 8n.

By taking the limit and using the continuity of H,

(H(x)�H(y))>(x� y) � c||x� y||2.

This means that strong monotonicity of H extends to ⌦.

The strong monotonicity of H ensures the uniqueness of the solution of (6.9),
that is, of the equilibrium link flow f ⇤. In [52], weaker conditions similar to (6.12)
were derived to ensure the uniqueness of the equilibrium link flow. Our slightly
stronger conditions are needed to guarantee that H is strongly monotone and that
thus the following assumption holds.

Assumption 6.2. Suppose that the operator H in (6.10) is Lipschitz and strongly
monotone in ⌦ = [0,�]2|L|.

Again, we remark that sufficient conditions for strong monotonicity to hold are
given in Proposition 6.1, whereas Lipschitz continuity follows from the smoothness
of travel time and marginal travel time functions (defined on a compact set).

Remark 6.2. A class of travel time functions that satisfy conditions (6.6) and
(6.12), thereby ensuring strong monotonicity of (6.10), consists of polynomial func-
tions of degree at most 3 with non-negative coefficients and strictly positive deriva-
tives on [0,+1), see [52] for similar examples. This demonstrates that assuming
strong monotonicity is not too restrictive, as this property holds for a relevant class
of travel time functions.

6.4 Price of Anarchy
For this two-class game, the PoA is still defined as the ratio between the total
travel time attained at the (unique under Assumption 6.2) equilibrium f ⇤ and the
minimum total travel time:

PoA(f ⇤) :=

P
l2L F

⇤

l · ⌧l(F ⇤

l )P
l2L F

!
l · ⌧l(F !

l )
� 1. (6.18)

We aim to study how the size of the coordinated fleet affects the PoA of the overall
system. From now on, we focus our attention on two-terminal networks.

Assumption 6.3. The network has a single OD pair. Let �S = (1 � �)� and
�C = �� represent the demand of class S and C entering the network from its
unique origin, where � is the share of class C, which we refer to as the fleet share.
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Figure 6.2: A two-terminal network.

We provide three main results in this section. First, we prove that the equilib-
rium link flow and the PoA are Lipschitz continuous functions of the fleet share �.
Second, we derive a sufficient condition for the existence of a minimum fleet share
below which the coordinated fleet has no impact on the PoA. Finally, we show
that the PoA of the equilibrium link flow is a non-increasing function of � for the
case of parallel networks. To make explicit their dependence on �, we will indicate
the feasible set by F(�) the equilibrium link flow as f ⇤(�) and we will indicate as
PoA(�), ⌧l(�), µl(�) the PoA and the associated travel time and marginal travel
time functions at equilibrium.

6.4.1 Lipschitz continuity
Proposition 6.2. Let Assumptions 6.2 and 6.3 hold. The equilibrium link flow
f ⇤(�) is Lipschitz continuous in �, i.e., there exists k > 0 such that

8�1, �2, ||f ⇤(�2)� f ⇤(�1)||  k|�2 � �1|. (6.19)

Proof. Without loss of generality, assume that �1 < �2. Define v := (�vS, vC),
where

vS :=
�2 � �1
1� �1

fS⇤

(�1), vC :=
�2 � �1
�2

fC⇤

(�2),

are scaled versions of fS⇤
(�1) and fC⇤

(�2), respectively, both associated with a total
demand equal to (�2 � �1)� and such that

0  vS  fS⇤

(�1), 0  vC  fC⇤

(�2).

Since vS and vC are both associated with a total demand equal to (�2 � �1)�, it
must hold that

0  vil  (�2 � �1)�, 8l 2 L, i = S, C,

which implies that ||v||2  2|L|�2(�2 � �1)2. Hence ||v||  k0
|�2 � �1|, with k0 =p

2|L|�. Now, define

f (1) = f ⇤(�2)� v 2 F(�1), f (2) = f ⇤(�1) + v 2 F(�2).

By (6.9), one can write

(f (i)
� f ⇤(�i))

>H(f ⇤(�i)) � 0, i = 1, 2.



96 Chapter 6. Coordinated routing

By summing these two inequalities and using the definition of f (i), one gets

(H(f ⇤(�2))�H(f ⇤(�1)))
>v �

(H(f ⇤(�2))�H(f ⇤(�1)))
>(f ⇤(�2)� f ⇤(�1)) �

c||f ⇤(�2)� f ⇤(�1)||
2,

(6.20)

where the last line follows from strong monotonicity of H over ⌦ (notice that
F(�i) ⇢ ⌦, i = 1, 2). From Cauchy-Schwartz inequality and (6.20)

c||f ⇤(�2)� f ⇤(�1)||
2
 ||H(f ⇤(�1))�H(f ⇤(�2))|| ||v|| 

 Q · ||f ⇤(�1)� f ⇤(�2)|| · k
0
|�2 � �1|,

where Q is the Lipschitz constant of H. The proof is complete by picking k =
Qk0/c.

Since the PoA is Lipschitz continuous in the equilibrium link flow and link flows
are defined on a bounded set, the PoA is also a Lipschitz continuous function of �.

6.4.2 Critical fleet share
A first question that one may ask is if introducing a coordinated fleet always helps
in reducing the PoA. In this section, we show that this is not the case. Specifically,
we derive a sufficient condition under which there is a positive minimum critical
fleet size needed to induce changes in the PoA.

Theorem 6.1 (Critical fleet size). Let P i(z(�)) indicate the set of routes used by
class i at the equilibrium route flow z(�), i = C, S, respectively. Let Assumptions
6.2 and 6.3 hold. Suppose that 9�̃ 2 (0, 1) such that f ⇤(�̃) admits an equilibrium
route flow z⇤(�̃) such that PC(z⇤(�̃)) ✓ P

S(z⇤(�̃)). Then,

f ⇤(�) =

✓
fS⇤

(�̃) +
�̃ � �

�̃
fC⇤

(�̃),
�

�̃
fC⇤

(�̃)

◆
, (6.21)

and PoA(�) = PoA(0), 8� 2 [0, �̃].

Proof. Consider the equilibrium link flow f ⇤(�̃) and the associated equilibrium route
flow z⇤(�̃). Clearly,

zSp
⇤

(�̃) > 0 )

X

l2L

Alp⌧l(�̃) 
X

l2L

Alq⌧l(�̃), 8q 2 P ,

zCp
⇤

(�̃) > 0 )

X

l2L

Alpµl(�̃) 
X

l2L

Alqµl(�̃), 8q 2 P .
(6.22)

Consider the following feasible route flow (obtained by moving part of the flow from
C to S):

z⇤(�) =

✓
zS

⇤

(�̃) +
�̃ � �

�̃
zC

⇤

(�̃),
�

�̃
zC

⇤

(�̃)

◆
. (6.23)
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We show that z⇤(�) is an equilibrium route flow when the fleet share is �, i.e.,

zSp
⇤

(�) > 0 )

X

l2L

Alp⌧l(�) 
X

l2L

Alq⌧l(�), 8q 2 P ,

zCp
⇤

(�) > 0 )

X

l2L

Alpµl(�) 
X

l2L

Alqµl(�), 8q 2 P .
(6.24)

We prove each of the above conditions. The first easily follows after noticing that
i) z⇤(�) and z⇤(�̃) induce the same aggregate link flow, i.e., F ⇤

l (�) = F ⇤

l (�̃), so none
of the route travel times has changed, and ii) the set of routes used by vehicles
in class S is the same, i.e., PS(z⇤(�̃)) = P

S(z⇤(�)) (since P
C(z⇤(�̃)) ✓ P

S(z⇤(�̃))
). Hence, the first inequality in (6.22) ensures that all vehicles in class S still use
shortest travel time routes. As for the second condition, similarly, one has to prove
that vehicles in class C still use shortest marginal travel time routes. Because of
the expression of (6.23), one can observe that:

• P
C(z⇤(�)) = P

C(z⇤(�̃)) ✓ P
S(z⇤(�̃));

• for every p 2 P , since the aggregate link flows have not changed, the marginal
travel time is

µp(�) =
X

l2L

Alp

✓
⌧l(�̃) +

�

�̃
fC
l

⇤

(�̃)⌧ 0l (�̃)

◆
,

By multiplying the first inequality in (6.22) by 1 � �/�̃, the second one by �/�̃,
then summing them, one obtains

µp(�) =
X

l2L

Alp

✓
⌧l(�̃) +

�

�̃
fC
l

⇤

(�̃)⌧ 0l (�̃)

◆




X

l2L

Alq

✓
⌧l(�̃) +

�

�̃
fC
l

⇤

(�̃)⌧ 0l (�̃)

◆
= µq(�),

(6.25)

8p 2 P
C(z⇤(�)), 8q 2 P . Hence, every P

C(z⇤(�)) is still a shortest marginal travel
time route. Therefore, z⇤(�) is a equilibrium route flow when the fleet share is equal
to �. The equilibrium link flow associated with z⇤(�) is

f ⇤(�) =

✓
fS⇤

(�̃) +
�̃ � �

�̃
fC⇤

(�̃),
�

�̃
fC⇤

(�̃)

◆
,

which must correspond to the unique equilibrium of the problem.
To conclude, notice that for all � 2 [0, �̃] all links have the same aggregate link

flow. Hence PoA(�) = PoA(0) for all � 2 [0, �̃].

6.4.3 PoA monotonicity for Parallel Networks
In this section, we show that the PoA is non-increasing in the fleet share � under
the following assumptions.

Assumption 6.4. G consists of an OD pair connected by finitely many links directed
from the origin node to the destination node. Again, let � be the fleet share.
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Assumption 6.5. The travel time function ⌧l is convex, 8l 2 L.

Note that Assumption 6.4 pertains to a subclass of parallel networks (see Sec-
tion 2.1), where each route consists of a single link. For simplicity, the following
results are formulated based on this specific subclass. However, these results can
straightforwardly be extended to encompass the entire class of parallel networks.
Briefly, for any parallel network, one can trace back the problem to a network where
each route corresponds to a single link, with the link travel time corresponding to
the route travel time.

The assumption of parallel networks simplifies the analysis as, in that case, the
notion of link and route coincides. Let Li(↵) indicate the set of links used by class
i at the equilibrium f ⇤(↵), i = S,C. The convexity of the travel time functions
instead ensures that ⌧ 0l (Fl) is non-decreasing in Fl. Note that in particular this
implies the following monotonicity property

F̄l > Fl and f̄C
l > fC

l ) µl(f̄l) > µl(fl). (6.26)

Let ⌧(�) and µ(�) indicate the minimum travel time and the minimum marginal
travel time realised at equilibrium when the fleet share is �, respectively. Observe
that, since links and routes coincide, the equilibrium condition implies

l 2 L
S(�) ) ⌧l(F

⇤

l (�)) = ⌧(�),

l 2 L
C(�) ) µl(f

⇤

l (�)) = µ(�).

Proposition 6.3. Let Assumptions 6.2, 6.4 and 6.5 hold. Suppose there exists
�1, �2 2 (0, 1) such that �1 < �2 and L

S(�1) = L
S(�2) and L

C(�1) = L
C(�2). Then,

1. ⌧(�1) � ⌧(�2);

2. µ(�1)  µ(�2);

3. fS
l
⇤
(�1) � fS

l
⇤
(�2), 8l 2 L;

4. fC
l

⇤
(�1)  fC

l
⇤
(�2), 8l 2 L.

Proof. Since L
i(�1) = L

i(�2), i = S, C, let us indicate both as L
i, i = S, C for

convenience. Along with them, consider also the set L
C\S := L

C
\ (LS

\ L
C),

corresponding to the set of links used by class C only. Notice that also this set
remains constant in passing from �1 to �2. Also, since it is used by vehicles of class
C only,

fC
l

⇤

(�i) = F ⇤

l (�i), 8l 2 L
C\S, i = 1, 2. (6.27)

We distinguish two cases: If LC\S = ; the conclusion follows from Theorem 6.1.
We next discuss the case in which L

C\S
6= ;.

1) By contradiction, suppose that ⌧(�1) < ⌧(�2). This implies that the aggregate
link flow increased on all links in L

S, i.e., F ⇤

l (�1) < F ⇤

l (�2), 8l 2 L
S. Now, since

the demand of class S decreased, there must exist a link j 2 L
S such that the link

flow of class S on it decreased, i.e., fS
j
⇤
(�1) > fS

j
⇤
(�2). The latter fact, combined

with the increase of the aggregate link flows on all link in L
S, implies that the link



6.4. Price of Anarchy 99

flow of class C on link j increased, i.e., fC
j

⇤
(�1) < fC

j
⇤
(�2). By (6.26), the increase

of both the aggregate link flow and the link flow of class C on link j implies that
its marginal travel time increased. Hence, µ(�1) < µ(�2).

On the other hand, the fact that the aggregate link flow increased on all links in
L

S implies that the aggregate demand directed toward the set LS increased, which
is equivalent to say that the aggregate demand toward the set L

C\S decreased.
Then, there must be at least one link e 2 L

C\S whose aggregate link flow decreased,
i.e., F ⇤

e (�1) > F ⇤

e (�2). From (6.27), this is equivalent to fC
e

⇤
(�1) > fC

e
⇤
(�2), which

implies that µ(�1) > µ(�2), contradicting what proved above. Therefore, ⌧(�1) �
⌧(�2).

2) From 1), ⌧(�1) � ⌧(�2), which implies that the aggregate link flow on none
of the links in L

S can increase. This implies that the aggregate demand toward L
S

cannot increase, which is equivalent to say that the aggregate demand toward L
C\S

cannot decrease. From (6.27), this means that the demand associated with class C
directed toward L

C\S did not decreased. Hence, there exists e 2 L
C\S such that

fC
e

⇤
(�1)  fC

e
⇤
(�2). Hence, µ(�1)  µ(�2).

3) By contradiction, suppose that 9l 2 L
S
| fS

l
⇤
(�1) < fS

l
⇤
(�2). Since on all

links in L
S the aggregate link flow did not increase (Fl(�1) � Fl(�2)), the above

implies that fC
l

⇤
(�1) > fC

l
⇤
(�2). This implies µ(�1) > µ(�2), contradicting point 2).

4) Suppose that there 9l 2 L
C
| fC⇤

l (�1) > fC⇤

l (�2). By point 3) we also know that
fS⇤
l (�1) � fS⇤

l (�2). Hence Fl(�1) > Fl(�2). By (6.26), this implies µ(�1) > µ(�2),
which contradicts 2).

Remark 6.3. The result above and its proof implicitly assumes that (LS
\L

C) 6= ;.
To see that this is always true, assume by contradiction that (LS

\L
C) = ;. Then,

it follows

8l 2 L
S(�), µl(f

⇤

l (�)) = ⌧l(F
⇤

l (�)) = ⌧(�),

8e 2 L
C(�), µe(f

⇤

e (�)) > ⌧e(F
⇤

e (�)) � ⌧(�),

which is impossible as vehicles in class C at equilibrium must use links of minimal
marginal travel time.

Proposition 6.4. Let Assumptions 6.2, 6.4 and 6.5 hold. Suppose there exists
�1, �2 2 (0, 1) such that �1 < �2 and L

S(�1) = L
S(�2) and L

C(�1) = L
C(�2). Then,

PoA(�1) � PoA(�2).

Proof. First of all, notice that it suffices to consider only the numerator of the PoA
(6.18), as its denominator is constant. Let us indicate the numerator of (6.18) as
T (f ⇤(�)). Now, T (f ⇤(�)) can be written as follows:

T (f ⇤(�)) =
X

l2L

fS
l
⇤

(�) · ⌧l(�) +
X

l2L

fC
l

⇤

(�) · ⌧l(�) =:

:= T S(f ⇤(�)) + TC(f ⇤(�)).
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From 1) of Proposition 6.3,

T S(f ⇤(�2)) =
X

l2L

fS
l
⇤

(�2) · ⌧l(F
⇤

l (�2)) =

= ⌧(�2)
X

l2L

fS
l
⇤

(�2) 

 ⌧(�1)
X

l2L

fS
l
⇤

(�2) =

=
X

l2L

fS
l
⇤

(�2) · ⌧l(F
⇤

l (�1)).

(6.28)

Moreover, because of 3) of Proposition 6.3, one can observe that

fC⇤

(�1) + (fS⇤

(�1)� fS⇤

(�2)) 2 F
C(�2).

Therefore, if one defines ' := fS⇤
(�1)� fS⇤

(�2) � 0:

TC(f ⇤(�2)) =
X

l2L

fC
l

⇤

(�2) · ⌧l(F
⇤

l (�2)) 



X

l2L

(fC
l

⇤

(�1) + ') · ⌧l(F
⇤

l (�1)),
(6.29)

where the inequality follows from the fact fC
l

⇤
(�2) minimizes

P
l2L f

C
l · ⌧l(fS

l
⇤
(�2)+

fC
l ). The proof is concluded after noticing that summing the inequalities (6.28) and

(6.29) one gets

T (f ⇤(�2)) 
X

l2L

(fS
l
⇤

(�1) + fC
l

⇤

(�1)) · ⌧l(F
⇤

l (�1)) =

=
X

l2L

F ⇤

l (�1) · ⌧l(F
⇤

l (�1)) = T (f ⇤(�1)).

Theorem 6.2 (PoA monotonicity). Let Assumptions 6.2, 6.4 and 6.5 hold. PoA(�)
is non-increasing in the fleet share �.

Proof. Proposition 6.2 establishes that the equilibrium link flow f ⇤(�) is a Lipschitz
continuous function of � and Proposition 6.4 ensures that on any interval over which
the support of the two vehicles classes is constant, the flow of links used by class S
can only decrease and that of class C can only increase. Hence it must be that for
any �1 < �2, LS(�2) ✓ L

S(�1) and L
C(�1) ✓ L

C(�2). Since there are a finite number
of links, there are a finite number of points in which the support of either class S or
C changes. Since: i) the PoA is Lipschitz continuous, ii) it is non-increasing with
� for any interval in which the support doesn’t change and iii) the support changes
in a finite number of points, one can conclude that the PoA is non-increasing with
� everywhere.
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Figure 6.3: Example of parallel network. Link labels stand for the link travel times.
We set � = 4. In the bottom row, violet lines refer to the top link, green lines to
the middle link and light-blue lines to the bottom link. Solid lines with circles refer
to the flows of S, while dashed lines to those of class C. The vertical gray dashed
lines identify changes occurring in the support of the vehicle classes as � varies.

6.5 Numerical experiments

Below, we present two examples. The first example aims to illustrate the theoretical
results presented in the preceding section. The second example, on the other hand,
aims to suggest which results can be expected to persist in more general contexts
and which may not.

Example 6.1. Consider the example in Figure 6.3. The plots showcase the evolu-
tion of the PoA(�), the equilibrium link flows f i

l
⇤
(�), l = 1, 2, 3, i = S, C, and the

link travel times ⌧l(�), l = 1, 2, 3, as functions of �, for � varying in [0, 1]. Accord-
ing to Proposition 6.3 and Theorem 6.2, the three plots demonstrate that Price of
Anarchy, the flows associated with class S and the minimum travel time at equilib-
rium are non-increasing in the fleet share �, while the flows associated with class C
are non-decreasing in �. Notice also that, as long as �  �̃ ⇡ 0.25, the support of
C is included in that of S and PoA(�) = PoA(0) for any �  �̃, consistently with
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Figure 6.4: Example of network consisting of seven links and four routes. Link
labels stand for the link travel times. We set � = 3. In the bottom row, blue lines
refer to Route 1, orange lines refer to Route 2, yellow lines refer to Route 3 and
magenta lines to Route 4. Solid circled lines refer to the route flows associated with
class S, while dashed lines to those associated with class C. Finally, the vertical
grey dashed lines identify the changes occurring in the support of the two vehicle
classes as ↵ varies.

Theorem 6.1. Hence this is an example in which a minimum fleet size (�̃) is needed
for affecting the PoA.

Example 6.2. Consider the example in Figure 6.4. The plots depict the behavior of
the PoA(�), the unique equilibrium route flows zip

⇤
(�), p = 1, 2, 3, 4, i = S, C and

the route travel times ⌧p(�), p = 1, . . . , 4, as functions of �, for � varying in [0, 1].
Although not guaranteed in general, in this case uniqueness of the equilibrium route
flow z⇤(�) follows from the uniqueness of the equilibrium link flow f ⇤(�), 8� 2 [0, 1].
This is due to the fact that each route of the network in Figure 6.4 possesses a link
not shared with any other route. This means that the link flow of a class on that
link determines the flow of the class on the corresponding route. Hence, since the
equilibrium link flow is unique, so is the equilibrium route flow. Now, as in the
parallel network case, the PoA, the equilibrium route flows associated with class S
and the minimum route travel time are non-increasing with respect to �. Different
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from parallel networks, we note that in this simulation the route flows associated with
class C are instead not necessarily monotone (see the flow of Route 4). Whether
monotonicity of the PoA can be proven in this more general case remains an open
problem.

6.6 Concluding remarks

This chapter contributes to the understanding of the implications of the presence
of a coordinated fleet of vehicles aiming to minimize the total travel time of that
class on the efficiency of the entire traffic network. The results found, valid for two-
terminal networks, suggest that the presence of such a fleet, when small relative
to the total traffic volume, does not alter the way traffic is distributed across the
network. However, for parallel networks, when the fraction of coordinated vehicles
becomes significant, their coordinated behavior benefits the efficiency of the entire
network.

Future work aims to extending the analysis to more general networks. Initially,
the efforts should target arbitrary two-terminal networks to verify if the observed
benefits hold beyond parallel networks. Further exploration should then encompass
general multi-origin, multi-destination networks to comprehensively understand the
impact of coordinated routing. The extension of the analysis to multi-origin multi-
destination networks appears of crucial importance, considering the existence of
counterexamples in the literature based on this type of networks, where it is shown
that coordinated routing might have negative consequences. This fact emphasizes
the need for further exploration.

However, it is important to consider the broader context. Our findings, along
with most existing literature on coordinated routing, suggest positive effects. For
this reason, we believe that coordinated routing has the potential to be strategi-
cally exploited to improve overall traffic efficiency. Further research that investi-
gates the specific conditions under which coordinated routing leads to unintended
consequences will be crucial for its optimal utilization.

This work also sheds light on how real-world coordinated fleets, like ride-hailing
services, impact traffic efficiency. Interestingly, our findings suggest that the routing
strategies adopted by these services, based on the exploitation of real-time traffic
data, probably is not a significant factor in the observed increase of traffic con-
gestion in urban areas. This increased pressure likely stems from other factors
associated with these services (no passenger traveling, mode shift away from pub-
lic transportation). To improve the model’s ability to reflect real-world situations,
future research will strive to incorporate these factors into the modeling process.

In conclusion, we emphasize that the analysis conducted in this chapter is en-
tirely based on an instance of mixed behavior NRGs presented in Section 2.2.3,
where the traffic state is described exclusively in terms of flows, and the network
links are not characterized by any supply and demand mechanism that define ca-
pacity constraints. Throughout this thesis, we have highlighted the importance of
designing models that account for these constraints, and Chapters 3, 4, and 5 pro-
pose models that address this need. Therefore, a key future extension of the model
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proposed in this chapter is to extend the analysis of coordinated routing to net-
works equipped with supply and demand mechanisms, allowing for a more accurate
assessment of its impact on traffic efficiency.



Conclusion

This thesis delved information-aware routing and its impact on the efficiency of
traffic networks. By extending existing models and theories, we were able to pro-
vide a more comprehensive analysis of how modern technologies and services based
on information-aware routing, such as navigation apps and ride-hailing services,
influence traffic dynamics.

Contributions
The first contribution sheds light on the interplay between selfish routing and the
capacity and volume constraints that define a traffic network. By examining non-
atomic routing games on traffic networks constrained by supply and demand lim-
its—borrowing from Daganzo’s cell transmission model—we demonstrate that in-
dividual drivers, each aiming to minimize their own travel time, can inadvertently
lead to suboptimal network performance. Far from simply increasing congestion,
this selfish behavior causes an unexpected phenomenon: only part of the total traffic
flow can enter the network, while the rest is left stranded at its origin. This critical
inefficiency, one that extends beyond the commonly discussed Price of Anarchy,
shows that self-interested decisions can fundamentally disrupt traffic flow.

Building on this, we turn our attention to the role of navigation apps. In our
second contribution, we extend the idea of partial demand transfer to dynamic traffic
flows, introducing a model that incorporates real-time routing recommendations.
Here, we show that the presence of informed users, guided by these apps to follow
optimal routes, can have a profound impact on traffic efficiency—particularly when
traffic volume is high. When too many users follow apps’ recommendations, the
network is overwhelmed, resulting in patterns of partial demand transfer, where
large portions of the demand go unserved. Despite the hope that navigation apps
could alleviate congestion, our findings suggest that the widespread use of such
tools may not always lead to the efficiency improvements we expect, aligning with
earlier studies on the topic.

We make a third contribution by exploring the impact of delays in the rec-
ommendations provided to informed users, which has not been addressed in the
literature before. We show that excessive delays in traffic information can signif-
icantly compromise the efficiency of the system. We also demonstrate that the
system’s sensitivity to these delays crucially depends on key factors such as the ex-
ogenous flow, the penetration rate of informed users, and their compliance with the
recommendations. Hence, as the presence of informed users increases, the system’s
tolerance to delays diminishes.
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Taken together, these first three contributions shine a light on possible shortcom-
ings of information-aware routing. In fact, our research suggests that the broader
adoption of navigation apps might not bring about the traffic improvements many
expect. Instead, it may simply exacerbate existing inefficiencies, as users blindly
follow their app’s guidance without considering the collective impact on the net-
work.

Building on these insights, we propose few recommendations to mitigate these
unintended consequences. First, app developers should take into account the im-
plications of traffic inefficiencies when designing routing algorithms, ensuring that
recommendations avoid fostering suboptimal traffic patterns. Second, to minimize
the impact of informational delays, navigation apps should prioritize frequent up-
dates to route suggestions, better reflecting real-time conditions. Finally, regulators
can play a pivotal role, encouraging network usage that is consistent with the orig-
inal design principles of transportation planning. This could involve promoting the
use of high-capacity routes for medium- to long-distance travel, while restricting
smaller routes to local traffic accessing urban areas.

In stark contrast to the inefficiencies observed in the uncoordinated, selfish rout-
ing setting, our fourth and final contribution focuses on the benefits of coordinated
fleets of vehicles, where information-aware routing can significantly enhance network
performance. We analyze the impact of these fleets, which use real-time traffic data
to act jointly and minimize their collective travel time, on overall traffic network
efficiency. Our results show that when the fleet is small with respect to the to-
tal traffic volume, its effect on network efficiency is minimal. However, in parallel
networks, when the fleet represents a substantial portion of traffic, the coordinated
behavior of these vehicles can lead to significant improvements in overall network
efficiency.

These findings highlight the potential of coordinated routing as a valuable tool
in developing traffic control strategies to mitigate congestion. Moreover, they sug-
gest that the increased presence of ride-hailing services, which often rely on such
coordination, is unlikely to be a primary cause of urban congestion. Instead, other
factors, such as empty trips and a shift away from public transportation, are more
likely to be at the root of the problem.

Future perspectives

There are several promising directions for expanding and refining the work pre-
sented in this thesis. One primary extension is the generalization of the models
to arbitrary network topologies. The models developed in this work focused on
simplified network structures to maintain analytical tractability and clarity. How-
ever, real-world traffic networks are far more complex, featuring a diverse set of
origin-destination pairs and a large number of intersecting routes. By generalizing
the models to more complex network topologies, we can achieve a more complete
and accurate characterization of the phenomena uncovered here, leading to broader
applicability of the results.

In terms of non-atomic routing games with supply and demand, generalizing the
model to arbitrary topologies will require formalizing it as an optimization prob-
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Figure 6.5: Top-left: Two possible routes connecting the Crolles basin to the Mi-
natec area in Grenoble, France. The violet route represents Grenoble’s ring road,
while the orange route is a common urban itinerary. Top-right: Aimsun model
corresponding to the two itineraries in the top-left map. Bottom: A frame from an
Aimsun microsimulation on the model shown in the top-right picture.

lem, akin to traditional non-atomic routing games. This will involve adapting the
framework to account for supply and demand constraints, taking into consideration
the capacity limits of links and intersections. For dynamic models with supply and
demand, the challenges are even more pronounced. As real-time information and
routing recommendations are incorporated, the dynamics of traffic flow become in-
creasingly complex. Existing conventional techniques for stability analysis—such
as those used in static traffic models—are not always applicable in this dynamic
setting. Therefore, novel approaches are needed to investigate the stability of these
dynamic systems.

Once these more general and dynamic models are developed, a crucial avenue
of investigation will be understanding how the introduction of capacity constraints
alters our understanding of network routing problems. Traditional models, which
often overlook or simplify capacity limitations, will benefit from incorporating more
realistic constraints derived from supply and demand dynamics. These constraints
can fundamentally shift how we approach traffic management, especially in systems
with self-interested users. Various mechanisms, such as tolling, incentives, and
information design, have been explored in the literature to address inefficiencies
in such networks. It is essential to evaluate whether these existing tools remain
effective when applied to networks constrained by supply and demand, or whether
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they need to be adapted to the more complex reality of modern traffic systems.
Furthermore, validation of the dynamic models introduced in Chapters 4 and 5

through microscopic traffic simulations is crucial to ensure the accuracy and appli-
cability of the theoretical results. These simulations, conducted in micro-simulation
platforms like Aimsun [91], will incorporate realistic network structures, traffic dy-
namics, and user behavior models. By experimenting with diverse network configu-
rations and traffic scenarios, we can refine and corroborate the theoretical findings,
identifying potential gaps and improving the models accordingly. Though valida-
tion efforts are still underway, this process is vital for enhancing confidence in the
models and ensuring they provide meaningful insights for real-world traffic systems.

Finally, the study of coordinated routing offers significant potential for further
research, especially in the context of fleet-based transportation systems. Coordi-
nated routing could be instrumental in designing traffic control strategies that op-
timize network efficiency, particularly in systems involving fleets of vehicles such as
ride-hailing services or delivery networks. Understanding the impact of coordinated
routing in general network topologies and across multiple fleets will be essential for
evaluating its potential as a tool for congestion management and traffic optimiza-
tion. In the longer term, these studies could lead to novel approaches to traffic
control.



Appendix A

Proof of Theorems

A.1 Proof of Theorem 4.1
Theorem 4.1 is proved by exploiting the following result, based on monotonicity.
Although it was originally stated in [92, Lemma 3] in terms of the semiflow notion,
we are going to state it for differential equation systems.

Lemma A.1 (Monotonicity and stability). Consider a globally Lipschitz system
ẏ = h(y) with h : D ! Rd and D ⇢ Rd. Suppose that:

• the system is monotone on D;

• the system admits a unique equilibrium y⇤ in D;

• every trajectory of the system has a compact closure.

• every neighborhood N of every point x 2 D contains a compact and order
convex neighborhood of x, 9p, q 2 N such that {u 2 D : pi  ui  qi, 8i} ✓

N .

Then, the equilibrium y⇤ is globally asymptotically stable.

In order to apply Lemma A.1 to (4.4), we need to verify the four conditions
above. The third point is straightforward, after observing that ⌦ is compact. In
the remainder of this section, we shall prove the three remaining points.

A.1.1 Monotonicity

We consider the extension of system (4.4) to the whole positive orthant R2
�0 and we

shall prove the stronger property that the extension of (4.4) is a monotone system.
To this end, we first show that it satisfies the so called K-condition. System (4.4)
is said to satisfy the K-condition if, given a, b 2 R2

�0 such that a  b, where
the inequality is meant component-wise, and ai = bi, then ⌃i(b) � ⌃i(a). To
verify the K-condition, notice that also for the extended systems we can identify
the same system modes ⌃M1-M2 according to (4.4), with the only difference that
the corresponding regions ⌦M1-M2 can be unbounded and their union covers R2

�0
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Figure A.1: The K-condition can be easily verified, given a pair of points u and v,
considering only one of the two routes.

(the corresponding regions for the original system being their restrictions to ⌦. )
In particular, Assumption 4.2 guarantess that the jacobian matrices JM1-M2 are
Metzler. Then, K-condition holds inside every region ⌦M1-M2 . The K-condition
holds across different regions. To see this, consider p, q 2 R2

�0 such that p1 =
q1, p2 < q2 and p and q belong to different mode regions. We need to prove that
⌃1(p)  ⌃1(q). From Figure A.1, one can see that we only need to compare points
belonging to regions such that p 2 ⌦

SF-M2 , q 2 ⌦UF-M2 , or p 2 ⌦
SC-M2 , q 2 ⌦UC-M2 .

• p 2 R
SF-M2 , q 2 ⌦UF-M2 :

⌃1(p) =
�R1(⌧)� v1p1

L1


f 1 � v1q1
L1

= ⌃1(q);

• p 2 ⌦
SC-M2 , q 2 ⌦UC-M2 :

⌃1(p) =
�R1(⌧)� f 1

L1


w1(x1 � p1)� f 1

L1
= ⌃1(q);

The inequalities above follow from the route mode’s definition and by symmetry
they also apply to Route 2, i.e., to the case in which p, q 2 R2

�0 such that p1 <
q1, p2 = q2, then we get that (4.4) satisfies to the K-condition.

We now prove that system (4.4) is monotone. Let us take u, w 2 R2
�0 such that

u  w. Let us take � > 0 and define ⌃�(x) := ⌃(x) + �p, where p > 0. Let y�(t) be
the solution to the Cauchy problem

(
ẏ�(t) = ⌃�(y�(t))

y�(0) = w + �p,

and let x(t, u) be the solution to (4.4) with initial condition x(0) = u. Notice that
since ⌃�(x) is Lipschitz, existence and uniqueness of y�(t) are guaranteed. Clearly,
x(0) < y�(0). Our claim is that x(t, u) < y�(t), 8t � 0. By contradiction, suppose
that there exist ⌧ > 0 and i such that

x(⌧, u)  y�(⌧), xi(⌧, u) = (y�(⌧))i,
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for some l, and x(s, u) < y�(s), 8s < ⌧ . Then, it must hold that ẋl(⌧, u) � (ẏ�(⌧))l,
which is equivalent to

⌃l(x(⌧, u)) � (⌃�)l(y�(⌧)) = ⌃l(y�(⌧)) + �pl.

This is absurd, since (4.4) satisfies to the K-condition, which implies that

⌃l(x(⌧, u))  (⌃�)l(y�(⌧)) = ⌃l(y�(⌧)) + �pl.

Hence, x(t, u) < y�(t), 8t � 0, is proved. Finally, observe that, since ⌃ and ⌃�

are Lipschitz continuous, by letting � ! 0, the continuous dependence from initial
conditions ensures that x(t, u)  x(t, w), 8t � 0. We conclude by noting that the
monotonicity property that we proved also holds true also for (4.4) restricted to ⌦,
since ⌦ is an invariant set.

A.1.2 Uniqueness of equilibrium
Since P is globally attractive, no equilibrium is contained in Q. This implies that
the equilibria of (4.4) are contained in P . Hence, we can limit ourselves to only
consider the system modes contained in P :

⌃SF-SF =

(
ẋ1 = �R1(⌧(x))� v1x1

ẋ2 = �R2(⌧(x))� v2x2

(A.1)

⌃UF-SF =

(
ẋ1 = f 1 � v1x1

ẋ2 = �R2(⌧(x))� v2x2

(A.2)

⌃SF-UF =

(
ẋ1 = �R1(⌧(x))� v1x1

ẋ2 = f 2 � v2x2

(A.3)

The equilibria of system (4.4) must coincide with the set of active equilibria of the
sub-systems above, where by active we mean that, if x⌃M1-M2 is an equilibrium of
⌃M1-M2 , x⌃M1-M2

2 ⌦
M1-M2 . We prove that the equilibrium of (4.4) is unique by

showing that each of the above sub-systems admits a unique equilibrium and only
one among them is active.

Consider the following sets:

 l = {x 2 ⌦ : �Rl(⌧(x))� vlxl = 0}, l = 1, 2,

✏l = {x 2 ⌦ : �Rl(⌧(x))� f l = 0}, l = 1, 2.
(A.4)

Sets  1,  2 are always nonempty. In fact, consider x 2 ⌦ and notice that x 2  l

if and only if xl = �Rl(⌧(x)))/vl. Since Rl(⌧(x)) is strictly decreasing in xl by
Assumption 4.2, one can observe that for each xk 2 [0, xk], there exists a unique
xl 2 [0, xl] satisfying to the above equality. The fact that xl 2 [0, xl] is guaranteed
by Assumption 4.3. This proves that  l 6= ;, l = 1, 2. As for sets ✏1, ✏2, from (4.6)
we have

rl(x) =
1

↵

✓
f l

�
� (1� ↵)r0l

◆
, l = 1, 2.
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Since 0  rl(x)  1, 8x 2 ⌦, l = 1, 2, in order to have ✏l 6= ;, it must be that

(1� ↵)�r0l  f l  (1� ↵)�r0l + ↵�.

Now, since routing ratios are assumed to be C1 in ⌦ and strictly monotone by
Assumption 4.2, when the sets above are nonempty, the implicit function theorem
guarantees the existence of functions between the variables x1 and x2 making explicit
each of the implicit relations in (A.4). Let the following be the functions associated
to relations (A.4):

x2 :=  ̃1(x1), x2 :=  ̃2(x1),

x2 := ✏̃1(x1), x2 := ✏̃2(x1).
(A.5)

Then, sets in (A.4) are the graphs of functions (A.5). The implicit function theorem
and Assumption 4.2 also ensure that they are strictly increasing in x1:

 ̃0

1(x1) = �

@
@x1

(�R1(⌧(x)� v1x1)
@

@x2
(�R1(⌧(x))� v1x1)

=
v1 �

@R1(⌧(x))
@x1

@R1(⌧(x))
@x2

> 0,

 ̃0

2(x1) = �

@
@x1

(�R2(⌧(x)� v2x2)
@

@x2
(�R2(⌧(x))� v2x2)

=
@R2(⌧(x))

@x1

v2 �
@R2(⌧(x))

@x2

> 0,

and

✏̃0l(xl) = �

@
@x1

(�Rl(⌧(x))� f l)
@

@x2
(�Rl(⌧(x))� f l)

= �

@Rl(⌧(x))
@x1

@Rl(⌧(x))
@x2

> 0,

for l = 1, 2.
We now show that each sub-system in P admits a unique equilibrium point.

First of all, observe that the image of  ̃1(x1) is the whole [0, x2], since, for each
x2 2 [0, x2], the map x1 = �R1(⌧1(x1), ⌧2(x2))/v1 always admits a unique fixed point
in [0, x1]. Analogously,  ̃2(x1) is defined over the whole interval [0, x1], since, for
each x1 2 [0, x1], the map x2 = �R1(⌧1(x1), ⌧2(x2))/v2 always admits a unique fixed
point [0, x2]. This, combined with the fact that both functions are strictly increasing
in x1, implies that  ̃1(x1) and  ̃2(x1) intersect lines {x2 = xc

2} and{x1 = xc
1} in one

and only one point inside ⌦, respectively. These two points correspond to the unique
equilibria of systems ⌃SF-UF, ⌃UF-SF, namely x⌃SF-UF , x⌃UF-SF .

Now, from above, it follows that the functions  ̃1(x1) and  ̃2(x1) admit two
points of the form (x1, 0), (0, x2) satisfying to their equations, respectively. More-
over, we have that

 ̃0

2(x1)�  ̃0

1(x1) = �
v1v2 +

P
l 6=k vl

@Rk(x)
@xl

@R1(⌧(x))
@x2

⇣
v2 +

@R1(⌧(x))
@x2

⌘

 �
v1v2

K(v2 +K)
< 0.

The combination of these two facts implies that there exist a unique point in ⌦
such that  ̃1(x1) =  ̃2(x1), which corresponds to the unique equilibrium point of
sub-system ⌃SF-SF, namely x⌃SF-SF .



113 A.1. Proof of Theorem 4.1

Finally, we prove one and only one among x⌃SF-SF , x⌃UF-SF , x⌃SF-UF is active.
Before proceeding, let us point out some facts. First of all, observe that when ✏1
and ✏2 are non empty, the graph of the their functions ✏̃1(x1), ✏̃2(x1) split the state
space into two separate regions:

E+
l := {x 2 ⌦ : �Rl(⌧(x))� f l > 0},

E�

l := {x 2 ⌦ : �Rl(⌧(x))� f l < 0},

l = 1, 2. Regions E+
1 and E+

2 are those where there is unsatisfied demand on route
1 and 2, respectively. One can see that E+

1 and E�

1 stand above and below the
graph of ✏̃1(x1), respectively, whereas E+

2 and E�

2 stand below and above the graph
of ✏̃2(x2), respectively. Observe that the following identities hold:

⌦SF-SF = E�

1 \ E�

2 \ P, ⌦UF-SF = E+
1 \ E�

2 \ P ,

⌦SF-UF = E�

1 \ E+
2 \ P .

Assumptions 4.1 and 4.2 ensure that ✏̃1(x1) > ✏̃2(x1), 8x 2 ⌦ when both functions
are defined, and ✏̃1(x1) �  ̃1(x1), x1  xc

1, ✏̃2(x1)   ̃2(x1), x2  xc
2, where

the equality holds if and only if x1 = xc
1 and x2 = xc

2, respectively. Also, recall
that  ̃2(x1) �  ̃1(x1), x1 

�
xSF-SF

�
1
, where the equality holds if and only if

x1 =
�
xSF-SF

�
1
, and  ̃2(x1) <  ̃1(x1), x1 >

�
xSF-SF

�
1
. We are going to distinguish

two different cases.
Case 1: x⌃SF-SF

2 P . In order for x⌃SF-SF to be active, it must hold that
x⌃SF-SF

2 ⌦SF-SF. This leads to two distinct sub-cases.

• Sub-case 1: ✏1, ✏2 are both empty.
From Assumption 4.1, ✏1, ✏2 are both empty if and only f l � ↵� + (1 �

↵)�r0l , l = 1, 2. Hence, unsatisfied demand cannot arise on either route inside
⌦. Thus, P ⌘ ⌦

SF-SF. The latter implies that neither x⌃UF-SF nor x⌃SF-UF can
be active, hence x⇤

⌘ x⌃SF-SF .

• Sub-case 2: at least one among ✏1, ✏2 is non empty.
In this case, region P undergoes a partition. Nevertheless, the fact that
✏̃1(x1) > ✏̃2(x1), ✏̃1(x1) �  ̃1(x1), ✏̃2(x1)   ̃2(x1) ensures that ⌦SF-SF is non-
empty and that x⌃SF-SF

2 ⌦SF-SF. Thus, x⇤
⌘ x⌃SF-SF . As for x⌃UF-SF , it

cannot be active, since the intersection between the graph of  ̃2(x1) and the
line {x1 = xc

1} occurs below the graph of ✏̃1(x1). The latter follows from
 ̃2(x1)   ̃1(x1), x1 >

�
xSF-SF

�
1
. Analogously, x⌃SF-UF cannot be active.

Case 2: x⌃SF-SF
/2 P . First of all, notice that if x⌃SF-SF

/2 P , then it is not active
and either x⌃SF-SF

2 {x1 > xc
1, x2  xc

2} or x⌃SF-SF
2 {x1  xc

1, x2 > xc
2}. Indeed,

if x⌃SF-SF
2 {x1 > xc

1, x2 > xc
2}, then �Rl(⌧(x⌃SF-SF

)) = vl(x⌃SF-SF
)l > f l, l = 1, 2,

contradicting Assumption 4.1. Suppose then that x⌃SF-SF
2 {x1 > xc

1, x2  xc
2}.

Then, it must be that  ̃2(xc
1) >  ̃1(xc

1) and  ̃2(xc
1)  xc

2. Moreover, ✏̃1(xc
1) =  ̃1(xc

1).
Thus, x⌃UF-SF

2 ⌦UF-SF. Finally, observe that, again, since  ̃2(xc
1) >  ̃1(xc

1) and
 ̃2(xc

1)  xc
2,  ̃1(x1) cannot intersect the line {x2 = xc

2} inside P , i.e, x⌃SF-UF is
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not active. One can repeat the same process in the case in which x⌃SF-SF
2 {x1 

xc
1, x2 > xc

2}. In this case, x⌃SF-UF is the only active equilibrium point.
To conclude, it might be that x⌃SF-SF coincides with x⌃UF-SF or x⌃SF-UF . One can

verify that this only happens when x⌃SF-SF
2 ✏1 and x⌃SF-SF

2 ✏2, respectively. In
this case, the two coinciding equilibria represent the unique equilibrium x of the
system .

A.1.3 Order convex neighborhoods

Take N = {x 2 ⌦ : |x � x| < r} = {x 2 R2 : |x � x| < r} \ ⌦, r > 0. By taking
p, q 2 N such that x 2 [p, q], it is straightforward that [p, q] ⇢ N .

A.2 Proof of Lemma 5.1

First of all, observe that (5.16) ensures that �CF and �FC are well-defined. Then,
one can verify that the first condition of Assumption 5.2 is equivalent to �FC <
0 < �CF . Once � is fixed, one can define a family of functions {x↵j ,⌘k},↵j >
max{↵1,↵2}, ⌘k > 0 and observe that all functions in this family attain the same
value  at � = 0, where

 :=
�

L

✓
a2
x2

�

✓
a1
x1

+
a2
x2

◆
r01

◆
.

It holds that  > 0 when the first inequality in (5.20) holds, whereas  < 0 when
the second does. As pointed out in the proof of Proposition 5.2, the equilibrium
point of (5.8) satisfies to �⇤ = Lx(�⇤)/v, i.e., it is the value of � at which Lx(�⇤)/v
and the identity line intersect. Define �⇤↵j ,⌘k

as the equilibrium point associated to
the function x↵j ,⌘k . Suppose that (5.20) holds, so that  > 0 and, as one can verify,
�CF := x(�CF ) < 0. Since neither �CF nor  depend on ↵ and ⌘, it follows that
0 < �⇤↵j ,⌘k

< �CF , for all ↵j 2 (max{↵1,↵2}, 1], ⌘k > 0. The proof is complete after
observing that we can apply the same process when (5.20) holds, so that  < 0 and
�FC := x(�CF ) > 0.

A.3 Proof of Lemma 5.2

The second inequality is trivial, since K is the Lipschitz constant of g(�). For the
first inequality, if we define U1(�) := R1(�)� (1� ↵)r01, then

g0(�) = �
↵�

⌘L

✓
a1
x1

+
a2
x2

◆
U1(1� U1), g00(�) =

x0(1� 2U1)

⌘
.

We see that |g0(�)| increases for U1(�) 2 (0, 1/2) and decreases for U1(�) 2 (1/2, 1),
i.e., |g0(�)| increases for � < U�1

1 (1/2) = ⌘ log(r02/r
0
1) and decreases for � > U�1

1 (1/2),
where U�1

1 is the inverse of U1(�). From (5.19), |g0(�⇤)| is greater than at least one
between |g0(�CF )| and |g0(�FC)|.
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Résumé — Les systèmes de transport jouent un rôle central dans la vie ur-
baine, structurant les déplacements de personnes et de marchandises, stimulant la
croissance économique et influençant la durabilité et l’équité sociale. Les innovations
récentes, telles que les applications de navigation, les services de covoiturage et les
systèmes de gestion intelligente du trafic, ont profondément modifié le comporte-
ment des usagers et les dynamiques de circulation. Ces technologies promettent
une optimisation en temps réel, mais introduisent également des complexités et
des inefficacités. Cette thèse analyse leurs effets sur l’efficacité du trafic à l’aide
de modèles de réseaux de trafic et de la théorie des jeux, mettant en lumière à la
fois leurs avantages et potentiels inconvénients. La première partie de cette thèse
examine l’impact des usagers des applications de navigation qui suivent des recom-
mandations visant à minimiser leur temps de trajet. Nous commençons par définir
et analyser un jeu de routage non atomique intégrant des contraintes de capacité
routière. Ce cadre amélioré montre que le routage basé sur la minimisation des
temps de trajet peut conduire à des configurations de trafic sous-optimales, carac-
térisées par le phénomène de transfert partiel de la demande, où seule une partie
de la demande totale de trafic peut être efficacement prise en charge par le réseau.
En nous appuyant sur ce modèle statique, nous étendons l’analyse à un modèle
dynamique de flux de réseau, prenant explicitement en compte à la fois les usagers
bénéficiant des recommandations en temps réel des applications de navigation et
ceux qui n’en bénéficient pas. L’analyse de stabilité de ce modèle dynamique établit
un lien direct entre la proportion d’usagers informés, la demande totale de trafic
et l’émergence du transfert partiel de la demande. Plus précisément, les résultats
montrent que l’augmentation du taux de pénétration des usagers informés et de
la demande globale accroît la probabilité de ce phénomène. Dans ce cadre dy-
namique, nous explorons également l’impact des délais dans les recommandations
de routage fournies par les applications de navigation. En examinant l’interaction
entre les délais, la demande de trafic et le taux de pénétration des usagers infor-
més, nous montrons comment ces facteurs influencent collectivement la stabilité et
l’efficacité du système de trafic. Les résultats révèlent que, dans des conditions de
forte demande et d’utilisation généralisée des applications, des délais suffisamment
importants peuvent aggraver les inefficacités, entraînant un transfert partiel de la
demande et une dégradation des performances globales du réseau. La deuxième par-
tie se concentre sur le rôle des flottes de véhicules coordonnées dans les services de
mobilité moderne, tels que les services de covoiturage. À l’aide de jeux de routage à
comportements mixtes, cette partie analyse comment des flottes coordonnant leurs
trajets pour minimiser leur temps de trajet moyen interagissent avec des usagers
individuels optimisant leurs propres trajets. Les résultats montrent que les petites
flottes ont une influence minimale sur la distribution globale du trafic, tandis que
les grandes flottes peuvent améliorer l’efficacité du réseau, ce qui suggère que le
routage coordonné constitue une piste prometteuse pour les stratégies de gestion
du trafic.

Mots clés : Réseaux de transport, systèmes de transport intelligents, théorie
des jeux, flux dynamiques sur réseaux.



Abstract — Transportation systems are central to urban life, shaping the move-
ment of people and goods, driving economic growth, and influencing sustainabil-
ity and social equity. Recent innovations, including navigation apps, ride-hailing
services, and smart traffic management systems, have profoundly impacted user
behavior and traffic patterns. These technologies promise real-time optimization
but also introduce complexities and inefficiencies. This thesis analyzes their ef-
fects on traffic efficiency using traffic network models and game theory, highlighting
both potential benefits and drawbacks. The first part of this thesis investigates the
impact of navigation app users who follow recommendations aimed at minimizing
travel time. We begin by defining and analyzing a nonatomic routing game that
incorporates road capacity constraints. This refined framework reveals that routing
based on travel time minimization can result in suboptimal traffic configurations,
marked by the phenomenon of partial demand transfer, where only a portion of the
total traffic demand can be accommodated by the network. Building on this static
model, we extend the analysis to a dynamic network flow model, explicitly account-
ing for both users who benefit from real-time navigation app recommendations and
those who do not. The stability analysis of this dynamic model establishes a direct
link between the proportion of informed users, the overall traffic demand, and the
emergence of partial demand transfer. Specifically, the results demonstrate that as
the penetration rate of informed users and the total traffic demand increase, the
likelihood of this phenomenon also rises. Within this dynamical framework, we
further explore the impact of delays in the routing recommendations provided by
navigation apps. By examining the interplay between delays, traffic demand, and
the penetration rate of informed users, we reveal how these factors collectively af-
fect the stability and efficiency of the traffic system. The findings show that under
conditions of high demand and widespread app usage, sufficiently large delays can
exacerbate inefficiencies, leading to partial demand transfer and reduced overall net-
work performance. The second part focuses on the role of coordinated vehicle fleets
in modern mobility services like ride-hailing. Using mixed-behavior routing games,
it analyzes how fleets coordinating to minimize their average travel time interact
with individual users optimizing their own routes. The findings show that small
fleets have minimal influence on overall traffic, but larger fleets can enhance net-
work efficiency, suggesting that coordinated routing holds promise for traffic control
strategies.

Keywords: Transportation networks, intelligent transportation systems, game
theory, dynamical network flows.
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