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Abstract

Vital to human life, healthcare remains costly, administered by a complex and insular
apparatus, and often out of reach formany. However, the omnipresent and technologically
advanced smartphones offer a transformative opportunity. They can now place advanced
diagnosing and healthmonitoring capabilities in people’s hands, marking a paradigm shift
in healthcare. By leveraging the capabilities and widespread use of smartphones, we en-
vision two disruptive roles for the healthcare system. First, smartphone-based solutions
can enable continuous health monitoring, reducing the reliance on individual subjective
experiences to detect anomalies. Second, the smartphone provides an ideal platform for
developing low-cost medical technologies, making healthcare more accessible, especially
in regions with limited infrastructure.

The field of research known as "mobile health" (mHealth) comes closest to our vi-
sion. It involves using connected mobile devices to provide health-related services, such
as measuring vital signs, conducting screening exams, and performing tests on samples,
previously carried out only in laboratories settings. However, despite significant enthu-
siasm from the community over the past decade, existing solutions fall short of realizing
our aspirations. Many rely on expensive hardware, intricate configurations and protocols,
or demand specialized expertise, hindering widespread adoption, especially by untrained
individuals with limited resources outside laboratory settings.

Against this background, in this thesis we introduce a methodology that combines
well-establishedmathematical principles describing natural phenomena, signal and image
processing techniques, and machine learning algorithms within a data-driven design fra-
mework. The objective is to foster the development of mobile health (mHealth) sys-
tems that can deliver on our vision. We demonstrate this methodology through three
smartphone-based solutions – SmartPhOx, BandS-Spi, Droplets– each enabling either the
measurement of a vital sign (blood oxygen level), the performance of a medical examina-
tion (spirometry), or the easy testing of a liquid sample.

Specifically, SmartPhOx introduces a pure camera-and-flashlight smartphone-based
pulse oximetry oximetry system, founded on the principles of the Beer-Lambert law,
meeting the accuracy threshold required for FDA clearance. BandS-Spi builds upon the
Boyle–Mariotte law and enables a user to conduct spirometry tests using a smartphone
and an inflatable balloon. The accuracy achieved is comparable to that of tests performed
in the presence of a clinician equipped with specialized equipment. Lastly, Droplets, dra-
wing on the Young-Laplace equation, offers a solution for analyzing a liquid using a single
droplet. Its accuracy allows for the detection of protein level variations in urine enabling
the identification of suspected cases of proteinuria using the camera of any smartphone.

Keywords : Mobile Health, mHealth, Pervasive Healthcare, Continuous
Healthcare, Humane-Centered Computing, Mobile Computing.
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Résumé

Les avancées de la médecine au cours de ces dernières décennies ont conduit à un sys-
tème de santé toujours plus spécialisé et cloisonné. L’accès aux soins, quoi que fondamen-
tal pour la vie humaine, est souvent complexe voire hors de portée pour de nombreuses
personnes. Paradoxalement, l’utilisation de smartphones aux technologies de plus en plus
avancées s’est au contraire très largement démocratisée. Leurs capteurs toujours plus va-
riés et leur puissance nous incitent à imaginer deux changements de paradigme dans le
suivi médical. D’une part des solutions fondées sur les smartphones peuvent permettre
une surveillance continue de la santé, réduisant les biais induits par le caractère subjectif
de l’expérience individuelle dans la détection des symptômes. D’autre part le smartphone
constitue une plateforme idéale pour développer des technologies médicales à faible coût,
rendant les soins plus accessibles, en particulier dans les régions où les infrastructures
sont limitées.

Cette vision s’insère dans le domaine de recherche de la "santé mobile" (mHealth) qui
vise à utiliser des appareils mobiles connectés pour fournir des services liés à la santé
tels que la mesure des signes vitaux, des examens de dépistage ou des analyses d’échan-
tillons, auparavant effectués uniquement en laboratoire. Pourtant, malgré l’enthousiasme
de la communauté scientifique, les résultats ne sont pas à la hauteur des attentes. De nom-
breuses solutions reposent en effet sur du matériel coûteux ou des protocoles complexes,
ou encore exigent une expertise spécialisée, ce qui entrave leur adoption à grande échelle.

Dans ce contexte, nous introduisons dans cette thèse une méthodologie qui com-
bine des principes mathématiques bien établis décrivant des phénomènes naturels, des
techniques de traitement des signaux et des images, et des algorithmes d’apprentissage
automatique. Notre objectif est de développer des systèmes de santé mobile (mHealth)
conformes à notre vision. Nous appliquons cette méthodologie au travers de la concep-
tion de trois applications pour smartphone : SmartPhOx, BandS-Spi et Droplets. Elles per-
mettent respectivement la mesure d’un signal vital (le niveau d’oxygène dans le sang), la
réalisation d’un examen (spirométrie) et l’analyse simple d’un échantillon de liquide.

Plus précisément, SmartPhOx propose un système d’oxymétrie fondé sur l’appareil
photo et le flash du téléphone, en s’appuyant sur la loi de Beer-Lambert. Ce système at-
teint le seuil de précision requis pour obtenir l’autorisation de la FDA. BandS-Spi s’appuie
sur la loi de Boyle-Mariotte et permet à un utilisateur de réaliser des tests de spirométrie
à l’aide d’un smartphone et d’un ballon gonflable. La précision obtenue est comparable
à celle des tests effectués sous le contrôle d’un clinicien, équipé d’un matériel spécia-
lisé.Enfin, Droplets, s’appuyant sur l’équation de Young-Laplace, offre une solution pour
analyser un liquide à partir d’une seule gouttelette. Sa précision permet de détecter les va-
riations du taux de protéines dans l’urine, rendant possible l’identification de cas suspects
de protéinurie à l’aide de l’appareil photo de n’importe quel smartphone.

Mots clés : Santé Mobile, Informatique Ubiquitaire, Informatique Centrée
sur l’Homme, Soins de Santé en Continue, Santé ubiquitaire.
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Introduction

"... A vast majority of Covid pneumonia patients I met had remarkably low oxygen satu-
rations at triage — seemingly incompatible with life — but they were using their cellphones
as we put them on monitors." 1

What if their cellphones could have measured their oxygen saturation, how many of
these patients would have avoided intubation?

...more broadly, what if the very cellphone already owned could serve as medical de-
vice, how easily human being would have access to healthcare?

1.1 Evolution of the health care system

The healthcare system has greatly evolved over time in many ways. We have come a
long way from trial-and-error medicine in the Middle Ages to a well-organized journey in
our current era, starting with the patient feelling ill, visiting the doctor. With the aid of
scientific knowledge and technical tools at their disposal, the doctor examines the patient,
makes a diagnosis, and provides treatment using appropriate equipments. Almost every
phase of the healthcare process has seen significant improvements thanks to technology.

— Previously, diagnoses were mainly based on the doctor’s observation and interpre-
tation of symptoms. Nowadays, diagnoses rely on advanced technologies such as
magnetic resonance imaging, computed tomography scans, or genetic tests.

— In the past, patient monitoring required the doctor to visit the patient’s home. To-
day, we are witnessing the rise of remote monitoring, based on portable medical
devices designed for home use and the democratization of communication techno-
logies.

— The same goes for medical equipment. Before the 18th century, surgeons used stone
knives for incisions during surgery and a hot iron to burn tissues to seal blood
vessels or remove tumors. Nowadays, we use more modern tools such as stainless
steel scalpels and electric scalpels.

Nevertheless, the starting point of the healthcare system is the only aspect that has
not witnessed any improvement ever. In simpler terms, patients are still responsible for
detecting any health anomalies to kickstart their healthcare journey.

Unfortunately, patients may not always realize they are ill or may notice it late. A
notable example is the cases of silent hypoxia during the COVID-19 pandemic [1]. Some
patients with COVID-19 were found to have severe hypoxia – abnormally low blood oxy-
gen levels – when they arrived at the hospital. Unlike other respiratory distress situations
where the drop in blood oxygen levels alarms the patient and triggers healthcare interven-
tion, COVID-19-induced hypoxia often goes unnoticed. As a result, patients arrive at the

1. https ://www.nytimes.com/2020/04/20/opinion/sunday/coronavirus-testing-pneumonia.html



2 Chapter 1. Introduction

emergency unit much later and in a more severe state, requiring intensive care. This issue
is illustrated in anecdotal comments reported by a doctor in a New York Times article1.
From a bigger perspective, tardy disease detection is estimated to be one of the leading
causes of death worldwide [2-5], presenting a significant challenge in our society.

The question that naturally arises, when reading this doctor’s comment, iswhat would
have happened to this patient if the very smartphone she was using was capable of detecting
the deterioration of her health condition?

1.2 The Evolution of Smartphones : Shaping Our Everyday
Lives

The smartphone is an advanced and innovative instrument that has transformed our
lifestyles. It has come a long way, assuming increasingly pivotal roles in our lives and
showing no signs of slowing down.

1.2.1 From phone to mobile phone

It all began with the invention of the telephone by Graham Bell in 1876, revolutioni-
zing long-distance communication. In 1973, Motorola took a step further towards acces-
sibility by introducing the first portable phone, the Motorola DynaTAC 8000X. Weighing
nearly 800 grams, measuring 25 cm, and priced around 4000 USD, it was initially reserved
for cars and professionals. However, advancements in technology led to its miniaturiza-
tion and subsequent democratization, with ownership rates skyrocketing from 4% to 47%
among the French population between 1997 and 2000. By 2019, an astonishing 95% of the
population owned a mobile phone [6], marking the beginning of the democratization of
telecommunications in our contemporary era.

1.2.2 From Mobile Phone to Smartphones : A Revolutionary Leap

« Today Apple is going to reinvent the phone... » 2

Thanks to the great technological advances of the last few decades, notably the in-
vention of computers and the development of networks, mobile phones are becoming
multitasking. Functions such as messaging, media handling introduced in 2003 with the
BlackBerry Quark [7], and even photography, initiated in 1999 with the introduction of
the camera in the device for the first time, are appearing. What marked a major turning
point in the explosion of services offered by the device was the re-introduction 3 of the
touchscreen and the first sensors (Gyroscope sensor), launched by Apple in 2007 with
the IPhone2. Since then, more and more sensors have been integrated by manufacturers,
around which algorithms are designed to offer various services. Their appellation has
changed to "smart phone" or a smartphone for simplicity 4. They combine the functions

2. Steve Jobs, introducing iPhone in 2007.
3. The first mobile phone with a touchscreen was the IBM SImons, appeared in 1992.
4. We will use both terms interchangeably throughout the document.
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Figure 1.1 – An overview of smartphone use today.

of a computer, by embedding computing power and providing internet access, and that
of a phone, with calls and messaging, which explains their widespread adoption among
world population. For instance, in 2019, there is 6.25 billion smartphone users, which is
79.34% of the world’s population [6]. The observation is the same when we focus on de-
veloping countries. In Africa, for example, the penetration rate was 30% in 2016 and was
predicted to almost double in 2020 [8]. Thanks to their network connectivity, they allow
users easy access to information. Through their computing power, they make diverse ap-
plications requiring complex calculations accessible to the user. It can be said that today,
thanks to the smartphone, we are witnessing to both democratization of information and
processing capability.

Based on its hardware, the services offered by the smartphone nowadays can be grou-
ped as follows :

1. Communication : Applications facilitating messaging, calls, and internet connec-
tivity have transformed how we access information, use social networks, and stay
connected with friends, family, and colleagues.

2. Organization and Productivity : Equipped with calendars, alarms, reminders, and
productivity applications like office suites and project management tools, smartphones
assist users in planning and optimizing their daily activities.

3. Entertainment : Gaming, music, video streaming, and reading applications offer di-
verse sources of entertainment on smartphones.

Health and well-being More recently, there has been particular enthusiasm for the
use of smartphones for health-related purposes. While the earliest of these applications
focused on wellness (meditation, nutrition, physical activity monitoring, etc.), a lot of
work is being done today in the scientific community, on the development of purely me-
dical solutions based on the sensors and computing power of the smartphone, once again
expanding the types of services offered by the device[9-13]. This trend is also expressed
by smartphone manufacturers, since some early smartphones already incorporate sensors
for purely medical purposes, such as the Galaxy S9, released by Samsung in 2018, equip-
ped with a blood oxygen level sensor. Figure 1.1 presents an overview of the uses of the
smartphone.
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1.3 Toward continuous and accessible healthcare

After the democratization of communication, processing capabilities, and informa-
tion, we believe that the next major evolution in smartphone usage will be centered
around the democratization of healthcare. Our vision is that, being owned by a largemajo-
rity of the global population [6, 8], smartphones can play a dual disruptive role in health-
care systems. In developed countries, smartphone-based solutions can enable continuous
health monitoring and shift the burden of anomaly detection away from subjective indi-
vidual feelings. In developing countries, smartphones provide an ideal platform for the
development of medical technologies, making them more accessible to the population,
especially in areas where infrastructure may be limited [14].

The research area that comes closest to this vision is mHealth or mobile health. This
refers to the use of connected mobile devices to deliver health-related services. While it
includes smartphones, tablets and other wearables, we will restrict the usage of this term
around the smartphone throughout this document.

Specifically, existing mHealth systems in the literature can be organized into three
main categories based on their objectives.

— Vital sign monitoring Smartphone-based systems have been developed to mea-
sure physiological information, providing real-time data on vital signs for disease
monitoring and early anomaly detection. These systems encompass a wide range of
measurements, including heart rate [15], blood oxygen level [9], blood pressure [13],
glucose level [16], hemoglobin level [11], and more. Such monitoring is particu-
larly valuable for patients with chronic diseases, facilitating remote patient care
and continuous monitoring even within the comfort of their homes.

— Disease screening The focus of this category is to develop solutions for testing
and monitoring specific health conditions using smartphones. Examples include
assessing sleep apnea [17], atrial fibrillation [18], depression [19], traumatic brain
injuries [20], Parkinson’s disease [21], and other conditions. By leveraging smart-
phones, these solutions aim to democratize medical screening, making it more af-
fordable and accessible. This has the potential to significantly impact healthcare in
low income areas, where access to specialized screening facilities may be limited.

— Home testing This category involves the development of smartphone-based solu-
tions that enable testing on samples traditionally processed in laboratory settings.
Systems have been designed to analyze blood [22], urine [23], beverages [24], and
even meals [25]. By bringing testing capabilities into the home, these solutions of-
fer convenience and accessibility, eliminating the need for specialized laboratory
equipment and reducing the time and cost associated with traditional testing me-
thods.

Although there is growing interest in this area of research, we are still a long way
from achieving our vision, for three main reasons :

— Limited accessibility : Existing systems often rely on specialized hardware, which
makes them less accessible. Especially, some solutions require modifications to the
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device itself to remove physical limitations [9], while others involve expensive ex-
ternal sensors that many people cannot afford [26]. This restricts their accessibility
to a large part of the population, especially those with low-end devices and limited
resources.

— Lack of autonomy : Many studies, particularly in the fields of disease screening and
home testing, simply provide the test tool on a smartphone, but still require the
expertise of a clinician to use it on the patient [27]. As a result, they fail to empower
the user and limit the system’s impact on the democratization of healthcare on a
larger scale.

— Prohibitive usage protocol : Ideally, for a significant impact on the initial stage of the
healthcare journey (as mentioned in Section 1.1), systems should work passively
or with minimal user interaction. However, most existing systems require active
user participation, or worse, complex and impractical operating protocols, which
compromise user comfort [28]. This discourages users and hampers widespread
adoption.

Given theses limitations, our objective in this thesis is to provide amethod for building
mHealth system in line with our vision for continuous and accessible healthcare. To ac-
complish this, we focus on solutions that can fully operate on a standard smartphone,
making use of widely available sensors. We prioritize the development of a user-friendly
operating protocol and providing comprehensive guidance to ensure correct and re-
liable usage for the average user within their daily surroundings.

1.4 Contributions and Plan

Throughout this manuscript, we present several contributions at various levels. First,
we present a high-level overview of mHealth sensing (Chapter 2). Specifically, we describe
the smartphone and its capabilities (Section 2.1), the challenges associated with designing
a mHealth system (Section 2.2), and the architectures suited to face theses challenges
(Section 2.2). We also briefly discuss existing mHealth sensing approaches (Section 2.4)
and relevant data processing methods (Section 2.5).

Based on this introduction, we then present a methodology for designing an mHealth
system tailored to a specific problem (Chapter 3). This methodology is designed to align
with our vision by highlighting the steps and important selection criteria to consider
throughout the process, aiming to achieve a system that meets our objectives as much as
possible. Lastly, we illustrate the methodology with three use cases, each focusing on one
of the previously mentioned categories of mHealth solutions :

— Problem 1 :Measuring oxygen levels in the blood, crucial for remote monitoring
of cardiovascular and respiratory disease, both being part of the top three leading
cause of death [6].

— Problem 2 : Estimating lung function through spirometry test, crucial for the
handling of respiratory disease, the third world leading cause of death [6].
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— Problem 3 : Enabling ubiquitous liquid testing, offering wide range of applica-
tion such as body fluid testing like urine, and food liquid product testing.

Each time, we build a complete system that enables anyone, even without technical
expertise, to use their smartphone for the specific task. To accomplish this, we simplify
the protocols as much as possible and minimize the need for additional hardware, which
may not be readily accessible. Additionally, we develop algorithms to overcome hardware
limitations and address challenges related to non-expert users and unpredictable testing
environments.

We present each of these illustrative applications in the following three chapters :

In chapter 3, we address the first problem, related to vital signs measurement. Follo-
wing our methodology, we adopt a proven approach based on the device’s camera, com-
bining Photoplethysmography 5 with the Beer-Lambertlaw model [29] to measure SpO2.
After implementing, conducting meticulous experiments, and carefully analyzing the re-
sults obtained from this approach, we uncover significant limitations. These limitations
serve as the catalyst for the design of our solution : SmartPhOx. Evaluating SmartPhOx
with 34 volunteers demonstrates its accuracy in measuring SpO2 using a standard smart-
phone’s camera and flash, meeting FDA standards [30].

In chapter 4, we delve into the second problem, belonging to the category of di-
sease screening. When developing a home-based medical examination tool, it is crucial to
ensure robustness against user’s inexperience and the noise associated with the testing
environment. Due to these constraints, our thorough literature review does not identify
any relevant existing approaches. As a result, we embark on designing a novel mHealth
sensing approach, leveraging a sensor that has been seldom used. Specifically, we propose
utilizing the smartphone’s pressure sensor and a cheap inflatable balloon to create a se-
tup that enables users to estimate the volume and velocity of exhaled gas during a forced
expiration. Based on the insights gained from our experiments, we construct a proces-
sing pipeline and a virtual coach. These components ensure control over the user’s effort
quality during the maneuver and provide accurate results. Through the evaluation of our
system BandS-Spi, we demonstrate its precision equivalent to clinical spirometers 6.

In chapter 5 We focus on the third problem, which involves home medical testing.
To design our liquid analysis solution, we once again adopt a novel approach, based on
the camera. Our system, called Droplet, distinguishes liquid droplets based on their shape.
To implement this solution, we develop a setup and leverage the theory of the shape of a

5. Photoplethysmography is a computer vision technique used to measure changes in blood volume in
human skin by analyzing color variations. We discuss it in details in Chapter 2.4.3

6. A spirometer is the most commonly used pulmonary function testing clinical device.
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sessile droplet [31, 32]. Additionally, we create a virtual assistant to guide users in captu-
ring reliable pictures of the droplets. These pictures are then processed using customized
algorithms to estimate the capillary length and contact angle of the droplet with the sur-
face, ultimately enabling their classification. Through this system, we demonstrate the
feasibility of monitoring protein levels in urine as they transition from a healthy range to
a dangerous level.



Chapter 2

An Overview of Mobile Health
Sensing

In this chapter, we start by discussing the technical capabilities of regular smart-
phones, which are essential for mHealth (Section 2.1). Then, we introduce the overall
architecture of mHealth systems (Section 2.3) and talk about the challenges involved in
designing such systems (Section 2.2). We also explore the sensing techniques (Section 2.4)
and data processing methods (Section 2.5) used in existing systems. This chapter lays the
groundwork for introducing our methodology in Chapter 3.
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2.1 Smartphone capabilities

As mentioned in Section 1.2, smartphones possess technical attributes that enable
interaction, data collection, and processing of diverse information from the surroundings.
In this section, we will delve into these particular capabilities of smartphones that serve
as the fundamental basis for any mHealth system.

2.1.1 Sensing and acting in the physical world

The ability of smartphones to calculate a user’s health information primarily stems
from their sensors. Modern smartphones are equipped with a diverse sensors, each with
a specific function. They can be broadly categorized as :

1. Standard sensors : These are the most commonly found sensors in smartphones,
including motion sensors such as accelerometer and gyroscope, position sensors
such as proximity and magnetic field sensors, environment sensors such as ambient
light and temperature sensors, and location sensors like GPS and others.

2. Multimedia sensors : These are mainly the camera andmicrophone, which enable
the device to record sound and images. mHealth systems can use them to measure
such information in the environment.

3. Radio sensors : The phone has various sensors enabling it to communicate wire-
lessly with other devices. These include Wi-Fi, Bluetooth and 3G/4G/5G interfaces.
Since these technologies rely on the transmission and reception of electromagnetic
waves, they can be leveraged by mHealth systems to obtain an indirect measure of
the environment, notably by looking at how the signal is modified. We discuss this
sensing technique more in details in Section 2.4.4.

4. Specialized sensors : Some smartphones come equipped with specialized sensors
like fingerprint, depth, heart rate and infrared sensors. Less common, theses sensors
are often included to bring new features to the devices, for marketing differentia-
tion.

In addition to its sensing capabilities, the smartphone is equipped with actuators that
enable it to modify the environment. Actuators are components that convert electrical
signals into physical actions or responses, allowing smartphones to interact with users
and the surrounding world. These include :

— Display : The smartphone’s display is primarily responsible for presenting visual
information to the user. However, it can also be utilized as a light source by the
mHealth system [33].

— Vibration motor : The vibration motor generates vibrations or haptic feedback in
response to specific events or user interactions. It is commonly used for notifica-
tions, alerts, alarms, touch interactions, and gaming. In mHealth systems, the vibra-
tion motor can be leveraged to generate motion in the environment. For example, it
has been employed to generate capillary waves on the surface of a liquid in a contai-
ner, enabling the tracking of surface tension using computer vision techniques [23]
(discussed in Section 2.4.3).
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Figure 2.1 – Built-in sensors and actuators in a typical present-day smartphone. Note that
those in yellow box are equipped in very few devices.

— Speaker : The smartphone’s speaker produces sound output for various purposes,
such as phone calls, media playback, and system sounds. It is often utilized in
mHealth systems based on acoustic motion tracking, which involves analyzing echo
wave sounds to track the displacement of an object. Further details on this technique
can be found in Section 2.4.2.2.

— LED flash :Many smartphones have an LED flash located next to the camera, ser-
ving as a flashlight or providing additional lighting in low-light conditions for cap-
turing photos or videos. In mHealth systems, the LED flash can be used as a light
source, particularly for certain computer vision sensing techniques discussed in
Section 2.4.3.

These smartphone actuators, in conjunction with the sensors, contribute to providing
an immersive and interactive user experience. However, in the context of mHealth sen-
sing, the objective is to repurpose these tools from their primary functions to measure
specific medical information. The choice of sensor depends on the type of raw data requi-
red and the method of measurement, as discussed in Section 2.3. For example, to measure
heart rate, one approach involves using motion sensors and placing the phone at the chest
level (motion sensing, see Section 2.4.1). Another approach is to utilize the camera and
flash of the device, requiring the user to place their finger on it to measure the variation
of light intensity associated with changes in blood volume (photoplethysmography), see
Section 2.4.3).

Figure 2.1 illustrates the typical sensors commonly found in smartphones. In the fu-
ture, we can expect the emergence of novel sensors as manufacturers increasingly focus
on integrating innovative functionalities into their devices. A notable example is the intro-
duction of a thermometer sensor in Google’s Pixel 8 1[34], specifically designed tomeasure
the user’s body temperature. These advancements in sensor technology hold significant
potential to enhance interaction between individuals and their environment, particularly
in the field of mHealth.

1. https ://www.blog-nouvelles-technologies.fr/261992/google-pixel-8-pro-inclura-un-thermometre/
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2.1.2 Computing power

In addition to its many sensors, which enable it to measure various properties of the
environment, the smartphone is also equipped with computing power, making it capable
of running programs and process collected data to extract medical information. The in-
troduction of the IPhone in 2007 marked a significant turning point in smartphone com-
puting power, with its powerful processor and multi-touch display setting a new standard
for themarket. Since then, the pace of advancement has been astonishing, with processors
becoming more powerful and Graphics Processing Units (GPUs) enabling better graphics
and smoother performance, especially designed to enhance gaming experience. Efficient
manufacturing processes for components have enabled manufacturers to pack more pro-
cessing power into smaller devices without sacrificing battery life, while mobile operating
systems such as iOS and Android have been optimized to take full advantage of the latest
hardware advancements.

Today, some smartphone models rival the processing power and memory of high-
end laptops, capable of handling complex tasks like video editing and 3D gaming while
running multiple apps simultaneously without slowing down. For example, the Galaxy Z
Fold 3 2, released in 2021 has 12 GB of RAM and 256 or 512 GB of storage, while the first
Galaxy S smartphone released in 2010 had just 512 MB of RAM and 8 or 16 GB of total
storage. Samsung’s recent offering, the Samsung Dex [35], even allows smartphones to be
used as a computer by connecting to an external display, such as a TV ormonitor. Samsung
is advocating for a "Mobile-only" paradigm, where the smartphone can be adapted to a
laptop if necessary by connecting external devices. As this trend continues, the computing
power of future smartphones is likely to increase, pushing the limits of what can be done
by mHealth systems designed on top of them.

2.1.3 Radio communication capabilities

Smartphones are ideal for democratizing healthcare also due to their telecommunica-
tion capabilities. These capabilities have been made possible by the evolution of smart-
phone radio sensors. These sensors allow smartphones to connect to a wide range of
wireless networks and communicate with other devices. The most common types of ra-
dio sensors found in smartphones include cellular radios, Wi-Fi radios, Bluetooth radios,
Near Field Communication (NFC) radios, Global Positioning System (GPS) radios, and
Radio Frequency Identification (RFID) sensors.

Cellular radios were the first radios to be equipped in smartphones. They allow smart-
phones to connect to mobile networks and make voice calls and send text messages. Over
time, cellular radios have become more advanced with the introduction of 3G, 4G, and
now 5G networks, providing faster data speeds and more reliable connectivity. Wi-Fi ra-
dios have also become a standard feature, allowing smartphones to connect to wireless
networks and access the internet, reducing the need for cellular data plans. Bluetooth ra-
dios have enabled a wide range of new applications, such as wireless audio streaming and
fitness tracking, by allowing smartphones to connect to other devices such as headphones,

2. https ://www.samsung.com/fr/smartphones/galaxy-z-fold3-5g/
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speakers, and smartwatches. NFC radios allow for contactless payments, ticketing, and
other secure communication applications at close range, typically within a few centime-
ters. GPS radios allow smartphones to determine their location using signals from GPS
satellites, which is used for location-based services such as maps, directions, and location-
based advertising. RFID sensors are used to identify and track objects using radio waves.
Some smartphones are equipped with RFID sensors that are used for inventory manage-
ment and other applications.

mHealth solutions can leverage these telecommunication capabilities to exchange
data between the smartphone and third-party equipment. For example, an app can use
this technology to send real-time information collected by the device to a healthcare pro-
vider. Some authors also use these radio sensors, especially Bluetooth, to connect external
sensors to the smartphone (such as headphones, speakers, and ECG sensors) [36] in or-
der to enhance the sensing capabilities of the device for their mHealth system. Finally,
mHealth systems may use these sensors to communicate with remote computing servers
to overcome the limited computing capability of the device or to conserve battery life [10,
37].

In addition to their telecommunication capabilities, these technologies can be utilized
to collect data. As sensors, they capture electromagnetic waves that can be used to mea-
sure information in collaboration with the environment. An illustrative instance is the
field of Wi-Fi sensing, which encompasses extensive research efforts to leverage existing
wireless signals to detect and track the presence and movement of individuals or objects
within a specific area. Since smartphones are equipped withWi-Fi, this technique is often
used in mHealth systems, as we discuss in Section 2.4.4.

With its diverse sensors, powerful computing capabilities, and telecommunication
functionalities, the smartphone serves as a versatile platform for mHealth sensing sys-
tems. Building upon these foundational capabilities, the next section will delve into the
challenges involved in designing mHealth systems.

2.2 Challenges of designing mHealth solutions

Designing mHealth systems comes with significant challenges. First, while smart-
phones are highly sophisticated, they are still pocket-sized devices with inherent techni-
cal limitations in terms of physical resources. Secondly, making this technology available
to a lay user in an uncontrolled environment poses additional challenges that must be
considered. Finally, the sensitivity of the data measured raises a privacy concern. In the
following sections, we will discuss each of these challenges in more detail.

2.2.1 Device limitations

The hardware limitations is one of the primary challenges faced by any mHealth sys-
tem. This challenge can be broken down into several sub-challenges :

— Limited resources : Smartphones have a limited power and battery life, which
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necessitates that the solution be as resource-efficient as possible, so as not to prevent
the user from using the phone for its primary functions, by draining the battery.

— Non-standardized hardware : Unlike medical equipment, where the manufac-
turer has control over both hardware and software, adapting to the differences in
smartphone hardware presents its own challenges. Sensors have varying levels of
sensitivity and accuracy, which must be accounted for by the algorithmic part of
the designed system. This is typically addressed during preprocessing stage, as ex-
plained in Section 2.3.2.2.

— Sensor limitations : As smartphone sensors are not designed for medical applica-
tions, adapting to their limitations poses a unique challenge. For example, commer-
cial pulse oximeters 3 typically employ two different wavelength light sources (i.e.,
660 and 940nm) to accurately measure oxygen saturation levels, whereas smart-
phones rely on a single white flash light that emits a broad spectrum of wavelengths
(400 800 nm)[9]. This discrepancy in light sources can affect the accuracy and re-
liability of the measurements. Additionally, the relatively lower sampling rate of
smartphone-based finger photoplethysmography (around 30 Hz) compared to com-
mercial oximeters (up to 1000Hz) results in lower data resolution, which can impact
the precision of the measurements. To mitigate these challenges, state-of-the-art
systems often involve adapting the models or employing preprocessing techniques
to compensate for the limitations of smartphone sensors.

2.2.2 Context limitations

In addition to hardware limitations, user limitations are also important to consider in
the development of a mHealth systems. The goal is to make these systems user-friendly
and accessible to individuals without specialized training. Additionally, the test environ-
ment poses its own challenges, particularly when designed for home use. Factors such as
limited control over the experimental environment, variations in lighting, temperature,
and ambient noise can impact the accuracy of measurements. To address these challenges,
three strategies may be employed :

— Inform : Previous work has focused on providing clear instructions and informa-
tion to users regarding proper usage conditions. This can be achieved through des-
criptive messages or visual cues displayed on the application interface [10, 38, 39].

— Control : Another approach involves leveraging additional sensors and algorithms
to verify whether users adhere to the designated usage protocol and if the exter-
nal conditions are suitable. For example, in [9], the quality of finger placement
over the camera for photoplethysmography measurements is verified by analyzing
the image coarseness. Similarly, in contactless photoplethysmography (discussed
in Section 2.4.3), algorithms are often employed to track the target face in recorded
images [40].

— Correct : To mitigate potential human errors and enhance measurement reliability,
another relevant approach consists in designing specific algorithms during the pre-

3. A pulse oxymeter is the portable clinical device used to measure one blood oxygen level.
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processing stage. These algorithms can include filtering techniques or be integrated
directly into the model itself, enabling predictions and compensations for expected
errors introduced by the user or the experimental environment. For example, in a
study on measuring the viscosity of a liquid in a container [41], researchers im-
plemented a customized calibration scheme within their model to account for va-
riations in the volume of the sample. By incorporating such correction algorithms,
mHealth systems aim to improve the accuracy and consistency of collected data,
providing more reliable insights for healthcare applications.

2.2.3 Data privacy

The sensitive medical data collected by smartphones in this field raises concerns
about potential risks, including unauthorized access to the application’s measurements
and compromise of user privacy [42]. To address this, it is necessary to ensure that data
can only be accessed by the legitimate user, and through the application. One solution is
to encrypt the stored data using cryptographic tools, making it unreadable to unautho-
rized individuals [43]. Additionally, keeping the data processing solely within the smart-
phone itself, without transmitting it over the network, provides an extra layer of pro-
tection against unauthorized access. As digitalization advances, the security of sensitive
data remains a universal concern, and advancements in other domains can contribute to
improving the security of mobile health applications.

To meet all these challenges, mHealth systems exhibit a common architecture, which
we describe in the next section.
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Figure 2.2 – Global architecture of state-of-the-art mHealth solutions.

2.3 Architecture of mHealth solutions

For all the diversity of state-of-the-art mHealth solutions, their underlying architec-
ture comprises 2 main components : the setup, which includes the hardware and the use
scenario, and the algorithms, usually implemented in software. The hardware component
encompasses the sensors, computing power, and any other materials necessary to facili-
tate the data measurement process. These components are responsible for capturing the
required data accurately and efficiently. The use scenario 4 provides instructions and gui-
dance to users on how to effectively use the system. It outlines the proper usage of the
hardware and specifies the actions needed to record the data. Following the use scenario
correctly ensures that the system can collect the necessary data for further processing. The
software component processes the recorded data to achieve the objectives of the mHealth
system. It applies various techniques, calculations, and algorithms to extract valuable in-
formation and generate meaningful outputs from the collected data. Figure 2.2 represents
an illustration of the proposed architecture, featuring illustrations issued from several
works [23, 27, 44, 45]. In the following sections, we discuss in detail each component.

2.3.1 Setup

Starting with an intuition of which sensor to use to collect the data relevant to the
problem, the first thing to clarify is the complete system setup. Specifically, this includes
both the physical hardware, any additional external material required, and a description
of the scenario in which it will be used, for the data to be collected reliably.

2.3.1.1 Hardware

The hardware relies mainly on the smartphone, which comprises sensors that mea-
sure the environment and the necessary computing power to process the data and extract

4. We also refer to it as a use scheme throughout the document.
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valuable information. The selection of sensors and processing methods is a closely in-
terrelated process. For instance, to measure cardiac activity, some approaches leverage
camera and computer vision techniques [46], while others rely on inertial sensors and
motion analysis techniques [15]. We delve into these techniques in detail in Section 2.5.
We provide an insight to decide which sensor to investigate in our proposedmethodology,
in Section 3.

In some cases, however, it’s not enough to rely on the sensors already present in
a smartphone. In these situations, additional hardware may be needed. This can range
from support equipment that may be readily available for the end user (such as a smart-
phone holder [27], a container for the substances [23, 25]), to an external sensor that can
be connected to the phone via cable or wireless technology [36], or even a specially ma-
nufactured component (like a special light source [11]). In rare cases, modifications to
the phone’s hardware may be necessary [9, 22]. In general, adding additional hardware
or customizing the smartphone hardware enhances the accuracy of the system but may
reduce its accessibility for users. Considering the vision of this thesis, we prioritize using
only the smartphone itself or widely accessible extra attachments, thereby shifting the
complexity to the software part.

2.3.1.2 The usage scenario

The use scenario explains how the device captures health-related data from the en-
vironment. Different systems may utilize different sensors or employ the same sensor in
different ways to measure the same health information. The design of the usage scenario
is guided by the comfort and ease of use for the user and the quality of the input data
required for the processing techniques envisaged.

For example, when measuring heart activity, some systems require placing the phone
on the chest to record heart movement using inertial sensors [44], formaximized data qua-
lity. On the other hand, some systems require holding the phone in the hand [15] to enable
opportunistic tracking of cardiac activity. Furthermore, certain systems employ the front
camera and Transdermal optical imaging (TOI) for contactless blood sensing [47], while
others use the rear camera and finger photoplethysmography, putting the emphasis on the
quality of the measured blood flow data [28]. In both cases, the processing involves mea-
suring changes in blood volume in the body part by tracking the color changes through
the recorded images. We discuss these techniques in detail in Section 2.4.3.

The main purpose of the usage scenario is to ensure that the system is correctly em-
ployed. This is crucial because the quality of the system’s final output depends on the
quality of the measured data, which ultimately relies on how well the protocol is follo-
wed.

2.3.2 Algorithms

The software of the mHealth system is designed to extract information for medical
purposes from the raw data collected using the setup, in order to provide the service the
system is intended for. One way to depict its design is to consider it as three essential
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parts : Modeling, Pre-Processing, and Application.

2.3.2.1 Modeling

The modeling stage of a mHealth system involves establishing the mathematical re-
lationship, denoted as f , between the measured raw data X and the medical information
of interest Y . There are two primary strategies in the literature to achieve this.

model-based approach

The first approach, called model-based, involves directly formulating the model f ba-
sed on physical theories. This strategy is the most reliable but requires expertise in the
system and the physical laws that govern it. For example, the Beer-Lambert law [29] is
commonly used to model the mathematical relationship between the residual light inten-
sity and the concentration of oxygenated blood, when using photoplethysmography to
estimate oxygen level in blood[9, 46, 48], as we see in details in Chapter 4.3.1.

learning-based approach

The second approach, called learning-based, involves learning the model f from pre-
viously collected and labeled training data X′,Y′. Once the model is learned, it can be used
to estimate Y for new input data X. Different learning algorithms are used for this stra-
tegy, which is detailed in Section 2.5.3. Learning-based strategy is used when the scientific
intuition between the measured data and the medical information is difficult to formulate
analytically or involves unknown parameters. This approach has been used for example
to estimate blood glucose level [49] and blood hemoglobin concentration [11] from Pho-
toplethysmogram (PPG) signals.

hybrid approach

Finally, it is possible to use a mixed strategy, which combines both the model-based
and learning-based approaches. In this hybrid approach, the link between the input data
and medical information, ftheta, is theoretically modeled, where ftheta depends on some
unknown parameters theta. These unknown parameters are then learned with labeled
data, making this strategy useful when the model is not accurate enough. It has been
widely used for instance, to estimate blood pressure from from PPG signals[44, 50-53].

2.3.2.2 Data preprocessing

Preprocessing is an essential step in the software aspect of the system, where the
raw data captured by the sensors are prepared to align with the model. This involves ap-
plying various algorithms such as noise cleaning, data calibration, data standardization,
and filtering. Additionally, specific calibration algorithms may be designed to address the
limitations of the device mentioned earlier, which is one of the major challenges in buil-
ding a mHealth system (see Section 2.2). A review of the most common pre-processing
techniques used in mHealth is discussed in Section 2.5.2.1. The preprocessing stage plays
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a crucial role in enhancing the quality and reliability of the collected data, ensuring accu-
rate analysis and interpretation in subsequent stages.

2.3.2.3 Application

After pre-processing the data, they are passed through the model to obtain the infor-
mation of interest, y, which may finally be interpreted in order for the system to provide
its service. While works in vital sign monitoring focus solely on obtaining the medical
information, in disease screening and home testing, the goal often involves measuring
one or multiple pieces of health-related information, which are then combined and mer-
ged to provide the final result to the user. For example, to detect depression, some works
measure both the frequency of social media interactions and the time spent using the
smartphone [19]. Another example, is the system can measure the viscosity of a food
product in order to determine if it is suitable for consumption by patients suffering from
dysphagia, by comparing it to a threshold [25]. Furthermore, some systems are required
to obtain cardiac activity signals both from the chest through the inertial sensor and fin-
ger through photoplethysmography in order to estimate blood pressure, by converting
the time delay between both signals [44].

Once various pieces of information have been measured, the possible applications can
be distinguished as classification, regression, detection, or recognition problems, depen-
ding on the ultimate goal of the mHealth system. For instance, the applicationmay consist
in classifying patients as healthy or not based on their measurements [54], detecting ab-
normal patterns in the heart rate activity [55], or recognizing melanoma on a photo of a
spot on the skin [56, 57]. We discuss the types of algorithms used for this purpose in more
detail in Section 2.5.3.

From this architecture representation, we have enough elements to understand the pro-
cess of designing an mHealth solution. However, it is not uncommon to reuse proven data
collection techniques when designing a new mHealth system. By reusing sensors, usage
protocols, and preprocessing algorithms, we can focus our design efforts on modeling,
managing specific constraints, and developing the final application. We refer to these
reused data collection techniques as mHealth sensing approaches or techniques. In the
following sections, we will present the most commonly reused approaches, as they serve
as fundamental building blocks for designing any new system.

2.4 mHealth sensing techniques

The literature contains a range of techniques used in the design of mHealth solutions,
which can be grouped according to the type of sensor used to collect data. Although there
is a richer body of research on motion sensing, acoustic sensing, computer vision, and
Wi-Fi sensing, some researchers are beginning to explore the use of sensors that are not
typically included in those techniques in their systems. For example, some studies have
utilized the screen [33], infrared sensor [22], or external sensors [12, 36]. As smartphones
continue to advance and incorporate new sensors, we can expect the emergence of new
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techniques in the future. This section will focus on the most common techniques used in
the current literature.

2.4.1 Motion sensing

Motion sensing techniques primarily rely on using inertial sensors in smartphones to
capture the displacement of the phone caused by external movements. The collected data
is then processed based on its characteristics to extract medical information.

For example, when analyzing cardiac activity, there are two main techniques : ballis-
tocardiography and seismocardiography, each measuring different aspects of heart mo-
vements.

Seismocardiography involves measuring the vibrations of the chest produced by heart
movements. The smartphone, placed on the chest, is used to record these vibrations and
convert them into a time series signal called a seismocardiogram. Seismocardiography is
commonly used for detecting abnormalities in cardiac movement and monitoring heart
function [58].

On the other hand, ballistocardiographymeasures the forces generated by cardiac mo-
vements. It utilizes the smartphone’s motion sensors placed on an indirect measurement
surface, such as a bed, chair [59], or even a hand [15], to record the forces exerted by the
body during heartbeats. These forces are then converted into a temporal signal known as
a ballistocardiogram.

Motion sensing-based techniques are also employed in collecting and analyzing res-
piratory motion. In some cases, the system requires the phone to be in contact with the
human body, like in a pocket or during a call [60]. In other cases, the phone is placed on
the bed [59] to track breathing during sleep and detect sleep apnea. Additionally, these
techniques are used in liquid analysis, where inertial sensors record the vibration of a
liquid. The obtained signal is further processed to estimate the viscosity of the liquid [25,
41].

In general, this type of technique is used when the system is in direct contact with
the tested object, and when the movement being measured is relatively large or occurs re-
gularly. Smartphone accelerometers are sensitive, but they may not provide a significant
Signal to Noise Ratio (SNR) for subtle movements. However, when the motion is perio-
dic, advanced signal processing techniques (see Section 2.5.2) can be used to extract the
required information even when the SNR is low.

2.4.2 Acoustic Sensing

This family of techniques is based on the use of the microphone of the device. It
consists in recovering medical information from sound data measured on the environ-
ment. Themost used techniques here are audible sound analysis, acoustic motion tracking
and acoustic impedance sensing.
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Figure 2.3 – Example of phonocardiogram, featured with Characteristics of heart sounds,
for (a) normal and (b) abnormal heart sounds. Figure from [66].

2.4.2.1 Audible sound analysis

The analysis of audible sound involves processing the raw audio signal produced by
the subject and coupling it with time-series signal processing algorithms. Such techniques
are widely used in cough analysis to detect respiratory problems like Coronavirus (SARS-
CoV-2)[61], asthma, and Chronic Obstructive Pulmonary Disease (COPD)[10]. They have
also been used to diagnose Parkinson’s disease based on abnormal body sounds [62].

Another specific application of this technique is phonocardiography, which is used to
study cardiac activity. This involves recording and analyzing the sounds produced by the
heart. The device’s microphone is placed on the chest to record heartbeat sounds, which
are then processed to diagnose various heart conditions such as heart valve problems [63],
heart murmurs [64], and congenital heart defects [65]. Figure 2.3 shows an example of a
healthy and unhealthy phonocardiogram.

2.4.2.2 Acoustic motion tracking

Acousticmotion tracking refers to the use of an audio signal to track smallmovements.
Historically used to track human gestures [67, 68], it has recently been increasingly used
in the mHealth community, particularly for breath sensing [27, 69, 70]. It works by emit-
ting an acoustic signal - mostly an inaudible sound to avoid noise pollution - towards the
target and recording the echo returned by it. By measuring the phase shift between the
two signals, the time delay, and thus the distance between the smartphone and the target
can be determined.

The phase shift of an echo sound wave can be mathematically expressed using the
following equation :

∆ϕ = 2π f∆t (2.1)

Where ∆ϕ is the phase shift of the sound wave, measured in radians, f is the frequency
of the sound wave, measured in hertz, ∆t is the time delay between the emission of the
original sound wave and the reception of the reflected sound wave, measured in seconds.
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This equation is derived from the fact that the phase of a sound wave is proportional to
the product of its frequency and time. The 2π factor in the equation represents a complete
cycle of the wave, as the phase of a sound wave completes a full cycle after traveling a
distance equal to its wavelength.

Since the time delay between the emission of the original sound wave and the recep-
tion of the reflected sound wave corresponds to twice the distance between the sound
source and the reflective surface, one can relate the phase shift of an echo sound wave to
the distance between the sound source and the reflective surface using equation 2.2 :

d = v∆t/2 (2.2)

Where v is the speed of the sound, and d is the distance between the sound source
and the reflective surface, measured in meters.

This technique is sensitive enough to track movements on the order of a few mil-
limeters in amplitude [27]. A major advantage is that it does not require direct contact
between the device and the target.

2.4.2.3 Acoustic impedance sensing

Acoustic impedance is a measure of the opposition that a medium (such as air, water,
or a solid material) presents to the propagation of sound waves. Acoustic impedance is a
key property that determines how sound waves are transmitted and reflected at the boun-
dary between different materials. When a sound wave encounters a change in acoustic
impedance at a boundary, some of the energy is reflected and some is transmitted. The
amount of reflection and transmission depends on the difference in acoustic impedance
between the two materials.

Leveraging this technique for mHealth sensing consists on generating acoustic signals
through the speaker and collecting the reflected signals from the surroundings using the
microphone of the device. Using frequency based signal processing algorithms (see Sec-
tion 2.5.2), one can analyse correlations between energy distribution and the nature of the
reflecting object. This technique has been for example investigated for liquid testing [71],
in the use case of urine testing.

2.4.3 Computer vision

This family of techniques concerns the use of the camera to record and process one or
more images in order to retrieve the health related information. The difference between
the different techniques of this category is the way of processing the image, and the pro-
perty sought. Especially in smartphone-based liquid testing, computer vision techniques
differ in the properties they seek. Some are based on the analysis of motion through video,
such as capillary waves motion of the liquid surface to estimate its surface tension [23].
Others are more interested in the properties of light absorption of the liquid, and deal
rather with the color [72]. For blood sensing, one of the majors technique of this kind is
Photoplethysmography.
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(a) A video frame, made up
of three single-color channel
images.

(b) Recording several video frames for the finger illuminated by
the flash, and averaging each color channel to obtain the PPG
signals

Figure 2.4 – Illustration of smartphone-based photoplethysmography.

Photoplethysmography

The principle of Photoplethysmography involves using a light source, usually the LED
of the device, to emit light through the patient’s skin, and record the residual light reflected
back through the camera. When the heart beats, it causes variations in blood volume in
the blood vessels beneath the skin, altering the amount of light absorbed by the blood.
These fluctuations leads to change in the intensity of the recorded images, which can be
extracted as a signal, called photoplethysmogram (PPG).

The PPG signal appears as a waveform with peaks and troughs (illustrated in Fi-
gure 2.4). Each peak corresponds to a period of heart contraction (systole), while each
trough represents a period of heart relaxation (diastole). It has been used to measure many
blood related vital parameters including heart rate[46], blood oxygen level[9, 73], blood
pressure[51, 52, 74], blood glucose level[49], etc.

This technique is highly popular due to its ease of implementation and use. By focu-
sing on the user’s face, it allows for a contactless measurement of blood flow ( also refers
to as Transdermal Optical Imaging TOI, or contactless photoplethysmography). However,
when focusing on the finger (refers to as finger photoplethysmography), a higher-quality
PPG signal can be obtained. The choice of the body part depends on the specifics requi-
rements of the system.

2.4.4 Wi-Fi sensing

Wi-Fi sensing is a technique that involves usingWi-Fi-enabled devices, such as smart-
phones or routers, to analyze wireless signals and extract information about the surroun-
ding environment. It works by analyzing variations in Wi-Fi signals caused by the move-
ment of people or objects. These variations can be used to detect the presence, location,
and movement of individuals in a given space. In the context of mHealth, there are two
main Wi-Fi sensing approaches, each based on different input data for their systems :

— CSI-Based : Channel State Information (CSI) refers to information about the wire-
less channel used to transmit data between a Wi-Fi access point and a client device.
CSI includes details about signal strength, phase, and other parameters of the wi-
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reless signal. mHealth systems can exploit this information to deduce details about
the environment. For example, studies have shown that Wi-Fi CSI sensing can ac-
curately detect changes in gait patterns, which may indicate Parkinson’s disease
or other neurological conditions [75, 76]. Additionally, CSI has been used to mo-
nitor vital signs such as heart rate and respiratory rate by analyzing changes in
CSI caused by breathing and heartbeats [77-79]. Wi-Fi CSI has also proven success-
ful in detecting falls or abnormalities in behavior, particularly for elderly care or
individuals with mobility issues [80].

— RSSI-Based : Another approach to Wi-Fi sensing focuses on Signal Received
Strengh Indicator (RSSI). This method involves analyzing how the RSS at a Wi-
Fi-enabled device, held on a person’s chest for instance, is affected by the breathing
process. Some researchers have utilized these changes in Wi-Fi RSSI patterns to en-
able ubiquitous non-invasive respiratory rate estimation and apnea detection [81].
However, since RSS provides less information than CSI, fewer studies employ this
method.

Wi-Fi sensing has the potential to provide continuous, non-invasive monitoring of
patients in their homes. However, it always requires a wireless access point to operate,
which is a trade-off for its ability to monitor human health without physical contact using
a smartphone.

The data measured by all these techniques are often images or time series. Conse-
quently, it is not uncommon to encounter the samemathematical tools in their processing.
In the following section, we examine the most common processing techniques used to ex-
tract information from such data. In the following chapters, we will reuse some of these
techniques to process the data for our specific applications.

2.5 mHealth data processing techniques

The data collected by the mHealth systems comes from the different sensors of the
smartphone. They aremainly time series, image and video data. In this sectionwewill first
define the data structures used to manipulate them by the algorithms, and then present
the existing processing techniques commonly used to process them.

2.5.1 Data structures

Smartphone sensors collect data at a sampling frequency Fs, which varies depending
on the sensor and smartphone model. For instance, the microphone typically has a sam-
pling rate of around 72 kHz, while the accelerometer has a rate of 100 Hz.

We can represent the obtained signal using a vector, x = [xt1 ...xtn],n ∈ N∗. On the other
hand, the camera captures a 2D image encoded in three color channels (red, green, and
blue). We can represent the image using a matrix, x[i, j,k]k=1..3

i=1..W, j=1..H , where the first two
dimensions represent the height and width, respectively, and the last dimension repre-



24 Chapter 2. An Overview of Mobile Health Sensing

sents the color channel. If we are dealing with videos, we can add a fourth dimension to
consider time.

2.5.2 Signal processing

Signal processing is the field of study which focuses on the manipulation, analysis,
and transformation of signals, which are representations of physical phenomena such as
sound, images, and data like a series of sensor readings. The goal of signal processing is
to extract meaningful information from these signals, enhance their quality, or compress
them for storage or transmission. Examples of signal processing techniques widely used
in mHealth literature include smoothing, frequency analysis, and feature extraction.

2.5.2.1 Signal smoothing

Signal smoothing is a technique used in signal processing to reduce the amount of
noise or other unwanted fluctuations in a signal. It involves applying a mathematical
filter to the signal that eliminates or reduces the high-frequency components of the signal,
which are typically associated with noise or other disturbances.

The basic idea of signal smoothing is to remove the rapid changes in a signal that
are not of interest, while retaining the slower, more significant changes. The resulting
smoothed signal is often easier to analyze and interpret than the raw signal, as it removes
the effects of noise and other unwanted fluctuations.

There are several common signal smoothing algorithms used in mHealth literrature,
including :

1. Moving average : This is a simple technique that involves computing the mean of a
window of adjacent samples and using it as the smoothed value. Moving average is
easy to implement and can effectively reduce high-frequency noise, but it can also
introduce lag in the signal. The moving average of a signal x at time t is defined as :

x′(t) =
1
N

t∑
i=t−N+1

x(i) (2.3)

where N is the number of data points used in the moving average.

2. Savitzky-Golay filter [82] : This filter is good at preserving the shape of the signal,
but it can be computationally intensive. The Savitzky-Golay filter fits a polynomial
of degree k to a window of 2m+ 1 data points centered on each point in the signal.
The filtered value at time t is given by :

x′(t) =
m∑

j=−m

c( j) · x(t+ j) (2.4)

where the coefficients c( j) are determined by a least-squares fit of the polynomial
to the window of data points.
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3. Low-pass, high-pass, and band-pass [83] : These filters are three common types
of frequency-selective filters used in signal processing. Each filter is designed to
pass signals within a certain frequency range while attenuating signals outside that
range.

4. Median filter : The median filter replaces each data point with the median of its
neighboring points. For a window of 2m + 1 data points centered on time t, the
filtered value at time t is given by :

x′(t) =median(x(t−m), x(t−m+ 1), . . . , x(t), . . . , x(t+m− 1), x(t+m)) (2.5)

5. Gaussian filter [84] : A Gaussian filter applies a Gaussian function to each data point
and its neighbors. For a window of 2m+1 data points centered on time t, the filtered
value at time t is given by :

x′(t) =
1
Z
·

m∑
i=−m

x(t+ i) · e−
i2

2σ2 (2.6)

where Z is a normalization constant to ensure that the filter preserves the signal
amplitude, and σ is a parameter that controls the width of the filter.

The important factor to consider when choosing the suitable smoothing technique
is the specific characteristics of the desired signal and the requirements of the applica-
tion. Factors such as the level of noise in the signal, the desired degree of smoothing,
and the available processing power can also influence the choice of algorithm. For low-
noise signals, simple techniques like moving average or Savitzky-Golay filters may be
sufficient. However, for high-noise or non-linear signals, more advanced techniques like
the Kalman filter [85] may be necessary. In some cases, using band-pass filters can be a
good alternative, especially when we have prior knowledge of the frequency range that
contains meaningful information in the data. By applying these filters, we can effectively
eliminate noise by discarding frequencies outside of the desired range.

2.5.2.2 Signal frequency analysis

Signal frequency analysis is the process of studying the frequency content of a signal
to extract relevant information or identify patterns. It involves analyzing the signal in
the frequency domain, which provides insights into the different frequency components
present in the signal. There are several major techniques used in signal frequency analysis,
including Fourier transform, power spectrum analysis and wavelet transform.

Signal Fourier analysis

Signal Fourier analysis is a mathematical technique used in signal processing to ana-
lyze the frequency content of the signal. The technique is based on the Fourier transform,
which is a mathematical operation that decomposes a signal into its constituent sinusoidal
components. The Fourier transform allows to represent a signal in the frequency domain,
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where it maybe easier to retrieve meaninglfull informations from it, especially if we are
dealing with a periodic phenomena.

The Fourier transform of a continuous-time signal x(t) is given by [86] :

X( f ) =
∫ +∞

−∞

x(t)e− j2π f tdt (2.7)

where j is the imaginary unit, and f is the frequency. The Fourier transform expresses
the signal x(t) in terms of its frequency components, which are represented by the complex
exponential e j2π f . Themagnitude of the Fourier transform |X( f )| represents the amplitude
of each frequency component, while the phase angle represents the phase shift of each
component relative to a reference.

By analyzing the frequency content of a signal, we can identify important features
such as dominant frequencies, harmonics, noise, and distortions. This information can be
used to design filters, remove noise, compress data, extract features, and enhance signals
as a preprocessing step for the mHealth application.

Signal Power Spectral Density (PSD)

The Power Spectral Density (PSD) of a signal is a mathematical function that describes
how the power of the signal is distributed over the frequency domain. It is a measure of
the power density of the signal per unit of frequency. In other words, the PSD gives us
information about the strength of the signal at different frequencies.

The PSD of a continuous-time signal x(t) is computed as the squared magnitude of its
Fourier transform X(f) [87] :

S x( f ) = ∥X( f )∥2 (2.8)

where ∗ denotes complex conjugation and f is the frequency.
The PSD can be used to extract useful information from a signal, such as its dominant

frequencies, bandwidth, and noise level. An example of its common typical usage is illus-
trated in Figure 2.5, where we show how from the raw PPG signal we can estimate the
heart rate of the user by identifying the dominant frequency.

Wavelet transform

The Continuous Wavelet Transform (CWT) [88] is a mathematical tool used for si-
gnal analysis, providing a localized representation of signals in both time and frequency
domains. Unlike the Fourier transform that employs sinusoidal basis functions, the CWT
utilizes wavelet functions that are localized in time and frequency. This localization pro-
perty enables the CWT to capture transient events, analyze non-stationary signals, and
extract features from signals with complex dynamics.

The CWT of a continuous-time signal x(t) at scale a and translation b is obtained
through the convolution of the signal with a scaled and translated wavelet function ψ(t),
also known as the analyzing wavelet or mother wavelet. The CWT equation is as follows :
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(c) PSD of the raw ppg signal
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(d) PSD of the filtered signal.

(e) Scalogram, representing the CWT of the
raw ppg signal

(f) Scalogram, representing the CWT of the
filtered signal.

Figure 2.5 – A straightforward photoplethysmogram (PPG) signal processing pipeline
allows for heart rate estimation. We obtain the Raw PPG signal (Fig. 2.5a) by averaging
the red color channel of each frame and then filter it (Fig. 2.5b). The resulting PPG signals
showpeaks and valleys corresponding to the participant’s blood flow in the finger. The Po-
wer Spectral Density (PSD) of the raw signal (Fig. 2.5a) displays twomain peaks, indicating
the breathing rate and heart rate. In Fig. 2.5d, the PSD of the filtered version only exhibits
the heart rate peak. Additionally, the scalogram of the filtered version (Fig. 2.5f) shows a
stronger intensity around 1.2Hz compared to the raw signal’s scalogram (Fig. 2.5e), repre-
senting the heart rate once again.
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CWT (a,b) =
∫ +∞

−∞

x(t)
1
a
ψ∗

(
t− b

a

)
dt (2.9)

Here, the symbol ∗ represents complex conjugation, and ψ
(

t−b
a

)
represents the analy-

zing wavelet function ψ scaled by the factor a and translated by the amount b.
A common visualization of the wavelet transform is the scalogram, which displays

the distribution of signal energy across different scales (or frequencies) and time. It is ty-
pically represented as a 2D plot, with the y-axis indicating scale or frequency, the x-axis
representing time, and the color or intensity indicating the magnitude or strength of the
frequency component. Examples of scalograms are shown in Figures 2.5e and 2.5f. Sca-
lograms have been utilized in various applications, such as recognizing heartbeat events
from noisy accelerometer recordings obtained while the phone is held by the user, using
deep learning-based processing techniques [15].

2.5.2.3 Signal feature extraction

Signal feature extraction refers to the process of identifying and quantifying specific
characteristics or patterns within a signal that are relevant for a particular application
or analysis. These features capture essential information from the signal and are used to
describe or represent the signal in a more compact and meaningful way.

The relevance of certain features varies depending on the type and origin of the signal.
When it comes tomHealth applications, we typically rely on intuition and proceed by trial
and error to identify the most appropriate features for the specific application targeted.
The commonly considered feature types for time series signals are as follows :

— Time-domain features : These features are computed directly from the signal wa-
veform in the time domain. They include statistical measures such as mean, stan-
dard deviation, skewness, auto-correlation coefficients, and kurtosis. Other time-
domain features may include zero-crossing rate, energy, entropy, or various tem-
poral characteristics [89].

— Frequency-domain features : These features are derived from the signal’s fre-
quency content. They are often obtained through signal frequency analysis tech-
niques discussed earlier (Section 2.5.2). Common frequency-domain features in-
clude spectral centroid, spectral bandwidth, spectral roll-off, and spectral mo-
ments [89].

— Waveform shape features : These features focus on the shape or morphology of
the signal waveform. They can include characteristics such as peaks, valleys, slopes,
or other geometric properties. For instance, waveform features extracted from PPG
signal is a common approach for estimating blood pressure [28, 51, 53, 90-92].

These features, once extracted, are typically used as input to machine learning algo-
rithms (discussed in Section 2.5.3) or other analysis techniques for tasks such as classifi-
cation, detection, recognition, and regression [93, 94].
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2.5.2.4 Image processing

Image processing is a branch of signal processing that deals with the analysis and
manipulation of digital images. It involves usingmathematical and algorithmic techniques
to enhance or modify images to improve their quality or extract useful information. In
this section, we will focus on some widely used image smoothing and edge defections
techniques.

Image smoothing

Image smoothing is a technique used to reduce noise or remove small details while
preserving the overall structure of the image. The process involves replacing each pixel
in the image with an average of its neighboring pixels. This helps to reduce the effect of
small variations in the pixel values and produce a smoother version of the image. There
are several methods for image smoothing, including :

— Gaussian smoothing [95] : This technique involves convolving the image with a
Gaussian filter, which reduces high-frequency noise while preserving the edges of
the image.

— Median filtering [96] : This technique replaces each pixel in the image with the
median value of its neighboring pixels. This helps to remove isolated pixels and
preserve the edges of the image.

— Bilateral filtering [97] : This technique takes into account both spatial and inten-
sity information while smoothing the image. It uses a weighted average of neigh-
boring pixels, where the weights depend on the distance between the pixels and the
difference in their intensity values.

— Mean filtering [98] : This technique replaces each pixel in the image with the
average value of its neighboring pixels. This method is simple but may result in
loss of image details.

The choice of the smoothing technique depends on the specific application and the
characteristics of the image, and may be figured out after several trials.

Edge detection

Image edge detection is a technique used to identify and highlight the edges or boun-
daries of objects within an image, often used to focus on the object of interest inside the
image. The edges in an image represent the abrupt changes in pixel intensity values and
can be detected using various edge detection algorithms. One of the most commonly used
edge detection technique is the Canny edge detection algorithm[99], which is computed
by applying the following steps :

1. Gaussian smoothing : The image is first convolved with an image Gaussian filter to
reduce noise. The Gaussian filter can be represented as :

G(x,y) =
1

2πσ2 e−(x2+y2)/(2σ2) (2.10)
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where x and y are the spatial coordinates of the filter kernel, and σ is the standard
deviation of the Gaussian filter.

2. Gradient calculation : The gradient magnitude and direction of each pixel in the
smoothed image are calculated using the Sobel operator. The Sobel operator for
calculating the gradient in the x direction is given by :

Gx =


−1 0 1
−2 0 2
−1 0 1

 ∗ A (2.11)

where A is the image and ∗ denotes convolution. The Sobel operator for calculating
the gradient in the y direction is given by :

Gy =


−1 −2 −1
0 0 0
1 2 1

 ∗ A (2.12)

The gradient magnitude is then given by :

G =
√

G2
x +G2

y (2.13)

and the gradient direction is given by :

θ = arctan
(
Gy

Gx

)
(2.14)

3. Non-maximum suppression : The gradient magnitude values are then checked in the
direction of the gradient to find the local maxima. This results in thinning the edges.

4. Hysteresis thresholding : A double thresholding approach is used to identify the
strong and weak edges. The strong edges are retained, while the weak edges that
are not connected to the strong edges are removed.

There are several other edge detection techniques, including Laplacian of Gaussian
(LOG) [100], Sobel [101] edge detection, and deep learning-based approaches [102, 103].
The selection of the most appropriate algorithm depends on the specific application, input
image quality, and resource constraints.

2.5.3 Artificial intelligence

Artificial intelligence is a set of techniques that use the computing power of the com-
puter to learn to extract information from large amounts of raw data without the need to
explicitly know the relationship between the two. Artificial intelligence includes both ma-
chine learning and deep learning, but we can group the most used algorithms in mHealth
into 3 overarching categories : supervised learning algorithms, unsupervised learning al-
gorithms, and deep neural networks.
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2.5.3.1 Supervised learning algorithms

Supervised learning is a machine learning technique where the algorithm learns from
labeled data. This means that the data provided to the algorithm includes examples with
class labels, and the algorithm learns from these examples by identifying features that
distinguish each class. The goal is to predict the class of a new example using the features
learned when training the data. The most commonly used algorithms for supervised lear-
ning are :

— Neural Networks [104] : Neural networks are a class of algorithms inspired by
the structure and function of the human brain. They consist of multiple layers of
interconnected nodes that process information and learn to recognize patterns in
data. Neural networks are one of the most versatile of machine learning algorithms,
but the computational cost increases hugely as the number of layers and node raises.

— Decision Trees [105] : Decision trees are a type of algorithm that use a series of
questions to divide data into smaller and more homogeneous groups. Each question
corresponds to a test on a feature of the data, and the answers to these questions
determine the final classification of an example. Decision trees are often used for
classification tasks and are simple to interpret, making them useful for explaining
the reasoning behind a model’s predictions.

— Regression Methods : Regression is a supervised machine learning method used
for predicting continuous numerical values based on input variables. It involves
building a model that establishes a relationship between the input features (inde-
pendent variables) and the output variable (dependent variable). The goal of regres-
sion is to find a function that can accurately map the input features to the output
variable, allowing predictions to be made for new, unseen data. This function is
typically represented by a mathematical equation or a model with learned parame-
ters. Regression models assume a specific form of relationship between the input
features and the output variable (linear, polynomial, etc.). The choice of regression
model depends on the nature of the problem and the assumptions made about the
data.

— Support Vector Machines (SVM) [106] : SVM are a type of algorithm used for
classification and regression tasks. They work by finding the optimal boundary bet-
ween two classes of data, which is known as themaximummargin hyperplane. SVM
are particularly useful for handling data that is not linearly separable, as they can
use a technique known as kernel trick to project the data into a higher-dimensional
space where it is easier to separate.

— Random Forests [107] : Random forests are an ensemble learning method that
combines multiple decision trees to produce a more accurate prediction. Each tree
in the forest is trained on a randomly selected subset of the training data, and the
final prediction is made by averaging the predictions of all the trees. Random forests
are often used for classification tasks and are less prone to overfitting than a single
decision tree.
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The choice of algorithm will depend on the specific problem, the characteristics of the
data being analyzed and the resources constraints, since some algorithm need more data
and time to learn than others.

2.5.3.2 Unsupervised learning algorithms

Unsupervised learning is a machine learning technique where the algorithm learns
from unlabeled data. This means that the data provided to the algorithm does not contain
class labels, and the algorithm learns from this data by identifying hidden structures and
patterns. The goal is often to discover groups of similar data or patterns in the data. The
most commonly used algorithms for unsupervised learning are :

— Clustering [108] : Clustering algorithms are used to group similar data together
into clusters. Examples include k-means, k-medoids algorithm, and hierarchical
clustering [109].

— Dimensionality reduction : Dimensionality reduction algorithms are used to re-
duce the complexity of data by finding a low-dimensional representation that pre-
serves the most important information from the original data. Examples include
Principal component Analysis (PCA) [110], matrix factorization [111], and feature
selection methods. For instance, dimensionality reduction is often used to visualize
high-dimensional data or to speed up the training of machine learning algorithms.

2.5.3.3 Deep learning

Deep Neural Network (DNN) are a type of artificial neural network (ANN) designed
to mimic the human brain’s neural structure. They are composed of multiple layers of
interconnected nodes, called neurons, where each layer processes and transforms input
data to generatemore abstract and higher-level representations as it moves deeper into the
network. The term "deep" in DNN refers to the presence of many hidden layers within the
network. Deep neural networks require vast amounts of data and longer training times
compared to simpler neural networks. However, the benefit is that they are capable of
solving more complex problems and producing more accurate results.

Deep neural networks have revolutionized the field of artificial intelligence in recent
years, allowing for breakthroughs in image, audio, and signal processing. The most popu-
lar deep neural network algorithms used in mHealth are Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN).

Convolutional Neural Networks (CNN)

Convolution Neural Network (CNN) [112] is a type of DNN commonly used for image
processing tasks. It is designed to automatically learn and extract features from images by
using convolutional filters to identify local patterns and hierarchical structures within the
image. CNNs utilize convolutional layers to extract features from an input image and then
pass those features through fully connected layers tomake a prediction. The convolutional
layers are responsible for detecting the patterns, while the fully connected layers use those
patterns to make a final prediction. The architecture of a CNN can be outlined as follows :
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Figure 2.6 – An example of CNN, designed in [113] to detect misosis from breast cancer
pathology images.

— Convolutional layers : In a convolutional layer, a set of filters (also called kernels
or weights) are applied to the input image to extract features. The filters are typi-
cally small in size (e.g., 3x3 or 5x5), and each filter slides over the input image to
perform a dot product at each location, resulting in a feature map. After each convo-
lutional layer, an activation function (such as ReLU) is applied element-wise to the
feature map to introduce non-linearity. The output of the activation function is then
passed on to the next layer. The ReLU function is defined as ReLU(x) = max(0, x).

— Pooling Layer : In a pooling layer, the feature map is downsampled by taking the
maximum (max pooling) or average (average pooling) value within a small window
(e.g., 2x2 or 3x3). This reduces the spatial dimensions of the feature map and helps
to make the model more robust to variations in the input.

— Fully Connected Layer : After several convolutional and pooling layers, the fea-
ture map is flattened into a 1D vector and passed through one or more fully connec-
ted layers. These layers perform a dot product between the feature vector and a set
of weights to make a final prediction.

Overall, CNN has been widely used in mHealth for various tasks, such as image classi-
fication for disease detection [113], object detection, and segmentation [114], as well as
voice processing for Parkinson’s disease identification [115], among others. Despite its
power, this tool still requires a good understanding of the input data to guide the choice
of network architecture design. Figure 2.6 presents an example of a CNN architecture.

Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) [116] is a type of artificial neural network that
are specially designed to processes sequential data. Unlike traditional feedforward neu-
ral networks that process input data in a single pass and forget previous inputs, RNN
can remember past inputs, making them suitable for tasks that involve sequential data
such as natural language processing, speech analysis, and time series prediction [117].
However, they can have difficulty training on long sequences due to the "vanishing gra-
dient problem" [118] where gradients become increasingly small as they move through
the network.

To solve this issue, advanced RNN architectures like Long Short-Term Memory
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(LSTM) [119] and Gated Recurrent Unit (GRU) [120] have been developed. These archi-
tectures are able to selectively retain or discard information over time, allowing them to
handle long sequences more effectively. In the context of mHealth, LSTM (Long Short-
Term Memory) has been proven to achieve higher accuracy in detecting heartbeats from
accelerometer readings taken by smartphones held by users, as compared to traditional
methods of signal processing [15].

2.6 Conclusion

In this chapter, we have laid the groundwork for mobile health. Initially, we discus-
sed the technical capabilities of smartphones (Section 2.1), which are fundamental to our
proposed solutions. Subsequently, we highlighted the inherent challenges in health sys-
tems reliant on smartphones (Section 2.2). We also delved into the various components
essential for designing such systems (Section 2.3). Finally, we explored some of the most
commonly used techniques for data sensing and processing in mHealth, as outlined in
Sections 2.4 and 2.5.

From this introduction, it becomes apparent that the field of mHealth is rich in contri-
butions, both in the diversity of proposed systems and in addressing various health-related
issues. Moreover, it encompasses a range of knowledge from orthogonal domains such as
physical models, signal processing, advanced mathematical tools, and IoT systems. Howe-
ver, themethodology for designing these systems remains unclear. Specifically, what steps
should be taken to transition from awell-defined health issue to a functional mHealth sys-
tem that meets the constraints of user-friendliness and hardware availability? In the next
chapter, we will present a methodology addressing this question. Subsequently, we will
leverage this methodology to develop solutions—SmartPhOx, Bands-Spi, and Droplets—to
address the issues discussed in section 1.4.



Chapter 3

Methodology for Designing an
Effective mHealth System

The previous chapter provides an overview of the mHealth field, and the various stu-
dies that have been carried out. However, most existing work in this field does not meet
our vision for continuous and accessible healthcare. In fact, as presented in the architec-
ture (Section 2.3), the developed systems often rely on additional hardware, which is often
expensive or difficult to access, such as external sensors [36] or parts made by 3D prin-
ting [9]. In other cases, they rely on sensors found in high-end devices, such as LIDAR [22]
or force touch sensors [121]. Moreover, the developed usage protocols are often complex,
resembling true laboratory experiments, which can be prohibitive for home use[122, 123].
Either the patient must adopt a strictly defined posture, or the technologies, being mostly
proof of concepts, prioritize system efficiency over protocol simplicity. This leads to tools
that seem more suited for experts, considering the knowledge required for effective use.

In order to realize our vision, mHealth solutions should fulfill three criteria :
1. Effectiveness : First, beyond being a proof of concept, the system should be reliable

enough to provide real added value to the user. In addition to comparable accuracy
to clinical instruments, it should be able to guide an untrained user in obtaining such
results, even in an uncontrolled testing environment.

2. Accessibility : Second, they should rely on the sensors present in a standard smart-
phone, limiting the use of additional hardware to objects readily or easily available for
the user.

3. Simplicity : Thirdly, the operating protocol must be simple enough for an untrained
user to use outside the laboratory. Ideally, it should not require the active participation
of the user.
To design mHealth solutions meeting these criteria, the methodology we propose in

this chapter combines well-established mathematical principles that describe natural phe-
nomena, around which a basic model is built, signal and image processing techniques for
dealing with sensing noise, and machine learning algorithms, all within a data-driven
design framework. The systems presented later in chapters 4,5,6 are built following this
methodology.
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Objective:

Measure property P of object O for Application,
meeting constraints c1, c2, c3,...

Object identification

Sensor identification

Litterature review

Designing the sensing approach

Final mHealth system

Model and setup design

Evaluation

Preliminary experiments

Building the mHealth system

Figure 3.1 –Methodology for building a mHealth system from a well formulated
objective Starting with the formulation of the objective, we identify the object of inter-
est and the relevant sensor, then review the literature in search of relevant object’s data
sensing approach. Based on the determined approach, we then build the mHealth system
using a data-driven iterative process.

3.1 Overview of the methodology
Let us define the purpose of an mHealth system as the calculation of medically rele-

vant information, referred to as "information of interest," using a smartphone. This infor-
mation can represent a property of an object related to the human body, such as blood
oxygen levels or protein levels in urine. It can also pertain to an object outside the body but
with an impact on health, such as the alcohol content in a beverage about to be consumed.

No matter the specific health issue (disease screening problem, sample testing, or vi-
tal parameter measurement), we assume that the objective can always be formulated in
this manner. Thus, the goal is to create a comprehensive system, including setup, usage
scheme, and algorithms, based on the appropriate physical law (referred to as the model)
to estimate the "information of interest" from data collected by the smartphone sensors.
We follow two main steps to achieve this.

First, we design the data collection approach. Second, through an iterative process of
experimentation and analysis, we construct the mHealth system, addressing challenges
that may arise along the way. The methodology is depicted in Figure 3.1.

3.2 Designing the sensing approach

First, we need to design the way to collect object-related data using the smartphone.
This involves specifying the setup, even though it may be modified later, as the solution
design progresses. To achieve this, the following steps can be taken :
1. Identify the object and the property of interest : The first step is to identify the

object of interest, which is inherent in the definition of the information of interest
as a property. Specifically, the object of interest is the smallest physical unit that can
contain the information of interest. For example, it could be blood, lungs, or urine.
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Additionally, it is important to clearly define the requirements of the final system as
constraints to be fulfilled. By doing this, we can restate the objective as follows :
Objective : We want to measure the property p of object O for a specific application,
while respecting the constraints c1,c2,c3, . . .

The term "application" here refers to what we do with the medical information. Recall
from Section 2.3.2.3, it can be simply obtaining it, as in vital sign monitoring systems,
or, in other types of systems, interpreting it to extract a clinical meaning.
The constraints represent the desired level of requirements, including the availability
of the setup, the user comfort and system accuracy and convenience, as discussed in
detail in Section 2.2.

2. Identify the sensors : The next step is to identify sensors, present in a smartphone,
that can capture data directly or indirectly related to the object. We can consider how
humans interact with the object through their senses to find suitable sensors. For
example, we can detect an individual’s heartbeat by either visually observing their
chest movement or feeling the displacement when touching the chest. This suggests
that the camera and the motion sensors of the smartphone could also capture heartbeat
that way. Similarly, we can notice changes in blood flow by observing a person’s face
color 1, indicating that the camera can capture this information as well. This also give
the intuition about the usage scenario, since the sensor has to be placed accordingly.

3. Literature review : Thirdly, we conduct a literature review related to the object, the
sensor, and the desired property. The objective is to jointly identify a way to measure
data related to the object using the selected sensor, as well as an appropriate model to
deduce the property of interest from the collected data. To achieve this, the following
approach is suggested :
(a) Which data of the object can be measured with the sensor ? This involves examining
existing studies that enable object’s data collection using the specific sensor, whether
it is used through a smartphone, another device, or independently.
(b)What is the relationship between these data and the desired property ? For each consi-
dered data, the physical law that explain the relationship between the property of in-
terest and the data is investigated. For instance, we build up on Beer-Lambert law [29]
to build SmartPhOx (explained in Section 4.2.1). It is mathematical model widely used
to determine the concentration of a solute in a solution by measuring its absorbance
at a specific wavelength. Similarly, BandS-Spi and Droplets are built upon the Boyle-
Mariotte law and the Young-Laplace equation, respectively.
(c) Synthesis The objective is to compare the identified approaches to select the most
relevant one for constructing our system. The comparison criteria to be considered, in
order of importance, are the accessibility of the required setup, complexity of
the usage scheme and expected accuracy of the model.

1. We can notice a flushed or rosy appearance of the skin of a person’s face when he is stressed, which
is caused by increased blood flow
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3.3 If there is no existing relevant sensing approach?

If there is no existing approach relevant to the sensor and object being considered,
an initial design effort is required to create a new approach. There are two strategies to
consider : changing the sensor while keeping the object, or changing the object while
keeping the sensor.

Changing the object : The idea is to find another object whose property is influenced
by the property of the original object. For example, one could explore the correlation
between glucose levels in saliva and glucose levels in the blood. The goal is to identify
a more accessible object and then repeat the previous steps 3 of Section 3.2. It should be
noted that this strategy requires additional effort in designing the model, as a connection
needs to be established between the original property and the measured property of the
new object. Learning based approaches are often well suitable for modeling such cases
(discussed in 2.3.2.1).

Changing the sensor : Find a different sensor that can provide data more closely
related to the object. The focus here is on prioritizing signal-to-noise ratio and being less
concerned about additional hardware requirements and use scenario simplicity. There-
fore, it is possible to consider external hardware, potentially connected to the device via
a cable or wireless technologies.

3.4 Designing the mHealth system–A data-driven approach

After determining the sensing approach, the next step involves building the mHealth
system based on a data-driven approach. This process includes refining the model and
setup through iterative experimentation, as shown in Figure 3.2.

First, the setup of the chosen approach is customized to fit specific requirements re-
lated to the objective. Then, a series of initial on-field experiments is conducted to collect
both ground truth data (using the clinical device) and data measured by smartphones.
These collected data are preprocessed and input into the model to generate preliminary
results. Any challenges or factors contributing to unsatisfactory outcomes are carefully
analyzed at this stage. Based on these insights, proposed solutions are developed to re-
fine the usage protocol, setup, and algorithms. This leads to further experimentation in
an iterative process until the final system achieves optimal convergence. The challenges
we may face include limitations of the model and low data quality.

3.4.1 Dealing with model limitations

The results may be unsatisfactory due to the model’s imprecision, which can manifest
in two main ways.

— Firstly, for the model to work effectively, it requires ideal experimental conditions,
which are often not achievable in our context. The testing environment is uncon-
trolled, and user actions can introduce sources of error. For example, factors like
temperature stability, lighting conditions, or user positioning can significantly im-
pact the model’s performance. To address these issues, we can consider two stra-
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Figure 3.2 – Iterative data-driven process for designing the mHealth system.

tegies : using an additional sensor to measure external factors and adjusting the
model accordingly, or guiding the user to improve experimental conditions. In the
latter case, we aim to design a virtual assistant to help the user make necessary
adjustments, ensuring more reliable data for the model.

— Secondly, the model itself may lack precision, leading to discrepancies between ex-
pected and observed outcomes. To tackle this problem, we can employ a hybrid ap-
proach to complement the model. As described in section 2.3.2.1, this involves using
machine learning algorithms to compensate the differences between expected and
observed results. The resulting hybrid model is then tested in new experiments to
verify its effectiveness.

3.4.2 Dealing with insufficient data quality

Insufficient data quality can arise due to limitations of sensors, environmental noise,
or user behavior. For example, when using contacless photoplethysmography (which in-
volve using the front camera to sense blood flow from the face of the user, discussed in
Section 2.4.3) to capture blood flow with a camera, factors like device resolution, unin-
tended head movement, and ambient illumination can affect the accuracy of the results.
While we can deal with user and environment noise as explained in Section 3.4.1, to ad-
dress limitations from the sensors, wemay design a suitable data preprocessing algorithm.
This involves identifying the specific limitation of the sensor. For instance, in order to
use the smartphone’s camera to measure blood oxygen levels, the RR map introduced in
Chapter 4.6.2 is designed to address the difference in light propagation between the larger
camera sensor and the pinpoint photo receiver in a pulse oximeter.

3.5 Conclusion

In this chapter, we propose amethodology for designing anmHealth system to address
a specific health problem. The process begins by defining the desired medical information.
We then identify the object of interest and the sensors capable of measuring it. Next, we
conduct a literature review of relevant data measurement techniques, comparing them
based on signal-to-noise ratio (SNR), hardware and use requirements, and the presence of
a model in the fundamental sciences that links the desired information and the measured
data. Once the approach is determined, we proceed to adapt the setup, collect data in the
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field, and analyze the initial results. This step helps identify any limitations of the model,
setup, or experimental protocol. Based on these findings, we design and adjust the various
system components, and repeat the experiments until we achieve a satisfactory system.

Following this methodology, we looked at three application cases, either for measu-
ring a vital parameter, conducting a medical screening, or performing a sample test, all in
an accessible manner for non-expert users, using common sensors. We provide detailed
descriptions of these systems in the following chapters.



Chapter 4

Blood Oxygen Level Sensing With
a Smartphone

"... A vast majority of Covid pneumonia patients I met had remarkably low oxygen satu-
rations at triage — seemingly incompatible with life — but they were using their cellphones
as we put them on monitors."

What if their cellphones could have measured their oxygen saturation, how many of
these patients would have avoided intubation?

In this chapter, we present SmartPhOx, a smartphone-based pulse oximetry designed
to provide a solution to this question. To design SmartPhOx, we build on the ratio-of-ratios
(RR) method and linear regression, an elegant approach resting on the Beer-Lambert law
and landing itself to efficient smartphone implementations. However, its implementations
without specialized hardware have so far proved to be unsuitable for clinical use, in par-
ticular due to the instability of the RR measurements. We use an empirical study to shed
light on the reasons why and propose using the very RRmeasurements to filter RRmeasu-
rements – a new paradigm we call Meta-ROI. We design a complete-system architecture,
including a novel data structure for storing and defining consistent RR values and an
efficient algorithm for identifying Meta-ROI in real time. Results from an Android im-
plementation of SmartPhOx with the participation of 18 participants with different skin
pigmentation as classified by the Fitzpatrick phototyping scale show that it is the first
solution to meet the FDA requirement for Root Mean Square Error (RMSE) without using
custom hardware.
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4.1 Introduction

As the world was gripped by the COVID-19 pandemic, terms like oxygen saturation
(SpO2) and silent hypoxia– the condition in which a patient still feels well but their SpO2
is dangerously low [124] – entered the mainstream. The pulse oximeter, the once-obscure
fingertip device allowing home monitoring of the blood oxygen levels, emerged as an
important tool in fighting COVID-19, drawing attention to the science and technology
behind it – and raising the question of whether it can be reinvented for the era of the
smartphone.

The idea of pulse oximetry – the non-invasive monitoring of oxygen saturation using
the so-called ratio-of-ratios (RR) method – dates back to 1935 [125]. Scientifically it rests
on the Beer-Lambert law stating that light going through a thin body part, like a finger or
earlobe, will be impacted by its thickness and concentration – the latter including oxygen
saturation. Using two light beams of specific wavelengths and the fact that at different
points of the cardiac cycles only oxygen saturation-related factors change, as we show
in detail in Section 4.3, it is possible to manipulate the Beer-Lambert law through two
consecutive ratios to remove non-oxygen saturation factors, like the medium thickness.
The result is a relation between a ratio-of-ratio (RR) of light measurements and the SpO2
– the ratio-of-ratios (RR) method [126]. The first pulse oximeter was developed in the
‘70s [127] and today a wide range of pulse oximeters can be found off-the-shelf [128-132].
Nevertheless, dedicated hardware adds extra burden and, as the silent hypoxia cases due
to COVID-19 have revealed [124], often people are not aware their oxygen level needs
monitoring.

Increasingly in people’s hands and with advanced sensing, computing and communi-
cating capabilities, the smartphone is seen as a building block of pervasive computing and
key enabler of the digital healthcare [133-136]. Researchers have proposed smartphone-
based pulse oximetry solutions predating the COVID-19 crisis. [137] was among the first
to apply the RR method for estimating SpO2 using smartphones. A user places the finger
over the flashlight – serving as the source of light – and the camera. Acquiring the photo-
plethysmogram (PPG) signal from processing the resulting video allows RR of light mea-
surements and the estimation of SpO2. However, its accuracy is below the FDA clearance
threshold [30]. The fundamental reason is that it uses linear regression for implementing
the RR method. Unfortunately, the PPG signal, and thus the RR measurements, can be
unstable due to finger movements and pressure changes [138]. To address this issue, [139,
140] integrate into the RR measurements the camera quantum efficiency. While impro-
ving accuracy, this is information to which only manufacturers have access. PhO2 [138]
proposes attaching to the smartphone camera a custom-made device mounted with two
chromatic filters, each allowing a precise wavelength to pass. The result is a system allo-
wing SpO2 predictions with accuracy meeting the FDA clearance threshold. Nevertheless,
the custom-built hardware add-on, while manufactured with the help of 3D printing, li-
mits its large-scale application. Recently, dedicated oxygen monitoring sensors are being
integrated in smartwatches [141], and some high-end smartphone models [142]. While
accurate, such solutions leave out large sections of users with older smartphone models,
particularly in developping countries.
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In this chapter, we introduce SmartPhOx, a smartphone-based pulse oximetry system
meeting the FDA clearance threshold [30] for accuracy while relying only on the standard
smartphone camera and flashlight. Following the methodology presented in Chapter 3,
we start by first designing and conducting an empirical study aimed at shedding light
on the underlying reasons behind the inaccuracy of existing approach, based the Beer-
Lambert law and finger photoplethysmography. The data shows that focusing on primary
factors – the quality of the PPG signal [139, 140, 143] or identifying the right region on
the video [137, 144], known as the region of interest (ROI) – is misleading.

We find that signals of excellent quality can still lead to unstable RR measurements.
Focusing on a particular area of the video frame, such as the center, does not help either.

In light of these results, we argue for a shift in approach. We propose foregoing the
primary factors and instead leveraging the RR measurement values themselves for iden-
tifying stable RR measurements.

Using RRmeasurements to essentially filter RRmeasurement leads to the idea ofMeta-
Region of Interest – Meta-ROI, the key innovation underpinning SmartPhOx. However,
transforming the Meta-ROI idea into a complete system solution running on off-the-shelf
smartphones raises several challenges. First, using RRmeasurements to filter RRmeasure-
ments requires defining what is a good RR. Second, once the good RR defined, we need an
approach for automatically identifying the good RR values using camera videos as input
and the processing capabilities of off-the-shelf smartphones. In short, we address these
challenges by introducing a new data structure for RR measurements, we refer to as the
RR Map, and an efficient algorithm that can identify the Meta-ROI.

Throughout this work, we make the following contributions :
— We show that the primary factors for filtering ratio-of-ratios measurements are mis-

leading. We shed light on the reasons why and introduce Meta-ROI – a new paradigm
for identifying good RR measurements (Section 4.4).

— We design SmartPhOx, a complete-system architecture leveraging the concept ofMeta-
ROI for smartphone-base pulse oximetry (Section 4.5).

— We introduce a new data structure for RR measurements, the RR Map, that enables the
definition of good RR values (time-and-space consistent) (Section 4.6.2). Leveraging it,
we develop an efficient algorithm for identifying Meta-ROI (Section 4.7).

— We implement SmartPhOx as a standalone Android application and evaluate it with
data collected from 37 volunteers. The results show that SmartPhOx is the first pure
camera-and-flashlight smartphone-based solution to meet the FDA requirement for
Root Mean Square Error (RMSE) [30] (Section 4.9).
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4.2 Background on SpO2 sensing

Prior works on pulse oximetry can be grouped into two major categories : a) Works
and systems using dedicated hardware dating back to the 1930s, b) More recent works
built around the smartphone.

4.2.1 Dedicated hardware-based blood oxygen level sensing

A pulse oximeter is a small portable device for noninvasive monitoring of a person’s
oxygen saturation in the blood. The idea dates back to 1935 [125], with the first pulse
oximeter based on the ratio of red and infrared light absorption developed in the ’70s [127].
Today, pulse oximetry remains an active area of research and development, leading to a
plethora of devices that can be attached to the fingertip [128-130], earlobe [131, 145],
forehead [132, 146, 147], trachea [148] and ring type [149] products. Despite the easy
access to pulse oximeters, dedicated hardware can be impractical in everyday life, not least
because, as the COVID-19 pandemic revealed, often people are not aware their oxygen
level needs monitoring.

4.2.2 Smartphone-based blood oxygen level sensing

Recognizing smartphones as powerful sensing devices already in people’s hands, re-
searchers have proposed harnessing their capabilities for vital signsmonitoring [134-136].
In the particular case of oxygen saturation, [137] was among the first to apply the ratio-of-
ratiosmethod for estimating SpO2 using a smartphone. The RR values, a feature computed
from the photoplethysmogram, are extracted over a 50x50px region of interest (ROI) at
the center of the frame. However, as our experiments showed (Section 4.4.3.2), computing
RR values off a particular physical frame area can lead to inaccurate SpO2 values. To ad-
dress this issue, [139, 140] integrate into the RR calculation the camera quantum efficiency,
which represents the sensitivity of each channel (red, green, blue) of the image produced
by the camera to the different wavelengths of the input light. While accurate, these so-
lutions require knowledge of the camera quantum efficiency – something to which only
manufacturers have access. PhO2 [138] proposes to attach to the smartphone camera a
custom-made device mounted with two chromatic filters, each allowing a precise wave-
length to pass. The result is a system allowing SpO2 predictions with very good accuracy.
Nevertheless, the custom-built hardware add-on, while manufactured with the help of 3D
printing, limits its large-scale application. Recently, dedicated oxygen monitoring sensors
have been integrated into smartwatches [141, 150, 151], and some high-end smartphone
models [142, 152, 153]. While very accurate, such solutions leave out a large section of
users who have older smartphone models, particularly in developing countries.

4.3 Primer on the ratio-of-ratios (RR) method

In this section, we introduce the ratio-of-ratios (RR) method widely used for
smartphone-based pulse oximetry [137-140, 144, 154] and adopted by SmartPhOx.
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4.3.1 Theoretical underpinning

The RR method for measuring SpO2 rests on the law of Beer-Lambert describing
the attenuation of light as a function of the traversed material. Mathematically : I(λ) =
I0(λ)exp−ε(λ)ρd , where I0(λ) is the incident light intensity, ε(λ), the absorptivity for the
wavelength λ, ρ, the medium concentration and, d, the path length through the medium.
The equation can be expressed in a form landing itself to practical systems for estimating
SpO2. Let us start by expressing it at the two extremes of the cardiac cycle : in diastole,
where d = dmin, and systole, where d = dmax.Let Id(λ) and Is(λ) denote the corresponding
I(λ) values. Taking the logarithm of their ratio, we get :

L(λ) = ln(
Is(λ)
Id(λ)

) = (dmin − dmax).(εO2(λ)ρO2 + εHb(λ)ρHb) (4.1)

While more pratical, Eq. (4.1), requires measuring dmin and dmax. To relax this requi-
rement, we can use the ratio of two values corresponding to two different wavelengths,
λ1 and λ2 :

RRλ1,λ2 =
L(λ1)
L(λ2)

(4.2)

– hence the name ratio-of-ratios. Recognizing that S p02 =
ρO2

ρO2+ρHb
, where ρO2 and ρHb

denote the oxygen-saturated and oxygen-unsaturated hemoglobin, respectively, and di-
viding the numerator and denominator of Eq. 4.2 by ρO2 + ρHb , we get

SpO2 =
εHb(λ1)− εHb(λ2)RRλ1,λ2

(εO2(λ2)− εHb(λ2))RRλ1,λ2 + εHb(λ1)− εO2(λ1)
. (4.3)

4.3.2 Ratio-of-ratios on smartphones using linear regression

Equation (4.3) cannot be implemented on off-the-shelf smartphones without know-
ledge of all the coefficients. However, studies [137, 155] have shown that it can be ap-
proximated using a linear model as follows :

SpO2 = A×RR(λ1,λ2)+ B (4.4)

This equation enables the implementation of the ratio-of-ratio method on any smart-
phone using linear regression. RR values are measured empirically and used to train a
linear regression model for estimating the coefficients A and B.

4.3.2.1 Measuring RR values on smartphones

The RR expression, Eq. (4.2), can be simplified by introducing δ(λ) = Is(λ) − Id(λ).
Indeed δ(λ)

Id(λ) is small – the absorbance of the blood changes lightly from systole to diastole.
As a result, RR(λ1,λ2) measurements can be made using

RR(λ1,λ2) ≈
δ(λ1)
Id(λ1)
δ(λ2)
Id(λ2)

. (4.5)
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Figure 4.1 – Experimental setup

This approximation is significant sincemeasuring systolic and diastolic intensities per se is
not necessary anymore.Wemeasure instead a base (constant) intensity DCλ1 = Id(λ1) and
variations ACλ1 = δ(λ1) over this baseline, significantly simplifying the implementation.

4.4 Smartphone pulse oximetry : Challenges and opportu-
nities

Unlike dedicated pulse oximeters, smartphones use a flashlight covering a wide spec-
trum (400-800nm [138]) and a high resolution three-channel bitmap camera. Measuring
oxygen saturation using a smartphone requires carefully applying the ratio-of-ratios me-
thod introduced in Section 4.3.2 on a video sequence. It involves measuring RR 1 values
using Equation 4.5, followed by linear regression for estimating the A and B coefficients of
Equation 4.4. Therefore, the challenge in accurately estimating SpO2 using a smartphone
lies in how the RR are measured, both during training and inference.

4.4.1 Baseline approach for measuring RR

The baseline approach for measuring RR, the basis of most works on this topic [137-
139, 144], starts with a video of the subject’s finger placed over the camera and flashlight.
The average intensity of each channel for every video frame is collected resulting in three
PPG signals, one for each channel. The AC/DC ratio is then calculated for each signal :
taking as AC the amplitude of the oscillations of the PPG signal, and as DC the baseline
of the signal. Taking as λ1 the red channel and λ2 the green (or blue) channel, the RR is
finally obtained using Equation 4.5.

4.4.2 Analyzing the baseline approach

The objective of this section is not a thorough and large-scale analysis of the baseline
approach for measuring RR. It is instead to introduce the simplest test case capable of
shedding light on the complexities of the RR measurements on a smartphone and their
underlying reasons.

1. For simplicity we write RR instead of RR(λ1,λ2).
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Figure 4.2 – SpO2 measurements using the
ratio-of-ratio (RR) method on three different
users exhibiting SpO2 around 99%. The RR
values vary significantly (Fig.4.2a) even if the
ground truth SpO2 remains constant throu-
ghout the experiment – making linear re-
gression extremely challenging. The result is
a significant amount of errors in the predic-
ted SpO2 values (Fig.4.2b, Fig. 4.2c).

Experiment :We design and conduct
a controlled experiment using the setup
depicted in Fig. 4.1 with three different
users exhibiting healthy and stable SpO2
levels (around 99%). Each user sits in a
comfortable position and places their hand
on a table with the palm facing up. The
user’s middle finger is placed on the ca-
mera of a OnePlus 7T smartphone run-
ning a custom application collecting video
data, while the index finger is connected to
a CMS-50E Pulse Oximeter[128] for esta-
blishing the ground truth (more details in
Section 4.8.3). We train the linear regres-
sion model using the SpO2 variation pro-
tocol presented in Section 4.8.2, and test it
while SpO2 is naturally constant.

Results : Fig. 4.2 plots the RR va-
lues, predicted SpO2 and the prediction er-
rors for all three users. Fig. 4.2a shows that
while the SpO2 levels are constant throu-
ghout the experiment the RR values are
highly unstable. This results casts serious
doubts on the feasibility of using Equa-
tion 4.4 for estimating SpO2 on smart-
phones – no values for the A and B coeffi-
cients could associate the RR values obser-
ved in Fig. 4.2a to the same SpO2 value. It
is therefore no surprise that Fig. 4.2b and
Fig. 4.2c show highly erroneous SpO2 pre-
dictions.

Implication or the case for
consistent RR : This section’s test study
shows that the ratio-of-ratios method can
be undermined by inconsistent RR measu-
rements. Therefore, the smartphone-based
pulse oximetry challenge reduces to the challenge of consistent RR measurements. Qua-
litatively, we refer to RR measurements as consistent if for a given SpO2 level the RR
measured using a smartphone are similar.

4.4.3 The quest for consistent RR values

The baseline approach being highly inaccurate due to highly unstable RR values, dif-
ferent approaches have been proposed for acquiring better RR values. Certain approaches
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Figure 4.3 – PPG signals off which three RR values of Fig. 4.2 are computed. The signals
are very similar in terms of frequency and heart rate evaluation – highest peak around
the actual heart rate frequency (72 bpm), with spectrum having very similar shape and
QKurt values. Nevertheless, the respective RR values are very different, as is the quality of
the SpO2 prediction.

have proposed custom add-on hardware [138] filtering the flash light to allow only a pre-
cise wavelength. Aiming for solutions without hardware add-on, other approaches have
focused on the primary factors behind the RR values. The RR being measured off the PPG
signal, most focus has been on the PPG signal quality [139, 140, 143] while some focus on
a particular region of the frame [137, 144]. In the following, we investigate the approaches
requiring no hardware add-on.

4.4.3.1 The curious case of the PPG signal quality

With the RR a function of the PPG signal, a reasonable direction is to first acquire a
good quality signal before applying the RR method. We investigate this approach empiri-
cally :

Methodology : To evaluate the relation between signal quality and RR consistency,
we look back at the data of Fig. 4.2. We select three RR values – two among those lea-
ding to erroneous SpO2 predictions and one among those leading to the accurate SpO2–
and analyze the respective PPG signals. Since the source of the PPG signal is the cardiac
activity, we use Qkurt in our analysis, a metric quantifying the purity of a signal related
to cardiac activity [156]. Specifically, QKurt(s) = kurtosis

(
FFT (s)

)
kurtosis(Ps)

, where FFT is the Fast
Fourier Transform and, Ps, the perfect sine wave with frequency corresponding to the
heart rate.
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Figure 4.4 – RR Map at two time instances, t1,t2 of the same video collected while SpO2
is constant and equal to 98%. i, and j denote the image cell indices.

Results : Fig. 4.3 shows that the RR values under consideration are computed off
excellent PPG signals. The respective red and green channel signals exhibit their highest
peaks around the ground truth heart rate (72 bpm). The Qkurt values of all signals are
nearly perfect. Nevertheless, the RR values are highly different. More important, two of
the RR values lead to erroneous SpO2 predictions.

Implication : While involving only three RR values, the data demonstrates that ex-
cellent PPG signals can lead to highly different RR and SpO2 prediction – even if the
ground truth SpO2 is constant. As a result, the signal quality can be a poor proxy for
consistent RR values. In Sec. 4.4.4, we provide an intuition as to the reasons behind this
finding.

4.4.3.2 Location, location, location – and a new (RR) map

Instead of using PPG signal quality, an alternative approach is to simply use the central
region of the image for all RR calculations and SpO2 predictions [137, 144]. The intuition
being that lighting conditions should be more uniform in this area, leading to consistent
RR values.

Methodology : To evaluate the physical location-based approaches, we introduce
what we refer to as the RR Map. The input frame is divided into cells and for every cell a
PPG signal and an RR value are computed – the set of all the cell RR values of a particular
video input constitutes its RR Map.

Results : Fig. 4.4 shows the RR Map at two different time instances of the data of
Fig. 4.2. The data leads to two main observations : First, RR values from a specific region
(central or not) can be highly inconsistent – they vary significantly in time and space even
if the ground truth SpO2 is constant. Focusing on cells from the central region – (6,5), (8,5)
and (8,4) – shows that the respective RR values are very different. Furthermore, they vary
significantly from one time instance to the other. A second observation is that RR values
from physically-distant cells can be consistent. Zooming in on cells (1,9), (13,4) shows that
their respective RR values are very similar and remain stable from one time instance to
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the other.
Implications : The RRMap values of cells (6,5), (8,5) and (8,4) underline the difficulty

of reliable SpO2 predictions using a fixed region of the frame in particular, and a physical
region in general. On the other hand, the fact that the physically distant cells, (1,9), (13,4),
have similar and stable RR values is leveraged in Section 4.4.5 for introducing a new way
of selecting consistent RR values.

4.4.4 RR (in)consistency – the underlying reasons

The model based on Beer-Lambert’s law has some limitations. It assumes that mono-
chromatic light rays pass completely through the finger and are reflected specularly back
to the camera, ignoring the complex phenomena of scattering and refraction. Light rays
arriving at the camera sensor undergo an optical path that is subject to these phenomena,
including intermediary reflections inside the finger, and whose impact can depend on the
smoothness of the incidence region and the angle of incidence. It is as if each pixel of the
camera is subject to rays following different virtual paths through the finger, producing
different RR values for the same SpO2. Furthermore, the temporal volatility of the RRs can
be explained by the fact that these virtual paths change, depending on the disturbance ge-
nerated by the micro-movements of the finger. Some paths are however more stable than
others : the paths for which the overall configuration of the finger surface, the camera and
the flash do not change much, despite the micro movements. The Meta-Region of Interest
introduced in the next section is aimed at identifying the more stable paths.

4.4.5 A way forward – the Meta-Region of Interest

The key observation of our work, paving the way for SmartPhOx’s meta-region of
interest, is informed by intuition and empirical evidence. Intuitively, while the finger is
not perfectly flat and never applied with the same pressure, there must be regions of the
fingers for which the light pathways are similar. These regions need not be contiguous in
time and space. The intuition is supported empirically by the RR Map of Fig. 4.4 showing
cells (1,9) and (13,4), non-contiguous in space, produce similar and stable RR values in an
experiment involving a stable SpO2 level. The challenge, however, is automatically iden-
tifying the regions leading to consistent RR values. Primary factors, the focus of previous
works are shown to fail : PPG signal quality is shown to be a poor proxy ; the areas with
consistent RR values are not necessarily contiguous, excluding an approach based on a
particular physical area.

We propose to forego using primary factors and to rely on the the RR values them-
selves to identify good RR values. Using RR values to essentially filter RR values leads
to the idea ofMeta-Region of Interest – Meta-ROI, the central element of SmartPhOx. Tur-
ning this idea into a robust smartphone-based solution raises several scientific and system
challenges, which we detail and address in the following sections.
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Figure 4.5 – SmartPhOx System Architecture

4.5 SmartPhOx system overview

Fig. 4.5 shows a high-level depiction of SmartPhOx ’s architecture. It comprises three
modules :
1. Hardware : The SpO2 measurement starts with the subject placing the finger on the

smartphone flashlight and camera.
2. Data sensing : The smartphone camera generates a video during the measurement ses-

sion. Section 4.6.2 introduces methods for customizing the video recording and trans-
forming the data into the RR Map.

3. Algorithms : Section 4.7 formalizes the notion of consistent RR values and introduce
an algorithm that take as input the RR Map and identifies the Meta-ROI. The latter is
used for estimating SpO2 using the ratio-of-ratio method described in Section 4.3.2.

4.6 Data – RR Map Construction

4.6.1 Data sensing

The first step in SmartPhOx is recording a video session while the user places the
finger on the smartphone flashlight and camera. Selecting its duration involves satisfying
two constraints. It needs to be long enough to allow the calculation of several RR values for
identifying time-consistent RR values. And, a single RR calculation requires a few seconds
of PPG signal [137, 157]. Letw denote the PPG signal length for a single RR calculation and
Z the number of consecutive RR values necessary for training and prediction. SmartPhOx
calculates RR values using a sliding window of size w. Thus, the video session duration is
T = Z +w− 1 seconds.

4.6.2 RR Map computation

Once a video consisting of 30 × T 3-channel (Red, Green, Blue) frames is obtained,
the frame surface is divided into X × Y cells. The choice of X and Y represents a tradeoff.
Higher values translate to more cells and a finer the segmentation of the frame, enabling
a more precise selection of the RR values. However, this leads to smaller individual cells
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with less data on their surface, making their RR more sensitive to noise induced by the
camera acquisition chain. We evaluate this trade-off in Section 4.9. To compute the RR
of a cell from the PPG signal, recall from Sec. 4.3.2 that RR ≈

ACλ1/DCλ1
ACλ2/DCλ2

. Using the green
and red PPG signals as λ1 and λ2 of each cell, we compute its RR by selecting as AC the
standard deviation of the filtered signal, and as DC the average of the raw signal.

For every cell, (x,y), x ∈ {1,2, ...,X}, y ∈ {1,2, ...,Y}, we obtain a vector

RR(x,y) =
[
rr(x,y)

1 ,rr(x,y)
2 , ...,rr(x,y)

Z

]
(4.6)

where Z is the number of RR values computed over the window T . Therefore, the RR
Map can be seen as a set of X × Y , Z-dimension vectors, with X × Y denoting the space
dimension and Z, the time dimension. For the rest of the paper, we use the terms cell and
Z-dimension vector interchangeably.

4.7 Meta-ROI Algorithm

The basic premise of our work, as developed in Section 4.4, is that accurately esti-
mating SpO2 requires consistent RR values. In this section, we formalize the notion of
consistency and introduce an algorithm for identifying the most consistent RR values –
the Meta-ROI.

4.7.1 Space-time consistency in the RR Map

To formalize the notion of RR consistency, first introduced qualitatively in Sec-
tion 4.4.2, we draw on the empirical study of Section 4.4 and the cluster analysis. With
the data showing RR values vary across frame regions and time, we define consistency in
space and time. By construction, the RRMap includes the space and time dimension. The-
refore, we consider RR cells to be consistent if they belong to the same cluster produced
by a clustering algorithm applied on the RR Map. The clusters themselves are considered
time-consistent regions. Formally :

Definition 1 (Space-time consistency) Let S = {S 1,S 2, ...,S k} be a clustering of the RR
Map cells. Two cells are considered consistent in space and time if they belong to the same
cluster in S . The clusters {S 1,S 2, ...,S k} are referred to as space-time consistent regions.

4.7.2 Meta-ROI algorithm

In this section, we address the challenge of identifying the best among the space-time
consistent RR Map regions. Referred to as the the meta-region of interest (Meta-ROI),
it includes the RR values SmartPhOx’s linear regression model will eventually associate
with a particular SpO2 value.

A straightforward solution could be to approach this challenge as fundamentally a
clustering problem and simply use an efficient heuristic for k-means. However, owing
to its origins as a quantization technique [158], there is no simple way to choose the k
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Algorithm 1 Meta-ROI algorithm
Input : RR_MAP[X][Y][Z]
Output : The meta region of interest, Meta_Roi

1 for K := 2 to K_MAX do
2 Centroids[K][Z] = k_means (RR_MAP, K) Compute DB(Centroids[K]), using Eq.(4.8)

if DBk < minimum_DB then
3 minimum_DB = DB for i := 1 to K do
4 Calculate cv(Centroids[i]) using Eq.(4.7)
5 Meta_Roi = cluster with minimum cv

6 return Meta_Roi

parameter. More important, our objective is not to reduce the dimensionality of the RR
Map but rather to identify the Meta-ROI.

Our solution to this two-pronged problem is a divide-and-conquer approach. We first
address the challenge of identifying the best among the space-time consistent RR Map
regions, assuming the k parameter is known. Subsequently, we focus on addressing the
challenge of identifying the k parameter.

To identify the best space-time consistent region, we introduce a new consistency me-
tric. The metric needs to satisfy two requirements. It needs to quantify the consistency of
a given cell cluster. Moreover, it needs to allow a meaningful comparison of the k clusters
with different numerical values so as to identify the Meta-ROI. To meet these require-
ments, we use the coefficient of variation. It measures the dispersion of a population,
allowing to quantify the consistency of a given cluster. And it is normalized, enabling a
fair comparison between different clusters. Specifically :

Definition 2 (Consistency metric) Let S = {S 1,S 2, ...,S k} be a clustering of the RR Map
cells and C = {C1,C2, ...,Ck} the respective set of the Z-dimension centroids. The time-
consistency metric of a cluster, S i, is defined as the coefficient of variation of its centroid
vector, σ(Ci) :

cvi =
σ(S i)
µi
=

√√√
1
Z

Z∑
z=1

(Ci,z − µi)2 ×
1
µi

(4.7)

where µi =
1
Z

Z∑
z=1

Ci,z.

Identifying the best value of the parameter k is a decades-old problem [159, 160] with
no simple solution. The naive approach of iterating over different values of k until the
consistency metric of Definition 2 is minimized would not work as it could converge
to trivial, single-cell clusters. To strike a balance between space-time consistency and
region size, we couple the consistency metric with the Davies-Bouldin (DB) index [159],
one of the classic validity indices for analyzing clustering. Unlike its main alternative, the
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Table 4.1 – SmartPhOx implementation parameters.

w 10 s
T 15 s
RR Map Z-dimension 6
RR Map cell size 94× 56 px
Video resolution 1260× 720 px

Table 4.2 – SmartPhOx processing time on various phones.

RR Map computation Meta-ROI algorithm Linear Reg. Total
OnePlus 8t 27 ms 30 ms 0.2 ms 57.2 ms
Oneplus 7T 30 ms 32 ms 0.2 ms 62.2 ms
Huawei P30 57 ms 86 ms 0.5 ms 143.5 ms

silhouette [160] index, which is focused on the cluster density, largely addressed by the
consistencymetric, the DB index rewards the creation of distinct clusters. Mathematically,

DB =
1
k

k∑
i=1

max j,i

(
di + d j

di j

)
, (4.8)

with k the number of clusters, di(d j), the average (Euclidean) distance of all cells in cluster
i( j) from its centroid, and di j the distance between the centroids of clusters i and j.

The consistency metric and the DB index pave the way for our algorithm for identi-
fying the Meta-ROI (sketched in Algorithm 1). It proceeds by making consecutive calls to
a k-means algorithm with increasing values of the parameter k (lines 1, 2) up to a limit
of K_MAX. Since the DB index is smallest for well-distinct clusters, the algorithms look
to minimize it (line 4). Every time a clustering with a smaller DB index is identified, the
consistency metric is used for identifying the best cluster (line 5). The algorithm returns
the most consistent cluster of the clustering with the smallest DB index as the Meta-ROI.
A key parameter of Algorithm 1 is obviously the K_MAX. In our experiments, the smal-
lest DB index was reached with k between 2 and 6, so we set the default value of K_MAX
conservatively to 10.

4.8 Implementation and dataset

4.8.1 Implementation

We implemented SmartPhOx as a standalone Android application. The signal pro-
cessing component is implemented using the IIRJ library[161]. The k−mean clustering
is implemented in Java. Table 4.1 shows the default parameter values used in the imple-
mentation (we evaluate the impact of these values on the performance of SmartPhOx in
Section 4.9.2). Table 4.2 shows the processing times on off-the-shelf smartphones of the
SmartPhOx implementation when using the default parameter values of Table 4.1.
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4.8.2 SpO2 variation protocol

Ideally, we would test SpO2 on subjects suffering from hypoxia, especially COVID-
19 patients but in the current context it proved infeasible. Therefore, we have developed
a protocol for inducing the oxygen level variation in healthy volunteers. The protocol
starts with breathing normally for the first 30 s followed by a stop-n-go process of brea-
thing/holding their breath, exhaling/holding their breath. The objective is to induce a gra-
dual decrease and increase of SpO2, thus generating a richer set of values. In particular,
the volunteer is asked to take a deep breath and then hold it until starting to feel discom-
fort, then (b) exhale, followed by holding the breath until feeling discomfort again. At this
point the SpO2 reaches its low point, typically in the mid-to-high 80’s (%). To raise SpO2
gradually, the volunteer is asked to take a few consecutive short breaths, each followed
by holding until discomfort, returning gradually to a normal breathing pattern.

4.8.3 Data collection procedure

To collect the evaluation data, we followed the procedure illustrated in Fig. 4.1 2. The
volunteer is asked to sit in a chair with their hand resting on the table. A pulse oximeter
(CMS50E) is clipped on their index finger while the back camera of the smartphone is
placed on the middle finger. The person is then asked to apply the SpO2 variation proco-
tocol, described in Section 4.8.2. The average duration of each SpO2 measurement session
is 3 min.

Ground truth To acquire the ground truth data, we use the off-the-shelf CMS50E pulse
oximeter[128], which allows measurement of SpO2 in the range of 35%-99% with a reso-
lution of 1% [163]. It is an FDA approved device, widely used in literature for heart rate
or SpO2 monitoring [164].

As the oximeter is placed on the index finger while the smartphone on the middle
finger, a question arising is whether it is valid to collect the ground truth on a different
finger than the one SmartPhOx is using. To address it, we perform experiments with two
oximeters placing one in each of the index and the middle finger. We then apply a T-test
on the collected data to evaluate the null hypothesis that the pairwise difference between
recordings of both fingers has a mean equal to zero at the 5% significance level. The test
failed to reject the null hypothesis (p-value = 0.6669 > 0.05), providing support for using
readings from index finger as ground truth while SmartPhOx is collecting measurements
on the middle finger.

4.8.4 Data set

The data set is summarized in Table 5.1. We evaluate SmartPhOx on 37 participants
and using three different smartphones, OnePlus 8T, OnePlus 7T and Huawei P30 Lite.
Both Oneplus phones use a Sony IMX586 as main camera sensor, while the Huawei a Sony
IMX600y. Their focal lengths are 26mm, 26mm and 28mm, and their apertures f/1.7mm,

2. Our experiments are in agreement with the ethics defined in the Helsinki Declaration [162].
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Table 4.3 – Data set summary

Age
18 - 60
Average : 30.31 ; Std : 12.37

Gender
Male : 27,
Female : 10

Fitzpatrick phototyping scale I :3, II :20, III : 3, IV : 2, V : 2, VI : 7

Oxygen level
85% - 99%
Average : 95.8% ; Std : 3%
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Figure 4.6 – Overall SpO2 prediction results.

f/1.6mm and f/1.8mm, respectively. To address concerns regarding racial bias in SpO2
measurements, especially as it regards Black patients [165], our study includes volunteers
with different skin pigmentation, as classified by the Fitzpatrick phototyping scale [166].

4.9 Evaluation results

In this section, we perform a careful evaluation of SpO2, aimed at understanding its
overall performance, the impact of key system parameters and experimental settings, and
finally its utilization of system resources.

4.9.1 Overall SpO2 prediction performance

Methodology : SmartPhOx is evaluated using leave-one-out cross validation, with
data from 24, 12 and 1 users for train, validation and test sets, respectively. The ground
truth is acquired as described in Section 4.8.3. We compare SmartPhOx’s meta-ROI with
the following approaches for selecting the RR values :
— Full-frame : Adopted by several works[138-140, 143], it uses the entire frame as the

region of interest. The PPG signals are constructed by stacking in time the average
value of every frame for the corresponding channel. The RR values are then computed
from the resulting PPG signals.

— Central-ROI : It involves using the central 50x50 pixels of the frame [137, 144]. The
intuition behind this approach is that the central part of the image should be least
impacted by movement or ambient light, and therefore the most stable.
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Figure 4.7 – Raw SpO2 results for 6 participants.

— Max-AC : It involves using the cell producing the largest value of the green channel
AC [167]. The idea is that blood has a bigger impact on a PPG signal with a large pulse,
making it, theoretically, of better quality.
Results : Fig. 4.6 plots the CDF (Fig. 4.6a) and the Root Mean Square Error (RMSE)

(Fig. 4.6b) of the SpO2 prediction of all the considered approaches. To put the results into
context, Fig. 4.6b includes the FDA RMSE clearance threshold for pulse oximeters [30].
The data shows SmartPhOx having the best performance. The median prediction error
for SmartPhOx is 1.75% against 2.2% for the second-best method. The RMSE data paints
a similar picture, with SmartPhOx delivering an RMSE of 3.04 % versus 3.77, 4.84, 4.43%
for Central-ROI, Max-AC and Full-Frame, respectively. Most important, SmartPhOx is the
only approach to meet the FDA RMSE requirement for pulse oximeters 3.

For a look into the raw data, Fig 4.7 shows the SpO2 values reported by all methods
during a testing session. In the interest of clarity, we show the data for 6 users. As the
subjects are following the SpO2 varying protocol, their levels drop from the healthy values
of around 99% to under 90%. The data shows SmartPhOx is capable of predicting the
ground truth the best, which is in line with the analysis of Fig. 4.6.

4.9.2 Statistical analysis of the SmartPhOx performance

We conduct a one-tailed T-test on SmartPhOx’s prediction errors observed in the ex-
periments of Section 4.9.1. In particular, the statistical test is aimed at answering the ques-
tion of whether SmartPhOx’s prediction error is on average lower than a given value, x.
Towards this, we perform a one-tailed T-test over the set of SmartPhOx’s prediction er-
rors for various values of x. Fig. 4.8 shows the p-value for different values of x. The data
shows that the probability of SmartPhOx’s average prediction error being above a given
x drops below 0.05 for x = 2.39, and below 0.005 for x = 2.43.

3. Obviously, this result does not imply FDA clearance, a process beyond the scope of this work.
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Figure 4.8 – SmartPhOx statistical analysis.

Table 4.4 – SmartPhOx vs PhO2. The data for PhO2 as reported in [138] .

PhO2[138] SmartPhOx
Number of Subjects 6 37
Skin pigmentation Asian : 4, White : 2 Fitzpatrick I-VI
SpO2 range 81 % - 99 % 85 - 99 %
RMSE N/A 3.04 %
Mean Absolute error, Std Absolute error 2.5 %, 1.62% 2.31%, 1.96%
Absolute error, 80th percentile 3.5 % 3.83 %
Hardware add-on Yes No

4.9.3 Comparison with a complete-system solution

In this section, we aim at contextualizing the performance of SmartPhOx by compa-
ring it with PhO2 [138], a state-of-the-art system using the ratio-of-ratios (RR) method.

Methodology : With a full-fledged, in-house implementation of PhO2 being infea-
sible due to its using a custom-built hardware add-on, we compare with results reported
in [138]. For SmartPhOx, we use the same data set and training/validation/testing protocol
as in Section 4.9.1.

Results : Table 4.4 compares the performance evaluation of SmartPhOx with that of
PhO2. It shows that SmartPhOx’s 80th percentile of the absolute prediction error is very
close to that reported for PhO2 (no RMSE values are reported in [138]).

Implication : The results show that the meta-ROI approach of identifying regions
with consistent RR values introduced by SmartPhOx can relax the requirement for
custom-built hardware.

4.9.4 Sensitivity analysis

In this section, we evaluate SmartPhOx’s performance as function of its key parame-
ters. The RR Map being fundamental to its functionality, we focus on the RR Map cell size
– defining the map’s X,Y dimensions – and the RR Map Z-dimension.

4.9.4.1 Sensitivity to RR Map cell size

We vary the RR Map cell size from 32×18 px to 256×144 px. For our implementation
using a 1260 × 720 px video (Table 4.1), this corresponds to an X,Y dimension ranging
from 5× 5 to 40× 40.
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Figure 4.9 – SmartPhOx sensitivity analysis.

Results : Fig. 4.9a reveals a binary behaviour. For large cell sizes ( 256×144 px, 128×72
px), the X,Y dimension of the RRMap (5×5, 10×10) is too coarse grained for SmartPhOx’s
meta-ROI algorithm to identify highly consistent meta-region of interests. However, once
the cell size is 96× 54 px or smaller the RMSE drops below the FDA clearance threshold.
Thus, SmartPhOx uses 96× 54 px by default.

4.9.4.2 Sensitivity to the size of Z-dimension

Fig. 4.9b depicts the performance of SmartPhOx in terms of RMSE as function of the
RR Map Z-dimension size. The data shows the importance of time consistency, embodied
by the Z-dimension, in selecting the best meta-region of interest. When Z = 1, essen-
tially eliminating the time dimension, the RMSE is well above the FDA clearance. As the
Z-dimension increases, the performance of SmartPhOx improves significantly to meet
the FDA requirement. Further, the data shows that once a time-consistent meta-region is
identified, increasing the Z-dimension brings no additional gain. As a result, SmartPhOx
uses Z = 6 as the default value.

4.9.5 Varying experimental settings

In this section, we evaluate the impact of two key experimental parameters in the
performance of SmartPhOx : finger on which it measures SpO2, and ambient lightning.

Methodology :With the help of seven of our volunteers, we run SmartPhOx with the
smartphone placed successively on the middle, ring and little finger. In a second step, we
run SmartPhOx in a completely dark room, with the smartphone on the middle finger. We
use two settings for the dark room conditions : in one – Dark room – we use the regressor
fitted with the main data set, in the second – Dark room* – we use fit the regressor with
data collected in dark room conditions.

Results : Figure 4.10a shows a similar error distribution for all fingers – median error
of 1.8, 2.15 and 2.1%, respectively – suggesting that SmartPhOx is robust to the finger
selection. We do observe a higher RMSE when using the pinky finger, which may be due
to the fact that it is the smallest finger, making the light distribution over its surface more
sensitive to random movements.

Fig. 4.10b shows that testing SmartPhOx in a completely dark room does not signifi-
cantly alter its performance. The data shows that training the regressor with dark-room
data (Dark room*) improves slightly the performance of SmartPhOx when compared to
normal lighting conditions. This may be due to there being less RR variability in the dark.
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Figure 4.10 – Varying experimental conditions.

Table 4.5 – SmartPhOx’s resource utilization.

Device CPU (%)
Memory
(MB)

Energy
(% of time)
[L/M/H]

Oneplus 7t 24 176.9 90/10/0
Oneplus 8t 23 189.3 87/13/0
Huawei P30 Lite 26 298.7 95/5/0

4.9.6 System resources utilization

We evaluate SmartPhOx’s utilization of CPU, memory, and energy by using the An-
droid Profiler [168] and report the results in Table 4.5. The intrinsic multiprocessing na-
ture of the mobile phone operating systems makes it very challenging to measure the
exact energy consumption of a given application. Thus, we show the percentage of time
Android Profiler reports SmartPhOx’s energy consumption as being Light (L), Medium
(M), or Heavy (H). The data shows that SmartPhOx’s utilization of resources is limited,
especially in terms of energy consumption.
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4.10 Conclusion

We presented SmartPhOx, a smartphone-based pulse oximetry solution requiring no
custom hardware. Using a carefully designed empirical study to inform ourwork, we iden-
tified the limitations of current approaches and introduced the notion of Meta-ROI. We
transformed the Meta-ROI concept into a complete-system solution capable of running
on a smartphone A carefully performance evaluation using an Android implementation
of SmartPhOx and involving 37 healthy volunteers showed that it is the first smartphone-
base pulse oximetry solution to meet the FDA requirement for Root Mean Square Error
(RMSE) without needing custom hardware.

With SmartPhOx, we have developed a SpO2 measurement system that works on any
smartphone equipped with a camera and flash. It is designed to be easy and comfortable
enough for users, aligning with our vision of accessible healthcare. This system can assist
users in taking a first filter in case of doubt about their health state, potentially preventing
unnecessary medical attention-seeking. By providing a convenient and reliable tool for
measuring SpO2 levels, individuals can proactively monitor their health and make infor-
med decisions about seeking further medical assistance when necessary. There is however
many ways to improve this work :

— First, SmartPhOx was trained on a ground truth dataset with oxygen levels ranging
from 85% to 99%. This limits the solution’s accuracy in predicting oxygen levels
below 85%. Obtaining a wider range of ground truth oxygen level data, such as
conducting a study in a controlled environment where blood oxygen levels are ma-
nipulated by adjusting the oxygen level in the room[169], similar to the approach
in [170], could be considered. That been said, SmartPhOx is capable of detecting
hypoxia (oxygen levels below 92) and alerting the user to seek medical attention if
necessary, which is satisfactory for home monitoring purposes.

— Second, to align perfectly SmartPhOx with this goal, we can explore a contactless
and opportunistic approach that utilizes contactless photoplethysmography. As ex-
plained in Chapter 2.4.3, this method involves leveraging the front-facing camera
of the user’s smartphone to monitor changes in skin color caused by blood flow.
The approach would intermittently function while the user employs their smart-
phone, remaining completely passive and transparent to the user. However, this
approach presents a significant challenge due to the low SNR, particularly in poor
ambient lighting conditions and with darker skin tones. To address this limitation,
we can investigate deep learning-based computer vision techniques to enhance the
SNR of the contactless PPG signal. Previous research has demonstrated the feasi-
bility of reconstructing finger photoplethysmography from contactless photople-
thysmography using a neural network architecture with supervised learning [171],
highlighting a promising future research direction for SmartPhOx.



Chapter 5

Measuring Lung Functions with
Smartphone and Balloon

"...more broadly, what if the very cellphone already owned could serve as medical device,
how easily human being would have access to healthcare ?"

In this chapter, we propose BandS-Spi, a solution using a smartphone and an inexpen-
sive rubber balloon for measuring lung function using a spirometry test – a test usually
performed in a clinical setting using a spirometer. BandS-Spi is the first smartphone-based
system to explicitly measure the air exhaled during a spirometry maneuver by trapping
it into a balloon. Its theoretical underpinning is Boyle’s law, establishing the relationship
between the pressure of the gas inside a balloon and its volume. To transform this theory
into a practical systemwe introduce methods for computing the volume of the exhaled air
based on pressure readings collected inside the balloon and introduce a virtual coach for
spirometrymaneuver quality assurance.We evaluate BandS-Spi on 78 volunteers showing
that it can measure the most common spirometry parameters – FVC, FEV1, FEV1/FVC –
with accuracy similar to or better than that of commercial handheld spirometers.

5.1 Introduction

Respiratory diseases, such as asthma, Chronic Obstrusive Pulmonary Disease (COPD)
and Acute Respiratory Distress Syndrome (ARDS), constitute a significant public health
challenge [172]. In 2019, respiratory diseases represented the third leading cause of death
worldwide [173]. Themost commonly used pulmonary function testing (PFT), Spirometry
is recommended by the Global Initiative for Chronic Obstructive Lung Disease (GOLD)
for the clinical diagnosis of COPD to avoid misdiagnosis [174]. It is a simple, non-invasive
method that measures the volume and velocity of air that can be inhaled and exhaled by
the patient.

Traditionally, a spirometry test is performed in a clinical setting using a medical de-
vice, a spirometer [175]. A spirometry maneuver involves the patient inhaling deeply and
slowly and exhaling forcefully for as long as possible into the spirometer transducer. It is a
maneuver described in inherently subjective terms. As a result, a spirometry test involves
2-3 maneuvers under the supervision of a trained technician to ensure repeatability [176,
177].

While the gold standard, clinic spirometry places a significant practical and financial
burden on patients with chronic diseases, and can be entirely out of reach for many, es-
pecially in the developing world [178]. Against this background, home spirometry, using
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portable spirometers, has emerged as a more practical and accessible alternative [179].
A very positive development towards making spirometry more accessible and affordable,
it still requires special-purpose hardware, imposing financial and environmental costs.
Furthermore, it is more challenging for patients to perform high-fidelity spirometery ma-
neuvers without any coaching. Providing an easily accessible and efficient method of per-
forming this test would help reduce mortality, as well as the costs associated with these
conditions. To this end, this chapter investigates an mHealth system for home spirometry
testing. We formulate the problem as follow :

Problem : How to perform reliable spirometry test using a smartphone?

The spirometry test essentially involves measuring the volume of gas coming out of
the lungs. Furthermore, to make spirometry at home truly possible with a smartphone-
based solution, we have to make sure that the user will be able to get reliable results
from the system on his own, regardless of its skills and the test environment. Hence, we
formulate our objective as follows :

Objective : We want to measure the volume of the expired content of lungs reliably
even in an uncontrolled environment and with and untrained user.

Following the methodology described in Chapter 3, we identify the object of interest
as the lungs, and the property of interest as the volume of exhaled gas.

To identify the sensor to be used, our primary intuition is that we can sense the
amount of gas exhaled by an individual by listening to the variation in the intensity of the
sound of their exhalation. Based on this insight, we conduct a review of the literature on
existing mHealth sensing approaches related to the lungs and the device’s microphone.

Review of the state of the art

Gupta et al. [180] introduced one of the first smartphone-based spirometry solutions.
While it relies on a custom hardware add-on, limiting its practicality, it showed the poten-
tial of the smartphone-based paradigm. Several works followed [10, 39, 181-183], introdu-
cing "pure software" smartphone-based spirometry solutions with accuracy comparable
to special-purpose medical devices. The underlying principle of these systems is that a
spirometry test can be performed by blowing out into the smartphone microphone and
processing the audio recordings (See audible sound analysis in Section 2.4.2.1). Citing the
sensitivity of these audio recordings to the ambient noise, however, [27] introduced a dif-
ferent approach, SpiroSonic, which measures the lung functions by measuring the chest
wall motion of a person performing the spirometry maneuver, using acoustic motion tra-
cking. The latter is performed by transmitting an ultrasound signal using the smartphone
speaker and analyzing the signal reflected by the chest wall and received by the micro-
phone (see details about Acoustic motion tracking in Section 2.4.2.2). However, the high
level of precision required in the chest wall motion measurements makes SpiroSonic sen-
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sitive to unintentional hand movements.
Existing approaches, are in essence either sensitive to the user’s unintentional mo-

vements, or to ambient noise, which does not satisfy the constraints of our objective.
Following our methodology described in Chapter 3.2, we decided to investigate a new
approach, involving a more reliable sensor although requiring additional material.

Contribution and plan

Given the limitations of existing approach, we look for a different approach, by chan-
ging the sensor. To guide us, our intuition is that we canmore faithfully measure a volume
by measuring a pressure, since both are correlated. According to Boyle’s law [184], the
pressure of the gas inside an isolated container is inversely proportional to its volume.

Following this intuition, we propose BandS-Spi, a solution using a smartphone and an
inexpensive rubber balloon for measuring lung function using a spirometry test. BandS-
Spi is the first smartphone-based system to explicitly measure the air exhaled during a
spirometry maneuver by trapping it into a balloon. Smartphones have pressure sensors,
so, in theory, placing one inside a balloon to collect its internal pressure should allow
computing the volume of the exhaled air trapped inside the balloon. Fig. 5.1 shows the
results of a simple feasibility experiment. A smartphone is placed inside a rubber bal-
loon and air is gradually inserted into the balloon using a 300 mL syringe. As we insert
specific quantities of air into the balloon, the smartphone pressure readings are recorded
to generate pressure-volume curves. The experiment is repeated 3 times, on 3 different
days, producing near-identical pressure-volume curves. The repeatability of the results
suggests that BandS-Spi’s basic working principle is feasible in practice.

To transform this theory into a practical and reliable spirometry system raised several
challenges. First, transforming pressure readings into the balloon volume is challenging
for several reasons. The volume of the balloon depends not only on the internal pres-
sure but also on other factors, including the number of polymer chains per unit volume
(itself depending on the manufacturing process), the balloon thickness, temperature, etc.
The volume of the balloon itself is not the same as the volume of the air exhaled into
it due to the effect of the rubber’s restoring force. Finally, performing a spirometry test
without any coaching from a trained technician is challenging and can lead to erroneous
results. This is a challenge faced by all home spirometry solutions but presents distinct
difficulties for BandS-Spi due to its usage of a rubber balloon. In short, we address these
challenges by introducing an approach for converting pressure readings into exhaled air
volume that does not require knowledge of the balloon manufacturing process and needs
only a single, one-time measurement from the user. To assure at-home spirometry fidelity
with BandS-Spi, we introduce a virtual coach whose design is informed by a quantitative
analysis. It is capable of automatically detecting the most common sources of errors du-
ring a smartphone-and-balloon spirometry maneuver. We evaluate BandS-Spi on 78 vo-
lunteers showing that it can measure the most common spirometry parameters – FVC,
FEV1, FEV1/FVC – with accuracy similar to or better than that of commercial handheld
spirometers.
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Figure 5.1 – Repeatability of pressure-volume curves generated using a smartphone and
a balloon, paving the way for SmartPhOx.

The chapter is organized as follow :
— In Section 5.2.1 We present the spirometry test, and in Section 5.2.2 we briefly dis-

cuss about existing smartphone-based solutions.
— We present the overview of BandS-Spi in Section 5.3, and detail the procedure to

convert volume to pressure (Section 5.4) .
— We describe the virtual coach designed for ensuring spirometry manoevur quality

in Section 5.5. Its design is informed by a quantitative analysis discussed in Sec-
tion 5.5.1.

— We present BandS-Spi implementation result of the evaluation with a cohort of 78
volunteers in Section 5.6

— Finally, we discuss about limitations of the proposed solution and conclude the
chapter in Section 5.7.
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5.2 Background

5.2.1 A primer on Spirometry

Spirometry measures the volume and flow of air a person can inhale and exhale. It can
identify a reduction in respiratory capacity, leading to an early diagnosis of respiratory
problems [176, 177].

A spirometry test is performed using a device called a spirometer (Fig. 5.3) and in-
volves several maneuvers. During a spirometry maneuver, the patient places the spiro-
meter transducer in the mouth and breaths in deeply and slowly, followed by a forced
and rapid exhalation to expel as much air as possible from the lungs. The test usually
includes at least three spirometry maneuvers to ensure results are repeatable [185]. At
the end of each maneuver, the device outputs a set of lung function measures. The most
common measures are [186] :

1. Forced Vital Capacity (FVC), the total amount of gas exhaled by the patient. An
abnormal FVC could be due to a restrictive or obstructive lung disease.

2. Forced Expiratory Volume in one second (FEV1), the volume exhaled during
the first second of the maneuver. A lower-than-normal FEV1 reading may be a
sign of significant breathing obstruction. A clinician uses the FEV1 measurement
to grade how severe any abnormalities are.

3. FEV1/FVC is simply the ratio of the first two measures and is also known as the
Tiffeneau index. It represents the percentage of the lung capacity the patient is able
to exhale in one second. A high percentage is a sign of good health while a low ratio
suggests that something is blocking the airways.

4. Peak Expiratory Flow (PEF) is the highest exhalation flow during the maneuver.
The Peak expiratory flow, if measured regularly, can be used to assess the progres-
sion of asthma, and even its response to treatments.

The most common lung function measures in clinical settings are FVC, FEV1, and
FEV1/FVC [187].

Normal results for a spirometry test vary from person to person depending on age,
height, sex, and sometimes race and weight [188]. Therefore, the clinician first calculates
the predicted normal lung function measures values from the patient’s demographic in-
formation and then compares them to the test results to draw conclusions. In general, a
healthy user result is over 80% of the predicted value [188],[189].

5.2.2 Related works and limits

Smartphone-based lung function estimation

Gupta et al. [180] proposed one of the first smartphone-based spirometry solutions.
It uses custom spirometer hardware that connects to an Android smartphone. While ac-
curate and showing the potential of using a smartphone, the required hardware add-on
limits its practicality.
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Several works followed up, aimed at measuring lung functions using the smartphone
solely, relying mainly on the exhalation sound [10, 39, 181-183]. In SpiroSmart [10] and
SpiroCall[181], the authors process the audio recording of the exhalation sound of a user
performing the spirometry maneuver to estimate lung function features. However, due to
the complexity of the proposed algorithms, these systems require an external server to
operate.

To address this issue, Exhalsense [182] proposes a simpler algorithm also based on
the audio recording of the exhalation. They process the recording to detect the forced
exhalation segment, distinguish high fidelity effort from poor effort, and apply a machine
learning-based regressor to deduce the FEV1/FVC ratio with an accuracy of around 8%.
In the same vein, Nazir et Al. proposed to predict FEV1/FVC using only the monosyllabic
"Aaaaa.." sound of a user [190]. While these solutions based on audio recordings can be
very efficient and accurate, they are inherently very sensitive to ambient noise [191].

To address this issue, Song et Al. proposed SpiroSonic [27], a smartphone-based solu-
tion thatmeasures the chest wall motion of a patient performing the spirometrymaneuver
via acoustic sensing, and then converts the measured motion into the lung function para-
meters. Although robust to ambient noise, this solution is nevertheless sensitive to user
clothes and hand movements. The latter is particularly challenging as it is difficult for a
user to exhale vigorously and quickly – as required by the spirometry maneuver– while
holding the phone steadily. Aware of this reality, we have chosen to include in BandS-Spi,
a virtual coach algorithm, designed to check the quality of the maneuver made by the
user, so as to provide him with feedback enabling him to make a reliable measurement.

Spirometry maneuver quality assurance

Few systems have addressed the quality of the spirometry maneuver with a smart-
phone. In Spiro-Confidence [39], the authors focus on the quality of a spirometry maneu-
ver obtained as an audio recording. They show that their trained Gated-Convolutional
Recurrent Neural Network can classify audio recordings representing a good quality ma-
neuver against poor quality ones, with a recall of 88%. Exhalsense [182] also incorporates
a classifier that distinguishes high quality from poor quality effort.

BandS-Spi is an environment-resistant solution. It is the first solution explicitly mea-
sure the volume of the gas exhaled and, therefore, is unaffected by outside factors, like
the unstable movements of a child or a patient with Parkinson’s disease. Furthermore,
BandS-Spi is one of the few smartphone-based solutions to integrate into its design virtual
coaching to ensure lung measures are computed based on properly executed spirometry
maneuvers.

5.3 BandS-Spi System Overview

Fig. 5.2 shows a high-level depiction of BandS-Spi’s architecture. It comprises three
modules :

1. Spirometry hardware : It includes a smartphone running BandS-Spi inserted into
a rubber balloon. A cardboard mouthpiece is inserted into the balloon’s inflation
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Figure 5.2 – BandS-Spi Overview.

Figure 5.3 – Medical Spirometer vs BandS-Spi

outlet. The user holds the hardware by the contact surface between the mouthpiece
and the balloon, avoiding contact with the balloon body, and performs a spirometry
maneuver. It involves the user taking a deep breath and forcefully exhaling into the
balloonmouthpiece. The increase in gas in the balloon induces a change in pressure,
which is recorded by the smartphone to create a pressure-time curve.

2. Pressure-to-volume conversion : To measure FVC, FEV1 and FEV1/FVC, Section 5.4
introduces BandS-Spi’s methods for converting the pressure-time curve produced
by the smartphone into a volume-time curve.

3. Virtual coach : Even with careful guidelines, users can perform invalid spirometry
maneuvers, especially since BandS-Spi is aimed at spirometry without the super-
vision of a trained technician. To avoid computing lung function parameters from
invalid maneuvers, Section 5.5 introduces BandS-Spi’s virtual coach. It introduces
methods for the automatic detection of the most common sources of invalid ma-
neuvers.

5.4 Pressure to volume conversion

The output of a smartphone-and-balloon spirometry session is a Pressure-Time curve
of the expiration. In this section, we show how BandS-Spi transforms it into a Volume-
Time curve, allowing to measure FVC, FEV1 and FEV1/FVC.

5.4.1 High-level approach

During a smartphone-and-balloon spirometry test, the user blows out into the balloon
after full inspiration, increasing the internal pressure and causing the balloon to expand.
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The smartphone’s barometer sensors record pressure readings allowing us to generate
a pressure-time curve. To transform the pressure-time curve into a volume-time curve
necessary for computing FVC, FEV1 and FEV1/FVC, BandS-Spi follows a two-step process.
First, in Section 5.4.2 it transforms an internal pressure reading into the volume of the
balloon the moment the reading is collected. This step presents the hardest challenge as
the volume of the balloon depends not only on the air blown into it but also on the initial
size of the balloon and non-spirometry factors, including balloon fatigue and temperature.
The first step is not sufficient, however, as the volume of the balloon is not the same as the
volume of the air blown into it due to the effect of the rubber’s restoring force. Therefore,
in the second step in Section 5.4.5 BandS-Spi addresses the challenge of transforming the
volume of the balloon into the volume of the air exhaled by the user.

5.4.2 Computing the balloon volume

Let P denote the pressure inside the balloon andα its relative extension during the test.
The latter refers to the ratio between the balloon’s inflated, r, and uninflated radius r0. Our
objective is to establish a relationship between P, which BandS-Spi can measure using the
smartphone barometer, and α, allowing to compute the balloon volume. To address this
challenge, we leverage the pressure-relative extension relation. It can be written [192]

P = P0 +K(
1
α
−

1
α7 ), (5.1)

where α = r
r0
, P0 is the atmospheric pressure and K is a constant that depends on the

balloon and the temperature (see Section 5.4.3). We can solve Eq. (5.1) by minimizing the
objective function

argmin
α

(P− P0 −K(
1
α
−

1
α7 ))2

in order to get α as funtion of P. Finally, BandS-Spi computes the volume of the inflated
balloon as

V =
4π(α ∗ r0)3

3
. (5.2)

Nevertheless, Eq. (5.1) requires knowledge of K while Eq. (5.2) requires knowledge of
r0, the balloon’s uninflated radius. We address these challenges in the next two sections.

5.4.3 The balloon K-parameter estimation

The K-parameter in Eq. (5.1) depends on the balloon manufacturing process, tempe-
rature and radius of the balloon. It can be written [192]

K =
2Ncd0kT

r0
(5.3)

where Nc is the number of polymer chains per unit volume, k is Boltzmann’s constant, T
is the absolute temperature and d0 is the thickness of the rubber in the unstretched state.

In Eq. (5.3), Nc and d0 depend on the balloon manufacturing process, making it infea-
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sible for BandS-Spi to obtain a universal value for K. Furthermore, even if somehow all the
balloons were made following the exact same manufacturing process, K may differ bet-
ween spirometry maneuvers due to stress softening [193]. Stress softening, also known as
the Mullins effect [194], occurs when virgin rubber material is subjected to cyclic loading.

To address this dual challenge, BandS-Spi introduces an approach to dynamically com-
pute K in every spirometry maneuve. We start by re-writing Eq. (5.1) :

K =
(P− P0)

( 1
α −

1
α7 )

(5.4)

While BandS-Spi can measure P using the smartphone barometer, it needs K to com-
pute α. To unpack the interdependency between K and α, we solve dP

dα = 0, that is, finding
αm that maximizes P. We have :

dP
dα

(αm) = 0 =⇒ K(
7
α8

m
−

1
α2

m
) = 0 =⇒ αm = 7

1
6 (5.5)

Fig. 5.4 illustrates the finding of Eq. (5.5) and shows that P reaches its maximum value
for αm = 7

1
6 = 1.3831. Eq. (5.5) paves the way for BandS-Spi’s method of computing K.

During a spirometry maneuver, BandS-Spi keeps track of the pressure inside the balloon
and identifies the maximum value of P. Since maximum P is reached for αm = 7

1
6 , the

value of K for the specific maneuver can be computed using Eq.(5.4).

5.4.4 The balloon r0-parameter estimation

Figure 5.5 – r0 empi-
rical estimation.

To estimate the balloon’s uninflated radius, r0, BandS-Spi in-
troduces an approach needing a single measurement from the
user the first time a balloon is used. The user is asked to spread
out the balloon on a surface and measure its greatest horizontal
width, l, as shown in Fig. 5.5. Observing that 2× l is a reasonable
estimate of the balloon’s uninflated circumference, r0 is compu-
ted as follows :

2× πr0 = 2× l =⇒ r0 =
l
π
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Figure 5.6 – The P = f (Vin) curve as computed by BandS-Spi and directly in three mea-
surement sessions.

5.4.5 Balloon volume to FVC and FEV1

Note that the volume of an inflated balloon V is not the same as the volume of the
gas blown into it. According to the Boyle-Mariotte Law [184] (and assuming zero heat
exchange), the gas blown from the lungs – with a pressure equal to the atmospheric pres-
sure P0 at the end of inspiration – into the balloon is compressed under the effect of
the rubber’s restoring force until it reaches a final pressure P at equilibrium. Therefore,
BandS-Spi computes, Vexhaled , the volume of the exhaled air as follows :

Vexhaled = V ×
P
P0

(5.6)

Once the pressure-time curve is converted into a volume-time curve, BandS-Spi can
compute the forced vital capacity (FVC), Forced Expiratory Volume in one second (FEV1)
and their ratio.

5.4.6 Validation

In this section, we evaluate BandS-Spi’s capability to convert pressure readings col-
lected from a smartphone into the volume of the air inside the balloon. To establish a
ground truth, we use a syringe to inject a known volume of air into a balloon while a
smartphone collects the internal pressure. We repeat the syringe-based experiment three
times to create measurement-based pressure-volume curves. In parallel, BandS-Spi runs
on the smartphone to estimate the volume and create its own pressure-volume curve. The
curves are plotted in Fig. 5.6 and show that BandS-Spi’s method for converting pressure
readings into air volume is accurate.

5.5 A virtual coach for at-home quality assurance

In this section, we introduce BandS-Spi’s virtual coach aimed at helping users perform
quality spirometry testing without the help of a trained technician.

In Section 5.5.1, we perform a quantitative analysis of the major reasons leading to
errors during a spirometry maneuver, especially when using the balloon-and-smartphone
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Figure 5.7 – BandS-Spi setup and experimental protocol.

setup. In Section 5.5.2, we introduce how BandS-Spi’s virtual coach addresses the problem.

5.5.1 Spirometry Maneuver Quality : a quantitative analysis

In this section, we perform a quantities analysis with the help of 15 volunteers aimed
at understanding the major reasons leading to spirometry maneuver errors.

Experimental setup : The experimental setup is shown in Fig. 5.7 and includes a smart-
phone running the BandS-Spi application inserted in a rubber balloon. A cardboard mou-
thpiece is inserted into the balloon’s inflation outlet. The participants are asked to hold
the system by the contact surface between the mouthpiece and the balloon, without any
contact with the lower part of the balloon to avoid impacting the inflation.

Spirometry maneuvers : We follow the ATS guidelines [185] for coaching the partici-
pants to perform a proper spirometry maneuver. A user takes the deepest breath they
can and then exhales into the balloon via the mouthpiece as hard as possible, for as long
as possible. At the end of the expiration, the user moves the mouthpiece to the side to
expel the air from the balloon, marking the end of the maneuver. In the meantime, we
observe and annotate the maneuver, noting the mistakes made and providing corrective
instructions. We then ask the user to repeat the maneuver, until a valid one is produced.
We collect a total of 64 spirometry maneuvers.

Problem 1 – Hesitant start : In 13 out of the 64 maneuvers the data shows an initial
hesitation in blowing out. Sometimes users seem surprised by the pressure inside the
ball. Unlike in the classic spirometer, when blowing into a balloon the internal pressure
increases, making it more difficult to sustain the effort. If the user does not put enough
force into the initial blast they are caught flat-footed by the balloon pushback, resulting
in a drop in airflow. The data shows the flow rising again, due to a second effort by the
user to reach the end of the expiration. A maneuver showing this error cannot be used
for measuring the PEF (Peak Expiratory Flow). Figure 5.8b shows a typical example of
the volume curve obtained from a maneuver with a hesitant start while Fig. 5.8a shows
an example without hesitation.
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Problem 2 – Early termination : In 23 out of the 64 maneuvers the data shows an early
termination. Exhalation lasted barely three seconds, when according to the ATS [185] it
should last at least six. A maneuver showing this error cannot be used for measuring FVC
(Forced Vital Capacity). Early termination occurs even when using standard devices but
the balloon pressure adds an additional problem as illustrated in Fig. 5.8c. In this particular
maneuver, the end of expiration is reached around 5 s. However, the data shows that the
balloon volume, if it is kept inflated, continues to increase. This can be explained by the
fact that the rubber balloon takes extra time to find equilibrium after the flow of air is
stopped. As Fig. 5.8c shows, stopping the maneuver at the end of expiration and letting
the balloon deflate immediately will lead to sub-par precision. Holding the balloon inflated
for a few extra seconds reduces the error in FVC computation from 5% to 0.7%.

Problem 3 – Early Glottis Closure : Closing the vocal cords (glottis closure) before
the lungs have been completely emptied is a characteristic event of a poor spirometry
maneuver and needs to be detected by the technician overseeing the test according to
the ATS [185]. It poses a greater challenge to BandS-Spi due to its using a balloon. Our
data shows that glottis closure occurred in 9 out of the 64 maneuvers, abruptly stopping
the airflow, as illustrated in Fig. 5.8d. As a result, the FVC is underestimated while the
FEV1/FVC ratio is overestimated, potentially leading to an erroneous diagnosis.

5.5.2 Virtual coaching for maneuver quality assurance

In this section, we describe themethods and algorithms BandS-Spi’s virtual coach uses
for detecting invalid maneuvers in conditions where users do not have access to a trained
technician. Users are notified in the case of invalid spirometry maneuvers and provided
with the appropriate instructions to avoid making the same mistakes.

5.5.2.1 Detecting hesitant start

A valid spirometry maneuver produces a monotonically increasing flow up to the
point of peak expiratory flow (PEF). Therefore, to detect a hesitant start BandS-Spi’s
approach involves analyzing the smoothness of the initial part of the flow-time curve. The
straightforward approach of evaluating signal smoothness usually involves a frequency
domain analysis. However, the PEF normally occurs at most 300 ms after the beginning
of the exhalation [182], meaning we are dealing with a signal of 300 ms sampled 25 times
per second. With a signal of this size, frequency analysis is unhelpful.

Therefore, BandS-Spi introduces an approach based on a novel metric, Qhes, quanti-
fying the smoothness of the initial flow-time signal relative to a reference signal.

Let F = fii=1...n denote the set of instantaneous flow values until they reach the PEF,
where fn is the maximum flow value measured. This set is obtained by the discrete de-
rivation of the volume curve. A hesitation-free maneuver start should produce a linear
set F. To quantify the linearity of the measured flow values, we utilize Pearson’s linear



74 Chapter 5. Measuring Lung Functions with Smartphone and Balloon

0 2 4 6 8

Time (s)

0

2

4

6

8

10

V
o
lu

m
e
 (

L
) 

[F
lo

w
 (

L
/s

)]

Volume

Flow

(a) Example of a good Spirometrymaneuver.
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(b) Example of a maneuver with a hesitant
start.
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Figure 5.8 – Illustration of data obtained from perfect maneuver vs hesitant start maneu-
ver, early stop and early glottis closure maneuvers.
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Figure 5.9 – Hesitant start classification
quality for different values of the deci-
sion threshold, Qthresh

hes .

0.08 0.1 0.12 0.14 0.16

Decision threshold 

40

60

80

100

S
c
o
re

 (
%

)

Precision

Recall

F1 Score

Figure 5.10 – Glottis closure detection
classification quality for different values
of the decision threshold, Qthresh

gc .

coefficient of determination, defined as

R2 = 1−
∑n

i=1( f i− f̂i)2∑n
i=1( f i− f̄ )2

(5.7)

where f̂i is the prediction of the i − th instantaneous flow by the linear regressor fitted
to the set of observations F and f̄ is the average value of F. Drawing on Eq. (5.7), we
introduce BandS-Spi’s no-hesitation metric, Qhes :

Definition 3 (No-hesitation metric) Let F = fii=1...n denote the set of instantaneous flow
values until the PEF and Fre f the reference set. Fre f is obtained by averaging the F vectors
of valid spirometry maneuvers in the data set of Section 5.5.1. The no-hesitation metric, Qhes,
is defined as :

Qhes =
R2(F)

R2(Fre f )
(5.8)

A spirometry maneuver with Qhes below a given decision threshold is classified by
BandS-Spi’s virtual coach as having a hesitant start and therefore invalid. Fig. 5.9 shows
BandS-Spi’s classification quality of the maneuvers in the data set of Section 5.5.1 for
different values of the decision threshold. Based on this data, Qthresh

hes = 0.65, leading to an
F1 score of 80%, is adopted as the default value.

5.5.2.2 Detecting early termination

To detect the end of a maneuver, BandS-Spi relies on the ATS recommendations [185]
stating that a volume change of less than 25 mL in one second can be used as a sign of the
end of the expiration. The virtual coach is programmed to consider a maneuver valid if
the user holds the breath, to keep the balloon inflated, for a few seconds after expiration.
Otherwise, the maneuver is considered invalid and the proper instructions are provided
to the user.
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Figure 5.11 – Difference in the flow curves of an early glottis closure maneuver a normal
maneuver.

5.5.2.3 Detecting early glottis closure

To detect an early glottis closure, we start with a careful analysis of the flow-time
curve. As the data in Fig. 5.11 shows, there are differences in the flow-time curves of
maneuvers with and without early glottis closure. The end of the maneuver in both cases
is characterized by a high-frequency flow variation due to the small movement of air
between the mouth and the balloon. This is induced by the oscillating contraction of the
glottis, kept under tension and closed at the end of the maneuver. However, in the case of
early glottis closure, there is more available air in the lungs, leading to higher amplitude
oscillations.

Therefore, BandS-Spi’s approach to detecting early glottis closure involves introdu-
cing a new metric, Qgc, for quantifying the amplitude of the flow oscillations at the end
of the maneuver and using it for classifying the maneuver.

Definition 4 (No-early-gc metric) Let Fend denote the set of the flow values measured
over the last second of the maneuver. The no-early-gc metric, Qgc is defined as

Qgc = std(Fend) =

√√√
1
N

N∑
t=1

( ft − f̄t)2,

where ft ∈ Fend and N is the size of Fend .

A spirometry maneuver with Qgc below a given decision threshold, Qthresh
gc , is classi-

fied by BandS-Spi’s virtual coach as having an early glottis closure and therefore invalid.
Fig. 5.10 shows BandS-Spi’s classification quality of the maneuvers in the data set of Sec-
tion 5.5.1 for different values of the decision threshold. Based on this data, Qthresh

gc = 0.13,
leading to an F1 score of 90%, is adopted as the default value.
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5.6 Evaluation

In this section, we evaluate BandS-Spi’s performance, focusing on its capability to
deliver spirometry results comparable to medical spirometers and the state of the art, the
impact of the virtual coach, sensitivity to the hardware used, and the user perception of
its practicality.

5.6.1 Implementation

We implemented BandS-Spi as an android application. For the pressure-to-volume
conversion, we use jcobyla [195], an open-source non-linear optimization library. It im-
plements Cobyla [196, 197], a nonlinear derivative–free constrained optimization algo-
rithm.

36'' 36'' 24''

Ground Truth device

Manufracturer
A

Manufracturer
B

Manufracturer
C

Figure 5.12 – Balloons used for eva-
luating BandS-Spi.

Number of participants 78
Males (n, %) 51 (65%)
Age (yrs) (mean, range) 26 (18 - 60)
Height (cm) (mean, range) 174 (155 - 194)

Reported lung ailments (n,%)
Mild Asthma : 7 (9%)
Chronic Bronchitis : 12 (15%)

FVC (Liters) (mean, range)
PEF (Liters/sec) (Mean, range)

4.48 (2.46 - 6.82)
9.17 (4.46 - 12.77)

Table 5.1 – Participant demographics

5.6.2 Evaluation setup

To evaluate BandS-Spi, we recruited 78 volunteers 1 in different age groups, inclu-
ding healthy people, asthmatics, and people with seasonal respiratory infections, such as
bronchitis. Table 5.1 summarizes the demographic information of the volunteers.

The experimental protocol is as in Section 5.5.1. To acquire the ground truth we use
an off-the-shelf hand-held spirometer [198]. Note that, it is impossible to simultaneously
collect data from the spirometer device and BandS-Spi so explicit ground truth is unk-
nown. We conduct our experiments using balloons of different sizes and from different
manufacturers (See Fig. 5.12). In total, we recorded 355 spirometry maneuvers.

5.6.3 Overall spirometry performance

In this section, we evaluate BandS-Spi’s performance inmeasuring themost clinically-
reported spirometry parameters [10] : the Forced Vital Capacity (FVC), Forced Expiratory
Volume in one second (FEV1) and the FEV1/FVC ratio.

Figure 5.13 shows BandS-Spi’s overall performance when measuring the key lung
function parameters. To put the performance into context, we add the average perfor-
mance of handheld spirometers as reported in the literature [199]. The data shows that
the average error is 3.97%, 4.94%, and 3.34% for FVC, FEV1, and FEV1/FVC, respectively.

1. Our experiments are in agreement with the ethics defined in the Helsinki Declaration [162].
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Figure 5.13 – BandS-Spi’s overall spirometry performance.

3 4 5 6
Ground Truth (Liters)

−20

−10

0

10

20

R
el

at
iv

e
di

ff
er

en
ce

(%
)

(a) FVC

3 4 5
Ground Truth (Liters)

−20

−10

0

10

20

R
el

at
iv

e
di

ff
er

en
ce

(%
)

(b) FEV1

0.75 0.80 0.85 0.90 0.95
Ground Truth (Liters)

−20

−10

0

10

20

R
el

at
iv

e
di

ff
er

en
ce

(%
)

(c) FEV1/FVC

Figure 5.14 – Modified Bland-Altman plots. The x-axis is the ground truth while the y-
axis is the relative difference in percentage between BandS-Spi and the ground truth.

More important, BandS-Spi’s performance is similar to or better than that of handheld
spirometers.

Figure. 5.14 shows modified Bland-Altman plots [200] of each lung function parame-
ter. The x-axis is the ground truth while the y-axis is the relative difference in percentage
between BandS-Spi and the ground truth. The data shows that BandS-Spi’s relative error
is normally distributed, independently of the ground truth. In all cases, we observe an
error of 8% with a limit of agreement of 95%.

5.6.4 BandS-Spi vs. State of the art

In this section, we aim at contextualizing the performance of BandS-Spi by comparing
it to the performance of state-of-the-art smartphone-based solutions, as that is reported
in the respective papers. Table 5.2 shows the reported average errors for the lung function
parameters of SpiroSonic [27], Exhalesense [182], and SpiroSmart [10], as well as those of
BandS-Spi. The data shows that BandS-Spi offers the best overall performance.

Table 5.2 – BandS-Spi vs State-of-the-art solutions.

FVC (%) FEV1 (%) FEV1/FVC (%)
SpiroSmart [10] 5.2 4.8 4.0
ExhaleSense [182] N/A N/A 7.57
SpiroSonic [27] 12.52 9.06 7.69
BandS-Spi 3.97 4.94 3.34
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Figure 5.15 – Impact of BandS-Spi’s virtual coach.

5.6.5 Impact of the virtual coach

In this section, we evaluate the impact of BandS-Spi’s virtual coach on the FVCmeasu-
rement accuracy. Towards this, we compare 4 versions of BandS-Spi : Virtual coach (VC)
disabled, only early termination detection enabled (Early termination), early termination
+ hesitant start detection enabled (Hesitant start), and full virtual coach enabled (which
includes the previous plus glottis closure detection). When part of or the entire virtual
coach is enabled, the errors are computed only on the maneuvers it considers valid.

Figure 5.15 shows the boxplot of the relative FVC measurement error for the four ver-
sions of BandS-Spi. The data highlights the importance of the virtual coach. The median
FVCmeasurement error drops from 10% when the virtual coach is disabled to 2.89% when
it is fully enabled.

5.6.6 Sensitivity to balloon size and manufacturer

In this section, we evaluate BandS-Spi’s sensitivity to the type of balloon it uses. To-
wards this, we use balloons from two different manufacturers as well as balloons of two
different sizes : 24 and 36 inches. We run a new set of experiments with the help of 15
volunteers using the setup described in Section 5.5.1 with 15 volunteers. Every volun-
teer performs spirometry maneuvers with all the balloons, taking a break of 15 min when
switching them.

Figure 5.16 shows that BandS-Spi’s performance when measuring FVC is largely in-
sensitive to the balloon size and manufacturer. The average FVC measurement error is
3.97% and 4.45% (Fig. 5.16a) with the 24 and 36-inch balloon, respectively – remaining
under the symbolic bar of 5% in both cases. A similar conclusion can be drawn when
BandS-Spi uses balloons of different manufacturers. As Fig. 5.16b shows, the difference in
average error is less than 0.5%.

5.6.7 Resource utilization

We evaluate BandS-Spi’s utilization of CPU, memory, and energy by using Android
Profiler [168] and report the results in Table 5.3. The intrinsic multiprocessing nature
of the mobile phone operating systems makes it very challenging to measure the exact
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Figure 5.16 – BandS-Spi’s performance with different balloons.

Table 5.3 – BandS-Spi’s resource utilization.

Device CPU (%)
Memory
(MB)

Energy
(% of time)
[L/M/H]

Samsumg Galaxy S8 15 158.3 87/13/0
Google pixel 4a 13 150 84/16/0

energy consumption of a given application. Thus, we show the percentage of time An-
droid Profiler reports BandS-Spi’s energy consumption as being Light (L), Medium (M), or
Heavy (H). The data shows that BandS-Spi’s utilization of resources is limited, especially
in terms of energy consumption.

5.6.8 Participant Feedback

Finally, we conducted a survey to evaluate the participants’ perception of BandS-Spi’s
usability. 45% of the participants declared they preferred BandS-Spi to the medical spi-
rometer, a higher percentage than initially expected. The main reason cited for prefer-
ring BandS-Spi was the fact that the balloon pressure helps one to focus on blowing out
through the end of the expiration. The spirometer, on the other hand, provides no feed-
back, making it difficult for some to blow out hard and/or keep blowing out through the
end of the expiration. The 55% who preferred the medical spirometer cited the fact that
BandS-Spi requires additional effort during the maneuver due to the balloon’s internal
pressure.

5.7 Discussions and conclusion

Limitations and future work

There are several ways in which this system can be improved. While BandS-Spi in-
troduces a virtual coach, it currently focuses only on the quality of expiration. However,
the quality of the expiration is inextricably linked to that of the inspiration preceding it.
For example, Fig. 5.15 in Section 5.6.5 shows that the standard deviation of the FVC mea-
surement error remains non-negligible (around 3%). Although this can be addressed by
averaging the results of multiple maneuvers for the same user, we think that this error is
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mainly related to the amplitude of the inspiration. Thus, one improvement of BandS-Spi’s
virtual coach is to add the automatic assessment of the inhalation quality, which can be
approached by leveraging other sensors like the accelerometer.

Finally, a large-scale clinical study would solidify the conclusions of this work regar-
ding BandS-Spi’s spirometry performance.

Conclusion

We presented BandS-Spi, a solution for home spirometry that uses a smartphone and
a balloon. BandS-Spi’s key novelty is that it is the first smartphone-based solution to ex-
plicitly measure the exhaled air during a spirometry maneuver. Drawing on Boyle’s law,
we introduce a method for transforming the pressure-time curve produced with the help
of the smartphone pressure sensor into a volume-time curve, enabling the computation of
FVC, FEV1 and FEV1/FVC. To accommodate for the lack of coaching by a trained techni-
cian, BandS-Spi introduces a virtual coach capable of detecting with high accuracy invalid
spirometry maneuvers. Results from 78 volunteers showed that BandS-Spi can perform
a spirometry test with accuracy similar to or better than that of commercial handheld
spirometers.

There is however, room for improvement for this work. Some users had difficulty
inflating the balloons, resulting in unreliable spirometry data. We believe this is due to
the impact of feedback pressure. It would be interesting to study the impact of the force
required to inflate the balloon on the data quality. This information could be used to
adjust the model accordingly. This also raises the interest in exploring a similar system
for testing respiratory muscle strength, in order to detect some conditions like COPD or
Neuromuscular Disorders [201].



Chapter 6

Single-Drop Liquid Testing Beyond
the Laboratory

To showcase the capability of our smartphone-based method for enabling medical
examinations beyond the laboratory, in this chapter we present Droplets, the first liquid
testing solution that utilizes the most prevalent smartphone sensors, namely the camera
and gyroscope, while requiring only a single liquid drop. The key innovation of Dro-
plets lies in its capacity to discern liquids by leveraging their contact angle and capillary
length, even from imperfect images – making it accessible to untrained individuals in
non-laboratory settings. Building upon the Young-Laplace equation, we introduce a me-
thodology for fitting the theoretical model of an imperfect drop profile measured from the
image of the drop captured by the smartphone camera. To address the challenges posed by
the non-laboratory setting, Droplets is designed to assist users in capturing high-quality
images of the drop. Results from an Android implementation of Droplets demonstrate its
ability to classify liquids with an accuracy of 84%. What is more, the experiments show
that Droplets can be utilized to track protein levels in urine, indicating shifts from healthy
to unhealthy levels.

6.1 Introduction

In recent years, there has been a growing interest in liquid testing, leading to the
development of affordable and practical solutions suitable for non-laboratory environ-
ments [202-204]. The potential applications for large-scale liquid testing are diverse and
encompass safety inspections in public transportation, cost-effective detection of water
contamination, identification of counterfeit perfumes and liquors, medical examinations,
monitoring of daily nutritional beverage intake, and more. While significant progress has
been made to improve the accessibility of liquid testing, early solutions often relied on
specialized hardware, such as RFID readers [203, 205], photodiodes [204], ultra-wideband
(UWB) units [206], or piezoelectric sensors [207], which were not widely available to the
general public.

Recognizing these limitations, CapCam [23] introduced a solution that utilized a com-
monly accessible equipment – the smartphone. CapCam measures the capillary waves
generated by the smartphone’s vibromotor when placed over a cup containing the liquid,
enabling the determination of the liquid’s surface tension. This concept sparked further
research in smartphone-based liquid testing. Vi-Liquid [41]measures the liquid’s viscosity
using the smartphone’s built-in vibromotor and accelerometer, while Viscocam [25] ana-
lyzes the decay of the liquid’s sloshing motion to determine viscosity. [71] uses the smart-
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phone’s speaker to transmit acoustic signals and the microphone to receive the reflected
signal, enabling the identification of different types of liquids. Although these solutions
have made significant advancements by leveraging smartphones and easily obtainable ac-
cessories like water cups, they still face a common limitation – the cup typically requires
a volume of approximately 400 ml. Collecting such a volume of fluid for testing purposes
can be challenging, especially for individuals with conditions like oligoanuria 1. Blood
testing is another example where collecting such a volume would be impractical.

Identifying this limitation in the state of the art, [22] introduced the first solution that
only requires a minimal amount of liquid — just a single drop. It utilizes the LiDAR sensor
in smartphones to classify liquids based on the laser speckle patterns they produce. Unfor-
tunately, smartphone manufacturers are progressively phasing out LiDAR sensors [208].

The review of the state of the art shows that, to date, there is no approach for analyzing
limited volume of liquid –a single drop– with a sensor present in most smartphones.
Hence, we formulate the objective of our system as follow :

Objective : Measure reliably drops of liquid discriminant properties with a standard
smartphone.

To build our system,we first look for the sensors that will enable us to collect data from
the object, in this case a drop of liquid. Although the most common approach in previous
work has been to use the camera and computer vision techniques, these do not satisfy
the constraints of our objective, which is to be able to test a single drop of the liquid. We
propose to investigate a new approach, albeit keeping the same sensor. Specifically, the
intuitive way we humans distinguish between two drops of liquid is by their shape. Thus,
our intuition for the model is the relationship between the shape of a drop and its intrinsic
properties, namely the surface tension and capillary length, defined by Young-Laplace’s
equation [31].

Contribution and plan

Figure 6.1 – Ethanol (left) and
water droplets, exhibiting va-
rying shapes.

In this chapter, we introduce Droplets, the first
liquid testing solution that leverages the ubiquitous
smartphone sensors, namely the camera and gyroscope,
and only requires a single liquid drop. The system cap-
tures images of the droplet and analyzes its shape to de-
termine the properties of the liquid. We exploit the rela-
tionship between the shape of a sessile drop on a surface
and the intrinsic properties of the liquid, namely its sur-
face tension and capillary length [209, 210]. Fig. 6.1 illus-
trates the underlying principle of Droplets. Water, with
its higher surface tension compared to ethanol, forms
droplets with higher contact angles – the angle between
the solid surface and the tangent line at the point where
the liquid and solid interface meet. Ethanol, on the other hand, has a smaller capillary

1. A condition where less than 100 ml of urine is produced per day.
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length, causing the droplet to flatten at a smaller volume. Hence, by extracting the contact
angle and capillary length from the drop’s image – a method known as the sessile drop
technique [211] – Droplets can successfully identify different liquids.

While the sessile drop technique is supported by a solid mathematical foundation,
its current system implementations require high-quality and consistent images of liquid
droplets. Previous solutions have employed complex and specialized setups involving tri-
pods or stands for camera stability, controlled lighting sources, and more [211-218]. The
objective of Droplets is to offer a smartphone-based solution that is easily accessible to
untrained individuals in non-laboratory environments – leading to a distinct set of system
challenges.

First, in uncontrolled settings, the camera’s alignment may not be parallel to the dro-
plet’s plane, distorting its apparent shape due to perspective effects. Second, the sessile
drop technique relies on images with a clear and accurate contour of the droplet, parti-
cularly around the contact points. However, identifying these contact points can be chal-
lenging due to uncontrollable factors like illumination variations and liquid light absorp-
tion. Third, in an uncontrolled setting, it is impractical to determine the absolute capillary
length from an image due to the absence of a reliable distance scale. As a result, the ca-
pillary length can only be measured in pixels whose size is affected by factors like the
camera, zoom level, and distance to the droplet. Therefore, Droplets must find a solution
to remove the dependence on pixel size. Finally, which (readily available) surface should
be utilized for capturing images of droplets ? For a robust liquid testing system based on
contact angle, the surface needs to be physically and chemically inert, smooth, homo-
geneous, rigid, and must exhibit sufficient hydrophobicity to ensure most liquid contact
angles are visible.

To address these challenges, Droplets introduces multiple innovations :
— Image acquisition with virtual assistance : Droplets introduces a virtual assistant

that helps users capture images without perspective effects by utilizing the gyroscope.
It also provides guidance for optimal framing of the drops and suggests the appropriate
background color based on the tested liquid’s color (Section 6.5). However, even with
the virtual assistant, images obtained in non-laboratory settings may still be imperfect,
which leads to the next contributions

— Contact points from imperfect images : Building upon two key insights, Droplets
introduce a new algorithm capable of identifying contact points even in imperfect
images (Section 6.6).

— Drop profile from imperfect images : Droplets introduces a method that combines
the Bashforth-Adams equations [219] with RANSAC (Random Sample Consensus)
[220] to robustly compute the drop profile, even from imperfect images (Section 6.7).

— Relaxing dependency on pixel size : To eliminate reliance on pixel size, Droplets
switches from absolute to relative computation of the capillary length. This is achieved
by using a second liquid drop (water by default) as a reference in every image. The
capillary length of the tested liquid is then computed as a percentage relative to the
reference liquid (Section 6.7.3).

— Which surface : After testing various surfaces, we found that the smartphone screen
surface was the best choice. Composed of tempered glass, the smartphone screen offers
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a hydrophobic surface well-suited for measuring contact angles (Section 6.4).
We have developed Droplets as a standalone Android application (Section 6.8) and

conducted a two-part performance evaluation (Section 6.9). The first part shows that Dro-
plets achieves a median accuracy of 2 degrees in contact angle estimation and can classify
9 different liquids with an average accuracy of 84.5% on test data.

In the second part of the evaluation, we examine two specific use cases for liquid
testing to cast a light on the practical potential of Droplets : counterfeit liquor detection
and urine testing. The results show that that Droplets a) successfully distinguishes bet-
ween authentic and counterfeit liquors, and b) tracks changes in protein levels in urine,
indicating shifts from healthy to unhealthy levels.

Before delving into the design details of Droplet in Section 6.3, we provide an over-
view of the theory behind the Droplet model in Section 6.2. Specifically, we explain how
the contact angle and capillary length can be utilized to distinguish between different
liquids (Section 6.2.1 and 6.2.2). We then elaborate on the mathematical relationship bet-
ween these features and the shape of a droplet in Section 6.2.3, followed by a discussion
of the challenges associated with designing a robust solution based on this concept in
Section 6.2.4. Finally, we discuss related work in Section 6.10, and conclude the chapter
in Section 6.11.
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6.2 Identifying liquids : From theory to system issues

In this section, we introduce the two features – contact angle (Section 6.2.1) and ca-
pillary length (Section 6.2.2) – used for identifying liquids, the theoretical framework for
computing them from the image of a single drop (Section 6.2.3), along with the challenges
that arise when implementing it on a smartphone in an out-of-laboratory environment
(Section 6.2.4).

6.2.1 Why contact angle can be used to identify liquids?

Liquids can be distinguished based on their wettability, which refers to their ability
to spread and form a uniform film on a surface. This characteristic is determined by the
surface tensions and polarities of different liquids [209, 210]. For instance, water, a liquid
with high surface tension, tends to form beads on hydrophobic surfaces like wax or oil.
Conversely, alcohol, having lower surface tension, readily wets hydrophobic surfaces.

The contact angle serves as an indicator of wettability, facilitating the identification
of liquids. It represents the angle formed between the solid surface and the tangent line
at the point where the liquid and solid interface meet. In Fig. 6.1, we can observe that a
liquid with higher surface tension exhibits a higher contact angle compared to a liquid
with lower surface tension. Young’s equation [221] establishes a relationship between the
contact angle and the interfacial tension of the system, given by

cos(θ) =
γS V − γS L

γLV
, (6.1)

where γS V , γS L, and γLV represent the surface tensions between the solid-vapor, solid-
liquid, and liquid-vapor interfaces, respectively. By fixing the vapor as air and using the
same solid each time, the contact angle becomes a direct indicator of the liquid’s surface
tension γLV . For simplicity, we will refer to surface tension as γ hereafter.

6.2.2 Why Capillary length can be used to identify liquids?

The capillary length or capillary constant is a length scaling factor that relates gravity
and surface tension. It is a fundamental physical property that governs the behavior of
menisci and is found when body forces (gravity) and surface forces (Laplace pressure) are
in equilibrium. For a liquid, a small capillary length indicates that a small drop volume is
required for gravity forces to outweigh capillary forces, resulting in a flattened shape of
the drop. Conversely, a large capillary length implies that a larger drop volume is needed
before the drop deviates from a spherical cap shape and becomes flattened. Mathemati-
cally, it is defined as [222] :

a =
√

γ

ρg
(6.2)

where γ is the surface tension of the liquid, ρ denotes the density of the liquid, and g
corresponds to the acceleration due to gravity.
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Figure 6.2 – Schematic of an axisymmetric drop on a nonwetting surface. For a point,
M(x, y) on the projected drop profile, x represents the horizontal position, y represents
the vertical position, r1 and r2 the two principal radii of curvature, ϕ represents the angle
formed between the normal at point M and the axis of rotation, H is the overall height of
the droplet, and θ = max(ϕ) denotes the maximum contact angle of the liquid droplet at
the contact line.

Therefore, the capillary length provides additional information about the liquid
beyond surface tension.

6.2.3 Sessile drop shape analysis

In this section, we describe the process of extracting the capillary length and contact
angle based on the drop’s shape.

6.2.3.1 Theoretical foundation

Let us consider an axisymmetric liquid drop positioned on a surface, as depicted in
Fig. 6.2. According to the Laplace equation, the pressure difference, ∆P, across a particular
point, M, on the liquid-air interface can be expressed as a function of the liquid surface
tension, γ, and the radii of curvature (r1 and r2) of the drop at M, as described by [31] :

∆P = γ(
1
r1
+

1
r2

). (6.3)

While the measurement of r1 and r2 from the profile is potentially feasible, it is a non-
trivial task. At the apex of the drop, however, since the drop is axis-symmetric, r1 and r2

are equal. Denoting by b the radius of curvature at the apex, we can re-write Eq. 6.3 as
∆P0 =

2γ
b .

Within a droplet that is symmetric about the central vertical axis, the pressure dif-
ference, ∆P, varies linearly with elevation [31]. Hence, considering O in Fig. 6.2 as the
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origin point, we can express ∆P at any point below as a function of gravity as well as the
disparity in density between the droplet and the surrounding medium. Let ∆ρ represent
the difference in densities, g denote the acceleration due to gravity, and y represent the
distance from the origin point. We have

∆P =
2γ
b
+∆ρgy (6.4)

Combining Eq. 6.3 and Eq. 6.4 leads to the well known Laplace-Young equation :

∆ρgy+
2γ
b
= γ(

1
r1
+

1
r2

) (6.5)

Expressing the radii of curvatures r1 and r2 in X-Y coordinates (where the height H is
in the y direction) leads to the Bashforth-Adams Equation [32]

γ(
y′′

(1+ y′2)3/2 +
y′

x(1+ y′2)1/2 ) =
2γ
b
+∆ρgy (6.6)

where y′ = dy/dx and y′′ = dy2/dx2. This differential equation describes the behavior
of y(x) but has no analytical solution. A simpler approach is obtained by introducing the
substitution y′(x) = tan(ϕ) [214]. This substitution helps avoid complexmanipulations due
to y not being a single-valued function of x. By parameterizing with the tangent angle ϕ
and introducing the capillary length expressed in Eq. 6.2, a set of equations can be derived
that solely involve the Cartesian coordinates y and x, along with the two parameters a and
b : 

dx
dϕ =

bxcos(ϕ)
a2bxy+2x−bsin(ϕ)

dy
dϕ =

bxsin(ϕ)
a2bxy+2x−bsin(ϕ)

(6.7)

The shape of the sessile drop is determined by the set of points x(ϕ),y(ϕ) that satisfy
Eq. 6.7 as well as the contact angle θ between the sessile drop and the surface. To obtain the
theoretical profile of a drop for a specific (a,b) combination, we can numerically integrate
this equation from the baseline (y=0) to the height of the drop (y=H) using the backward
differential formula (BDF) solution method [223].

6.2.3.2 Numerical approach

From an image of the sessile drop, we can extract the drop profile’s edge, which forms
a set of points {[xi,yi]}ipicture. Our goal is to find the best-fitting parameters a and b for
Eq. 6.7. This is achieved by minimizing the expression given by :

a∗,b∗ = argmin
a,b

n∑
i=1

min j||

[
xi

yi

]
−

x′j
y′j

 (a,b)||2. (6.8)

Here, x′j,y
′
j represents the profile point generated using Eq. 6.7 with the parameters a and

b. The value of a∗ corresponds to the best-fit capillary length for the droplet, measured in
pixels. The parameter b represents the radii of curvature at the apex O and is related to
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the volume of the drop. The contact angle θ is defined as the parametric angle ϕ at which
the vertical position equals the measured droplet height, i.e., θ/y(θ) = H, as depicted in
Fig. 6.2.

6.2.4 System challenges

The theoretical framework presented in the previous section necessitates high-quality
and consistent images of liquid drops. Previous solutions have utilized intricate and spe-
cialized setups, incorporating tripods or stands to stabilize the camera, controlled ligh-
ting sources, and so forth [32, 211, 213-215, 217]. However, Droplets aims to provide a
smartphone-based solution that is accessible to untrained individuals in non-laboratory
settings. As a result, several distinct challenges and questions emerge :
1. In uncontrolled settings, it is highly probable that the camera is not parallel to the

plane of the drop. In such cases, perspective effects can distort the apparent shape of
the drop.

2. The theoretical framework relies on images with a clear and accurate contour of the
drop, especially in the vicinity of the contact points. However, the identification of
contact points may pose challenges due to uncontrollable factors such as illumination
variations and the light absorption properties of the liquid.

3. The contact line, Fig. 6.2, becomes visible in the image when the camera is precisely
aligned with both the surface and the drop. However, achieving such perfect alignment
between the smartphone, drop, and the center of the camera sensor without a fixed
setup poses a significant challenge.

4. Which surface should be used for acquiring images of drops? To align with the objec-
tive of Droplets, the surface should be easily accessible.
In the following sections, we present the design and implementation of Droplets,

which carefully addresses all these challenges.

6.3 Droplets system overview

Figure 6.3 shows a high-level depiction of Droplets’ architecture. It comprises 4 mo-
dules :
1. Image acquisition : Droplets’ process begins when the user puts a drop on the smart-

phone screen (Section 6.4), which is positioned on a table. The Image Acquisition mo-
dule, which is described in Section 6.5, is specifically designed to allow an untrained
user to capture a high-quality front-view image of the drop. Subsequently, the image
acquired from this module is transferred to the drop profile extraction module.

2. Drop profile extraction : Droplets utilizes the Canny filter [99] on the image conver-
ted to grayscale in order to extract the drop’s edges. These edges are subsequently
transformed into a collection of pixel points that represent the drop profile, denoted as
Pro f ile = {M(x,y)}.

3. Contact line detection : In Section 6.6, we outline the challenges associated with reliable
contact line detection from the drop profile. Additionally, we present our algorithm de-
signed to address these challenges.We also elaborate on ourmethodology for detecting
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Figure 6.3 – The system architecture of Droplets.

Figure 6.4 – Liquid droplets on the screen of a smartphone.

difficult liquid testing conditions, as well as how we notify the user through the user
interface (UI) to guide them towards an improved setting.

4. Liquid feature extraction : It takes as input the drop profile and contact line and com-
putes the liquid features : contact angle and capillary length values. The features are
transformed so as to remove the impact of outside factors, including zoom, distance
between camera and the drop, etc. Section 6.7 describes the challenges this module
faces as well as the algorithm for addressing them.

5. Liquid classification : The final step involves solving a classification problem based on
the computed liquid features. It does not present any distinct challenges compared
to the extensive research on the subject. Therefore, Droplets utilizes the classic KNN
algorithm.
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Parameters found :
 

a = 0.23
b = 25.7

theta = 105.6°

REFERENCE

Parameters found :
 

a = 0.31
b = 68.2

theta = 68.6°

Tested liquid

Relative parameters :
dA = 34.78%
dTheta = -37°

NOT the same liquid

Match with database => Ethanol

Tilt : 1.3° -
Correct !

(a) Scan mode. (b) Surface mode.

Figure 6.5 – Droplets’ virtual assistant interface.

6.4 Which surface for ubiquitous drop shape analysis?

For a robust liquid testing system based on contact angle, certain conditions must be
met for the surface on which the drop is placed. These conditions include being physically
and chemically inert, smooth, homogeneous, and rigid [224-226]. If the surface is rough,
measurements of the drop’s contact angles for the same liquid may vary. Additionally, the
presence of dirt on a chemically unclean surface can affect the contact angle. Therefore,
it is crucial for the surface to be smooth and easily cleanable. Another requirement is
that the surface should be widely available, aligning with Droplets’ objective of providing
ubiquitous liquid testing. Finally, the surface must exhibit sufficient hydrophobicity to
ensure most liquid contact angles are visible, i.e., greater than zero.

After testing several different surfaces such as glass, plastic, cardboard, wood, and
others, we determined that the surface of a smartphone screen was the best choice. The
screen of a smartphone is composed of tempered glass, providing a hydrophobic surface
that is well-suited for measuring contact angles. It is readily available and can be easily
cleaned. Moreover, its smooth and hydrophobic nature ensures that the contact angles
obtained are relatively high and can be measured reliably. While it is recognized that
the volume of the drop may influence the contact angle [227], this effect is minimized
when using a smooth surface such as the smartphone screen. Figure 6.4 depicts water
and ethanol drops on a smartphone screen.

6.5 Image Acquisition with Virtual Assistance

A key challenge for Droplets is enabling untrained individuals in an uncontrolled set-
ting to capture sessile drop images for reliable liquid testing on a smartphone. This chal-
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(a) Water with a standard background
(b) A drop of water with white back-
ground

Figure 6.6 – Changing the background can clarify the edges

lenge is twofold. First, maintaining a parallel camera position to the drop’s plane during
image capture is crucial to avoid perspective effects that may distort the apparent shape of
the drop. However, users are not expected to possess specialized equipment to meet this
requirement. Second, achieving sufficient contrast clarity between the drop’s contour and
surrounding contact points is essential. Depending on the illumination and light absorp-
tion properties of the liquid, the algorithm described in Section 6.6 may face difficulties
in identifying contact points. Therefore, Droplets must provide users with feedback on
image quality to assist them in identifying the optimal measurement conditions.

To overcome this challenge, Droplets introduces a virtual assistant, as depicted in
Fig. 6.5. In scan mode, as shown in Fig. 6.5a, it incorporates three mechanisms. First, to
aid users in capturing images without perspective effects, the virtual assistant utilizes
the smartphone’s gyroscope sensor. It measures and displays real-time roll and azimuth
angles, providing immediate orientation feedback. Second, two horizontal lines (repre-
sented as ymin and ymax in Fig. 6.3) delineate the contact zone, guiding users to position
the drop’s contact points within it for improved detection. The contact line extraction mo-
dule, Section 6.6, focuses only on the specified y-range. If the contact line is undetected,
the virtual assistant alerts the user and suggests modifying the setup. Finally, the virtual
assistant directs users to adjust the orientation relative to the light source or place an ob-
ject with a white or darker color in the background. It provides users with the optimal
background color selection based on the color of the tested liquid. Fig. 6.6 illustrates the
impact of changing the background color, with the contact line more visible against a
white background.

6.6 Contact line extraction

The contact line, a straight line visible in the image when the camera aligns perfectly
with the surface and the drop, has been the focus of previous works in controlled settings
[211-218]. However, in our case, achieving perfect alignment between the smartphone,
drop, and camera sensor center without a fixed setup is challenging, even with the Vir-
tual Assistant introduced in Section 6.5. Additionally, the smartphone’s thick edge causes
blurriness in the camera image. As a result, previous approaches have relied on expli-
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Figure 6.7 – A drop of water on a smartphone screen and the contact line.
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Figure 6.8 – Illustration of the efficiency of contact point detection algorithm.

cit user intervention to locate contact points [211], such as drawing a horizontal line or
manually selecting contact points in an image editor.

However, Droplets aims for minimal user involvement. To detect the contact line,
Droplets utilizes the reflection of the drop on the surface. As depicted in Fig. 6.7, the
meeting points of the actual and reflected drop profiles represent the contact points. By
connecting these meeting points, the line formed becomes the contact line. The following
provides a detailed explanation of our contact line extraction method.

6.6.1 Contact point extraction algorithm

In this section, we present Droplets’ algorithm (sketched in Algorithm 2) for detecting
the contact line. Its design is based on two insights. First, we note that the screen of
a smartphone is highly reflective. Specifically, the edges of the droplet and its reflection
intersect at the contact points, which are the endpoints of the contact line (see Fig. 6.7). By
treating the lateral sections of the profile as a function, we observe a change in the slope
sign at the contact point. Second, the change in direction is approximately the same when
transitioning from the droplet contour to its reflection. Hence, in order to determine the
contact point, we seek the position where the slopes at the top and bottom of this curve
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Algorithm 2 Contact point extraction algorithm
Input : Side of the drop profile PL = {[xi,yi]}M1 , the amount of neighbooring point to

consider N
Output : The estimated contact point P0 or nothing if impossible

7 candidateP = []
for n := N to M do

8 Left = {[xi,yi]n−1
i=n−N+1}

Right = {[xi,yi]n+N−1
i=n+1 }

slopeLeft = slope(LinearFit(Left)) /*Compute the slope of the linear fit of the data
points Left*/
slopeRight = slope(LinearFit(Right)) /*Compute the slope of the linear fit of the data
points Right*/
slopeDiff = slopeLeft-slopeRight
if slopeDiff = 0 then

9 /*We may find the contact point.*/
candidateP = candidateP.append([xn,yn])

10 if size(candidateP) = 1 then
11 return candidateP(1)

12 if size(candidateP) = 3 then
13 return candidateP(2)

14 return []

cancel each other out.

The algorithm searches for the index n where the points n−N and n+N, representing
one point per pixel, are fitted to two lines. These lines should have equal-magnitude slopes
but opposite signs. Let us focus on the left side of the droplet and its reflection, which we
denote as PL. For y values within the range [ymin,ymax], we define PL(y) as xy. First, we
apply a Savitzky-Golay filter to smoothen PL and eliminate small irregularities. Then,
for each point, the algorithm calculates the top and bottom slopes of PL by fitting lines
through N points above and below the selected point (lines 5, 6, Algorithm 2).Wemeasure
the difference between these two slopes, expecting it to be close to zero at the contact point
(line 8).

We repeat this process for both sides of the profile and determine the contact line by
connecting the two contact points.

In Fig. 6.8, we illustrate three different configurations for the contact points, represen-
ting cases where the contact angle is above, below, or approximately 90°. We also depict
the corresponding possible contact points that have been identified. When the contact
angle is below 90°, as shown in Fig. 6.8a, there is only one candidate for the contact point
(line 11). However, when the contact angle exceeds 90°, as shown in Fig. 6.8c, there are
three potential candidates. In this scenario, the contact point is determined to be the can-
didate that lies between the other two (line 14).
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Figure 6.9 – A case where it is difficult to detect the contact points from drop profile
points.

6.6.2 Interaction with the Virtual Assistant

Recall that the Virtual Assistant’s role (Section 6.5) is crucial in enabling liquid testing
in uncontrolled settings. The contact line extraction algorithm, introduced in the previous
section, assists the virtual assistant by indicating when the picture quality is inadequate
for reliable contact point detection. To achieve this, we count the number of candidate
contact points for each side, i.e., the number of points where the left and right slopes are
equal. We encounter three cases :
1. Algorithm 2 finds only one candidate contact point (line 11), denoted as P1 in Fig. 6.8a

and Fig. 6.8b. In this situation, P1 is selected as the contact point, representing a liquid
with a contact angle between 0 and 90°.

2. Algorithm 2 identifies three candidates : P1, P2, and P3, listed in decreasing order of
their y coordinates. In this case, the algorithm returns P2 (line 14). The rationale be-
hind this decision is that the first and last slopes detected correspond to the outermost
portions of the droplet when dealing with a liquid with a contact angle greater than
90°, as depicted in Fig. 6.8c.

3. In the final case, we may have either two, four, or more candidate contact points, in-
dicating the presence of challenging edge points near the contact points. Selecting the
correct contact point becomes difficult in such instances, as shown in Fig. 6.9. Conse-
quently, the algorithm notifies the Virtual Assistant (line 15) that the picture lacks
sufficient quality. The Virtual Assistant then engages with the user to rectify the situa-
tion.

6.7 Liquid feature extractor

In this section, we describe Droplets’ methodology for computing the two liquid fea-
tures : capillary length, a (Section 6.2.2), and contact angle, θ (Section 6.2.1).

6.7.1 Approach overview and challenges

The overall approach is based on the theoretical framework introduced in Sec-
tion 6.2.3. To compute the capillary length and contact angle, we take as input the drop
profile points and the contact line. By utilizing the contact line, we measure the drop
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(a) Drops of milk and water.
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Figure 6.10 – The presence of reflections on the top of the drop (top figure) makes it chal-
lenging to accurately determine the drop’s height from this image. Additionally, another
reflection introduces spurious data points in the extracted profile (bottom figure).

height H and search for the parameters (a,b) that best fit the profile point generated by
the used model. Specifically, for each pair of parameters (a,b), we integrate Eq. 6.7 from
y = 0 to H and generate a set of Generated profile points (x′i ,y

′
i). We then compare these

Generated profile points with the measured profile points and keep the liquid features that
show the closest match, as determined by Eq. 6.8.

However, this approach faces several challenges when applied using a smartphone in
an uncontrolled setting. First, as shown in Fig. 6.10, the apex of the drop can be inaccurate
due to uncontrolled lighting conditions, especially in the case where it is obscured by a
reflection. This can lead to significant errors in computing the drop height, H, as shown
in Fig. 6.11a.

Second, spurious data points may be generated by the edge detection algorithm due
to the image quality, as shown in Fig. 6.11b, leading to contact angle computation errors.

Finally, the computation of the capillary length is dependent on the pixel size, which
itself is influenced by various uncontrollable factors such as the camera, zoom level, and
distance to the drop, among others.

In the following, we describe how Droplets addresses these challenges.

6.7.2 Dealing with noisy profile points

In this section, we will describe how Droplets tackles the challenges arising from in-
accuracies in the computation of the drop height, H, and the presence of spurious data
points in the drop profile.

To address the first challenge, we redefine the optimization problem presented in
Eq.6.8 to incorporate the coordinates of O (Fig.6.2), the apex point. By introducing
O(xo,yo), we get :

a∗,b∗, x∗o,y
∗
o = argmin

a,b,xo,yo

n∑
i=1

min j

[
xi

yi

]
−

[
xo

yo

]
−

x′j
y′j

 (a,b) (6.9)
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(a) A profile with misleading
apex O point, leading to an er-
ror of 5.54°.

(b) A profile with spurious data
points, leading to an error of
12.33°.

(c) Droplets achieves a good fit,
reducing the error to 0.05°.

Figure 6.11 – The impact of spurious data points and the misleading apex point O on the
measurement of the contact angle of a water droplet both with and without the utilization
of Droplets. In orange the profile points obtained from the image, while in blue the profile
points generated using the best-fitted model.

Through the solution of Eq. 6.9, we estimate the liquid features a and b, and robustly
determine the most probable drop height using y0.

To address the challenge posed by spurious data points, we incorporate into our de-
sign RANSAC [220] (Random Sample Consensus), a state-of-the-art algorithm for fitting
a model with noisy points. The set of profile points is randomly subsampled, and Eq. 6.9 is
utilized to obtain potential features. The points that closely adhere to the model within a
defined error threshold are selected as potential inliers. This process is repeated with dif-
ferent subsets, and the subset with the maximum number of inliers is chosen to generate
the final liquid features. As Fig. 6.11c shows, this method leads to a good fit.

6.7.3 Camera-independent liquid features

The computation of the capillary length, as discussed in the preceding section, pro-
duces a value in pixels, whose size depends on the measurement setting, limiting its prac-
tical utility. To maintain consistency with the goals of Droplets, it is necessary to derive
a capillary length value that solely depends on the liquid being tested.

To achieve this, we employ a second liquid drop as a reference. Let L denote the liquid
being tested, and re f represent the reference liquid, in this instance, water. The relative
capillary length of the tested liquid, expressed as a percentage, is computed by Droplets
as a′ = 100 ∗ |aL − are f |/are f .

6.8 Implementation and evaluation setup

6.8.1 Implementation

The optimization component (Eq. 6.9, Section 6.7.2) is implemented using Nelder-
Mead optimization [228], a heuristic numerical method designed to minimize continuous
functions in multidimensional spaces. The software offers two operational modes, depic-
ted in Fig. 6.5 : scan mode, which employs the camera to measure drop characteristics,
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Figure 6.12 – Contact angle measurement results.
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Figure 6.13 – Scatter plot of the features measured by Droplets for several liquids.

and surface mode, which displays circular shapes on the screen to guide the user in po-
sitioning a drop of a predetermined size. In surface mode, there are four available sizes :
50, 60, 70, and 80 px radius, corresponding to approximately 50 µL to 160 µL. For the scan
mode, the camera settings are configured to a resolution of 1080*1080 with an aspect ratio
of 1.

6.8.2 Testing setup

In our experiments, we employ a OnePlus 8t as the scanner and a Google Pixel 4 as the
surface. To test a liquid, we utilize a syringe to place a drop of the liquid on the left circle
and a drop of the reference liquid on the right circle, both with standardized sizes. The
surface phone is positioned horizontally on a table. Using the scanner phone, we employ
Droplets to scan both drops within a single image and execute the test. Following each
measurement, we clean the surface phone screen using water and ethanol and allow it to
air dry.
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(a) Capillary length only : 58%
accuracy.
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(c) Droplets : 84% accuracy.

Figure 6.14 – Liquid classification.

6.8.3 Evaluation setup

The performance evaluation is divided into two parts. The first part focuses on asses-
sing the overall performance of Droplets. In the second part, we examine two specific use
cases for liquid testing to cast a light on the practical potential of Droplets.

6.8.3.1 Part 1 : Overall Performance

We start by evaluating the overall performance of Droplets in liquid testing. Specifi-
cally, we focus on the following aspects :

Accuracy : To gauge the overall performance of Droplets inmeasuring contact angles,
we conducted several experiments with ten different liquids, encompassing contact angles
ranging from 68 to 114°. Sincewe do not have a ground truth contact angle for comparison,
we evaluate the accuracy of Droplets by using the standard deviation of themeasurements
as the error metric. The results are discussed in Section 6.9.1.

Feature Quality : To evaluate the significance of each individual feature in liquid
classification, we present classification results in Section 6.9.2, utilizing both features to
differentiate between liquids.

System Robustness : Finally, we evaluate SmartPhOx’s robustness by assessing its
capacity to accurately measure the contact angle of liquids in various setups. The results
are discussed in Section 6.9.3.

6.8.3.2 Part 2 : Use cases

To explore the practical potential of Droplets, we examine two use cases : counterfeit
liquor detection and urine testing.

Counterfeit Alcohol Detection : We conducted an examination of Droplets’s ability
to distinguish between authentic liqueur and a counterfeit version containing 30% water.
The findings of this analysis are discussed in Section 6.9.4.

Urine Testing : One potential application of Droplets is to simplify the monitoring
of urine albumin levels for patients with diabetes by acting as an early-warning system.
The findings of our analysis are presented in Section 6.9.5.
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without the presence of a screen protector.
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(b) Contact angle measurements on various
phone models.

Figure 6.15 – Contact angle measurements of water and ethanol.

6.9 Evaluation results

6.9.1 Droplets’ accuracy

In this section, we present the performance of Droplets in measuring contact angles
for various liquids, including Cognac, red wine Cruz, Ethanol, Gin, Red label, red wine
Merlot, Whisky, Duval, William peel scotch, Rhum Negrita, Label scotch, Calvados bus-
nel (Sylvain), Vodka, Vodka Poliakov, urine, and water. We conduct multiple tests and
report the average measured contact angles along with the error range in Fig. 6.12a. The
contact angle error is generally below 2 degrees, except for Cruz and Merlot, where it
reaches 4°. This discrepancy can be attributed to their contact angles being around 90°,
making it challenging to accurately identify the contact line. Even a slight error in contact
line identification results in a significant error in the estimated contact angle at θ ≈ 90◦.
Additionally, we observed that distinguishing between Negrita, Label, Peel, Grant, and
Sylvain is difficult since they have similar contact angles around 75°, attributed to their
identical alcohol content of 40%. However, we can clearly differentiate them from Vodka
Poliakov, Duval, and Gin, as their alcohol levels vary (37.5° for Vodka Poliakov and Gin,
and 45° for Duval). In Fig. 6.12b, we illustrate the relationship between contact angle and
alcohol level in the beverage, demonstrating Droplets’ ability to accurately track alcohol
content. Notably, Droplets exhibits sensitivity in distinguishing between water (0°) and a
3.3° ethanol solution.
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Figure 6.16 – Contact angle measure-
ments with and without the virtual as-
sistant.
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Figure 6.17 – Contact angle with dif-
ferent cameras.

6.9.2 Liquid classification

Fig. 6.13 depicts a scatter plot showcasing the features of 10 liquids. The data shows
that distinguishing between olive oil and Whiskey based solely on contact angle is chal-
lenging, as the measured contact angle ranges between 75-80 degrees for both liquids.
However, by incorporating the capillary length (Y-axis), we can easily distinguish the
two liquids. This observation is further supported by the confusion matrices presented in
Fig. 6.14. By utilizing the estimated contact angle and capillary length as features, and the
corresponding liquid as labels, we can employ a simple K-Nearest Neighbors algorithm
(K=3) to differentiate between these liquids. The resulting confusion matrices demons-
trate an average classification accuracy of 58%, 78%, and 84%, respectively, when using
only capillary length, contact angle, and both features for the nine types of liquids. In
Figure 6.14c, it can be observed that Droplets encounters difficulties in identifying beer.
This issue is likely attributed to the presence of gas within the liquid. When a small drop
of beer is placed on a surface, the carbon dioxide (CO2) trapped within the drop begins
to release in the form of small bubbles. This process leads to changes in the shape of the
drop over time, thereby posing challenges in obtaining precise measurements.

6.9.3 System robustness

In this section, we assess SmartPhOx’ robustness by evaluating its performance across
various real-world configurations. As SmartPhOx’ proper functionality hinges on three
core elements — surface, camera, and lighting — the evaluation is structured to measure
its performance when these elements are modified.

SmartPhOx on different surfaces : Two factors may influence the surface where
the drop is positioned : the presence of a screen protector and the smartphone model.

Fig. 6.15a depicts the contact angles of ten different water and ethanol drops on a
Google Pixel 5 screen, with and without a screen protector. The data shows a marginal
error shift from 1.2 to 1.8 degrees. This minor influence on SmartPhOx’ performance can
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be attributed to the fact that modern screen protectors are composed of tempered glass,
providing a high-quality hydrophobic surface [229].

Fig. 6.15b depicts contact angle measurements for four popular smartphone models :
Google Pixel 4a, iPhone 11, Galaxy Note 10, and Google Pixel 5. The average contact
angle errors are 1.2, 1.5, 1.8, and 3 degrees, respectively. Differences, especially among the
first three models, are minimal. This can be attributed to the dominance of a handful of
companies in the smartphone screen market 2. Some variations are observed, particularly
in the Google Pixel 5, possibly due tomanufacturing differences.We note that a 2%margin
of error in contact angle measurements is a threshold value for the urine testing use case
discussed in Section 6.9.5.

SmartPhOx under different lighting conditions : Another significant factor af-
fecting SmartPhOx is external conditions that influence picture quality, primarily illumi-
nation. To address this challenge, we introduced the virtual assistant in Section 6.5. To
evaluate its performance, we conducted experiments using drops of water and ethanol
under various lighting conditions. To adjust the lighting, we modified the indoor ambient
lighting and carried out experiments at different times of the day outdoors.
Results : Fig. 6.16 depicts the contact angle measurements with and without the virtual
assistant. We observe that without the virtual assistant, the average error is significant,
approximately 12 degrees. However, when the virtual assistant is enabled, the error drops
to around 1.3 degrees, underscoring its role in enhancing the robustness of SmartPhOx.

SmartPhOxwith different cameras : To evaluate the influence of the camera Smart-
PhOx employs for image acquisition, we utilized two Android-based smartphones : the
OnePlus 8, equipped with a Sony IMX586 camera, and the Redmi Note 12, featuring a
Samsung ISOCELL HM2 camera. We performed contact angle measurements with water
and ethanol, following the same procedures as in the previous scenarios, using a Google
Pixel 4a as the surface. Fig. 6.17 reveals no significant difference in SmartPhOx’s perfor-
mance when using both cameras. This can be attributed to the fact that even relatively
affordable off-the-shelf models incorporate fairly advanced camera technology.

6.9.4 Use case 1 : Counterfeit liquor detection

The prevalence of counterfeit liquid food products has become a significant social is-
sue. According to the World Health Organization (WHO), it is estimated that 25% of all
alcohol consumed worldwide is counterfeit [230]. There are numerous reports of counter-
feit liquid food products, including milk [231], alcoholic beverages [232], and honey [233].
Alcoholic beverages are commonly adulterated by being mixed with substances that can
alter its content, such as water or cheap alcohol [234].

To evaluate SmartPhOx’ ability to differentiate between authentic alcoholic beverages
and counterfeit versions, we conduct two sets of experiments. In the first set, we assess
SmartPhOx’ performance in what would typically be regarded as the most common coun-
terfeiting scenario. In the second set, we evaluate SmartPhOx’ robustness against varying
quantities of the counterfeit substance.

2. Corning, known for Gorilla Glass, is the primary manufacturer for screens in most smartphones [229].



6.9. Evaluation results 103

50 60 70 80 90 100 110

Contact angle (°)

-30

-20

-10

0

10

20

30

 R
e
l.
 C

a
p
ill

a
ry

 l
e
n
g
th

 (
%

)

Genuine

+ 30% Water

+ 30% Ethanol

(a) Wine

50 55 60 65 70 75 80 85 90

Contact angle (°)

20

25

30

35

40

45

50

55

60

 R
e
l.
 C

a
p
ill

a
ry

 l
e
n
g
th

 (
%

)

Genuine

+ 30% Water

+ 30% Ethanol

(b) Rum

40 50 60 70 80 90 100

Contact angle (°)

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

 R
e
l.
 C

a
p
ill

a
ry

 l
e
n
g
th

 (
%

)

Genuine

+ 30% Water

+ 30% Ethanol

(c) Whisky

60 65 70 75 80 85 90 95 100

Contact angle (°)

-20

-10

0

10

20

30

40

50

60

 R
e
l.
 C

a
p
ill

a
ry

 l
e
n
g
th

 (
%

)

Genuine

+ 30% Water

+ 30% Ethanol

(d) Vodka

Figure 6.18 – Contact angle and capillary length measurements for four alcoholic beve-
rages adulterated with 30% of water and ethanol.
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Figure 6.19 – Contact angle and capillary length measurements for rum adulterated with
varying percentages of water and ethanol.
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Scenario 1 : The typical counterfeiting scenario is rooted in the common practice
among counterfeiters, where they dilute authentic products with a minimum of 30% wa-
ter or cheaper alcohol for economic reasons [24]. Therefore, we perform experiments by
diluting four common alcoholic beverages – wine, whisky, rum, and vodka – with either
30% water or 30% ethanol.
Results : Fig. 6.18 depicts the contact angle and capillary length values measured by
SmartPhOx for both the authentic and counterfeit versions. The data shows that, as expec-
ted, utilizing alcohol (ethanol) as a counterfeiting substance poses a greater challenge for
SmartPhOx compared to using water. Nevertheless, the combination of capillary length
and contact angle enables the detection of counterfeit alcoholic beverages in both cases.

6.9.5 Use case 2 : Urine testing

Kidney disease is more prevalent among individuals with diabetes or high blood pres-
sure. When a kidney is damaged, certain substances that should not be present in urine
begin to excrete. Many of these substances decrease the surface tension of urine. For
instance, proteinuria, which occurs when the kidney leaks albumin into the urine, is a
concern for individuals with diabetes [235, 236]. One potential application of Droplets is
to simplify the monitoring of urine albumin levels for patients with diabetes by acting
as an early-warning system. If the test indicates that the albumin level exceeds a safe
threshold, the patient can contact their primary care provider for a more comprehensive
analysis. In this application, users would use a dedicated testing surface instead of a se-
cond smartphone.

To assess the feasibility of Droplets for such a use case, we introduce different levels
of egg albumin to samples of healthy human urine and measure their features at various
albumin concentrations. Fig. 6.20a illustrates the contact angle of urine solutions with va-
rying levels of albumin. The data demonstrates that Droplets can monitor urine albumin
levels bymeasuring the contact angle of a drop.What is more, Fig. 6.20b shows that by uti-
lizing these two features, we can effectively differentiate between regular urine and urine
with an albumin concentration of as little as 44 mg/L. Note, however, that the contact
angle difference between urine samples containing 44, 100, and 150 mg/L of protein is
approximately 2 degrees. As the data in Section 6.9.3 (Fig. 6.15b) suggests, the current im-
plementation of SmartPhOx can achieve this level of accuracy, but not on all smartphone
surfaces.

6.10 Related work

6.10.1 Smartphone based liquid testing

Liquid testing in non-laboratory settings has gained considerable attention in recent
years. Some of the early work leverage the interaction between liquid content and radio
waves [203, 237-244]. However, these approaches necessitate specialized equipment and
setups, including large antennas that are not easily portable. Another body of work le-
verages commonly available devices like smartphones to analyze liquid properties such
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Figure 6.20 – Urine testing.

as surface tension and viscosity [23, 25, 41, 71, 245-247]. CapCam [23] employs a smart-
phone camera to estimate liquid surface tension by capturing capillary waves induced by
vibrations. However, it requires a paper or plastic cup to produce the intended capillary
waves, along with a precise liquid volume. Collecting such a quantity of liquid can res-
trict its applications, particularly in healthcare scenarios. For example, individuals with
anuria typically excrete less than 100 ml of urine daily, making it infeasible to use Cap-
Cam. Similarly, Vi-Liquid [41] utilizes a smartphone’s vibro-motor and accelerometer to
induce and detect vibrations in liquids for viscosity estimation. Viscocam [25] analyzes
the sloshing motion of liquid in a cup to estimate its viscosity, while Atke [71] relies on
the acoustic permittivity of the liquid, utilizing the microphone and speaker of the phone.
LiquidHash [24] detects and tracks the shape and movement of air bubbles inside bottles
to identify counterfeit alcohol without requiring them to be opened. Nonetheless, it can
only analyze bottles and liquid contents that are semi or fully transparent. It cannot ana-
lyze, for instance, red wine or any other liquids contained in non-transparent containers.
To the best of our knowledge, [22] is the only work that presents a liquid testing solution
based on drops. It utilizes the LiDAR sensor in smartphones to establish a laser speckle
system. However, smartphone manufacturers are progressively phasing out LiDAR sen-
sors [208].

System Sensors
Availability
of the sensors

Volume
needed

Measured
properties

Container-
independent

Work on liquid
no matter the
opacity

Run on
smartphone Contactless Classification

Fake liquors
detection

Urine
testing

Capcam [23]
Camera,
Flashlight
vibro motor

Most of the
smartphones a cup Surface

tension No No Yes Yes Yes Yes Yes

Vi-Liquid [41]
Accelero-
meter,
vibro motor

Most of the
smartphones a cup Viscosity No Yes Yes No Yes No Yes

Liquidhash [24] Camera Most of the
smartphones a cup

Capillary length,
Viscosity,
Surface tension

No No Yes Yes No Yes No

Viscocam [25] Camera Most of the
smartphones a cup Viscosity No No No Yes Yes No

LiDar [22] Lidar

Few brands

high end
smartphones

a droplet Viscosity No container Yes Yes Yes Yes No No

Droplets Camera
Most of the
smartphones a droplet

Capillary
length,
Contact
angle

No container Yes Yes Yes Yes Yes Yes

Table 6.1 – Comparison of related works.
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6.10.2 Sessile drop shape analysis

There is a considerable body of literature on measuring the contact angle of a dro-
plet [211-215, 217, 218]. The typical approach involves analyzing the droplet’s profile,
identifying the baseline, and calculating the contact angle either through polynomial fit-
ting [211, 212, 214, 218, 248] or by solving the Young-Laplace equation [32, 211, 213-215,
217]. However, these methodologies rely on complex and specialized setups that are not
suitable for out-of-laboratory use. None of them are designed to handle images taken un-
der uncontrolled conditions, which often leads to the presence of erroneous data points
and, in some cases, the inability to locate the top of the droplet. Droplets’ contribution is
to introduce solutions to these challenges.

6.11 Conclusion

WepresentedDroplets, a smartphone-based solution for ubiquitous liquid testing, that
utilizes a single drop and relies on a standard camera and gyroscope. The primary innova-
tion of Droplets lies in its ability to differentiate liquids based on their contact angle and
capillary length. Drawing on the Young-Laplace equation, we have introduced a method
to fit a theoretical model to imperfect drop profiles obtained from smartphone camera
images, thereby facilitating the computation of contact angle and capillary length. To
account for the challenges posed by uncontrolled experimental environments, Droplets
incorporates a virtual assistant designed to assist users in capturing high-quality images
of the droplets. Results obtained from testing nine different liquids demonstrate that Dro-
plets achieves an accuracy of 84% in liquid classification. Additionally, our experiments
have revealed the potential of Droplets in detecting counterfeit liquors and tracking pro-
tein levels in urine.

The current implementation of Droplets has its limitations. Liquid testing is based so-
lely on the shape of the drop but other features like the color could help improve accuracy.
Furthermore, in this golden age of artificial intelligence it may be interesting to explore AI
approaches for complementing Droplets’ algorithms for extracting the contact angle and
capillary length from imperfect images and making the virtual assistant more powerful.
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Conclusion

The smartphone has become an omnipresent tool in our daily lives. It is a device that
an increasingly large majority of the population owns, and its features and services have
led to the democratization of processing power, information, and telecommunications. In
line with this continuity, this thesis focuses on leveraging the smartphone to democratize
healthcare.

Throughout the manuscript, we present a methodology for developing health-related
sensing systems working on a smartphone. Specifically, we start with a well-defined ob-
jective to identify the object of interest and the potentially usable smartphone sensors. We
then review literature for relevant existing sensing approach related to the sensor and the
object, and after comparison, we decide on the course of action, as demonstrated by our
three uses case illustrations :
1. To measure blood oxygen saturation, we initially explore the use of finger pho-

toplethysmography (presented in Chapter 2.4.3), a commonly employed sensing tech-
nique in previous research. Through experiments conducted in Chapter 4.4, we identify
the limitations of the conventional RR method. This leads us to devise an alternative
approach based on the RR map, which is introduced in Chapter 4.6.2. We develop a
more reliable RR extraction method and demonstrate its effectiveness in accurately
estimating SpO2, meeting the FDA’s accuracy standards (Chapter 4.9.1).

2. Tomeasure lung functions, we do not identify any approaches thatmeet our user be-
havior related constraints (user movements) and environmental constraints (ambient
noise), prompting us to pursue a new approach. We propose using the pressure sensor
to measure lung content when exhaled into an inflatable balloon. We design a setup
and algorithms to transform this idea into a complete system (Chapter 5.3), achieving
accuracy comparable to clinical spirometer.

3. To test a single drop of liquid, We could not find a satisfactory sensing approach
using standard smartphone sensors, so we decided to explore an alternative method.
We chose vision as it allows us to distinguish between liquid droplets based on their
shape (Chapter 6.2). Utilizing the Young-Laplace equation, we developed a model
(Chapter 6.2.3.2) and a complete setup (Chapter 6.3) to measure the characteristics of
a liquid droplet’s shape, such as the contact angle and capillary length. With this ap-
proach, we successfully detected differences in protein levels in urine droplets (Chap-
ter 6.9.5).
Overall, the solutions we propose enable smartphone users, regardless of their trai-

ning or environment, to access and benefit from medical technologies related to the ad-
dressed problems. This represents a significant step towards our vision of democratizing
healthcare and empowering users to enhance the starting point of their healthcare jour-
ney, as discussed in the introduction (Chapter 1.1).

Firstly, SmartPhOx enables smartphone users, under the recommendation of their
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healthcare provider, to frequently measure their SpO2, thereby detecting any timely dete-
rioration in their health, especially for individuals with chronic lung or cardiac diseases.

Secondly, with BandS-Spi, smartphone users can perform reliable spirometry tests
using a cheap inflatable balloon, without the presence of a clinician, relying solely on the
guidance provided by the tool.

Lastly, with Droplets, smartphone users can test different liquids, such as urine, to
detect abnormally high protein levels, prompting them to seek medical attention. They
can also check the suitability or verify the authenticity of various beverages.

Future work

In addition to the individual-centered approach we advocate for in democratizing and
continuous healthcare, the future of mHealth holds promise on a broader scale. With the
widespread ownership of smartphones, the healthcare system could be organized natio-
nally around this technology. Centralizing health-related data from each individual could
lead to improved traceability of disease progression and significant benefits for research,
especially in public health. For instance, early disease detection, real-time pandemic mo-
nitoring, and understanding the impact of demographic and hereditary data on different
illnesses could be achieved. Furthermore, investigating why certain populations with si-
milar early signs may not develop diseases could uncover better health practices hidden
in lifestyle habits.

While this crowd healthcare perspective offers societal promise, it also poses various
scientific and ethical challenges. Ethically, privacy must be a top priority when imple-
menting such policies. Anonymizing data, obtaining informed consent, and ensuring data
cannot be linked to identities are critical.

Scientifically, several challenges arise :
— Handling the massive amount of data necessitates robust and efficient infrastruc-

ture.
— Establishing links between historical health related data and future diseases is com-

plex.
— Developing appropriate models to detect diseases years in advance is not straight-

forward.
To achieve this vision, cloud computing, IT security, and artificial intelligence are key

research areas. Cloud computing is crucial for managing and storing vast amounts of data,
ensuring scalability and accessibility for millions of smartphone users.

IT security is essential to safeguard sensitive medical information stored in the cloud,
using encryption and access controls to protect individual identities.

Artificial intelligence plays a pivotal role in analyzing extensive healthcare data, iden-
tifying patterns, and forecasting health conditions, enabling timely interventions for bet-
ter disease management and prevention.

Advancing research in these areas has the potential to revolutionize public health-
care and improve medical outcomes, while responsible handling of ethical concerns, data
privacy, and governance ensures societal benefit.
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Acronyms

ARDS Acute Respiratory Distress Syndrome. 62

CNN Convolution Neural Network. 32, 33
COPD Chronic Obstructive Pulmonary Disease. 20, 81
CSI Channel State Information. 22, 23
CWT Continuous Wavelet Transform. 26

DNN Deep Neural Network. 32

GPS Global Positioning System. 11
GPUs Graphics Processing Units. 11
GRU Gated Recurrent Unit. 34

LOG Laplacian of Gaussian. 30
LSTM Long Short-Term Memory. 33

NFC Near Field Communication. 11

PCA Principal component Analysis. 32
PPG Photoplethysmogram. 17, 22, 26, 28, 46, 61
PSD Power Spectral Density. 26, 27

RFID Radio Frequency Identification. 11, 12
RNN Recurrent Neural Network. 33
RSSI Signal Received Strengh Indicator. 23

SARS-CoV-2 Coronavirus. 20
SNR Signal to Noise Ratio. 19, 61
SVM Support Vector Machines. 31

TOI Transdermal optical imaging. 16, 22
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