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INTRODUCTION

Context and background

The advent of Industry 4.0 has introduced new challenges in optimizing the flow of
data, products, and materials within production environments. Autonomous Industrial
Vehicles (AIVs), including Automated Guided Vehicles (AGVs) and other Autonomous
Mobile Robots (AMRs), have emerged as promising solutions to address these challenges.
However, the introduction and deployment of fleets of AIVs in companies remains prob-
lematic on a number of levels: acceptability to employees, precise vehicle localization,
maintaining smooth traffic flow, and ensuring reliable perception in dynamic and ever-
changing environments and so on. As a result, the autonomy of AIVs is constrained by
predetermined trajectories and rigid operational frameworks.

This thesis focuses on enhancing the autonomy of AIV fleets by leveraging
collective intelligence strategies. By enabling robust communication and exchange
of relevant traffic information between AIVs and the infrastructure, we aim to improve
their adaptability, decision-making capabilities, and overall efficiency. The key areas of
interest include:

— Adaptation to circulation constraints: Improving AIVs’s capacity to adjust to
changing environments, such as dynamic storage areas and production lines, to
ensure seamless operation despite changing conditions. This adaptability lever-
ages advancements in Artificial Intelligence (AI) and Internet of Things (IOT)
technologies [Kha+20] for enhanced environmental perception.

— Improved decision-making: developing strategies that allow AIVs to make informed
decisions despite incomplete, uncertain, or fragmented information [Mİ21].

— Vehicle-To-Everything (V2X) communication: facilitating communication between
AIVs within the fleet, with the infrastructure, and with human operators, thereby
improving coordination and safety [Mİ21].

— Energy efficiency: implementing strategies to reduce the energy consumption of
AIV fleets, even under varying traffic and operational constraints [BM16].
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Introduction

Challenges faced by AIVs

AIVs are becoming increasingly integral to modern industrial settings, driving effi-
ciency and automation in various applications. However, their integration and operation
come with a range of challenges that must be addressed to fully realize their potential.
These challenges can be broadly categorized into technical, operational, and human fac-
tors.

Technical Challenges

— Navigation and localization: AIVs must navigate complex and dynamic envi-
ronments while maintaining accurate localization. The ability of AIVs to perceive
their environment and avoid obstacles is fundamental. Indeed, Obstacle avoid-
ance is a critical function for AIVs, enabling them to navigate safely, particularly
in complex and dynamic environments with high traffic or frequent changes [RK22].
The reliability of sensors and the robustness of algorithms for real-time localiza-
tion are critical for effective navigation. The challenge lies in developing reliable
perception systems that can detect and differentiate between static and dynamic
objects, even under adverse conditions like poor lighting. Additionally, real-time
motion planning and collision avoidance algorithms must be robust enough to han-
dle unexpected obstacles without causing operational delays [HIA22].

— Cooperative perception: Inspired by advancements in the automotive sector,
cooperative perception is essential for enhancing situational awareness among AIVs
in fleet operations. The challenge is to develop effective communication protocols
that allow AIVs to share and integrate sensory information in real-time, especially
in environments [Per+20]. This cooperation is vital for ensuring safe and efficient
navigation and task execution.

— Task allocation: Task allocation is crucial for optimizing the efficiency of AIVs
fleets. The challenge involves designing algorithms that can dynamically assign
tasks based on real-time conditions, such as vehicle availability, task priority, and
environmental factors. Ensuring that these algorithms are scalable and adaptable
to varying operational requirements without causing significant downtime is a key
concern [DVD20].

— Energy management: Energy management is a pivotal component in the opera-
tional success of AIVs, directly influencing their efficiency and autonomy. The chal-
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lenge is to optimize energy consumption through efficient algorithms and advanced
battery technologies while ensuring that AIVs can complete their tasks without
frequent interruptions for recharging or battery replacements [BM16]. Balancing
energy use with task demands remains a critical area of development.

Operational challenges

— Integration with existing systems: Integrating AIVs into existing industrial
systems and workflows can be complex [And+15; BKD18]. It requires harmonizing
AIV operations with legacy systems, adjusting production processes, and ensur-
ing compatibility with current infrastructure. Effective integration strategies and
adaptable system designs are necessary for successful deployment [PR17].

— Communication and coordination: AIVs need to communicate and coordinate
effectively, especially when operating in fleets. Ensuring reliable communication
between AIVs and with central systems is challenging, particularly in environments
with heterogeneous fleet of AIVs. The development of robust communication pro-
tocols and decentralized decision-making strategies is crucial for seamless operation
[Per+20].

— Scalability and flexibility: As industrial demands evolve, AIV systems must be
scalable and flexible to accommodate varying operational requirements [DVD20].
Adapting AIVs to different tasks or production lines without significant downtime
or reconfiguration presents a significant challenge. Modular and adaptable AIV
designs can help address this issue.

— Safety and reliability: Ensuring the safety and reliability of AIVs is critical to
prevent accidents and maintain operational continuity. This includes developing
fail-safe mechanisms, ensuring compliance with safety standards, and implementing
robust error detection and recovery systems. The cybersecurity of AIVs fleets has so
far been little studied. The closest context is automotive cybersecurity. In context,
the reference is ISO/SAE 21434:2021, which governs automotive cybersecurity
with the aim of pave the way for connected vehicles and mitigate the cybersecurity
risks posed to passenger vehicles. Advanced Driver Assistant System (ADAS) are
tending to join the sphere of autonomous vehicles, but this standard nevertheless
constitutes a relevant basis for establishing the cybersecurity of our AIV fleets. In
addition, the use of AI techniques to infer a cyber threat level is a new approach
that makes it possible to cover so-called 0-days attacks, i.e. attacks that have never
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been implemented in the past.

Human factors

— Acceptance and trust: The acceptance and trust of AIVs by human operators
and stakeholders are crucial for successful implementation. Resistance to change,
concerns about job displacement, and skepticism about the reliability of AIVs can
hinder their adoption.

— Training and skill development: Operators and maintenance personnel must
be adequately trained to interact with and manage AIV systems. This includes un-
derstanding their operation, troubleshooting issues, and performing routine main-
tenance.

— Cooperation with robots: Co-bots, or collaborative robots, are designed to
assist humans in tasks, improving productivity and reducing physical strain. How-
ever, challenges arise in ensuring smooth interaction, as it requires intuitive con-
trols, clear communication, and strong safety protocols to avoid accidents and
miscommunication.

Addressing these challenges requires a multidisciplinary approach, combining advances
in technology with thoughtful consideration of operational and human factors. By over-
coming these hurdles, the full potential of AIVs can be realized, leading to enhanced
efficiency, safety, and flexibility in industrial environments.

Outline and research questions

The integration of AIVs into modern industrial systems presents a range of challenges,
especially as we aim to enhance the autonomy of these vehicles within a fleet. Future
autonomous robotic systems will likely consist of diverse robots working collaboratively
to accomplish complex missions. The synergy between these heterogeneous robots and
the potential to combine their unique capabilities could significantly benefit a multitude
of diverse and extensive applications [RK22].

In this manuscript, we will not delve into human challenges related to AIVs or cy-
bersecurity concerns. We made the strong assumption that communication systems are
reliable and free from cyber threats. Instead, our primary focus is on the technical chal-
lenges involved in increasing AIV autonomy, particularly through the implementation of
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collective strategies within a fleet. The main objective of this thesis is to propose and
evaluate collective intelligence strategies that can significantly enhance the auton-
omy and efficiency of AIVs operating within industrial fleets. The following research
questions form the foundation of this thesis:

How can the navigation and localization capabilities of AIVs be enhanced in
complex, dynamic environments through cooperative perception and collec-
tive strategies?

This question explores how AIVs can be enabled to perceive and navigate their environ-
ments more accurately. We will investigate how sharing sensory information among AIVs
can improve situational awareness and navigation precision. Additionally, we will exam-
ine how local processing can be optimized to achieve better global performance through
collective strategies. The interaction with infrastructure and the shared local perception
among mobile robots within a fleet are critical for improving overall fleet autonomy under
strong cooperation hypotheses.

What strategies can optimize task allocation within a fleet of AIVs to en-
hance operational efficiency and reduce downtime?

This question addresses the challenge of dynamic task allocation. We will explore
how collective strategies can be leveraged to develop scalable algorithms that efficiently
distribute tasks based on real-time conditions and fleet availability, thereby enhancing
operational efficiency.

How can energy management be optimized across a fleet of AIVs to extend
operational autonomy and reduce interruptions due to recharging or battery
replacement?

This question focuses on the challenge of energy management. We will examine col-
lective energy management strategies that take into account both individual AIV energy
levels and the operational demands of the entire fleet, aiming to extend operational au-
tonomy and minimize disruptions.

How can the heterogeneity of industrial systems be managed more effec-
tively?

This question seeks to demonstrate how Intelligent Transport System (ITS) technolo-
gies can be adapted to industrial contexts, enabling localized processing and control to
improve overall performance from a global perspective.
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Indeed, once the scenarios and communication technology constraints in terms of per-
formance (e.g., delay, jitter, throughput, and availability) are identified, the selection of
suitable technology will depend not only on technical characteristics but also on antic-
ipated developments and industrial constraints. The ongoing debate and research into
the comparative advantages of the main candidate technologies for V2X communications
in road environments [Baz+19] highlight the importance of examining the evolution of
these technologies [NCP19] and their adaptation to the specific needs of industrial envi-
ronments. However, as mentioned below, we will not focus on the setup of communication
technologies.

What methodologies can be used to rigorously assess and refine collective
strategies aimed at increasing the autonomy of AIV fleets?

This question addresses the need for robust tools and methodologies to evaluate and
optimize collective strategies in AIV fleets. Developing the autonomy of AIVs requires
a relevant working method. Identifying reusable or adaptable algorithms to address the
various challenges of increasing autonomy is only part of the solution. It is also essential
to model, simulate, test, and experiment with the proposed solutions to ensure their ef-
fectiveness and practical viability. We will explore simulation environments and modeling
techniques, such as multi-agent systems, can be used to test and refine these strategies
under various conditions. Additionally, we will investigate the integration of centralized
and decentralized software engineering approaches to support the development and vali-
dation of these collective strategies. This inquiry is essential for systematically breaking
down the complex autonomy challenges faced by AIVs and ensuring that the proposed
solutions are effective in dynamic, real-world environments.

Moreover, our methodology involves decomposing the autonomy problem into manage-
able technical tasks, taking into account the inherent complexity of AIVs that navigate,
perceive, plan the different tasks, and manage energy in dynamic environments. Each of
these technical challenges will be addressed individually in the various chapters compris-
ing the contributions of this thesis. By systematically addressing these tasks and applying
collective strategies, we aim to enhance the overall performance and autonomy of AIV
fleets.
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Thesis organization

The research presented in this manuscript centers around four key technical functions
that enhance the autonomy of an AIV:

— Obstacle avoidance
— Task allocation
— Cooperative perception
— Energy management

Chapter 1: This chapter provides a comprehensive overview of the current state-of-
the-art in AMRs within the context of Industry 4.0. The chapter begins by introducing the
integration of AMRs in industrial settings and outlines the core functions they perform,
such as obstacle avoidance, task allocation, cooperative perception, and energy manage-
ment. It then explores various methodologies and tools used to simulate and enhance
these functions, emphasizing the importance of improving both individual and collective
autonomy. The chapter also reviews existing emulators and simulators, highlighting their
role in bridging the gap between simulations and real-world applications.

Chapter 2: This chapter delves into the development of collective obstacle avoid-
ance strategies for AIVs in complex industrial environments. It begins by introducing
a collective strategy for collision detection [ARCI22; ICAE23], followed by a proposed
solution for global obstacle avoidance using collaborative approaches among AIVs [AS-
PAI22]. The chapter is also linked to a method for estimating AIV positions within a
closed industrial setting detailed in appendix C, and concludes with the emulation of an
intersection scenario to test the proposed strategies, paving the way for future real-world
validations [ARAC24].

Chapter 3: This chapter focuses on the development of collective task allocation
strategies for AIVs within complex industrial settings. It begins by introducing a dy-
namic task allocation strategy that leverages V2X cooperation, highlighting the need for
effective communication and coordination to facilitate collective task allocation processes.
The chapter then applies these strategies to a practical warehouse scenario, simulating
the performance of AIV fleets under dynamic conditions to verify the effectiveness of the
proposed approaches. Finally, it addresses the challenges posed by faulty agents in the
infrastructure, proposing a beginning of solution to detect and mitigate their impact,
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thereby enhancing the robustness of collective task allocation strategies. This chapter is
related to the contribution published in the ICAE journal [ICAE24].

Chapter 4: This chapter explores cooperation perception strategies for AIVs,
emphasizing the importance of precise environmental perception through cooperative sys-
tems. It begins by discussing how integrating data from multiple sensors and V2X commu-
nications can enhance situational awareness and decision-making within AIV fleets. The
chapter then focuses on acquiring and utilizing road data from Cooperative-Intelligent
Transport Systems (C-ITS) to improve environmental understanding in dynamic indus-
trial settings. Finally, it presents an architecture for generating V2X messages within
the Carla simulator, aiming to enhance pedestrian safety and cooperative perception,
particularly at intersections [VTC24].

Chapter 5: This chapter delves into the development and implementation of col-
lective energy management strategies for AIVs, focusing on recharging processes to
enhance overall fleet performance. The chapter begins by introducing a fuzzy agent-based
simulation, and then presents a fuzzy decision model specifically designed for battery
recharging [AISYS24; ALGO24; ASPAI24]. By applying fuzzy logic, we aim to address
and manage the uncertainties associated with the recharging process. The fuzzy deci-
sion model is applied in a real-world scenario, simulating the autonomous management
of battery recharging within an airport environment, where simulation scenarios will be
based on a proposed charging/discharging model for an AIV battery. Firslty, we compare
fuzzy logic models with threshold-based approaches [ASPAI24]. Then, to create a more
realistic simulation framework, the AIV energy model is further refined and an optimal
control model is established to improve the energy consumption by each AIV during its
mission, is detailed in appendix D. This work is currently under review [ALGO24]. The
chapter concludes by integrating energy management with task allocation, illustrating
the interdependence of these two aspects to ensure continuous operations and minimize
downtime [AISYS24].

Conclusion: This thesis is the logbook of a journey through the complex field of
collective intelligence strategies for AIVs, with a focus on improving core functionalities
to enhance both individual AIV autonomy and the overall performance of AIV fleets.
Throughout this work, we explored numerous challenges and untapped opportunities,
aiming to make AIVs more capable of operating independently while also ensuring that
fleets can work together more efficiently and safely. It became clear that current methods
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have limitations, particularly in fully harnessing collective intelligence to optimize these
critical functions. This final chapter summarizes the key steps of this manuscript, high-
lighting how they open new perspectives for future exploration aimed at the ultimate goal
we have pursued over the past three years: developing strategies that not only enhance
the autonomy of individual AIVs but also enable them to operate as a cohesive, intelligent
fleet within industrial environments.

33





Chapter 1

STATE-OF-THE-ART

1.1 Introduction

As presented in the introduction of the manuscript, improving the autonomy of a
fleet of mobile robots in Industry 4.0 endures many challenges. This chapter provides
an overview and discussion of the current state-of-the-art in AIVs within the context of
Industry 4.0. It will explore the various methodologies and tools employed for simulating
and experimenting with algorithms to improve the different functions performed by an
AIV.

We identified that the implementation and deployment of fleets of AIVs in companies
remains problematic at various levels: the acceptability of the employees, the location of
the vehicles, the fluidity of traffic, the perception by the vehicles of changing and therefore
dynamic environments, etc. The AIV autonomy is therefore reduced to predetermined
trajectories. These autonomy limitations motivated us to seek solutions to facilitate the
cooperation of AIVs fleet, aiming to improve their collective intelligence, which in turn
improves AIV’s individual autonomy as well. This hypothesis is extensively developed
and explained throughout this thesis. This chapter is organized as follows:

First, we introduce the integration of AIV in Industry 4.0, and we present the main
functions performed by AIV in section 1.2. We then narrow the focus by describing
several works exploring the improvement of each function: obstacle avoidance, task allo-
cation, cooperative perception and energy management.

Afterwards, in section 1.3, we delve into the state-of-the-art of collective mobile
robot autonomy. On the one hand, we present mobile robot cooperation and explain the
concept of collective intelligence in the literature for mobile robots. On the other hand,
we share our vision of collective autonomy for AIVs.

In section 1.4, we present some general methodologies and tools used to simulate
and experiment in the field of robotics. We will provide beforehand background concepts
related to simulation in this field, such as agent-based and fuzzy logic simulations, in
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order to provide a robust understanding of the underlying principles. Finally, we will
review and discuss the potentials and limitations of the existing emulators and simulators.
These tools aim to closely replicate real-world conditions, which make the transition to
real experiments easier. Emphasis is placed on areas including network communication,
traffic simulation, hybrid simulators, and the utilization of realistic simulators for training
Autonomous Vehicles (AVs).

1.2 Autonomous industrial vehicles

1.2.1 Integration of AIVs in Industry 4.0

"Industry 4.0 can be defined as a digital transformation making au-
tonomous decentralized decisions in all cyber physical systems where each
element works in interaction." [BKD19]

Industry 4.0 is the "fourth Industrial Revolution (IR)" builds upon the advancements
of previous eras:

— 1st IR: steam-powered mechanization
— 2nd IR: mass production and electricity
— 3rd IR: electronics and Information Communication Technologies (ICT)
The 4th IR emerged in 2011 in Germany [KHW13]. Industry 4.0 leads to a strong

digitalisation of industrial processes [Lu17; Xu+21b]. Boston Consulting Group (BCG)
proposed a description of the future vision of Industry 4.0 with nine pillars of technological
advancements shown in Figure 1.1 [Rüß+15].

The notion of the factory becoming smarter through Industry 4.0 is characterized
by continuous communication between the various tools and workstations integrated into
production, storage and supply chains. The concept of Industry 4.0 has also been extended
to other types of structures and sectors [TBS18], such as Supply Chain 4.0 [PGS19] or
Airport 4.0 [TM21; ZP18].

In these contexts, the challenges revolve around enhancing the development and op-
timisation of data, product and material flow within production companies. Optimizing
data and product flows involves several key aspects. Firstly, it includes integrating data
from various sources to provide a comprehensive operational perspective. Secondly, it
requires ensuring efficient communication of this data across different stages of the pro-
duction process and among diverse systems and machines involved. Finally, optimizing
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Figure 1.1 – Nine pillars defined for Industry 4.0 inspired by [Rüß+15]

product flows entails minimizing waste, reducing lead times, and maximizing throughput
to enhance overall productivity and efficiency.

Achieving these objectives requires a significant increase in communication and coop-
eration among the component machines. Certain technological building blocks have been
defined [PR17], notably for the use of autonomous systems [BKD18] and AGVs [And+15]
or other autonomous and/or intelligent mobile robots. The first driverless vehicle was
conceived in 1954 by Barett Electronics Corporation, Illinois, a manufacturing company
in the United States [Hyl11]. It was renamed AGV in the 1980s [CCW19].

They are multiplying in factories, often in the form of fleets of vehicles, and their
intelligence and autonomy are increasing. We will refer to these mobile robots designed
to operate autonomously within industrial settings as Autonomous Industrial Vehicles
(AIVs) throughout this manuscript.

[TBS18] defined the different key factors for integrating AIVs into a supply chain
operations framework:

— Physical characteristics: allocation of space, arrangement of equipment and
products, paths, aisles, width/height, floor type, lighting conditions.

— Environmental conditions: preservation conditions of materials and equipment,
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health, safety and ergonomics for workers.
— Operational characteristics: demand, flow of people/equipment/materials, AIV

characteristics, bin/pallet size/weight, scheduling, planning.
— Equipment’s Hardware requirements: type, material handling, coordination,

communication, interoperability, compatibility.
— Software requirements of the equipment: interface type, coordination, com-

munication, interoperability, compatibility.

In research on Intelligent Transport System (ITS), mainly in the context of smart
cities [CAF17], the autonomy of autonomous vehicles has been well characterized with
six autonomous driving levels distinguished by the Society of Automotive Engineers (SAE)
[Wis22]. However, this is not the case for AIVs, and too little research exists in this area
[EBW16]. In concrete terms, these levels mean:

1. No driving automation: Feet-on/Hands-on/Eyes-on/Brain-on.

2. Driver assistance: Feet-OFF/Hands-on/Eyes-on/Brain-on.

3. Partial driving assistance: Feet-OFF/Hands-OFF/Eyes-on/Brain-on.

4. Conditional driving automation: Feet-OFF/Hands-OFF/Eyes-OFF/Brain-
on.

5. High driving automation: Feet-OFF/Hands-OFF/Eyes-OFF/Brain-OFF when
the vehicle is within a specific area.

6. Full driving automation: Feet-OFF/Hands-OFF/Eyes-OFF/Brain-OFF and
the vehicle can go anywhere.

The establishment and deployment of AIV fleets in an industrial context raises several
challenges: the location of vehicles, the fluidity of traffic, the collision detection, the
perception of disturbances in the environment (dynamics), the vehicle heterogeneity, the
acceptability by employees and even their cooperation.

Currently, to achieve their tasks, AIVs, have navigation autonomy linked to rails,
physical or virtual beacons. They are limited to predetermined trajectories and rely
on the visibility or knowledge of each AIV position to avoid collisions. Their decision-
making capacities are often limited to following these predetermined trajectories and
stopping in the event of obstacles. Upon incidents, such as obstacles or breakdowns,
route modifications are managed by the central system or a supervisor, who issues new
mission orders to the vehicles.
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The autonomy of AIVs is often limited to local visibility of their environment, as well
as visibility and knowledge of other AIVs operating in the same environment. The ability
of AIVs in the same fleet to exchange information between themselves, with the active
elements of the infrastructure that they encounter on their route, or with the human beings
who operate in their environment (faculty commonly referred to as V2X communications)
[Per+20], should improve this autonomy in terms of:

— adapting to traffic constraints, particularly when the environment of a AIV changes
over time (in the dynamic environments of baggage storage or routing areas, for
example); ability to adapt, taking full advantage of the development of AI and IoT
technologies [Mİ21] to perceive environments;

— decision-making, even when the information available to an AIV is incomplete,
uncertain or available but fragmented [Mİ21];

— and reducing (or simply controlling) the energy impact, whatever the traffic con-
straints [BM16].

To increase the autonomy of an AIV, and even more the autonomy of a fleet of AIVs
in a decentralized approach [DVS20], one way is to develop a collective intelligence to
make the behaviours of vehicles adaptative. In this thesis, we aim to demonstrate that
the decision-making autonomy of these vehicles, defined collectively, can help enhance the
robustness and adaptability to changing traffic conditions. Thereby improving efficiency
and safety in industrial environments.

The context of Factory 4.0 is increasingly leading to decentralized solutions, as cen-
tralization is showing its limits. Many authors have discussed the centralization or decen-
tralization of AIV intelligence for the control of their activity, which is essential for their
autonomy [Dra+16].

However, driven by future requirements such as flexibility, robustness and scalabil-
ity, the current trend in AIV systems is towards decentralization. Decentralization, in
this context, involves distributing the total intelligence of the system across its compo-
nents: each device is allocated a portion of the total intelligence so that it can operate
independently, striving to achieve the same overall objectives [DVD20]. By distributing
intelligence across multiple machines, systems become more adaptable and resilient. They
can respond more effectively to dynamic environments and unforeseen challenges without
requiring constant oversight from a central authority or controller.

To optimize the management of AIVs in a factory or airport, and even more so to
increase the autonomy of a fleet of AIVs in a decentralized approach [DVD20], one way is
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to develop a kind of collective intelligence to make vehicle behaviour adaptive. However,
before proposing collective optimisation of AIVs, it depends on the actual level of auton-
omy of the AIVs. Indeed, the initial step towards cooperation is therefore to increase the
individual level of autonomy of each AIV.

1.2.2 Main functions performed by an AIV

What is the capabilities of an autonomous robot?

"A robot that is completely autonomous is able to observe its surround-
ings, make judgments based on what it sees and/or has been trained to
recognize, and then carry out an action or manipulation in that environ-
ment." [LA23]

An AIV possesses the capability to autonomously navigate its surroundings if it can
manage and control a set of fundamental tasks. These tasks, extensively discussed in
existing literature, encompass perception, localization, mapping, task allocation, path
planning, motion planning, and vehicle management [AA21; Per+20; RK22].

To achieve the autonomy of a mobile robot, [SNS11] subdivided it into four main
sub-tasks:

— Perception: involves sensing and understanding the environment.
— Localization: determines the robot’s position in the environment.
— Path planning: enables the robot to select a collision-free route to its destination.
— Motion control: governs its movements along this path.

Further elaboration on the functional schema of autonomous navigation was provided
by [And+15], outlining requirements for systems comprising a fleet of AGVs in the Safe
AUtonomous NAvigation project 1 (SAUNA). This schema includes navigation, task allo-
cation, path planning, motion planning, and vehicle management.

We summarise the AIV control functional diagram in Figure 1.2, inspired by the
SAUNA functional schema. Expanding on AGV system control modes, [DVD20] defined
the total AGV-system control in centralized mode, decentralized mode, or hybrid mode,
emphasizing components such as:

— Navigation
— Task allocation

1. SAUNA project: aass.oru.se/Research/mro/sauna
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— Path planning
— Motion planning
— Vehicle management

Figure 1.2 – AIV control functional diagram inspired by the SAUNA functional schema [And+15]

For autonomous navigation in dynamic environments, an AIV must simultaneously
plan, locate, and map its surroundings [HIA22]. This involves four main components:
controllers (microprocessors), actuators (motors), sensors (for obstacle avoidance, estima-
tion, position, etc.), and power systems (components supplying energy to the robots, such
as batteries) [RK22]. In current literature, perception and localization are included in the
navigation process. Moreover, considerable research attention is increasingly directed to-
wards task allocation and vehicle management, reflecting their growing significance in
deploying larger fleets.

In the following subsections of this state-of-the-art on AIVs, we will delve into the
latest advancements in obstacle avoidance during navigation, task allocation, perception,
and energy management within the realm of autonomous navigation systems. Through
these comprehensive analyses, we aim to provide insights into the current state of the art
and outline future directions for advancing collective autonomy for AIV.
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1.2.3 Obstacle avoidance

Relationship between obstacle avoidance and navigation

"The aim of navigation is to search an optimal or suboptimal path from
the start point to the goal point with obstacle avoidance competence."
[Pan17]

Among the problems to be solved to make AIVs more autonomous, we can particularly
identify the following:

1. Avoidance of Collisions: that prevents collisions between vehicles or with
static/dynamic obstacles [HDA17; Nas+19];

2. Path Planning or Path Finding: that addresses obstacles obstructing prede-
fined paths or hindering AIV passage [KHJ18; Kun+06; MK16].

Currently, avoidance strategies are often implemented on a per-robot basis [Kun+06],
without a coordinated collective approach. However, the problem of avoidance is an
individual problem that can be solved with a broader collective approach. By adopting a
collective strategy, we can enhance the efficiency and effectiveness of obstacle avoidance.
Addressing avoidance entails a multi-phase process encompassing:

— obstacle perception/detection,
— rerouting or trajectory planning (avoidance),
— and the overall strategy decisions.
In this manuscript, we will focus on specific aspects of obstacle avoidance while making

certain strong assumptions:

1. Obstacle perception/detection: For the purpose of this discussion, we assume that
the robot is already equipped with effective sensors and algorithms for detecting
obstacles.

2. Rerouting/trajectory planning: We will not focus on specific rerouting algorithms,
but we will use one of them in our experiments.

3. Overall strategy decisions: We will explore the broader strategic decisions that
influence how obstacles are avoided, including:
— Integration of multi-robot communication and coordination.
— Adaptation to both static and dynamic obstacles.
— Real-time decision-making processes and algorithms.
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Efficient obstacle avoidance is paramount for enhancing the autonomy and safety of
AIVs. To address this, a comprehensive approach is essential, encompassing key com-
ponents such as localization, collision avoidance, path planning, and motion planning
strategies. Here, we delve into each aspect, discussing their significance and the method-
ologies employed to tackle obstacles effectively. This includes considering both static and
dynamic obstacles. Indeed, the solutions for obstacle avoidance depend on the nature of
the obstacle, whether it is static or dynamic.

By addressing these aspects, we aim to show that moving towards a more collective and
coordinated approach can significantly enhance obstacle avoidance capabilities, leading to
improved autonomy and safety for AIVs.

Mapping and localization

SPLAM: Simultaneous Planning, Localization and Mapping

"A mobile robot should perform localization, mapping, and planning con-
secutively to operate successfully in the environment. If any of these three
activities is absent, then a robot cannot walk autonomously in real-life de-
ployment scenarios." [RK22]

Mapping is essential for path planning and obstacle avoidance. It involves creating a
detailed map of the environment, which allows the robot to detect and respond to changes
during navigation. This map can be pre-existing or generated in real-time [RK22].

Vehicles must therefore be given other means to locate themselves. Moreover, ac-
curate localization is fundamental for AIVs to perceive and navigate their surroundings
effectively. Localization consists of obtaining the exact location of the AIV on a map
[Bar+03; CG15]. A position estimation provides an approximation of a vehicle’s location
to its environment; whether the environment is outdoor or indoor [Sal+99]. The literature
on estimation theory is vast, encompassing a wide variety of techniques and ideas.

Naturally, the most common techniques receive frequent attention. These general
techniques can be applied to a variety of problems, an example being parametric estima-
tion methods such as weighted least squares estimators, maximum-likelihood estimators
and minimum mean-square error estimators [Cox89].

Localization methods include:
— Incremental or relative localization [Ayn+17]: makes it possible to determine

the position and orientation of a vehicle by taking into account its successive move-
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ments from a known starting point.
— Absolute localization [Bar+03]: determines the vehicle’s position or robot in its

external or internal environment using exteroceptive sensors. Absolute localization
by definition avoids the drift over time that characterizes relative localization; the
main disadvantage of this strategy is the loss of visibility of the landmarks in the
environment that a vehicle uses to determine its position.

Therefore, two strategies are used for localization that rely on either natural or artificial
landmarks (e.g., Global Positioning System (GPS) or beacons), respectively. Several
types of techniques have been proposed in the literature: GPS, laser, natural (using
Light Detection And Ranging (LiDAR)), sensor fusion, and vision-guided localization
[Cam+20]. This localization can involve a physical path or a virtual path.

Two advanced localization techniques that integrate various sensors and algorithms
are:

— Map matching: This technique aligns the vehicle’s estimated position with a
known map, improving accuracy by correlating sensor data with mapped features.
It helps refine the vehicle’s location estimate by matching its sensor readings with
the known positions of landmarks on a pre-existing map.

— Simultaneous Localization And Mapping (SLAM) [TX21]: This technique
involves creating a map of an unknown environment while simultaneously keeping
track of the vehicle’s location within that map. Accurate localization is needed to
build the map, and an accurate map is essential for precise localization.

These advanced techniques enhance the reliability and precision of localization by
leveraging multiple data sources and sophisticated algorithms to mitigate the limitations
of individual sensors.

Motion planning

Motion planning specifically addresses the vehicle’s dynamics, ensuring that the ve-
hicle can navigate safely and efficiently while accounting for its physical and kinematic
constraints. This process involves establishing/modifying the planned trajectory in real-
time as a function of static or dynamic obstacles [Car+17]. The subtasks associated with
this task are presented below:

— Centralised or decentralized collision avoidance: Techniques that focus on pre-
venting collisions by either coordinating vehicle movements through a centralized
system or allowing each vehicle to make independent decisions in a decentralized
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manner, as explained in the subsection below 1.2.3.
— Deadlock avoidance: Strategies to prevent vehicles from becoming stuck due to

conflicting movements. This requires understanding the vehicle’s dynamic capa-
bilities to ensure it can maneuver out of potential deadlock situations. A typical
example of a deadlock situation is when vehicles attempt to cross an intersection
simultaneously.

— Zone control: When the environment is divided into zones, each zone may have spe-
cific rules or controls that take into account the vehicle’s dynamic properties. Zone
control ensures that vehicles transition smoothly between different areas without
causing congestion or collisions.

Different approaches have also been proposed to solve this problem: fuzzy logic, neural
networks, and genetic algorithms, including hybrid approaches that are often more robust
and give the best results [Pan17].

Obstacle perception and detection

An obstacle detection system

"A sophisticated obstacle detection system will detect any static and mov-
ing (dynamic) object in any driving environment and alarm for any po-
tential risk of accidents and collisions." [YM20]

[YM20] conducted a review of recent technological advancements in obstacle detection.
The study discusses various sensors:

— RAdio Detection And Ranging (RADAR): Effective for medium to long-range map-
ping, making it suitable for exploration, but it lacks the fine resolution needed for
precise object identification.

— LiDAR: Offers high-resolution mapping capabilities for both short and long ranges,
with varying degrees of coverage, including some systems that provide 360-degree
views. Distance detection is one of the major functions of LiDAR. However, its
performance is limited in challenging environments and with targets that have low
reflectivity.

— Ultrasound: Cost-effective and performs well in short-range measurements.
— Camera (vision sensors): Capable of providing comprehensive environmental im-

agery across a wide range of conditions. It has a better performance in object
detection and is only able to measure distance in a stereo version [Zie+16].
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The exteroceptive sensors mentioned above are able to predict possible dangers.
[Zie+16] conducted a survey of the capabilities of contemporary exteroceptive sensors
and based on them Advanced Driver Assistant System (ADAS) system (discussed in
subsection 1.2.5).

Combining various sensors with different operating principles, such as RADAR, in-
frared, and cameras, is a viable solution for obstacle perception and detection. Advances
in hardware technology have led to performance improvements and cost reductions in
LiDAR and depth cameras, enabling more accurate positioning and movement in robots
[Che+21]. Additionally, multi-function LiDAR sensors, which integrate infrared and cam-
era capabilities, offer similar applications to traditional LiDAR and camera sensors but
with a reduced range [Zie+16].

However, sensors used in object detection and position estimation, such as RADAR,
LiDAR and cameras [Yeo+21] are not perfect sensors [Mar+19]. In particular, they
may be limited by their intrinsic properties, for example, camera object detection will
be limited by the quality of the image as well as the distance between the sensor and
the object [Hao+23]. Also, the process of calibration between the sensor intrinsic frame
and the real-world map can induce some unprecise results independent of the sensors
themselves [Jia+]. In addition, sensors are subject to failures [Saf+21] and cyberattacks
[Wan+22] that could greatly impact the quality of the information they provide.

In this manuscript, we will characterise the different types of obstacles detected by
AIVs:

— an obstacle that only slows down the AIV but which can be avoided without
changing path, of varying size, defined as size s1 or s2.

— an obstacle which cannot be avoided by the AIV, and which forces the AIV to
reroute. In other words, the AIV must turn around and find another path, of
greater or lesser size, defined as s3 or s4.

Collision avoidance

Collision avoidance for AIVs requires a comprehensive approach to ensure safety and
efficiency in dynamic environments. In this thesis, the term "collision avoidance" is used
to describe a systematic process that includes detecting potential obstacles and rerouting
trajectories if necessary to avoid collisions. Additionally, it consists also of relaying infor-
mation through communication as well. By integrating these steps, AIVs can navigate in
complex industrial environments while minimising the risk of accidents.

46



1.2. Autonomous industrial vehicles

In the following, we will deal with avoidance through the choice of the route, the path
but not the trajectory. These challenges manifest when vehicles confront scenarios like
simultaneous intersection crossings, known as deadlock situations, or encounter obstacles
obstructing their paths.

To address collision avoidance challenges, strategies are typically classified into central-
ized and decentralized approaches [Rai+22]. In a centralized collision avoidance frame-
work, a central controller aggregates and processes data from all vehicles, coordinating
their movements to prevent collisions. This method offers the advantage of optimizing
traffic flow and decision-making efficiency but depends heavily on a robust communica-
tion infrastructure and the central controller’s capacity to handle extensive real-time data.
Centralized approaches are effective for managing small groups of robots; however, they
become less practical for larger groups due to increased computational requirements.

In contrast, the decentralized approach is more effective, as it is less expensive com-
putationally [Rai+22]. Indeed, decentralized collision avoidance enables each vehicle to
independently make decisions based on locally available data and to communicate with
neighbouring vehicles regarding their positions, speeds, and intended trajectories. This
approach enhances scalability and reduces reliance on a single point of failure, but it neces-
sitates the implementation of sophisticated algorithms to facilitate effective information
exchange and coordination among vehicles without the need for a central authority.

Therefore, obstacle avoidance can be solved by enhanced cooperation [BKH16;
Haf+13], i.e., the ability of AIVs to exchange relevant information with each other on
their traffic conditions.

The collision avoidance algorithm proposed by [BKH16] makes it possible to deal with
the priority of different vehicles when approaching an intersection. The solution requires
the vehicle to know its own position and to be able to communicate with the other
vehicles. It allows AIVs to communicate and cooperate using different types of messages.
The communication between AIVs is done with 3 different types of messages:

— Hello_msg: message to indicate its presence with its position.
— Coop_msg: message before an intersection area to determine priority.
— Ack_msg: message to confirm receipt of a Coop_msg.
However, this algorithm does not deal with the problems of detection, communication

and avoidance of fixed or moving obstacles (e.g. human operators). Indeed, if there is
an obstacle or a problem in the environment, therefore the initial path is not possible to
be done. Thus, we will propose an extension to the Bahnes’ algorithm in chapter 2 -
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section 2.2 [ARCI22; ICAE23], to effectively manage this communication following the
detection of these different types of obstacles.

Moreover, solutions are needed to allow missions to be completed, and not be compro-
mised because the main route defined by an AIV is obstructed. For that, path planning or
path-finding algorithms [Kar+21; MK16] make it possible to re-plan its route, depending
on whether the target of the mission has been reached or not.

Path planning

Indeed, Path planning consists of generating an obstacle-free path from point A, called
the source, to point B, called the goal [KHJ18]. It involves [Pan17]:

— Global path planning: establishes routes from source to goal points.
— Local path planning: resolves displacements or trajectories following the pres-

ence of obstacles on the path.
Various types of algorithms and classical or heuristic-based methods have been pro-

posed to solve the path planning problem: Dijkstra, A* and D* algorithms, Rapidly-
exploring Random Trees (RRT), genetic algorithms, swarm algorithms (schools of fish,
flocks of birds and colonies of ants), among others [HIA22]. The analysis of these different
approaches and their comparisons are well documented in the literature and enable them
to be classified according to their ability to respond to static or dynamic constraints in
the environment [Kar+21].

1.2.4 Task allocation

Task Allocation (TA) consists of optimally assigning a set of tasks to be performed
by agents, actors, robots or processes, grouped and organized within a cohesive system
[GM04]. This is the case for mobile multi-robot systems [JM13; KHE15] or the AIV
fleets addressed in this article [Kar+21]. Another pertinent example is the application in
airports as presented by [ESI17].

The core objective of TA is to optimize resource utilization and overall system per-
formance. In this sub-section, we will introduce a taxonomy of mobile robots TA, and
explore various objectives associated with TA. Finally, we will review the state of the art
in task planning for multiple robots, and decentralized task solutions.
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Taxonomy

In the field of mobile robotics, the taxonomy presented in [DVD20] has been defined
to better characterise this allocation and assignment functions:

— Single Task for a Single Robot (STSR)
— Multiple Tasks for a Single Robot (MTSR)
— Multiple Tasks for Multiple Robots (MTMR)
These classifications enable tasks to be assigned to one or multiple robots, with various

tasks being allocated to heterogeneous or multitasking robots.
Moreover, [DVD20] defined also: allocation modalities such as:
— instantaneous assignment: In this approach, tasks are treated as independent,

with no need for future planning since decisions are made based on the currently
available information.

— time-extended assignment: This method considers interdependent tasks, al-
lowing for the planning of future assignments while accounting for constraints such
as synchronization, precedence, or time windows.

Numerous surveys, such as [KHE15], have exhaustively detailed the many combina-
tions of these modalities in the context of Multi-Robot Task Allocation (MRTA).

Additionally, another critical dimension in classifying TA problems and assessing their
solvability is the nature of interdependencies between tasks. This study [KSD13] identified
the different levels of interdependencies:

— No interDependencies (ND): Task execution values are independent of other
tasks.

— Intra-robot interDependencies (ID): Task execution values depend on the
order in which they are executed by the assigned robot.

— Inter-robot Dependencies (XD): Task execution values depend on the order
in which tasks are executed by the multi-robot system.

— Complex interDependencies (CD): Task execution values depend on their
decomposition into sub-tasks.

We summarise this taxonomy to provide a comprehensive overview of the TA problem
in Table 1.1.
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Type of tasks Type of robots Type of allocation Degree of interdependence

Single Task (ST) Single Robot (SR) instantaneous None
Intra-Robot

Multiple Tasks (MT) Multiple Robots (MR) extendeous Inter-Robot
Complex

Table 1.1 – Taxonomy summary of TA problems in multi-robot systems

Solution models and objectives

Different solution models have been proposed for TA:
— solutions based on optimisation: exact algorithms, dynamic programming,

heuristics and meta-heuristics [KHE15];
— solutions based on the contract net protocol: particularly in the field of multi-

agent systems (an initiating agent sends a call for proposals to the entire community
of agents, chooses the best proposal received, then informs all the agent’s choice)
[Woo02];

— solutions based on the concept of the market: announcement by an auctioneer,
submission by bidders, selection by the auctioneer and award by the auctioneer
[Dia+06].

Different types of optimisation objectives can be defined for this TA [DVD20]:
— Cost objectives: cost required for a robot to perform a task; this can be a travel

cost such as time, distance or energy consumption.
— Behaviour objectives: the ability of a robot to perform a task.
— Reward objectives: payoff for performing a task.
— Priority objectives: urgency to perform a task.
— Utility objectives: subtracting the cost from the reward or fitness.

Multi-robot task planning

TA in multi-robot systems is complex and the tasks themselves may have many time,
precedence or resource constraints [GM04].

It is then necessary to determine the objectives to be optimized, in particular among
the travel cost (time, distance, fuel or battery consumption), the fitness (quality of task
performing), the reward (gain of task completing), the priority (urgency of task complet-
ing), and the utility (balance between cost and fitness-reward) [DVD20].

In a global way, multi-robot task planning includes two processes:
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1. the Multi-Robot Task Decomposition (MRTD): refers to how a team mission
can be decomposed into several subtasks which can be completed by the robots;

2. the MRTA: involves deciding how each subtask can be assigned to one robot
[YJC13].

Thus, two major objective functions are defined for analysing a solution to the MRTA
problem [Ste+19]:

— the makespan: the total time required to complete all assigned tasks, measured
from the start time to the completion time of the last task. Mathematically, if we
denote the completion time of all assigned tasks for the robot i as completionT imei,
then the makespan robotTasksCompletionT ime can be expressed as in Equation
(1.1). In this equation, n is the number of robots. This objective function is
crucial in scenarios because minimizing the total operation time can significantly
enhance efficiency.

— the sum of costs: the total time expended by all robots to reach their respective
tasks. If completionT imei represents the time taken by robot i to complete its
assigned tasks, then the sum of costs totalCompletionT ime is given by Equation
(1.2). In this equation, n is the number of robots. This objective function is
crucial for minimizing individual robot time or energy use, such as in reducing
overall energy consumption or balancing workload among robots.

robotTasksCompletionT ime = max
i∈{1,2,...,n}

completionT imei (1.1)

totalCompletionT ime =
n∑

i=1
completionT imei (1.2)

Decentralized TA solutions

TA and planning are often managed centrally, even semi-centrally when global and
local planning are differentiated [Car+17]. For the proper functioning of autonomous
and dynamic systems, the requirements of flexibility, robustness and scalability, lead to
consider decentralized mechanisms to react to unexpected situations.

Autonomy and decentralization are closely related concepts to the extent that an au-
tonomous system operates and makes decisions independently [FAS20; TH19]. Addition-
ally, a system is considered decentralized if the decision-making process is not controlled
by a central authority.
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The problem of TA [JM13; KHE15], tasks which grouped can constitute missions,
must therefore be thought of in a decentralized way [DVS20].

For reasons of flexibility, robustness and scalability necessary in an Industry 4.0 or
Airport 4.0 context, we are interested in decentralized TA solutions. These solutions,
decomposed in this section below, must be able to assign tasks to a fleet of robots.

Particularly, solutions based on the market concept can easily be applied in a dis-
tributed context, where each mobile robot can become an auctioneer [Dao+21]. For each
situation, a single mobile robot is appointed auctioneer [HK13]. He retains this role until
the situation is definitively managed.

1.2.5 Cooperative perception

The advancements and solutions proposed in the road field for cooperative perception
can be of great interest in the industrial sector. This section provides an overview of some
of the work in this domain to highlight existing solutions.

As discussed, we saw in subsection 1.2.2, that perception and localization are in-
cluded in the navigation process. The autonomous navigation process is a high-frequency
recursive process. Perception involves the vehicle’s ability to sense and comprehend its
surroundings through various sensors, including cameras, LiDAR, RADAR, and ultrasonic
sensors.

SLAM, as mentioned in subsection 1.2.3, plays a critical role in this context by
enabling the vehicle to construct a map of an unknown environment while simultaneously
keeping track of its location within that environment. This is achieved through the
integration of sensor data to update the map and refine the vehicle’s position, which
is essential for accurate navigation and obstacle avoidance.

Currently, both AVs (in the road domain) and AIVs, face limitations in perception
due to sensor costs and capabilities. For example, in the road context, [Van+18] recalled
that most commercial vehicles offer only basic autonomy levels (1-2), requiring constant
human supervision. Features like emergency braking and lane-keeping are common but
full autonomy (Level 3) is limited to select models like Tesla’s Model S and Model X.

Moreover, every year, numerous car accidents occur globally, with 20% involving pedes-
trians. Ensuring road safety for everyone has become a crucial concern in the automotive
industry. The European Union (EU) aims to achieve ”Vision Zero”, moving towards zero
fatalities in road transport by 2050 [EU20].

Road vehicles must navigate through dense and diverse traffic, including Vulnerable
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Road Users (VRUs), and their visibility is often constrained. Indeed, in certain situations,
direct observation between vehicles and pedestrians may be impossible. This limitation
can stem from factors such as the perception field, influenced by sensor type and pre-
vailing weather conditions. Additionally, the increased distance to obstacles may reduce
perception accuracy, and blind spots created by structures like vehicles or buildings can
further impede the comprehensiveness of their perception.

Cooperative perception empowers Connected and Automated Vehicles (CAVs) to
achieve a comprehensive understanding of their surroundings, effectively eliminating blind
spots in mixed traffic scenarios. Through collaborative activation with infrastructure, ve-
hicles can gain the capacity to "detect" pedestrians. Consequently, vehicles can decelerate
or stop promptly, especially if the pedestrian is crossing without paying attention to the
road. The activation of cooperative perception stands as a valuable tool for reducing the
occurrence of accidents.

This collaboration is particularly essential for the optimal performance of AV. By
analogy, in a closed industrial context, each AIV has its embedded system that can allow
it to communicate with other AIVs via the deployed network, or with the infrastructure
where communication beacons can be fixed. They have also to watch out for collisions
with pedestrians in warehouses, and navigate in changing environments. Future scenarios
might involve AIVs going from one warehouse to another, as in an industrial zone, and
therefore sharing roads with CAV.

In the research domain of CAV, the implementation of Cooperative-Intelligent Trans-
port Systems (C-ITS) has become a central focus. Communication is the key of coop-
erative perception, and forms the backbone of collective intelligence, fostering its devel-
opment and conception. In the Industry 4.0 context, cooperation between AIVs through
communication can also contribute to having a greater autonomy of the fleet of AIV and
therefore of each of its entities [Mİ21].

V2X communication, illustrated in Figure 1.3, enables autonomous vehicles and
infrastructure to exchange information about their surroundings.

C-ITS

As explained above, C-ITS plays a vital role in enhanced road safety (Figure 1.3).
The Figure 1.4 inspired by [Van+18] summarises where V2X communications can inter-
fere in the various functions of an autonomous vehicle, whether for the road or industrial
use.
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Figure 1.3 – Illustration of V2X communications

Figure 1.4 – Navigation process inspired by [Van+18]
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Therefore, we are interested in the different types of messages standardized by Euro-
pean Telecommunications Standards Institute (ETSI) that allow communication between
the different actors. [SCO16] and [C-R16] are European projects that aim to deploy C-
ITS technologies in France. These V2X communications include different types of actors,
shown in the Figure 1.3.

In Cooperative Intelligent Transport Systems (C-ITS), the different actors are:
— the ITS stations in the vehicles: On Board Unit (OBU)
— the fixed ITS stations deployed on the roads: Road Side Unit (RSU)
The ETSI provides standards for implementing the different messages and services

of C-ITS. Inside CAVs and RSUs, there is a physical node where the RSUs system and
services are installed. Some services need to be available as soon as deployed because they
are defined as the Day 1 services in [C-R16]. Indeed, [CAR] explain that Day 1 services
concentrate on information exchange to enhance predictive driving. Day 2 services ele-
vate service quality through sharing perception and awareness data. From Day 3 onwards,
services become more sophisticated, incorporating the sharing of intentions, support for
negotiation, and cooperation, ultimately moving towards cooperative, accident-free auto-
mated driving.

Day 1 described four awareness messages including the Cooperative Awareness Mes-
sage (CAM) (ETSI EN 302 637-2 standard [ITS14a]) and the Decentralized Environmental
Notification Message (DENM) (ETSI EN 302 637-3 standard [ITS14b]). CAM contains
information about the localization of the vehicle. Every C-ITS station will broadcast
this message regularly, and then the location of all connected vehicles on the road will
be known. On the contrary DENM are alert messages, issued at the time of an unex-
pected event in order to cooperate, notify and consequently disseminate information in
the relevant geographical area.

The Road Works Warning (RWW) service broadcast information using DENM about
the road works. This service is mainly focused on providing information and safety in
road work areas because it warns the driver as it approaches.

In mixed traffic, CAVs need to be aware of vehicles even if they are not equipped
with V2X facilities, as well as VRUs while they are making decisions. A first approach
proposed in [Tsu+19] uses proxy CAM to enhance cooperative awareness in mixed traffic
relying on RSUs. They are responsible for analysing the scene and for sending CAM on
behalf of the non-cooperative entities (vehicle or VRUs).

To ensure greater cooperation between connected vehicles, the Day 2 applications
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include solutions that use their sensors to scan the environment and share information.
Day 2 applications [Lei+15] rely particularly on the Cooperative Perception Message
(CPM) (ETSI standard TR 103 562 [ITS19]) to improve perception accuracy through
cooperation between perceptive entities. It allows us to know the place of each non-
connected object (e.g. VRUs), thanks to the sensors on CAV or infrastructure (e.g.
cameras, LiDAR) [VTC24]. This exchange of information about the environment will
enable CAV to see things that they cannot see directly.

Another way to cooperate is to inform other vehicles of these intentions. In this regard,
the ITS Working Group 1 (WG1) is currently working on the definition of a Maneuver
Coordination Service (MCS) and its Maneuver Coordination Message (MCM) [Cor+21].
The outcome of this work is in progress and is expected to be completed by the end of
2024.

Table 1.2 summarizes the V2X messages which will be used throughout this
manuscript. Release 1 messages are designed to create awareness. However, Release
2 messages, such as CPM and MCM, can facilitate the initial stages of cooperation be-
tween vehicles. Although they do not include a cooperative interaction service, these
messages offer an enhanced level of awareness by providing detailed perception informa-
tion compared to Release 1 messages.

[ITS20] presents different infrastructure-specific messages which plays a crucial role
in V2I (Vehicle-to-Infrastructure) communication. We resume three messages from this
release in the Table 1.3.

Messages Situations Release
CAM Send its position Day 1
DENM Breakdown, accident, traffic not fluent Day 1

CPM Perception of a static or dynamic obstacles
(e.g. goods in the aisles, operators) Day 2

MCM Change of course (lane change), state directional
intention to cross an intersection Day 2

Table 1.2 – ITS messages used in the manuscript

Limitations

However, there is currently a limitation, many VRUs, such as pedestrians, lack C-ITS
equipment. As a result, they cannot actively participate in this cooperative system, unlike
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Messages Descriptions

Infrastructure to Vehicle
Information Message (IVIM)

Supports mandatory and advisory
road signage such as contextual
speeds and road works warnings

MAP Extended Message (MAPEM) Represents the topology/geometry
of a set of lanes

Signal Phase and Time
Extended Message (SPATEM)

Disseminate the status of the traffic
light controller, traffic lights and
intersection traffic information

... ...

Table 1.3 – ETSI Infrastructure-specific messages [ITS20]

AVs. To address this and reduce vulnerable-vehicle accidents, various systems have been
developed to assist drivers and road users.

For AVs, AI plays a crucial role in decision-making and leveraging cooperation for
safety and efficiency. Other vehicles can be equipped with ADAS [Zie+16]. These systems
rely on a comprehensive understanding of the vehicle’s surroundings, necessitating quick
and precise processing of information for driver assistance. AI is increasingly integrated
into these systems at various decision-making levels, requiring information for decision-
making or generating elaborated information.

Regarding the status of the driver, it remains a critical factor. In non-autonomous
or semi-autonomous vehicles, the driver must stay alert and ready to take control at
any moment, especially in situations where the AI systems might face limitations or
uncertainties. ADAS and other support systems are designed to enhance the driver’s
capabilities and reaction time but do not eliminate the need for an attentive and engaged
driver [EU20].

To assist drivers, CAVs also need a comprehensive understanding of their surround-
ings. To achieve this goal, the infrastructure, known as RSUs, gathers information from
connected objects and scene descriptions provided by cameras. AI processes and fuses
this information to enhance situational perception, sending it via V2X messages to other
AVs. For the sake of simplicity, we will use the term AVs to refer to both CAVs and AVs
throughout the manuscript.

The perception of local infrastructure, particularly from cameras, is crucial for ensuring
safety in autonomous driving [Mao+23; Wan+23], facilitating the reintegration of VRUs
into C-ITS. Improved perception contributes to better AV performance and enhances
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ADAS algorithms. Before experimenting with various AI algorithms to fuse pieces of
information collected in V2X messages and those provided by other sensors (e.g., cameras)
in diverse scenarios, it is crucial to organize the collection of raw information. A lot of
research on data fusion exists to aid the reintegration of VRUs. Indeed, this seems possible
with the generation of video streams from infrastructure cameras, connected vehicles or
other types of sensors (e.g. LiDAR).

However, it is important to specify that we want to process the video stream locally
before sending the resulting information, rather than sending raw video streams. This
local processing ensures that only relevant data is transmitted, which reduces bandwidth
usage and enhances privacy and security by not transmitting potentially sensitive raw
footage. Moreover, a remote entity may have difficulty processing raw video streams
without knowledge about sensor quality, calibration, etc.

1.2.6 Energy management

Energy management is a critical aspect of AIVs because it directly impacts their oper-
ational efficiency and autonomy. As part of the five core functions (mentioned in section
1.2.2) AIV resource management—consists of monitoring battery status, technical er-
rors/anomalies and conducting vehicle maintenance, as outlined by [KS19]. Efficient AIVs
management necessitates a comprehensive approach, considering several factors such as
operational availability, energy consumption [Las+14], collaboration between AIVs and
the dynamic infrastructure, and their adaptation to changing conditions.

Energy management in AIVs involves achieving a balance between local and global
needs to optimize efficiency and operational effectiveness. This balance can be understood
through the concepts of local and global equilibrium in decision-making.

Local and global equilibrium

Local Equilibrium pertains to the individual vehicle’s perspective on energy manage-
ment. Each AIV makes decisions based on its own battery status, current workload, and
immediate recharging needs. Local equilibrium focuses on optimizing the vehicle’s own
recharging schedule and energy consumption to ensure it remains operational within its
specific context. For example, an AIV might decide to recharge if its battery level drops
below a certain threshold, aiming to avoid running out of power during its next task.

In contrast, global equilibrium considers the entire fleet of AIVs and the environment
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they operate within [DVS20]. It involves coordinating the energy needs of all vehicles
to optimize overall system efficiency. Global equilibrium aims to balance the collective
recharging demands across the fleet to prevent bottlenecks, reduce energy consumption,
and improve overall operational efficiency. This can involve strategies such as scheduling
recharges at off-peak times, sharing recharging infrastructure, and managing energy use
based on the collective workload and availability of all vehicles.

To effectively manage energy resources, AIVs must find a balance between local and
global equilibrium:

— Individual decision-making: Each AIV must be able to make informed local de-
cisions about when and how much to recharge based on its current status and
immediate needs [KS19]. This ensures that each vehicle operates efficiently and
avoids running out of energy.

— Collective coordination: Simultaneously, AIVs need to coordinate with each other
and with the infrastructure to achieve a global equilibrium. This involves sharing
information about their energy status and upcoming recharging needs to avoid
situations where too many vehicles require recharging at the same time.

Indeed, a primary objective in energy management is to optimize recharging cycles
based on energy costs, to prevent inflated energy consumption due to frequent recharges
during low workload periods. In addition, poor anticipation can significantly limit system
availability. The irregular distribution of AIV missions, which includes periods of intense
activity and quieter intervals, necessitates correlating energy consumption with workload
and operational availability.

Achieving optimal balance bewteen local and global decision

Achieving an optimal balance between local and global decision-making in energy
management for AIVs is essential for maintaining efficiency and sustainability. To prevent
an overload of simultaneous recharging requests, AIVs need to collaborate through inter-
communication or via the infrastructure. Although automatic recharging resolves the
issue of the number of charges, it requires space and consumes energy. Even marginal
reductions in energy consumption (2-3% of reduction), are significant for industries such
as warehouses and airports. Thus, for the introduction of AIVs’ fleet in the industry
of the future, it therefore seems necessary to fine-tune the number of recharging points.
This optimization can be refined by considering communication capabilities among AIVs,
enabling collective avoidance of critical (urgent) recharging instances.
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To address these challenges and achieve an optimal balance, the three key points that
stand out are:

— Communication and collaboration: By enabling communication between AIVs,
vehicles can share their energy status and recharging needs. This allows for col-
lective decision-making and coordination, reducing the likelihood of simultaneous
recharging requests and optimizing the use of available recharging points.

— Infrastructure management: The recharging infrastructure itself must be managed
to support both local and global needs. This includes planning for sufficient capac-
ity and strategically locating recharging stations to meet the collective demands of
the fleet while accommodating individual vehicle needs.

— Adaptive strategies: The energy management system must be adaptive, allowing
it to respond dynamically to changes in workload, vehicle availability, and energy
consumption patterns. This adaptive approach helps maintain a balance between
local vehicle requirements and global fleet efficiency.

In summary, effective energy management in AIVs involves balancing local and global
considerations. Local equilibrium focuses on optimizing the efficiency of individual vehi-
cles, while global equilibrium addresses the collective needs of the fleet to enhance resource
utilization and infrastructure capacity. By integrating communication, collaboration, and
adaptive strategies, AIVs can achieve a more efficient and sustainable energy management
system.

Optimization techniques

Reducing energy consumption has become a critical issue across all sectors, making
optimization an indispensable tool. Therefore, the choice of the cost function is crucial.
Various mathematical models are defined for mobile robots to address different objectives
of the problem. The power function is frequently used because it depends on simple
parameters such as speed and motor force [MM30; Zha+21].

Both reducing and increasing speed have a significant impact on energy consumption,
and variations in motor force also affect energy usage. The speed profile generator is
determined by the motor force, which depends on the acceleration (or deceleration) and
the mass of the mobile robot. Optimizing energy consumption involves finding an optimal
control strategy modelled by the motor force.

Several techniques have been employed to address the optimization problem in mobile
robots. One prominent approach is the use of genetic algorithms. For instance [Šte+21]
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propose a genetic algorithm to reduce the energy consumption of a mobile robot. The
cost function is the sum of the linear velocity squared and angular velocity squared. This
algorithm relies on an optimal fuzzy logic controller, which enables the robot to track
different paths (e.g., zigzag, sharp turns).

Another technique involves the fuzzy logic Mamdani, as demonstrated by [GT22].
This method determines three outputs: curve speed, energy consumption, and time in-
formation. Using optional curved path data (radius, center angle, load, ground friction),
three fuzzy rules are defined to identify these outputs. The total energy consumed is the
sum of the power sensor, control, and motion. A trapezoidal speed profile is utilized to
create an optimal profile based on fixed times or distances for straight paths, involving
three segments: acceleration, constant speed, and deceleration. Alternatively, a triangular
speed profile can be used, requiring only acceleration and deceleration phases. Minimum
energy consumption is achieved from these speed profiles for straight paths. For curved
paths, the speed profile is derived from fuzzy logic, incorporating the maximum and min-
imum values of the trapezoidal speed profile. The integration of these methods highlights
the importance of optimizing speed and motor force to minimize energy consumption for
mobile robots.

In the railway sector, a technique based on braking distance is commonly used.
[Tan+18] address the problem of train speed trajectory optimization as an optimal control
problem. The cost function represents the net electrical energy, which depends on the
maximum electrical traction and braking forces, as well as the efficiency of electric mo-
tors during traction and braking operations. The authors propose a numerical algorithm
based on the Pontryagin’s Maximum Principle (PMP) [Kop62] to find the optimal speed
trajectory. Their study identifies conditions for traction and braking phases, showing
the effectiveness of this approach through comparisons with other numerical optimization
methods.

For mobile robots, the goal is to solve an energy optimization problem specific to their
environment (e.g. warehouse, airport). The cost function is defined by the integral of the
power delivered by the robot’s motor, reflecting the absolute work done. This refinement
of the cost function offers a more accurate reflection of the energy consumption during the
robot’s mission. This approach enables the robot to perform acceleration, deceleration,
and constant speed movements simultaneously, offering a more accurate representation of
energy consumption during its mission.

Improving the cost function allows for more precise energy management strategies,
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tailored to the unique demands of each environment. When applied to a fleet of AIVs,
this approach offers several key benefits:

1. Optimized energy usage: Each AIV can manage its energy consumption more
effectively based on its specific operating conditions and movement patterns.

2. Better coordination: A refined energy model allows AIVs to work together more
effectively, reducing energy waste. For instance, AIVs can schedule their operations
and reloads strategically. If one AIV is running low on battery, the system can co-
ordinate with other AIVs to ensure it recharges at the optimal time, such as during
periods of low activity or when other AIVs are handling tasks, thereby avoiding
unnecessary downtime and ensuring continuous operation, thereby improving the
autonomy of AIVs within the fleet.

3. Fleet-level efficiency: Collective energy management helps in balancing the load
across the fleet, reducing the likelihood of energy shortages or excessive battery
depletion in any single vehicle.

Overall, a comprehensive approach to energy management not only improves the per-
formance and reliability of each AIVs but also enhances the overall efficiency and opera-
tional effectiveness of the entire fleet in various industrial settings.

1.3 Collective mobile robot autonomy

Collective mobile robot autonomy involves the coordination and cooperation of mul-
tiple robots to achieve a common goal. This section explores three key aspects: mobile
robot cooperation, collective intelligence, and collective autonomy.

1.3.1 Mobile robot cooperation

Mobile robot cooperation is fundamental to the development of autonomous systems
that can work together efficiently in an environment. This cooperation enables multiple
robots to perform tasks collaboratively, sharing information and coordinating their actions
to achieve common objectives. Several key technologies and methodologies have been
developed to facilitate this cooperation in the road field.

For many years, the scientific community has focused on platooning and Coopera-
tive Adaptive Cruise Control (CACC) [Xin+21]. These technologies enable vehicles to
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maintain inter-vehicle distances and reduce energy consumption by responding to the ma-
neuvers of leading vehicles (e.g., slowing down, braking) with minimal delay. Effective
communication with very short delays significantly enhances the efficiency of coopera-
tive autonomous vehicles, especially for convoy traffic in industrial environments. While
platoon organization is well understood and efficient [Liu+23], it demands stability of
convoys over time, which can be a limitation.

This is why it is interesting to look at less constrained modes of cooperation such
as CACC. Several V2X communication technologies and CACC mechanisms have been
proposed in the road domain. The constraints of an industrial environment are different,
it is necessary to evaluate the operation of these mechanisms using tried-and-tested proven
methodologies [Lya19] but which need to be adapted.

Similarly, other cooperative manoeuvres have been studied in the literature. Track
insertion [Seq+19] can be adapted to the industrial case that interests us in the project
by employing messages similar to those defined for the road environment. Finally, be-
yond cooperation on manoeuvres [Ron+18], cooperative perception makes it possible to
exchange already elaborated information about pedestrians and to identify potential areas
of conflict with road vehicles [NY22], as discussed in subsection 1.2.5.

[Zha+23] propose four different classes:
— Class A: Cooperative Perception - "Tell each other where I am and what I see"

(status sharing)
— Class B: Cooperative Prediction - "Tell each other this is and what I plan to do"

(intent sharing)
— Class C: Cooperative decision-making - "Let us do this together" (agreement seek-

ing)
— Class D: Infrastructure-enabled decision-making - "I will do as directed" (prescrip-

tive)

1.3.2 Collective intelligence

"A collective intelligence is a large Multi-Agent System (MAS) where:
1. There is little to no centralized communication or control.
2. There is a provided world utility function that rates the possible his-

tories of the full system." [WT99]
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The concept of collective intelligence extends the idea of cooperation among robots
from achieving individual objectives to creating an intelligent whole. In this framework,
robots work together not just to fulfill individual tasks but to contribute to the intelligence
and efficiency of the entire fleet. The fleet, as a cohesive entity, becomes intelligent through
the collective actions and interactions of its individual members.

Our description of collective intelligence in robotic fleets is that each robot’s actions
are informed by the collective’s state and objectives, allowing for dynamic and adaptive
responses to changing environments and tasks. This approach not only enhances the
efficiency and effectiveness of individual robots but also optimizes the performance of the
fleet as a whole. For instance, robots can share raw sensor data and predictions, leading
to improved situational awareness and decision-making capabilities for the entire group.

In the ITS field, special topics of automated vehicle coordination and/or coopera-
tion, using Vehicle-To-Vehicle (V2V) or Vehicle-To-Infrastructure (V2I) communication
techniques, are well studied. [RM17] cover the literature related to the coordination of
connected and automated vehicles for intersections or merging at highway on-ramps, us-
ing centralized and decentralized approaches, with the goal of limiting traffic congestion
and reducing transportation energy consumption and emissions by improving traffic flow.

[MCZ21] propose a taxonomy and a survey on coordination of AVs to treat traffic
problems like intersection management, smart parking, ride-sharing, ramp merging or
platooning. In the particular case of crossing intersections, [Glo+21] propose an adap-
tive approach capable of selecting the most appropriate solution presented by [MCZ21],
depending on the traffic situation.

In essence, AIVs systems benefit from the principles of collective intelligence by en-
hancing coordination and adaptability through shared information. This integration not
only improves individual performance but also optimizes overall system efficiency, ad-
dressing complex challenges like traffic management and autonomous operation.

1.3.3 Collective autonomy

In the field of ITS, particularly within the context of smart cities [CAF17], the au-
tonomy of vehicles has been comprehensively categorized by the SAE into six levels of
autonomous driving [Wis22]. These levels, described in subsection 1.2.1, are widely
recognized for assessing the capabilities of AVs. However, this structured framework is
not developed for AIVs, with research in this area remaining relatively sparse [EBW16].

These levels provide a clear framework for assessing the progression of vehicle auton-
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omy. However, they focus primarily on the individual vehicle’s ability to perform tasks
like navigating an intersection without collision. Yet, they do not address the efficiency
of these maneuvers—for instance, whether the vehicle can complete the task smoothly or
if it requires multiple stops. This limitation is particularly critical when evaluating the
efficiency of public transport systems within the road sector.

The challenge becomes even more pronounced in industrial settings, where the scale
of operations is significantly larger. When managing not just two pallet trucks but fleets
of fifty or more AIVs, the ability to assess and optimize fleet efficiency becomes essential.
The question then arises: how can we effectively evaluate the performance of an entire
fleet of AIVs?

To address the limitations of the existing autonomy scale, particularly for AIVs, our
approach emphasizes the need for decentralized solutions and collective strategies within
fleets. Enhancing the autonomy of AIVs requires moving beyond individual decision-
making to foster cooperation among all vehicles in the fleet [CFK96; HS19; RAT19]. By
increasing both individual and collective intelligence, AIVs can improve their performance
in core tasks: navigation process (perception and localization), TA, path planning, motion
planning and vehicle management.

Given the potential of collective strategies, we will propose the development of a
new scale of autonomy that reflects the integration and cooperation within an AIV fleet.
AIVs can execute their missions more effectively through a collective strategy, where the
fleet communicates and shares information. To begin with, we propose classifying V2X
messages presented in Table 1.2 according to the four classes of cooperation [Zha+23]
mentioned in subsection 1.3.1 (see Table 1.4).

Class A Class B Class C Class D

Messages
CAM

DENM
CPM

MCM ACK_MCM
SPATEM
MAPEM

IVIM

Table 1.4 – V2X messages classified according to the four classes of cooperation

At the foundational level, the proposed scale encompasses basic cooperative behaviours
such as collective obstacle avoidance and the sharing of localization and environmental
perception data. As we progress to more advanced levels, the scale incorporates real-time
TA, scheduling, and distribution among the fleet, thereby improving overall efficiency,
minimizing downtime, and optimizing energy usage. At its highest level, the scale ad-
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dresses the collective management of energy resources across the fleet, ensuring that all
vehicles operate in a coordinated and energy-efficient manner.

Building upon this classification, we propose initiating a new hierarchical scale of
autonomy that extends beyond individual vehicles to consider collective performance.
By shifting focus from isolated tasks to the integrated operation of a fleet, we aim to
develop a framework that better reflects the complexities and demands of large-scale AIV
deployments. This scale delineates progressive levels of collective point of view for a fleet
of AIVs, emphasizing the cooperative capabilities of the fleet. The levels range from
no collective autonomy to advanced optimization, integrating various V2X messages to
facilitate each stage. The messages written in cyan in the autonomy scale below will be
proposed to solve problems of maneuver cooperation at intersections (ACK_MCM) and
collective TA (CTM, CRM) in the following chapters 2 and 3, respectively.

Levels of autonomy from a collective point of view for a fleet of AIVs:
— Level 0: No collective autonomy

— Vehicles operate independently without sharing information or coordination.
— Level 1: Homogeneous robots - collective mapping and collision avoidance

— Vehicles share and create a dynamic map of their environment.
— Vehicles share location data to avoid collisions.

— Level 2: Heterogeneous robots - interoperability and cooperative awareness and
perception
— Vehicles share and create a dynamic map of their environment.
— Vehicles share location data to avoid collisions.
— Vehicles and infrastructure devices with different capabilities and communica-

tion protocols coordinate effectively.
— Ensures seamless communication and collaboration across various systems.
— V2X messages used: CAM, DENM, CPM

— Level 3: Collective decision-making and collective TA
— Vehicles collaboratively decide on maneuvers.
— V2X messages used: CAM, DENM, CPM, MCM, ACK_MCM, CTM, CRM

(Class A, B, and C messages for perception, intent, and decision-making).
— Level 4: Optimisation

— The fleet carries out the skills of the other levels with an emphasis on economy
and collective reduction in energy impact.

— Vehicles collaborate and optimize actions for overall efficiency, including energy
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consumption.
— V2X messages used: All of the above (CAM, DENM, CPM, MCM,

ACK_MCM, IVIM, SPATEM, MAPEM), utilizing full Class A, B, C, and D
messages for comprehensive perception, prediction, decision-making, and fol-
lowing infrastructure directives.

A more advanced and accurate hierarchical autonomy scale can be particularly useful
for industrial applications where the efficiency and coordination of large fleets of vehicles
are essential. In industrial environments, where operations often involve the management
of dozens or even hundreds of autonomous vehicles, this scale provides a structured frame-
work for evaluating and improving collective performance. By grading autonomy levels
from basic cooperation to advanced fleet-wide optimisation, industries can systematically
improve the way they interact, allocate tasks and manage resources such as energy. This
not only improves the fluidity and efficiency of operations but also reduces downtime and
operational costs, ensuring that the fleet is operating at peak performance. In addition,
scale helps to identify specific areas where technological advances or process optimisations
are needed, directing investment and development efforts towards those areas that will
deliver the best results in terms of productivity and operational efficiency.

Future research on collective autonomy for AIV fleets will prioritize collaborative
decision-making processes among AIVs operating in shared environments. In this
manuscript, we explore how to progressively integrate various collective functions into
an AIVs fleet. Our focus is on developing collective strategies for obstacle avoidance, TA,
perception, and energy management, with the goal of improving the overall efficiency and
adaptability of AIV fleets.

To conclude, the contributions proposed in this manuscript will be classified according
to the new hierarchical scale of autonomy for AIVs that we have outlined. By using
this scale, we will demonstrate how our contributions align with the various levels of
collective autonomy, from basic cooperative behaviours to advanced fleet optimization.
This approach ensures that the solutions we develop are systematically integrated into the
broader context of AIV deployment, ultimately enhancing the efficiency and effectiveness
of autonomous vehicle fleets in complex operational environments.
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1.4 Methodologies and tools used to simulate and ex-
periment of AIVs

The advancement of AIVs marks a significant milestone in the evolution of intelligent
systems, requiring sophisticated tools and methodologies to ensure their effective devel-
opment and deployment. As AIV systems become increasingly complex, the demand for
robust simulation and experimentation techniques becomes critical. These techniques are
essential for the validation of AIV systems but also play a central role in the iterative
processes of design, testing, and optimization.

This section explores the various methodologies and tools employed in the simulation
and experimentation of AIV systems, offering a comprehensive overview of current best
practices and emerging trends in the field. It highlights the strengths and limitations
of different approaches, emphasizing that simulation tools must be carefully adapted to
the specific problems being addressed, as well as to the solutions used to tackle these
challenges. Moreover, the techniques applied should be tailored to ensure the system’s
performance is accurately assessed and optimized.

1.4.1 Simulation in the field of AIVs

"Simulation is a key technology for developing planning and exploratory
models to optimize decision-making as well as the design and operations
of complex and smart production systems. It could also aid companies to
evaluate the risks, costs, implementation barriers, impact on operational
performance, and roadmap toward Industry 4.0" [FAS20]

In the field of AIVs, simulation allows us to take into account the different constraints
and requirements formulated by manufacturers and prospective users of these AIVs. Be-
fore starting on large-scale testing of AIV traffic scenarios in especially complex industrial
or airport situations, simulation stands as a primary step before deploying [HZ05]. A sig-
nificant advantage lies in the ability to generate usable results without necessitating the
application of scaling factors.

The main benefits of simulating AIV operations are extensively presented by [TBS18]:
— reduces the development time and cost of an AIV,
— minimises the potential operational risks associated with the AIV,
— enables the feasibility of different AIVs scenarios to be assessed at a strategic or

operational level,
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— provides a rapid understanding of AIV operations (under conditions of limited data
availability),

— identifies improvements in facility layout configurations hosting AIVs; the simula-
tion also provides flexibility in terms of deployment and redeployment, and

— enables us to study the sharing of responsibility between the central server and the
robots (local/global balance) for the various operational decisions.

A further advantage of simulations is to introduce humans into scenarios. This helps
instill confidence among stakeholders regarding the safe coexistence and potential inter-
actions between forthcoming mobile robots and human operators in industrial settings,
before a future deployment [Hen+19].

1.4.2 Agent-based systems

"An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through actuators"
[RND10]

This definition underscores that AIV can be modelled as an agent. The agent paradigm
is widely used to simulate or model complex, interactive, adaptive, distributed or coop-
erative systems and has become commonplace [Mac16]. Agent-based systems have been
proposed in many engineering domains, including AV [Jin+20]. The distribution of agents
(decentralization) enables these systems to be flexible. Additionally, the agent concept is
particularly well-suited for modelling and simulating cyber-physical systems [VLL15].

Therefore, agent-based simulation is a significant tool for advancing algorithmic de-
velopment before deployment. Thus, we will review the literature on agent concepts,
agent-based models, principles of agent simulations and MAS.

Agent concepts

The concept of an agent is based on three pillars, shown in Figure 1.5 deployed in
an environment equipped with sensors and knowledge that can interact through com-
munication and coordination in various organizational structures, including centralized,
decentralized, or hierarchical organisation systems.

Developing an agent architecture for the simulation of AIV traffic situations is im-
portant. Each agent within this architecture possesses its knowledge and has functional
capabilities for observation, communication, decision-making, and action.
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Figure 1.5 – Agent properties

In the context of Industry 4.0, the requirements of flexibility, robustness and scalability
lead to the consideration of decentralized mechanisms to react to contingencies. Before
being definitively adopted, decentralization must first be modelled and simulated.

[RAT19] reviewed the literature and presented two different types of classification for
agents, summarised in Table 1.5 and Table 1.6 with definitions.

Type of agents Behaviour

Reactive React to environmental changes
Sense and act

Deliberative Initiate actions without any external trigger and rely on planning
Sense, Plan and Act

Hybrid Maximize a utility function

Table 1.5 – Type of agents [RAT19]

"Hybrid agents perform actions based on a planning algorithm or react to
current perceptions." [RAT19]

Throughout this manuscript, AIVs will be defined as hybrid agents in this manuscript.
Indeed, because of their dual capacity for planning and reaction. These vehicles operate
in dynamic and often unpredictable industrial environments where strategic planning and
real-time reactivity are essential. AIV use planning algorithms to map out optimal paths
and sequences, ensuring efficiency and adherence to overall operational objectives.
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At the same time, they rely on sensor data to perceive their immediate environment
and execute reactive behaviours to manage unexpected obstacles, changes in the environ-
ment, or emerging safety issues. Additionally, because AIVs are integrated into a fleet,
they can interact with other AIVs through communication and coordination. This inte-
gration allows, for example, cooperative perception, enabling AIVs to share information
about their surroundings and optimize their actions collectively.

This hybrid nature enables AIVs to balance long-term operational goals with the agility
required for real-time adaptation, enhancing their flexibility, robustness, and scalability
in the context of Industry 4.0 environments.

Moreover, psychologists have worked on modelling the task and the operator, including
[Ras83] who proposed a 3-level model. Researchers [Fou02] have drawn inspiration from
this to create an agent model depicted in Figure 1.6. An agent can have a behaviour
adapted to the task it is carrying out and therefore does not necessarily have a fixed
behaviour.

Figure 1.6 – Rasmussen’s model of the operator: three levels of behaviour adpated from
[Ras83]

Then, [RND10] introduced a refined categorization for "learning" agents, distinguishing
between those that learn elements of the environment and those that adjust their control
algorithms’ parameters with the guidance of a critic. Table 1.6 resumed it.

AIV integrated into a fleet that performs collective strategies to improve the autonomy
of the fleet must exhibit characteristics of multiple types of learning agents. Firstly, they
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Type of learning agents Behaviour
Simple reflex React to current sensory input

Model-based reflex Keep an internal state of the environment
Goal-based Perform actions to complete a goal

Utility-based Maximize a utility function

Table 1.6 – Type of learning agents [RND10]

have to demonstrate aspects of simple reflex agents by reacting to current sensory input,
such as avoiding collisions or adjusting their speed based on immediate environmental
cues.

Secondly, AIV can embody model-based reflex agents by maintaining an internal rep-
resentation or state of the environment, enabling them to anticipate and respond to
recurring patterns or events. Additionally, AIV have to operate as goal-based agents,
performing actions aimed at achieving specific objectives or completing tasks efficiently
within the industrial setting.

Finally, AIV may incorporate aspects of utility-based agents by making decisions that
aim to maximize a utility function, which could involve optimizing routes to aid minimize
its energy consumption and therefore of the fleet too.

Agent-based modelling simulations

Agent-based modelling offers a cost-effective and resource-efficient approach to mod-
elling complex systems due to the flexibility, autonomy, and scalability it provides to
agents [DKJ18]. The structure of an agent-based model has been defined by [MN10], as
follows:

1. Agents: the individual entities with their characteristics, and behaviours.

2. Interactions: the relationships among agents and the ways they interact, defined
by a network of connections determining how and with whom they interact.

3. Environment: the surrounding context within which agents operate and interact,
influencing and being influenced by the agents.

The article [Mac16] presents definitions on Agent-Based Modelling Simulation (ABMS)
across various categories, as depicted in (Figure 1.7). A common characteristic among
all these definitions is agents are defined as individual heterogeneous entities.

The resulted definitions in Table 1.7 can be seen as a scale of agent autonomy, ranging
from individual agents with prescribed behaviours to adaptive agents capable of changing
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ABMS definition
/

Agent properties
Behaviours Interactions Adaptability

Individual Prescribed, scripted Limited None
Autonomous Autonomous, dynamic Limited None

Interactive Autonomous, dynamic Between other agents
and the environment None

Adaptive Autonomous dynamic Between other agents
and the environment

Agents change behaviours
during the simulation

Table 1.7 – Definitions for ABMS based on agent properties [Mac16]

behaviours during simulation. Our goal to improve the autonomy of AIV integrated into
a fleet, executing collective strategies, aligns with the modelling of adaptive AIV agents.

Before delving into scenario testing, the goal is to transition towards a modelling
framework that encompasses adaptive ABMS. This approach facilitates the exploration
and optimization of collective strategies that empower AIV to dynamically adjust their
behaviours in response to the evolving environment and operational requirements.

By conceptualizing AIV as adaptive agents, the aim is to approach experiments with
the behaviour of AIV adapting in real-time, optimizing their actions in response to co-
ordination, communication and therefore evolving circumstances. Finally, moving closer
to the simulation of adaptive agents is in line with the objective of evaluating collective
strategies that maximise the efficiency, robustness and adaptability of AIV fleets operating
in Industry 4.0 environments.

Multi-agent simulation

As described above, a MAS can be a network of autonomous entities called agents,
each capable of independent decision-making and learning. These agents collaborate by
interacting with each other or their environment to solve tasks [DKJ18].

MAS can be centralized, decentralized, or hybrid, and may involve physical robots
called multi-robot systems in the literature. The study [RAT19] gives a state-of-the-
art of the categorisation of cooperative heterogeneous multi-robot systems. Table 1.8
resumed the different classifications based on agent diversity and communication capabil-
ities, interaction complexity, and types such as cooperative, competitive, or collaborative.

Several ABMS tools have been elaborated to model agents-based systems utilizing
frameworks such as UML or Agent-UML [Bau+01]. Then, the MAS modelled, the objec-
tive is to simulate complex scenarios with interactions among agents in an environment.
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Agents’ diversity Agents’ communication
capabilities

Agents’ interaction
complexity

Type of interaction
between agents

Sensory

Actuation capabilities

Cognition algorithms

Homogeneous non-communicative

Homogeneous communicative

Heterogeneous non-communicative

Heterogeneous communicative

No direct interaction

Some interaction

Complex condition interaction

Cooperative interaction

Competitive interaction

Collaborative interaction

Table 1.8 – The different categories based on multiple criteria of MAS [RAT19]

A study conducted by [DKJ18], outlines three of the most widely used simulators in MAS
to evaluate methods for agent-based systems. These simulators are:

— Java Agent Development framework (JADE): open-source platform based
on Foundation of Intelligent Physical Agents (FIPA) standard for building MAS in
Java language. It provides a comprehensive set of tools and libraries for creating,
deploying, and managing autonomous agents [BCG07].

— GAMA 2: modelling and simulation platform with the support of GAML (high-
level agent-based language).

— Matlab: software that is primarily known for its general-purpose computational
capabilities, it is also utilized to analyze the performance of MAS. It can be inte-
grated with JADE for in-depth investigations into MAS performance, such as for
smart distribution networks [Elm+15].

1.4.3 Advanced decision-making techniques for AIVs

To effectively enhance the autonomy of mobile robots, it is important to explore a range
of advanced decision-making techniques that improve navigation and obstacle avoidance
capabilities. [Pan17] provide a comprehensive review of mobile robot navigation and
obstacle avoidance techniques, highlighting several advanced methods including neural
networks, neuro-fuzzy systems, genetic algorithms, Particle Swarm Optimization (PSO),
and Ant Colony Optimization (ACO) algorithms [Pan17]. Each of these techniques has
specific strengths that make them suitable for different aspects of autonomous navigation
and decision-making.

Neural networks excel in learning and adapting to complex and dynamic environ-
ments, which makes them effective for navigation in unpredictable settings. For instance,
[Che+22] proposed a neural network model to address autonomous navigation challenges

2. GAMA Platform: https://gama-platform.org/
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in environments with obstacles.
Neuro-fuzzy systems combine the learning capabilities of neural networks with the

handling of imprecision by fuzzy logic, neuro-fuzzy systems enhance decision-making in
uncertain environments. This approach is explored by [Mis+22], who developed a system
that integrates deliberative and reactive navigation control, providing corrective decisional
commands to the robot.

Genetic algorithms use natural selection principles to find optimal paths in complex
environments, as shown by [LBE18], who applied them to path planning in static envi-
ronments.

PSO inspired by the social behaviour of animals, explores search spaces efficiently,
leading to faster and often optimal solutions. For example, [ZWC19] developed an in-
tegrated localization approach combining a local search-based PSO algorithm with the
particle filter for robust and accurate global localization.

Additionally, ACO based on the foraging behaviour of ants, is effective for solving
pathfinding and routing problems, as illustrated by [Mia+21], who applied ACO to indoor
mobile robot path planning.

Some research focuses on the use of fuzzy agents to handle the levels of imprecision and
uncertainty involved in modelling the behaviour of simulated vehicles [Fou13]. Indeed,
fuzzy set theory is well suited to the processing of uncertain or imprecise information that
must lead to decision-making by autonomous agents [FO13].

Building on this foundation, a promising approach to improving the performance of
AIVs involves the application of fuzzy logic. By leveraging fuzzy logic, AIVs can better
handle varying levels of uncertainty and make more accurate decisions, thereby enhancing
their overall efficiency and effectiveness.

1.4.4 Fuzzy logic systems

Today, most of the control tasks presented in the subsection 1.2.2 (localization,
mapping in the navigation process; TA and motion planning; decision-making and motion
control) performed by autonomous mobile robots have been the subject of performance
improvement studies using fuzzy logic:

— navigation of mobile robots from conceptual, theoretical or application points of
view [HNK12], navigation of several mobile robots [PPP09], navigation and control
of a mobile robot in an unknown environment in real-time [Yer+15], and compari-
son of navigation performance of mobile robots obtained using fuzzy logic or neural
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networks [Yud+19];
— obstacle avoidance from conceptual and systemic points of view in an unknown

dynamic environment [Mey+18];
— path planning strategies focusing on obstacle avoidance [Shi+18] or global naviga-

tion [Pat+19];
— motion planning [NC18] ;
— localization of mobile robots [AOH20];
— intelligent management of energy consumption [LN22].
The use of agents having fuzzy knowledge can manage the levels of imprecision and

uncertainty [Ros09], involved in modelling the behaviour of simulated vehicles.

Fuzzy agent concepts

An agent-based system can be fuzzy if its agents have fuzzy behaviours or if the
knowledge they use is fuzzy. This means that agents can have:

1. fuzzy knowledge: fuzzy decision rules, fuzzy linguistic variables, and fuzzy lin-
guistic values;

2. fuzzy behaviours: the behaviours adopted by the agents as a result of fuzzy
inferences;

3. fuzzy interactions, organisations or roles [OFF12].

Fuzzy agents can follow the evolution of fuzzy information coming from their environ-
ment and from the agents [ÖG31]. By interpreting the fuzzy information they receive or
perceive, fuzzy agents interact within a MAS; they can also interact in a fuzzy manner.

For example, a fuzzy agent can discriminate a fuzzy interaction value to evaluate its
degree of affinity (or interest) with another fuzzy agent [OFF12]. The different elements
of a fuzzy agent model are as follows [Fou13]:

— the agent-based fuzzy system;
— the behaviour of a fuzzy agent, inspired by perceive-decide-act feedback loops

[Bru+09];
— the behavioural functions of a fuzzy agent;
— the fuzzy interactions between two fuzzy agents.
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Fuzzy logic simulation

To design controllers, a lot of research utilized "numerical computing environments"
such as:

— [Mey+18] used Matlab: to compare T1FLS (Type 1 Fuzzy Logic System) and
ITS2FLS (Interval Type 2 Fuzzy Logic System) for obstacle avoidance of mobile
robots in different environments. A type-2 fuzzy logic controller using type-2 fuzzy
sets can handle such uncertainties to produce a better performance [Hag04].

— [Shi+18] used Matlab: to design fuzzy logic controllers that emerge as suitable for
mobile robot navigation because of robustness and ability to handle uncertainties
in static unknown environment.

— [NC18] used Matlab: to propose two separated fuzzy logic controllers to develop
an intelligent algorithm in order to avoid both static and dynamic obstacles.

— [Yud+19] used Scilab: to investigate the comparison of fuzzy logic controllers and
neural network applications in mobile robot navigation.

These studies demonstrate the effectiveness of fuzzy logic controllers and other in-
telligent algorithms in handling uncertainties and improving mobile robot navigation in
various environments. Moreover, for example, Matlab offers a comprehensive set of fuzzy
logic functions through its Fuzzy Logic Toolbox, allowing users to design, simulate, and
analyze fuzzy inference systems with ease.

On the other hand, FisPro (Fuzzy Inference System Professional) [GC11] exists which
is a free and open-source specialized software dedicated to fuzzy inference systems. This
one offers a more focused approach allowing users to rapidly construct and evaluate fuzzy
inference systems without the need for extensive programming knowledge.

1.4.5 Emulators and simulators to move towards real experi-
ments in the field of AIVs

Before conducting real experiments in autonomous mobile robotics, we are exploring
physics rendering simulators in two crucial domains. This preliminary step allows us to
thoroughly test and refine our strategies, ensuring greater efficiency and safety when we
transition to real-world scenarios.

Specifically, we focus in this section on communication, traffic, and physics rendering
simulators to enhance the autonomy of AIV using collective intelligence strategies. To
facilitate testing various scenarios before deploying them in real-world experiments, we
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seek simulators capable of incorporating V2X communications. Our review spans both
the robotics perspective and the road domain, which has made significant advancements
in autonomous vehicles.

Communication and traffic simulators

In the field of robotics, Robot Operating System 2 (ROS2) 3 has emerged as a sig-
nificant middleware for communication and simulation. It is an open-source framework
for the development of robotics applications and is a tool favoured by researchers and
even industrialists today. ROS2 facilitates communication between various robotic com-
ponents using a publisher-subscriber model, which is essential for simulating complex
robotic interactions.

It supports real-time control systems and large-scale distributed architectures
[MKA16]. Compared to ROS, there is no master entity, and ROS2 utilized Data Dis-
tribution Service (DDS). It makes it highly suitable to work with for developing and
testing autonomous distributed robotic systems [Erő+19], for example, cooperative algo-
rithms for AIV with V2X communications. Moreover, it can be integrated with simulation
environments like Gazebo 4 which will be presented below in the section.

In the road field, [AM13] summarises the different popular road traffic and network
communication simulators. It classified them into 3 types:

— network communications simulators
— road traffic simulators
— combined simulators: communications and traffic
Network communication simulators are able to reproduce the behaviour of communica-

tion technologies such as OMNeT++ 5, [vargaandrasDiscreteEventSimulation2001]
and NS-3 6, which simulate V2X communications but not in a specific environment. On
the contrary, Simulation of Urban Mobility (SUMO) [Lu+20] is for simulating multi-
modal road traffic from real-world maps, but these do not allow V2X communications to
be analysed. Other simulators, combine the simulation of traffic and network commu-
nication, which seems interesting but their combination is not suitable for our research.
This is the case of Vehicles in Network Simulation (VEINS) [SGD11] combining SUMO
and OMNeT++.

3. ROS: https://www.ros.org/
4. Gazebo: https://gazebosim.org/home
5. OMNeT++: https://omnetpp.org/
6. NS3: https://www.nsnam.org/
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1.4. Methodologies and tools used to simulate and experiment of AIVs

These simulators enable the sending and receiving of C-ITS messages and provide a
detailed analysis of transmission performances, including delays and losses, depending on
network load and radio propagation model. By integrating with a traffic simulator like
SUMO, it becomes feasible to consider C-ITS messages and implement C-ITS mechanisms
to impact vehicle behaviour. However, this approach lacks the ability to interact with
the environment beyond C-ITS, especially in terms of perception (e.g., camera, LiDAR).
Additionally, it does not allow for studying interactions with a human driver, unlike a
dedicated driving simulator.

Robotics simulators

With a view to a futuristic Industry 4.0, where robots could share roads with connected
or unconnected vehicles, the value of a simulator adapted to robotics is being considered.

Moreover, in our research problem, we want to analyse video streams to detect VRU
and communicate information from CAV and local infrastructure. In this case, AV can
react to interactions and message exchanges. In particular, this would enable humans to
drive in the simulator, receive notifications and interact with ADAS. It could be used to
assess the acceptability of such a system. They will be able to take the messages into
account, and this contribution to the simulator could be used to test the ADAS, the
related algorithms and their acceptability by the driver.

One of the best-known open-source simulators is Gazebo. It can be used to simulate
robot systems in complex environments. However, it does not simulate the behaviour of
AVs, nor does it provide a realistic rendering for training AVs.

Realistic simulators to train autonomous road vehicles

Realistic simulators are produced with game engines such as Unity or Unreal Engine.
They make it possible to test specific problems with realistic rendering scenarios in the
globality and obtain the associated V2X communications. This is not possible with repre-
sentative autonomous driving datasets existing, created for a specific problem (e.g. vision
for KITTI [Gei+13]). Even, nuScenes [Cae+20] which is the first dataset to carry the full
AV sensor suite built with Carla Simulator [Dos+17]. This dataset makes use of a vehicle
with a full 360-degree field of view using 6 cameras, 5 RADARs and 1 LiDAR.

Indeed, one of the research challenges we are addressing is enhancing the cooperative
perception of AIVs. To achieve this, it is essential to find solutions for testing V2X data
fusion in simple scenarios such as intersections. This could enable connected vehicles, with
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the help of the local infrastructure, to improve their overall perception and reintegrate
pedestrians not perceived by their own sensors.

Therefore, one possibility with realistic simulators which seems possible is the opportu-
nity to obtain V2X communications generated in a realistic scenario through the analysis
of data flows (video, LiDAR) issued from CAVs or infrastructure sensors (camera, LiDAR,
RADAR).

AWSIM 7 is a Unity-based digital twin simulator tailored for autonomous driving re-
search, created for the use of Autoware [Kat+15; Kat+18]. This one is an open-source
software for self-driving vehicles that can be combined with AutoC2X [Tsu+20]. This sys-
tem enables cooperative perception by using OpenC2X [Lau+16] for Autoware-based AV.
This solution is focused on the operation of an AV. Studying the fusion of V2X data in a
complex scenario with the scaling of communications to traffic levels seems complicated.
On top of that, it is more a co-simulator than a traffic AV simulator.

On the contrary, the simulator Carla [Dos+17] can be used with a Cooperative Driv-
ing Autonomation (CDA) known as OpenCDA [Xu+21a; Xu+23]. This framework is
composed of three modules:

— a co-simulation platform with simulators,
— a full-stack cooperative driving system, and
— a scenario manager

Carla Simulator associated with OpenCDA can provide the possibility to obtain dif-
ferent information from sensors and implement algorithms to modify behaviours of AVs
induced by interaction messages. Moreover, it will allow us to get different information for
the content of V2X messages, as well as the possibility of using the ”Scenario Manager”,
with realistic driving scenes (weather conditions, geographical environments). We use the
integration of Carla and OpenCDA, as described in [VTC24], to generate V2X messages
using a specific architecture with ROS2. This setup creates a simulated V2X communi-
cation network between AV and RSU in the Carla environment. This contribution will
be detailed in chapter 4.

7. AWSIM: TIER IV inc. - https://tier4.github.io/AWSIM/
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1.5. Conclusion

1.5 Conclusion

In this chapter, we delved into the integration of AMRs within the paradigm of In-
dustry 4.0, highlighting the numerous challenges and opportunities for improving the
autonomy of a fleet of AIV with collective strategies.

On the one hand, in section 1.2, we review the current landscape of AIV integration
in the Industry 4.0. Their integration requires a shift towards decentralized intelligence,
where each vehicle can operate independently while contributing to collective goals. By
enhancing the autonomy and decision-making capabilities of individual AIV, and fostering
collective intelligence across fleets, industrial environments can achieve greater efficiency,
adaptability, and safety, particularly in dynamic and complex settings.

Main functions performed by AIVs

After this overview, we outline the main functions performed by AIVs: navigation
process (localization and perception), TA, motion planning, decision-making and control
(see Figure 1.2), as foundational to autonomous navigation. However, the increasing
complexity of industrial environments and the need for seamless integration into dynamic
systems highlight the limitations of current models. Enhancing these functions with more
sophisticated algorithms and adaptive systems is essential for improving the autonomy
and efficiency of AIVs, particularly in large-scale operations. Afterwards, we reported the
different advancements in the literature on these core functions.

In summary, obstacle avoidance is a critical component of autonomous navigation
for AIVs, encompassing a range of strategies from perception and detection to motion
planning and collision avoidance. Effective obstacle avoidance requires a holistic approach
that integrates mapping, localization, and communication between vehicles to handle both
static and dynamic obstacles. Obstacle avoidance strategies have evolved to incorporate
sophisticated techniques for detecting and navigating around obstacles. However, the
increasing complexity of industrial operations, where AIVs must navigate not only static
but also dynamic and unpredictable obstacles, exposes the limitations of existing methods.
By leveraging advanced localization techniques, sophisticated sensors, and cooperative
algorithms, AIVs can enhance their autonomy, ensuring safe and efficient navigation in
complex environments. To address these challenges, we will extend Bahnes’ algorithm
[BKH16] in chapter 2 - section 2.2, as detailed in [ARCI22; ICAE23], to better manage
the complexities of dynamic obstacle environments. The exploration of these elements
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lays a foundation for further advancements in autonomous systems, with the potential
to significantly improve the operational capabilities of AIVs in industrial settings. The
exploration of these elements lays a foundation for further advancements in autonomous
systems, with the potential to significantly improve the operational capabilities of AIVs
in industrial settings.

Cooperative perception, inspired by advancements in the automotive sector, offers
a promising solution by enhancing situational awareness through V2X communication.
Yet, integrating this into industrial AIVs requires overcoming significant challenges, par-
ticularly in terms of sensor fusion, data sharing, and interaction with non-equipped enti-
ties. The advancements in cooperative perception within the road sector, particularly for
CAVs, hold significant promise for application in industrial environments. The challenges
faced by AIVs in terms of perception, navigation, and safety share many parallels with
those encountered by road vehicles, such as sensor limitations and the need to avoid colli-
sions with VRUs. Cooperative perception enhances the ability of vehicles to understand
and respond to their environment by leveraging V2X communication, enabling them to
share critical data and reduce blind spots. This technology, crucial for road safety, has the
potential to significantly improve the autonomy and safety of AIVs in industrial settings
as well, particularly in scenarios where they interact with human workers or navigate
complex environments. The use of C-ITS standards, including awareness and percep-
tion messages like CAM, DENM, and CPM, provides a framework for these interactions,
facilitating a higher level of situational awareness and cooperation among vehicles and
infrastructure. While challenges remain, particularly in integrating non-equipped VRUs
into this system and ensuring effective data fusion, the local processing of sensor data
before transmission presents a viable solution to these issues, preserving bandwidth and
privacy. Overall, the integration of cooperative perception into industrial automation not
only enhances the performance and safety of AIVs but also aligns with broader Indus-
try 4.0 goals, paving the way for more intelligent, connected, and autonomous industrial
operations.

TA plays a critical role in optimizing the efficiency of mobile multi-robot systems, such
as AIV fleets. The taxonomy of TA provides a structured approach to assigning tasks
based on factors like the type of robots, the nature of the tasks, the modality of allocation,
and the degree of interdependence between tasks. The objectives of TA, whether focused
on cost, behaviour, reward, priority, or utility, guide the development of solutions, ranging
from optimization algorithms to market-based mechanisms. Furthermore, the complexity
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of mobile robot task planning underscores the importance of both the decomposition of
tasks and the strategic assignment to maximize system performance. However, despite
these advances, existing centralized approaches often lack the flexibility, robustness and
scalability required in dynamic environments such as Industry 4.0 or Airport 4.0. These
limitations highlight the need for decentralized methods, in particular those based on
market-based concepts, as promising routes to achieving efficient TA in autonomous and
adaptive systems. In addition, current messages that would enable standardized commu-
nication are designed for autonomous vehicles that therefore have individual goals and
not a common goal. They are therefore not adapted to the collective TA processes re-
quired in heterogeneous fleets of AIVs. To overcome these shortcomings, in chapter 3 we
present a dynamic strategy in cooperation mode with the infrastructure, proposing two
new messages for coordination and communication in TA processes within various fleets.

Another core function is energy management which is a pivotal component in the
operational success of AIVs, directly influencing both their efficiency and autonomy. While
current techniques, such as optimization algorithms and adaptive recharging strategies,
provide a solid foundation, they are often insufficient in addressing the full scope of
challenges presented by large-scale and high-demand environments. The balance between
local and global decision-making in energy management is particularly difficult to achieve,
often leading to inefficiencies or bottlenecks in the system. This calls for further innovation
in energy management strategies, including more advanced optimization techniques and
better integration with fleet-wide operations.

Moreover, considerable research attention is increasingly directed towards TA and
vehicle management, reflecting their growing significance in deploying larger fleets. Our
point of view to improve the autonomy of AIVs is to move towards decentralized solutions
with collective strategies taken by the fleet of vehicles. To increase their intelligence and
their individual and collective decision-making, AIVs need to become more cooperative
[CFK96; HS19; RAT19]. Understanding and improving these functions is crucial for
enhancing the collective autonomy and efficiency of AIVs in industrial applications. Thus,
the AIVs will be more efficient in performing the core tasks.

Collective mobile robot autonomy

In section 1.3, we explore the literature about collective mobile robot autonomy
which represents a sophisticated evolution in autonomous systems, emphasizing not only
the capabilities of individual robots but also their ability to function cohesively as a fleet.
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This section discussed the critical components of this paradigm, including mobile robot
cooperation, collective intelligence, and collective autonomy.

Mobile robot cooperation is essential for achieving seamless coordination among mul-
tiple robots. By utilizing technologies such as platooning and cooperative adaptive cruise
control (CACC), robots can work together efficiently, sharing information and synchro-
nizing their actions to achieve shared goals. The application of various communication
mechanisms, such as V2X technologies, enables robots to perform complex maneuvers
and adapt to diverse operational environments.

Building on this foundation, collective intelligence extends the concept of cooperation
by enhancing the overall intelligence of the robot fleet through collaborative interactions.
By sharing data, predictions, and decisions, the fleet collectively improves situational
awareness and decision-making capabilities. This approach not only boosts the perfor-
mance of individual robots but also optimizes the operation of the entire group, leading to
better traffic management and energy efficiency in various contexts, from road networks
to industrial settings.

The combination of mobile robot cooperation and collective intelligence highlights the
significant potential of collective autonomy. In this manuscript, we aim to enhance col-
lective autonomy for AIVs, enabling better integration and cooperation of AIVs within a
fleet. The autonomy scale defined by SAE for AVs, addresses individual vehicle capabili-
ties. However, for industrial applications involving large fleets, a new scale of autonomy
that accounts for collective performance and cooperation is necessary. This proposed
hierarchical scale ranges from basic cooperative behaviours to advanced optimization of
fleet-wide actions, including TA, obstacle avoidance, and energy management with the
use of V2X messages to be adapted for heterogeneous fleet of AIVs. By evaluating and im-
proving collective autonomy, industries can achieve greater efficiency, reduced operational
costs, and enhanced overall performance.

Methodological framework

In the manuscript, we will set up a methodological framework consisting of modeliza-
tion, simulation and experimentation of cooperative algorithms solutions to problems of
autonomy for industrial vehicles. Simulation allows the constraints and requirements for-
mulated by manufacturers and future users of AIVs to be taken into account. Simulation
provides a good framework for studying solutions to these different challenges. Therefore,
in section 1.4, we provide a comprehensive overview of simulation and experimentation
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tools employed in robotics, emphasizing the significance of robust simulation techniques
such as agent-based, neural networks, genetic algorithms and fuzzy logic simulations.
These methodologies provide a foundational understanding for developing and testing
advanced robotic algorithms in controlled, yet realistic, environments.

To effectively simulate our proposed algorithms and collective strategies, we will uti-
lize the methodology of ABMS. This framework will enable us to model the complex
interactions and behaviours within the MAS, providing a robust platform for evaluating
the effectiveness of various strategies. We will develop various multi-agent simulations
in Python, to test our solutions for various scenarios. It will give us complete control
over the development process. This is particularly important for managing communica-
tion between the various agents representing the AIVs in our simulations. This approach
offers flexible adaptation to the various aspects of AIVs management and facilitates any
adjustments required for deployment on the industrial site.

Additionally, fuzzy logic will be employed in specific contributions, particularly in
energy management scenarios (in chapter 5), where the inherent uncertainty and com-
plexity of decision-making processes can be better addressed through this approach. By
combining ABMS with fuzzy logic, we aim to create a comprehensive simulation envi-
ronment that captures both the dynamic and uncertain nature of the systems we are
studying.

Furthermore, we discuss a wide range of simulators that exist for both robotics and
AVs research employed to transition from simulation to real-world experimentation. We
focused on simulators encompassing aspects such as network communication, traffic, and
hybrid approaches. Additionally, we introduce robotics and realistic simulators developed
to train autonomous road vehicles. In summary, many simulators have limitations when
it comes to integrating comprehensive communication capabilities with realistic environ-
mental interactions. Specifically, the simulators discussed vary in their ability to simulate
complex traffic scenarios, realistic sensor data, and cooperative communication strategies
such as V2X. Although simulators like Gazebo are well-suited for robotics applications,
they lack the realism required for training autonomous vehicles. Conversely, simulators
such as SUMO and VEINS are excellent for traffic and communication simulations but
do not offer the necessary integration with advanced perception systems.

Given these limitations, we have chosen to utilize Carla Simulator, OpenCDA, and
ROS2 for our research. This combination offers the most comprehensive platform for
simulating realistic traffic environments, enabling V2X communications, and facilitating
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the development and testing of cooperative autonomy strategies for AIVs. In particular,
Carla, in conjunction with OpenCDA, will allow us to generate V2X messages and simu-
late complex driving scenarios, while ROS2 will provide the communication infrastructure
necessary for real-time interactions. This setup will be further elaborated in chapter 4.

To conclude, this thesis hence aims to propose cooperative algorithms, and strategies
to enhance various functions of AIV thereby improving the collective intelligence of a fleet
of AIVs. The various contributions of this thesis regarding collective strategies, specifically
in obstacle avoidance, TA, cooperative perception, and energy management, are detailed
in the following chapters.
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Chapter 2

COLLECTIVE OBSTACLE AVOIDANCE

STRATEGIES

2.1 Introduction

The deployment and integration of AIVs in industrial settings face several challenges,
including employee acceptance, vehicle localization, traffic fluidity, and the perception
of disturbances within dynamic environments. The current autonomy of AIVs is often
constrained by predefined trajectories and limited awareness of their surroundings. To
enhance the efficiency and safety of AIV operations, it is essential to explore strategies that
improve their autonomy through better information exchange and collective intelligence.

AIV fleets operating in complex industrial environments, such as storage areas and
production lines, must adapt to evolving traffic constraints, dynamic and often unpre-
dictable conditions. Traditional approaches, which rely on static paths and limited sit-
uational awareness, may not suffice in these scenarios. Obstacle avoidance, a critical
aspect of AIV motion control, becomes increasingly complex when multiple AIVs oper-
ate simultaneously in the same space. Effective communication among AIVs, as well as
with infrastructure, is vital for seamless coordination and obstacle avoidance. Given the
complexities of operating multiple AIVs in shared spaces, real-time information exchange
and collective decision-making are crucial.

In this chapter, we explore innovative strategies that leverage collective intelligence to
enhance obstacle detection and avoidance capabilities in AIVs. These strategies aim to:

1. Enhance adaptation to traffic constraints: Collective strategies enable AIVs
to dynamically adapt to changes in their environment, ensuring smoother oper-
ations even as conditions evolve. This adaptability is crucial for managing the
fluidity of traffic in environments like warehouses and production lines, where con-
ditions can shift rapidly.
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2. Improve decision-making: When faced with incomplete or fragmented informa-
tion, AIVs that operate collectively can make more informed decisions. By sharing
data and insights, AIVs can compensate for individual knowledge gaps and uncer-
tainties, leading to more effective obstacle avoidance and overall safety.

3. Facilitate communication: Effective communication between heterogeneous
AIVs and with surrounding infrastructure is essential for coordinated actions.

The chapter is organized as follows: section 2.2 presents a contribution of a collective
strategy to a collision detection algorithm. Then, section 2.3 proposed a resolution of
global obstacle avoidance by AIV with a collective strategy. appendix C, presents a
method for estimating the positions of AIV moving in a closed industrial environment.
Finally, section 2.4 discusses the emulation of an intersection scenario in an industrial
setting to test the proposed detection algorithm, in order to do future real-world experi-
ments to validate the effectiveness of the strategies.

This chapter is related to several publications: [ARAC24; ARCI22; ASPAI22;
ICAE23].

2.2 Contribution of a collective strategy to an obsta-
cle avoidance algorithm

As previously mentioned, the objective is to enhance obstacle avoidance for AIVs
within a fleet. One approach is to leverage existing algorithms as a foundation allowing
for iterative improvement and innovation. With this idea, we will propose to improve
an algorithm for obstacle avoidance in order to integrate a cooperative solution. The
methodology employed in this section involves developing or augmenting an algorithm,
proposing an agent-based model, and rigorously testing these solutions through simula-
tions before progressing to emulated and real-world experiments in section 2.4 of this
chapter. By following this structured approach, we aim to develop and validate enhanced
obstacle avoidance strategies for AIVs, ultimately contributing to safer and more efficient
industrial operations.

In this section, we will begin by recalling the limitations of Bahnes’ algorithm [BKH16]
and then our proposition of extension. Then, we will propose an explanation of the ABMS
used, before presenting the simulation environment and scenarios. Finally, we will analyse
simulation results before discussing them.
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This section is linked to the following publications: [ARCI22; ICAE23].

2.2.1 Algorithm improvement

The collision avoidance algorithm of [BKH16] presented in the section 1.2.3 makes it
possible to deal with the priority of different vehicles when approaching an intersection.
We will call their algorithm: the Bahnes’ algorithm throughout the manuscript.

This strategy proposes a cooperative approach for determining the priority of AIVs at
intersections through message exchange. The method requires each vehicle to know its
location and be capable of communicating with other vehicles. This collision avoidance
algorithm enables AIV to interact and cooperate using various message types.

The communication among AIVs involves three distinct message types:
— Hello_msg: used by an AIV to announce its presence position to other AIVs;
— Coop_msg: sent by an AIV before reaching an intersection to coordinate and

determine priority with other AIVs.
— Ack_msg: used by AIVs to acknowledge the receipt of a Coop_msg from an-

other AIV.
However, as previously mentioned, this algorithm does not tackle the issues of de-

tecting, communicating with, and avoiding both stationary and moving obstacles (such
as human operators). Therefore, our contribution focuses on ensuring that missions are
completed successfully without being disrupted by obstacles along the planned route,
we propose an extension to Bahnes’ algorithm. The dotted red area of the Figure 2.1
illustrates the proposed extension to Bahnes’ algorithm, which is depicted in black.

Our extension enhances the original communication protocol among AIVs by introduc-
ing mechanisms to detect, communicate, and avoid both stationary and dynamic obstacles
commonly encountered in warehouse environments. Specifically, we introduce two new
message types for collaborative perception:

1. the Obstacle_msg: sent by an AIV to other AIVs circulating in the warehouse
to indicate the perception of an obstacle,

2. the Alert_msg: sent by an AIV to alert other AIVs in the warehouse about the
presence of an unavoidable obstacle.

When an AIV detects an obstacle, it broadcasts an Obstacle_msg to nearby AIVs.
The AIV then determines whether the obstacle is dynamic. If the obstacle is dynamic,
the algorithm evaluates the urgency of the AIV’s task. If the task is urgent, the AIV
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emits an auditory signal to alert both the obstacle and surrounding AIVs. If the task is
not urgent, the AIV waits for the obstacle to clear.

For stationary obstacles, or when avoidance is necessary, the AIV decelerates and navi-
gates around the obstacle. If the obstacle cannot be avoided, the AIV sends an Alert_msg

to notify other AIVs of the risk of collisions or delays, ensuring coordinated naviga-
tion. This extension preserves the integrity of the original message types — Hello_msg,
Coop_msg, and Ack_msg — while significantly enhancing the algorithm’s robustness in
dynamic, real-world operational settings.

To further enhance the extension of Bahnes’ algorithm, the Obstacle_msg can be aug-
mented to include additional critical information. Along with indicating that an obstacle
is unavoidable, the message could also convey details such as the estimated increase in
delay (i.e., the extra cost) and the impossibility of safely crossing paths with other AIVs
in the alley. This enhanced communication could enable nearby AIVs to better assess the
impact on their routes, facilitating improved decision-making regarding rerouting, task
prioritization, and overall traffic management. Ultimately, this could contribute to a more
efficient and coordinated navigation system within the warehouse, minimizing the risk of
delays or collisions.

2.2.2 Agent-based model simulation

To explore the extension of Bahnes’ algorithm within the framework of the three
scenarios proposed by [BKH16], we establish an agent-based model.

As previously mentioned in chapter 1, section 1.4.2, agent-based simulation for
AIVs [TBS18] is the most common approach in the same way as simulations based on
discrete events or robotics software [Mac16]. AIV possess message exchange capabilities
and LiDAR systems enabling them to detect vehicles ahead.

For instance, given an AIV agent ṽi, if another AIV agent ṽj in front of it is stopped
or travelling at a slower speed, the AIV agent ṽi can detect it with its LiDAR and stop
accordingly to avoid hitting it, as shown in Figure 2.3.

We assume that individual autonomy facilitates fleet deployment and operation, how-
ever sharing some information would increase the responsiveness of each agent. Thus, in-
creasing the collective autonomy of the AIV agents would strengthen the decision-making,
and the individual autonomy of each AIV agent.
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Figure 2.1 – Improvement of Bahnes’s algorithm to deal with the correlated problem of
collision and obstacle

Agent-based model

Figure 2.2 presented the agent-based model proposed to test our collective obstacle
avoidance strategies for AIVs in simulation. The model uses color-coding to distinguish
between different classes: red represents dynamic elements, green indicates static ele-
ments, and purple is used for elements not linked to the environment.

The AIV navigates along a predefined pathway referred to as the Circuit. This Circuit

outlines the routes or pathways that AIVs follow and can vary in form depending on the
specific application context. It is a critical component of the AIV’s operational environ-
ment, guiding its movement and ensuring it adheres to a set path. This adherence is vital
for tasks such as material handling, transportation, or automated operations in industrial
and controlled settings.

The objective is to have an ABMS designed generically to test different scenarios, but
also different types of circulation plans. Thus, the Circuit model is extendable to more
concrete models, such as 4 − LaceCircuit or IndustrialCircuit. In this chapter, we will
use these two types of circuits, respectively, presented in section 2.2.3 and section
2.3.2.
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Indeed, Figure 2.2 illustrates that an infrastructure is deployed in the environment
and is composed of a circuit, and active elements such as beacons, tags and stations.
These three active elements are modelled as agents. AIV, which are also represented as
agents operating according to predefined missions defined by path on the traffic map.
However, static or dynamic obstacles (e.g. operators) may be present in the environment.

Therefore AIV agents are equipped with LiDAR to detect pedestrians, other AIVs
(dynamic obstacles) and goods (static obstacles) present in their activity area. Then,
to move in their environment and accomplish their mission, they have knowledge about
their environment through their own perception of the environment and through the
information received from other AIVs.

Moreover, they can also cooperate by exchanging information with other AIVs or even
with the infrastructure thanks to different types of standardized messages: CAM, DENM,
CPM, MCM and Acknowledgment Maneuver Coordination Message (ACK_MCM). This
allows AIVs to build up their own dynamic map of the environment. Thus they are
cooperative, pro-active and autonomous to carry out their missions without colliding
with static and dynamic obstacles.

Finally, Figure 2.2 does not detail AIV localization. This aspect of the model is
further developed and discussed in appendix C, where a computational approach is
presented for determining the AIV’s next position on the 4 − LaceCircuit based on its
current location.

Figure 2.2 – Agent-based model for AIVs obstacle avoidance
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2.2.3 Environment simulation and scenarios

When designing the initial scenarios involving AIVs, our focus was particularly on
situations that favour crossing traffic. Accounting for this characteristic led us naturally
to diagram the circulation in four loops referred to as the 4 − LaceCircuit (shown in
Figure 2.3). This configuration is specifically designed to test the augmented Bahnes
algorithm. Moreover, it allows us to launch scenarios that we consider as a benchmark
plan for comparing results in this section 2.2.

We will simulate two different scenarios. In both scenarios, four AIV agents continu-
ously circulate in the environment, moving independently (while exchanging messages to
cross intersections) and their speeds change randomly (see Figure 2.4.a). The simula-
tions are carried out using the same specifications and constraints. The only difference
is in the second scenario (Sc2), where obstacles are randomly generated on the circuit
(spatial and temporal generation).

To enhance visualization in illustrations, each AIV agent has its own color (orange,
blue, green and red). When an AIV approaches an intersection, it first detects the in-
tersection using a specific tag system (denoted as Tagi). Each intersection has its own
unique tag, allowing the AIV to identify exactly which intersection it is approaching.

For instance, in Figure 2.4.b, when the green and red AIVs approach the intersection,
they send a Coop_msg to the other AIVs. After receiving a request, the other AIVs
sends an ACK_msg to show its agreement, as shown in Figure 2.5. A priority list of
intersections known to the AIVs is then updated after all AIVs have agreed. Thus, an AIV
that receives unanimous agreement first is placed at the top of the priority list and can
therefore afford to cross. In Figure 2.5, the green AIV sends its request first, securing
agreements before the red AIV. Consequently, in Figure 2.4.b, the green AIV crosses
the intersection while the red AIV waits for its turn.
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Figure 2.3 – Simulation of LiDAR use: a) at the top of the picture: a green AIV perceives
a fixed obstacle in front of him; while waiting for the green AIV to avoid the obstacle,
the LiDAR of the blue AIV allows him to stop and keep its distance to avoid colliding,
b) the green AIV avoided the obstacle, and the blue AIV perceives, in turn, the obstacle

Figure 2.4 – Simulation of the Bahnes’ algorithm: a) on the right top side of picture two
green and red AIVs arrive at an intersection, b) the green AIV passed the intersection
after communicating with other AIVs, and the red AIV waits to cross the intersection
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Figure 2.5 – Bahnes’ algorithm used for intersection crossing corresponding to Figure
2.4

2.2.4 Simulation results

The simulations of Scenario 1 (Sc1) on the circuit 4 − LaceCircuit with four AIVs
circulating at different speeds made it possible to verify the absence of collisions when
using the extended Bahnes algorithm. We were able to measure the cost of implementing
this algorithm on the AIVs, with the objective of maximizing the number of complete laps
performed by each AIV.

Table 2.1 summarises the results:
— 31% less of complete laps for the AIV that circulates the fastest, which is the result

of the many slowdowns at very frequent intersections – nevertheless, this is still
superior to an AIV at average speed and in nominal conditions (without other AIV
on the circuit, or obstacles);

— 15% less of complete laps for an average speed, which becomes acceptable for the
implementation of anti-collision between AIVs – the cost in a number of complete
laps performed is less and the energy expenditure is much lower since the speed
variations (speed reductions then accelerations to cross the intersections) decrease
significantly compared to the AIV moving at a higher speed;

— 13% less of complete laps for a lower speed, which represents a small gain compared
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to the average speed and which means that it is not necessary that the AIVs
circulate too slowly.

AIV Velocity Number of turns / 15mn
nominal conditions

Number of turns / 15mn
anti-collision algorithm

Anti-collision
algorithm cost

AIV1 5 39 27 31%
AIV2 4 13 11 15%
AIV3 4 13 11 15%
AIV4 3 8 7 13%

Table 2.1 – Sc1: anti-collision algorithm simulation results

In Sc2, obstacles are generated randomly on the circuit (spatial and temporal gener-
ation). The LiDAR of an AIV agent can also perceive obstacles in the aisles ahead that
constrain its path. On perceiving them, it cooperates to warn other AIVs by sending an
Obstacle_msg, and then avoids the fixed obstacle by going around it, if possible, as in the
situation (see Figure 2.3 and Figure 2.4).

As discussed in chapter 1, subsection 1.2.3, we will classify the obstacles detected
by AIVs based on their size (s1 to s4) and impact on navigation as follows:

— s1 or s2: These are obstacles that, while requiring the AIV to slow down, can still
be avoided without necessitating a change in its path. Their size may vary.

— s3 or s4: These are obstacles that the AIV cannot bypass without rerouting. En-
countering such obstacles forces the AIV to turn around and find an alternative
path, with sizes that may differ.

Table 2.2 provides the results of these simulations, in a number of complete laps
performed by the four AIVs, according to varying numbers and sizes of obstacles. Given
the circuit chosen for these tests, a number of obstacles greater than ten do not seem to
make sense. On the other hand, the sizes of the obstacles are classified from 1 to 4 in
ascending order of their encumbrance on the circuit.

Table 2.2 shows that for the same number of obstacles, the impact on the number
of turns made by the AIVs will depend on the size of these obstacles. Thus, considering
three obstacles, the AIV1 will do 23 laps if the obstacles are small or medium (sizes: s1,
s2, and s3), while it will only do 19 laps if they are large (sizes: s4, s3 and s4). The
incidence is much lower on the two AIVs having an average speed, and not remarkable
for the AIV4 moving at low speed.

If we vary the number of obstacles with sizes of similar values (here four, five then
ten obstacles), the incidence only becomes slightly significant for ten obstacles. The
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probability of having ten obstacles (even a group of humans) on this small circuit at the
same time is very low, we can consider that this is a very good result.

Table 2.3 provides the values of the cost of using this algorithm extended to obstacle
avoidance by AIVs (here for four obstacles of sizes: s1, s2, s3, and s4). It appears that
only the AIV1 which circulates at the highest speed is impacted: the cost goes from 31%
with the anti-collision algorithm alone to 44% with the extension for obstacle avoidance.
For the other three AIVs, this extension of the algorithm to obstacle avoidance has no
impact.

AIV Velocity 3 obstacles
sizes [1,2,3]

3 obstacles
sizes [4,3,4]

4 obstacles
sizes [1,2,3,4]

5 obstacles sizes
[1,2,3,4,1]

10 obstacles sizes
[1,2,3,4,1,2,2,4,1,3]

AIV1 5 23 19 22 22 18
AIV2 4 11 10 11 11 10
AIV3 4 11 10 11 11 10
AIV4 3 7 7 7 7 7

Table 2.2 – Sc2: obstacles avoidance algorithm simulation results

AIV Velocity Number of turns / 15mn
nominal conditions

Number of turns / 15mn
anti-collision algorithm

Anti-collision
algorithm cost

AIV1 5 39 22 44%
AIV2 4 13 11 15%
AIV3 4 13 11 15%
AIV4 3 8 7 13%

Table 2.3 – Sc2: anti-collision and obstacles avoidance algorithm cost

We verify in these visual scenarios that the obstacles and other AIV agents are per-
ceived by each AIV agent, and consequently, they will be able to avoid collisions. There-
fore, the simulation validates the extended Bahnes’s algorithm with collision avoidance
and fixed or dynamic obstacle detection processing.

2.2.5 Discussion

Beyond the simulation context, if we wish to cross the threshold of experimentation
based on actual and cooperative mobile robots, we must take an interest in communication
standards, starting with those presented in the section 1.2.5, in the Table 1.2. They
are reported in the Figure 2.2.

It is then a question of whether it is possible to adopt the same standards in the
industry as the one developed in the C-ITS community for road vehicles (or even adapt
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the standards if it is more relevant).
In order for each vehicle in a fleet of vehicles to cooperate and provide relevant infor-

mation to the other vehicles in the fleet, it is necessary that it can locate itself accurately.
Using this condition as a springboard, we started by working on this aspect and have
proposed a method.

We will therefore develop the problem of standardized messages in the rest of this
section. The standardized cooperative messages defined by ETSI are of several types and
have been presented in the section 1.2.5. We have selected the messages resumed in the
Table 1.2: CAM, DENM, CPM and MCM.

The Bahnes’ algorithm and our augmented Bahnes algorithm can then be transformed
by replacing the messages indicated in Table 2.4:

Messages used in the
augmented Bahnes’ algorithm ETSI messages

Hello_msg CAM
Obstacle_msg CPM

Alert_msg DENM

Coop_msg / ACK_msg
no equivalent yet in the ITS standards,

but will hopefulle be replaced by
future MCM or an extension of them

Table 2.4 – Correspondence between Bahnes’ algorithm messages and ETSI messages

To explain the use of standardized ITS messages in our industrial context, we will
consider the situation described in the Figure 2.6. This figure represents a complex
intersection where multiple AIVs (AIV1, AIV2, and AIV3) are navigating their paths.
The AIVs need to communicate and cooperate effectively to avoid collisions, especially
when crossing each other’s paths. In this context, standardized cooperative messages as
defined by ETSI play a crucial role in ensuring safe and efficient navigation.

Tagi and Tagj represent key decision points at the entrance and exit of the intersec-
tion, respectively. As the AIVs approach these tags, they must make informed decisions
regarding whether to yield or proceed, based on the exchanged information with other
AIVs in proximity.

Upon approaching the intersection, AIV1 and AIV2 must coordinate to determine
the right-of-way. This coordination could involve messages that currently lack a direct
equivalent within the ETSI standards but could potentially be represented by future MCM
or an extension thereof.
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Figure 2.6 – Situation of intersection crossing by three AIVs

Figure 2.7 provides further detail on the types and sequence of standardized messages
transmitted by AIV1 as it navigates the intersection depicted in Figure 2.6.

Indeed, following the perception of the Tagi announcing the intersection, AIV1 must
send a MCM that will be broadcast in the intersection area. Depending on the MCM
received in return (from AIV2 and AIV3, for instance), AIV1 may decide to cross the
intersection or wait until the intersection is cleared. While advancing in the intersection,
AIV1 will perceive the Tagj indicating to it that the intersection is crossed. At this time,
AIV1 will send a MCM to signal any AIVs on standby that it is leaving the intersection
area (AIV2, for instance).

2.3 Global obstacle avoidance by AIV with a collec-
tive strategy

In this section, we will propose a global obstacle avoidance with shared perception.
Indeed, we will not use a local avoidance solution to improve autonomy. But rather a col-
laboration between the different vehicles of the fleet. The proposed approach is adaptable
and flexible for centralized or decentralized solutions. In other words, we are dealing with
a distributed system where each AIV decides by itself, augmented with communication
between vehicles to share information about the environment. The communication may
also go through a central supervisor before being redistributed.

The work of this section is outlined in [ASPAI22].
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Figure 2.7 – Cooperative messages used for intersection crossing. (note: In a purely
distributed scenario, infrastructure is not required)

2.3.1 Obstacle avoidance approaches: scenarios

We propose to study three approaches to obstacle avoidance by AIVs that will be
tested in the simulation. Each robot has knowledge of the environment, i.e., the position
of aisles, intersections, AIV stations, and mission points. These various important traffic
points of the circuit will be called nodes in the following, and are identified by respective
numbers shown in Figure 2.8.

In the first approach (Strategy1), agents do not have the ability to re-plan a route
and change their route when faced with an obstacle.

In the second approach (Strategy2), AIV can change routes and plan a new route
when an obstacle is detected, but they do not cooperate with other AIVs. This means
that vehicles will enter routes where obstacles are present and will have to change their
route, even though another vehicle has already perceived this. They are able to calculate
the path to their destination.

The path-planning algorithm chosen for these experiments is Dijkstra. The objective
is not to optimize a path planning algorithm (each AIV agent having to execute the same
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algorithm) but to use an efficient algorithm to measure the performance of a collective
strategy compared to an individual approach in carrying out missions in an industrial
environment.

The last approach (Strategy3) will be a collective strategy upon detection of an ob-
stacle. This strategy is established according to two points of view:

— The vehicle detects an obstacle, which determines the level of obstruction. Then,
it communicates the description (position, level of obstruction, type – static or
dynamic) of the obstacle to the other vehicles. It can react according to its static
or dynamic type to avoid it if possible, or it can replan another path to reach its
objective and accomplish its mission. This process is detailed in Algorithm 1.

— The vehicle receives information about an obstacle in the environment. It first
tries to determine whether the obstacle is on its path to accomplishing its mission.
If this is the case and the obstacle is obstructing its planned path, it can replan
its route. If the obstacle can be avoided, it can act and anticipate this static or
dynamic obstacle by arriving in the vicinity of the received position of the obstacle.
This improves the safety of the area and prevents accidents. This step is described
in Algorithm 2.

Algorithm 1: AIV detects an obstacle ahead
Input : AIV attributes, lidar function, communication

1 if AIV detects an obstacle then
2 Determine level of obstruction
3 Send message to other AIVs (obstacle, position, obstruction level)
4 if Obstacle is bypassable then
5 Bypass obstacle (static or dynamic)
6 else
7 if Obstacle is static then
8 Recalculate path to continue its mission (e.g., Dijkstra algorithm)
9 else

10 Slow down and increase caution (dynamic obstacle: pedestrian, etc.)
11 Recalculate path to continue its mission (e.g., Dijkstra algorithm)
12 end
13 end
14 end
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Algorithm 2: AIV receives an information about an obstacle
Input : AIV attributes, lidar function, communication with other AIVs

1 if Obstacle is on its path then
2 if Obstacle is bypassable then
3 Bypass obstacle (static or dynamic)
4 else
5 if Obstacle is static then
6 Recalculate path to continue its mission (e.g., Dijkstra algorithm)
7 else
8 Slow down, increase caution (dynamic obstacle: pedestrian, etc.)
9 Recalculate path to continue its mission (e.g., Dijkstra algorithm)

10 end
11 end
12 end
13 Continue its path and its mission

2.3.2 Environment simulation and setting up the experiments

The environment chosen to test the different approaches is the warehouse presented
by [TBS18], referenced as IndustrialCircuit in Figure 2.2. This specific circuit includes
several intersections, where vehicles can arrive from different sides like in a warehouse.
Thus, this kind of circulation plan provides the different characteristics of an industrial
environment allowing us to conduct simulated experimental tests in accordance with re-
alistic scenarios of an industrial context.

The directions of circulation have been adapted for our experiments and are identified
in Figure 2.8. Five AIV agents are integrated into this environment corresponding to
the five parking spaces available in this environment. AIVs agents must perform missions
in the environment shown in Figure 2.8. A mission consists of travelling from its car
park to a storage point and back to its car park.

Thus, the AIVs agents applying the collective intelligent strategy has two route calcu-
lations to perform with the Dijkstra algorithm. The first one is to calculate the shortest
path to the storage point. The second one is to calculate the shortest route back to their
assigned parking space.

The costs in distance between the different nodes (denoted as ni) of the circuit have
been chosen and applied to favour certain directions of traffic. For example, vehicles
should go from n14 to n6, which has a cost of 10, rather than to n5, which has a cost of
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Figure 2.8 – IndustrialCircuit diagram

Figure 2.9 – Oriented graph of the IndustrialCircuit

40. These costs between the different nodes are shown in the directed graph in Figure
2.9. These costs are used by Dijkstra’s algorithm to find the path that costs the least
distance, and therefore the fastest.

To simulate these different experiments, we implemented a graphical application with
different functionalities. The different classes presented in Figure 2.2 have been imple-
mented in Python from scratch. Its interface is shown in Figure 2.10. In the central

103



Chapter 2 – Collective Obstacle Avoidance Strategies

part, we have the representation of the warehouse presented by [TBS18], which we have
adapted in Figure 2.8. The different nodes present in Figure 2.9 and Figure 2.10
are represented by white squares in the interface. The vehicles are visualised by small
colored circles, and the obstacles are colored black with different sizes corresponding to
the obstruction levels in the aisle.

The functionalities proposed by our application (Figure 2.10) are described in ap-
pendix B - section B.3. For instance, in Figure 2.10, an avoidable obstacle with a
size s2 in n6 is present, and an obstacle obstructs the whole passage with a size s4 in n8.
The size of the obstacle in the interface corresponds to its obstruction level.

These different approaches were detailed in subsection 2.3.1. Strategy1, therefore,
does not allow the agents to use Dijkstra’s algorithm. Strategy2 does, and Strategy3
allows agents to communicate with each other about the description of a perceived ob-
stacle.

Figure 2.10 – Application interface to simulate missions in the warehouse environment

The three approaches were tested in six different experiments. Each experiment cor-
responded to an obstacle completely obstructing an aisle on one of the six nodes: n4,
n5, n6, n7, n8 and n9 shown in orange in Figure 2.8. During these six experiments,
the AIV agents had to perform one of three missions consisting of going from the car
park to one of the nodes n13, n14 and n15 randomly chosen by the supervisor, and then

104



2.3. Global obstacle avoidance by AIV with a collective strategy

returning to their parking place. They were equipped with one of the three approach
capabilities described in subsection 2.3.3. That is, three experiments were performed
with Strategy1, Strategy2 and Strategy3 with an obstruction at the same node ni to
compare the approaches.

The performance indicators that were used to define the efficiency and performance
of these approaches are:

1. The successful completion of all missions assigned to each agent. This parameter
allMissionsCompleted is True if all agents have completed all their assigned mis-
sions, and False if any missions remain incomplete. It is defined as in Equation
(2.1).

allMissionsCompleted =

True if nbCompletedMissions = totalMissionsAssigned

False otherwise
(2.1)

2. The cumulative distance travelled by all agents to complete the assigned missions:
totalDistanceTravelled. It is expressed as in Equation (2.2) for five agents,
where:
— N is the number of agents (in this context, N = 5).
— nbMissionsi is the number of missions assigned to agent i.
— dij is the distance travelled by agent i to complete mission j.

totalDistanceTravelled =
N∑

i=1

nbMissionsi∑
j=1

dij (2.2)

3. The sum of costs - the overall time is taken to complete the various tasks:
TotalCompletionT ime (see Equation (1.1) formalised in subsection 1.2.4).

Distance and time are performance indicators that were chosen because they are
strongly related to the energy used by an AIV. Thus, this indicates the energy impact of
the different approaches.

2.3.3 Experiments results

Table 2.5 summarises the different results of the agents in the six experiments ac-
cording to Strategy1, Strategy2 or Strategy3. Strategy1 does not allow the agents to
complete all the missions, which is explained by the fact that they are not able to recalcu-
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late their routes. Thus, if any agent was blocked by an obstruction on a node, it remained
without the ability to react and the agents’ overall mission failed.

allMissionsCompleted
Strategy number
/ Obstacle node n4 n5 n6 n7 n8 n9

Strategy1 False False False False False False
Strategy2 True True True True True True
Strategy3 True True True True True True

Table 2.5 – Completed missions in relation to the strategy number of agents

Conversely, Strategy2 and Strategy3 applied by the agents allowed in both cases to
fulfil all the missions thanks to their ability to adapt and to plan a new route (with
the Dijkstra algorithm) when encountering an obstacle obstructing a path. The distance
and overall execution time to complete all the missions have therefore been quantified in
Table 2.6 and Table 2.7 respectively.

totalDistanceTravelled
Strategy number
/ Obstacle node n4 n5 n6 n7 n8 n9

Strategy2 600 740 660 660 740 755
Strategy3 600 700 640 660 710 715

Table 2.6 – Total distance travelled by agents in relation to the strategy number

Total execution time: TotalCompletionT ime
Strategy number
/ Obstacle node n4 n5 n6 n7 n8 n9

Strategy2 489,75 677,56 521,23 559,59 582,97 567,52
Strategy3 482,14 662,82 456,60 542,04 466,35 470,40

Table 2.7 – Total execution time to carry out the missions in relation to the strategy
number

The analysis that emerges is that Strategy3 allows the agents to travel less distance
in 4 out of 6 experiments and allows them to complete the missions more quickly in all
six experiments.

The cooperative perception allows the agents to not go directly to the obstacle if it
is on their way, but to redefine with the help of Dijkstra another path to reach their
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goal. Thus, logically, this collaboration takes precedence over the individual strategy, and
communication in a fleet of AIVs thus increases their autonomy and their ability to adapt
to new situations. Over the six experiments, there is a 3% gain in overall distance and a
9% gain in time for the whole fleet of AIVs. This cooperative perception is an essential
basis for a future collective global strategy for the sharing and organisation of distributed
missions within a fleet.

2.3.4 Discussion

The comparison of the three approaches evaluated using distance, execution time and
whether or not a mission has been successfully achieved, showed that it is essential that
vehicles have the ability to re-plan their routes while necessary. In addition, the last
approach, which allowed agents to communicate the description of perceived obstacles,
allowed for gains in distance and execution time of overall missions. Indeed, it allows
AIVs to avoid traffic around an area where a static or dynamic obstacle (human operator,
for instance) is present in an aisle. It also allows operators or other robots to be safe in
that area: for example, to remove a static obstacle.

In the context of Industry 4.0, mobile robots need to become increasingly autonomous
to intelligently avoid obstacles. We explored the potential impact of cooperative percep-
tion among the vehicles of a fleet during a mission. We aim to elevate collaboration to a
higher level, allowing for mission sharing and reorganization in a distributed manner. We
will see our proposition for this type of collective strategy in the chapter 3.

This study already shows the interest in collaboration to increase the collective and
individual efficiency of the vehicles in a fleet. The perspectives that emerge from this
contribution are to increase the work of the analysis with other performance indicators,
but especially more experiments. Indeed, we can define several missions in a row by robots
with several obstacles obstructing the lanes at different places.
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2.4 Preparation of real experiments of an intersec-
tion scenario

In this section, our objective is to transition from simulated obstacle avoidance strate-
gies to real-world experiments. Before proceeding to physical experiments, an advanced
simulation step is necessary: emulating robots in Gazebo using ROS2. This step is crucial
for validating our approach.

We aim to verify Bahnes’ algorithm utilizing ETSI messages, as discussed in section
2.2.5 and particularly, shown in Table 2.4. CAM, DENM and CPM are important ETSI
messages standardized. Therefore, we will propose a model of these messages adapted to
the industrial context which has different constraints than the road sector, using the
ROS2 framework. Following this, we will outline the experimental context and detail the
emulation settings. Then, we will describe the communication setup between the robots.
Furthermore, we will analyze the results within this emulation scenario. Finally, we will
discuss the implications of MCM and their possible applications from an experimental
perspective.

This section transcribes the work presented in [ARAC24].

2.4.1 Representation of ETSI messages for the industrial con-
text

The purpose of Hello_msg proposed by Bahnes corresponds to CAM. This is a message
sent by the vehicle to indicate its position in real-time. We propose a model for the
industrial context in Table 2.8 and its associated implementation as a message in ROS2
in Table 2.9.

CAM
ItsPduHeader

Cooperative
Awareness
Message

GenerationTime

CAM Parameters BasicContainer
(CurrentPosition + StationType)

Table 2.8 – Representation of CAM Message for the industrial context
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CAM

ItsPduHeader its_header
uint8 protocol_version

uint8 message_id
CAM = 1

DENM = 2
CPM Message = 3

MCM = 4
ACK_MCM = 5
uint32 station_id

uint16 generation_time

StationType station_type

uint8 value
UNKNOWN = 0

PEDESTRIAN = 1
AIV = 2

BEACON = 3
float64[] current_position

Table 2.9 – Modelization of CAM in ROS2

The alert message we proposed for the simulation of the augmented Bahnes algorithm
will be implemented using the DENM. This can be of 3 different types: TRIGGER,
UPDATE and TERMINATE (message_type in Table 2.11):

— TRIGGER: The initial alert message issued when an event is detected.
— UPDATE: A message used to update information related to the initial alert,

providing additional or revised data.
— TERMINATE: A message indicating that the alert is no longer active. It

contains the cause and sub-cause of the alert, which are specified in the
SituationContainer block of the message (Table 2.10).

Several alert message codes have been transposed from the standard for our exper-
iments such as Collision_RISK with sub-causes associated with this code such as a
longitudinal, lateral, intersection-related or vulnerable user collision risk (modelling of
SituationContainer in Table 2.11).

Augmented Bahnes algorithm allows vehicles to take obstacle detection into account.
This augmentation has seen the arrival of a new message: Obstacle_message presented
in section 2.2. CPM defined by ETSI has the same objective: inform vehicles in the
same geographical area of the presence of pedestrians, obstacles, etc. The study [SBL19]
reported the architecture of CPM. They are structured with a header containing the
general information of a message, and a body specifying the information related to the
detected element. The latter is divided into 3 parts:
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DENM

ItsPduHeader

Decentralized
Environmental

Notification
Message

GenerationTime

DENM Parameters

ManagementContainer
(StationType + DetectionTime +

Distance + ValidityDuration)
SituationContainer

(CauseCode + SubCauseCode + InformationQuality)

Table 2.10 – Representation of DENM for the industrial context

DENM

ItsPduHeader
its_header

uint8 protocol_version
uint8 message_id

CAM = 1
DENM = 2
CPM = 3
MCM = 4

ACK_MCM = 5
uint32 station_id

uint8 message_type
TRIGGER = 1
UPDATE = 2

TERMINATE = 3

StationType
station_type

uint8 value
UNKNOWN = 0

PEDESTRIAN = 1
AIV = 2

BEACON = 3

ManagementContainer
management_container

uint64 detection_time
float64 distance

uint32 validity_duration (seconds)

SituationContainer
situation_container

CauseCode
cause_code

CauseCode
sub_cause_code

uint8 value
TRAFFIC_CONDITION = 1

ACCIDENT = 2
SLOW_AIV = 26

COLLISION_RISK = 97

UNAVAILABLE = 0
LONGITUDINAL_COLLISION_RISK = 1

CROSSING_COLLISION_RISK = 2
LATERAL_COLLISION_RISK = 3

INVOLVING_VULNERABLE_USER = 4
uint8 information_quality

UNAVAILABLE = 0
LOWEST = 1
HIGHEST = 7

Table 2.11 – Modelization of DENM in ROS2

110



2.4. Preparation of real experiments of an intersection scenario

— station data and CPM management: information on the ITS station trans-
mitting the message (position, heading)

— sensor information: details of on-board sensors (number, range, aperture angles)
— perceived objects: list of relevant objects detected (relative position and speed,

dimensions, etc.)
Our CPM-inspired adaptation for the industrial context is shown in table 2.12 and

our ROS2 implementation is modelled in table 2.13.

CPM

ItsPduHeader

Collective
Perception
Message

GenerationTime

CPM Parameters

BasicContainer (CurrentPosition + StationType)
SensorInformationContainer

(type + confidence)
PerceivedObjectContainer

(objectID + distance + acceleration + yawAngle)
NumberOfPerceivedObjects

Table 2.12 – Representation of CPM for the industrial context

2.4.2 Experimentations context and settings

In our experimental context, we use four Turtlebot3 "burger" robot named robot1,
robot2, robot3 and robot4, as our representation of AIVs. These robots are equipped with
different components as described in Figure 2.11 and use a Raspberry Pi and the ROS2
framework.

Before simulating the Bahnes’ algorithm or other cooperative algorithms with stan-
dardized messages with the ROS2 framework and Gazebo, we need to set up the task
assignment for AIVs to implement robot control and movement utility related to the
notion of tasks/missions. We have assumed that the tasks are known and therefore con-
figured in a file with the destination of each robot for each task. The destinations where
the robots must perform tasks are represented by PositionAction which is (x, y) coordi-
nates relative to the 2D world simulated in Gazebo. Our robotic architecture is similar
to that used by [TCN21], a ROS2 toolbox for cooperative robotics.

That is, we have a layer to guide and a layer to plan the destinations of the robots. In-
deed, each robot is associated with a planner_client node which sends the PositionGoal

related to the destination of the task associated with the robot. Then, the planner_server

node allows us to standardize this destination point which it publishes to the goal topic
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CPM

ItsPduHeader its_header
uint8 protocol_version

uint8 message_id
CAM = 1

DENM = 2
CPM = 3
MCM = 4

ACK_MCM = 5
uint32 station_id

uint16 generation_time

StationType station_type

uint8 value
UNKNOWN = 0

PEDESTRIAN = 1
AIV = 2

BEACON = 3
float64[] current_position

SensorInformation sensor_information

uint8 type
UNKNOWN = 0

LiDAR = 1
uint8 confidence
UNKNOWN = 0

LOW = 1
MEDIUM = 2

HIGH = 3

PerceiveObjectContainer perceive_object

uint8 objectID
UNKNOWN = 0

PEDESTRIAN = 1
AIV = 2

OBJECT = 3
float64[] distance

float64[] acceleration
float64[] yaw_angle

Table 2.13 – Modelization of CPM in ROS2

associated with the robot. Afterwards, the guidance layer will subscribe to this topic to
control the robot until it reaches its mission position. Once the robot has reached its
destination, the odometry server sends feedback to the planner_client, which can reply
to the next PositionAction to the planner_server.

The communication between the different nodes for the control of robot1 for example
is shown in Figure 2.12. Once the tasks have been assigned and the robots have been
controlled, the robots must be able to communicate. This will allow the exchange of
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Figure 2.11 – Gazebo Simulation environment for experimentations

information on their positions, their vision of the environment, or their trajectory intention
in order not to collide with each other or with obstacles.

Figure 2.12 – Nodes and topics representation for robot1 for path planning
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2.4.3 Communication

In order to implement algorithms for collective cooperation between autonomous ve-
hicles, we have implemented the different standardized messages presented in section
2.4.1. The implementation of those messages in ROS2 will allow robots to exchange
these types of messages through topics.

The turtlebot3_position_control node of a robot allows it to control its speed and
orientation towards its destination point defined by the /goal topic as explained in section
2.4.2. This node will also allow to exchange messages related to its observations of the
environment thanks to its LiDAR. We have defined an observation distance and a safety
distance. When the LiDAR detects something corresponding to the observation distance
or less it publishes a CPM message in the topic corresponding to the robot with the
related information. Similarly, if it detects something at a distance less than its safety
distance, it sends an alert message, i.e., a DENM with the information associated with the
DENM topic. This process of subscribing and publishing messages similar to all robots
is modelled in Figure 2.13 using robot1 as an example.

Figure 2.13 – Process of publishing/subscribing topics for position_control node of each
robot

CAM are published in CAM topics similar to CPM and DENM. They are standard-
ized using information from the robot’s odometry sensor. This information published by
one robot is retrieved by all other robots in the manner of a broadcast exchange. The
architecture has been implemented so that each robot has an exchange_messages node
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which allows it to subscribe to all the message topics of the other robots, i.e., CAM, CPM
and DENM in our current experiment. These exchanges are modelled in Figure 2.14 for
two robots, but the process is similar regardless of the number of robots.

Figure 2.14 – Nodes and topics representation for exchanging messages

2.4.4 Results

Before actually experimenting with the strategic cooperation of the robots to avoid
real collisions, we tested a simple scenario in a Gazebo simulation. Each robot was given
the task of crossing the intersection shown in Figure 2.11, and they were asked to go to
the PositionGoal in front of them.

In this intersection scenario, the robots broadcast their positions using CAM while
moving towards the intersection. The LiDAR of robot2 detects an obstacle and sends
a CPM to share its information. But as we have not implemented obstacle avoidance
control, it will stop at the safety distance of the LiDAR and send a DENM with a risk
of longitudinal collision. Similarly, robot3 and robot4 did not encounter any problems on
their paths but when crossing the intersection, their LiDAR detects at a safe distance the
other robot with an angle of less than 45°. They will immediately send a DENM of risk
of longitudinal collision as well.

It can be noted that unlike robot2, robot3 and robot4 did not send a CPM before,
because, at the moment of the intersection, they were already too close. robot3 and robot4
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stop to avoid collision. Our goal was to find a cooperative solution for AIVs to avoid
collisions and obstacles, but also to avoid unnecessary braking and stopping to optimize
energy and speed. As a first step, these results show that our cooperative strategy allows
the robots not to collide with each other or with obstacles.

Our results of communication between the different robots are therefore validated in
the Gazebo simulation environment. Nevertheless, in order to be able to find a cooperation
to cross the intersection it would be necessary to implement the cooperative messages
presented by the augmented Bahnes algorithm.

2.4.5 Discussion

For this purpose, we previously discussed a service not yet implemented by ITS WG1
and ETSI: MCM. We then propose in the same way a representation for the industrial
context in table 2.14 and a modelling of the message for ROS2 in table 2.15. This
message would share the information that one wishes to cross an intersection by indicating
ManeuverContainer information, that is id of the intersection, as well as the direction
one would take.

Thus, if we assume that the vehicles know the positions of the different intersections,
or are able to locate them, can send an MCM to the other robots indicating their planned
trajectory in the intersection. The robots concerned by the request will be able to respond
to an ACK_Message indicating their agreement or disagreement with the request. The
industrial representation of this message and the ROS2 modelling we propose are detailed
in tables 2.16 and 2.17.

This discussion around MCM to enable vehicle cooperation when approaching an
intersection raises an issue: if several vehicles request to cross the same intersection at
the same time, or if one vehicle indicates that it does not agree to the request of another
vehicle, a deadlock situation arises. There are three possibilities to manage this concern:

— The first is the idea of strong cooperation: characterized by agreement-based
cooperation. Here, all vehicles automatically agree with one another’s requests,
ensuring that no conflicts arise and coordination is seamless. This method relies
on a predefined consensus that avoids the need for negotiation.

— The second is to set up a supervisor who can arbitrate in situations of conflict.
This involves centralized arbitration, where an external entity decides which vehicle
should proceed, thereby resolving the deadlock. However, this method moves away
from a fully distributed architecture, as it depends on a central decision-maker.
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— Finally, the last solution is to incorporate an algorithmic layer that is known to
all the robots, and which therefore serves as a decisive judgment. This solution
represents negotiation-based cooperation with algorithmic resolution. In situations
of disagreement, the algorithm would evaluate factors such as task priority and
urgency, guiding all vehicles to reach the same decision autonomously. For example,
if one robot disagrees with the crossing of another, it is then the level of priority
and urgency of the task between the two robots that will decide who will be the
first to cross. This maintains the principle of strong collaboration while allowing
the fleet to resolve conflicts through a shared, systematic process.

These solutions, related to how MCM can be utilized to handle conflicts at intersec-
tions, align with Level 3 of autonomy from a collective perspective for a fleet of AIVs (as
detailed in chapter 1 - subsection 1.3.3). At this level, vehicles engage in collective
decision-making and task allocation, using communication protocols such as V2X mes-
sages (including MCM). The vehicles make coordinated decisions on maneuvers based on
shared priorities and urgency, ensuring effective and coordinated actions across the fleet.

MCM

ItsPduHeader

Maneuver
Coordination

Message

GenerationTime

MCM Parameters
BasicContainer

(CurrentPosition + StationType)
ManeuverContainer

(ReferenceIntersection + Direction)

Table 2.14 – Representation of MCM for the industrial context
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MCM

ItsPduHeader its_header
uint8 protocol_version

uint8 message_id
CAM = 1

DENM = 2
CPM = 3
MCM = 4

ACK_MCM = 5
uint32 station_id

uint16 generation_time

StationType station_type

uint8 value
UNKNOWN = 0

PEDESTRIAN = 1
AIV = 2

BEACON = 3
float64[] current_position

ManeuverContainer maneuver uint8 id_intersection
uint8 direction

STRAIGHT = 0
LEFT = 1

RIGHT = 2

Table 2.15 – Modelization of MCM in ROS2

ACK_MCM

ItsPduHeader

Acknowledgement
Maneuver

Coordination
Message

GenerationTime

ACK_MCM Parameters

BasicContainer
(CurrentPosition + StationType)

DestinaterContainer
(StationType + StationID)

ManeuverContainer
(ReferenceIntersection + Direction)

AckResponse

Table 2.16 – Representation of ACK_MCM for the industrial context
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ACK_MCM

ItsPduHeader its_header
uint8 protocol_version

uint8 message_id
CAM = 1

DENM = 2
CPM = 3
MCM = 4

ACK_MCM = 5
uint32 station_id

uint16 generation_time

StationType station_type

uint8 value
UNKNOWN = 0

PEDESTRIAN = 1
AIV = 2

BEACON = 3
float64[] current_position

StationType station_type_destinater

uint8 value
UNKNOWN = 0

PEDESTRIAN = 1
AIV = 2

BEACON = 3
uint32 station_id_destinater

ManeuverContainer maneuver uint8 id_intersection
uint8 direction

STRAIGHT = 0
LEFT = 1

RIGHT = 2
bool ack_mcm_response

Table 2.17 – Modelization of ACK_MCM in ROS2

2.5 Conclusion

In an Industry 4.0 context, many actors cross paths in different areas of a warehouse
or a factory: vehicles, operators and obstacles (objects that fall or are left in the aisles
may appear). Obstacle avoidance which is part of the navigation process of robots can
be improved by collective strategies.

A specific state-of-the-art on used message-based communication protocol between
vehicles to prioritise the passage through an intersection allowed us to identify Bahnes’
algorithm [BKH16], well representative of the cooperative strategies developed in the field.
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Developing the autonomy of AIVs requires a relevant working method. The identifica-
tion of reusable or adaptable algorithms to the various problems raised by the increase in
the autonomy of AIVs is not sufficient, it is also necessary to be able to model, simulate,
test and experiment with the proposed solutions. Simulation is essential since it allows
both to adapt and validate the algorithms, but also to design and prepare the experiments.

In this chapter, we introduced an improved version of Bahnes’ algorithm to handle both
stationary and dynamic obstacles. Then, we proposed an ABMS to help develop and test
scenarios simulation. We conducted a first experiment on the "4-Lap Circuit" to verify
the augmented Bahnes’ algorithm before discussing the improvement of the message-
based communication proposed with ETSI messages. The improved Bahnes’ algorithm
corresponds to "Level 2" on our proposed autonomy scale from a collective perspective
for a fleet of AIVs (as detailed in subsection 1.3.3). This level is characterized by
interoperability and cooperative awareness among heterogeneous robots. By enhancing
obstacle detection and avoidance, this contribution advances the capabilities of AIVs to
share information about obstacles and therefore help to create dynamic environmental
maps, which is essential for seamless operation in a collective context.

Afterwards, we proposed a global obstacle avoidance strategy using shared percep-
tion also falls under "Level 2" on the collective autonomy scale. We showed with three
different approaches, the impact of the cooperation between AIVs. Accurate, real-time
position estimation of AIVs is crucial for these strategies to work, as it helps each vehicle
make better decisions and improves the overall system. To address this, we propose in
appendix C, a method for estimating AIV positions, as accurate positioning is crucial
for the success of these collective strategies.

Then, we adapted certain ETSI standard messages (CAM, DENM, and CPM) for the
Industry 4.0 context, which are crucial for achieving "Level 3" on the collective autonomy
scale. We tested these communication protocols using Turtlebot3 “burger” robots in the
ROS2 framework and simulated a simple intersection scenario in Gazebo. By introducing
and simulating MCM, ACK_MCM, and other messages in this context, our work enables
AIVs to engage in collective decision-making and task allocation. This represents a sig-
nificant advancement towards higher autonomy, where the fleet can collaboratively plan
maneuvers and optimize their actions.

As an extension of this latter work and in order to perform real experiments, we dis-
cussed these results as well as a cooperation message named MCM. This implementation
perspective would allow us to validate the augmented Bahnes algorithm with the exchange
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of cooperation messages to describe one’s intention to cross an intersection.
To conclude, this chapter opens the door to more advanced global collective strategies

with the possibility of the allocation, scheduling and distribution of tasks between them
in real-time after the perception of an obstacle. Furthermore, the tracking of obstacles
by the robots, or assisted by the infrastructure, i.e. a cooperative perception, would also
optimize the efficiency of the fleet in carrying out these missions.
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Chapter 3

COLLECTIVE TASK ALLOCATION

STRATEGIES

3.1 Introduction

In the context of Industry 4.0, effectively managing fleets of AIVs is essential for
enhancing productivity and addressing the complexities of contemporary industrial work-
flows. These AIVs are often required to execute tasks that are subject to specific time and
priority constraints. To ensure that all tasks are completed effectively, it is crucial to de-
velop and implement sophisticated Task Allocation (TA) strategies that enable seamless
operations across the entire fleet.

Moreover, the autonomy of an AIV fleet can be further increased if the AIVs can
collectively manage and optimize the TA problem: that means they collectively assign
the set of tasks to the set of AIVs with a high level of efficiency (for instance, minimization
of energy costs or mission completion time) [DVD20].

This chapter explores collective TA strategies, emphasizing the role of V2X cooper-
ation in enhancing the coordination and communication among AIVs. The concept of
“collective” in this context refers to the collaborative efforts of multiple AIVs working
together towards common goals, such as completing tasks in an efficient and timely man-
ner. By adopting a collective approach, AIVs can share information, dynamically adjust
their actions and optimize task distribution across the fleet. This collective strategy is
especially beneficial in complex industrial environments where tasks are interdependent,
and the success of one AIV often impacts the performance of others.

Firstly, in section 3.2, we propose a dynamic TA strategy in V2X cooperation mode
with the infrastructure. It lays the groundwork by introducing a formal TA model to facil-
itate collective TA among AIVs. It highlights the importance of effective communication
and coordination, which are essential for AIVs to collaborate and share environmental
information. Although existing ETSI messages support certain types of vehicular com-
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munication, they do not cater to the collective TA processes required in Industry 4.0. To
address this gap, we propose new standard message types that enable AIVs to cooperate
more effectively in TA processes, ensuring that all tasks are completed according to their
constraints.

Then, in section 3.3, we apply the proposed TA strategies to a practical scenario
involving a fleet of homogeneous mobile robots operating in a warehouse environment.
These robots are tasked with loading and unloading goods, and the simulation is designed
to test the TA processes in dynamic, real-world conditions. Building on the ABMS frame-
work from the previous chapter, this section verifies the effectiveness of the collective TA
strategies by analyzing the performance of the fleet in various scenarios. The simulation
results provide valuable insights into how AIVs can dynamically adjust their tasks and
re-allocate them in response to changing conditions.

Finally, section 3.3 addresses a critical challenge in collective TA: the potential pres-
ence of faulty agents within the infrastructure, such as an AIV, a camera transmitting
incorrect messages due to sensor miscalibration or other issues. Specifically, we focus on
the problem of a faulty camera within the infrastructure, which could lead to incorrect TA
and disrupt warehouse operations. This section explores a solution designed to promptly
detect and mitigate the impact of such faults in an example scenario, ensuring that the
integrity and efficiency of the warehouse environment are maintained even in the presence
of faulty equipment. By addressing these challenges, we aim to enhance the robustness
and reliability of collective TA strategies in industrial settings.

In summary, this chapter aims to advance the understanding and implementation
of collective TA strategies in industrial settings. By leveraging V2X cooperation and
decentralized decision-making, the proposed strategies enable AIV fleets to operate more
efficiently, adapt to dynamic environments, and achieve greater overall productivity.

This chapter is related to the work published in [ICAE24].

3.2 Dynamic TA strategy in V2X cooperation mode
with the infrastructure

In the realm of Industry 4.0, the deployment of AIVs within a fleet is a pivotal com-
ponent in optimizing operational efficiency and productivity. These AIVs are tasked with
executing a variety of assignments that are defined by specific time and priority con-
straints. The primary objective of the fleet is to ensure the completion of all tasks while
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adhering to these constraints, thereby ensuring seamless operations.
As previously mentioned, we will propose a formal TA model which will serve as a

foundation throughout this chapter. However, in order to define a collective strategy for
TA, effective communication is crucial for AIVs to coordinate their activities and share
information about their environment. Some standard ETSI messages exist, but no one
for the collective TA process. This seems logical because in the road field, AV do not
have a common objective as in Industry 4.0. Consequently, in subsection 3.2.1, we will
propose two types of standard messages to cooperate between them for TA process. Then,
we will define in subsection 3.2.3 a proposed solution for the tasking process in the way
of decentralization for AIV with a collective strategy.

3.2.1 Formal TA problem

The common objective of the AIVs belonging to the same fleet is to perform all the
tasks assigned to them while respecting a certain number of time and priority constraints.
In this context, given T a set of tasks to be performed, a task τ ∈ T is defined by the
following tuple (Equation (3.1)):

τ =< τid, κ, pstart, pend, tstart, tend, taupr, σ > (3.1)

Where τid is the task identifier; κ is the task category (for example in a warehouse,
move goods, i.e.: “load the goods at a starting point to bring it to an ending point”);
pstart is the task starting point; pend is the task ending point; tstart is the task starting
time; tend is the task ending time; taupr is the task priority; and σ is the task status.

A set of n tasks can be grouped to form a mission m defined as follows (Equation
(3.2)):

m =< τ1, ..., τn > (3.2)

Given two sets V and T , such that V = {v1, ..., vn} is a set of n AIVs and T =
{τ1, ..., τm} is a set of m tasks, we define the two following functions:

— the function COST which allows to calculate the cost ci,vj
∈ C of performing a

task τi by an AIV vj (Equation (3.3));
— the function ALLOCATION which allows to allocate each task τi ∈ T to an AIV

vj ∈ V , depending on the cost ci,vj
(Equation (3.4)).
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COST : T, V → C (3.3)

ALLOCATION : T, V, C → A (3.4)

3.2.2 Communication

In order to successfully perform all assigned tasks, AIVs must coordinate and there-
fore cooperate and share information about their activity and their perceptions of the
environment. In our works in the chapter 2, AIVs used ETSI messages presented in
the Table 1.2. Indeed, AIVs had the possibility to communicate about their localization
with CAM and communicate about perceived obstacles with CPM and DENM to prevent
an unexpected event.

Another type of V2V communication could be useful to improve cooperation between
AIVs in carrying out their tasks. Indeed, if an AIV finds itself blocked by obstacles,
broken down or generally unable to perform the task in progress, it sends a DENM by
default. However, It could then be useful for it to send a cooperative message to delegate
the realization of his task with the necessary information.

We therefore propose a new Cooperative Task Message (CTM), which would allow in
particular delegating a task. [Haf+13] propose a protocol with four new types of messages,
including the Cooperative Response Message (CRM) for transmitting the response to a
request for cooperation. The AIV agents, modelled in the simulation, will use this type
of message in feedback from the CTM to signify their agreement to take charge of a task
for example.

3.2.3 Tasking process

We will define a TA process based on a market model type solution [HK13]. The
flexibility of this solution allows a good adaptation for a decentralized system. Its process
is depicted in Figure 3.1 including these following key moments:

— task definition and assignment
— task clustering
— auction process
— optimization and task (re-)allocation

126



3.2. Dynamic TA strategy in V2X cooperation mode with the infrastructure

Task definition and assignment

Firstly, tasks are usually defined by an organizational actor known as the supervisor,
as illustrated in step 1 of the Figure 3.1. The supervisor sent using a CTM to an
available AIV (for instance, having no tasks to be accomplished at this time). This AIV
will act in the role of auctioneer. Upon receiving the task package, this AIV auctioneer
sends an acknowledgement using a CRM, completing step 2.

Task clustering

For greater efficiency, before the auction process begins, the AIV auctioneer can cluster
certain tasks received, as outlined in step 2. This involves, in particular, associating tasks
that have common starting or ending points to increase efficiency.

In the context of a warehouse environment, where logistics operations often involve
moving materials between different locations, the clustering of tasks can significantly
enhance efficiency. Warehouses typically have various nodes, such as parking sources,
storage points, and distribution areas, where materials are frequently moved. By strate-
gically grouping tasks that share common starting or ending points, the AIV auctioneer
can minimize unnecessary movements and streamline the overall workflow.

For example, consider the task (τ1 = [21, 13]) means: "Bring material from a parking
source node n°21, to a storage point node n°13". An associated task τ2 could be to go to a
parking lot after completing task τ1, for instance: "Take material from storage point node
n°13 and bring it to parking node n°25" (τ2 = [13, 25]). Then, the two clustered tasks τ1

and τ2 are represented by the mission mi = <τ1, τ2> = <[21, 13], [13, 25]>.
In the tables of section 3.3.4, we simplify the writing of the mission mi by using the

triplet < 21, 13, 25 >.

Auction process

Once tasks are clustered into missions, the AIV auctioneer sent these missions to
all AIVs (step 3 ). Each AIV calculates the costs associated with executing the various
missions, considering a range of performance indicators such as distance, energy consump-
tion, and time. These calculations inform their bids, which are then submitted back to
the auctioneer.
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Optimization and task (re-)allocation

Each AIV returns all of its bids to the AIV auctioneer. Upon receiving the bids,
the AIV auctioneer performs a simple optimization algorithm (step 4 ). The algorithm
prioritizes clustered tasks by listing them in order of priority. Subsequently, the AIV
that submits the lowest-cost bid for a mission awarded the task, following a strategy that
prioritizes cost-effectiveness.

To summarise the communication process, the AIV auctioneer allocates tasks (even-
tually clustered tasks) to each selected AIV, sending to it via a CTM (step 5 ). The AIV
confirms receipt of the CTM by sending back a CRM to the auctioneer, completing step
6. The different interactions between the supervisor, the AIV auctioneer and the other
AIVs are depicted in the sequence diagram of Figure 3.2.

This allocation mechanism also supports task reallocation. An auctioneer can himself
become an auctioneer to re-auction a task (by following steps 2 to 5 ) if necessary, by
managing the redistribution of all or part of his tasks. The AIV with the best bid in this
re-auction will then add the reallocated task(s) to its assigned set of tasks to complete.

Figure 3.1 – Task allocation process

3.3 Dynamic task (re-)allocation simulation

The objective of this section is to apply and test the TA process, as presented in the
previous section, on a fleet of homogeneous mobile robots, loading and unloading goods in
a warehouse. The methodology preceding the simulation involves augmenting the ABMS
proposed in chapter 2. The aim is to fit the scenarios to be tested in order to verify the
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Figure 3.2 – CTM and CRM exchanged during TA

TA process. Then, we will provide the environment simulation proposed with the multi-
agent simulation developed, before delving into the presentation of the different scenarios.
Finally, we will present and discuss the results of these simulated scenarios obtained from
these simulations.

3.3.1 Agent-based model simulation for TA scenarios

The ABMS architecture depicted in Figure 3.3 is an augmentation of the model
introduced in chapter 2. This advanced architecture is developed with the capacity
of adaptation to model larger warehouses and to simulate problematic traffic situations
involving a large number of AIVs. It will be used to test TA scenarios detailed in the
subsection 3.3.3.

This chapter focuses on proposing collective strategies for TA. Specifically, we will
define scenarios where AIV agents cooperate to optimize the performance of a set of
missions, transmitted to them by a supervising agent. This one acts as an organizing
service and these missions can be sent to the AIV in packets or continuous flow.

As in the previous chapter, each AIV agent has knowledge of the environment, i.e. the
position of aisles, intersections, parking lots, storage points, battery replacement points
and active elements of the infrastructure such as camera agents.

In this chapter, we make the strong assumption that active elements of the infrastruc-
ture, specifically cameras, participate in the cooperation. Indeed, they can particularly
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contribute to the safety of AIV travel. This assumption of cooperative perception will be
studied in greater depth in the chapter 4. Finally, to ensure this cooperation based on
inter-agent communications in V2X mode, different types of standardized messages are
used: CAM, DENM, CPM, MCM, and also our proposed standardized messages - CTM
and CRM.

Figure 3.3 – Simulator architecture: dynamic elements in red, static in green, and not
related to the environment in purple

3.3.2 Environment simulation

In this chapter, the environment chosen to illustrate our scenarios of problematic
situations is the typical warehouse of [TBS18] adapted. This one was already presented
in the chapter 2, in section 2.3.2. Certainly, this environment is small, but it allows us
to detail very finely and from an educational point of view all the scenarios that we have
defined, in particular the four scenarios studied in the section 3.3.3.

As the same work presented in chapter 2, five AIV agents are integrated into this
environment corresponding to the five parking spaces available in this environment. One
of the major interests of simulation is to be able to test the size of the vehicle fleet. Also,
if the flow of tasks proposed to the AIVs becomes too great, leading to waiting times that
are too long for the allocation of these tasks, the simulation conditions could be easily
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adapted in the environment with the addition of new AIVs and of AIVs parking lots.
The costs in distance between the different nodes of the circuit are represented in

the directed graph of Figure 3.5. The differences with scenarios simulation on obstacle
avoidance presented in section 2.3.2 are:

— Possibility of two-way traffic from node n2 to n11, whereas before it was one-way
traffic.

— Setting up of cameras at node level n10, n13, n14 and n15.

Figure 3.4 – Representation of the IndustrialCircuit for TA simulation scenarios

To enhance the visualization of task processes in these scenarios, we have upgraded the
simulation interface from Figure B.4. The enhanced interface, shown in Figure 3.6, is
designed to accommodate various traffic plans and adheres to the agent model illustrated
in Figure 2.2 depicted in chapter 2 - subsection 2.2.2. The different functionalities
of this new Human-Machine Interface (HMI) TA application are described in appendix
B.4.
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Figure 3.5 – Directed graph corresponding to the circuit

Figure 3.6 – Multi-agent simulation interface

3.3.3 Scenarios

In the previous chapter, we proposed AIV agent blocking scenarios that highlighted the
need to increase cooperation/communication between agents if we wanted to effectively
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manage these problems (section 2.3). We also discussed in the section 2.2, that the
use of MCM, CAM and MCM made it possible to respond effectively to the problem of
avoiding obstacles and collisions between AIV agents.

To verify the ability of AIV agents to carry out their missions while cooperatively
managing the problems of obstacles or AIV agent breakdown, we will define a nominal
case scenario and three scenarios:

— Sc1: obstructed aisle;
— Sc2: AIV breakdown;
— Sc3: inaccessible stock point;
The description of these following scenarios includes five AIV agents, simulating

five real AIVs of the same type, and illustrate the different types of V2X coopera-
tion/communication that allow agents to anticipate problems and thus improve the per-
formance of their missions collectively: V2I for the first scenario, V2V for the second, and
Vehicle-To-Pedestrian (V2P) for the third. All information concerning the communica-
tion during these scenarios is resumed in the Table 3.1. In these scenarios, AIVs perform
simple tasks:

1. load goods at a source storage point, then

2. drop them off at a destination storage point.

Scenario 1: obstructed aisle

The first scenario Sc1 is represented in Figure 3.7. It makes it possible to test the
contribution of the cooperation between the AIV agents and the infrastructure agents for
the performance of the tasks entrusted to the AIV agents. In this scenario, the camera
agent placed to monitor the area around storage point n°14 detects an obstacle and sends
a CPM message to the five AIV agents. As previously mentioned, we made the strong
assumption that cameras can cooperate to evaluate our TA process.

The AIV agents, whose mission involves passing through the aisle obstructed by the
obstacle, are able to re-plan their route in advance. Thus, this cooperation with the
infrastructure makes it possible to avoid waiting for an AIV agent to detect the obstacle
with its LiDAR and to warn the four other AIV agents when it passes near the obstacle
(therefore saving time on detection). This scenario allows measuring the performance of
a collective strategy including the infrastructure compared to a collective approach based
only on V2V communications between AIV agents.

133



Chapter 3 – Collective Task Allocation Strategies

(a) Simulation of the detection of an obstacle by
a camera agent

(b) Sequence diagram

Figure 3.7 – Scenario Sc1

Scenario 2: AIV breakdown

The Sc2 scenario corresponds to an inability for an AIV agent to complete its mission.
This one can be blocked by obstacles or have a breakdown but without this preventing
it from communicating (Figure 3.8). In this case, it is the dynamic TA mechanism
presented in section 3, which is launched to reallocate the unfinished mission. The blocked
AIV agent becomes an auctioneer. He transmits all the tasks he had to perform to the
four other AIV agents using a CTM message. The AIV agents bid according to their
situation and the tasks they are performing, which allows the AIV auctioneer agent to
make its choice for the reallocation of the tasks he cannot complete.

(a) Simulation of an AIV agent breakdown at
access point n°14

(b) Sequence diagram

Figure 3.8 – Scenario Sc2
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Scenario 3: Inaccessible stock point

Scenario Sc3, depicted in Figure 3.9a, illustrates the ability of an AIV agent to handle
the blocking problem when a task cannot be completed due to an event occurring on the
warehouse circuit or in the defined environment to perform the task. It is further assumed
that this blocking could not be detected by an infrastructure agent and therefore that its
resolution was carried out by an AIV agent. For example, if a stock point designated
as a target in the mission of an AIVi agent is inaccessible (for instance, because of the
presence of several obstacles), then the AIVi agent must be able to inform the four other
AIV agents that its mission cannot be carried out, using a CPM.

Subsequently, a human or an AIVj agent having the ability to clear the obstacles
in the aisle can intervene in response to the request made to it by the AIVi agent, by
sending a DENM (Figure 3.9b). The task that could not be performed before the human
intervention is put back to auction as soon as the human has informed the AIVi agent
that the aisle is clear again, by sending a CPM. The AIVi agent then temporarily becomes
an auctioneer to manage the reallocation of the task. This prevents the AIVi agent from
waiting for human intervention to be able to continue its mission, and possibly complete
another task.

(a) Simulation of a blocked task at access point
n°15 (b) Sequence diagram

Figure 3.9 – Scenario Sc3

3.3.4 Results

The three scenarios presented in the previous section were tested with the same
dataset. The different types of V2X communications illustrated in the scenarios are
summarised in the Table 3.1.
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Scenario Problem / Solution Descriptive Figure / Result Table Communication

Sc0
Nominal case

AIVs perform all tasks (mission,
allocation, path planning) without
encoutering any problems.

Figure 3.4: Representation of the circuit

Table 3.2: Test sets for the 3 scenarios

I2V: Supervisor gives tasks to auctioneer AIV

V2V: CTM and CRM for the task
allocation (auctions, reception and feedback)

Sc1
Obstructed aisle

If an obstacle obstructs an aisle, then an
AIV that has to cross this aisle must
quickly replan its path.

Cooperation: AIVs and infrastructure

Figure 3.7: Simulation of the detection of
an obstacle by a camera agent

Table 3.3: Obstacle detected by an AIV

Table 3.4: Obstacle detected by a camera

I2V: - Supervisor gives tasks to auctioneer AIV
- Camera send a CPM "Obstacle detected"

V2V: CTM and CRM for the TA
(auctions, reception and feedback)

Sc2
AIV breakdown

An inability for an AIV to complete
its mission (obstacles or breakdown).

Cooperation: AIVs (for sharing missions).

Figure 3.8: Simulation of an AIV
breakdown at access point n°14

Breakdown of an AIV mission during
part 1 (Table 3.5) or part 2 (Table 3.6)

I2V: Supervisor gives tasks to auctioneer AIV

V2V: - CTM and CRM for the TA
(auctions, reception and feedback)
- CTM to share missions

Sc3
Inaccessible stock point

An inability for an AIV to complete
its mission due to an event occurring
in the defined environment to perform
the task (stock point is inaccessible).

Cooperation: AIVs and Worker
(to remove an obstacle).

Figure 3.9: Simulation of the access point
n°15 blocked

Table 3.7: Stock point n°15 has become
inaccessible

Table 3.8: Stock point n°15 has become
inaccessible, and then cleared by a worker.

I2V: - Supervisor gives tasks to auctioneer AIV
- Camera send CPM: obstacle detected

I2P: CPM for an obstacle at stock point

V2V: - CTM and CRM for the TA
(auctions, reception, and feedback)
- CTM to share missions

V2P: DENM for a blocking problem
P2V: CPM indicating no more obstacle

Table 3.1 – The various V2X communications in scenarios: Sc0, Sc1, Sc2 and Sc3

The choice therefore fell on an allocation of tasks by packet, rather than continuously.
A supervisor agent sends 10 tasks to an available AIVi agent (when the AIV agents have
no more missions to perform, they inform the supervisor agent). The AIVi agent starts by
clustering the tasks in missions and then offers them up for auction. The four scenarios
were analysed with the following performance indicators:

— Tasks to be performed by each AIV agent: tasksToBePerformed.
— Tasks fully completed by each AIV agent: tasksCompleted.
— Ratio of the number of tasks to be performed to the number of tasks fully completed

by each AIV agent: ratio.
— Total distance covered by each AIV agent: distTravelled.

Table 3.2 corresponds to the performance of all the tasks by the AIV agents, without
them encountering any problem. This table includes the performance indicators listed
above: the tasks requested and then allocated to each AIV agent, the tasks actually
performed by the AIV agents, the ratio between the tasks allocated and performed, as
well as the total distance covered by each AIV agent (distance in meters in this case).
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Agent tasksToBePerformed tasksCompleted ratio distTravelled
AIV1 <21, 14, 25> 21,14,25 2/2 124
AIV2 <22,13,22> 22,13,22 2/2 116
AIV3 <23,15,21> 23,15,21 2/2 112
AIV4 <24,14,23> 24,14,23 2/2 114
AIV5 <25,13,24> 25,13,24 2/2 114

Global / Supervisor

[[23,15],[25,13]]
[[22,13],[24,14]]
[[21,14],[15,21]]
[[13,24],[13,22]]
[[14,23],[14,25]]

21,14,25
22,13,22
23,15,21
24,14,23
25,13,24

10/10 580

Table 3.2 – Test sets for the scenarios

Results of Scenario 1

The results obtained during the execution of the scenario Sc1 corresponding to Figure
3.7a are given in Table 3.2. The obstacle was detected by the camera, which saves time
on obstacle detection. Indeed, we tested this same scenario by disabling the camera agent.
It was necessary to wait for the AIV4 agent to arrive near the obstacle for it to be detected
by its LiDAR. These results appear in Table 3.3. Thus, the total distance covered is
640 in the case where the camera agent detects the obstacle (Table 3.4), and 710 if the
camera agent is deactivated (Table 3.3). This makes it possible to verify that cooperation
with the infrastructure via camera agents can save time for the detection of obstacles, in
particular by anticipating problems, and thus minimize distances for the performance of
the missions of AIV agents.

Agent tasksToBePerformed tasksCompleted ratio distTravelled
AIV1 <21,14,25> <21,14,25> 2/2 164
AIV2 <22,13,22> <22,13,22> 2/2 116
AIV3 <23,15,21> <23,15,21> 2/2 112
AIV4 <24,14,23> <24,14,23> 2/2 204
AIV5 <25,13,24> <25,13,24> 2/2 114

Global / Supervisor

[[23,15],[25,13]]
[[22,13],[24,14]]
[[21,14],[15,21]]
[[13,24],[13,22]]
[[14,23],[14,25]]

21,14,25
22,13,22
23,15,21
24,14,23
25,13,24

10/10 710

Table 3.3 – Obstacle obstructing an aisle, detected by the AIV 4 agent
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Agent tasksToBePerformed tasksCompleted ratio distTravelled
AIV1 21,14,25 [[21,14],[14,25]] 2/2 144
AIV2 22,13,22 [[22,13],[13,22]] 2/2 116
AIV3 23,15,21 [[23,15],[15,21]] 2/2 112
AIV4 24,14,23 [[24,14],[14,23]] 2/2 154
AIV5 25,13,24 [[25,13],[13,24]] 2/2 114

Global / Supervisor [[23,15],[25,13]] [[21,14],[14,25]] 10/10 640

Table 3.4 – Obstacle obstructing an aisle, detected by a camera agent

Results of Scenario 2

The scenario Sc2 was simulated in two cases:
— the delegation of a complete mission (two clustered tasks), and
— the delegation of the second part of a mission (only one task).
These delegations of a mission by an AIV agent can occur when the latter is unable

to perform the mission in progress, following a breakdown or a blockage in an aisle for
example. Thus, in Tables 3.5 and 3.6, it is possible to observe that the AIV2 agent
could not finalize its mission because its number of tasks performed is not equal to its
number of tasks to be carried out. In Table 3.6, the AIV2 agent was able to perform one
task out of two of its missions.

It then started the task reallocation process, which resulted in the second uncompleted
task being auctioned off. This task was won and performed by the AIV1 agent. The latter
therefore performed three tasks, whereas two tasks had initially been assigned to him. The
second test for task delegation corresponds to Table 3.6 where it is possible to see that
the entire mission of the AIV2 agent has been reallocated. In this case, it was the AIV1

agent who took over the complete mission, while minimizing the overall distance covered.

Results of Scenario 3

The results of the simulated dataset with a problem accessing a stock point appear in
Table 3.7. They correspond to the simulation of the Sc3 scenario with the blocking of
stock point n°15 identified in Figure 3.9. We can notice that the AIV3 agent who had
two tasks related to the deposit or the retrieval of stock at stock point n°15 could not
perform his tasks. Only eight of the ten tasks provided by the supervisor agent could be
performed in this scenario. It is, therefore, necessary in this case, that an AIV agent or a
human can come and unblock the situation (Figure 3.9b).
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Agent tasksToBePerformed tasksCompleted ratio distTravelled
AIV1 <21,14,25> <21,14,25> 2/2 124
AIV2 <22,13,22> 0/2 24
AIV3 <23,15,21> <23,15,21> 4/2 236
AIV4 <24,14,23> <24,14,23> 2/2 114
AIV5 <25,13,24> <25,13,24> 2/2 114

Global / Supervisor

[[23,15],[25,13]]
[[22,13],[24,14]]
[[21,14],[15,21]]
[[13,24],[13,22]]
[[14,23],[14,25]]

21,14,25
23,15,21
22,13,22
24,14,23
25,13,24

10/10 612

Table 3.5 – Breakdown during part 1 of the AIV 2 mission

Agent tasksToBePerformed tasksCompleted ratio distTravelled
AIV1 <21,14,25> <21,14,25> 3/2 234
AIV2 <22,13,22> [22,13] 1/2 44
AIV3 <23,15,21> <23,15,21> 2/2 112
AIV4 <24,14,23> <24,14,23> 2/2 114
AIV5 <25,13,24> <25,13,24> 2/2 114

Global / Supervisor

[[23,15],[25,13]]
[[22,13],[24,14]]
[[21,14],[15,21]]
[[13,24],[13,22]]
[[14,23],[14,25]]

21,14,25
[[13,22],[22,13]]

23,15,21
24,14,23
25,13,24

10/10 618

Table 3.6 – Breakdown during part 2 of the AIV 2 mission

The modified scenario, with human intervention and all tasks completed, is named
Sc3. It is defined in Figure 3.9b and the simulation results are presented in Table 3.8.
Furthermore, the supervisor agent can also be informed so that it does not request the
performance of other tasks related to this storage point as long as it is not accessible.

3.3.5 Discussion on agent properties

We have employed the agent paradigm in our simulations, and this subsection will
analyze the properties of the agents used across the different scenarios and explore the
benefits they provide. Indeed, some properties can be associated with the concept of
agent: situated, social, flexible, proactive, and robust [MG19]; but also, mobile, intelligent,
rational, temporally continuous, coordinative, cooperative, competitive, rugged (able to
deal with errors and incomplete data robustly) [Ode+00].
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Agent tasksToBePerformed tasksCompleted ratio distTravelled
AIV1 21,14,25 21,14,25 2/2 124
AIV2 22,13,22 22,13,22 2/2 116
AIV3 23,15,21 0/2 22
AIV4 24,14,23 24,14,23 2/2 114
AIV5 25,13,24 25,13,24 2/2 114

Global / Supervisor

[[23,15],[25,13]]
[[22,13],[24,14]]
[[21,14],[15,21]]
[[13,24],[13,22]]
[[14,23],[14,25]]

21,14,25
22,13,22

24, 14,23

25,13,24

8/10 490

Table 3.7 – Stock point n°15 has become inaccessible

Agent tasksToBePerformed tasksCompleted ratio distTravelled
AIV1 21,14,25 21,14,25 2/2 124
AIV2 22,13,22 22,13,22 2/2 116
AIV3 23,15,21 23,15,21 2/2 112
AIV4 24,14,23 24,14,23 2/2 114
AIV5 25,13,24 25,13,24 2/2 114

Worker 1,15,1 1,15,1 2/2 116

Global / Supervisor

[[23,15],[25,13]]
[[22,13],[24,14]]
[[21,14],[15,21]]
[[13,24],[13,22]]
[[14,23],[14,25]]

21,14,25
22,13,22
23,15,21
24,14,23
25,13,24

10/10
580 AIVs

+
116 Worker

Table 3.8 – The stock point n°15 has become inaccessible, then cleared by a worker (human
operator)

The three scenarios presented in this section make it possible to verify the relevance
of agent-based simulation. Indeed, all of the above properties are addressed during the
realization of these scenarios (Table 3.9), where the AIVs agents will:

— carry out their missions in an environment where they will be located;
— communicate with each other, with the infrastructure and with workers, to estab-

lish collective intelligence;
— pursue a common objective of carrying out all tasks by cooperating with each

other, with the infrastructure or with a worker;
— re-plan their paths and missions, or reallocate tasks, if necessary;
— listen to other AIVs and active elements of infrastructure, and continue to act even
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if they are blocked;
— coordinate themselves by using an auction mechanism for the allocation of tasks;
— collectively check possibly incorrect information and communicate with a worker

to resolve any problems;
— act even when having incomplete data when receiving information without the

AIVs being able to verify it themselves.

Scenarios Agent properties
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

Sc0   H# H#  H#    
Sc1     H#    H#
Sc2    H# H#   H#    H#
Sc3     H#   H#    H#
Sc4   H# H#        

Table 3.9 – The symbols means agent properties are captured  or partially captured H#,
and the properties are: P1 – Situated; P2 –Social; P3 – Flexible; P4 – Proactive; P5 –
Robust; P6 – Mobile; P7 – Intelligent; P8 – Rational; P9 - Temporally continuous; P10 –
Coordinative; P11 – Cooperative; P12 – Competitive; P13 - Rugged

3.4 Possible impact on TA: trust on different mes-
sages

In the previous section, we verified the process of TA for AIVs, assuming that all
exchanged messages were truthful. However, in the context of a warehouse for example,
the presence of a faulty agent within the infrastructure, or an AIV transmitting unsolicited
or incorrect messages due to sensor miscalibration or other issues, is a plausible scenario.

Therefore, in this section, we will address a specific problem related to message trust:
the issue of a faulty camera within the infrastructure. We will explore a solution designed
to detect this issue promptly, ensuring it does not disrupt warehouse operations for an
extended period. By implementing this solution, we aim to maintain the integrity and
efficiency of the warehouse environment, even in the presence of faulty equipment.
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3.4.1 Scenario

Scenario Sc4 presents a situation similar to Scenario Sc3 described in the section
3.3.3, where an AIV agent encounters what seems to be an obstacle, as detected by a
camera. However, in this instance, the camera’s assessment is faulty, and there is no
actual obstruction present, as depicted in Figure 3.10.

Upon detecting the apparent obstacle, the camera notifies both the five AIV agents
and the worker. However, upon closer inspection, it is revealed that the obstacle does
not exist. Subsequently, the worker promptly sends two messages to the five AIV agents:
a CPM message confirming the absence of an obstacle at the specified location, and a
DENM message alerting about the failure of the camera agent.

(a) Simulation of a worker checking for an obsta-
cle at storage point n°15 detected by the camera (b) Sequence diagram

Figure 3.10 – Scenario Sc4

Scenario Problem / Solution Descriptive Figure / Result Table Communication

Sc4
Camera failure

If a camera sends false information, this
information has to be checked.

Cooperation: AIV and Worker or
between the AIVs
(to verify information sent by the camera)

Figure 3.10 Simulation of a worker
checking for an obstacle at stock point
n°15

Table 3.11: A worker checks the presence
of camera-detected obstacle

I2V: - Supervisor gives tasks to auctioneer AIV
- Camera send CPM: obstacle detected

I2P: CPM for an obstacle at stock point

V2V: - CTM and CRM for the TA
(auctions, reception, and feedback)
- CTM to share missions

V2P: DENM for a blocking problem
P2V: - CPM indicating no more obstacle
- DENM for the camera failure

Table 3.10 – The various V2X communications in the scenario Sc4
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3.4.2 Results

The results of the scenario Sc4 presented in Figure 3.10 are revealed in Table 3.11.
Results are the same as those in Table 3.7. However, the time differences compared to the
scenario Sc3 occur if there are tasks continuous tasks. Because the AIVs will continue to
pass through this area, and they will not have to wait for clearance by a worker or another
robot related to an obstacle, as in scenario Sc3. This scenario Sc4 demonstrates qualitative
gains and robustness in processing. It highlights the importance of verifying information
provided by the infrastructure because it can be faulty. This scenario underscores the
importance of reliable infrastructure and effective communication channels among human
operators, AIVs, and surveillance systems to address inaccuracies and ensure operational
efficiency.

Agent tasksToBePerformed tasksCompleted ratio distTravelled
AIV1 21,14,25 21,14,25 2/2 124
AIV2 22,13,22 22,13,22 2/2 116
AIV3 23,15,21 0/2 22
AIV4 24,14,23 24,14,23 2/2 114
AIV5 25,13,24 25,13,24 2/2 114

Global / Supervisor

[[23,15],[25,13]]
[[22,13],[24,14]]
[[21,14],[15,21]]
[[13,24],[13,22]]
[[14,23],[14,25]]

21,14,25
22,13,22

24, 14,23

25,13,24

8/10 490

Table 3.11 – A worker checks the presence of camera-detected obstacle

3.5 Conclusion

In the context of modern smart factories, mobile robots need to become increasingly
autonomous to perform their tasks effectively. This autonomy allows them to optimize
their operations based on various performance indicators, such as distance travelled, en-
ergy consumption, time taken to complete tasks, and system availability. Autonomy and
decentralization are closely linked: an autonomous system makes decisions independently,
while a decentralized system does not rely on a central authority for decision-making.

In the initial section 3.2, we proposed a novel framework for TA that facilitates bet-
ter communication and collaboration among AIVs. By introducing new standard message
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types specifically designed for collective task management, we addressed existing limita-
tions in current communication protocols and bridged significant gaps in the TA process.
These messages are pivotal for achieving "Level 3" on the collective autonomy scale (pre-
sented in subsection 1.3.3), as they enable collective decision-making for TA across the
fleet. We propose a model that ensures tasks are allocated and executed according to
some requirements (such as priority and time constraints), thereby enhancing the overall
performance of the fleet. We also proposed a dynamic task (re-)allocation process model
that effectively manages AIV activities within a decentralized framework.

In the subsequent section 3.3, we present an enhanced version of the agent model
introduced in chapter 2, specifically developed to simulate the task (re-)allocation pro-
cess. Subsequently, we introduced the upgraded multi-agent application, also discussed in
the previous chapter, to simulate this process and evaluate its performance across various
challenging traffic scenarios. The different scenarios are simulated with a fleet of homoge-
neous mobile robots in an industrial context. The different results obtained in simulation,
demonstrated the practical effectiveness of the proposed TA strategies, showing how they
adapt to real-world situations and optimize task distribution. The results highlighted the
advantages of a collective approach, showcasing how AIVs can dynamically adjust their
actions and reallocate tasks to address changing demands. The scenarios we tested not
only advanced strong cooperation among AIVs but also facilitated interaction between
AIVs and infrastructure agents, such as cameras. The V2X communication implemented
to enable this cooperation is an essential element of our decentralized agent-based sim-
ulation approach. We have shown that it brings more flexibility and robustness in the
management of problematic dynamic situations.

Finally, we addressed a critical challenge related to message trust and fault detec-
tion within the TA process. By focusing on the issue of a faulty camera and exploring
solutions for prompt detection and mitigation, we aimed to ensure that the integrity of
warehouse operations is maintained despite potential equipment malfunctions. The sec-
tion 3.4 highlighted the importance of robust fault tolerance mechanisms in preserving
the efficiency and reliability of AIV fleets.

In summary, this chapter provides a comprehensive analysis of collective TA strategies,
covering the development of a theoretical model, practical simulations, and fault man-
agement within the framework of dynamic TA strategies in V2X cooperation mode with
infrastructure. By incorporating advanced V2X communication mechanisms, we have in-
troduced a formal TA model that significantly improves the coordination and effectiveness
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of AIVs fleets. The integration of robust communication, dynamic task management, and
fault detection creates more resilient and adaptable autonomous systems, allowing them
to perform effectively in complex and changing industrial environments, thus marking a
substantial step towards "Level 3" on collective scale autonomy.

The different perspectives that emerge from this chapter are data fusion and shared
memory of AIV agents. For example, how to merge data related to the detection of
an obstacle by an AIV agent and by a camera agent at different times. We also aim
to improve obstacle verification processes by having an AIV agent physically investigate
the presence of an obstacle. Implementing shared memory would enable AIV agents to
access global information, such as task delegation requests and to map the environment.
To achieve this, we plan to suppress CRM and to choose to return to all AIV agents
the mission assigned to them. These prospects for enhanced cooperation would make it
possible to increase the autonomy and efficiency of AIVs. Additionally, another future
work is to continue to develop the simulation platform to support fleets of heterogeneous
robots, including those unable to perform all predefined tasks.
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Chapter 4

COOPERATIVE PERCEPTION

STRATEGIES

4.1 Introduction

In the domain of AIVs, ensuring precise and comprehensive environmental perception
is essential for safe and efficient operations. While autonomy can be enhanced through
existing technical solutions—such as advanced sensors, data processing algorithms, and
machine learning techniques—a more profound improvement can be achieved through a
cooperative or shared vision among connected industrial systems.

Cooperative perception systems integrate data from multiple sensors and can be sent
by V2X communications to achieve this goal, as presented in our previous chapters. These
systems enable AIVs to detect and track various objects, including pedestrians and other
vehicles, by combining information from diverse sources such as LiDAR, and infrastructure
sensors (for instance cameras as in the chapter 3). By pooling data from different
perspectives, a fleet of AIVs can construct a more accurate and comprehensive view of
the environment, thereby enhancing collective autonomy.

The individual autonomy of an AIV is undoubtedly important, but its full potential
is realized when it operates within a cooperative framework that enhances collective au-
tonomy. In such a system, AIVs not only rely on their onboard sensors but also benefit
from data shared by other vehicles and infrastructure, leading to improved situational
awareness and decision-making capabilities.

This integrated approach relies on advanced techniques for matching sensor readings to
specific objects (data association) and combining this data into a unified set (data fusion).
Although our current work does not focus on these aspects, it’s important to recognize that
they play a crucial role in enhancing object detection accuracy and overall environmental
awareness. This is particularly essential for navigating complex and dynamic industrial
environments where safety and efficiency are paramount.
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In this chapter, our focus shifts to acquiring road data using C-ITS, which can be
provided by CAVs and infrastructure equipped with cameras. The objective is to obtain
V2X communications corresponding to scenarios in the road or industrial field to improve
the understanding of the surrounding environment for CAV.

By combining sensor data with V2X communications, cooperative systems can signif-
icantly enhance the safety and effectiveness of AIVs in dynamic environments. This is
particularly relevant for reintegrating VRU, as discussed in the state-of-the-art review in
chapter 1, subsection 1.2.5. Although we will not delve into the intricacies of data as-
sociation and fusion in this work, our contribution will focus on exploring the cooperative
context presented in section 4.2.

This entire section will set the context, before illustrating our process of acquiring
essential data to generate V2X messages in the Carla simulator [Dos+17] in section 4.3.
Moving on to section 4.4, we introduce an architecture designed to enhance cooperative
perception by generating V2X messages, contributing to pedestrian safety, especially at
crossroads. At the end of this section, we will summarise the proposed architecture and
discuss potential directions for future research.

This chapter is related to the VTC-Fall conference paper [VTC24].

4.2 Cooperative perception context

In cooperative perception systems for AV, multiple sensors are deployed to detect var-
ious attributes of objects, such as position, velocity, acceleration, and type. These objects
often include pedestrians, whose accurate detection and tracking are crucial for vehicle
safety and navigation. As different sensors may capture data for the same pedestrian,
the system receives numerous, potentially overlapping data points. In previous chapters,
where we explored collective obstacle avoidance strategies and collective task allocation
strategies, we made a key assumption: that active infrastructure elements, particularly
cameras, are integral to cooperative operations. This assumption emphasizes the critical
role of perception in enhancing the safety, navigation, and efficiency of a fleet of AIVs in
performing their tasks, and it will be examined in greater depth in this chapter.

To manage the overlapping data points, data association is employed to match each
observation to the correct pedestrian. Subsequently, data fusion techniques are used to
combine these observations into a single, unified dataset. This process enhances the ac-
curacy and reliability of the information, ensuring that the AV can effectively track and
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respond to pedestrians. By leveraging data association and fusion, cooperative percep-
tion systems can improve their ability to reintegrate and accurately monitor pedestrians,
thereby enhancing overall safety and efficiency in AV operations.

Firstly, we will introduce the input data required for data fusion. Subsequently, we will
propose an analysis of a cooperative map architecture in a certain situation in subsection
4.2.2. Finally, in subsection 4.2.3, we will present and discuss a global architecture
context for V2X data fusion.

4.2.1 Input data

To achieve effective data fusion, information is gathered from multiple sensors and
transmitted using V2X communications. These vehicular communications involve sending
messages such as CAM, CPM, and DENM. This enables a comprehensive understanding
of the environment, incorporating information not detected by the ego vehicle’s sensors.

In cooperative perception systems, infrastructures, pedestrians, and vehicles exchange
information. This data must be integrated to create a cooperative perception map, al-
lowing all road users to understand their surroundings and detect objects beyond their
direct line of sight. This interconnected approach defines a cooperative system.

The collaboration between vehicles and infrastructures enhances the visibility of both
connected objects (via CAM and CPM) and non-connected objects (via CPM). Without
this cooperation, a vehicle would rely solely on its sensors, limiting its perception to
directly detectable objects. In many scenarios, potential hazards may be obscured by
other objects and remain undetected by the vehicle’s sensors alone. For example, in the
Figure 4.1 the green AIV cannot see the pedestrian directly. However, it can be informed
about the pedestrian’s presence through communication with the orange AIV, or via the
infrastructure with the camera.

Therefore, V2X communications augment and validate the data from the vehicle’s
onboard sensors, providing a more complete and accurate situational awareness. V2X
data also facilitates predictive analysis to preemptively identify and mitigate potential
road hazards. CAM and CPM are transmitted approximately every 0.1 seconds, allowing
the system to process data, perform calculations, and draw timely conclusions.

Additionally, in the road field, roadside cameras detect and classify objects, transmit-
ting this information to RSUs in the road field. RSUs can then convert this data into
CPMs, sharing camera data through V2X communications. Moreover, the same process
can be applied to data from LiDAR and RADAR sensors, further enriching the coop-
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Figure 4.1 – Cooperative perception in a warehouse

erative perception map. This integration ensures that AVs benefits from a robust and
comprehensive understanding of their environment, enhancing safety and efficiency on
the road field.

We assume that information from infrastructure, such as cameras, can be effectively
communicated in an Industry 4.0 context.

4.2.2 Cooperative map architecture analysis

To create a real-time map of each individual’s position through V2X communication,
the system can utilize CAM and CPM from various sources, including CAVs, pedestrians,
and infrastructure.

As previously described for the industrial context, in chapter 2, subsection 2.4.1,
these messages contain detailed information such as position, velocity, and direction,
which can be fused to produce a more accurate and comprehensive situational picture.
Data fusion improves accuracy, fills in missing data, and enhances overall environmental
understanding. However, several challenges arise:

1. Data Association: recognizing which observations belong to which objects is
crucial. Without this, merging data correctly is difficult, leading to potential cal-
culation errors.

2. Data Imprecision: errors from faulty sensors or adverse weather conditions can
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affect data accuracy. Identifying and correcting or discarding erroneous data is
essential to avoid computation errors.

3. Latency: sensors may send data at different frequencies. For real-time systems,
it’s critical to merge data simultaneously despite these discrepancies.

Figure 4.2 depicted the situation of the Figure 4.1, where multiple sources send
CPM or CAM related to the position estimation of the pedestrian. Input data are provided
by a camera, the orange AIV, the green AIV and possibly the pedestrian. Indeed, the
pedestrian may be equipped with a tracker sending CAM.

In this example, all stations provide nearly identical data, such as position, velocity,
yaw, yaw angle, and direction, for the same object—the pedestrian. The accuracy of
each message can vary depending on the sensor’s precision and the reliability of the
infrastructure and can be associated with an interval of confidence. This data can then be
fused, resulting in a single CPM. The fused output will have improved accuracy compared
to the input data, providing a more precise position for the pedestrian. The yellow AIV,
for example, will receive accurate information about the pedestrian’s position, which it
cannot see directly, and integrate it into its localization map to avoid collisions.

In summary, utilizing V2X communication and fusing data from CAM and CPM
significantly enhances the accuracy of position estimation for objects such as pedestrians.
This improved situational awareness is essential for the safe and efficient operation of
autonomous systems in dynamic environments.

4.2.3 Global architecture for V2X data fusion

Data association

One of the key aspects of data fusion using multi-sensor systems is recognizing which
data points correspond to the same object. In this context, data association refers to
grouping data from various sensors, such as RADAR, LiDAR, cameras, and V2X com-
munications, that concern the same object.

Multiple sensors often provide data about the same object but assign different object
IDs. Initially, it is not clear which data should be merged. Therefore, before performing
data fusion to determine the positions of objects, data association is necessary to match
the data from different sensors. Several machine learning algorithms can be employed to
achieve data association. Regarding some association techniques, we find two primary
approaches to data association:
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Figure 4.2 – Representation of data before and after fusion

— Direct association without predefined clusters: This method uses algorithms
that do not require the number of clusters (objects) as input. These algorithms
perform data association directly based on the data itself.

— Cluster-based association with a predefined number of objects: This
method first involves estimating the number of objects present. This estimate
is then used as the input for algorithms that require the number of clusters. In our
context, the number of detected objects corresponds to the number of clusters.

By utilizing these approaches, data association can be effectively achieved, facilitating
accurate data fusion from multiple sensors.

Our point of view is that in a cooperative perception system, the number of objects
to detect cannot be known in advance, making it impractical to compute the number of
objects solely based on observations from all sensors. Indeed, pedestrians, for example, are
not always equipped with a tracker capable of sending CAM. This implies that clustering
algorithms requiring the number of objects as an input cannot be used in this context.
Additionally, CPM contain information about multiple objects, and there are multiple
CAV. This means that the association process must handle many objects simultaneously.
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Figure 4.3 – Global architecture for data fusion

Data fusion

After identifying which observations belong to each object, the next step in the fusion
module proposed in Figure 4.3 is data fusion. Data fusion involves combining data from
multiple sensors to enhance accuracy and reliability. By integrating information from
various sources, such as GPS, cameras, RADAR, LiDAR, and V2X communication, the
system can achieve more precise vehicle position estimates.

Currently, many sensors provide vehicle position estimates with uncertainties ranging
from meters to centimeters. The goal is to merge data from all available sensors to improve
the accuracy of these estimates. This multi-sensor fusion allows connected objects, such
as vehicles, infrastructure, and pedestrians, to determine the exact location of nearby
objects, whether they are connected or not.

There are numerous methods for performing data fusion, each with its strengths and
weaknesses. Therefore, choosing the most appropriate method is crucial for optimizing
the system’s performance. However, as previously mentioned this thesis does not delve
into association and data fusion. Nonetheless, understanding the significance of obtaining
accurate V2X data is essential for enhancing CAVs’ awareness of their surroundings.
Indeed, accurate V2X data allows vehicles to gather information about nearby vehicles,
pedestrians, road conditions, and other relevant factors in real-time. This awareness is
crucial because it enables CAVs to make informed decisions, such as adjusting speed or
anticipating potential hazards. Therefore, ensuring the accuracy and reliability of V2X
data is essential for enhancing the overall safety, efficiency, and effectiveness of CAVs’
operations and decision-making processes.
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4.3 Architecture proposed in Carla Simulator

In the chapter 1, subsection 1.4.5, we present different realistic simulators to train
autonomous road vehicles, and particularly Carla Simulator [Dos+17] and AWSIM 1. As
outlined in the introduction, our objective is to gather road data through C-ITS, encom-
passing information from vehicles, infrastructures, cameras, and other sensors. Analyzing
video streams from vehicles and infrastructure will generate valuable data for AI, aiding
in the reintegration of VRU after information fusion.

This section aims to propose a solution for creating a realistic simulation incorporat-
ing V2X messages exchanged between vehicles and RSUs. However, Carla Simulator or
AWSIM lack the richness of C-ITS services due to their inability to incorporate V2X com-
munication. To address this limitation, we will utilize Carla Simulator in conjunction with
OpenCDA [Xu+21a; Xu+23] which facilitates the acquisition of different information for
the content of V2X messages.

Therefore, the objective is to generate ETSI messages in Carla Simulator. Subse-
quently, we will define the simulation scenario that will guide the rest of this chapter.
Following this, we will present our approach to generate CAM and CPM using Carla
Simulator, supplemented with result examples.

4.3.1 Scenario considered

Road vehicles must navigate through dense and diverse traffic, including VRUs, and
their visibility is often constrained. This limitation can stem from factors such as the
perception field, influenced by sensor type and prevailing weather conditions. Addition-
ally, the increased distance to obstacles may reduce perception accuracy, and blind spots
created by structures like vehicles or buildings can further impede the comprehensiveness
of their perception.

Cooperative perception enables CAVs to achieve a comprehensive understanding of
their surroundings, effectively eliminating blind spots in mixed traffic scenarios. In Sce-
nario 1 depicted in Figure 4.4a, a situation is illustrated where a pedestrian is crossing
an intersection while a vehicle approaches from the opposite direction. However, the ve-
hicle’s view of the pedestrian is partially obstructed by a building at the corner, making
it difficult for the vehicle to detect the pedestrian in time. In Scenario 2 illustrated in
Figure 4.4b, another vehicle obstructs the view between the approaching car and a bus

1. AWSIM: TIER IV inc. - https://tier4.github.io/AWSIM/
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parked near the intersection. The bus creates a blind spot, making it challenging for the
approaching car to notice a pedestrian or another vehicle that may suddenly appear from
behind the bus.

In both cases, the car cannot directly observe the pedestrian, and vice versa. However,
when cooperative perception is activated in collaboration with the infrastructure, the car
gains the ability to "see" the pedestrian, enabling it to slow down or come to an urgent
stop, especially if the pedestrian is crossing without paying attention to the road. The
activation of cooperative perception is crucial for reducing the occurrence of accidents. We
will utilize this application scenario, illustrating the utilization of cooperative perception,
to aid in the seamless reintegration of VRUs into the broader traffic context.

4.3.2 CAM: Self-localization of vehicle

As seen before, cooperative perception allows us to incorporate VRU back into C-
ITS. In practical terms, vehicles depend on Global Navigation Satellite System (GNSS)
for their localization. The accuracy of GNSS may vary based on several factors. These
include the type of equipment used, the GNSS constellations accessed, any corrections
applied, and most importantly, the environment (whether it’s urban or rural).

In our study, we used data from the Carla Simulator to generate CAMs. Specifically,
we used the GNSS/Inertial Measurement Unit (IMU) fusion algorithm for localization,
which is implemented in OpenCDA [Xu+21a; Xu+23]. An example of a CAM sent by
the CAV shown in the Scenario 2 in Figure 4.4b is presented in Figure 4.5a.

The example CAM message demonstrates the detailed structure of how localiza-
tion and vehicle status information are encoded. Key fields such as latitude_value,
longitude_value, and heading_value provide detailed information about the vehicle’s ex-
act location and orientation. These values are accompanied by corresponding confidence
metrics (latitude_confidence, longitude_confidence, heading_confidence), which re-
flect the level of uncertainty in the GNSS-based localization process.

This uncertainty can arise from various factors, including environmental conditions
and the effectiveness of sensor fusion. Understanding this data structure is essential for
analyzing how location errors may propagate through the V2X communication system and
impact overall reliability. We could apply an error model to mimic the typical location
inaccuracies of GNSS systems. The content of V2X messages can be randomized to achieve
varying levels of precision. For instance, a robot’s localization system uses odometry
instead of GNSS, which can result in less accurate data.
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(a) Scenario 1

(b) Scenario 2

Figure 4.4 – Problematic scenarios: view of the camera infrastructure © IEEE 2024
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4.3.3 Building CPM

Creating CPM involves identifying, localizing, and tracking objects within the Carla
simulation to determine their paths. This allows the CPM to provide useful information
to nearby vehicles. To generate the necessary data for CPM, we need to use software
that can detect and track objects, analyzing the video stream produced by the roadside
cameras.

This tracker ensures that the same IDs are used in each CPM for the same object,
which is crucial for the subsequent steps of data association and fusion in V2X com-
munication. As part of our contribution to the development of OpenCDA, we proposed
a combination of the Deep SORT algorithm with the Yolo detection framework. Fur-
thermore, we upgraded the existing Yolo V5 algorithm to Yolo V8 for better accuracy.

An example of a CPM sent by the RSU which provides a view of the intersection in
Figure 4.4 is presented in Figure 4.5.

The CPM example is particularly illustrative of the process of identifying and tracking
multiple objects, such as vehicles and pedestrians. Each perceived_object_container

entry represents a distinct object, with fields like x_distance, y_distance, and z_distance

detailing the spatial position relative to the RSU. Additionally, the confidence values
linked to each object’s classification, indicate the algorithm’s certainty in identifying the
object’s type (e.g., vehicle or pedestrian respectively type 5 or type 2). The consistency
of object IDs (object_id) across CPM is essential for maintaining accurate tracking over
time, which is critical for effective data association and fusion in V2X communications.
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(a) CAM sent by the CAV (b) CPM sent by the RSU

Figure 4.5 – V2X messages in ROS2 topics generated from the scenario in Figure 4.4 ©
IEEE 2024
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4.4 Evaluation of the global architecture

4.4.1 Implementation of the architecture

In the system architecture described in Figure 4.6, the process of generating and
broadcasting V2X messages in the environment simulated on Carla with the collaboration
of the OpenCDA framework is presented. We chose to work with different components
running in Docker containers to simplify deployment.

General description

Figure 4.6 – Global architecture: Carla-OpenCDA-ROS2 © IEEE 2024

The workflow begins with the initiation of the Carla Simulator, configured with a
pre-defined scenario featuring CAVs and RSUs, using the module ScenarioManager of
OpenCDA. The ROS2 node server, embedded within the Docker container, acts as the
intermediary by interpreting JSON-formatted messages from three different endpoints:
"/scenario", "/localization" and "/perception".

All agents present in the scene are communicated with their unique identifier to an
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HTTP server with the "/scenario" endpoint. Messages received in "/scenario" enable to
dynamically launch the required nodes and topics, adapting the simulation environment
in real-time.

This HTTP server, residing within a Docker container, receives and processes the
information, extracting unique identifiers for both CAVs and RSUs. Subsequently, the
ROS2 server dynamically generates nodes corresponding to each agent in the scenario
and establishes the requisite communication topics. Notably, the topics are configured
for CAM and CPM. Cameras exclusively publish to the CPM topic, while CAVs publish
messages in both CAM and CPM, each linked to their unique identifier.

To conclude, this is the detailed process of the architecture presented in the Figure
4.6.

1. Launch of Carla Simulator: the graphical interface.

2. Launch of the HTTP Server ROS2 node inside the docker container.

3. Set up of the Node Server.

4. Launch of the scenario using the module ScenarioManager of OpenCDA.

5. Reception of the "Scenario.json" information via the endpoint /scenario.

6. Creation of every ROS2 nodes corresponding to all actors (CAVs and RSU) present
in the scenario. Creation of every CAM ROS2 topics for each actor sending CAMs.
Creation of every CPM ROS2 topics for each actor sending CPMs.

7. Reception of "CAM.json" via the endpoint /localization and diffuse the content
within the relevant CAM topic of the agent concerned defined by the ID.

8. Reception of "CPM.json" via the endpoint /perception and diffuse the content
within the relevant CPM topic of the agent concerned defined by the ID.

Description detailed with the specific scenario

The Figure 4.7 illustrates the interactions between two CAVs, a RSU, and a pedes-
trian in the scenario shown in Figure 4.4b.

This sequence diagram details the communication exchange between the two CAVs
(CAV _123 and CAV _138) and the RSU (RSU_1000), which occurs in the presence of
a pedestrian. The object detection process, which identifies pedestrians and vehicles using
Yolo v8 and DeepSort algorithms, is communicated through CAM and CPM messages.
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Furthermore, Figure 4.8 illustrates the nodes and topics involved. In this scenario,
the CAV is identified by ID 345, while the RSU, specifically the infrastructure camera, is
identified by ID 1000.

This diagram shows the ROS2 communication flow, where CAM and CPM messages
are exchanged between different nodes (CAV _123, CAV _138, and RSU_1000). It high-
lights the communication pathways and message exchanges within a V2X environment.

In the Carla simulator, CAV IDs directly correspond to those assigned within the
simulator environment. However, for RSUs, IDs are defined differently in OpenCDA’s
YAML files that specify the scenario. To bridge this gap in the ROS2 framework, we
have adopted a mapping convention where negative IDs in OpenCDA’s YAML files are
translated into positive IDs for ROS2:

— An ID of -1 in OpenCDA corresponds to an ID of 1000 in ROS2.
— An ID of -2 in OpenCDA corresponds to an ID of 1001 in ROS2.
— And so forth.

Figure 4.7 – Sequence diagram of the communication and object detection process in the
scenario depicted in Figure 4.4b involving two CAVs and one RSU © IEEE 2024
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Figure 4.8 – ROS2 communication flow of CAM and CPM in the scenario depicted in
Figure 4.4b © IEEE 2024

This communication infrastructure ensures precise connectivity for each agent. As the
simulated scenario unfolds, OpenCDA enables the creation of V2X messages, specifically
CAM and CPM, derived from the simulated data within Carla. These messages are then
dispatched to designated endpoints, "/localization" for CAM and "/perception" for CPM
messages.

Afterwards, individual agent nodes publish the received messages in the corresponding
topic, ensuring that the information is disseminated accurately to the relevant entities
based on their unique identifiers. This comprehensive framework is managed by ROS2
server within the Docker container, facilitating the seamless generation, transmission, and
reception of V2X messages. This setup effectively simulates a realistic connected vehicle
environment for advanced research and development purposes.

In order to facilitate community utilization, we are releasing the code of our project,
enabling V2X messages generation tool for Carla Simulator 2.

4.4.2 Discussion

Our design empowers the utilization of the Carla Simulator for generating V2X
datasets containing CAM and CPM produced by both CAVs and RSUs. The adaptability
of our architecture permits users to implement their preferred algorithms to enhance mes-
sage content, particularly for CPM. While our current approach involves using the latest
YOLO version for object classification and tracking in the scene, alternative algorithms

2. GitHub page: https://gitlab.inria.fr/jgrosset/carla-v2x-release. A simulation video of
the Scenario 1 presented in Figure 4.4a is also available at: https://youtu.be/o08lbVM9pB8.
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can be seamlessly integrated. Presently, we depend on the Carla server to retrieve GNSS
data for each identified vehicle, facilitating the completion of CPM with precise orienta-
tion, speed, and position values. This arrangement enables the testing of algorithms for
predicting and calculating the position of recognized objects from the video stream. In
this iteration, we intentionally provided accurate data in CAM and CPM to assess V2X
data fusion algorithms. The architecture’s flexibility allows us to concentrate on associa-
tion and fusion mechanisms. However, to evaluate network operation, we would need to
use a network simulator during message generation or include a message loss model. This
would allow for the randomization of data availability to simulate more realistic scenar-
ios. Our ultimate objective is to advance V2X data fusion in intricate traffic scenarios,
involving multiple CAVs, vehicles, RSUs, and VRUs.

Finally, our system design offers the flexibility to investigate a variety of scenarios. For
example, in the subsection 4.3.1, we examined a situation where the RSU, serving as an
infrastructure camera, sends a CPM to improve the perception of a vehicle obstructed by
a building in Scenario 1. Alternatively, in Scenario 2, we could analyze the video stream
from a truck’s camera, which detects the pedestrian and transmits a CPM. In this case,
the following car would receive information about a pedestrian crossing in front of the
truck, even if the pedestrian is not directly visible due to the truck. As a result, such a
service is not dependent on the availability of infrastructure. This flexibility allows us to
evaluate different situations, enabling the exploration and study of various services or the
same service with different deployment configurations.

4.5 Conclusion

In chapter 3, we showed that enhancing the perception of AIVs by adding cooper-
ative elements led to better performance. This improvement was particularly evident in
tasks such as obstacle detection and TA, where the shared information and coordination
between agents led to more accurate and efficient decision-making. By leveraging coop-
erative elements, AIVs could better anticipate and respond to dynamic changes in the
environment, thereby optimizing task execution. This chapter extends that discussion by
focusing on how to effectively implement these cooperative perception strategies. Rather
than re-proving the concept, we now aim to illustrate the practical application of these
methods to achieve improved outcomes.

Despite advancements in CAVs, there remains a challenge by integrating into the
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C-ITS framework due to the lack of C-ITS equipment. This deficiency impedes their in-
teraction with CAVs. We underscore the significance of V2X communication in enhancing
road safety with VRUs by facilitating information exchange between CAVs and the infras-
tructure. This communication is pivotal for reintegrating VRUs into the environmental
awareness of CAVs. Indeed, generating V2X datasets can help the community to work
on the refinement of algorithms for ADAS for example. To determine the essentials for
generating accurate V2X information, we establish a cooperative perception context in
the section 4.2 with a vision of the global architecture for V2X data fusion.

Currently, the Carla simulator, widely used for AV training, currently lacks compre-
hensive V2X communication capabilities. In response, we proposed a tool that is useful
to the ITS community for working with V2X data in the Carla environment [Dos+17].
Indeed, we have developed an architecture using Carla simulator, OpenCDA, and ROS2
to generate V2X messages based on ETSI standards. This architecture enables the cre-
ation of V2X messages sent by CAVs and RSUs in a C-ITS environment while performing
realistic Carla simulations. It also simplifies the creation of V2X datasets. An example of
its utility to the ITS community is testing V2X data fusion algorithms for ADAS or AVs.

The cooperative perception enabled by the sharing of information between CAVs and
RSUs means that VRUs can be reintegrated into the C-ITS system. The cooperative
messages will provide information on blind spots, which can be used by ADAS, in par-
ticular to avoid accidents. To illustrate and assess our proposed architecture, we present
a scenario involving a pedestrian concealed in a blind spot for a connected vehicle in the
subsection 4.3.1.

Industry may be interested in our tool since ROS2 is extensively used for robotic
simulations. In the future, the use of cooperative mobile robots could occasionally be part
of road environments, for example, in industrial activity parks. To manage cooperation
and heterogeneity in such a fleet of mobile robots, the use of C-ITS ETSI messages brings
many benefits [ICAE24]. It will allow cooperation between robots and infrastructure on
the model of cooperative ITS and reduce reliance on central servers. To further evaluate
this possibility, we investigated how to integrate industrial vehicles into Carla simulator.
Thus, with the ROS2 environment, we will be able to emulate simulated robots in the
Carla environment, and for example work on co-simulation [DF23].

In our future work, we are seeking to feed AI with relevant information. To achieve
this goal, we plan to implement a data clustering approach that assigns confidence levels
to each sensor’s input, such as those from cameras.
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Eventually, we aim to associate a level of confidence directly with the data to make
it dynamic. We think it should help to deploy a multi-stakeholder system allowing more
adaptive and responsive systems. Additionally, Carla simulator can help us reduce the
time required to deploy scenarios with active infrastructure. For instance, we can evaluate
various camera placements and their impact on the assessment of the scene, and therefore
on the quality of decisions made by robots. Finally, by utilizing a network simulator
or a message loss model, we can observe how data fusion responds to changes in data
freshness.
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Chapter 5

COLLECTIVE ENERGY MANAGEMENT

STRATEGIES

5.1 Introduction

Energy management is a crucial determinant of the operational success of AIVs, as
these systems are predominantly battery-powered. The operational efficiency, reliabil-
ity, and longevity of AIVs are intrinsically linked to the optimization of battery life and
recharging processes. Inefficient energy management can result in frequent operational
interruptions, increased downtime, and elevated operational costs, thereby negating the
potential benefits of automation. As the deployment of AIVs continues to expand, the
urgency for developing robust energy management strategies becomes increasingly appar-
ent.

This chapter concentrates on the development and integration of energy-efficient
strategies designed to optimize the overall performance of AIV fleets. Given the non-
uniform distribution of AIV missions—characterized by periods of high activity followed
by intervals of reduced demand—it is imperative to align energy consumption with the ac-
tual workload and operational availability of the vehicles. In heterogeneous fleets, where
each AIV may have distinct energy needs and capabilities, a collective and decentral-
ized approach to energy management becomes essential. By allowing each AIV to au-
tonomously monitor its recharging needs and collaborate with other vehicles, the fleet
can more effectively manage energy resources and reduce the likelihood of operational
disruptions.

To mitigate the risk of simultaneous recharging requests, which could overwhelm avail-
able resources, it is essential that AIVs cooperate. This can be achieved through inter-
vehicle communication or via a centralized infrastructure. Although automatic recharging
systems can address the frequency of recharges, they necessitate additional spatial and
energy resources. Even a marginal reduction in energy consumption, such as 2 to 3%,
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can have substantial implications in energy-intensive environments like warehouses and
airports.

The rapid advancement in automated systems has revolutionized various industries,
including the baggage handling sector. For the successful integration of AIV fleets in
future industrial applications, it is necessary to optimize the number and distribution of
recharging points, taking into account the potential for vehicle communication to preempt
critical recharging scenarios. In heterogeneous fleets, this optimization must account for
the varying energy demands and operational roles of different AIVs. By coordinating en-
ergy management collectively, AIVs can reduce the incidence of urgent recharging events,
thereby maintaining continuous operations and minimizing downtime.

This chapter delves into the collective energy management strategies for AIVs, focusing
on the integration of energy efficiency and TA to optimize overall system performance.

In section 5.2, we propose a fuzzy decision model for battery recharging. We use
fuzzy logic to manage the uncertainties inherent in the recharging process.

Then, in section 5.3, the focus shifts to the simulation application of the fuzzy agent-
based simulation for managing battery recharging. Through a case study, the autonomous
management of battery recharging using fuzzy logic is examined, showcasing the real-world
benefits of this approach. We conduct a comparative analysis between threshold and fuzzy
logic models. Then, we present the results of three heuristics simulated in three scenarios,
incorporating more realistic constraints of an airport, such as the flow of baggage arrivals.

To achieve a more realistic simulation framework, we further refine the AIV energy
model. Therefore, in appendix D, we propose a methodology for energy management
with a realistic point of view. We also describe in detail an algorithm for the energy
consumed by each strategy and a fuzzy logic model to select the strategy adapted for
each AIV.

Finally, in section 5.4, we address the problem of recharging batteries in conjunction
with TA. This section integrates the concepts of TA and energy management, highlighting
the interdependence of these two aspects.

This chapter is based on work published in [ASPAI24] and [AISYS24], as well as
research currently under review [ALGO24], which has not yet been published.
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5.2 Fuzzy decision model for battery recharging

On one hand, we present a formal definition for the different elements of a fuzzy agent
model, as previously mentioned in chapter 1 - section 1.4.4 [Fou13]. On the other
hand, we propose a fuzzy decision model for battery recharging. This section will delve
into the input and output linguistic variables, as well as the various fuzzy rules that will
govern the decision-making process.

This section transcribes the work presented in [AISYS24; ASPAI24] and the work still
under review in [ALGO24].

5.2.1 Fuzzy model

We propose a system designed from the literature in particular [dDD15], which aims
to manage decisions regarding energy levels and tasks for a robot or autonomous agent.
The primary goal is to decide whether the agent should recharge its energy or continue
with its current task based on its energy level and distances to the target and energy
source.

The description of the model will use fuzzy logic as described in [Fou13]. This approach
relies on a formal knowledge representation using fuzzy sets, built on fuzzy elementary
propositions of the form “V is A”. These propositions are defined from a set L (V , X,
D_V ) consisting of the linguistic variable V , the universe of possible values X, and a set
of descriptions D_V for V , which are represented by fuzzy subsets of X.

Then, our proposed system uses three input variables and one output variable:
— Energy level - Input linguistic variable: EnergyLevel

— Distance to target - Input linguistic variable: DistanceToTarget

— Distance to energy source - Input linguistic variable:
DistanceToEnergySource

— Decision (recharging or finishing the task) - Output linguistic variable: Decision

Each variable is defined over a specific range and described using linguistic terms,
represented as fuzzy sets.

Input linguistic variables of the fuzzy decision model

The fuzzy decision model relies on three primary input variables to make intelligent
decisions regarding energy management and task execution. These input variables are
defined as follows:
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— EnergyLevel - This variable represents the energy level of the system, measured
as a percentage from 0 to 100. Figure 5.1 illustrates the chosen membership
functions for the input variable EnergyLevel. It is categorized into four linguistic
terms:
— Empty: [0, 20]
— Caution: [10, 30]
— Operational: [20, 75]
— Full: [65, 100]

— DistanceToTarget - This variable measures the distance to the target in meters,
ranging from 0 to 100. Figure 5.2 depicted the chosen membership functions for
the input variable DistanceToTarget. It is described using three linguistic terms:
— Near: [0, 25]
— Medium: [10, 40]
— Far: [25, 100]

— DistanceToEnergySource - This variable indicates the distance to the energy
source in meters, also ranging from 0 to 100. Figure 5.3 shown the chosen mem-
bership functions for the input variable DistanceToEnergySource. It is classified
into three linguistic terms:
— Near: [0, 25]
— Medium: [10, 40]
— Far: [25, 100]

These variables form the foundation of the fuzzy decision-making process, allowing the
system to interpret and respond to different scenarios based on the defined fuzzy rules.
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Figure 5.1 – Energy level

Figure 5.2 – Distance to target Figure 5.3 – Distance to energy source

Output linguistic variable of the fuzzy decision model

The fuzzy decision model produces one output variable that guides the system’s actions
regarding energy management. This output variable is defined as follows:

— Decision - this variable ranges from 0 to 1 and determines whether the system
should recharge or finish its current task. Figure 5.4 depicted the chosen member-
ship functions for the output variable Decision. It is described using two linguistic
terms:
— Recharge: [0, 0.65]
— FinishTask [0.325, 1]

This output variable enables the system to make informed decisions based on the input
variables and the fuzzy rules, ensuring optimal performance and energy efficiency.
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Figure 5.4 – Decision

Fuzzy rules

The fuzzy rules extract from the literature [dDD15], establish the decision-making
framework of the system. Each rule outlines conditions based on the input variables and
determines the corresponding output decision. Our system adheres to the following rules:

1. If EnergyLevel is Empty, then Decision is Recharge.

2. If EnergyLevel is Caution and DistanceToTarget is Near and
DistanceToEnergySource is Far, then Decision is Recharge.

3. If EnergyLevel is Caution and DistanceToTarget is Near and
DistanceToEnergySource is Medium, then Decision is FinishTask.

4. If EnergyLevel is Caution and DistanceToTarget is Near and
DistanceToEnergySource is Near, then Decision is FinishTask.

5. If EnergyLevel is Caution and DistanceToTarget is Medium, then Decision is
Recharge.

6. If EnergyLevel is Caution and DistanceToTarget is Far, then Decision is
Recharge.

7. If EnergyLevel is Operational, then Decision is FinishTask.

8. If EnergyLevel is Full, then Decision is FinishTask.

To find the final decision, the first step in the fuzzy inference process is fuzzifica-
tion, where the system evaluates each elementary condition in the rule premises. This
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involves taking the precise input values and mapping them to fuzzy values based on their
membership in predefined fuzzy sets.

Once the input values are fuzzified, the system calculates the premises of each rule ("IF
V is A"). The result of this calculation is known as the activation value of the rule, which
indicates how strongly the rule is triggered by the current inputs. Then, the implication
function is applied to the conclusion of each rule, producing a fuzzy subset that represents
the distribution of possible output values based on the activated rule.

These fuzzy subsets, corresponding to the same output across different rules, are then
combined using an aggregation method—often the maximum function. This step merges
the outputs of all relevant rules into a single fuzzy subset.

Finally, the aggregated fuzzy subset is converted into a precise output value through
a process called defuzzification. Among various defuzzification methods, one of the most
common is the centroid or barycenter method, which calculates the center of gravity of
the area under the curve representing the fuzzy subset. We will use this method in our
simulations because it produces a single, clear output value that the system can use to
make a final decision.

5.3 Fuzzy agent-based simulation for managing bat-
tery recharging

In the era of autonomous systems, effective battery management is crucial for the reli-
able operation of AIVs. This section explores a fuzzy agent-based simulation approach for
managing battery recharging, focusing on a case study of autonomous battery recharging
management in subsection 5.3.1. An adaptable fuzzy multi-agent model is presented
and a multi-agent interface to address this problem.

We compare threshold-based models with fuzzy logic models, examining how fuzzy
logic handles uncertainty and variability in in subsection 5.3.2.

In subsection 5.3.3, the discussion advances to explore how increasing the complexity
of fuzzy logic criteria can further enhance the system. Three key heuristics are introduced:
(1) adapting recharging strategies based on demand and charging point availability, (2)
adapting recharging according to the baggage arrival rate and (3) adjusting the speed of
AIVs in response to the flow of baggage arrivals. These improvements demonstrate the
potential of fuzzy logic to optimize the autonomous management of battery recharging in
dynamic environments.
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In addition, we have described the fuzzy agent model in the appendix E.
This section resulted from a publication on the ASPAI conference [ASPAI24] and the

work under review [ALGO24].

5.3.1 Case study: autonomous management of battery recharg-
ing

We present an adaptable fuzzy multi-agent model Figure 5.5 that addresses the chal-
lenges of energy management for AIVs. Efficient management of AIVs requires a holistic
approach that takes into account several factors, including operational availability, energy
consumption [Las+14], collaboration between AIVs and the dynamic infrastructure, and
their adaptation to changing conditions. We aim to optimise recharging based on energy
costs, as a low workload combined with frequent recharging can increase the overall energy
consumption of the system. In addition, poor anticipation can limit system availability.

Figure 5.5 – Simulator architecture: dynamic elements in red, static in green, and not
related to the environment in purple.

The interface of our “Airport Baggage Handling Simulation” application is depicted
in Figure 5.6. We described the different functionalities of this interface simulation in
appendix B - section B.5. This intuitive and structured interface allows us to monitor
and analyze the performance of AIVs. The circulation scenario is detailed with a distance
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oriented graph presented in Figure 5.7.

Figure 5.6 – Airport baggage handling simulation HMI

5.3.2 Comparisons between thresholds and fuzzy logic models

To test different autonomous management strategies for solving the problem of AIVs
recharging batteries, we defined an initial circulation environment (Figure 5.6). We
proposed different scenarios and compared them with the following four parameters:

— nbMissions: number of missions carried out.
— timeMission: the average time taken to complete a mission in seconds.
— nbRecharges: the number of recharges performed.
— wtRecharging: waiting times for recharging in seconds.
We also varied the charge threshold at which an AIV must recharge its battery. We

then introduced a fuzzy inference system to determine the recharge time. We also adjusted
the values of the fuzzy model (fuzzy linguistic values).

In this section, we delve into a comparative analysis between different thresholds and
fuzzy logic models. We propose 3 different scenarios:
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Figure 5.7 – Oriented graph: distance in the environment in meters

— Scenario 1 (Sc1): all AIVs have a uniform recharge threshold of 30%.
— Scenario 2 (Sc2): each AIV has a different recharge threshold, maintaining the

same context as Sc1.
— Scenario 3 (Sc3): AIVs use a fuzzy logic model for recharge.

We simulated these three scenarios for 1000 bags (a discussion regarding the scenario
results is provided in the following three sections). The temporal results are shown in
Table 5.1. We aim to discern the optimal threshold configurations that maximise mission
throughput, minimise recharging frequency, and optimise resource utilisation, thereby
improving the overall efficiency of autonomous management strategies for recharging the
AIV battery.

Scenarios Sc1 Sc2 Sc3
Number of bags 1000 1000 1000

Total recharge time (s) 4800 4619 4345
Total simulation time 03:42:54 03:42:42 03:38:34

Table 5.1 – Time results for 1000 bags for Sc1, Sc2 and Sc3
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Basic Scenario

In the Basic Scenario, AIVs have a single threshold model set at 30% for recharge.
This scenario makes it possible to compare performance in terms of mission processing
time (overall and individual time), number of recharges, and waiting time for recharges
(access to a free station). The AIVs results for Sc1 are shown in Table 5.2.

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global
Thresholds 30 30 30 30 30
nbMissions 201 199 200 200 200 1000
timeMission 64 64 64 64 64 64
nbRecharges 80 80 80 80 80 400

wtRecharging 0 93 42 68 93 244

Table 5.2 – Performance indicators for Sc1

Different threshold values

Sc2 enables us to compare different threshold values for AIVs recharge. Results are
depicted in Table 5.3. When we compare with thresholds varying between 15% and
30%, the overall mission processing time is slightly lower, and the number of recharges
and overall recharge time are also lower (374 and 400, respectively). The performance of
AIV1 with the lowest threshold (15%) is obviously the best for the average time taken
to complete a mission time. However, there is a greater risk of not being able to reach a
station due to a lack of charge in the event of an incident!

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global
Thresholds 15 20 25 30 35
nbMissions 202 201 199 199 202 1000
timeMission 63 64 64 64 64 63.8
nbRecharges 67 67 80 80 80 374

wtRecharging 180 140 49 77 51 497

Table 5.3 – Performance indicators for Sc2

Fuzzy logic model

In comparison with Sc1, where AIVs have a threshold of 30%, in Sc3, AIVs use a
fuzzy basic model. The results are presented in Table 5.4 demonstrate an improvement
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in overall and individual AIV times (63 secondes on average instead of 64 secondes) and
fewer recharges (335 recharges instead of 400).

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global
FL model FL FL FL FL FL
nbMissions 201 200 200 200 199 1000
timeMission 63 63 63 63 63 63
nbRecharges 67 67 67 67 67 335

wtRecharging 0 58 19 49 71 197

Table 5.4 – Performance indicators for Sc3

5.3.3 Increases in fuzzy logic criteria

To improve the results of the previous simulations, we made three types of adapta-
tion (heuristics) corresponding to three new scenarios, taking into account more realistic
constraints and the possibility of AIVs communicating with each other and with infras-
tructure elements such as charging stations:

1. Sc4: adaptation of recharging according to the needs of the AIVs and the availabil-
ity of the charging points (centralized scenario by supervision and decentralized
scenario by communication between the AIVs and the charging points);

2. Sc5: adaptation of recharging according to the rate of baggage arrival and the
resulting variation in activity (the number of missions to be performed by the
AIVs in a unit of time is no longer constant);

3. Sc6: adapting the speed of the AIVs according to the rate of baggage arrival
(centralized scenario by supervision and decentralized scenario by communication
between the AIVs and the charging points).

The objective of this section is to show that specific heuristics allow certain situations
to be dealt with fairly finely and increase the collective/overall performance of AIVs. We
simulated these three improved scenarios for 1000 bags. The temporal results are shown
in Table 5.5.

Adapting recharging to demand and the availability of charging points

The first heuristic, referred to as Sc4, simulates the adaptation of charging behaviour
to both demand and the availability of charging points. The AIV results are presented
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Scenarios Sc4 Sc5 Sc6
Number of bags 1000 1000 1000

Total recharge time (s) 4606 4285 935
Total simulation time 03:39:08 03:37:03 01:32:15

Maximum number waiting bags 468 659 159
Average bags waiting 234 327 99,62

Table 5.5 – Time results and configuration for 1000 bags for Sc4, Sc5 and Sc6

in Table 5.6. The effectiveness of this heuristic is obvious, particularly for AIV1, which
required 14 fewer recharges compared to AIV5 and 12 fewer recharges than AIV4. Ad-
ditionally, the total recharging time for Sc4 is shorter than for both Sc1 and Sc2: 4606
seconds compared to 4800 seconds and 4619 seconds, (respectively Table 5.5 for Sc4 and
Table 5.1 for Sc1 and Sc2).

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global
Thresholds 15/15 20/15 25/20 30/20 35/25
nbMissions 203 201 199 198 199 1000
timeMission 62 62 63 63 63 62.6
nbRecharges 68 67 78 76 80 369

wtRecharging 143 178 5 10 70 406

Table 5.6 – Performance indications for Sc4

Adaptation of recharging according to the baggage arrival rate

The second heuristic, referred to as Sc5, simulates recharging adaptations based on
the baggage arrival rate and the corresponding variation in induced activity (the number
of tasks to be performed by the AIVs). As shown in Table 5.7, this heuristic enables
the AIVs to complete their missions more quickly compared to Sc4. Specifically, AIVs
complete one mission in an average of 58 seconds under Sc5, whereas it takes them 62.6
seconds under Sc4 (see Table 5.6).

Adapting the speed of the AIVs to the flow of baggage arrivals

The final heuristic, referred to as Sc6, adapts the speed of the AIVs to the flow of
baggage arrivals. Compared to Sc5, the 30% speed threshold has been adjusted, as the
20% threshold led to too many load faults due to increased energy consumption at higher
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Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global
Thresholds 20 20 20 20 20
nbMissions 200 199 201 200 200 1000
timeMission 58 58 58 58 58 58
nbRecharges 15 15 15 15 15 75

wtRecharging 66 0 25 57 94 242

Table 5.7 – Performance indicators for Sc5

speeds. This adjustment results in a significantly shorter overall simulation time, as shown
in Table 5.5. Additionally, Table 5.8 demonstrates improved throughput control, with
bags waiting times reduced to 99.6 seconds in this scenario, compared to 327 seconds for
Sc5 (see Table 5.7).

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global
Thresholds 30 30 30 30 30
nbMissions 201 199 200 199 201 1000
timeMission 25 25 25 25 25 25
nbRecharges 17 17 17 17 17 85

wtRecharging 0 19 76 20 54 169

Table 5.8 – Performance indicators for Sc6

5.4 Problem of recharging batteries with TA

As mentioned in the introduction of this chapter, AIV missions do not follow a uniform
distribution in terms of frequency, creating periods of intense activity and others that are
quieter. It is therefore essential to link the energy consumption of AIVs to the amount of
work carried out and their operational availability.

Efficient TA remains a critical challenge, as discussed in chapter 3, especially in
dynamic environments where multiple AIVs are tasked with handling various missions.
One of the primary objectives is to develop strategies that ensure optimal TA, thereby
maximizing the overall efficiency and effectiveness of the fleet.

In this section, we simulate different scenarios within the same multi-agent application
context as in section 5.3.

We begin with an analysis of TA using an auction-based approach grounded in fuzzy
inference. It corresponds to the first simulation, which we will explore in subsection
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5.4.1. Fuzzy logic enhances our ability to understand natural, uncertain, and imprecise
phenomena by utilizing rules and membership functions to define “fuzzy sets”. This ap-
proach effectively addresses the uncertainties and imprecisions inherent in AIV operations.
By modelling human reasoning and managing imprecise information, fuzzy logic provides
a robust framework for decision-making in complex and uncertain environments.

Following this, we will simulate a scenario using the fuzzy decision model for TA
within the auction strategy and incorporate the model outlined in subsection 5.2.1 for
recharging management. Finally, we will enhance the fuzzy recharging model to develop
a more realistic and effective version.

This section is linked to the contribution [AISYS24].

5.4.1 Basic TA auction strategy with fuzzy rules

We propose a fuzzy system inspired by the literature [AB21; XZ24] for basic TA auction
strategy, referred as FuzzyBasicTa, designed to incorporate fuzzy rules that handle the
uncertainties and variabilities associated with AIV operations. In the interface of our
“Airport Baggage Handling Simulation” application, simulating this strategy corresponds
to selecting scenario 7: Sc7 (refer to appendix B - section B.5). Fuzzy logic provides a
robust framework for decision-making in complex and uncertain environments, enabling
more effective TA.

Sc7 implements FuzzyBasicTa a TA strategy in which each AIV agent uses a fuzzy
model with three input variables and one output variable:

— Availability (in relation to the number of bags the AIV must handle) - Input
linguistic variable: Availability

— Distance to target (distance from the baggage drop-off location) - Input linguistic
variable: DistanceToTarget

— Level of energy - Input linguistic variable: EnergyLevel

— Cost (cost of the task) - Output linguistic variable: Cost

Each variable is defined over a specific range and described using linguistic terms,
represented as fuzzy sets.

Input linguistic variables of the TA fuzzy decision model

— Availability - This variable represents the number of bags the AIV must handle,
measured as a number from 0 to 20. It is categorized into three linguistic terms:
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— Weak: [0, 2]
— Medium: [1, 3]
— High: [2, 20]

— Distance to target - This variable measures the distance to the target (from the
baggage drop-off location) in meters, ranging from 0 to 100. DistanceToTarget.
It is described using three linguistic terms:
— Near: [0, 40]
— Medium: [10, 80]
— Far: [50, 100]

— Level of energy - This variable indicates the energy level of the system, measured
as a percentage from 0 to 100. It is classified into four linguistic terms:
— Empty: [0, 20]
— Caution: [10, 30]
— Operational: [20, 75]
— Full: [75, 100]

Output linguistic variable of the TA fuzzy decision model

The fuzzy decision model produces one output variable that guides the system’s actions
regarding TA. This output variable is defined as follows:

— Cost - This variable ranges from 0 to 1 and determines whether the system should
recharge or finish its current task. It is described using five linguistic terms:
— V eryWeak: [0, 0.2]
— Weak: [0.1, 0.5]
— Medium: [0.3, 0.7]
— High: [0.5, 0.9]
— V eryHigh: [0.8, 1.0]

This output variable enables the system to make informed decisions based on the input
variables and the fuzzy rules, ensuring optimal performance and energy efficiency.

Fuzzy rules of the TA fuzzy decision model

The fuzzy rules establish the decision-making framework of the system. Each rule
outlines conditions based on the input variables and determines the corresponding output
decision. Our system adheres to the following rules:
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1. If Availability is Weak then Cost is V eryHigh.

2. If Availability is Weak, DistanceToTarget is Near and EnergyLevel is Full,
then Cost is High.

3. If Availability is Medium, DistanceToTarget is Far and EnergyLevel is
Caution, then Cost is High.

4. If Availability is Medium, DistanceToTarget is Medium and EnergyLevel is
Operational, then Cost is Medium.

5. If Availability is Medium, DistanceToTarget is Near and EnergyLevel is Full,
then Cost is Weak.

6. If Availability is Medium, DistanceToTarget is Far and EnergyLevel is
Caution, then Cost is Weak.

7. If Availability is High, then Cost is V eryWeak.

Results with the FuzzyBasicTA strategy

The results of this new strategy FuzzyBasicTa, in Figure 5.9 are promising: the
maximum number of bags waiting is low, the overall simulation time is efficient, the
missions are well-distributed among the AIVs, and the average AIV occupancy rate is
high at 0.88.

However, there are a few elements of uncertainty in this scenario, defined by three
linguistic variables. Fuzzy logic helps to better understand these uncertain, imprecise,
and difficult-to-model natural phenomena by defining rules and membership functions for
“fuzzy” sets. Introducing additional fuzzy elements, such as nuanced simulation param-
eters, is expected to improve results, particularly by reducing the maximum number of
waiting bags items and enhancing battery recharging management.

5.4.2 Energy management with fuzzy rules

In this subsection, we introduce Scenario 8 (Sc8), which extends the strategy of the
fuzzy model discussed in the following subsection by incorporating an additional layer of
energy management through a second fuzzy model. This enhanced model enables AIVs
to assess whether they need to recharge during a mission, thereby refining the calculation
of the overall mission cost.
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Strategy /
Parameters FuzzyBasicTa

Maximum number of
bags waiting 6

Overall simulation
time (in s) 1843

Average mission
time per AIV (in s) [80, 81, 80, 81, 82]

Number of
missions carried

out by AIV
[21, 21, 21, 19, 18]

Occupancy rate
by AIV

[0.91, 0.92, 0.91,
0.84, 0.80]

Average occupancy
rate 0.88

Table 5.9 – Global results of the strategy FuzzyBasicTa

Sc8 employs the FuzzyBasicTaAndRecharge strategy, integrating the new fuzzy
model for recharging. This model is characterized by five input variables and one output
variable:

— Level of energy - Input linguistic variable: EnergyLevel

— Distance to station 1 - Input linguistic variable: DistanceToStation1
— Distance to station 2 - Input linguistic variable: DistanceToStation2
— Availability station 1 - Input linguistic variable: AvailabilityStation1
— Availability station 2 - Input linguistic variable: AvailabilityStation2
— Recharge - Output linguistic variable: Recharge

The EnergyLevel variable is defined using the same specific range and linguistic terms
as in the FuzzyBasicTa strategy detailed in the subsection above.

Input linguistic variables of the recharge fuzzy decision model

— Distance to station 1 or Distance to station 2 - This variable represents the
distance to the respective station that the AIV must consider, measured on a scale
from 0 to 1200 (in meters). It is categorized into three linguistic terms:
— Near: [0, 600]
— Medium: [0, 1200]
— Far: [600, 1200]
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— Availability station 1 or Availability station 2 - This variable represents the
distance to the station (1 or 2) the AIV must handle, measured as a number from
0 to 5 (corresponding to the number of AIVs in the simulation). It is categorized
into three linguistic terms:
— High: [0, 1]
— Medium: [0, 2]
— Weak: [1, 5]

Output linguistic variable of the recharge fuzzy decision model

The fuzzy decision model produces one output variable that decides if the AIV has to
finish its task and go to recharge at Station1 or Station2. This output variable is defined
as follows:

— Recharge - This variable ranges from 0 to 1 and dictates whether the system
should recharge or continue its current task. It is described using three linguistic
terms:
— Station1: [0, 0.3]
— Station2: [0.1, 0.5]
— FinishTask: [0.4, 1.0]

We recall that the objective is to decide whether the AIV should recharge its energy
or continue with its current task based on its energy level and distances to the target and
energy source.

Results with the FuzzyBasicTaAndRecharge strategy

In the new scenario where AIV employs the FuzzyBasicTaAndRecharge strategy
(scenario 8, denoted as Sc8), the performance outcomes for TA are marginally less fa-
vorable compared to those in scenario Sc7. Detailed results for Sc8 are shown in Tables
5.10 and 5.11.

Indeed, the maximum number of bags waiting remains the same, the overall simulation
time is slightly longer, the distribution of missions among the AIVs is less efficient, and
the average AIV occupancy rate is lower at 0.82. However, the overall recharging time is
reduced in this scenario, potentially leading to greater AIV availability. This represents
an area for improvement in future scenarios.
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Strategy /
Parameters FuzzyBasicTaAndRecharge

Maximum number of
bags waiting 6

Overall simulation
time (in s) 2000

Average mission
time per AIV (in s) [81, 80, 81, 84, 83]

Number of
missions carried

out by AIV
[23, 19, 21, 19, 18]

Occupancy rate
by AIV

[0.93, 0.76, 0.85,
0.80, 0.75]

Average occupancy
rate 0.82

Table 5.10 – Global results of the strategy FuzzyBasicTaAndRecharge

Strategies /
Parameters FuzzyBasicTaAndRecharge

Total recharge time 490
Total waiting
time for refills 124

Total number
of refills 33

Breakdown of
the number of

recharges by AIV
[8, 6, 7, 6, 6]

Table 5.11 – Results linked to recharges with the FuzzyBasicTaAndRecharge scenario

5.4.3 Improving the fuzzy recharge model

In this scenario entitled FuzzyBasicTaAndImprovedRecharge, we propose a more
realistic version of the fuzzy model presented in subsection 5.2.1 and used in the subse-
quent simulation. The system’s objective remains the same: to decide whether the agent
should recharge its energy or continue with its current task based on its energy level and
distances to the target and energy source.

To enhance the model, we introduce additional input variables. The improved model
now considers urgency in relation to the number of baggage awaiting delivery (speed),
proximity with other AIVs, alongside existing factors such as energy level, distance to
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recharging stations, and station availability.

New input linguistic variables of the improved recharge fuzzy decision model

The system now also incorporates the following new linguistic variables:
— Urgency - This variable represents the distance to the station (1 or 2) the AIV

must handle, measured as a number from 0 to 10. It is categorized into three
linguistic terms:
— Weak: [0, 3]
— Medium: [0, 5]
— High: [3, 10]

— Proximity AIV - This variable represents the proximity of other AIV agents (use
of observed and safety distances), measured as a number from 0 to 1000 (meters).
It is categorized into three linguistic terms:
— High: [0, 300]
— Medium: [100, 500]
— Weak: [300, 1000]

Output linguistic variable of the improved recharge fuzzy decision model

The improved fuzzy decision model introduces a new output variable, Speed, and
refines the existing output variable, Recharge, to be more precise. These output variables
are defined as follows:

— Speed - This variable represents the speed of the AIV, measured in meters per
second (m/s) within the range of 0 to 10. It is categorized into three linguistic
terms:
— Weak: [0, 5]
— Normal: [2, 8]
— High: [5, 10]

— Recharge - This variable ranges from 0 to 1 and dictates whether the system
should recharge or continue its current task. It is described using four linguistic
terms:
— Speed: [0.4, 0.8]
— Normal: [0.6, 1.0]
— Strong: [0.8, 1.0]
— FinishTask: [0, 0.6]
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Results with the FuzzyBasicTaAndImprovedRecharge strategy

This enriched model aims to refine the decision-making process for when and how
quickly an AIV should recharge, balancing the urgency of baggage deliveries with efficient
energy management. By integrating these heuristics, the objective is to minimize the
waiting time for a recharge while ensuring AIVs are readily available to pick up and
deliver baggage promptly. This approach seeks to adjust the speed of AIVs based on
the real-time flow of baggage arrivals, aiming to reduce the maximum number of waiting
for bags and thereby improve overall operational efficiency and availability of AIVs for
continuous luggage handling tasks.

The comparison between the two scenarios, FuzzyBasicTaAndRecharge (Sc8) and
FuzzyBasicTaAndImprovedRecharge (Sc9), reveals significant differences in their per-
formance metrics.

The global results presented, in Figure 5.12, demonstrate the efficacy of the improved
model. Sc9 exhibits a shorter overall simulation time of 1675 seconds compared to 2000
seconds in Sc8, indicating more efficient operations. The average mission time per AIV
is also significantly reduced in Sc9, ranging from 65 to 67 seconds, compared to 80 to 84
seconds in Sc8, reflecting more effective task handling. Mission counts are fairly similar
across both scenarios. The occupancy rates in Sc9, averaging at 0.79, are slightly lower
than the 0.82 average in Sc8. This lower rate suggests more efficient utilization of AIVs.

Recharge metrics further highlight the improvements with the use of
FuzzyBasicTaAndImprovedRecharge, depicted in Table 5.13. Despite a higher total
recharge time of 736 seconds compared to 490 seconds in Sc8. Sc9 features a more efficient
distribution of recharge events, with 49 total refills compared to 33 in Sc8. The increase
in the speeds of the AIV agents has an energy cost! The waiting time for refills is slightly
lower in Sc9 at 119 seconds compared to 124 seconds in Sc8. The breakdown of recharges
by AIV in Sc9 (ranging from 7 to 11) also indicates a more balanced and optimized
recharge strategy compared to Sc8 (ranging from 6 to 8).

In summary, the use of the strategy FuzzyBasicTaAndImprovedRecharge

demonstrates a superior approach to TA and recharge management, leading to
better performance metrics across various parameters compared to the strategy
FuzzyBasicTaAndRecharge. This enhanced model effectively balances the urgency of
baggage deliveries with efficient energy management, resulting in improved operational
efficiency and availability of AIVs for continuous baggage handling tasks.
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Strategy /
Parameters FuzzyBasicTaAndImprovedRecharge

Maximum number of
bags waiting 6

Overall simulation
time (in s) 1675

Average mission
time per AIV (in s) [67, 65, 67, 65, 67]

Number of
missions carried

out by AIV
[22, 22, 22, 19, 15]

Occupancy rate
by AIV

[0.88, 0.85, 0.88
0.74, 0.6]

Average occupancy
rate 0.79

Table 5.12 – Global results of the strategy FuzzyBasicTaAndImprovedRecharge

Strategy /
Parameters FuzzyBasicTaAndImprovedRecharge

Total recharge time 736
Total waiting
time for refills 119

Total number
of refills 49

Breakdown of
the number of

recharges by AIV
[11, 11, 11, 9, 7]

Table 5.13 – Results linked to recharges with the FuzzyBasicTaAndImprovedRecharge
scenario

5.5 Conclusion

In this chapter, we have proposed a multi-agent simulation (appendix B - section
B.5), including fuzzy logic, to test various scenarios of battery recharging management
for mobile baggage conveyor robots (AIVs) at an airport. This approach offers a flexible
adaptation to the various aspects of AIV management and facilitates possible adjustments
needed for deployment at an airport site.
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The use of a distributed multi-agent system provides temporary autonomy in case of
central infrastructure failure and can improve the management of individual AIV func-
tions, such as TA, battery charging, speed regulation, etc. Our main simulation objective
was to minimize the maximum number of bags waiting at a given time, the total sim-
ulation time, the average time to complete a mission per AIV, the number of missions
completed per AIV during the simulation, and the activity rate of the AIVs.

In section 5.3, the simulation results demonstrate that incorporating adaptive fuzzy
multi-agent models (section 5.2) for AIV energy management can significantly optimize
recharging strategies, improve operational efficiency, and mitigate energy consumption,
particularly by considering dynamic factors such as workload variation, communication
between AIVs and infrastructure elements. In fact, an infrastructure capable of optimising
recharging according to energy tariffs is advantageous, particularly with the ability to
cut consumption over an hour. These findings will underscore the importance of flexible,
collaborative approaches in enhancing the performance of autonomous systems in dynamic
environments.

In appendix D, an optimal control problem is defined to improve an accurate energy
consumption model. Subsequently, an algorithm is implemented to plot a speed profile
based on the distance travelled and the corresponding energy profile, which considers
two distances: acceleration and deceleration. Using this algorithm, three strategies are
assessed. The strategy selected for the robot will be determined using a fuzzy logic model.
During a robot mission, two constraints are imposed: waiting baggage and traffic, which
are considered inputs to our fuzzy logic model for strategy selection.

Three strategies generated by our methodology effectively reflect these constraints.
The goal is to find an optimal compromise between energy consumption, bags waiting
times, and traffic conditions. As shown by numerical simulations, Strategy1 focuses on
optimal energy consumption. Strategy2 allows for a slight increase in energy usage to
address waiting baggage. Strategy3 prioritizes alleviating energy constraints related to
traffic while addressing waiting baggage.

In section 5.4, we explored an initial TA scenario using a basic fuzzy model. We
then enhanced this scenario by refining the fuzzy decision model of the TA in several key
areas: (1) optimizing the recharging of autonomous vehicle (TA) batteries, (2) selecting
the most suitable recharging stations, (3) determining the optimal recharging rate, and
(4) adjusting the TA speeds to match variations in baggage arrival rates.

The simulation results demonstrate that employing adaptive fuzzy multi-agent models
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to manage TA, energy recharging, infrastructure selection, and speed adjustments signifi-
cantly boost the operational efficiency of the AIV fleet. These strategies, which emphasize
energy optimization and resource allocation, are directly aligned with the goals of "Level
4" on the collective autonomy scale (mentioned in subsection 1.3.3), where the focus
shifts from individual task efficiency to collective optimization across the entire fleet.
By reducing energy consumption and improving operational coordination, the system is
better equipped to achieve sustainable and efficient performance in complex, dynamic
environments.

We plan to enhance the behaviour simulations of our AIV agents by integrating fuzzy
models, aiming to improve the relevance and effectiveness of their decision-making in
collective autonomy management. Additionally, we intend to develop strategies that
better address various constraints, such as prioritizing fully loaded robots over empty
ones and taking into account the battery levels of the robots.

An important consideration for future research is the heterogeneity of the AIVs, as
these robots may possess different and discriminating characteristics that impact TA
and overall system performance. By considering the diverse capabilities, battery capac-
ities, and operational efficiencies of heterogeneous AIVs, we can further refine our fuzzy
logic models to ensure more tailored and efficient mission planning and execution. This
approach will better align the deployment of AIVs with their specific strengths and limi-
tations, ultimately enhancing the system’s overall efficiency and resilience.
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CONCLUSION

This thesis set out to explore and enhance the autonomy of AIVs within industrial fleets
by applying collective intelligence strategies. Focusing on the core technical functions
of AIVs: obstacle avoidance, Task Allocation (TA), cooperative perception, and energy
management, this work offers a comprehensive investigation into how collective strategies
can improve both individual and fleet-wide performance.

The objective of this thesis was to propose and evaluate strategies that increase the
autonomy and operational efficiency of AIV fleets by enabling robust communication,
cooperation, and decision-making among vehicles. This goal was driven by the under-
standing that future industrial systems will increasingly rely on fleets of heterogeneous
robots working collaboratively to perform complex tasks. By enhancing the collective
intelligence of these vehicles, it becomes possible to tackle issues related to navigation in
dynamic environments, TA under real-time constraints, and energy management across
entire fleets. Given this context, one of the central questions posed in the introduction
was:

What methodologies can be used to rigorously assess and refine collective
strategies aimed at increasing the autonomy of AIV fleets?

Throughout this thesis, we employed a methodology that leverages multi-agent sys-
tems, simulation environments, and scenario-based testing, which proved to be essential
tools for evaluating and refining collective strategies for AIV autonomy.

By decomposing the autonomy problem into manageable technical tasks — such as
navigation, perception, TA, and energy management — we identified the key areas where
collective strategies can be most effective. We have shown that the integration of adaptive
algorithms within these strategies enables AIVs to make more autonomous decisions while
facilitating real-time communication and information sharing between agents.

The proposed solutions were rigorously assessed through modeling and simulation,
allowing us to validate their performance under dynamic and complex conditions. These
tests not only ensured the practical viability of the strategies but also highlighted areas
for further optimization. Decentralized decision-making proved particularly effective in
handling the complexity of AIV systems, while scenario-based simulations allowed us to
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stress-test these strategies in realistic operational environments.
In conclusion, the methodologies outlined in this thesis provide a robust framework

for systematically assessing and refining collective strategies to enhance the autonomy of
AIV fleets before moving on to real-time field experiments. By addressing the inherent
complexity of these systems and ensuring that proposed solutions are tested, modeled,
and validated, we have developed different multi-agent simulations (appendix B) that
contribute to validating our different collective strategies.

Contributions

How can the navigation and localization capabilities of AIVs be enhanced
in complex, dynamic environments through cooperative perception and col-
lective strategies?

In the context of Industry 4.0, enhancing the navigation and localization capabilities of
AIVs is vital for effective obstacle avoidance in complex, dynamic environments. Indeed,
for example, warehouses are characterized by a variety of interacting elements, including
vehicles, operators, and potential obstacles like objects that may fall or be left in aisles.
This manuscript investigates the impact of cooperative perception among fleet vehicles
and the application of collective strategies to optimize their operational efficiency during
missions.

A key contribution is the extension of the message-based communication protocol
introduced by Bahnes et al. in [BKH16], which originally prioritized vehicle passage
through intersections. As a first step, we carried out an algorithmic work to extend this
algorithm in order to have the possibility to manage the detection of fixed and mobile
obstacles (Figure 2.1) [ARCI22].

By integrating a cooperative perception protocol based on the ETSI standard for
ITS, vehicles now share location data, environmental perception, and warnings of haz-
ardous events through standard messages. This framework is validated through simula-
tion, demonstrating how AIVs in a fleet can coordinate more effectively when responding
to evolving obstacles in real time.

Moving toward a collective strategy for global obstacle avoidance (in section 2.3), our
simulation results demonstrated the benefits of collaboration between AIVs, showing that
both individual and fleet efficiency increased [ASPAI22]. This collaboration opens the
possibility for future advancements, such as real-time TA, scheduling, and redistribution
among AIVs in response to perceived obstacles. Furthermore, incorporating cooperative
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perception, either through AIV-based tracking or infrastructure support, could further
enhance fleet efficiency during mission execution.

Finally, as discussed in appendix C, we developed a method for estimating AIV posi-
tions within a closed industrial environment [ICAE23] and extended a collision detection
algorithm for more robust obstacle avoidance [ASPAI22]. These methods were validated
using an agent-based simulation platform that integrates both obstacle detection and
position estimation algorithms.

After the different works about obstacle avoidance, our aim was to move to a higher
level of collaboration with the possibility of mission sharing and reorganization in a dis-
tributed way.

What strategies can optimize TA within a fleet of AIVs to enhance oper-
ational efficiency and reduce downtime?

In the context of the current smart factory, AIVs must become increasingly au-
tonomous in order to perform their missions effectively, i.e. optimize their activity ac-
cording to performance indicators such as distances covered, energy consumed, time for
performing missions, availability, etc. Autonomy and decentralization are two excessively
linked notions to the extent that an autonomous system operates and makes decisions
autonomously.

Therefore, we proposed a dynamic task (re-)allocation process model for AIVs, man-
aging their activity in a decentralized context [ICAE24]. We then developed a multi-agent
simulation (appendix B - B.4) to be able to simulate this process and test it on dif-
ferent scenarios of problematic traffic situations. The proposed scenarios allow us to
move towards strong cooperation between AIV agents, but also between AIV agents and
infrastructure agents (cameras). The V2X communication implemented to enable this
cooperation is an essential element of our decentralized agent-based simulation approach.
We have shown that it brings more flexibility and robustness in the management of prob-
lematic dynamic situations.

How can energy management be optimized across a fleet of AIVs to ex-
tend operational autonomy and reduce interruptions due to recharging or
battery replacement?

Efficient management of AIVs requires a comprehensive approach considering sev-
eral factors, including operational availability, energy consumption, collaboration between
AIVs and infrastructure, as well as their adaptation to changing conditions.

195



Optimizing energy management across a fleet of AIVs can significantly extend their
operational autonomy and reduce interruptions due to recharging or battery replacement.
Our research demonstrates that our multi-agent simulation (appendix B - B.5), incor-
porating fuzzy logic, provides an effective framework for this optimization. By leveraging
adaptive fuzzy multi-agent models, we can refine recharging strategies, enhance opera-
tional efficiency, and minimize energy consumption.

The simulation results highlight several key findings. Firstly, the integration of fuzzy
logic into the energy management system allows for dynamic adjustments based on real-
time factors such as workload variations and energy tariffs. This flexibility in recharging
management enables AIVs to operate more efficiently by optimizing when and where they
recharge [ALGO24; ASPAI24].

Additionally, our approach to task adaptation and speed regulation — where AIVs
adjusts their speed in response to varying baggage arrival flows — further optimizes
energy use. By coordinating these factors with recharging strategies, we ensure that the
AIV fleet remains operational with minimal interruptions [AISYS24].

Furthermore, the use of a distributed multi-agent system enhances resilience by allow-
ing individual AIVs to maintain autonomy in the event of central infrastructure failures.
This capability ensures continuous operation and efficient management of each vehicle’s
energy needs.

Overall, our research underscores the importance of employing flexible, collaborative
approaches in managing autonomous systems. The adaptive fuzzy multi-agent models
not only improve recharging strategies and operational efficiency but also demonstrate
the potential for more sustainable and effective management of AIV fleets in dynamic
environments.

How can the heterogeneity of industrial systems be managed more effec-
tively?

Managing the heterogeneity of industrial systems more effectively requires a compre-
hensive communication framework that ensures seamless interaction between AIVs and
infrastructure. Our contributions demonstrate that leveraging ITS technologies, such as
CAM, DENM, and CPM, adapted for industrial contexts [ARAC24], can significantly
enhance communication reliability and efficiency.

Through our work during my mobility at the University of Tokyo, we developed a
novel architecture for the Carla simulator, integrating OpenCDA and ROS2 to establish a
V2X communication system [VTC24]. This architecture facilitates seamless interactions
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between CAV and RSU, creating a simulated environment to generate V2X datasets
and refine algorithms for ADAS. This system not only supports efficient management of
communication heterogeneity but also enhances decision-making in complex scenarios, as
demonstrated by our blind spot detection use case.

By integrating AIVs into the Carla simulator and industrial environment scenarios,
this architecture can help work on V2Xs communication between AIVs and the infrastruc-
ture to improve decision-making. The ability to simulate various conditions and optimize
V2X communications paves the way for more robust industrial operations, reduced inef-
ficiencies, and improved interoperability of systems in dynamic environments.

Future works

In this manuscript, we have explored various strategies to enhance the core function-
alities of AIVs through collective strategies, focusing on their interaction with both each
other and the surrounding infrastructure. Building on these findings, the different subsec-
tions below present several areas promising avenues for further research and development
as a result of the work carried out during this thesis.

Obstacle avoidance

A key aspect of this work will be to implement the Bahnes algorithm [BKH16] for
real-world experiments. Additionally, there will be a push towards real-world experimen-
tation, involving the use of physical robots to test the proposed strategies. This includes
experimenting with Turtlebot3 "burger" robots and integrating intersection proximity in-
frastructure to optimize communication and coordination among AIVs. The aim is to
reduce unnecessary braking and stopping, thereby improving energy efficiency and overall
mission performance.

Another important direction is to expand the performance analysis by introducing
new indicators and testing various mission scenarios with multiple robots and obstacles.
This will help in evaluating the effectiveness of the collective strategies under diverse
conditions.

Lastly, future work will explore further development of cooperative infrastructure and
the application of fuzzy logic to better qualify and respond to obstacles. This will enhance
the AIV agents’ ability to navigate and operate efficiently in complex environments.
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Task allocation

Our work highlights two key perspectives: data fusion and shared memory among AIV
agents. These concepts are essential for improving cooperation between AIVs and other
agents, such as cameras, to enhance decision-making and efficiency.

Data fusion involves integrating information from different sources, such as an AIV
detecting an obstacle at one time and a camera detecting the same obstacle at another.
We aim to develop methods to merge these data streams effectively, creating a unified
understanding of the environment.

Additionally, a future interesting work is on mechanisms to verify obstacles. For ex-
ample, an AIV could be assigned to physically check the presence of an obstacle, ensuring
that the system has accurate and up-to-date information. This verification process will
help address discrepancies and improve the reliability of obstacle detection.

To support these advancements, we plan to implement a shared memory system that
enables AIV agents to access global information, such as task assignments and environ-
mental maps. This system will allow for better coordination and task delegation, reducing
the need for CRM (acknowledgment messages) and improving overall efficiency. Further-
more, the objective is to continue to develop our simulation platform (appendix B - B.4)
to accommodate fleets of heterogeneous robots, each with different capabilities, ensuring
that TA aligns with each robot’s strengths.

By focusing on these approaches, we aim to significantly enhance the cooperation and
operational autonomy of AIVs in real-world applications.

Cooperative Perception - Carla simulation

Our future work will focus on enhancing the integration of cooperative perception into
AIV and industrial environments.

A primary goal is to advance our approach: generate V2X data with Carla simula-
tor [VTC24] to feeding AI with relevant information by implementing a data clustering
method that assigns confidence levels to inputs from various sensors, such as cameras.
This method will help develop dynamic confidence metrics for sensor data, which is ex-
pected to support more adaptive and responsive multi-stakeholder systems.

We also plan to leverage Carla to simulate scenarios involving AIVs and infrastructure.
By experimenting with different camera placements and evaluating their effects on scene
analysis and decision-making quality, we aim to optimize deployment strategies and reduce
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the time required to set up scenarios with active infrastructure. It will allow cooperation
between robots and infrastructure on the model of cooperative ITS and reduce reliance
on central servers.

To further evaluate this possibility, we will investigate how to integrate industrial
vehicles into Carla. Moreover, with the ROS2 environment, we will be able to emulate
simulated robots in the Carla environment, and for example work on co-simulation.

Additionally, we will explore how network conditions and data freshness influence
data fusion processes. By using network simulators and message loss models, we intend to
evaluate how these factors affect the integration and effectiveness of sensor data, which will
contribute to improving the robustness and reliability of cooperative perception systems.
Overall, our efforts are geared toward creating a more adaptive, efficient, and robust
system for cooperative perception in industrial environments.

Energy management

We plan to continue integrating fuzzy models into our AIV simulation agents in order
to increase the relevance and effectiveness of their decisions in the management of their
energy recharge.

Moreover, another perspective would be to add learning capabilities (e.g., based on
neural networks [Yud+19]) to them in order to increase the relevance and efficiency of
their decisions in the collective management of their autonomies.

Integration of the different functionalities

A central question raised by my thesis is how to effectively integrate various function-
alities to achieve global autonomy for AIVs. One promising direction for future research
would involve testing different scenarios in a simulation environment, enabling AIVs agents
to apply a range of collective strategies for achieving this goal.

One of the major perspectives of my work would be to test different scenarios in
simulation with the possibility for AIV agents to be able to use all the different collective
strategies to achieve overall autonomy. To do this, it will be necessary to first develop
a complete multi-agent simulation platform with different possible circuits, and with the
possibility of using the different collective strategies.

The broader objective of this research is to ultimately integrate these capabilities into
robotic systems using ROS2 for example and perform experimentation with heterogeneous
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fleets of robots. The integration of the capabilities to use collective strategies into physical
robots would enable comprehensive testing of their effectiveness in real-world conditions.

Towards fleet-centered collective autonomy

Following the integration of different functionalities, a key direction for future research
is to move from an individual AIV focused approach to a fleet-centered approach to
autonomy. While in this manuscript we have focused more on individual AIVs who have
benefited from collective strategies, the next step is to improve collaboration by focusing
on the fleet as a whole, rather than on each AIV as a unit.

In this approach, fleet-level autonomy can be improved by running simulations that
represent industrial scenarios where the fleet operates as a unified system. Instead of just
tracking the performance of individual AIVs, we should create performance indicators
that measure the fleet’s overall efficiency. For instance, we could monitor the fleet’s total
energy usage, the number of packages handled per unit of time by the fleet, or how well
the AIVs work together to share tasks and resources.

By treating the fleet as one coordinated system, we can significantly boost overall au-
tonomy. Measuring and improving the fleet’s ability to work as a cohesive unit will be key
to achieving better performance in industrial settings. Shifting towards this fleet-centered
approach in simulations and real-world tests is a crucial step in advancing collective au-
tonomy for AIVs. Moreover, this perspective could enable us to refine our proposal scale
of autonomy from a collective point of view for a fleet of AIVs (subsection 1.3.3).

Real field experiments

Finally, all contributions proposed are not validated with real field experiments, which
is a big limitation. However, the "Alpha Project" 1 has emerged and ideas from my thesis
work are being reused in this project. Its main objective is to improve the automation of
baggage transport at airports using a fleet of AIVs. The main areas of research include
system performance, operability, energy efficiency, safety and cybersecurity. Alstef Group
seeks to enhance its solution by integrating skills, particularly in artificial intelligence,
robot fleet management and cybersecurity. The work focuses in particular on develop-
ing algorithms for optimizing AIV routes and missions, inter-vehicle communication and
intrusion detection to improve system security.

1. Alpha Project: https://alstefgroup.com/fr/alpha-project/
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Additional key areas of focus include pedestrian management, building on the in-
tersection simulation work using the Carla simulator (subsection 4.3.1), and energy
management through the multi-agent simulator depicted in appendix B - B.5. Some
methodological framework established during this thesis is therefore being further devel-
oped and applied within the Alpha Project.
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Appendix A

SYMBOLS TABLE

Symbol Description
allMissionsCompleted The successful completion of all missions assigned to each

agent. (see Equation (2.1)).
completionT imei The completion time of all assigned tasks for the robot i.

distTravelled The total distance covered by each AIV agent.
κ The task category (for example in a warehouse, move

goods, i.e.: “load the goods at a starting point to bring
it to an ending point”).

mi The mission i to be carried out.
ni The node i in an oriented graph.
si The size of the obstacle.

Sci The number of the scenario.
nbMissions The number of missions carried out.
nbRecharges The number of recharges performed.

pend The task ending point.
τpr The task priority.

pstart The task starting point.
ratio The ratio of the number of tasks to be performed to the

number of tasks fully completed by each AIV agent.
robotTasksCompletionT ime The makespan - the total time required for a robot to com-

plete all assigned tasks (see Equation (1.1)).
σ The task status.
τ A task defined by the tuple described in Equation (3.1).
τi The task i.
τid The task identifier.

tasksCompleted Tasks fully completed by each AIV agent.

203



Symbol Description
totalCompletionT ime The sum of costs - the total time expended by all robots

to reach their respective tasks (see Equation (1.2)).
tasksToBePerformed Tasks to be performed by each AIV agent.

timeMission The average time taken to complete a mission in seconds.
totalDistanceTravelled The cumulative distance travelled by all agents to complete

the assigned missions (see Equation (2.2)).
tstart The task starting time.
tend The task ending time.

wtRecharging Waiting times for recharging in seconds.

Table A.1 – Symbols table

Linguistic Variable Description
Availability This variable represents the number of bags the AIV must

handle, measured as a number from 0 to 20.
AvailabilityStation1 This variable represents the distance to station 1 the AIV

must handle, measured as a number from 0 to 5 (corre-
sponding to the number of AIVs in the simulation).

AvailabilityStation2 This variable represents the distance to station 2 the AIV
must handle, measured as a number from 0 to 5 (corre-
sponding to the number of AIVs in the simulation).

Cost This variable ranges from 0 to 1 and determines whether
the system should recharge or finish its current task.

EnergyLevel This variable represents the energy level of the system,
measured as a percentage between 0 and 100.

DistanceToEnergySource This variable indicates the distance to the energy source in
meters, ranging from 0 to 100.

DistanceToStation1 This variable represents the distance to station 1 that the
AIV must consider, measured on a scale from 0 to 1200 (in
meters).

DistanceToStation2 This variable represents the distance to station 2 that the
AIV must consider, measured on a scale from 0 to 1200 (in
meters).
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Linguistic Variable Description
DistanceToTarget This variable measures the distance to the target in meters,

ranging from 0 to 100.
Decision This variable ranges from 0 to 1 and determines whether

the system should recharge or finish its current task.
ProximityAIV This variable represents the proximity of other AIV agents

(use of observed and safety distances), measured as a num-
ber from 0 to 1000 (meters).

Recharge This variable ranges from 0 to 1 and dictates whether the
system should recharge or continue its current task.

Speed This variable represents the speed of the AIV, measured in
meters per second (m/s) within the range of 0 to 10.

Urgency This variable represents the distance to the station (1 or
2) the AIV must handle, measured as a number from 0 to
10.

Table A.2 – Linguistic variables table
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Appendix B

MULTI-AGENT SIMULATION PLATFORMS

B.1 "4-Lace Circuit" simulation

The interface of the "COSIVA Simulation" application is implemented in Python and
designed to facilitate the simulation of AIVs navigating on situations that favour crossing
traffic. Accounting for this characteristic led us naturally to diagram the circulation in
four loops referred to as the "4-Lace Circuit" (shown in Figure B.1). The main simulation
area displays the “4-Lace Circuit”, characterized by four interconnected loops. Each loop
intersects at designated points highlighted in red, indicating critical intersections.

Four differently colored dots (yellow, red, blue, and green) represent the AIV moving
along the circuit paths. Below the simulation area, a console features buttons allowing
users to select different predefined scenarios for the simulation. The button scenarios
correspond to:

— Scenario 0 (Sc0): four AIV agents circulate continuously at the same speed without
any need of cooperation for crossing intersections.

— Scenario 1 (Sc1): four AIV agents circulate continuously, independently (while
exchanging messages to cross intersections) and at randomly changing speeds.

— Scenario 2 (Sc2): same context as Sc1 where some obstacles are randomly gen-
erated on the circuit (spatial and temporal generation). The RADAR of an AIV
agent can also perceive obstacles in the aisles ahead that constrain its path. On
perceiving them, it cooperates to warn other AIVs by sending an Obstacle_msg,
and then avoids the fixed obstacle if possible.

The Obstacle button, when pressed, introduces random obstacles of varying sizes (from
s1 to s4) onto the circuit, adding a layer of complexity to the vehicle navigation. The
“STOP” button halts the simulation, providing control over the ongoing process.
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Figure B.1 – "4-Lace Circuit" simulation interface

B.2 ACT simulation

Our focus in this simulation was to check if the avoidance is well respected and the
obstacles are perceived by the AIVs. We use this application simulation to validate the
extended Bahnes’s algorithm proposed in chapter 2 with collision avoidance and fixed
or dynamic obstacle detection processing.

We simulate our proposed algorithm staying within the framework of the three sce-
narios proposed by [BKH16].

The traffic plan presented in the interface application in Figure B.2 and Figure
B.3 involves different intersections, where vehicles can arrive from different sides like in
a warehouse (4 intersections are shown). Thus, it provides the different characteristics
of an industrial environment and allows us to realize simulated experimental tests in line
with realistic scenarios. It shows the different scenarios that we consider as a benchmark
plan to compare results. Therefore, ten AIVs are distributed over 3 circuits: the red AIVs
on the first circuit, the blue ones on the second and the yellow ones on the third.

We notice in the simulation that the avoidance is well respected and the obstacles
are perceived by the AIVs. Therefore, this simulation validates the extended Bahnes’s
algorithm with collision avoidance and fixed or dynamic obstacle detection processing in

207



a more realistic circuit than in the "4-Lace Citcuit" application (section B.1).

Figure B.2 – Simulation of radar use:
a - at the top of the picture: one blue and three yellow AIVs arrive near the intersection.
b - while waiting for the yellow AIV to pass the intersection, the radar of the blue AIV and
the two other yellow AIV allow them to stop and keep their distance to avoid colliding.

B.3 Industrial circuit simulation

The "IndustrialCircuit: Warehouse - Wholesaler" application contains a specific cir-
cuit which includes several intersections, where vehicles can arrive from different sides
like in a warehouse presented by [TBS18]. Thus, this kind of circulation plan provides
the different characteristics of an industrial environment allowing us to conduct simulated
experimental tests in accordance with realistic scenarios of an industrial context.

We implemented a Python graphical application with different functionalities. The
different classes presented in chapter 2, Figure 2.2 have been implemented in Python
from scratch. Its interface is shown in Figure B.4. In the central part, we have the
representation of the warehouse present in chapter 2 - Figure 2.8. The different nodes
are represented by white squares in the interface. The vehicles are visualised by small
colored circles and the obstacles are colored black with different sizes corresponding to
the obstruction levels in the aisle. Five AIV agents are integrated into this environment
corresponding to the five parking spaces available in this environment.
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Figure B.3 – Simulation of the scenarios:
a - in the center of the picture: a blue and yellow AIV arrive at an intersection.
b - the yellow AIV passed the intersection after communicating with other AIVs.
c - on the left side of the picture: a red AIV perceives a fixed obstacle in front of him.
d - a red AIV avoided the obstacle
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The functionalities proposed by our application (Figure B.4) are to:
— Stop the simulation.
— Place obstacles randomly in terms of size s1 to s4 (s4 corresponding to a size that

obstructs an entire aisle) and position at the six possible nodes shown in yellow.
— Launch a scenario: the agents must then carry out missions given by the supervisor.

That is, go from their parking place to one of the three green nodes in chapter 2
- Figure 2.8, before returning to their parking place. On the other hand, pressing
the Scenario 0, 1 or 2 button allows them to choose which strategy (Sc1, Sc2 or
Sc3) they can perform. The description of each strategy is explained in chapter
2 - section 2.3.2.

Figure B.4 – Application interface to simulate missions in the warehouse environment

B.4 Task allocation simulation

In order to simulate with a visualization of the task process of scenarios, we augmented
the simulation interface presented in the above section, in Figure B.4. The augmented
version developed is depicted in Figure B.5, and designed generically to integrate dif-
ferent types of traffic plans. Its implementation respects the agent model presented in
Figure 2.2 depicted in chapter 2 - section 2.2.2.
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Additionally, this simulator is used for various laboratory experiments, for teaching
engineering students and could be of interest to the community 1.

This interface is divided into five frames:
— Frame 1: visualization of the warehouse presented in figure Figure 3.4. The

white squares represent tag agents, used by AIVs agents to locate themselves. AIV
agents are visualized by colored circles, and obstacles are surrounded by a red circle
of variable size corresponding to their level of obstruction in the aisle. The four
camera agents of the infrastructure are identified by a black square evoking their
viewing area of the aisle.

— Frame 2: application management and its various features. It is thus possible:

1. to simulate the four types of scenarios illustrated in the following section, as
well as a random scenario;

2. to generate obstacles randomly on the circuit;

3. to emulate a robot or camera failure;

4. to view a model of the circuit with the node numbers, as in Figure 3.5, by
clicking on the circuit button.

— Frame 3: supervision of AIV agents. This frame makes it possible to visualize the
missions assigned to the various AIV agents, their paths, their statuses and other
information useful to the supervisor agent. When an AIV agent plays the role of
auctioneer, he is graphically identifiable by a frame.

— Frame 4: supervision of camera agents. This frame makes it possible to identify
their status, their position and their detection of obstacles. When a camera agent
has detected an obstacle, it is graphically identifiable by a black frame.

— Frame 5: task supervision. This frame makes it possible to monitor the progress
of the performance of the tasks allocated to the AIVs. The states of the different
task attributes are updated there: task identifiers, task starting point and ending
point, and task states (attribute, in progress, blocked, completed).

The traffic plan chosen, and presented in the form of a directed graph in Figure 3.5,
makes it possible to start a set of problem scenarios that can be easily configured in the
interface.

1. In order to facilitate community utilization, the code of our project is available on the Gitlab page:
https://gitlab.inria.fr/jgrosset/AIV_Simulator
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Figure B.5 – Multi-agent simulation interface

B.5 Airport baggage handling simulation

The interface of our “Airport Baggage Handling Simulation” application, in Figure
B.6, was developed to provide a comprehensive overview of the autonomous management
and operation of AIVs for baggage handling. This intuitive and structured interface allows
us to monitor and analyze the performance of AIVs in the circulation scenario.

The interface is divided into several sections, each displaying critical information about
the simulation status and AIV performance. The different sections of the interface are as
follows:

— Energy Level Display: Each AIV’s energy level is represented by a horizontal
bar, which visually indicates the remaining battery life. For instance, AIV 3’s bar
is red, signifying a critical battery level, while the other AIVs have yellow bars,
indicating varying levels of charge.

— Charge Level Information: Below the energy level display, this section provides
detailed statistics on the recharging activities:
— Recharge Time: The total time spent on recharging.
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— Waiting Time: The total waiting time before recharging.
— Recharges per AIV: The number of recharge cycles completed by each AIV.

— Simulation Area: The central area of the interface depicts the simulation envi-
ronment. It visually represents the positions and movements of the AIVs as they
handle baggage within the airport layout. Different black points represent the lo-
cation of each node corresponding to the oriented graph shown in chapter 5 -
Figure 5.7.

— Baggage Level Information: This section displays baggage handling metrics:
— Total Baggage: The total number of baggage that must be dealt with from the

start of the scenario.
— Waiting Baggage: The maximum number of baggage waiting to be processed

as a moment.
— Baggage per AIV: The number of baggage handled by each AIV.

— Time Level Information: Below the baggage level section, this displays time-
related data:
— Simulation Time: The total elapsed time of the simulation.
— Missions per AIV: The average duration of missions completed by each AIV.

Figure B.6 – Airport baggage handling simulation HMI
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This HMI application includes an intuitive “Experiment Parameters” window de-
picted in Figure B.7, providing users with essential options to set up and customize
their simulation. This interface, which appears upon clicking the “Start” button, allows
for comprehensive experiment configuration, enabling the precise control of various
simulation parameters.

Experiment parameters:
— Save the Experiment Data: Users can opt to save the data generated during the

experiment.
— Folder Name for Experiment Data: This input field allows users to specify the

name of the folder where the experiment data will be saved.
— Number of Baggage: Users can define the number of baggage items to be handled

by the AIVs during the simulation. The current value is set to 1000.
— Choice of Scenario: This dropdown menu provides a selection of scenarios from

1 to 8, as detailed in chapter 5. Users can choose the desired scenario to be
simulated.

— Model Control for AIVs: This menu allows users to choose the control model for
the AIVs. The selected model in the image is “Fuzzy_Basic_Model”, which likely
represents a basic fuzzy logic model for AIV control.

— Cost of Calculation: Users can select the method for calculating the cost of the
simulation for TA. The options include “Random,” “Normal,” and “Fuzzy Logic.”
The “Normal” option is selected in the example.

— Start: Once all parameters are set, clicking this button will initiate the simulation
based on the specified settings.

Figure B.7 – Airport baggage handling simulation parameters
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Appendix C

METHOD FOR ESTIMATING AIV
POSITIONS

C.1 Context

In the chapter 2, we proposed two critical contributions to the field: collective ob-
stacle avoidance for AIVs within a fleet. Indeed, we proposed the augmented Bahnes’
algorithm (section 2.2) for obstacle avoidance and a global collective avoidance strat-
egy (section 2.3). Both of these strategies rely on the assumption that a vehicle can
accurately determine its position within an environment. Effective obstacle avoidance
and coordinated movement are predicated on precise localization to navigate safely and
efficiently.

Moreover, the CAM messages standardized by ETSI are based on the strong assump-
tion that a vehicle knows where it is, using GPS. However, in indoor environments, GPS
does not work, and even more in disturbed industrial environments, GPS is not the tool
used for AIVs to locate themselves. As we outlined in the section 1.2.3, vehicles must
therefore be given other means to locate themselves. In our research, the measurements
necessary for the estimation were susceptible to corruption by noise.

The result can be the generation of an input that introduces uncertainty into the
inference. Uncertainty is, then, at the heart of the estimation problem: in the absence
of uncertainty, many problems would have simple algebraic solutions [Cox89]. Before
full-scale testing of traffic scenarios involving AIV or more complex traffic situations can
begin, it is essential to consider the simulation involved.

In this appendix, we present an enhanced ABMS model for the localization of AIVs
in section C.2. Then, in section C.3, we explained our computational approach which
makes it possible to obtain the next position of the AIV on the circuit 4 − LaceCircuit

given its current position. This appendix presents research currently under review, which
has not yet been published [ALGO24].
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C.2 Localization AIV model

Our focus lies on the organization aspects of the circulation area, AIV and localization
in Figure C.1.

Indeed, this figure specifically highlights the different classes used for AIV localization,
including TrafficZone, Section, Position, and TimeStampedPosition, in contrast to
the model presented in Figure 2.2.

In Figure C.1, the TrafficZone model represents the overall environment in which
the AIV operates. Within this traffic zone, the AIV navigates a designated pathway
known as the Circuit. The Circuit defines the routes or pathways that AIVs follow and
can vary in form depending on the specific application context.

The TrafficZone consists of two main components: the Circuit and a grid of Beacons

arranged in a matrix formation. The spacing of the beacon grid is adjustable, allowing for
customization to meet the specific needs of the environment and to enhance the precision
of AIV localization.

Additionally, the agent aspect brings to the AIV its autonomous character which
allows it, for example, to arm an internal timer to trigger various actions on its own
initiative, such as transmitting its timestamped positional data. The AIV’s location
within the traffic zone is encapsulated in the TimeStampedPosition model, containing
their geographical coordinates and timestamp information.

The simulation system aims to virtually reproduce the kinetics of an AIV on a circuit
representation without making strong assumptions about its shape or profile. Hence, the
circuit is conceptualized as a series of sections, each reflecting local topology. The section
has a great importance in our modelling. AIV has a reference to the section of the circuit
on which it is currently located. However, it is the current section of the AIV which will
inform it about its next position. The initial circuit section is labelled S0.

Similarly, the Section model can be expanded to represent more specific types of
Section models. Each Section model includes references to other sections on the circuit
with which it is connected. Specifically, it maintains a reference to the section that
precedes it, known as the Previous Section (Previous), and to the section that follows
it, referred to as the Next Section (Next). Additionally, the Section model tracks the
positions of its endpoints, identified as the first end (Ex1) and the second end (Ex2).
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Figure C.1 – Agent-based model for AIVs obstacle avoidance and estimation positions

C.3 Mathematical position estimation model

Schematically, we defined the current position of the AIV as Pn and the next position
as Pn + 1. Our approach was to define an abstract chunk model in which the updating
of the current position would only be stated in principle, with no details were provided
about the concrete implementation.

We then defined a concrete traffic section model by building on the aforementioned
abstract model. The concrete section model served for the actual calculation of Pn + 1.
Thus, we formally defined three types of concrete sections with their associated calculation
intelligences:

— a circular arc section,
— a horizontal section,
— a vertical section.
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Circular section

For a circular arc section with centre C and radius R, and for a time step Dt, the
update of the position of the AIV is given by the Equation (C.1).

 xn+1 = xC + R cos
(
arctg

(
yn−yC

xn−xC

)
+ v

R
∆t

)
yn+1 = yC + R sin

(
arctg

(
yn−yC

xn−xC

)
+ v

R
∆t

) (C.1)

Horizontal and vertical sections

Equations (C.2) and (C.3) give the required update for horizontal and vertical
sections respectively.

 xn+1 = xn + v∆t

yn+1 = yn

(C.2)

 xn+1 = xn

yn+1 = yn + v∆t
(C.3)

AIV position update algorithm

The algorithm for updating the position of an AIV makes it possible to calculate the
new position P(n + 1) given its current position Pn. Before the update calculation, the
Distance travelled on the Current Section (DTCS) is known. Here, the term “current sec-
tion” means the section of the circuit on which the AIV is “currently” located. The DTCS

can be updated by adding the Distance To Travel (DTT), according to the expression
DTCS = DTCS + DTT .

At this step, it is important to know if the current movement of the AIV remains or
not within the limits of the current Section. To do this, we calculate the Length of the
Route Outside the Section (LROS) according to the expression LROS = DTCS − LCS,
where LCS is the Length of the Current Section. The LROS value can be negative or
positive. If it is negative, then the next position Pn + 1 belongs to the current Section.
Consequently, there is no Section change, and the AIV remains on the current Section on
the circuit. It is then possible to calculate the new position Pn + 1, knowing the current
one Pn.

It should be noted that the intelligence of the update of the position of the AIV is
hosted in the model of the Section, which is normal because this calculation depends on
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the topological profile of the considered Section.
Thus, the current section being referenced by the variable CS, and the position update

function, being called "computeNextAIVPosition", the calculation of the next position of
the AIV will be carried out, in a programming language such as python, thanks to the
instruction Pos = CS.computeNextAIV Position(Pos, DTT ), where the Pos variable
designates the successive positions Pn and Pn + 1, and the incoming parameter DTT

gives the function the Distance To Travel.
Conversely, if LROS is positive, then the next position Pn +1 belongs to the following

Section. Therefore the AIV must continue on the next Section on the circuit. The
next Section becomes the current Section, the first end (Ex1) of the current Section
becomes the current Position of the AIV, the DTCS is reset to zero, and the previously
calculated LROS becomes the new DTT . The position update algorithm, coded by the
“computeNextPosition” function of class AIV, is presented by the flowchart of Figure
C.2, in the case of a non-iterative modification of the variable DTT .

Figure C.2 – Algorithm for updating the position of an AIV agent
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Appendix D

METHODOLOGY PROPOSED FOR ENERGY

MANAGEMENT

D.1 Context

The variation in energy consumption is influenced by the acceleration and deceleration
operations when using a stepping motor drive. As a general rule, the switching times for
acceleration and deceleration have an impact on energy consumption. The choice of
the cost function is crucial for optimizing problems in mobile robots. In some studies,
the cost function is defined as the minimization of the energy supplied by the motor,
represented by the integral of the squared motor force or the sum of the squared linear
and angular velocities of the mobile robot. However, this function is optimal only for
very small values, as it is more than a simple squared function. There are alternative cost
functions for energy optimization, but they often include additional parameters, such as
those related to the battery.

In this appendix, we are interested in a cost function that accommodates three types
of motion simultaneously: acceleration, deceleration, and constant speed. The variation
in the system’s energy is defined by a force that represents these three motions. The
change in force during the target phase also affects the work done. Work, in this context,
refers to the means by which forces transfer energy. Therefore, the cost function is defined
as the absolute work performed by the motor force.

This cost function enables us to tackle an optimization problem with a basic dynamic
system. Despite the simplification of the mathematical model, a numerical method based
on time discretization is not well-suited to the local environment of the application.
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D.2 Methodology with a realistic point of view

This section proposes a methodology to address this problem, operating on varying
of the maximum speed values under each node, using an optimal control problem. The
biggest advantage of this methodology is that the numerical optimization methods are
implemented to create the optimal maximum speed values. This technique reduces the
execution time of this method in real-time.

The proposed methodology calculates the motor force, which serves as the command
for the optimization problem. It also involves determining the moments of acceleration
and deceleration. To define these moments, an algorithm is implemented to compute the
acceleration and deceleration distances. This algorithm operates based on distance rather
than time, making it suitable for implementation in the application.

Three strategies are generated by this methodology. With the help of two inputs:
waiting baggage and traffic, a fuzzy logic model can select the most appropriate strategy
for the robot during its mission.

D.2.1 Optimal control problem

This subsection addresses an Optimal Control Problem (OCP) for the optimization
model, focusing on a mobile robot. The problem (OCP) combines a dynamic system,
which is given by a mobile robot model, where the mobile robot is moving in a straight
line and a cost function that is described by the absolute work of the motor force, which
represents the amount of energy consumed by the robot during his mission.

Dynamic model of robot

The mobile robot model is derived from Newton’s second law:

∑
F = M a

where F is the sum of all forces acting on an an AIV, a is the linear acceleration of AIV
and M is the total mass ( AIV + baggage).

Based on the specific route of the AIVs, the system operates under the following
simplifying assumptions:

— Assumption 1: An AIV moves in a straight line and does not consider curvilinear
motion or slopes.
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— Assumption 2: Air resistance is negligible.
— Assumption 3: The energy consumed by the motor is included in the cost func-

tion, without constraints on the dynamic system.
Based on these assumptions, AIV dynamic system is described by a double integrator:

ẋ = v

v̇ = FT

M

(D.1)

where, x, v, ẍ are the longitudinal position, the linear velocity and the linear accel-
eration of AIV respectively. The ratio between force and mass FT

M
represents the linear

acceleration a. Then, the maximum force can be deduced from the high acceleration and
the mass.

In the following, we assume that the forces acting on a AIV are composed of two
forces:

FT = Fm − Fr

where Fm is propelled by motor force and Fr is the resistance force.

Cost function

To account for the varying cost function due to the changes in the robot’s movement
(acceleration, deceleration, stopping) from the starting position to the final position over
a period from To to final time T , we need to refine our model. Specifically, we will
incorporate the power delivered by the robot’s motor, which depends on the force.

The power P delivered by the robot’s motor at any time t is given by:

P = Fmv (D.2)

The absolute work W done by the propulsion force over the period from T0 to T :

W =
T∫

To

|P (t)| dt =
T∫

To

|Fmv| dt (D.3)

The OCP admits an optimal solution, and the linear speed v is always non-
negative(v ≥ 0) during the mission of the robot, as stated in [OB20].

Then, the cost function is given by:
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T∫
To

|Fm| v dt (D.4)

Optimal control problems (OCP)

The formulated problem is defined by the cost function and the robot model presented
above:



Minimize W =
T∫

To

|Fm| v dt

Subject to

ẋ = v

v̇ = Fm

M

x(To) = x0, v(To) = v0, v(T ) = vf , x(T ) = xf > 0

To and T : fixed > 0

Fmin ≤ Fm ≤ Fmax

(D.5)

Where x0, v0: initial values of states, xf , vf : final values of states, Fmin and Fmax are
the lower and upper bounds of the motor force Fm.

To achieve an optimal strategy for this control problem, various control techniques can
be applied such as PMP [Kop62]. PMP is used to calculate the maximum speed values in
the example of the optimal strategy is Figure D.1 with its optimal speed profile, which
was determined through the dynamic system. A solution is the bang type, if the control is
equal to its maximum, or its minimum, which corresponds to the maximum acceleration
or deceleration phase. An inactivation is defined when the control variable is null over a
time interval, which corresponds to maintaining a constant speed.

Discrete time problem

The simulation of a realistic environment is carried out using digital data, which are
represented in the form of sets of values such as vectors and matrices. To achieve high-
performance simulations, a discrete model is best suited to closely mimic a real context.
Therefore, we have discretised the problem (Equation (D.5)) [ALGO24]. Given N and
define h = T −To

N
, for i = 0, ..., N .
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Minimize W =
N∑

i=0
|Fm(i)| v(i)

Subject to

x(i + 1) = x(i) + hv(i), i = 0, ..., N

v(i + 1) = v(i) + hFm(i)
M

, i = 0, ..., N

x(0) = x0, v(0) = v0, v(N − 1) = vf , x(N − 1) = xf > 0

Fmin ≤ Fm(i) ≤ Fmax, i = 0, ..., N

(D.6)

D.2.2 Energy control strategies

Developing an energy control strategies algorithm based on an optimal speed profile
that is defined from the optimal control problem. This algorithm is based on distance
travelled, using basic principles of acceleration and deceleration, and applying these prin-
ciples to small segments of the path. This method is practical for short distances between
nodes and provides a systematic way to control the robot’s movement efficiently. A more
practical and simpler approach can be applied to determine the optimal control strategy
for minimizing energy consumption.

By implementing three strategies based on the speed profile as a function of the robot’s
actual position. These speed profiles are generated by an algorithm capable of operating
in real-time.
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Proposed algorithm

We propose Algorithm 3, which connects two maximum speed values assigned to
each node. This algorithm identifies two key distances—acceleration and deceleration
distances—in order to link the two maximum speed values. The maximum speed values
can be obtained using solutions generated by the PMP [Kop62]. However, these maximum
speed values are optimal under certain constraints and need to be adapted to fit our
specific application.

The following instructions outline the steps of the algorithm for comparing speeds,
calculating distances, making decisions, and setting commands based on those decisions.
Adjustments can be made according to specific requirements or additional constraints.

— Input:
— Path nodes with associated maximum speed values.
— Robot’s initial position and speed.

— Output:
— Real-time energy consumed and speed profile for the robot.

1. Initialization:
— Identify the starting and ending nodes of the path.
— Assign maximum speed values to each node using the PMP.

2. Calculate acceleration and deceleration distances:
— For each pair of nodes, calculate the distance required for the robot to accelerate

from the current speed to the maximum speed of the next node.
— Similarly, calculate the distance required for deceleration.

3. Generate speed profile:
— For each segment between nodes, generate a speed profile that smoothly tran-

sitions between the two maximum speed values.
— Ensure the profile adheres to the calculated acceleration and deceleration dis-

tances.

4. Real-time adjustment:
— Continuously monitor the robot’s position and adjust the speed profile in real-

time to account for any deviations or changes in the path.

In the application, step 1 "Offline Method: Table of Maximum Speed" represents the
three strategies, which are included as a table or database of maximum speed for each
node. The second step, "Online Method: Current Speed, Energy," will be called up in
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Algorithm 3: Energy and Current Speed - Offline Method
Input: M , h, amax, NextNode, CurrentDistance
Output: Energy, Current Speed

1 Step 1→ Offline Method: Table of Speed Max
Input: M and amax, x0, xf , v0, vf

Output: TableSpeedMax
2 Function [T ableSpeedMax] = Optimal-SpeedMax(M and amax, x0, xf , v0, vf )
3 Fmax = M ∗ amax

4 Fmin = −M ∗ amax

5 Tmin = f(M, Fmax, Fmin, x0, xf , v0, vf ) //cf. equation (1)
6 Fixed T > Tmin

7 ∆t = g(T, M, Fmax, Fmin, x0, xf , v0, vf ) //cf. equation (2)
8 SpeedMax = Fmax

M
∆t + v0

9 end
10 Step 2 → Online Method: CurrentSpeed, Energy
11 Function Energy = MotorEnergy(Speed, F inalCommand)
12 Energy = Energy + abs(F inalCommand) ∗ Speed
13 end
14 Function Speed = CurrentSpeed(Speed, F inalCommand, h, M)
15 Speed = Speed + h ∗ F inalCommand

M

16 end
17 Function F inalCommand = Command(CurrentP osition, NextNode, Commandsup, Commandinf ,

Distance1, Distance2)
18 if (CurrentP osition − Distance1) ≤ 0 then F inalCommand = Commandsup

19 else if (NextNode − CurrentP osition − Distance2) ≤ 0 then F inalCommand = Commandinf

20
21 else F inalCommand = 0
22

23 end
24 Function [Commandsup, Commandinf , Distance1, Distance2] =

Acceleration-Deceleration(P reviousSpeedMax, NextSpeedMax, NextNextSpeedMax, M , amax, h)
25 Fmax = M ∗ amax

26 Fmin = −M ∗ amax

1. Compare the P reviousSpeedMax and NextSpeedMax values, NextSpeedMax and NextNextSpeedMax values
to establish that this is an acceleration or deceleration decision.

2. Distance 1 is calculated from the first comparison and Distance 2 from the second one.
— Distance1 = |P reviousSpeedMax − NextSpeedMax| ∗ N1
— Distance2 = |NextSpeedMax| ∗ h

where N1 represents the number of points between P reviousSpeedMax and NextSpeedMax, depending on the
step of discretization h.

3. Between each node, two decisions are defined, the command is given by: if Decision == Acceleration then
Commandsup = Fmax

else
if Decision == Deceleration then Commandinf = Fmin

else Constant Speed:
Commandsup = 0
Commandinf = 0

end

27 end
28 Function [P reviousSpeedMax, NextSpeedMax, NextNextSpeedMax]= NodeSpeed

(T ableSpeedMax, P reviousNode, NextNode, NextNextNode)
29 PreviousNode → PreviousSpeedMax
30 NextNode → NextSpeedMax
31 NextNextNode → NextNextSpeedMax
32 end
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real-time under the fuzzy rule, which decides what type of strategy can be adapted to
meet the constraints of waiting baggage and traffic flow. The energy constraint will be
more advantageous for waiting baggage and traffic, which are defined as model inputs,
with the three strategies as outputs of the fuzzy decision model in the next section.
Finally, we define three strategies: Strategy1, Strategy2, and Strategy3 which represent
LowEfficiency, MediumEfficiency, and StrongEfficiency, respectively.

D.2.3 Fuzzy model for energy control

We propose a fuzzy logic model that allows us to determine which strategy to imple-
ment. The system uses two input variables and one output variable:

1. Input linguistic variable: WaitingBaggage - Wb

2. Input linguistic variable: Traffic - Traffic

3. Output linguistic variable: Strategy - Strategy

Input linguistic variables of the fuzzy decision model to determine the strategy

The fuzzy decision model relies on two primary input variables to make intelligent
decisions regarding the strategy to use. These input variables are defined as follows:

— Waiting Baggage - this variable represents the waiting baggage level of the sys-
tem, measured as a number of baggage from 0 to 1000. It is categorized into three
linguistic terms:
— Low: [0, 5]
— Medium: [2, 5, 8]
— Strong: [5, 1000]

— Traffic - this variable represents the traffic level of the system, measured as a num-
ber of AIVs from 0 to 5 (in our case study simulation). Traffic. It is categorized
into three linguistic terms:
— Low: [0, 2]
— Medium: [1, 2, 3]
— Strong: [2, 5]
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Output linguistic variable of the fuzzy decision model to determine the strat-
egy

The fuzzy decision model produces one output variable that guides the system’s actions
regarding energy management. This output variable enables the system to make informed
decisions based on the input variables and the fuzzy rules, ensuring optimal performance
and energy efficiency. The Stragegy output variable ranges from 0 to 100 percentage of
energy used and determines which strategy to follow. It is described using three linguistic
terms:

— LowEfficiency: [0,20]
— MediumEfficiency: [0,30, 50]
— StrongEfficiency: [40, 100]

Fuzzy rules

The fuzzy rules establish the decision-making framework of the system. Each rule
outlines conditions based on the input variables and determines the corresponding output
decision. Our system adheres to the following rules:

1. If Wb is Low and Traffic is Low then Strategy is LowEfficiency.

2. If Wb is Low and Traffic is Strong then Strategy is MediumEfficiency.

3. If Wb is Medium and Traffic is Medium then Strategy is MediumEfficiency.

4. If Wb is Medium and Traffic is Strong then Strategy is StrongEfficiency.

5. If Wb is Strong and Traffic is Low then Strategy is MediumEfficiency.

6. If Wb is Strong and Traffic is Strong then Strategy is StrongEfficiency.

D.2.4 Numerical simulation in Matlab

From simulation data are adapted from the application environment, a step of dis-
cretization h = 2 as a minimum movement of the 5m. In addition, it is suitable for
airport environments, data provided by Alstef Group for Bagxone, for example: mass
max is 100kg, maximum speed is 7.5m/s and average speed is 5m/s, maximum accel-
eration is 1.5m/s2 and maximum deceleration is 2m/s2. In the simulation for the three
strategies, we defined the same values, except for the maximum acceleration and maxi-
mum deceleration are fixed at 1.25m/s2 for the application environment. To include the
concept of minimum speed that is equal to 2.5m/s.
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Based on this knowledge, three strategies are generated thanks to these three speed
values: minimum, average and maximum. Three strategies are developed to fit the differ-
ent input linguistic variables of the fuzzy decision model, as noted in the previous section.
Strategy1 represents the first input "Waiting Baggage", when the level is low. When the
level is strong and the second input "traffic" is low, it is Strategy2 that satisfies these
conditions. Strategy3 describes a traffic strong. Figure D.2 shows the path travelled
for each of the strategies.

Figure D.2 – Map of Strategies in red color: oriented graph nodes

Strategy 1

We set Dis representing the distance between two successive nodes. From this dis-
tance, maximum speed values are defined for Strategy1. Figure D.1 shows how we can
obtain the value of the maximum speed, which is 2.5m/s, for the path from Node0 to
Node1 with a distance of 30m (see Figure D.5). Strategy1 is defined according to these
speed values in the Equation (D.7).

Speed − Strategy1 =

5m/s if Dis ≤ 100m

2.5m/s Otherwise
(D.7)
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Figure D.3 – Position-Speed phase dia-
gram: Strategy1

Figure D.4 – Energy consumed by the
Strategy1

Figure D.5 – Map Strategy1: oriented graph nodes with their values distance (grey color)
and speed (red color)

Strategy 2

Unlike Strategy1, where speed values are fixed in relation to distance between two
nodes, Strategy2 is arbitrarily defined with its maximum speed achieved. In Strategy2,
high speed is the main speed used throughout the entire circuit. On the other hand, in
Strategy1, the speed is limited to the average speed. The corresponding equation for
Strategy2 is shown in Equation (D.8).
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Speed − Strategy2 =


7.5m/s if Dis ≤ 100m

5m/s if 50 ≤ Dis < 100m

2.5m/s Otherwise

(D.8)

Figure D.6 – Position-Speed phase dia-
gram: Strategy2

Figure D.7 – Energy consumed by the
Strategy2

Figure D.8 – Map Strategy2: oriented graph nodes with their values distance (gray color)
and speed (red color)
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Strategy 3

The Strategy3 is approximately a mix of Strategy1 and Strategy2, described in Equa-
tion (D.9).

Speed − Strategy3 =


7.5m/s if Dis ≤ 100m

5m/s if 50 ≤ Dis < 100m

2.5m/s Otherwise

(D.9)

Figure D.9 – Position-Speed phase dia-
gram: Strategy3

Figure D.10 – Energy consumed by the
Strategy3

Figure D.11 – Map Strategy3: oriented graph nodes with their values distance (gray
color) and speed (red color)
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Appendix E

FUZZY AGENT-BASED SIMULATION

An agent-based system is fuzzy if its agents have fuzzy behaviors or if the knowledge
they use is fuzzy [OFF12]. This means that agents can have:

1. fuzzy knowledge (fuzzy decision rules, fuzzy linguistic variables, and fuzzy linguistic
values);

2. fuzzy behaviors (the behaviors adopted by agents because of fuzzy inferences);
3. fuzzy interactions, organizations, or roles.
The different elements of the fuzzy agent model are as follows [Fou13]:
— the agent-based fuzzy system (section E.1);
— the behaviour of a fuzzy agent, inspired by perceive-decide-act feedback loops

[Bru+09] (section E.2);
— the behavioural functions of a fuzzy agent (section E.3);
— and the fuzzy interactions between two fuzzy agents (section E.4).

E.1 Agent-based fuzzy system

M̃α = ⟨Ã, Ĩ, P̃ , Õ⟩(1) (E.1)

In Equation (E.1): A is a set of agents, A= {α1, . . . , αn} ; Ã is a set of fuzzy agents,
Ã = {ã1, . . . , α̃m} with Ã ⊆ A; Ĩ is a set of fuzzy interactions between fuzzy agents; P̃

is a set of fuzzy roles filled by fuzzy agents; and Õ is a set of fuzzy organisations defined
for fuzzy agents (subsets of strongly related fuzzy agents).

E.2 Behaviour of a fuzzy agent

α̃i =
〈
ΦΠ(ᾱi), Φ∆(ᾱi), ΦΓ(ᾱi), Kᾱi

〉
(E.2)
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In Equation (E.2): for a fuzzy agent α̃i,
〈
ΦΠ(ᾱi) is its observation function, Φ∆(ᾱi) is

its decision-making function, ΦΓ(ᾱi) is its action function, and Kᾱi
is its knowledge base.

E.3 Behavioural functions of a fuzzy agent

Φ Iα̃i) : (Eᾱi
∪ Iᾱi

) × Σᾱi
→ Πᾱi

(E.3)

Φ∆ᾱi) : Πα̃i
× Σᾱi

→ ∆ᾱi
(E.4)

ΦΓ(ᾱi) : ∆ᾱi
× Σ → Γᾱi

(E.5)

Equations (E.3), (E.4), and (E.5) define key functions for a fuzzy agent α̃i within
a fuzzy multi-agent system M̃α. Specifically:

— Equation (E.3) represents the observation function, which maps the set of ob-
served fuzzy events Eᾱi and interactions Iᾱi, along with the agent’s state Σᾱi, to
its fuzzy perceptions Πα̃i

.
— Equation (E.4) defines the decision-making function, mapping fuzzy perceptions

Πα̃i and agent state Σᾱi
to fuzzy decisions ∆ᾱi.

— Equation (E.5) describes the action function, which maps fuzzy decisions ∆ᾱi

and the overall system state Σ to the agent’s fuzzy actions Γᾱi
.

Here, Eᾱi denotes the set of fuzzy events observed by the agent, Iᾱi represents its
fuzzy interactions, Σᾱi is the agent’s fuzzy state space, Πα̃i represents the set of fuzzy
perceptions, ∆ᾱi denotes the fuzzy decisions made by the agent, Γᾱi

represents the agent’s
fuzzy actions, and Σ refers to the overall state of the fuzzy multi-agent system.

E.4 Fuzzy interactions between two fuzzy agents

l̃l =< α̃s, α̃r, γ̃c > (E.6)

In Equation (E.6): for fuzzy interaction l̃l , α̃s is the fuzzy source agent, α̃r is the
destination fuzzy agent,and γ̃c is a fuzzy communication act (for instance: inform, diffuse,
ask, reply).
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RÉSUMÉ LONG EN FRANÇAIS

Contexte et enjeux

L’avènement de l’industrie 4.0 a introduit de nouveaux défis dans l’optimisation des
flux de données, de produits et de matériaux au sein des environnements de production.
Les véhicules industriels autonomes (VIAs), y compris les "Automated Guided Vehicles"
(AGVs) et autres "Autonomous Mobile Robots" (AMRs), sont apparus comme des solu-
tions prometteuses pour relever ces défis. Cependant, l’introduction et le déploiement
de flottes de VIAs dans les entreprises restent problématiques à plusieurs niveaux :
l’acceptabilité par les employés, la localisation précise des véhicules, le maintien d’un
flux de circulation fluide, la garantie d’une perception fiable dans des environnements
dynamiques et en constante évolution, etc. En conséquence, l’autonomie des VIAs est
limitée par des trajectoires prédéterminées et des cadres opérationnels rigides.

Cette thèse se concentre sur l’amélioration de l’autonomie des flottes de VIAs
en exploitant des stratégies d’intelligence collective. En permettant une commu-
nication robuste et un échange d’informations de circulation pertinentes entre les VIAs
et l’infrastructure, nous visons à améliorer leur adaptabilité, leurs capacités de prise de
décision et leur efficacité globale. Les principaux domaines d’intérêt comprennent :

— Adaptation aux contraintes de circulation : améliorer la capacité des VIAs à
s’ajuster aux environnements changeants, tels que les zones de stockage dynamiques
et les chaînes de production, afin d’assurer un fonctionnement fluide malgré des
conditions changeantes. Cette adaptabilité repose sur les avancées des technolo-
gies d’intelligence artificielle (IA) et "Internet of Things" (IOT) [Kha+20] pour une
meilleure perception de l’environnement.

— Amélioration de la prise de décision : développer des stratégies permettant aux
VIAs de prendre des décisions éclairées malgré des informations incomplètes, in-
certaines ou fragmentées [Mİ21].

— Communication "Vehicle-To-Everything" (V2X) : faciliter la communication entre
les VIAs au sein de la flotte, avec l’infrastructure, et avec les opérateurs humains,
améliorant ainsi la coordination et la sécurité.
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— Efficacité énergétique : mettre en œuvre des stratégies pour réduire la consom-
mation d’énergie des flottes de VIAs, même dans des conditions de circulation et
d’exploitation variables [BM16].

Défis techniques

— Navigation et localisation : Les VIAs doivent naviguer dans des environnements
complexes et dynamiques tout en maintenant une localisation précise. La capacité
des VIAs à percevoir leur environnement et à éviter les obstacles est fondamentale.
En effet, l’évitement des obstacles est une fonction cruciale pour les VIAs, leur
permettant de se déplacer en toute sécurité, en particulier dans des environnements
complexes et dynamiques avec une circulation dense ou des changements fréquents
[RK22]. La fiabilité des capteurs et la robustesse des algorithmes de localisation
en temps réel sont essentielles pour une navigation efficace. Le défi consiste à
développer des systèmes de perception fiables capables de détecter et de différencier
les objets statiques et dynamiques, même dans des conditions défavorables comme
une faible luminosité. De plus, les algorithmes de planification de mouvement et
d’évitement de collision en temps réel doivent être suffisamment robustes pour
gérer les obstacles inattendus sans entraîner de retards opérationnels [HIA22].

— Perception coopérative : Inspirée par les avancées dans le secteur automobile,
la perception coopérative est essentielle pour améliorer la conscience de la situation
parmi les VIAs lors des opérations en flotte. Le défi consiste à développer des pro-
tocoles de communication efficaces permettant aux VIAs de partager et d’intégrer
des informations sensorielles en temps réel, surtout dans des environnements com-
plexes [Per+20]. Cette coopération est vitale pour assurer une navigation sûre et
une exécution efficace des tâches.

— Allocation des tâches : L’allocation des tâches est cruciale pour optimiser
l’efficacité des flottes de VIAs. Le défi est de concevoir des algorithmes capa-
bles d’assigner dynamiquement des tâches en fonction des conditions en temps
réel, comme la disponibilité des véhicules, la priorité des tâches et les facteurs en-
vironnementaux. S’assurer que ces algorithmes sont évolutifs et adaptables aux
exigences opérationnelles variables sans entraîner de temps d’arrêt significatif est
une préoccupation majeure [DVD20].

— Gestion de l’énergie : La gestion de l’énergie est un élément clé du succès
opérationnel des VIAs, influençant directement leur efficacité et leur autonomie. Le
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défi est d’optimiser la consommation d’énergie grâce à des algorithmes efficaces et
à des technologies de batterie avancées, tout en veillant à ce que les VIAs puissent
accomplir leurs tâches sans interruptions fréquentes pour des recharges ou des
remplacements de batterie [BM16]. L’équilibre entre l’utilisation d’énergie et les
exigences des tâches reste un domaine critique de développement.

Défis opérationnels

— Intégration avec les systèmes existants : L’intégration des VIAs dans les
systèmes industriels et les flux de travail existants peut être complexe [And+15;
BKD18]. Cela nécessite d’harmoniser les opérations des VIAs avec les systèmes
hérités, d’ajuster les processus de production et de s’assurer de la compatibilité avec
l’infrastructure actuelle. Des stratégies d’intégration efficaces et des conceptions
de systèmes adaptables sont nécessaires pour un déploiement réussi [PR17].

— Communication et coordination : Les VIAs doivent communiquer et se coor-
donner efficacement, surtout lorsqu’ils opèrent en flotte. Garantir une communi-
cation fiable entre les VIAs et avec les systèmes centraux est un défi, en particulier
dans des environnements avec une flotte hétérogène de VIAs. Le développement
de protocoles de communication robustes et de stratégies de prise de décision dé-
centralisées est crucial pour une opération sans faille [Per+20].

— Évolutivité et flexibilité : À mesure que les besoins industriels évoluent, les
systèmes de VIAs doivent être évolutifs et flexibles pour répondre à des exigences
opérationnelles variées [DVD20]. Adapter les VIAs à différentes tâches ou lignes
de production sans entraîner de temps d’arrêt ou de reconfiguration significatifs
représente un défi important. Des conceptions modulaires et adaptables des VIAs
peuvent aider à résoudre ce problème.

— Sécurité et fiabilité : Assurer la sécurité et la fiabilité des VIAs est essentiel
pour prévenir les accidents et maintenir la continuité des opérations. Cela inclut le
développement de mécanismes de sécurité, la conformité aux normes de sécurité et
la mise en œuvre de systèmes robustes de détection des erreurs et de récupération.
La cybersécurité des flottes de VIAs a jusqu’à présent été peu étudiée. Le contexte
le plus proche est celui de la cybersécurité automobile. À ce titre, la référence est
ISO/SAE 21434:2021, qui régit la cybersécurité automobile avec pour objectif de
préparer l’arrivée des véhicules connectés et de limiter les risques liés à la cyber-
sécurité des véhicules de transport de passagers. Les "Advanced Driver Assistant
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System" (ADAS) tendent à rejoindre la sphère des véhicules autonomes, mais cette
norme constitue néanmoins une base pertinente pour établir la cybersécurité de nos
flottes de VIAs. De plus, l’utilisation de techniques d’IA pour inférer un niveau de
menace cybernétique est une nouvelle approche permettant de couvrir les attaques
dites "0-days", c’est-à-dire les attaques qui n’ont jamais été mises en œuvre dans
le passé.

Facteurs humains

— Acceptation et confiance : L’acceptation et la confiance des opérateurs humains
et des parties prenantes envers les VIAs sont cruciales pour une mise en œuvre
réussie. La résistance au changement, les inquiétudes concernant la perte d’emploi
et le scepticisme quant à la fiabilité des VIAs peuvent freiner leur adoption.

— Formation et développement des compétences : Les opérateurs et le person-
nel de maintenance doivent être correctement formés pour interagir avec les sys-
tèmes de VIAs et les gérer. Cela inclut la compréhension de leur fonctionnement,
la résolution des problèmes et l’entretien de routine.

— Coopération avec les robots : Les cobots, ou robots collaboratifs, sont conçus
pour assister les humains dans les tâches, améliorant ainsi la productivité et ré-
duisant les efforts physiques. Cependant, des défis se posent pour garantir une in-
teraction fluide, car cela nécessite des contrôles intuitifs, une communication claire
et des protocoles de sécurité solides pour éviter les accidents et les malentendus.

S’attaquer à ces défis nécessite une approche multidisciplinaire, combinant des
avancées technologiques avec une prise en compte réfléchie des facteurs opérationnels
et humains. En surmontant ces obstacles, le plein potentiel des VIAs peut être réalisé,
ce qui conduit à une meilleure efficacité, sécurité et flexibilité dans les environnements
industriels.

Questions de recherche

L’intégration des VIAs dans les systèmes industriels modernes présente un éventail
de défis, surtout lorsque l’on cherche à améliorer l’autonomie de ces véhicules au sein
d’une flotte. Les futurs systèmes robotiques autonomes consisteront probablement en
une diversité de robots travaillant ensemble pour accomplir des missions complexes. La
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synergie entre ces robots hétérogènes et le potentiel de combiner leurs capacités uniques
pourraient apporter des avantages significatifs à une multitude d’applications diverses et
étendues [RK22].

Dans ce manuscrit, nous n’aborderons pas les défis humains liés aux VIAs ni les
préoccupations concernant la cybersécurité. Nous faisons l’hypothèse forte que les sys-
tèmes de communication sont fiables et exempts de menaces cybernétiques. Au lieu de
cela, notre attention principale porte sur les défis techniques liés à l’augmentation de
l’autonomie des VIAs, notamment par la mise en œuvre de stratégies collectives au sein
d’une flotte. L’objectif principal de cette thèse est de proposer et d’évaluer des straté-
gies d’intelligence collective qui peuvent significativement améliorer l’autonomie et
l’efficacité des VIAs opérant au sein de flottes industrielles. Les questions de recherche
suivantes forment la base de cette thèse :

Comment les capacités de navigation et de localisation des VIAs peuvent-
elles être améliorées dans des environnements complexes et dynamiques
grâce à la perception coopérative et à des stratégies collectives ?

Cette question explore comment permettre aux VIAs de percevoir et de naviguer
plus précisément dans leurs environnements. Nous examinerons comment le partage
d’informations sensorielles entre les VIAs peut améliorer la conscience de la situation
et la précision de la navigation. De plus, nous analyserons comment l’optimisation du
traitement local peut conduire à de meilleures performances globales grâce à des straté-
gies collectives. L’interaction avec l’infrastructure et la perception locale partagée entre
robots mobiles au sein d’une flotte sont essentielles pour améliorer l’autonomie globale de
la flotte sous des hypothèses de coopération forte.

Quelles stratégies peuvent optimiser l’allocation des tâches au sein d’une
flotte de VIAs pour améliorer l’efficacité opérationnelle et réduire les temps
d’arrêt ?

Cette question aborde le défi de l’allocation dynamique des tâches. Nous explorerons
comment les stratégies collectives peuvent être utilisées pour développer des algorithmes
évolutifs qui répartissent efficacement les tâches en fonction des conditions en temps réel
et de la disponibilité de la flotte, améliorant ainsi l’efficacité opérationnelle.
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Comment la gestion de l’énergie peut-elle être optimisée dans une flotte de
VIAs pour prolonger l’autonomie opérationnelle et réduire les interruptions
dues à la recharge ou au remplacement des batteries ?

Cette question se concentre sur le défi de la gestion de l’énergie. Nous examinerons
des stratégies de gestion collective de l’énergie qui tiennent compte à la fois des niveaux
d’énergie individuels des VIAs et des exigences opérationnelles de l’ensemble de la flotte,
dans le but de prolonger l’autonomie opérationnelle et de minimiser les perturbations.

Comment gérer plus efficacement l’hétérogénéité des systèmes industriels ?
Cette question cherche à démontrer comment les technologies ITS peuvent être adap-

tées aux contextes industriels, en permettant un traitement et un contrôle localisés pour
améliorer les performances globales.

En effet, une fois les scénarios et les contraintes technologiques de communication
identifiés en termes de performances (par exemple, délai, gigue, débit et disponibilité), la
sélection de la technologie appropriée dépendra non seulement des caractéristiques tech-
niques mais aussi des développements anticipés et des contraintes industrielles. Le débat et
la recherche en cours sur les avantages comparatifs des principales technologies candidates
pour les communications V2X dans les environnements routiers [Baz+19] mettent en évi-
dence l’importance d’examiner l’évolution de ces technologies [NCP19] et leur adaptation
aux besoins spécifiques des environnements industriels. Cependant, comme mentionné
précédemment, nous ne nous concentrerons pas sur la mise en place des technologies de
communication.

Quelles méthodologies peuvent être utilisées pour évaluer et affiner
rigoureusement les stratégies collectives visant à accroître l’autonomie des
flottes de VIAs ?

Cette question porte sur la nécessité d’outils et de méthodologies robustes pour éva-
luer et optimiser les stratégies collectives dans les flottes de VIAs. Développer l’autonomie
des VIAs nécessite une méthode de travail pertinente. Identifier des algorithmes réuti-
lisables ou adaptables pour relever les différents défis de l’augmentation de l’autonomie
n’est qu’une partie de la solution. Il est également essentiel de modéliser, simuler, tester
et expérimenter les solutions proposées pour en assurer l’efficacité et la viabilité pratique.
Nous explorerons comment les environnements de simulation et les techniques de modéli-
sation, telles que les systèmes multi-agents, peuvent être utilisés pour tester et affiner ces
stratégies dans diverses conditions. De plus, nous examinerons l’intégration des approches
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d’ingénierie logicielle centralisées et décentralisées pour soutenir le développement et la
validation de ces stratégies collectives. Cette enquête est essentielle pour décomposer
systématiquement les défis complexes d’autonomie auxquels les VIAs sont confrontés et
s’assurer que les solutions proposées sont efficaces dans des environnements réels et dy-
namiques.

De plus, notre méthodologie implique de décomposer le problème de l’autonomie en
tâches techniques gérables, en tenant compte de la complexité inhérente des VIAs, qui
naviguent, perçoivent, planifient les différentes tâches et gèrent l’énergie dans des envi-
ronnements dynamiques. Chacun de ces défis techniques sera abordé individuellement
dans les différents chapitres qui constituent les contributions de cette thèse. En traitant
systématiquement ces tâches et en appliquant des stratégies collectives, nous visons à
améliorer la performance et l’autonomie globales des flottes de VIAs.

Organisation de la thèse

Les recherches présentées dans ce manuscrit s’articulent autour de quatre fonctions
techniques clés qui améliorent l’autonomie d’un VIA :

— Évitement d’obstacles
— Allocation des tâches
— Perception coopérative
— Gestion de l’énergie

Chapitre 1 : Ce chapitre fournit un aperçu complet de l’état de l’art des AMRs dans
le contexte de l’industrie 4.0. Il commence par introduire l’intégration des AMRs dans
les environnements industriels et décrit les fonctions principales qu’ils réalisent, telles que
l’évitement d’obstacles, l’allocation des tâches, la perception coopérative et la gestion de
l’énergie. Le chapitre explore ensuite diverses méthodologies et outils utilisés pour simuler
et améliorer ces fonctions, en soulignant l’importance d’améliorer à la fois l’autonomie
individuelle et collective. Il passe également en revue les émulateurs et simulateurs exis-
tants, en mettant en lumière leur rôle pour combler le fossé entre les simulations et les
applications réelles.

Chapitre 2 : Ce chapitre traite du développement de stratégies collectives
d’évite-ment d’obstacles pour les VIAs dans des environnements industriels com-
plexes. Il commence par introduire une stratégie collective pour la détection des collisions
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[ARCI22; ICAE23], suivie d’une solution proposée pour l’évitement global des obstacles en
utilisant des approches collaboratives entre les VIAs [ASPAI22]. Le chapitre est également
lié à une méthode d’estimation des positions des VIAs dans un cadre industriel fermé,
détaillée dans l’annexe C, et se termine par l’émulation d’un scénario d’intersection pour
tester les stratégies proposées, ouvrant ainsi la voie à des validations dans le monde réel
[ARAC24].

Chapitre 3 : Ce chapitre se concentre sur le développement de stratégies collec-
tives d’allocation des tâches pour les VIAs dans des environnements industriels com-
plexes. Il commence par introduire une stratégie d’allocation dynamique des tâches qui
exploite la coopération V2X, soulignant la nécessité d’une communication et d’une coor-
dination efficaces pour faciliter les processus collectifs d’allocation des tâches. Le chapitre
applique ensuite ces stratégies à un scénario pratique d’entrepôt, simulant la performance
des flottes de VIAs dans des conditions dynamiques pour vérifier l’efficacité des approches
proposées. Enfin, il aborde les défis posés par des agents défaillants dans l’infrastructure,
proposant un début de solution pour détecter et atténuer leur impact, améliorant ainsi
la robustesse des stratégies collectives d’allocation des tâches. Ce chapitre est lié à une
contribution publiée dans le journal ICAE [ICAE24].

Chapitre 4 : Ce chapitre explore les stratégies de perception coopérative pour
les VIAs, en soulignant l’importance d’une perception environnementale précise grâce
aux systèmes coopératifs. Il commence par discuter de la manière dont l’intégration de
données provenant de plusieurs capteurs et des communications V2X peut améliorer la
conscience de la situation et la prise de décision au sein des flottes de VIAs. Le chapitre se
concentre ensuite sur l’acquisition et l’utilisation de données routières provenant du C-ITS
pour améliorer la compréhension de l’environnement dans des environnements industriels
dynamiques. Enfin, il présente une architecture pour générer des messages V2X dans le
simulateur Carla, visant à améliorer la sécurité des piétons et la perception coopérative,
en particulier aux intersections [VTC24].

Chapitre 5 : Ce chapitre traite du développement et de la mise en œuvre de straté-
gies collectives de gestion de l’énergie pour les VIAs, en se concentrant sur les
processus de recharge pour améliorer la performance globale de la flotte. Le chapitre com-
mence par introduire une simulation basée sur des agents flous, puis présente un modèle
de décision flou spécifiquement conçu pour la recharge des batteries [AISYS24; ALGO24;
ASPAI24]. En appliquant la logique floue, nous visons à gérer les incertitudes associées
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au processus de recharge. Le modèle de décision flou est appliqué dans un scénario réel,
simulant la gestion autonome de la recharge des batteries dans un environnement aéropor-
tuaire, où les scénarios de simulation se basent sur un modèle de charge/décharge proposé
pour une batterie d’un VIA. Dans un premier temps, nous comparons les modèles de
logique floue avec des approches basées sur des seuils [ASPAI24]. Ensuite, pour créer un
cadre de simulation plus réaliste, le modèle énergétique des VIAs est affiné et un modèle
de contrôle optimal est établi pour améliorer la consommation d’énergie de chaque VIA au
cours de sa mission, tel que détaillé dans l’annexe D. Ce travail est actuellement en cours
d’examen [ALGO24]. Le chapitre se conclut par l’intégration de la gestion de l’énergie et
de l’allocation des tâches, illustrant l’interdépendance de ces deux aspects pour assurer
des opérations continues et minimiser les temps d’arrêt [AISYS24].

Conclusion : Cette thèse est le journal de bord d’un voyage à travers le do-
maine complexe des stratégies d’intelligence collective pour les VIAs, avec un accent sur
l’amélioration des fonctionnalités clés pour renforcer l’autonomie des VIAs individuels et
la performance globale des flottes de VIAs. Tout au long de ce travail, nous avons exploré
de nombreux défis et opportunités inexploitées, dans le but de rendre les VIAs plus capa-
bles d’opérer de manière autonome tout en garantissant que les flottes puissent travailler
ensemble plus efficacement et en toute sécurité. Il est devenu clair que les méthodes
actuelles ont des li-mites, en particulier pour exploiter pleinement l’intelligence collective
afin d’optimiser ces fonctions critiques. Ce dernier chapitre résume les étapes clés de ce
manuscrit, en soulignant comment elles ouvrent de nouvelles perspectives pour des ex-
plorations futures visant l’objectif que nous avons poursuivi au cours des trois dernières
années : développer des stratégies qui non seulement augmentent l’autonomie des VIAs
individuels, mais leur permettent également de fonctionner comme une flotte cohérente
et intelligente dans des environnements industriels.

Ce dernier chapitre résume les étapes clés de ce manuscrit, en soulignant comment
elles ouvrent de nouvelles perspectives pour des explorations futures visant l’objectif que
nous avons poursuivi au cours des trois dernières années : développer des stratégies qui
non seulement augmentent l’autonomie des AIVs individuels, mais leur permettent égale-
ment de fonctionner comme une flotte cohérente et intelligente dans des environnements
industriels.
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Titre : Stratégies d’Intelligence Collectives pour des Véhicules Industriels Autonomes Efficaces

Mot clés : Industrie 4.0, Contexte ITS, Autonomie Coopérative, Systèmes Distribués

Résumé : Les défis de l’industrie 4.0 com-
prennent l’optimisation des flux de données et
la décentralisation de la prise de décision, là
où les systèmes centralisés deviennent sou-
vent inadéquats. Les véhicules industriels au-
tonomes (VIAs) doivent devenir plus intelli-
gents et coopératifs, en échangeant des don-
nées pertinentes sur le trafic entre eux et avec
l’infrastructure. Cette thèse vise à renforcer
l’autonomie des VIAs à travers des stratégies
d’intelligence collective, améliorant leur adap-
tabilité, prise de décision et efficacité grâce à
une communication et un partage d’informa-
tions facilités. Notre méthodologie, basée sur
la modélisation, la simulation et des tests scé-
narisés, vise à proposer des stratégies collec-
tives spécifiques pour renforcer les différentes
fonctionnalités clés des VIAs. Tout d’abord,

nous avons amélioré un algorithme d’évite-
ment d’obstacles et développé une straté-
gie globale basée sur la perception parta-
gée. Nous avons adapté et proposé des mes-
sages standardisés au contexte de l’industrie
4.0 et introduit un système de (ré)allocation
dynamique des tâches en environnements dé-
centralisés. Ces contributions se basant sur
l’hypothèse forte de la perception coopéra-
tive, nous avons ensuite proposé une archi-
tecture pour générer des données V2X. En-
fin, nous avons développé des stratégies col-
lectives de gestion de l’énergie pour chaque
VIA basé sur un modèle de décision flou, afin
qu’ils puissent déterminer de manière auto-
nome les moments optimaux de recharge et
ainsi réduire leurs temps d’inactivité au sein
de la flotte.

Title: Collective Intelligence Strategies for Efficient Autonomous Industrial Vehicles

Keywords: Industry 4.0, ITS Context, Cooperative Autonomy, Distributed Systems

Abstract: The challenges of Industry 4.0 in-
clude optimizing data flows and decentraliz-
ing decision-making, where centralised sys-
tems often become inadequate. Autonomous
Industrial Vehicles (AIVs) need to become
smarter and more cooperative by exchanging
relevant traffic data among themselves and
with the infrastructure. This thesis aims to
enhance the autonomy of AIVs through col-
lective intelligence strategies, improving their
adaptability, decision-making, and efficiency
by facilitating communication and information
sharing. Our methodology, based on model-
ing, simulation, and scenario testing, seeks
to propose specific collective strategies to

strengthen various key functionalities of AIVs.
First, we improved an obstacle avoidance
algorithm and developed a global strategy
based on shared perception. We adapted and
proposed standardized messages for the In-
dustry 4.0 context and introduced a dynamic
task (re)allocation system in decentralized en-
vironments. Based on the strong assumption
of cooperative perception, we then proposed
an architecture for generating V2X data. Fi-
nally, we developed collective energy manage-
ment strategies for each AIV using a fuzzy de-
cision model, allowing them to autonomously
determine the optimal recharge times and
thus reduce their downtime within the fleet.
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