
HAL Id: tel-04921692
https://theses.hal.science/tel-04921692v1

Submitted on 30 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural network compression in the context of federated
learning and edge devices

Lucas Grativol Ribeiro

To cite this version:
Lucas Grativol Ribeiro. Neural network compression in the context of federated learning and edge
devices. Networking and Internet Architecture [cs.NI]. Ecole nationale supérieure Mines-Télécom
Atlantique, 2024. English. �NNT : 2024IMTA0444�. �tel-04921692�

https://theses.hal.science/tel-04921692v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPÉRIEURE
MINES-TÉLÉCOM ATLANTIQUE BRETAGNE
PAYS DE LA LOIRE – IMT ATLANTIQUE

ÉCOLE DOCTORALE NO 648
Sciences pour l’Ingénieur et le Numérique
Spécialité : Électronique

Par

Lucas GRATIVOL RIBEIRO
Neural Network Compression in the Context of Federated Learning
and Edge Devices

Thèse présentée et soutenue à IMT Atlantique, Brest, le 05/12/2024
Unité de recherche : Lab-STICC, CNRS UMR 6285
Thèse No : 2024IMTA0444

Rapporteurs avant soutenance :

Frédéric PÉTROT Professeur des Universités, Grenoble INP
Van-Tam NGUYEN Professeur, Télécom Paris

Composition du Jury :
Président : Jean-François NEZAN Professeur des Universités, INSA Rennes
Examinateurs : Stefan DUFFNER Maître de conférences, INSA Lyon

Frédéric PÉTROT Professeur des Universités, Grenoble INP
Van-Tam NGUYEN Professeur, Télécom Paris

Dir. de thèse : Matthieu ARZEL Professeur, IMT Atlantique
Co-dir. de thèse : Virginie FRESSE Maître de conférences, Télécom Saint-Étienne
Encadrants de thèse : Mathieu LÉONARDON Maître de conférences, IMT Atlantique

Guillaume MULLER Maître de conférences, Mines Saint-Étienne

Invité(s) :

Erwan PIRIOU System and embedded software engineer, CEA LIST

3 Contents

Contents

Acknowledgments 7

Résumé Long 9

Résumé 21

Abstract 23

Acronyms 25

1 Introduction 27
1.1 Context . 28
1.2 Manuscript Outline . 30
1.3 Contributions . 31

2 Federated Learning for Image Classification 33
2.1 Deep Learning for Image Classification 34

2.1.1 Image Classification Task . 34
2.1.2 Datasets . 35

2.1.2.1 CIFAR-10 . 35
2.1.2.2 CIFAR-100 . 35
2.1.2.3 ImageNet . 36

2.1.3 Architectures . 38
2.1.3.1 VGG-family . 38
2.1.3.2 ResNet-family . 41

2.1.4 Deep Learning Training: Supervised Learning 43
2.1.4.1 Running on Hardware 44

2.2 Distributed Learning . 45
2.2.1 Ensemble Learning . 45
2.2.2 Model and Data Parallelism . 45
2.2.3 Split Learning . 46

2.3 Federated Learning Problem Definition 47
2.3.1 An Attempt For a More Private Machine Learning Framework . 47
2.3.2 The Training Loop and Federated Averaging 50
2.3.3 Open Challenges . 51

2.3.3.1 Privacy (data breach) . 52
2.3.3.2 Distributed Optimization 52
2.3.3.3 Security . 54
2.3.3.4 Fairness . 54
2.3.3.5 Computing and Communication 55

2.3.4 Federated Applications . 56

Contents 4

2.4 Recapitulation . 57

3 Compressing the Federation 59
3.1 Squeezing Every Bit . 60

3.1.1 Quantization Methods . 60
3.1.1.1 Floating Points . 61
3.1.1.2 Integer methods . 62

3.1.2 When to quantize ? . 64
3.1.2.1 After training . 65
3.1.2.2 During training . 65

3.1.3 Hardware implications . 66
3.1.4 Other formats . 67
3.1.5 Pruning Methods . 67

3.1.5.1 Pruning Elements . 67
3.1.5.2 Pruning Criteria . 68

3.1.6 Other Methods . 69
3.2 Communication and Computation Challenges 70

3.2.1 Deep Learning Compression Techniques in Federated Learning . 70
3.2.2 Quantization in Federated Learning 71
3.2.3 Pruning in Federated Learning . 72
3.2.4 Alternative Compression Methods 73

3.3 Recapitulation . 74

4 Cutting Communication Costs 75
4.1 Contributions . 76
4.2 Magnitude Pruning for Double Side Compression 76

4.2.1 Adding Pruning to Federated Learning 77
4.2.2 Pruning applied to Federated Learning 77
4.2.3 Compressing more with Quantization 79

4.3 FLoCoRA . 81
4.3.1 Fine-Tuning Models . 81

4.3.1.1 Low-Rank Adaptation 82
4.3.2 LoRA in the Context of Federated Learning 82
4.3.3 FLoCoRA Framework . 83
4.3.4 FLoCoRA Results . 85

4.4 Compression or Just Smaller Models ? . 89
4.5 Pre-trained Models for Federated Learning 91
4.6 Recapitulation . 92

5 Embedded Few-Shot Learning 93
5.1 Contributions . 94
5.2 Embedded Image Classification with Few Data 94
5.3 EASY Few-shot Learning . 95

5.3.1 Few-Shot Learning . 95
5.3.2 EASY training routine . 96

5.4 A Reconfigurable Platform . 97
5.4.1 What is an SoC? . 97
5.4.2 Deploying Models on an FPGA . 97

5.5 PEFSL: An open-source Pipeline for Embedded Few-Shot Learning . . . 98
5.5.1 Design Space Exploration for FPGA Implementation 98

5.5.1.1 Hyperparameters . 98
5.5.2 Training . 99

5 Contents

5.5.3 PEFSL pipeline . 99
5.5.4 Exploration Results . 100
5.5.5 Improvement of the Hardware Implementation 102
5.5.6 Comparison with other hardware implementations 102
5.5.7 Demonstrator . 103

5.6 Recapitulation . 104

6 Conclusions and Perspectives 105
6.1 Conclusions . 106
6.2 Perspectives . 107

6.2.1 Compressed Partial Training . 107
6.2.2 Efficient Inference Platform . 108
6.2.3 Model Heterogeneous Federated Learning 108

A FPGA and Deep Learning Models 111
A.1 What is an FPGA ? . 111
A.2 Deployement Frameworks . 113

Bibliography 115

Contents 6

7 Acknowledgments

Acknowledgments

I want to express my sincere thanks to the members of my thesis defense jury: Associate
Professor Stefan Duffener at INSA Lyon, Professor Frédéric Petrot at Grenoble INP,
Professor Van-Tam Nguyen at Télécom Paris, and Dr. Erwan Piriou at CEA LIST for
their review of my work, their interesting discussions, and their feedback. I also wish
to thank Professor Jean-François Nezan at INSA Rennes for presiding over the jury.

Thank you, Matthieu Arzel, Mathieu Léonardon, Virginie Fresse, and Guillaume Muller,
for believing in me and for offering me this great opportunity to do a thesis with you
all. These past three years have been truly life-changing for me, not only because of the
exciting and interesting academic discussions but also because of the ever-present good
humor and warmth in our exchanges. Thank you all for always pushing me forward,
for recognizing when I needed help, and for offering me such valuable advice. I have
always looked up to you with great respect and admiration for the professionals and
humans you are, and I hope I can reflect those qualities in my own path. I also hope
that in the future, we will stay in touch and continue working together.

For the past three years, I have had the great pleasure of meeting, exchanging ideas
with, and learning from so many extraordinary people, including those from the BRAIn
team, the 2AI team at IMT Atlantique, Télécom Saint-Étienne, and the friends I made
along the way. I want to thank you all for the good and the bad moments, the Smash
sessions, the laughter, the toasts, the adventures, the help, and those cups of tea we
shared. My heartfelt thanks to Albane, Alix, Amer, Aurelie, Axel, Aymane, Bastien,
Brahim, Brainbzh, Camila, Cédric, Cynthia, Daniela, Erwan, Fernando, Gerard, Ghaith,
Giulia, Hafsa, Hamoud, Hugo LB, Hugo T., Ilyass, Ismail, Jean-Noel, Jérémy, Jonathan,
Karl, Lubin, Lucas B., Lucas F., Magali, Manon, Mariana, Marisa, Matheus, Max, Myr-
iam, Nicolas, Pedro, Raphael B., Raphael L., Reda, Thibault, Timotée, Tom, Venkatesh,
Vincent, Yassine, Yassir, and Yoann. I wish you all the very best and every success in
your future.

Thanks to my family for all their unconditional support and love. Even though we live
far apart and do not often speak, you have always been there for me, and for that I will
always be grateful to you all.

Finally, a special thanks to An, who has made these last stressful years more fun,
chaotic, and interesting. I could never have reached this point without you. Thank
you for sharing my life with me.

I want to dedicate this thesis to my grandparents, who have always been my role mod-
els in life.

Acknowledgments 8

9 Résumé Long

Résumé Long

Introduction

L’apprentissage automatique, et plus particulièrement l’apprentissage profond, est de-
venu un outil incontournable dans des domainees tels que l’ingénierie, la compréhen-
sion du langage, la médecine, et bien d’autres encore. En raison de la complexité des
modèles d’apprentissage, qui peuvent comporter des milliers à des milliards de para-
mètres, l’entraînement de ces modèles nécessite une grande quantité de données pré-
traitées ainsi que des ressources de calcul importantes. Ce paradigme repose historique-
ment sur la centralisation des données, ce qui a permis le développement de réseaux
de neurones et d’algorithmes d’apprentissage profond à grande échelle grâce à l’utilisa-
tion de cartes graphiques, de bibliothèques algébriques optimisées, et à des initiatives
de «source ouverte».

Cependant, dans des contextes où les données sont sensibles, comme dans la santé ou
les services personnalisés impliquant des interactions avec les données des utilisateurs,
la collecte centralisée de ces données pose un problème de confidentialité. L’appren-
tissage fédéré a émergé comme une solution pour résoudre ce dilemme en déplaçant
l’entraînement des modèles directement sur les appareils des utilisateurs, tout en ne
partageant que les résultats de l’entraînement plutôt que les données brutes.

L’apprentissage fédéré s’avère particulièrement bénéfique dans des domainees comme
la médecine, où les institutions peuvent collaborer sans partager des données sensibles
(patients). Néanmoins, cette approche pose des défis techniques majeurs, en particulier
pour les dispositifs embarqués, tels que les téléphones mobiles, les drones ou les appa-
reils de l’Internet des Objets, dont les ressources matérielles sont limitées en termes de
mémoire, de stockage et de puissance de traitement.

Cette thèse s’est concentrée sur l’amélioration de l’efficacité et de l’accessibilité de l’ap-
prentissage fédéré, compte tenu des contraintes des dispositifs en termes de ressources
matérielles, en explorant comment adapter des techniques de compression de modèles
centralisées à des techniques fédérées. Au cours de nos études dans le domaine du
fédéré, nous avons également été amenés à nous interroger sur la manière dont les sys-
tèmes sans capacités de communication pourraient également apprendre et tirer parti
des données publiques disponibles.

Apprentissage Profond pour la Classification d’Images

Les algorithmes d’apprentissage profond sont définis par une architecture de réseaux
de neurones entraînée sur un ensemble de données spécifique pour résoudre une tâche
donnée. La tâche étudiée dans ce travail est la classification d’images, qui consiste à
associer des images à des classes correspondantes. Dans le cadre centralisé tradition-

Résumé Long 10

nel, l’architecture du modèle et l’ensemble de données sont disponibles sur un même
nœud de calcul. Ce concept contraste avec le paradigme d’apprentissage distribué, où
les données, les modèles et/ou les ressources de calcul sont répartis. Ce dernier cas
correspond à l’apprentissage fédéré.

La classification d’images est l’une des tâches les plus courantes en apprentissage auto-
matique. Dans cette tâche, une image X ∈ RC×H×S est fournie en entrée à un modèle
d’apprentissage profond, et la sortie Y ∈ Rn représente une distribution de probabilité
sur les n classes possibles. L’image X est traitée par le modèle F , et la sortie Y repré-
sente les logits, c’est-à-dire les niveaux de confiance bruts et non normalisés du modèle
pour chaque classe. Ces logits sont ensuite passés à travers une fonction d’activation,
telle que la softmax, pour les normaliser en une distribution de probabilité.La classe
prédite correspond à l’index ayant la probabilité la plus élevée.

Pour évaluer les algorithmes d’apprentissage profond pour la classification d’images,
plusieurs ensembles de données curés sont utilisés. Ces ensembles de données sont
spécifiques à la tâche et conçus pour représenter la diversité possible des données du
monde réel. Dans ce travail, nous avons examiné plusieurs ensembles de données pu-
blics bien connus utilisés comme références :

• CIFAR-10 : Un ensemble de 60 000 images couleur de 32x32 réparties en 10 classes.
• CIFAR-100 : Similaire à CIFAR-10 mais contenant 100 classes, ce qui en fait un

ensemble de données plus complexe pour les modèles d’apprentissage profond.
• ImageNet-1K : Un ensemble de données à grande échelle utilisé pour les tâches

de vision par ordinateur, contenant 1,2 million d’images d’entraînement réparties
en 1 000 catégories. Cet ensemble est largement considéré comme une référence
pour évaluer les modèles de classification d’images.

En plus de ces ensembles de données standard, d’autres ensembles dérivés de CIFAR-
10 et ImageNet-1K, tels que CINIC-10 et MiniImageNet, ont également fait l’objet d’ex-
périmentations.

En termes d’architectures de réseaux de neurones, un modèle est généralement com-
posé d’un empilement de couches, chaque couche extrayant des caractéristiques de
plus en plus abstraites des données d’entrée. Ce conception hiérarchique est motivé
par le théorème d’approximation universelle, qui suggère que même les réseaux peu
profonds peuvent approximer des fonctions continues. Dans ce travail, nous avons par-
ticulièrement considéré l’utilisation des réseaux de neurones convolutifs (CNNs), qui
sont des modèles classiques pour la vision par ordinateur.

Les deux principaux modèles étudiés sont :

• VGG (Visual Geometry Group) : Une architecture connue pour sa simplicité et sa
profondeur, utilisant une séquence de couches de convolution suivies de couches
de regroupement (pooling).

• ResNet (Residual Networks) : Une architecture améliorée qui résout le problème du
gradient évanescent en introduisant des connexions résiduelles, permettant aux
gradients de se propager plus efficacement dans le réseau et permettant l’entraî-
nement de réseaux plus profonds.

Apprentissage Fédéré

L’apprentissage fédéré est une approche d’apprentissage automatique distribué conçue
pour répondre aux préoccupations relatives à la confidentialité des données en conser-

11 Résumé Long

vant ces dernières localement sur les appareils. Dans cette approche, un serveur central
coordonne le processus d’entraînement sans accéder directement aux données. Le ser-
veur envoie le modèle à un sous-ensemble de clients participants, qui entraînent le
modèle sur leurs données locales et renvoient les résultats de l’entraînement, comme
les poids ou gradients du modèle, au serveur. Le serveur agrège ces mises à jour et
les applique au modèle global, qui est ensuite redistribué aux clients pour un nouvel
entraînement.

Quelques caractéristiques principales de l’apprentissage fédéré incluent :

• Orchestration des clients : Centralisée, avec un serveur central gérant le processus,
ou décentralisée, avec des clients communiquant directement entre eux.

• Synchronisation : Synchrone, où tous les clients mettent à jour le modèle global
simultanément, ou asynchrone, où les mises à jour sont appliquées au fur et à
mesure de leur arrivée.

• Type de client : Inter-appareils (cross-device), avec de nombreux appareils peu
puissants et peu fiables, ou inter-silos (cross-silo), avec quelques nœuds informa-
tiques puissants et fiables provenant d’organisations comme des universités ou
des entreprises privées.

• Distribution des données : IID (Indépendamment et Identiquement Distribuées)
ou non-IID, où les distributions de données varient significativement entre les
clients.

La Boucle d’Entraînement

Une boucle d’entraînement typique en apprentissage fédéré comprend plusieurs étapes
clés :

1. Échantillonnage des clients : Le serveur sélectionne un sous-ensemble de clients
pour participer à l’entraînement.

2. Téléchargement du modèle : Les clients reçoivent le modèle global le plus récent.
3. Entraînement local : Les clients entraînent le modèle reçu sur leurs données lo-

cales.
4. Téléversement de la mise à jour du modèle : Les clients renvoient le modèle mis

à jour au serveur.
5. Agrégation des connaissances : Le serveur agrège les mises à jour des clients et

affine le modèle global.

Federated Averaging (FedAvg) [117] est l’algorithme le plus utilisé pour agréger les clients
en apprentissage fédéré, où le serveur effectue une somme pondérée des poids des
clients et calcule la moyenne pour créer un modèle global. FedAvg opère en minimi-
sant la somme pondérée des pertes locales sur les clients. Cette approche est efficace
dans des environnements IID, mais des défis surviennent dans des scénarios non-IID,
où la distribution des données entre clients peut être significativement différente.

Défis Ouverts en Apprentissage Fédéré

En raison du choix de conception où les données ne quittent jamais les clients, l’appren-
tissage fédéré présente plusieurs défis ouverts, notamment :

Résumé Long 12

• Confidentialité : Malgré la nature locale des données, les mises à jour des mo-
dèles peuvent encore révéler des informations sensibles, conduisant à des vio-
lations de données au niveau du serveur. Des techniques comme le chiffrement
homomorphe sont explorées pour atténuer ce risque.

• Optimisation Distribuée : Les données non-IID entre les clients complexifient le
processus d’entraînement, avec des stratégies comme FedAvg avec momentum [80]
et FedProx [107] tentant de résoudre ces défis.

• Sécurité : Les données des clients et les mises à jour des modèles sont vulnérables
à des attaques telles que l’empoisonnement des données et des modèles. Des tech-
niques d’agrégation robuste et de confidentialité différentielle sont des domainees
clés de recherche pour renforcer la sécurité.

• Équité : Garantir que le modèle fonctionne bien pour tous les clients et que chaque
client contribue équitablement au modèle global reste un défi, en particulier lorsque
les clients ont des quantités de données, des disponibilités, des contributions et
des ressources matérielles différentes.

En résumé, l’apprentissage fédéré offre une solution prometteuse aux préoccupations
de confidentialité en apprentissage automatique, mais introduit de nouveaux défis, no-
tamment en matière de distribution des données, de sécurité et d’optimisation. Des
recherches supplémentaires sont nécessaires pour relever ces défis et améliorer la pra-
ticité de l’apprentissage fédéré dans des applications réelles.

Compression dans l’Apprentissage Profond

La surparamétrisation est une caractéristique déterminante des modèles modernes d’ap-
prentissage profond. Bien que cela permette aux modèles de résoudre des problèmes
de plus en plus complexes, cela engendre également une augmentation du stockage,
des exigences computationnelles, et une inefficacité de leur exécution. Les méthodes
de compression répondent à ces défis en réduisant la taille des modèles sans com-
promettre significativement leur performance/précision. Ces méthodes sont non seule-
ment cruciales pour réduire la surparamétrisation, mais également pour répondre aux
contraintes physiques et computationnelles inhérentes au déploiement de modèles à
grande échelle.

La quantification et l’élagage sont deux techniques de compression majeures pour re-
lever ces contraintes. La quantification réduit la précision de la représentation des don-
nées, simplifiant ainsi les calculs et diminuant les besoins en stockage. L’élagage, en
revanche, supprime les paramètres ou éléments redondants, aboutissant à des modèles
plus petits et plus efficaces. Ensemble, ces méthodes jouent un rôle essentiel dans l’op-
timisation de l’apprentissage profond pour des environnements contraints.

Méthodes de Quantification

La quantification simplifie la représentation des données en réduisant le nombre d’états
possibles qu’elles peuvent prendre. Bien que cela entraîne souvent une perte d’infor-
mation, le compromis réside dans une réduction significative de l’utilisation de la mé-
moire, de la consommation d’énergie et de la latence. La quantification est particulière-
ment importante pour les opérations gourmandes en ressources, comme les multiplica-
tions de matrices dans les couches d’apprentissage profond. En adoptant des formats
de données plus petits et plus efficaces, la complexité computationnelle globale est ré-
duite.

13 Résumé Long

Lorsqu’on se réfère au processus de quantification dans le contexte des réseaux de neu-
rones, en particulier pour les conversions entre les formats en virgule flottante et les
entiers, la quantification comporte deux types principaux : la Quantification Après En-
traînement (QAE) et la Quantification Sensible à l’Entraînement (QSE). QAE est une
méthode directe où la quantification est appliquée à un modèle pré-entraîné, souvent
avec une phase de calibration. Elle est plus rapide, mais entraîne généralement une
plus grande dégradation de précision que le second type. En revanche, la QSE intègre
le processus de quantification dans l’entraînement, permettant au modèle d’apprendre
et de compenser les erreurs de quantification. Cela produit des modèles performants
avec des précisions réduites, mais au prix d’un effort computationnel accru pendant
l’entraînement.

Méthodes d’Élagage

L’élagage est une méthode permettant de réduire le nombre de paramètres ou d’élé-
ments dans un modèle. En identifiant et supprimant les parties qui contribuent peu à
la performance du modèle, l’élagage conduit à des modèles plus petits et plus efficaces.
Cela est particulièrement utile pour le déploiement de modèles sur des matériels aux
ressources computationnelles limitées.

Il existe deux principaux types d’élagage : non structuré et structuré. L’élagage non
structuré consiste à mettre des poids (paramètres) individuels à zéro, augmentant ainsi
la sparsité au sein du modèle. Bien que cette approche puisse réduire considérablement
le nombre de paramètres, elle nécessite du matériel ou des techniques logicielles spé-
cialisés pour exploiter efficacement cette parcimonie. L’élagage structuré, en revanche,
supprime des structures entières, telles que des couches ou des filtres de convolution,
réduisant potentiellement la complexité computationnelle.

Défis de Communication et de Calcul

L’apprentissage fédéré introduit des défis uniques en raison de sa nature décentrali-
sée. En plus des défis ouverts déjà mentionnés, deux défis fondamentaux abordés dans
cette thèse sont les défis de communication et de calcul. Les clients doivent entraîner
des modèles localement et communiquer les mises à jour à un serveur central. Ce pro-
cessus engendre des coûts de communication significatifs, en particulier lorsqu’il s’agit
de grands modèles ou d’appareils à ressources limitées. En outre, les exigences com-
putationnelles pour l’entraînement et l’inférence peuvent être prohibitivement élevées
pour des appareils aux capacités limitées, comme les systèmes embarqués.

Les techniques de compression, telles que la quantification et l’élagage, offrent des so-
lutions à ces défis. En réduisant la taille et la complexité des modèles, ces méthodes
diminuent les frais de communication et les exigences computationnelles. Cela permet
à l’apprentissage fédéré d’être plus accessible et efficace, en particulier dans des scéna-
rios impliquant des appareils embarqués, qui fonctionnent souvent sous des contraintes
strictes de ressources.

Quantification dans l’Apprentissage Fédéré

Dans l’apprentissage fédéré, la quantification a été adaptée pour relever à la fois les
limitations de communication et de calcul. Contrairement à l’apprentissage profond
centralisé, les environnements fédérés manquent souvent d’un jeu de données de cali-
bration centralisé, ce qui rend la quantification plus complexe. Des techniques comme

Résumé Long 14

la quantification stochastique et les mécanismes de rétroaction d’erreur ont été déve-
loppées pour atténuer ces problèmes.

Par exemple, FedPAQ [141] applique la quantification stochastique aux mises à jour des
modèles, réduisant ainsi le nombre de bits transmis pendant les rondes de communi-
cation. De même, BHFL [175] permet aux clients d’entraîner des modèles en utilisant
des formats entiers, avec une déquantification côté serveur pour assurer la cohérence
entre les modèles. Ces approches mettent en lumière l’adaptabilité des méthodes de
quantification dans les contextes d’apprentissage fédéré.

Élagage dans l’Apprentissage Fédéré

L’élagage a également été adapté pour l’apprentissage fédéré, avec un accent sur la ré-
duction des coûts de communication et de calcul. Des techniques comme PruneFL [88]
et FedDST [18] permettent aux clients d’entraîner des modèles élagués, plus petits
et plus efficaces. PruneFL détermine dynamiquement le taux d’élagage optimal pour
chaque client, tandis que FedDST utilise un entraînement parcimonieux par couche
pour minimiser les exigences computationnelles. Ces méthodes démontrent le poten-
tiel de l’élagage pour relever les défis uniques de l’apprentissage fédéré.

Élagage par Magnitude pour une Compression Double-Sens

En nous appuyant sur le flot standard de l’apprentissage fédéré, nous avons intégré
des techniques d’élagage pour augmenter la parcimonie des communications entre le
serveur et les clients. Plus précisément, un élagage non structuré basé sur la magnitude
des poids est appliqué aux niveaux du serveur et des clients avant la transmission des
messages. Ce processus consiste à élaguer les poids globaux en fonction de leurs va-
leurs absolues et à fixer à zéro les θ% des poids les plus faibles. En garantissant une
parcimonie cohérente des deux côtés, cette méthode optimise l’efficacité des communi-
cations dans le processus d’apprentissage fédéré.

Des méthodes de codage entropique, telles que le codage de Huffman, sont utilisées
pour compresser davantage les messages. Cette technique attribue des codes plus courts
aux éléments les plus fréquents, ce qui réduit la taille des messages sans nécessiter de
techniques dépendantes des données. Par conséquent, le serveur et les clients peuvent
indépendamment compresser et décompresser les messages, évitant ainsi les surcoûts
liés à une compression unilatérale.

Pour évaluer l’efficacité de notre méthode d’élagage, des expériences ont été menées
sur les ensembles de données CIFAR-10 et CIFAR-100 en utilisant un modèle ResNet-
12. Les taux d’élagage ont été variés pour évaluer les compromis entre la compression
et la précision du modèle. Les résultats ont montré que, bien que l’élagage réduise
considérablement les coûts de communication, l’impact sur la précision dépendait du
jeu de données.

Une comparaison avec la méthode ZeroFL [136] a révélé que notre approche conservait
une précision plus élevée pour des niveaux de compression équivalents. Par exemple,
pour des tailles de message similaires, notre méthode a montré moins de dégradation
de la précision par rapport à la méthode de référence. Cela souligne la robustesse de
notre technique pour compenser la sparsité introduite.

15 Résumé Long

FLoCoRA

Suite à notre première étude sur la sparsité dans l’apprentissage fédéré, nous avons ex-
ploré des techniques alternatives de réduction de communication, aboutissant à notre
travail FLoCoRA [61](Federated Learning Compression with Low-Rank Adaptation). L’Adap-
tation de Faible Rang (Low-Rank Adaptation, LoRA), méthode initialement développée
pour le fine-tuning efficace de modèles à grande échelle, a été adaptée dans FLoCoRA
pour permettre un compromis entre le nombre de paramètres à communiquer et la dé-
gradation de la précision. Au lieu d’entraîner tous les paramètres du modèle, LoRA
introduit des matrices adaptatrices parallèles légères A et B, considérées comme des
versions de faible rang de la matrice de poids d’une couche spécifique. L’idée est de
geler la matrice de poids originale, qui n’est pas entraînée, et de n’entraîner que les
adaptateurs LoRA. Après les phases d’entraînement, les adaptateurs sont intégrés au
modèle original, représentant une mise à jour de faible rang du modèle. Cette approche
réduit considérablement le nombre de paramètres à échanger lors de l’apprentissage
fédéré, diminuant ainsi les coûts de communication.

Dans le cadre de FLoCoRA, les paramètres du modèle original restent figés, et seuls
les adaptateurs LoRA sont entraînés et échangés entre les clients et le serveur. Cette
approche assure une compatibilité avec les méthodes d’optimisation existantes en ap-
prentissage fédéré et améliore la flexibilité.

L’efficacité de FLoCoRA a été évaluée sur plusieurs ensembles de données, y compris
CIFAR-10, CIFAR-100 et CINIC-10, en utilisant diverses configurations de rang et de
facteurs d’échelle. Les résultats ont montré des réductions substantielles des coûts de
communication, avec des tailles de message réduites jusqu’à 63, 9× lorsqu’elles sont
combinées avec une quantification affine. Malgré ces réductions, la précision est res-
tée compétitive, avec des baisses limitées à 4% dans les scénarios de compression les
plus extrêmes. Ces résultats soulignent le potentiel de FLoCoRA en tant que référence
robuste pour un apprentissage fédéré efficace en termes de communication.

Compression vs Modèles Plus Petits

Nos recherches sur la réduction des coûts de communication ont soulevé la question
de savoir si les techniques de compression ou des modèles plus petits sont plus effi-
caces pour réduire ces coûts. En comparant des modèles compressés à des architectures
intrinsèquement plus petites, nous avons constaté que les architectures plus optimi-
sées surpassent généralement les modèles surparamétrés. Par exemple, pour la tâche
de classification d’images CIFAR-10, un ResNet-20 surpasse un ResNet-18, même avec
plus de 10 fois moins de paramètres. Ce comportement est principalement dû au fait
que l’architecture ResNet-20 a été optimisée pour la complexité de la tâche CIFAR-10,
soulignant l’importance d’adapter les architectures aux tâches. Avec le choix correct
d’architectures, nous avons constaté que la compression devient encore plus pertinente.
Nous avons appliqué FLoCoRA aux ResNet-20 et ResNet-18 précédents afin d’obtenir
la même taille de message, et le ResNet-20 compressé a présenté moins de dégradation
de précision que le ResNet-18 compressé.

Modèles Pré-Entraînés pour l’Apprentissage Fédéré

Enfin, dans le cadre de notre étude sur la réduction de communication, nous avons exa-
miné l’application des modèles pré-entraînés à l’apprentissage fédéré. L’utilisation de
modèles pré-entraînés offre des avantages significatifs, comme le démontrent les études

Résumé Long 16

récentes dans le domainee du l’apprentissage fédéré. Les modèles pré-entraînés accé-
lèrent non seulement la convergence, mais atténuent également les défis posés par les
distributions de données non-IID. En exploitant des poids pré-entraînés comme bases
fixes, les coûts computationnels et de communication sont considérablement réduits,
permettant aux clients ayant des ressources limitées d’atteindre des performances com-
pétitives.

Des expériences comparant l’apprentissage fédéré avec et sans modèles pré-entraînés
ont montré une convergence plus rapide et une précision améliorée pour la configura-
tion pré-entraînée. Cela souligne le potentiel d’intégrer des modèles pré-entraînés dans
les cadres d’apprentissage fédéré, en particulier pour des applications personnalisées.

Apprentissage Embarqué avec peu d’exemples

Les systèmes embarqués sont souvent confrontés à des contraintes matérielles impor-
tantes et à une disponibilité limitée des données. Une manière de relever ces défis réside
dans l’apprentissage fédéré, comme discuté précédemment, ainsi que dans l’utilisation
de modèles pré-entraînés. L’apprentissage fédéré permet aux modèles de s’entraîner de
manière collaborative sur plusieurs appareils, exploitant ainsi des classes de données
inaccessibles aux clients individuels et améliorant les performances globales. Cepen-
dant, dans des scénarios où l’apprentissage fédéré est irréalisable — tels que les dis-
positifs avec des capacités de communication limitées ou des préoccupations élevées
en matière de confidentialité — les modèles pré-entraînés peuvent combler l’écart de
performance.

Dans ce contexte, l’apprentissage avec peu d’exemples (Few-Shot Learning, FSL) consti-
tue une alternative convaincante au réentraînement répété de modèles pré-entraînés, en
particulier pour des scénarios où la disponibilité des données est minimale. Il permet
aux modèles de s’adapter efficacement à de nouvelles tâches avec seulement quelques
exemples. Un avantage notable du FSL est sa capacité à classer de nouvelles classes
sans s’appuyer sur des techniques basées sur la descente de gradient stochastique, ce
qui réduit considérablement les besoins en mémoire et en calcul. Pour les systèmes
embarqués, cela est particulièrement bénéfique.

Lorsqu’il s’agit de plateformes matérielles pour déployer ces algorithmes, des options
comme les GPU embarqués (par exemple, les NVIDIA Jetson) et les FPGA offrent des
compromis intéressants. Les GPU facilitent le déploiement avec une faible consomma-
tion d’énergie, tandis que les FPGA permettent des latences plus faibles et une flexibilité
accrue, essentielles pour les systèmes en temps réel.

Dans ce travail, nous avons développé une chaîne de mise en œuvre permettant de
déployer un algorithme FSL sur une plateforme du type système sur une puce (System-
on-Chip, SoC) composée d’un CPU et d’un FPGA.

Apprentissage avec Peu d’Exemples - EASY

L’apprentissage avec peu d’exemples répond au défi de classer des exemples apparte-
nant à des classes inconnues en utilisant un nombre limité d’exemples étiquetés. L’ap-
prentissage profond traditionnel excelle avec de grands ensembles de données, mais le
FSL repose sur des routines d’entraînement spécifiques qui privilégient la généralisa-
tion plutôt que l’ajustement aux exemples individuels. La force principale du FSL réside
dans l’utilisation debackbones entraînés comme extracteurs de caractéristiques univer-
sels. Ces backbones garantissent que les caractéristiques des classes inconnues sont bien

17 Résumé Long

séparées dans l’espace des caractéristiques, facilitant ainsi la classification par compa-
raison.

Le cadre FSL utilisé dans ce travail commence par un entraînement générique sur un
ensemble de données de base, où le backbone est entraîné. Des ensembles de validation,
contenant des classes distinctes, sont utilisés pour évaluer la généralisation. Une fois
entraîné, le backbone est figé et sert d’extracteur de caractéristiques universel. Les per-
formances du modèle sont ensuite évaluées sur un nouvel ensemble de données com-
prenant un nombre défini de classes (ways) et d’exemples étiquetés (shots). La classifi-
cation repose sur des comparaisons des moyennes de classes les plus proches (Nearest
Class Mean, NCM) dans l’espace des caractéristiques.

Nous avons adopté l’algorithme EASY [15] de FSL, qui nous a permis d’entraîner des
backbones robustes et polyvalents. Il utilise une architecture en forme de Y combinant
une perte de classification supervisée avec une perte auto-supervisée. La perte auto-
supervisée implique la reconnaissance des rotations appliquées aux échantillons d’en-
trée, favorisant l’extraction de caractéristiques significatives. De plus, la régularisation
par mélange de variétés (manifold mixup) interpole les vecteurs de caractéristiques dans
l’espace latent, favorisant des représentations généralisées.

Le processus d’entraînement inclut des ajustements dynamiques du taux d’apprentis-
sage avec des redémarrages progressifs, garantissant une convergence fluide et rédui-
sant le surapprentissage. Un ensemble de backbones, chacun initialisé avec des graines
aléatoires différentes, est entraîné indépendamment pour créer des représentations de
caractéristiques diversifiées et enrichies. Cette approche améliore les performances sans
augmenter significativement la complexité du modèle.

Une Plateforme Reconfigurable

Les plateformes SoC intègrent des éléments de traitement traditionnels, tels que des
CPU généralistes, avec une matrice FPGA programmable sur une seule puce. Cette
combinaison permet aux CPU de gérer les tâches définies par logiciel tandis que la
matrice FPGA accélère les fonctions computationnellement intensives comme le traite-
ment de données en temps réel. Des exemples notables incluent la famille AMD-Xilinx
Zynq, qui combine des CPU basés sur ARM avec des ressources FPGA, ce qui en fait
une solution idéale pour les applications d’apprentissage profond.

La carte de développement PYNQ-Z1, utilisée dans ce travail, est dotée d’une puce
Zynq XC7Z020-1CLG400C avec un CPU Cortex-A9 à double cœur, 512 Mo de mémoire
et une matrice FPGA. Cette carte sert de plateforme d’entrée polyvalente pour les ap-
plications embarquées.

Le déploiement de modèles d’apprentissage profond sur FPGA implique la conversion
de descriptions de haut niveau, telles que celles au format ONNX, en code matériel
compatible avec le FPGA. Le framework Tensil [157], choisi pour ce travail, utilise une
architecture de type tableau systolique optimisée pour les multiplications matricielles
et d’autres opérations comme les activations et le pooling. L’adaptabilité et la compati-
bilité du framework avec la carte FPGA cible en font un choix adapté.

PEFSL : Une Chaîne Open-Source pour l’apprentissage embarqué avec peu
d’exemples

La conception des architectures de backbones pour le FSL sur FPGA nécessite une op-
timisation pour équilibrer la précision et le coût computationnel. Nous avons choisi

Résumé Long 18

de travailler avec des architectures peu profondes comme ResNet-9 et ResNet-12, qui
offrent une complexité réduite tout en maintenant des performances compétitives. Nous
avons exploré l’espace de conception des hyperparamètres des modèles tels que la pro-
fondeur du réseau, la taille des images d’entraînement et les cartes de caractéristiques
pour déterminer le meilleur compromis entre les performances du système final (pré-
cision) et les exigences en ressources.

L’entraînement du backbone a été réalisé en utilisant le jeu de données MiniImageNet
dans une configuration 5-way, 1-shot. Les classes diversifiées de ce jeu de données per-
mettent une excellente généralisation pour de nouvelles tâches. Les résultats indiquent
que ResNet-9 atteint une précision compétitive tout en maintenant une faible latence,
nécessaire pour les applications en temps réel.

La chaîne PEFSL intègre entraînement, compilation et déploiement dans un cadre co-
hérent. Elle simplifie l’exploration des hyperparamètres et optimise les configurations
des modèles pour les tâches FSL. ResNet-9, fonctionnant à 125 MHz, atteint une latence
de 30 ms, démontrant l’efficacité de la chaîne dans des scénarios réels.

Démonstrateur

Enfin, un démonstrateur autonome illustre l’application pratique de PEFSL. Logé dans
une boîte compacte, il intègre une carte PYNQ-Z1, une caméra et un écran, atteignant
une inférence à 16 FPS avec une consommation totale de 6,2 W. La conception mo-
dulaire et la mise en œuvre efficace en termes de ressources mettent en évidence son
potentiel pour des déploiements industriels.

Conclusions

Cette thèse a abordé le développement et les défis de la compression de modèles en ap-
prentissage profond, en mettant l’accent sur l’apprentissage fédéré et les systèmes em-
barqués. Notre exploration a inclus l’utilisation de techniques de compression pour ré-
duire les coûts de communication dans l’apprentissage fédéré. Par ailleurs, nous avons
également traité des coûts computationnels avec une approche de co-conception visant
à optimiser les modèles pré-entraînés pour des systèmes d’inférence efficaces utilisant
une méthode d’apprentissage par peu d’exemples (few-shot learning).

Perspectives

Les résultats et discussions qui ont contribué à la réalisation de ce travail ont également
ouvert des perspectives pour des travaux futurs.

Entraînement Partiel Compressé

Les travaux futurs pourraient intégrer des techniques de compression avec l’entraîne-
ment partiel, où les clients s’entraînent sur des sous-ensembles du modèle global, afin
de relever les défis de communication et de calcul. Des stratégies itératives de sortie
anticipée (early-exit) combinées à la compression pourraient offrir un compromis entre
l’efficacité de l’entraînement et les coûts de communication. L’exploration de couches
en précision mixte et la quantification de l’impact de la compression sur l’entraînement
partiel représentent des directions prometteuses.

19 Résumé Long

Plateforme d’Inférence Efficace

Adapter l’apprentissage fédéré à des modèles personnalisés et compressés spécifiques
au matériel constitue une voie potentielle. Combiner des structures globales (global back-
bones) avec des têtes de classification personnalisées et utiliser des techniques de quan-
tification comme FedMPQ pourrait permettre un déploiement efficace. La refonte de
cadres comme Tensil pour optimiser des structures en précision mixte améliorerait leur
applicabilité dans des contextes réels.

Apprentissage Fédéré Hétérogène de Modèles

Une idée prospective consiste à prendre en charge des modèles clients auto-définis
avec des méthodes d’agrégation adaptées pour gérer l’hétérogénéité. La distillation de
connaissances, comme dans FedDF [111], pourrait permettre la collaboration entre des
modèles divers, avec des modèles de langage large ou multimodaux guidant la fusion
des connaissances. Cette approche vise à développer un cadre d’apprentissage fédéré
entièrement hétérogène.

Résumé Long 20

21 Résumé

Résumé

Les approches traditionnelles centralisées de l’apprentissage automatique exigent la
collecte de grands ensembles de données, contenant souvent des informations privées.
Cela a conduit à une appréhension croissante concernant la sécurité des données, in-
citant au développement de nouvelles réglementations, telles que le GDPR, pour pro-
téger la vie privée des utilisateurs. En réponse à ces défis, l’apprentissage fédéré a été
développé comme une alternative prometteuse, permettant un cadre d’entraînement
collaboratif et décentralisé. Différentes entités peuvent participer à l’entraînement fé-
déré d’un modèle d’apprentissage automatique sans partager leurs données. Cette tech-
nique est particulièrement intéressante pour des domaines comme la santé, où la sen-
sibilité et la quantité des données rendent difficile l’entraînement de modèles à grande
échelle.

Cette thèse aborde les défis consistant à rendre l’apprentissage fédéré à la fois efficace
et accessible, en se concentrant sur des dispositifs avec des contraintes matérielles di-
verses. L’apprentissage fédéré améliore la confidentialité en permettant à plusieurs par-
ticipants de collaborer pour entraîner un modèle sans partager leurs données. Chaque
participant entraîne le modèle localement avec ses propres données, ne partageant que
les mises à jour du modèle entraîné. Cependant, les différences de ressources maté-
rielles entre les participants posent des défis liés aux coûts de communication et aux
limitations computationnelles. Ce travail explore des techniques de compression exis-
tantes ainsi que de nouvelles approches pour réduire la charge des coûts de commu-
nication tout en maintenant les performances du modèle. Toutefois, l’apprentissage fé-
déré présente des limitations en terme de confidentialité. D’autres méthodes, comme
l’apprentissage avec peu d’exemples, constituent de bonnes alternatives. Par consé-
quent, nous explorons également comment ces modèles peuvent être déployés effica-
cement sur des appareils aux ressources limitées, offrant ainsi des perspectives pour
réduire les coûts liés à l’apprentissage fédéré.

La première contribution de cette thèse se concentre sur la réduction de la taille des
messages dans l’apprentissage fédéré pour minimiser l’utilisation d’énergie et de bande
passante. Cette méthode intègre l’élagage des poids de faible magnitude avec l’enco-
dage par entropie, réalisant une réduction de 50% de la taille des messages avec moins
de 1% de perte en précision. En élaguant les plus petits poids basés sur les valeurs
absolues avant de transmettre les messages, cette approche simplifie le processus de
compression et permet aux participants d’adapter l’élagage à leurs jeux des données.
Le résultat est une réduction significative des besoins en bande passante tout en pré-
servant les performances du modèle.

La deuxième contribution introduit l’application de l’adaptation de basse rang (LoRA)
dans l’apprentissage fédéré pour réduire les coûts de communication sans se reposer
uniquement sur les techniques traditionnelles de compression de modèles. La méthode
proposée, appelée FLoCoRA, intègre des adaptateurs LoRA dans le cadre de l’appren-

Résumé 22

tissage fédéré, démontrant que de petits modèles de vision peuvent être entraînés à par-
tir de zéro. Notre méthode réduit la taille des messages jusqu’à 4,8 fois avec une perte
de précision négligeable. De plus, une technique de quantification affine compresse da-
vantage les tailles de messages de 18,6 à 37,3 fois. Cette méthode gèle les paramètres
du modèle original et ne met à jour que les adaptateurs LoRA pendant l’entraînement,
réduisant les coûts de communication de l’apprentissage fédéré.

La troisième contribution présente une chaîne de co-conception de modèles d’appren-
tissage par peu d’exemples sur une plate-forme FPGA pour la classification d’objets
avec des contraintes temps réel, avec des extensions possibles pour l’apprentissage fé-
déré. Ce système fournit une solution open-source pour la conception, l’entraînement et
le déploiement de modèles d’apprentissage profond sur des dispositifs FPGA à faible
consommation, atteignant une faible latence (30 ms) et une consommation d’énergie
(6,2 W) sur une carte PYNQ-Z1. Cette méthode aborde le défi de la rareté des don-
nées, permettant aux modèles de bien généraliser même lorsque certains participants
ne peuvent pas intégrer à l’apprentissage fédéré en raison de contraintes matérielles.
En exploitant l’apprentissage par peu d’exemples sur des FPGA, le système assure une
flexibilité pour les exemples encore non vus et constitue également un candidat pour
déployer un modèle fédéré pour l’inférence.

23 Abstract

Abstract

Traditional centralized approaches to machine learning demand the collection of large
datasets, often containing private data. This has led to growing apprehension around
data security, prompting the development of new regulations, such as the GDPR, to
protect users’ privacy. In response to these challenges, federated learning was devel-
oped as a promising alternative, allowing for a collaborative, decentralized training
framework. Different entities can participate in federated training of a machine learn-
ing model without sharing their data. This technique is particularly valuable for do-
mains like healthcare, where data sensitivity and scarcity make large-scale model train-
ing difficult.

This thesis addresses the challenges of making federated learning both efficient and
accessible, focusing on environments with diverse hardware capabilities. Federated
learning enhances privacy by allowing multiple participants to collaboratively train a
model without sharing their data. Each participant trains the model locally with their
own data, only sharing the trained model updates. However, variations in hardware
resources among participants introduce challenges related to communication costs and
computational limitations. This work explores existing compression techniques and
new approaches to reduce communication costs load while maintaining model per-
formance. However, federated learning has shortcomings in terms of privacy. Other
methods like few-shot learning are good alternatives. Therefore, we also investigate
how few-shot learning models can be effectively deployed on hardware-constrained
devices, offering insights into reducing costs for federated learning.

The first contribution of this thesis focuses on reducing message sizes in federated
learning to minimize energy and bandwidth usage. This method integrates weight
magnitude pruning with entropy encoding, achieving a 50% reduction in message size
with less than 1% loss in accuracy by pruning the smallest weights based on absolute
values before transmitting messages. This approach simplifies the compression process
and allows federated learning participants to tailor pruning to their specific datasets.
The result is a significant reduction in bandwidth requirements while preserving model
performance.

The second contribution introduces the application of Low-Rank Adaptation (LoRA)
within federated learning to reduce communication costs without relying solely on
traditional model compression techniques. The proposed method, called FLoCoRA,
integrates LoRA adapters into the federated learning framework, demonstrating that
small vision models can be trained from scratch while reducing message sizes by up to
4.8 times with minimal accuracy loss. Additionally, an affine quantization scheme fur-
ther compresses message sizes by 18.6 to 37.3 times. This method freezes the original
model parameters and updates only the LoRA adapters during training, reducing the
communication costs between federated learning participants.

The third contribution introduces a pipeline for the co-design of few-shot learning mod-

Abstract 24

els in an FPGA platform for real-time object classification, with possible extensions for
federated learning. This system provides an open-source solution for designing, train-
ing, and deploying deep learning models on low-power FPGA devices, achieving low
latency (30 ms) and power consumption (6.2 W) on a PYNQ-Z1 board. This method
addresses the challenge of data scarcity, allowing models to generalize well even when
some participants cannot participate in federated training due to hardware constraints.
By leveraging few-shot learning on FPGAs, the system ensures flexibility for unseen
examples and has also been a candidate for efficiently deploying a federated learning
model for inference.

25 Acronyms

Acronyms

ASIC Application-Specific Integrated Circuit.
CE Cross-Entropy.
CIFAR Canadian Institute For Advanced Research.
CINIC-10 CINIC-10 Is Not ImageNet or CIFAR-10.
CNN Convolutional Neural Network.
CPU Central Processing Unit.
CSR Compressed Sparse Row.
DDR Double Data Rate.
DNN Deep Neural Network.
DPU Deep Processing Unit.
DSP Digital Signal Processing.
EASY Ensemble Augmented-Shot Y-shaped Learning.
FC Fully Connected.
FedAvg Federated Averaging.
FedDF Federated Distillation Fusion.
FedOpt Federated Optimization.
FedPAQ Federated Learning method with Periodic Averaging and Quantization.
FF Flip-FLop/Register.
FLoCoRA Federated Learning Compression with Low-Rank Adaptation.
FLOP Floating Point Operation.
FP Floating-Point.
FPGA Field-Programmable Gate Array.
FPS Frames Per Second.
FSL Few-Shot Learning.
GDPR General Data Protection Regulations.
GPIO General-Purpose Input/Output.
GPU Graphical Processing Unit.
IID Independent and Identically Distributed.
ILSVRC Large Scale Visual Recognition Challenge.
IOB Input/Output Block.
IoT Internet of Things.
IP Intellectual Propriety.
KL Kullback-Leibler.
LDA Latent Dirichlet Allocation.
LLM Large-Language Model.
LoRA Low-Rank Adaptation.

Acronyms 26

LSTM Long Short-Term Memory.
LUT Look-Up Table.
MAC Multiply-Accumulate.
MLP Multi-Layer Perceptron.
MUX Multiplexer.
NAS Neural Architecture Search.
NCM Nearest Class Mean.
ONNX Open Neural Network Exchange.
PCIe Peripheral Component Interconnect Express.
PEFSL Pipeline for Embedded Few-Shot Learning.
PEFT Parameter-Efficient Fine-Tuning.
PTQ Post-Training Quantization.
QAP Quantization Aware Pruning.
QAT Quantization-Aware Training.
ReLU Rectified Linear Unit.
ResNet Residual Neural Network.
RTL Register Transfer Level.
SGD Stochastic Gradient Descent.
SLT Successive Layer Training.
SoC Sytem-on-Chip.
SoTA State-of-The-Art.
SVD Singular Value Decomposition.
SWAT Sparse Weight Activation Training.
TCC Total Communication Cost.
TDP Thermal Design Power.
UAT Universal Approximation Theorem.
VGG Visual Geometry Group.

27

Chapter 1

Introduction

Contents
1.1 Context . 28
1.2 Manuscript Outline . 30
1.3 Contributions . 31

Chapter 1. Introduction 28

Preamble

As deep learning development is data-driven, the classic view of centralizing data for
training and its privacy implications have been questioned by different research entities
and governments [57]. Several solutions address these concerns, such as differential
privacy [1], which adds noise to data to protect individual information, and homo-
morphic encryption [102], which allows computation on encrypted data. Both aim to
anonymize and secure data. Another approach that promotes a more privacy-aware
framework in machine learning is federated learning. However, this increased privacy
comes with a trade-off: the training process is shifted to data owners, allowing them
to train models without directly sharing their data. These modifications result in nu-
merous design challenges for this framework. This work focuses on the impacts on
hardware-constrained devices caused by the constant communications in the federa-
tion and the on-device training of convolutional neural networks.

The introduction is divided into three parts. The first part provides the context and ad-
dresses the problems discussed in this thesis. The second part summarizes the chapters
of this manuscript, and finally, the third part lists the contributions in terms of methods
and publications achieved.

1.1 Context

Machine learning has become a common tool in many fields, including engineering,
language understanding, medicine, and many other areas. As the result of a stack of
layers, each representing multiple compositions of mathematical functions, such mod-
els are scaled up by adding more layers and modifying the layers’ composition. As
such, models can be composed of a few thousand parameters up to trillions of pa-
rameters [165]. To run a model, one needs large amounts of preprocessed data and
computational power proportional to the model’s complexity. This paradigm has been
the main conduit in the application of neural networks and, later, deep learning from
the 80s and 90s to today, where the development of powerful hardware accelerators in
the form of Graphical Processing Units (GPUs), faster memory and storage solutions,
optimized algebraic libraries, easy-to-use research/production frameworks, and exten-
sive data collection have made large-scale machine learning research and deployment
possible.

Considering services that interact directly with human data, such as language models,
personalized services for image generation, or healthcare services, to train a model,
one needs to collect not only a considerable amount of data but also real-world data.
This creates a direct problem of dealing with potentially sensible data. In recent years,
there has been increasing concern about data privacy and confidentiality. Specifically,
there have been numerous new laws and agreements in regions like North America and
Europe regarding data protection and efforts to keep users’ data and activity private.
This scenario has fueled recent debates over the scaling of deep learning models that
need more high-quality data and users’ right to data privacy and ownership.

In light of current concerns about the General Data Protection Regulations (GDPR), re-
searchers have proposed shifting from the centralized data paradigm to a federated
approach [94, 117]. In the federated paradigm, the computing units are distributed,
with each unit only able to access its own local data. The principle is that each unit
can independently train its own model on its own data. By exchanging the outcomes
of this training, rather than the data itself, a third party involved in the federation, or

29 1.1. Context

even one or more units, can explore methods to combine the various models into one
global model. The main intent of this approach is to increase data privacy as much as
possible while allowing models to be trained with data that would otherwise be hardly
accessible. Its most notable application is the development of medical-related machine
learning models and applications. Unlike standard image classification or segmenta-
tion tasks, for which several public datasets have been curated for benchmarking pur-
poses and the Internet serves as a contentious source for web scraping, medical data
presents substantially higher sensitivity and constitutes the sole repository for training
relevant applications. A single medical institution may not possess or generate suf-
ficient data, particularly for rare diagnoses or occurrences. Federated learning is an
option that allows several institutions to enroll in collaborative training to construct a
more representative model.

In a broader context, Federated learning constitutes a collaborative framework in which,
in its original formulation, a group of entities, termed clients, and a central aggregation
node, referred to as the server, jointly train a machine learning model, keeping train-
ing data local to each client. This increase in data protection comes with a series of
design challenges that are part of ongoing research topics in the framework. Among
many design challenges, we focus on the framework’s consequences to clients. From a
system perspective, offloading computation to individual clients introduces challenges
associated with heterogeneous and constraining computational resources, a drawback
less prevalent in centralized configurations. Clients’ hardware can range from private
or public entities with the capacity to invest in dedicated compute nodes to standard
desktop computers characterized by limited memory, storage, and processing power,
extending to mobile phones, drones, or Internet of Things (IoT) devices, wherein hard-
ware limitations are intrinsic to their design. As multiple parties participate in the fed-
eration, there is a constant need for information exchange to collaborate on the global
aggregation of knowledge, resulting in extra costs in terms of communication means
and bandwidth.

Hardware heterogeneity and its related constraints are not new concerns in the de-
sign of neural network models, as numerous techniques have been developed over
the years to address the needs of model compression. One of the most adopted tech-
niques has been to mitigate the over-parameterization of models by augmenting spar-
sity, given that parameters vary in their pertinence to the outcome or by deleting entire
architectural components. Such strategies are commonly known as "pruning", where
the intent is to reduce over-parameterization to diminish network complexity and/or
size without compromising performance. Another well-established technique, quanti-
zation, rooted in signal processing, involves reducing the precision used to represent
parameters and/or input data to a model. The central premise is that the conventional
data format, IEEE 754 32-bit floating point [120], can be transformed into less complex
and more efficient numerical formats for machine learning, resulting in representations
that demand less memory space by reducing the number of bits, or into formats that
simplify multiplications and accumulations, as seen in the use of integers, ternary, or
even 1-bit representations.

Although federated learning is a more privacy-conscious framework, data attack meth-
ods have demonstrated the ability to recover clients’ data during training. This raises
concerns about the applicability of federated learning, especially considering that not
all devices can maintain a stable communication link. Embedded devices seeking to im-
plement federated learning are likely to face limitations in both the quantity and diver-
sity of their data. A promising solution to these limitations is to use techniques based
on pre-trained models, which harness the power of publicly available data. Among the

Chapter 1. Introduction 30

various options, few-shot learning [15] stands out as an exciting alternative. Addition-
ally, few-shot learning offers an online learning method that does not rely on compu-
tationally expensive gradient descent algorithms, making it more efficient in terms of
energy consumption and latency. This makes it an appealing choice for deployment on
embedded devices.

In federated learning, the algorithm executed locally by each participant is computa-
tionally equivalent to those used in centralized models. This often requires memory
and computationally intensive operations to minimize a cost function, making GPUs
a suitable hardware choice. In contrast, few-shot learning relies on comparing high-
dimensional vectors, where the classification method learns class representations from
only a few examples. These high-dimensional vectors, or features, are extracted us-
ing a pre-trained model that can be further optimized for inference using compression
techniques. For such tasks, hardware platforms like Field-Programmable Gate Array
(FPGA), with their reconfigurable architecture, offer an interesting alternative. These
platforms allow for the exploitation of different quantization and optimization strate-
gies for deep learning models [100].

This thesis focuses on making federated learning more efficient and accessible, given
device restrictions regarding hardware capabilities, by exploring how to shift from cen-
tralized model compression techniques to federated ones. Additionally, we explored
the low-power, low-latency alternative for embedded devices based on few-shot learn-
ing and a FPGA platform. We showed how a pre-trained model could be efficiently
deployed in an embedded platform.

1.2 Manuscript Outline

We present a summary of each chapter in this manuscript :

• Chapter 2, "Deep, Distributed and Federated Learning": introduces the main
concepts of deep learning that will be explored and referenced throughout this
work. From this base, we elaborate on the domain of distributed deep learning to
present the framework of federated learning and its open challenges later.

• Chapter 3, "Compressing the Federation": builds upon the foundation laid in
Chapter 2, offering an in-depth exploration of the challenges associated with de-
ploying deep learning models on embedded devices. First, standard compression
techniques seen in deep learning are revisited to further elaborate on their adapta-
tion to federated learning, as demonstrated in prior research. The chapter reviews
the state-of-the-art compression methods for federated learning, discussing the
application of pruning and quantization and other alternatives tailored for feder-
ated learning.

• Chapter 4, "Cutting Communication Costs": presents our propositions to reduce
communication costs in federated learning through two methods. First, by inte-
grating pruning and entropy coding for message exchanges between the client
and server. We discuss our design choices and how a simple technique can be in-
corporated into the federated learning framework while remaining separate from
other solutions addressing different issues. Second, we explore how to utilize a
combination of low-rank adaptation and quantization further to decrease com-
munication costs between the client and server. We demonstrate how an initial
fine-tuning technique designed for transformer architectures can be used to train
small convolutional neural networks from scratch. Based on the results of this
technique, we also expand our research to question the role of compression in

31 1.3. Contributions

federated learning compared to the improved design of models. The chapter con-
cludes by revisiting the significance of pre-training in federated learning.

• Chapter 5, "Embedded Few-Shot": presents our proposition for an embedded so-
lution of a system that does not have any communication capability. Without
being able to participate in federated learning training and constrained with a
limited dataset, our proposal combines co-design techniques between a few-shot
learning training algorithm and an FPGA implementation framework to obtain
an efficient platform capable of compensating for new data. Initially, we explored
how to address the limitation of access to new data and classes with a few-shot
learning approach. We propose to adequate a model architecture for our target
platform and how to implement it efficiently.

• Chapter 6, "Conclusions": presents a recapitulation of the context addressed in
this thesis and the contributions addressed in Chapters 4 and 5, extending the
discussion to the future works and perspectives related to each work.

• Appendix A, show an brief introduction to an FPGA, highlyting the different el-
ements that compose the reconfigurable circuit. It also discusses frameworks for
deploying deep learning models to FPGA platforms. This appendix is a comple-
ment for the discussion on Chapter 5.

1.3 Contributions

The different contributions of this work are summed up hereafter:

1. To address these hardware constraints, lightweight models and compression tech-
niques such as pruning and quantization are commonly adopted in centralized
paradigms. We investigated the impact of compression techniques on federated
learning for a typical image classification task. We show that a straightforward
method can compress messages up to 50% while having less than 1% of accuracy
loss. A technique that integrates pruning and entropy encoding into federated
learning. This work is discussed in Chapter 4.

2. Low-Rank Adaptation methods are popular for efficient parameter fine-tuning of
models containing hundreds of billions of parameters. We demonstrate the ap-
plication of low-rank adaptation to train small-vision models in federated learn-
ing from scratch. We first propose an aggregation-agnostic method, named FLo-
CoRA, showing that the technique can reduce communication costs by 4.8 times
while having less than 1% accuracy degradation for a CIFAR-10 classification task
with a ResNet-8. Next, we showed that the same method can be extended with
an affine quantization scheme, dividing the communication cost by 18.6 times.
FLoCoRA represents a strong baseline for message size reduction, even when
compared to conventional model compression works. This work is discussed in
Chapter 4.

3. The development of an end-to-end open-source pipeline for a few-shot learning
platform for object classification on an FPGA Sytem-on-Chip (SoC). The pipeline
is built on top of the Tensil open-source framework, facilitating the design, train-
ing, evaluation, and deployment of Deep Neural Network (DNN) backbones tai-
lored for few-shot learning. We showcase our work’s potential by building and
deploying a low-power, low-latency demonstrator trained on the MiniImageNet
dataset with a systolic-array architecture. The proposed system has a latency of
30 ms while consuming 6.2 W on the PYNQ-Z1 board. This work is discussed in
Chapter 5.

Chapter 1. Introduction 32

These various contributions have been submitted to scientific publications :

• National symposiums presentation:

• Grativol, L., Gauthier, L., Léonardon, M., Morlier, J., Lavrard-Meyer, A.,
Muller, G., & Arzel, M. (2024, May). PEFSL: A Deployment Pipeline for Em-
bedded Few-Shot Learning on a FPGA SoC. In Colloque Nationale du GDR
SoC2 2024.

• National conferences without proceedings:

• Grativol, L., Léonardon, M., Muller, G., Fresse, V., & Arzel, M. (2023, Au-
gust). Compression de réseaux de neurones pour l’apprentissage fédéré. In
XXIXème Colloque GRETSI.

• International conferences with proceedings:

• Grativol, L., Léonardon, M., Muller, G., Fresse, V., & Arzel, M. (2023, Decem-
ber). Federated learning compression designed for lightweight communi-
cations. In 2023 30th IEEE International Conference on Electronics, Circuits
and Systems (ICECS) (pp. 1-4). IEEE.

• Grativol, L., Gauthier, L., Léonardon, M., Morlier, J., Lavrard-Meyer, A.,
Muller, G., Fresse, V., & Arzel, M. (2024, May). PEFSL: A Deployment Pipeline
for Embedded Few-Shot Learning on a FPGA SoC. In 2024 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS) (pp. 1-5). IEEE.

• L. Grativol, M. Léonardon, G. Muller, V. Fresse and M. Arzel, "FLoCoRA:
Federated Learning Compression with Low-Rank Adaptation," 2024 32nd
European Signal Processing Conference (EUSIPCO), Lyon, France, 2024, pp.
1786-1790.

33

Chapter 2

Federated Learning for Image
Classification

Contents
2.1 Deep Learning for Image Classification 34

2.1.1 Image Classification Task . 34
2.1.2 Datasets . 35

2.1.2.1 CIFAR-10 . 35
2.1.2.2 CIFAR-100 . 35
2.1.2.3 ImageNet . 36

2.1.3 Architectures . 38
2.1.3.1 VGG-family . 38
2.1.3.2 ResNet-family . 41

2.1.4 Deep Learning Training: Supervised Learning 43
2.1.4.1 Running on Hardware 44

2.2 Distributed Learning . 45
2.2.1 Ensemble Learning . 45
2.2.2 Model and Data Parallelism . 45
2.2.3 Split Learning . 46

2.3 Federated Learning Problem Definition 47
2.3.1 An Attempt For a More Private Machine Learning Framework 47
2.3.2 The Training Loop and Federated Averaging 50
2.3.3 Open Challenges . 51

2.3.3.1 Privacy (data breach) 52
2.3.3.2 Distributed Optimization 52
2.3.3.3 Security . 54
2.3.3.4 Fairness . 54
2.3.3.5 Computing and Communication 55

2.3.4 Federated Applications . 56
2.4 Recapitulation . 57

Chapter 2. Federated Learning for Image Classification 34

This thesis focuses on federated learning algorithms, to which we contribute by ad-
dressing their design challenges. Although federated learning is intended to be used
with a plurality of machine learning algorithms, we focus on deep learning algorithms.
Therefore, in this first section, we will introduce the task deep learning models are
used to solve in this work. Afterward, we introduce the concept of distributed learn-
ing, which is a broader topic on which federated learning is built. Finally, we introduce
the concepts of the federated learning framework. The definitions and baselines estab-
lished in this chapter are reused in the rest of this manuscript.

2.1 Deep Learning for Image Classification

A deep learning algorithm consists of an architecture (see Section 2.1.3) for the model
that will be trained on a specific collection of data (see Section 2.1.2) to approximate a
specific function that models or solves a given task. Using these notions, in this work,
we define a centralized setting as one with access to the architecture and the dataset
used to solve a specific task. This definition is later confronted with the distributed
learning paradigm of which federated learning is part.

2.1.1 Image Classification Task

As one of the most common tasks in machine learning [113, 139], image classification
consists of giving an image as input, and we expect to obtain a corresponding numerical
value representing the label of the most important information present in the input.
One could describe the input of this task as being an X ∈ RC×H×S and the output as
Y ∈ Rn, where n represents the number of possible labels of a function F : X → Y ,
mapping an image to its corresponding label.

Model

124

3100

0.0

1320

500

1247

124

0.0

X

Figure 1 – The input X , which is an image, is processed by the model represented by
the function F , from which the corresponding labels are yielded as the output Y .

Figure 1 illustrates an image classification task. By inputting data corresponding to X ,
the output of the model, Y , is a vector of size n, also called logits. Logits represent
the raw unnormalized confidence levels of each of the n possible labels or classes of
the input. An activation function is applied to the logits to normalize them, transform-
ing them into a probability distribution over the possible outputs. The index with the
highest probability value represents the predicted label for the input.

35 2.1. Deep Learning for Image Classification

2.1.2 Datasets

As deep learning is a data-driven field, to measure how good a particular algorithm
is for a specific task, collections of curated data were built [133]. These well-known
datasets are task-specific, and by definitions of their curating process, they try to rep-
resent the possible diversity that a task could have. Here, we introduce three datasets
used as benchmarks for the experiments in this work.

2.1.2.1 CIFAR-10

Named after and developed by the Canadian Institute For Advanced Research in 2008,
CIFAR-10 [95] is a collection of images used for computer vision, commonly used in
image classification tasks. The dataset comprises 60,000 color images, each with a res-
olution of 32×32 pixels, divided into 10 distinct classes (hence the name), each with
6000 examples. Commonly, the dataset is split to reserve 50,000 examples for training
and 10,000 for validation. Due to the input size, 32×32, and the number of classes,
the CIFAR-10 is one of the most well-known datasets in the domain. The input size
and the number of examples made CIFAR-10 a resource-accessible dataset. A sample is
presented in Figure 2.

Figure 2 – CIFAR-10, classes samples. Source: https://www.cs.toronto.edu/
~kriz/cifar.html

2.1.2.2 CIFAR-100

As CIFAR-10, CIFAR-100 [95] was built from the "80 Million Tiny Images" dataset, con-
taining 60,000 color images of 32×32 pixels, but divided into 100 classes, resulting in 600

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

Chapter 2. Federated Learning for Image Classification 36

images per class. The CIFAR-100 represents a more challenging task than the CIFAR-10
due to the increased number of classes and the smaller number of examples per class.
A sample is presented in Figure 3.

Figure 3 – CIFAR-100, classes samples. Source: same as CIFAR-10.

2.1.2.3 ImageNet

Built initially for the Large Scale Visual Recognition Challenge (ILSVRC), ImageNet [45]
is one of the most comprehensive datasets for object recognition and image classifica-
tion tasks in computer vision. ImageNet contains millions of labeled images spanning
thousands of categories, making it a benchmark for evaluating the performance of var-
ious machine learning models. The images vary in resolution and cover various every-
day objects, animals, and scenes.

A well-known and used subset of ImageNet, the ImageNet-1K, consists of 1,000 classes
with around 1.2 million training images and 50,000 validation images. The images
obtained from scrapping the internet have different resolutions, with the largest having
4288×2848 pixels and the smallest having 75×56 pixels. This subset has become the
standard benchmark for deep learning models in image classification, as its large scale
and diversity in object categories make it a complex task. The ImageNet-1K dataset
benchmark is an important landmark for image classification models being used to
push and develop the domain. A sample from ImageNet-1K is illustrated in Figure 4.

37 2.1. Deep Learning for Image Classification

Figure 4 – ImageNet-1K, classes samples. Source:https://www.image-net.org/

The ImageNet dataset was also used as a base to build other datasets. Notably, we
introduce the CINIC-10 and MiniImageNet datasets that are later used in this work.

Built as an expansion of the CIFAR-10 dataset, the CINIC-10 [42] dataset was created
to bridge the gap between the complexity of small-scale datasets like CIFAR-10 and
large-scale ones like ImageNet. CINIC-10 contains a combination of CIFAR-10 and
downsampled ImageNet images, with 90,000 training images, 90,000 validation im-
ages, and 90,000 test images, each split across 10 classes. The dataset was designed to
challenge models with more varied visual input while maintaining a manageable size
for researchers who lack the resources to work with massive datasets like ImageNet.
The CIFAR-100, in comparison to the CIFAR-10, has 100 classes but with "only" 500
examples per class, making it a more challenging task than the CINIC-10.

MiniImageNet [166], a curated subset of ImageNet, was built to facilitate the study of
few-shot learning in image classification tasks. The dataset contains 100 classes with
600 images per class, providing a balanced and smaller-scale version of the original
ImageNet, ideal for testing algorithms that learn from a few labeled examples. Due
to the specificities of the few-shot learning paradigm, more details on the dataset are

https://www.image-net.org/

Chapter 2. Federated Learning for Image Classification 38

discussed in Chapter 5 and Section 5.3.

2.1.3 Architectures

Deep learning algorithms have been driven by the need to handle increasingly complex
and diverse data. The concept of stacking layers is used to design different architectures
that are capable of learning intricate patterns in different types of signals. By stacking
multiple layers, deep networks can progressively abstract higher-level features from
the data, increasing the complexity of the task that the model can handle. The motiva-
tion for such a design comes twofold, first with the Universal Approximation Theorem
(UAT) [41], which states that a shallow neural network, with few layers, can approxi-
mate any continuous function. Second, since the UAT does not determine the adequate
size or how to train the neural network, stacking becomes a way to construct a hierar-
chical feature learner, generating a deeper neural network capable of capturing more
complex patterns [101]. Also, as shown by [75], the deeper network becomes capable of
emulating a shallow model without getting to the scaling problem of a shallow network
that should grow indefinitely in its size to accommodate more complex problems [78].

In terms of layer stacking for image classification, for instance, the initial layers might
identify edges and textures, the intermediate layers recognize parts of the object, and
the deeper layers detect entire objects. This reasoning applies to computer vision tasks
and other fields, such as natural language processing, audio, and complex signals.

This thesis has focused on using Convolutional Neural Networks (CNNs) for image
classification. As such, we present the different elements of CNN architecture based
on the two models. The objective is to introduce the different elements in CNN archi-
tectures following the evolution from VGG architecture to ResNet. The descriptions
are focused on the Visual Geometry Group (VGG) [149] family of models and on the
Residual Neural Networks (ResNets) [75] family.

In terms of general notation, the subscript l indicates the layer index of a supposed
model, F , containing L layers, as so l ∈ {0, ..., L−1}. The input of a layer is represented
by X . We also refer to the input of a layer as being an activation. The weights of
a specific layer l are represented as Wl, while W represent the weights of the entire
model. In this case, FW represents the model F parametrized byW .

2.1.3.1 VGG-family

The VGG family was proposed following the idea of layer stacking and the success of
the AlexNet [96] model. The basis of this architectural family is shown in Figure 5.
Next, we explain the different elements that compose this architecture and the motiva-
tion for its adoption.

Input

C
onv. 3x3 -

C
onv. 3x3 -

Convolution Block

C
onv. 3x3 -

C
onv. 3x3 -

C
onv. 3x3 -

Convolution Block

F
C

F
C

F
C

D
rop

ou
t

D
rop

ou
t

A
ct. F

u
n
c.

MLP

P
oolin

g

P
oolin

g

O
u

t
p

u
t

A
ct. F

u
n
c.

Figure 5 – A simplified VGG architecture.

39 2.1. Deep Learning for Image Classification

Convolutional Layers - Going from the input to the output, the VGG family proposed
to stack convolution layers, which are the principal components of CNNs [55]. These
layers apply filters to the input data to detect spatial hierarchies. Figure 6 demonstrates
the most simple case of a 2D convolution operation. The input to the current layer
corresponds to the outputs generated by a previous layer l − 1, in the form of Xl−1 ∈
RCin×Hin×Sin . Where Cin indicates the number of input channels, Sin and Hin are the
width and height of each activation per channel. As well that Cout, Sout, Hout represent
the output shape. For each output channel, there is a filter, W (i)

l for i ∈ {1, ..., Cout},
composed of kernels K(i). Each kernel possesses Cin channels of size k × k, forming
square kernels. As such, a particular kernel channel can be represented by W

(i,j)
l , where

j represents the kernel channel. In practice, rectangular kernels are also possible, but
we limit the discussion to square kernels. The number of parameters in this type of
configuration of a convolution layer is Cout × Cin × k × k, plus the bias term, βl if it is
present. In the figure, the bias term is omitted for simplicity. To produce the output, Xl,
a 2D cross-correlation operation, represented by ∗, is performed between the input and
the different filters. The cross-correlation result between the input and each kernel is
summed to produce one corresponding output feature. Note the difference between the
input and output sizes, Hin × Sin to Hout × Sout, as the operation cross-correlation can
compress/dilate the input features. Equation 1 is a general equation to the operation
depicted in Figure 6, for each output channel in X

(j)
l . The operation is demonstrated

in its simplest case, without padding, no dilation, a stride of 1, square kernels, and no
grouping [134].

In the VGG architecture, the kernel size was fixed 3 × 3 kernels. Another noticeable
architecture design from the AlexNet model is that the number of output channels
doubles between the convolution blocks. Convolution blocks in VGGs are formed as
stacked convolution layers without any operation in between. Usually, the first convo-
lution block has two convolution layers, with Cout channels; subsequent blocks stack
three convolution layers, doubling the previous layer’s number of channels, 2 · Cout.

X
(j)
l =

Cin−1∑
i=0

W
(i,j)
l ∗X(i)

l−1 (1)

Pooling Layers - In between the convolution blocks, we have the pooling layers [58],
whose function is to reduce the spatial dimensions of the feature maps, retaining es-
sential features while reducing computational load. In the VGG architecture, we find
the max-pooling layer whose function is to downsample the feature map by taking
the max values of the values inside a kernel window. For example, for a certain feature
map (activation) of dimensions Cin ×Hin × Sin, a max-pooling of kernel kp×kp, would
reduce the feature map to Cin × Sin

kp
× Hin

kp
. We assumed for this example that the acti-

vations are divisible by the kernel size; in the case of a mismatch, the final shape would
approximated. Another common version of the pooling layer is the average pooling,
which takes the average of the elements inside the kernel.

The Multi-Layer Perceptron (MLP) layer is composed of several layers that are detailed
next, where the input to the block is the flattened view of the feature maps generated
by the last pooling layer.

Fully Connected Layers - Inside the MLP block, the first layer is the Fully Connected
(FC) layer, also known as a linear layer. It is typically used to integrate features learned

Chapter 2. Federated Learning for Image Classification 40

Figure 6 – Convolutional layers representation.

by previous layers. Their role is crucial in combining abstract features for decision-
making processes. Figure 7 shows a graphical representation. The layer is characterized
by its weight matrix Wl, which contains I × O elements and a bias vector, βl, of O
elements. To produce the output, Xl, a matrix multiplication operation is performed
between Xl−1 and Wl, and the bias term is added to its results. Equation 2 represents the
operation described in the previous figure. Note that essentially, the FC layer is a linear
map from RI → RO. By stacking multiple FC layers, one can construct a MLP [143],
one of the first models in the domain of neural networks.

Xl = Xl−1Wl + βl (2)

Activation Functions - To add some non-linearity into the network, to allow the model
to learn complex patterns [50], Activation Functions (Act. Func.) are added. The VGG
architecture uses the Rectified Linear Unit (ReLU) function, which can be interpreted
as a max operation between the input and zero, max(0, Xl). In modern CNN architec-
tures, activation functions are commonly introduced after convolution layers.

Dropout Layers - Dropout [151] are special layers used only during training, whose
function is to prevent the model from overfitting. When overfitting, the model performs
well on trained data but poorly on unseen data. Dropout is a regularization technique
that randomly "drops" or deactivates a part of a layer for each training iteration, re-
placing the dropped parts outputs by zeros. This forces the model to learn more robust
features by preventing it from relying on any particular path in a layer, enhancing its
generalization ability.

41 2.1. Deep Learning for Image Classification

Figure 7 – Fully Connected layers representation and equation.

The final output is the logits vector, representing the raw confidence level of the model.
To obtain a probabilistic vector representing the label/class pertinence of the input, the
logits are fed to a softmax function [25]. The softmax function is also considered an
activation function, and Equation 3 represents its operation. For a certain Xlogits ∈ Rn,
representing the n classes of the task, is normalized based on the exponential sum of
the elements in Xlogits.

In an actual VGG architecture, like the VGG-16, the convolution block is repeated 15
times, totalizing 16 blocks with the first convolution block. In general, the model’s
names are given based on the number of convolution blocks plus one, and the MLP
block at the end has its dimensions adapted in function of it.

Softmax(X
(i)
logits) =

eX
(i)
logits∑j=n−1

j=0 eX
(j)
logits

(3)

2.1.3.2 ResNet-family

The ResNet family improved the parameter inefficiency of the VGG family and the
problem of the vanishing gradient [75] caused by the depth-scaling style adopted. To
solve such problems, ResNets have introduced the concept of residual connections, as
seen in Figure 8. These residual connections, also called "shortcuts" within convolu-
tional blocks, connected the input of a block to its output. The primary goal was to en-
able gradients to flow from the output back to the input of a block. This was intended to
address the vanishing gradient problem, which occurs when the feedback signal, used
for updating parameters, passes through the model and becomes increasingly smaller
due to the large number of layers. Further details on the training algorithm can be
found in Section 2.1.4. An interesting consequence between the VGG and ResNet ar-
chitectures is how the latter improved upon the number of parameters and operations
per accuracy [29].

The ResNet architecture consists of three main parts. The first part is the embedding
block that can be used to reduce the input resolution. The second part is composed of
a series of residual blocks, as seen with the convolution blocks in the VGG family. The
final part is an average pooling layer and a classification head consisting of a single
linear layer. In Figure 8, we represent one of the two classical residual blocks, the "basic

Chapter 2. Federated Learning for Image Classification 42

Input

C
onv. 3x3 -

Embedding Block

F
C

Pooling

O
u
t
p
u
t

Basic BlockBasic Block

C
onv. 3x3 -

B
atchN

orm
A
ct. Func.

C
onv. 3x3 -

B
atchN

orm

C
onv. 3x3 -

B
atchN

orm

C
onv. 1x1 -

B
atchN

orm

A
ct. F

u
n
c.

P
oolin

g

Figure 8 – A simplified ResNet architecture, with a basic block.

Bottleneck Block

C
onv. 1x1 -

B
atchN

orm
C
onv. 3x3 -

B
atchN

orm
A
ct. Func.

C
onv. 1x1 -

B
atchN

orm

C
onv. 3x3 -

B
atchN

orm
A
ct. Func.

C
onv. 3x3 -

B
atchN

orm
C
onv. 1x1 -

B
atchN

orm

B
atchN

orm

A
ct. F

u
n
c.

Figure 9 – A bottleneck block for the ResNet architecture.

block", the other one being the "bottleneck block" represented in Figure 9. The differ-
ence between them is the use of convolution layers with kernels of 1 × 1 to reduce the
resolution.

Normalization Layers - One important addition, compared to the original VGG pro-
posal, was the inclusion of a normalization layer. The most popular type is Batch Nor-
malization [20] (BatchNorm), which normalizes inputs across a batch. This helps to
mitigate issues related to internal covariate shifts, accelerating and facilitating the train-
ing of deeper models. For example, batch normalization consists of centralizing Xl by
its mean value, E[X

(i)
l], and normalizing by its standard deviation, as per Equation 4.

In addition to the normalization operation, there are two learnable parameters, γ and
β. During training, the layer learns these variables to scale and shift the feature maps
between layers, which are used during the inference phase. Finally, a small value ϵ is
added to the denominator in Equation 4 to provide some computing stabilization for
cases where the standard deviation value could be too small. Typical values for ϵ are
around 10−7 [93].

X
(i)
l+1 =

X
(i)
l − E[X

(i)
l]√

V ar[X
(i)
l] + ϵ

∗ γ(i) + β(i)
(4)

Effectively, ResNets were not the first to adopt normalization layers, and later, VGG
versions started using them between convolution layers, too. ResNet also adopted the

43 2.1. Deep Learning for Image Classification

scaling law of doubling the amount of output channel for each basic/bottleneck block.
In this chapter, we will refer to a ResNet-20 model, illustrated in Figure 10. This model
consists of multiple basic blocks, each containing two convolution layers, along with
an initial convolution layer in the embedding block and, finally, a linear layer. This
totals 20 layers, which is where the model gets its name. The example is given for the
CIFAR-10 dataset, where the output size of each part is indicated below.

3x32x32

Em
bedding B

lock

F
C

O
u
t
p
u
t

B
asic B

lock
B
asic B

lock
B
asic B

lock

B
asic B

lock
B
asic B

lock
B
asic B

lock

B
asic B

lock
B
asic B

lock
B
asic B

lock

64x32x32 64x32x32 128x16x16 256x8x8 1x10

A
v
g. P

oolin
g

256x1x1

Figure 10 – Block views of a ResNet-20 model for the CIFAR-10 dataset.

2.1.4 Deep Learning Training: Supervised Learning

Having a model’s architecture and the dataset for the target task, one can combine these
elements with an optimization algorithm to train the model to solve the task. Taking the
image classification as an example: from a dataset D, we can sample a pair (e, y) ∈ D,
representing one sample of the data, e ∈ RC×H×S , and its corresponding class vector,
y ∈ Rn, for a task with n classes. The class vector is encoded as a one-hot vector, with a
value of one for the index representing the class and zeros for all other indices. As the
input X is fed to the model, it produces an output, ŷ = F(X), representing the prob-
abilistic vector characterizing X among the possible classes. The model’s parameters
are initialized following some uniform distribution, which means that the initial values
of ŷ are far from representing the correct class of X . In order to do so, it is necessary
to optimize the parameters of F(.) to fit the task at hand. In this process, a loss, also
called cost, function is first calculated to measure the estimation error between ŷ and
y. The loss function is denoted by L(ŷ, y), which maps the difference between the two
vectors to a single scalar value. The expression can then be expanded to incorporate
the weights (parameters) of the model and represent the learning objective, which is
to determine the optimal set of parameters W that can minimize the loss function L.
Equation 5 represents the Cross-Entropy (CE) function commonly used as a loss func-
tion in conjunction with a softmax function to measure the difference between the two
distributions ŷ and y. The learning objective can be expressed as argminW L(FW(X), y).

L(ŷ, y) = L(FW(X, y)) = −
n∑

i=1

yilog(F i
W(e)) (5)

Given the error signal, we can search to optimize the parameters in the model by ap-
plying the backpropagation. The idea is to apply the chain-rule derivation to be able to
find a P that minimizes L. The model F(.) can be seen as a composition of the func-
tions, fl, representing each one of the layers, F(.) = fL ◦ fL−1 ◦ ... ◦ f1(X), for a model
with L layers.

So the chain-rule can be applied to ∂L
∂W as ∂L

∂W = ∂L
∂XL
· ∂XL
∂XL−1

· ... · ∂Xl
∂Wl

, until a certain
layer l. So, the gradient of the loss function can be interpreted as:

• ∂L
∂XL

: As L is measuring the prediction error, this expression measures the influ-
ence of the last layer output on the error, creating the first feedback error signal to

Chapter 2. Federated Learning for Image Classification 44

be propagated to the other layers.

• ∂XL
∂XL−1

: The effect of layer L− 1 on the last layer, which depends on the feedback
signal from the last layer and the weights of the current layer L− 1.

• ∂Xl
∂Wl

: For a certain layer l, its activation depends on the values of the weights or
learnable parameters associated with it.

This way, we build a derivation graph per learnable parameter with its associate gra-
dient. Finally, the optimization step consists of updating the weights in the opposite
direction of its gradient in order to minimize the loss,W∗ =W−∇(L(FW(X), y)). This
optimization algorithm is also famously known as gradient descent [143], for which the
weights ideally move to a minimum in the loss landscape. In reality, the weights up-
date expression has a tuning parameter η,W∗ = W − η∇(L(FW(X), y)), to coordinate
smaller updates and avoid overfitting the model for new data, while forgetting the old
ones. The gradient descent algorithm applies the optimization process after the model
has seen the entire dataset. This is repeated multiple times, known as epochs, to let FW

better fit the task distribution.

As a common practice, the dataset is separated into batches instead of using the whole
dataset for one update. This allows faster convergence as the weights are updated
more frequently and with smaller data portions. To which the sampled data becomes
(XB, yB) ∈ D, carry B examples of (XB, yB). After each batch, the optimization process
is applied, composing multiple iteration steps inside one epoch. One epoch represents
then the point where the model has seen all the batches. The cross-entropy function
is reformulated as seen in Equation 6. Another significant impact is that reducing the
amount of data that the model needs to see at once reduces the amount of memory as-
sociated with the data, improving efficiency and memory management. In this case, the
gradient descent algorithm takes the form of the Stochastic Gradient Descent (SGD) al-
gorithm [144], where for every batch, the model’s parameters are updated to minimize
the associate error for the batch.

L(ŷB, yB) = L(FW(XB), yB) = −
1

B

B∑
j=1

n∑
i=1

y
(i,j)
B log(F (i,j)

W (XB)) (6)

This describes the basic mechanisms behind Supervised Learning, where one uses the
ground truth as feedback for the training process. Other training methods [130], such
as Unsupervised, Self-Supervised, Semi-Supervised, and Reinforcement Learning, also
exist but are not described or used in this work.

2.1.4.1 Running on Hardware

The execution of a model is separated into inference and training, where inference refers
to the use of the execution of the model without the construction of the error propaga-
tion graph. Regarding training, the amount of memory necessary to store the samples
fed to the model and its activations scale directly with the dataset and the model size.
An important mark in the history of deep learning was the moment when GPUs started
being used to accelerate the training phase. This is thanks to the fact that graphic al-
gorithms are heavily based on matrix operations, as we find in the inference/training
processes of deep learning models.

45 2.2. Distributed Learning

2.2 Distributed Learning

So far, we have introduced the basic elements that compose a neural network and
briefly explained how one training procedure is structured. In this section, we take
a step forward and introduce the efforts made to distribute the learning process. This
section introduces different paradigms of distributed learning frameworks, to serve as
a context for problems that are close to or came before federated learning.

2.2.1 Ensemble Learning

Model: 0 Model: 1 Model: 2

Data

Ensemble Function

Figure 11 – An ensemble learning paradigm. Three models are trained on the same
data, and their outputs are combined through an aggregation function. Adapted from:
[4].

In ensemble learning [48], multiple models are trained independently to solve a certain
task, being combined to have an improved performance over having one model. In
Figure 11, we demonstrated an example of stacking [51]: three different models receive
the same samples from a certain dataset, and their outputs are combined with the "en-
semble function" to produce the final prediction. Other variations of ensemble learning
exist, with the most notable being Bagging and Boosting [56].

2.2.2 Model and Data Parallelism

Distributed learning [164] is often used for two main reasons: to accelerate the training
process and address memory limitations. In either case, there are two possible cases;
the first one, shown on the left of Figure 12, is to partition the model computing graph
into different parts and to attribute them to different GPU/accelerator nodes, also called
model parallelism. Node 0 receives all the data, while the results of this node are passed
to the other nodes. Another possibility, data parallelism, is to partition the dataset to
different computing nodes, replicating the same model to each node but with different
data partitions, as shown to the right of Figure 12. Distributed learning algorithms have
gained more attention in the era of Foundation Models scale of models, where multiple
GPU nodes are necessary to be able to train and execute one model.

Chapter 2. Federated Learning for Image Classification 46

Model

Data

gpu:node 0 gpu:node 1 gpu:node 2

Model Model
gpu:node 1 gpu:node 2gpu:node 0

Layer 1

Layer 2

Layer 3

Model

Figure 12 – On the left, the model parallelism paradigm. On the right is the data paral-
lelism paradigm. Adapted from: [115].

2.2.3 Split Learning

Input Data Input Data

Labels

Labels

Central Aggregator Central Aggregator

Device Device

Figure 13 – Two types of split learning. On the left, data is kept local, but the labels
are not; this is known as vanilla split learning. On the right, by partitioning more, the
model, data, and labels are kept at the device level, known as u-shaped split learning.
Adapted from: [89].

The idea of split learning [163] is to share the computational burden with different train-
ing entities while keeping their data local. Instead of having a central data and model
aggregator, split learning considers that multiple devices/entities would participate in
the training of a deep learning model. So, taking inspiration from model parallelism,
the model is partitioned among each participant in training. The vanilla split learn-
ing algorithm, shown to the left of Figure 13, is done so that a partition containing the
model’s initial layers is executed on the training device. Meanwhile, the rest of the
model is executed in a central aggregator orchestrating the training loop. Data are kept
at the device level during training, while the central aggregator possesses the labels. To
perform the optimization step, the central aggregator needs to calculate the loss with
the results of the devices and propagate the gradients back to the devices to update
the model. Information is exchanged at least twice between the central aggregator and
the devices, resulting in some training overhead. Moreover, the labels on the central
aggregator indicate some violation of the participants’ privacy. Some variations of the
framework try to solve these problems by proposing unsupervised and self-supervised

47 2.3. Federated Learning Problem Definition

learning regimes or by also having the final classification layer on the training partici-
pants, as shown to the right of Figure 13.

2.3 Federated Learning Problem Definition

Data are becoming increasingly important worldwide in high-frequency trading, prod-
uct placement (marketing), or machine learning applications. Data privacy can be crit-
ical in these domains, as data can be acquired and monopolized without their owners’
direct consent or knowledge. The situation contributed to the increase in awareness
and concern about data privacy, particularly with data-hunger algorithms, such as deep
learning, where the quantity and quality can significantly improve a model, and data
acquisition for such models has become a race. Moreover, centralized data collection
can be subjected to interception during communication and unauthorized access by
the owner of the computing node or a third party. In this context, Federated Learning
positions itself as a training alternative to the centralized view, having redesigned the
learning framework to increase data protection.

2.3.1 An Attempt For a More Private Machine Learning Framework

Federated learning [94, 23, 117], much like split learning, is a collaborative and dis-
tributed machine learning approach. This framework was designed to enable machine
learning models to be trained on decentralized data stored across multiple participant
devices, referred to as clients. The primary advantage of this approach is that it is de-
signed to keep the data on local devices. The primary goal of federated learning is to
mitigate data privacy violations by preventing data sharing.

The federated learning process typically begins with an orchestrating entity, commonly
known as the server. The server first selects a sub-sample of the pool of clients to par-
ticipate in the training loop. The server then sends each selected client a copy of the
most recent model checkpoint. Once the clients receive the model, they train it using
their local data. Clients only share the training results back to the server, which may
include updated model weights, gradients, or other forms of proxy information, repre-
senting the effect of fitting the previous checkpoint on their data. Upon receiving these
updates, the server performs an optimization step in which it aggregates the various
training results from all participating clients. This aggregation is crucial, as it seeks to
fuse the diverse knowledge learned by the model across different clients into a single,
improved model. This client selection process, local training, and result aggregation is
known as a communication round and is repeated for multiple rounds until the model
achieves a predefined performance.

As the framework evolved from the initial proposition, other elements were added to its
formulation, creating different aspects of the field. Here, we define the main elements
commonly used to characterize a federated learning algorithm.

The different elements presented in federated learning [89] can be categorized based
on how the system is orchestrated and synchronized, the types of clients involved, the
statefulness of each client, and how data are distributed and partitioned.

1. Orchestration: Refers to how the overall training loop is managed and who coor-
dinates clients’ updates.

• Centralized: In this setup, the one responsible for coordinating clients’ par-
ticipation and updates is a central server. The server is responsible for se-

Chapter 2. Federated Learning for Image Classification 48

lecting who integrates the current training round, it manages all the com-
munication protocols and related steps, aggregates the training results and
it propagates back the final, global, aggregated model/update. The original
work on the domain considered this orchestration.

• Decentralized: Here, there is no central server. Clients communicate directly
with each other to perform updates and communications. Examples of such
orchestration involve blockchain and drone swarm applications.

2. Synchronization: Defines how model updates are processed between each round.

• Synchronous: The orchestration entity waits for all participating clients to
submit their results to produce one global model that is synchronized be-
tween rounds.

• Asynchronous: Clients can train and send updates at different moments.
The server updates the global model as soon as it receives new information,
avoiding round bottlenecks associated with clients that fail to train a model
or that possess limited communication systems. The result is a training loop,
where the model trained is not always the same between clients, which can
lead to update divergence between rounds.

3. Client’s type: Categorizes clients based on their scale, computing and computa-
tion power, and availability.

• Cross-device: This case is commonly categorized as involving a large num-
ber of clients, typically mobile or edge devices, with limited computational
power, communication capabilities, and data. The idea is that a large and
variable pool of clients can bring variability and representativity to the model.
Clients are also not considered always available or able to finish and provide
their training results. Clients are not expected to be part of the entire training
loop, making it possible for a certain client to participate in only one round.
The number of clients is in the hundreds to millions of clients.

• Cross-silo: In this case, clients are considered to be organizations or insti-
tutions (silos) with significant computational resources and larger datasets.
They are expected to be always available and reliable during the training
loop. Cross-silo scenarios are expected to have a few dozen clients, as it is
expected that training institutions holding both data and computing power
are scarce. The most notable example is a group of medical institutions train-
ing together a model without sharing patients’ data.

4. Client’s statefulness: In a training loop, statefulness refers to the ability of a client
to keep optimizer states, training statics, or any kind of inter-round information
that can be used in the next round.

• Stateful: Clients can keep inter-round information. This is frequently associ-
ated with cross-silo scenarios, as clients are expected to stay in the training
loop from beginning to end.

• Stateless: Clients are not expected to hold any tracking information from pre-
vious rounds. This can be frequently associated with cross-device scenarios
due to its characteristic of not expecting clients to participate in more than
one round.

5. Data distribution: Specifies how the data is distributed across the clients, affect-
ing the learning process and model performance.

49 2.3. Federated Learning Problem Definition

• IID (Independent and Identically Distributed): The data across clients is as-
sumed to have an independent and similar distribution. This case is closer
to the training performed on classical machine learning algorithms, as de-
scribed in Section 2.1.4. Datasets for the centralized machine learning case
are built in a way that makes them IID, as unbalanced classes and examples
tend to impact training performance negatively.

• Non-IID: The data distribution varies significantly between clients, reflect-
ing real-world scenarios where clients may have vastly different data, mak-
ing the training process more complex. As this case represents a more real
approach for federated learning, it is common to artificially create non-IID
datasets from classical ones, like CIFAR-10; this can be done in two main
ways: First, by using the Latent Dirichlet Allocation (LDA) [80] method. The
idea here is to use a Multinomial distribution, where the number of experi-
ments corresponds to the number of clients, the number of events represents
the number of classes, and the event probabilities are defined by a Dirich-
let distribution controlled by a concentration parameter. This allows each
client to be assigned different examples from each class. The concentration
parameter can be adjusted to create a range of distributions: a complete IID
distribution when the parameter approaches infinity or a fully non-IID sce-
nario when the parameter approaches zero, where each client receives data
from only one class. Second, another standard method is to partition the
data based on classes, where each client receives data from only a subset of
classes [148]. For example, one client might only have access to samples from
classes 1 and 5, while another might have access to samples from classes
2 and 8. This method creates non-IID partitions by ensuring that different
clients have access to other sets of classes. However, both methods share the
disadvantage of creating non-IID scenarios with an equal number of exam-
ples per client, limiting the simulation’s realism.

6. Data partition: Describes the relationship of data partition between clients. This
classification serves as study cases for possible real-world scenarios where clients’
data have some intrinsic relationship related to the task and the client’s applica-
tion domain. However, it’s important to note that, by definition, federated learn-
ing assumes no prior knowledge of clients’ data.

• Horizontal (sample-based): Clients’ data partitions represent the same fea-
ture spaces, but they potentially have different data points. This means that
clients have collected different examples, but the features that describe each
point are the same. This is, for example, the case for a set of clients to which
a certain partition of the CIFAR-10 dataset was attributed; every data point
is represented by an RGB image, but each client has different images.

• Vertical (feature-based) [173]: Each client uses different features to describe
the same data point. For example, a client possesses a subset of the CIFAR-
10, while another client possesses, for the same subset, its text description.
Same data points, different feature spaces.

The previous categories define aspects that are particular to the federated scenario, and
on top of those, the machine learning algorithm, model definitions, training optimiza-
tions, and hyperparameters still need to be defined. This work centers its attention on
deep learning problems in image classification tasks, with CNN models being trained in
a supervised learning fashion, following a centralized orchestration with synchronous
updates, stateless cross-device clients for both IID and non-IID cases, and horizontal

Chapter 2. Federated Learning for Image Classification 50

data partition.

2.3.2 The Training Loop and Federated Averaging

A
gg

re
ga

ti
on

F
u
n
ct

io
n

Figure 14 – Training loop for one round of federated learning.

A typical round of federated learning involves several key steps: client sampling, model
download (from server to client), local training, model update upload (from client to
server), and knowledge aggregation. A federated learning loop is shown in Figure 14.
The server sends the current model, ∆(t) to the clients, where they train their model
and send back an update information. The update can be the gradients, model weights,
logits, or any kind of information resultants from the training. Here, we consider the
case where the client sends the model weights ∆(t+1) back to the server. Finally, the
server uses an aggregation function to fuse all updates into the global model for the
next round.

In cross-device federated learning, as the number of users participating in a training
round increases, it becomes impractical to orchestrate thousands or even millions of
clients in every round. To ensure scalability in such scenarios, client sampling is es-
sential. Another significant challenge with having a large number of clients per round
is ensuring their availability and responsiveness. Clients must complete training and
transmit their results to the server within a set timeframe. However, the varying com-
puting capacities of clients can lead to a problem of straggling clients. This is less of a
problem when the cross-silo scenario is considered, as the pool of clients is smaller, and
clients are expected to be reliable.

Regarding knowledge aggregation, the most widely adopted baseline is Federated Av-
eraging (FedAvg) [117]. We use it as background to define the general objective of fed-
erated learning. FedAvg operates by sampling a subset M of a pool of clients U in each
round to train a model with parametersW for a specified number of local epochs, with
a local batch size of g. Each client has its dataset, dm, of size |dm|, and the total size of the

51 2.3. Federated Learning Problem Definition

datasets of the participating clients in a round is denoted |D|. Each client m ∈M , seeks
to find the parametersWm that minimize its local loss Lm(Wm) = E[L(Xm, ym,Wm)],
for a set of examples X and labels y, and the loss function L(.). The general objective
of FedAvg is then to find a globalW that minimizes the Equation 7. When this process
is iterating for a certain number of rounds R, the final result is expected to increase the
individual performance of each client [153], without the need for data sharing.

min
W

V (W) =
M∑

m=1

|dm|
|D| Lm(Wm) (7)

To exemplify a federated learning training using the FedAvg algorithm, next, we present
an experiment with the following setting :

• Aggregation algorithm: Federated Averaging
• Model: ResNet-20
• Number of Clients: 20
• Number of Rounds: 100
• Clients per round: 4
• Data partition: IID and non-IID using the LDA partition with a concentration

parameter of 0.1
• Clients local epochs per round: 10
• Clients batch size per round: 32
• Dataset: CIFAR-10

The simulation is performed with the Flower [17] framework and Pytorch [134]. We
simulate 20 clients during 100 rounds, training a ResNet-20 model. Two types of exper-
iments are presented, the first with an IID distribution and the second with a non-IID
distribution. Figures 15 and 16 show the data distribution per client for the IID and
non-IID cases, respectively.

In Figure 17, the impact of the non-IID partition on the training loop can be seen. Fe-
dAvg can attain around 92% of accuracy in the IID setting, while in the non-IID, the
same algorithm, model, and regime achieve only 81%. The following Section 2.3.3 dis-
cusses further the data distribution and open problems in the federated learning frame-
work.

2.3.3 Open Challenges

Once the different elements and characteristics of federated learning are identified, it
becomes crucial to pinpoint its main open challenges [89]. This motivates the various
research topics that aim to advance the field. The following list enumerates such chal-
lenges, briefly describing their context and providing some literature references that
can be followed for a more complete view of the problems at hand. The challenges
presented are a direct consequence of the design choice of integrating different parties
into the training loop. Especially for the cross-device setting, it is not directly possible
to control what clients can do with their training cycle, data, and model updates, which
imposes a series of considerations for federated learning to be applicable in real-world
applications.

Chapter 2. Federated Learning for Image Classification 52

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Classes

C
li
en
ts

Figure 15 – IID partition of CIFAR-10, over 20 clients.

2.3.3.1 Privacy (data breach)

As exhibited in [117], although federated learning increases the attainable privacy level
of a client, in its default algorithm, it is still possible to recover enough information
from the model updates and/or gradients [82] to be able to reconstruct clients’ local
data. An example of an attack consists of tracking each client’s individual model up-
dates to reconstruct text data [66]. One research direction to prevent these attacks is the
development of homomorphic encryption [179] techniques, where the entire training
loop could be encrypted to ensure a higher level of privacy. Outside federated learn-
ing, one option for privacy concerns is the use of techniques that are not dependent
on outside intervention. In Chapter 5, we provide an example of a solution based on
few-shot learning depending only on a device’s local data.

2.3.3.2 Distributed Optimization

The IID and non-IID data distributions generate the main topic of research in the field,
as different optimization methods try to compensate for the non-IID effect in clients to
close, first, the gap to IID distributions and, later, to the centralized training setup. One
of the main effects of the non-IID is the client drift effect [155]. Due to clients’ particu-
lar data distribution and the client selection/sampling, individual model updates can
provoke a drift to the global model update, pushing the update direction closer to a
solution that fits their particular distribution.

Client drifting is observed in FedAvg, as the method struggles to converge to the same
level of performance between IID and non-IID distributions of the same dataset. This
challenge, in general, has been addressed in various forms in the literature. Improving
upon the FedAvg algorithm, FedAvg with Momentum (FedAvgM) [80] adds a gradient-
like optimization to the server by using the mean of clients’ update, controlled by a

53 2.3. Federated Learning Problem Definition

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Classes

C
li
en
ts

Figure 16 – Non-IID partition of CIFAR-10, over 20 clients, with a concentration of 0.1.

scaling parameter, to aggregate the models. Federated Proximal FedProx [107] adds a
proximal term to clients’ local loss to act as a regularization to prevent clients’ updates
from deviating significantly from the global model. Stochastic Controlled Averaging for
Federated Learning (SCAFFOLD) [91] introduces two corrective variables, one globally
updated and one locally updated, which are added to clients’ local loss. These variables
help reduce the variance in client updates by providing a consistent "guide" that aligns
the direction of updates across all clients. Federated Optimization (FedOpt) [140] uni-
fies the FedAvg and FedAvgM algorithms, proposing a general method that introduces
an optimization step in the server, allowing the integration of classical optimizers from
the centralized training setup to the knowledge aggregation step. Federated Distilla-
tion Fusion (FedDF) [111] proposes to use an additional dataset on the server to perform
ensemble knowledge distillation [10] as a further optimization step to aggregate model
updates. Model Contrastive Federated Learning (MOON) [105] reformulates clients’
local loss as a contrastive learning [34] problem by using the representations, the out-
put of the backbone 1 of the current global model as a guide for the local client model.
The idea is that a client’s model representations should not deviate from the global
model in between rounds. Federated Extrapolated Averaging (FedExP) [87] improves
the FedOpt method by proposing an adaptive method to determine the server step size,
or learning rate, at each round.

All presented methods aim to increase performance and improve convergence, directly
impacting the number of rounds a model needs to be trained. Reducing the number
of communication rounds reduces the probability of finding a straggling client and the

1. The term backbones refers to the part extracting the features of an input, being the layers just before
the classification head. In CNNs, they refer to the convolution blocks before the block of linear layers.

Chapter 2. Federated Learning for Image Classification 54

0 20 40 60 80 100
0

20

40

60

80

Rounds

A
cc
u
ra
cy

(%
)

IID
Non-IID

Figure 17 – The IID and Non-IID accuracy evolution along 100 rounds of communica-
tion for 20 clients.

energy consumption of both the server and the clients.

Another line of research to close the gap and improve convergence is using pre-trained
models as an initial state for the training loop. Previous works have investigated the
impact of pre-training in the federated learning framework [154, 32, 129], demonstrat-
ing that, similar to the centralized setting, pre-training serves as a suitable initialization
method for federated learning. This is a crucial design decision in federated learn-
ing [117], which improves its robustness, generalization, and convergence. The main
limitation of its general adoption is related to tasks or fields where access to data limits
the availability of such pre-trained models. More about this is discussed in Section 4.5.

2.3.3.3 Security

With the same reasoning as in the privacy challenge, clients control their data and the
model update. This leaves a backdoor for possible attacks to the training loop. There
are mainly two forms of attack; the first is called "data poisoning" [162], in which the at-
tacker manipulates the local data of one or more clients, manipulating the global model
performance. Another form of attack called "model poisoning" [53], consists of modi-
fying the model update sent to the server, resulting in similar types of degradation as
data poisoning. As clients’ data and model updates are naturally heterogeneous, de-
tecting anomalies or tampering is challenging for secure knowledge aggregation. The
literature has proposed robust aggregation techniques focused on eliminating outliers,
which could possibly degrade the global model performance. Differential privacy [169]
was also suggested as a method to ensure that data and models remain unaltered by
introducing controlled noise, which can help detect and prevent tampering.

2.3.3.4 Fairness

Fairness seeks to have a model that performs the same across all participants and si-
multaneously represents the different knowledge present in each one. During training,
clients can have different dataset sizes or not always be available to participate, lead-
ing to clients with larger datasets and present exerting more influence on the global
model. This issue may be tackled by using fair aggregation methods [118] that try
to generate a global model considering the frequency, importance, or variance of the

55 2.3. Federated Learning Problem Definition

client’s update. An additional well-adopted technique is to dissociate the global model
from the local models by creating personalized models at each client level. This can
be achieved through additional local fine-tuning steps [106], where the global model
is further trained to fit the local data better. Another approach involves introducing
personalized layers [153]. In this method, only a subset of the client’s model is updated
and sent to the server, while the local portion of the model remains on the client. This
allows one part of the model to capture global features while the other part focuses on
local features.

2.3.3.5 Computing and Communication

Moving training from the centralized setup to a cross-device setting involving hetero-
geneous devices introduces significant challenges for low-power devices. Devices often
have limited hardware capabilities and varying energy constraints, making executing a
Floating Point Operations (FLOPs) and memory-hungry algorithm such as deep learn-
ing model training challenging. Furthermore, frequent communication between de-
vices and server consumes considerable bandwidth and energy, which can drain bat-
teries and strain network resources, especially in environments with unreliable con-
nectivity. Improving the convergence of federated learning, consequently reducing the
number of rounds, is a way to tackle this problem. However, often, these algorithms
add extra computation steps to clients’ algorithms, becoming a trade-off between con-
vergence, overhead, and energy.

In [137], authors have conducted a study on carbon emissions and energy cost on a fed-
erated learning training. The training energy consumption was calculated based on the
CPU and GPU power usage, considering the total wall clock training time, the number
of communication rounds, and different hardware profiles. For communication, energy
consumption was modeled using factors such as the size of the model, upload/down-
load speeds, router energy usage, and idle time between communications. To quantify
the impact of federated learning, the authors compared centralized and federated train-
ing using different hardware configurations. The centralized setup used a server with
a 240 W TDP CPU and a 250 W TDP GPU, while the federated setup employed two
types of embedded GPU devices with power limits of 7.5 W and 10 W.

For example, their experiments on image classification tasks used a ResNet-18 for the
CIFAR-10 and ImageNet datasets. For CIFAR-10, they simulated a system with 500
clients. For ImageNet, they used 100 clients. In both cases, 10 clients were sampled
per round. The experimental protocol defined a target accuracy of 70% for CIFAR-10
and 50% for ImageNet to determine the end of training, enabling a consistent compar-
ison between the centralized and federated setups. The following numbers reflect the
energy consumption when using the FedAvg strategy.

• CIFAR-10: In the centralized setting, 2.7 Wh was consumed to reach the target
accuracy. For federated learning, the total energy consumption across all clients
was significantly higher, with 30.4 Wh. The per-client energy was 3.04 Wh on
average.

• ImageNet: Centralized training consumed 971 Wh to reach the 50% accuracy. In
the federated setting, the total energy was higher at 2697.5 Wh, where each client
consumed 269.5 Wh on average.

Finally, their study highlights the impact of dataset size and task complexity. For the
ImageNet dataset, communication costs represent 0.7% of the total energy while repre-

Chapter 2. Federated Learning for Image Classification 56

senting 96% for CIFAR-10. This can be explained by the difference in dataset complexity
and size, where ImageNet clients must train a 24× bigger dataset.

In Section 3.2, we discuss this problem further to show how model compression tech-
niques from the centralized setting can help straggling clients.

2.3.4 Federated Applications

As discussed so far, federated learning was designed explicitly for privacy-aware appli-
cations, where machine learning models are traditionally trained in centralized settings
with sensible data. This approach has enabled the creation of collaborative real-world
training efforts, enhancing both model performance and representativity and improv-
ing the overall user experience. Next, two real-world case studies demonstrate how
federated learning is applied.

• Gboard: The Android operating system’s first real-world application of federated
learning was demonstrated with the Google keyboard [69]. This application em-
ploys a variant of the Long Short-Term Memory (LSTM) model [62] to predict the
next word in a phrase based on the current context. Researchers deployed the
federated learning algorithm on selected users’ smartphones to enhance the vir-
tual keyboard model. The selected clients to participate in each round needed to
be connected to the Wi-Fi, be in an idle state, and be connected to a power source
to avoid any impact on the phone’s usage. This setup, a typical cross-device sce-
nario, involved approximately 100-500 clients per training round. It is important
to notice that, despite having a stable connection and an energy source, the train-
ing was conducted on devices with limited computing power. Also, from the
server’s perspective, each round represented the combined bandwidth of hun-
dreds of clients uploading and downloading model updates. These examples
highlight the need for strategies to reduce communication and computation over-
head while addressing the fairness challenge in federated learning.

• Healthcare: Due to the confidential nature of medical data, collaborations be-
tween institutions have become more feasible through federated learning [158].
For example, a previous work [147] has demonstrated the feasibility of training
an image segmentation model based on the UNet architecture [142] for brain tu-
mor segmentation. In another instance, the authors of [44] developed a model
called the "EMR CXR AI Model", which was trained in collaboration with 20 in-
stitutions worldwide using actual clinical data to assist with patient triage during
the COVID-19 pandemic. This collaborative model outperformed locally trained
models due to the increased size and quality of the dataset. The "MELLODDY"
platform [131] represents a collaboration among multiple industrial actors, in-
cluding pharmaceutical companies, start-ups, and academic research labs, to cre-
ate a federated model for drug discovery in a privacy-preserving setting. The
platform utilizes a multi-task model [31], capable of classification, regression,
and a hybrid mode, based on a MLP architecture called SparseChem [8]. This
represents a classical cross-silo scenario where the large size of medical datasets
and the need for frequent model updates can significantly strain network band-
width and computational resources. Institutions can collaborate more efficiently
by minimizing communication overhead, allowing for faster model convergence
and reducing latency, which is crucial in time-sensitive applications such as pa-
tient triage or drug discovery.

57 2.4. Recapitulation

2.4 Recapitulation

This chapter briefly presented the image classification task, along with its various ar-
chitectures, datasets, and training routines. The introduction to the distributed learning
setting provided a motivation for the federated learning framework. We then discussed
the key elements of the federated learning paradigm. Finally, in Section 2.3.3, we intro-
duced the main research directions in the field, which motivate the next chapter. The
upcoming chapter will address the communication and computation challenges by ex-
ploring compression techniques for deep learning models.

Chapter 2. Federated Learning for Image Classification 58

59

Chapter 3

Compressing the Federation

Contents
3.1 Squeezing Every Bit . 60

3.1.1 Quantization Methods . 60
3.1.1.1 Floating Points . 61
3.1.1.2 Integer methods . 62

3.1.2 When to quantize ? . 64
3.1.2.1 After training . 65
3.1.2.2 During training . 65

3.1.3 Hardware implications . 66
3.1.4 Other formats . 67
3.1.5 Pruning Methods . 67

3.1.5.1 Pruning Elements . 67
3.1.5.2 Pruning Criteria . 68

3.1.6 Other Methods . 69
3.2 Communication and Computation Challenges 70

3.2.1 Deep Learning Compression Techniques in Federated Learning 70
3.2.2 Quantization in Federated Learning 71
3.2.3 Pruning in Federated Learning 72
3.2.4 Alternative Compression Methods 73

3.3 Recapitulation . 74

Chapter 3. Compressing the Federation 60

This chapter extends the discussion on the communication and computation challenges
introduced in Section 2. Moreover, we focus on communication costs and how they can
be minimized. Solutions to these problems can be approached at two levels. The first is
at the system level, where data compression techniques are applied. These methods are
typically in place and depend heavily on the communication protocol or system used.
The second level involves the algorithm itself; compression can be effectively applied
with a sufficient understanding of the information being transmitted. This work ex-
plores how compression techniques commonly used in centralized deep learning can
also impact federated learning. The chapter begins with a background review of clas-
sic compression techniques, such as quantization and pruning, and extends the dis-
cussion to other methods. Following this, we introduce how these techniques have
previously been applied in federated learning. This section motivates our main contri-
butions, which build upon and extend the existing literature in federated learning.

3.1 Squeezing Every Bit

Deep learning algorithms are inherently designed with overparameterized models. As
discussed in Section 2.1.3, the universal approximation theorem does not specify the
required size of a network for it to be a good approximation. So empirically, scaling up
the network’s size has enabled models to handle more complex problems. Therefore,
compression of deep learning models has become a long-term research goal. Model
compression goes beyond reducing overparameterization; it also addresses physical
and computational constraints. As models grow, their storage, computing power, and
memory requirements also increase. Pruning and quantization directly address this
growth by reducing excess elements in the network and simplifying the model. In this
section, we introduce these techniques, along with more recent methods.

3.1.1 Quantization Methods

In general, quantization refers to constraining the possible representation states of in-
formation to a more limited subset. In the case of signal processing algorithms, it relates
to taking the data format used to encode information and "quantize" it to a data format
with fewer possible representation states. From an algorithm point of view, restrict-
ing the representation space will incur a direct loss of information, directly impacting
the algorithm’s performance. For example, passing to a smaller representation format
frequently results in an accuracy drop in a deep learning model.

Before describing data formats, typical quantization schemes, and related methods, it
is vital to understand the motivation behind quantization and its impact on hardware.
Deep learning layers, such as convolution and linear layers, are the most resource-
intensive in deep learning models, in terms of the number of parameters and opera-
tions to be executed. These operations can be further described as a series of Multiply-
Accumulate (MAC) operations and described as grouped matrix-multiplications. From
a system perspective, these operations are executed within an arithmetic computing
unit, while the inputs and weights are stored in a nearby memory unit. Figure 18 illus-
trates a simplified view of this system. During a typical execution loop, the parameters
are first transferred to the computing unit, followed by the necessary inputs. Once the
execution is complete, the results are returned to memory.

The data format has three implications for this loop. First, the larger the data format,
the more memory is required to store all the weights and inputs. Second, the size of
the data format affects memory transfer, as larger formats require more effort in terms

61 3.1. Squeezing Every Bit

of latency and energy. Finally, the physical size of the MAC operators, as well as the
execution time and energy consumption, are directly influenced by the complexity of
the data format. Quantization comes as a way to address these issues by enabling more
efficient execution in terms of latency, energy, and memory space.

In this discussion, we are adopting a simplified view of the computing paradigm in
deep learning. The problem has been reduced to the key steps of transferring data
from memory to computing units, processing it, and then storing the results. In real-
ity, this process heavily depends on the specific platform in use. For systems that use
Application-Specific Integrated Circuits (ASICs) or FPGAs, data can be stored near the
computing units, either in registers or on-chip memories or in off-chip memories, with
the latter incurring higher access costs. In more traditional setups involving CPUs and
GPUs, the GPU acts as the computing unit with its own memory space, where both the
model and dataset are stored. Meanwhile, the main application runs on the CPU, and
multiple levels of memory transfers are needed—from disk, to CPU memory, to GPU
memory, and ultimately to the computing core.

Regardless of the platform, the memory hierarchy, or the organization of computing
units, data formats have a significant impact on data transfers and computational com-
plexity to different degrees.

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MACMAC MAC MAC MAC

MAC MAC MAC MACMAC MAC MAC MAC

Computing UnitMemory Unit

Figure 18 – A simplistic system view of a computing model for a deep learning layer.
W are the model parameters, X the inputs and Y the outputs. Here, all the parameters
and data are stored in the memory unit, and a data bus symbolizes the exchanges with
the computing unit. The represented computing unit is a simple representation, where,
in practice, the unit would possess other computing cores besides MAC units and more
elaborated memory hierarchies.

In real-world applications, the most commonly adopted formats are smaller, more sim-
plified versions of Floating-Point (FP) and integer formats. In the following parts, we
present the common formats accepted by modern frameworks and hardware. Other
formats are discussed in a later part.

3.1.1.1 Floating Points

Traditionally, deep learning models have adopted single-precision floating-point num-
bers containing 32 bits, FP32. Table 1 shows the range and precision of the FP32 for-
mat 1. With this starting point, many propositions were made to improve the hardware

1. An extended review of the number of floating-points can be found in [123]

Chapter 3. Compressing the Federation 62

efficiency, taking FP32 as the baseline.

In the case of floating-points, smaller word sizes can be adopted to increase hardware
efficiency in deep learning applications. This is achieved with a compromise between
the dynamic range (min. and max. values) and the precision through resizing the ex-
ponent and mantissa fields. Additionally, the standard FP32 format, as defined by [85],
includes features such as subnormals, rounding modes, and NaN, which can be sim-
plified. These insights have driven the development of various trade-offs within the
floating-point family, resulting in configurations with 16- and 8-bit representations.

Table 1 – Some notable floating-point flavors used in deep learning applications. The
dynamic range represents the absolute minimum and maximum values the data repre-
sentation can assume. From the general formulation of floating-point format, the max-
imum value happens when the exponent is at its maximum, and the mantissa is full
of 1s, V alueMax = 22

E−2E−1−3 × (2 − 2−Mantissa). While the minimum value happens
when the exponent and mantissa are at their minimum values, V alueMin = 22−2E−1

.
Precision represents the number of significant digits obtained with log10(2

Mantissa). E
and Mantissa represent the number of exponent and mantissa bits, respectively.

Floating-point flavors Dynamic Range Precision Exponent Mantissa

IEEE 754 - FP32 [85] 1.18× 10−38 to 3.40× 1038 7 to 8 8 23
IEEE 754 - FP16 [85] 6.10× 10−5 to 6.55× 104 4 5 10

Bfloat16 [90] 1.18× 10−38 to 3.39× 1038 3 8 7
DLFloat16 [3] 9.31× 10−10 to 4.29× 109 3 to 4 6 9

FP8 - E4M3 [119] 1.56× 10−2 to 2.40× 102 1 to 2 4 3
FP8 - E5M2 [119] 6.10× 10−5 to 5.73× 104 1 to 2 5 2

Subnormal numbers were omitted when calculating dynamic range and precision, as is only used for
the IEEE 754 defined formats. Formats dedicated to deep learning applications tend to drop the support
for subnormals as their handling incurs additional computational overhead.

Table 1 exhibits some typical configurations of floating-points used in deep learning
frameworks, such as Pytorch, TensorFlow or JAX. Dynamic range and precision trade-
offs are in place for optimal utilization when considering whether the quantization
scheme is used for inference or training [119, 152].

3.1.1.2 Integer methods

Regarding area and energy consumption, integers have the upper hand compared to
floating-points [79]. The main limitation of integers is their limited fractional repre-
sentation capability. This limitation can be circumvented by applying fixed point no-
tation [67], dividing the integer word into integer and fractional parts with an implied
binary point. An alternative approach relies on a combination of integer and floating-
point format, called affine quantization. Here, we explore the second approach method
due to its prevalent use in deep learning deployment pipelines.

As a first approach, the objective of the integer quantization is to be able to map a
specific matrix W of elements w(i,j), where i ∈ {0, ..., I − 1} and j ∈ {0, ..., O − 1},
to a matrix Wq ∈ ZI×O, with elements w

(i,j)
q , and a scale factor sq ∈ RO, through a

quantization function Q(·).
As an example, consider a 4x4 matrix W ∈ R4×4. The quantization function Q(·) that
maps the values in W to a pair (sq,Wq), where sq ∈ R4 and Wq ∈ Z4×4. This example is
in Figure 19, where a randomly generated matrix W is quantized to a pair (sq,Wq). This

63 3.1. Squeezing Every Bit

22.45

22.27

-89.16

-3.76

61.86

-66.72

-77.57

3.90

-93.81

40.35

-63.04

43.62

35.06

-97.25

93.79

15.31

0.61

0.54

0.72

0.19

37

41

-124

-20

101

-124

-108

21

-128

75

88

127

57

-128

127

82

Figure 19 – A toy example of a quantization process, where the values of Wq are limited
to signed int8.

approach is called symmetric quantization, as opposed to the other possible approach
known as asymmetric quantization.

The asymmetric quantization expression includes a bias point, called the zero point zq ∈
ZI×O, which allows a real representation of the zero value, making the quantization
scheme more flexible to different values distributions. Figure 20 recreates the previous
example but includes the zero point. This time, the quantization function Q(.) maps
the values in W to the triplet (sq, zq,Wq).

0.61

0.54

0.72

0.19

63

93

-128

-128

127

-72

-112

-87

-128

127

-92

127

83

-128

127

-26

26

52

-4

-108

((
22.45

22.27

-89.16

-3.76

61.86

-66.72

-77.57

3.90

-93.81

40.35

-63.04

43.62

35.06

-97.25

93.79

15.31

Figure 20 – A toy example of a quantization process for the asymmetric quantization
scheme.

In both approaches, the values of Wq can be either unsigned or signed integers. Un-
signed integers are represented by values in the range [0, 2b − 1], while signed integers
are represented by [−2b−1, 2b−1 − 1]. The parameter b denotes the number of bits rep-
resenting the integer, defining the quantization limits. Figures19 and 20 consider a
signed 8-bit quantization scheme, which means that the elements w(i,j)

q can take values
between [−128, 127].
The general expressions for Q(·) can be expressed as in Equations 8 and 9, which cor-
respond to the symmetric and asymmetric cases, respectively. The terms minq and
maxq refer to the minimum and maximum values of the data format for w(i,j)

q , and ⌊·⌉
denotes the round-to-nearest operator. Given that Q(·) uniformly maps the possible
values of w(i,j)

q , a linear system of equations can be applied to determine the values of
sq and zq. These values are derived from Equation 9, based on the assumption that
the mapping of (max(W),min(W)) should correspond to (maxq,minq). Additionally,
this mapping is performed while ignoring the clipping effect when the representation
capacity is exceeded. Consequently, the scale factor and zero point can typically be

Chapter 3. Compressing the Federation 64

defined as sq = max(W)−min(W)
maxq−minq

and zq = minq − ⌊sq · min(W)⌉, respectively. The
presented equations assume the use of the maximum and minimum values over W ;
however, subsets of W are often used. Quantizing weights in groups presents a perfor-
mance trade-off. When the granularity of quantization decreases, more operations are
performed in floating-point, due to the scale factor. As granularity increases, the distri-
bution of values becomes more diverse, leading to outliers, which can result in higher
quantization errors [170]. For instance, in linear layers, quantization is often applied
per column or row to handle the weights. In convolutional layers, the most common
approach is to apply quantization per-channel. Dequantizating W involves inverting
the quantization process, as expressed by Equations 10 and 11 for the symmetric and
asymmetric cases.

Q(W, sq,minq,maxq) = clip(⌊wq

sq
⌉,minq,maxq) (8)

Q(W, sq, zq,minq,maxq) = clip(⌊wq

sq
⌉+ zq,minq,maxq) (9)

DQ(Wq, sq) = sq · (Wq) (10)

DQ(Wq, sq, zq) = sq · (Wq − zq) (11)

The quantization/dequantization process is inherently lossy, as it involves mapping
from a much larger representation space to a smaller one, resulting in quantization
errors. For the examples shown in Figures 19 and 20, the mean errors are 4.26 and
0.13, respectively. Much of the quantization literature for deep learning models focuses
on finding better methods to determine the values of sq and zq [52, 49]. To mitigate
the quantization error, various optimization techniques and subsets of Wl, to which
quantization is applied, have been proposed.

As the quantization process is applied to data, it can be used for the activations, repre-
sented by the model input and the output of each layer in the model. Regardless of the
type of layer, weight-only quantization methods are more accessible to optimize than
weight-activation schemes [126]. That’s because model parameters, once trained, are
fixed, and any outliers or particularities can be addressed and studied. The activation
distributions are highly dependent on the input and their interaction with the model
parameters, leading to more unstable quantization schemes [9].

3.1.2 When to quantize ?

When quantizing a model, in addition to the different parameters of quantization, such
as the scale factor, zero point, and data size, one needs to define when to quantize.
Commonly, there are two moments when quantization is applied: after the model
training, called Post-Training Quantization (PTQ), and during the training loop, called
Quantization-Aware Training (QAT). Both choices have their trade-offs and particular-
ities.

PTQ is typically more straightforward and faster to obtain a quantized model, as it in-
volves applying quantization to a pre-trained model without requiring additional full
training. However, the resulting quantization error is bigger than in QAT, leading to
a worse accuracy degradation in low-bit precision than in QAT. The reason why is

65 3.1. Squeezing Every Bit

that QAT incorporates quantization during the training process, allowing the model to
compensate for the quantization errors and perform better at low bit precision [109].
Although QAT is more computationally demanding and time-consuming, it typically
results in less accuracy degradation, as the model can fine-tune its weights and activa-
tions to mitigate the effects of quantization better.

Taking the weights-only quantization scheme for CNNs as an example, we next de-
scribe the common PTQ and QAT pipelines.

3.1.2.1 After training

We can describe a common PTQ pipeline in three steps,

(1) Calibration Dataset: PTQ methods usually use a subset of the dataset as a calibra-
tion dataset to interactively compensate for the quantization error. Data-free methods
are also possible, as in ZeroQ [27], which uses the running statics of batch-norm layers
in the model to generate a synthetic dataset for fine-tuning.

(2) Quantization: During this step, an optimization process is applied to different
network elements to quantize the weights. Commonly, the quantization is done per
layer, and inside each layer, sub-groups of weights are used to avoid large groups of
widely different weights and magnitudes. For example, PACT [38] adds a learnable pa-
rameter to the clipping function in Equation 9, quantizing layer-wise and per channel.
AdaRound [125] replaces the deterministic round-to-nearest operator with a stochas-
tic one based on the distance between the value to be rounded and the neighboring
quantized levels, quantizing in a layer-wise and per-channel manner.

(3) Fine-Tuning: Finally, the quantization is done interactively with the calibration
set to reduce the performance difference between the floating-point and the quantized
model.

3.1.2.2 During training

To integrate the quantization error into the learning process, QAT can be seen as a two-
step process,

(1) Introduce quantization operators: As illustrated in Figure 21, in the QAT training
loop, quantizer nodes are added to convert the weights of each layer into fake quan-
tized weights. These quantizers produce weights still represented as floating-point val-
ues but are constrained to the possible quantized states, simulating quantization.

(2) Quantize weights: Various techniques and strategies can be used for quantizing
the weights in the model. As seen in PTQ, it is expected to quantize different elements
within each layer separately. Another common approach is to assign different preci-
sion levels to other layers, as they can exhibit varying behaviors, allowing one layer
to compensate for the errors introduced by another. For example, HAWQ [49] applies
different quantization precisions to each layer by using the Hessian matrix to assess the
sensitivity of each layer to a specific precision level. Based on this information, HAWQ
selects the optimal quantization precision for each layer in a per-channel, layer-wise
manner. LSQ [52], on the other hand, incorporates the scale factor into the learning
process, aiming to find the optimal value to compensate for quantization errors.

Chapter 3. Compressing the Federation 66

Conv

Norm.

Activation
Function

Quantizer Weights

Input

Output

Figure 21 – An example of a QAT quantization operation on a sequence of convolution,
normalization, and activation layers. Weights are quantized and dequantized to gen-
erate fake quantized weights, Ŵ , with a symmetric quantization scheme. In practice,
other quantization techniques can be applied.

3.1.3 Hardware implications

As a final motivation for adopting integer numbers, by having the weights in integer
format and a floating-point scaling, two matrices, quantized in this way, can be multi-
plied with most of the operations done in integer. We demonstrate matrix multiplica-
tion of two quantized matrices, Wa and Wb.

Given the quantization Equation 9, for the asymmetric quantization scheme, we can
express the quantized versions of Wa and Wb as Wqa and Wqb, respectively, as seen in
Equation 12.

Wqa = clip

(⌊
Wa

sqa

⌉
+ zqa,minq,maxq

)
Wqb = clip

(⌊
Wb

sq

⌉
+ zqb,minq,maxq

) (12)

The sets (sqa, zqa) and (sqb, zqb) refer to the scale factor and the zero point of the matrices
Wqa and Wqb. We assume that they are quantized to the same precision for simplicity.
The dequantized form of their product, Wc, can be obtained with Wc = Wqa × Wqb,
which after rearranging the different terms, results in Equation 13, for which sqa, sqb, zqa
and zqb are constant terms, with only the scale factor terms represented with floating-
points. This reduced the amount of data that needed to be sent from memory to the
computing unit and the number of operations performed in the floating-point.

Wc = sqa × sqb × (Wqa ×Wqb − zqa × zqb) (13)

67 3.1. Squeezing Every Bit

3.1.4 Other formats

In this section, we have focused primarily on floating-point and integer-based data for-
mats, which are the most commonly discussed in the literature due to widespread hard-
ware support. Leading manufacturers of deep learning hardware accelerators, such as
NVIDIA, AMD, ARM, Google, Microsoft, and Qualcomm, predominantly support in-
teger and floating-point MAC units. This has naturally drove much of the research
towards these formats, as they offer more practical, real-world applications on existing
hardware.

However, other numerical formats also hold the potential for efficient deep-learning
model execution. For example, POSITS [180], logarithmic-based formats [26], and block
floating-point formats [43] have been explored as alternatives. These formats can offer
advantages such as improved dynamic range or more efficient representation of certain
data types, potentially leading to faster computation or lower power consumption.

They are especially interesting for reconfigurable platforms, like FPGAs, or dedicated
circuits like ASICs. One can design optimized MAC operators for different data for-
mats in such hardware. For example, a model quantized with less than 4-bit would
operate inefficiently in commercial GPUs that usually has support for 8-bit operators.
The design choice of quantization and data format highly depends on the deployment
platform and hardware flexibility. In Chapter 5 and Appendix A, we discuss the use of
dedicated frameworks and solutions to leverage the reconfigurability of such platforms
for optimized deployments.

3.1.5 Pruning Methods

Pruning in neural networks aims to reduce the number of parameters or operations in a
model while maintaining or minimally affecting its performance. The fundamental idea
is that not all parameters within a model contribute equally, and some can be pruned
to improve the model’s computational efficiency. Pruning can lead to faster inference
and reduced memory usage. This, in turn, lowers energy consumption, making it par-
ticularly useful for deploying models on hardware platforms that would otherwise be
unable to run. This is shown in [103, 64], where pruning was applied to a CNN and an
Large-Language Model (LLM) model to reduce their on-device deployment costs. The
study of pruning and its application to deep learning models is important to explore
the problem of model over-parameterization [77].

The following sections explore the different types of pruning, which elements are pruned,
and the standard criteria behind pruning techniques.

3.1.5.1 Pruning Elements

Pruning techniques can be divided into two types: unstructured pruning and struc-
tured pruning. Each kind targets different structures that compose a model’s architec-
ture and has different final objectives.

• Unstructured pruning involves pruning individual weights within the model,
where the values of the pruned weights are set to zero, thereby increasing the
model’s sparsity. By identifying which weights contribute less to the model’s
output, these weights can be zeroed out, leading to more sparse computations.
For example, SWD [161] is a technique that adds a weight-decay regularization
term to the loss function to penalize large magnitudes in weights, causing smaller
weights to decay to zero naturally. However, exploiting sparse computations

Chapter 3. Compressing the Federation 68

is not always feasible because it requires the ability to detect zeros or specific
sparse matrix algorithms, which can introduce overhead that negates the benefits
of pruning. This issue can be mitigated on specialized hardware, such as FP-
GAs [114, 178, 150], where different hardware strategies can be employed to de-
tect zeros or generate flexible architectures for sparse matrices. On more widely
accessible hardware, such as NVIDIA GPUs, [124] has demonstrated a hardware-
aware pruning method that takes into account the capabilities and architecture
of the GPU, proposing to zero out parameters following the sparse pattern sup-
ported by the hardware.

• Structured pruning involves removing entire structures from the model, such as
rows or columns in linear layers, filters in convolution layers, or even whole lay-
ers. This approach directly alters the network’s architecture, leading to a more
significant reduction in computational complexity and memory usage. For ex-
ample, in CNNs, structured pruning might involve removing entire convolution
filters, which reduces the number of feature maps and, consequently, the overall
size of the features generated by a layer. In practical applications, [64] demon-
strated the use of structured pruning to reduce an LLM from 6.4 billion param-
eters to 3 billion. During model training, learnable binary masks were added to
the model architecture to simulate removing specific components based on the
methods of [168, 171]. Once learned, these masks were applied to remove specific
dimensions from the linear layers effectively. While structured pruning results in
smaller models due to the removal of elements, it also leads to irregular compu-
tational patterns. [160] study revealed a series of dimensional problems arising
from the irregular structures in Residual Neural Network (ResNet) architectures
and proposed a methodology to address such issues, showing that some attention
is necessary to compensate for possible architectural incoherence.

3.1.5.2 Pruning Criteria

Pruning criteria measure the weight’s importance and contribution to the model out-
put. In unstructured pruning, these criteria are commonly based on two metrics: weight
and gradient magnitude.

• Weight Magnitude: One of the most simple and widely used criteria. The ap-
proach involves pruning weights whose magnitude/norm is the smallest. The
first intuition is that small magnitude weights have a small contribution to the
model output, but as studied by [159], small weights resulting from small gra-
dients could still significantly impact the model. A more thorough investigation
with the gradient magnitude could lead to false-positive identification. This cri-
terion is directly applicable to unstructured pruning, where weights are typically
ranked according to their magnitude and then pruned as proposed by [68]. Their
pruning pipeline, as seen with quantization, consisted of pruning a model after
training and then using a calibration dataset to recover the lost performance.

• Gradient Magnitude (Saliency): Another common criterion is based on the mag-
nitude of the gradients. This method considers the sensitivity of the loss function
to each parameter, calculated through gradients during backpropagation. Param-
eters with smaller gradients are deemed less important and are pruned. This cri-
terion can be more sophisticated than weight magnitude, as it considers the role
of each parameter in the network’s learning process, potentially leading to more
effective pruning strategies. For example, [70] measured the error introduced by
removing a weight based on the Hessian matrix information of zeroing out a cer-
tain weight. Their method further formulated a way to compensate for the error

69 3.1. Squeezing Every Bit

introduced by the pruned weight by changing the other weights in the same layer.

Structured pruning re-adapts the mentioned criteria to specific groups of elements. [103]
adapts the idea of weight magnitude by computing the L1 norm of all the weights in
a certain filter to determine if they should be pruned. Another alternative is using bi-
nary masks, as seen in Sparse Weight Activation Training (SWAT) [168]. A learnable
binary mask operates by assigning a value of 0 or 1 to each component in the structure,
for example, a row in a linear layer or a filter in a convolutional layer. A value of 0
"turns off" or removes the associated component, while a value of 1 keeps it. During
training, masks are optimized along with the network’s weights to find the group of
weights/elements that can be turned off and minimize the loss term simultaneously.
This allows the model to adjust its architecture based on the mask dynamically. Fi-
nally, [159] performed a thoughtful study on the impact of pruning on deep learning
models, concluding that pruning is an effective tool to compress a family of models.
However, it is a limited tool to obtain performant models for specific complexities. We
perform a similar discussion for model compression in federated learning in Section 4.4.

3.1.6 Other Methods

In addition to the two approaches to compressing a model mentioned before, other
propositions in the domain are listed here in a non-exhaustive list.

Mixing pruning and quantization: There is also the possibility of combining both
approaches. In [21], authors studied the impact of quantization and pruning when de-
ploying models on different hardware platforms such as FPGAs, GPUs, and specialized
hardware for CNN models. Their study concludes that pruning and quantization are
orthogonal techniques, where the order in which each technique is applied has a low
impact on the final performance. As such, both techniques can be applied together
to maximize deployment efficiency. As an alternative, [71] proposed a Quantization
Aware Pruning (QAP) by integrating a pruning step in QAT, allowing the network also
to learn to be robust to the introduced sparsity. They showed, as seen with the PTQ and
QAT, that QAP had a better final accuracy dans pruning and quantizing a model after
training, with an increase in training overhead.

Low-rank Decomposition: It involves decomposing the weights of certain layers in a
trained model to lower-rank versions. The goal is to reduce the computational work-
load and memory required to store these weights by directly decreasing the number
of weights. [46] applied this concept to linear and convolutional layers. Using a de-
composition algorithm, they were able to produce low-rank matrices that require less
computational cost than the original weights while maintaining a certain approxima-
tion error. In their implementation, they took the weights of a linear layer, denoted by
Wl ∈ RI×O, and applied Singular Value Decomposition (SVD) to generate the approx-
imation W̃l = Ũ S̃Ṽ T . Here, Ũ ∈ RI×r, Ṽ ∈ Rr×O, and S̃ ∈ Rr×r is a diagonal matrix
of singular values. The parameter r controlled the rank of the approximation from the
full SVD of Wl.

Knowledge distillation: Instead of proposing a method to bring changes to the model
architecture, knowledge distillation [76] tries to transfer the knowledge of one model to
another. In the case of model compression, the idea would be to use a larger pre-trained
model, the teacher, to help train a smaller model, the student. In this way, the student, a
presumably less capable model, learns how to imitate the outputs of the teacher model.

Chapter 3. Compressing the Federation 70

This imitation condition is modeled by adding a Kullback-Leibler (KL) divergence [97],
which measures the dissimilarity between the probabilistic vector of teacher and stu-
dent. The distillation loss, LKD, can be formulated as in Equation 14. Where LCE

represents the cross-entropy loss, as in Equation 5, and LKL is the divergence loss ex-
pressed in Equation 15. Terms ŷt, ŷs, and y are the teacher and student predictions and
the ground truth, respectively. The tuning parameter α controls how much the student
should learn from its prediction or the teacher’s.

LKD(ŷt, ŷs, y) = αLCE(ŷs, y) + (1− α)(LKL(ŷs, ŷt)) (14)

LKL(ŷs, ŷt) =

n∑
i=1

ŷitlog
ŷit
ŷis

(15)

Neural Architecture Search (NAS): Automatizes the design of deep learning archi-
tectures by proposing a two-level optimization [183]. It explores a predefined search
space of possible components, such as operators, layers, and activation functions, to
find candidate models. Candidates are evaluated based on target metrics, such as la-
tency, memory usage, or energy efficiency. Finally, the optimal candidate is evaluated
on its performance for the specific task on which the model is being trained.

3.2 Communication and Computation Challenges

The algorithms detailed in Section 2.3.3.2 are interested in closing the gap between the
distributed and centralized learning paradigms. In this sense, as the gap gets smaller,
federated learning algorithms performance improves, so the number of rounds tends to
be reduced. So, naturally, the advancement of the field is going in a direction that seeks
to reduce the communication cost of its design. Focusing specifically on deep learning
models, compressing models allows for a smaller exchange of messages and simpler
models to be trained.

Especially in the context of cross-device federated learning, making it accessible for
embedded devices is highly relevant. Embedded devices, which we define as special-
ized computer systems designed for a specific set of tasks with real-time constraints
and limited computational power, are increasingly playing a crucial role in distributed
learning. These devices often operate in environments with constrained memory, en-
ergy, and processing capabilities yet continuously generate vast amounts of valuable,
real-world data. Examples include IoT sensors capturing environmental data, drones
equipped with cameras for surveillance or delivery, wearable health monitoring de-
vices, and even smartphones with various built-in sensors and AI capabilities. As such,
building methods to facilitate the integration of embedded devices with deep learning
is the main motivation for this thesis.

This section discusses the merging of centralized compression and federated learning.
It reviews how quantization and pruning can be used to decrease communication costs
in federated learning. Additionally, it addresses other methods and questions related
to model heterogeneity, where each client has its own model.

3.2.1 Deep Learning Compression Techniques in Federated Learning

Federated learning’s framework design requires clients to train their models for a num-
ber of local epochs and then communicate their training results to the server.

71 3.2. Communication and Computation Challenges

For all that is related to the computational limitation of devices, they may come from
two factors. First, while training, clients executed a classical deep learning algorithm.
In Section 2.1.4, we saw that during backpropagation, to find the best weights that min-
imize the prediction error, we calculate the gradient of the loss with Equation17. Notice
that to perform this derivation, it is necessary to save the intermediate results, or acti-
vations, during inference, resulting in a memory overhead. Second, besides memory
requirements, both inference and training require the execution of matrix operations
with operands that scale in the function of the input; what comes in place is the impli-
cation described in Section 3.1.1 and 3.1.5.

The communication challenge comes from clients needing to communicate with an ex-
ternal entity due to their training. In this work, we mainly consider that clients transmit
weights or information with equal dimensions as the weights. So, for a communication
round, this represents a Total Communication Cost (TCC) as expressed in Equation 16.
With |W| being the number of parameters in the model, QW being the number of bits
adopted for each parameter, and R number of communication rounds.

TCC = 2R|W|QW (16)

The following parts of this section present works that have tackled the mentioned limi-
tations, alleviating the federated training requirements. This is important, as discussed
in Section 2.3.3, not only in terms of fairness or carbon footprint reduction [137] but also
to reduce the cases of failing clients, stragglers, that cannot complete one communica-
tion round due to their limitations.

∂L
∂W =

∂L
∂XL

· ∂XL

∂XL−1
· ... · ∂Xl

∂Wl
(17)

3.2.2 Quantization in Federated Learning

Quantization was also explored in federated learning, as it was applied to centralized
deep learning models. One of the initial limitations of quantization in federated learn-
ing is the immediate lack of calibration dataset. Models can be quantized in PTQ or
QAT fashion, but as each client has its own dataset, applying the calibration step tends
to lead to biased quantization. Otherwise, a calibration dataset would imply extra train-
ing epochs, which, from the point of view of the entire system, could imply higher
energy costs.

For a client k, Federated Learning method with Periodic Averaging and Quantization
(FedPAQ) [141] calculates the difference between the global model at timestep t and the
client-updated model after local training. The difference, ∆t+1

Diff = ∆t+1
k − ∆t, is then

quantized with a stochastic quantization. The quantization function, Qs(.), quantized
normalized value of ∆t+1

Diff between a series of predetermined discrete levels between 0
and 1. A stochastic rounding method randomly approximates an element ∆t+1

Diff based
on its distance to the neighboring quantization levels. The stochastic rounding guaran-
tees an unbiased quantizer. This strategy is further combined with FedAvg. With the
number of possible states reduced, the quantization states are encoded to reduce the
number of bits sent.

LFL [7] used the same quantization function as FedPAQ but introduced a feedback
quantization error signal. The server transmits Qs(∆

t
Diff). Clients perform the local

training and quantization as seen with FedPAQ, but calculating the quantization error

Chapter 3. Compressing the Federation 72

et+1
k = ∆t+1

Diff−Qs(∆
t+1
Diff). The error signal is added to the newly received global model

in the subsequent round to compensate for the expected error it had in the previous
round.

[65], first, introduced a regularization term to client loss, called Kurtosis regulariza-
tion [36], to enforce a uniform weights distribution. The objective was to obtain models
that were more robust to quantization on top of FedAvg strategy. Further, this solu-
tion was combined with a Multi-bit QAT algorithm for each client that selected the best
bit-width to quantize clients based on hardware specifications or fixed values.

BHFL [175] starts from the principle that not all clients can train a floating-point model,
proposing to let full integer weight models be trained. The pool of clients would be
composed of clients in floating-point and different integer quantized modes, such as 4-,
8- and 16-bit. However, the aggregation of low-bitwidths and high-precision models re-
sults in a high degradation of the model’s performance. To workaround this limitation,
they proposed a neural network to act as a dequantizer on the server side to convert
low-bit models to floating-point ones. The dequantizer was trained on a dataset con-
structed during training with the weights sent by clients. The model’s loss had two
terms, one based on the dequantization error and a distillation loss on a public inde-
pendent dataset.

3.2.3 Pruning in Federated Learning

Most research lines in federated learning assume that all clients have the same archi-
tecture. FedAvg, for instance, considers that the server can average all the models to
produce the global model. As such, the application of structured pruning is inviable,
as pruning criteria are correlated to the task data. From a practical point-of-view, one
could apply classic compression techniques, such as ZIP and Compressed Sparse Row
(CSR), to compress models between communication rounds. However, such a scheme
is inefficient as it does not leverage any particular data distribution in the model. This is
the case where non-structure pruning becomes relevant to generate more sparse mod-
els. Although this alone does not reduce communication costs, sparser matrices can
be explored more efficiently when in combination with classic compression algorithms.
We explored this approach in Chapter 4. In terms of reducing computational cost, as
stated in Section 3.1.5, it depends heavily on hardware and software support and the
sparsity level.

PruneFL [88], based on weight magnitude, starts by selecting a client with more com-
putational resources to prune the initial model. The model is sent back to the server
once the selected client finds a suitable pruning rate. With the initial pruned model,
other clients use it as a starting point. As the initial pruning rate may not be adequate
for all clients due to data and resource differences, the pruning method is reapplied on
a client basis. To reduce the communication cost, they proposed two strategies. The
first was to use a binary mask to indicate which weights are not zero, transmitting only
the non-zero values. The second strategy was to store only non-zero values, using 16-
bit integers to store the index of the row/column of the values. During training, the
best strategy is chosen based on the sparsification level.

FedDST [18] used a layer-wise sparse training to allow clients only to train a sub-
network. Clients train their models starting from a randomly generated binary mask
that dictates which weights to be trained. Weight magnitude pruning is used after
training to adapt the binary mask to each client better and clean smaller weights. How-
ever, weights with larger gradients that are zero in the mask are "regrown," allowing
dynamic mask training. To reduce communication costs effectively, FedDST has clients

73 3.2. Communication and Computation Challenges

only periodically communicate their masks. On the server side, they implemented a
non-zero weight aggregation method to consider clients’ masks.

ZeroFL [136] proposes an efficient two-level method to improve federated learning by
incorporating sparsity at both training and communication stages. In the first level,
it adapts a sparse training approach based on the SWAT [168] method, where only the
most significant weights (Top-K by magnitude) are used during forward and backward
passes. As training progresses, ZeroFL learns binary masks that promote natural spar-
sity with the objective of reducing training time. In the second level, ZeroFL addresses
communication overhead by transmitting only the Top-K significant weights from each
client to the central server. This reduces data exchange and is further optimized by
compressing the sparse models using the CSR format, which encodes non-zero values
and their positions efficiently.

3.2.4 Alternative Compression Methods

Due to the particularities of the federated learning design, several papers have de-
signed specific strategies to tackle its costs. The following works have been inspired
by or have some connection to pruning, distillation, and NAS techniques.

FedDropout [28] was the first federated learning work to propose "partial training".
The idea is that from the same architecture, one can sample sub-models inspired by
dropout layers (Section 2.1.3.1). The server defines a dropout rate, dropping a fixed
number of filters in convolution layers and rows/columns for linear layers. At each
round, the layers to be dropped are randomly selected, and the submodel is sent to
clients. Effectively, clients train different, smaller parts of the global model during the
entire training frame. The paper also proposed that lossy compression methods be
applied to the subset models to further the compression ratio.

FedRolex [5] improved on the submodel training of FedDropout. The work starts with
the consideration that not all clients should be able to train the same model due to
limited resources. They modified the submodel sampling to target client-specific con-
straints, as done by [47]. Unlike previous works on partial training, they proposed
sampling each client’s specific configuration in a rolling manner. For one client config-
uration, the server keeps track of which parts of the global model were sampled last,
sampling newer parts. For instance, for a convolution layer with filters "a-b-c-d-e", a
client would train filters "a-b-c-d" on round t and filters "b-c-d-e" on round t + 1. The
core idea was to have the global model be sampled and trained more evenly.

SLT [135] notice that previous works on partial training achieved great cost reductions
but were sub-optimal. When comparing the submodel use with just training a smaller
full model from the start, they found that submodel results were worse. They demon-
strated that although reductions were achieved, the global model was sub-optimally
trained. SLT introduces a method where clients train models with certain layers frozen
to reduce communication overhead. A "frozen" model means that specific layer weights
are not updated, so clients don’t need to send these weights. In SLT, the model layers
are separated into three types: fully trained, partially frozen, and fully frozen. Fully
trained layers train all their weights, while partially frozen layers have only certain
portions of the weights updated. Training begins with the initial layers being fully
trained and the rest of the model being partially frozen layers. Over time, the fully
trained layers are progressively frozen, and the frozen portions of the partially frozen
layers are "unfrozen". This technique counts on the size of the activations required for
gradient computations and the layer sizes to achieve an effective compression ratio.

Chapter 3. Compressing the Federation 74

FedDF [111], as discussed in Section 2.3.3.2, introduces a distillation signal to improve
model performance. To extend on FedDF’s discussion, as their solution only needs
access to the model’s logits, they showed it could be used for training heterogeneous
clients. As different clients have different constraints, the paper presented a solution
to allow each client to define its own model architecture. To prove the efficacy of their
method, the distillation dataset was assumed to be unlabeled or artificially generated.
They proposed an ensemble knowledge distillation to fuse the knowledge of different
models. Once at a time, each model would be considered the student, and all other
models would be the teachers. The distillation loss is then composed of the logits of the
student and the average logits of all teachers using the KL divergence.

FedNAS [72] introduces NAS in federated learning to find the architecture per clien-
t/dataset. FedNAS allows clients to search for the best architecture locally using a
gradient-based NAS algorithm, MiLeNAS [73]. Each client optimizes the architecture
parameters and model weights on its local data simultaneously. After local training,
clients send their updated architecture and model weights to the server, aggregating
the parameters and sending them back to the clients. This is possible as all clients share
the same restrained search space and similar architectures.

3.3 Recapitulation

We have introduced the use of compression techniques to centralized deep learning,
motivating the application of quantization and pruning due to hardware constraints.
These techniques were then extended to the federated learning setting to tackle the
communication and computational challenges. The next chapters demonstrated how
we, based on these techniques, have contributed to reducing the communication cost
in federated learning.

75

Chapter 4

Cutting Communication Costs

Contents
4.1 Contributions . 76
4.2 Magnitude Pruning for Double Side Compression 76

4.2.1 Adding Pruning to Federated Learning 77
4.2.2 Pruning applied to Federated Learning 77
4.2.3 Compressing more with Quantization 79

4.3 FLoCoRA . 81
4.3.1 Fine-Tuning Models . 81

4.3.1.1 Low-Rank Adaptation 82
4.3.2 LoRA in the Context of Federated Learning 82
4.3.3 FLoCoRA Framework . 83
4.3.4 FLoCoRA Results . 85

4.4 Compression or Just Smaller Models ? 89
4.5 Pre-trained Models for Federated Learning 91
4.6 Recapitulation . 92

Chapter 4. Cutting Communication Costs 76

4.1 Contributions

This chapter presents our contributions to reducing communication costs in federated
learning. We have addressed this problem using two approaches.

The first approach focuses on reducing message sizes to minimize energy and band-
width requirements. Our proposed method can be seamlessly integrated with other
techniques in federated learning. Specifically, we combine weight magnitude pruning
with entropy compression to achieve significant message compression. Compared to
prior methods[136, 104], our approach is simpler yet more effective, reducing message
sizes by 50% with less than 1% accuracy loss. The code for this work is publicly avail-
able 1.

The second approach addresses the communication bottleneck in federated learning
by adopting the Low-Rank Adaptation (LoRA)[81] technique. Rather than focusing on
model compression techniques such as pruning, we explored the application of LoRA
to train small vision models from scratch. Unlike previous works [84, 11, 37] that em-
ploy LoRA in federated learning, our work demonstrates the potential of LoRA in this
new context. We can summarize this work’s contributions as follows:

• We propose Federated Learning Compression with Low-Rank Adaptation (FLo-
CoRA), which integrates LoRA adapters into the federated learning framework.
FLoCoRA can be implemented with any federated learning optimization method,
establishing a strong baseline for communication reduction in federated learning.
The code is publicly available 2.

• We investigate the impact of LoRA hyperparameters in a classification task us-
ing small vision models. We demonstrate that these models can be trained from
scratch while reducing message sizes by up to 4.8 times, with only a 1% accuracy
loss for a ResNet-18.

• We introduce an affine quantization scheme to FLoCoRA, enabling further com-
pression rates of 18.6 to 37.3 times with up to a 1% accuracy loss for a ResNet-18.

The results of this chapter were published in two instances. One at the IEEE 30th In-
ternational Conference on Electronics, Circuits, and Systems (ICECS 2023) [60] and
the other at published at the 32nd European Signal Processing Conference (EUSIPCO
2024) [61], respectively.

4.2 Magnitude Pruning for Double Side Compression

Building upon the standard federated learning pipeline described in Section 2.3.2, we
incorporated pruning to increase message sparsity between server and clients. Inspired
by [68], both the server and clients apply non-structured weight-magnitude pruning
immediately before transmitting their messages. In this process, the global weights are
pruned based on their absolute values, following a predefined pruning rate. As a result,
the smallest θ% of weights are set to zero, generating sparse messages. This approach
ensures that both the server and clients maintain a consistent level of sparsity in their
communications during each training round.

1. https://github.com/lgrativol/fl_exps
2. https://github.com/lgrativol/flocora_eusipco24

https://github.com/lgrativol/fl_exps
https://github.com/lgrativol/flocora_eusipco24

77 4.2. Magnitude Pruning for Double Side Compression

Server

Clients

Step(4): Aggregate model

FedAvg

Step(1): Send model
to clients

Prune &
Compress

Step(2): Fit locally

Train Prune Compress

Step(3): Send Back

Figure 22 – A reviewed training loop, including the pruning step. Source: [60] © [2023]
IEEE.

4.2.1 Adding Pruning to Federated Learning

Initially, we conducted experiments to analyze the behavior of our pruning method,
particularly its impact on message compression. We observed the trade-offs between
compression and convergence in a federated learning training loop by applying differ-
ent pruning levels. Figure 22 shows a view of the modified training loop. Based on
these findings, we expanded our study to include a comparative evaluation with the
ZeroFL[136] method, summed up in section 3.2.3.

As illustrated in Figure 22, our approach is integrated at two moments within the feder-
ated learning framework. First, during Step (1), the global model is pruned at the server
level before being transmitted to the clients. Following this, clients perform their local
training as described in Step (2). Before sending the updated model back to the server,
the pruning method is applied again in Step (3). Once the message has been pruned,
we compress the message to the ZIP format. We chose ZIP format due to its implemen-
tation of entropy encoding (Huffman Coding [122]). This encoding technique works
by assigning shorter codes to more frequent elements and longer codes to less frequent
ones. As a result, the more common elements require fewer bits to be encoded, lead-
ing to a reduction in message size. As we do not use a data-dependent technique to
compress the message, both the client and server can apply it to reduce communication
costs, avoiding overhead information or one-side compression only.

4.2.2 Pruning applied to Federated Learning

To evaluate the impact of our technique in federated learning, we simulated an im-
age classification task using the Canadian Institute For Advanced Research (CIFAR)-10
datasets with a ResNet-12 model consisting of 780K parameters and a size of 2.97 MB.
The simulation was conducted using the Flower framework [17] with 10 clients. In each
training round, 40% of the clients were selected, and the process was repeated for 100
rounds. Each client employed SGD with momentum as the optimizer. For simplicity,
we used the same hyperparameters as in [140] and replaced the batch normalization
layer with a group normalization layer, as suggested by [80]. The server aggregated the
clients’ updates using the FedAvg strategy.

Chapter 4. Cutting Communication Costs 78

The training examples were distributed among clients using LDA [80]. We explored
two scenarios, one with a concentration equal to infinity, an Independent and Identi-
cally Distributed (IID) scenario, and a concentration of 100 for our Non-IID scenario.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

55

60

65

70

75

80

Pruning rate

A
cc
u
ra
cy

(%
)

1 cl.epoch
10 cl.epochs

Figure 23 – Pruning effect on the accuracy in function of the pruning rate, where the rate
represents the % of total parameters pruned, for 1 and 10 clients epochs. Source: [60] ©
[2023] IEEE.

As noted in previous works [117, 89] the number of local iterations performed by clients
during training can have an important impact on model aggregation. For so, we de-
cided to investigate this behavior in the presence of model compression. The results
in Figure 23 show that spending more time on each client contributes to a more ro-
bust model, allowing sparser data communications while retaining approximately the
same accuracy. However, this approach also results in a higher total number of local
iterations.

To further validate the experiment, we repeated it using the CIFAR-100 dataset, with the
results shown in Figure 24. As noted by [140], CIFAR-100 presents a more challenging
task due to the greater number of classes and fewer examples per class. This is reflected
in the results, where the model shows greater sensitivity to pruning, exhibiting more
degradation compared to its performance on the CIFAR-10 dataset.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15

20

25

30

35

40

Pruning rate

A
cc
u
ra
cy

(%
)

1 cl.epoch
10 cl.epochs

Figure 24 – Pruning effect on the CIFAR-100 dataset.

To further evaluate the feasibility of our method in a non-IID scenario, we replicated
the test case used by ZeroFL. In this case, the model is a ResNet-18 with 11 million

79 4.2. Magnitude Pruning for Double Side Compression

trainable parameters, occupying 44.7 MB. The scenario simulates 100 clients with a 10%
participation rate for only 1 local epoch and with LDA concentration of 1.0 (Non-IID),
training for 700 communication rounds. Table 2 presents the evaluation results, which
are the averages of three separate runs, each using different random seeds to create
varied data distributions among clients.

Table 2 – Comparation to ZeroFL. Where SP indicates the Sparsity level from the Ze-
roFL method. Source: [60] © [2023] IEEE.

Method Compression Accuracy
Message
Size (MB)

ZeroFL
Full model 80.62± 0.72 44.7
90 % SP +

0.2 Mask Ratio
81.04± 0.28 27.3

90 % SP +
0.0 Mask Ratio

73.87± 0.50 10.1

Global
magnitude
(Ours)

Full model 84.43± 0.36 44.7
10 % pruning rate 85.96± 0.37 38.1
20 % pruning rate 85.57± 0.19 34.8
30 % pruning rate 85.03± 0.32 31.1
40 % pruning rate 85.20± 0.20 27.1
50 % pruning rate 83.85± 0.65 23.0
60 % pruning rate 83.19± 0.44 18.9
70 % pruning rate 82.25± 0.63 14.5
80 % pruning rate 80.70± 0.24 9.8
90 % pruning rate 76.77± 0.47 4.9
95 % pruning rate 69.14± 0.85 2.5
99 % pruning rate 0.10± 0.0 0.5

Table 2 compares our approach and ZeroFL. Initially, without pruning, our baseline
achieves higher accuracy than ZeroFL, which can be attributed to two key differences.
First, we do not employ SWAT [138] for local training. Second, we use a batch size
of 8, whereas ZeroFL does not specify the batch size used. As highlighted in prior
works [117], batch size is a critical hyperparameter that significantly impacts the ac-
curacy of the model aggregation. While SWAT is effective in reducing communication
costs, it also affects model accuracy, which may explain the performance gap. Our base-
line, which uses pure FedAvg without any compression, achieves 4% higher accuracy
compared to ZeroFL.

Moreover, when pruning is applied, our approach demonstrates less accuracy degra-
dation than ZeroFL for equivalent levels of pruning. For example, while ZeroFL expe-
riences an 8% accuracy loss when pruning the model to 10 MB, our method only incurs
a 4.63% reduction. These results suggest that allowing clients the flexibility to perform
pruning independently better compensates for the sparsity introduced. This flexibility
results in more efficient message compression, leading to a more robust global model.

4.2.3 Compressing more with Quantization

Building on the message savings observed from our pruning experiments, one might
ask if it is possible to achieve even smaller message sizes. As discussed in Section 3.1,
another widely used compression technique is quantization. Figure 25 illustrates the
impact QAT [132, 110] in the previously described IID scenario.

Chapter 4. Cutting Communication Costs 80

For this study, we experimented with 1-bit, 4-bit, and 8-bit quantization levels. Binary
networks were handled using Binary Connect [40], while 4-bit and 8-bit quantizations
were implemented using the Brevitas framework [132] with its default quantization
scheme. In this scheme, weights are quantized to 4-bit and 8-bit integers, with the QAT
scaling calculated on a per-layer basis.

0 20 40 60 80 100

20

40

60

80

Rounds

A
cc
u
ra
cy

(%
)

1 bit 4 bits
8 bits baseline

1 cl.epoch 10 cl.epochs

Figure 25 – Accuracy evolution comparison between baseline (FP32), 1-bit, 4-bit and
8-bit, for 1 and 10 clients epochs. Source: [60] © [2023] IEEE.

Figure 25 shows that the convergence time, or the number of rounds required to reach
maximum accuracy, varies between experiments, as it depends on the level of quan-
tization. Both 4-bit and 8-bit formats allow us to achieve an accuracy comparable to
the reference model, but they also highlight a trade-off between communication and
computation. For example, to reach a similar accuracy of around 75% 40 rounds of
communication and a total of 40 epochs are required when using 1 local epoch per
round. In contrast, when using 10 local epochs per round, achieving the same accuracy
demands 100 total epochs across 10 communication rounds.

In the case of 1-bit quantization, increasing the number of local epochs per round from
1 to 10 significantly improves accuracy, from 48.8% to 70.9%. Despite this increase in
total epochs from 100 to 1000, the communication cost remains the same. As seen in
the IID pruning experiment, Figure 23, spending more time on each client helps build
a more robust model, compensating for the perturbations introduced by quantization.

Table 3 summarizes the message sizes exchanged between clients and the server for
the IID experiences. For quantization, the message size is determined solely by the
quantized weights, as the server already knows the client’s quantization scheme. The
table also demonstrates that even simple compression methods can reduce network
bandwidth usage by 2 to 4 times, with minimal impact on accuracy.

In this section, we demonstrated the promising application of traditional compression
techniques in the context of federated learning. These straightforward yet effective
methods reduced message sizes by up to 50% without significantly affecting model
accuracy, leading to direct savings in energy and bandwidth. Additionally, our ap-
proach allows each client to tailor the pruning process to their specific dataset, pro-
viding greater flexibility. By incorporating quantization into the training process, we
introduced an additional layer of compression to the framework. Although our results
show the effectiveness of pruning and quantization individually, combining both tech-
niques could further enhance message compression. In early tests of integrating the

81 4.3. FLoCoRA

Table 3 – Summary of message size and accuracy for the CIFAR-10 dataset for the IID
case. Source: [60] © [2023] IEEE.

Compression
Technique

Accuracy
(%)

Message Size
(MB)

1 Local
Epoch

10 Local
Epochs

Baseline 78.94 78.18 2.97
Pruning

10 % 74.79 78.18 2.57
20 % 76.01 78.12 2.34
30 % 78.20 77.83 2.10
40 % 77.50 77.81 1.85
50 % 72.74 77.65 1.57
60 % 76.00 77.65 1.29
70 % 73.43 78.11 1.01
80 % 75.18 77.89 0.70
90 % 73.37 76.63 0.37
95 % 71.05 74.81 0.19
99 % 52.77 66.82 0.04

Quantization
8 bits 78.80 78.58 0.75
4 bits 79.74 77.04 0.38
1 bit 48.93 70.89 0.10

described pruning approach plus the QAT framework, clients could not learn, indicat-
ing that a more thoughtful design is needed to combine both techniques. Based on
these findings, we believe that integrating compression-aware training methods while
ensuring smooth compatibility is a critical step toward advancing FL.

4.3 FLoCoRA

Low-Rank Adaptation (LoRA) methods have gained popularity in efficient parameter
fine-tuning of models containing hundreds of billions of parameters. In this work, in-
stead, we re-adapted it to reduce communication costs in federated learning. In this
section, we introduce the concept of model fine-tuning and the LoRA method. Then,
we demonstrate how this can be integrated into the federated learning framework.

4.3.1 Fine-Tuning Models

Deep learning models are typically trained on well-known datasets that serve as stan-
dard benchmarks, allowing for consistent comparison between different machine learn-
ing models. However, retraining a state-of-the-art model from scratch on large-scale
datasets can be computationally intensive; it often yields diminishing returns, particu-
larly when pre-trained weights are publicly available and becoming more common. A
notable example is the HuggingFace 3 that can serve as a hosting site for the model’s
weights. These pre-trained models offer generalization capabilities that can be lever-
aged for new tasks or datasets, significantly reducing the cost of training by adapting
the existing weights [176].

3. https://huggingface.co/

Chapter 4. Cutting Communication Costs 82

This process, known as fine-tuning, traditionally involved retraining some or all layers
of a pre-trained model to specialize it for a new task in the pre-LLM era [182]. However,
the rise of LLMs, with their novel architectures and massive scale, often comprising bil-
lions or even trillions of parameters, has required new strategies to adapt such models
efficiently. This has given rise to Parameter-Efficient Fine-Tuning (PEFT) [74], which fo-
cuses on optimizing fine-tuning methods to minimize computational resources such as
memory and time. PEFT techniques are designed to selectively update only a small sub-
set of parameters or introduce lightweight parameter modules, enabling the efficient
fine-tuning of models at extreme scales, from billions to trillions of parameters[181].
This shift represents a significant evolution in the fine-tuning paradigm, especially as
models continue to grow in size and complexity.

4.3.1.1 Low-Rank Adaptation

Among PEFT methods, LoRA has recently gained attention for task adaptation in mod-
els with hundreds of billions of parameters [81, 16, 84]. LoRA addresses the challenges
of fine-tuning large-scale pre-trained models for specific tasks while significantly reduc-
ing computation time and memory overhead. Instead of fine-tuning all model parame-
ters, LoRA introduces a lightweight parallel adaptation layer that focuses on updating
a small subset of parameters.

In LoRA, the parameters of a pre-trained linear layer, Wl ∈ RI×O, are modified by
adding a low-rank adaptation. Specifically, a parallel layer is introduced, resulting in
the new set of parameters W ∗

l = Wl +
α
rBA, where A ∈ RI×r and B ∈ Rr×O are two

matrices with a maximum rank of r. The term α
r serves as a scaling factor, with α being

a hyperparameter and r representing the rank. The core idea is to freeze the original
weights, Wl, and train only the low-rank matrices, A and B, which provide a more
compact and efficient update to Wl.

One of the key advantages of this approach is that the adaptation matrix, BA, can be
merged back into the original pre-trained weights, resulting in the adapted weights W ∗

l

without incurring additional latency during inference. Figure 26 shows how the input
is processed by both the pre-trained weights and the LoRA-adapted weights, with the
outputs from both paths merged to produce a single final output.

[81] has shown that for r << min(I,O), Wl can be adapted to a new task, greatly
reducing the memory associated with updating all the weights in a model, once LoRA
spawns fewer parameters. As an example, the original LoRA paper illustrates that a
GPT-3 [2] model with 175 billion parameters was fine-tuned for various text-related
tasks using between 4.7 million and 37.7 million parameters (0.003% - 0.021% of the
total), with an accuracy drop of less than 1%.

4.3.2 LoRA in the Context of Federated Learning

In Federated Learning, when LoRA is applied, the original model remains frozen, and
only the adapters, B and A, are trained. These adapters have significantly fewer pa-
rameters than the original model, resulting in lighter message exchanges between the
server and clients. Since the original model stays frozen, there is no need to transmit
it between the server and clients in every communication round, which reduces the
overall communication cost.

Previous studies, such as SLoRA [11], have explored the potential impact of LoRA tech-
niques in federated learning. They proposed combining standard federated learning

83 4.3. FLoCoRA

INPUT

OUTPUT

Figure 26 – Low-Rank Adaptation of a pre-trained layer Wpretrained with adapters B
and A, controlled by the rank hyperparameter "r".

training with matrix decomposition to achieve optimal initialization for both the orig-
inal model and the matrices B and A. Similarly, HLoRA [37] allowed clients to select
different LoRA ranks based on their individual resource constraints, enabling them to
adapt a pre-trained base model accordingly. On the other hand, FedPara [84] intro-
duced a low-rank adapter, formulated as W ∗

l = Wl + (A1 · BT
1) ⊙ (A2 · BT

2), where ⊙
denotes the Hadamard product. This method achieves an update of higher rank com-
pared to traditional low-rank decompositions.

However, both SLoRA and HLoRA have focused on applying LoRA techniques to
larger models, such as LLMs and foundation models, without investigating their use
in training small CNNs from scratch. FedPara [84], which is more closely aligned with
our work, has tested its low-rank approach on small CNNs. However, its method, in-
cluding quantization to FP16, and the adaptation of FedPAQ [141], was evaluated on
relatively simple test scenarios.

4.3.3 FLoCoRA Framework

In this work, we propose keeping the parameters of the randomly initialized model,
shared between clients at the start of training, completely unchanged throughout the
training. Instead, only the adapter parameters, B and A, will be trained, exchanged,
and updated. By keeping the original model parameters frozen, the exchange of LoRA
parameters should be sufficient to capture the updates from each client. The server con-
tinues to receive the updated LoRA parameters from the clients, allowing this method
to be seamlessly integrated with other federated learning techniques without requiring
additional modifications.

Figure 27 shows our proposed method, Federated Learning Compression with Low-
Rank Adaptation (FLoCoRA), within a single communication round. All clients begin
with the same initial weights, denoted as Winitial, which remain unchanged through-
out the training process. In the first step (1), the server sends the global LoRA adapter
parameters, ∆̄t

m, to a selected subset of clients, denoted as M . In step (2), each client
locally trains its LoRA adapter and uploads the resulting parameters, ∆t+1

m , back to the
server in step (3). Finally, in step (4), the server applies a weighted averaging mecha-

Chapter 4. Cutting Communication Costs 84

Clientsm

Winitial

Frozen

B

rank

A

(2) ∆
(t+1)
m ← Train(∆̄(t))

Server
(4) ∆̄(t+1) ← FedAvg(∆

(t+1)
m),m ∈ [1;M]

(1) Download(∆̄(t))

(3) Upload(∆
(t+1)
m)

Figure 27 – FLoCoRA training loop, where ∆ represents the matrice AB. Adapted
from: [61] © [2024] IEEE.

Table 4 – Number of parameters for different sizes of r. For each value, we have the
total number of parameters to be trained/sent and the total number of the parameters
with the original model plus the LoRA adapter. Source: [61] © [2024] IEEE.

Method
Total

Params
Trained
Params

% of Trained
Params

FedAvg 1.23M 1.23M 100
FLoCoRA (r = 8) 1.30M 69.45K 5.35
FLoCoRA (r = 16) 1.36M 131.92K 9.70
FLoCoRA (r = 32) 1.48M 256.84K 17.30
FLoCoRA (r = 64) 1.73M 506.70K 29.22
FLoCoRA (r = 128) 2.23M 1.00 M 45.05

nism, similar to FedAvg, to compute the updated global LoRA adapter parameters for
the next round, denoted ∆̄t+1.

Table 4 presents the size of the trainable parameters for a ResNet-8 model with different
values of r. It’s important to note that while LoRA is applied to adapt the convolutional
layers, the normalization and FC layers are trained conventionally. These layers are also
exchanged between the server and clients.

For convolution layers, as depicted in Figure 28, we follow the decomposition proposed
in [83]. Let Wl ∈ RCout×Cin×k×k be a convolution layer; then we define its LoRA adapter
matrices as A ∈ Rr×Cin×k×k and B ∈ RCout×r×1×1. Output channels are denoted as Cout,
the input channels as Cin, and the kernel size as k. An important difference from the
original LoRA, the hyperparameter r does not represent a reduction in terms of matrix
rank, but rather a reduction in the number of channels, which represents a bottleneck
effect in the decomposition.

85 4.3. FLoCoRA

Input

Output

Figure 28 – A convolution layer adapted with LoRA.

To check the impact of using LoRA in federated learning, we identify which layers of
the original model need standard training and which can be adapted with LoRA. Next,
we compare our approach with recent studies on compression methods in federated
learning, demonstrating that LoRA provides a strong baseline for future work in the
field. At last, we show that quantizing LoRA parameters can further enhance message
compression, even when dealing with highly diverse data distributions across clients.

4.3.4 FLoCoRA Results

Our federated learning setup involves 100 clients, with 10% of clients randomly se-
lected in each round. The training runs for a total of 100 rounds. Following the ap-
proach in [84], we keep the batch size, learning rate, number of local epochs, and mo-
mentum constant across all clients, set to 32, 0.01, 5, and 0.9, respectively. Clients use
SGD with momentum [145], and FedAvg serves as the aggregation algorithm. Each
experiment was run three times using different random seeds.

To evaluate how FLoCoRA training affects convergence in federated learning, we ini-
tially trained a ResNet-8 model on the CIFAR-10 dataset. We used a concentration of 0.5
for the LDA distribution. As pointed out by [80], we replaced the batch normalization

Chapter 4. Cutting Communication Costs 86

layer with a group normalization layer. Table 5 provides an ablation study using LoRA
hyperparameters r = 32 and α = 512. The value r = 32 was chosen as the minimum
rank at which accuracy degradation remained below 1%.

We began with a randomly initialized ResNet-8 model and froze the entire model.
LoRA adapters were then introduced to all convolutional layers and the final FC layer.
This configuration is labeled "FLoCoRA Vanilla" in Table 5. Next, we progressively ad-
justed the model setup. First, we unfroze the normalization layers to allow them to
learn the running statistics, labeled "+ Norm. Layers". Then, we removed the LoRA
adapter from the final FC layer and unfroze it, as represented by "+ Final FC".

Table 5 – The effect of training different layers with or without LoRA adapters on se-
lected layers. Source: [61] © [2024] IEEE.

Method
Nb. of Params.

to update
Accuracy

FedAvg 1.23 M 76.14 ± 0.74
FLoCoRA Vanilla 0.26 M 22.14 ± 3.99

+ Norm. layers 0.26 M 39.80 ± 12.05
+ Final FC 0.26 M 75.51 ± 1.34

The normalization layers must be trained because they cannot be adapted using LoRA
methods, as they must capture running statistics. We also hypothesize that the final
FC layer requires full training because the lower rank may not suffice for this highly
specialized and sensitive layer [128]. Therefore, this FLoCoRA configuration is used in
all experiments.

To highlight the importance of selecting the right layers, we explore the trade-off be-
tween the rank r and the scaling parameter α. We compare the FedAvg baseline with
two setups where α is set to 2r and 16r. The results, shown in Figure 29, indicate that
while LoRA’s original paper[81] scales α to twice the rank for LLMs, we found that
further increasing this factor when training small CNNs with federated learning can
improve accuracy by up to 4.4%. Increasing the scaling factor of the LoRA-adapted
layers effectively raises their learning rate while keeping more sensitive layers, such as
normalization and FC layers, at a lower learning rate, thus enhancing training stability
and performance.

8 16 32 64 128
68

70

72

74

76

78

(+ 4.44)

(+ 3.71)

Rank r

A
cc
u
ra
cy

(%
)

FLoCoRA α=2r
FLoCoRA α=16r

FedAvg

Figure 29 – The relationship between the r hyperparameter in FLoCoRA and the scaling
factor α, in α

r . Two scenarios are evaluated, α = 2r and α = 16r, against FedAvg.

87 4.3. FLoCoRA

As shown in Figure 29, FLoCoRA achieves an accuracy drop of less than 1%, while
sharing only 0.26M parameters, which is a 4.8× reduction compared to sharing the
entire model. For a rank of 128, the number of shared parameters is closer to that of the
original model (see Table4), but accuracy improves by 2%. In the ResNet-8 architecture,
the convolution layers have output channel sizes of 64, 128, or 256. By selecting a
rank of 128, we effectively increase the rank for certain layers while maintaining it for
others. This results in larger rank updates for the shallower convolution layers, while
the deeper layers receive a low-rank update. Moreover, because the larger convolution
layers with 256 output channels are adapted with a rank of 128, the total number of
parameters is slightly reduced.

Table 6 – Additional results for the CIFAR-100 and CINIC-10 datasets with FLoCoRA
expressed in Total Communication Cost (TCC)

CIFAR-100

Method Rank
Nb.

Parameters
TCC Accuracy

FedAvg - 1.25 M 1.00 GB 46.24 ± 0.15

FloCoRA
r=16 1.40 M 124.04 MB (÷8.06) 40.67 ± 0.14
r=32 1.53 M 224.00 MB (÷4.46) 45.93 ± 0.25

CINIC-10

Method Rank
Nb.

Parameters
TCC Accuracy

FedAvg - 1.23 M 982.07 MB 67.07 ± 0.54

FloCoRA
r=16 1.36 M 105.53 MB (÷9.31) 62.51 ± 0.43
r=32 1.48 M 205.5 MB (÷4.78) 65.91 ± 1.05

Additionally, we experimented with FLoCoRA on the CIFAR-100 and CINIC-10 datasets.
Table 6 shows that we achieved communication reductions of 4.46× and 4.78×, with an
accuracy drop of 0.31% and 1.16% for CIFAR-100 and CINIC-10, respectively. The table
displays the total number of parameters, including those not exchanged between the
client and server, but represents the TCC (Equation 16) based on trainable parameters.
We used here the same hyperparameters as the CIFAR-10 experiment.

Thus far, FLoCoRA has successfully reduced the number of trainable parameters, thereby
decreasing the amount of data that needs to be communicated in each round. Next, we
explore the impact of applying an affine quantization to both the client and server mes-
sages. For the convolution layers, we compute the scale factor and zero point values
on a per-channel basis, while for the FC layer, these values are calculated per column.
The normalization layers remain unquantized. We use 2-, 4-, and 8-bit formats to quan-
tize the trainable layers. For a model like ResNet-8, this results in reductions in the

Table 7 – TCC for different quantization levels with FLoCoRA, for a rank of 32 and
alpha of 512, during 100 rounds of FL. Source: [61] © [2024] IEEE.

Method Quantization TCC Accuracy
FedAvg FP32 982.07 MB 76.14 ± 0.74

FLoCoRA FP32 205.47 MB (÷4.8) 75.51 ± 1.34
int8 55.56 MB (÷17.7) 74.21 ± 1.05
int4 30.15 MB (÷32.6) 73.15 ± 0.18
int2 17.44 MB (÷56.3) 55.03 ± 1.90

Chapter 4. Cutting Communication Costs 88

0 20 40 60 80 100
10

20

30

40

50

60

70

80

Rounds

A
cc
u
ra
cy

(%
)

FedAvg
FLoCoRA

FLoCoRA Q=8
FLoCoRA Q=4
FLoCoRA Q=2

Figure 30 – Convergence behavior between FedAvg, FLoCoRA with rank of 32 and its
quantized versions of 2/4/8-bits. Source: [61] © [2024] IEEE.

total communication cost (Equation 16) by 56.3, 32.6, and 17.7 times for the 2-, 4-, and
8-bit formats, respectively. We also account for the overhead required to transmit the
quantization scale factors and zero points with 32 bits. Table 7 summarizes the TCC, as
expressed in Equation 16, when training a model with FLoCoRA and quantization.

Figure 30 illustrates the accuracy progression for federated learning FedAvg, FLoCoRA,
and the quantized version of FLoCoRA. Notably, the convergence rate for both FP32
FLoCoRA and its int8 quantized counterpart remains unaffected, indicating that this
approach effectively reduces communication costs without harming performance. How-
ever, as shown in Table 7, the quantized versions do experience a slight accuracy degra-
dation, with a 2% drop in the int8 case. Despite similar convergence rates, the quantized
versions introduce more instability in training, suggesting a promising direction for
future research: improving the quantization scheme for FLoCoRA. Revisiting model
compression techniques [127, 52] and combining them with FLoCoRA could yield a
more refined quantization method. Nevertheless, we demonstrate that even a simple
round-to-nearest quantization technique achieves competitive results.

The FedPara[84] method was applied to a VGG-16 model and compared to FedAvg
and a low-rank tensor parameterization using Tucker decomposition, achieving com-
munication reductions between 2.8 and 10.1 times. FLoCoRA, in its base form, delivers
comparable compression ratios, proving that the low-rank adapter for convolution pro-
posed in [83] can efficiently train a small CNN from scratch.

Finally, we compared FLoCoRA, combined with the proposed quantization approach,
against techniques from ZeroFL [136] and Magnitude Pruning [60]. Table 8 demon-
strates that despite being primarily a fine-tuning method, LoRA serves as a strong
baseline for communication savings in federated learning. For this experiment, we
replicated the setup used by [136, 60], which involved 100 clients training a ResNet-
18 model for 1 local epoch, with an LDA parameter of 1.0, over 700 communication
rounds.

Table 8 extends the results from Table 2, exploring the impact of different rank values
and quantization levels when using FLoCoRA. A rank of 64 achieves a compression
ratio similar to 40% pruning without any accuracy loss. As the rank decreases, message
sizes are reduced, but accuracy remains higher than with 80% pruning. Notably, a rank
of 16 offers a compression rate four times greater than either pruning or ZeroFL, with

89 4.4. Compression or Just Smaller Models ?

Table 8 – Comparing LoRA and quantization to ZeroFL and Magnitude Pruning meth-
ods. SP indicates the sparsity level used during the SWAT step, and MR the mask ratio
indicating a percentage of "extra" weights clients can send besides the Top-K weights,
as per the ZeroFL method. Source: [61] © [2024] IEEE.

Method Config.
Message

Size (MB)
TCC
(GB)

Accuracy

FedAvg Full Model 44.7(÷1.0) 62.6 84.43 ± 0.36

ZeroFL [136]
90% SP+
0.2 MR

27.3(÷1.6) 38.2 81.04 ± 0.28

90% SP+
0.0 MR

10.1(÷4.4) 14.1 73.87 ± 0.50

Magnitude
Pruning [60]

40% prune 27.1 (÷1.6) 38.0 85.20 ± 0.20
80% prune 9.8 (÷4.6) 13.7 80.70 ± 0.24

FLoCoRA

r=64 9.2 (÷4.9) 12.9 85.17 ± 0.44
r=32 4.6 (÷9.7) 6.5 83.90 ± 0.20
r=16 2.4 (÷18.6) 3.3 82.33 ± 0.35

r=64, Q=8 2.4 (÷18.6) 3.3 85.24 ± 0.23
r=32, Q=8 1.2 (÷37.3) 1.7 83.95 ± 0.32
r=16, Q=8 0.7 (÷63.9) 1.0 81.89 ± 1.01

less accuracy degradation. There is a clear trade-off between reducing the rank and ap-
plying quantization. For example, applying 8-bit quantization to a rank of 64 maintains
accuracy, while achieving the same compression rate as a rank of 16 without quantiza-
tion. This trend continues with lower ranks: combining FLoCoRA with quantization
reduces communication costs by a factor of 63.9, resulting in only a 4% accuracy loss.
In this case, each client sends only 0.7 MB to train a 44.7 MB model.

Interestingly, when compared to our earlier results in Table 7, the quantized versions
of ResNet-18 show less accuracy degradation. We attribute this to the fact that ResNet-
18 is 9× as large and is trained 7× as long in a relatively easier training scenario. The
higher training time, for a scenario that samples 10 clients each round, allows for the
training to access all client’s datasets multiple times. The earlier experiments used an
LDA of 0.5, while ResNet-18 uses an LDA of 1.0, which results in more similar data
distributions across clients as the LDA parameter increases. We hypothesize that LoRA-
based methods could scale more effectively with larger models and more challenging
training setups, suggesting an interesting direction for future research. One point of
particular importance is the relationship between the number of output channels and
the rank used to adapt each convolution layer. A better understanding of how the per-
layer rank influences the layer capacity to learn could lead to an optimization of the
rank used based on a per-layer sensitivity.

4.4 Compression or Just Smaller Models ?

So far, we have compressed models using techniques such as pruning, quantization,
and adapting LoRA for federated learning. Upon re-examining the impact of these
methods, beyond training and accuracy considerations, the key benefit in terms of
communication efficiency is the reduction in the size of messages exchanged between
clients and the server, measured in bytes. This is accomplished by introducing spar-
sity, compressing the messages, simplifying the data format, or reducing the number of
parameters through low-rank approximations.

Chapter 4. Cutting Communication Costs 90

Next, we explored what happens when using a model specifically designed to meet the
communication constraints. The idea is to compare a network that produces the same
message size as the final compression results achieved through pruning, quantization,
and/or LoRA, with what we call a "smaller model."

To explore the impact of using a compressed model versus a smaller model, we use
a scenario with 100 clients, where 10 clients are sampled per round for a total of 100
rounds. Each client trains its model for 5 local epochs and a batch size of 32. This is the
same scenario used in the initial experiments of FLoCoRA and the ResNet-8. Finally,
the CIFAR-10 was split using LDA with a concentration of 0.5. This represents a more
challenging scenario than the one used in Table 8. We trained three models — ResNet-
20, ResNet-18, and ResNet-8 — using the FedAvg algorithm. The goal is to compare
similar models in terms of parameters, specifically ResNet-20 and ResNet-8, and to
contrast them with ResNet-18.

ResNet-18 is an adaptation of a model typically used for ImageNet, but here it was re-
adapted for CIFAR-10. This adaptation involved modifying the final classification layer
to output 10 classes, instead of the 1000 classes required for ImageNet, while keeping
the rest of the model unchanged 4. We took a model designed for a more complex task,
ImageNet, and applied it to a simpler dataset, CIFAR-10, for our experiment. While
the ResNet-8 and ResNet-20 are models more adapted to a dataset with the CIFAR-10
complexity.

Table 9 – Comparing Compressed Models to Just Smaller Models for the CIFAR-10
Dataset. Three different architectures are tested, with different sizes, and FLoCoRA is
applied to produce equivalent message size models. The feature maps (FM) hyperpa-
rameter corresponds to the width of the first convolution layer in a ResNet architecture;
subsequent layers are scaled accordingly. All results in FP32.

Model Strategy FM LoRA Rank Nb. Params (Trainable) Accuracy
64 - 11.17 M 83.34 ± 0.38
32 - 2.80 M 82.22 ± 0.52ResNet-18
16 - 0.70 M 77.67 ± 0.86
64 - 4.33 M 84.07 ± 0.41
32 - 1.08 M 81.58 ± 0.46ResNet-20
16 - 0.27 M 77.82 ± 0.59
64 - 1.23 M 75.99 ± 0.99

ResNet-8

FedAvg

32 - 0.31 M 74.59 ± 0.59
ResNet-18 16 0.59 M 80.92 ± 0.23
ResNet-20

FLoCoRA 64
22 0.58 M 81.46 ± 0.9

Table 9 results allow us to look at the use of "just smaller" models in two ways. First,
one clear difference is that a more optimized network is more efficient in learning the
task and that the size can be misleading. In this case, ResNet-20 presented itself as a
more efficient model, reaching 84.07% of accuracy with 4.33 M of parameters, against
ResNet-18 with 83.34% and 11.17 M. The point here is to highlight that compression
of highly cumbersome networks can result in sub-optimal performances, where for the
same amount of parameters, one could train a ResNet-20 instead of a compressed ver-
sion of a ResNet-18 and obtain better results. This possibly indicates that verifying that
just a smaller model performs better than a compressed method should be a "sanity-
check" test. The same observation can be made to the FLoCoRA case, where the models
have a degradation of 2.42% and 2.61% for the ResNet-18 and ResNet-20, respectively.

4. This is the same ResNet-18 used for all the experiments in this chapter

91 4.5. Pre-trained Models for Federated Learning

A second point of view is the potential of compression techniques to allow clients to
compensate for different constraints. So far in our analyses, we have considered that
all clients are compressing their models at the same rate. In practice, while training
with federated learning, clients can have different immediate constraints, such as band-
width allocation of energy use. In such cases, compression methods, such as the ones
presented in the chapter, can be used to allow each client to have different compres-
sion rates. The proposed pruning framework could be modified to allow each client
to have its own pruning rate without affecting the global model aggregation. Equally,
FLoCoRA could be adapted to allow a different rank per client, with an aggregation
method based on matrix decomposition; a similar proposition is found in [37]. Another
possibility is to allow clients to reduce costs when necessary resources are needed to
be allocated to other processes, reducing the immediate cost. In either case, the fed-
erated learning would be able to integrate possibly straggling clients and, at the same
time, leverage clients that can train with full models. As future perspectives, it would
be interesting to test different model architectures and scenarios to verify the correct
trade-offs between the different hyperparameters and possible configurations of feder-
ated learning.

4.5 Pre-trained Models for Federated Learning

Works such as [32] and [129] have demonstrated that federated learning can greatly
benefit from leveraging public datasets or pre-trained models. These studies highlight
that starting federated learning with pre-trained models accelerates convergence and
significantly enhances model accuracy. This approach directly mitigates non-IID data
effects. Moreover, using pre-trained models in federated learning can be seen as a form
of fine-tuning, particularly in the context of personalized federated learning, where
each client benefits from a more tailored model. By leveraging pre-trained models as
fixed backbones, as suggested in recent works, computation and communication costs
can be substantially reduced since clients no longer need to train large-scale models
from scratch.

Minimizing the learning objective of federated learning in Equation 7 thus not only in-
volves finding a model that performs well across all clients but also provides clients
with a stronger starting point. Using pre-trained models has the potential to reduce the
gap in federated learning performance, particularly in resource-constrained environ-
ments.

Table 10 – Comparing pre-training models to starting from scratch for FedAvg and FLo-
CoRA training. (P) indicates that a pre-trained model was used. For the experiments
with FLoCoRA, we used a rank of 32 for the ResNet-18 model.

Model Strategy
Nb. Rounds
@ 75%

Accuracy (%)

ResNet-18 FedAvg 44 ± 1.41 83.34 ± 0.38

ResNet-18 (P) FedAvg 24 ± 5.10 80.59 ± 0.41

ResNet-18 FLoCoRA 49.67 ± 2.50 82.05 ± 0.50

ResNet-18 (P) FLoCoRA 34.67 ± 5.31 80.46 ± 0.46

In Table 10, we experimented with a ResNet-18 pre-trained on ImageNet and publicly

Chapter 4. Cutting Communication Costs 92

available at the Pytorch model zoo 5. The experiment configuration is the same as used
in Section 9. To adapt the ResNet-18 model to the CIFAR-10 task, the final classification
layer was replaced with a new one with 10 classes instead of 1000. Unlike the results
in [32], we do not find an increasing performance using a pre-trained model to adapt
the CIFAR-10 task. The performance difference can be connected to an optimization
step necessary for the fine-tuning of the pre-trained models. The experimental setting
and hyperparameters were the same between starting from scratch and the pre-trained
ones. However, we find, even without trying to find the correct fine-tuning hyperpa-
rameters, that the pre-trained models had a faster convergence rate. In both cases, with
and without FLoCoRA, the pre-trained settings reduced the number of rounds to reach
75% by 45% and 30%, respectively.

Pre-trained models offer a solution for reducing communication costs by minimizing
the number of rounds needed to achieve a specific accuracy or metric. The growing
availability of publicly accessible models with various architectures presents an exciting
research direction in federated learning. As mentioned in Section 4.3.2, prior works
have demonstrated the potential of PEFT techniques, such as LoRA, in adapting LLM
models. In Chapter 5, we demonstrated the use of a pre-trained model, leveraging
few-shot learning, for an embedded system.

An unexplored area is the role of pre-trained models in federated learning, specifi-
cally the difference between the tasks they were originally trained on and the federated
learning tasks. It’s plausible that devices may have highly specific tasks based on their
applications, often in fields where public datasets are scarce. For instance, medical ap-
plications for rare diseases or rescue drones operating in remote areas. In such cases,
improving the selection of pre-trained models based on the federated task could en-
hance their performance within the framework. One possible approach is to adapt
methods like LogMe [177], which attempts to quantify the best pre-trained model for a
new task to the federated learning context.

4.6 Recapitulation

This chapter summarizes our contributions to reducing the communication costs in
federated learning. Our approach has focused on developing stateless, straightforward
techniques that can easily integrate with other strategies while addressing other chal-
lenges in federated learning. This design philosophy is seen in both our pruning and
LoRA techniques.

The final two sections of this chapter highlight the influence of how the framework is
operated and demonstrate how improved formulations and practices can help bridge
the performance gap in federated learning. The last section, in particular, has led us
to question how an embedded system could leverage a pre-trained model in scenarios
with limited or no communication capability, a topic further discussed in Chapter 5.

5. https://pytorch.org/vision/stable/models.html

https://pytorch.org/vision/stable/models.html

93

Chapter 5

Embedded Few-Shot Learning

Contents
5.1 Contributions . 94
5.2 Embedded Image Classification with Few Data 94
5.3 EASY Few-shot Learning . 95

5.3.1 Few-Shot Learning . 95
5.3.2 EASY training routine . 96

5.4 A Reconfigurable Platform . 97
5.4.1 What is an SoC? . 97
5.4.2 Deploying Models on an FPGA 97

5.5 PEFSL: An open-source Pipeline for Embedded Few-Shot Learning . 98
5.5.1 Design Space Exploration for FPGA Implementation 98

5.5.1.1 Hyperparameters . 98
5.5.2 Training . 99
5.5.3 PEFSL pipeline . 99
5.5.4 Exploration Results . 100
5.5.5 Improvement of the Hardware Implementation 102
5.5.6 Comparison with other hardware implementations 102
5.5.7 Demonstrator . 103

5.6 Recapitulation . 104

Chapter 5. Embedded Few-Shot Learning 94

5.1 Contributions

In this chapter, we detail how we tackled the challenges of implementing few-shot
learning on embedded systems. We consider it as an alternative for co-designing an
embedded image classification system for cases where embedded systems could be
isolated without communication systems. In such cases, the use of a pre-trained model
to compensate for the lack of data is a common approach, frequently used with fine-
tuning techniques. The designed implementation pipeline seeks to allow one to explore
the trade-offs in model adaptation and hardware performance. As the main focus is on
the use of pre-trained models, one can also use it to deploy a model trained with feder-
ated learning, where the final global model represents a generalist model on the group
of clients. We can summarize this work’s contributions as follows:

• One of the first few-shot learning platforms for real-time object classification on
an FPGA SoC in the literature,

• A full open-source implementation pipeline 1, based on the Tensil framework 2,
for designing, training, evaluating and deploying DNN backbones using few-
shot learning on FPGA SoCs,

• A fully-functional demonstrator: the presented methodology was deployed to a
low-power, low-latency demonstrator trained on the MiniImageNet dataset with
a systolic-array-based architecture. The proposed system has a latency of 30 ms
while consuming 6.2 W on the PYNQ-Z1 board.

The work developed here was published at the 57th IEEE International Symposium on
Circuits and Systems (ISCAS 2024) [59].

5.2 Embedded Image Classification with Few Data

So far, we have demonstrated that cross-device systems often face hardware constraints
and limited data availability. These limitations encourage their participation in feder-
ated training loops and the use of compression techniques. In Section 4.5, we explored
the use of pre-trained models to bridge gaps in federated learning, drawing inspiration
from transfer learning scenarios. Another possible situation is when a device cannot
participate in federated learning. Be it in the form of limited communication capabili-
ties or high privacy concerns, where the device cannot expose its data. In such cases,
pre-trained models can help close the performance gap. However, federated learning
allows models to train on data classes that are inaccessible to individual clients, which
boosts overall performance. While fine-tuning (discussed in Section 4.3.1) a pre-trained
model can be a solution, it does not enable the model to perform well on classes that
have not been directly collected. To avoid repeated fine-tuning and address the limited
data availability, Few-Shot Learning (FSL) [15] is a promising alternative. FSL leverages
pre-trained models to perform effectively on new tasks or unseen data with only a few
samples.

One of the advantages of FSL is its ability to learn new classes without relying on SGD-
based techniques, reducing both memory and computational demands. In the context
of embedded systems, several options are available for deploying deep learning mod-
els. Two prominent choices are embedded GPUs, like the NVIDIA Jetsons, and dedi-
cated architectures using FPGAs. NVIDIA Jetsons are ideal for solutions that require

1. https://github.com/brain-bzh/PEFSL
2. https://www.tensil.ai/

https://github.com/brain-bzh/PEFSL
https://www.tensil.ai/

95 5.3. EASY Few-shot Learning

easy deployment and low power consumption, as they utilize the same ecosystem as
traditional GPUs. However, FPGAs can offer lower latencies and greater flexibility in
handling different data formats, as discussed in Section 3.1.4. These are crucial elements
for real-time systems, such as those we can find in a cross-device setting. Moreover,
FPGAs’ reconfigurable hardware allows for the implementation of specialized func-
tionalities, enhancing the device’s capabilities. For example, in the context of federated
learning, the authors in [174] implemented a hardware-based homomorphic encryption
function to enhance security.

This chapter proposes a pipeline for deploying an FSL model on an SoC platform that
incorporates an FPGA. Building on the concepts of heterogeneity discussed in Sec-
tion 4.4, we aim to find the best trade-off between model architecture and available
resources. Although our methodology is designed for FSL deployment, it can also be
adapted for models trained using federated learning.

The chapter is organized as follows: First, a detailed explanation of the FSL method
we used, and then an introduction to our chosen platform and deployment framework.
Finally, we demonstrate how the pipeline was constructed to co-design a ResNet archi-
tecture for implementation on a PYNQ-Z1 board.

5.3 EASY Few-shot Learning

Few-shot learning is a compelling solution for scenarios where only a small number
of labeled examples are available. It allows to profit on public and general datasets to
build powerful feature extractors. In this section, we use our proposed framework as
a general view of the few-shot learning algorithm and as a way to introduce it. The
specific training routine, Ensemble Augmented-Shot Y-shaped Learning (EASY), is dis-
cussed at last.

Generic dataset
(MiniImageNet)

Backbone

loss

feature
vector

feature
vector

Generic dataset training

Training
Loss

Backbone

N classes/ways
Query

K shots

Few-shot training

feature
vector

processing

Nearest
class

mean (NCM)

Prediction

?

Inference

Backbone

NOVEL DATASET

feature
vectors

processing

back propagation

feature vectors

Figure 31 – PEFSL few-shot learning method. Source: [59] © [2024] IEEE.

5.3.1 Few-Shot Learning

FSL involves classifying examples from unseen classes with a small number of anno-
tated examples. Initially, this may seem counterintuitive, as deep learning is known for

Chapter 5. Embedded Few-Shot Learning 96

excelling when trained on large datasets where it generalizes effectively. The power of
FSL comes from using specific training routines to build backbones to be universal fea-
ture extractors. With features of even unseen classes being well separated in the feature
space, FSL relies on techniques to compare these features to classify the input. As such,
it is fundamental to have a training algorithm that focuses on generalization rather than
finding a better fit for one series of examples.

The FSL pipeline used in this work is illustrated in Figure 31. The first step, called
generic dataset training, involves training a deep learning backbone, following EASY
[15]. Few-shot datasets are divided into base and validation sets, with the latter used to
assess generalization performance. For FSL, the classes in the validation set are distinct
from those in the base set [116], so the method can evaluate the model’s generalization
capacity to unseen classes. After training, the backbone is kept frozen, serving as a
universal feature extractor.

Next, FSL performance is evaluated on a third dataset, called the novel dataset, contain-
ing thousands of few-shot episodes [99]. Each episode includes several classes, called
ways, each with a small number of labeled examples, or shots, and some unlabeled ones,
or queries. This process is expressed in the "Few-shot training" and "Inference" parts of
the diagrams in Figure 31. The model’s performance is determined by its classifica-
tion accuracy of queries with few available shots averaged over thousands of episodes.
The number of shots and ways is benchmark-dependent. In practical terms, during the
"Few-shot training" step, the system receives unseen shots of different classes. These
shots are averaged to compose the class "anchors" in the feature space. In the "Infer-
ence", the same backbone extracts the features of a query, and a Nearest Class Mean
(NCM) classifier [63] compares the extracted feature to the class anchors to classify the
query.

For our work, we solve what is called an inductive [146] problem, where queries are
not available beforehand, contrary to transductive [112] problems, where all queries
are known in advance.

5.3.2 EASY training routine

In the EASY method, the training routine for backbones involves several techniques
designed to enhance robustness and generalization performance. The backbone mod-
els follow a Y-shaped architecture, where they are trained using two parallel parts: one
with a standard classification loss and another with a self-supervised learning loss. The
self-supervised loss induces the model to recognize rotations applied to input samples,
which improves the backbone’s ability to extract meaningful features from the input.
Additionally, the backbone training includes the use of manifold mixup [116], a regu-
larization technique that performs linear interpolations between feature vectors in the
latent space. This encourages the model to learn more generalized and robust feature
representations.

The training process adjusts the learning rate during training, where the learning rate
is gradually reduced during each iteration. After each iteration, a warm restart oc-
curs with a slightly reduced maximum learning rate to help with a smoother conver-
gence and to avoid overfitting. Another important element in this training routine is
the use of an ensemble of backbones; each is initialized differently with random seeds.
These backbones are trained independently, and their outputs are concatenated to form
a "richer" and more diverse feature representation, which boosts performance without
significantly increasing the number of parameters or complexity.

97 5.4. A Reconfigurable Platform

5.4 A Reconfigurable Platform

Embedded systems for deep learning applications require efficient, low-power solu-
tions capable of executing deep learning models in real-time. As reconfigurable ac-
celerators, FPGAs offer a flexible and highly parallelizable processing design at low
power. Their reconfigurability offers space for tailored solutions to meet the different
constraints of embedded systems. This section briefly introduces a System-On-Chip
(SoC) platform based on a CPU and an FPGA. We then discuss how deep learning
models can be implemented on FPGAs, specifically the Tensil framework used for the
proposed solution.

5.4.1 What is an SoC?

Integrating System-On-Chip (SoC) and Field Programmable Gate Arrays (FPGAs) en-
ables highly flexible and efficient embedded systems. An SoC with an FPGA combines
traditional processing elements, such as a general-purpose CPU, with programmable
logic in the FPGA, all within the same silicon die. This setup allows, for example, the
CPU to manage software-defined tasks while the FPGA fabric can be programmed for
hardware acceleration, making it ideal for computationally intensive functions like real-
time data processing or implementing custom digital architectures. An introduction to
common FPGAs elements is given in Appendix A.1.

In this context, one notable example of an SoC is the AMD-Xilinx Zynq family, where
the SoC includes an ARM-based CPU, DSP cores, and FPGA fabric on a single chip.
The CPU handles control and application-level logic, while the FPGA fabric can be
customized to accelerate specific tasks, such as deep learning inference or signal pro-
cessing.

In the following work, we have specifically used the PYNQ-Z1 3 development board
from the manufacturer Digilent. This entry-level board has a dual-core Cortex-A9 CPU,
512 MB of memory, and an Artix-7 equivalent FPGA.

5.4.2 Deploying Models on an FPGA

Converting a deep learning model, typically described in high-level languages like
Python or as a representation graph like the Open Neural Network Exchange (ONNX)
[13], into an efficient hardware implementation is challenging. This process involves
mapping the diverse layers and operations of the model, each with varying dimensions,
data dependencies, and computational flows, onto sequential and parallel hardware
architectures [100]. As model complexity and size increase, so does the deployment
difficulty. The most common approach is to design a general deployment framework
supporting a group of layers and architecture families that can be used to automatize
the process. These frameworks usually differ in terms of hardware architectures due
to different design trade-offs. We provide in Appendix A.2 a description of different
frameworks to deploy a deep learning model to FPGAs.

For this work, we chose to use the Tensil framework due to its easy workflow and
adaptability to the solution we proposed. Another crucial point was the direct support
for our target FPGA board.

Tensil is composed mainly of a systolic-array [98] core for matrix-multiplication opera-
tions, with side functional blocks for other operations like activation and pooling func-
tions and a memory block working as a scratchpad. In order to use Tensil, one must

3. The board contains the ZYNQ XC7Z020-1CLG400C chip.

Chapter 5. Embedded Few-Shot Learning 98

use its own compiler that parses an ONNX description to Tensil’s own representation,
which is used to program the hardware IP of Tensil.

5.5 PEFSL: An open-source Pipeline for Embedded Few-Shot
Learning

This section describes the implementation pipeline developed to design a low-complexity
model architecture and train it using the EASY routine.

5.5.1 Design Space Exploration for FPGA Implementation

The complexity of backbones in terms of memory and computational cost makes it
challenging to find the correct trade-off between accuracy and performance. Rapid
adaptation to new tasks with minimal resources and real-time constraints for image
classification is crucial. Therefore, careful attention must be given to the design of effi-
cient backbones.

From the description of a ResNet model in Section 2.1.3.2, we studied its architecture
to propose a low-complexity combination of the Basic Blocks. This type of network
is particularly efficient when deployed into an FPGA, as it has been vastly studied in
the literature. In FSL, the ResNet-12 model version has allowed for close to the State-
of-The-Art (SoTA) [15] performance, although its size. So, we part from this model to
explore the hyperparameters that can impact its performance and deployment.

3x32x32

F
e
a
t
u
r
e
s

1x80

Block 1

C
onv. 3x3 -

C
onv. 3x3 -

C
onv. 3x3 -

C
onv. 3x3 - 16

Block 2 Block 3

C
onv. 3x3 -

C
onv. 3x3 -

C
onv. 3x3 - 16

C
onv. 3x3 - 16

C
onv. 1x1 - 16

C
onv. 3x3 - 40

C
onv. 3x3 - 40

C
onv. 3x3 - 40

C
onv. 1x1 - 40

C
onv. 3x3 - 80

C
onv. 3x3 - 80

C
onv. 3x3 - 80

C
onv. 1x1 - 80

Figure 32 – Structure of a ResNet-9. Convolution layers on the main branch have 3×3
kernels with 16, 40, and 80 output channels, respectively. The convolution layers on
residual paths have 1×1 kernels. Batch-normalization and activation function layers are
omitted for simplicity. The actual layer configuration follows the Basic Block described
in Section 2.1.3.2.

5.5.1.1 Hyperparameters

We list the main hyperparameters that influence the final system performance and com-
plexity:

Network Depth - We opt for two shallow ResNet architectures, the ResNet-9 and
ResNet-12. The ResNet-9 is essentially a ResNet-12 with the final residual block re-
moved. Since ResNet-9 is less computationally demanding and shallower, it is expected
to have lower accuracy than ResNet-12 for more complex tasks. Figure 32 presents the
proposed structure of a ResNet-9.

99 5.5. PEFSL: An open-source Pipeline for Embedded Few-Shot Learning

Training and test image size - The size of training images significantly influences
computational load and accuracy. Smaller images, such as 32 × 32, contain less infor-
mation compared to larger 100 × 100 images, but they require fewer computational
operations. The choice of both training and testing image sizes plays a crucial role in
determining the model’s accuracy.

Downsampling - The intra-block downsampling effect can be achieved in two ways:
either by changing the stride of the final convolution in each block from 1 to 2 or by
using max-pooling. A stride of 2 and a 2 × 2 pooling size achieve the same dimension
reduction.

Number of feature maps - For convolution layer architecture, we use the number of
filters (output channels) in the first convolution layer as a hyperparameter and scale the
subsequent layers accordingly.

5.5.2 Training

For training, we use the MiniImageNet dataset proposed with the EASY routine. It
contains 64 base classes, 16 validation classes, and 20 novel classes. Each class has
600 examples with 84 × 84 resolution. We focused on the 5-ways, 1-shot setup. The
MiniImageNet dataset is used due to its highly diverse classes, allowing for excellent
generalization to new classes.

5.5.3 PEFSL pipeline

To explore the search space of the previously defined hyperparameters for training and
network architectures, we created the PEFSL, a modular pipeline for training, compil-
ing, synthesizing hardware, and deploying a few-shot learning application on an FPGA
SoC. This pipeline integrates various tools, which are described in Figure 33.

Part A - It handles the training routine of the backbone, as described in Section 5.3.2.
The EASY training routine incorporates the ResNet-9 and ResNet-12 architectures and
their variants for training CNNs on FSL tasks. The PyTorch model is converted into
ONNX format, and we simplify the model using the ONNX simplifier tool for efficient
optimization. Finally, the ONNX model is compiled via the Tensil framework. With
a description of the underlying FPGA resource (.tarch file), which defines features
like the number of Processing Elements, data format, and memory size, these three
initial scripts automatically generate the latency of the neural network on the specified
architecture. This enables design space exploration of neural network architectures and
training methods, as shown in Figure 34.

Part B - It focuses on the architecture’s compilation, which produces Register Transfer
Level (RTL) files for the Tensil accelerator Intellectual Propriety (IP). These RTL files are
used in part C, which generates project files for the AMD-Xilinx Vivado tool to create
the bitstream for the FPGAin the SoC. The resulting intermediary files (bitstream and
Tensil model) are utilized in the main script, which employs the PYNQ driver for data
transfer between the CPU and FPGA.

The final result is a platform that executes the chosen CNN model in the FPGA in 16-bit
fixed-point, thanks to the Tensil framework, while the CPU side executes the model in
32-bit floating point.

Chapter 5. Embedded Few-Shot Learning 100

main.py

.pt

brain_train_pefsl

pytorch

model_to_onnx.py

onnx_to_tensil.py

onnx
onnxsim

.onnx

.tperf
.tmodel
.tdata

tensil

.tarch

tensil compile

base.tcl

.v .v .v

.bit
.hwh

tensil

vivado

B

A

C

Figure 33 – Modular pipeline for the deployment of a few-shot learning system on an
FPGA SoC. Source: [59] © [2024] IEEE.

5.5.4 Exploration Results

The training results are illustrated in Figure 34, where we thoroughly explored the hy-
perparameter search space. Each network was compiled using Tensil to determine the
number of cycles required for inference. To maintain a smooth video stream (above 10
FPS), 32 × 32 images were necessary. Therefore, we present results for this resolution
alongside the MiniImageNet standard 84 × 84 resolution in a 5-way, 1-shot setup. A
key observation is that, for the 32× 32 resolution, ResNet-9 models (empty marks) out-
perform ResNet-12 models (filled marks) in accuracy despite having fewer layers and
parameters. We hypothesize that with 32×32 images, the final feature map dimensions
in ResNet-12 are too small to utilize by the downstream NCM classifier effectively.

Another important finding is that, for a target resolution of 32× 32, the training images
should also be of size 32 × 32 (circles). Models trained on larger images, such as 84 ×
84 and 100 × 100, exhibit significantly lower accuracy, even though resizing to 32 ×
32 during training results in some loss of information. This might suggest that more
advanced data augmentation techniques or better generalization metrics could further
improve accuracy [14].

We also found that using convolutions with a stride of 2, as opposed to max pooling
layers for reducing intermediate representation dimensions, reduces the number of op-
erations required. This is indicated as strided in Figure 34. This change not only reduces
latency but may also enhance accuracy. Finally, adjusting the number of feature maps
in the first layer, which scales the network’s width, offers a trade-off between latency
and accuracy.

It is important to note that the primary objective of this project is real-time few-shot
classification, where minimizing latency takes precedence over achieving the highest

101 5.5. PEFSL: An open-source Pipeline for Embedded Few-Shot Learning

0 500 1,000 1,500 2,000 2,500
40

45

50

55

60

Number of Cycles (KCycles)

T
es
t
A
cc
u
ra
cy

(%
)

Test Image Size = 32

0 2,000 4,000 6,000 8,000 10,000
50

55

60

65

70

Number of Cycles (KCycles)

T
es
t
A
cc
u
ra
cy

(%
)

Test Image Size = 84

Feature Maps 16 24 32

Training Image Size 32 84 100

Strided Yes (Dark) No (Light)

Backbone ResNet-9 ResNet-12

Figure 34 – Accuracy and Latency Trade-off: Graphs depict tests on 32 × 32 (top) and
84 × 84 (bottom) images. Different feature map configurations are denoted by unique
colors, while distinct training image sizes are represented by different shapes. We also
investigate the impact of strided architectures, differentiated by dark and light colors.
Additionally, we vary the backbone architecture from ResNet-9, with empty forms, and
ResNet-12, filled forms. Source: [59] © [2024] IEEE.

accuracy. As a result, using 84 × 84 images for inference on the PYNQ-Z1 board is not
feasible, as all networks at this resolution exceed 2000 KCycles. Where 1 KCycles indi-
cates that the Tensil accelerator needs 1000 iterations to execute the backbone, following
their computing model. We focus on networks with fewer than 1000 KCycles. There is
a 2% difference in accuracy between the best-performing network in terms of accuracy
and the best-performing one in terms of latency.

In conclusion, the ideal trade-off for our application lies in the top-left corner of the
graph, where configurations with acceptable accuracy and the lowest latency are found.
We have selected the strided ResNet-9, trained on 32× 32 images with 16 feature maps,
and using 32 × 32 images during inference, represented by the empty blue circle on

Chapter 5. Embedded Few-Shot Learning 102

the first graph in Figure 34. This work achieved 54% accuracy on the MiniImageNet
dataset for the 32× 32 resolution in the 1-shot, 5-ways scenario.

In [167], authors proposed to apply a FSL algorithm to federated learning. At the end of
their training algorithm, each client has a personalized backbone, which was trained to
generalize all clients’ data and fine-tuned to its own dataset. PEFSL could be integrated
into this method to provide a deployment platform.

5.5.5 Improvement of the Hardware Implementation

Now that we have chosen the model configuration for our demonstrator, we wanted to
see if the Vivado and Tensil tools could minimize the latency of this same architecture.

By increasing the FPGA clock frequency, we increase the number of operations per
second, thus reducing latency, although not proportionally. This is due to Tensil’s com-
putational model and memory transfer architecture. We notice that at 125 MHz, our
ResNet-9 is the most performant in terms of latency, reaching 30 ms. However, it con-
sumes more power than the same network at a clock rate of 50 MHz. Nevertheless, its
consumption remains reasonable for an embedded application at 3.9 W.

We also tried to adjust Tensil’s architecture parameters. We maximized the size of the
systolic array according to the available resources and attempted to use 8-bit fixed point
data. However, we could not configure Vivado to route 8-bit words on DSPs, and we
exceeded the available LUT count. This limitation is connected to our limited knowl-
edge of the hardware description language Chisel [12], which Tensil is made of. Based
on these facts, it is clear that the best network choice is the ResNet-9 at 125 MHz, reduc-
ing latency by 8 ms compared to 50 MHz, even if it sacrifices a few tenths of a watt at
3.9 W.

An important future direction outside the Tensil’s limitation would be to explore more
efficient quantization schemes. For example, [100] uses 8-bit for the first and last layers,
with 4-bit for the intermediate layers. This allowed for better resource utilization while
conserving accuracy.

5.5.6 Comparison with other hardware implementations

There is limited literature specifically addressing FSL on FPGAs or in embedded sys-
tems. For example, in a recent study [108], researchers proposed a method for recog-
nizing pests using FSL on an FPGA. They achieved a processing speed of 2 frames per
second on a PYNQ-Z1.

To demonstrate that the hardware resources and processing time achieved with Tensil’s
framework align with industry standards, we conducted a benchmark and presented
the results in Table 11. We have configured the array size of our systolic array to 12,
which is the maximum size for our setup. The FPGA frequency is set to 125 MHz.
With this configuration, the latency of the inference process is 30 ms. We compared our
approach with deep learning models implementations designed to classify images on
the CIFAR-10 dataset. With images of 32×32 pixels, it can be effectively processed by
the ResNet-9 backbone we selected. To be fair, we implemented the additional down-
stream linear layer, to be comparable with other works. We specifically focused on
implementations for the Zynq-7020 (z7020) chip like the one in the PYNQ-Z1. The re-
sults in Table 11 show that Tensil’s implementation provides similar processing time
and accuracy for comparable resources, confirming the effectiveness of our backbone’s
implementation. It’s worth noting that each study used a different model.

103 5.5. PEFSL: An open-source Pipeline for Embedded Few-Shot Learning

Table 11 – CIFAR-10 inference on z7020 FPGA. Source: [59] © [2024] IEEE.

Work
Prec.
[bits]

LUT
BRAM
[36 kb]

FF DSP
Latency

[ms]
Acc.
[%]

[24] hls4ml 8-12 28544 42 49215 4 27.3 87
[24] FINN 1 24502 100 34354 0 1.5 87
[172] 1-2 23436 135 - 53 1.1 86
[92] 16 15200 523 41 167 109 -

Ours 16 15667 59 9819 159 35.9 92

5.5.7 Demonstrator

Figure 35 – Schematic of the proposed system. Source: [59] © [2024] IEEE.

We developed a standalone demonstrator housed in a compact box to demonstrate how
easily this work can be applied in an industrial setting. Figure 35 presents a schematic
of the demonstrator, which includes a PYNQ-Z1 board, an 800×540p HDMI screen, a
160×120 pixels camera, and a 10,000 mAh battery, which provides a battery life of 5.75
hours during inference. The demonstration features on-screen indicators to enhance
user experience, and the system achieves an average of 16 FPS during inference. The
network used is a ResNet-9 with 16 feature maps, and inference is performed on the
FPGAat 125 MHz, implemented in a 16-bit fixed-point format with 8 bits for the inte-
ger part. The entire system, including the SoC, camera, and screen, consumes 6.2 W
of power. Most of the FPGAresources are utilized by the Tensil hardware accelerator,
and the HDMI AMD-Xilinx IP is implemented on the FPGA side. Meanwhile, all soft-
ware tasks, such as pre-processing, post-processing, and image classification (NCM),
are handled by the CPU. The demonstrator also features interfaces for the camera and
buttons for live control. Currently, the NCM classifier runs on the CPU, but in a future
version, it could be moved to the FPGA. A picture of the actual demonstrator can be
seen in Figure 36.

Chapter 5. Embedded Few-Shot Learning 104

Figure 36 – A picture of the demonstrator.

5.6 Recapitulation

This section showed our proposal for the first implementation of an inductive FSL sys-
tem on an FPGA SoC, allowing for fast inference and low power consumption. PEFSL
is a fully open-source implementation pipeline that allows for the design and deploy-
ment of a deep learning model, as well as training and deploying it on an embedded
system.

105

Chapter 6

Conclusions and Perspectives

Contents
6.1 Conclusions . 106
6.2 Perspectives . 107

6.2.1 Compressed Partial Training . 107
6.2.2 Efficient Inference Platform . 108
6.2.3 Model Heterogeneous Federated Learning 108

Chapter 6. Conclusions and Perspectives 106

6.1 Conclusions

In this thesis, we have delved into the development and challenges surrounding model
compression in deep learning, with a particular focus on federated learning and embed-
ded systems. We explored how compression can be used to reduce the communication
costs of federated learning, which arise once participants need to train their own model
and continuously exchange model weights with an orchestration server. Additionally,
we demonstrated a co-design strategy to leverage a pre-trained model for an efficient
inference system.

In Chapter 2, we briefly introduce deep learning for image classification, along with
details on the various architectures and datasets used in this work. Building on this
foundation, we explored the different characteristics of federated learning and the chal-
lenges within the field. Many of the issues come from the privacy mechanism of keep-
ing data locally. To address this, several techniques have been developed to compensate
for the unknown distribution of client data, with most efforts aimed at reducing con-
vergence time and bridging the performance gap with centralized systems. However,
clients with heterogeneous hardware capabilities pose a significant challenge, as re-
source differences limit their fair integration into the framework. While new optimiza-
tion strategies are crucial to narrow the performance gap, system-level approaches are
also necessary to include a broader range of clients. This is particularly important be-
cause federated learning is designed as a privacy-aware, collaborative framework that
allows multiple private datasets to train a single model collectively. Because of this, this
thesis focused on addressing the hardware limitations of different clients by leaning on
deep learning model compression techniques.

Chapter 3 begins with a review of quantization and pruning, two classic model com-
pression techniques. For each approach, we highlighted the most commonly used
methods and the hardware execution impacts of running a quantized or pruned model.
Other promising compression techniques are also briefly discussed, as they are also
used to address communication and computational challenges in federated learning.
The federated learning literature has extensively explored the use of compression tech-
niques both post-training and during training to tackle hardware heterogeneity. How-
ever, many proposed methods are difficult to integrate with other techniques. As a
result, while these works often reduce communication and/or computation costs, they
tend to overlook the potential benefits of combining them with optimization methods
to improve overall performance. In federated learning, a model’s accuracy is closely
tied to the strategy used for a given scenario. Therefore, any compression technique
should minimize its interference with optimization strategies to allow seamless inte-
gration without further modifications.

In Chapter 4, we addressed the challenge of communication costs in federated learning
through two distinct solutions. First, we focused on magnitude pruning, implementing
a double-sided compression technique where both clients and servers apply weight-
magnitude pruning before transmitting model updates. Pruning increases message
sparsity, and the resulting sparse models were then compressed using the ZIP algo-
rithm, which is based on entropy encoding, leveraging models’ sparsity. The method
is easily implementable and provides a robust framework for federated learning tasks,
reducing message sizes by 50% with less than 1% accuracy loss. We also proposed
an implementation of Low-Rank Adaptation (LoRA) to federated learning. In this ap-
proach, convolutional layers are instantiated with low-rank adapters controlled by a
hyperparameter called the rank, which allows a balance between compression rate and
accuracy. This flexibility allows us to take into account different communication cost

107 6.2. Perspectives

constraints. We reached a 4.8 times reduction of message sizes while having a 1% accu-
racy loss.

Additionally, we extended the proposed technique by applying asymmetric quantiza-
tion to LoRA layers, using 8-bit integer words to reduce communication costs further.
The quantization scheme allowed us to reduce the message sizes further, reaching up to
18.6 times of compression with up to 1% accuracy loss. Notably, this technique had low
degradation of both convergence rates and model accuracy. Another point in this work
was considering smaller models as a viable alternative to compressing larger, more
cumbersome models. We also reviewed the impact of model size versus compression
in federated learning. We concluded that a critical step in applying compression tech-
niques should involve a "sanity check" with smaller models designed to meet specific
computational or communication constraints. Also, personalizing compression rates
per client is fundamental in allowing constrained devices to participate in federated
learning. Furthermore, using pre-trained models or public datasets can effectively close
the performance gap in federated learning, particularly in scenarios with non-IID data
distributions. Pre-training offers a strong initialization point for federated models, ac-
celerating convergence and improving accuracy, all while reducing the overall training
burden on clients.

In Chapter 5, we presented the development of an implementation and deployment
pipeline for embedding a few-shot learning algorithm. In systems with limited com-
munication capabilities, one potential solution to leverage on-device data is through
the use of pre-trained models and adaptation techniques. We built this pipeline around
a few-shot learning algorithm, envisioning a device with limited data that cannot in-
tegrate federated learning. Using the EASY [15] method as a foundation, the pipeline
trains a backbone model to generalize over the MiniImageNet dataset. The goal of the
training routine is to create a robust general feature extractor whose features can be
utilized for downstream tasks. We conducted a design-space exploration to optimize
the balance between latency and accuracy for deploying the backbone on a PYNQ-Z1
board. This platform enabled us to exploit the FPGA for model inference using the Ten-
sil inference framework while the embedded CPU handled an image classification ap-
plication. The Tensil’s IP, based on a systolic-array architecture, executed the inference
phase of an adapted ResNet-9 model. The extracted features were then passed to the
CPU, where a Python-based application implemented a Nearest Class Mean classifier.
To show the potential of our open-source Pipeline for Embedded Few-Shot Learning
(PEFSL), we developed a working demonstrator featuring a camera, an HDMI screen,
and a battery to create a fully portable, low-power (6.2 W), low-latency (30 ms) device.
This demonstrator runs a few-shot learning image classification task with a graphic
user interface and buttons for user interaction. We trained and deployed a compact
model tailored to the device’s hardware capabilities. While our approach was effective,
further improvements could be made by using more powerful devices or incorporating
a more advanced hardware accelerator framework.

6.2 Perspectives

6.2.1 Compressed Partial Training

This work has focused on applying compression techniques to reduce communication
costs with minimal impact on computational expenses. A first interesting extension of
these works could be its integration into the concept of "partial training," as seen in Fed-
Dropout [28] and FedRolex [5], discussed in Chapter 3. In this approach, clients train

Chapter 6. Conclusions and Perspectives 108

on subsets of the global model, tailoring the submodel to their available resources. This
strategy addresses both communication and computational challenges and is still com-
patible with compression methods. However, as shown by SLT [135], these techniques
still result in models that underperform compared to "simply a smaller model." SLT in-
troduced an adaptation of partial training, where the initial communication cost is low
but increases with each round. As an alternative, recent studies such as ScaleFL [86]
have integrated the "early-exit" concept [156] into client models. Early-exit models in-
corporate several classification heads at different points, enabling premature classifica-
tion without executing the entire model. Still, both methods involve variable dynamic
costs, and eventually, the full global model must be exchanged. A potential future di-
rection could be first to minimize communication costs using compression techniques,
followed by exploring iterative early-exit strategies, as outlined by SLT. This would al-
low for a new trade-off between partial training and message compression message,
adding relaxations in previous methods and enabling partial training to close the gap
to "just smaller" models. It is expected that such an approach would need to quantify
the impact of compression on partial training first.

6.2.2 Efficient Inference Platform

A second perspective would be to use the federated learning training to adapt each
client’s model to its target hardware, obtaining a personalized compressed model per
client. Works, such as [167], train federated learning clients to use both global (shared)
and local (not shared) parameters. Other studies, like [39], have explored model per-
sonalization by employing a global backbone while using the classification head as lo-
cal parameters, allowing the personalization of each client’s model. In both cases, after
training, each client possesses a backbone that generalizes across all clients’ data and
personalized classification heads. For more efficient deployment, a quantization objec-
tive, as seen in FedMPQ [33], could be incorporated, enabling clients to obtain mixed-
precision models tailored to their own constraints. The resulting mixed-precision per-
sonalized models could then be implemented in a pipeline such as PEFSL. Addition-
ally, Tensil, in its current state, is a limited deployment framework for deep learning
models. Redesigning Tensil with a focus on mixed-precision backbones could create a
deployment framework optimized for accelerating a general feature extractor, with the
features processed by the device’s CPU. An example of this is the NeuroCorgi appli-
cation by CEA-LIST, as seen in [121]. As most works in federated learning are focused
on training performance, a post-training objective would make the framework more
practical for use in real-world scenarios.

6.2.3 Model Heterogeneous Federated Learning

A final, more far-fetched idea is the exploration of self-defined clients’ models. This
would require aggregation methods adapted to account for architectural differences.
This approach would directly tackle many open challenges in federated learning, as
discussed in Chapter 2, offering a promising path for future research in heterogeneous
distributed frameworks. The main issue to be studied would be how different architec-
tures can learn together and benefit each other. One possible direction would be using
knowledge distillation, as seen in FedDF [111], discussed in Chapter 3. However, their
method relies on the server having a proxy dataset whose task is close to the client’s
data. Although possible, a more exciting approach could be the use of large language
or multimodal models to guide clients’ knowledge fusion. The necessary steps would
require the study of combining ensemble knowledge distillation [54] with federated
learning strategies while not having access to clients’ data distribution. The idea could

109 6.2. Perspectives

allow for a complete heterogeneous framework capable of aggregating knowledge from
all types of clients.

Chapter 6. Conclusions and Perspectives 110

111

Appendix A

FPGA and Deep Learning Models

A.1 What is an FPGA ?

Logic

Blocks

Logic

Blocks

Logic

Blocks

Logic

Blocks

Logic

Blocks

Logic

Blocks

Logic

Blocks

Logic

Blocks

Logic

Blocks

Logic

Blocks

Logic

Blocks

Logic

Blocks

Mem.
Blocks

Mem.
Blocks

DSP
Blocks

DSP
Blocks

Mem.
Blocks

Mem.
Blocks

DSP
Blocks

DSP
Blocks

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IOB IOB IOB IOB IOB IOB IOB IOB IOB

IOB IOB IOB IOB IOB IOB IOB IOB IOB

Figure 37 – A simplified block diagram of an FPGA. IOBs stands for Input/Output
Blocks, Mem. Blocks for Memory Blocks and DSP Blocks for Digital Signal Processing
Blocks.

A Field-Programmable Gate Array (FPGA) is a type of integrated circuit specifically
designed to be reconfigurable by the user, enabling customized hardware functionality
after manufacturing. Unlike ASICs, which have a fixed function, FPGAs offer a flexible
hardware platform to perform different tasks. Although the physical layout of an FPGA
is fixed, its reconfigurability comes from its architecture, which is composed of config-
urable logic blocks, interconnects, and I/O pins, as well as other specialized resources

Appendix A. FPGA and Deep Learning Models 112

such as Digital Signal Processing (DSP) and memory blocks. Figure 37 illustrates a
simplified block diagram of an FPGA, with the key components: logic blocks, switch
matrix (interconnect), DSP units, memory blocks, and Input/Output Blocks (IOBs). The
switch matrix, composed of configurable routing paths (wires) and switching elements,
allows signals to flow between different components of the FPGA. This matrix enables
dynamic reconfiguration by directing signals across various blocks in a design-specific
manner. The different functional blocks can be described as follows.

Logic Blocks are the fundamental units in an FPGA for implementing generic logic
functions. These blocks typically consist of three main components: Look-Up Tables
(LUTs), Multiplexers (MUXs), and Flip-FLop/Registers (FFs). LUTs are used to store
precomputed truth table values, allowing them to quickly output results for small com-
binational logic functions by addressing those values. Registers are memory elements
that hold values between clock cycles, enabling the implementation of sequential logic.
MUXs are used for routing and selecting between different inputs, controlling the data
flow. Figure 38 illustrates a possible configuration for a cell inside a logic block. In
practice, a logic block consists of several interconnected cells connected using dedi-
cated routing resources such as carry chains. The programmable nature of LUTs allows
logic blocks to be highly flexible and capable of implementing both combinational and
sequential functions, making them key components in FPGA architectures.

Memory Blocks are specialized storage units in FPGAs designed to hold larger amounts
of data than individual registers. Unlike FFs, memory blocks provide a relatively large
addressable space optimized for high-speed data storage and retrieval. These blocks
can be configured as single-port or dual-port memories, supporting parallel data ac-
cess for increased throughput. They are typically used to store large data structures
such as buffers, lookup tables, and state information. Their capacity and reconfigura-
bility make memory blocks essential for low-latency data-intense applications, such as
image processing, deep learning, and communication systems.

DSP Blocks are another category of specialized hardware blocks in FPGAs. These
blocks are optimized for high-performance arithmetic operations, such as addition,
subtraction, and multiplication. These operators are critical for signal processing, con-
trol systems, and machine learning applications. DSP blocks often contain dedicated
hardware for fast MAC operations, allowing them to perform complex mathemati-
cal computations with low latency. The optimized architecture of DSP blocks makes
them highly efficient for handling computationally intensive tasks, freeing up general-
purpose logic resources for other functions.

Input/Output Blocks interface the internal FPGA fabric and the external world. These
blocks are responsible for driving signals in and out of the FPGAand supporting vari-
ous communication protocols and standards. IOBs vary in functionality depending on
the type of connection required, ranging from simple General-Purpose Input/Output
(GPIO) pins to high-speed transceivers for interfaces such as PCIe, Ethernet, or DDR
memory.

Thus, through programmable interconnects and functional blocks, an FPGA can be tai-
lored to implement a wide range of digital systems, from simple logic circuits to com-
plex processing architectures, all without requiring changes to the physical hardware
itself. Its reprogrammable capabilities allow for high parallel processing, low latency,
and deterministic architectures that are essential for real-time applications.

113 A.2. Deployement Frameworks

M

U

X

FFLUT

Carry IN

Carry OUT

A

B

C

D

OUT

Clock

Clock

Figure 38 – A generic cell in a logic block diagram. With a 4-input Look-Up-Table
(LUT), a Flip-Flop (FF), a Multiplexer (MUX), and a Clock signal.

A.2 Deployement Frameworks

The two more common hardware architectures are Deep Processing Units (DPUs) and
dataflow architectures [35].

A DPU architecture revolves around specialized cores designed to accelerate matrix
operations, such as convolutions and linear layers. These cores are often built using
systolic arrays [98], a type of parallel computing architecture that is highly efficient in
performing matrix multiplications. In addition to matrix operations, DPUs typically
include dedicated blocks for activation functions, like ReLU and softmax, normaliza-
tion layers, and memory space, to handle intermediate results. This architecture closely
resembles GPUs, where layers of the neural network are compiled/mapped onto the
DPU and executed sequentially, often layer by layer, making them flexible to support
different sizes of models but still limited in terms of layer parallelism.

In contrast, dataflow architectures adopt a different approach by focusing on optimiz-
ing the flow and processing of data. These architectures focus on fine-grained operation
parallelism and data flow, allowing the design to handle multiple layers or operations
simultaneously. Frequently, these architectures are implemented in a pipeline fashion
to maximize throughput by reducing memory movements between layers. Dataflow
architectures allow for greater flexibility in deciding how computation and resources
are allocated, contrary to DPU architectures. The cost of this flexibility comes in terms
of resources, where the model to be deployed is more constrained by resources than
DPUs.

The choice of framework depends on the deployment objectives—whether the priority
is low latency, high throughput, or minimal power consumption. We present in a non-
exhaustive list a few deployment frameworks:

• Vitis-AI [6]: A free closed-source software by AMD-Xilinx, based on a DPU family
of architectures. Vitis-AI is a suite of solutions that one can use to deploy to AMD-
Xilinx FPGAs. The software complies and optimizes deep learning models for its
architecture, with dedicated tools for quantization and pruning.

• N2D2 [19]: It is a deployment framework adapted for multiple hardware targets

Appendix A. FPGA and Deep Learning Models 114

like FPGA, ASICs, GPUs, microprocessors, and others, from the CEA-LIST. The
framework also proposes efficient training, quantization, and inference routines,
making it an all-in-one solution that does not depend on classic tools like Pytorch.
The tool has two closed-source IPs, DNeuro for FPGAs and PNeuro [30] for both
FPGAand ASICs. Dneuro is a DPU-like architecture, while PNeuro is a dataflow
architecture.

• FINN [22]: An open-source pipelined dataflow architecture by a research group
of AMD-Xilinx. FINN allows for a fine-grain implementation of each layer and
operator in the model. FINN supports mixed-precision deployment by combin-
ing its solution with the Brevitas [132] quantization framework.

• Tensil [157]: A systolic-array-based DPU open-source solution by TensilAI. It al-
lows for implementing CNNs on FPGAs with a dedicated compiler and quantizer
in 16- or 8-bit fixed point format. The framework focuses on being a lightweight
solution for implementing models in low-end targets.

115 Bibliography

Bibliography

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. « Deep learning with differential privacy ». In: Pro-
ceedings of the 2016 ACM SIGSAC conference on computer and communications secu-
rity. 2016, pp. 308–318.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shya-
mal Anadkat, et al. « Gpt-4 technical report ». In: arXiv preprint arXiv:2303.08774
(2023).

[3] Ankur Agrawal, Silvia M Mueller, Bruce M Fleischer, Xiao Sun, Naigang Wang,
Jungwook Choi, and Kailash Gopalakrishnan. « DLFloat: A 16-b floating point
format designed for deep learning training and inference ». In: 2019 IEEE 26th
Symposium on Computer Arithmetic (ARITH). IEEE. 2019, pp. 92–95.

[4] Muhammad Pervez Akhter, Jiangbin Zheng, Farkhanda Afzal, Hui Lin, Saleem
Riaz, and Atif Mehmood. « Supervised ensemble learning methods towards au-
tomatically filtering Urdu fake news within social media ». In: PeerJ Computer
Science 7 (2021), e425.

[5] Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. « FedRolex: Model-Heterogeneous
Federated Learning with Rolling Sub-Model Extraction ». In: arXiv preprint arXiv:2212.01548
(2022).

[6] AMD-Xilinx. Vitis-AI. https://github.com/Xilinx/Vitis-AI. 2024.

[7] Mohammad Mohammadi Amiri, Deniz Gunduz, Sanjeev R Kulkarni, and H
Vincent Poor. « Federated learning with quantized global model updates ». In:
arXiv preprint arXiv:2006.10672 (2020).

[8] Adam Arany, Jaak Simm, Martijn Oldenhof, and Yves Moreau. « SparseChem:
Fast and accurate machine learning model for small molecules ». In: arXiv preprint
arXiv:2203.04676 (2022).

[9] Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. « Quarot: Outlier-free
4-bit inference in rotated llms ». In: arXiv preprint arXiv:2404.00456 (2024).

[10] Umar Asif, Jianbin Tang, and Stefan Harrer. « Ensemble knowledge distillation
for learning improved and efficient networks ». In: ECAI 2020. IOS Press, 2020,
pp. 953–960.

[11] Sara Babakniya, Ahmed Roushdy Elkordy, Yahya H Ezzeldin, Qingfeng Liu,
Kee-Bong Song, Mostafa El-Khamy, and Salman Avestimehr. « SLoRA: Feder-
ated parameter efficient fine-tuning of language models ». In: arXiv preprint arXiv:2308.06522
(2023).

https://github.com/Xilinx/Vitis-AI

Bibliography 116

[12] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, John Wawrzynek, and Krste Asanović. « Chisel: constructing
hardware in a scala embedded language ». In: Proceedings of the 49th Annual De-
sign Automation Conference. 2012, pp. 1216–1225.

[13] Junjie Bai, Fang Lu, Ke Zhang, et al. ONNX: Open Neural Network Exchange.
https://github.com/onnx/onnx. 2019.

[14] Yassir Bendou, Vincent Gripon, Bastien Pasdeloup, Giulia Lioi, Lukas Mauch,
Stefan Uhlich, Fabien Cardinaux, Ghouthi Boukli Hacene, and Javier Alonso
Garcia. « A statistical model for predicting generalization in few-shot classifica-
tion ». In: 2023 31st European Signal Processing Conference (EUSIPCO). IEEE. 2023,
pp. 1260–1264.

[15] Yassir Bendou, Yuqing Hu, Raphael Lafargue, Giulia Lioi, Bastien Pasdeloup,
Stéphane Pateux, and Vincent Gripon. « Easy—ensemble augmented-shot-y-shaped
learning: State-of-the-art few-shot classification with simple components ». In:
Journal of Imaging 8.7 (2022), p. 179.

[16] Reda Bensaid, Vincent Gripon, François Leduc-Primeau, Lukas Mauch, Ghouthi
Boukli Hacene, and Fabien Cardinaux. « A Novel Benchmark for Few-Shot Se-
mantic Segmentation in the Era of Foundation Models ». In: arXiv preprint arXiv:2401.11311
(2024).

[17] Daniel J Beutel and et al. « Flower: A friendly federated learning research frame-
work ». In: arXiv:2007.14390 (2020).

[18] Sameer Bibikar, Haris Vikalo, Zhangyang Wang, and Xiaohan Chen. « Federated
dynamic sparse training: Computing less, communicating less, yet learning bet-
ter ». In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36. 6.
2022, pp. 6080–6088.

[19] O. Bichler, D. Briand, V. Gacoin, B. Bertelone, T. Allenet, and J. Thiele. N2D2-
Neural Network Design & Deployment. https://github.com/CEA-LIST/
N2D2. 2024.

[20] Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. « Under-
standing batch normalization ». In: Advances in neural information processing sys-
tems 31 (2018).

[21] Michaela Blott, Nicholas J Fraser, Giulio Gambardella, Lisa Halder, Johannes
Kath, Zachary Neveu, Yaman Umuroglu, Alina Vasilciuc, Miriam Leeser, and
Linda Doyle. « Evaluation of optimized cnns on heterogeneous accelerators us-
ing a novel benchmarking approach ». In: IEEE Transactions on Computers 70.10
(2020), pp. 1654–1669.

[22] Michaela Blott, Thomas B Preußer, Nicholas J Fraser, Giulio Gambardella, Ken-
neth O’brien, Yaman Umuroglu, Miriam Leeser, and Kees Vissers. « FINN-R:
An end-to-end deep-learning framework for fast exploration of quantized neu-
ral networks ». In: ACM Transactions on Reconfigurable Technology and Systems
(TRETS) 11.3 (2018), pp. 1–23.

[23] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. « Practical
secure aggregation for federated learning on user-held data ». In: arXiv preprint
arXiv:1611.04482 (2016).

https://github.com/onnx/onnx
https://github.com/CEA-LIST/N2D2
https://github.com/CEA-LIST/N2D2

117 Bibliography

[24] Hendrik Borras, Giuseppe Di Guglielmo, Javier Duarte, Nicolò Ghielmetti, Ben
Hawks, Scott Hauck, Shih-Chieh Hsu, Ryan Kastner, Jason Liang, Andres Meza,
et al. « Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark ». In:
arXiv preprint arXiv:2206.11791 (2022).

[25] John Bridle. « Training stochastic model recognition algorithms as networks can
lead to maximum mutual information estimation of parameters ». In: Advances
in neural information processing systems 2 (1989).

[26] Jingyong Cai, Masashi Takemoto, and Hironori Nakajo. « A deep look into log-
arithmic quantization of model parameters in neural networks ». In: Proceedings
of the 10th International Conference on Advances in Information Technology. 2018,
pp. 1–8.

[27] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and
Kurt Keutzer. « Zeroq: A novel zero shot quantization framework ». In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. 2020,
pp. 13169–13178.

[28] Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar.
« Expanding the reach of federated learning by reducing client resource require-
ments ». In: arXiv preprint arXiv:1812.07210 (2018).

[29] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. « An analysis of deep
neural network models for practical applications ». In: arXiv preprint arXiv:1605.07678
(2016).

[30] Alexandre Carbon, J-M Philippe, Olivier Bichler, Renaud Schmit, Benoît Tain,
David Briand, Nicolas Ventroux, Michel Paindavoine, and Olivier Brousse. « PNeuro:
A scalable energy-efficient programmable hardware accelerator for neural net-
works ». In: 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE. 2018, pp. 1039–1044.

[31] Rich Caruana. « Multitask learning ». In: Machine learning 28 (1997), pp. 41–75.

[32] Hong-You Chen, Cheng-Hao Tu, Ziwei Li, Han-Wei Shen, and Wei-Lun Chao.
« On the importance and applicability of pre-training for federated learning ».
In: arXiv preprint arXiv:2206.11488 (2022).

[33] Huancheng Chen and Haris Vikalo. « Mixed-precision quantization for feder-
ated learning on resource-constrained heterogeneous devices ». In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, pp. 6138–
6148.

[34] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. « A
simple framework for contrastive learning of visual representations ». In: Inter-
national conference on machine learning. PMLR. 2020, pp. 1597–1607.

[35] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. « Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural net-
works ». In: IEEE journal of solid-state circuits 52.1 (2016), pp. 127–138.

[36] Brian Chmiel, Ron Banner, Gil Shomron, Yury Nahshan, Alex Bronstein, Uri
Weiser, et al. « Robust quantization: One model to rule them all ». In: Advances
in neural information processing systems 33 (2020), pp. 5308–5317.

[37] Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, Matt Barnes, and Gauri Joshi.
« Heterogeneous LoRA for Federated Fine-tuning of On-device Foundation Mod-
els ». In: International Workshop on Federated Learning in the Age of Foundation Mod-
els in Conjunction with NeurIPS 2023. 2023.

Bibliography 118

[38] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vi-
jayalakshmi Srinivasan, and Kailash Gopalakrishnan. « Pact: Parameterized clip-
ping activation for quantized neural networks ». In: arXiv preprint arXiv:1805.06085
(2018).

[39] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. « Ex-
ploiting shared representations for personalized federated learning ». In: Inter-
national conference on machine learning. PMLR. 2021, pp. 2089–2099.

[40] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. « Binaryconnect:
Training deep neural networks with binary weights during propagations ». In:
Advances in neural information processing systems 28 (2015).

[41] George Cybenko. « Approximation by superpositions of a sigmoidal function ».
In: Mathematics of control, signals and systems 2.4 (1989), pp. 303–314.

[42] Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. « Cinic-
10 is not imagenet or cifar-10 ». In: arXiv preprint arXiv:1810.03505 (2018).

[43] Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin
Ovtcharov, Anna Vinogradsky, Sarah Massengill, Lita Yang, Ray Bittner, et al.
« Pushing the limits of narrow precision inferencing at cloud scale with mi-
crosoft floating point ». In: Advances in neural information processing systems 33
(2020), pp. 10271–10281.

[44] Ittai Dayan, Holger R Roth, Aoxiao Zhong, Ahmed Harouni, Amilcare Gentili,
Anas Z Abidin, Andrew Liu, Anthony Beardsworth Costa, Bradford J Wood,
Chien-Sung Tsai, et al. « Federated learning for predicting clinical outcomes in
patients with COVID-19 ». In: Nature medicine 27.10 (2021), pp. 1735–1743.

[45] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. « Imagenet:
A large-scale hierarchical image database ». In: 2009 IEEE conference on computer
vision and pattern recognition. Ieee. 2009, pp. 248–255.

[46] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus.
« Exploiting linear structure within convolutional networks for efficient evalua-
tion ». In: Advances in neural information processing systems 27 (2014).

[47] Enmao Diao, Jie Ding, and Vahid Tarokh. « Heterofl: Computation and commu-
nication efficient federated learning for heterogeneous clients ». In: arXiv preprint
arXiv:2010.01264 (2020).

[48] Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. « A survey on
ensemble learning ». In: Frontiers of Computer Science 14 (2020), pp. 241–258.

[49] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer.
« HAWQ: Hessian AWare Quantization of Neural Networks With Mixed-Precision ».
In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
2019.

[50] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. « Activa-
tion functions in deep learning: A comprehensive survey and benchmark ». In:
Neurocomputing 503 (2022), pp. 92–108.

[51] Saso Džeroski and Bernard Ženko. « Is combining classifiers with stacking better
than selecting the best one? » In: Machine learning 54 (2004), pp. 255–273.

[52] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy,
and Dharmendra S Modha. « LEARNED STEP SIZE QUANTIZATION ». In: In-
ternational Conference on Learning Representations. 2019.

119 Bibliography

[53] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. « Local model poison-
ing attacks to {Byzantine-Robust} federated learning ». In: 29th USENIX security
symposium (USENIX Security 20). 2020, pp. 1605–1622.

[54] Takashi Fukuda, Masayuki Suzuki, Gakuto Kurata, Samuel Thomas, Jia Cui, and
Bhuvana Ramabhadran. « Efficient Knowledge Distillation from an Ensemble of
Teachers. » In: Interspeech. 2017, pp. 3697–3701.

[55] Kunihiko Fukushima and Sei Miyake. « Neocognitron: A new algorithm for pat-
tern recognition tolerant of deformations and shifts in position ». In: Pattern
recognition 15.6 (1982), pp. 455–469.

[56] Mudasir A Ganaie, Minghui Hu, Ashwani Kumar Malik, Muhammad Tanveer,
and Ponnuthurai N Suganthan. « Ensemble deep learning: A review ». In: Engi-
neering Applications of Artificial Intelligence 115 (2022), p. 105151.

[57] General Data Protection Regulation GDPR. « General data protection regula-
tion ». In: Regulation (EU) 2016/679 of the European Parliament and of the Council
of 27 April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing Directive 95/46/EC
(2016).

[58] Hossein Gholamalinezhad and Hossein Khosravi. « Pooling methods in deep
neural networks, a review ». In: arXiv preprint arXiv:2009.07485 (2020).

[59] Lucas Grativol, Lubin Gauthier, Mathieu Léonardon, Jérémy Morlier, Antoine
Lavrard-Meyer, Guillaume Muller, Virginie Fresse, and Matthieu Arzel. « PEFSL:
A deployment Pipeline for Embedded Few-Shot Learning on a FPGA SoC ». In:
2024 IEEE International Symposium on Circuits and Systems (ISCAS). 2024, pp. 1–5.
DOI: 10.1109/ISCAS58744.2024.10557995.

[60] Lucas Grativol, Mathieu Léonardon, Guillaume Muller, Virginie Fresse, and Matthieu
Arzel. « Federated learning compression designed for lightweight communica-
tions ». In: 2023 30th IEEE International Conference on Electronics, Circuits and Sys-
tems (ICECS). IEEE. 2023, pp. 1–4.

[61] Lucas Grativol, Mathieu Leonardon, Guillaume Muller, Virginie Fresse, and Matthieu
Arzel. « FLoCoRA: Federated Learning Compression with Low-Rank Adapta-
tion ». In: 2024 32nd European Signal Processing Conference (EUSIPCO). IEEE. 2024,
pp. 1786–1790.

[62] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen
Schmidhuber. « LSTM: A search space odyssey ». In: IEEE transactions on neural
networks and learning systems 28.10 (2016), pp. 2222–2232.

[63] Samantha Guerriero, Barbara Caputo, and Thomas Mensink. « Deepncm: Deep
nearest class mean classifiers ». In: (2018).

[64] Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang, Andy Narayanan, Ao-
nan Zhang, Bowen Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, et al.
« Apple intelligence foundation language models ». In: arXiv preprint arXiv:2407.21075
(2024).

[65] Kartik Gupta, Marios Fournarakis, Matthias Reisser, Christos Louizos, and Markus
Nagel. « Quantization robust federated learning for efficient inference on hetero-
geneous devices ». In: arXiv preprint arXiv:2206.10844 (2022).

[66] Samyak Gupta, Yangsibo Huang, Zexuan Zhong, Tianyu Gao, Kai Li, and Danqi
Chen. « Recovering private text in federated learning of language models ». In:
Advances in neural information processing systems 35 (2022), pp. 8130–8143.

https://doi.org/10.1109/ISCAS58744.2024.10557995

Bibliography 120

[67] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
« Deep learning with limited numerical precision ». In: International conference on
machine learning. PMLR. 2015, pp. 1737–1746.

[68] Song Han, Huizi Mao, and William J Dally. « Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding ».
In: arXiv preprint arXiv:1510.00149 (2015).

[69] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-
age. « Federated learning for mobile keyboard prediction ». In: arXiv preprint
arXiv:1811.03604 (2018).

[70] Babak Hassibi, David G Stork, and Gregory J Wolff. « Optimal brain surgeon and
general network pruning ». In: IEEE international conference on neural networks.
IEEE. 1993, pp. 293–299.

[71] Benjamin Hawks, Javier Duarte, Nicholas J Fraser, Alessandro Pappalardo, Nhan
Tran, and Yaman Umuroglu. « Ps and qs: Quantization-aware pruning for effi-
cient low latency neural network inference ». In: Frontiers in Artificial Intelligence
4 (2021), p. 676564.

[72] Chaoyang He, Murali Annavaram, and Salman Avestimehr. « Towards non-IID
and invisible data with FedNAS: Federated deep learning via neural architec-
ture search ». In: arXiv preprint arXiv:2004.08546 (2020).

[73] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. « Milenas: Efficient neural
architecture search via mixed-level reformulation ». In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 11993–12002.

[74] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham
Neubig. « Towards a Unified View of Parameter-Efficient Transfer Learning ».
In: International Conference on Learning Representations. 2022. URL: https://
openreview.net/forum?id=0RDcd5Axok.

[75] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. « Deep residual learn-
ing for image recognition ». In: Proceedings of the IEEE conference on computer vi-
sion and pattern recognition. 2016, pp. 770–778.

[76] Geoffrey Hinton. « Distilling the Knowledge in a Neural Network ». In: arXiv
preprint arXiv:1503.02531 (2015).

[77] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste.
« Sparsity in Deep Learning: Pruning and growth for efficient inference and
training in neural networks. » In: J. Mach. Learn. Res. 22.241 (2021), pp. 1–124.

[78] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. « Multilayer feedfor-
ward networks are universal approximators ». In: Neural networks 2.5 (1989),
pp. 359–366.

[79] Mark Horowitz. « 1.1 computing’s energy problem (and what we can do about
it) ». In: IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC). 2014, pp. 10–14.

[80] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. « Measuring the effects of
non-identical data distribution for federated visual classification ». In: arXiv:1909.06335
(2019).

[81] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu
Wang, Weizhu Chen, et al. « LoRA: Low-Rank Adaptation of Large Language
Models ». In: International Conference on Learning Representations. 2021.

https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok

121 Bibliography

[82] Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. « Eval-
uating gradient inversion attacks and defenses in federated learning ». In: Ad-
vances in neural information processing systems 34 (2021), pp. 7232–7241.

[83] Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal,
and Phillip Isola. « The Low-Rank Simplicity Bias in Deep Networks ». In: Trans-
actions on Machine Learning Research (2022).

[84] Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. « FedPara: Low-rank Hadamard
Product for Communication-Efficient Federated Learning ». In: International Con-
ference on Learning Representations. 2021.

[85] « IEEE Standard for Floating-Point Arithmetic ». In: IEEE Std 754-2008 (2008),
pp. 1–70. DOI: 10.1109/IEEESTD.2008.4610935.

[86] Fatih Ilhan, Gong Su, and Ling Liu. « Scalefl: Resource-adaptive federated learn-
ing with heterogeneous clients ». In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2023, pp. 24532–24541.

[87] Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. « Fedexp: Speeding
up federated averaging via extrapolation ». In: arXiv preprint arXiv:2301.09604
(2023).

[88] Yuang Jiang, Shiqiang Wang, Victor Valls, Bong Jun Ko, Wei-Han Lee, Kin K Le-
ung, and Leandros Tassiulas. « Model pruning enables efficient federated learn-
ing on edge devices ». In: IEEE Transactions on Neural Networks and Learning Sys-
tems (2022).

[89] Peter Kairouz and et al. « Advances and open problems in federated learning ».
In: Foundations and Trends® in Machine Learning 14.1–2 (2021), pp. 1–210.

[90] Dhiraj Kalamkar and et al. « A study of BFLOAT16 for deep learning training ».
In: arXiv:1905.12322 (2019).

[91] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebas-
tian Stich, and Ananda Theertha Suresh. « Scaffold: Stochastic controlled av-
eraging for federated learning ». In: International conference on machine learning.
PMLR. 2020, pp. 5132–5143.

[92] Heekyung Kim and Kyuwon Ken Choi. « A Reconfigurable CNN-based Accel-
erator Design for Fast and Energy-Efficient Object Detection System on Mobile
FPGA ». In: IEEE Access (2023).

[93] Eliska Kloberdanz, Kyle G Kloberdanz, and Wei Le. « DeepStability: A study of
unstable numerical methods and their solutions in deep learning ». In: Proceed-
ings of the 44th International Conference on Software Engineering. 2022, pp. 586–597.

[94] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. « Federated optimiza-
tion: Distributed optimization beyond the datacenter ». In: arXiv preprint arXiv:1511.03575
(2015).

[95] Alex Krizhevsky, Geoffrey Hinton, et al. « Learning multiple layers of features
from tiny images ». In: (2009).

[96] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. « Imagenet classifica-
tion with deep convolutional neural networks ». In: Advances in neural informa-
tion processing systems 25 (2012).

[97] Solomon Kullback and Richard A Leibler. « On information and sufficiency ».
In: The annals of mathematical statistics 22.1 (1951), pp. 79–86.

https://doi.org/10.1109/IEEESTD.2008.4610935

Bibliography 122

[98] Hsiang Tsung Kung and Charles E Leiserson. « Systolic arrays (for VLSI) ». In:
Sparse Matrix Proceedings 1978. Vol. 1. Society for industrial and applied mathe-
matics Philadelphia, PA, USA. 1979, pp. 256–282.

[99] Steinar Laenen and Luca Bertinetto. « On episodes, prototypical networks, and
few-shot learning ». In: Advances in Neural Information Processing Systems 34 (2021),
pp. 24581–24592.

[100] Hugo Le Blevec, Mathieu Léonardon, Hugo Tessier, and Matthieu Arzel. « Pipelined
Architecture for a Semantic Segmentation Neural Network on FPGA ». In: 2023
30th IEEE International Conference on Electronics, Circuits and Systems (ICECS).
IEEE. 2023, pp. 1–4.

[101] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. « Deep learning ». In: nature
521.7553 (2015), pp. 436–444.

[102] Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim
Deryabin, Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, et al.
« Privacy-preserving machine learning with fully homomorphic encryption for
deep neural network ». In: iEEE Access 10 (2022), pp. 30039–30054.

[103] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.
« Pruning filters for efficient convnets ». In: arXiv preprint arXiv:1608.08710 (2016).

[104] Peichun Li, Guoliang Cheng, Xumin Huang, Jiawen Kang, Rong Yu, Yuan Wu,
and Miao Pan. « AnycostFL: Efficient On-Demand Federated Learning over Het-
erogeneous Edge Devices ». In: arXiv preprint arXiv:2301.03062 (2023).

[105] Qinbin Li, Bingsheng He, and Dawn Song. « Model-contrastive federated learn-
ing ». In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2021, pp. 10713–10722.

[106] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. « Ditto: Fair and
robust federated learning through personalization ». In: International conference
on machine learning. PMLR. 2021, pp. 6357–6368.

[107] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. « Federated optimization in heterogeneous networks ». In:
Proceedings of Machine learning and systems 2 (2020), pp. 429–450.

[108] Yang Li and Jiachen Yang. « Few-shot cotton pest recognition and terminal real-
ization ». In: Computers and Electronics in Agriculture 169 (2020), p. 105240.

[109] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu,
Wei Wang, and Shi Gu. « Brecq: Pushing the limit of post-training quantization
by block reconstruction ». In: arXiv preprint arXiv:2102.05426 (2021).

[110] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song
Han. « On-Device Training Under 256KB Memory ». In: arXiv:2206.15472 (2022).

[111] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. « Ensemble dis-
tillation for robust model fusion in federated learning ». In: Advances in Neural
Information Processing Systems 33 (2020), pp. 2351–2363.

[112] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang,
and Yi Yang. « Learning to propagate labels: Transductive propagation network
for few-shot learning ». In: arXiv preprint arXiv:1805.10002 (2018).

[113] Dengsheng Lu and Qihao Weng. « A survey of image classification methods and
techniques for improving classification performance ». In: International journal of
Remote sensing 28.5 (2007), pp. 823–870.

123 Bibliography

[114] Liqiang Lu, Jiaming Xie, Ruirui Huang, Jiansong Zhang, Wei Lin, and Yun Liang.
« An efficient hardware accelerator for sparse convolutional neural networks on
FPGAs ». In: 2019 IEEE 27th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE. 2019, pp. 17–25.

[115] Srikanth Machiraju. How to train your deep learning models in a distributed fashion.
https://towardsdatascience.com/how- to- train- your- deep-
learning-models-in-a-distributed-fashion-43a6f53f0484. Ac-
cessed: 02/10/2024. 2021.

[116] Puneet Mangla, Nupur Kumari, Abhishek Sinha, Mayank Singh, Balaji Krishna-
murthy, and Vineeth N Balasubramanian. « Charting the right manifold: Mani-
fold mixup for few-shot learning ». In: Proceedings of the IEEE/CVF winter confer-
ence on applications of computer vision. 2020, pp. 2218–2227.

[117] Brendan McMahan and et al. « Communication-efficient learning of deep net-
works from decentralized data ». In: Artificial intelligence and statistics. PMLR.
2017, pp. 1273–1282.

[118] Umberto Michieli and Mete Ozay. « Are all users treated fairly in federated
learning systems? » In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2021, pp. 2318–2322.

[119] Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey,
Richard Grisenthwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John
Kamalu, et al. « Fp8 formats for deep learning ». In: arXiv preprint arXiv:2209.05433
(2022).

[120] IEEE Computer Society Standards Committee. Working group of the Micro-
processor Standards Subcommittee and American National Standards Institute.
IEEE standard for binary floating-point arithmetic. Vol. 754. IEEE, 1985.

[121] Ivan Miro-Panades, Inna Kucher, Vincent Lorrain, and Alexandre Valentian.
« Meeting the Latency and Energy Constraints on Timing-critical Edge-AI Sys-
tems ». In: Embedded Artificial Intelligence. River Publishers, 2023, pp. 61–67.

[122] Alistair Moffat. « Huffman coding ». In: ACM Computing Surveys (CSUR) 52.4
(2019), pp. 1–35.

[123] Jean-Michel Muller, Nicolas Brisebarre, Florent De Dinechin, Claude-Pierre Jean-
nerod, Vincent Lefevre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé,
Serge Torres, et al. Handbook of floating-point arithmetic. Vol. 1. Springer, 2018.

[124] Saurav Muralidharan. « Uniform sparsity in deep neural networks ». In: Proceed-
ings of Machine Learning and Systems 5 (2023).

[125] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen
Blankevoort. « Up or down? adaptive rounding for post-training quantization ».
In: International Conference on Machine Learning. PMLR. 2020, pp. 7197–7206.

[126] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart
Van Baalen, and Tijmen Blankevoort. « A white paper on neural network quan-
tization ». In: arXiv preprint arXiv:2106.08295 (2021).

[127] Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen Blankevoort.
« Overcoming oscillations in quantization-aware training ». In: International Con-
ference on Machine Learning. PMLR. 2022, pp. 16318–16330.

[128] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. « What is being trans-
ferred in transfer learning? » In: Advances in neural information processing systems
33 (2020), pp. 512–523.

https://towardsdatascience.com/how-to-train-your-deep-learning-models-in-a-distributed-fashion-43a6f53f0484
https://towardsdatascience.com/how-to-train-your-deep-learning-models-in-a-distributed-fashion-43a6f53f0484

Bibliography 124

[129] John Nguyen, Jianyu Wang, Kshitiz Malik, Maziar Sanjabi, and Michael Rabbat.
« Where to begin? on the impact of pre-training and initialization in federated
learning ». In: arXiv preprint arXiv:2206.15387 (2022).

[130] Mohd Halim Mohd Noor and Ayokunle Olalekan Ige. « A Survey on Deep
Learning and State-of-the-arts Applications ». In: arXiv preprint arXiv:2403.17561
(2024).

[131] Martijn Oldenhof, Gergely Ács, Balázs Pejó, Ansgar Schuffenhauer, Nicholas
Holway, Noé Sturm, Arne Dieckmann, Oliver Fortmeier, Eric Boniface, Clément
Mayer, et al. « Industry-scale orchestrated federated learning for drug discov-
ery ». In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 37. 13.
2023, pp. 15576–15584.

[132] Alessandro Pappalardo. Xilinx/brevitas. 2021. DOI: 10.5281/zenodo.3333552.
URL: https://doi.org/10.5281/zenodo.3333552.

[133] Jupinder Parmar, Shrimai Prabhumoye, Joseph Jennings, Bo Liu, Aastha Jhun-
jhunwala, Zhilin Wang, Mostofa Patwary, Mohammad Shoeybi, and Bryan Catan-
zaro. « Data, Data Everywhere: A Guide for Pretraining Dataset Construction ».
In: arXiv preprint arXiv:2407.06380 (2024).

[134] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. « PyTorch: An Imperative Style, High-Performance Deep
Learning Library ». In: Advances in Neural Information Processing Systems 32. Cur-
ran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf.

[135] Kilian Pfeiffer, Ramin Khalili, and Jörg Henkel. « Aggregating capacity in FL
through successive layer training for computationally-constrained devices ». In:
Advances in Neural Information Processing Systems 36 (2024).

[136] Xinchi Qiu, Javier Fernandez-Marques, Pedro PB Gusmao, Yan Gao, Titouan
Parcollet, and Nicholas Donald Lane. « Zerofl: Efficient on-device training for
federated learning with local sparsity ». In: arXiv preprint arXiv:2208.02507 (2022).

[137] Xinchi Qiu, Titouan Parcollet, Javier Fernandez-Marques, Pedro PB Gusmao,
Yan Gao, Daniel J Beutel, Taner Topal, Akhil Mathur, and Nicholas D Lane. « A
first look into the carbon footprint of federated learning ». In: Journal of Machine
Learning Research 24.129 (2023), pp. 1–23.

[138] Md Aamir Raihan and Tor Aamodt. « Sparse weight activation training ». In:
Advances in Neural Information Processing Systems 33 (2020), pp. 15625–15638.

[139] Waseem Rawat and Zenghui Wang. « Deep convolutional neural networks for
image classification: A comprehensive review ». In: Neural computation 29.9 (2017),
pp. 2352–2449.

[140] Sashank Reddi and et al. « Adaptive federated optimization ». In: arXiv:2003.00295
(2020).

[141] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and
Ramtin Pedarsani. « Fedpaq: A communication-efficient federated learning method
with periodic averaging and quantization ». In: International Conference on Artifi-
cial Intelligence and Statistics. PMLR. 2020, pp. 2021–2031.

https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

125 Bibliography

[142] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. « U-net: Convolutional
networks for biomedical image segmentation ». In: Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th international conference, Munich,
Germany, October 5-9, 2015, proceedings, part III 18. Springer. 2015, pp. 234–241.

[143] Frank Rosenblatt. « The perceptron: a probabilistic model for information stor-
age and organization in the brain. » In: Psychological review 65.6 (1958), p. 386.

[144] Sebastian Ruder. « An overview of gradient descent optimization algorithms ».
In: arXiv preprint arXiv:1609.04747 (2016).

[145] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. « Learning in-
ternal representations by error propagation, parallel distributed processing, ex-
plorations in the microstructure of cognition, ed. de rumelhart and j. mcclelland.
vol. 1. 1986 ». In: Biometrika 71.599-607 (1986), p. 6.

[146] Tyler Scott, Karl Ridgeway, and Michael C Mozer. « Adapted deep embeddings:
A synthesis of methods for k-shot inductive transfer learning ». In: Advances in
Neural Information Processing Systems 31 (2018).

[147] Micah J Sheller, G Anthony Reina, Brandon Edwards, Jason Martin, and Spyri-
don Bakas. « Multi-institutional deep learning modeling without sharing patient
data: A feasibility study on brain tumor segmentation ». In: Brainlesion: Glioma,
Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop,
BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September
16, 2018, Revised Selected Papers, Part I 4. Springer. 2019, pp. 92–104.

[148] Yujun Shi, Jian Liang, Wenqing Zhang, Vincent YF Tan, and Song Bai. « Towards
understanding and mitigating dimensional collapse in heterogeneous federated
learning ». In: arXiv preprint arXiv:2210.00226 (2022).

[149] Karen Simonyan. « Very deep convolutional networks for large-scale image recog-
nition ». In: arXiv preprint arXiv:1409.1556 (2014).

[150] Linghao Song, Yuze Chi, Atefeh Sohrabizadeh, Young-kyu Choi, Jason Lau, and
Jason Cong. « Sextans: A streaming accelerator for general-purpose sparse-matrix
dense-matrix multiplication ». In: Proceedings of the 2022 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. 2022, pp. 65–77.

[151] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. « Dropout: a simple way to prevent neural networks from over-
fitting ». In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[152] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkatara-
mani, Vijayalakshmi Viji Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash
Gopalakrishnan. « Hybrid 8-bit floating point (HFP8) training and inference for
deep neural networks ». In: Advances in neural information processing systems 32
(2019).

[153] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. « Towards personal-
ized federated learning ». In: IEEE Transactions on Neural Networks and Learning
Systems (2022).

[154] Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, and Jing Jiang. « Feder-
ated learning from pre-trained models: A contrastive learning approach ». In:
Advances in neural information processing systems 35 (2022), pp. 19332–19344.

[155] Zhenheng Tang, Yonggang Zhang, Shaohuai Shi, Xinmei Tian, Tongliang Liu,
Bo Han, and Xiaowen Chu. « FedImpro: Measuring and Improving Client Up-
date in Federated Learning ». In: The Twelfth International Conference on Learning
Representations. 2024.

Bibliography 126

[156] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. « Branchynet:
Fast inference via early exiting from deep neural networks ». In: 2016 23rd inter-
national conference on pattern recognition (ICPR). IEEE. 2016, pp. 2464–2469.

[157] Tensil. Tensil. https://github.com/tensil-ai/tensil. 2022.

[158] Zhen Ling Teo, Liyuan Jin, Siqi Li, Di Miao, Xiaoman Zhang, Wei Yan Ng, Ting
Fang Tan, Deborah Meixuan Lee, Kai Jie Chua, John Heng, et al. « Federated
machine learning in healthcare: A systematic review on clinical applications and
technical architecture ». In: Cell Reports Medicine (2024).

[159] Hugo Tessier. « Convolutional neural networks pruning and its application to
embedded vision systems ». PhD thesis. Ecole nationale supérieure Mines-Télécom
Atlantique, 2023.

[160] Hugo Tessier, Vincent Gripon, Mathieu Léonardon, Matthieu Arzel, David Bertrand,
and Thomas Hannagan. « Leveraging structured pruning of convolutional neu-
ral networks ». In: 2022 IEEE Workshop on Signal Processing Systems (SiPS). IEEE.
2022, pp. 1–6.

[161] Hugo Tessier, Vincent Gripon, Mathieu Léonardon, Matthieu Arzel, Thomas
Hannagan, and David Bertrand. « Rethinking Weight Decay for Efficient Neural
Network Pruning ». In: Journal of Imaging 8.3 (2022), p. 64.

[162] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. « Data poison-
ing attacks against federated learning systems ». In: Computer security–ESORICs
2020: 25th European symposium on research in computer security, ESORICs 2020,
guildford, UK, September 14–18, 2020, proceedings, part i 25. Springer. 2020, pp. 480–
501.

[163] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. « Split
learning for health: Distributed deep learning without sharing raw patient data ».
In: arXiv preprint arXiv:1812.00564 (2018).

[164] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim
Verbelen, and Jan S Rellermeyer. « A survey on distributed machine learning ».
In: Acm computing surveys (csur) 53.2 (2020), pp. 1–33.

[165] Pablo Villalobos, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, Anson Ho, and
Marius Hobbhahn. « Machine learning model sizes and the parameter gap ». In:
arXiv preprint arXiv:2207.02852 (2022).

[166] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. « Match-
ing networks for one shot learning ». In: Advances in neural information processing
systems 29 (2016).

[167] Song Wang, Xingbo Fu, Kaize Ding, Chen Chen, Huiyuan Chen, and Jundong
Li. « Federated few-shot learning ». In: Proceedings of the 29th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining. 2023, pp. 2374–2385.

[168] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. « Structured pruning of large
language models ». In: arXiv preprint arXiv:1910.04732 (2019).

[169] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi
Jin, Tony QS Quek, and H Vincent Poor. « Federated learning with differential
privacy: Algorithms and performance analysis ». In: IEEE transactions on infor-
mation forensics and security 15 (2020), pp. 3454–3469.

[170] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius.
« Integer quantization for deep learning inference: Principles and empirical eval-
uation ». In: arXiv preprint arXiv:2004.09602 (2020).

https://github.com/tensil-ai/tensil

127 Bibliography

[171] Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. « Sheared llama:
Accelerating language model pre-training via structured pruning ». In: arXiv
preprint arXiv:2310.06694 (2023).

[172] Li Yang, Zhezhi He, and Deliang Fan. « A fully onchip binarized convolutional
neural network fpga impelmentation with accurate inference ». In: Proceedings of
the International Symposium on Low Power Electronics and Design. 2018, pp. 1–6.

[173] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu. « Ver-
tical federated learning ». In: Federated Learning. Springer, 2020, pp. 69–81.

[174] Zhaoxiong Yang, Shuihai Hu, and Kai Chen. « FPGA-based hardware accel-
erator of homomorphic encryption for efficient federated learning ». In: arXiv
preprint arXiv:2007.10560 (2020).

[175] Jaehong Yoon, Geon Park, Wonyong Jeong, and Sung Ju Hwang. « Bitwidth het-
erogeneous federated learning with progressive weight dequantization ». In: In-
ternational Conference on Machine Learning. PMLR. 2022, pp. 25552–25565.

[176] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. « How transferable
are features in deep neural networks? » In: Advances in neural information process-
ing systems 27 (2014).

[177] Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. « Logme: Prac-
tical assessment of pre-trained models for transfer learning ». In: International
Conference on Machine Learning. PMLR. 2021, pp. 12133–12143.

[178] Weijie You and Chang Wu. « RSNN: A software/hardware co-optimized frame-
work for sparse convolutional neural networks on FPGAs ». In: IEEE Access 9
(2020), pp. 949–960.

[179] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu.
« {BatchCrypt}: Efficient homomorphic encryption for {Cross-Silo} federated
learning ». In: 2020 USENIX annual technical conference (USENIX ATC 20). 2020,
pp. 493–506.

[180] Hao Zhang, Jiongrui He, and Seok-Bum Ko. « Efficient posit multiply-accumulate
unit generator for deep learning applications ». In: 2019 IEEE international sym-
posium on circuits and systems (ISCAS). IEEE. 2019, pp. 1–5.

[181] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A Survey of Large Lan-
guage Models. 2023. arXiv: 2303.18223.

[182] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. « A comprehensive survey on transfer learning ».
In: Proceedings of the IEEE 109.1 (2020), pp. 43–76.

[183] B Zoph. « Neural Architecture Search with Reinforcement Learning ». In: arXiv
preprint arXiv:1611.01578 (2016).

https://arxiv.org/abs/2303.18223

Bibliography 128

Titre : Compression des Réseaux de Neurones dans le Contexte de l’Apprentissage Fédéré
et des Systèmes Embarqués

Mot clés : Apprentissage Fédéré, Élagage, Adaptation de Basse Rang, Apprentissage avec

Peu d’Exemples, FPGA

Résumé : L’apprentissage fédéré est un cadre
d’apprentissage automatique collaboratif et
décentralisé, motivé par des préoccupations
croissantes concernant la confidentialité des
données. En transférant l’entraînement des
modèles vers des nœuds locaux et en conser-
vant les données sur place, il favorise une
approche plus respectueuse de la vie privée.
Toutefois, cette méthode impose un surcoût
en termes de communication et de calcul à
ceux qui l’adoptent. Dans ce manuscrit, nous
examinons les principaux défis de l’apprentis-
sage fédéré et proposons des solutions visant
à augumenter l’efficacité tout en réduisant
les besoins en ressources matérielles. Plus

précisément, nous explorons des techniques
de compression classiques, comme l’élagage,
ainsi que des approximations en rang faible
afin de diminuer les coûts associés à l’appren-
tissage fédéré. Pour les scénarios où les par-
ticipants disposent de capacités de communi-
cation limitées, nous introduisons une métho-
dologie de co-conception pour un algorithme
d’apprentissage avec peu d’examples embar-
qué. Notre solution intègre les contraintes ma-
térielles au sein d’un pipeline de déploiement
sur des plateformes FPGA, aboutissant à un
algorithme à faible latence qui peut également
être exploité pour mettre en œuvre des mo-
dèles post-apprentissage fédéré.

Title: Neural Network Compression in the Context of Federated Learning and Edge Devices

Keywords: Federated Learning, Pruning, Low-Rank Adaptation, Few-Shot Learning, FPGA

Abstract: Federated learning is a collabora-
tive, decentralized machine learning frame-
work driven by growing concerns about data
privacy. By shifting model training to local
nodes and keeping data local, it enables
more privacy-conscious training. However,
this approach imposes additional communi-
cation and computation overhead on those
who adopt it. In this manuscript, we exam-
ine the key challenges in federated learning
and propose solutions to increase efficiency
and reduce hardware requirements. Specifi-

cally, we explore classic compression tech-
niques, such as pruning, and low-rank approx-
imations to lower the costs associated with
federated learning. For scenarios where par-
ticipants have limited communication capa-
bilities, we introduce a co-design methodol-
ogy for an embedded few-shot learning algo-
rithm. Our proposed solution integrates hard-
ware constraints into a deployment pipeline for
FPGA platforms, resulting in a low-latency al-
gorithm that can also be leveraged to imple-
ment post-federated learning models.

	Acknowledgments
	Résumé Long
	Résumé
	Abstract
	Acronyms
	Introduction
	Context
	Manuscript Outline
	Contributions

	Federated Learning for Image Classification
	Deep Learning for Image Classification
	Image Classification Task
	Datasets
	CIFAR-10
	CIFAR-100
	ImageNet

	Architectures
	VGG-family
	ResNet-family

	Deep Learning Training: Supervised Learning
	Running on Hardware

	Distributed Learning
	Ensemble Learning
	Model and Data Parallelism
	Split Learning

	Federated Learning Problem Definition
	An Attempt For a More Private Machine Learning Framework
	The Training Loop and Federated Averaging
	Open Challenges
	Privacy (data breach)
	Distributed Optimization
	Security
	Fairness
	Computing and Communication

	Federated Applications

	Recapitulation

	Compressing the Federation
	Squeezing Every Bit
	Quantization Methods
	Floating Points
	Integer methods

	When to quantize ?
	After training
	During training

	Hardware implications
	Other formats
	Pruning Methods
	Pruning Elements
	Pruning Criteria

	Other Methods

	Communication and Computation Challenges
	Deep Learning Compression Techniques in Federated Learning
	Quantization in Federated Learning
	Pruning in Federated Learning
	Alternative Compression Methods

	Recapitulation

	Cutting Communication Costs
	Contributions
	Magnitude Pruning for Double Side Compression
	Adding Pruning to Federated Learning
	Pruning applied to Federated Learning
	Compressing more with Quantization

	FLoCoRA
	Fine-Tuning Models
	Low-Rank Adaptation

	LoRA in the Context of Federated Learning
	FLoCoRA Framework
	FLoCoRA Results

	Compression or Just Smaller Models ?
	Pre-trained Models for Federated Learning
	Recapitulation

	Embedded Few-Shot Learning
	Contributions
	Embedded Image Classification with Few Data
	EASY Few-shot Learning
	Few-Shot Learning
	EASY training routine

	A Reconfigurable Platform
	What is an SoC?
	Deploying Models on an FPGA

	PEFSL: An open-source Pipeline for Embedded Few-Shot Learning
	Design Space Exploration for FPGA Implementation
	Hyperparameters

	Training
	PEFSL pipeline
	Exploration Results
	Improvement of the Hardware Implementation
	Comparison with other hardware implementations
	Demonstrator

	Recapitulation

	Conclusions and Perspectives
	Conclusions
	Perspectives
	Compressed Partial Training
	Efficient Inference Platform
	Model Heterogeneous Federated Learning

	FPGA and Deep Learning Models
	What is an FPGA ?
	Deployement Frameworks

	Bibliography

