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 1 

 

1 INTRODUCTION 

As cancer progresses, it undergoes continuous evolution, leading to increasing genetic 

heterogeneity (Hanahan 2022). This heterogeneity manifests in the bulk tumor as a diverse set of 

cells, each with unique molecular characteristics and varying sensitivities to treatment. This 

variability manifests as spatial heterogeneity, where genetically distinct tumor-cell subpopulations 

are unevenly distributed across different disease sites, and temporal heterogeneity, characterized 

by changes in the molecular composition of cancer cells over time (McGranahan and Swanton 

2017). Heterogeneity is a key driver of resistance to treatment, making its accurate assessment 

crucial for developing effective therapies. To dissect the complex clonal architecture of cancers, 

recent approaches aim at integrating more numerous or sequential tumor samples such as 

multiregional sequencing (Gerlinger et al. 2012), autopsy sample analysis, and longitudinal liquid 

biopsy analysis (Peneder et al. 2021); furthermore, emerging technologies including single cell 

sequencing approaches offer significant promise (Navin et al. 2011). These advanced methods 

provide deeper insights into the dynamic and multifaceted nature of cancer cells in a given tumor, 

paving the way for more targeted and effective treatment strategies. This thesis focusses on the 

study of genetic heterogeneity in neuroblastoma. 

 

1.1 Neuroblastoma 

 
Neuroblastoma, the most prevalent extracranial solid tumor in children, manifests in 90% of 

patients before age 10 and is typically diagnosed at a median age of 18 months (Matthay et al. 

2016). Neuroblastomas primarily develop from embryonal (developing cells) neural crest cells in 

the sympathetic nervous system, arising in the adrenal medulla or within the sympathetic ganglia, 

with most tumors occurring within the abdomen (> 75%). Metastasis occurs by lymphatic or 

hematological spread to either locoregional or distant lymph nodes, or bone, bone marrow or less 

frequently involved sites such the liver, lung or the CNS. 

Accordingly, symptoms at diagnosis may differ according to the site of the primary tumor, and 

metastatic involvement. Upon diagnosis, clinical and radiological investigations (TDM, MRI and 

MIBG scan) are required to define local and metastatic extent of disease, and a tumor biopsy is 

realised whenever possible for pathological and biological analyses (Maris et al. 2007). 
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1.1.1 Clinical Features and Risk Stratification 

 
Neuroblastoma is characterized by a heterogeneous clinical course that ranges from spontaneous 

regression to aggressive progression. This heterogeneity presents a diagnostic and therapeutic 

challenge due to its broad spectrum of clinical behavior. Its management relies heavily on risk 

categorization, taking into account the main clinical and biological prognostic factors, the latter of 

which can be impacted by the observation of tumor heterogeneity. 

The contemporary staging system, the International Neuroblastoma Risk Group Staging System 

(INRGSS), stratifies patients based on image-defined risk factors (IDRFs) into stages L1, L2, M, 

and MS. L1 indicates Localized tumor not involving vital structures as defined by the list of image-

defined risk factors and confined to one body compartment, L2 indicates Locoregional tumor with 

presence of one or more image defined risk factors, M indicates Distant metastatic disease (except 

stage MS), and MS, in which metastases are confined to the skin, liver, and/or bone marrow in 

children younger than 18 months of age (Monclair et al. 2009). Depending on age, stage, and the 

copy number status of the MYCN oncogene (encoding the transcription factor N‑MYC), 

neuroblastoma is categorized into three risk groups - low, intermediate, and high, each associated 

with distinct survival outcomes. Low-risk patients typically exhibit L1 staging and have over a 

95% 5-year survival rate, often requiring minimal treatment. Intermediate-risk patients display 

either L1 or L2 with certain unfavorable biologic features or are infants with stage M without 

MYCN amplification; their 5-year survival rate is approximately 90-95%, with treatment balanced 

between efficacy and long-term effects. In High-risk patients, usually over 12 or 18 months with 

stage M or with MYCN amplification, 5-year survival have increased from <20% to >50% over the 

past few decades owing to progressive improvements in the efficacy of multimodal therapies 

evaluated in large scale clinical trials. In Europe, these trials are developed within the SIOPEN 

network (https://www.siopen.net/) 

Pathologically neuroblastoma characterized as a small round blue cell tumor, a classification that 

includes a group of aggressive cancers with similar histological appearance. These neoplasms are 

primarily composed of small, densely packed cells with hyperchromatic nuclei and scant 

cytoplasm, giving them a "blue" appearance on hematoxylin and eosin (H&E) staining. The 

morphology of neuroblastoma cells is indicative of their origin from primitive sympathetic nervous 

system cells. A critical aspect of neuroblastoma pathology is the expression of PHOX2B, a 

transcription factor crucial for the development of the autonomic nervous system. 

Immunohistochemical staining for PHOX2B serves as a valuable diagnostic marker for 

neuroblastoma, as it specifically highlights tumor cells derived from neuroblastic lineage. 

https://www.siopen.net/
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PHOX2B-positive cells in neuroblastoma indicate the tumor’s origin from neural crest cells, 

contributing to its distinct classification and aiding in differential diagnosis from other small round 

blue cell tumors.  

1.1.2 Pathogenesis and molecular alterations  
 

Neuroblastomas typically occur sporadically, yet heritable germline mutations can alter the risk of 

disease development. Compared to many other solid tumors, neuroblastomas have fewer somatic 

mutations, with a frequency of less than one mutation per mega base. However, they often exhibit 

extensive copy number alterations, either affecting whole chromosomes (numeric alterations) or 

spanning large chromosome segments (segmental alterations). 

1.1.2.1 Familial neuroblastomas 

 

Most familial neuroblastomas, which represent 2–3% of all cases, are linked to germline mutations 

with high penetrance. Germline activating mutations in ALK (a receptor tyrosine kinase) account 

for 80% of these, while inactivating mutations in PHOX2B (which encodes paired mesoderm 

homeobox 2B transcription factor and is a master regulator of neural crest development) are also 

implicated. Both genes are integral to development of the sympathoadrenal lineage system, and 

neuroblastomas stemming from PHOX2B mutations frequently present with pathological features 

consistent with neural crest abnormalities (Mossé et al. 2008) (Bourdeaut et al. 2005) (Amiel et al. 

2003). Both the ALK and PHOX2B gene play integral roles in the development of the 

sympathoadrenal system. Neuroblastomas that develop due to mutations in PHOX2B often present 

with clinical manifestations linked to neural crest pathologies, including conditions such as 

Hirschsprung disease and congenital central hypoventilation syndrome.  

Beyond these genes, genome-wide association studies (GWAS) have uncovered a multitude of 

lower penetrance polymorphisms that can collectively influence the initiation and progression of 

neuroblastoma. These genetic variations can subtly modify the risk or behavior of the disease. 

Notable among these are polymorphisms found in several genes, including LINC00340, BARD1, 

LMO1, DUSP12, DDX4/IL31RA, HSD17B12, LIN28B, and HACE1 (Maris et al. 2007). Each of 

these genetic alterations contributes to a more nuanced understanding of the complex genetic 

landscape of neuroblastoma, highlighting the importance of both major genetic mutations and more 

subtle genetic variations at a germline level in the disease's development and progression. 
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1.1.2.2 Recurrent focal amplification  
 

Oncogene MYCN amplification on chromosome 2p24 is a hallmark of high-risk neuroblastoma and 

serves as a critical prognostic indicator. The frequency of MYCN amplification has been found to 

be at 20-25% of all neuroblastomas and in ~40% of high-risk neuroblastomas (Berbegall et al. 

2016). As a pivotal transcriptional regulator, N-myc orchestrates cell growth, metabolism, and 

differentiation. Early research identified that neuroblastomas with a marked increase in MYCN 

copies, often exceeding a tenfold amplification, were indicative of a more aggressive form of the 

disease (Seeger et al. 1985) (Brodeur et al. 1984). At a cytogenetic level, MYCN amplification 

corresponds to the integration of numerous copies of the MYCN genes in the chromosomes, as 

homogeneously staining regions, or outside chromosomes as double minutes. Such amplifications 

contribute to both the intrinsic properties of cancer cells promoting proliferation and an 

undifferentiated state and the tumor microenvironment, such as promoting immunosuppression and 

new blood vessel formation. A mutation in MYCN, specifically P44L, is present in about 1% of 

high-risk cases, but its prognostic significance remains unclear, though it may enhance N-myc 

stability (Pugh et al. 2013) (Liu et al. 2017).  

N-myc is a key member of a protein family, which includes the closely associated c-Myc protein, 

encoded by the MYC gene and commonly referred to as Myc. While N-myc expression is usually 

tightly controlled and specific to certain developmental stages and cell types, the ubiquitous Myc 

is upregulated in various cancers. About 10% of high-risk neuroblastomas without MYCN 

amplification exhibit Myc overexpression. This is not typically due to MYC gene amplification but 

rather the result of transcriptional activation through amplified distal enhancer regions or the 

rearrangement of chromosomes that brings Myc under the control of active enhancer sequences.   

Beyond MYCN, focal amplification of other chromosomal regions also correlates with very poor 

prognoses, particularly through the overexpression of oncogenic proteins like CDK4 and MDM2. 

In neuroblastoma, particularly among high-risk patients, Myc overexpression is a critical factor, 

identified in about 10% of cases lacking MYCN amplification (Zimmerman et al. 2018). Notably, 

direct MYC gene amplifications are infrequent in neuroblastoma. Instead, the overexpression of 

Myc often results from strategic transcriptional upregulation. This upregulation is typically 

orchestrated either through the amplification of distal enhancer elements or by rerouting highly 

active enhancer elements via chromosomal translocation (Zimmerman et al. 2018).These 

mechanisms effectively boost Myc expression, driving the cancer process in neuroblastoma 

through pathways that do not involve direct MYC gene amplification.  
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1.1.2.3 Chromosomal copy number alterations  
 

In neuroblastoma, chromosomal changes are remarkably prevalent, affecting about 90% of 

patients, with the nature of these alterations carrying significant prognostic implications (Janoueix-

Lerosey et al. 2009). In young patients with neuroblastoma lacking MYCN amplification, the 

occurrence of hyper diploidy due to whole-chromosome gains or losses is generally indicative of 

a more favorable prognosis compared to a near-diploid state (George et al. 2005). Conversely, 

segmental chromosomal alterations (SCAs), such as the loss of 1p or 11q and the gain of 17q, 

correlate with poorer outcomes, regardless of any co-existing whole-chromosome anomalies. Rare 

germline SCAs including deletions of 11q or 1p are observed in neuroblastoma cases (Biegel et al. 

1993) (Egolf et al. 2019). Other less common chromosomal changes associated with adverse 

prognosis include the loss of chromosomal regions 3p, 4p, 5p, 6q, and 9p. Recurrent losses of 1p 

or 6q are more commonly seen at relapse, supporting the theory that loss of tumor suppressor genes 

on these segments contributes to tumor progression. For example, 

CHD5, CAMTA1, KIF1B, CASZ1 and ARID1A on 1p chromosomal arm. ARID1A is known for its 

tumor suppressor activity, and its functional disruption is linked to enhanced tumorigenesis in N-

myc-driven preclinical models (Shi et al. 2020) (Sausen et al. 2013). Ongoing preclinical research 

aims to elucidate the oncogenic roles of SCAs and identify actionable targets for therapy. 

1.1.2.4 ALK alterations 

 

Only a few genes recurrently altered directly by coding sequencing mutations have been described 

in NB. The most frequent somatic mutations concern the ALK gene, a receptor tyrosine kinase with 

a neural lineage expression, triggers mitogenic signaling through the RAS–MAPK and PI3K-AKT 

pathways upon activation. Sporadic neuroblastomas of all risk categories present somatic ALK 

mutations in 8–12% of cases, while ~2% of high-risk cases exhibit ALK amplifications (Bellini et 

al. 2021). These activating mutations are predominantly situated within the kinase domain, with 

F1174, R1275, and F1245 as common mutation sites, and can occur both at a clonal or subclonal 

level. However, the interpretation of mutant allele frequency could be influenced by tumor cell 

content. Co-occurrences of ALK mutations and amplifications with MYCN amplifications are 

significant, with 44% of ALK mutations and 97% of ALK amplifications found in the HR-NBL1 

study's MYCN-amplified tumors.  Moreover, high-risk neuroblastoma patients with ALK alterations 

represent a subset with an especially poor prognosis. A 2021 clinical trial revealed that patients 

with ALK amplifications or high MAF mutations (>20%) had significantly lower 5-year event-free 

and overall survival rates (28% vs 51%; P < 0.01) compared to those without these alterations 

(Bellini et al. 2021). Although the prognostic significance of isolated ALK mutations or 



 6 

amplifications is complex, its role as a neuroblastoma driver is evident. Synergistic effects of 

activated ALK and N-myc on tumorigenesis have been demonstrated in zebrafish and mouse 

neuroblastoma models. 

1.1.2.5 RAS-MAPK and p53 signaling pathway alterations 

 

Drivers of aggressive neuroblastoma are frequently linked to aberrations in the RAS–MAPK and 

p53 signaling pathways (Ackermann et al. 2018), which are associated with treatment resistance 

and relapse. Relapsed neuroblastoma samples show higher incidences of mutations in these 

pathways compared to initial disease presentations. While MYCN amplifications tend to be clonal, 

indicative of their presence in all or most tumor cells, alterations in RAS–MAPK and p53 pathways 

are usually subclonal, with emergence as the disease progresses (Gundem et al. 2023). Such 

mutations are observed in neuroblastoma at every stage and within all risk categories. Mutations 

in RAS and p53 pathway genes occurred in both high- and non–high-risk tumors, although at lower 

frequencies in the latter group (21.3% versus 13.3%) (Ackermann et al. 2018) while other research 

group suggested 18 of the 23 relapse tumors (78%) showed mutations predicted to activate the 

RAS-MAPK signaling pathway (Eleveld et al. 2015). The presence of these mutations, particularly 

when they co-occur with telomere maintenance defects, often signals a dire prognosis. 

ALK mutations, leading to MAPK pathway activation, are especially prevalent in neuroblastoma. 

Other notable changes include PTPN11 inactivating mutations, which deactivate a phosphatase that 

typically curtails mitogenic signaling. Germline mutations in PTPN11, which are known to cause 

Noonan syndrome, a disorder affecting multiple organs are linked to an elevated neuroblastoma 

risk. Less commonly, activating mutations in genes associated with the RAS–MAPK pathway or 

upstream receptor tyrosine kinases, like HRAS, NRAS, FGFR1, and BRAF, are also detected in 

neuroblastoma cases (Ackermann et al. 2018) (Brady et al. 2020). 
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Figure 1.1.2.5.1: Recurrent somatic alterations by age group in neuroblastoma 

Top, age at diagnosis and number of coding mutations in each of 685 neuroblastoma samples (662 diagnosis, 
23 relapse) sequenced by Whole Genome Sequencing (WGS) or Whole Exome Sequencing (WES), with 
samples categorized into <18 months of age at diagnosis (group A, n = 206), 18 months to 5 years (group 
B, n = 325), and 5 or more years (group C, n = 154). Middle, segmental chromosome copy changes which 
were statistically significant per GISTIC analysis, and structural variants; blue indicates segmental copy 
loss, red indicates segmental copy gain, white indicates no change. 9+ WC gains samples (gain of nine or 
more whole chromosomes) are shown in dark red. Bottom, somatic variants in driver genes (Brady et al. 
2020). 

 

1.1.2.6 Activation of telomere maintenance mechanisms 

 

High-risk neuroblastoma patients often display genomic alterations that impact telomere 

maintenance, typically associated with poor clinical outcomes. Telomere length in neuroblastoma 

cells is preserved via distinct mechanisms: telomerase activation due to TERT overexpression or 

through alternative lengthening of telomeres (ALT) pathway. Approximately a quarter of high-risk 

cases exhibit structural rearrangements that drive TERT overexpression by bringing super-

enhancers in proximity to the TERT locus. Unlike in other cancers, TERT promoter mutations are 

absent in neuroblastoma. Although TERT amplification is rare, MYCN amplification is linked to 

higher TERT expression levels, yet some MYCN-amplified tumors exhibit low TERT expression, 

suggesting that MYCN amplification is not the sole driver of telomere maintenance activation.  ALT 

mechanisms are identified in a similar proportion of high-risk cases, with mutations in ATRX, 

which governs epigenetic regulation, being the most common alteration linked to ALT, occurring 

in roughly 10% of these patients. These ATRX mutations, which may lead to loss of function or 

generate novel fusion proteins, are more common in patients over 10 years old, less so in younger 

children, and non-existent in infants under 18 months. In a study of 134 high-risk neuroblastoma, 

20% had structural variants leading to TERT overexpression and 23.4% showed ALT activity, with 
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60% of the ALT-positive tumors carrying ATRX mutations. This leaves 40% of ALT tumors without 

known gene alterations related to ALT. This underlines the prognostic importance of telomere 

maintenance activation in neuroblastoma, which is now being prospectively examined in clinical 

trials. Additionally, targeted therapies to inhibit this aberrant activation are being tested 

preclinically. 

 

1.2 Intra-tumoral heterogeneity (ITH) 
 

Neuroblastomas are characterized by a high degree of heterogeneity which is reflected in clinical 

presentations spanning from spontaneous regression or differentiation to treatment-refractory 

progression regardless of intensive multimodal therapies. Although spontaneous regression occurs 

in some patients, the majority of neuroblastomas are diagnosed as high risk and most of these 

patients have metastatic disease already at diagnosis suggesting that induction of metastasis is an 

early event. 

1.2.1 Spatial Intra-Tumor Heterogeneity 

 
Spatial Intra-Tumor Heterogeneity (ITH) refers to the variation in the genetic, epigenetic, and 

phenotypic characteristics of cancer cells within a given tumor. This heterogeneity is a result of the 

tumor's evolutionary process, where different regions of the tumor accumulate distinct mutations 

and adaptations over time. Spatial ITH is a crucial aspect of cancer biology as it can influence the 

tumor's response to treatment, its progression, and the risk of metastasis. Spatial Intra-Tumor 

Heterogeneity (ITH) in neuroblastoma manifests in various ways, reflecting the diverse genetic 

and phenotypic profiles within different regions of the same tumor.  

1.2.1.1 Variation in MYCN Amplification 

 

In neuroblastoma, a common feature is the amplification of the MYCN gene. However, spatial ITH 

is observed in the distribution of MYCN amplification within the tumor. Some regions of the tumor 

may exhibit high levels of MYCN amplification, contributing to aggressive tumor behavior, while 

other regions may have normal MYCN levels or no amplification at all. This heterogeneity can 

significantly impact the overall aggressiveness and treatment response of the tumor (Theissen et 

al. 2009). 

1.2.1.2 Presence of Genetic Mutations and Chromosomal Alterations 

 

Within a single neuroblastoma tumor, different regions can exhibit various genetic mutations and 

chromosomal alterations. One area might show mutations in genes like ALK or amplifications in 
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TERT, while another region might present different alterations such as loss of heterozygosity at 

certain chromosome arms. These genetic discrepancies within the tumor can lead to varied behavior 

and treatment responses from different parts of the same tumor (Schmelz et al. 2021). 

1.2.2 Temporal Intra Tumoral Heterogeneity 

 
Temporal Intra-Tumor Heterogeneity (ITH) in neuroblastoma can be exemplified in several ways, 

as the disease progresses and evolves over time, especially in response to treatment or due to natural 

progression. Following three examples that illustrate temporal ITH in neuroblastoma: 

1.2.2.1 Evolution of Genetic Mutations Post-Diagnosis 

 

In neuroblastoma, subclonal ALK mutations can be present at diagnosis with subsequent clonal 

expansion at relapse (Schleiermacher et al. 2014). (Gundem et al. 2023) studied clonal transitions 

in high-risk neuroblastoma (HR-NB) patients experiencing consecutive relapses. Analyzing 114 

clonal transitions in 72 patients, they identified three distinct evolutionary patterns: 

I. Accumulation of Genetic Changes (72% of cases): Most cases showed additional 

copy number alterations (CNAs) or mutations/structural variations (SVs), reflecting 

linear and branched evolutionary progressions in HR-NB. 

II. Relapse by Identical Clones (24% of cases): A notable portion of relapses originated 

from the same clone as the primary tumor, indicating the expansion of pre-existing 

clones without new genetic changes. 

III. Relapse by Earlier Clones (4% of cases): A smaller group showed relapses driven 

by earlier-stage clones, suggesting that dormant clones can later become dominant 

and cause relapse.  

This implies that some clones, which may have been minor or dormant in earlier stages, gained 

prominence and led to relapse at a later stage. Notably, these patterns were consistent from 

diagnosis to first relapse, across consecutive relapses, and irrespective of disease subtypes, 

suggesting that while new driver subclones emerge and supersede existing ones, certain biological 

themes remain preserved. In the same study, in high-risk neuroblastoma (HR-NB), particularly 

among patients with a history of three or more consecutive relapses, a pattern of multiple waves of 

clonal successions over extended periods has been observed. This complex clonal evolution is 

exemplified by two distinct patient cases: 

1. Early and Frequent Relapses: In a young patient with stage-I MYCN non-amplified 

neuroblastoma, a specific clone with a SPRY2 deletion and IGF2BP3 amplification 
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consistently reemerged in multiple recurrences over a short span, later transitioning to 

different mutant subclones, highlighting a stable yet evolving clonal landscape. 

2. Delayed and Diverse Relapses: Another case, an older child with the same neuroblastoma 

type, showed early relapses driven by a PIK3CA-mutant subclone, with later relapses years 

post-diagnosis driven by a distinct MTOR-mutant clone. Both clones were present initially, 

suggesting a pattern of long-term clonal dormancy and later emergence. 

1.2.2.2 Development of Chemotherapy Resistance: 
 

NB cells can demonstrate inherent primary resistance to drugs or develop multi-drug resistance 

(MDR) after prolonged chemotherapy. 

Neuroblastoma comprises two epigenetically distinct cell types: undifferentiated mesenchymal 

(MES) cells and committed adrenergic (ADRN) cells (Boeva et al. 2017). Notably, MES cells, 

characterized by the expression of the stem cell marker CD133, exhibit high migratory capabilities 

and heightened resistance to chemotherapy. These cells are prevalently found in tumors that 

reemerge post-chemotherapy. The resistance mechanism in NB encompasses a comprehensive 

array of factors. Beyond genetic (mutations, amplifications) and epigenetic alterations (DNA 

hypermethylation, histone modifications), resistance is thought to be fueled by a multitude of 

factors: elevated expression of drug efflux transporters, aberrant miRNA expression, cancer cell 

stemness, autophagy, influences from the tumor microenvironment, extracellular vesicles, hyper-

activation of MEK/ERK signaling, and altered internalization of anti-disialoganglioside antibodies. 

1.2.2.3 Shifts in Tumor Cell Populations Over Time: 
 

Neuroblastomas can exhibit shifts in the prevalence of different cell types over time. For example, 

a neuroblastoma might initially consist predominantly of noradrenergic (ADRN) tumor cells 

(Thirant et al. 2023), but as the disease progresses, there might be an increase in the proportion of 

mesenchymal (MES) cells, which are often associated with more aggressive disease and resistance 

to certain therapies. Most adrenal NB tumors analyzed in the study by (Jansky et al. 2021) were 

classified as ADRN type, yet the malignant cells of three high-risk tumors showed increased MES 

signature expression and reduced ADRN signature expression and were termed high-risk NBs with 

MES features, as previously defined Groningen et al. This shift can be due to differential growth 

rates, treatment responses, or microenvironmental influences. However, these results were primary 

derived from studying neuroblastoma cell lines and less conclusive in patient tumor at diagnosis 

and relapse. 
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1.3 Models of genetic tumor evolution 

 
A fundamental question in cancer research involves deciphering the evolutionary process of 

tumors. The inherent genomic instability (Hanahan 2022) characteristic of tumors creates an ideal 

backdrop, marking a trail of changes across successive generations. This instability is a defining 

feature of tumor cells, leaving discernible genomic footprints that can be traced and studied over 

time. (Körber et al. 2023). The foundational theory proposed by Nowell posits that a normal cell 

transforms into a neoplastic one through the acquisition of a genetic alteration. As tumors evolve, 

they sequentially accumulate genetic alterations often in a stepwise fashion, under selective 

pressures. This process results in the survival and dominance of the most adaptive cell population 

(Nowell 1976). These alterations impact a cell's propensity to proliferate, thereby influencing its 

evolutionary fitness. Some alterations are detrimental, reducing a cell's fitness, while others, known 

as driver alterations/mutations, confer a selective advantage. Additionally, there are passenger 

mutations, which neither enhance nor diminish fitness but may expand within the tumor population 

(Beerenwinkel et al. 2015). 

Tumor cells typically proliferate in a clonal manner. Within the tumor's ecological niche, various 

clones engage in competition for resources, collaboration for invasive capacity, and strategies to 

evade immune system detection (Black and McGranahan 2021). Understanding tumor evolution 

requires comprehensive models that encapsulate the intricate interactions and adaptations of cancer 

cells within the tumor microenvironment. These models are crucial for devising effective cancer 

treatments. The following sections provide concise summaries of several key models in tumor 

evolution (Vendramin, Litchfield, and Swanton 2021). 
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Figure 1.2.2.3.1: Models of tumor evolution 

Models of linear evolution (A) branched evolution (B), macroevolution or punctuated evolution (C) and 
neutral evolution (D) described by Muller plots representing dynamic changes in clonal size over time (left), 
clonal lineages and phylogenetic trees (centre) and changes in the number of alterations over time (right). 
Colors indicate different clones (Vendramin, Litchfield, and Swanton 2021). 

 

1.3.1 Linear Evolution Model 
 

The linear evolution model theorizes that tumors develop through the acquisition of mutations in a 

stepwise manner (Nowell 1976). This model posits that mutations in key driver genes occur one 

after the other, each mutation providing a fitness advantage that leads to its prevalence within the 

tumor population through a process known as a clonal sweep. A clonal sweep takes place if a 

subclone outcompetes its neighboring cells, thus ultimately leading to a reduction of diversity and 

a homogeneous cancer cell population (Black and McGranahan 2021). This model's validity is 

supported by evidence from breast cancer research (Ullah et al. 2018) and more recently in lung 

cancer (Martínez-Ruiz et al. 2023). Their studies illustrated a sequential progression of mutations 

in oncogenes and tumor suppressor genes, tracing linear evolution to successive metastasis. While 
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this model offers valuable insights into the evolutionary trajectory of cancer, it is important to note 

that its support primarily stems from studies focused on single genes. Consequently, there is a 

relative paucity of comprehensive, genome-wide experimental evidence underpinning the linear 

evolution model (Gatenby and Vincent 2003). 

1.3.2 Branching Evolution Model 
 

The branching evolution model proposes that tumor evolution occurs through the parallel 

development of multiple clones. This model differs from the linear model primarily in its 

characterization of fewer clonal sweeps (Davis, Gao, and Navin 2017). In this framework, 

phylogenetic trees exhibit significant heterogeneity, including the presence of intermediate 

ancestor. The branching model is extensively supported by a wide range of studies, both in bulk 

sequencing and single-cell analyses, across various types of cancer. Notable examples include lung 

cancer (Jamal-Hanjani et al. 2017), breast cancer (Darlan C. Minussi et al. 2021), liver cancer (Su 

et al. 2021), ovarian cancer (Schwarz et al. 2015), renal cancer (Turajlic et al. 2018),  pediatric 

cancers (Andersson et al. 2020) and non-small cell lung cancer metastases (Al Bakir et al. 2023) 

The evidence supporting this model is robust and well-documented in diverse tumor types. For 

instance, a comparison of multiregional sampling studies in pediatric cancers like neuroblastoma, 

rhabdomyosarcoma and Wilms tumor have all provided evidence for the branching pattern of tumor 

evolution (Andersson et al. 2020; Schmelz et al. 2021). A particularly compelling illustration of 

this model's prevalence is its identification in a pan-cancer cohort study employing whole-genome 

sequencing (Dentro et al. 2021). This study revealed that branching evolution is a common 

evolutionary pattern in tumors, even in those exhibiting low mutation rates. 

1.3.3 Macroevolution or Punctuated Evolution Model 
 

The punctuated evolution model is characterized by a brief phase of heightened genomic instability 

(R. Gao et al. 2016), leading to a multitude of genomic changes and distinct, punctuated 

evolutionary steps (Fittall and Van Loo 2019). This instability often results in extensive structural 

genomic alterations, including gains or losses of chromosomal arms or whole chromosome, TP53 

mutations, and instances of whole genome duplication (WGD). Unlike the linear, neutral, and 

branching models, which are primarily supported by single nucleotide variations, the punctuated 

evolution model is predominantly evidenced by copy number alterations and structural variations 

(Davis, Gao, and Navin 2017). 

A key element in punctuated evolution appears to be the mutation of the TP53 gene (R. Gao et al. 

2016). TP53 mutations are often observed in the early clonal stages of various tumor types, 
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seemingly playing a critical role in this evolutionary pattern. Tumors with TP53 mutations are 

found to be more likely to experience whole-genome doubling – a hallmark of punctuated evolution 

– compared to those with wild-type TP53 (Gerstung et al. 2020). This phenomenon is notable, with 

synchronous copy number events indicative of punctuated evolution observed in a significant 

proportion of tumors that have undergone whole-genome doubling. Even in tumors that remain 

near diploid, there is evidence of synchronous gains in a majority of cases (Gerstung et al. 2020). 

The distinct burst of evolutionary activity characteristic of the punctuated model leads to the 

formation of unique phylogenetic trees. These trees typically show large truncal distances and a 

notable absence of intermediate taxa (R. Gao et al. 2016).  

However, the interpretation of these trees requires careful consideration, particularly in the context 

of strong selective pressures and clonal expansion. Evidence of punctuated evolution has been 

observed in a variety of cancer types, including breast cancer (R. Gao et al. 2016; Navin et al. 

2011). prostate cancer (Baca et al. 2013), uveal melanoma (Field et al. 2018), and colorectal cancer 

(Cross et al. 2018). This suggests that punctuated evolution may be a more widespread 

phenomenon across different cancers than previously thought. 

1.3.4 Neutral Evolution Model 
 

The neutral evolution model in cancer biology posits that tumor development is characterized by 

extensive branching and a high degree of intra-tumor heterogeneity. This heterogeneity, according 

to the model, results not from selective evolutionary pressures but from random genetic drift 

(Davis, Gao, and Navin 2017). Consequently, in a neutral evolutionary scenario, there is no 

significant expansion of any particular subclonal population despite the observed diversity. 

Support for the neutral evolution model comes from detailed studies in various cancers. For 

instance, an analysis involving microdissection of 286 samples from a single hepatocellular 

carcinoma case revealed about 20 subclones with high genetic diversity across different tumor 

regions (Ling et al. 2015). This finding aligns with the predictions of the neutral model. Additional 

support for this model has been provided by analyzing allele frequencies across 14 different tumor 

types. Out of 904 samples examined, 323 were found to better fit the neutral evolution model 

(Williams et al. 2016). However, these findings have faced criticism due to the use of simplifying 

assumptions in the analysis, which may have led to the misclassification of some non-neutral 

tumors as neutral (Tarabichi et al. 2018). 

A related concept is the big bang evolution model, which describes an early, single expansion phase 

in the tumor's development. This expansion, not governed by strict selective pressures, leads to the 
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formation of a diverse population within the tumor. Predominantly observed in colorectal cancer 

studies, the big bang model (Sottoriva et al. 2015) suggests that the initial clonal expansion sets the 

stage for the subsequent diversity observed in the tumor, without ongoing selective pressures 

shaping the tumor's evolution. 

In neuroblastoma both linear and branched evolutionary model are frequently reported previously  

(Karlsson et al. 2018) (Andersson et al. 2020) (Schmelz et al. 2021) (Gundem et al. 2023).  

However, as of today’s date there is no research in neuroblastoma highlighted variable replication 

timing and its potential role in genetic evolution.  

 

1.4 Molecular mechanisms involved in genetic evolution: DNA 
replication 

 
Genetic alterations in cancer cells can arise due to extrinsic factors that cause DNA damage. These 

alterations are then addressed by the cell's DNA repair mechanisms, which can either successfully 

repair the damage or fail to do so. The outcome of these repair processes contributes significantly 

to the genetic diversity observed within tumors. Additionally, DNA replication itself is a crucial 

factor in the development of intratumor heterogeneity. As cells replicate their DNA, errors can 

occur, leading to genetic variations. Distinct replication profiles are another key element that 

characterizes different cellular subclones within a tumor. These replication profiles can vary from 

one subclone to another, contributing to the complexity and diversity of the tumor's genetic 

landscape. Early replicating regions of the genome in certain subclones might be associated with 

rapid cell division and aggressive tumor behavior, while late replicating regions in other subclones 

might correspond to slower growth or different cellular characteristics. Understanding these 

nuances of DNA replication and repair, and how they contribute to intratumor heterogeneity, is 

crucial for a comprehensive understanding of cancer biology. 

1.4.1 Cell cycle and DNA replication timing (RT) 
 

DNA replication, essential for cell division and maintaining genomic integrity, is a fundamental 

biological process. The cell cycle includes several distinct phases: G1 (Gap 1), S (Synthesis), G2 

(Gap 2), and M (Mitosis). During cell division, a human cell is programmed to replicate its entire 

DNA in a highly coordinated manner within the S-phase's constrained timeframe. This replication 

process initiates from multiple regions scattered across the genome, referred to as DNA replication 

origins (Akerman et al. 2020). Specific genomic loci exhibit distinct changes in their replication 
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timing during the process of differentiation, often aligning with the expression status of the genes 

they harbor.  

Early-replicating domains of the genome are typically associated with active transcription. These 

regions are often found in euchromatin and characterized by markers indicative of open and active 

chromatin, which is less condensed and more transcriptionally active. Genes located in early-

replicating domains are usually actively transcribed, and this early replication is thought to 

facilitate efficient transcriptional processes. The open chromatin structure in these regions allows 

easy access for transcription machinery and regulatory elements. 

In contrast, domains that replicate later in the S-phase are generally enriched with markers of 

closed, inactive heterochromatin, which is more condensed and transcriptionally inactive. Genes 

in these regions are often silenced or expressed at low levels. The late replication of these areas 

may contribute to the maintenance of a repressive chromatin state, limiting the accessibility of 

transcription factors and other regulatory proteins. 

A notable example of this phenomenon is observed in the X chromosome of mammalian females. 

The inactive X chromosome in these cases becomes predominantly late replicating as its 

transcriptional activity is significantly reduced or shut down. This observation underscores the 

intricate relationship between chromatin status, gene expression, and replication timing (Weiner et 

al. 2023).  

The replication timing (RT) can vary across different cell types and developmental stages, 

reflecting the complexity and adaptability of the cell replication process. Moreover, replication 

timing is closely linked to genome stability. There is a correlation between the timing of replication 

and the rate of mutations, suggesting that when DNA replicates can influence its susceptibility to 

changes.  

Neuroblastoma, a common pediatric solid tumor, frequently involves unbalanced chromosome 

translocations, particularly affecting chromosomes 1 and 17. A study using high-resolution arrays 

revealed that over 50% of breakpoints in neuroblastoma cell lines occur in early replicating regions 

of the genome. This suggests a significant link between these translocations and early genome 

replication, likely due to break-induced replication mechanisms (Janoueix-Lerosey et al. 2005). 
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1.4.2 Cancer cell and DNA replication 

 
In cancer, where cell cycle regulation is frequently disrupted, a thorough understanding of DNA 

replication is crucial. Dysregulation in DNA replication and cell cycle control contributes to 

increased cellular proliferation and a heightened mutation burden (Sanders et al. 2021) (Sima and 

Gilbert 2014). These changes can lead to genomic instability, a common characteristic in cancer 

cells, underscoring the significance of replication timing (RT) in maintaining genomic integrity. 

This disruption results in replication stress and genomic instability, leading to somatic copy number 

alterations (CNAs) and intratumoral heterogeneity, driving the evolution of cancer. The timing of 

DNA replication during the S-phase of the cell cycle is closely associated with various epigenomic 

features, including 3D nuclear organization, chromatin state, and transcription, all of which impact 

the cellular phenotype. Furthermore, structural variations and CNAs can affect these epigenomic 

states and potentially influence RT, highlighting the complex interplay between DNA replication, 

genomic structure, and cancer progression. 

Specific genomic alterations can provide fitness advantages to certain cancer subclones, leading to 

distinct proliferation rates and a faster progression through the cell cycle. Single-cell whole genome 

sequencing (scWGS) has emerged as a potent tool for analyzing clonal heterogeneity and CNAs. 

It holds promise for enhancing our understanding of DNA replication dynamics, particularly in 

aneuploid cell populations. However, the computational challenge of identifying S-phase cells and 

distinguishing replicating from non-replicating loci is significant, primarily due to the difficulty in 

differentiating inherited somatic CNAs from transient changes in DNA replication. Deciphering 

these two signals is crucial for a more accurate study of replication timing and proliferation rates 

of individual genetic subclones. Such insights would significantly advance our understanding of 

the interplay between DNA replication, genomic instability, and cancer progression. This 

knowledge is key to developing targeted interventions that can effectively manage or inhibit the 

uncontrolled proliferation characteristic of cancerous cells. Moreover, some chemotherapies, like 

cisplatin, specifically target S-phase cells, emphasizing the importance of understanding cell cycle 

dynamics for therapeutic interventions (Sherr and Bartek 2017). 
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Figure 1.2.2.3.1: The basic principles of genome-wide single-cell DNA replication profiling 

(a) An experimental overview of scRepli-seq. A typical cell cycle profile of mammalian cells stained with 
propidium iodide during flow cytometer analysis is shown, along with the mid-S sorting gate used. Genomic 
DNA samples isolated from single or 100 mid-S cells were subject to copy number analysis by next 
generation sequencing (NGS) to detect early and late replication domains throughout the genome; (b) 
Replication profiling by copy number analysis. Mapped NGS reads of mid-S cells were counted in sliding 
windows of 200 Kb (Kilobases) at 40-Kb intervals to generate tag density plots (i.e., counts per window 
normalized by total read counts). Shown are human chromosome 11 (chr11) tag density data from 100 
hTERT-RPE1 cells in G1 and mid S-phase. Mappability was corrected using G1 samples, and the numbers 
were further divided by the median read count (i.e., median centering) to generate Log2[(corrected mid-
S)/median] replication profiles of 100 cells and three individual mid-S cells (Hiratani and Takahashi 2019). 

 

1.4.3 Computational tools to study replication in single cell  
 

One of the key advancements in this realm in the last one and half years was the development of 

tools that were designed for single-cell Replication Timing (scRT) analysis. New methods like 

Probabilistic Estimation of single-cell Replication Timing (PERT) and Kronos scRT were 

developed to jointly infer single-cell copy number and replication states from scWGS data (Weiner 

et al. 2023) (Gnan et al. 2022). Unlike traditional methods, Kronos scRT does not require cell 

sorting or a specific platform, thus enabling the study of large datasets from asynchronous cell 

populations. It provides robust predictions of cell cycle phases, quantifies replication timing 

variability, and estimates relative proliferation rates among tumor subclones. 
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1.5 Quantifying genetic changes in cancer evolution 

 
One challenge for theorists lies in adapting theoretical models to data that are often noisy and 

complex. Generative Bayesian modeling is particularly suited for this task, as it allows for direct 

incorporation of data-generating aspects into the analysis. Other Bayesian techniques, such as 

approximate Bayesian computation (Gillis and Roth 2020), enable the fitting of simulation-based 

models to data in a structured manner. This approach includes accounting for sequencing noise, 

which can be modeled using specific distributions (like the beta-binomial for overdispersed 

coverage) or by comparing synthetic data generated within a simulation-based framework against 

real data. 

Approaches to measure cancer evolution and its implications for patient outcomes generally fall 

into two categories. The first involves analyzing similarities and differences across large cohorts 

of cancer genomes. Recurrent patterns in these studies may indicate convergent evolution towards 

specific phenotypes, while the absence of certain features might signal negative selection. The 

second approach focuses on intratumor heterogeneity, providing insights into the evolutionary 

dynamics of individual malignancies.  

1.5.1 Leveraging cohort-level information to study cancer evolution 

 
The clonal evolution model posits that tumors originate from a single cell, which then undergoes 

somatic alterations. Central to this model is the concept of clonal expansions, primarily driven by 

'driver' mutations. These mutations confer an increased fitness, defined as the enhanced capability 

of the cell to produce surviving offspring within its specific microenvironment. By tracing these 

mutations, much like tracking species evolution, we can gain insights into the cancer's evolutionary 

trajectory (Körber et al. 2023). Körber et al. implemented this approach by conducting deep whole-

genome sequencing on samples from two neuroblastoma patient cohorts, encompassing a total of 

186 patients and covering all clinical stages of the disease. A primary obstacle in such analyses is 

the inability to directly observe the entire evolutionary process of the tumor. Instead, researchers 

are limited to analyzing a random sample of the process's outputs. This sampling limitation presents 

a significant challenge in fully reconstructing and understanding the complex evolutionary 

pathways of cancer. In the study of neuroblastomas, the sequenced tumors exhibited a range of 

point mutations along with a plethora of copy-number alterations (CNAs), which include both 

gains and losses of genetic material. These CNAs play a significant role in altering gene expression 

and contribute to the genetic instability of the tumor cells. The researchers observed that CNAs 



 20 

were universally present across the neuroblastoma cells, suggesting that these alterations were 

acquired early in the tumor's development. 

To analyze the mutational landscapes of each neuroblastoma sample, the authors employed a 

combination of mathematical modeling and statistical inference. A key part of their analysis 

involved determining the timing of segmental copy-number gains in certain chromosome regions 

(specifically, 1q and 17q) and whole-chromosome gains (in chromosomes 2, 7, and 17). They 

utilized neutral mutations, which accumulate at a consistent rate over time, to establish a molecular 

clock. This approach enabled them to differentiate neuroblastomas into two evolutionary groups. 

The first group comprised tumors in which the gains occurred temporally close to the most recent 

common ancestor (MRCA) the latest cell lineage from which all the sequenced neuroblasts are 

descended. The second group included tumors in which an earlier common ancestor (ECA), 

preceding the MRCA, had acquired most of the gains. This distinction between groups based on 

the timing of genetic gains sheds light on the evolutionary pathways leading to the malignant state 

of the MRCA. In Körber et al.'s study, the latter group of neuroblastomas, which evolved from a 

premalignant early common ancestor (ECA), showed additional genetic evolution into the 

malignant state. This was evidenced by the timing of gains in regions 9 and 20q, which occurred 

after the ECA phase. The research team utilized molecular clocks to draw comparisons between 

primary tumors and their relapsed counterparts, delineating prototypical models that differentiated 

early and late most recent common ancestors (MRCAs). This distinction suggests varying disease 

trajectories for relapsed neuroblastomas. 

The study found that 95% of neuroblastomas with early-MRCAs predominantly exhibited 

aneuploidy, with minimal contribution from point mutations. In contrast, 55% of late-MRCA 

tumors displayed extended genetic evolution characterized by multiple point mutations and other 

somatic changes. Further insights were gained from analyzing MRCAs of metastases that were 

relapsed following initial diagnosis.  

The evolutionary history of a tumor can be a powerful predictor of disease outcomes. Utilizing a 

discovery cohort, Körber et al. demonstrated that the timing of the MRCA is a reliable predictor of 

both event-free survival and overall survival, offering improvements over traditional clinical 

variables and neuroblastoma-specific features like telomere maintenance and RAS/p53-pathway 

mutations. In particular, the study highlighted the role of aneuploidy, especially in late-MRCA 

tumors, which exhibited broader instability and were associated with poorer prognoses. This 

finding suggests a correlation between the duration of a tumor’s evolution and its eventual 

outcome. Additionally, the acquisition of telomere maintenance mechanisms was identified as a 
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significant factor in neuroblastomas, although the exact timing of TERT mutations acquisition 

remained unclear. 

 

1.6 Methods for evaluating genetic tumor evolution 

 
Accurately reconstructing a tumor's evolutionary history from a genomic snapshot, which is 

typically obtained from a single time point and often from just one section of the tumor, presents 

significant challenges. Despite a consensus acknowledging the diversity in tumor evolution, 

inconsistencies in terminology and analytical methods continue to impede efforts to categorize 

tumors based on their evolutionary patterns. 

Many studies, including a notable analysis of 21 breast cancer genomes by Campbell and 

colleagues (Nik-Zainal et al. 2012), rely on bulk sequencing of a single tumor sample to deduce 

the tumor's evolutionary trajectory. These studies primarily interpret evolutionary history based on 

the variant allelic frequencies (VAFs) of somatic mutations found in the tumor. However, such 

approaches must navigate a range of complicating factors. These include the proportion of non-

tumor tissue included in the sample, the specific somatic copy number alteration (SCNA) profile 

of the tumor, and the precision and depth of the sequencing process. Each of these factors can 

significantly skew the interpretation of the genomic data. 

Another key issue in these studies is the potential for sampling bias. A mutation might appear to be 

present in all the cancer cells in the sampled tissue, but it might not actually be representative of 

every cancer cell within the entire tumor. This discrepancy can lead to misinterpretations or 

oversimplified conclusions about the tumor's evolution, underscoring the need for more 

comprehensive sampling and sophisticated analytical approaches in studying tumor genomics.  

Moreover, differentiating the variant allelic frequencies (VAFs) of mutations in subclones resulting 

from selective pressures from those in the tail-like distribution characteristic of neutral evolution 

can be challenging. This tail distribution, representing passenger mutations not subjected to 

selection, mirrors the random mutagenesis occurring at each cell division. It also reflects the 

expected correlation between the number of mutational events and their clonal frequency over time. 

Even when clonal sweeps are precisely identified, distinguishing between a sweep that occurred 

recently and one present at the tumor's inception is often not feasible. This limitation highlights the 

inherent complexities in interpreting the evolutionary history of tumors and underscores the need 

for advanced methodologies and approaches in cancer genomics research. 
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Multi-sampling at various time points during clonal evolution, while not completely addressing the 

issue of neutral tails, can improve the precision in identifying and classifying subclones. This 

approach also helps reduce sampling bias and can provide a higher-resolution view of the 

phylogenetic relationships among subclones. This enhanced resolution is particularly valuable for 

subclones with low cancer cell fractions (CCFs), as it allows for the observation of coordinated 

patterns of CCF fluctuations over time, offering deeper insights into the evolutionary dynamics of 

the tumor. With increased frequency in sampling time points, it becomes possible to distinctly 

identify individual subclones based on their cancer cell fractions (CCFs), particularly when these 

subclones exhibit unique growth dynamics (Caravagna, Sanguinetti, et al. 2020). Serial sequencing 

not only aids in the more accurate decomposition of clonal populations but also facilitates the 

measurement of clone-specific fitness. This approach is particularly effective in tracking the 

growth kinetics of clonal populations in response to therapeutic interventions, as evidenced in 

studies of both circulating leukemia cells and circulating tumor DNA in solid malignancies. Using 

mathematical modeling, researchers can assess how clonal growth kinetics are influenced by 

treatment. 

An illustrative example of this is seen in chronic lymphocytic leukemia (CLL) cases that relapse 

post-chemotherapy. In such instances, an increase in the CCF of subclones with TP53 mutations 

compared to the pre-treatment tumor has been observed, suggesting that these TP53-mutated 

subclones gain a significant fitness advantage under the selective pressure of therapy. This finding 

underscores the potential of dense temporal sampling in enhancing our understanding of clonal 

evolution, particularly in the context of therapeutic response and resistance. However, this 

approach is not a complete solution. Typically, only a very small portion of the total tumor is 

analyzed, and sequencing every single tumor cell, which would be ideal for comprehensive 

analysis, remains an unattainable goal. 

Multi-sampling can also involve analyzing multiple regions within a tumor to evaluate its intra-

tumoral clonal spatial composition. Similar to temporal sampling, multiregional sampling has 

proven beneficial, particularly in the study of non-small-cell lung carcinomas, where it has helped 

refine our understanding of clonal relationships and thus enhance clinical stratification. 

A notable example of how multiregional sampling can reveal evolutionary selection in tumors 

involves the study of driver copy number alterations (CNAs). In some cases, multiregional 

sampling has uncovered the convergent evolution of these driver CNAs, where the same CNA 

impacts different parental alleles in various regions of the tumor. This type of sampling also allows 

for the comparison of primary tumors with their metastatic counterparts. For instance, in lung 
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adenocarcinomas that have metastasized to the brain, multiregional sampling has identified specific 

drivers of metastasis, such as CNAs in genes like MYC, YAP1, and MMP13, that are distinct from 

those in the primary tumors. This approach is instrumental in understanding the complex dynamics 

of tumor evolution and metastasis, offering vital insights for the development of targeted cancer 

therapies. Hua et al. explicitly compared the ITH of point mutations, SCNAs and DNA methylation 

in a multi-region study of 84 lung adenocarcinomas74. They found that tumour evolutionary trees 

inferred from SCNAs and DNA methylation were highly similar, demonstrating that patterns of 

cancer evolution may be agnostic of the variant mechanism (Hua et al. 2020). 

Negative selection, which can lead to the elimination of a clone before sampling, remains 

undetectable using variant allelic frequency (VAF)-based approaches. Consequently, alternative 

methods are necessary to unravel the sequence of events and differentiate between functional 

events, which are subject to selection, and non-functional events, which are not. 

One strategy to time somatic alterations and distinguish between early and late events in tumor 

evolution involves analyzing copy number gains and whole-genome duplication events. Such an 

approach was employed in the Pan Cancer Analysis of Whole Genomes (PCAWG) study. This 

analysis enabled the inference of clonal architecture trends across various tumor types. For 

instance, in colorectal adenocarcinoma, mutations in genes like APC, KRAS, and TP53 were 

predominantly early events, whereas certain copy number alterations, including losses on 

chromosomes 15q, 21q, and 22q, tended to occur later. 

However, describing tumor evolution using binary labels such as neutral or branched, and 

punctuated or gradual, remains challenging. Different analyses of the same data can yield 

contrasting conclusions. For example, a study by Williams et al., which analyzed VAFs in 904 

cancers across 14 types, suggested that 36% (323 out of 904) of these tumors exhibited subclonal 

VAF distributions consistent with neutral evolution. Yet, a subsequent study using a different 

method (dN/dS) identified evidence of subclonal selection within cancer genes in these 323 tumors 

(Williams et al. 2016). 

Single cell sequencing platforms are increasingly recognized for their potential to offer deeper 

insights into tumor evolution. These platforms enable the analysis of cellular genomes alongside 

other cellular components like epigenomes and transcriptomes. Lineage reconstruction at the 

single-cell level could significantly enhance our understanding of tumor phylogeny. An example 

of this is Direct Library Preparation single-cell whole-genome sequencing, which allows for the 

identification of clonal populations of single cells and their unique genomic characteristics. This 
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technique enables the aggregation of data into ‘pseudo-bulk’ samples, from which clonal 

phylogenies can be inferred, offering a more nuanced view of tumor evolution. 

1.6.1 The role of Single cell sequencing 

 
Single-cell approaches (SCA) have revolutionized the analysis of individual cancer cell genomes, 

transcriptomes, epigenomes, proteomes, and even metabolomes, as well as the tumor 

microenvironment (TME), offering unprecedented resolution (Navin et al. 2011) (Hiley et al. 2014) 

(Y. Wang et al. 2014) (Kim et al. 2018). The advent of single-cell RNA sequencing (scRNA-seq) 

has been pivotal, providing a valuable tool for dissecting tumor evolutionary dynamics (Nam, 

Chaligne, and Landau 2021). Its high resolution allows for the detection of gene expression in 

minor sub-clones, which might otherwise be missed by bulk RNA-seq, thus enabling the 

identification of small, treatment-resistant cell populations that could lead to therapeutic failure 

(Rambow et al. 2018).  

While scRNA-seq can infer copy number variation and loss of heterozygosity in individual cells, 

it typically lacks the resolution required for discovering novel SCNAs (Fan et al. 2018). 

Innovatively, scRNA-seq generates transcriptomic data from individual cells at various 

evolutionary stages, facilitating the organization of cells into pseudotime and evolutionary 

trajectories, which sheds light on tumor evolutionary history and dynamics without indicating the 

directionality of these trajectories. RNA velocity analyses augment this by measuring the ratio of 

intronic to exonic reads to infer changes in transcript abundance, offering predictions of future 

transcriptional states and enhancing our grasp of cellular transcriptional dynamics (La Manno et 

al. 2018, la m) 

Furthermore, single-cell DNA sequencing (scDNA-seq) has also surfaced, providing individual 

cell genomic profiles to deduce genetic phylogenies without deconvolution. However, first 

generation of scDNA-seq confronts significant limitations, notably its low coverage due to the 

minimal DNA content in a single cell, a stark contrast to the nanogram quantities needed for NGS 

library preparation. Whole-genome amplification, a necessary yet error-prone step, is employed to 

produce sufficient DNA for sequencing (Y. Wang et al. 2014).  

1.6.1.1 First-generation single cell DNA sequencing 

 

 A single diploid cell contains approximately six pg of DNA. In tumors, this value can fluctuate up 

to approximately 12 pg. Extracting these minute amounts and performing whole genome sequence 

(WGS) creates technical challenges including non-uniformity of the genome coverage and 
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sequence sparsity. In addition, financial challenges are common due to the prohibitive cost of 

sequencing the entire genome of hundreds to thousands of cells.  

The first generation scDNA-Seq technologies applied DOP-PCR51. DOP-PCR takes advantage of 

degenerate primers that randomly align to the genome and cover large fractions of the DNA. While 

this technique presents high sensitivity and captures small amounts of DNA uniformily, the 

physical coverage remains limited to approximately 10% of a single cell genome. Moreover, 

despite the uniform coverage, the random priming nature of the technique combined with WGS 

prior to fragmentation results in regions of pileups of DNA, which increases coverage bias in copy 

number studies. Besides, DOP-PCR is a laborious protocol that can take up to 3 days. An alternative 

method for WGS is multiple displacement amplification (MDA) using the phi29 enzyme MDA 

increases the genome physical coverage up to 90%, but it is unsuitable for copy number analysis 

due to its high non-uniformity coverage. To address this issue multiple annealing and looping based 

amplification cycles (MALBAC) use short cycles of amplification and denaturation in an attempt 

to reduce technical bias. However, it remains limited due to its quasi-linear amplification nature 

and introduces high false positive single nucleotide errors given the lack of proofreading activity 

of the Bst enzyme. Collectively, first-generation scDNA-Seq allowed the first single cell copy 

number profiles. Nevertheless, they were limited by technical biases to the breadth of coverage and 

the uniformity. In addition, the laborious workflows and scale of reagents with expensive enzymes 

resulted in cost-prohibitive experiments not suitable for high-throughput analysis of scDNA-Seq. 

Additional challenges include a heightened false negative rate from allelic dropout and noise from 

sequencing doublets (Pugh et al. 2013) (Leighton et al. 2021) (Mallory et al. 2020). Interestingly, 

the integration of scDNA-seq with bulk DNA sequencing can compensate for each method's 

limitations, leading to more precise phylogenetic inferences and a more comprehensive capture of 

intratumor heterogeneity (ITH) and evolutionary dynamics. 

1.6.1.2 Single Cell Copy-Number Profiling of tumors 

 

Single cell copy number data is a powerful tool to understand tumor evolution. Copy number data, 

possess singular characteristics that facilitate the comprehension of how tumors develop over time. 

Aneuploidy events from cell division defects are inherited across all daughter cells, and we can use 

this property to resolve tumor lineages. The first usage of scDNA-Seq for the inference of tumor 

evolution was in 2011 when Navin et al. applied single-nucleus sequencing to analyze hundreds of 

cells from two breast tumors. By examining the copy number profiles and the relationship among 

cells, the authors detected aneuploid cells without intermediate populations. Which, in turn, is 

suggestive of 'gaps' during the evolutionary process. Moreover, the same work revealed the 
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existence of pseudodiploid cells, i. e, cells that present an overall diploid profile with limited copy 

number events (Navin et al. 2011). This work was pivotal and the first demonstration of high 

resolution (~54 kb) copy number profiles from single cell genomes using sequencing. 

1.6.1.3 High-throughput single-cell DNA Sequencing methods 

 

Modern methods for single cell DNA sequencing introduced technical advances and scaled up 

sample sizes from dozens to thousands of single cells. Adey et al. introduced a PCR-free library 

construction methodology by using a transposase to simultaneously fragment DNA and incorporate 

sequencing adapters (Adey et al. 2010). This method was adapted for microfluidic devices and 

named Direct Library Preparation (DLP) to sequence hundreds of tumor cells (Laks et al. 2019). 

The PCR-free approach significantly reduces bias compared to first-generation single cell 

sequencing due to the absence of DNA amplifications steps, by performing the PCR step after 

fragmentation. Despite the advance in cell throughput, the DLP method required custom 

equipment, preventing wider adoption. DLP was later adapted to nano wells once again scaling-up 

of the number of sequenced cells and labeled Direct Library Preparation+ (Zahn et al. 2017). 

However, it still required custom equipment for its use. Combinatorial indexing approaches 

exponentially increased the number of cells sequenced. Instead of single cell chemistry reactions, 

pooled cells are barcoded using a transposase. Later, they are redistributed across different pools 

and go through the second round of barcoding through PCR. The combination of barcodes is used 

as a unique cell identifier and distinguished bioinformatically during sample demultiplexing (Vitak 

et al. 2017). Despite the robust increase in throughput, the lack of accessibility of the transposase 

to regions containing nucleosomes limits its genomic resolution. Lastly, with the advent of high-

throughput droplet based microfluidics platforms, a commercial method from 10X Genomic 

platform using MDA chemistry allowed copy number profiling of up to 3000 cells in a single run 

(Velazquez-Villarreal et al. 2020). Nevertheless, it presented coverage bias related to MDA 

chemistry, and it is currently discontinued. Hence, despite the throughput increase by different 

protocols, the need for cost-efficient and easy workflow techniques for single cell copy number 

sequencing remains. 

1.6.1.4 Copy Number Inference from high-throughput scDNA-seq 

 

Several methods can infer copy number data from sequencing reads. Allele-specific copy number 

methods leverage imbalances across single nucleotide polymorphisms (SNPs) to estimate copy 

numbers across segments. Notable methods applying this inference are ASCAT, SEQUENZA and 

FACETS. Allele-specific methods can estimate haplotype-specific copy number calls but require 

extensive coverage of SNPs regions. Counting methods bin sequencing reads into genomic regions 
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of different resolutions to obtain total copy number information. Though the latter cannot perform 

haplotype-specific calls, it can be applied to sparse sequenced samples. Thus, reducing the number 

of reads needed and increasing cell multiplexing.  

1.6.2 Interpretation complexities of tumor evolutionary models 

 
Classifying tumor samples into specific evolutionary models serves to identify common patterns 

in their evolutionary dynamics, facilitating the stratification of tumors based on these dynamics. 

However, it is crucial to acknowledge that evolution, including tumor evolution, is fundamentally 

a continuous and dynamic process. The models used to understand tumor evolution are often 

constructed based on data from single time point samples and may involve limited spatial sampling 

and the adoption of simplifying assumptions (Williams, Sottoriva, and Graham 2019). 

In reality, the evolutionary trajectory of a tumor could encompass different models at various stages 

of its development. For instance, tumor cells might initially undergo clonal sweeps under strong 

selective pressures, aligning with the linear evolution model. As the tumor progresses, particularly 

during its pre-malignant stages, the conditions might shift to favor a scenario more in line with the 

branching evolution model, characterized by less pronounced selective pressures and more 

extensive branching. 

Therefore, while these models are invaluable tools in deciphering the complex nature of tumor 

evolution, they come with inherent limitations. It is important to approach the interpretation of 

these models with caution and an understanding that they may represent only a part of the tumor's 

evolutionary story. This nuanced understanding acknowledges the complexity of tumor evolution 

and the need for a flexible and multifaceted approach to studying and classifying it. 

 

1.7 Integrative scDNA-seq and scRNA-seq data analysis 
deciphering complex relationships between genotype and 
phenotype. 

 

Age-related, environmental, and genetic factors significantly influence mutational processes, 

shaping the acquisition of somatic mutations throughout an individual's lifespan (Brady et al. 2020) 

(Thatikonda et al. 2023) (Gerstung et al. 2020) (Alexandrov et al. 2020). These mutations 

contribute to the development of clonal structures in both healthy and diseased tissues. Techniques 

such as targeted, whole-genome, and whole-exome DNA sequencing of bulk cell populations have 

been instrumental in delineating these mutational processes and reconstructing clonal trees (Nik-
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Zainal et al. 2012) (Ludmil B. Alexandrov et al. 2013) (Gundem et al. 2023).  The advent of single-

cell DNA sequencing (scDNA-seq) methods, coupled with novel computational approaches, has 

further refined our ability to reconstruct these clonal populations (Navin et al. 2010) (Darlan C. 

Minussi et al. 2021) (Laks et al. 2019). However, there remains a substantial gap in our 

understanding of the functional differences between clones and their molecular phenotypes. 

Comprehensive characterization of clone’s phenotypic properties is crucial for unraveling the 

mechanisms driving the transition from normal to malignant behavior in tissues and quantify the 

extent of intra-tumoral heterogeneity and its clinical implications. Recent studies have made strides 

in mapping single-cell RNA sequencing (scRNA-seq) profiles to clones with distinct copy number 

states in cancers, providing initial insights into gene expression differences among clones (Tirosh 

et al. 2016) (Fan et al. 2018). Yet, universally applicable methods for deciphering the origins of 

single cells and studying genotype-transcriptome relationships are still under development. The 

theoretical integration of assays to sequence both RNA and DNA from same single cells holds the 

promise of yielding comprehensive genotype-phenotype correlations, thereby capturing the critical 

aspects of clonal expansion, proliferation, and metastasis (Macaulay et al. 2015) (Dey et al. 2015). 

This approach is vital for understanding the mechanisms of drug response in cancer, where 

responses are often dictated by both positive and negative evolutionary selection of mutation-

induced phenotypes, as well as by genome-independent, epigenetically driven alterations in 

transcriptional programs (Shaffer et al. 2017).  

At present without scalable high-throughput methods to simultaneously assay DNA and RNA from 

the same single cell, parallel single-cell DNA and RNA measurements from independent cell 

populations must be mapped for genome-transcriptome association.  

Computational methods such as cardelino exploit single nucleotide variant information in scRNA-

seq reads (the alternate read count using a binomial model) to assign full-length single-cell 

transcriptomes to the clonal substructure (McCarthy et al. 2020). In this method clonal architecture 

derived from bulk DNA sequencing such as targeted sequencing, exome or whole genome 

sequencing could be integrated to investigate gene expression differences between clones at the 

level of individual genes and in pathways, which provides new insights into the dynamics of clones. 

Another method clonealign - a statistical method to assigns gene expression states to cancer clones 

using single-cell RNA and DNA sequencing independently sampled from a heterogeneous 

population (Campbell et al. 2019). In order to relate the independent measurements, clonealign 

assumes that an increase in the copy number of a gene will result in a corresponding increase in 

that gene’s expression and vice versa (a copy-number dosage effect on transcript abundance).  
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Single-cell RNA sequencing methods offer a unique opportunity to link genetic heterogeneity with 

the overall cellular state. CNVs can be inferred from both transcript abundance and allelic 

imbalance in heterozygous single-nucleotide polymorphisms (SNPs) (Patel et al. 2014) (R. Gao et 

al. 2021) (Serin Harmanci, Harmanci, and Zhou 2020). However, reliably determining copy 

number states remains challenging due to the sparse and noisy nature of single-cell measurements. 

Allele-based approaches to CNV detection, which are less influenced by sample or cell type 

variations, face limitations due to data sparsity and allele-specific transcriptional variability in 

single cells. Existing methods for CNV detection from scRNA-seq do not typically incorporate 

prior knowledge of haplotypes, which can significantly enhance the detection of allelic imbalances. 

Population-based phasing, used to computationally phase variants of an individual, has been 

successfully applied in characterizing chromosomal aberrations in both germline polymorphisms 

and cancer evolution (Zaccaria and Raphael 2021) (Funnell et al. 2022). This phasing method, 

however, has not been widely explored in the context of scRNA-seq. Single-cell sequencing 

provides an unparalleled opportunity to dissect genetically heterogeneous subpopulations that are 

obscured in bulk measurements. Methods leveraging allele information typically rely on 

aggregating data across cells to form ‘pseudobulk’ profiles for confident aberration definition. 

Nevertheless, this approach's effectiveness depends on the accurate inference of clonal cell 

populations. 

A recently published computational method Numbat, integrates expression, allele, and haplotype 

information obtained from population-based phasing to comprehensively characterize the CNV 

landscape in single-cell transcriptomes (T. Gao et al. 2022). Numbat employs an iterative approach 

to jointly reconstruct the subclonal phylogeny and single cell copy number profile of tumor 

samples. Applying this method to a diverse array of tumor samples, Numbat has demonstrated its 

capability to reconstruct high-fidelity copy number profiles from scRNA data alone, accurately 

distinguishing cancer cells from normal cells in the tumor microenvironment and identifying 

distinct subclonal lineages with allele-specific alterations. Numbat's versatility is evident in its 

applicability to a wide range of experimental settings and cancer types, without the need for 

sample-matched DNA data or a priori genotyping. This innovative approach has the potential to 

unravel previously inaccessible differences in molecular phenotypes between cells from the same 

individual, significantly advancing our understanding of cancer heterogeneity, evolution, and clone 

specific response to chemotherapy. 
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2 THESIS OBJECTIVES 

Intratumoral heterogeneity (ITH) is a fundamental characteristic of many cancers, including 

neuroblastoma (NB), and it plays a crucial role in tumor evolution and treatment resistance.  

ITH can begin early in tumor development, often as a consequence of genetic instability in the 

initial cancer cells. This instability leads to a variety of mutations and chromosomal alterations. As 

the tumor proliferates, different subclones and different populations of cells with distinct genetic 

profiles emerge. Environmental pressures, such as limited nutrient supply, tumor 

microenvironment and immune surveillance, further select for subclones with advantageous traits. 

ITH becomes particularly evident during and after cancer treatment. Therapies may effectively 

target the dominant clone but can leave behind or even promote the growth of resistant subclones, 

leading to relapse.  

In neuroblastoma, previous studies have identified the importance of both spatial and temporal 

genetic heterogeneity, and both are thought to play an important role in neuroblastoma oncogenesis, 

tumor progression and treatment resistance. The evolutionary genetic trajectory of neuroblastoma 

remains unclear. Moreover, DNA sequencing of bulk samples confirm pervasive heterogeneity in 

neuroblastoma but remain limited in resolution and confounded by normal cells contaminant from 

the stroma. The main aim of the thesis was to perform integrative bioinformatics analysis to 

investigate ITH and clonal evolution at single cell level in neuroblastoma. 

Part A: Manuscript aims and objective: 

Aim 1. Dissecting the Clonal and Subclonal Genetic Landscape of Neuroblastoma 

To analyze the clonal and subclonal architecture of neuroblastoma, this study focuses on 

investigating the genetic variations present at diagnosis, progression, and relapse phases. Utilizing 

single-cell DNA sequencing, we aim to dissect the intricate clonal and subclonal structures within 

neuroblastoma tumors. 

Aim 2. Analysis of Evolutionary Trajectories and Underlying Molecular Mechanisms 

The study focuses on a comprehensive examination of tumor evolution in neuroblastoma, covering 

various aspects from the modalities of tumor evolution to the underlying molecular mechanisms. 

First, it investigates the different modes of tumor evolution, aiming to understand their roles in 

driving intratumoral heterogeneity and influencing the course of tumor progression. This aspect is 

crucial for comprehending how these evolutionary patterns contribute to the dynamic and complex 
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nature of cancer growth. Additionally, the study delves into the temporal evolutionary patterns of 

neuroblastoma, tracing its progression from diagnosis onwards. This analysis will shed light on the 

temporal dynamics and transformation of genetic alterations over time. Finally, the research seeks 

to unravel the molecular drivers responsible for subclonal evolution, focusing on the factors that 

lead to tumor progression and relapse. 

Aim 3. Investigating Replication Timing and Its Impact on Tumor Progression 

The study explores replication timing (RT) variations within neuroblastoma at both the single-cell 

and pseudobulk levels, focusing on early and late RT. It aims to assess how these RT variations 

contribute to intratumoral heterogeneity (ITH) by analyzing the differential RT in distinct 

subclones within the same tumor. Additionally, it investigates the behavior of these subclones, 

specifically their response to therapeutic interventions, based on their RT profiles. This approach 

provides an innovative perspective on the relationship between RT variability and the dynamic 

response of tumor subclones to treatment, offering new insights into tumor progression and 

potential therapeutic strategies. 

Aim 4. Subclonal Heterogeneity: Phenotypic Consequences and Transcriptomic Impact 

This aspect of the study aims to elucidate the phenotypical impact of subclonal heterogeneity at 

the copy number level on the transcriptome. By examining the transcriptomic profiles of 

neuroblastoma subclones, we seek to understand how variations in replication timing, specifically 

between early and late replicating subclones, manifest at the transcriptomic level. Additionally, the 

research delves into the characteristics and transcriptomic expression potential of rare clones in 

neuroblastoma. 

Aim 5. Temporal Intratumoral Heterogeneity through sequential bulk Whole-Exome 

Sequencing under treatment pressure 

Subclonal Dynamics and Targeted Treatment: Study subclonal population’s evolution and 

response under therapeutic pressure, integrating whole-exome sequencing with single-cell DNA 

sequencing. 

These aspects are presented in part A of the results section. 
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Part B: We aimed to provide further insights into NB ITH by investigating details of genes of 

interest on one hand and large patients on other hand.  

Aim 1 Analyzing ITH for a subset of genes involved in chromatin remodeling and epigenetic 
modifier genes.   

Aim 2 Studying ITH for ALK, the gene most frequently altered at a gene level in high-risk 

(HR) patients on the HR-NBL1/SIOPEN trial to determine their frequency. 

Role in part B projects: Bioinformatics data analysis 

The aspect of this work is presented in 2 published manuscripts presented in part B of the results 

section. 
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3 RESULTS 

3.1 Part A. Clonal decomposition and DNA replication states defined 
by scaled single-cell genome sequencing suggest clone specific 
therapeutic vulnerabilities in neuroblastoma. 

 

Neuroblastoma, a predominant pediatric malignancy, is distinguished by its diverse clinical 

behavior and genetic heterogeneity. Poor clinical outcomes are still observed in high-risk tumors 

irrespective of prognostic molecular markers suggesting the importance of inter and intra-tumor 

heterogeneity (ITH), describing diversity within individual tumors. Whether ITH is due to 

stochastic accumulation of mutations following the acquisition of early driver events or due to 

continuous clonal evolution and selection through time and space, remains an open scientific 

question.  

This thesis aims to delve into the molecular intricacies of neuroblastoma by leveraging advanced 

genomic and transcriptomic techniques such as single cell whole genome sequencing and single 

cell RNA sequencing to dissect the complexities of intratumoral heterogeneity (ITH), understand 

replication timing (RT) variances, and explore the clonal evolutionary trajectories under 

therapeutical pressure. 

By elucidating clonal and subclonal dynamics in Neuroblastoma though employing scDNA-seq on 

14 patient-derived xenografts (PDXs) and 4 patient tumors, we aim to map the clonal architecture 

of neuroblastoma. This analysis will provide insights into the evolution of clonal populations, their 

competitive dynamics, and the emergence of subclones, particularly focusing on how these aspects 

contribute to therapy resistance and disease progression. 

Investigating replication timing (RT) and its Impact on ITH: A critical aspect of this research 

involves studying the RT profiles in neuroblastoma cells. Our objective is to examine how 

variations in early and late replication timing within the same tumor contribute to intratumor 

heterogeneity. By studying the RT variability among subclones, we intend to unravel the distinct 

replication timing profiles of each subclone, elucidating their roles in tumor progression and 

response to therapy. This understanding is pivotal in exploring the relationship between DNA 

replication, genomic instability, and cancer development. 

Integrating Single-Cell RNA Sequencing Data: By incorporating scRNA-seq data, this research 

seeks to link genetic alterations at the DNA level with changes in the transcriptomic landscape at 
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a single cell level. This integration enables a comprehensive understanding of how genomic 

variations manifest in functional changes within tumor cells. The study extensively utilizes 

scDNA-seq to profile individual cells within neuroblastoma tumors. This approach allows for an 

in-depth examination of genetic diversity at the single-cell level, facilitating a detailed 

understanding of tumor evolution. In parallel, scRNA-seq data from 16 of the 18 tumor samples 

offer insights into the gene expression patterns, complementing the genomic data. This 

transcriptomic analysis helps to establish a direct link between genetic alterations and their 

functional implications in tumor biology. 

Temporal Intratumoral Heterogeneity through Whole-Exome Sequencing: We conduct WES on a 

six of the established PDX models to capture the temporal dynamics of ITH. This approach is 

instrumental in identifying novel mutations potentially responsible for therapeutic resistance. This 

analysis provides a broader view of the genetic landscape across different stages of tumor 

progression, aiding in the identification of evolving mutational patterns. 

Challenges and Limitations: Despite the comprehensive nature of these technologies, challenges 

persist in fully unraveling the complexity of neuroblastoma. For instance, the limitations of bulk 

sequencing in capturing the full extent of tumor heterogeneity necessitate continual advancements 

in sequencing and computational methodologies. 

The resulting manuscript is currently being finalized, and submission for publication is eminent. 
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3.1.1.1 Abstract 
 

Background: How cell-to-cell allele specific copy number alterations underpin genetic Intratumor 

heterogeneity (ITH), drive genomic and phenotypic variation, and consequently the evolution of 

neuroblastoma (NB), remains understudied 

Aims: Here we investigate ITH, timing of specific genomic aberrations, single-cell replication 

timing and the co-evolution of the genome and transcriptome in NB tumors at single-cell 

resolution. Further we study subclonal dynamics and clone specific response or resistance under 

targeted therapeutic pressure. 

Methods: In addition to germline/tumor bulk whole exome sequencing (WES), ultra-low depth 

(0.25x) single-cell whole-genome DNA sequencing (scDNAseq) was performed using 10x 

genomics Chromium single-cell CNV (scCNV) kit and 9410 tumor cells were characterized from 

14 patient-derived xenografts (PDX) NB-models and 4 tumor biopsies from NB-patients, either at 

diagnosis (n=7), progression (n=3) or relapse (n=8). Single-cell RNA sequencing (scRNAseq) data 

was obtained from the same PDX and patient tumor samples (Thirant et al. 2023). 6/14 PDX 

models were subjected to different treatment combinations (targeted treatment with/without 

chemotherapy) and bulk WES was performed at two time-points, pre- and post-treatment. 

Results: Polyclonal (n=11) and monoclonal (n=7) genomes were determined by allele and 

haplotype specific copy number (CN) alteration using both scDNAseq and scRNAseq data 

analysis. 2 to 11 clones were observed per polyclonal NB tumor. Whole genome duplication events 

(n=7) were observed in both polyclonal and monoclonal genomes. Known driver CN (segmental 

loss in chr1p and chr11q and gain at chr17q, or MYCN/ALK amplification) or somatic mutations 
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(ALK/ATRX/TP53/NF1) were early clonal events.  scDNAseq analysis showed parallel copy 

number evolution of two distinct clones, subclone s1/s2, in one PDX model. Data integration of 

clonal mutational profiles with pre and post targeted therapy (Lorlatinib) reveals clone specific 

treatment response. Subclone s2 was partially responding with extinction of a sub-set of somatic 

alterations, whereas no change was observed in subclone s1. The replication timing (RT) profile of 

these two clones, subclone s1 (early-RT) and s2 (late-RT) were mutually exclusive. Genotype to 

phenotype analysis revealed subclone s1 genotype was preferentially expressed at transcriptomic 

level. 

Conclusion: Together, these results determine the evolutionary trajectories of NB tumors, linked to 

distinct replication timing and highlight opportunities for targetable early clonal alteration 

detection. 

 

3.1.1.2 Introduction 

 

Neuroblastoma (NB) is the most frequent childhood extracranial solid tumor of the peripheral 

sympathetic nervous system. Clinically, neuroblastoma manifests salient heterogeneity, ranging 

from spontaneous regression to incurable progression despite intensive therapy (Maris et al. 2007) 

(Cheung and Dyer 2013). 

The clinical heterogeneity observed in cancer can in some instances be explained by a complex 

interplay between genetic and non-genetic determinants of somatic evolution. Genetic variations 

including somatic single nucleotide variants (SNVs), somatic copy number alterations (SCNAs) 

and whole genome duplication (WGD) can act as a primary substrate for tumor evolution (Gerstung 

et al. 2020). 

In neuroblastoma, at diagnosis, genetic alterations mainly concern copy number alterations. MYCN 

amplification observed in approximately 20 – 25% of all cases is associated with a poor prognosis, 

with other genomic amplifications occurring less frequently, including chromosome regions 

encompassing the ALK gene, or CDK4/MDM2. Segmental chromosome alterations, including 

deletions of chromosome arms 1p, 3p, 4p and 11q, or gains of chromosome arms 1q, 2p, or 17q, 

are associated with poor outcome. Only few genes have been shown to be altered recurrently in 

NB, with activating mutations of ALK being observed in 8 – 10% of NB at diagnosis, and other 

SNVs or single gene events targeting genes such as ATRX, genes involved in chromatin 

remodeling, or PTPN11. Telomere maintenance either through activation of telomerase activity or 

by ALT (alternative mechanisms of telomerase) play an important role in the oncogenesis of NB 
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and are associated with a poor prognosis in particular when occurring together with mutations in 

the RAS/MAPK pathway (Eleveld et al. 2015) (Ackermann et al. 2018). 

Both spatial and temporal genetic heterogeneity play an important role in NB, and some genetic 

events considered as tumor “driver” events can occur at a subclonal level in only a subset of tumor 

cells. Furthermore, at relapse new genetic alterations are frequently observed, with apparition of 

either new CNA, or emergence of mutations in the ALK or RAS/MAPK genes, underlining the 

importance of clonal evolution in the process of tumor progression and treatment resistance 

(Braekeveldt et al. 2018) (Schmelz et al. 2021). 

Study of changes in the mutational landscape before and after treatment can lead to the 

identification of new mutations that confer resistance to therapy, possibly leading to an 

understanding of the genetic mechanisms underlying treatment failure (Ben-David, Beroukhim, 

and Golub 2019). 

Accumulation of genetic alterations might reflect distinct evolutionary trajectories of tumor cells, 

and mapping their appearance over time might reflect an underlying molecular clock. Specific 

mutational signatures can be observed when somatic single base substitution mutations (such as 

SBS1 or SBS5) accumulate over time because of specific extrinsic and intrinsic factors such as 

DNA replication errors or selection pressures (Brady et al. 2020) (McGranahan and Swanton 2017).   

Multi-sampling for interrogating multiple regions within a tumor to assess for intra-tumoral spatial 

heterogeneity or study of different time points during clonal evolution to assess for intra-tumoral 

temporal heterogeneity can provide higher-resolution phylogenetic relationships even for 

subclones with low Cancer Cell Fraction (CCF) (Schmelz et al. 2021) (Körber et al. 2023). 

However, these bulk sequencing data can only resolve clonal and subclonal relationships to a 

limited extent. (Nam, Chaligne, and Landau 2021) 

The emergence of single-cell genomic DNA sequencing technologies permits scalable whole 

genome single-cell DNA sequencing of hundreds of individual cells in parallel, providing an ideal 

framework for analyzing genetic ITH (Baslan et al. 2016) (Y. Wang et al. 2014) (Laks et al. 2019). 

Complementing these technical developments, recent computational advances enable highly 

accurate ploidy estimates and the inference of allele- and haplotype-specific SCNAs in individual 

cells and sub-populations of cells from low-coverage single-cell DNA sequencing (Zaccaria and 

Raphael 2021). This allows cell-by-cell assessment of intra-tumoral SCNA heterogeneity, 

identification of allele- specific alterations, and reconstruction of the evolutionary history of a 

tumor from hundreds of individual cancer cells obtained at a single or multiple time points during 

tumor progression (Funnell et al. 2022). 
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To better understand neuroblastoma ITH, here we performed whole-genome single-cell DNA 

sequencing in combination with both whole-exome (bulk), and transcriptomic single-cell RNA 

sequencing in both primary tumor samples and established patient derived xenografts (PDX). To 

determine whether the widespread SCNAs in neuroblastoma result from ongoing genomic 

instability, the study aimed at characterizing in detail the composite clonal and subclonal 

architectures along with replication timing (RT) profiles associated with neuroblastoma 

tumorigenesis. Integration of single-cell RNA sequencing, we define the genotype to phenotype 

relationship. An independent WES (bulk) on 6 NB PDX models before and after (targeted) 

therapies was performed to study temporal genetic heterogeneity and identify clones and new 

mutations that might confer resistance to therapy. 

 

3.1.1.3 Material and Methods 

 

3.1.1.3.1 Preparation of the single-cell suspension for DNA sequencing 

 

Samples were obtained from patients treated for neuroblastoma at Institut Curie, following 

informed consent. Patients were treated according to national or international treatment protocols. 

Patient derived xenograft (PDX) were established as reported previously (Marques Da Costa et al. 

2023). PDX samples listed in Table 3.1.1.4.1 were included in this study. After reaching ethical 

size and following resection, PDX samples were immediately transferred for dissociation. On 

arrival, each sample was placed in a sterile Petri dish at room temperature.  Tissue was subsequently 

minced to smaller pieces in a sterile less than 3 mm and digested by trypsin (10 mg/ml, Sigma 

Merck) during 1h at 37°C followed by inactivation by Soybean trypsin inhibitor (10 mg/ml, 

Sigma). Collagenase type II (100 mg/ml, serlabo) and DNase I (2 mg/ml, Sigma Merck) were 

added to cell solution to complete the tissue digestion. Subsequently, the sample was filtered using 

a 70-mm nylon mesh and centrifugated (300 × g in 1× PBS with 0.04% BSA) to discard 

supernatant. The cell pellet was resuspended in 1ml of medium, counted and resuspended in 

recommended media at accurate concentration.  

For patients’ biopsies, collected with informed consent from patients enrolled in this study, the 

same protocol is applied by adjusting the enzymes’ concentrations according to the size of tumoral 

sample received. 

3.1.1.3.2 Single-cell DNA library generation 

 

The single-cell suspension was processed using chromium single-cell CNV solution (10× 

Genomics) as described in the user guide to generate a barcoded single-cell DNA library. Briefly, 
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single-cells were partitioned in a hydrogel matrix by combining with a CB polymer to form cell 

beads (CBs) using a microfluidic chip. After the first encapsulation, CBs were treated to lyse the 

encapsulated cells and denature the genomic DNA (gDNA). The denatured gDNA in the CB is then 

accessible to amplification and barcoding. A second microfluidic encapsulation step is required to 

partition the CB with 10× barcode gel beads (GBs) to generate an emulsion called GEMs. 

Immediately after barcoding and amplification, 10× barcoded fragments were pooled and attached 

to standard Illumina adaptors. Finally, sequencing libraries were quantified by qPCR before 

sequencing on the Illumina platform (Hi-Seq) to obtain a depth of coverage of 1X. 

3.1.1.3.3 Single cell RNA sequencing library generation 

 

Single-cell RNA sequencing (scRNA-seq) data was accessible for 16 out of these 18 tumor samples 

from Isabelle Janoueix-Lerosey’s team at Institut Curie (Thirant et al. 2023). Single cell RNA 

sequencing was performed on using 10X genomic platform. The scRNA library preparation and 

sequencing details were described previously (Thirant et al. 2023). While scRNA-seq was 

conducted on the same patient-derived xenograft (PDX) passage or patient tumor, it was not 

performed on the exact same single cells.  

3.1.1.3.4 In-vivo experiments for the study of clonal evolution 

 

To investigate clonal evolution under targeted treatments, six different PDX models were treated 

in independent in vivo experiments. In each experiment, Swiss Nude mice were engrafted with 

tumors in their interscapular fat pad. The study planned for eight mice per group, aiming for a 

minimum of six treated mice in each experimental arm to ensure statistical significance. 

Randomization into six treatment groups occurred when tumor volumes reached 150-200 mm³. 

The study team monitored mouse weight and tumor size three times weekly. Mice were euthanized 

when tumors reached a predetermined ethical size limit of approximately 1,500-2,000 mm³. At the 

experiment's conclusion, DNA from the end of treatment, PDX tumor was subjected to whole-

exome sequencing (WES). These details are summarized in Table 3.1.1.6.3. All procedures were 

approved by the Institutional Review Board of the Institut Curie. All animal experiments complied 

with current European/French legislation (articles R.214-87 to R.214-126 of the Decree n°2013-

118 of February 1st) and were carried out in accredited animal facilities of the Institut Curie. 

Treatment schedules is detailed in Supplementary data section, 3.1.1.6.1.2. 

3.1.1.3.5 Tumor DNA sampling, processing, and sequencing 

 

PDX tumor tissue was flash-frozen after dissection and stored at -80°C. PDX tumor DNA was 

extracted by using the QIAamp DNA Mini Kit. DNA concentration after extraction was measured 
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by Qubit fluorometric assay with dsDNA BR Assay Kit. Tumor DNA was fragmented and then 

libraries constructed using Kapa Library Preparation Kit Illumina platforms (Kapa Biosystems) 

with Indexed Adapters included in SeqCap EZ Human Exome Kit v3.0 (Nimblegen Roche 

Sequencing). The manufacturer's protocol was modified as reported previously (Chicard et al. 

2018). For exome capture SeqCap EZ Exome Enrichment Kit v3.0 (Nimblegen Roche Sequencing) 

was used according to the manufacturer's protocol, using Illumina Hi-seq2500 leading to paired-

ends 100x100 bp (expected coverage: 100X). Paired patient’s tumor DNA and germline DNA was 

available for all PDXs and was whole exome sequenced by Agilent SureSelect Human All Exon 

v5. Tumor DNA from patients was obtained from the same tumor specimen that was used to 

establish the corresponding PDX excepting for GR-NB10. In this particular case enrolled in the 

MAPPYACTS program (NCT02613962), the patient’s tumor DNA sequenced corresponded to a 

later timepoint with respect to the establishment of the PDX.  

In the experiments performed on IC-pPDX-17, GR-NB4 and GR-NB10, two tumors were 

sequenced per treatment arm, whereas in the experiments on HSJD-NB-005, IC-pPDX-75 and IC-

pPDX-109 only one tumor per experimental arm was sequenced. 

3.1.1.3.6 Single-cell DNA sequence data possessing 

 

Chromium single cell DNA sequencing paired-end reads were processed using CellRanger-dna 

CNV pipeline v1.1 (10x Genomics, Inc). It consists of barcode aware read alignment, post-

alignment processing as well as downstream copy number variation (CNV) identification. Reads 

were aligned over refence genome build GRCh37/hg19 using BWA-MEM mapping tool (Li and 

Durbin 2009). Post alignment preprocessing includes the step of Mark-duplicate per barcoded cell.  

Read count was obtained at fixed 20kb genome bin and then normalized according to mappability 

and GC content. Genomic regions with no reads or fewer reads (mappability < 70%) were removed 

from downstream analysis. Finally total copy numbers calls per 20kb bin length were calculated. 

CellRanger-dna CNV calling details can be browsed at https://support.10xgenomics.com/single-

cell-dna/software/pipelines/latest/algorithms/cnv_calling 

In our custom bioinformatics workflow, normalized count data per bin length was used to call 

CNVs using CopyKit pipeline. The summary statistics produced by CellRanger-dna pipeline 

includes data points for bin-to-bin ratio variation and ploidy inference per cell. Bin-to-bin ratio 

variation and number of breakpoints per cell inferred by CopyKit pipeline (Darlan Conterno 

Minussi et al. 2022) were then used to classify cells into G1/G2-phase and S-phase cells. The 

thresholds varied per tumor sample. Non tumoral cells were detected according to Gini coefficient 

less than 0.12 (R. Wang, Lin, and Jiang 2020) as well as curated manually (visualization). Cells 

https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/algorithms/cnv_calling
https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/algorithms/cnv_calling
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with complete silent copy number profile (no CN breakpoints) were classified as non-tumor cells. 

Cells exhibiting extensive dropout events, such as whole-chromosome or multiple chromosome 

arm level CN alterations, were categorized as noisy cells. 

3.1.1.3.7 CNV calling at single cell level and inference of genomic architecture. 
 

We integrated two comprehensive CNV analysis pipelines. First, CopyKit pipeline was used which 

performs CNV analysis at 250kb resolution and then estimates clonal substructure based on either 

segment ratio or integer copy number analysis. To delineate the genomic architecture of the tumors, 

Uniform Manifold Approximation and Projection (UMAP) was implemented (McInnes et al. 

2018). Then HDBSCAN clustering was performed using the UMAP embedding (McInnes, Healy, 

and Astels 2017). Second, the CHISEL pipeline was used which is designed to perform allele- and 

haplotype specific copy number analysis (Zaccaria and Raphael 2021). Before running CHISEL, 

we prepared heterozygous single nucleotide polymorphism (SNPs) lists derived from variant 

analysis of pseudobulk (pooled single cells per tumor) WGS and germline bulk whole exome 

analysis. All these SNPs were identified as common in the population with gnomAD population 

database allele frequency, i.e. popmax > 0.1% (Q. Wang et al. 2020). These heterozygous SNPs 

were phased using Eagle v2.4 (Loh et al. 2016) and reference panel TOPMed r2 from TopMed 

imputation server (Taliun et al. 2021). Genomic coordinates were transformed from hg19 to hg38 

or vice versa using CrossMap tool (Zhao et al. 2014). The phased SNP list was used by CHISEL 

to compute B-Allele frequency (BAF) across each bin in each cell and then to infer allele-specific 

copy number (ASCN) and haplotype specific copy number (HSCN).  We used variable resolution 

ranging from 2Mb to 5 Mb. CHISEL applies hierarchical clustering to infer clones and subclones. 

The comprehensive bioinformatics workflow was outlined in Figure 3.1.1.6.22 

3.1.1.3.8 Integer copy number and consensus profiles  
 

The ploidy for each cell of a tumor sample was estimated by CellRanger-dna pipeline. Then 

CopyKit was used to constructs single cell integer copy number profiles by multiplying the 

segment ratios by ploidy and rounding the values to their nearest integer. To determine cluster 

stability, CopyKit evaluates the Jaccard Similarity using R package ‘fpc’ (v2.2-9) (Hennig, C. 

2020) over a range from k=10 to the square root of the number of cells. The value that maximizes 

the Jaccard Similarity (default = ‘median’) is returned as the suggested value to be passed on for 

sample clustering algorithms. Subclonal consensus integer profiles were calculated by taking the 

median of every integer copy number of all the single cells that were assigned to the same subclone 

and rounded to the nearest integer. 
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3.1.1.3.9  Phylogenetic reconstruction of clonal lineages  
 

Phylogenetic inference for subclonal consensus trees were performed using MEDICC2 (Kaufmann 

et al. 2022) based on the minimum event distances using total copy number parameter as an input. 

A diploid cell with copy number = 2 was added to the tree and designed as the root node, to root 

the tree. Common ancestors were estimated during tree construction as described in MEDICC2. 

The trees were plotted using R package ggtree v3.2.1 (Yu 2020)  

3.1.1.3.10  Inference of most recent common ancestor (MRCA) profile 

 

Inference of most recent common ancestor (MRCA) were inferred from the consensus copy 

number profiles (mean integer values of segments) of all the subclones from each sample during 

MEDICC2 tree construction. The consensus profile of each subclone was used to derive the most 

recent common ancestor (MRCA). For every segment, we selected the copy number (CN) value 

among the consensus CN values from each superclone to the average tumor ploidy as the ancestral 

segment. 

3.1.1.3.11 Bulk whole exome and pseudobulk WGS data analysis 

 

Joint variant calling to identify single nucleotide variants (SNVs) and small insertions and deletions 

was conducted on pseudobulk data (comprising pooled G1/G2-phase single cells WGSs from each 

tumor sample), whole exome sequencing (WES) of tumor samples, and germline data using 

Mutect2 in GATK v4.2.6.1 (DePristo et al. 2011). Variants deemed noisy were filtered out using 

the FilterMutectCalls tool from GATK. Additionally, allele-specific copy number analysis on both 

pseudobulk and bulk tumor samples was carried out utilizing the Sequenza tool. (Favero et al. 

2015). Variants annotation was executed using the snpeff tool (Cingolani et al. 2012). Custom R 

scripts were used for annotated variant processing and analysis. Genome-wide variants exhibiting 

a CADD score greater than 10 and a gnomAD population maximum allele frequency below 0.1% 

were selected for further downstream analysis. 

3.1.1.3.12 Mutation timing or Mutation multiplicity analysis 

 

Genome-wide filtered single nucleotide variants (SNVs) were utilized to infer mutation timing. 

Initially, the number and size of clones/clusters were determined using the Mobster tool. 

(Caravagna, Heide, et al. 2020). MutationTimeR, an R package, was used to determine the timing 

of SNVs relative to clonal and subclonal copy number states. This approach measures the timing 

as a fraction of point mutations, following the methodology outlined by (Gerstung et al. 2020). The 

timing of clonal mutations, as well as the occurrence of whole chromosome gains or arm-level 
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gains (specifically on chromosomes 7 and 17/17q), and whole genome duplication events, were 

ascertained using pseudobulk whole genome sequencing (WGS) data. 

3.1.1.3.13 Replication timing analysis using S-phase cell population identified from scWGS 

 

To investigate replication timing at both single cell and pseudobulk levels, we delved into the S-

phase cells obtained from single-cell whole genome sequencing (scWGS). For this purpose, we 

used the Kronos.scRT R package, which specializes in determining Replication Timing (RT) (Gnan 

et al. 2022). The normalized read counts of single-cell DNA sequencing were calculated per 250kb 

non-overlapping bin length. This particular bin size was chosen and adapted in accordance with 

the mean genome-wide coverage observed in our data.   

3.1.1.3.14  Single-Cell RNA Sequencing: Genotyping and Copy Number Variation Analysis 

 

In case of patient-derived xenografts (PDX) sequencing, mouse-derived reads were identified using 

the XenoCell software (Cheloni et al. 2021) and subsequently excluded from further analysis. 

Single-cell RNA sequencing (scRNA-seq) of tumor-specific cells underwent processing using the 

CellRanger pipeline, with paired-end reads mapped to the reference genome build GRCh37/hg19. 

The obtained filtered barcodes and count matrices were subsequently analyzed using the Seurat 4.3 

tool (Hao et al. 2021). Basic quality control steps for single-cell RNA sequencing data were 

implemented to ensure the retention of high-quality cells. Criteria for selection included cells with 

a minimum of 1000 unique molecular identifier (UMI) counts, over 500 feature counts, and gene 

expression in at least 5% of cells. Additionally, cells with more than 25% mitochondrial gene 

expression were excluded. Doublets were identified and removed using the Scrublet tool (Wolock, 

Lopez, and Klein 2019). These good quality cells were then genotyped using cellsnp-lite v.1.2.2 

tool (Huang and Huang 2021). Phased heterozygous single-nucleotide polymorphisms (SNPs) 

obtained from scWGS were used for genotyping. Allele- and Haplotype specific copy number 

analysis and clonal substructure was determined using numbat tool (T. Gao et al. 2022).  

3.1.1.3.15 Bulk whole exome sequencing (WES) data analysis to study subclonal dynamics under 
targeted treatment 
 

Exome sequencing paired-end reads were aligned to the human reference genome GRCh37/hg19. 

For PDX sequencing, a hybrid approach was used, aligning reads to both human GRCh37 and 

mouse mm38 genome builds. This alignment was executed using the BWA-MEM algorithm, 

ensuring that only reads uniquely mapped to the human genome with a mapping quality exceeding 

35 were retained. Post-alignment, the average read depth observed from bulk exome sequencing 

of six PDX samples was approximately 110x per sample. However, two PDX samples, which 

demonstrated poor sequencing quality (mean read depth less than 30x), were excluded from the 
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post-treatment group of the GR-NB04 sample. Exome sequencing performed at the time of pre and 

post treatment for each treatment arm per tumor sample and paired germline were jointly analysed 

using Mutect2 algorithms from GATK v4.2.6.1. The resulting Mutect2 variant calls underwent 

rigorous filtering using the FilterMutectCalls tool. Any variant calls found in genomic regions of 

low complexity were systematically removed. Somatic single nucleotide variant (SNVs) with 

variant allele fraction (VAF) > 0.05 and the SNV position covered by total read depth > 20x in both 

pre and post treatment sample independently were included for the clonality inference. ASCN and 

ploidy analysis were performed using sequenza v3.08. 

3.1.1.3.16 Inference of pre and post treatment subclonal dynamics 

 

For a given PDX model, pairwise pre and post-treatment clonal and subclonal population structures 

were inferred by running beta-binomial distribution from PyClone-VI, defining parameters such as 

a maximum of 10 clusters and 1000 random restarts (Gillis and Roth 2020). Figures were plotted 

using R statistical environment and packages such as ggplot2, FishPlot and ClonEvol. 

3.1.1.3.17 Gene set overlapping analysis 

 

Clonal and subclonal genes were investigated for their significant overlap with gene sets in 

Molecular Signatures Database (MSigDB). e.g. gene ontology (go) database, canonical pathway 

database (e.g., Reactome or Kegg) or cancer hallmark database. Overlaps were computed with false 

discovery rate (FDR) q-value < 0.05. 

3.1.1.3.18 Mutational Signature analysis  
 

Mutational signature analysis was performed using deconstructSigs tool (Rosenthal et al. 2016) 
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3.1.1.4 Results 

 

3.1.1.4.1 Study overview 

 

Single-cell whole genome sequencing (scWGS) was performed on 10,469 cells from 4 patient 

tumor and 14 PDX models. All 4 patient tumor samples were directly analysed at the time of 

diagnosis. Samples for establishment of PDX were derived either at the time of diagnosis (n=3), 

disease progression (n=3) or relapse (n=8), and PDX tumors were then used for downstream 

analyses (Figure 3.1.1.4.1.A). All patients had INRG stage L2 or M/Ms disease, with a median age 

at diagnosis of 41 months (range, 17 to 216 months). The clinical information regarding patients is 

detailed in Supplementary data, Table 3.1.1.4.1. The scWGS runs summarizing total number cells 

obtained after sequencing, number reads mapped to reference genome (hg19), ploidy inference and 

other details were detailed in Table 3.1.1.6.1.   

Out of the 10,467 single cells sequenced using scWGS, the cells were not sorted based on their cell 

cycle phase. After quality control (QC) checks (refer Methods section: Single-cell DNA sequence 

data possessing), single cells were classified into G1/G2-phase (n = 7804), S-phase (n = 1606), 

non-tumor (n = 817), and noisy cells (n = 240) (pie-chart Figure 3.1.1.4.1.B. Classification was 

based on two criteria: bin-to-bin segmentation ratio variability and the number of copy number 

(CN) breakpoints. Non-tumoral cells were exclusively identified in patient tumor samples (P1 = 

57%, P2 = 4%, P3 = 62%, P4 = 20%), indicating contamination by non-tumoral cells concordant 

with histological reports. Both non-tumor and noisy cells were excluded from further analysis. On 

average, 17.2% of cells in the S-phase and 78.5% in the G1/G2 phase were retained for downstream 

analysis, as depicted in the stacked bar chart in Figure 3.1.1.4.1.B. Each tumor sample yielded an 

average of 434 (range, 4-963) G1/G2 cells, with a mean genome-wide read depth coverage of 

0.25X, as illustrated in the accompanying box plot in Figure 3.1.1.4.1.B. The observed coverage 

was 5-fold higher than earlier reported 0.02x-0.05x in scDNA-seq data from 10x genomics 

platform (Andor et al. 2020) (Wu et al. 2021). Total number of cells per tumor sample according 

to qc and phase wise classification were detailed in Table 3.1.1.6.2. Ploidy estimations from 

scWGS were cross validated with bulk exome sequencing of the same tumor samples, 

demonstrating a strong correlation (R=0.94) as illustrated in Figure 3.1.1.4.1.C. For downstream 

analysis of clonal estimation, noise-free copy number (CN) profiles with accurate breakpoints from 

the G1/G2 cell population were selected, as presented in the upper CN profile of Figure 3.1.1.4.1.D. 

Unlike cells in G1 or G2 phases, which have stable copy numbers (two copies for diploid genomes), 

S-phase cells display variable copy number ratios due to the ongoing process of DNA replication. 

This makes them distinct in their CN profiles and characterized by high bin-to-bin segmentation 
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ratio variation, as depicted in the lower CN profile was essential for DNA replication timing 

studies, as depicted in the lower CN profile in Figure 3.1.1.4.1.D.  

 

 

 

Table 3.1.1.4.1 Clinical information of the 18 patients 

Sample id 

Samples 
analysed by 

scWGS 

PDX 
passage 

Sampling 
time 

Disease 
stage 

(INSS) 
Age at diagnosis 

(months) 
Patient 
gender 

GR_NB10 PDX p4 Relapse 4 66 M 

GR_NB4 PDX p5 Relapse 4 22 F 

GR_NB5 PDX p6 Relapse 4 48 M 

GR_NB7 PDX p6 Progression 4 17 M 

HSJD-NB-003 PDX p1 Diagnosis 4 32 F 

HSJD-NB-004* PDX p5 Diagnosis 4 25 F 

HSJD-NB-005* PDX p6 

Progression 
(5 months 

after 
diagnosis) 

4 25 F 

HSJD-NB-009 PDX p8 Relapse 4 41 M 

HSJD-NB-011 PDX p9 Relapse 4 19 M 

IC-pPDX-109 PDX p2 Progression 4 97 M 

IC-pPDX-112 PDX p4 Diagnosis 4 42 M 

IC-pPDX-17 PDX p10 Relapse 3 30 F 

IC-pPDX-63 PDX p22 Relapse 4 108 M 

IC-pPDX-75 PDX p6 Relapse 4 216 F 

P1 Patient tumor na Diagnosis 4 78 M 

P2 Patient tumor na Diagnosis 3 49 F 

P3 Patient tumor na Diagnosis 4 40 M 

P4 Patient tumor na Diagnosis Localized 3 F 

M=Male; F=Female; * PDX derived from same patient 
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Figure 3.1.1.4.1 Comprehensive analysis of neuroblastoma (NB) genetic heterogeneity using single cell 
whole genome sequencing (scWGS) 

A) Overview and Study Design, which applies single-cell whole genome sequencing (scWGS) to investigate 
the genetic heterogeneity in neuroblastoma. The study encompasses a total of 18 neuroblastoma tumor 
samples, of which 4 are freshly obtained from patients and the remaining 14 are patient-derived xenografts 
(PDXs). The genetic analysis of these samples is performed using a combination of techniques: single-cell 
DNA sequencing (scDNAseq) denoted in red, single-cell RNA sequencing (scRNAseq) indicated in orange, 
and bulk whole exome sequencing (WES) represented in green. A subset of the PDX samples, 6 out of 14, 
has been subjected to both pre-treatment and post-treatment WES to observe the genomic changes following 
therapeutic intervention, which is highlighted in violet. B) Data quality control outcomes for scDNAseq of 
18 neuroblastoma samples. The stacked bar graph categorizes cell counts into G1/G2 population (light 
green), non-tumor cells (grey), noisy cells (red), and S-phase cells (orange). A box plot details the genome-
wide average read depth in G1/G2 cells. A pie chart summarizes the total cell distribution across all samples, 
split by the same four categories. C) Comparative analysis of ploidy estimations, a robust positive 
correlation (R=0.94) between mean ploidy of single-cells per tumor with those derived from bulk whole 
exome sequencing (WES) for each tumor analysed. D) The upper panel displays allele-specific and total 
copy number profile of a single cell representing the G1/G2 cell population, which were used for clonal 
inference. The lower panel displays allele-specific and total copy number profile of a single cell representing 
the S-phase cell population, which were used for assessing DNA replication timing across the samples. 
 

3.1.1.4.2 Genetic alterations defined at bulk level and summery of single cell DNA sequencing 
data analysis 

 

In a first step, the genetic features of the 18 samples were determined by bulk WES sequencing, 

and then compared to the scWGS pseudobulk (pooled single cells) for each sample (Figure 

3.1.1.4.1). MYCN amplification was observed in 10 cases, in 1 patient tumor (NB1576) and 9 PDX 

models, with ALK co-amplification observed in 2 of the PDX models (IC-pPDX-17 and GR-NB4). 

Two PDX models (IC-pPDX-17 and IC-pPDX-75) harbored CDK4 amplification co-occurred with 

ATRX missense and nonsense mutations respectively and co-amplification of MDM2 in IC-pPDX-

17. Three PDX models harbored ALK pathogenic mutations, p.F1174L in IC-pPDX-75, p.E1419K 

in HSJD-NB-009 and p.I1171N in HSJD-NB-011. Other genetic alterations observed recurrently 

in neuroblastoma concerned an NF1 mutation associated with LoH in HDJD-NB-004 and HDJD-

NB-005, missense in HDJD-NB-011 and nonsense in GR-NB10. TP53 mutation was associated 

with LoH in HDJD-NB-004 and HDJD-NB-005. ARID1A mutation in HDJD-NB-005. All these 

amplifications and driver/targetable alterations were observed at a clonal level, with a cancer cell 

fraction > 90%. In 2 cases, a high tumor mutational burden was observed, with a TMB > 10 

mutations/Mb in GR-NB10, and a TMB approximately 5 mutations/Mb in IC-pPDX-112. All other 

cases presented <1 mutation/Mb (Figure 3.1.1.4.1).  Single base substitution (SBS), small insertion 

and deletions (ID) signatures (Ludmil B. Alexandrov et al. 2013) and Copy number (CN) signatures 

(Steele et al. 2022) were inferred based on whole exome and whole genome (pooled single cells) 

sequencing.  The SBS5 signature frequently observed in NB (Brady et al. 2020) was observed in 
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13/18 cases. SBS44 and ID5 signatures associated with defective DNA mismatch repair was 

observed in the IC-pPDX-112 model, and SNV and Indels analysis from IC-pPDX-112 model 

confirms microsatellite instability. 

Whole genome duplication (WGD) events were inferred based on allele specific copy number 

analysis in 2 patient tumors (NB1576, NB1583) and 5 PDX models (MAP199, IC-pPDX-17, IC-

pPDX-75, HSJD-NB-003 and HSJD-NB-009). 

Allele- and haplotype-specific SCNAs established from the low-coverage WGS of the G1/G2 

phase cells enabled to cluster cells into clones according to the inferred copy number profile. In 

total 1 to 11 subclones organized into 1 to 4 superclones were inferred per tumor sample (Figure 

3.1.1.4.1.B). Subclones were defined as a minimum of 5 cells that share which highly similar copy 

number profiles and were < 90% in total cell population, representing a clonal expansion from a 

single genotype whereas superclones were defined as higher-order organization of subclone groups 

that share a subset of CNA events. Among the 18 samples, 7 were considered as monoclonal, and 

in the other 11samples, from 1 - 4 super clones were identified, composed of up to 11 subclones. 

No correlation between the inferred clonal composition and clinical or genetic parameters was 

observed. 

Interestingly a majority of subclones harbor copy number alterations known to occur recurrently 

in NB, such as deletion of chromosome 1p, 1q gain, 17q gain, whereas deletion of 11q was nearly 

always observed at a clonal level. Numerical chromosome alterations, concerning most frequently 

chromosome 7 gains, were observed at a clonal level. 
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Figure 3.1.1.4.2: Summary of genetic alterations 
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A. Oncoplot summarizing genetic alterations which included somatic SNVs, focal amplifications and 
segmental alterations observed at bulk/pseudobulk analysis of 18 tumors.  Top bar plot represents for 
mutational signature and number of subclones/clones observed per tumor sample. B. Bar chart summarizing 
number of subclones reported per tumor samples and their higher order of organization i.e. superclones. C. 
Bar chart summarizing clonal, subclonal and unique alterations across the single clones. D comparison of 
number of breakpoints observed at diagnosis, progression, and relapse. E. Copy number breakpoints 
comparison between MYCN amplification and tumor with no MYCN amplification. 

 

3.1.1.4.3 Genomic Copy Number Architecture in Neuroblastoma Tumors 

 

For each analysed sample, two independent tools were implemented into the analytical workflow 

to derive single cell copy number (CN) profiles and estimate clonal structures from the G1/G2 

phase cell population. Initially, the clonal substructure was determined using CopyKit tool (Darlan 

Conterno Minussi et al. 2022) which facilitated the primary resolution of clonal composition. On 

an average, 1,550 reads per megabase (Mb) genomic window were reported, with a range extending 

from 195 to 9,211 reads per Mb. In our analysis, two distinct genomic window sizes were utilized, 

absolute copy number profiles were determined using a 220kb genomic window length using 

CopyKit tool, while allele- and haplotype-specific copy number profiles were obtained using a 2 

to 5 Mb window length with the CHISEL tool (Zaccaria and Raphael 2021). The window length 

varied due to variable total number of G1/G2 cells per tumor sample and single nucleotide 

polymorphism (SNP) density which was essential for phasing and haplotype analysis. This 

approach ensured the cross-validation and robustness of our results. 

Across all 18 tumors, clustering of the G1/G2 cell population based on total CN data identified 2-

11 subclones (c1-c11) that were organized into 1-4 superclones (s1-s4) across the 18 tumors. Seven 

tumors IC-pPDX-112, IC-pPDX-63, IC-pPDX-75, GR_NB5, GR_NB10, HSJD-NB-011 and 

patient tumor P4 displayed minimal subclonal diversity, characterized as monoclonal genomes with 

over 90% of single cells exhibiting homogeneous copy number profiles in Supplementary data, 

Figure 3.1.1.6.1. In contrast, the remaining tumors exhibited a greater number of subclones, 

indicating higher genomic heterogeneity (Figure 3.1.1.4.3). In this study, 'subclones' were 

identified as groups of cells exhibiting closely similar copy number profiles, indicative of clonal 

expansion from a single genetic origin. 'Superclones' represent a more complex classification, 

encompassing groups of subclones that share a subset of copy number alteration (CNA) events 

(Darlan C. Minussi et al. 2021). This analysis revealed distinct spatial segregation of superclones 

in the reduced dimensionality space (UMAP), with discernible subclonal structures within several 

superclones across the 18 tumor samples as depicted in Supplementary data, Figure 3.1.1.6.2 
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Copy Number Aberrations (CNAs) were defined as genomic segments where a change in 

integer copy number values, either an increase or decrease, occurs in comparison to the tumor's 

baseline or 'neutral' DNA ploidy. Through CNA analysis, three primary categories were identified 

based on their prevalence within the tumor cell population: 1) Clonal CNAs (cCNAs): These CNAs 

are consistent across all subclones, indicating their presence in the entire tumor cell population. 2) 

Subclonal CNAs (sCNAs): These were present in a subset of tumor cells and identified in at least 

two subclones, suggesting a more restricted distribution within the tumor. 3) Unique CNAs 

(uCNAs): This subclass of sCNAs is characterized by distinct copy number states or breakpoints 

exclusively found in a single subclone, underlining their specificity. Notably, uCNAs underscore 

the diversity within sCNAs by representing unique copy number alterations restricted to individual 

subclones.  

In patient P1, diagnosed at 6.5 years old, clustering of the single cell data revealed 11 

subclones that were organized into 4 superclones ( Figure 3.1.1.4.3.B. We observed clonal LoH 

across chromosomes 5p, 9p and 11q, as well as clonal gain on chromosomes 2p, 14q, 17q and 18, 

traced back to the most recent common ancestor (MRCA). We detected genomic events 

characterizing subclones across chromosomes 1p, 2p, 6, 8q, 12q, 17p and 20p. Many genomic 

regions with high copy gains and LoH events harbored genes known to be important in 

neuroblastoma oncogenesis, including but not limited to MYCN, CDKNA, TP53, NF1, ARID1A, 

ATM and MYC. The genes with somatic mutations were highlighted according to their genomic 

location in the heatmap presented in Figure 3.1.1.4.3.B. 

In patient P2 diagnosed at 4.1 years old, clustering of the single cell data revealed 7 

subclones that were organized into 3 superclones ( Figure 3.1.1.4.3.C. The observation of clonal 

amplifications of MYCN and loss of heterozygosity (LoH) regions across chromosomes 1p and 8q, 

traced back to the most recent common ancestor (MRCA), indicates early and genomic events in 

the tumor's evolution. Subclones c2, c3, and c4 were characterized by initial subclonal variations 

on chromosomes 14q and 17q. These subclones diverged early in the tumor's development but 

exhibited limited expansion, suggesting that they might have experienced weak selective pressure. 

The presence of distinct ploidy levels in subclones c1, c5, c6, and c7 suggests a complex 

evolutionary pattern. Subclone c1 displayed haploidy, c5 was triploid, while c6 and c7 both 

exhibited whole genome duplication (WGD) but originated from a common ancestor characterized 

by 22 numeric copy number alterations. This scenario is indicative of punctuated evolution, where 

some cells, potentially triggered by additional oncogenic events, underwent WGD. This leads to 

the emergence of these distinct subclones, each with its unique genomic profile, reflecting a sudden 

and significant evolutionary shift within the tumor's development. 
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In the analysis of patient tumor P3, diagnosed at 3.4 years old, an exceptional case was 

noted regarding the proportion of tumor cells. Out of 71 cells sequenced, only four were identified 

as tumor cells. Intriguingly, three out of four tumor cells exhibited distinct copy number profiles 

with clonal 17q gain and subclonal 11q loss, indicating a subclonal diversity within this small 

population of tumor cells (Figure 1.1.2.5.1). This finding suggests significant heterogeneity even 

within this limited number of tumor cells from patient tumor P3.  

In patient P4, diagnosed at 3 months old, the clustering of single cell copy number data 

identified five distinct subclones, which were grouped into two superclones (Figure 3.1.1.6.1). top 

left panel. Notably, this patient's tumor displayed numeric segmental alterations accompanied by a 

whole genome duplication (WGD). We observed clonal copy neutral loss of heterozygosity (CN-

LoH) on chromosomes 8, 11, and 19. Subclones c1 to c4 contained very few numbers of cells 

ranging from 14 to 19. These subclones were characterized by subclonal alterations at chromosome 

2 and 17. However subclone c5, consisting of 585 cells which accounted for 90% of the tumor cell 

population, suggested a predominantly monoclonal nature. This dominant subclone's significant 

presence implies a linear evolutionary pattern within the tumor, contrasting with the diverse 

subclonal landscape exhibited by the smaller subclones c1 to c4.  

In IC-pPDX-109 PDX derived at relapse, the clustering of single-cell copy number data revealed 

eleven distinct subclones, categorized into five subclones grouped three main superclones (Figure 

3.1.1.4.1.A). Subclone c5 and c2 clearly stand out due to their unique genetic alterations as 

subclone c5 exhibited chromosome X duplication, while c2 exhibited whole chromosome 4 and 

11p gain without 11q loss. Phylogeny analysis present a complex branching divergence due to 

chromosome X alterations. MYCN amplification, gains such as 3q, 16q and 17q and LoH regions 

such as 1p, 11q and homozygous deletion at 9p arm were clonal and early events mapped as 

MRCA. 

In IC-pPDX-17 PDX derived at relapse, the clustering of single-cell copy number data revealed 

eleven distinct subclones, categorized into two main superclones (Figure 3.1.1.4.1.D). Subclone 

c1, comprising 12 cells, diverged early with limited expansion due to weak selective pressure.  It 

appears that some cells, potentially triggered by additional oncogenic events as MRCA, leading to 

a whole genome duplication (WGD) and significant burst of subclonal diversification from c2 to 

c11. This suggests that a single or limited number of catastrophic genomic events early in 

tumorigenesis are responsible for the emergence of these intermixed subclones (Vendramin, 

Litchfield, and Swanton 2021). We observed clonal co-amplification of CDK4 and MDM2, along 

with pathogenic clonal mutations in ATRX and CDK2 genes. Pathway analysis indicates the likely 
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activation of the PI3K-AKT-MTOR signaling pathway (p-value = 0.019), and/or MYC target V1 

pathway (p-value = 0.01), during the early stages of tumor evolution. Other genes with potentially 

pathogenic mutations, such as ETV1 and MAFB, which activate the KRAS signaling pathway (p-

value = 0.01), and GLI, YBX3, TGFB1I1, PU2F1, and KDM5A, associated with transcriptional 

regulatory activity (p-value = 0.0031), appear to have played roles later in tumor evolution.  

In GR-NB7 PDX derived at progression, the clustering of single-cell copy number data identified 

four distinct subclones, which were further organized into two overarching superclones. Ploidy 

analysis revealed that superclone s1 exhibits a triploid genome, while superclone s2 demonstrates 

hexaploidy (Figure 3.1.1.4.1.E). Phylogenetic analysis indicates that, following the most recent 

common ancestor (MRCA), these two superclones likely evolved in parallel, with superclone S2 / 

subclone C1 exhibiting 21 copy number breakpoints. Superclone s1, comprising subclones c2, c3, 

and c4, appears to have a shared ancestral origin, with shared 13 common copy number breakpoints 

observed among these subclones. Allele-specific copy number analysis revealed complex loss of 

heterozygosity (LoH) regions on chromosomes 1p, 11p, 11q, 14, and 17p. Notably, MYCN 

amplification was identified as a clonal event across the tumor cell population. Variant analysis did 

not reveal any mutation in known driver oncogene. However, protein serine/threonine kinases 

activity was observed after gene set overlap analysis (p-value=0.007).  

To investigate the branching phylogenies post-MRCA in high-risk neuroblastoma, we conducted a 

comprehensive analysis by computing consensus Copy Number Alteration (CNA) profiles of 

subclones to construct balanced minimum evolution trees. We also integrated single-cell data by 

superclone groups to compute allele-specific copy number. This analysis revealed that the majority 

of Loss of Heterozygosity (LoH) regions were in alignment with the bulk exome sequencing data, 

with a median region overlap of 96.1%, indicating these events likely occurred prior to the MRCA. 

Across the 18 tumor samples, an average of 15.21% of the genome (ranging from 1.1% to 25.8%) 

exhibited LoH events. These findings collectively demonstrate that a significant number of 

subclonal CNAs (sCNAs) and unique CNAs (uCNAs) emerged post-MRCA, contributing to the 

diversification of clonal genotypes as the primary tumor mass expanded. 



 56 

 



 57 

Figure 3.1.1.4.3 Clonal substructure and evolutionary analysis of clonal lineages in NB patient tumors and 
PDX models 

Left panels show the event-based evolutionary trees of subclonal consensus integer copy-number profiles 
that are rooted by a diploid profile and annotated for MRCA, CNA , WGD events based on ploidy inference 
and mutations mapped according to their mutation timing during the evolution for two patients (P1 and P2) 
at diagnosis and three PDX models (IC-pPDX-109, IC-pPDX17 at relapse and GR-NB7 at progression). 
The first internal node in orange color on the tree represents the most recent common ancestor (MRCA). 
The right panels show clustered heatmaps of single-cell total copy-number profiles showing the profiles of 
subclonal clusters grouped into superclones, as represented in left-most header columns. Bottom annotation 
panels indicate clonal and subclonal classification of CNAs (clonal = black, subclonal = gray and unique 
subclonal CN = orange) and selected cancer gene annotations. Selected genes are either affected by SNV or 
CNA.  

 

3.1.1.4.4 Longitudinal single cell sequencing shows distinct evolutionary patterns of SCNA 
from diagnosis to progression.  

 

Two independent patient-derived xenografts (PDXs), labeled HSJD-NB-004 and HSJD-NB-005, 

were established from the same patient tumor, with HSJD-NB-004 derived at diagnosis and HSJD-

NB-005 at the time of disease progression. Both PDX models underwent comprehensive genomic 

and transcriptomic analysis, including single-cell whole genome sequencing (scWGS), single-cell 

RNA sequencing (scRNA-seq), and bulk whole exome sequencing (WES).  

The scWGS data analysis of the PDX models NB-004 and NB-005 provided a more intricate view 

of the clonal architecture, particularly through copy number variation analysis. We examined 114 

single cells from the model obtained at diagnosis and 431 single cells from the model obtained at 

progression. The clustering of these cells indicated the evolution of the tumor's complexity: At 

diagnosis, two distinct subclones were identified, which then expanded into eight subclones by the 

time of progression. These subclones were organized into two superclones at both stages (Figure 

3.1.1.4.4.A).  A clonal amplification of MYCN was consistently observed throughout the disease's 

progression. Extensive and shared regions of loss of heterozygosity (LoH) at chromosomes 1p, 

11q, 16q, and 17p were persistent features, suggesting their importance in the tumor's evolution. 

Notably, major chromosomal gains identified at diagnosis were largely absent at the progression 

stage, except for a gain on chromosome 4q. The presence of clonal mutations in genes like TP53, 

NF1, NEK8, and KMT2A hinted at the early activation of the MAPK signaling pathway during the 

onset of the disease. These critical genomic events were all mapped to the most recent common 

ancestor (MRCA), highlighting their early establishment during tumor evolution (phylogeny tree 

Figure 3.1.1.4.4.E.  

The phylogeny analysis reveals branched evolution highlighting unique alterations at diagnosis and 

progression. This implies that the tumor cells present at the time of progression are not the same as 
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those at diagnosis; they have acquired additional changes that distinguish them from their 

predecessors. At diagnosis, subclones were characterized by unique alterations on chromosome 7. 

Subclone c1 exhibited copy-neutral loss of heterozygosity (CN-LoH) on chromosome 7. while 

subclone c2 was characterized by triploidy with common ancestor (internal node in green color) 

with shared 17 CN breakpoints (phylogeny tree Figure 3.1.1.4.4.E. Mutation in coding sequences 

of genes such as AKAP9, PDGFRA, GSK3A were unique at diagnosis. Gene set overlap analysis 

of genes altered uniquely at diagnosis suggest their enrichment for the P13-AKT signaling. Figure 

3.1.1.4.4.B demonstrates allele specific copy number profile of both c1 and c2 subclones at 

diagnosis. 

At progression, the subclones c1 to c8 were characterized by genetic alterations on chromosomes 

1, 4, and 17. Figure 3.1.1.4.4.B demonstrates allele specific copy number profile of subclones c7, 

c7 and c8 subclones at progression with the red arrow pointing alterations specific to subclone with 

very few cells. Notably, subclones c1 to c8 shared a common ancestor, as indicated by an internal 

node (in purple), with 20 shared copy number CN breakpoints (Figure 3.1.1.4.4.E). This 

commonality was further defined by loss of heterozygosity (LoH) regions at chromosomes 5q, 9p, 

and 19q, and gains at chromosomes 11p and 19p. A key mutation in the DNA mismatch repair gene 

FANCG emerged at the progression stage, suggesting a role in the evolving genomic instability of 

the tumor. The mutation in MSH2, observed at both diagnosis and progression, implies its ongoing 

contribution to the tumorigenesis process. Additionally, mutations unique at progression, including 

in genes such as TP73, GBX2, ETV6, and HNF4G, underscore their potential importance in DNA 

binding and transcriptional regulatory activities. The sudden genomic changes from the diagnosis 

to progression stage, especially with the emergence of new mutations and alterations in genomic 

structure, suggest a punctuated evolution pattern.  

Using allele-specific copy number analysis on scRNA-seq data, two unique genotypes (genotype 

2 and 3) were discerned, differentiated primarily by a loss of heterozygosity (LoH) alteration on 

chromosome 13 (Figure 3.1.1.4.4.C). Alteration on chromosome 13 was notably absent at the DNA 

level, with the exception of three cells identified at progression, which were represented in subclone 

c5. Single-cell allele-specific copy number (ASCN) profiles derived from scWGS clearly 

demonstrated the loss on chromosome 13 in these three cells. Figure 3.1.1.4.4.B. In contrast, B-

allele frequency (BAF) profiles derived from genotypes 2 and 3 in scRNA-seq data distinctly show 

that genotype 2 exhibits no loss on chromosome 13, while genotype 3 displays a clear loss of 

chromosome 13 (Figure 3.1.1.4.4.D). The combined analysis of scRNA-seq and scWGS indicates 

that even a subclone with a small number of cells, or rare cells, may possess the fitness and selective 

advantage to exhibit robust expression at the transcriptomic level. 
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Figure 3.1.1.4.4 Investigating temporal heterogeneity by comparing genetic alterations at diagnosis and 
progression. 

 A. Heatmap of segmentation ratio data derived from single cell whole genome sequencing (scWGS) at 
diagnosis (upper panel) and Progression (lower panel). B. Individual single cell allele specific copy number 
profile representing subclones at diagnosis (c1 and c2) and progression (c5, c7 and c7). Red arrow highlights 
some alterations observed on subclone/rare cells. C. Allele- and haplotype specific copy number profile 
derived at progression using singe cell at RNA sequencing. The red arrow which links scWGS CN profile 
and scRNA-seq CN profile indicates rare cell with unique alteration at chromosome 13 and its abundant 
expression in scRNA-seq. D. Pseudo bulk allele specific copy number profile of two genotype/clones 
inferred from scRNA-seq data. E. Phylogeny tree unfolding evolutionary history NB showing divergence 
of branching post-MRCA for diagnosis and progression.  

 

 

3.1.1.4.5 Replication timing study using single cell DNA S-phase cell population in 
neuroblastoma.  
 

We aimed to analyse replication timing as a possible source of ITH and driver of clonal and 

subclonal composition. To differentiate cells in the G1/G2 phase from those in the S phase, three 

assumptions were made: i) Majority of cells were from the G1/G2 phase. ii) Bin-to-bin variability 

is minimal in G1/G2 cells due to similar copy numbers across bins and maximal in S-phase cells 

due to asynchronous replication. iii) G1/G2 cells have fewer copy number breakpoints than S-

phase cells (Gnan et al. 2022). Based on the cell ploidy, the intracellular bin-to-bin CN ratio 

variability and number of CN breakpoints single cells were used to classify cells into G1/G2-phase 

cells and S-phase cells. Copy number profiles from S-phase cells were normalized against G1/G2 

cells from the same tumor to establish RT in S-phase cells. Quality control involves comparing 

tumor-specific (pseudobulk) RT profiles with the SK-N-SH neuroblastoma cell line, with observed 

high Spearman correlation values (>0.65) indicating accuracy and relevance. Three patient tumor 

(P1, P2 and P3) and two PDX samples (HSJD-NB-004 and HSJD-NB-011) were excluded from 

the replication timing (RT) analysis because they either had < 30 S-phase cells or showed a 

Spearman correlation coefficient < 0.65 when compared to the SK-N-SH cell line. 

3.1.1.4.5.1 Dissecting replication timing variations between MYCN-amplified and non-amplified 
neuroblastomas 

 

We conducted an analysis of replication timing (RT) in a series of 12 neuroblastoma patient-derived 

xenografts (PDX), utilizing both single-cell and pseudobulk level. Pseudobulk approach allowed 

us to average RT across populations of cells according to 250kb genomic windows or bin lengths 

and to determine early versus late replicating genomic regions.  We then compared the early versus 

late replicating genomic regions between different tumor groups, based on key molecular 

characteristics, including the presence or absence of MYCN amplification and the occurrence of 



 61 

whole genome duplication (WGD).  As illustrated in Figure 7A, significant differences in RT were 

observed between the MYCN amplified (n=7) and non-amplified groups (n=5), as depicted in the 

density plots of pseudobulk RT profiles.  Our findings suggest that neuroblastoma tumors without 

MYCN amplification (no MNA) are characterized by a predominance of late replicating domains, 

in contrast to MYCN amplified (MNA) tumors, which are enriched in early replicating domains 

(Figure 3.1.1.4.5.A). To quantitatively assess the differences in the distribution of these replication 

domains between the two groups, we employed the Kolmogorov-Smirnov (KS) test. The results, 

yielding a p-value of < 0.001, indicate that the replication timing distributions of these two groups 

are significantly different.  

In conducting dimensionality reduction analysis using Uniform Manifold Approximation and 

Projection (UMAP), we analyzed replication timing (scRT) profiles of S-phase cells in 

neuroblastoma. Our findings revealed two distinct trajectories of S-phase progression in the 

MYCN-amplified group, with cells arrayed from late to early replication stages. Conversely, in the 

MYCN non-amplified group, there was a clear bifurcation into two separate groups, indicative of 

early and late replication domains (Figure 3.1.1.4.5.C). 

This variation in replication timing across the two groups underscores the impact of MYCN 

amplification on the cellular replication process. Specifically, the MYCN-amplified group exhibited 

a more linear replication progression, while the non-amplified group showed a dichotomous 

pattern, suggesting different regulatory mechanisms at play in these two contexts. 

Furthermore, the analysis highlighted considerable variability in the extent of genome replication 

among different tumors, with the median percentage of the replicating genome ranging from 23% 

to 57% (Figure 3.1.1.4.5.B). This variability underscores the heterogeneity in replication timing 

across neuroblastoma tumors, which could be influenced by factors like genetic makeup, MYCN 

status, and possibly other underlying molecular mechanisms. Such insights can be crucial for 

understanding the biology of neuroblastoma and may have implications for therapeutic strategies 

targeting the replication machinery in these cancers. 

 

3.1.1.4.5.2 Clone specific replication timing (RT) and its consequences towards ITH 

 

Our investigation focused on the dynamics of DNA replication in the GR-NB4 NB PDX model 

derived at relapse. By examining the replication timing (RT) in single cells, we sought to 

understand whether variations in RT are observed in    subclones which in turn might be linked to 
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subclone-specific proliferation. We specifically analyzed two distinct superclones, s1 and s2, which 

comprised 53 and 40 S-phase cells respectively. Superclones s1 and s2 exhibited distinct allele-

specific copy number alterations, (Figure 3.1.1.4.5.D). For instance, s2 uniquely exhibited whole 

chromosome 2, 3 and 8 gains, while s1 was characterized by copy neutral loss of heterozygosity 

(CN-LoH) of chromosome 8 and a loss of heterozygosity (LoH) on chromosome X and 14q arm. 

Haplotype analysis suggested parallel evolution of these two superclones, marked by chromosome 

17 allele-specific gains. Pseudobulk RT analysis of these two superclones revealed clone-specific 

distinct replication patterns, superclone s2 (in blue) showing late replicating domains and s1 (in 

maroon) demonstrating early replicating domains (Figure 3.1.1.4.5.E), which underlines 

differential replication programs within same tumor. 

To quantify the replication variability within each superclone, we employed the concept of  Twidth, 

defined as the time needed for a genomic region to be replicated in 25% to 75% of cells during a 

10-hour S-phase (Dileep and Gilbert 2018). Our findings showed a Twidth range of 1.7 to 1.28 

hours in s1 versus 1.65 to 1.95 hours in s2 for early and late-replicating regions, respectively 

(Figure 3.1.1.4.5.E  - middle panel). Statistical analysis confirmed a significant difference between 

early and late Twidth (p < 0.001) in both clones. Further analysis of differential replication timing 

domains with distinct RT profiles between s1 and s2 revealed key neuroblastoma associated genes 

such as ALK, MYC, and EGFR were affected by these differential replication timings (Figure 

3.1.1.4.5.E - heatmap). Figure 3.1.1.4.5.G highlights the chromosome 2p arm region (10 Mb to 

50Mb), where the genomic loci of MYCN and ALK are indicated. The ALK gene locus exhibited 

significantly late replication in s2 versus early replication in s1. Genes in the late-replicating 

regions are often silenced or expressed at low levels. Therefore, we hypothesized that superclone 

s1 would be more transcriptionally active compared to late replicating s2 superclone. 

Interestingly, when conducting a study to assess the impact of lorlatinib treatment, alone or in 

combination with chemotherapy, in this model (Figure 3.1.1.4.7), post-treatment bulk exome 

sequencing revealed a copy number profile in GR-NB4 that closely matched the pseudobulk CN 

profile of superclone s1, indicating a higher sensitivity of this model to lorlatinib treatment might 

come from superclone s2 which was late replicating. 

 In the IC-pPDX-109 PDX model, derived at relapse from a male neuroblastoma patient, we 

explored the intercellular replication variability by focusing on two superclones, s1 and s2, 

comprising 73 and 47 S-phase cells respectively. Notably, superclone s2, represented in sky-blue, 

displayed a duplication of chromosome X, in contrast to the expected single copy in superclone s1, 

depicted in orange (Figure 3.1.1.4.5.F). Pseudobulk replication timing (RT) analysis of these 
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superclones uncovered distinct replication patterns: s2 exhibited mid-replicating domains, while s1 

showed predominantly early replicating domains, indicating divergent replication programs within 

the same tumor. Our analysis revealed that the Twidth, a measure of replication timing variability, 

ranged from 1.99 to 1.64 hours in s1 and from 1.53 to 2.13 hours in s2 for early and late-replicating 

regions, respectively (Figure 3.1.1.4.5.F - mid panel). Statistical testing confirmed significant 

differences between early and late Twidth values in both clones (p < 0.001), underscoring the 

distinct replication dynamics within each superclone. Further scrutiny of these differential 

replication timings between s1 and s2 unveiled specific replicating domains with unique RT 

profiles. This analysis highlighted the impact of RT variations on key genes, particularly CDK8 

(Cyclin Dependent Kinase 8) and CD88 (Complement C5a Receptor 1) (Figure 3.1.1.4.5.F - 

heatmap). Specifically, the delayed replication timing in s2, potentially influenced by the 

duplication of chromosome X, suggests a unique genomic and epigenetic landscape that could 

contribute to the tumor's behavior. 
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Figure 3.1.1.4.5 Single cell DNA replication timing (RT) profiling 
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A. Replication timing profiles determined at pseudobulk of each 12 tumor samples grouped according 
MYCN amplification status and compared their RT. These density plots, with X-axis values ranging from 0 
to 1, demonstrated that replication timing peaks near zero indicated late replicating domains, while those 
closer to one represented early replicating domains. B. Inferred median percentage of genome replication 
per tumor sample with inter quartile range. C. Dimensionality reduction (UMAP) analysis of single cell RT 
data for the indicated two groups MNA (amplification) and no MNA (no amplification).  The second panel 
of UMAP color-coded based on the on the genome replication percentage at single cell level. D. Two single 
cells copy number profile representing GR-NB4 subclone s1 and s2 with clone specific CN alterations. (B, 
F) . Twidths calculated for the indicated three RT categories (Early, Mid and Late) based on the pseudo-bulk 
RT values in the two subclones (s1 and s2) identified in GR-NB4 and IC-pPDX-109. P-values were 
calculated using the Kronos scRT R package. G. Comparison between the GR-NB4 subclone s1 (marron 
solid line) and subclone s2 (blue solid line) RT at chromosome 2, zooming 10 Mb to 50 Mb genomic region 
which encompasses MYCN and ALK genes. 

 

 

3.1.1.4.6 Parallel clonal evolution and subclone specific expression 

 

In the GR-NB4 neuroblastoma (NB) patient-derived xenograft (PDX) model, we observed a unique 

genetic profile characterized by co-amplification of MYCN and ALK but no driver mutations in 

genes typically associated with NB. Intriguingly, differential replication timing was noted between 

two superclones, s1 and s2, leading to the hypothesis that the early replicating superclone s1 might 

exhibit higher transcriptional activity compared to the late replicating superclone s2. 

To delve deeper into the characteristics of these two superclones and their respective subclones, 

we analyzed a copy number heatmap derived from single-cell whole-genome sequencing (scWGS) 

and single cell RNA sequencing data (Figure 3.1.1.4.6.A & B) respectively. The heatmap from 

panel A, based on absolute copy number analysis, displayed 865 single cells clustered into seven 

distinct subclones. Within this framework, subclones c6 and c7 were categorized under superclone 

s1, while subclones c1 to c5 were assigned to superclone s2. Allele-specific and haplotype-specific 

analyses revealed an interesting pattern of allelic gains across the genome, particularly on 

chromosome 17, where a combination of alleles ABB in superclone s1 and AAB in superclone s2 

was observed, suggesting a parallel evolution of these superclones (Supplementary data, Figure 

3.1.1.6.4). This is supported by phylogenetic analysis, which indicates a branched evolutionary 

pattern in this PDX model, in line with the allele-specific gains on chromosome 17. The most recent 

common ancestor (MRCA) was characterized by amplifications in MYCN and ALK, gains on 

chromosomes 1, 6p, 7, 17, and losses of heterozygosity (LoH) on chromosomes 5q and 9p (Figure 

3.1.1.4.6.C). Diverging from this, the recent ancestor s1 defining the evolution of superclone s1 

featured additional genomic alterations such as gain on chromosome 11p, loss on 14q, CN-LoH on 

8 chromosomes, and a whole chromosome X deletion. Unique to subclone c7 (comprising 9 cells) 
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was the gain of the entire chromosome 12. Conversely, the recent ancestor s2, which delineates the 

evolutionary path of superclone s2, was marked by gains on chromosomes 2, 3, 8, and 17 (with 

major allele-specific gain) noted.  

We then sought to correlate genomic data derived from single-cell whole-genome sequencing 

(scWGS) with single-cell RNA sequencing (scRNA-seq) data. This integration was achieved by 

utilizing phased single nucleotide polymorphisms (SNPs) identified in the scWGS to genotype the 

scRNA-seq data. The numbat tool was used to infer allele and haplotype specific copy numbers 

from the scRNA-seq data, aligning closely with the allele-specific copy number profile of 

superclone s1 observed in the scDNA-seq (Figure 3.1.1.4.6.A & B) (Figure 3.1.1.6.20 & Figure 

3.1.1.6.21). 

A striking observation from the scRNA-seq heatmap was the preferential expression of subclone 

c7, which is characterized by a gain of the entire chromosomes 2 and 12. This genomic alteration 

was prominently expressed at the transcriptomic level, particularly in cells of genotypes 2 and 3. 

Furthermore, other subclonal alterations specific to superclone s1, such as the loss of chromosome 

14q, were abundantly expressed in genotype 2 cell population. The pseudobulk profile highlights 

all three genotype specific alterations inferred from scRNA-seq data (Figure 3.1.1.4.6.D). 

Conversely, genomic alterations unique to superclone s2, like the gain on chromosome 3, were 

noticeably absent from the transcriptomic profile. However, gain at chromosome 2 observed was 

abundantly expressed and raises intriguing questions about the differential expression patterns and 

potential mechanisms driving these variations. One hypothesis to explain these findings is the 

potential overexpression of MYCN and ALK due to the amplification and resultant dosage effect on 

the copy number. This hypothesis is supported by the observation that superclone s1, characterized 

by such amplifications in addition to LoH regions (CH-LoH at chromosome 8 and LoH at 14q) is 

more prevalently expressed in the transcriptome compared to superclone s2. 

These insights gleaned from integrating scRNA-seq and scWGS data not only enhance our 

understanding of the clonal dynamics within neuroblastoma but also reveal the complex interplay 

between subclones (defined by unique set of genetic alteration and differential replication timing) 

and their transcriptional outcomes. Next, we sought to investigate subclonal s1 and s2 behavior 

under targeted treatment or chemotherapy as GR-NB4 was included among six PDX included in 

treatment analysis. 
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Figure 3.1.1.4.6 GR-NB4 PDX model showing parallel clonal evolution. 
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A. Heatmap of total copy number data derived from 865 single cell whole genome sequencing (scWGS) 
using GR-NB4 model. B. Heatmap of copy number data derived from single cell RNA sequencing using 
GR-NB4 model. C. Phylogeny tree showing tumor evolutionary trajectories. C. Allele specific copy number 
profile derived from the three genotypes inferred from scRNA sequencing data. 

 

3.1.1.4.7 In Vivo Investigations of Clonal Evolution During Treatment 
 

3.1.1.4.7.1 Analysis of treatment efficacy 

 

We conducted deep whole-exome sequencing (mean coverage ≥100x) pre and post treatment. In 

our investigation of clonal evolution, we administered targeted therapies to align with the distinct 

molecular characteristics of each patient-derived xenograft (PDX) model. The post-treatment 

genetic profiles were then compared with the pre-treatment variations, to discern the molecular 

changes induced by therapeutic intervention. The comprehensive workflow of these experiments, 

from engraftment to sequencing, is detailed in Figure 3.1.1.4.7.A.  

For instance, lorlatinib, a potent ALK inhibitor, demonstrated remarkable antitumor activity 

(91% tumor growth inhibition (TGI) in the ALK-amplified GR-NB4 model, signifying its efficacy 

in this genetic context. Conversely, the same drug failed to show effectiveness in the IC-pPDX-75 

model, which harbored an ALK F1174L mutation, with a much lower TGI of 28%. This stark 

difference in drug response highlights the nuanced nature of targeted therapy, where the presence 

of specific mutations can dramatically influence the outcome. 

In another model, IC-pPDX-109, characterized by an HRAS mutation, trametinib a MEK 

inhibitor demonstrated significant antitumor efficacy with a TGI of 60%. However, in the GR-

NB10 model, which presented with an NF1 mutation coupled with loss of heterozygosity (LoH), 

trametinib's efficacy was notably diminished, with a TGI of 49%. Additionally, ribociclib, an 

inhibitor targeting CDK4, exhibited substantial efficacy against the CDK4-amplified IC-pPDX-17 

model, achieving a TGI of 61% and trametinib, an inhibitor of ARID1A exhibited substantial 

efficacy against the ARID1A mutated HSJD-NB-005 PDX model, achieving a TGI of 61% 

Concerning chemotherapies, etoposide-cisplatin (Chemotherapy-B) were efficient in 

models GR-NB4 and IC-pPDX-109 (TG1 93.7% and 67% respectively) and doxorubicin-

cyclophosphamide (Chemotherapy-A) against models IC-pPDX-17 and GR-NB4 (TG1 70% and 

76% respectively). The addition of a targeted treatment to chemotherapy was significantly more 

efficient than chemotherapy alone in models GR-NB4 (when lorlatinib was added to both 

chemotherapies), GR-NB10 (when trametinib was added to doxorubicin cyclophosphamide) and 

IC-pPDX-109 (when lorlatinib was added to doxorubicin-cyclophosphamide). In models IC-
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pPDX-17 and IC-pPDX-75, the addition of targeted therapy (ribociclib and lorlatinib, respectively) 

did not add any significant efficacy to any of the two chemotherapies. Finally, we could find that 

GR-NB4 was globally sensitive to all treatments, whereas IC-pPDX-75 was globally very resistant. 

These results are summarized in Table 3.1.1.6.4 

 

3.1.1.4.7.2 Subclonal evolutionary dynamic under treatment 
 

Clonality in six PDXs models were assessed based on the variant allele fraction (VAF) of single 

nucleotide variants (SNVs) and allele-specific copy number analysis performed pre and post 

treatment. Using PyClone-VI, we identified distinct clusters per treatment arm, each representing 

a different subpopulation within the tumor (Figure 1.1.2.5.1.C). The clusters highlighted the 

dynamic evolution of the tumor: Parental clone in blue, with a cancer cell fraction (CCF) of 100% 

was persistent before and after treatment. We defined clonal events as those present in a high 

proportion of cancer cells. Conversely, we categorized events with a CCF of less than 90% as 

subclonal (McGranahan et al. 2015).  

To assess the variance in Variant Allele Frequency (VAF) for each clone, we compared all variants 

within the clones between the pre- and post-treatment groups. This comparison was conducted 

using a t-test to statistically evaluate the differences in VAF before and after treatment. Clones 

observed in the study were categorized into three distinct groups based on their modification from 

pre to post treatment: 1. Persistent variants/clones, which were consistent across pre- and post-

treatment groups with minimal variation in Variant Allele Frequency (VAF), 2. Emerging 

variants/clones, characterized by a significant increase in VAF from 0% or less than 5% before 

treatment to more than 5% after treatment, and 3. Diminishing variants/clones, identified by a 

significant decrease in VAF from greater than 5% before treatment to a lesser extent after the 

treatment. Detailed comparison from each treatment arm for all 6 models are represented in 

Supplementary data, Figure 3.1.1.6.25 to Figure 3.1.1.6.60  

Delving deeper into GR-NB4 model, Figure 1C showcases the subclonal dynamics in terms of VAF 

and CCF after lorlatinib alone or in combination with chemotherapy-A targeting ALK 

amplification. Through clonal evolution analysis, seven clones were inferred. Post lorlatinib 

treatment, cluster 1, 2 and 3 were persistent, showing no significant deviation between pre- and 

post-treatment.  Subclonal cluster 4 (13/133) and 6 (26/133) were significantly diminishing and a 

new cluster 7 (26/133) emerged. Similarly, when lorlatinib was combined with chemotherapy-A, 

cluster 1 and 2 were clonal and persistent, cluster 3 (26/139) was significantly diminishing and the 

other three clusters, 5, 6 and 7 significantly emerged (43/139).  
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In the GR-NB4 using single-cell DNA sequencing parallel clonal evolution among two subclones 

s1 (#cells, 411/865) and s2 (#cells, 454/865) were demonstrated (see also section 3.1.1.4.6). 

Pseudobulk allele specific copy number profiles of subclones s1 and s2 are presented in Figure 

3.1.1.4.5. 

Furthermore, the SNVs were analysed in pseudobulk of subclones s1and s2 independently. Then 

the SNVs from the bulk exome analysis of pre ad post-treatment were mapped to SNVs obtained 

from pseudobulk of subclones s1 and s2. We observed that the diminishing variants were 

particularly concentrated in subclone s2 as depicted in Figure 3.1.1.6.30, suggesting its heightened 

sensitivity to the treatment. Further, CNA exposed segmental level ploidy rectification post-

treatment, mirroring the copy number profile of subclone s1 (Figure 3.1.1.4.7.D), and indicating 

subclone specific sensitivity to lorlatinib. With ALK amplification remaining unchanged in all 

instances, other molecular mechanisms are most likely at the origin of the subclone specific 

treatment sensitivity.  

After analyzing Single Nucleotide Variants (SNVs) from all six treated mice, we observed the 

majority, approximately 9% on average, of SNVs observed post-treatment were unique to the 

specific tumor and its treatment regimen. In contrast, diminishing variants and genes, comprising 

about 4% of the observed variants, were not exclusive to a single treatment but shared across at 

least two different treatment arms. This indicates a level of commonality in the genetic response of 

tumors to various treatments. Remarkably, the largest proportion of SNVs, accounting for 

approximately 75%, remained persistent even after treatment (Figure 3.1.1.4.7.E). This persistence 

suggests a significant level of genetic stability or resistance to change in these tumors, despite 

therapeutic interventions. 

A detailed review of the remaining PDX models showed numerous SNVs either diminishing or 

emerging post various treatments. These dynamics can be further explored in Supplementary 

Figure 3.1.1.6.25 to Figure 3.1.1.6.60. However, the focal amplification status of ALK and CDK4 

and the clonal attributes of the SNVs (ALK, ARID1A, NF1 and HRAS) showed no deviation post-

treatment. 

Discussion about the main driver genomic events i.e. amplification is really at the origin of the 

oncogenesis and not variable. or the SNVs modifications which we observe might also be 

stochastically "drifts" which might or might not be of biological relevance. 

SNVs merged from all six PDX models, were classified into three distinct groups based on their 

response dynamics: Group A (persistent genes), Group B (diminishing genes), and Group C 

(emerging genes) for gene set overlap analysis. Interestingly, unique gene set enrichments were 
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evident in Group C post-treatments. For instance, genes regulating immune effector processes 

stood out post chemotherapy-A treatment, while transcription regulator binding activity emerged 

post chemotherapy-B. Furthermore, genes associated with transmembrane transport activity 

specifically neurotransmitter receptors linked to the postsynaptic specialization membrane came to 

the fore after targeted treatment. Genes pivotal to mitotic spindle and neurogenesis were enriched 

post the targeted treatment combined with chemotherapy-B (Figure 3.1.1.4.7.D) 

Although this analysis indicated shifts in subclonal composition following targeted treatment and 

chemotherapy. As expected, no common SNVs, targeting genes recurrently altered after a given 

treatment were identified, but an enrichment in pathways recurrently altered as observed in 

emerging and diminishing clones. 
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Figure 3.1.1.4.7  Clonal Evolution During Treatment  
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(A) In vivo experimental design for six high-risk neuroblastoma PDX models. Post-engraftment, mice were 
distributed among six experimental treatment arms, receiving targeted therapy, chemotherapy, or a 
combination of both. (B) relative tumor volume curves for the GR-NB4 xenograft model. A striking 
reduction in tumor volume was observed post-treatment, especially within the groups treated with lorlatinib 
alone and in combination with doxorubicin (chemotherapy-A). In contrast, the control group exhibited 
uninterrupted tumor growth. (C) Genetic clonal dynamics observed both at pre and post-treatment. Clusters 
were derived from the binomial distribution of the cancer cell fraction, and the resultant maximum 
parsimony trees elucidate the clonal trajectories. (D) Allele-specific copy number alterations, identified via 
bulk exome sequencing, are analyzed. Post-treatment, we observed a noteworthy ploidy correction. 
Additionally, the single-cell DNA sequencing of the GR-NB4 PDX model spotlighted two distinct 
subclones, A and B. The copy number profile of Clone A aligned with the post-treatment bulk copy number 
profile. (E) a Venn diagram, which consolidates the observed genetic variants (SNVs) from all six treated 
PDX models into three distinct groups: Persistent, Diminishing, and Emerging. This classification is based 
on their dynamics pre and post-treatment. (F). Gene set overlap analysis for genes that emerged (surfaced) 
post-treatment. It highlights common processes, pathways, and underlying biological themes emerged after 
each treatment regime across all six models. 

 

3.1.1.5 Discussion 

 

This study delves into genetic heterogeneity at a single cell level in nueroblastoma, a cancer 

characterized by varying genomic complexities. By distinguishing between monoclonal (7/18 

cases) and polyclonal (11/18 cases) tumors, we gain vital insights into the diverse evolutionary 

paths. 5/7 these monoclonal tumors were presented by patients over age of ≥ 42 months. Among 

these 5, 2 were “hypermutated” cases showing high tumor mutation burden (GR-NB10 > 10 

mutations/Mb and IC-pPDX-112 > 5 mutation/Mb) suggesting a shift from CN alterations to the 

accumulation of SNVs. Indeed in these samples a tumor mutational burden (TMB) significantly 

higher than the mean in NB was observed (Gröbner et al. 2018). 

 In monoclonal tumors, the linear evolution (LE) model in tumor growth suggests that tumor 

progression is driven by selective sweep following the acquisition of key driver mutations. The 

resulting phylogenetic tree under this model is characterized by the predominance of a dominant 

clone. Intermediate clones from earlier in the tumor's history are rare, typically persisting only as 

remnants of previous selective sweeps (Davis, Gao, and Navin 2017) (Black and McGranahan 

2021). 6/7 these monoclonal tumors presented at least one early clonal driver gene mutation which 

includes known tumor suppressor genes (NF1, MLH1, PTEN and CHEK2) and oncogenes (ALK 

and KMT2A) known to be of importance in NB oncogenesis. 

Conversely, polyclonal neuroblastoma exhibits more dynamic evolutionary models, including 

branched and punctuated evolution. 8/11 these polyclonal tumors were observed in patients over 

age of < 42 months. GR-NB4, GR-NB7 and P2 showed branched evolution while HSJD-NB-003, 

HSJD-NB-005, IC_pPDX_17 and P1 showed punctuated evolution. In contrast to LE selective 
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sweeps are uncommon in BE, and multiple clones expand simultaneously because they all have 

increased fitness. In punctuated evolution, a large number of genomic aberrations may occur in 

short bursts of time, at the earliest stages of tumor progression (R. Gao et al. 2016) (Vendramin, 

Litchfield, and Swanton 2021). These patterns suggest early seeding or parallel evolution, where 

distinct subclones evolve simultaneously but independently, driven by unique molecular 

mechanisms. In neuroblastoma both linear and branched evolutionary model have been reported 

previously based on bulk sequencing studies (Karlsson et al. 2018) (Andersson et al. 2020) 

(Schmelz et al. 2021) (Gundem et al. 2023). Evidence of punctuated evolution has been observed 

in a variety of cancer types, including breast cancer (R. Gao et al. 2016; Navin et al. 2011). prostate 

cancer (Baca et al. 2013), uveal melanoma (Field et al. 2018), and colorectal cancer (Cross et al. 

2018). The scWGS analyses now documents punctuated evolution as a prevalent evolutionary 

pattern in neuroblastoma as well, expanding our understanding of its genetic development. 

In our analysis of 18 neuroblastoma tumors, 7 exhibited whole genome doubling (WGD) events, a 

significant class of copy number alterations (Steele et al. 2022) (Sanz-Gómez et al. 2023). WGD 

typically arises from mechanisms such as failed cytokinesis, endoreplication, and mitotic slippage 

(Gemble et al. 2022) (Krupina, Goginashvili, and Cleveland 2021). These events, prevalent in over 

30% of solid tumors across various types, are often linked to the inactivation of the TP53 gene 

(Zack et al. 2013). WGD is a critical event in cancer evolution, leading to increased genomic 

instability and complexity (TRACERx Consortium et al. 2020) (Frankell et al. 2023). Among the 

7 cases with WGD, 2 (GR-NB7 and P2) were MYCN amplified. The phylogeny analysis indicates 

that in both instances, MYCN amplification and loss of heterozygosity (LoH) regions, such as 1p 

and 8q, were events preceding the most recent common ancestor (MRCA), while WGD occurred 

post-MRCA. Another 2 cases (IC-pPDX-17 and IC-pPDX-75) showed CDK4 amplification. 

Specifically, in IC-pPDX-17, CDK4 amplification coupled with an ATRX mutation was identified 

as a pre-MRCA event, followed by a post-MRCA WGD. However, in IC-pPDX-75, which 

presented as a monoclonal tumor, the timing of CDK4 amplification and WGD could not be 

determined. All 7 cases primarily exhibited numeric copy number alterations, aligning with 

previous reports that numeric copy number presentations lead to higher ploidy in neuroblastoma. 

Although, focal CN-LoH at the 17p arm, which harbors the TP53 gene, was reported in 3 of the 7 

cases (GR-NB7, IC-pPDX-17, and IC-pPDX-75), Notably, none of the WGD cases harbored a 

TP53 mutations. 

Chromosome regions altered frequently by LoH e.g., 1p, 9p and 11q in the 18 neuroblastoma cases 

in this study were clonal and early events. Interestingly, monoclonal tumors exhibit a lower 

percentage of loss of heterozygosity (LoH) at approximately 12.7%, compared to polyclonal 
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tumors, which show a higher percentage around 16.5%. This difference indicates a greater 

likelihood of subclonal expansion in polyclonal tumors, underscoring the significance of LoH 

alterations in driving tumor evolution. This observation aligns with findings reported in prior 

studies, such as those by (McGranahan and Swanton 2017) and (Gerlinger et al. 2014), which 

emphasize the impact of LoH on intratumoral heterogeneity and subclonal dynamics. HSJD-NB-

005 PDX derived at progression present complex LoH and CH-LoH copy number alteration at 

chromosome 1 and 17 suggesting these known most frequent alteration fuel substantially subclonal 

diversification. Both clonal amplifications and LoH regions, typically irreversible, were 

foundational in clonal architecture (Alfieri, Caravagna, and Schaefer 2023) (Hwang et al. 2021).  

Minor clones or rare cells, often characterized by rare and unique genetic alterations, might 

demonstrate a remarkable potential for growth and gene expression, challenging the prevailing 

view that major clones are the primary drivers of tumor progression (Schuh et al. 2020). This 

observation underscores the importance of understanding the selective pressures that influence 

tumor evolution. Our study in neuroblastoma (NB) provides evidence of this dynamic process, as 

exemplified in the cases of HSJD-NB-005 and GR-NB4. In HSJD-NB-005 (Figure 3.1.1.4.4) three 

cells with chromosome 13 loss of heterozygosity (LoH) and in GR-NB4 (Figure 3.1.1.4.6) nine 

cells with chromosome 12 gain, though few in number, were significantly expressed at the 

transcriptomic level. This finding demonstrates how a small subset of cells with distinct genetic 

alterations can have a profound impact on the tumor’s transcriptional landscape. The GR-NB10 

patient-derived xenograft (PDX), a hypermutated case, further illustrates the rapid clonal evolution 

in cancer. A single cell with a chromosome 2q gain, initially a minor component at the first relapse, 

became dominant in the tumor population at the second relapse (data not shown), highlighting its 

significant selective advantage. This evolution underscores the dynamic nature of cancer 

progression, where minor clones can expand and influence disease course. The mechanisms and 

triggers that govern the proliferation and expression of these minor clones are critical areas for 

future research, offering insights into the complex evolution of cancer. 

A key aspect of our research involved studying replication timing in S-phase cell populations, 

revealing that subclones might have different cellular organisation with regards to replication. This 

finding has profound implications for predicting tumor behavior and therapeutic response. We 

hypothesis that early replication timing might be a predictor of a subclone's propensity to 

proliferate and express genes abundantly. Previous data has indicated that in NB, chromosome 

breakpoints might map referentially to early replicating regions (Schleiermacher et al. 2003) 

(Janoueix-Lerosey et al. 2005).  RT analyses at a single cell level now leads to novel findings: 

First, we observed a notable association between MYCN amplification and early replication timing 
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(RT) domains in neuroblastoma tumors. Tumors with MYCN amplification primarily demonstrated 

enrichment of early RT domains (Figure 3.1.1.4.5.A), in contrast to those lacking MYCN 

amplification. This finding is significant, considering MYCN's established role as a key regulator 

of transcription. The amplification of MYCN is hypothesized to intensify transcriptional activity in 

early replicating regions. This increase could potentially lead to conflicts between transcription and 

replication processes, thereby inducing replication stress and DNA damage. Moreover, MYCN 

amplification may cause premature S-phase entry, increasing the risk of replication errors, 

especially in early replicating domains. This observation is consistent with previous studies 

highlighting the connection between MYCN amplification and replication stress in neuroblastoma 

(Molenaar et al. 2012) (Gogolin et al. 2013) (Briu, Maric, and Cadoret 2021). Second, we noticed 

distinct RT between two subclones evolving parallelly within the same tumor. This is exemplified 

in the PDX model GR-NB4, where two distinct subclones, s1 and s2, were identified. These clones, 

evolving in parallel, exhibited contrasting replication patterns: clone s1 was characterized by early 

replication domains, while clone s2 displayed late replication domains. This dichotomy in RT 

between the two clones within the same tumor model highlights the intricate and varied replication 

behavior that can exist within neuroblastoma tumors. Recent studies demonstrated subclone 

specific distinct RT in breast cancer, using cell line MCF7 (Gnan et al. 2022), PDX and primary 

cancer tissue (Weiner et al. 2023) highlighting these subclones often exhibit unique proliferation 

rates, allowing them to progress more rapidly through the cell cycle. This acceleration in cell cycle 

progression is a key factor in the rapid growth and evolution of tumors, as these advantageous 

genetic changes enable subclonal populations to thrive and expand within the tumor 

microenvironment. 

We now demonstrate for the first time that in NB differential replication timing can be observed in 

distinct subclones, associated with differential treatment sensitivity. The differential replication 

timing (RT) patterns within subclones could potentially dictate their sensitivity or resistance to 

specific therapies. In the case of the GR-NB4 model treated with lorlatinib targeting ALK 

amplification, we postulate that the treatment responsiveness was aligned with the RT 

characteristics of the dominant subclone where the ALK genomic locus (Figure 3.1.1.4.5) was late 

replicating.Figure 3.1.1.4.5 

Our research has revealed notable differences in chemotherapy response among various PDX 

models of neuroblastoma, underscoring the complexity of treatment efficacy in relation to specific 

genetic backgrounds. For instance, in the GR-NB4 model (Figure 3.1.1.4.7), which harbors ALK 

amplification, we observed a marked response to lorlatinib, a targeted ALK inhibitor. This response 

was further enhanced when lorlatinib was used in combination with chemotherapy, as indicated by 
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the growth response curves and significant variations in variant allele frequency (VAF) in subclonal 

populations pre- and post-treatment. Specifically, our integrative analysis of subclonal specific 

single nucleotide variant (SNV) profiles revealed that diminishing variants were predominantly 

associated with subclone s2 (Figure 3.1.1.6.30), suggesting a targeted treatment response in this 

subclone. In contrast, the IC-pPDX-75 model, characterized by a pathogenic ALK mutation, 

exhibited no significant response to lorlatinib treatment. 

In summary, in our cohort of the neuroblastoma samples (n=18) but analysing ~7800 and ~1600 

single cell whole genome from G1/G2 and S-phase cell population sheds light on complex nature 

of tumor evolution. Driver amplifications (>10 copies) in MYCN, ALK, CDK4 and MDM2 were 

clonal and extensive LoH, identified as early evolutionary events, occurred before the MRCA. 

Post-MRCA, an initial phase of instability gives rise to numerous subclones during progression, 

later there may be stabilizing selection (Brennan et al. 2013) into a continuous rate of copy number 

evolution at relapse. This indicates that, despite some stabilizing selection, tumor cells persistently 

adapt and evolve throughout tumor expansion. The investigation into the relationship between 

DNA replication and subclonal growth and behavior is pivotal for understanding the unique 

characteristics, evolutionary fitness, and drug sensitivities. This research provides crucial insights 

into the rare subclones within a tumor, how they adapt and survive during tumor expansion, and 

their varying responses to therapeutic interventions. 

This study faces several limitations that must be considered. Initially, the conclusions are based on 

a restricted dataset, which may necessitate further experimental validation for robustness. While 

the genomic and transcriptomic single cell analyses were conducted on samples from the same 

tumor or patient-derived xenograft (PDX) passage, ideally, such analyses should be performed on 

the same single cells. This approach would offer a more accurate representation of the genotype-

to-phenotype relationships without biases. Secondly, the challenge of accurately detecting 

mutations from high-throughput single-cell whole genome sequencing is amplified due to the 

sparse genomic coverage typical of such techniques, complicating the mutation calling process at 

the single-cell level. Finally, the scope of this study is limited by its small patient cohort, consisting 

of only 18 tumor samples. To validate and generalize the biological findings and the evolutionary 

models proposed, it is crucial to extend these studies to larger cohorts of patients. 

In conclusion we report on the first extensive scDNA study in NB. We show that in NB both 

monoclonal and polyclonal structures can occur. Importantly rare single cells can evolve to a major 

clone upon relapse. Subclones can present distinct replication timing profiles. Furthermore, we 
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document for the first time clone specific sensitivity to treatment, highlighting the importance of 

clonal evolution upon tumor progression and treatment resistance in NB.  
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3.1.1.6 Supplementary data 

 

 

Figure 3.1.1.6.1 Monoclonal genomes with minimal subclonal diversity. 

Tumor id is presented on top of each heatmap derived from single cell copy number profile.  
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Figure 3.1.1.6.2 Clonal substructure of neuroblastoma Patient tumor (P2) and 7 PDXs samples. 
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UMAP clustering of single cell copy number data from twelve tumors showcasing superclones (contour 
colors) and subclones (colored points). This visualization highlights the superclone and subclone 
distributions within each tumor, illustrating the complex clonal architecture. 

 

 

Figure 3.1.1.6.3: Clonal substructure and evolutionary analysis of clonal lineages in NB patient tumors P3. 

A) The upper panel is clustered heatmaps of single-cell total copy-number profiles showing 
subclones in NB patients P3 at diagnosis. Single-cell copy-number clustered heatmaps, with left-
most header columns indicating superclone and subclone groups. B) Bottom annotation panels 
indicate clonal and subclonal classification of CNAs (clonal = black, subclonal = gray and unique 
subclonal CN = orange. The bottom panel show the inferred evolutionary rooted trees with 
MRCA profile and different CNA classes. 
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Figure 3.1.1.6.4: Allele- and haplotype-specific copy numbers for 865 cells in GR-NB4 PDX model. 

The allele-specific, haplotype-specific, and total copy numbers are reported in A, B, and C, respectively, 
across all autosomes (grey rectangles in the first row). CHISEL tool groups 865 cells into 4 clones (colors 
in the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). D. Single-cell CNV 
landscape inferred by Numbat using scRNA-seq data. 
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Figure 3.1.1.6.5: Allele- and haplotype-specific copy numbers for 359 cells in GR-NB4 PDX model. 

The allele-specific, haplotype-specific, and total copy numbers are reported in A, B, and C, respectively, 
across all autosomes (grey rectangles in the first row). CHISEL tool groups 359 cells into 5 clones (colors 
in the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). D. Single-cell CNV 
landscape inferred by Numbat using scRNA-seq data. 
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Figure 3.1.1.6.6: Allele- and haplotype-specific copy numbers for 84 cells in GR-NB5 PDX model. 
The allele-specific, haplotype-specific, and total copy numbers are reported in A, B, and C, respectively, 
across all autosomes (grey rectangles in the first row). CHISEL tool groups 84 cells into 1 clone (colors in 
the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). D. Single-cell CNV 
landscape inferred by Numbat using scRNA-seq data. 
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Figure 3.1.1.6.7: Allele- and haplotype-specific copy numbers for 257 cells in GR-NB10 PDX model. 

The allele-specific, haplotype-specific, and total copy numbers are reported in A, B, and C, respectively, 
across all autosomes (grey rectangles in the first row). CHISEL tool groups 257 cells into 1 clone (colors in 
the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). D. Single-cell CNV 
landscape inferred by Numbat using scRNA-seq data. 
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Figure 3.1.1.6.8: Allele- and haplotype-specific copy numbers for 326 cells in HSJD-NB-003 PDX model. 

The allele-specific, haplotype-specific, and total copy numbers are reported in A, B, and C, respectively, 
across all autosomes (grey rectangles in the first row). CHISEL tool groups 326 cells into 3 clones (colors 
in the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). D. Single-cell CNV 
landscape inferred by Numbat using scRNA-seq data. 
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Figure 3.1.1.6.9: Allele- and haplotype-specific copy numbers for 323 cells in HSJD-NB-009 PDX model. 
The allele-specific, haplotype-specific, and total copy numbers are reported in A, B, and C, respectively, 
across all autosomes (grey rectangles in the first row). CHISEL tool groups 323 cells into 4 clones (colors 
in the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). D. Single-cell CNV 
landscape inferred by Numbat using scRNA-seq data. 
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Figure 3.1.1.6.10: Allele- and haplotype-specific copy numbers for 170 cells in HSJD-NB-011 PDX 
model. 

The allele-specific, haplotype-specific, and total copy numbers are reported in A, B, and C, respectively, 
across all autosomes (grey rectangles in the first row). CHISEL tool groups 170 cells into 1 clone (colors in 
the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). D. Single-cell CNV 
landscape inferred by Numbat using scRNA-seq data. 
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Figure 3.1.1.6.11: Allele- and haplotype-specific copy numbers for 523 cells in IC-pPDX-17 PDX model. 
The allele-specific, haplotype-specific, and total copy numbers are reported in A, B, and C, respectively, 
across all autosomes (grey rectangles in the first row). CHISEL tool groups 523 cells into 7 clones (colors 
in the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). 
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Figure 3.1.1.6.12: Allele- and haplotype-specific copy numbers for 255 cells in IC-pPDX-75 PDX model. 

The allele-specific, haplotype-specific, and total copy numbers are reported in A, B, and C, respectively, 
across all autosomes (grey rectangles in the first row). CHISEL tool groups 255 cells into 3 clones (colors 
in the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). D. Single-cell CNV 
landscape inferred by Numbat using scRNA-seq data. 
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Figure 3.1.1.6.13: Allele- and haplotype-specific copy numbers for 962 cells in IC-pPDX-109 PDX 
model. 

The allele-specific, haplotype-specific, and total copy numbers are reported in A, B, and C, respectively, 

across all autosomes (grey rectangles in the first row). CHISEL tool groups 962 cells into 3 clone (colors in 

the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). D. Single-cell CNV 

landscape inferred by Numbat using scRNA-seq data. 
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Figure 3.1.1.6.14: Allele- and haplotype-specific copy numbers for 884 cells in IC-pPDX-112 PDX 
model. 

The allele-specific, haplotype-specific, and total copy numbers are reported in A, B, and C, respectively, 

across all autosomes (grey rectangles in the first row). CHISEL tool groups 884 cells into 1 clone (colors in 

the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). D. Single-cell CNV 

landscape inferred by Numbat using scRNA-seq data. 
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Figure 3.1.1.6.15: Allele- and haplotype-specific copy numbers for 359 cells in NB1572 patient tumor. 

The allele-specific, haplotype-specific, and total copy numbers are reported in A, B, and C, respectively, 

across all autosomes (grey rectangles in the first row). CHISEL tool groups 359 cells into 5 clones (colors 

in the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). D. Single-cell CNV 

landscape inferred by Numbat using scRNA-seq data. 
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Figure 3.1.1.6.16: Allele- and haplotype-specific copy numbers for 458 cells in NB1576 patient tumor. 

The allele-specific, haplotype-specific, and total copy numbers are reported in A, B, and C, respectively, 

across all autosomes (grey rectangles in the first row). CHISEL tool groups 458 cells into 2 clones (colors 

in the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). 
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Figure 3.1.1.6.17: Allele- and haplotype-specific copy numbers for 663 cells in NB1583 patient tumor. 

The allele-specific, haplotype-specific, and total copy numbers are reported in A, B, and C, respectively, 

across all autosomes (grey rectangles in the first row). CHISEL tool groups 663 cells into 1 clone (colors in 

the left-side bar) and classifies the remaining cells as noisy (grey in the left-side bar). 
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Figure 3.1.1.6.18 Exome mutation counts according to clonality. 

Exome mutation counts of each tumor indicating mutations that were classified as clonal or subclonal based 
on allele-specific copy number frequencies and all these single nucleotide variants in analysis were 
supported by at least two functional prediction algorithms out of 8 such tools we used in the SNV analysis. 

 

 

Figure 3.1.1.6.19: Analysis of Loss of Heterozygosity (LoH) regions 
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Figure 3.1.1.6.21 Single cell ASCN profiles from GR-NB4 PDX model representing clone 6 and 7 with 
and without chromosomes 2 and 12 gain. 

  

 

(single cell from clone c7 with chromosome 2 and 12 gain ) 

(single cell from clone c6 with NO chromosome 2 and 12 gain ) 
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Figure 3.1.1.6.22 Bioinformatics data analysis workflow.  
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Table 3.1.1.6.1 Single cell DNA sequencing run summary details. 

Sample id 

Estimated 
number of 

Cells 

Total 
reads 

Reads from 
cells 

Total mapped de-
duplicated reads in 

cells 

 Mean 
mapped 

de-
duplicated 
reads per 

cell 

Median 
effective 

reads 
per Mb 

Median 
duplicate 
fraction 
per cell 

Ploidy 
(Estimated) 

Fraction of 
noisy cells 
(Estimated) 

GR_NB10 322 11097 M 
7973 M 
(20.1%) 11097 M (71.9%)  6.9 M 2104 63% 2 15% 

GR_NB4 994 9928 M 
7060 M 
(41.5%) 9928 M (71.1%)  4.1 M 1292 33% 2 13% 

GR_NB5 137 6624 M 
3894 M 
(14.4%) 6624 M (58.8%)  6.99 M 2044 67.30% 2 20.40% 

GR_NB7 625 5446 M 
3727 M 
(45.2%) 5446 M (68.4%)  3.94 M 1193 29% 5 53% 

HSJD-NB-003 396 6438 M 
5525 M 
(46.1%) 6438 M (85.8%)  7.5 M 2361 38% 4 18% 

HSJD-NB-004 131 11661 M 
7166 M 
(7.6%) 11661 M (61.5%)  6.8 M 2181 79% 2 14.50% 

HSJD-NB-005 543 11059 M 
8665 M 
(39.5%) 11059 M (78.3%)  8 M 2479 42% 2 19% 

HSJD-NB-009 405 5445 M 
3400 M 
(35.5%) 5445 M (62.4%)  4.8 M 1575 34% 4 21.50% 

HSJD-NB-011 199 5979 M 
4112 M 
(33.6%) 5979 M (68.8%)  10 M 2862 41% 2 16% 

IC_pPDX_17 662 9741 M 
7468 M 
(26.5%) 9741 M (76.7%)  3.9 M 1247 57% 4 24% 

IC-pPDX-109 1157 8924 M 
6912 M 
(52.1%) 8924 M (77.5%)  4 M 1198 23% 2 14% 

IC-pPDX-112 1059 10064 M 
7951 M 
(47.9%) 10064 M (79.0%)  4.55 M 1427 30% 3 26% 

IC-pPDX-63 903 5362 M 
4378 M 
(50.5%) 5362 M (81.7%)  3 M 950 29% 2 20.80% 

IC-pPDX-75 322 5949 M 
4060 M 
(35.8%) 5949 M (68.2%)  6.6 M 2060 38% 3 20.50% 

NB1572 977 8723 M 
7358 M 
(50.1%) 8723 M (84.4%)  4.47 M 1389 31.60% 2 9.40% 

NB1576 584 5107 M 
4297 M 
(52.8%) 5107 M (84.1%)  4.6 M 1468 29% 3 26% 

NB1580 71 10964 M 
8327 M 
(5.5%) 10964 M (75.9%)  8.54 M 2623 84% 2 13% 

NB1583 980 4761 M 
4036 M 
(56.6%) 4761 M (84.8%)  2.75 M 851 24% 3 11% 

M=million 
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Table 3.1.1.6.2 Single-Cell Phasing and Sample Selection for Replication Timing Analysis in 
Neuroblastoma Study. 

Sample id 
G1/G2-phase 

cells 
Noisy cells 

Non tumor 
cells 

S-phase 
cells 

 Inclusion in Replication 
Timing (RT) study 

GR-NB10 257 6 0 59 Yes 

GR-NB4 865 15 0 114 Yes 

GR-NB5 84 8 0 45 Yes 

GR-NB7 400 36 0 189 Yes 

HSJD-NB-003 326 5 0 65 Yes 

HSJD-NB-004 114 4 0 13 No 

HSJD-NB-005 434 16 0 93 Yes 

HSJD-NB-009 323 10 0 72 Yes 

HSJD-NB-011 170 2 0 27 No 

IC-pPDX-109 962 24 0 171 Yes 

IC-pPDX-112 884 29 0 146 Yes 

IC-pPDX-17 523 15 0 124 Yes 

IC-pPDX-63 723 30 0 150 Yes 

IC-pPDX-75 255 5 0 62 Yes 

NB1572 359 7 555 56 No 

NB1576 458 10 23 93 No 

NB1580 4 5 44 18 No 

NB1583 663 13 195 109 Yes 

 

 

 

Table 3.1.1.6.3. In Vivo Investigation of Clonal Evolution in High-Risk Neuroblastoma Using Patient-
Derived Xenograft (PDX) Models and Targeted Therapies. 

HR-NB PDX 

Models 

Somatic Genetic Alterations Chosen 

target 

Targeted 

drug 

Sequenced 

samples MYCN ALK TP53 ATRX Other 

GR-NB4 A A WT WT  ALK Lorlatinib Tumor 

GR-NB10 WT WT c.555+1G>A WT 
NF1 mut + 

LOH 
NF1 Trametinib Tumor 

IC-pPDX-17 WT WT WT c.5242G>A CDK4 amp CDK4 Ribociclib Tumor 

IC-pPDX-75 WT F1174L WT c.6391C>T  ALK Lorlatinib Tumor 

IC-pPDX-109 A WT WT WT HRAS mut HRAS Trametinib Tumor 

HSJD-NB-005 A WT c.517G>T WT 
ARID1A 

mut 
ARID1A Tazemetostat Tumor 

  A/amp=Amplification; WT=Wild type; mut = somatic single nucleotide variant; LOH = Loss of heterozygosity 
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Figure 3.1.1.6.25. GR-NB4, a ALK-amplified NB PDX model | Relative tumor volume (mean).   
Growth curves were plotted to demonstrate the effects of two different chemotherapy regimens, termed 
Doxorubicin-Cyclophosphamide (chemotherapy-A) and Etoposide-Cisplatin (chemotherapy-B), both 
independently and in combination with lorlatinib. These curves highlighted the individual activity of each 
chemotherapy, as well as the impact of lorlatinib, a ALK inhibitor, when used alone. 

 

Figure 3.1.1.6.26: GR-NB4, a ALK amplified NB PDX model | The impact of targeted treatment 
(lorlatinib) alone on different clonal populations within a tumor 

 

 



 105 

 A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF before 
and after treatment. C) Clone-1 and clone-2 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-4, clone-6 and clone-7, displayed dynamic behavior, with clone-4 and clone-6 
gradually diminishing and clone-7 emerging over the course of treatment. This fluctuation in the subclonal 
population was significant. Statistically significant differences determined by paired, two-tailed t-test. 
P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 

 

Figure 3.1.1.6.27: GR-NB4, a ALK amplified NB PDX model | The impact of targeted treatment 
(lorlatinib) in combination with chemotherapy-A. 

A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF before 
and after treatment. C) Clone-1 and clone-2 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-3, clone-5, clone-6 and clone-7, displayed dynamic behavior, with clone-3 
gradually diminishing and clone-5, clone-6 and clone-7 emerging over the course of treatment. This 
fluctuation in the subclonal population was significant. Statistically significant differences determined by 
paired, two-tailed t-test. P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 
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Figure 3.1.1.6.28. GR-NB4, a ALK amplified NB PDX model | The impact of chemotherapy-A 
treatment. 
A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 and clone-2 exhibited clonal persistence throughout the 
treatment course. Subclones, namely clone-4, clone-5 and clone-6 displayed dynamic behavior, with 
clone-4 and clone-6 gradually diminishing while clone-5 emerging over the course of treatment. This 
fluctuation in the subclonal population was significant. Statistically significant differences determined 
by paired, two-tailed t-test. P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 
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Figure 3.1.1.6.29: GR-NB4, a ALK amplified NB PDX model | The impact of chemotherapy-B 
treatment. 
A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 and clone-2 exhibited clonal persistence throughout the 
treatment course. Subclones, namely clone-4, clone-5, clone-6 and clone-7 displayed dynamic behavior, 
with clone-4 gradually diminishing while clone-5, clone-6 and clone-7 emerging over the course of 
treatment. This fluctuation in the subclonal population was significant. Statistically significant 
differences determined by paired, two-tailed t-test. P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 
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Figure 3.1.1.6.30: GR-NB4 model: SNVs from s1 and s2 subclone mapped to WES derived clones. 

In the given data visualization, the green line symbolizes the common or shared Single Nucleotide 
Variants (SNVs) between superclone/subclone s1 and s2, indicating the genetic overlap between these two 
subclonal groups. The purple line denotes SNVs unique to superclone/subclone s1, highlighting the 
distinct genetic features of this subgroup. Notably, the orange line represents SNVs exclusive to subclone 
s2. The predominance of orange colored SNVs in the diminishing group suggests that superclone/subclone 
s2 is more responsive to the treatment regimen. These unique variants in the s2 subclone appear to exhibit 
increased sensitivity to the combined therapy of lorlatinib and chemotherapy-A. 
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Summary: 

The in vivo experiment and bulk exome sequencing data analysis focusing on GR-NB4 PDX model 

provided key insights into treatment efficacy and the changes in subclonal dynamics before and 

after treatment: 

• Lorlatinib: Lorlatinib alone demonstrated substantial efficacy when used as a single agent, 

achieving a Tumor Growth Inhibition (TGI) of 91%. This indicates that lorlatinib is highly 

effective in targeting and inhibiting the growth of neuroblastoma cells in this specific 

model. 

• No change in clonal status of ALK amplification before and after any treatment regimen 

• In GR-NB4 MYCN and ALK amplified model, no single nucleotide variations (SNVs) were 

identified that are typically associated with or considered as drivers of neuroblastoma. 

• Gradually diminishing and emerging subclones were significantly evident after targeted 

treatment alone or in combination with chemotherapy.  

• The pathway analysis of emerging genes suggests that these emerging genes might play a 

key role in negative regulation of cell differentiation (e.g. PROX1, SIX3, CRI, DUSP10, 

ANP32B, CCL3, SIX2, RNF10, ADAMTS7)   and epithelial to mesenchymal transition (e.g. 

MYLK, MXRA5). 

• The hypothesis posits that the majority of mutations that gradually diminished after 

lorlatinib treatment, either as a standalone therapy or in combination with chemotherapy, 

originated from Clone-B. This clone, which was evolving in parallel, was identified through 

the analysis of single-cell whole genome sequencing (scWGS) data. This suggests that 

Clone-B was sensitive to lorlatinib and its susceptibility contributed significantly to the 

overall reduction in these mutations post-treatment. 

• Combination with Cisplatin-Etoposide: The combination of lorlatinib with the 

chemotherapy-B agents cisplatin and etoposide significantly enhanced the therapeutic 

effect compared to either treatment alone. This regimen resulted in a higher number of 

complete responses, signifying that lorlatinib may synergize with traditional chemotherapy 

to combat neuroblastoma more effectively. 

• Combination with Doxorubicin-Cyclophosphamide: Similarly, combining lorlatinib with 

doxorubicin and cyclophosphamide also significantly increased the anti-tumor efficacy 

compared to these chemotherapeutic agents alone. The presence of complete responses in 
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this combination group further underscores the potential of lorlatinib to improve treatment 

outcomes when used in conjunction with established chemotherapy protocols. 

Overall, these results suggest that lorlatinib, either alone or in combination with standard 

chemotherapy regimens, shows promising therapeutic potential in the treatment of neuroblastoma, 

as evidenced by the high TGI and increased complete response rates observed in the GR-NB4 

model. 
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Figure 3.1.1.6.31. IC-pPDX-75, a ALK-mutated NB PDX model, growth curves  

Growth curves were plotted to demonstrate the effects of two different chemotherapy regimens, termed 
Doxorubicin-Cyclophosphamide (chemotherapy-A) and Etoposide-Cisplatin (chemotherapy-B), both 
independently and in combination with lorlatinib. These curves highlighted the individual activity of each 
chemotherapy, as well as the impact of lorlatinib, a ALK inhibitor, when used alone. 
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Figure 3.1.1.6.32. IC-pPDX-75, ALK mutated NB PDX model | The impact of targeted treatment 
(lorlatinib) alone. 
A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-3 and clone-4, displayed dynamic behavior, with clone-3 gradually 
diminishing and clone-4 emerging over the course of treatment. This fluctuation in the subclonal 
population was significant. Statistically significant differences determined by paired, two-tailed t-test. 
P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 
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Figure 3.1.1.6.33. IC-pPDX-75, ALK mutated NB PDX model | The impact of targeted treatment 
(lorlatinib) in combination with chemotherapy-A  
A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-4, clone-5 and clone-6, displayed dynamic behavior, with clone-4 and clone-5 
gradually diminishing and clone-6 emerging over the course of treatment. This fluctuation in the 
subclonal population was significant 
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Figure 3.1.1.6.34. IC-pPDX-75, ALK mutated NB PDX model | The impact of targeted treatment 
(lorlatinib) in combination with chemotherapy-B  
A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-4, clone-5 and clone-6, displayed dynamic behavior, with clone-4 and clone-5 
gradually diminishing and clone-6 emerging over the course of treatment. This fluctuation in the 
subclonal population was significant 
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Figure 3.1.1.6.35: IC-pPDX-75, ALK mutated NB PDX model | The impact of chemotherapy-A 
treatment alone 

A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-4 and clone-5, displayed dynamic behavior, with clone-4 gradually 
diminishing and clone-5 emerging over the course of treatment. This fluctuation in the subclonal 
population was significant 
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Figure 3.1.1.6.36: IC-pPDX-75, ALK mutated NB PDX model | The impact of chemotherapy-B 
treatment alone  
A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-3 and clone-4 displayed dynamic behavior, with clone-3 gradually 
diminishing and clone-4 emerging over the course of treatment. This fluctuation in the subclonal 
population was significant. Statistically significant differences determined by paired, two-tailed t-test. 
P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 

 

Summary: 

The in vivo experiment and bulk exome sequencing data analysis focusing on IC-pPDX-75 PDX 

model provided key insights into treatment efficacy and the changes in subclonal dynamics before 

and after treatment: 

• Lorlatinib: In the IC-pPDX-75 model, lorlatinib alone, when administered as a solitary 

treatment, showed limited efficacy with a Tumor Growth Inhibition (TGI) rate of only 28%. 

This suggests that lorlatinib on its own is not sufficiently effective against this 

neuroblastoma PDX model targeting ALK pathogenic mutation. 

• No change in ALK pathogenic mutation (F1174L) irrespective of treatment regimen. 

• Emerging genes might paly key role in cell-cell signaling biological process (e.g. HNF1B, 

ADAM10, CACNG2, BSN, C3, PCDHB3, RNF207, GRID2IP, HTRIF and AMFR) 
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• In combination with Cisplatin + Etoposide (chemothery-B): When lorlatinib was combined 

with the chemotherapy-B drugs cisplatin and etoposide, there was an increase in the 

efficacy of lorlatinib. However, this combination did not enhance the effectiveness of the 

chemotherapy agents themselves. This indicates a partial synergy where lorlatinib benefits 

from the presence of these chemotherapeutic drugs. 

• Combination with Doxorubicin + Cyclophosphamide: Notably, the combination of 

lorlatinib with doxorubicin and cyclophosphamide significantly improved the anti-tumor 

efficacy compared to either lorlatinib or the chemotherapy agents used alone. This outcome 

suggests a more pronounced synergistic effect, where the combination therapy notably 

outperforms individual treatments. 

Overall, these results indicate that while lorlatinib alone lacks substantial efficacy in the IC-PDX-

75 neuroblastoma model, its combination with certain chemotherapy regimens, particularly 

doxorubicin and cyclophosphamide (chemotherapy-A), markedly improves anti-tumor activity. 

This finding underscores the potential of lorlatinib as part of a combination therapy, rather than as 

a standalone treatment, in certain neuroblastoma cases. 
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Figure 3.1.1.6.37. IC-pPDX-109, a HRAS-mutated NB PDX model, growth curves 

Growth curves were plotted to demonstrate the effects of two different chemotherapy regimens, termed 
Doxorubicin-Cyclophosphamide (chemotherapy-A) and Etoposide-Cisplatin (chemotherapy-B), both 
independently and in combination with trametinib. These curves highlighted the individual activity of 
each chemotherapy, as well as the impact of trametinib, a HRAS inhibitor, when used alone. 
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Figure 3.1.1.6.38: IC-pPDX-109, HRAS mutant NB PDX model | The impact of Targeted treatment 
(trametinib) alone. 
A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-3 and clone-5, displayed dynamic behavior, with clone-3 gradually 
diminishing and clone-5 emerging over the course of treatment. This fluctuation in the subclonal 
population was significant 
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Figure 3.1.1.6.39: IC-pPDX-109, HRAS mutant NB PDX model | The impact of Targeted treatment 
(trametinib) in combination with chemotherapy-A 

A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-2, clone-3 and clone-5, displayed dynamic behavior, with clone-2 and clone-4 
gradually diminishing while clone-5 emerging over the course of treatment. This fluctuation in the 
subclonal population was significant 
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Figure 3.1.1.6.40. IC-pPDX-109, HRAS mutant NB PDX model | The impact of Targeted treatment 
(trametinib) in combination with chemotherapy-B treatment. 
A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-3 and clone-5, displayed dynamic behavior, with clone-3 gradually 
diminishing and clone-5 emerging over the course of treatment. This fluctuation in the subclonal 
population was significant. Statistically significant differences determined by paired, two-tailed t-test. 
P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 
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Figure 3.1.1.6.41. IC-pPDX-109, HRAS mutant NB PDX model | The impact of chemotherapy-A 
treatment alone. 
A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-3 and clone-5, displayed dynamic behavior, with clone-3 gradually 
diminishing and clone-5 emerging over the course of treatment. This fluctuation in the subclonal 
population was significant. Statistically significant differences determined by paired, two-tailed t-test. 
P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 
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Figure 3.1.1.6.42. IC-pPDX-109, HRAS mutant NB PDX model | The impact of chemotherapy-B 
treatment alone. 
A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-4 and clone-5, displayed dynamic behavior, with clone-4 gradually 
diminishing and clone-5 emerging over the course of treatment. This fluctuation in the subclonal 
population was significant. Statistically significant differences determined by paired, two-tailed t-test. 
P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 

 

Summary: 

The in vivo experiment and bulk exome sequencing data analysis focusing on IC-pPDX-109 PDX 

model provided key insights into treatment efficacy and the changes in subclonal dynamics before 

and after treatment: 

• Trametinib: Trametinib alone demonstrated significant anti-tumor activity when used as a 

single agent against the IC-pPDX-109 model, achieving a Tumor Growth Inhibition (TGI) 

rate of 60%. This indicates that trametinib is effective in reducing tumor growth in this 

specific neuroblastoma context. 

• Molecular target, HRAS mutation and other likely pathogenic genes such as SMARCA4, 

and STAT4 remain clonal (CCF ~ 100%) irrespective of any treatment regimen.  

• Emerging genes might play key role in mesenchymal to epithelial transition (e.g. GJA1, 

MYLK, LAMA1) or KRAS signaling pathway (e.g. PCDHB1, RYR1, UBX2) 
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• Combination with Cisplatin + Etoposide: Notably, when trametinib was combined with 

cisplatin and etoposide, the efficacy was significantly higher than trametinib used alone 

(p=0.0317). However, the combination did not surpass the efficacy of cisplatin and 

etoposide used without trametinib. This suggests that while trametinib enhances the 

effectiveness of these chemotherapy drugs, the combination does not yield a superior 

outcome compared to the chemotherapy duo alone. 

• Addition of Doxorubicin + Cyclophosphamide: The inclusion of doxorubicin and 

cyclophosphamide with trametinib did not result in increased efficacy compared to 

trametinib used alone. This implies that the combination of trametinib with these 

chemotherapeutic agents does not confer an additional benefit in terms of anti-tumor 

activity. 

In summary, trametinib shows notable efficiency as a monotherapy in the IC-pPDX-109 

neuroblastoma model and enhances the anti-tumor effects of the cisplatin and etoposide 

combination. However, its combination with doxorubicin and cyclophosphamide does not provide 

added advantage over trametinib alone. 
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Figure 3.1.1.6.43. GR-NB10, a NF1-mutated NB PDX model, growth curves 

Growth curves were plotted to demonstrate the effects of two different chemotherapy regimens, termed 
Doxorubicin-Cyclophosphamide (chemotherapy-A) and Etoposide-Cisplatin (chemotherapy-B), both 
independently and in combination with trametinib. These curves highlighted the individual activity of 
each chemotherapy, as well as the impact of trametinib, a NF1 inhibitor, when used alone. 
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Figure 3.1.1.6.44. GR-NB10, a NF1-mutated NB PDX model | The effect of targeted treatment 
(trametinib) 
A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 and clone-2 exhibited clonal persistence throughout the 
treatment course. Subclones, namely clone-4, clone-5, clone-6 and clone-7, displayed dynamic 
behavior, with clone-4, and clone-6 gradually diminishing while clone-5 and clone-7 emerging over the 
course of treatment. This fluctuation in the subclonal population was significant. Statistically significant 
differences determined by paired, two-tailed t-test. P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 
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Figure 3.1.1.6.45. GR-NB10, a NF1-mutated NB PDX model | The impact of targeted treatment 
(trametinib) in combination with chemotherapy-A  
A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 and clone-2 exhibited clonal persistence throughout the 
treatment course. Subclones, namely clone-5, clone-6 and clone-7, displayed dynamic behavior, with 
clone-5, and clone-6 gradually diminishing and clone-7 emerging over the course of treatment. This 
fluctuation in the subclonal population was significant. Statistically significant differences determined 
by paired, two-tailed t-test. P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 
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Figure 3.1.1.6.46. GR-NB10, a NF1-mutated NB PDX model | The impact of targeted treatment 
(trametinib) in combination with chemotherapy-B 

A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 and clone-2 exhibited clonal persistence throughout the 
treatment course. Subclones, namely clone-4, clone-6 and clone-7, displayed dynamic behavior, with 
clone-4, and clone-6 gradually diminishing and clone-7 emerging over the course of treatment. This 
fluctuation in the subclonal population was significant. Statistically significant differences determined 
by paired, two-tailed t-test. P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 
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Figure 3.1.1.6.47. GR-NB10, a NF1-mutated NB PDX model | The impact of chemotherapy-A 
treatment alone 

A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clone-1 and clone-2 exhibited clonal persistence throughout the 
treatment course. Subclones, namely clone-4, clone-5, clone-6 and clone-7, displayed dynamic 
behavior, with clone-4, clone-5 and clone-6 gradually diminishing and clone-7 emerging over the 
course of treatment. This fluctuation in the subclonal population was significant. Statistically significant 
differences determined by paired, two-tailed t-test. P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 
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Figure 3.1.1.6.48. GR-NB10, a NF1-mutated NB PDX model | The impact of chemotherapy-B 
treatment alone 

A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF before 
and after treatment. C) Clone-1 and clone-2 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-4, clone-6 and clone-7, displayed dynamic behavior, with clone-4 and clone-6 
gradually diminishing and clone-7 emerging over the course of treatment. This fluctuation in the subclonal 
population was significant. Statistically significant differences determined by paired, two-tailed t-test. 
P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 

 

Summary:  

The in vivo experiment and bulk exome sequencing data analysis focusing on GR-NB10 PDX 

model provided key insights into treatment efficacy and the changes in subclonal dynamics before 

and after treatment. 

• In the GR-NB10 neuroblastoma model, trametinib exhibited modest effectiveness as a 

single-agent therapy, achieving a tumor growth inhibition (TGI) of 49%.  

• Molecular target, NF1 mutation and other likely pathogenic genes such as HRAS, and 

BRCA2 remain clonal (CCF ~ 100%) irrespective of any treatment regimen.  

• GR-NB10 case is known hypermutated case (TMB > 10 mutations/Mb). Activities related 

to Neurogenesis pop-up when emerging genes were studied.  
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• When trametinib was combined with cisplatin-etoposide chemotherapy, this pairing did not 

enhance the efficacy beyond that observed with either trametinib alone or the chemotherapy 

alone.  

• However, the combination of trametinib with doxorubicin-cyclophosphamide was notably 

more effective than either trametinib or the chemotherapy when used independently. This 

increased efficacy was evident even in the early stages of the experiment.  

These findings indicate that while trametinib demonstrates some effectiveness in the GR-NB10 

model, its combination with doxorubicin-cyclophosphamide significantly boosts its anti-tumor 

capabilities, a synergy not observed with the etoposide-cisplatin combination. 
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Figure 3.1.1.6.49. IC-pPDX-17, a CDK4-amplified model, growth curves  

Growth curves were plotted to demonstrate the effects of two different chemotherapy regimens, termed 
Doxorubicin-Cyclophosphamide (chemotherapy-A) and Etoposide-Cisplatin (chemotherapy-B), both 
independently and in combination with ribociclib. These curves highlighted the individual activity of each 
chemotherapy, as well as the impact of ribociclib, a CDK4 inhibitor, when used alone. 

Figure 3.1.1.6.50. IC-pPDX-17, CDK4 amplified model. Impact of targeted treatment (Ribociclib) alone  
on different clonal populations within a tumor. A) Scatter and fish plot, visually representing the 
differences in the VAF of each SNV before and after treatment. B) Scatter and fish plot, visually 
representing the clone specific differences in the CCF before and after treatment. C) Clone-1 and clone-
2 exhibited clonal persistence throughout the treatment course. Subclones, namely clone-3 and clone-4, 
displayed dynamic behavior, with clone-3 gradually diminishing and clone-4 and clone-5 emerging over 
the course of treatment. This fluctuation in the subclonal population was significant suggesting some 
degree of targeted treatment effect. 
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Figure 3.1.1.6.51. IC-pPDX-17, CDK4 amplified model. Impact of targeted treatment (Ribociclib) in 
combination with chemotherapy-A 

A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) Clones from 1 to 3 displayed static behavior. However, clone-4 emerged 
after the treatment. The fluctuation in the subclonal population was no significant except emerging 
clone, suggesting no treatment effect. 
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Figure 3.1.1.6.52. IC-pPDX-17, CDK4 amplified model. Impact of targeted treatment (Ribociclib) in 
combination with chemotherapy-B  

A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF before 
and after treatment. C) Clones from 1 to 4 displayed static behavior. However, clone-5 emerged after the 
treatment with likely pathogenic mutations in STAG2 and HDAC4 genes. The fluctuation in the subclonal 
population was significant suggesting no treatment effect. 
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Figure 3.1.1.6.53. IC-pPDX-17, CDK4 amplified model. Impact of chemotherapy-A treatment  

A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF before 
and after treatment. C) All clones from 1 to 4 displayed static behavior. The fluctuation in the subclonal 
population was insignificant suggesting no treatment effect. 
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Summary: 

The in vivo experiment and bulk exome sequencing data analysis focusing on IC-pPDX-17 PDX 

model provided key insights into treatment efficacy and the changes in subclonal dynamics before 

and after treatment: 

• Ribociclib, when used alone, demonstrated notable effectiveness, achieving a tumor growth 

inhibition (TGI) of 61%. 

• No change in CDK4 amplification before and after any treatment regimen 

• Emerging subclones were evident after targeted treatment alone or in combination with 

chemotherapy. Mainly involved in post-translation protein modification activity. E.g. 

HDAC4, C3, STAG2 and TRAPPC9. The other two emerging genes XRCC and NHEJ1 were 

involved in DNA repair pathway activity. 

• Likely pathogenic genes e.g ATRX, ETV1, GLI3, KDM5A and CDK2 with clonal mutation 

did not respond to treatment. 

Figure 3.1.1.6.54. IC-pPDX-17, CDK4 amplified model. Impact of chemotherapy-B treatment  

A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF 
before and after treatment. C) All clones from 1 to 4 displayed static behavior. The fluctuation in the 
subclonal population was insignificant suggesting no treatment effect. 
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• The addition of doxorubicin and cyclophosphamide to ribociclib did not yield a significant 

improvement over the use of ribociclib alone or the combined chemotherapy. 

• The combination of cisplatin and etoposide with ribociclib did not markedly enhance the 

overall treatment efficacy compared to using either treatment independently. However, this 

combination did show a significant increase in TGI at the 20-day mark. 

In summary, ribociclib proved to be substantially effective for the IC-pPDX-17 model, and its 

combination with cisplatin/etoposide showed a notable improvement in chemotherapy efficiency. 
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Figure 3.1.1.6.55. HSJD-NB-05, a ARID1A-mutated model, growth curves. 

Growth curves were plotted to demonstrate the effects of two different chemotherapy regimens, termed 
Doxorubicin-Cyclophosphamide (chemotherapy-A) and Etoposide-Cisplatin (chemotherapy-B), both 
independent and in combination with tazemetostat. These curves highlighted the individual activity of 
each chemotherapy, as well as the impact of tazemetostat, a ARID1A inhibitor, when used alone. 
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Figure 3.1.1.6.56. HSJD-NB-005, ARID1A mutant model | Impact of targeted treatment (Tazemetostat) 
alone  

A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF before 
and after treatment. C) Clone-1 and clone-2 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-5 and clone-7, displayed dynamic behavior, with clone-5 gradually diminishing 
and clone-7 and clone-6 emerging over the course of treatment. This fluctuation in the subclonal 
population was significant. Statistically significant differences determined by paired, two-tailed t-test. 
P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 
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Figure 3.1.1.6.57. HSJD-NB-005, ARID1A mutant model | Impact of targeted treatment (Tazemetostat) 
in combination with chemotherapy-A  

A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF before 
and after treatment. C) Clone-1 and clone-2 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-4 and clone-5, displayed dynamic behavior, with clone-4 gradually diminishing 
and clone-5 emerging over the course of treatment. This fluctuation in the subclonal population was 
significant. Statistically significant differences determined by paired, two-tailed t-test. P≤0.05 (*); 0.01 
(**); 0.001 (***); 0.0001 (****). 
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Figure 3.1.1.6.58. HSJD-NB-005, ARID1A mutant model | Impact of targeted treatment (Tazemetostat) 
in combination with chemotherapy-B  

A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF before 
and after treatment. C) Clone-1 and clone-2 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-4 and clone-5, displayed dynamic behavior, with clone-4 gradually diminishing 
and clone-5 emerging over the course of treatment. This fluctuation in the subclonal population was 
significant. Statistically significant differences determined by paired, two-tailed t-test. P≤0.05 (*); 0.01 
(**); 0.001 (***); 0.0001 (****). 
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Figure 3.1.1.6.59. HSJD-NB-005, ARID1A mutant model | Impact of chemotherapy-A treatment 

A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF before 
and after treatment. C) Clone-1 and clone-2 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-4 and clone-5, displayed dynamic behavior, with clone-4 gradually diminishing 
and clone-5 emerging over the course of treatment. This fluctuation in the subclonal population was 
significant. Statistically significant differences determined by paired, two-tailed t-test. P≤0.05 (*); 0.01 
(**); 0.001 (***); 0.0001 (****). 
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Figure 3.1.1.6.60. HSJD-NB-005, ARID1A mutant model | Impact of chemotherapy-B treatment  

A) Scatter and fish plot, visually representing the differences in the VAF of each SNV before and after 
treatment. B) Scatter and fish plot, visually representing the clone specific differences in the CCF before 
and after treatment. C) Clone-1 and clone-2 exhibited clonal persistence throughout the treatment course. 
Subclones, namely clone-3, clone-4 and clone-5, displayed dynamic behavior, with clone-3 gradually 
diminishing and clone-5 emerging over the course of treatment. This fluctuation in the subclonal 
population was significant. Statistically significant differences determined by paired, two-tailed t-test. 
P≤0.05 (*); 0.01 (**); 0.001 (***); 0.0001 (****). 

 

Summary 

The in vivo experiment and bulk exome sequencing data analysis focusing on HSJD-NB-005 PDX 

model provided key insights into treatment efficacy and the changes in subclonal dynamics before 

and after treatment: 

• Targeted agent - tazemetostat, when used alone, demonstrated minimal efficacy against the 

neuroblastoma PDX, with a tumor growth inhibition (TGI) of only 22%. 

• Molecular target, ARID1A mutation and other likely pathogenic genes such as TP53, 

NF1and MSH2 remain clonal (CCF ~ 100%) irrespective of any treatment regimen.  

• Emerging clones had significant overlap with Epithelial to mesenchymal transition in 

colorectal cancer pathways. Genes such as TGFB2, NOTCH3, WNT3, PKD1, ZEB2 and 

COL4A5 were found significantly overlapped with this pathway. 
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• Combining tazemetostat with cisplatin and etoposide (Chemotherapy-B) did not enhance 

the efficacy of either drug regimen on their own. However, this combination did result in a 

higher number of responders compared to either tazemetostat alone or the cisplatin and 

etoposide combination alone. 

• A significant increase in antitumor efficacy was observed when tazemetostat was combined 

with doxorubicin and cyclophosphamide (Chemotherapy-A). This suggests that the 

combination with tazemetostat improves the effectiveness of this chemotherapy regimen. 

However, there was no significant increase in the antitumor effect when doxorubicin and 

cyclophosphamide were used alone. 

The results clearly demonstrated that tazemetostat alone did not exhibit effectiveness against the 

NB005 neuroblastoma patient-derived xenograft (PDX) model. Furthermore, combining 

tazemetostat with either doxorubicin and cyclophosphamide or etoposide and cisplatin did not 

significantly enhance the anti-tumor efficacy of these chemotherapy regimens. This suggests that 

tazemetostat, in this specific neuroblastoma model, may not be beneficial as either a standalone 

treatment or in conjunction with the tested chemotherapy combinations. 
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3.1.1.6.1 In vivo experiments for the study of clonal evolution under treatment 
 

3.1.1.6.1.1 Ethical considerations of in vivo experimentation  
 

The use of the mouse model remains essential for the outcome of this project: it represents an 

integrated biological model with a physiological whole context system, in contrast to invitro 

models. For PDX establishment, tumor tissue was obtained after informed consent provided by the 

patients’ legal guardians. All animal experiments complied with current European/French 

legislation (articles R.214-87 to R.214-126 of the Decree n°2013-118 of February 1st) and were 

carried out in accredited animal facilities of the Institut Curie.  

The animal’s (mice) well-being was be monitored through strict scale endpoints. Following 

international recommendations, experiments were stopped before any animal suffering or when the 

tumor volume reached 1500 to 2000 mm3. The number of mice used considered the reduction 

principle. To reduce its number, whenever possible experiments were pooled to limit the number 

of control groups. In addition, data obtained from control groups could be used for future projects 

and leftover tumor material was stored for further projects.  

All procedures were approved by the Institutional Review Board (IRB) of the Institut Curie. This 

project was approved by the Ethics Committee of the Institut Curie and the Ministry of Higher 

Education, Research and Innovation, with reference number AFAPIS #13980.2018030813227748 

v2. 

3.1.1.6.1.2 Treatment schedules  
 

The engrafted mice in this study were randomized into six experimental arms, each receiving a 

distinct treatment regimen over two cycles. The treatments consisted of standard chemotherapy, 

targeted therapy, or a combination of both. The targeted therapies were chosen based on genetic 

abnormalities found in the primary tumors and patient-derived xenografts (PDXs), identified 

through molecular analysis that included whole exome sequencing (WES) at 100X coverage, 

excluding germline variations, and RNA sequencing. The selection of targetable alterations and 

corresponding therapeutic strategies was guided by the MAPPYACTS, NCI-MATCH, and 

INFORM algorithms (Worst et al. 2016). Detailed information on the dosages used is provided 

below:  

1. Chemotherapy-A: Doxorubicin-Cyclophosphamide  

a. Doxorubicin 2 mg/kg IP at D1 and D22  

b. Cyclophosphamide 100 mg/kg IP at D1 and D22 3.  
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2. Chemotherapy-B: Etoposide-Cisplatin  

a. Etoposide 12 mg/kg IP at D1, D2, D3 (cycle 1) and D22, D23, D24 (cycle 2)  

b. Cisplatin 6 mg/kg IP at D1 and D22 2.  

3. Targeted agents were administered orally 5/7 days from D1 to D42. Depending on the 

PDX model, mice received:  

a. IC-pPDX-17: Ribociclib 75 mg/kg  

b. IC-pPDX-75: Lorlatinib 10 mg/kg  

c. IC-pPDX-109: Trametinib 0.4 mg/kg from D1 to D5 and 0.2 mg/kg from D8 to 

D42  

d. GR-NB4: Lorlatinib 10 mg/kg 

e. GR-NB10: Trametinib 0.4 mg/kg from D1 to D5 and 0.2 mg/kg from D8 to D42  

f. HSJD-NB-005 (ARID1A mutation): Tazemetostat 100 mg/kg 

4. Chemotherapy-A + Targeted agent  

5. Chemotherapy-B + Targeted agent  

6. Control group 

 

3.1.1.6.1.3 In vivo treatment efficacy 

 

The efficacy of the different treatments tested was studied in the different PDX models used for 

the study of clonal evolution. 

Determination of the treatment efficacy Some concepts are described here for the analysis of the 

treatment efficacy, such as relative tumor volume, tumor growth inhibition, overall response rate. 

Statistical significance of differences observed between the individual RTVs corresponding to the 

treated mice and control groups was calculated by the two-tailed Student's t test (Némati et al. 

2010). 

3.1.1.6.1.4 Tumor Growth Inhibition (TGI) determination 

 

• Tumor volume (V) was measured as V = a × b x b/2, where a and b are the largest and 

smallest perpendicular tumor diameters, respectively.  

• Relative tumor volume (RTV) is calculated as RTV = (Vx/V1), where Vx is the tumor 

volume on day x and V1 is the tumor volume at initiation of therapy (day 1).  

• Growth curves were obtained by plotting the mean values of RTV on the Y-axis against 

time.  

TGI (%) = 1 – (RTVt/RTVc)  
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where RTVt is the relative tumor volume of the treated mouse and RTVc the 

median of RTV of the corresponding control group at a time corresponding to the 

end of treatment. Fifty percent TGI was the limit for a meaningful biological 

effect. 

 

 

 

3.1.1.6.1.5 Overall response rate (ORR) determination 

 

• The objective is to evaluate the response to treatment according to individual mouse 

variability. 

ORR = [(RTVV) – 1] 

• The relative tumor volume variation (RTVV) of each treated mouse is calculated as 

RTVV = [(RTVt/RTVc) – 1] 

• A tumor was considered as responding to therapy when the ORR was lower than  

-0.5. 

 

3.1.1.6.1.6 Analysis of treatment efficacy 

 

In the study of clonal evolution, the selection of targeted therapies was tailored according to the 

unique molecular characteristics of each patient-derived xenograft (PDX) model. The effectiveness 

of these targeted therapies varied across different models. For instance, lorlatinib demonstrated a 

high tumor growth inhibition (TGI) rate of 91% in the ALK-amplified model GR-NB4, but it 

showed no significant efficacy (TGI of only 28%) in the ALK F1174L mutated IC-pPDX-75 model. 

In the case of trametinib, a considerable antitumor effect was observed in the HRAS mutated IC-
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pPDX-109 model, marked by a TGI of 60%. However, this efficacy was not replicated in the GR-

NB10 model, which harbored an NF1 mutation accompanied by loss of heterozygosity (LOH), 

where it only achieved a TGI of 49%. Additionally, ribociclib, a CDK4 inhibitor, was notably 

effective against the CDK4-amplified IC-pPDX-17 model, achieving a TGI of 61%.  

In the study of high-risk neuroblastoma, the efficacy of chemotherapies varied across different 

patient-derived xenograft (PDX) models. Etoposide-cisplatin demonstrated high efficiency in 

models GR-NB4 and IC-pPDX-109, with tumor growth inhibition (TGI) rates of 93.7% and 67%, 

respectively. Similarly, doxorubicin-cyclophosphamide was effective against models IC-pPDX-17 

and GR-NB4, achieving TGIs of 70% and 76%, respectively. 

Moreover, the combination of targeted therapy with chemotherapy resulted in a significantly 

greater efficiency compared to chemotherapy alone in certain models. For example, in the GR-

NB4 model, the addition of lorlatinib to both etoposide-cisplatin and doxorubicin-

cyclophosphamide chemotherapies enhanced their effectiveness. In the GR-NB10 model, the 

combination of trametinib with doxorubicin-cyclophosphamide proved more effective. Similarly, 

in the IC-pPDX-109 model, adding lorlatinib to doxorubicin-cyclophosphamide showed increased 

efficacy. However, in the IC-pPDX-17 and IC-pPDX-75 models, the addition of targeted therapies 

(ribociclib and lorlatinib, respectively) did not significantly improve the efficacy of either of the 

two chemotherapy regimens.  

Table 3.1.1.6.4. Tumor Growth Inhibition Efficacy Across Various PDX Models Under Distinct Treatment 
Regimens. 

HR-NB PDX 

Models 

Days of 

analysis 

Targeted 

therapy 

Doxorubicin-

Cyclophosphamide 

(Chemotherapy-A) 

Etoposide-

Cisplatin 

(Chemotherapy-B) 

Targeted 

therapy + 

Chemotherapy-

A 

Targeted 

therapy + 

Chemotherapy-

B 

 

IC-pPDX-17 16 Ribociclib       61 70 43 78 73  

IC-pPDX-75 25 Lorlatinib       28 35 39 62 62  

IC-pPDX-109 37 Trametinib     61 47 67 63 78  

GR-NB4 22 Lorlatinib       91 76 93.7 98 99.9  

HSJD-NB-005 15 Tazemetostat  22 71 48 86 55  

GR-NB10 15 Trametinib     49 58 53 79 75  

TGI activity values in percentage (%) 
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3.2 Part B: Further analysis of genetic heterogeneity in 
neuroblastoma 

 

3.2.1 Paper I: Study of chromatin remodeling genes implicates SMARCA4 as 
a putative player in oncogenesis in neuroblastoma 

 

3.2.1.1 Introduction 

 

It is estimated that mutations in SWI/SNF genes and other epigenetic modifier genes (EMGs) are 

present in about 20% of human cancers. In neuroblastoma (NB), the most common extracranial 

solid tumor in children, genetic alterations are primarily copy number changes, including MYCN 

amplification and segmental chromosome alterations linked to poor outcomes. Although recurrent 

genetic alterations in a few genes like ALK have been identified in NB, the extent of CRG/EMG 

alterations in this cancer type is not well-defined. The study's goal is to ascertain the frequency of 

CRGs/EMGs variations in NB patients and investigate their association with clinical outcomes. 

3.2.1.2 Materials and Methods 

 

To assess their frequency and clinical impact, paired diagnostic tumor and normal DNA from 55 

patients were whole-genome (n = 16) and/or whole-exome (n = 39) sequenced, and ultra deep 

targeted sequencing was performed (TSCA®) on 283 NB patients. We compared the frequency of 

CRG/EMG variations in NB cases to the population frequency Genome Aggregation Database 

(gnomAD). 

3.2.1.3 Results 

 

Our analysis revealed single nucleotide variations (SNVs), small insertions/deletions (InDels), or 

focal copy number alterations (CNAs) in CRGs/EMGs in 20% (56/283) of all cases. These 

variations occurred at a somatic level in 4 (7.2%) cases, at a germline level in 12 (22%) cases, and 

in remaining cases, only tumor material was available for analysis. The most frequently altered 

genes were ATRX (5%), SMARCA4 (2.5%), MLL3 (2.5%), and ARID1B (2.5%). Notably, double 

events, such as SNVs/small InDels/CNAs associated with loss of heterozygosity (LOH), were 

observed in SMARCA4 (n = 3), ATRX (n = 1), and PBRM1 (n = 1). 

Variations in SMARCA4 and ATRX were more frequent in NB cases compared to the general 

population in the gnomAD cohort (OR = 4.49, 95%CI: 1.63–9.97, p = 0.038; OR3.44, 95%CI: 

1.46–6.91, p = 0.043, respectively). Our case-control study approach suggests a significant role for 

SMARCA4 in NB oncogenesis. These findings underscore the crucial role of chromatin 
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remodeling in neuroblastoma and open new avenues for therapeutic strategies targeting these 

genetic pathways. 

In the study of NB cell lines (n=30), nine variations were detected across seven cell lines, again 

with SMARCA4, MLL2, and MLL3 being the most frequently targeted genes. Notably, in the 

CLB-Re cell line, a partial loss of the MLL2 gene was detected, confirmed by SNP6 analysis 

showing a large region of copy number loss on chromosome 12 encompassing the MLL2 gene. In 

the SKNFI cell line, a double event in SMARCA4 (SNV and LOH) was observed, leading to the 

absence of SMARCA4 expression. Conversely, SMARCA4 expression was maintained in the 

SKNSH cell line, which only had a single SNV event in this gene. 

3.2.1.4 Conclusion 

 

The study concludes that CRG/EMG variations with likely functional impact are present in 8.4% 

of NB patients. These variations correlate with poorer overall survival, suggesting more aggressive 

disease or differential responses to salvage treatments. Future research should focus on correlations 

between CRG/EMG variations and other genetic factors linked to poor NB outcomes. Finally, the 

findings support exploring treatment strategies involving chromatin remodeling processes, such as 

histone deacetylase inhibitors (HDACi) or DNA methyltransferase inhibitors, especially for 

patients with high-risk NB and CRG/EMG variations. 

Recently Coorens et al. showed in one NB patient, inherited two pathogenic variants: a truncating 

missense variant in SMARCA4 from the father and a truncating frameshift CHEK2 variant from 

the mother and the tumors had parallel evolution, including distinct second hits (19p loss) in 

SMARCA4, a putative predisposition gene for neuroblastoma (Coorens et al. 2020). 

A 

 

B 
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Figure 3.2.1.4.1: Independent Origin and Convergent Parallel Evolution of Tumors in Patient 1 with SMARCA4 
mutation.  
(A) shows the phylogenetic origins of the right and left tumors in Patient 1. The patient inherited two 

pathogenic variants: a truncating missense variant in SMARCA4 from the father and a truncating frameshift 

CHEK2 variant from the mother. Branches in black depict variants (labeled a through g) in the tumors that 

were shared with blood. The numbers of substitutions are annotated above the branch, and insertions or 

deletions (indels) are annotated below the branch. (B) shows the timing of the acquisition of copy-number 

gains from somatic mutations before and after duplication. Gains of maternal chromosomes (chr) are 

indicated in red and gains of paternal chromosomes in blue. Within each branch, asterisks highlight pairs of 

rearrangements that are unlikely to have occurred at different time points (P>0.05 by the Poisson test). LOH 

denotes loss of heterozygosity. 

Another comprehensive computational meta-genomic analysis of solid tumors from 131,668 

cancer patients revealed the presence of SMARCA4 gene alterations in 9434 cases. This study 

highlighted a notable prevalence of homozygous SMARCA4 mutations, particularly in non-small 

cell lung cancer (NSCLC), where they were associated with decreased survival rates. The extensive 

dataset enabled the identification of previously uncharted hotspot missense mutations within the 

SMARCA4 helicase domain. These mutations were found to significantly impair chromatin 

remodeling activity. Intriguingly, some of these SMARCA4 missense variants demonstrated the 

ability to partially or completely compensate for the dependency on its paralog, SMARCA2. This 

finding emphasizes the necessity for meticulous patient selection based on the nature of 

SMARCA4 mutations to determine those who might benefit from therapies targeting SMARCA2 

(Fernando et al. 2020) (Jiménez et al. 2022). 
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These studies contribute significantly to our understanding of the role of SMARCA4 mutations in 

cancer and their potential implications for targeted therapy. This comprehensive analysis 

underscores the significance of CRG/EMG alterations in neuroblastoma and their potential impact 

on disease characteristics and progression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





SMARCA4 (2.5%), MLL3 (2.5%) and ARID1B (2.5%). Double events (SNVs/small InDels/CNAs associated with LOH) were

observed in SMARCA4 (n = 3), ATRX (n = 1) and PBRM1 (n = 1). Among the 60 variations, 24 (8.4%) targeted domains of

functional importance for chromatin remodeling or highly conserved domains but of unknown function. Variations in SMARCA4

and ATRX occurred more frequently in the NB as compared to the gnomAD control cohort (OR = 4.49, 95%CI: 1.63–9.97,

p = 0.038; OR 3.44, 95%CI: 1.46–6.91, p = 0.043, respectively). Cases with CRG/EMG variations showed a poorer overall

survival compared to cases without variations. Genetic variations of CRGs/EMGs with likely functional impact were observed

in 8.4% (24/283) of NB. Our case–control approach suggests a role of SMARCA4 as a player of NB oncogenesis.

What’s new?

Mutations that affect chromatin remodeling can lead to cancer. In this paper, the authors investigated the impact of variations

in chromatin remodeling genes and epigenetic modifier genes on neuroblastoma patients. They compared the frequency of

these variations in NB cases with data from the Genome Aggregation Database (gnomAD). Neuroblastoma cases had a higher

frequency of SMARCA4 and ATRX gene variations than the general population. Furthermore, NB patients with CRG/EMG

mutations had poorer overall survival than NB cases without such mutations. These findings highlight the importance of

chromatin remodeling in neuroblastoma as an avenue for new therapeutics.

Introduction

Alterations in chromatin remodeling genes (CRGs) have emerged

as an important cause of cancer; in particular, the identification

of inactivating genetic alterations in the SMARCB1 gene in

rhabdoid tumors (RTs) has highlighted the involvement of the

SWI/SNF complex in tumor formation.1,2 Indeed, SWI/SNF gene

mutations and alterations in other epigenetic modifier genes

(EMGs) are thought to occur in 20% of human cancers.3

In neuroblastoma (NB), the most common extracranial solid

tumor in children, genetic alterations concern predominantly

copy number alterations, withMYCN amplification and segmen-

tal chromosome alterations associated with a poor outcome.4

Only few genes have been shown to be altered recurrently by

genetic events, including ALK.4 Genes involved in chromatin

remodeling such as ATRX, DAXX, ARID1A and ARID1B genes

have also been shown to be targeted by mutations or structural

rearrangements,5–9 but the frequency of CRG/EMG alterations

has not been described in detail in NB.

The aim of our study was to determine the frequency of

CRGs/EMGs variations in NB patients and to correlate find-

ings with clinical parameters and outcome.

Materials and Methods

Study series

The study consisted of 283 NB patients, constituting a clini-

cally representative cohort (Table 1, Supporting Information

Table S1; Supporting Information Fig. S1).

Patients were treated in French pediatric oncology centers

according to the relevant national/international protocols. Writ-

ten informed consent was obtained from parents/guardians

according to national law. Our study was authorized by the ethics

committees “Comité de Protection des Personnes Sud-Est IV”,

references L07–95/L12–171, and “Comité de Protection des

Personnes Ile de France”, reference 0811728.

In 55 patients for whom paired normal and tumor tissue

was available, whole-exome sequencing (WES)/whole-genome

sequencing (WGS) techniques were performed, whereas for 248

diagnostic tumor samples, a TruSeq® Custom Amplicon (TSCA)

approach was used. Twenty patients are common to the two sub-

sets (Supporting Information Table S1).

Furthermore, 30NB cell lines (Supporting Information Table S1)

and six germline controls from healthy donors were studied.

To analyze the frequency of CRG/EMG variations, 28 major

genes involved in chromatin remodeling processes were selected:

ACTB, ACTL6A, ACTL6B, ARID1A, ARID1B, ARID2, BCL11A,

BCL11B, BCL7A, BCL7B, BCL7C, BRD7, BRD9,DPF1,DPF2,DPF3,

PBRM1, PHF10, SMARCA2, SMARCA4, SMARCB1, SMARCC1,

SMARCC2, SMARCD1, SMARCD2, SMARCD3, SMARCE1, SS18.

Five epigenetic modifier genes, ATRX, DAXX, CHD7, MLL2

(KMT2D),MLL3 (KMT2C), were also selected based to their invol-

vement in a wide variety of humanmalignancies (Supporting Infor-

mation Table S2).

DNA extraction and aCGH analysis

DNA was extracted from diagnostic tumor samples harboring

>20% of tumor cells using standard procedures. Genomic

copy number profiles were determined by aCGH, and MYCN

copy number status was confirmed by FISH.

Whole exome/whole genome sequencing

Paired diagnostic tumor and normal DNA from 55 patients were

whole-genome (n = 16) and/or whole-exome (n = 39) sequenced

(Illumina® Hiseq2500; average coverage: 80×—100× per sample,

respectively10).WGS for eight cases has been reported previously.10

TruSeq® amplicon panel sequencing

Tumor DNA from 248 NB cases and six healthy donor germline

DNA samples (negative controls) were analyzed using a TSCA®

2782 Genetic study of chromatin remodeling genes in neuroblastoma
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panel approach covering 33 CRGs/EMGs, (average coverage

>1,500×; TSCA®v1.5, Illumina Inc., San Diego, CA; Supporting

Information Table S2).

Bioinformatics analysis

Bioinformatics approaches depended on the genetic alteration

(single nucleotide variations [SNVs]), small or large InDels;

focal or extended copy number alterations (CNAs) and the

sequencing technique.

Whole-exome and whole-genome sequencing analyses

TheWGS/WES sequencing raw reads were mapped to the reference

human genome using BWA (assembly GRCh37/hg19)11,12 followed

by analysis of the exons of the 33 CRGs/EMGs (Supporting Infor-

mation Table S2).

SNVs/InDels <30 bp were called using GATK’s Haplotype-

Caller v3.5 algorithm.12,13 The Manta tool (1.0.3) was used to

detect structural variations and large InDels.14 All SNVs/small

InDels with a VAF >20%were retained.

Tumor copy number profiles were calculated with FREEC

(0.9) using constitutional DNA as reference,15–17 with annota-

tions of CRGs/EMGs to highlight focal variations.18

Genetic variations were termed “somatic” if no evidence of

these variations was observed in the constitutional reads.

TSCA® analysis

TheTSCA® sequencing reads weremapped to the reference human

genome with Bowtie.19 To prevent strand or coverage bias due to

noncomplete overlap of forward (FW) and reverse (RV) reads of

amplicons, the bam files were split to FW and RV read bam(s).

An adapted approach was developed to enable variant call-

ing in TSCA® data.20

For SNVs, coverage analysis was performed at each base

position (GATK DepthOfCoverage). The background of noise

(variability) of each amplicon was then analyzed in the six

negative controls.

All possible variants (e.g., ref = A; A > T, A > C, A > G, A > -)

and their alternative allele fraction (AF) were calculated for each

position, and Fisher’s exact two-sided tests with a Bonferroni cor-

rection were performed to compare percentages of variant allele

fraction (VAF) for a given base between a case and the negative

controls. Significant variations were filtered-in in case of an increase

in the percentage of variant base (5% significance level). Only posi-

tions with total depth of coverage higher than 100×were considered

for variant analysis. All SNVs/small InDels with a VAF >5% were

retained.

Recurrent variants and variants with VAF >20% detected

in more than two samples were filtered-out as they most likely

indicate polymorphisms. Finally, FW and RV results were

confronted and ambiguous cases were filtered-out.

Amplicon InDels Hunter tool was used to detect large

InDels.21 Recurrent InDels detected in more than two samples

were filtered-out.

For focal CNAs, the depth of coverage of targeted regions was

calculated for FW and RV bams (GATK DepthOfCoverage). For

each sample, the coverage of each amplicon was normalized by

the median of sample depth followed by comparison to negative

controls. The FW and RV normalized data were then merged to

reconstruct copy number profiles. The copy number profile

obtained from TSCA data using our in-house developed pipeline

was also confirmed by another technique ONCOCNV, a method

that includes a multifactor normalization with respect to library

size, CG-content and target length to detection of large copy

number changes from amplicon deep sequencing data.22

Finally, the list of SNVs and InDels was manually curated

and visually inspected in IGV (Integrated Genome Viewer).23

Variant annotation, prioritization and classification

All SNVs/InDels were annotated using SnpEff/SnpSift.24 Annota-

tion was performed using canonical transcripts and publicly avail-

able databases dbSNPv150,25 gnomADv2.0.2 (http://gnomad.broad

institute.org/),26 COSMICv74,27 ClinVar(25-02-2018),28 dbNSF

Pv2.9.318 and known cancer Hotspots.29 Loss of function (LoF)

assessment was performed using the snpEff tool. SNVs/InDels were

discarded as benign/likely benign/polymorphic based on population

minor allele frequency (popmax) ≥0.1% from gnomAD database.

However, SNVs/inDels reported as pathogenic/likely pathogenic

in ClinVar were retained. In addition to COSMIC annotations, six

prediction algorithms VEST3,30 MetaSVM,31 REVEL,32 Mutation

Taster,33 M_CAP34 and CADD35 were used to classify all likely

protein-altering SNVs/InDels (frameshift, nonsense, splice dono-

r/acceptor, nonsynonymous and in-frame insertions/deletions) as

pathogenic, likely pathogenic. The flowchart of variant classification

is indicated in Supporting Information Figure S4A and the predic-

tion score thresholds in Supporting Information Figure S4B.

SNVs/small InDels validation

All retained SNVs/small InDels with VAF >20% were con-

firmed by Sanger sequencing. SNVs with VAF <20% were vali-

dated by NGS/targeted sequencing in an independent second

experiment.36

Comparison of CRG/EMG variation frequencies between NB

and gnomAD reference cohort

We compared the CRG/EMG variation frequencies from the NB

cohort (Supporting Information Table S3) with those reported in

a large unrelated population (gnomAD database; n = ~123,000).

The gnomAD VCF file was intersected with the CRG/EMG

TSCA® panel bed file and the corresponding subset of variants

from gnomAD were extracted. Using the same approach as in the

NB cohort, SNVs/InDels from gnomADwere annotated/classified

into pathogenic/likely pathogenic and their frequency was calcu-

lated by dividing the sum of the allele count by the median of total

alleles. To compare the frequencies of CRG/EMG variations in the

NB vs. the control cohort, for each gene an Odds Ratios was calcu-

lated: OR = (NB cases with pathogenic/likely pathogenic variant/

cases without pathogenic or likely pathogenic variant)/(gnomAD
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control with pathogenic or likely pathogenic variant/gnomAD

control without pathogenic or likely pathogenic variant) along

with 95% confidence intervals. p-Value and OR were obtained

using two-sided Fisher’s test performed in R.37

Statistical analysis

Correlation analyses using chi-squared test was done with

MedCalc (Medical Calculator 13.3.0.0). Progression-free survival

(PFS) and overall survival (OS) were estimated using the Kaplan–

Meier method, and comparisons weremade using log-rank tests.

Western blot

Immunoblots were done as reported previously using monoclo-

nal rabbit SMARCA4/BRG1 (EPR3912, #GTX62750, Genetex,

Irvine, CA) and HRP-conjugated GAPDH (#HRP-60004, Pro-

teinTech, Rosemont, IL) antibodies.

Results

Genetic variations of CRGs/EMGs detected in 283 NB

patients and in 30 NB cell lines

In a cohort of 283 patients studied by WGS/WES (n = 35) or by

TSCA® (n = 228), or both (n = 20), pathogenic/likely pathogenic

genetic variations (focal CNAs, InDels, SNVs) in at least one

CRG/EMG were identified in 56/283 cases (20%). Altogether

60 pathogenic/likely pathogenic genetic variations were identified

(Table 1, Fig. 1 and Supporting Information Table S3). The most

frequently altered genes were ATRX, SMARCA4, MLL3 and

ARID1B.

ATRX was targeted by focal CNAs, small InDels and SNVs in

6, 2 and 6 cases, respectively (Supporting Information Table S3

and Fig. 1). SMARCA4was altered by 6 SNVs/InDel, 1 focal CNA

and 1 large deletion. MLL3 was targeted by SNVs in seven cases

(Supporting Information Table S3, Fig. 1). ARID1A and ARID1B

genes were altered in altogether 10/283 (3.5%) cases, with two

SNVs and one InDel inARID1A and five inDels and two SNVs in

ARID1B.9

Variations in two different CRGs/EMGs were observed in

three cases (Supporting Information Table S3, in bold; Fig. 1),

targetingMLL3 and ATRX,MLL3 and ARID1B, and PBRM1 and

ATRX, respectively.

Double events encompassing both SNV/small InDels, focal

CNAs and additional LOH/copy number loss of the same gene

were observed in six cases (Fig. 1). The SMARCA4 gene was

targeted by double events in three cases (NBSW80, NBSW251

and NBSW77) with either a SNV and/or InDel (3 bp) in the pres-

ence of only 1 copy of the SMARCA4 gene, corresponding to focal

deletions (Figs. 2a and 2b).

Case NBSW165 showed a loss of one copy and a focal CNA

covering a region from EX2 to EX9 of the second copy of ATRX

(Fig. 1; Supporting Information Table S3). A copy number loss

involving the PBRM1 gene is observed in case NBSW23; a

somatic SNV is also observed in the same gene (Fig. 1).

In another patient (NBSW26) presenting with speech delay,

attention deficit and hyperactivity disorder as well as an adrenal

stage INSS stage 1, INRG L1 NB diagnosed at 4 years of age, a

germline deletion of 1.7 Mb at chromosome band 19p13.2

(chr19:10462524–12157782) was detected (Supporting Informa-

tion Fig. S2). The germline deleted region encompassing among

others the SMARCA4 gene was confirmed by aCGH on periph-

eral blood lymphocytes (Supporting Information Table S2).

Targeted TSCA® sequencing of the 33 CRGs/EMGs was per-

formed in 30 NB cell lines (Supporting Information Table S1).

Nine variations were detected in seven NB cell lines (Table 1,

Supporting Information Table S3, Fig. 1), most frequently

targeting SMARCA4 (3 cases),MLL2 (2 cases) andMLL3 (2 cases)

(Fig. 1, Supporting Information Table S3).

Interestingly, a genetic event consisting of partial loss of the

MLL2 gene was detected in the NB cell line CLB-Re (Fig. 3a).

SNP6 analysis in the same NB cell line revealed a large region of

copy number loss in chr12 encompassing the MLL2 gene at the

position chr12:49449107–58196639, confirming the observation

obtained by TSCA sequencing (Fig. 3b).

In the SKNFI cell line, a double event (SNV and LOH) was

observed in SMARCA4 (Figs. 4a and 4b). The absence of expres-

sion of SMARCA4 was confirmed by expression analysis and

western blot. On the other hand, expression of SMARCA4 was

maintained in the SKNSH cell line which harbors a single SNV

event in this gene (Figs. 4c and 4d).

Germline vs. somatic occurrence of variations

Altogether, among the 60 pathogenic/likely pathogenic CRG/

EMG variations, the variation occurred at a somatic level in five

cases, targeting ATRX, PBRM1 orMLL3, whereas a germline var-

iation could be confirmed in 13 other cases, targeting ARID1B,

MLL3,MLL2,ATRX,ARID1A and SMARCA4 (Supporting Infor-

mation Table S3; Fig. 1). For the remaining 42 variations detected

in tumor samples without paired germline material available, a

distinction between germline and somatic variation could not

bemade.

We then compared the frequencies of pathogenic/likely path-

ogenic SNVs/inDels of the 33 studied CRGs/EMGs in the NB

cohort to those observed in gnomAD as a control cohort. The

analysis revealed a significantly higher frequency of variations

(p < 0.05 after Bonferroni correction) in two CRGs, SMARCA4

(OR 4.49, 95% CI: 1.63–9.97, p = 0.038) and ATRX (OR 3.44,

95% CI: 1.46–6.91, p = 0.043) in NB cases when compared to

gnomAD, independent of whether the observed SNVs were

of known germline, somatic or unknown origin, indicating an

enrichment for variations in the genes SMARCA4 and ATRX in

NB cases. All other CRGs/EMGs included in our study were not

altered with a higher frequency than in the general population

(Supporting Information Table S4).

Potential functional impact

The potential functional impact of the observed variations was

analyzed in silico. For a given variation, within the studied gene,

the localization of the amino acid change was studied with regards
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to domains of functional importance for chromatin remodeling or

highly conserved domains but with unknown function.

Among the 30 variations detected in CRGs, 12 variations were

localized in these domains (9 SNVs, 1 focal CNA, 1 InDel and

1 large inDel; Supporting Information Table S3). Their position

was then analyzed with regards to protein-specific domains

(DNA binding, bromodomain, histone binding, protein–protein

interaction domains). In the SMARCA4 gene, four identified vari-

ations mapped to these functional domains (Fig. 4d), including

three missense point mutations in the ATPase domain of

SMARCA4 gene (Fig. 4d).

Among the 30 variations observed in EMGs, 12 variations

were localized in domains of functional importance (10 SNVs,

1 focal CNA, 1 InDel; Supporting Information Table S3).

Overall, among all 60 variations observed in CRGs/EMGs,

24 mapped to domains of functional importance at a protein

level (Supporting Information Table S3).

Correlation of CRGs/EMGs variations with clinical

parameters

There were no statistically significant correlations between the

presence of a CRG/EMG variation and the main clinical prognos-

tic parameters of NB (data not shown). Furthermore, among

patients whose tumors were analyzed byWGS (n = 8),10 the pres-

ence of CRG/EMG variations, was not associated with an overall

increase in the tumormutational burden (data not shown).

A statistically significant poorer overall survival was observed

for patients whose tumors harbored CRG/EMB variations in the

overall cohort (Supporting Information Fig. S3A). However,

there was no statistically significant difference of overall survival

between the two patient groups in patient subgroups defined by

age, stage or MYCN status, nor among all high-risk patients only

(n = 124; Supporting Information Fig. S3C). Furthermore, no sta-

tistically significant difference in PFS was observed (Supporting

Information Fig. S3B).

Discussion

Recent reports have highlighted chromatin remodeling as an

important player in oncogenesis, with the main mechanisms of

action consisting in tumor suppression, but variations in CRG/

EMGsmight also play a role in oncogenesis via gain of function.38,39

Figure 1. Genetic variations in chromatin remodeling and epigenetic

modifier genes across a series of 283 NB patients and 30 NB cell

lines analyzed by TSCA and/or WGS/WES approaches. In the lower

part of the figure, genes found to be altered (n = 14) are arranged in

rows; cases for whom a genetic variation is detected in the studied

genes (n = 56) are arranged in columns, respectively. The 60 SNVs,

InDels, and focal CNAs detected in the 56 cases are represented by

colored cases. Double events (SNV/inDels and LOH) are represented

by colored cases surrounded by a black square. In the lower part of

the graph, the 9 SNVs, InDels and CNAs detected in 7 NB cell lines

are represented. The overall frequencies are indicated in the upper

half of the figure. Nonsynonymous SNVs are represented in green,

stop-gain SNVs are represented in red, InDels are represented in

blue, focal CNA in purple and large deletions in brown. The right

data grid summarizes clinical information of each neuroblastoma

sample.
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CRG alterations have previously been identified in NB patients,

targetingARIDs,ATRX,DAXX or SMARCA4.7–9,40,41

Our study now focused on the genetic status of 33 CRGs/EMGs

in tumor samples of 283 NB patients. Altogether, CRG/EMG varia-

tions (focal CNA, InDels, SNVs) were identified in 56 cases (20%),

mapping to CRG/EMG functional domains in 8.4% (24/283) of

cases and most frequently targeting ATRX, SMARCA4, MLL3 and

ARID1B. Other CRGs and many more EMGs, not covered by the

panel used in this targeted analysis, exist throughout the genome,42

and thus it is possible that variations targeting other CRG/EMGs

not taken into account in our study might also be present in the

analyzed samples.

In NB, ATRX alterations have been associated with activated

alternative lengthening of telomere (ALT).8 In our study, 5%

(14/283) of cases showed an ATRX variation (SNV/InDel or focal

CNA). Further studies will be required to establish the role of

these variations on patient survival.

The MLL3 gene is rarely altered in NB, with two MLL3

variations (A293V and P309L) reported outside of annotated

protein domains.43 In our cohort, seven missense SNVs were

detected, four of them within MLL3 functional domains.

Alterations in ARID1A/ARID1B have been described in 11%

of NB patients,9with the presence of variations in a single allele of

ARID1A/ARID1B possibly corresponding to a dominant tumor

suppressor.41 Ten cases showed ARID1A/ARID1B variations,

with two SNV/inDels occurring in functional domains.

Altogether, among the 56 cases with CRG/EMG variations,

four patients harbored somatic and 12 showed germline varia-

tions. For the remaining 40 cases, due to the absence of paired

germline DNA, it could not be established whether the observed

variations were somatic or might concern private constitutional

polymorphisms. Yet constitutional variations of potential func-

tional impact might also be of oncogenic importance.

Indeed, germline events in CRGs such as SMARCB1, SMARCA4

or SMARCE1 have been described as predisposition syndromes for

other cancer types, including RT.1 In our series, germline events in

CRGs/EMGs were observed in 23.6% (13/55) of patients with avail-

able germlinematerial.

In RT, the recurrent germline loss of one SMARCB1 allele

followed by somatic loss of the second allele indicates a classic

tumor suppressor, with loss of critical subunits of SWI/SNF.2Given

the possible suppressor behavior of CRG/EMGs, we searched for

Figure 2. Example of double event detection (SNV and copy number loss in SMARCA4 gene) by TSCA and aCGH data analysis in NBSW80. (a) The IGV

profile from TSCA analysis revealed the presence of one SNV in SMARCA4 (C>T; chr19: 11132500) gene with variant allele fraction of 87%. (b) The

comparison between the copy number profiles obtained by TSCA revealed a second event with copy number loss in the SMARCA4 gene.
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double events possibly causing loss of function, with double

events identified in 2.1% (6/283) of patients, most frequently in

SMARCA4 (3/283).

SMARCA4 has been shown to play a role in the oncogenesis of

different tumors and thus are not specific to NB. Indeed, germline

alterations in SMARCA4 conferring predisposition to SCCOHT

and RT.39,44,45 At a somatic level, missense point mutations in

SMARCA4 mapping to the ATPase domain might cause loss of

direct binding between BAF and PRC1 which could contribute to

oncogenesis or epigenetic plasticity during tumor development.46

Such SMARCA4 missense point mutations have been described

inmedulloblastoma.47,48

In our study, 5/8 SMARCA4 variations concerned missense

point mutations. Although it has been suggested that SMARCA4

might function as an oncogene in NB, and the overexpression of

SMARCA4 in Stage 4 NB patients is associated with poorer

outcomes,49 the functional impact of genetic variations can be

difficult to determine without in-depth functional studies which

are beyond the scope of this article.

Even though the somatic or germline origin of SMARCA4 varia-

tions in our study remained undetermined, our data suggest that

variations in SMARCA4might play a role in the oncogenesis of NB,

and several arguments now underline its role. First, we describe a

case of NB within the context of a germline deletion encompassing

SMARCA4. Second, our findings highlight a significantly higher fre-

quency of variations in SMARCA4 in NB cases when compared to

the gnomAD reference population. Third, we identified four NB

cases showing double events targeting SMARCA4. In addition, a

double event (stop-gain variation and LOH) of SMARCA4 was

observed in the SKNFI NB cell line causing the absence of

SMARCA4 expression.

Further functional studies are needed for a deeper under-

standing of SMARCA4 variations in NB in order to guide the

development of more effective therapies.

Figure 3. Partial loss event detected in MLL2 gene in CLB-Re NB cell line. (a) The copy number profile obtained by TSCA shows the presence

of a partial loss starting in MLL2 gene. (b) SNP6.0 array-based copy number encompassing the Chromosome 12 confirms the presence of a

large loss with a breakpoint within the MLL2 gene.
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Altogether, our data demonstrate CRG/EMG variations

with likely functional impact in 8.4% (24/283) of all NB

patients.

Although no difference in PFS between cases with or without

CRG/EMG variations was observed, a poorer overall survival in

cases harboring CRG/EMG variations was observed. This suggests

Figure 4. Example of double event (LOH and SNV in SMARCA4 gene) in SKNFI NB cell line. (a) The IGV profile from TSCA ampliseq analysis revealed the

presence of one SNV in SMARCA4 gene (C>T; Chr19: 11170813) with variant allele fraction of 99%. (b) The copy number profile obtained by TSCA shows

the presence of a second event with copy number loss in the same gene. (c) Immunoblot of SMARCA4 expression in different neuroblastoma and

nonneuroblastoma cell lines. BIN67: Small cell carcinoma of the ovary of hypercalcemic type; A549: lung carcinoma; SKNSH, SKNFI, SKNBE(2C), IMR32

and TGW: neuroblastoma. (d) SNVs, inDels and focal CNAs identified in SMARCA4 genemapping functional domains in patients enrolled in the study.
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that cases harboring CRG/EMG variations might present more

aggressive disease or that salvage treatment used at relapse might

potentially be more efficient in cases showing no CRG/EMG varia-

tion. Correlations between the presence of variations in CRG/EMG

and other genetic factors associated with poor outcome in NB

should be determined in future studies and larger series, such as

the overall mutational burden50 or factors contributing to a

mechanistical classification of NB including mutations of the RAS:

MAPK pathway and telomeremaintenancemechanisms.51

New treatment strategies are necessary for patients with

high-risk NB, and our data further highlight the potential inter-

est of drugs modulating chromatin remodeling processes. His-

tone deacetylase inhibitors (HDACi) or DNA methyltransferase

inhibitors were the first epigenetic compounds to reach clinical

trials with potential benefits in some patients with CRG/EMG

variations.52 Further preclinical development of therapeutic

approaches involving CRGs/EMGs and in particular SMARCA4

will be warranted.
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3.2.2 Paper II: Impact of ALK Amplifications and Mutations in the European 
Neuroblastoma Study Group (SIOPEN) High-Risk Neuroblastoma Trial 
(HR-NBL1) 

 

3.2.2.1 Introduction 

 

The study focused on high-risk neuroblastoma (HR-NB), a particularly challenging childhood 

cancer to treat effectively. The primary objective was to determine if the frequency of ALK 

(anaplastic lymphoma kinase) alterations, either amplifications (> 10 copies) or single nucleotide 

variants (SNVs), in a large cohort of HR-NB patients and to correlate ALK alterations with 

outcome in patients undergoing treatment as part of the European high-risk neuroblastoma (HR-

NBL1) /SIOPEN trial. 

3.2.2.2 Materials and Methods 

 

Diagnostic tumor samples from 1,092 HR-NBL1/SIOPEN patients were analyzed to determine the 

status of ALK amplification (ALKa) and ALK mutational profile. The study included 330 cases for 

ALKa determination, 191 for ALK mutational profiling, and 571 for both alterations. 

3.2.2.3 Results 

 

Ultra deep targeted sequencing techniques resulted in a higher detection rate of ALK mutations. 

These ALK activating mutations in neuroblastoma predominantly occur within the kinase domain. 

The hotspots for these mutations are primarily located at three key positions: F1174, R1275, and 

F1245. The frequency of these mutations varies within the tumor population, as they can occur at 

different levels of mutation allele fraction (MAF). The mutations are categorized as either clonal 

or subclonal based on their prevalence within the tumor cells: 

Clonal Mutations: These are defined as mutations with a MAF of more than 20%. In this case, a 

significant proportion of the tumor cells carry the mutation, suggesting that these mutations are 

dominant within the tumor population and likely play a significant role in tumor development and 

progression. Clonal ALK mutations (n5 = 65) 33% [95% CI, 21 to 44] were associated with poorer 

patient outcomes and held independent prognostic significance (see Figure 3.2.2.3.1). 

Subclonal Mutations: In this study, subclonal ALK mutations defined by a Mutated Allele Fraction 

(MAF) of less than 20%, to account for contamination with normal tissue, were (n5=22) 48% [95% 

CI, 26 to 67] cases observed and suggest their presence in a minor subset of tumor cells, reflecting 

a lower prevalence within the tumor. Subclonal events, did not demonstrate a similar impact on 

prognosis (see Figure 3.2.2.3.1). These subclonal events accounted for 28% of all ALK mutations, 
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with a very low MAF (less than 5%) in some cases. The MAF cutoff, was defined at > 20%givent 

hat tumor cell content was considered at > 50% in all cases., ideally the MAF should consider 

factors like copy number variation and tumor purity for accurate assessment of clonality which 

enables accurate calculation of CCF. The low MAF observed is indicative of intratumoral 

heterogeneity, which has been previously reported for MYCN amplification (MNA) and segmental 

chromosome alterations in NB (Theissen et al. 2009) (López-Carrasco et al. 2021). These subclonal 

mutations likely emerge later during tumor progression or represent minor tumor cell populations 

with such pathogenic mutations that remain dormant until selective pressures favor their expansion. 

This phenomenon is evident in neuroblastoma where subclonal ALK mutations detected at 

diagnosis can undergo clonal expansion, contributing to relapse (Schleiermacher et al. 2014) 

(Eleveld et al. 2015).  

 

 

Figure 3.2.2.3.2: OS according to the type of ALK alteration in the cohort of 571 patients with known ALK 
amplification and ALK mutation status  

 

3.2.2.4 Conclusion 

 

Genetic alterations in ALK, specifically clonal mutations and amplifications, are independent 

predictors of poorer survival in HR-NB. These findings provide a strong rationale for integrating 

ALK inhibitors into the upfront treatment of HR-NB patients with ALK alterations, potentially 

improving outcomes for this high-risk group. 

Figure 3.2.2.3.1 

OS according to the type of ALK 
alteration in the cohort of 571 patients 
with known ALK amplification and 
ALK mutation status: no alteration (n 5 
465), 5-year OS 51% (95% CI, 46 to 
55); clonal mutations (n 5 65), 5-year OS 
33% (95% CI, 21 to 44); subclonal 
mutations (n 5 12), 5-year OS 48% (95% 
CI, 26 to 67); and ALK amplification (n 
5 19), 5-year OS 26% (95% CI, 10 to 
47), respectively; P 5 .001. 





rapid tumor growth.9 Other copy-number alterations occur

over more extensive chromosome regions, with segmental

chromosome alterations being associated with a poor

outcome.10 Recurrent mutations have been described in

the RAS-MAPK pathway, chromatin remodeling genes

(ATRX and ARID1A), and TERT rearrangements.11-14

Activating anaplastic lymphoma kinase (ALK) mutations

are the most frequent mutations in NB, occurring in both

familial and sporadic cases, with somatically acquired ALK

mutations (ALKm) observed in 6%-12% of sporadic NBs in

all risk groups.15-18

These ALK activating mutations are localized most fre-

quently within the kinase domain at hotspots identified at

the F1174, R1275, and F1245 positions, with mutations

occurring both at clonal (. 20% mutated allele fraction

[MAF]) or subclonal levels (, 20% MAF).19-23

ALK can also be activated by genomic focal amplification,

described in 1%-2%ofNBs, almost exclusively withMNA,17,24

or, more rarely, following structural rearrangements.25 Ge-

netic alterations of ALK are associated with poorer survival

in the overall NB population.24,26 However, their prognostic

role in HR-NB has been less well studied.10,17,24 Altogether,

ALK alterations are an important molecular target, given

the role of ALK as a driver oncogene in NB and its ac-

tionability with small molecule therapies.27-29

To determine the frequency of ALK alterations (mutations

and amplifications), their correlation with clinical charac-

teristics, and their prognostic impact in HR-NB, we ana-

lyzed a large series of 1,092 diagnostic NB samples from

patients on the HR-NBL1/SIOPEN trial.

MATERIALS AND METHODS

Patients and Samples

Patients were treated within the HR-NBL1/SIOPEN Pro-

tocol (ClinicalTrials.gov: NCT01704716, EudraCT: 2006-

001489-17; Protocol [online only]), an international, ran-

domized, multiarm, open-label, phase III trial.2-5,30,31 Pa-

tients with International Neuroblastoma Staging System

stages 2, 3, 4, or 4S with MNA, or International Neuroblas-

toma Staging System stage 4 without MNA $ 12 months of

age at diagnosis were eligible for the trial up to 20 years of age.

Within the trial, several randomized treatment arms were

conducted over different periods (Appendix Fig A1, online

only). Induction random assignments included the fol-

lowing: R0—random assignment of prophylactic gran-

ulocyte colony-stimulating factor during rapid COJEC

induction31; R3—comparison of two induction regimens,

rapid-COJEC versus modified N7.32 HDC was evaluated in

the R1 random assignment: busulfan or melphalan versus

carboplatin or etoposide or melphalan.3 Anti-GD2 immu-

notherapy random assignments duringmaintenance phase

were explored in R2 (2009-2013) and R4 (2014-2017),

both comparing dinutuximab beta with oral isotretinoin to

dinutuximab beta and subcutaneous interleukin-2 with oral

isotretinoin, but with altered schedules.5,30 In the interim,

dinutuximab beta with oral isotretinoin was the recom-

mended standard.

Patients were enrolled on the HR-NBL1/SIOPEN trial after

approval by national regulatory authorities and by national,

and institutional, ethical committees or review boards in

participating countries. Parents or guardians and patients

according to age provided written informed consent for

treatment, data collection, and analysis.

The ALK analysis cohort consisted of patients for whom

a contributive tumor sample obtained at diagnosis

was available in a SIOPEN reference laboratory33 for

additional molecular analysis with available follow-up

data (Fig 1).

MYCN status and tumor genomic copy-number profiles

were determined in SIOPEN reference laboratories as

described previously.10,33-36 Samples were required to

contain at least 20% tumor cells on pathologic examination.

CONTEXT

Key Objective

High risk neuroblastoma (HR-NB) is one of the most difficult childhood cancers to cure. This study examined whether the

presence of an ALK alteration (amplification or mutation) was associated with a poor prognosis in a large patient series

treated on the prospective European high-risk neuroblastoma trial (HR-NBL1).

Knowledge Generated

We found that ALK amplification or clonal mutation was associated with inferior prognosis in patients with HR-NB and both

are independent prognostic variables on multivariate analysis. To our knowledge, this is the first study to report the highly

prognostic significance of ALK amplification in HR-NB.

Relevance

As ALK can be targeted therapeutically, this study convincingly argues for the introduction of ALK inhibitors for upfront

management of patients with HR-NB with ALK aberrations. Importantly, the prognostic significance of ALK alterations

included a subgroup of trial patients treated with the current standard of care for HR-NB including anti-GD2

immunotherapy.
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The ALK amplification (ALKa) status was evaluated using

either fluorescence in situ hybridization and/or multiplex

ligation polymerase chain reaction–dependent amplifica-

tion, array comparative genomic hybridization (aCGH),

and/or array single-nucleotide polymorphism according to

established guidelines.10,33,34,37 ALK gene amplification

was defined as more than fourfold increase of ALK signals

in relation to numbers of chromosome 2 by fluorescence

in situ hybridization, or as more than 10 copies of the gene

estimated by multiplex ligation–dependent amplification,

aCGH, or array single-nucleotide polymorphism.

The ALK mutational (ALKm) status was determined by

Sanger sequencing, next-generation sequencing (NGS)

techniques (coverage . 803), targeted deep sequencing

(TDS), or a combination of the latter techniques, covering

the ALK regions of interest (exon 23: chr2:29443647-

29443776; exon 24: chr2:29436830-29436935; exon

25: chr2:29432603-29432704; UCSC Genome Browser

Home,38 hg19) containing the ALK mutational hotspots

F1174 (exon 23), F1245 (exon 24), and R1275 (exon

25).20,22

MAF $ 20% were defined as clonal events and MAF

, 20% as subclonal events, as reported previously.20,22 No

correction for tumor cell content was undertaken when

reporting MAF. Mutations identified by Sanger sequencing

were considered clonal. All detected mutations were vali-

dated by a second independent experiment: for clonal

events, TDS data were validated by Sanger sequencing,

and for subclonal events, NGS or TDS was validated in an

independent second experiment.

Standard bioinformatics were used to detect mutations in

NGS experiments as previously reported. Mutations in TDS

experiments were determined as described previously.20,22 In

brief, to highlight mutations, in each NB sample, the fre-

quencies of each base at each position of the analyzed regions

were compared with those observed in all other samples and

controls. This approach enabled the identification of muta-

tions with a statistically significant increase in percentage of a

variant base, compared with background noise.

ALKm at F1174, F1245, and R1275

in 12.5% (n = 97 out of 762 patients),

clonala in 9.4% (n = 72 out of 762 patients),

subclonalb in 3.2% (n = 25 out of 762 patients)

ALK mutation (any) in 13.9% 

(n = 106 out of 762 patients)

Clonal in 9.9% (n = 76 out of 762 patients)

Subclonal in 3.9% (n = 30 out of 762 patients)

ALK amplification

4.5% (n = 41 out of 901 patients)

HR-NBL1/SIOPEN

Patients accrued at time of ALK project

analysis with FU (N = 3,334)

ALK Analysis Cohort

Patients with diagnostic tumor samples with

FU available (n = 1,092)

ALK amplification

status only

(n = 330 patients)

ALK amplification

status and mutational

profile

(n = 571 patients)

ALK mutational

profile only

(n = 191 patients)

Not included from ALK participating

sites (n = 577 patients)

(no diagnostic contributive tumor sample available)

Not included from ALK nonparticipating

sites (n = 1,665 patients)

FIG 1. Flow diagram of patient inclusion. A total of 3,334 patients with HR-NBwere enrolled in the HR-NBL1

trial from 188 centers. Among these, 2,350 patients were not included in this study, either because no

contributive tumor material was available, or because these was no FU data, or both. Thus, 1,092 patients

from 132 centers were included in this study. aClonal level:. 20%MAF. bSubclonal level: MAF 0.1%-20%.

FU, follow-up; HR-NB, high-risk neuroblastoma; MAF, mutated allele fraction.
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Statistical Analysis

Event-free survival (EFS) was calculated from diagnosis to

the first relapse, progressive disease, secondary malig-

nancy, or death from any cause, or until last patient contact.

Overall survival (OS) was calculated from diagnosis to death

from any cause, or until the last patient contact. EFS and OS

were estimated using the Kaplan-Meier method and

compared using the logrank test, and if indicated with

pseudo-value regression for 5-year OS.39-41 EFS and OS are

presented as 5-year point estimates together with 95% CIs

using log-log transformation.41 To adjust for established

risk-factors (age at diagnosis, stage, number of metastatic

compartments, and MYCN amplification), a Cox propor-

tional hazards regression model was used.

TABLE 1. Characteristics of Patients According to the ALK Amplification or ALK Mutation Status

Clinical Parameters

Known ALK Amplification Status (N 5 901) Known ALK Mutation Status (N 5 762)

No Yes

P

No Mutation

Clonal

Mutation

Subclonal

Mutation

Pn % n % n % n % n %

Total 860 100 41 100 656 100 76 100 30 100

Sex

Female 376 44 16 39 .553 278 42 38 50 11 37 .348

Male 484 56 25 61 378 58 38 50 19 63

Age, years

, 1 51 6 7 17 .005 38 6 5 7 0 0 .348

1-1.5 101 12 9 22 79 12 15 20 3 10

1.5-5 572 67 20 49 428 65 47 62 21 70

. 5 136 16 5 12 111 17 9 12 6 20

Stage

Loc, MNA1 83 10 13 32 , .001 63 10 9 12 4 13 .890

Stage 4 768 89 26 63 586 89 66 87 26 87

Stage 4s, MNA1 9 1 2 5 7 1 1 1 0 0

MYCN status

MNA2 466 54 1 2 , .001 365 56 26 34 9 30 , .001

MNA1 394 46 40 98 291 44 50 66 21 70

Primary tumor site

Unknown 20 1 .362 21 1 1 .278

Abdominal adrenal6 606 72 25 63 452 71 47 63 22 76

Abdominal other6 169 20 10 25 124 20 22 29 6 21

Other only 65 8 5 13 59 9 6 8 1 3

Stage 4: MYCN status

MNA2 466 61 1 4 , .001 365 62 26 39 9 35 , .001

MNA1 302 39 25 96 221 38 40 61 17 65

Stage 4: MC

1 MC 91 12 1 4 .091 70 13 11 17 4 17 .788

2 MC 231 32 12 52 177 32 19 29 9 38

. 2 MC 411 56 10 43 302 55 35 54 11 46

Overall response: end of induction

Evaluable 804 39 607 72 28

CR or VGPR or PR 628 78 31 79 .839 472 78 53 74 24 86 .421

MR or SD or PD 176 22 8 21 135 22 19 26 4 14

NOTE. Patients studied for ALK amplifications (n 5 901) and ALK mutations (n 5 762).

Abbreviations: CR, complete response; MC, metastatic compartments; MNA, MYCN amplification; MR, minor response; PD, progressive disease; PR,

partial response; SD, stable disease; VGPR, very good partial response.
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FIG 2. Genetic alterations of ALK in patients with HR-NB. (A) Copy-number profile of case 536. Genomic coamplification of MYCN and ALK

is observed on chromosome 2, encompassing the regions between position 15,440,477 and 16,822,999 and between 29,113,790 and

30,309,749 bp (human genome assembly hg19; UCSC Genome Browser Home38). (B) Frequency distribution (continued on following page)
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Correlations between patient and disease characteristics

and ALK genetic alterations were explored using chi-square

tests.

To allow for sufficient follow-up time, only patients enrolled

until December 31, 2019, were considered. The data cutoff

for the final analysis was October 3, 2020. We calculated

median follow-up using the inverse Kaplan-Meier estimate.

Statistical analysis was performed using SAS (version 9.4).

RESULTS

Of 3,334 patients enrolled on the HR-NBL1/SIOPEN trial

between November 24, 2002, and December 31, 2019,

1,092 patients were included in the ALK analysis cohort

(Fig 1; Appendix Table A1, online only). Patients were

accrued from 132 SIOPENmember institutions or hospitals

in 19 countries (Appendix Table A2, online only). Among

these 1,092 patients, 81% (889 out of 1,092)

were . 18 months of age at diagnosis, 47% (521 out of

1,092) showed MNA, and 88% (966 out of 1,092) had

stage 4 disease, with no statistically significant difference in

EFS or OS between the ALK analysis cohort and the overall

HR-NBL1 cohort (Appendix Fig A2, online only).42 The

median follow-up period was 6.8 years (0.1-17.4 years).

ALK Alterations

Within the ALK cohort, the ALKm status was analyzed in

762 patients, the ALKa status in 901 cases, with both ALKm

and ALKa studied in 571 patients (Fig 1, Table 1).

ALK alterations were detected in 146 out of 1,092 patients

with ALKa occurring in 4.5% (41 out of 901 cases) and

ALKm in 13.9% (106 out of 762 cases). Only one case

showed ALKa and a concomitant ALK R1275Q mutation

with an MAF of 93%, suggesting that the mutated allele is

contained in the amplicon (Appendix Fig A3, online only).

ALK Amplification and Correlation With Risk Factors

High-level genomic amplification of the ALK gene was

found in 4.5% (41 out of 901) of cases (Fig 2A, Table 1). All

but one also had MNA. ALKa significantly correlated with

MNA (P, .001), non–stage 4 disease (P, .001), and age

at diagnosis , 18 months (P 5 .005). No correlation

between the presence of ALKa and response at the end of

induction treatment was observed.

A statistically significant poorer 5-year OS was observed in

patients whose tumors harbored ALKa (5-year OS: ALKa

28% [95% CI, 15 to 42] v non-ALKa 51% [95% CI, 47 to

54]; P, .0001; Fig 3A, Table 2) with a stronger prognostic

effect in patients with stage 4 or 4S MNA.

ALK Mutation and Correlation With Risk Factors

ALK mutational status was studied in 762 cases by Sanger

sequencing (n 5 163), by NGS techniques (n 5 13), or by

TDS (n 5 650, including 64 by TDS and Sanger). The

biologic data for 52 cases have been reported previously.22

Among these, 13.9% (106 out of 762) showed at least one

ALKmwithin the explored ALK regions of interest, with 10%

(76 out of 762) harboring mutations at a clonal level

(MAF. 20%) and 3.9% (30 out of 762) at a subclonal level

(MAF# 20%): nine cases—MAF 0.1% to, 1%, 10 cases

MAF 1% to, 5%, two cases MAF 5% to, 10%, and nine

cases MAF 10% to , 20% (Figs 1 and 2B; Table 1).

Concordance between results analyzed by two different

techniques was observed in 64 cases with clonal ALKm

(TDS and Sanger). Subclonal ALKm were validated by a

second independent TDS experiment, with an excellent

correlation of MAF between the two experiments

(R2 5 0.9924; P , .0001) (Appendix Fig A4, online only).

ALKm involved the common mutational hotspots (F1174,

F1245, and R1275) in 12.5% (97 out of 762) of cases,

comprising 91% (97 out of 106) of all detected ALKm (Fig

2B).

Interestingly, three cases harbored two or more distinct

mutations. In the first case, both F1174L and F1245L

mutations were observed (MAF 2% and 0.8%, respectively).

The second case showed three subclonalmutations F1174L,

R1275Q, and R1275L (MAF 2.9%, 8.9%, and 2.9%, re-

spectively). A third case harbored a mutation at the F1174

and R1275 hotspots (MAF 27% and 1.3%, respectively).

There were no statistically significant correlations between

ALKm and stage, age at diagnosis, or localization of the

primary tumor (adrenal, abdominal, or other) (Table 1).

However, a significant correlation was observed between

the presence of an ALKm and MNA (P , .001), with an

enrichment of ALKm F1174 in MNA tumors (P 5 .0005).

FIG 2. (Continued). of mutated ALK alleles at the studied chromosome regions, encompassing the AA positions F1174, L1190, L1196, R1245,

D1270, G1272, M1273, A1274, R1275, and Y1278 detected, in 762 samples. ALK mutations involved the common mutational hotspots (F1174,

F1245, and R1275) in 12.5% (97 out of 772) of cases, at a clonal level (MAF 20%-93%) in 72 cases, and at a subclonal level (MAF, 20%) in 25

cases. At the F1174 hotspot (chr2: 29,443,695-29,443,697), alterations were observed in 44 cases: 42 cases harbored a mutation leading to the AA

change F1174L, one case with F1174I, and one case with F1174S, withMAFs ranging from 0.12% to 78%. At the R1275 hotspot (chr2: 29,432,849-

29,430,139), mutations were detected in 43 cases: 38 cases harbored amutation leading to the AA changeR1275Q and five cases with R1275L, with

the MAFs ranging from 0.2% to 93%. Ten cases showed ALKmutations at the F1245 hotspot (chr2: 29,436,858-29,436,860) within exon 24. Three

samples showed the F1245L mutation, three cases carried the F1245C mutation, three showed the F1245I mutation, and one showed mutation

F1245V mutation (Fig 1 and Appendix Table A1). Other ALKmutations were detected at residues I1170, L1190 (two cases), L1196, D1270, G1272,

M1273, A1274, and Y1278 within the explored regions, leading to a nonsynonymous AA change with a predicted functional impact. All these

mutations were clonal (MAF . 20%) except for M1273I (MAF 0.2%) and I1170 (MAF 2.8%). AA, amino acid; aCGH, array comparative genomic

hybridization; bp, base pair; HR-NB, high-risk neuroblastoma; MAF, mutated allele fraction; UCSC, University of California, Santa Cruz.
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FIG 3. Survival in the ALK analysis cohort. (A) OS according to ALK amplification status in 901 patients: presence of ALK amplification (n 5 41),

5-year OS 28% (95%CI, 15 to 42) versus absence of ALK amplification (n5 860), 5-year OS 51% (95%CI, 47 to 54); P, .0001. (B) OS according

to ALK mutation status in 762 patients: presence of an ALK mutation (n 5 106), 5-year OS 41% (95% CI, 31 to 51) versus absence of an ALK

mutation (n 5 656), 5-year OS 49% (95% CI, 45 to 53); P 5 NS. (C) OS according to ALK clonal or subclonal (continued on following page)
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This was also observed when analyzing only stage 4 tumors.

No correlation between ALKm and response at the end of

induction treatment was observed.

No statistically significant difference in outcome was ob-

served between patients harboring any ALKm versus none

(Fig 3B, Table 2). However, when distinguishing clonal and

subclonal mutations, a poorer OS was observed only in

patients with clonal ALKm, as opposed to subclonal or no

mutations (5-year OS, clonal ALKm 34% [95% CI, 23 to

45], subclonal ALKm 59% [95% CI, 39 to 74], and no

ALKm49% [95% CI, 45 to 53]; P5 .018) (Fig 3C, Table 2).

Patients with metastatic disease (stage 4 or 4S MNA) and a

clonal ALKm showed a trend toward poorer OS. However, in

patients with localized disease, the presence of ALKm did

not confer poorer survival (Table 2).

Overall Prognostic Impact of ALK Genetic Alterations

To determine the overall prognostic impact of ALK genetic

alterations, we focused on the subgroup of 571 patients with

both known ALKa and ALKm status. In this subgroup of

patients, a statistically significant poorer OS was observed in

patients whose tumors harbored any ALK alteration (5-year

OS, any alteration 37% [95% CI, 29 to 45] v no alteration

51% [95% CI, 46 to 55]; P 5 .005; Fig 3D). ALKa or clonal

ALKm were associated with a poorer outcome (5-year OS,

ALKa 26% [95%CI, 10 to 47], clonalALKm33% [95%CI, 21

to 44], subclonal ALKm48% [95% CI, 26 to 67], and no ALK

alteration 51% [95%CI, 46 to 55];P5 .001; Fig 3E, Table 2).

Among the subgroup of patients with known ALK status, we

sought to determine the prognostic impact of ALK alter-

ations according to the different treatment arms of HR-

NBL1. Indeed, in the HR-NBL01/SIOPEN trial, the intro-

duction of busulfan and melphalan as standard for HDC,

and anti-GD2maintenance therapy as a new standard since

2010, has led to significantly improved survival (Appendix

Fig A5F, online only).3-5 Importantly, when considering

patients treated according to the SIOPEN standard with

busulfan and melphalan HDC and maintenance immu-

notherapy, the presence of an ALK alteration (ALKa or

clonal ALKm) remained associated with a poorer 5-year OS

of 48% (95% CI, 28 to 65), versus no ALK alteration 67%

(95% CI, 56 to 75); P 5 .03 (Fig 3F, Appendix Table A3,

online only), with a trend also observed when taking into

account all ALKm (clonal and subclonal, P 5 .059).

Based on univariate risk factor exploration of the whole ALK

analysis cohort (Appendix Fig A5), we developed a Cox model

for multivariate analysis including clinical and biologic pa-

rameters previously shown to be of prognostic impact (n5 571

patients). Involvement of two or more metastatic compart-

ments (OS: hazard ratio [HR], 2.87 [95% CI, 1.73 to 4.78];

P5 .001) and the presence of ALKa (OS: HR, 2.38 [95% CI,

1.32 to 4.27];P5 .004) and clonalALKm(OS:HR, 1.77 [95%

CI, 1.25 to 2.49]; P 5 .001) were of independent prognostic

significance, whereas MNA and age were not (Table 3).

DISCUSSION

In HR-NB, the identification of prognostic biomarkers is

crucial for the development of new treatment approaches.

Recent studies have shown that MNA is not associated with

poorer outcome among the overall cohort of patients with HR-

NB, but the presence of genomic amplifications other than

MYCNmight constitute a poor outcome biomarker.43 We now

show in this large ALK analysis cohort that the presence of

ALKa or clonal ALKm resulted in significantly worse outcome.

Given the oncogenic driver role of ALK activation, and the

prognostic impact of ALKa or clonal ALKm, the introduction

of frontline ALK-targeted treatment is now strongly supported

by the current study. Although early phase clinical trials of

first- and second-generation ALK inhibitors showed modest

efficacy of the first-generation inhibitor crizotinib in NB with

F1174 hotspot mutations being resistant,44 third-generation

ALK inhibitors such as lorlatinib exhibit improved efficacy

alone and when combined with chemotherapy.28,44-46 Cri-

zotinib is currently being administered with chemotherapy in

a phase III upfront trial for patients with HR-NB with ALK

alterations (ClinicalTrials.gov: NCT03126916).

Improvements in HR-NB patient survival have been

achieved with intensification of HDC and immunotherapy

with dinutuximab (ch14.18/Sp02 and ch14.18/CH0),3-5,7

and our results highlight the potential of ALK inhibition as

an attractive upfront precision-medicine strategy in patients

with ALK alterations to further improve survival. Importantly,

in patients reaching the maintenance treatment phase

FIG 3. (Continued). mutation status in 762 patients: no mutation (n5 656), 5-year OS 49% (95% CI, 45 to 53); clonal mutations (n5 76), 5-year

OS 34% (95% CI, 23 to 45); and subclonal mutations (n5 30), 5-year OS 59% (95% CI, 39 to 74), respectively; P5 .018. (D) OS according to the

presence of any ALK alterations in 611 patients with known ALK amplification and ALKmutation status: presence of an ALK alteration (n5 146),

5-year OS 37% (95% CI, 29 to 45); versus absence of ALK alterations (n5 465), 5-year OS 51% (95% CI, 46 to 55); P5 .005. (E) OS according to

the type of ALK alteration in the cohort of 571 patients with known ALK amplification and ALKmutation status: no alteration (n5 465), 5-year OS

51% (95% CI, 46 to 55); clonal mutations (n5 65), 5-year OS 33% (95% CI, 21 to 44); subclonal mutations (n5 12), 5-year OS 48% (95% CI, 26

to 67); and ALK amplification (n 5 19), 5-year OS 26% (95% CI, 10 to 47), respectively; P 5 .001. (F) OS according to ALK alterations (ALK

amplification or clonal ALK mutation) in patients who received immunotherapy (n 5 141): To evaluate the impact of ALK alterations (ALK

amplification or clonal ALKmutation) in patients who received dinutuximab beta, OS was calculated from the start of dinutuximab beta treatment

and evaluated using the same approaches as described in the Materials and Methods section. ALK alteration (ALK amplification or clonal ALK

mutation, n 5 29, 5-year OS 48% [95% CI, 28 to 65]) versus no ALK alteration (n 5 112) 67% (95% CI, 56 to 75); P 5 .034. Patient details:

Appendix Table A3. HR, hazard ratio; NS, not significant; OS, overall survival; ref, reference.
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TABLE 2. EFS and OS According to ALK Alterations

Parameters

OS EFS

Patients,

No.

Events,

No.

5-Year OS,

% (95% CI) HR (95% CI) P

Patients,

No.

Events,

No.

5-Year EFS,

% (95% CI) HR (95% CI) P

Total

ALKa

No 860 418 51 (47 to 54) Ref , .001 860 492 40 (36 to 43) Ref , .001

Yes 41 29 28 (15 to 42) 2.3 (1.6 to 3.4) 41 31 24 (13 to 38) 2.0 (1.4 to 2.9)

ALKm

Nonmutated 656 347 49 (45 to 53) Ref .018 656 395 38 (35 to 42) Ref .081

ALKm clonal 76 48 34 (23 to 45) 1.4 (1.1 to 2.0) 76 51 31 (21 to 42) 1.3 (1.0 to 1.7)

ALKm subclonal 30 13 59 (39 to 74) 0.7 (0.4 to 1.2) 30 16 49 (30 to 65) 0.8 (0.5 to 1.3)

Known ALK alteration

status

Nonmutated 465 241 51 (46 to 55) Ref .001 465 280 38 (33 to 43) Ref .057

ALKa 19 14 26 (10 to 47) 2.2 (1.3 to 3.8) 19 14 26 (10 to 47) 1.7 (1.0 to 2.9)

ALKm clonal 65 42 33 (21 to 44) 1.7 (1.2 to 2.3) 65 43 33 (22 to 44) 1.4 (1.0 to 1.9)

ALKm subclonal 22 12 48 (26 to 67) 1.0 (0.5 to 1.8) 22 14 39 (19 to 59) 1.0 (0.6 to 1.8)

Stage 4, 4s

ALKa

No 777 394 48 (44 to 52) Ref , .001 777 467 37 (33 to 40) Ref , .001

Yes 28 22 19 (7 to 35) 2.9 (1.8 to 4.6) . 28 23 18 (7 to 34) 2.9 (1.8 to 4.6)

ALKm

Nonmutated 593 328 47 (43 to 51) Ref .068 593 375 35 (31 to 39) Ref .216

ALKm clonal 67 43 33 (22 to 45) 1.4 (1.0 to 1.9) . 67 46 30 (19 to 41) 1.4 (1.0 to 1.9)

ALKm subclonal 26 13 52 (31 to 70) 0.8 (0.4 to 1.4) . 26 16 41 (22 to 59) 0.8 (0.4 to 1.4)

Known ALK alteration

status

Nonmutated 419 228 48 (43 to 53) Ref .000 419 266 35 (30 to 39) Ref .042

ALKa 15 12 20 (5 to 42) 2.6 (1.3 to 4.7) . 15 12 20 (5 to 42) 1.8 (1.0 to 3.4)

ALKm clonal 57 38 30 (18 to 43) 1.7 (1.2 to 2.4) . 57 39 30 (19 to 42) 1.4 (1.0 to 1.9)

ALKm subclonal 21 12 45 (23 to 65) 1.0 (0.5 to 1.8) . 21 14 36 (16 to 56) 1.0 (0.6 to 1.8)

Stage 4, MNA2

ALKa

No 466 236 49 (44 to 54) NA 466 292 33 (28 to 38) NA

Yes 1 1 NA NA 1 1 NA NA

ALKm

Nonmutated 365 202 49 (43 to 54) Ref .202 365 238 33 (28 to 38) Ref .245

ALKm clonal 26 18 28 (13 to 46) 1.5 (0.9 to 2.5) 26 20 23 (9 to 40) 1.5 (0.9 to 2.3)

ALKm subclonal 9 4 53 (18 to 80) 0.9 (0.3 to 2.3) 9 5 42 (11 to 71) 0.9 (0.4 to 2.3)

Known ALK alteration

status

Nonmutated 269 146 50 (43 to 56) Ref .010 269 174 32 (27 to 38) Ref .029

ALKa 1 1 NA NA 1 1 NA NA

ALKm clonal 20 15 22 (7 to 42) 2.1 (1.3 to 3.6) 20 16 20 (6 to 39) 1.8 (1.1 to 2.9)

ALKm subclonal 6 3 44 (7 to 78) 1.2 (0.4 to 3.7) 6 4 25 (1 to 65) 1.4 (0.5 to 3.9)

(continued on following page)
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with dinutuximab beta in the HR-NBL1/SIOPEN trial, the

presence of an ALK alteration was still associated with

poorer survival, thus strongly suggesting that integration of

ALK-targeted therapy is warranted throughout all treatment

phases of modern-era HR-NB therapy.

ALKa was observed in 4% of NB cases, accounting for

approximately 1 out of 3 of ALK-activated NB cases. To

date, co-occurrence of ALK hotspot mutations and geno-

mic amplification has rarely been reported in NB.17 In this

extensive cohort of patients, one case harboring both ALKa

and an R1275 ALKm was identified. This indicates that

these alterations are not fully mutually exclusive, although

co-occurrence is extremely rare.

ALKm were found in 13.9% of cases at the studied exonic

regions harboring known ALKmutational hotspots.17,24 This

is higher than previously reported frequencies of ALKm in

HR-NB of approximately 10%, most likely as previous

reports using Sanger sequencing or standard-resolution

NGS approaches.24,26 Sanger sensitivity is limited to the

detection of MAF . 15%-20%, but in NB, ALK mutations

with lower MAFs have been reported.14,19-21

Ultradeep sequencing used in this analysis has a sensi-

tivity limit of MAF of 0.1%.19,20 This approaches the

theoretical limit of detection based on the genomic DNA

input of 50 ng for one experiment, equivalent to 5,000

diploid genomes.

TABLE 2. EFS and OS According to ALK Alterations (continued)

Parameters

OS EFS

Patients,

No.

Events,

No.

5-Year OS,

% (95% CI) HR (95% CI) P

Patients,

No.

Events,

No.

5-Year EFS,

% (95% CI) HR (95% CI) P

Stage 4, 4s MNA1

ALKa

No 311 158 48 (42 to 54) Ref , .001 311 175 43 (37 to 48) Ref , .001

Yes 27 21 19 (7 to 36) 2.3 (1.4 to 3.7) 27 22 19 (7 to 35) 2.0 (1.3 to 3.3)

ALKm

Nonmutated 228 126 44 (38 to 51) Ref .453 228 137 40 (33 to 46) Ref .666

ALKm clonal 41 25 37 (22 to 51) 1.2 (0.8 to 1.8) 41 26 34 (20 to 49) 1.2 (0.8 to 1.8)

ALKm subclonal 17 9 52 (27 to 73) 0.8 (0.4 to 1.5) 17 11 41 (19 to 63) 0.9 (0.5 to 1.7)

Known ALK alteration

status

Nonmutated 150 82 46 (37 to 54) Ref .085 150 92 39 (31 to 47) Ref .372

ALKa 14 11 21 (5 to 45) 1.9 (1.0 to 3.7) 14 11 21 (5 to 45) 1.6 (0.8 to 3.0)

ALKm clonal 37 23 35 (20 to 51) 1.3 (0.8 to 2.1) 37 23 36 (20 to 51) 1.2 (0.7 to 1.9)

ALKm subclonal 15 9 46 (20 to 68) 0.9 (0.4 to 1.8) 15 10 40 (16 to 63) 1.0 (0.5 to 1.9)

Localized, MNA1

ALKa

No 83 24 71 (59 to 80) Ref .059 83 25 69 (57 to 78) Ref .015

Yes 13 7 46 (19 to 70) 2.2 (0.9 to 5.1) 13 8 38 (14 to 63) 2.6 (1.2 to 5.8)

ALKm

Nonmutated 63 19 70 (57 to 80) Ref .114 63 20 67 (54 to 77) Ref .098

ALKm clonal 9 5 42 (11 to 71) 2.2 (0.8 to 5.8) 9 5 42 (11 to 71) 2.2 (0.8 to 5.9)

ALKm subclonal 4 0 NA NA 4 0 NA

Known ALK alteration

status

Nonmutated 46 13 73 (57 to 83) Ref .440 46 14 68 (52 to 80) Ref .410

ALKa 4 2 50 (6 to 84) 2.0 (0.4 to 8.7) 4 2 50 (6 to 84) 1.8 (0.4 to 7.9)

ALKm clonal 8 4 50 (15 to 77) 2.1 (0.7 to 6.5) 8 4 50 (15 to 77) 2.2 (0.7 to 6.8)

ALKm subclonal 1 0 NA NA 1 0 NA

NOTE. EFS and OS in the ALK analysis cohort, according to different clinical parameters: complete summary of all risk-factor–based 5-year EFS and OS

rates in patients according to the ALK amplification status (ALKa, n5 901 patients), ALKmutational status (ALKm, n5 762 patients), or in patients for whom

both the ALKa status and ALKm status are known (known ALK alteration status, n 5 571).

Abbreviations: EFS, event-free survival; MNA, MYCN-amplified; NA, not available; OS, overall survival; ref, reference.
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This study demonstrates that use of higher-resolution tech-

niques enables a higher detection rate of ALKm. The MAF

distribution indicated amajority of clonal events (76 out of 106

cases). Importantly, clonal ALKmwere associated with poorer

outcome and were of independent prognostic significance,

but subclonal events were not. Subclonal events, defined in

this study by MAF, 20%, comprised 28% (30 out of 106) of

all ALKm, with a very low MAF (, 5%) observed in 19 cases.

However, when considering ALKm, the OS remains poor in

all patient subgroups (5-year OS , 62%). Furthermore,

although of different prognostic impact in this study, the

biomarker (ALKmutation) might not be of distinct predictive

impact, and even in patients with subclonal ALKmutations,

ALK inhibitor treatment might be effective in the targeted cell

population. Thus, future upfront trials should consider ALK-

targeted treatment based on clinically applicable reliable

detection limits (for instance MAF 5% for NGS techniques)

rather than the MAF defining prognostic subgroups.

As tumor samples harbored at least 20% tumor cells by

pathologic examination, with additional confirmation pro-

vided by a dynamic aCGH or SNPa profile in the majority of

cases, the observed low MAF is likely to correspond to

intratumoral heterogeneity. In NB, intratumor heterogeneity

has been reported for MNA and segmental chromosome

alterations.47-49 The coexistence of ALK nonmutated and

mutated cells within a single tumor suggests that these

different subclones might coexist in an advantageous

equilibrium, which might crucially affect the dynamics of

cancer progression.50,51 Correlation with pathologic findings,

single-cell RNA or DNA experiments, and in situ approaches

will elucidate how ALK-mutated cells are distributed

throughout an NB. A higher frequency of ALKm at NB re-

lapse has been demonstrated, suggesting clonal evolution of

a minor ALK-mutated subclone to a dominant ALK mutated

clone at relapse, but these cases might not represent clin-

ically unfavorable cases initially.23,52,53 Further studies fo-

cusing on serial blood samples for ctDNA studies will further

elucidate clonal evolution, also under targeted therapy.54

In HR-NB, mutations in the p53 or RAS-MAPK pathways,

including ALK, together with telomere maintenance caused

by induction of telomerase or ALT (alternative lengthening

of telomere) are thought to increase tumor aggressiveness,

resulting in even poorer survival among patients with HR-

NB.55,56 As MYCN leads to upregulation of TERT expres-

sion, MNA associated with any ALK alteration might lead to

inferior outcome. Cases with ALKa show both ALK pathway

activation and activation of telomere maintenance through

MNA, with a suggested additive effect of these genetic

events. The very poor survival of ALKa patients is con-

cordant with this observation. However, survival of patients

whose tumors harbored ALKm and MNA was not different

from those without MNA, suggesting that ALKm cases

constitute a more heterogeneous group with regards to the

mechanistic tumor classification.55

TABLE 3. Multivariate Analysis in 571 Patients With a Known ALK Amplification and ALK Mutation Status

Clinical Parameters

OS EFS

P HR 95% CL P HR 95% CL

Age, years

, 1 1.00 1.00

1-1.5 .269 0.72 0.40 to 1.30 .636 0.87 0.49 to 1.56

1.5-5 .265 0.75 0.45 to 1.24 .830 0.95 0.57 to 1.56

. 5 .662 0.88 0.50 to 1.55 .935 1.02 0.59 to 1.78

Metastatic compartments

Localized-none 1.00 1.00

1 MC .122 1.60 0.88 to 2.90 .096 1.63 0.92 to 2.88

2 MC .001 2.41 1.44 to 4.04 .001 2.38 1.44 to 3.94

. 2 MC , .0001 2.87 1.73 to 4.78 , .0001 2.88 1.76 to 4.72

MYCN amplification

MNA1 .135 1.23 0.94 to 1.62 .797 1.03 0.80 to 1.34

ALK alteration

No alteration 1.00 1.00

ALKa .004 2.38 1.32 to 4.27 .026 1.94 1.08 to 3.47

ALKm clonal .001 1.77 1.25 to 2.49 .017 1.50 1.08 to 2.10

ALKm subclonal .696 0.88 0.46 to 1.68 .934 1.02 0.58 to 1.81

Abbreviations: EFS, event-free survival; MC, metastatic compartments; MNA, MYCN-amplified; OS, overall survival.
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ALKa and ALK clonal mutation were both independent pre-

dictors of poor outcome in our multivariate Cox model. No-

tably, the end-of-induction response rate was not associated

with ALK genetic alterations, suggesting that ALK-altered tu-

mor cells are unlikely to be primarily chemotherapy resistant.

In summary, our data contribute to the rationale for fu-

ture clinical trials introducing ALK-targeted treatment in

the frontline setting together with chemotherapy and im-

munotherapy, and the distinct prognostic impact of different

ALK alterations (ALKa and ALKm) needs to be considered.
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Doutor Ricardo Jorge, Lisbon, Portugal
18Sahlgrenska University Hospital, Göteborg, Sweden
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Jeison, Tommy Martinsson, Katia Mazzocco, Martina Morini, Annick

Mühlethaler-Mottet, Rosa Noguera, Gaelle Pierron, Sabine Taschner-

Mandl, Nadine Van Roy, Louis Chesler, Victoria Castel, Martin Elliott, Per
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FIG A1. Treatment flowchart of the HR-NBL1 Protocol (ClinicalTrials.gov: NCT01704716, EudraCT: 2006-001489-17) over the whole period. aInfants

and children with a body weight below 12 kg will be dosed at 0.67mg/kg/d. In infants weighing# 5 kg, a further 1/3 dose reduction is advised. AUC, area

under the curve; BUMEL, busulfan and melphalan; CAV, cyclophosphamide plus doxorubicin or vincristine; CEM, carboplatin, etoposide, and

melphalan; CH14.18/CHO, human-mouse chimeric monoclonal anti-disialoganglioside GD2 antibody ch14.18 produced in Chinese hamster ovary

(CHO) cells; COJEC, chemotherapy schedule COJEC defined below; GFR, glomerular filtration rate; IL-2, interleukin-2; IV, intravenous; P or E, cisplatin
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response; TP, time period; TVD, topotecan-vincristine-doxorubicin. (continued on following page)
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FIG A2. Comparison of patients in the ALK analysis cohort and patients not in the ALK analysis cohort. (A and B) EFS and OS of the ALK analysis

cohort and patients not in the ALK cohort. (A) No statistically significant difference in EFS and (B) OS was observed between patients included in

the ALK analysis cohort (n5 1,092, from 132 centers; red line), patients not included in this study from the same centers (n5 1,665, blue line)

and patients not included in this study from centers not participating in this study (n 5 577, green line) (5-year EFS: 40% [95% CI, 37 to 43] v

37% [95% CI, 35 to 40] v 33% [95% CI, 29 to 37]; 5-year OS: 49% [95% CI, 46 to 53] v 48% [95% CI, 46 to 51] v 44% [95% CI, 40 to 59];

P 5 NS). (C) Recruitment, by year (x-axis), in the ALK analysis cohort (% of patients: y-axis; absolute numbers: in the blue bars). The % and

number of patients not included in the ALK analysis cohort from centers participating, and from nonparticipating centers, are indicated in orange

and gray, respectively. EFS, event-free survival; NS, not significant; OS, overall survival.
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FIG A3. Double event of ALK amplification and ALK mutation detected in one case (case 15). The SNP array shows an amplified region

in chromosome 2 encompassing the ALK gene. Sanger sequencing profile shows R1275Q mutation (MAF 5 93.3%) in the same case. HD, high

definition; MAF, mutated allele fraction; SNP, single-nucleotide polymorphism.
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FIG A5. Survival in the ALK analysis cohort (n5 1,092 patients) according to known prognostic factors. (A) EFS and OS in the ALK analysis

cohort population (n5 1,092 patients). Five-year EFS (blue line) 40% (95%CI, 37 to 43); 5-year OS (red line) 49% (95%CI, 46 to 53). (B) OS

according to age. Five-year OS in patients , 1 year of age at diagnosis (red line) 50% (95% CI, 37 to 61); in patients 1-1.5 years of age at

diagnosis (blue line) 58% (95% CI, 49 to 66); in patients 1.5-5 years of age at diagnosis (green line) 50% (95% CI, 46 to 53); and in

patients . 5 years of age at diagnosis (purple line) 43% (95% CI, 35 to 50); P 5 NS (pseudo-value regression). (continued on following page)

Journal of Clinical Oncology

ALK Alterations in High-Risk Neuroblastoma

Downloaded from ascopubs.org by 193.57.125.12 on November 28, 2023 from 193.057.125.012
Copyright © 2023 American Society of Clinical Oncology. All rights reserved. 



FIG A5. (Continued). (C) OS according to number of involved MCs. Five-year OS in patients with localized disease (red line) 67% (95% CI, 58 to

75), in patients with involvement of one MC (blue line) 65% (95% CI, 55 to 73), two MCs (green line) 52% (95% CI, 46 to 58), or over two MCs

(purple line) 41% (95%CI, 36 to 46); P, .001. (D) OS according to stage. Five-year OS in patients with localized disease (red line) 67% (95%CI,

58 to 75), in patients with stage 4 disease (blue line) 47% (95% CI, 44 to 50), or stage 4s disease (green line) 54% (95% CI, 25 to 76); P, .001.

(E) OS according to MYCN amplification in stage 4 disease. Five-year OS in patients with MNA (blue line) 46% (95% CI, 41 to 51), in patients

without MNA (red line) 48% (95% CI, 44 to 53), NS (pseudo-value regression). (F) OS according to treatment period, before (,March 2010) or

after (. March 2010) the definition of HDC by BUMEL and immunotherapy maintenance as standard treatment. A significant improvement

survival because of BUMEL and GD2 standard therapy is observed. Five-year OS in patients having been treated before March 2010 (red line)

46% (95%CI, 41 to 51) versus after March 2010 (blue line) 51% (95%CI, 47 to 56); P5 .039.3-5BUMEL, busulfan andmelphalan; cHR, crude

hazard ratio; EFS, event-free survival; HDC, high-dose chemotherapy; HR, hazard ratio; MC, metastatic compartment; MNA, MYCN-amplified;

NS, not significant; OS, overall survival; ref, reference.

TABLE A1. Clinical Characteristics of 1,092 Patients Included in the ALK Analysis Cohort

Localized MNA1

Stage 4
Stage 4s

MNA1 TotalTotal MNA2 MNA1

Total 113 966 571 395 13 1,092

Sex, No. (%)

Female 45 (40) 423 (44) 258 (45) 165 (42) 5 (38) 473 (43)

Male 68 (60) 543 (56) 313 (55) 230 (58) 8 (62) 619 (57)

Age at diagnosis, years

, 1, No. (%) 5 (4) 50 (5) 0 (0) 49 (12) 13 (100) 67 (6)

1-1.5, No. (%) 22 (19) 113 (12) 39 (7) 75 (19) 0 (0) 136 (12)

1.5-5, No. (%) 79 (70) 634 (66) 392 (69) 242 (61) 0 (0) 713 (65)

5-10, No. (%) 7 (6) 169 (17) 140 (25) 29 (7) 0 (0) 176 (16)

Median (min-max) 2.1 (0.6-8.3) 2.9 (0.12-20) 3.5 (1-20) 2 (0.12-12) 0.23 (0-0.65) 2.8 (0-20)

Primary tumor, No. (%)

No data 1 31 21 10 — 32

Cervical 5 (4) 54 (6) 37 (7) 17 (4) 0 (0) 59 (6)

Thoracic 4 (4) 157 (17) 108 (20) 49 (13) 0 (0) 161 (15)

Abdominal adrenal 85 (76) 655 (70) 341 (62) 314 (82) 13 (100) 753 (71)

Abdominal other 41 (37) 329 (35) 203 (37) 126 (33) 3 (23) 373 (35)

Pelvic 4 (4) 59 (6) 30 (5) 29 (8) 0 (0) 63 (6)

Metastatic sites, No. (%)

None 113 — — — 13 113

Not specified 55 26 29 2

1 MC 111 (12) 51 (9) 60 (16) 4 (36)

2 MC 299 (33) 180 (33) 119 (33) 3 (27)

. 2 MC 501 (55) 314 (58) 187 (51) 4 (36)

ALK alteration, No. (%)

Yes 25 (22) 118 (12) 36 (6) 82 (21) 3 (23) 146 (13)

No 88 (78) 848 (88) 535 (94) 313 (79) 10 (77) 946 (87)

ALK amplification, No. (%)

Yes 13 (12) 26 (3) 1 (0) 25 (6) 2 (15) 41 (4)

No 83 (73) 768 (80) 466 (82) 302 (76) 9 (69) 860 (79)

Missing data 17 (15) 172 (18) 104 (18) 68 (17) 2 (15) 191 (17)

ALK mutations, No. (%)

ALKm clonal 9 (8) 66 (7) 26 (5) 40 (10) 1 (8) 76 (7)

ALKm subclonal 4 (4) 26 (3) 9 (2) 17 (4) 0 (0) 30 (3)

No 63 (56) 586 (61) 365 (64) 221 (56) 7 (54) 656 (60)

Missing data 37 (33) 288 (30) 171 (30) 117 (30) 5 (38) 330 (30)

Abbreviations: MC, metastatic compartments; MNA, MYCN-amplified.
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TABLE A2. Number of Patients Included in the ALK Analysis Cohort by Country and

Center

Country Center Patients, No.

Total 1,092

FR Total 344

Institut Curie 65

Center Léon Berard 34

Hopitaux de Marseille La Timone 30

Center Oscar Lambret de Lille 26

CHR de Nantes 23

Hopital Hautepierre-CHU Strasbourg 20

Hôpital Trousseau Paris 18

Institut Gustave Roussy 17

Hôpital D’Enfants de Toulouse 14

CHU de Grenoble 13

CHU de Nancy Brabois 11

CHU Montpellier Hôpital Arnaud Villeneuve 11

CHU Rouen 10

Hopital Jean Bernard La Miletrie Poitiers 8

CHR de Caen 8

CHU-Saint Etienne 6

Hôpital de L’Archet Nice 5

CHR Hôpital Sud de rennes 5

Center Hospitalier Angers 5

CHU Morvan de Brest 4

Hotel Dieu de Clermont-ferrand 4

CHRU Nord d’Amiens 4

Hopital d’Enfants Dijon 2

Hopital Americain de Reims 1

UK Total 292

Great Ormond Street Hospital 40

Royal Marsden Hospital Surrey 34

Newcastle: Royal Victoria Infirmary 29

Dublin: OLHSC 13

Oxford: John Radcliffe Hospital 20

Bristol Royal Hospital for Children 19

Glasgow Royal Hospital for Sick Children 19

Manchester: Royal Manchester Children’s Hospital 18

Southampton General Hospital 16

Cambridge: Addenbrooke’s NHS Trust 14

Liverpool: Alder Hey Children’s Hospital 14

Birmingham Children’s Hospital 11

Leeds: St James’s University Hospital 11

Belfast: Royal Belfast Hospital for Sick Children 9

Sheffield Children’s Hospital 7

Cardiff: Llandough Hospital 5

Aberdeen: Royal Aberdeen Children’s Hospital 4

Edinburgh Royal Hospital for Sick Children 4

Leicester Royal Infirmary 3

UCLH University College London Hospital 2

(continued on following page)
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TABLE A2. Number of Patients Included in the ALK Analysis Cohort by Country and

Center (continued)

Country Center Patients, No.

ES Total 152

H Nino Jesus 15

Hospital Infantil La Fe 13

Carlos Haya 11

H Central de Asturias 10

Hospital Infantil La Paz 10

H. Virgen de la Arrixaca 8

Hospital de Cruces 7

Hospital materno infantil Virgen de las Nieves 7

Hospital Vall d`Hebron 6

H. Miguel Servet 6

Hospital Clinico 5

H. Virgen del Camino 4

H. Son Dureta 5

H. General de Galicia 4

Hospital Gregorio Maranon 4

Hospital 12 de Octubre 4

H. de Donostia Ntra. Sra. de Aranzazu. 4

Materno Infantil de Badajoz 3

H. General de Alicante 3

Virgen del Rocio 3

Hospital Germans Triasi Pujol 2

H Sant Pau 2

Hospital Universitario de Canarias 2

H. Torrecardenas 2

Hospital Reina Sofia 2

H. C. U. de Salamanca 2

H. Virgen de la Salud 1

H. Materno-Infantil Teresa Herrera 1

H. SanT Joan de Deu 1

H. Monteprincipe 1

Complejo Hospitalario de Jaen 1

H. Virgen de la Macarena 1

Hospital Universitario Nuestra Sra de la Candelaria 1

Hospital Xeral-Cı́es 1

AT Total 57

St Anna Kinderspital 23

Landes-Kinderklinik Linz 12

Univ.Klinik f. Kinder-u. Jugendheilkunde Innsbruck 10

Univ.-Klinik für Kinder- und Jugendheilkunde Graz 6

St Johanns Spital LKH Salzburg 6

(continued on following page)
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TABLE A2. Number of Patients Included in the ALK Analysis Cohort by Country and

Center (continued)

Country Center Patients, No.

SE Total 44

Stockholm 14

Lund 11

Uppsala 8

Children’s Hospital Linkoping 5

Queen Silvia’s Children’s Hospital (Gothenburg) 5

Reykjavik 1

CZ Total 38

University Hospital Motol, Prague 5 38

IT All 29

Ospedale S. Orsola 7

Clinica di Oncoematologia Pediatrica Padova 5

Istituto per l’Infanzia Burlo Garofolo 3

Ospedale Bambino Gesu 3

Policlinico Universitario 2

Istituto Giannina Gaslini 2

Istituto Nazionale Tumori di Milano 2

Policlinico San Matteo 1

Ospedali Riuniti 1

Ospedale dei bambini, Palermo 1

Azienda Ospedaliera Universitaria di Parma-Oncoematologia

Pediatrica

1

Policlinico Borgo Roma 1

CH Total 25

CHUV 11

University Children’s Hospital (Geneva) 5

Inselspital Bern 3

Kantonspital Aarau 3

Ostschweizer Kinderspital 2

Luzerner Kantonspital - Kinderspital Luzern 1

PL Total 23

University Children’s Hospital Krakow 14

Wroclaw Medical University 3

Children’s Hospital in Chorzów 2

University of Medical Sciences Poznan 2

Medical University of Bydgoszcz 1

Medical University in Gdansk 1

BE Total 21

University Hospital Gent 9

UZ Gasthuisberg 8

Clinique de l’Espérance, 2

Cliniques universitaires St-Luc 1

CHR Citadelle 1

IL Total 18

Schneider Children’s Medical Center of Israel 17

Dana Children’s Hosp., Suraski Tel-Aviv Med. Cent. 1

(continued on following page)
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TABLE A2. Number of Patients Included in the ALK Analysis Cohort by Country and

Center (continued)

Country Center Patients, No.

PT Total 14

IPOFG-CRL 14

HK Total 10

University of Hong Kong 10

NO Total 10

Rikshospitalet 5

Haukeland University Hospital 4

St Olavs Hospital Trondheim 1

IE Total 7

Dublin: OLHSC 7

FI Total 4

University of Tampere 4

DK Total 2

Aarhus Universitetshospital 1

University Hospital of Odense 1

GR Total 1

Aghia Sophia Children’s Hospital, Athens 1

SI Total 1

University Children’s Hospital Ljubljana 1

Abbreviations: AT, Austria; BE, Belgium; CH, Switzerland; CZ, Czech Republic;

DK, Denmark; ES, Spain; FI, Finland; FR, France; GR, Greece; HK, Hong Kong; IE,

Ireland; IL, Israel; IT, Italy; NO, Norway; PL, Poland; PT, Portugal; SE, Sweden; SI,

Slovenia; UK, United Kingdom.
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4 DISCUSSION AND PERSPECTIVES 

In this research, we undertook a comprehensive analysis of neuroblastoma ITH using a multimodal 

data approach, encompassing bulk whole exome sequencing (WES), single-cell whole genome 

sequencing (scWGS), replication timing (RT), and single-cell RNA sequencing (scRNA-seq). Our 

bioinformatics strategy required an integrative approach, leading to the development of a robust 

pipeline with various modules due to the absence of a singular tool for such complex analysis. 

Module 1 focused on bulk and pseudobulk data analysis to identify single nucleotide 

polymorphisms (SNPs) and somatic single nucleotide variants (SNVs), along with allele-specific 

copy number analysis. This preliminary analysis was crucial for subsequent mutational timing, 

where advanced tools like Mobster and MutationTimeR were employed. Mobster combines 

machine learning with theoretical population genetics for model-based tumor subclonal 

reconstruction, while MutationTimeR offers mutational timing analysis. Pseudobulk whole 

genome sequencing with >40X coverage proved ideal for these analyses. Module 2 handled single-

cell whole genome sequencing data, integrating tools like CHISEL for allele- and haplotype-

specific copy number inference, and CopyKit for resolving clonal substructure and reconstructing 

genetic lineages in tumors. While CHISEL's strength lay in allele- and haplotype-specific analysis, 

CopyKit provided a comprehensive method for single-cell absolute copy number data analysis. 

This module also involved rigorous quality control to categorize cells into G1/G2 and S-phase 

populations. Module 3 was dedicated to replication timing analysis using S-phase cell data, 

integrating the Kronos.scRT tool. Module 4 focused on preprocessing and quality control of single-

cell RNA sequencing data, utilizing the Seurat tool to ensure the selection of high-quality cells for 

downstream analysis. 

Module 5 explored the genotype-to-phenotype relationship using the Numbat tool (T. Gao et al. 

2022), which utilized phased SNPs from scWGS for genotyping scRNA-seq data and identifying 

clones driven by genotypic expression. Finally, Module 6 involved the analysis of bulk WES data 

from treatment studies, incorporating tools like PyClone-VI and CloneEvol for analyzing clonal 

clusters pre- and post-treatment. 

This integrative bioinformatics approach allowed us to dissect the complex clonal dynamics in 

neuroblastoma, providing insights into the genetic underpinnings of treatment response and 

resistance. The combination of diverse datasets and analytical methods underscores the intricacies 

of tumor evolution and the necessity of advanced computational tools to unravel them. The 

complete workflow is depicted in Figure 3.1.1.6.22 
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The definition of clones and sublclones was largely based on the calling of allele and haplotype 

specific CNA. However, Tools such as CHISEL present a number of limitations in Allele- and 

Haplotype-specific analysis using tool like CHISEL. First, Germline sequencing data, either by 

WES or WGS gives more power to identify heterozygous SNPs. In the absence of germline, 

identification of heterozygous SNPs in the LoH or CN-LoH region in a given tumor sample is 

challenging. In the clonal LoH region(s), the identification of heterozygous SNPs becomes 

increasingly difficult, limiting the effectiveness of tools like CHISEL in performing allele and 

haplotype-specific analysis in these genomic regions. Furthermore, typical analyses often exclude 

chromosome X, which can lead to the oversight of subclonal alterations specific to chromosome 

X. As a result, potentially significant genetic changes on chromosome X might remain undetected, 

skewing the overall understanding of the tumor's genomic landscape. Third, a notable challenge 

with CHISEL analysis is its tendency to favor higher ploidy solutions, even in cases where the 

genome or cell is near diploid. This inclination, as also reported by (Schneider et al. 2022) can lead 

to inaccuracies in the determination of the clonal architecture of a tumor. Due to these limitations, 

our study opted for CopyKit as the primary tool for delineating clonal architecture. 

The clustering of single-cell copy number data plays a pivotal role in accurately identifying the 

number of subclones within a tumor. To enhance the precision of subclone identification, we 

employed the Jaccard similarity index. This index functions as a helper tool, conducting a grid 

search to maximize the Jaccard Similarity across various parameter values, thereby optimizing the 

evaluation of the clustering process. 

While this technique offers improved precision in identifying subclones, it's important to note that 

relying solely on data from a single time point can limit the depth of our understanding of tumor 

evolution. Temporal or spatial sampling, coupled with sequencing, provides a more comprehensive 

picture. By analyzing tumor samples at different time points or from various spatial locations 

within the tumor, we can gain insights into the dynamic nature of tumor evolution. This approach 

allows for a more stable and accurate identification of subclones, as it captures the evolutionary 

trajectory of the tumor, including the emergence, expansion, and potential regression of various 

subclonal populations over time. (Nam, Chaligne, and Landau 2021) (Black and McGranahan 

2021). 

Future advancements in techniques like in situ single-cell RNA sequencing (scRNA-seq) and high-

throughput single-molecule fluorescence in situ hybridization (smFISH) are poised to provide 

experimental validation of clonal versus subclonal architecture in neuroblastoma (NB) and other 

cancers. smFISH, for instance, offers high spatial resolution for detecting individual RNA 
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molecules, allowing for precise quantification and localization of gene expression within cells and 

tissues (Lubeck et al. 2014). This technique, in conjunction with scRNA-seq, can greatly enhance 

our understanding of the heterogeneity and spatial organization of tumor cells at a single-cell level. 

This study delves into the intricacies of neuroblastoma ITH, a cancer characterized by varying 

genomic complexities. Our analysis led to several major conclusions; By 1. distinguishing between 

monoclonal and polyclonal tumors, we gain vital insights into the diverse evolutionary paths. In 

monoclonal neuroblastoma, we observe a linear evolution pattern, where tumors maintain a 

consistent genetic profile over time. This clonal stasis, particularly prevalent in tumors diagnosed 

at a later stage, sheds light on the stability and persistence of certain genetic configurations within 

the tumor. Conversely, polyclonal neuroblastoma exhibits more dynamic evolutionary models, 

including branched and punctuated evolution. These patterns suggest early seeding or parallel 

evolution, where distinct subclones evolve simultaneously but independently, driven by unique 

molecular mechanisms. 2. Another key aspect of our study is the examination of replication timing 

variability among subclones within the same tumor. This approach reveals how different subclones 

may exhibit early or late replication timings, influencing their growth rate, genetic stability, and 

response to therapeutic interventions. 3. The study also explores the relationship between genetic 

variations and transcriptomic expression. We investigate how certain subclones, due to their unique 

genetic makeup and replication timing, preferentially express certain genetic alterations. This 

differential expression can lead to varied sensitivities to treatments among genetically distinct 

clones within the same tumor. 4. By integrating these findings, our study contributes significantly 

to the understanding of neuroblastoma's heterogeneity and its implications for treatment. 

Identifying subclones with distinct replication timings and transcriptomic profiles can guide the 

development of more targeted and effective therapeutic strategies, potentially improving patient 

outcomes in this complex and challenging disease. 
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5 CONCLUSION 

Our comprehensive study on neuroblastoma intratumoral heterogeneity (ITH) has shed new light 

on the intricate dynamics of tumor evolution and the impact of therapy at the subclonal level. 

Utilizing a variety of patient-derived xenografts (PDX) models, four patient tumors at diagnosis, 

and an array of single-cell sequencing techniques, we have unearthed a complex narrative of tumor 

behavior and response. 

We identified three distinct patterns of clonal evolution within neuroblastoma: linear, branched, 

and punctuated evolution. Linear evolution, often observed in monoclonal tumors, tended to 

display a phase of genomic stability, especially in cases diagnosed at a later stage. This finding 

points towards a pivotal phase in tumor development where genomic alterations reach a plateau, 

potentially offering a strategic moment for therapeutic intervention. 

In contrast, branched evolution, which was prominent in cases that exhibited early seeding for 

progression and relapse, showcased the adaptive capabilities of tumor cells. This pattern 

emphasizes the urgency of initiating early and comprehensive treatment strategies. The punctuated 

evolution model, marked by abrupt genomic shifts, posed a significant challenge, especially in 

interpreting relapse cases lacking paired diagnostic samples. This evolutionary model accentuates 

the necessity for continuous and adaptive treatment approaches, catering to the tumor's ability to 

rapidly evolve and develop new resistance mechanisms. 

A key revelation of our study was the influential role of subclonal populations. Even when present 

in minority, these subclones demonstrated notable transcriptomic activity and growth potential, 

significantly influencing the tumor’s behavior and response to treatment. Instances where 

subclones with early replication timing showed enhanced proliferative and transcriptional activity, 

as compared to their late-replicating counterparts, possibly rendering them more susceptible to 

certain therapeutic interventions were particularly illustrative. 

Our approach to analyzing this complex dataset involved an intricate bioinformatics workflow, 

integrating over ten advanced tools. This multifaceted analysis brought to light the interplay 

between genetic alterations, evolutionary models, replication timing, and transcriptional outcomes, 

thereby providing profound insights into the molecular mechanisms driving tumor evolution and 

response to treatment. This emphasizes the need for personalized and dynamic treatment strategies 

in neuroblastoma. 
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Furthermore, our findings indicate that CRG/EMG variations with potential functional impacts are 

present in a notable percentage of neuroblastoma patients. The involvement of genes such as 

SMARCA4 in neuroblastoma development is particularly noteworthy. While genetic alterations in 

ALK, including clonal mutations and amplifications, emerged as independent predictors of poorer 

survival in high-risk neuroblastoma, the identification of a substantial number of subclonal ALK 

mutations also highlights a risk of these mutations evolving during tumor progression. 

In summary, our extensive research enriches our understanding of the genetic heterogeneity and 

evolutionary landscape of neuroblastoma. It underscores the importance of integrating multimodal 

data analysis in developing more targeted and effective therapeutic strategies, tailored to the 

complex nature of this disease. 
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RÉSUMÉ 

 
Dans cette étude approfondie, nous nous penchons sur l'hétérogénéité génétique du neuroblastome (NB), 

une tumeur solide pédiatrique difficile à traiter, en tirant parti de la puissance des technologies de séquençage 

de cellules uniques et de masse.  

Notre étude comporte deux volets : premièrement, nous explorons l'hétérogénéité génétique intratumorale 

(ITH) au niveau d'une seule cellule. Nous cherchons à comprendre comment les altérations du nombre de 

copies d'allèles spécifiques d'une cellule à l'autre contribuent aux variations génomiques et phénotypiques, 

influençant ainsi la trajectoire évolutive du NB. Il s'agit notamment d'examiner la chronologie des aberrations 

génomiques spécifiques, la chronologie de la réplication des cellules individuelles et la coévolution du génome 

et du transcriptome. En outre, nous examinons minutieusement la dynamique des sous-clones et leurs 

réponses ou résistances spécifiques aux thérapies ciblées. 

Pour ce faire, nous avons combiné le séquençage de l'exome entier (WES) de la lignée germinale et de la 

tumeur avec le séquençage de l'ADN du génome entier d'une cellule unique à très faible profondeur 

(scDNAseq) en utilisant le kit CNV à cellule unique de 10x Genomics Chromium. Au total, 9 410 cellules 

tumorales ont été caractérisées à partir de 14 modèles de xénogreffes dérivées de patients (PDX) de 

neuroblastome (NB) et de 4 biopsies tumorales de patients NB. En outre, 6 modèles PDX ont été soumis à 

différentes combinaisons de traitement et des WES en vrac ont été réalisés avant et après le traitement. 

Notre analyse scDNAseq a permis d'identifier des génomes de neuroblastomes polyclonaux (11 cas) et 

monoclonaux (7 cas) par le biais d'altérations du nombre de copies spécifiques aux allèles et aux haplotypes. 

Nous avons observé de 2 à 11 clones distincts par tumeur polyclonale. Les événements de duplication du 

génome entier étaient évidents dans les génomes polyclonaux et monoclonaux. Les premiers événements 

clonaux comprenaient des altérations connues du nombre de copies (pertes des chromosomes 1p et 11q, 

gains du chromosome 17q), des amplifications de MYCN/ALK, ainsi que des mutations somatiques dans des 

gènes tels que ALK, ATRX, TP53 et NF1. L'évolution parallèle du nombre de copies de deux clones distincts, le 

sous-clone s1/s2, dans un modèle PDX, avec des réponses spécifiques au clone à la thérapie ciblée (Lorlatinib), 

est particulièrement remarquable. Les profils de synchronisation de la réplication ont révélé une réplication 

précoce et tardive mutuellement exclusive dans les sous-clones s1 et s2, respectivement. L'analyse génotype 

à phénotype a indiqué une expression préférentielle du génotype du sous-clone s1. 

Deuxièmement, notre étude s'étend à l'analyse du séquençage en masse, en se concentrant particulièrement 

sur la fréquence et l'impact des altérations ALK (lymphome anaplasique kinase), à la fois les amplifications et 

les variants nucléotidiques simples (SNV), dans une grande cohorte de 1092 patients atteints de NB à haut 

risque (HR-NB) traités dans le cadre du protocole européen HR-NBL1. Les mutations ALK clonales observées 

dans 33 % des cas ont été associées à des résultats plus défavorables, tandis que les mutations subclonales, 

qui représentent 28 % de l'ensemble des mutations ALK, n'ont pas eu un impact similaire sur le pronostic. 

Nous étudions également la prévalence et la signification clinique des variations des gènes de remodelage de 

la chromatine (CRG) et d'autres gènes modificateurs épigénétiques (EMG) dans le NB. L'ADN normal et l'ADN 

tumoral diagnostiqué appariés de 55 patients ont été séquencés, soit par séquençage du génome entier (16 

cas), soit par séquençage de l'exome entier (39 cas), complété par un séquençage ciblé ultra-profond sur 283 

patients atteints de cancer du sein à l'aide de TSCA®. Le séquençage ciblé ultra-profond a mis en évidence des 

variations de nucléotides simples, de petites insertions/délétions, dans les gènes de remodelage de la 

chromatine et les gènes modificateurs épigénétiques dans 20 % des cas étudiés. Notre recherche identifie des 

variations CRG et EMG chez 8,4 % des patients atteints de NB, les gènes les plus fréquemment altérés étant 

ATRX, SMARCA4, MLL3 et ARID1B. Les variations dans SMARCA4 et ATRX étaient plus fréquentes dans les cas 

de NB que dans la population générale, ce qui suggère leur rôle crucial dans l'oncogenèse du NB. 



 

 

Dans l'ensemble, ce travail fournit des informations essentielles sur les trajectoires évolutives des tumeurs du 

neuroblastome (NB), en identifiant pour la première fois une synchronisation distincte de la réplication dans 

des clones cellulaires distincts et le potentiel de ciblage des altérations clonales précoces. Notre travail fournit 

également des informations supplémentaires sur l'hétérogénéité intratumorale en ce qui concerne l'ALK, une 

altération ciblée, ainsi que le CRG. 
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ABSTRACT 

 

In this comprehensive study, we delve into the genetic heterogeneity of neuroblastoma (NB), a 

challenging pediatric solid tumor, by leveraging the power of single-cell and bulk sequencing 

technologies.  

Our investigation is two-fold: firstly, we explore the genetic intratumoral heterogeneity (ITH) at a 

single-cell level. We aim to understand how cell-to-cell allele-specific copy number alterations 

contribute to genomic and phenotypic variations, influencing the evolutionary trajectory of NB. This 

includes examining the timing of specific genomic aberrations, the replication timing of individual 

cells, and the co-evolution of the genome and transcriptome. Additionally, we scrutinize subclonal 

dynamics and their specific responses or resistances to targeted therapies. 

For this we combined germline and tumor bulk whole exome sequencing (WES) with ultra-low depth 

single-cell whole-genome DNA sequencing (scDNAseq) using the 10x Genomics Chromium single-

cell CNV kit. A total of 9,410 tumor cells were characterized from 14 patient-derived xenografts 

(PDX) models of neuroblastoma (NB) and 4 tumor biopsies from NB patients. Additionally, 6 PDX 

models were subjected to different treatment combinations and bulk WES was conducted pre- and 

post-treatment.  

Our scDNAseq analysis identified both polyclonal (11 cases) and monoclonal (7 cases) neuroblastoma 

genomes through allele and haplotype-specific copy number alterations. We observed 2 to 11 distinct 

clones per polyclonal tumor. Whole genome duplication events were evident in both polyclonal and 

monoclonal genomes. Early clonal events included known copy number alterations (losses of 

chromosomes 1p and 11q, gains in chromosome 17q), MYCN/ALK amplifications, as well as somatic 

mutations in genes such as ALK, ATRX, TP53, and NF1. Particularly notable was the parallel copy 

number evolution of two distinct clones, subclone s1/s2, in a PDX model, with clone-specific 

responses to targeted therapy (Lorlatinib). Replication timing profiles revealed mutually exclusive 

early and late replication in subclones s1 and s2, respectively. Genotype-to-phenotype analysis 

indicated preferential expression of the of subclone s1 genotype. 

Secondly, our study extends to bulk sequencing analysis, particularly focusing on the frequency and 

impact of ALK (anaplastic lymphoma kinase) alterations, both amplifications and single nucleotide 

variants (SNVs), in a large cohort of 1092 high-risk NB (HR-NB) patients treated within the European 

HR-NBL1 protocol. Clonal ALK mutations observed in 33 % were associated with poorer outcomes, 

whereas subclonal mutations, accounting for 28% of all ALK mutations, did not demonstrate a similar 

impact on prognosis.  

We also investigate the prevalence and clinical significance of variations in chromatin remodeling 

genes (CRGs) and other epigenetic modifier genes (EMGs) in NB. Paired diagnostic tumor and normal 

DNA from 55 patients were sequenced, either by whole-genome sequencing (16 cases) or whole-

exome sequencing (39 cases), complemented by ultra-deep targeted sequencing on 283 NB patients 

using TSCA®. Ultra-deep targeted sequencing enhanced single nucleotide variations, small 

insertions/deletions, in chromatin remodeling genes and epigenetic modifier genes in 20% of the cases 

studied. Our research identifies CRG and EMG variations in 8.4% of NB patients, with the most 

frequently altered genes including ATRX, SMARCA4, MLL3, and ARID1B. Variations in SMARCA4 

and ATRX were more frequent in NB cases compared to the general population, suggesting their crucial 

role in NB oncogenesis. 



 

 

Altogether, this work provides pivotal insights into the evolutionary trajectories of neuroblastoma 

(NB) tumors, identifying for the first time distinct replication timing in distinct cellular clones, and the 

potential for targeting early clonal alterations. Our work also provides further insight into intratumor 

heterogeneity with regards to ALK, a targetable alteration, as well as CRG. 
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