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Introduction

Introduction

Context

Nowadays, the designing of new antennas always begins with weeks or months of simula-
tions. However, at some point, the system is manufactured and has to go into a necessary
measurement phase [1]. This phase aims at assessing the performances of the Antenna
Under Test (AUT]), in accordance with specified criteria, and verifying its functionality
in various applications, such as wireless communication, radar systems, and satellite com-
munication [2,[3].

The measurement process entails evaluating the radiation pattern in both co and cross-
polarisation across all directions, either when the antenna is alone or installed on its
designated platform, the whole forming the Device Under Test (DUT]). Ideally, the mea-
surement signal is collected with a probe, generally another antenna placed far enough
from the [AUT] to respect the far-field conditions [4,/5]. This condition is fulfilled when

the distance is larger than
2D?
d>— 1
)\ ) ( )

with D the size of the [AUT] and X the wavelength.

However, this condition can yield unrealistic distances between the probe and the antenna.
Consequently, measurements are usually performed in specific facilities, adapted to em-
ulate far-field conditions like compact range systems or to post-process the signal like in
near-field range systems [2].

These facilities are also designed in order to avoid perturbations, so that the radiation
of the [AUT] or [DUT] can be considered to be in free space. Generally, these facilities are
anechoic chamber, which are rooms with walls covered by absorbing materials.

However spurious reflections, noise and multipath remain, even for the most precise de-
vices. These perturbations come from numerous sources like reflections on metallic mea-
surement devices, electronic noise, thermal noise, cosmic rays or coupling. Moreover, the
raw measurement data needs to be processed in order to extract the usefull information.
Consequently, in addition to research on improving the materials, post-processing meth-
ods are developed in order to improve measurement accuracy and times. Several methods
of post-processing exist in the literature. Firstly, Near-field to Far-Field Transforma-
tion (NEEFT]) methods allow to determine the far-field radiation pattern of an antenna
based on near-field measurements [6}(7,[8]. Methods are also developed to shorten antenna
measurement times, for example by increasing the sparsity of the measurement sampling
points [9,/10]. Finally, many methods intend to attenuate the effect of the environment,
such as time-gating methods that take advantage of the delays existing between multipath
to isolate the signal of interest [11]. Current reconstruction methods and spatial filtering

This document may not be reproduced, modified, adapted, published, translated in any way, in whole
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rely on the equivalent current representation of the [AUT] [12,[13]. In particular, in many
methods, the correction relies on the expansion of the field in harmonics like in probe cor-
rection [6,14], spectral filtering |15] or test zone field compensation methods [16,/17}18].
These methods take advantage of different properties of the spectrum and aims to split
as precisely as possible the radiation pattern of the antenna from the electromagnetic
environment.

In the case of antenna measurement, data are mostly organised spherically, as antenna
far-field patterns are defined on a sphere, and many antenna measurement facilities are
designed for spherical measurements. This is the reason why spherical tools have been
developed. In particular the spherical harmonics are the most well-known expansion basis
for antenna measurement analysis [6]. Additionally, antenna radiations are fields of vec-
tors, that is the reason why the spin concept is attractive. This has been developed and
applied to spherical harmonics by Penrose [19,[20]. This concept allows to express fields of
vectors tangent to a sphere in terms of spin components, which have promising rotation
properties. Moreover, McEwen & Wiaux have developed fast and stable spin spherical
harmonic transform algorithms, along with sampling theorem on the sphere [21].

Additionally, these researchers have also led recent works on wavelets on the sphere.
Wavelets are commonly used to compress images (JPEG), to perform deconvolution or
denoising in many domains of physics and engineering |22}23]. Specific spherical wavelets
have recently been developed to analyse data on the sphere [24] and the multiresolu-
tion analysis in wavelet has been used to describe the cosmic microwave background [25].
McEwen & Wiaux have also developed fast spin spherical wavelet algorithms in [26].
Consequently, this type of expansion could bring another dimension to analyse antenna
measurements on the sphere and develop correction methods. In particular, the wavelet
transform allows to determine the regions where contributors to the field are observed in
both space and spectral domains, which would add up to the spherical harmonics analysis
to better discriminate unwanted perturbations to the measurement.

Objectives

The main objectives of this PhD thesis are to develop analysis and correction methods for
spherical antenna measurements based on spin spherical harmonics and wavelets. These
methods have to meet computation-time and accuracy requirements. The detailed objec-
tives of the thesis are:

e To analyse the benefits of spin spherical harmonics, in the domain of antennas and to
formulate their link with the spherical harmonics as defined by Hansen [6].

¢ To develop the use of spin spherical wavelets as radiation analysis tools.

e To rigorously formulate the antenna measurement problem, from basic electromag-
netism theorems.

¢ To test correction methods, on a simulated simplified case, based on deconvolution and
denoising, with Fourier and wavelet transform.

10
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Outline

The thesis is composed of six chapters:

In the first chapter, a state of the art on antenna measurement is proposed. To begin
with, the antenna measurement facilities are introduced. Measurements can be performed
in various environments and configurations, depending on their specifications. Various
equipments are presented. They play an important role, ensuring the measurement is as
fast and precise as possible. The elements such as the absorbing materials, the probe and
the positioners are discussed.

In the second chapter, the spherical analysis and post-processing tools for antenna mea-
surements are presented. Firstly, spherical coordinate systems and operators are reminded:
the spherical coordinates, the Euler angles and the rotation operators are given. Then the
spherical harmonics, as defined by Hansen, are introduced. They are the standard har-
monics, used for antenna measurements. Examples of spherical harmonic transforms of
antenna radiation pattern are given. Finally, a review of antenna measurement post-
processing methods is proposed.

In the third chapter, a spherical harmonic formulation developed by Penrose in the 60’s
[19], the spin spherical harmonics is presented. Firstly, a state of the art on spin spherical
harmonics is proposed. In particular, the spin formulation is accurate to describe fields on
the sphere and possesses remarkable local and global rotation properties. These functions
have been developed to describe data over the sphere, in parallel with a sampling theorem
and a fast spin spherical harmonics transform. A relation between this formulation and
the Hansen formulation exists, and is derived in this chapter, enabling the use of spin for
the analysis of antenna measurement. Consequently, examples of analyses of radiation
patterns and by means of spin spherical harmonics are given, both from simulated
and measured data.

In the fourth chapter, spin spherical wavelets are introduced. For pedagogical purposes,
multiresolution wavelets for 1D signals are presented first, as this is commonly used in 1D
data analysis. The wavelet transform of both continuous and discrete signals is derived.
Then spherical wavelets are introduced, as developed by J. McEwen and Y. Wiaux. They
allow the wavelet transform of spin spherical data, in continuity with the spin spherical
harmonics. Finally, examples of spin spherical wavelet transforms are presented.

In the fifth chapter, the objective is to demonstrate that the measurement can be for-
mulated as a convolution between the [AUT] and the probe radiation in the measurement
environment, to which a noise term is added. This is done using traditional electromag-
netism theorems such as the equivalence principle and the reciprocity theorem. Then,
the antenna rotation during the measurement yields the convolution. Consequently, the
antenna measurement formula is obtained in this section and developed in terms of spin.
Simulations are performed in order to validate the main hypothesis of this formulation.

In the sixth chapter, antenna measurement corrections are performed in a 2D config-
uration. Firstly, the measurement formula is adapted to the studied situation. Then a
deconvolution method combining spectral and wavelet transform is presented. Finally,
this deconvolution method is tested on a simulated measurement case in 2D.
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Chapter 1

Antenna measurement

1.1 Introduction

The performances of an [AUT] are characterised by far-field parameters such as radia-
tion pattern, gain, directivity and polarisation [5]. They are typically obtained from the
measurement of a transmission, through the Ss; parameter, via a Vector Network An-
alyzer (VNA) that is then processed. Measurements are usually performed in specific
facilities with proper devices that collect the field radiated by antennas. They are fre-
quently characterised embedded on the structure that will carry it (satellite, aircraft), the
whole being rather named [DUT] Indeed, the structure often plays a role in the radiation

of the [AUTI
The objective of this chapter is to draw up a state of the art in antenna measurements.

Section|l.2|presents usual environments and configurations of antenna measurement ranges
[2]. Then Section |1.3|describes common equipments found in such facilities. The methods
developed in this thesis will be tested on measurements performed in the ENAC antenna
test range that is described briefly in Section [1.4]

1.2 Antenna measurement ranges

1.2.1 Introduction

An antenna test range usually consists of a measurement chamber or an open space with
specialised equipment and instrumentation: one or several probes, network analysers,
spectrum analysers, signal generator, etc. The range also contains one or several turntables
or positioners to rotate or move the antenna and the probe for different measurement
configurations. The[AUT]can be in reception and the probe in transmission or the opposite,
which is equivalent as they both are reciprocal [27]. In this chapter, if not explicitly written,
the [AUT] is in reception and the probe in transmission.

The choice of the test range depends on the antenna type, the frequency range, and the
specific measurement requirements. The range and the instrumentation constitute the
physical environment of the measurement. The electromagnetic environment on the other
hand, is defined as every radiation in the measurement volume that is not part of the
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antenna radiation pattern. Both of them have a considerable influence on the accuracy of
the measurement.

In this section, measurement facilities are presented. In Section [I.2.2] they are classified
by the physical environment the measurement is run into. Given that the objective of the
antenna measurement is to obtain the far-field radiation pattern of an antenna, Section
presents the different configurations allowing this measurement. Firstly, it focuses
on measurements where the [AUT] and the probe are in the far-field zone of each other.
However, this method inducing strong constraints on the measurement configuration, al-
ternative solutions are also described.

1.2.2 Measurement environments
1.2.2.1 Unconfined measurement range

Unconfined test ranges concern antenna measurements in open area, without any chamber
or layout that would isolate the [AUT] from exterior perturbations. This can be done in a
lab or outside, as shown in Figure [1.1]

When performed in a lab, this type of measurement is cheap but very limited in terms of

accuracy. This solution is notably sometimes used for short-range high-frequencies systems
(beyond X band).

Outdoor measurement ranges are convenient to perform large antenna measurements in
far-field conditions. They can be either fixed or portable, depending on the application [28].

Interferences

Tlluminator AUT

Direct path

Building

Ground

Figure 1.1: Scheme of an outdoor range
However, this type of measurements suffers from a lot of disturbances, e.g. multipath or
interferences. For the latter, usual causes are mobile communications, radar, or telemetry

systems . Consequently most antenna measurements are performed in specific chambers,
within which the environment is controlled.

1.2.2.2 Shielded enclosures

A shielded enclosure is a Faraday-cage-type room, according to . This is typically
a box made of conductive materials, such as metal, that stops electromagnetic waves.
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This design ensures that any external electromagnetic waves are effectively blocked or
attenuated, preventing them from interfering with the antenna measurement process.

Most of the antenna measurement ranges are in shielded rooms as it provides a controlled
environment for accurate antenna testing by reducing the influence of interferences and
ambient electromagnetic fields as well as reducing the constraints for measurements in
protected frequency bands.

To prevent diffraction on edges or the entrance of electromagnetic signals, a shielded
enclosure needs to be equipped with specific doors and RF-tight seals. Additionally,
connectors and waveguides are specifically installed to enable the transmission of signals
both in and out of the room, without jeopardising the sealing of the room.

1.2.2.3 Reverberation chamber

According to [29], a reverberation chamber is a shielded room with an arbitrarily-shaped
metallic rotating paddle (stirrer or tuner). The paddle is designed to be non-symmetric
and to create a continuously changing boundary condition of the electromagnetic fields in
the chamber. Rotating the paddle yields a statistical environment that is of interest in the
domain of electromagnetic compatibility, i.e. the ability of a system to work acceptably
in its electromagnetic environment. They are less commonly used for antenna measure-
ment. Nevertheless, the waves generated by the [AUT] propagate within the chamber, they
bounce off the highly reflective walls and scattering elements. This results in multiple re-
flections and a complex interference pattern. The waves mix and interact with each other,
creating a statistically steady-state field distribution, which can be distinguished from the
statistical environment of the chamber with correlation calculations [30], [31]. For example
measurement of the performance of a mobile terminal antenna in a reverberating chamber
is described in [32].

1.2.2.4 Anechoic chamber

An anechoic range is a room designed to control the environment of the[AUT] [2]. Tts walls
are totally covered with absorbing materials to diminish reflections. Generally, they are
also shielded to eliminate external electromagnetic interferences. Its size and instrumen-
tation vary depending on the application (type of antennas, size, frequency band, ...). The
chamber contains positioning equipment allowing the measurement of the field radiated
by the [AUT] on different surfaces depending on the configuration. This thesis focuses
particularly on measurements made in anechoic chambers.

The CNES anechoic chamber is shown in Figure and the ENAC anechoic range in
Figure [1.3
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Figure 1.3: ENAC antenna measurement near-field range

Sometimes, for cost and practicability reasons, walls are only partially covered with absorb-
ing materials placed on strategic places of the room. They are then named semi-anechoic.
Solange, the Direction Générale de I’Armement (DGAI) range is a semi-anechoic range, as
shown in Figure . This range is designed to measure Radar Cross Sections (RCS]).
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Figure 1.4: Solange Anechoic Facility, Bruz, DGA-MI, the french Department of Defense

[34]

1.2.3 Measurement configurations
1.2.3.1 Far-field measurements

In most cases, the objective of an antenna measurement is to obtain the far-field radiation
pattern of the[AUT] This pattern is directly measured if the probe is far enough from the
[AUT] [2,/5]. The far-field distance is defined by

2D2
= (1.1)

with D the size of the [AUT] and A\ the wavelength. An illustration of the far-field limit is
plotted in Figure [I.5

d >
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Figure 1.5: Far-field distance d, with regards to the size of the antenna D, for the GPS
L1 frequency f = 1.575 GHz

Then, to obtain the radiation pattern, the rotation of the [AUT] with a fixed probe is only
required. This is usually made about two axes with a dual-polarised probe.

However, this condition means that for electrically large antennas (high D/)), the size of
the measurement range would be unreachable. For example, an antenna operating at 30
GHz, mounted on a satellite having a size of 2 m has a far-field region at 80 m. To avoid
this, specific antenna facilities and post-processing methods have been developed .

1.2.3.2 Compact Antenna Test Range (CATRI)

In compact range systems, the far-field conditions are reached by illuminating the [ATUT]
by an emulated plane wave. This field is generally obtained by positioning the [AUT] in
the quiet zone of a large-size reflector, illuminated by a horn antenna, as shown in Figure
1.0
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Quiet zone

1T

Reflector

Equiphase surfaces

Probe at the focus of the reflector

Figure 1.6: Compact range schema

One of the challenges of the [CATRI is the reduction of the influence of the reflector on
the quiet zone field [35,36]. Besides, the direct radiation of the source often pollutes the
quiet zone. For this reason absorbing materials are often placed between the[AUT] and the
source. Figure[l.2]is a picture of the Centre National d’Etudes Spatiales (CNES) compact
range which main characteristics are listed below:

e The size of the chamber is 22 m x 12.5 m for the horizontal section and 12 m high.

e The reflector is a serrated reflector i.e. a reflector with sharp indentations all along its
rim, to attenuate the edge diffraction.

e The frequency range goes from 400 MHz to 400 GHz.

o The positioner has 7 axes of rotation, with a maximum load of 350 kg.
The specifications are:

e In terms of uncertainty:

e +0.25 dB for the gain,
e 40.5 dB to -20 dB under the maximum point, of the main polarisation,
e +1.5 dB to -30 dB for secondary lobes,

e 41 dB to-20 dB in cross polarisation under the maximum of the main polarisation.

e The size of the quiet zone goes from 1 m x 1m X Il mupto4dm Xx 4 m X 4 m
depending on the frequency.

Airbus Defense and Space also owns a [CATRI| as shown in Figure
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1.2. Antenna measurement ranges

b

Figure 1.7: Satellite EDRS-C in Airbus’s Compact Antenna Test Range facility

To remove the reflector and reduce the distance between the antenna and the probe, it has
also been proposed to emulate the plane wave by means of dielectric or metallic lenses or
different types of arrays . Besides, MVG has recently developed a plane wave generator,
an array generating an approximate plane wave over a finite volume .

1.2.3.3 Near-field measurements

To overcome the constraint of the measurement distance induced by far-field measure-
ments, near-field techniques have also been developed @,. This is also an alternative
to which remain large and expensive rooms, whereas near-field ranges are more
affordable, with moderate dimensions. They can be of size few meters, depending on the
frequency range.

Near-field measurements are usually performed either in planar or spherical configurations.
Planar configuration is advantageous for highly directive antennas, when only the forward
radiation is considered , as shown in Figure . In this case, the probe samples a
plane in front of the AUT, most commonly on a square grid of size < %, to satisfy the
Niquist criterion. However, due to the geometry of an antenna, spherical configuration
is necessary to obtain the complete radiation pattern of an antenna. An illustration of a
spherical measurement configuration is shown in Figure [I.9

AUT

e

NANAVANANANAN

e

b

L]
L
L
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L
e

=
=
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=
P
//
P

Figure 1.8: Illustration of a planar near-field range
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1.2. Antenna measurement ranges

Figure 1.9: Illustration of a spherical near-field range

The probe being in the near field of the antenna, the far-field radiation pattern cannot
be obtained directly. Thus a post-processing method performing the near-field to far-field
transform, generally including a probe compensation, has to be applied ,. Further
explanations are given in Section [2.5.2]

Figure presents the Starlab, a near-field antenna measurement range developed by
MVG [41]. The ENAC measurement range is also a near-field range, as shown in Figure
1.0

Figure 1.10: Starlab near-field range (Max. weight of DUT of 15 kg and dimension of 45
cm in diameter) [42]
1.2.4 Conclusion

In this section, different antenna ranges have been introduced. Firstly, several measure-
ment environments have been presented : antenna measurement can be performed in open
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1.3. Antenna measurements equipments

spaces, shielded rooms, reverberation chambers or anechoic chambers. Secondly, different
measurement configurations have been considered : far-field measurements, compact range
and finally near-field measurements. Throughout the rest of the document it is assumed
that measurements are performed in anechoic chambers, in spherical near-field or far-field
configurations.

1.3 Antenna measurements equipments

1.3.1 Introduction

Antenna test ranges are equipped with many devices in order to achieve the measurement.
The choice of those equipments is of high importance to achieve the characterisation at the
requested accuracy and expected bandwidth. This section introduces the main equipments
present in most antenna test ranges.

Firstly, in Section[I.3.2] the layout of an usual measurement chamber is presented in order
to introduce the different elements of the measurement chain. Secondly, Section [I.3.3]
presents absorbing materials covering anechoic chambers walls to prevent reflections and
thus emulate free space conditions. Then Section [I.3.4] gives an overview on several probe
solutions to collect measurement data. Section describes positioning systems that
execute the movements of the antenna in the chamber so that the probe can measure the
radiation on the measurement surface.

1.3.2 Layout of the measurement chamber

The measurement of the [AUT] is made possible by the use of several electric devices, as
shown in Figure[I.T1] The rotation of the antenna is assured by a positioner, that includes
one or several motors, rotary joints and a controller. The positioner is controlled via cables
with a dedicated software. The simultaneously feeds the probe in transmission and
collects the measurements from the [AUT]in reception. The information is transported to
the by RF coaxial cables . The probe can either be dual-polarised, then a switch
controls its polarisation, or it can be rotated by a positioner. Then the data is processed
by a computer.
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Figure 1.11: RF measurement range

Some of the antenna characteristics can only be obtained with an absolute measurement.
This is notably the case for determining the gain and the efficiency, which requires to
remove all sources of perturbations that are not associated with the [AUT] itself. To do
so, a first solution consists in performing a calibration so that the [V NA] measures the S21
parameter between the antenna and the probe ports. This allows to get rid of the cables,
connectors and rotary joints. Several types of calibrations can be performed:

e The Short Open Load Through (SOLT]) calibration method is based on four calibration
measurement : one with a short circuit connected to the measurement port, one
with an open circuit, one with a matched load standard and finally with a transmission
line, with known electrical length and characteristic impedance, between the two
ports.

¢ Another method called the Unknown Through method is the same method as the [SOLT]
calibration but the properties of the transmission line are unknown.

Another solution consists in performing a preliminary measurement with a reference an-
tenna, which characteristics are known, as briefly described in Section [1.4.3

However calibration is not always necessary, for example for gain measurement, the three
antennas gain comparison method does not require calibration .

To prevent scattering and interferences, most the equipements shown in Figure m are
placed outside the anechoic chamber. Finally, the quality of the measurement is greatly
influenced by the choice of the absorbing materials.
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1.3. Antenna measurements equipments

1.3.3 Absorbing Materials

Absorbing materials, commonly known as absorbers, are designed to attenuate electro-
magnetic waves across a broad frequency range, regardless of the polarisation and angle
of incidence. They are typically pyramidal structures composed of carbon-loaded foam or
specialised ferrite tiles that possess high-loss properties. By absorbing the incident waves,
these materials effectively reduce the reflections and prevent them from interfering with

the measurements .

Pyramidal absorbers attenuates signals by two effects: scattering and absorption. The
waves are scattered at the tip of the pyramids shapes, that are cut at angles that maximise
the number of bounces a wave makes within the structure. With each bounce, the wave
loses energy to the foam material and thus exits with lower signal strength. The scattering
also occurs within the foam structure, with the suspended carbon particles promoting
destructive interference .

To reach the best performances, all internal surfaces of anechoic measurement ranges walls
must be covered with this type of materials, with the tips of the pyramids pointing inward
the chamber.

Flat absorbers also exist but they are less efficient, they are often used for the floor where
people have to walk to manipulate devices or in tight enclosures to facilitate manual
operations.

The performances of absorbers are limited and are given in data-sheets from the construc-
tors like Holland Shielding Systems BV or Siepel [48], as shown in Figure m
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(a) Pyramidal absorbing material picture from Siepel website [48]
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(b) Siepel absorbers reflectivity performances, (Values in dB at normal incidence)

Figure 1.12: Absorbers and their reflectivity performance from data sheets

The frequency limitations are due to three main phenomena:

e to decrease the minimal frequency limit, the pyramid has to be thicker,
e to increase the maximal frequency, the tip of the pyramid has to be sharper,

o the density of the elements inside the pyramids is distributed in a way that optimises
the mitigation of a certain frequency range.

The absorbers emulate free space conditions around the [AUTl The antenna radiation
pattern is then measured by the probe.
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1.3.4 Probe
1.3.4.1 Simple probe

The probe is the sensor that collects the characteristics of the [AUT] during measurements.
They are commonly chosen wide-band, with a stable pattern with respect to the frequency.
The probe should be mechanically stable and durable to withstand repeated use over
extended measurement sessions. They can have many different characteristics, depending
on the measurement configuration:

o In far field, the probe needs a good polarisation purity and a good stability in frequency.
This can be judicious to choose a directive probe to avoid radiation coming from the
side of the probe but this increases the far-field distance between the antenna and the
probe.

e In near field, the radiation pattern of the probe is often chosen according to the probe
correction that will be performed in post-processing (see section . In planar
geometry, the probe has to be chosen in order to avoid distortion due to the "slant
illumination" . In spherical geometry the radiation pattern needs to present sym-
metries, so that only spherical harmonics of order m = +1 are non-negligible (see
Section . This often limits the frequency band over which this type of probe can
be used.

e In compact test range, the probe is often a horn antenna with a good stability of the
phase center. Some of those probes are shown in Figure [I.13] Major issues encountered
in [CATRI are tapering, that yields diffraction over the edges of the reflector, and spill
over, that disturbs the quiet zone. A compromise has to be done between the size of
the quiet zone, the frequency range of the chamber and the disturbing effects.

iT?gf' l 1 1
41:5"" K ,1'-:-:.. S |

Figure 1.13: Compact range feed horn developed by MVG, it can be used for direct range
illumination or reflector illumination

(-

Probes are often dual-polarised with a good polarisation discrimination. This allows the
[AUTIto be rotated about 2 axes only during the measurement, and still obtain the complete
radiation pattern. In Figure [[.14] an example of dual-polarised probes developed by NSI-
MI is shown.

Another solution is to split the measurement in two with a monopolarised probe, with a
weak cross-polarisation : the first part of the measurement is performed with the probe
straight and then to rotate it of 90° in the second part of the measurement. The ENAC
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measurement range, see Section [1.4] includes a monopolarised probe developed by RF

SPIN [50], as shown in Figure [1.184]

Figure 1.14: Dual polarised probe .

However having only one probe requires to be able to make a lot of rotations, which is
demanding for the positioner capacities and time-consuming.

1.3.4.2 Multiprobe range

The time required for the determination of the 3-D radiation pattern of an AUT is greatly
influenced by the number of required measurement positions when using a single probe
[53]. Multiprobe systems present several probes, disposed around the [AUT], that are
activated one after the other, replacing the rotations. This is faster and more stable than
rotating the antenna. The Starlab range, as shown in Figure is a multiprobe range
developed by MVG [42]. Probes are disposed all along the arch overlooking the [AUT] and
a positioner performs its rotation about the vertical axis. Most of the time the rotation
about one axis of the AUT is still required as in [54], [55].

However, RF probes impact the measurement of the antenna radiation pattern, especially
in near-field measurement, but it also have an impact on the electromagnetic environment
in the case of far-field or [CATRI configurations.

1.3.4.3 Non invasive probe

To avoid the disturbance on the measured signal, several equipments have been developed
with specific materials that do not disturb the radiation of the antenna. Indeed, in near-
field measurement, the proximity of the probe and the presence of the cables impacts
the radiation pattern of the [ATT] Alternative kind of probes have thus been developed.
The dielectric probe developed by Kapteos turns the electromagnetic signal into an
optical signal with a RF to optical transducer. The information is then conveyed through
an optical fiber, that does not disturb the radiation . The EMIR Method, invented
at ONERA and developed by Anyfields [58], uses infrared thermography to make fast
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antenna measurements. However, the thermofilm only reacts to the amplitude of the
field so the phase and the polarisation are not measured. This type of measurement has
been presented during the COMET seminar at CNES in 2018, dedicated to novel antenna
measurement techniques [59).

The work of this thesis focuses on correction methods for antenna measurement that get
rid of perturbations, including the probes. Those methods are supposed to be applicable to
all kind of probes listed above, except the EMIR method, as in this thesis the measurement
is assumed to provide S-parameters via a [VNAL

1.3.5 Mechanical systems

The positioners perform the movements of the antenna in the chamber in order for the
probe to measure the radiation pattern over the whole measurement surface. The posi-
tioning system includes some or all of the following elements [2]: positioner for probe,
positioner for [AUT], position controller, position measurement devices, local control unit,
control cables.

The choice of the mechanical components are critical points for the measurement. They
have to be precise, non-resonating, made of dielectric or recovered by absorbing material
to avoid reflection and should have a good thermal stability. Some examples of positioners
are given in Figure The movements are parameterised in specific coordinate systems,
that will be detailed in Section 2.2

(a) Azimuth-over- (b) Elevation-over-azimuth. (c) Roll-over-azimuth.
elevation.

Figure 1.15: Different examples of positioners [2]

The PAMS (Portable near-field Antenna Measurement System) [57] is another example of
positionning system, where the probe is moving around the DUT like in Figure [I.16]
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Figure 1.16: Picture of PAMS

Robotic positioning arms have also been introduced to antenna ranges . They are
programmable and allows scanning on an arbitrary point cloud without being restricted
to grids . They often have more degrees of freedom than traditional positioners. This
is also becoming common to use Unmanned Aerial Vehicles (TAVS) as probe supports [2§].

1.3.6 Conclusion

In this section, an overview of typical antenna measurement ranges has bee given. Then
different materials and devices specific to antenna measurement have been introduced:
the properties of absorbing materials and the choice of the probe are essential matters
for precise acquisitions. Positioners, that operates the movements with respect to the
coordinate systems have also been presented.

1.4 Antenna measurement range for the thesis experiments

1.4.1 Introduction

The work of this thesis is focused on correction of antenna measurements. The ENAC
antenna measurement range has constituted a real asset to manipulate and perform such
measurements. This section is a presentation of the ENAC measurement range currently
used for research and teaching.

Section[1.4.2]is about the characteristics of the range and Section[1.4.3|presents an example
of antenna measurement in the chamber.

This document may not be reproduced, modified, adapted, published, translated in any way, in whole

or in part, nor disclosed to a third party without the prior written consent of ENAC. © 2023, ENAC

29



REPUBLIQUE
FRANGAISE
Lo ENAC

Fraternité

1.4. Antenna measurement range for the thesis experiments

1.4.2 Characteristics of the ENAC measurement range

The ENAC measurement range is a non-shielded anechoic chamber of size
3.60x2.40x2.20m as shown in Figure (1.3} This is intended for near-field and far-field
measurements. The total bandwidth goes from 1 to 14 GHz (L, S, C, X and the beginning
of the Ku bands). The measurements are defined in the frame (X,§,2), as displayed in

Figure [1.17]

A
Figure 1.17: Sketch of the ENAC measurement range

Inside the anechoic room, two rotation positioners CTS118-2 and CTS261, developed by
CT systems [61], support the antenna and the probe, respectively. Both positioners are
controlled by the software ANT32. The support of the [AUT] is a roll-over-azimuth as
shown in Figure with a maximum load of 1.5 kg. This can successively rotate about
two axes. As shown in Figure the first rotation is parameterised by the angle 6 €
[0°,360°[, with a 0.05° precision, and the second one by the angle ¢ € [0°,180°[ with a 0.01°
precision. For § = 0° the axis Z is pointing from the AUT to the probe.

The probe can turn about the axis Z with an angle y € {0°,90°} to measure both polari-
sation components of the field.

This parameterisation of the rotations is the usual one to obtain the complete pattern of
the [AUT] even though the positioners are capable of angular redundancy. For example,
the 6 and x rotations can be performed on [0°,360°] intervals.

The ENAC test range includes two reference antennas, both being able to be the probe or
the calibration antenna: The RF SPIN DRH18EX antenna has a frequency range of 800
MHz to 18 GHz, and the RF SPIN DRH10E has a frequency range of 700 MHz to 10.5
GHz. They both are linearly polarised. Their radiation patterns are illustrated in Figure
LI
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(a) RF SPIN DRHI8SEX an- (b) RF SPIN DRH10E antenna
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(c) RF SPIN DRHI18EX radiation pattern (d) RF SPIN DRHI10E radiation pattern

Figure 1.18: Reference antennas with their radiation pattern at 1 GHz, .

Both antennas are connected to a vectorial network analyser (VNA]) ZNL14 Rhodes &
Schwarz. This has a power going from -40 dBm to 0 dBm. The ANT32 software
commands the[VNA] and the controller commands the positionners via ethernet ports. For
each position, the S parameters of the antenna are obtained and stored into ASCII and/
or SQLITE files. They are then post-processed by Processing of ANtenna TEsts REsults
(PANTERE]), a Python library developed at ENAC. A calibration Unknown Through can
be done before the measurement. The absorbers are Siepel absorbers SEA-PM30, their
performances in terms of reflectivity are depicted in Figure [[.12D]

1.4.3 Example of measurement

As an example, a linearly polarised rectangular patch has been measured in the chamber.
A picture of the antenna is given in the Figure [[.19a Its dimensions are 3 cm X 3 cm
with a ground plane of 18.5 cm x 18.5 cm. The substrate is FR4 of 1.5 mm width, with
relative permittivity €, = 4.5. The central frequency is 2.454 GHz.
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Feko
Uknown thru
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(a) Patch antenna (b) Gain in the plane ¢ = 0°

Figure 1.19: Measurement of a rectangular patch antenna

The gain of the antenna, obtained with three different methods is plotted in Figure [I.19b}

e The first one is obtained by a Altair Feko simulation. At boresight, the gain is 1.86dBi.

e The second one is the gain computed by a mesurement in the ENAC test range, after
undergoing a calibration process referred to as "Unknown Through," as detailed in
Section [I.3.2] This computation is specifically conducted under far-field conditions and
takes into account the known probe gain. In the axis, the gain is 1.86dBi.

e The third one is the gain measured with a relative calibration, performed with the RF
SPIN DRH10 as the calibration antenna [2].

The measured gain patterns agree with simulation, serving as an illustration of the per-
formances of the ENAC anechoic room, which is not an industrial room.

1.4.4 Conclusion

This section has introduced the ENAC measurement facility. The measurement range
has been presented, along with an example of measurement. Through this section, it has
been clear that mathematical tools are needed to describe and parameterise the motion
of the antenna in the measurement process. This work, in particular, focuses on antenna
measurements made in spherical geometries.

1.5 Conclusion

This chapter has established the context of the thesis and the main experimental aspects
of antenna measurements.

Firstly, a presentation of antenna measurement ranges has been conducted: various an-
tenna measurement environments and configurations has been described and comparisons
have been made in order to understand which environment and configuration is the most
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accurate, depending on the type of [AUT], the required accuracy, the available time to
perform the measurement, etc.

Secondly, typical antenna measurement equipments have been listed: the RF measurement
chain has been given to depict the global function of each piece of equipment. Then the
absorbing materials and their properties, different kind of probes, and mechanical systems
performing motions in the measurement range have been introduced.

Finally, the antenna range that has been used to perform antenna measurement during this
thesis has been presented. Its characteristics have been given along with a measurement
example.
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Chapter 2

Theoretical tools for spherical
antenna measurements

2.1 Introduction

This chapter assesses two main aspects of antenna measurement. Firstly, due to the ge-
ometry of the radiation of an [AUT] spherical geometry is the best to provide a realistic
representation of antenna radiation pattern |14]. Moreover, antenna measurements are
often post-processed, either to attenuate disturbances coming from the environment [63],
noise from the cables and electronical devices or to emulate far-field conditions [64]. Conse-
quently adequate mathematical parameterizing and analysing tools have to be developed,
along with adapted correction methods.

The objective of this chapter is to draw up a state of the art in antenna measurements
post-processing, in spherical geometry.

Firstly, Section [2.2 reminds the geometrical aspects to consider in a measurement problem
defined over a sphere. Those considerations lead to Section that introduces spherical
harmonics as defined by Hansen [6], a widespread and powerful tool to analyse antenna
radiation pattern and post-process antenna measurements. Illustrations of spherical har-
monics expansions are then presented in Section [2.4l Finally, Section addresses com-
mon methods of measurement post-processing [14,|1§].

2.2 Coordinate systems and operators

2.2.1 Introduction

The measurement of antenna radiation patterns involves the determination in one way or
another of signal levels with respect to position or direction in space. The objective of this
section is to introduce the geometrical tools and operators to parameterize measurements
over the sphere. Section [2.:2.2) is a reminder of the spherical coordinates, Section [2.2.3|
introduces the Euler angles and the rotation group and finally Section [2.2.4] presents the
rotation operators over the sphere.
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Coordinate systems and operators

2.2.2 Spherical coordinates

Due to the nature of the far-field radiation, the spherical coordinate system is widely used
in antenna problems. For measurement, it is necessary to precisely position the [AUT] in
the spherical coordinates, and then to rotate it in order to expose the entire pattern to
the probe.

Figure 2.1: Spherical coordinate system

Spherical coordinates are reminded in Figure [2.1] They are related to the cartesian coor-

dinates by
T = rsinfcos ¢,

y = rsin dsin ¢, (2.1)

z=rcosf

with 7 € [0, 400, # € [0,7] et ¢ € [0,27]. The associated local direct frame (7,8, @) is
given by

7 = sin 0 cos ¢& + sin O sin ¢ + cos 2,

D

= c0s 6 cos ¢& + cos O sin ¢ — sin 2, (2.2)

¢ = —sin @& + cos ¢F.

This local basis is constituted by a radial vector and two tangent vectors on the sphere S2.
In this PhD thesis, calculations are either performed on a unitary sphere, i.e. of radius 1
or on a sphere of radius . They are denoted S2, and S?, respectively.

The output of the measurement is a scalar or tangent vector signal defined on L?(S?), the
group of square integrable, i.e. of finite power, functions over the sphere.
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2.2.3 The Euler angles and the rotation group
As described in Sections [I.3]and [I.4] rotations are performed during measurement acquisi-
tion. They have to be parameterized, that is why the Euler angles have to be introduced.

The Euler angles are three angles € = (¢, 0, X< ), introduced by Leonhard Euler to describe
the orientation of a rigid body with respect to a fixed coordinate system. They can also
be used to orient one coordinate system with respect to another one.

In the Euler or zyz convention, any rotation can be described by three successive rotations
about three specific axes. At each rotation, the frame is modified, it will be noted (X, ¥, 2)
(X1,¥1,21) and (X2,¥2,22), as shown in Figure The rotations are as follows:

o First rotation is made about the axis 2 of an angle ¢, as shown in Figure [2.24]
e Second rotation about the axis §1 of an angle 6., as shown in Figure [2.2b)

o Last rotation is made about the axis Zo of an angle y., as shown in Figure [2.2

Y 4 %1 4 Y2
F1\ Pe 2\ Oe ¥3\ Xe
‘/— A
)/\(1 Z2 X3
be Oe Xe
Z X y1 z zy X2

(a) First Euler rotation (b) Second Euler rotation (c) Third Euler rotation
A
z

Pe

>
>

(d) 3D representation of the Euler angles

Figure 2.2: Euler rotation angles following the ’zyz’ convention
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Although many other conventions exist to describe rotations, the 'zyz’ Euler convention
is standard in antenna measurements. The Euler angles are a manner to describe a
rotation and are parameters of the 3D rotation group, often denoted SO(3), the group of
all rotations about the origin of three-dimensional Euclidean space R? [65]. As spherical
antenna measurements depend on rotations, they belong to L?(SO(3)), the group of finite
power square integrable functions over the rotation group.

2.2.4 Rotation over the sphere

Rotations on the sphere can be characterized by the rotation matrix R, which can be
parametized by the Euler angles (¢, 6, x.). This corresponds to the rotations described
in Figure[2.2] In this case, R¢ can be written as

Re=R., (Xe)Ryl(QE)Rn(ﬁbG)a (2.3)

with R, (¢¢), Ry, (0c) defined as

cos ¢ —sing. 0

R, (¢e) = |singe cospe O], (2'4)
0 0 1

cosf, 0 sinf,
Ry (6c) = 0 1 0 , (2.5)
—sinf, 0 cosé,

and R, (x.) is built as R, (¢c).

For a function u € L?(S?%), the rotation consists in reproducing the same function, else-
where over the sphere. Rotations are specified by elements of the rotation group SO(3),
parameterized by the Euler angles € = (¢, 0, xc). The position over the sphere is pa-
rameterized by the unitary radial vector #. For further convenience in the incoming
formulations, an operator is defined to relate the coordinates over the sphere (6, ¢) and
the corresponding position vector # such as

k1 [0, w[x[0, 27 > S?
0, 0) — 7. (2.6)

This operator provides the positions as defined in (2.1]), for r=1. The rotation of u is
represented by the rotation operator R, and it is defined as

(Reuw) (1) = u(y), (2.7)

with 7y the previous position and #; the new position vector of the function over the sphere.
This new position, see Figure is calculated with the three-dimensional rotation matrix
R, using

7 =R 7 (2.8)

over the sphere. The convention chosen is that the rotation is a transition from a reference
frame to a new one, linked to the rotated object, here the antenna.
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2.3. Standard vector spherical harmonics for antennas

Figure 2.3: Vector rotation

2.2.5 Conclusion

In this section antenna measurement coordinate systems and operators have been pre-
sented. They are used to mathematically describe the movement of the antenna required
to obtain the full radiation pattern. The data acquired is then post-processed by means
of algorithms based on mathematical models. Some of the most frequently used are based
on the spherical harmonics.

2.3 Standard vector spherical harmonics for antennas

2.3.1 Introduction

Spherical harmonics are a very helpful tool in the antenna measurement domain. They are
particular solutions to the Maxwell’s equations and form an orthonormal basis of L?(S?).
Thus any field defined on a sphere can be written as a sum of these functions. A parallel
can be drawn with Fourier series that permits the expression of periodic functions as a sum
of sines and cosines. In electromagnetic and antenna measurements, these functions are
used to analyse radiated fields on the measurement sphere. Vector spherical harmonics are
standard tools in electromagnetics, as detailed in classical books written by Stratton [27],
Felsen and Marcuvitz [66], and Van Bladel [67]. They are used to generate solutions to
the Maxwell’s equations or vector wave equation in spherical coordinates.

The objective of this section is to describe the standard vector spherical harmonics, as
defined by Hansen, which is a common convention in antenna measurements [6].

In Section [2:3.2] the scalar spherical harmonics are defined. Then in Section [2.3.3] vector
spherical harmonics are presented. In Section the expansion of an electromagnetic
field is given. Then the number of modes in spherical wave expansions is discussed in

Section [2.3.5
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2.3. Standard vector spherical harmonics for antennas

2.3.2 Scalar spherical harmonics

In an homogeneous medium, in the spherical coordinates system (r, 8, ¢), scalar spherical
harmonics are associated with the source-free Helmholtz equation with separate spherical

variables
(V2 + E*)u(r,0,9) = 0, (2.9)

where k is the wavenumber. According to , the scalar spherical harmonics can be
written as

1 - 4
Yonn(0,0) = EPA’”'(COS 0)e™?, (2.10)
with n € N, m € {-n,--- ,n} and P the normalized associated Legendre functions.

They form the canonical orthogonal basis for L?(S?) scalar functions on the sphere.

Any square integrable scalar function on the sphere u € L?(S?) can be expanded on
spherical harmonics. This can be written as

U(9,¢>)=i znj ConnYmn (0, ), (2.11)

n=0m=—n

with C,, ,, corresponding to spherical harmonics coefficients given by the usual projection

T 27T
Con = (Vo) = [ [ (0.0)¥75.,(0,0)sin 005 — //S u(6,6)Y;,(0,0)dS,
(2.12)

where (,) denotes the scalar product and * the conjugate of Yy, 5.
The definition of the scalar product is such as

< uyv>= //S u(6,0)0" (0, 6)dS. (2.13)

In order to describe the propagation of waves along r, a propagation term zr(f) is added
to the scalar spherical harmonics Eﬂ This yields the following solutions to the Helmholtz
equation

F’r(?f,)n(ra 0,¢) = Am,nzﬁf)(kr)ﬁ,'ﬂ(cos H)eim‘b. (2.14)
The normalisation coefficients A, , are given by
S 1
Amn = —= , 2.15
’ V271 /n(n+ 1) (2.15)
with
1 f =0
Sm = m o= (2.16)
(—sign m) for m # 0.

The radial function can be of four types. Two of them are associated with spherical Bessel
and Neumann functions that yield stationary fields. They are not used in this manuscript.
The two others are given by

) (1
(

R (kr) ingoin ,
(kr) mgoing (2.17)
¢ =+ Second-kind spherical Hankel z(") = h{®)(kr) outgoing.

n n

¢ = — First-kind spherical Hankel ,27(1_
(
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2.3. Standard vector spherical harmonics for antennas

Here are few details about these 2 types of harmonics:

e Second-kind spherical Hankel functions yield outgoing waves traveling away from the
coordinate system center, i.e, towards r — oco. They are singular at O. The radiation
of an antenna, e.g. the far-field pattern, can be represented with these waves.

o First-kind spherical Hankel functions yield ingoing waves traveling towards O the co-
ordinate system center, i.e, towards r — 0. They are singular at O.

Although scalar spherical harmonics are convenient to manipulate, they are inconsistent
to describe vector quantities. Indeed at the poles of the sphere, the 8 and ¢ components
of the field are subject to artificial fast variations, due to the orientation of the spherical
coordinates local unit vectors that changes in an uncontinuous way, as shown in Figure
Since the electromagnetic fields are represented by vectors fields, vector spherical
harmonics are chosen for this work.

Figure 2.4: Fast variation of the orientation of the 0 vector close to the pole of the sphere

2.3.3 Vector spherical harmonics

To describe vectors over a sphere from scalar quantities, e.g. an electric field, the potential
theory is generally used. This yields spherical harmonics that are either Transverse
Electric ((TE]) or Transverse Magnetic (TM]), with respect to 7. In this manuscript, vector
spherical harmonics are denoted by means of lowercase bold letters, which is the usual
convention for modes inside a waveguide .

The [TEl vector spherical harmonics for the electric field are given by

erml) = k\/(VFE), xr. (2.18)
For the TM field, we have
el — |1 x e, (2.19)

After the calculation of the derivatives, this yields for the transverse fields

tmn

o plm| plml
TE,(c) k\[Ang Jeimo [szn (6089)9 dPy "' (cos ) (47

sin 6 - do
(2.20)

c d dP,Lm‘ cos ) a impq‘q,m‘ cos ) ~
tTXfL fk;\[Amn —T(k:rz()(kr)) ”ms[ d(H )G—i— ( )(f) .

sin 0
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2.3. Standard vector spherical harmonics for antennas

For the radial component that will less often be used, we have

e/ i) =0,

T‘T% nC) = k fAme

The expressions for the magnetic field can be obtained by applying the Maxwell-Faraday
equation V x E = —iwuH . For the transverse field, this yields

. , (2.21)
(n + D 2L (kr) PIml (cos 0)e™ .

; plml . plml
TE() ik A 1 d (kzrz( )(k:r)> imé ldPn (cos 9)é+ imPy ' (cos ) (4 ?

b T e dker do sin 0
Ve ol il (2.22)
c ik imPy" (cos @) »  dPy" (cosf)
hTM’():LAmn()k imep 0— )
vmn =z Amnzn (kr)e sin 0 AT
For the radial components, we have
prete = K A0 E D) @) (1) Bl (o )i,
V¢ kr (2.23)
hyps) = 0.

2.3.4 Expansion of a field on spherical harmonics

According to [@], the electric field in a source-free region of space may be written as a
weighted sum of spherical harmonics. For the transverse components of the fields, this
can be expressed as

TE(+) TE,(+) TE() TE,(-) TM(+) TM,(+) TM() TM,(-)
Z Z Q tm7n +Q etmn+Q etmn +Q tm,n?

n=1m=-—n

(2.24)
oo n
Ho=3 > QubOh ) + QubOnfn) + Qun Oy + Qun O,
n=1m=-n 7 '
In a more condensed way, this can also be expressed as
B= Y NY Y @ilelr0.0)
Pp=TE,TM c=*+ n=1 m=-—n (2‘25)

H=- Y ZZZQ IR (1,0, 9),

p=TE,TM c=%+ n=1m=-n

where

o (= \/g is the wave impedance of the medium, in free-space, {y ~ 1207 €.

ﬁl(n) are the spherical harmonics coefficients, with p = TE or p = TM, they are

computed from the orthogonality relation @, which is given by

P — //2 e X ) H, - (r X etpﬁ;)} ds,.,
52
QP () — //2 r X etp_” ) (htp7—(737,n 7%)} S,
52

(2.26)
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2.3. Standard vector spherical harmonics for antennas

with dS, = r?sin 0dfde.

From now on, the summation in (2.25) will be noted

Y OYY Y =Y. (2.97)

p=TE,TM c=+t n=1m=-—n pcmn

This summation over ¢, p,m and n may be depicted in an (n,m) coordinate system (the
nm plane) where all values of n and m present in the summation can be indicated. To
each of these points correspond four terms of the summation, i.e. the terms with p=TE
or p=TM and ¢ = + or ¢ = —. The index transformation and the nm plane is illustrated
in Figure 2.5

Qi @by ert?
. ) °
1
Qg Q) @by @l @l
[ ] [ ]
2
QU Qg @My @bl Qny @y opy
. [ ] [ ] [ ]
3
QU @y Q@ @ @ Qny @l oY eny
[ ] [ ] [ ] 4 [ ] [ ] [ ] [ ]

n

Figure 2.5: Table of the spherical waves coefficients

The spherical wave functions are power normalized such that the radiated power is given
by

1
Paa =5 Y IQHSP2. (2.28)

pmn

Finally, Figure [2.]] gives an illustration of the first spherical harmonics. As expected, the
first harmonics with n = 1 have slow variations, either in elevation or azimuth. When
n increases, the field associated with the spherical harmonics shows more variations, in
different directions.
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n/|m| 0

@

®
@
Se

Table 2.1: Amplitude of the spherical harmonics electric field for n € [1, 3] and m € [—3, 3]

3

The norm of the electric field has the same shape for p =TE,TM but the components of
E are not the same. The spherical harmonics also present variations in ¢ that are not
visible in || E||, as it only impacts the phase. These variations are visible in [2.6| where the
real part of Iy is displayed for n = 1, m = 1 and p =TE,TM.

\ | /‘

(a) TE component of Re(Ey) forn =1, m = 1(b) TM component of Re(Ey) for
n=1m=1

Figure 2.6: Behavior of the real part of the E4 component of the spherical harmonics, for
n=1m=1and p =TE,TM.
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2.3.5 Number of modes in spherical wave expansions

In theory, an electromagnetic field may contain an infinity of modes. However, for a given
antenna, the modes can be considered to be of limited bandwidth in n, that depends on its
size relatively to the wavelength. The active and reactive power of the spherical harmonics
are associated with the real and imaginary part of the Poynting vector S = %E x H*,
respectively. The active power corresponds to the radiation power which is the propagating
part of the radiation.

To study the behavior of the radiation, the wave impedance is interesting as its real part
is associated to the active power and the imaginary part to the reactive power. For a
spherical harmonic, for ¢ = +, in the case TE and TM, this impedances are is given by

: 1 d ()
o B0 E¢TE ) e (k:rzn (k:r))
e H¢TE’(+) - _HeTE’(+) e z(c)(kr)
n
E TE,(+) Ed)TE,(J,—) Z(C) (kr) (229)
. n

Tg»%H) - 9TE,(+) =T Em - ! c :

Hy Hy AL (k) (k)

From ({2.29), it is noticeable that the wave impedance depends on r. The phase of ("
is plotted in Figure 2.7l The [TE] harmonics yield a similar result.
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Figure 2.7: Phase of the TM mode impedance ¢,

For kr < n, the value of the phase yields Jm((p ) > PRe((nn). This means that the
reactive power is stronger than the active power. Thus, the associated harmonic stores
more reactive energy than it propagates. Consequently, inside a sphere of radius r, only
harmonics such that n < kr, i.e. with a strong enough radiative power, can be efficiently
excited. Thus the maximum harmonic level radiated by the antenna, noted Nayr, is given
by
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Naur = [kro] + na, (2.30)

where r( is the radius of the smallest sphere surounding the antenna, the square brackets
indicate the largest integer smaller than or equal to kry and the integer n; depends on
the required accuracy [6]. The value Nayr is named the bandlimit. Its evolution with rg
is shown in Figure[2.8 As the number of modes influences the variations of the radiation
pattern of the antenna, the larger an antenna is the more its pattern can present fast
fluctuations.

600
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w
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100

0 20 40 60 80 100
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Figure 2.8: Band-limit Nayt with regards to the size of the antenna

2.3.6 Conclusion

This section has presented the vector spherical harmonics, a key tool in post-processing
of antenna measurements. First, scalar spherical harmonics have been presented then
the construction of vector spherical harmonics and the expansion of a field on spherical
harmonics have been detailed. Finally the truncation of the number of harmonics has been
discussed. This basis is exploited in the next section to analyse the field of representative
examples of antennas.

2.4 Examples of antenna radiation pattern analysis with
spherical harmonics

2.4.1 Introduction

The main purpose of this section is to illustrate the use of spherical harmonics on different
types of radiation patterns. Different AUT cases used in the sequel are also presented. Note
that in this seciton spherical harmonics coefficients are normalized so as to have a radiated
power of 1 W. The first subsection is the demonstration of the analytical calculation
of the spherical harmonic coefficients of an elementary dipole. Then subsections [2.4.3] and
are the spherical-harmonics analysis of an half-wave dipole and of an horn antenna,

46



REPUBLIQUE
FRANCAISE
Fai ENAC

Fraternité

2.4. Examples of antenna radiation pattern analysis with spherical harmonics

respectively. Finally subection presents the analysis of a measurement performed in
the ENAC range.

2.4.2 Canonical test : electric and magnetic elementary dipoles

The objective of this section is to analytically derive the spherical harmonic spectrum of
a theoretical field. The fields of electric and magnetic elementary dipoles are established
as example, as their spectrum can be obtained analytically. The radiation of such dipoles
is studied thus only the outgoing part of the field is considered by setting ¢ = 4 in the
equations.

The far-field radiation pattern of an electric elementary dipole located at the origin is

given by

E:(r,0,0) = —ke(C
e (r,0,0) oC 1
e thr (2.31)

with w the pulsation and pe = p.Z the elementary dipole moment. If the dipole is oriented
along z, expanding the cross product yields

e—ikr
EZ(r,0,0) = —kw(

Arr

e sin 0. (2.32)

It is possible to recognize the far-field expression of the spherical harmonic

™, (+)

7
€01 T _\/E

sin 00, (2.33)

from the expression of the spherical harmonics detailed in ﬂﬁﬂ

Finally, the far-field radiation of the elementary dipole in terms of spherical harmonics is
given by

EZ(r,0,0) = Qor" e 0 (r,0,¢), (2.34)
HZ(r,0,0) = Q" h M (r,6,9), (2.35)
with '
™) 7uul<:\f§

. 2.36
0,1 \/@ Pe ( )

There is only one non-zero coefficient in the expansion.

A typical representation of the field and of the TE and TM spherical harmonics decom-
position is presented in Figure [2.9 for a z-oriented elementary dipole at 96.7 MHz. The
far-field radiation of the elementary dipole has been computed from a Feko simulation and
is represented on the unitary sphere in Figure [2.9a] The expansion of the field in terms of
spherical harmonics, in the Hansen convention is shown in Figure 2.9
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2.4. Examples of antenna radiation pattern analysis with spherical |

TE outgoing o}

TM outgoing

(a) Radiation pattern (dB) (b) Normalised TE and TM spherical harmonics coefficients
(dB)

Figure 2.9: Electric elementary dipole oriented along z

The fields produced by a elementary z-directed dipole and a elementary y-directed dipole
located at the origin are respectively given by

Egc(T7 6’ ¢) = ;Fiv,[i(Jr)etTE/Il(f (T 9 ¢) + Q e <+)etT1M1(+)(T7 97 ¢)7 (237)
with Qﬁ“’“’) =— ﬂ\ﬁ(“ = iwk/C/V127p, according to 6] and
EY(r,0,6) = Q15 Ve, 1 (r,0,0) + Q11" e1 1 (1,0, 9), (2.38)

with QTM = _Ti\fi(ﬂ = —iwkv/C/V127pe.

Similar expressions exist for magnetic dipoles oriented along either x, y or z [6].

2.4.3 Half-wave dipole

The analysis in terms of spherical harmonics of an electric half-wave dipole located at the
origin and oriented along the z-axis is performed in this section. The far-field pattern of
the dipole is simulated with Altair FEKO at 96.7 MHz and the analysis is performed by
means of a numerical evaluation of . Results are presented in Figure in which
it is noticeable that the dipole only radiates modes.
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TE outgoing o}

TM outgoing 0

(a) Radiation pattern (dB) (b) Normalised TE and TM spherical harmonic coefficients (dB)

Figure 2.10: Electric half wave dipole oriented along z

The radiation pattern does not present any variation along ¢, because of the rotational
symmetry about the vertical axis and the feeding of the antenna, so the only non-zero
coefficients satisfy m = 0. Moreover, the symmetry with respect to the plane z = 0
implies that only coefficients for which n is odd are non-zero. Finally, as the antenna is
larger than the elementary dipole, the radiated field involves more harmonic coeflicients.

2.4.4 Horn antenna

The third case is a horn at 5 GHz, fed by a waveguide with one mode TE10. This radiation
is computed with the method of moments. The corresponding far-field radiation given by
Altair Feko is shown in Figure[2.1T|and the analysis in terms of Hansen spherical harmonics

computed with a numerical evaluation of (2.26)) is represented in Figure
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(a) Horn antenna (b) E-field radiated by the Horn
(dB)

Figure 2.11: Horn antenna characteristics

TE outgoing

—20 =18 0 10 20
m
TM outgoing

Figure 2.12: Normalised TE and TM spherical harmonic coefficients of the horn antenna
(dB)

As the antenna is larger, the radiation pattern presents more variations and the number
of non-zero coefficients increases. The antenna presents symmetries about two planes,
y =0 and x = 0. As a consequence every coefficients with m even are equal to zero.
Due to its size (rp = 0.27m), the antenna cannot radiate coefficients of order greater than
Naur = 28, as explained in Section [2.3.5
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2.4.5 Measurement example

After testing the expansions on simulations, spherical harmonics analyses are performed
on measurement data acquired in the ENAC anechoic chamber. The gain of the antenna
under test is here obtained from the S21 parameter using an 'unknown through’ calibration,
assuming that the far-field condition is fullfilled and that the propagation is as in free space,
i.e. without disturbances. The antenna chosen for this study, developed by the ENAC lab,
is intended to be mounted on a drone to perform secondary radar measurement in situ,
for the D2R2 ("Mesure par Drone de Diagrammes de Rayonnement Radar’) project. This
antenna is a monopole antenna mounted on a patch antenna, as shown in Figure [2.13a]
Thus this antenna works on two frequencies : 1030 MHz with a vertical polarization and at
1575.42 MHz with a circular polarization. Those frequencies correspond to the secondary
radar frequency and to the GPS-L1 frequency, respectively.

A measurement of the antenna and the expansion in spherical harmonics of the field are
performed at the GPS frequency.

> 0.00 —18 000
—0.25 {1 } —15 025
—20 -0.50

~0.50

-0.75 J —25 -0.75

-1.00 = —-30 -1.00 ¢
-L0 0.5 0.0 05 1.0 -1.0 -0.5 0.0 0.5 10
u

% S
(a) D2R2 antenna (b) Radiation pattern of the patch antenna (dB)

0
-10.0 -7.5 -5.0 -25 0.0
m

~10.0 -7.5 -50 -2.5 00 2. i ; ! Al
m

(¢) Normalised expansion in spherical harmonics

(dB)

Figure 2.13: Analysis of the D2R2 antenna
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This antenna is very small relatively to the wavelength (20 cm), with rp = 8 cm. Con-
sequently, the bandlimit Nayr of this antenna is Nayr ~ 3, according to (2.30) which
corresponds to the result in Figure [2.13¢. However, higher order coefficients appear. This
is due to the defaults of the anechoic chamber. This antenna is asymmetrical, because of
the shape of the patch with two truncated corners and the single feeding. This is why its
spherical analysis is not perfectly symmetrical. However, the expected strong coefficients
are presents, for n = {1,--- 4} and m = £1.

2.4.6 Conclusion

This section has shown examples of antenna analysis in terms of Hansen spherical har-
monics. First of all, the mathematical expression of the elementary dipole far-field has
been analysed in terms of spherical harmonics. Then spherical harmonic spectrums of
different simulated antennas have been numerically computed: a half-wave dipole and
a horn. Finally, the measured field of an antenna in the ENAC anechoic room has been
analysed. This type of analysis is part of a typical post-processing of the radiation pattern
measurement.

2.5 Antenna measurement post-processing

2.5.1 Introduction

The measured data, in the form of S-parameters, provides valuable information about the
performance of the antenna and can be used to validate simulations. However, the raw
measurement data always needs to be processed and analysed to extract useful information
about the antenna’s radiation pattern, gain, directivity, and other properties. This is where
antenna measurement post-processing comes into play.

This section is an introduction to antenna measurement post-processing. In Section [2.5.2]
the near-field to far-field transformation is presented, then procedure to mitigate effects
of the environment are presented in Section [2.5.3] Finally in Section [2.5.4 methods used
to shorten measurement time are mentioned.

2.5.2 Near-Field to Far-field transformation

[NEEFT] is a technique used in antenna measurement to determine the far-field radiation
pattern of an antenna based on measurements taken in its near-field region |6]. This tech-
nique is used to avoid the need for large open spaces required for far-field measurements.
Firstly, the near-field pattern is expanded in spherical harmonics, then the contribution of
the probe in the expansion is compensated. This computation, generally done by means of
spherical harmonics, becomes simpler if the probe only radiates spherical harmonics such
that m = +1. Finally, the field of the antenna is reconstructed at any distance from the
antenna from its harmonic expansion [14].
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2.5.3 Correction of perturbations coming from the environment

Antenna measurements can be spoiled by perturbations coming from the measurement
environment. These perturbations can stem from a multitude of sources, ranging from
nearby structures to electromagnetic interferences and signal multipath effects. This sec-
tion presents post-processing correction methods acting on various aspects of the measured
signal.

2.5.3.1 Probe correction

In near-field measurements, the radiation of the probe has an influence on the measure-
ment signal. During the [NEET], it is essential to isolate the radiation of the [ATT]in the
measurement signal. In spherical geometry, this signal is modeled by an equation in which
the spherical harmonic expansion of the probe plays a role. Considering that harmonic
coefficients of the probe are known, it is then possible to identify the coefficients corre-
sponding to the radiation of the [AUT] and obtain its far-field radiation pattern @
Consequently, the choice of the probe is very important. Most of the time, they are cho-
sen relatively to the complexity of their spherical harmonic expansion, in order to obtain
efficient and robust correction. As a consequence, probes are commonly designed to radi-
ate only spherical harmonics with m = +1. For example dual polarized near-field probes
with only first-azimuthal modes are developed by MVG , as shown in Figures m
and NSI-MI [51].

Typical spectra of the spherical wave coefficients for the dual polarized wideband probe

U = +/-1 modes
Pn Pm
0 il

-10 -10
& -20 ® -20
2 2
2 ®
N N
L@
£ £
S S
S -50 > -50

M = +/-1 modes
-60 -60
£ -7 A

Figure 2.14: Spherical harmonics spectrum of the dual polarized near-field probes devel-
oped by MVG

However, the probe is not the only source of perturbation as other phenomena such as
multipath coming from the measurement chamber and its equipments.

2.5.3.2 Time gating

In antenna measurements, time gating is a technique that isolates the response of an
antenna in the presence of unwanted reflections or interferences. This method is based on
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the hypothesis that the undesired signals are delayed compared to the signal of interest, as
shown in Figure 2.15] If the measurement is made on a wide frequency range, an Inverse
Fast Fourier Transform ([FET) of the measurement can be done in order to obtain the
impulse response of the channel . Then, a time gating is performed by setting to zero
the signals delayed compared to the signal of interest, before performing a Fast Fourier
Transform (FET]) to come back to the harmonic domain. Thus this method is particularly
efficient for measurements in large chambers, where consequent delays exist between the
signal of interest and the reflections. This method is limited by the bandwidth of the
different elements: the probe, the [AUT] etc. Indeed, the delay between the multipath
must satisfy the condition [71]

|Bt| > 1 (2.39)

with B the bandwidth of the RF channel, defined by the bandwidth of the measurement
chain, 7 the delay between the multipath and the signal of interest. Thus this method
cannot be efficient in small test range or with antennas having a small bandwidth B.
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Reflector @

! Probe at the focus of the reflector

(a) Multipath in measurement chamber

Received signal
VYV VYN | 11| WYYV T SE—

Time gating ’ \

Signal after time gating

(b) Signal post-processing

Figure 2.15: Principle of time gating in antenna measurements

2.5.3.3 Current reconstruction and spatial filtering

A recent post-processing method relying on the equivalent current representation of the
antenna has been developed ,. This method consists in measuring the near-
field antenna radiation pattern and to convert it to equivalent current on a volume, often
called a Huygens box. This equivalent current representation has many utilizations, it
can characterize an antenna, be embedded to a Electromagnetic Compatibility (EMC])
simulation, or used to localize unexpected sources of radiation in the near field of the
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[AUT] [13]. Based on this equivalent current representation, it is possible to eliminate
undesired radiations, this method is called spatial filtering .

The Insight software developed by MVG [12], is based on this approach. This software
allows to yield an equivalent model in the form of a near-field Huygens box, starting from
the antenna measurement. Simulations and measurements can be used simultaneously in
the software. A typical case of utilization is presented in Figure [2.16

BTS1940 LINEAR ARRAY ANTENNA WHERE ONE ELEMENT
HAS BEEN SWITCHED OFF

@ Antenna Measurement Setup & Measured patterns: a problem
has been detected

74

- One element
- 3 is switched off

Figure 2.16: Insight use for antenna radiation pattern diagnostics

J Currents

It is also possible to correct signals in the spectral domain, on spherical harmonics .

2.5.3.4 Spectral filtering

Spectral or mode filtering consists in post-processing the spherical harmonics spectrum of
the radiation pattern of a measured antenna. The method relies on three steps: firstly
the spherical harmonic maximum level Nyt the [AUT] can radiate has to be calculated,
according to . Secondly the analysis in terms of spherical harmonics of the measure-
ment is performed, to a harmonic level n superior to the Nyt calculated above, which
implies a measurement sphere sampling larger than the antenna. Thirdly, every coeffi-
cients above Nyt are put to zero, indeed they cannot correspond to the [AUT] radiation,
its size does not allow it. Finally the inverse spherical harmonic transform is performed
to retrieve the partially corrected radiation pattern of the [AUTI

This method has been tested at ENAC, as part of a student project, on measurements
of an array patch antenna, as shown in Figures [2.17, 2.18 and [2.19] The measurement
has been performed outside of the anechoic range, to maximize perturbations, which is
why the figure [2:190] is very noisy. This spherical analysis is performed and truncated, as
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shown in Figure [2.18 Finally the field is reconstructed and compared with simulation in

Figure [2.19
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Figure 2.18: Unfiltered and filtered spherical harmonic spectrums of the measured patch
array
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Figure 2.19: Effect of the spectral filtering technique on the radiation pattern

Despite the poor quality of the measurement, significant improvements in the correspon-
dence of the simulated pattern and the filtered pattern is obtained in the process.

In an evolution of this spatial filtering is done in order to suppress scattering. The
main principle of the technique is to position the[AUTI with an offset from the measurement
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2.5. Antenna measurement post-processing

rotation center, while antennas are usually positioned in the center. In this way, rg, the
radius surrounding the rotating system is larger, and the spherical wave analysis goes up
to a higher N} ;. However, the antenna does not radiate higher order waves relatively to
its own coordinate system. Then a computation is performed to modify the spectrum as
if the antenna were at the center of the frame. Now every coefficients that are non-zero
between the level NayT and N AUT correspond to scattering.

However this method has no action on the coefficients of order n < Nayr so the in-
formation is only partially corrected. Other methods have been developed to separate
the contribution of the [AUT] from radiation of the environment, by means of spherical
harmonics.

2.5.3.5 Test zone field compensation

The Test Zone Field (TZF])) compensation method is a technique developed in [18]. The
[TZTF is the field illuminating the zone inside which the measured antenna is placed. This
method works by compensating for the effects of the test environment on the measurement

of the [AUT]

This breaks down in two steps. In the first step, the [TZF is determined by placing a
reference antenna (with known radiation characteristics) in the test zone. In the second
step, the knowledge of the [TZE] is utilized in solving the radiation characteristics of the
AUT. The method is schematized in Figure [2.20]

Reference antenna Measurement of the reference Test zone caracteristics
antenna in the test zone

Deconvolution
+ —

Measurement of the AUT Caracteristics
Test zone in the test zone of the AUT
Deconvolution AUT radiation
+ — m=lp-  pattern

Figure 2.20: Test zone field compensation

The method is based on the spherical-harmonics theory, as presented in Section [2.3]and is
applicable to both single-polarized and multi-polarized probes and multi-probe measure-
ment systems. The simulations and measurement results presented in demonstrate
that the method works reliably in various kinds of surroundings.

2.5.4 Speeding up antenna measurement

A major issue in characterization of antenna radiation patterns over the sphere is the long
field acquisition time. This is partially due to the sampling of the measurement sphere:
for example in near field, at least 2x Lyx L, measurement points are needed in order to
retrieve the entire spherical harmonics spectrum, for both polarizations, where Ly and
Ly are the number of sampling points along  and ¢, respectively. They depend on the
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size of the antenna [6]. For an equiangular grid, the number of points is then of order 4
Lg. For a grid of step 1°, this means that 131044 measurements are required. Besides,
an equiangular grid over the sphere does not provide an uniform sampling of the sphere
because poles are oversampled.

Consequently, methods have been developed to downsample the antenna measurement
to speed up the acquisition of the field. One of them consists in leveraging the sparsity
of the radiated field spectrum into spherical harmonic basis. This is made possible by
regularities and symmetries exhibited in the radiation pattern of the [AUT] Indeed these
properties allow the spherical harmonic spectrum to be sparse. This has been noticed
in |75] and exploited for antenna characterization in |9] and [10]. The sampling of the
sphere has also been reconsidered. New sampling theorem and techniques have been
developed in [76,/77,/78] and [79]. Sparse sampling method for antenna characterization
are put forward in [80]. Other bases than spherical harmonics can also be used as in [81]
where a reduced-order model approach is proposed.

2.5.5 Conclusion

This section has introduced common post-processing and correction methods, often applied
to data acquired from antenna measurement. The near-field to far-field transformation has
been introduced, four types of corrections of the environment have been presented: probe
correction, time gating, spatial and spectral filtering and test zone field compensation.
Finally, methods to decrease measurement time have been described.

2.6 Conclusion

This chapter has presented the tools and methods to post-process antenna measurement
in spherical geometries.

Firstly, the coordinate system and operators have been established, they are essential to
describe motions in the range. The spherical coordinates have been reminded, followed by
the mathematical tools and operators that relate to rotations over the sphere.

Standard vector spherical harmonics for antennas have been derived in the consecutive
section, firstly the scalar, then the vector spherical harmonics. Then the expansion of
electromagnetic fields has been detailed. This type of expansion is truncated because of
the properties of the spherical harmonics.

The following section has illustrated the previous ones by showing examples of expansions
in terms of spherical harmonics. They have been performed for several radiation patterns.

Finally, antenna measurement post-processing methods have been briefly introduced in
the last section of the chapter. The concept of near-field to far-field transformation, cor-
rection of perturbations coming from the environment and methods to speed-up antenna
measurements have been presented.
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Chapter 3

Spin spherical harmonics

3.1 Introduction

Spherical harmonics analyses are commonly encountered in the post-processing of antenna
measurement, and are prominent in many other science and engineering fields. Indeed,
data are often represented on spheres: in computer graphics [82], chemistry [83.84], geo-
physics [854/86,,87], planetary science [88,89./90,/91], solar physics and astrophysics [92,93],
among many others. For example, the anisotropy of the cosmic microwave background has
recently been studied over a sphere and analysed in terms of spherical harmonics [93], [20].
As a consequence, exact and fast algorithms for spherical harmonic analysis, based on sam-
pling theorems have been developed, notably in [21]. Many formulations of the spherical
harmonics exist, in particular, the notations and formalism as described in Hansen’s book
are often used in antennas measurement, as defined in Chapter [I}

The present chapter focuses on an alternative formulation for describing electromagnetic
fields with spherical harmonics, inspired by theoretical physics. This formulation is pe-
culiar to signals defined over a sphere and has advantageous properties for formulating
rotations. This leads to spin-weighted spherical harmonics, for which sampling theorems
and transform algorithms exist that are both stable and fast.

The plan of this chapter is as follows. In Section [3.2] the theory of the spin spherical
harmonics is presented. In Section the sampling theorem and the fast algorithms
that allow the computation of the spin spherical harmonics transform are described. The
contribution of this PhD thesis begins in Section [3.4] where the relation between the
Hansen and the spin spherical harmonics is derived. Finally, Section [3.5 shows that the
spin can benefit to antenna radiation pattern analysis through selected examples.

3.2 Theory of spin spherical harmonics

3.2.1 Introduction

Spin functions have been introduced by Penrose and Newman in quantum physics in [94] to
describe gravitational radiation. These functions are convenient to represent band-limited
signals, i.e. for which a limit exists in the fastness of the variations on the sphere. They
provide a unifying framework over the sphere, where spin s = 0 is suitable to describe
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scalar signals and s = £1 functions allow the representation of the tangent vector fields
to the sphere. Higher spin orders can be used to parameterize tensors , but this topic
is beyond the scope of this PhD thesis. Moreover, the spin has advantageous rotation
properties. In this section, the objective is to make a general presentation of the spin
spherical harmonics and its properties.

This section reviews the theory of spin spherical harmonics. To begin with, Section [3.2.2
gives the definition of spin functions. Then Section [3.2.3] presents the spin spherical har-
monics and Section derives the expansion of a spin function on these harmonics.
Next, Section [3.2.5] relates tangent vectors over a sphere to signals of spin 1. Finally,
global rotation properties of spin functions and associated tangent vectors are detailed in
Section

3.2.2 Spin functions

Spin functions are square integrable functions on the sphere, parameterised by the integer
spin s € Z, noted us € L?(S?). As explained in 95|, a spin function is defined by
its behavior under a local rotation, i.e. a rotation by x; € [0,27] in the tangent plane
centered on any spherical coordinates (6, ¢), with § € [0, 7] and ¢ € [0, 27[, as shown in
Figure Local rotations yield a spin dependent phase shift given by

(0, ) = e Nuy (0, 9), (3.1)

where the prime designates the local rotation of us by x; € [0, 27[. This is a local rotation
as every point on the sphere is associated with a different rotation, whereas a global
rotation consists in shifting the entire signal on the sphere and could be represented by
an element of SO(3).

Figure 3.1: Local rotation in the tangent plane to the sphere at a given point

Spin functions belongs to L?(S?), which means that they could be expanded in terms
of standard spherical harmonics. However the spin feature of these functions yields the
introduction of spin spherical harmonics.
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3.2.3 Spin spherical harmonics

The spin spherical harmonics are based on the scalar spherical harmonics defined in Section
2.3.2l They are noted Yy, € L?(S?) with s € Z, n > |s|, and |m| < n. They form an
orthogonal basis for L?(S8?) spin-s functions over the sphere. These harmonics can be
expressed using the spin raising and lowering operators, d (pronounced "eth") and 0,
defined by
0 i 0

= —sin®0 | = — | sin™%40
o (89 * sinea¢> e

= 0 i 0
0=—sin"°0(— — — | sin® 6
S (ae sinea¢) S

(3.2)

with s the spin order of the signal to which d or 9 is applied. Spin spherical harmonics
are related to scalar (spin-zero) harmonics by

(n—s)! 1/2 s
szmn(gaqb) = {(n—l—s)!} d Ymn(07¢)a for 0 < s < n, (3 3)
1/2 — .
Yaun(0,8) = (~1)° [2228]" 5-2,,,.(6,0), for—n < s <0,

where 9° and 0~° mean the operators are applied |s| times and Y;,, denotes the scalar
spherical harmonics as defined in . A signal of spin s can be expanded on spin-
s spherical harmonics over the sphere. In this PhD thesis, we will consider exclusively
functions with spin s = {—1,0,1}.

From (3.3) and (2.10)), the spin+1 harmonic is can be expressed as

B (n—l)!)1/2 (a i a>
Yimn = ((n+1)! 26 " smo 9g) '
( !

n= NP0 i 0N (L i
N ((n+ 1)!) (86 T g &p) (mpn (cosB)e ) (3.4)
_ 1 d]37|1m|(cos 0) B mP,'Lm|(cos 0) i
~ Ver/n(n+ ) dé smo )¢

Similarly, the spin—1 harmonic are given by

oy 12 <
Yt = ((n 1)) ( 0 i 8) Yo

(n+1)! 80 sinf 9¢
n—-1N\Y2/0 i 8 1 :
- v o v - plm)| imao
- ((n—|— 1)!) (80 sin 0 3¢> <\/%Pn (cos B)e ) (3:5)
B 1 dP,Lm‘ (cosf) mPJLm| (cos0)\ ime
T V2r/n(n+ 1) do sin 0 “

3.2.4 Expansion of a spin function on spin spherical harmonics

According to [21] the orthogonality and completeness of the spin spherical harmonics
allows any square integrable spin s function, us(6, ¢) to be expressed over the sphere as
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us(ev(b): Z Z sz,an,m,n(gﬁé)? (36)

n:‘s‘ m=—n

with C7, ,, corresponding to spin spherical harmonics coefficients given by the usual pro-
jection

Chun = (s Vi) =[] 0(0.0)Ve00(0. 0005 (37)

3.2.5 Spin components of tangent vectors over the sphere
Let us consider an arbitrary field V' that can be expanded on its radial and tangent
component as

V=V, +V,. (3.8)

The tangent vector V; on 82, can be expanded in two components such that

Vi(0,0) = Vi1 (0, 0)t41 + V_i(0, ¢)a—, (3.9)

with @1, 41, unit vectors defined by

4 0—id

1= )

! RER (3.10)
. 0+ip

u =

—1 \/i’

as in . The unit vectors (é, (;AS) are defined in Figure .

These vectors are rotation invariant, up to a phase term. Indeed, after a local rotation y;,
the unit vectors 8 and ¢ become

0’ = cos Xlé + sin XZ(ZA),

N N N (3.11)
¢’ = —siny;0 + cos ;.
Then the definition of the spin unit vectors gives
’a/ — 0/ - 7’¢,
+1 ﬂ
_ cos Y10 + sin x; b + isin ;0 — i cos v, (3.12)
V2 ’
= ein’&_,_l.
Similar results are obtained with
w_y =e Na_y. (3.13)

Consequently, under a local rotation, the components of the tangent vector become
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Vii(0,0) =V, -4k =V, -4k e ™

4;1( 9) =W b =V fine (3.14)

Vi(0,¢) =Vi-al, = Vi ale™,

This means that Vi1(6,¢) and V_1(0, ¢) are of spin +1 and spin —1, respectively. Thus,

they can be expanded on spin spherical harmonics of their respective spin, and (3.9)
becomes

00 n
‘/t(ea ¢) = Z Z V+1,m,nY1,m,n'a+1 + V—l,m,nY—l,m,nﬁf—l- (3~15)

n=0m=-—n

As for the radial component of V| it is unchanged under local rotation. Thus, the radial
component of a vector field is decomposed with spin s = 0 and can be expressed as

oo n
V, = V;«f = Z Vb,m,nYm,n"q- (316)

n=0m=-—n

Nevertheless, in this PhD thesis, the radial component is not often considered, as the
entire field can be characterized from the tangent components, according to the unicity
theorem [5].

Remarkably, the unit vectors of show a strong resemblance with the definition of
left and right polarisations of a field, meaning that in the far-field zone, a spin expansion
on s = +1 unit vectors is only about expanding the field on the right-hand and left-hand
circular components.

Spin signals also present a global rotation property, or rotation over the sphere, which
induces a particular phase shift.

3.2.6 Global rotation of a spin function over the sphere

Let us consider a rotation over the sphere, parameterized by the Euler angles, ¢ =
(de, e, xe). The positions before and after the rotation are defined, according to the
operator k defined in (2.6)), either by their spherical coordinates (6,¢0) and (61,¢1) or by
their unit vectors ¥y and #1, respectively.

The rotation Ry of the spin function us € L?(S?) over the sphere is defined as
(Rocts) (1) = e Xoy (R 1), (3.17)

with R, the 3D rotation matrix. Furthermore, x, € [0,27] is defined as the third Euler
angle of the rotation Ry = R;lR(e,(ﬁ’O) ie. € =(,.,xg)

The exponential factor appearing in is required to ensure that the rotation of a spin
s function results in a function with the same spin order. The magnitude of a spin function
is rotated in the usual manner (i.e. through a coordinate rotation), however the additional
phase factor means that the real and imaginary components of the signal are not rotated
solely by a coordinate rotation. For analysing scalar signals for which s = 0, reduces
to the typical rotation operator defined solely through a rotation of the coordinate system.
For the case s = £1, the occurrence of this phase shift is demonstrated in Appendix [A]
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3.2.7 Conclusion

Firstly this section has presented the notion of spin function, characterized by their local
rotation properties. Secondly, spin spherical harmonics have been introduced in order to
analyse spin functions over the sphere. Next, the spin spherical harmonic transform of a
spin function has been derived. Then the expression of tangent vectors over the sphere
has been given in terms of signals of spin +1. Finally, the specificity of the global rotation
of a spin function over the sphere has been reported. The next section will detail the spin
spherical harmonic computation over the sphere.

3.3 Sampling for spin spherical harmonic transform

3.3.1 Introduction

To perform numerical spin spherical transform, a sampling of the problem has to be done.
According to the sampling theory established by Shannon in [97], the entire information
content of a band-limited signal can be captured by a finite number of samples. This
means that there must exist a grid over the sphere that is suitable to expand band-limited
spin functions in terms of spin spherical harmonics. This Section is based on the work of
J. McEwen and Y. Wiaux [21] and introduces their sampling theorem, along with their
algorithm for fast spin transform..

Firstly, Section presents the sampling theorem, Section [3.3.3| presents the fast algo-
rithm and Section [3.3.4] presents its performances.

3.3.2 Sampling theorem

A band-limited signal has the property to be fully recoverable from its samples, and to
be expandable on a finite number of harmonics Nayr, as defined in for the case of
antenna radiation, at the condition that the sampling rate respects the Nyquist-Shannon
condition. A common issue in sphere sampling is to find a judicious 6-¢ grid that minimizes
the number of samples L. Indeed this configuration inevitably induces oversampling on the
poles of the sphere. As it is shown in Figure 3.2 sampling points are more concentrated
around the poles. The objective is to define a sampling grid as sparse as possible, without
losing information of the data defined on the sphere.

Many sampling grids exist to describe band-limited signals on the sphere. In particular, the
Gauss-Legendre quadrature may be used to construct exact spherical harmonic transforms,
that requires Lgr, ~ 2N3yp sampling points [21]. The canonical equiangular in 6 and ¢
sampling theorem on the sphere of Discroll & Healy [98] is also commonly used, which
requires roughly Lpy ~ 4N1§UT samples on the sphere.

In this thesis, the McEwen and Wiaux |21] sampling theorem is used which uses a number
of samples of 2N§UT. The proposed sampling, equiangular in 6 and ¢, is given by

2 1
011)\;AUT — M, for pg € {0,1, ..., NayT — 1},
2NayuT — 1 (3.18)
¢NAUT — ﬂ for py € {0,1,...,2NauT — 2}
Po 2NAUT — 1, » I ?

where NayT is the maximal spherical harmonic order, i.e., the band-limit of the signal.
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This grid is represented and compared with the Driscoll & Healy and Gauss-Legendre grids
in Figure[3.2] Notice that the Driscoll and Healy sampling theorem requires approximately
twice as many samples on the sphere. The McEwen & Wiaux algorithm requires less
samples than the Gauss-Legendre sampling: Lgr, — Lyw = 3(Naur — 1), which for small
band-limit can be significant. Finally, this is the only grid from which a sampling theorem
has been derived for spin signals. Every spin spherical harmonic transform performed in
this thesis is based on this sampling, represented in Figure

4

(a) Driscoll & Healy grid (b) Gauss-Legendre grid (c) McEwen & Wiaux grid

Figure 3.2: Sampling schemes for the exact representation of a band-limited signal for
Nayt = 16.

Note that Nayr, the band-limit of a given antenna under test is defined by Hansen in
(2.30). However, the objective of the PhD thesis is to correct defaults in the measure-
ment signal that can radiates higher harmonics than the antenna itself. Indeed, spurious
scatterings often yield fast variations in the measured signal. Thus, to be able to detect
those fast variations, computing more harmonics than the one theoretically radiated by
the[AUTlis of interest. Consequently an oversampling of the sphere has to be done. In this
case, the McEwen & Wiaux sampling step will be defined by the truncation level N € N
with N > Nayr.

3.3.3 Fast Spin Spherical Harmonics Transform

This section provides the key elements of the fast spherical harmonic transform algorithm
developed by McEwen & Wiaux in and . They allow to perform exact spherical
harmonic transforms based on fast Fourier transforms. The objective is to compute the
spin spherical harmonic coefficients gy, from the spin signal ug, as defined in Section

5.2.2)

3.3.3.1 Formulation with Wigner functions

The Wigner functions Dy, ./ (a, 8,7) forn € Nand m, m’ € 7?2 form an orthogonal basis for
L2(SO(3)) the space of square integrable functions on the rotation group. These functions
can be parameterized by the Euler angles (o, ,7), see Section Spin spherical

harmonics correspond to particular values of the Wigner functions [100]. Indeed, we have

s [2n+1 .
Ysmn = (—1)%/ . Dy _(9,0,0). (3.19)
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Besides, the Wigner functions can be written as
Dpy (@, Boy) = ey, i (B)e ™™, (3.20)

where the d-functions dy, ., are defined by

Tt () = \/ e (i 8) " (eos ) B o),

(n+m)l(n —m)! 2 n-m
(3.21)
where P,Ea’b)(.) are the Jacobi polynomials. These functions can also be defined by
n o (B) =™ Z A AR ePP (3.22)

where A7, = d, (5). The exponential factors in and ( allow one to make
use of Fourier series to express the spin signal u deﬁned in Sectlon @

3.3.3.2 Forward and Inverse Fourier transform protocol

For a band-limited signal, inserting (3.20]) and (3.22]) in (3.7)), the spin spherical transform
can be written as

. eomes Pn+1 R AR AP

Cm,n = (_1) ? + T Z pmAp _SGgmp, (323)

where i
Gy = / i 0G o, (0)e~ 700 (3.24)

0
and )

Gan(®) = [ u.(6.0) ™o, (3.25)

0

This formulation shows similarities with Fourier series, thus [FET] could be used to com-
pute the forward spherical harmonic transforms rapidly, after the sampling of the sphere.
However, this type of transform is only defined for periodic functions. Consequently, a
periodic extension in 6 has to be done, by extending to 27 in 6 . The sphere
becomes a torus, as shown in Figure This extension has to ensure the symmetry of
the representation in the new domain. Thus the extension of G, is defined as

(3.26)

~ ) Gam(6), for 6 € [0, 7]
Gsm(0) = { (—1)"™T5Gg (27 — 6), for 6 € [m, 2.

Then spin spherical harmonic coefficients g, are computed from (3.23)).

Finally, to perform the inverse transform and obtain us(6, ¢), similar steps are followed,
in reverse, as detailed in . The additional samples computed for the extension in the
6 domain (m, 27) are discarded.
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(a) fs € L(S?,dQ(w)) (b) fs € L?(S?,d%x)

Figure 3.3: Representation of the periodic extension of earth topography on the sphere
from [99], from the sphere to the torus

Note that the choice of N as a power of 2 optimises the computation of the fast Fourier
transform.

3.3.4 Performances of the fast algorithm

This section discusses the advantageous performances of the McEwen & Wiaux algorithm.
The objective is to show the advantage of this algorithm, compared with the Driscoll
& Healy algorithm and the Gauss-Legendre algorithm. Firstly the complexity of the
algorithm will be discussed in subsection [3.3.4.1] Afterwards, its numerical accuracy and
computation time will be analysed in subsection [3.3.4.2]

3.3.4.1 Complexity of the algorithm

The forward algorithm consists in two [FE Tk to compute and (| - with compu-
tational complexity O(N?log, N) and a sum for (3.23) that is O(N 3) [21]. Consequently,
the overall complexity is O(NN3), same for the inverse transform.

It is possible to reduce the cost of the computation by precomputing and storing the
values of the Wigner functions. This precomputation requires O(N?) storage, this is what
is done in the Driscoll and Healy algorithm. However, for high band-limit signals, the
storage is very demanding, for example for NV = 4069, the required storage would be of 77
GB. Consequently, McEwen & Wiaux have proposed not to perform precomputation and
to prefer recursion to compute the Wigner d-functions, using the method of Risbo [101].

3.3.4.2 Numerical accuracy and computation time

The following experiment has been proposed in |21] and tested within the framework of this
thesis. In this paragraph and in the following sections and chapters of this thesis, experi-
ments are performed on a 1.9 GHz Intel CPU computer, with 8 cores and 16 GB or RAM.
A band-limited test signal defined by uniformly random spherical harmonic coefficients is
generated on the sphere, by the use of an inverse transform. Then a forward transform is
performed, with the SSHT library [102], to compute back harmonic coefficients.

e Numerical accuracy is measured by the maximum absolute error between the ini-
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tial spherical harmonic coefficients u2,,, and the recomputed values u

MaXyy pn, [UWspyn — UWonn s s shown in Figure [3.4a]

r

smny 1€, €p =

e Computation time corresponds to the time taken by the algorithm to perform the
inverse and forward transforms, as shown in Figure [3.4D]

The results of the tests on numerical accuracy and computation time are shown in Figure
with respect to the band-limit N. The performances are compared with the following
algorithms: the Driscoll & Healy algorithm and the Gauss-Legendre algorithm.

10°

—e— McEwen & Wiaux LVl McEwen & Wiaux
102 Gauss-Legendre Gauss-Legendre
—e— Driscoll & Healy 109 | —*— Driscoll & Healy

10-4 — ow?)

1076

. ﬁ\ﬁ o
10712 10!
10734 / 10!

-16
10 25 26 27 28 29 210 211 212 25 26 27 28 29 210 211

N N

(a) Numerical accuracy (b) Computation time

Figure 3.4: Performances of the sampling theorems.

For each algorithm, the accuracy is very high, and goes approximately to the machine
precision, even if the error increases with the band-limit. The Gauss-Legendre algorithm
goes unstable between N = 1024 and N = 2048, while the McEwen & Wiaux algorithm
and the Driscoll & Healy algorithms do not suffer such a limitation. The McEwen &
Wiaux algorithm is slightly more accurate .

3.3.5 Conclusion

This section has introduced the sampling theorem developed by McEwen & Wiaux, on
which is based the fast spin spherical harmonic transform algorithm presented afterward.
Finally the performance of this method have been discussed. This algorithm has presented
great advantages in terms of calculation time, precision and stability, and is thus of high
interest regarding the analysis of spherical antenna measurements.

3.4 Relation between Hansen and spin spherical harmonics

3.4.1 Introduction

This thesis introduces two approaches for formulating spherical harmonics, each with its
own set of advantages and limitations. The Hansen approach represents the commonly
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employed method in antenna radiation pattern analysis, accounting for wave propagation
effects. The specificity of the spin is its capacity to expand data into various forms (scalar,
vector, tensor), its stability under global and local rotations, and its suitability for high
bandwidth applications. Additionally, the spin harmonics have been developed along with
efficient and stable algorithms. However, the spin harmonics does not inherently capture
wave propagation characteristics. Consequently, it is of interest to establish a relationship
between these harmonics.

Hansen spherical harmonics and spin spherical harmonics are very close. The objective of
this section is to show and formulate this correspondence. To begin with, the quantities
and expansions considered are reminded in Section [3.4.2] and the relations between the
coefficients are given in Section

3.4.2 Field components expanded in spherical harmonics

In this section, we will work on the spherical harmonic transform of the following tangent
vectors

r

V¢
The constants are chosen so that the precision of the transform is not dependent on r and
so that E; and Hy are of the same order of magnitude. The expansion can be written as

Ei(r,0,9), and —iry/CHy(r,0, ¢). (3.27)

Ei(r0.6)= Y Z (1) Ve (6, 8) (6, ),
smon (3.28)

(7“ 9 ¢ smn(e d)) ﬁs(07¢)7

smn

with C:° and C):°, the spin coefficients associated with the transverse fields Ey and

H.. They are given by

c;:fm—% B(r,0,6)Y7, (6, 0)3(0, 9)dS,

(3.29)
CO0 (1) = —ir /T // H (1,0, 6) Y (0, 8)82(6, 6)dS.

3.4.3 Relation between harmonic coefficients

The relations between the spin and the Hansen spherical harmonics coefficients are derived
here. The objective of this section is to express the spin coefficients Cfy);* and C):* in

function of the Hansen coefficients Q%Z). From 1} and 1) the transverse electric
field can be written as

f 3 CEE() Yo s = > QUDel). (3.30)

s,m,n p,c,m,mn

The computation of the transform, according to (3.7)), gives for any values of s',m’, n’
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E

<Eta Ys’ m/ n’us > - C(E> o (r)

m’,n/

Z Qn e (c) <etp, c Yot Us'>
premn 3.31
_ (TE) (TE) (c) N ( )
Z Q < }/;’,m/,n’ us’>

c,mn

QO (e ¥y ).

For the sake of conciseness, we introduce the notation

1 d

P (kr=) (kr)) = {9 (kr). (3.32)

We are going to develop here each term of the sum, for p = {TE, TM} and ¢ = +

For s’ = +1, the TE term of the sum becomes

(eml? Vi ) = [[| bv/Es e
S2

[imﬁllml(cos 0) A dP,Lml(cos 0) ~

(3.33)
0 — ¢] Yl m/n’ quS

sin 6 dé

By computing the inner product between the unit vectors, we end up with

limpyllm'(cos 0)9 dPJLm‘(cos 0) J’] ar = [imﬁ'ﬁ'(cos 9)0A df_’JLm|(cos 0)(2)] ‘ (é + zq3>

sin 6 B d6 sin 6 B do V2
i mPm (cost) apym (cosf)
V2 sin 0 dé ’

(3.34)
which corresponds to Y1, n, the spin harmonic of (3.4]), up to a multiplicative constant.
We finally have

- plm| 5lm| )
imPp (cos®) 5 dPp '(cos®) A ., i
l sng 0 A R -y SR XS (3.35)

\@SmAmn emo
from (Z15), (216) and @),

Thus, due to the orthogonality of the spin spherical harmonics , (3.33]) becomes

(et Vi 1) = ”mk\/ © (kr) / V7 VimndS

- 1877; k \/Eznc) (kr)(sm,m’ 5n,n’ )

(3.36)

with ¢ the Kronecker symbol.

The calculation is similar for p = TM and s’ = +1 and is developed in Annex . This
yields
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C ~ Sm c
<etTTI,\L/I’,7(1 )7 Yl,m’,n’ u1> - _ﬁk\/gdzg )(kr)(sm,m’(sn,n" (337)

Finally, the electric field spin +1 coefficients are related to the Hansen coefficients by

Sm c c c
Coitr) = ke 32107 2 ) = @it )] (3.39)

Now, for s’ = —1, the inner products of (3.31]) become

TE,(c) ~ 1Sm
<et m,n )Y—l,m’,n’ u71> k?\/iZ k‘?" m, m’én n’s

(3.39)
<etTTI\Tj,[:T(LC)7Y—1,m’,TL/ ﬁ—1> k\fdz (k7)0m, m? On -

The computation are detailed in Annex . Finally, for s’ = —1, the relation between the
spin and the Hansen spherical harmonic coefficients is

’I’L

CE ) =Tk 3 [iQE 2 (k) + Q15 d L) (k)
’ V2 4 | k (3.40)

Similar computations are derived to obtain C{i":*(r). The final relations can be gathered
in a matrix form given by

O (r) i) s () —ds D () —delD ()] [Qun
CRITIO o | s sk ) s a0 ||
Cor ™ (7) V2 | =de$P (lr)  —dz$) (kr) (kr) iz (k) | [ Qoo™
() dewP (kr)  dey ) (kr) izl (k) D) J Ll

(3.41)

The inverse matrix is calculated by means of a Gaussian elimination and the properties of
the Wronksian associated with spherical Hankel functions

—2i
(kr)*

dz) (k)25 (k) — d2() (k) 200 (k) = (3.42)

These operations are detailed in the section of Annex [C] The matrix obtained is

QTEE{(H —dzy(f)(kr) dzn ( ) zzn (k‘r) izﬁf)(kr) Cﬁ,]i);fl(r)
QBN s kr dz,s )(kr) <+>( kr) izD (k) =i (k) || O ()
MO 92 | =i (k) izl () fdz,(f)(kr) —dz57 (k)| [ O ()
n{}\f{(f) nﬂ(kn‘) —iz(t )(k;r) dzy(fr)(k;r) dzﬁfr)(kr) Ch ()
(3.43)

Finally, we have obtained a rigorous formulation, under the form of an invertible matrix,
to pass from a convention to another.
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3.4.4 Conclusion

The connection between the Hansen and the spin spherical harmonics has been estab-
lished. This connection finds its primary utility in transforming a given field using the
spin spherical transform and subsequently converting it into Hansen coefficients. The
primary benefit lies in the efficiency of the McEwen & Wiaux algorithm, along with the
added convenience of the spin convention when exploring the polarisation characteristics
of the field.

3.5 Analyses of antenna radiation patterns by means of spin
spherical harmonics

3.5.1 Introduction

This section presents spherical harmonics analyses for different types of antennas for which
radiated fields come from theory, simulations or measurements. The main objectives are to
illustrate the theoretical formulations provided in this chapter and to test the performance
of the SSHT algorithm. We want to evaluate the benefit of the spin for antenna radiation
analysis. The simulations are all performed with a total radiated power of 1 W.

Firstly, in Section the study of the spherical harmonic transform of elementary dipoles
illustrates the specificities of the spin harmonics and the relation with the Hansen har-
monics.

Secondly, in Section the spin spherical harmonic transform of a simulated horn
antenna radiation illustrates the performances of the spin transform.

Next, spin spherical harmonic transforms are applied on measurements performed in the
ENAC anechoic chamber [3.5.4

Then, in Section [3:5.5 this transform is applied to the radiation pattern of an antenna
mounted on an aircraft, to observe the ability of the spin expansion to analyse such
radiating large object.

Finally the bistatic [RCS| of an aircraft is simulated in Section and analysed up to a
very high band-limit, highlighting the accuracy and performance of the algorithms used
in this thesis for very large systems.

3.5.2 Elementary dipoles

In this section, we focus on the case of the elementary dipole, as described in Chapter [I}
Here, the objective is to formulate and illustrate its transform in terms of spin spherical
harmonics. Note that in this section and the following, the amplitude of the coefficients
should not depend on 7 since the computation is performed in the far-field zone of the

antenna. Indeed, in the far-field zone the functions 27(l+) and d%lr (krzsr) (kr)) in the matrix

1} behaves in amplitude in 137 The far-field radiation of the z-oriented elementary
dipole in terms of spherical harmonics is given by (2.34) and (2.35). The only non-zero
coefficient is QOT&V[ ’(+), so according to (3.41)), the only non-zero coefficients of the spin

spherical harmonic transform are such that n = 1, m = 0. In terms of spin spherical
harmonics, (2.34) can be written as
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EZ(r,0,9) = JZ(C(E ) Yiaon g + C(E)’ (r) Y_101 ﬁ—1>,

(3.44)
H}(r,0,¢) = T\/Z (C(H) ) Vv @41 +C(H>’ ") Yor0 ﬁ—l),
with
CEPH ) = —C ) = —hr 22 Qen P dzf (hr),
V2 (3.45)

_ Sm
Ot () = O () = r fQonA izt (kr),

according to ( - ) and (| -

To serve as an illustration, the far-field radiation of the elementary dipole has been com-
puted from a Feko simulation and the spin spherical harmonic coefficients have been
computed with SSHT. The amplitude of the spin coefficients is represented in Figure [3.5]
The spin coefficients of the electric field is represented in Figure and the ones of the
H-fields in Figure [3.5b] We observe that this computation corresponds to the theoretical
analysis of as the only non-zero coefficients are the ones with n =1, m = 0.

r 0
E spin+1 I H spin+1
=10

-20

c3 —30

(a) Normalised amplitude of the spin (b) Normalised amplitude of the spin
spherical harmonic coefficients of the E spherical harmonic coefficients of the H
field (dB) field (dB)

Figure 3.5: Spin spherical harmonic transform (dB) of the elementary dipole radiation

In order to illustrate the relation between the polarisation of the field and the sign of the
spin, a simulation of a purely circularly right polarised field has been performed in Feko,
for a frequency f = 96.7 MHz. This antenna is built from the addition of an electric
elementary dipole and a magnetic elementary dipole in phase quadrature, both oriented
along z. The spin spherical harmonics transform of the simulated far field is given in
Figure [3.6]
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E spin+1

ro
H spin+1
=10

Figure 3.6: Spin spherical harmonics transform (dB) of a single polarisation elementary
dipole

As expected, this transform shows that a field in right-hand circular polarisation only
yields 41 spin spherical harmonics.

3.5.3 Horn antenna

The antenna considered here is the same horn antenna as in Section [2.4.4] The objective
is to compare the performance of the spherical harmonic transform algorithm proposed
in this thesis (spin transform with SSHT and conversion into Hansen coefficients), with
the algorithm implemented in a commercial over the shell software. To do so, spherical
harmonics are computed either with our Python algorithm or directly in Feko.

The horn and its radiation pattern are represented in Figure [3.7 The radiation patterns
in co and cross polarisations for ¢ = 0° and ¢ = 90° are represented in Figure[3.7bl The co
and cross polarisations of the field, as defined by the Ludwig-3 definition, are illustrated on
the unit sphere, in Figure and [3.7d], respectively. The spherical harmonic transform
is illustrated in Figure |3.8]

The McEwen & Wiaux grid is used, with the sampling grid parameterized by N = 256.
This means that the spherical transform of the field is computed up to N = 256. The
sphere is oversampled because the antenna being quite small (rg = 0.27m), according
to , it only radiates spherical coefficients up to Nayr = 28. Consequently, the
coefficients until N = 256 have not been represented in Figure [3.8]

Once computed, we can observe that the highest coefficient order is n = 13. Indeed if we
consider that the aperture radiates, rather than the entire antenna, g is reduced to 0.12
m, which makes Nayt = 13.
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Figure 3.7: Horn antenna characteristics

The co-polarisation of the horn is linear. A linear polarisation can be written as the sum
of a RHCP and a LHCP components. Thus, the spin spherical harmonic coefficients are
of the same order between the spin +1 and spin -1. The conversion to Hansen spherical
harmonics has been performed and the results for TE/TM and for ingoing and outgoing
components are shown in Figure [3.9
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Figure 3.8: Spin +1 and -1 expansion of the simulated field of a linearly polarised horn
antenna (dB)
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Figure 3.9: Hansen expansion of the radiated field of the horn computed from the spin
expansion (dB)

As expected, the ingoing coefficients are negligible, because the entire field comes from
the antenna. This is noticeable that for both types of harmonics, every even coefficient is
equal to zero, due to the symmetries of the antenna.

To test the performance of the algorithms in terms of computation time, the expansion
of the radiated field until N = 256 is performed with Altair Feko. Firstly, the McEwen
& Wiaux fast transform takes 0.95 s. Then, the conversion to Hansen coefficients with
algorithms developed during this thesis, that has not been optimized, takes 6.24 s, which
means the entire process takes 7.2 s. Altair Feko takes 38 min 34 s, on the same computer,
to obtain the same coefficients. This test is performed for different N and the computation
times using SSHT and Feko are plotted in Figure [3.10f The theoretical complexity of the
algorithm in O(IN?3), is plotted to compare the slopes of the plots.
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Figure 3.10: Computation time for the spherical harmonic tranform.

This is noticeable that Feko also seems to have a complexity in O(N?). However SSHT
is much faster, for any N. Thus this fast algorithm seems to be efficient for computing
transforms with large N such as electrically large antennas.

In terms of accuracy, Feko and SSHT show similar results. The Root Mean Square Error
(RMSE) between the values of the coefficients computed with Feko and the one computed
with SSHT is -98 dB.

To conclude, the main advantage of the method used in this thesis is its fast computation
time for large N. In the next section, this transform is tested on antenna measurements
performed in the ENAC lab.

3.5.4 Spin spherical harmonics transform on measurements

The measurement transformed into spin spherical harmonics in this section is the patch
antenna named D2R2 presented in Section [2.4.5 The spin spherical harmonic transform
is presented in Figure 3.1}
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Figure 3.11: Spin spherical harmonic coefficents (dB) of the measurement of the D2R2
antenna for f = 1.57542 GHz

Remarkably, the +1-spin coefficients are higher, which correspond to the co-polarisation
of the antenna, that is circularly right-polarised. In the next sections, we study larger
simulated objects that radiate a greater number of coefficients.

3.5.5 GPS antenna on an aircraft

This section presents the simulation of a Global Positioning System (GPS]) antenna
mounted on top of an aircraft. The objective is to demonstrate that it is possible to
analyse the radiation up to very high coefficient orders. Consequently, we choose to study
a large object: a simplified model of an aircraft with a mounted antenna. We expect the
creation of scattering yielding fast variations in the total radiation pattern. Note that this
simulation is slightly out of the scope of the thesis, since it is not possible to measure such
a big in the majority of anechoic chambers but is here to assess the performance of
the algorithm even on very large structures.

Firstly, the characteristics of the antenna alone are presented. Afterwards it is studied once
mounted on the aircraft. The antenna studied is a[GPSantenna developed at ENAC, [103].
This is a dual-band (L1-L5) stack-patch antenna, fed by 4 ports, situated between the
ground plane and the cylinder, as observed in the Feko design in Figure The
dimension of the ground plane are 0.23 m x 0.17 m, with and ¢, = 4. This is simulated
for f = 1.57542 GHz and its radiation pattern is shown in Figure [3.12b] The co- and
cross-polarisation components of the field are also plotted, in Figures|3.12d and [3.12d]

80



EX
REPUBLIQUE
FRANGCAISE
Liberté

Egalité
Fraternité

ENAC

3.5.

Analyses of antenna radiation patterns by means of spin spherical harmonics

(a) Design of the [GPS] antenna
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Figure 3.12: [GPS antenna and its radiation pattern simulated with Feko

Accounting for the ground plane size, the radius of the minimal sphere containing the
antenna is of 14.3 cm. According to (2.30)), the band-limit of this antenna is about Nayt =
5. In Figures [3.13al, [3.13D] and [3.13d, we can see slightly higher order coefficients, up to
N = 8 due to the large dynamic chosen. They show the spin and Hansen coefficients of
the antenna, with only the outgoing Hansen coefficients being plotted since the ingoing

coefficients are all zero.

The aim is to compare it with the radiation in presence of the aircraft, yielding the choice
of parameters fitting both cases. Thus, the amplitude variation is set at 80 dB, because for
the study of the antenna on the aircraft, we aim to detect a large number of coefficients,

including the weakest ones.

This document may not be reproduced, modified, adapted, published, translated in any way, in whole

or in part, nor disclosed to a third party without the prior written consent of ENAC. © 2023, ENAC

81



REPUBLIQUE
FRANGCAISE
L’iberté
Egalité
. . . . Fraternité
3.5. Analyses of antenna radiation patterns by means of spin spheri._
E spin+1 H spin+1

(a) Electric field spin coefficients (dB) (b) Magnetic field spin coefficients (dB)
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Figure 3.13: Spin and Hansen spherical harmonics coefficients.

An illustration of the simulation of the antenna surrounded by elements corresponding
to the main parts of an aircraft is shown in Figure [3.14al This simulation comes from
the Capucine Amielh’s PhD thesis, [103]. The antenna is mounted on a metallic cylin-
der corresponding to the fuselage, and metallic elements representing the wings and the
empennage of the aircraft are disposed around. Only the main interacting elements are
conserved to save computation time. The size of the aircraft corresponds to the dimen-
sion of an Airbus A320. Together they form a[DUT with a radius rg = 36m, radiating at
1.57542 GHz. According to , the band-limit of this radiating object is Npyt = 1116.

In Figure [3.14D] the radiation pattern of the is shown. In Figure [3.14d and [3.14d],
the co- and cross-polarisation of the antenna are represented. We can notice that the GPS
antenna is affected by the elements of the plane and we observe faster variations on the
radiation pattern, as shown in Figure[3.14b]and on the co- and cross-polarisation in Figure
B.14d and 3.14dl
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Figure 3.14: [GPS antenna on top of the aircraft

The spin coefficients are plotted in Figures and the Hansen coefficients are plotted
in Figure [3.16] Only the coefficients for a truncation order of N=80 are shown, as higher
coefficients are very weak. A wide dynamic range (80 dB) is used to reveal the weak
coeflicients resulting from the scattering of the antenna’s radiation on the different parts
of the aircraft.

Both steps of the transform (spin transform + Hansen conversion) are accomplished in
128 seconds.

Even though the strongest coefficients correspond to the antenna radiation, we observe
significantly more coefficients than in Figure This means that scattering on the ele-
ments of the aircraft do introduce variations to the whole radiation, as expected. Besides,
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even if we can’t see them directly on the diagram, it is possible that some very weak
coeflicients exist at high n levels. When n increases, the power is distributed on a larger
number of coefficients in m. Consequently, even if their amplitudes are weak, their sum
can be significant and have an impact on the radiation of the antenna. Thus, the power
radiated, for each value of n (summing in m) is plotted in Figure for the antenna
alone and for the complete [DUTIL
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Figure 3.15: Zoom on the 80 first lines of the spin analysis coefficients (dB)
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Figure 3.16: Zoom on the 80 first lines of the Hansen analysis coefficients (dB)
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Figure 3.17: Power of the coefficients, depending on the n level.

In the case of the antenna, we can see that the power is concentrated on the lower n-
orders, up to n = 10, with no significant power in the higher orders. For the antenna on
the aircraft, however, the power is also the strongest for the first orders, but decreases
more slowly, until n &~ 150. Then the amplitude of the coefficients remains around —70
dB until n =~ 1000 and then decreases very fastly. The last steep drop is due to ,
linked with the size of the DUTL The plateau means that even if they have a very small
amplitudes, there is always non-zero coeflicients on every n-level of the transform diagram,
until N ~ 1000. That explains why we notice fast variations on the radiation pattern of
the antenna, likely due to scattering from the aircraft’s components.
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This test has shown the ability of the spin transform algorithm to analyse the radiation
pattern of an antenna on a large size carrier.

3.5.6 Bistatic [RCS of an aircraft

In this section, we explore another domain of eletromagnetic measurement, the Radar
Cross Section [RCS|of a large target. The objective is to simulate and expand into spherical
harmonics the bistatic of an aircraft. This transform is conducted to assess the
performance of the transform algorithm.

We consider the simulation of an aircraft with characteristics similar to an Airbus A320 in
a bistatic configuration. The aircraft is illuminated by a plane wave coming from the front,
in vertical polarisation, as shown in Figure[3.1§] for a frequency f = 2 GHz. The far-field
scattering caused by the aircraft is calculated using Feko’s large element physical optics
method. While this method may not be the most precise, it offers a valuable compromise
between computation precision and speed.

The theoretical band-limit, as defined by Hansen in (2.30)), is Npyt = 1676 for a distance
of rg = 40 m, which corresponds to the wingspan of the aircraft. Since the SSHT algorithm
is optimized for N being a power of two, we oversample so that N = 2048. Consequently,
the computation is performed on a McEwen Wiaux grid with dimensions of 2048 x 4096.
This implies that the is computed using a grid consisting of 8,388,608 points.

An illustration of the Feko simulation is presented in Figure [3.18 The horizontal cut of
the scattered radiation pattern is shown in Figure The presents a dominant
peak oriented along the y-axis, corresponding to a direction along the aircraft fuselage.
The also exhibits peaks in various directions around the origin, signifying diffractions
and reflections of the plane wave on different parts of the aircraft, as shown in Figure [3.18]
Finally, a second major peak can be observed in Figure for ¢ = 0°, this corresponds
to the scattering of the plane wave on the nose of the aircraft. Obviously, this[RCS| presents
much more fast variations than the previous tests performed on antenna radiation patterns,
we can thus expect very high order coefficients in the spherical harmonics transform.

Figure 3.18: Simulation of the aircraft [RCS
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Figure 3.19: Normalised scattered radiation pattern cut, 8 = 90°, of the simulated aircraft,
in dB

The co and cross polarisations of the are depicted in Figure In these Figures,
the front and back peaks may not be as distinctly visible but they exhibit distinctive
arc-shaped signatures in the diagrams which are less pronounced in the other diagrams.
These arcs likely result from reflections on the wings and empennage of the aircraft.
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Figure 3.20: Normalised co and cross polarisations pattern on the unit sphere of the [RCS

Firstly, the spin spherical harmonic transform is performed, and the coefficients for the E

and H fields are presented in Figure |3.21] In total, 4N (N + 2) coefficients are computed,
resulting in a total of 16,793,600 coefficients. This initial step consumes 4 minutes.
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Figure 3.21: Spin spherical harmonic transform for N = 2048

A significant number of non-zero coefficients can be observed, with pronounced amplitudes
occurring at the extreme values of m up to n = 1500. Notably, the strongest amplitudes
of coefficients are not concentrated within the initial ranks but become prominent from
n = 100 onwards. We can also observe the effect of the oversampling as every coefficient
above n = 1676 are very weak. Then the conversion into ingoing and outgoing spherical
harmonics as defined by Hansen is performed and is shown in Figure [3.22] This second
step took 5 min 24s.
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Figure 3.22: Spherical harmonic transform (dB)

The conversion into spherical harmonic coefficients has highlighted two distinct groups of
strong coefficients, the TE component possesses fast variations with high values of |m/| and
the TM component has more significant coefficients centered around m = 0.

The power for each rank n of incoming and outgoing coefficients is plotted in Figure [3:23]
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We can observe that the power increases in a first part, remain of the same order be-
tween n ~ 250 and n ~ 1500 and then decreases abruptly. This pattern aligns with the
information provided by the Hansen expansion. In fact, in Figure [3.22a], we can observe
a reduction in the amplitude of each coefficient as n increases. This reduction is com-
pensated by the increasing number of coefficients, resulting in the total power remaining
approximately constant.

=207 | | —— aircraft RCS

P (dB)
|
2

—100+

0 250 500 750 1000 1250 1500 1750 2000
n

Figure 3.23: Normalised power of the coefficients (dB), depending on the n level.

To conclude, the spin spherical harmonic transform of the[RCS of an airplane is performed
on spherical harmonics up to the order N = 2048 in 9 minutes and 24 seconds. It shows a
specific coefficients distribution, presenting a great number of low amplitude coefficients.
This differs from most antenna’s expansions that usually present strong amplitude coeffi-
cients on the low n-levels.

3.5.7 Conclusion

In this section, the spin spherical harmonics transforms of specific radiation patterns have
been performed. Firstly, the analytical field of an elementary dipole has been derived
in terms of spin spherical harmonics, and a simulation has illustrated the results of the
transform. Additionally, a combination of dipoles that yield a pure right hand circularly
polarised field has been conducted to highlight the relationship between the sign of the
spin parameter and the far-field polarisation of the antenna.

Next, the radiation of a linearly polarised horn has been expanded using spin spherical
harmonics and then converted into the Hansen harmonics. This computation has shown
the advantage, in term of computation time, of SSHT over the Feko spherical transform
algorithm. For example SSHT takes 7.2s to compute the spherical transform up to N=256
when Altair Feko takes 38 min.

Then, the spin transform of the radiation pattern of D2R2 has been done, exposing the
perturbations in the measurement environment.

Additionally, to illustrate the performance of spin spherical harmonics in terms of band-
limitation, the radiation of a[GPY antenna mounted on an aircraft has been simulated, and
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the spin spherical harmonic coefficients have been computed, until N = 1116. This has
illustrated the capability of SSHT to compute coefficients at very high levels, as 4,990,752
coefficients have been computed in 2 min 8s. This transform has demonstrated the ability
of the spherical harmonic transform to localise coefficients coming from perturbation, as
they occupy higher n-ranks than the coefficients of the antenna alone. However this repre-
sentation has limitations, when power is divided on a lot of coefficients, their contribution
to the spectrum becomes negligible, while the sum of those weak amplitudes coefficients
does possess power.

Finally, the bistatic [RCS of an aircraft has been simulated and expanded in terms of spin
spherical harmonics. The transform has been computed for N = 2048. In 9 min 24 s,
8,386,560 coeflicients have been computed.

3.6 Conclusion

In this chapter, the concept of spin spherical harmonics has been introduced and adapted
for antenna radiation analysis. Indeed, these expansions exhibit appealing properties in
terms of representing tangent vectors on the sphere, and fast algorithms are available.

Firstly, the theoretical foundation of spin spherical harmonics has been presented, encom-
passing the definition of spin functions, spin spherical harmonics, and the expansion of
spin functions using these harmonics. Additionally, the spin expression for tangent vec-
tors over the sphere has been derived, along with the introduction of rotational properties
associated with the spin.

Secondly, the sampling theorems and associated fast algorithms have been reviewed to
efficiently compute exact spherical harmonic transforms. The McEwen & Wiaux approach,
in particular, is compatible with the spin representation and exhibits high performance in
terms of complexity and computation time.

Next, the relation between Hansen and spin spherical harmonics have been derived.

Finally, spin spherical harmonics transforms have been performed on various radiation
patterns, from canonical cases with very few coefficients (N = 1) to the of an aircraft
(N = 2048). These transforms have been performed in very short computation time, the
longest computation being 9 min 24 s.

However the study of radiating high orders spherical harmonics has shown a limi-
tation of this transform. A significant amount of power can be spread over a lot of weak
coefficients, making this power bearly visible in the spherical harmonic representation.
Consequently, the next chapter focuses on spin spherical wavelets that present interesting
localisation properties.
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Chapter 4

Spin spherical wavelets

4.1 Introduction

Wavelets are a wide-spread powerful concept that has found applications in a wide range
of fields, such as signal processing, data compression and image analysis. Their main
advantage is their ability to represent and analyse data in different scales, from the broad
information to small localized features [23,(104},105,106/107]. This ensures good localisation
properties that regular signal analysis tools, like Fourier, lacks.

The objective of this chapter is to introduce spin spherical wavelets in the continuity of
the spin spherical harmonics and how they complete these in terms of electromagnetic
radiation analysis.

For the sake of clarity, multiresolution wavelets are firstly presented for a 1D signal in
Section Then, spherical wavelets are derived in Section 4.3] Finally, examples of
wavelet expansions of simulated and antenna radiation patterns are given in Section [.4]

4.2 Multiresolution wavelets for 1D signals

4.2.1 Introduction

Multiresolution wavelets lead to the representation of a signal as a linear combination of
elementary, localised, functions as they form an orthonormal basis. They are obtained by
means of translations and dilations of two functions: the scaling function and the mother
wavelet. Any signal can be decomposed over this basis; this is known as the wavelet
transform. A wavelet is localised both in space and frequency. This property allows
wavelets to take into account both the local and global properties of the signal. They offer
a versatile framework for analysing and manipulating data.

This section draws a review of the multiresolution wavelet analysis for 1D signals. This
constitutes a pedagogical approach to the spin spherical wavelets, that are adapted to the
post-processing of antenna radiation. This type of expansion will also be used in Chapter

(@

In Section [£.2.2] the construction of a wavelet family and a wavelet basis is explained.
Then the Fast Wavelet Transform algorithm for 1D signals is described in Section [£.2.3]
Finally, an example of the wavelet expansion of a 1D signal is shown in Section [.2.4]
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4.2.2 Multiresolution wavelet analysis of a continuous signal

As illustrated in Figure[d.I] a multiresolution wavelet basis is constructed from two primary
functions: the scaling function ¢ of zero mean, and the mother wavelet ¢ of non-zero mean.

—

scaling function ¥

Figure 4.1: Example of a scaling function and a mother wavelet

Dilations and translations of these functions are denoted

) = 27922 — p),

o) =279%p(277z — p), (4.1)

where j € Z corresponds to dilations, and p € Z corresponds to translations. Note also

that 2//2 is a normalisation factor that is introduced to keep Hv,b;,()j )Hg =1 and Hcp]()j )Hg = 1.
As shown in Figure [£.2] in order to form the multiresolution basis that is used in the

wavelet transform, we keep:

o one level of dilation J for the scaling functions, ¢

o J levels of dilations for the wavelet functions, w}(}j ), with j € [1, J].

translation index P

-—]—>

¥

Y
dilation index J

Figure 4.2: Example of a scaling function and a mother wavelet
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4.2. Multiresolution wavelets for 1D signals

These functions constitute an orthogonal basis of L?(R), which means that any signal can
be written as

J
u(z) = Z Apgo](g‘])(x) + Z Z D:((,j)wéj) (x), (4.2)
I3

j=1p€eZ
where

o A, are called the approximation coefficients,

(

. pj ) are called the detail coefficients.

A particularity of wavelets is their localisation in both the spatial and spectral domains.
Indeed, when j increases of one unit, wavelets are dilated by a factor 2. This allows slower
variations of the signal to be captured. This means that the scaling function and each
wavelet level j addresses different part of the spectral domain. As shown in Figure [£.3]
the scaling function is associated with the smallest frequencies, while wavelet functions
are associated with domains of larger and larger frequencies when j decreases. This is due
to the fact that a dilation of a signal by a factor 2 becomes a contraction by a factor 2 in
the Fourier domain.

translation O R " H " T
[ T 7] ! [71] 1
14 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 I 1 1 [}
1 1 1 1
1 ! 1
1 1
1 1
v | i i
R a
Q
£ 1 1 1 1
< i i i i
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
¥, AN /\ :
NEDYAE - ;
i i 0 N/8 N/4 N/3 N
dilation Harmonics
(a) Wavelet basis (b) Spectral coverage

Figure 4.3: A wavelet basis and its spectral coverage

This means that the approximation coefficients describe the signal with a lower resolution
and take into account the slowest variations, while the detail coefficients give the faster
variations of the signal, for each scale j. Consequently, a multi-resolution decomposition
of the signal is obtained.

4.2.3 Discrete signals and the fast wavelet transform

In practice, most of the time, the multiresolution wavelet transform is applied on a discrete,
i.e. sampled, signal. In such a case, the continuous variable x is replaced by an index p,.
In this case, a fast algorithm, the fast wavelet transform, exists to compute in an efficient
way the approximation and detail coefficients from the discrete values of the signal u[p,].

From the Fourier domain interpretation of the wavelets, the discrete wavelet transform can
be carried out by using successive high-pass (h) and low-pass filters (¢) and downsampling
as illustrated in Figure [£.4] The first step of this process is as follows:
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4.2. Multiresolution wavelets for 1D signals

¢ a high-pass filter is used to extract the fastest variations of the signal, that correspond
to the detail coeflicients D;(,l);

e a low-pass filter is used to extract the remaining components of the signal;

¢ a downsampling of factor 2 is performed without loosing information due to the spectral
occupation of both signals.

This process is then repeated J times to obtain all the detail coefficients Dz(,j ). The

output of the last low-pass filter can be viewed as a low resolution approximation of v and

corresponds to the approximation coeflicients A,. The high-pass / low-pass filters are said

to be mirror conjugate. They typically have a small size impulse response. This small size

and the successive downsampling render this algorithm very efficient. For a signal of size

P, the complexity is of order O(P), which is even better than the Fast Fourier Transform

that is of complexity of order O(P log P).

(pa——(}2 —— 4,

flp (12 )——pf

~€[ x] >

> D1(72)

> ©)

u[p;] ~h (D] ‘@ > ngl)

Figure 4.4: Fast Wavelet Transform (FWT]) using mirror filters.

Note that the inverse transform, that goes from the detail and approximation coefficients
to the original signal, works in a similar way by replacing downsampling by upsampling
as shown in Figure [£.5]

Ap _'@ N [pe] @ h[p.] @ N [pe] u[py]
o=t )—fn— b —{f2 —fin— o2 )—fin

Figure 4.5: Inverse [FWT] using mirror filters.

4.2.4 Example of the wavelet transform of a signal

This subsection illustrates the wavelet transform of a signal consistent with the radiation of
an antenna. The signal corresponds to the radiation pattern of a square aperture antenna
of width 4\, on a circle situated in the far-field zone in the plane § = 90°, at a frequency
f =10 GHz. The radiation of this antenna corresponds to a sinc function, with the main
lobe centered in ¢ = 0°. A white Gaussian noise of power -40 dB with regard to the main
lobe is added.

The wavelet transform is done on symlets, until level 4, and represented in Figure [£.6]
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Figure 4.6: Wavelet expansion of the noisy radiation pattern of an aperture antenna.

The first plot corresponds to the studied signal, which is sampled respecting to the Shan-
non criteria (at least 2 sampling points per wave-length). Consequently, the number of
approximation coefficients on the circle is chosen such as

47r

Nz (4.3)

In the simulation the parameters are chosen such that N = 804, for A = 3 cm and
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4.3. Spherical wavelets

r = 1.92 m. The second plot is the scaling function, a low resolution approximation of the
signal, correponding to the approximation coefficients A,. Then, detail coefficients Dz(>] )
are splitted on each wavelet levels, from 1 to 4. Each of them presents faster variations
of the signal than the level before. On levels 1 and 2, the signal amplitude is around -40
dB, consequently, they probably contain the coefficients related to the noise. This means

wavelets can be valuable tools for denoising, which is notably used in Chapter [6]

4.2.5 Conclusion

This section has constituted a review of the multiresolution wavelet analysis of 1D signals.
Firstly, the presentation of 1D wavelets has been done, along with the derivation of the
formulation of a signal on 1D wavelet levels. Secondly, the Discrete Fast Wavelet Transform
has been presented. Finally a wavelet expansion of a noisy radiation pattern has been
performed as an illustration.

4.3 Spherical wavelets

4.3.1 Introduction

Antenna measurements are usually performed in spherical geometry, consequently, post-
processing with wavelets implies to adapt them to the sphere. During a project performed
at ENAC and founded by CNES in 2018 [108], mapping methods have been considered.
Indeed, spherical data can be mapped into two-dimensional signals, either using the 6, ¢
parameterisation or using Lambert projections for examples. However, all projections of
a sphere on a 2D map necessarily distort the signal in some way and to some extent [109].
For this reason, wavelet transform suitable for spherical data have been developed, for
example in planetary science [88], geophysics |110] and cosmology, in particular for the
analysis of the cosmic microwave background (CMB) [26]. Thus a few wavelet framework
on the sphere lead to exact transform in discrete and continuous settings.

Data acquired on a sphere can come in diverse forms, scalar, vector or tensor signals defined
on the sphere. Consequently, the spin parameter as presented in Chapter [3]is particularly
suitable and spin wavelet transforms on the sphere have been developed recently [95].

This section focuses on the concept of spin scale-discretised spherical wavelets, built on
the tiling of the harmonics line to yield an exact wavelet transform in both the continuous
and discrete settings [111,|112,|113]. These properties can be an asset for the study of
antenna radiation pattern and measurement correction.

Firstly, the mother wavelet and scaling functions are introduced in Section then the
tiling of the harmonic line is illustrated in Section [4.3.3], explaining the derivation of the
scaling function and wavelet levels. Then, wavelets are rotated in order to cover the entire
sphere, in Section [£.3.4] Finally the axisymmetric scale discretised spin spherical wavelet
representation of a signal is derived in Section [£.3.5]

4.3.2 Mother wavelet and scaling function

As for 1D wavelets, the multiresolution wavelet analysis for spin signals on a sphere is
constructed from two types of functions: the wavelet ¥ of zero mean, and the scaling
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function ® of non-zero mean. These functions are originally centered at the +z axis.
They are of spin s. These functions are shown in Figure [£.7] In the framework of this
PhD thesis, we only consider spin s = +1 axisymmetric spherical wavelets. This means
that these functions only depends on 6.

D(w) P (w)

P (w) P (w)

Figure 4.7: Axysimmetric wavelet functions \|

As for 1D wavelets, we need to enlarge or to narrow the wavelet function in order to
capture the various scales of variations of the signal. However, this can not be done with
a simple dilation. Similarly, we need to move the wavelet and the scaling functions so as
to describe the complete sphere. However, on the sphere, this can not be done by means
of simple translations in # and ¢.

These two points are discussed in the next subsections.

4.3.3 Scaling function: tiling the harmonic space

With 1D wavelets, various scales are introduced by dilating the mother wavelet by powers
of 2. In the Fourier domain, this allows to capture the different levels of variations of the
signal. The underlying reason for that is that a dilation of 2 of a signal, becomes a dilation
of 1/2 in the Fourier domain.

For spin signals over a sphere, the Fourier transform must be replaced by the spin spherical
harmonics transform presented in the previous chapter. There are no simple rules associ-
ated with dilations for this transform. Therefore, another solution has to be proposed to
obtain wavelets at various scales. In this PhD thesis, we use scale-discretised wavelets, a
solution proposed by McEwen and Wiaux, that relies on a tiling of the harmonic space.

The wavelet and scaling functions are assumed to be axisymmetric, i.e. they do not
depend on ¢, their angular profile are represented in Figure [4.8b, This means that the
spin spherical harmonic coefficients of these functions are zero for m # 0. Determining the
wavelet at various scales denoted U#() with j the scale level, amounts to find the values
of the spin spherical harmonic coefficients

cor?, (4.4)
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Similarly, determining the scaling function amounts to find the values of the spin spherical

harmonic coefficients

s,Ps
Con -

The construction of these function are detailed in Annex 77.

fulfilled to find these values:

(4.5)

Several criteria must be

e the transform must allow to recover completely and uniquely the signal.

¢ the scaling function must capture the slowest variations of the signal.

e each wavelet scale covers a different part of the spectrum in n. When j increases, faster
variations are captured. This convention is the usual one for spherical wavelet, even if

it is the opposite as the one used for 1D wavelet.
¢ smooth functions should be preferred

In this PhD thesis, the spectrum domains covered by each wavelet scale are separated by

power of 2.
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(a) Tiling of the harmonics line for scale discretised wavelets
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(b) Angular profiles of the scaling function and first levels of wavelets

Figure 4.8: Construction of wavelet functions, for axisymmetric wavelets, with parameters

Jmin = 3 and N = 256.

The scaling levels are so that j € [Jmin, Jmax]. The value of Jpax must be chosen so as to
logy(N — 1). The value of Jyy, is a parameter
that must be chosen so that 1 < Jyin < Jmax. The scaling function captures the signal
variations up to a band limit of 2/min. Note that the wavelet functions overlap as shown
in thus a wavelet of scale j is associated with a bandwidth from 277! to 2771,

reach the band limit of the signal Jyax
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4.3.4 Rotations

In order to cover the complete sphere, the scaling and wavelet functions should be moved
from their original center (along +z) to other angular positions. With 1D wavelet, this is
done using translations. On the sphere, this corresponds to global rotations as defined in
Section [2.:2.4] These rotations can be parameterised by means of Euler angles. Since the
wavelet and scaling functions are assumed to be axisymmetric, the third Euler angle does
not play any role and can be set to zero. The density of the grid on which the scaling and
wavelet functions should be rotated depends on the band-limit of U*() and ®5. Greater
band limits imply denser grids so as to grasp faster variations. McEwen and Wiaux have
shown that their grid can be used on that purpose . Finally, rotated wavelets are given
by

W (0,0) =R, W0, 0), (4.6)

p9 Py

with pg, pg previously defined in (3.18]), parameterising the Euler angles

+1) j+1
e, = (@2, 027, 0). (4.7)
For the scaling function, we have
O}, 0,(0.0) =R, 2°(0,9). (4.8)
PP

4.3.5 Transform

The axisymmetric scale-discretised spin spherical wavelet representation of a signal ug of
spin s is finally given by

Z Z Dp97p¢t p97p¢ + Z Ape P pe,p¢ (0 ¢)’ (49)

J PPy P0,Pg

where the approximation coefficients A;Q,p . provides a low resolution approximation of
the signal, and the details coefficients Dz()]e),}f , add the variations at the different scales.
For a discrete, i.e. sampled, and band-limited signal, the computation of the transform
can be performed as follows :

e spin spherical harmonic transform of the signal,

o filtering to obtain the spin spherical harmonic coefficients associated with the scaling
function, and the various wavelet scales,

¢ inverse spherical harmonic transform, on downsampled grids.

The McEwen and Wiaux sampling theorem ensures that the downsamplings are done
without losing information.

A representation of the tiling of a spin spherical harmonic expansion in wavelet levels is
shown in Figure [£.9]
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4.4. Spin spherical wavelets transforms of radiation pattern
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Figure 4.9: Tiling of the spin spherical harmonic expansion

This is noticeable that the higher the wavelet level is, the more spin spherical harmonics
coeflicients it contains. This is due to the dilation of the wavelet functions and to the
relations between the indexes n and m of the spherical harmonic transform.

4.3.6 Conclusion

This section has defined a wavelet family allowing an exact wavelet representation of data
on the sphere. Firstly, axisymmetric spin scale discretised scaling function and mother
wavelet have been introduced. Then the construction of this basis has been detailed: first,
a tiling of the spin spherical harmonic line is done, allowing to split the data on level of
variation, then rotations of these functions allow to cover the entire sphere. Finally, the
complete wavelet transform of a signal has been derived.

4.4 Spin spherical wavelets transforms of radiation pattern

4.4.1 Introduction

This section illustrates the use of spin spherical wavelets with various types of radiations.
The radiations under study are some of the ones already presented in Section [3.5 Firstly,
the wavelet expansion of the horn antenna is performed in Section [£.4.2] followed by the
antenna installed on an aircraft in Section [£.4.3] and finally the of the aircraft
in Section [£.4.4

4.4.2 Horn antenna

This section presents the spin spherical wavelet transform of the horn antenna radiation
presented in section The radiation pattern of the horn antenna and the expansion
in wavelet coefficients on the sphere are plotted in Figures .10}, [£.11], [£.12 and .13}, for
spin +1 and -1, respectively. The indexes j and np, situated above the plots, indicate the
wavelet level and the number of points on the plot, respectively. The reason for the white
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4.4. Spin spherical wavelets transforms of radiation pattern

disk in the +z direction in the plot is the absence of a grid point at # = 0° in the McEwen
& Wiaux grid.

The plots correspond to the approximation and wavelet coefficients at all scales. The first
wavelet level starts at Jnin = 3 and the highest wavelet level is 8, as the spherical wave
expansion goes up to 2% = 256.
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Figure 4.10: Normalised spin +1 components of the radiation pattern of the horn antenna
(dB)

scal, np=120 i =3, np=496 j=4, np=2016 j=5, np=8128
0.75 I o 0.75 ;— ™ 075 0.75
0501 050 { £ 050 050
0251 29 0.25 4 025 0.25
0.00 0.00 41 0.00 0.00
-0.25 —0.25 % -0.25 -0.25
-0.50 —0.50 1 -0.50 -0.50
-0.75 -0.751 =0.754 =0.75
05 00 05
0.75 0.75 075
050 | 050 050
025 0.25 025
0.00 0.00 0.00
-0.25 -0.25 -0.25
-0.50 ~0.50 -0.50
—0.75 ~0.751 -0.75

-05 00 05 -05 00 05

(a) Wavelet expansion of the upper half of the sphere

scal., np=120

j=3, np=496 j=4, np=2016 j=5,np=8128
0.75 4 ' | - 0.75
0.50 0.50
0.25 0.25
0.00 0.00
=0.25 =0.25
-0.50

-0.50

=0.75 -0.75

-05 00_ 05 10
i=7, np=130818

05 10

-05 00
=8, np=130816

0.75 9
0.50 4
0.25
0.00
—-0.25
—0.50
=0.75 4

1.0 05 00 05 10

05 00 05

(b) Wavelet expansion of the lower half of the sphere

Figure 4.11: Normalised wavelet expansion of spin +1 component of the radiation pattern
of the horn antenna (dB)
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4.4. Spin spherical wavelets transforms of radiation pattern

The scaling function covers the 23 = 8 first n-rows of the spin spherical harmonics expan-
sions of Figure [3.8] they are the rows with the strongest coefficients. The first wavelet
corresponds to the wavelet function that covers the coefficients from n = 4 to n = 16,
which have weaker amplitudes. For greater values of n, Figure [3.8 shows that coefficients
are mostly negligible.
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Figure 4.12: Normalised radiation pattern of the spin -1 of the horn antenna (dB)
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Figure 4.13: Normalised wavelet expansion of spin -1 component of the radiation pattern
of the horn antenna (dB)

As the expansion is performed in multiresolution, the number of point for each plot in-
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4.4. Spin spherical wavelets transforms of radiation pattern

creases with the wavelet scale. For the first levels, the information is contained on a small
number of coefficients, demonstrating the compression potential of the wavelets.

4.4.3 GPS antenna on an aircraft

In this section, the wavelet transform of a GPS antenna fixed on an aircraft is performed.
This corresponds to the antenna described in Section [3.5.5 Firstly the spin wavelet ex-
pansion of the antenna alone is computed. Then the same wavelet expansion is performed
with the antenna on the aircraft.

The wavelet expansion of the antenna alone is performed in order to compare it to the
one of the antenna on the aircraft. The spin +1 component (or right hand polarisation)
of the antenna radiation has been shown in Figure [3.12] Its wavelet expansion is shown

in Figure
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Figure 4.14: Normalised wavelet expansion of spin +1 component of the radiation pattern
of the GPS antenna (dB)
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Spin spherical wavelets transforms of radiation pattern

Secondly, wavelet expansion of the spin -1 component of the antenna radiation, that has
been shown in Figure [3.12] is performed and displayed in Figure [4.15

scal., np=120 P j=3, np=496 j=4, np=2016 j=5, np=8128
; -10 075 0.75
—-20 0.501 4 0.50
-30 0.25,’ 0.25
8 L0 000 0.00
ff 50 -0.25 -0.25
| B -0 0504 -0.50
-0 -0.75 -0.75
05 00 05 - 05 00 05 05 00 05 05 00 05

j=6, np=32640 j=7, np=130816 =8, np=130816

0.75 0.75
0.501
0.25
0.00

-0.25

-0.50

-0.75

0.50
0.25
0.00
-0.25
-0.50
-0.75

05 00 05

(a) Wavelet expansion of the upper half of the sphere
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(b) Wavelet expansion of the lower half of the sphere

Figure 4.15: Normalised wavelet expansion of spin -1 component of the radiation pattern
of the GPS antenna (dB)

As expected, the antenna being small and having a bandlimit Nyt = 7, only the scaling
function (n = 0 to n = 8) and the first wavelet levels (n = 4 to n = 16) contain non
negligible coefficients. Since the antenna is in RHCP, the +1 spin component is stronger
than the -1 spin component.

Then wavelet expansion is performed on the radiation of the GPS antenna on top of
the aircraft. From Section [3.5.5] expectations are that this radiation must be expanded
on more wavelet scales than the one of the antenna alone. The expansion in spherical
harmonic is performed until N = 1116, which means 11 wavelet levels are computed.

The wavelet expansion of the spin +1 and -1 components is performed and shown in Figure

and in Figure respectively.
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4.4. Spin spherical wavelets transforms of radiation pattern
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Figure 4.16: Normalised wavelet expansion of spin +1 component of the radiation pattern

(b) Wavelet expansion of the lower half of the sphere

of the GPS antenna on the aircraft (dB)
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Figure 4.17: Normalised wavelet expansion of spin -1 component of the radiation pattern
of the GPS antenna on the aircraft (dB)

Firstly, what catches the eye immediately, compared to Figures [£.14 and [4.15] is the pres-
ence of coefficients on wavelet levels j > 3. Their amplitude are weak but very character-
istic of the signature of the presence of the aircraft, which front is oriented to the right.
We can notice that this expansion is much more visual than the spherical harmonic one.
Indeed the coefficients corresponding to the signatures on level 8, 9 and 10 are invisible
to the naked eye on a spherical harmonic diagram because the values are too weak, and
spread over a great number of coefficients. For example, the wavelet function n°8 covers the
harmonic line from 27 to 22 which makes 295680 spin spherical harmonic coefficients, for
the wavelet function n°9 2360832 coefficients and n°10 9440256 coefficients. Consequently
amplitude of the coefficients is more diffuse.

The presence of non-zero coefficients on those levels also coincides with the results in
Figure [3.17]

4.4.4 |RCS| of an aircraft

This section presents the wavelet expansion of the [RCS| of the aircraft presented in Section
[3:5.6] The number of points on the grid is given by the parameter N=2048, meaning that
Jmax is 11, (211 = 2048).
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4.4. Spin spherical wavelets transforms of radiation pattern

The spin +1 component of the field and its wavelet transform are shown in Figure
and [£.19] respectively. Figures [£.20] and [£.21] are associated with the spin -1 component.
On these expansions, the aircraft points downwards.

Superior half of the sphere Inferior half of the sphere

—0.75-0.50-0.25 0.00 0.25 0.50 0.75 —=0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

Figure 4.18: Radiation pattern of the spin +1 component (right polarisation) of the [RCS
(dB)
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Figure 4.19: Wavelet expansion of the spin+1 component of the RCS (dB)
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Superior half of the sphere Inferior half of the sphere

~0.75-0.50-0.250.00 0.25 0.50 0.75 ~0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

Figure 4.20: Radiation pattern of the spin -1 component (left polarisation) of the [RCS
(dB)
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Figure 4.21: Wavelet expansion of the spin-1 component of the [RCS| (dB)

The high wavelet levels are the one with the most coefficients, this corresponds to the
fast variations of the radiation pattern. The low levels are almost empty, which differ
from the previous plots. However, this was expectable as Figure shows that the
power is not concentrated on the first coefficients. The computation time to compute the
wavelet expansion is of 162 seconds for each spin, so about 5 minutes 24 seconds for the
whole computation. However this representation is much more visual for large spherical
harmonic diagram and allows to focus on coefficients that would be invisible otherwise, as
they are very weak and widely spread in the spherical harmonic diagram.
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4.5. Conclusion

4.4.5 Conclusion

This section has constituted an illustration of the application of spin spherical wavelet
to electromagnetic radiations. These are based on the tiling of spin spherical harmonic
expansions. Firstly, the spin wavelet expansion of the radiation pattern of a horn antenna
has been performed. This expansion has not lead to interesting conclusion, as the antenna
does not radiate high level coefficients. Secondly, the same expansion has been performed
in the case of a GPS antenna on top of an aircraft. This has shown that the scattering of
the radiation of the antenna on the aircraft has a signature on high wavelet levels which
is invisible on the spherical harmonic expansion. Thus, this confirm the utility of using
wavelets to study signals with harmonics of high order. Finally the wavelet expansion of
an has been performed. Here again, this expansion contains harmonic coefficients
of high order. Also this section has shown the performance of the algorithm, as the
wavelet expansion of the took only 5 minutes, 24 seconds. This corresponds to
the computation of nearly 40 millions (39134480) coefficients. To conclude, spin spherical
wavelet expansion shows good potential as a tool to analyse and eventually correct antenna
radiation patterns and measurements.

4.5 Conclusion

This chapter has introduced spin spherical wavelets, a promising tool for antenna radiation
pattern analysis. Wavelets are widely used in signal processing and compression problems
but are less commonly used for spherical geometries.

Firstly, the construction of a wavelet basis in 1D geometry has been presented. Then the
construction of spin spherical wavelets from spin spherical harmonic has been derived.
Next, the algorithm exploited to perform the spin spherical wavelet expansion has been
presented. Finally, spin spherical wavelet expansions of simulated radiations have been
presented. This type of expansion can be very interesting for the analysis of very directive
antennas, with fast variations on their diagrams, or for radar cross section processing.
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Chapter 5

Formulation of the measurement
problem

5.1 Introduction

The antenna measurement problem can be described by many formulations. In [6], Hansen
presents the scattering matrix as a tool to describe the interaction between the antenna and
the probe, leading to the transmission formula. This formula is also adopted by Yaghjian
in |[114] and |14] and Gemmer and Herberling in [115]. However, this is remarkable that few
articles or books derive the measurement problem as a convolution, whereas many present
deconvolution methods to obtain the radiation pattern of the [AUT] from the measured
signal [17/116,/117].

The objective of this chapter is to rigorously formulate the measurement problem as a
convolution, in spherical geometry, from basic electromagnetic theorems.

The problem statement is presented in Section [5.2] Section [5.3] shows how the equivalence
principle can simplify the formulation of the measurement problem. Then in Section
the reciprocity theorem is used to relate the signal corresponding to the[AUT]radiation and
the signal corresponding to the fields radiated by the probe in the environment near the
antenna. Next, in Section [5.5], the rotation of the antenna introduced by the measurement
process is accounted so as to formulate the measurement as a convolution which can be
formulated in terms of spin components. Finally, Section [5.6| constitutes a validation by
means of simulations of the hypothesis that the [ATUT] can be replaced by its free-space
equivalent currents.

5.2 Problem statement

The objective of the chapter is to define and prove the existence of a type of convolution
between a quantity related to the fields radiated by the [AUT], p, and a quantity related to
the fields radiated by the probe in the environment nearby the antenna h, in absence of
the antenna. It is not accurate to talk about radiation pattern here because the far-field
hypothesis is not employed. These signals are represented in Figure 5.1} The aim is to
write the measured signal b as

b(e) = h(e) ® p(e) + no(e), (5.1)
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5.3. Equivalence principle

with ® the convolution operator, ng the spatial noise, and € the Euler angles corresponding
to the [AUT] orientation.

Figure 5.1: [AUT] and probe in an anechoic chamber, when the antenna is receiving

5.3 Equivalence principle

5.3.1 Introduction

In this section, the equivalence principle is used to formulate the relation between h and
p. The rotation is not considered yet as the system is considered to be fixed in this
section. The objective of this section is to show how the use of equivalent currents in free
space and in the measurement environment, under certain assumptions, can simplify the
formulation of the measurement problem. Firstly, the equivalence principle is reminded
in Section [5.3.2] then the formulation of the feeding of the antenna is detailed in Section
In Section the equivalence principle in free space is presented, followed by the
equivalence principle in the measurement environment in Section [5.3.5] Then in Section
[5.3.6] a discussion is done on the impact of the measurement environment on the equivalent
currents.

5.3.2 The equivalence principle

The equivalence principle states that a domain €2, containing sources, characterized by
currents distributions (J., Jm) radiating electromagnetic fields (E,H), as shown in Figure
is always splitable in two subdomains 2; and (22, as shown in Figure [118,119].

This yields two subproblems:

e In the subproblem 1, 2; remains unchanged and €25 is replaced by a source-free region.
This is made possible by the introduction of equivalent currents (Jog,Jros) on the
surface separating both domains. They are given by

J2§1 = ﬁ2_>1 X H, (5.2)
and
Jfr?sl = 77”‘1/2*)1 X E, (53)
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with 79,1 the normal coming out of €21, as shown in Figure The characteristics
of the domain €5 can be freely modified.

e In the subproblem 2, 25 remains unchanged and 27 can be freely modified. For example
is can be replaced by a source-free region, field-free region (Love formalism [119]), as
shown in Figure This time, the equivalent currents introduced are given by

and
Jms? - ﬁ1—>2 x E = Jmsl (55)

) Initial situation b) Cutting of Q (c) Subproblem 1 (d) Subproblem 2

Figure 5.2: Equivalence principle-Equivalent currents \|

5.3.3 Feeding the antenna or the probe: wave generator

By definition, an antenna is a transition from a wave propagating in a waveguide to a
radiation in free space . This subsection aims to define the way the antenna or the
probe are fed for the case studied in the chapter.

The antenna is fed from a port, which, in this PhD, is considered to be a waveguide.
Sources are noted 7, ji. These currents are normalised in order to induce a wave
amplitude of 1 W3 They radiate a single mode of this waveguide, through the surface of
the port S, as shown in Figure[5.3 which is very common in the domain of antennas. This
mode is propagating toward the antenna (+z) and is described by its transverse fields h;",
et

: S0

i —— -

VE1 =0 :(('i‘:E?:et

\H, = 0dd v Hy = hy

e ----
-

Figure 5.3: Ideal and unitary plus wave generator

To do so, the sources are defined by

G& =P x (Hy — Ha) = £ x (hf —0) =2 x h{, (5.6)
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5.3. Equivalence principle

j$:_ﬁ1_>2><(EI—EQ):—ﬁx(ej'—O):—ﬁxej, (5.7)

with 7119 the vector normal to the surface S on which the sources are applied, H1, Hs,
E., E,, are the magnetic and electric fields created by the sources, from either side of S,
as shown in Figure [5.3] respectively.

5.3.4 Equivalence principle in free space

The equivalence principle is now applied to an antenna surrounded by free space. The
antenna is fed with surface sources 7, 7,5 and is radiating a field (E,H). In this situation,
we have Q = R3.

According to the equivalence principle, {2 can be splitted in two subdomains: Qﬁree is
delimited by a sphere S? of radius r that contains the [AUT] and the sources, Q5 is the
free space surrounding Qﬁree. An equivalent situation exists, where Qﬁree is free space, the
sources and the fields inside are zero, with equivalent currents, J&& free jea free on §2,
The domain Qgree remains unchanged, as shown in Figure .

JeG free
free ©8
Q 95

A

1\ Qgree

i dm (0,0) f Je

(E.H) (E,H)

Figure 5.4: Equivalence principle applied on an antenna radiating in free space

5.3.5 Equivalence principle in the measurement environment

This principle is applied in the measurement environment. In this situation = R3 with
the measurement room and the antenna and the probe inside. Let’s suppose that the
room is isolated enough to consider that this is surrounded by free space. The difference
with the free space case of Section [5.3.4]is that the environment is composed of the probe
and of the elements of the room. Thus the definition of Q¢ = Qffee but QF*S becomes
the entire room with the probe and the free space around. The equivalence principle is

applied, yielding Jgb™ea® JoLmeas “equivalent currents on the surface of 21%°**, as shown

in Figure[5.5] The field (E, H) is unchanged in Q5.

114



EX
REPUBLIQUE
FRANCAISE
Liberté

Egalité

Fraternité

5.3. Equivalence principle

Jeqmeas
es

Jed,meas
ms

(E,H)

Figure 5.5: Equivalence principle applied on an antenna radiating in a measurement en-
vironment

5.3.6 Comparison of both cases

This section is a discussion on the impact of the environment and the probe on the equiv-
alent currents Jeb™Me®s JoLmeS of Section compared to the equivalent currents of
the free space case, Jedfree  jedfree of Sectio Indeed, in addition to the direct path
between the antenna and the probe, the environment will induce multipath and coupling.

In the case where the antenna is radiating and the probe receiving, different paths must
be considered:

o from the [AUT] to the probe,

o from the [ATUT] to an element of the environment, to the probe,

o from the [AUT], to the probe, to an element of the environment, to the probe,
e from the [AUT], to an element of the environment, to the [AUT] to the probe,
o from the [AUT] to the probe, to the [AUT] to the probe.

Higher-orders paths could be considered too. For the first three cases, the probe and the
environment will not play a role in the value of JgH™e Jobmeas If only these interactions
exist, this means that JEmeas — jeafree o gedmeas — jedfree Tn contrast, for the 2 last
ones, the probe and the environment may modify Jed™® Jodme which implies that
Jomeas Jolmeas may not be the same as in free space.

In this chapter, we decide to make the hypothesis that the environment has a neglectable
effect on the AUT equivalent currents. This will be validated by means of simulations in
Section From now on, the difference between the equivalent currents Jgd™*, Jybmeas
and Jedlree jeafree i poglected and they are noted (J4,J%L) on S2.

es?

5.3.7 Conclusion

This section has shown how the antenna can be substituted by equivalent currents on a
surface surrounding the antenna, under some assumptions that have been detailed. The
measurement is supposed to provide the signal radiated by the antenna on the sphere,
by means of methods using the equivalent currents. This is a first step to simplify the
problem and the calculations. The next section explains how this can be combined with
the reciprocity theorem to formulate the antenna measurement problem.
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5.4. Reciprocity and antenna measurements

5.4 Reciprocity and antenna measurements

5.4.1 Introduction

Let us consider a measurement situation, the [AUT] and the probe are in an anechoic
room, they both can radiate or receive signals. The objective of this section is to define
the measured signal b in a fixed configuration. Section [5.4.2]is a reminder of the Lorentz
reciprocity theorem, then two cases will be considered in Sections [5.4.3] and [5.4.4] : when
the antenna is a source and when it is substituted by its equivalent currents. Finally, the
formulation of the measured signal is given in Section [5.4.5] by combining both cases.

5.4.2 Lorentz reciprocity theorem
There are several forms of reciprocity theorems for electromagnetic field problems. The
Lorentz reciprocity theorem will be used here with its corollary: the Rumsay theorem.

Let us consider a domain 2 composed of linear and isotropic medium, subject to two
distinct and independent excitation states [3]:

« State (A) is corresponding to the sources J), JW | yielding the fields E4), HA)
o State (B) is corresponding to the sources JgB), Jl(f), yielding the fields E(®), H®B)

The Lorentz reciprocity theorem states that the reaction of the fields A on the sources B
and the reaction of the fields B on the sources A are related by

Rpa— Rap = # (BW x HB) — BB x HW) . 40, (5.8)
o0
with the reaction of the fields A on the sources B defined by
Ran= [[[ (B3O - HW . 500, (5.9)
Q
and the reaction of the fields B on the sources A by

Rpa= /// (BB . g — 5P . 7N)q0, (5.10)
Q

Moreover, a corollary of the reciprocity theorem, the Rumsey reaction theorem [3] states
that
Rap = Rpa, (5.11)

when the contour integral is zero. This is the case for antenna measurement, if we consider
that = R3. This can be demonstrated using the far-field conditions and considering that
0 is a sphere of infinite radius [119]. This theorem will be applied to two cases in the
following sections.

5.4.3 Reciprocity theorem applied to the antenna ports

The reciprocity theorem is now applied to the case of the antenna measurement in the
measurement domain Q = R3, composed of linear and isotropic medium. Two excitation
states are defined and illustrated in Figure [5.6}
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5.4. Reciprocity and antenna measurements

o State (A): the [AUT]is excited by the sources j7, 5. that propagates from the port in
a waveguide, yielding the fields E, H. These fields yield b at the output of the probe.

o State (B): the probe is fed through its port by the sources jgpb)+, jl(Ill’b)+, yielding the
fields E®P) F(®P),

L

&gk

(E,H)

(a) State A, the antenna is radiating

(E(pb)’ H(pb))

(b) State B, the probe is radiating

Figure 5.6: Configurations for the two considered states, with the AUT

According to the reciprocity theorem, the reaction of state (A) on state (B) is given by

RA,B:// (E-jPP* — H . j0PH)q0, (5.12)

For the reaction of state (B) on state (A), Rp 4 is given by

RBA_// E®D) j+  feb) . j+yqg = // E®Y) . (25 ht)—HP . (2xef))dS, (5.13)

with the integration directly done on S, the surface of the port of the antenna, since
j&, gt are zero everywhere else. This is possible to demonstrate that in this case Rp a
corresponds to a received wave amplitude [118], i.e. the measured signal b, on the antenna
port. Consequently, this gives

Rp a = —20b, (5.14)
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5.4. Reciprocity and antenna measurements

when the probe is transmitting. Finally, since our entire domain is reciprocal, we have

Rp A= Rap= —2b. (5.15)

To conclude, b can be defined both by the measured signal by the probe when the [ATUT]
is transmitting, and as the measured signal by the [AUT] when the probe is transmitting.

5.4.4 Reciprocity theorem applied to the equivalent currents of the an-
tenna

The reciprocity theorem is now applied to the case where the equivalent currents replace
the [AUT] as defined in section The measurement domain (composed of linear and
isotropic medium), is subject to two distinct and independent excitation states [3] and
illustrated in Figure [5.7}

« State (A): the equivalent currents of the [AUT] J¢d, Jok are yielding the fields E, H.

« State (B): the probe is fed by a mode on its port and is radiating the sources jépr,
jI(TIfb)Jr, yielding the fields E™¢, H™¢, This corresponds to the field radiated by the
probe in the environment, nearby the [AUT], in absence of the [AUT]

(a) State A, the antenna is radiating

GEVT R

( Einc Hinc)

(b) State B, the probe is radiating

Figure 5.7: Configurations for the two considered states, with the AUT equivalent currents.
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5.5. Convolution and spin formulation

Then the reciprocity theorem states that

AB_// (E - 300+ _ g . 0D+ 40, (5.16)
and

RE, = /// (E™C. g% — g™ . J¢9)dQ. (5.17)

We can also remark that our entire domain is reciprocal so R% , = Rl

5.4.5 Link between both applications of the reciprocity theorem

We notice that (5.16]) is identical to (5.12]), which leads to

Ry 4= Ry'y = Rap = Rpa= -2, (5.18)

according to (5.15)). Here, the probe is transmitting and the[AUT is receiving. This yields
the conclusion that the measured signal b can be computed from the equivalent currents
of the antenna and the incident field on the sphere surrounding the antenna, giving

1 . .
b=—3 //S (B8 - HY L J5)ds), (5.19)
with E™, H™® the radiations of the probe in absence of the [AUTL

5.4.6 Conclusion

The formulation of the measurement has finally been obtained under the form of a reaction
on the sphere. This reaction is composed of the component of the incident field and of the
equivalent currents of the [ATT] on the sphere surrounding the antenna.

The next step is to demonstrate that the measurement is a convolution between the
incident field coming from the probe and the equivalent currents of the AUT by introducing
the rotation performed during the measurement.

5.5 Convolution and spin formulation

5.5.1 Introduction

We consider the case of a measurement configuration where the antenna can execute any
rotation. The objective of section [5.5.2|is to show that b, the measured signal on the port
of the antenna is a convolution on the sphere S? between E™¢, H™ and J4, J°4. Then,
section [5.5.3] presents the derivation of the measurement formulatlon in terms of spin.

5.5.2 Application of the rotation to the electric fields

E™ H™M g4 J° are functions of 6 € [0, 7] and ¢ € [0, 27], the spherical coordinates.

es)
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5.5. Convolution and spin formulation

A convolution on a spherical geometry is defined as the integral of the product of the two
functions after one is reversed and rotated. Consequently, one signal has to be reversed

so the function J¢&'(—0, —¢) = Jd(0, ¢) are defined in order to give, from (5.19),

1 . .
b= —3 //Sz(Elnc(G, @) - JV (=0, —¢) — H™ (0, ¢) - T (—0, —))dS,. (5.20)

Then the rotation of the [AUTis accomplished with the rotation operator R, as defined
in Chapter [I} on the equivalent currents. The measurement becomes

b(e) = —% //SE(E“IC(& ) - (RJ)(=0,—¢) — H™(0,¢) - (ReJ k) (—0, —))dS,,
(5.21)

with € the Euler angles. For obvious physical reasons, the total power obtained by summing
the power for all possible [AUT] orientations € must remain finite. Thus, b is a scalar
signal of finite power, containing the measured signal, depending on the orientation of the
antenna. Consequently, b € L2(SO(3)) the space of square integrable functions on the
rotation group.

From (5.21]), it is clear that the measurement b has been characterized by a convolution,
which corresponds to

b= (Einc7 Hinc) ® (Jeq/ J‘rsx?s/)a (5.22)

es

with ® the operator of the convolution on the sphere.

5.5.3 Spin expression of the measured signal

In Chapter 3] tangent vectors have been expressed on the sphere in terms of components
of spin +1. The objective of this section is to introduce the spin parameter in the measure-
ment formulation, in particular because the spin facilitates the expression of the rotation
operator.

Firstly, from (5.2) and (5.3)), the equivalent currents are related to the fields radiated by
the [AUT] by

Jgg(67 (b) = X H(07 ¢)7 Jfr?s(ea ¢) = —F x E(Ha ¢)7 (523)
which means that ([5.21])) becomes

b(e) = —/ E™(0,9) (7 x R(H(0,9))) — H™(0,6) - (=7 x Re(E(0,9)))dS;. (5.24)

With the properties of the mixed product, (5.24) becomes

b(e) = —;// 7 - (Re(H (0, 9)) x E™(0,¢)) + 7 (R(E(6, ¢)) x H"(6, ¢))dS,. (5.25)
S?

For the sake of clarity, we only develop the left term of the integral. The calculations are
similar for the right term.
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5.6. Validation

Firstly, from (3.9) and (3.17)) the vectors are expanded in terms of spin which gives
Re(H(0,9)) x E™(0,9)
=Re(H11(0, )01+ H_1(0,¢)ta-1) x (EY{(0,$)t11 + EZ(0,¢)h-1)
= (T H 1 (0, ¢l + X H_1 (0, ¢) A1) X (BY{(0, §)41 + BV} (0, ¢)1),

(5.26)

with (6, ¢) the position of the [AUTTs field on the sphere after the rotation.
Then from (3.10), we notice that

Uyy X b4 =0,

Gy X =0,

e (5.27)

U+l X U1 =T,

ﬁ_l X ’il+1 = —if.

Consequently, once the vector products are simplified, (5.26)) becomes
R(H(0,9)) x E™(0,¢) = (e X9 H 1 (0, ¢ )E™S — X9 H_1(0/, ¢/ )EYX)ir.  (5.28)

Finally, the measured signal can be expressed as

be) =5 //S TN H (0, ¢ EXE(0, ) — X H (0, ¢) B (0, 9)

+e X B (0, ¢ H (0, ) — eXoE_1 (0, ¢/ HI (0, $))dS,.

(5.29)

Thus, the spin convention provides a ready-to-use formulation of the rotation of the [ATT]
during the measurement.

5.5.4 Conclusion

This section has demonstrated that the rotations performed during a measurement can
lead to the modeling of the measurement as a convolution of the fields and the equivalent
currents on the sphere. Finally, the measurement formulation has also been written in
terms of the 4+ 1 spin components of the fields.

5.6 Validation

5.6.1 Introduction

This section constitutes the validation of the hypothesis we have made in Section [5.3.6}
the environment has a neglectable effect on the AUT equivalent currents. The objective is
to show that the antenna can be replaced by its free space equivalent currents, i.e. that its
physical presence does not impact the measurement. This will validate the measurement
formulation derived in this chapter. Firstly in Section the principle of the validation
is presented, then in Section the parameters chosen for the simulations are detailled
and finally in Section [5.6.4] the results of the simulations are displayed.
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5.6. Validation

5.6.2 Principle of the validation

The considered situation is as follows:

o The[AUTlis transmitting, can rotate and is centered at the origin of the reference frame
0.

e The probe is an ideal electric probe which output is one component of the electric field
situated at a distance d along the z axis.

In order to test our hypothesis, the output of the probe is simulated for the three following
situations:

o The complete [AUT] alone.
o The complete [AUT] in presence of a perturbation.
e The free space equivalent current in presence of a perturbation.

The objective is to prove that the complete AUT and the free space equivalent currents
produce the same output on the probe even when the perturbation has a significant effet.

5.6.3 Configuration

The simulations are run with Altair Feko, for a frequency f = 1.575 GHz. The antenna
chosen for this validation is a patch antenna of dimension 5.98 cm x 8.85 cm, with a
substrate of dimension 15.95 cm x 10.76 cm x 0.56 cm and of relative permittivity of
2.15. Its equivalent currents are computed on a sphere S? of radius r = 12 cm.

The perturbation is a plate of size 1 m x 1 m of thickness 3 cm that is either metallic
or dielectric of relative permittivity 3. At normal incidence, the dielectric plate has a
reflexion coefficient of order -10 dB. Its position obviously has an effect on the intensity of
the perturbation, this is why we chose run the simulations for two positions of the plate.
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perturbating 0
plate 4\

AUT probe 2

<

(a) Configuration with the antenna

perturbating eq
plate B J os
K N\ probe
.' j
\ A
(S A
9 ) :

(b) Configuration with the antenna replaced by its equivalent
currents

Figure 5.8: Sketch of the first configuration

In terms of positioning of the elements, the dimensions of the ENAC measurement range
are used:

o In the first configuration, the probe is situated at 1.6 m from the antenna and the plate
is 1 m behind the antenna. These configurations are represented in Figure [5.8] where
the plate is represented as a grey box. This is the worst case for what we want to
demonstrate because the [AUT]is on the path between the probe and the plate.

¢ In the second configuration, the plate is on the side, parallel to the £ axis. It is situated

at an equivalent distance of the probe and the [AUT], as represented in Figure[5.9

This document may not be reproduced, modified, adapted, published, translated in any way, in whole

or in part, nor disclosed to a third party without the prior written consent of ENAC. © 2023, ENAC
123



REPUBLIQUE
FRANCAISE
ENAC

Fraternité

5.6. Validation

perturbating plate

<\0

Py >
@ >

g AUT probe 2
(a) Configuration with the antenna
perturbating plate

g
K S probe
! 5 ] ®- >
1 ey & >
\ A
R :

~ -
~ -

(b) Configuration with the antenna replaced by its
equivalent currents

Figure 5.9: Sketch of the second configuration

5.6.4 Simulations and results

The objective of this section is to visualise the impact of the antenna physical presence in
the measurement environment can be negligible. The measured signal, are displayed for
the three situations mentioned in Section [5.6.2} the results of the configuration with the
plate behind is shown in Figure and the one with the plate on the side in Figure[5.11}.
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—— antenna with dielectric plate
0_5\\ —— equivalent currents with dielectric plate
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(a) Plate of dielectric
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(b) Plate of metal

Figure 5.10: Field measured by the probe with a disturbing element behind the antenna

Firstly, in Figure we can observe the effect of the plate, compared to the measured
signals of the antenna in free space in green dotted points. Until # = 90°, the three curves
are identical. Above 90°, this is visible that the probe measures also the reflection on the
plate, as the measurements drifts from the measured signal of the antenna in free space.
As expected, when we compare the orange and blue curves from Figures [5.10a] and [5.115],
the metallic plate is more disturbing than the dielectric.

The objective being to show that we can replace the antenna by its equivalent currents,
the orange and blue lines are compared. The two curves are very close, which confirms
our hypothesis, except between 160° and 180°, where the antenna is facing the plate. This
is consistent because the physical antenna is in the path of the reflection so this probably
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5.6. Validation

obstruates the reflection, whereas the equivalent currents do not. Additionaly, in the case
of the metal plate, between 110° and 130°, the measurements differ slightly. However, this
difference is of maximum 1 dB, widely under the impact of the plate. Moreover, such
a large metallic plate that close to the AUT as being part of the environnement is not
realistic. Yet differences in the radiation pattern are negligible for the most part or very
small.

5
[ —— antenna with dielectric plate
0- \\ —— equivalent currents with dielectric plate
T --- antenna in free space
S -5
0
=
2 -10-
<)
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2 -15;
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(b) Plate of metal

Figure 5.11: Field measured by the probe with a disturbing element on the side of the
antenna

Finally, the results displayed in Figure [5.11] show that the field measured by the probe is
identical whether the [AUT] is physically present or replaced by its free space equivalent
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currents when the plate is on the side. Thus, we consider our hypothesis valid, the antenna
radiation can be formulated with its free space equivalent currents.

5.6.5 Conclusion

This validation has shown that the effect of the physical presence of the [AUT]is negligible
from the probe point of view. Consequently, the hypothesis made in Section [5.3.6] is valid
and the [AUT] can be replaced by its equivalent currents.

5.7 Conclusion

This chapter has derived a formulation of the measurement problem as a convolution.
Firstly the equivalence principle has led to a simplification of the problem, with the ex-
pression of the antenna radiation by its equivalent currents.

Secondly, the reciprocity theorem has allowed a formulation to relate the measured signal,
the probe signal in the measurement environment and the radiation pattern of the antenna.

Then, we have demonstrated that the rotation of the antenna in the measurement envi-
ronment can be formulated as a convolution between the radiation of the probe in the
measurement environment and the [AUT] radiation pattern. This formulation has been
developed explicitly in terms of spin afterwards.

Finally, the hypothesis according to which the [AUT] can be replaced by its free space
equivalent currents has been tested by showing the little impact of multiple order reflec-
tions in a highly pessimistic and unrealistic measurement scenario in an anechoic chamber.
This confirms the obtained measurement formulation.

From this formalism, deconvolution methods can be used to extract the actual antenna
pattern from measurements.
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Chapter 6

Correction of Measurements in 2D

6.1 Introduction

Deconvolution methods exist in many domains of signal and image processing, for image
deblurring, or correction of degradations in atmospheric observation [120], [121]. These
methods mostly rely on the transform of the signals to the harmonic domain. The spectrum
is then processed to extract the signal of interest, the radiation pattern of the antenna in
this thesis. The main advantage of this method relies on the properties of the convolution
that becomes a product in the spectral domain. Consequently many problems can be
solved by a division [116]. However, specific methods are used since the deconvolution of
a measured signal often yields an ill-conditioned problem [122]. Indeed the noise can be
increased by this deconvolution, degrading the correction.

The objectives of this chapter are firstly to show that the measurement formula derived in
Chapter [4] reduces to a classic deconvolution problem between 27-periodic signals in 2D,
and secondly to apply it to simulations of 2D measurements. The content of this chapter
is not directly applicable to real measurements but is a first step towards a general 3D
method.

Firstly, in Section[6.2] the convolution is developed for a 2D configuration. Then in Section
[6.3] the deconvolution method chosen for antenna measurement correction, is presented.
Finally, this method is put into practice in Section [6.4], on a simulation of measurement
correction.

6.2 2D measurement formulation

6.2.1 Introduction

This section constitutes the formulation of the measurement problem in a 2D geometry,
assuming an invariance along one axis. The aim is to simplify the problem. Indeed, the
measurement signal on the sphere is in L?(SO(3)) as explained in Section m, a brute
force deconvolution would imply to make measurements with rotations along 3 axes which
is time consuming. Alternatively, in 2D, the sphere becomes a circle and the signals are
1D and 27-periodic.
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6.2. 2D measurement formulation

Firstly, the 2D configuration is described in Section [6.2.2] Next, the expression of the
measurement signal is given in Section [6.2.3]

6.2.2 2D configuration

In order to simplify the problem, the measurement is formulated in a 2D configuration.
We assume that there is an invariance along the £ axis. This implies that the problem
can be splitted in two cases, considering either a transverse electric (TE]) or transverse
magnetic (TM]) polarisation with respect to z.

From now on, we consider the TMz case as shown in Figure [6.1] Similar results could be
obtained in the TEz case. In this case, B¢ = EM°2, J¢I = Jed2. Then H™, J4 are in
the 20y plane. The unit vector # and the incident magnetic field H™¢ are coplanar and
orthogonal to E™°. In 2D, S?, as defined in Section corresponds to the circle C of
radius r surrounding the antenna and described by the angle ¢ € [0, 27]. Besides, in this
chapter C is assumed considered to be far enough from the [AUT] to be in its far field.

Figure 6.1: 2D configuration for transverse magnetic polarisation

In this configuration, electric and magnetic fields are linked by
E=(H X+ (6.1)
and currents by

JoL = (o x JO. (6.2)

6.2.3 Derivation of the formulation

If the antenna rotates of an angle ¢ € [0, 27], according to (5.19)), (5.20) and (5.21)), the

expression of the measurement becomes

2
b(o) = /0 (E() - TS — §) — H (&) - T (S — §))rdd. (6.3)
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Consequently, from we end up with
b(¢) = /0 B TR0 - ) — HI(S) - (G x T~ F))rdd,
= /0 (B (0) - T - ) - IR — &) - (5 x HUS())rdd), (6.4)
= /0 (B ) - cor x HI(@)) - T30 — $)rdo.

For the sake of clarity, for the TMz configuration, we can denote
h(¢) = (E™(¢) — Gor x H™(¢)) - 2, (6.5)

which corresponds to the formulation of the radiation of the probe in the environment
nearby the antenna. This gives

2
b() = /0 W) IS — o yrdg. (6.6)

Finally, in TMz, the problem reduces to a convolution between two 27-periodic signals.
In the previous chapter, the measurement is formulated in (5.1) as b(e) = h(e) ® p(e).
Consequently, we are able to identify p as

p(9) = rJ (@) (6.7)

6.2.4 Conclusion

This section has presented the derivation of the measurement formula in 2D, for the TMz
case. This formulation is a convolution between 2-7 periodic signals.

6.3 Deconvolution for antenna measurement correction

6.3.1 Introduction

The previous chapter section has demonstrated that the measurement problem can be
formulated as some type of convolution between the [AUT] pattern and the probe radiation.
In order to process the measurement data, analysis tools are required. The most common
method is to use the spectral domain, through Fourier series for a 2D configuration or
spherical harmonics for 3D configuration. Then deconvolution can be performed in order
to obtain the radiation pattern of the[ATUT] However, deconvolution methods are generally
ill-conditioned, meaning that this operation introduces error, by amplifying noise. The
deconvolved signal needs to be regularised in order to diminish the effect of the noise.
The Fourier-Based Regularized Deconvolution (FoRDI) and Fourier-Wavelet Regularized
Deconvolution (ForWaRDI|) method are regularisation methods based on the use of two
types of transforms, the harmonic or Fourier transforms and the wavelet expansion [122].

This section details the process developed in this PhD thesis, to extract the radiation
pattern of the [AUT] from the measurement signal. Firstly, in Section [6.3.2] the problem is
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6.3. Deconvolution for antenna measurement correction

formulated in terms of Fourier series. Then in Section[6.3.3, the convolution is presented as
an ill-conditioned problem that needs regularisation, next the FoRward method is detailed
in Section and finally the complete correction process is described in Section [6.3.5]

6.3.2 Fourier series

The advantage of formulating the antenna measurements as a convolution is that this is
equivalent in the Fourier domain to a multiplication. This section derives the Fourier
expansion of each term of the measurement formula.

Firstly, the measurement signal b(¢) can be expressed by the Fourier series given by

“+o00

b(d)= > bue™® (6.8)
with b, the Fourier coefficients defined by
7 1 2 N —ing' 3 ./
n b(¢')e de'. (6.9)

Similar expressions exist for A and p, with fzn and p,, their respective Fourier series coef-
ficients. Their convolution is given by

2
nop= [ pé)hio =)o (6.10)
The Fourier transform of this convolution is given by

o —

27 2
(h@p), = ! ( / p(¢') - h(¢ — ¢>’)d¢’> e "dg
0

_%0

! / 1 n (AP 1Y) /
27r/0 %pw)(%/o h(o—¢)e d¢>d¢>

27 1 , Y 1 21 , ) , , (611)
=27 /0 ZP(¢)e™ ™ (% /O h(¢—¢>em<¢¢>d¢)d¢

27
= 21Pphn
From (5.1)), we deduce that R R
by, = 2mh,Dp, - (6.12)
Then b can be formulated by
b(¢) = > 2mhppne™®. (6.13)
nin Z

In the spectral domain, the formulation of the problem becomes a multiplication that
depends on the radiation of the probe in the environment nearby the antenna and on the
antenna pattern.
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6.3. Deconvolution for antenna measurement correction

6.3.3 The convolution as an ill-conditioned problem

In the following, the harmonic domain is the Fourier series domain. In an ideal case, the
measured signal b can be post-processed by a single division if the spectrum of h is known.
Then the antenna signal can be computed by a single inversion and an inverse Fourier
Series Transform, noted FS~!, which is given by

p(¢) = %FS‘1 (Z”) (6.14)

However, this case is unrealistic, in every signal processing case a noise is present in the
signal. At least numerical noise is present, thus taking into account the noise gives

bp = 27P,, - By + Ao (6.15)

Thus the Fourier inversion becomes

i I:Jn . 'ﬁ;on 3
p, =14 2= (hn on ) st [n] >0 (6.16)

0 otherwise.

This yields an amplification of the noise Fourier coefficients when h ~ 0. This effect
is always present because the Fourier series coefficients of a signal tend to zero when n
tends to +o0o. Thus, this amplification of the noise needs to be mitigated, by means of
regularisation or thresholding methods.

6.3.4 Fourier-Wavelet Regularized Deconvolution method
6.3.4.1 Fourier shrinkage

To regularize the deconvolution, the estimate of the radiation pattern is defined as

N-1
Pr= > pale™, (6.17)
n=0

with &/ € [0, 1] a regularisation term. Tts value can be defined for each Fourier coefficients.
If ¢/ = 1, the corresponding component of the spectrum is not attenuated and if £ = 0,
this component is shrinked. Consequently, this parameter has to be chosen wisely, in order
to keep the relevant part of the signal while attenuating the noise amplification.

In [122] the value of &/ is defined by

]CL 2
¢ = M,with 7> 0. (6.18)
n T

We notice that ﬁ’,{z ~ 1 when h,, is large and lim 571; = 0. Consequently, the amplification
hn—0

of the noise is stopped when }Aln tends to zero. Then, the estimate of p,, noted ﬁnf, is
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given by

< by — 7 Fun? 1. B
ﬁnf = ﬁng’r{ — n Anon A‘ n’ — bn _ ﬁon _ n ’ (619)
27hy, |hn|? + 7 21 hnl2 + 7

with 7 a parameter that should be chosen in order to minimise the [RMSEl This parameter
depends on caracteristics of the signal and the noise.

The limitations of this method is that the Fourier coefficients corresponding to the fast
variations of the signal can not be distinguished from the coefficients corresponding to
the noise. So a compromise has to be done, either the noise is not amplified but the fast
variations are filtered out, either it is well estimated but noisy. Consequently a way to
improve the correction is to choose the signal well estimated, but noisy and to add another
kind of shrinkage.

6.3.4.2 Wavelet shrinkage

The wavelet shrinkage comes in addition of the Fourier shrinkage, as a tool for denoising.
Firstly a "loose" Fourier regularisation is performed, that does not erase all the noise,
secondly a wavelet shrinkage is performed that selectively atenuates the noise, without
deleting the fast variations of the signal. Indeed the wavelet shrinkage allows the signal to
keep fast variations while denoising, while Fourier would attenuate these fast variations.
This section explains how this shrinkage is performed.

The Discrete Wavelet Transform (DWTJ) of the Fourier estimation of p, pgs is subjected
to a threshold &%, which gives

DWT(p,) = DWT(p)E". (6.20)
with £% the regularisation coefficient. This can be defined by

D72
V= — 21
& |Di|? + &2’ (6.21)

with D7 the wavelet coefficients of h and & an estimation of the level of noise [122].

6.3.5 Complete method

This section focuses on the initial problem, that is to say to estimate p from b as defined
in . This implies to know the spectrum of h. In the case described in Section
the signal h corresponds to the radiation of the probe in the measurement environment,
in absence of the antenna. However, in most antenna measurement situations this signal
is unknown. This explains why a preliminary measurement is performed with a reference
antenna, in order to estimate the signal of the environment.

The antenna measurement method developed in this thesis thus includes two steps:

o First step: the estimation of A from the deconvolution of the measurement by = h ®
Dref + 1, with p..; the radiation of the reference antenna.

e Second step: the estimation of Py, from the deconvolution of the measurement by =
h ® paut + 1, using h as h.
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6.4. Illustration of the deconvolution method on a simulation

This method is summarised in Figure [6.2

Fourier Fourier Wavelet transform N
Measurement | transform thresholding + thresholding h
> + . - _ ) >
b inversion h g = hn€l hy h=DWT Y (DWT(hy)E®)
(a) First step
Fourier Fourier Wavelet transform N
Measurement | transform thresholding + thresholding Daut
—_— + B — —
ba inversion Daut Pautinf ; Daut; f Paut
= paut:nfn, = DWT?I(DWT(ﬁuut;f)gw)

(b) Second step

Figure 6.2: Steps of the correction method

Finally, a compromise must be found between both regularisations. The first shrinkage
must be loose to let the entire signal of interest and the wavelet regularisation should get
rid of the noise. Thus, the parameters (7,0) have to be chosen consistently in both steps
to obtain the best [RMSEL

6.3.6 Conclusion

This section has presented a regularised deconvolution method in 2D configuration. Firstly
the Fourier series has been presented as a tool to analyse a 2D measurement situation.
Then, the convolution has been presented as an ill-conditioned problem, this means that
the deconvolution method amplifies the noise. Consequently, the ForWaRD method, a reg-
ularisation method combining regularisation in the harmonic and in the wavelet domains,
has been presented. Finally, the complete antenna measurement correction method has
been detailled as an application of the ForWaRD regularisation twice, firstly to estimate
the environment signature and then to obtain the antenna pattern.

6.4 Illustration of the deconvolution method on a simulation

6.4.1 Introduction

This section constitutes an illustration of the ForWaRD method used in the case of an
antenna measurement post-processing. Here, we focus on the simple particular case in
which the incident field is a sum of plane waves. Firstly, the formulation of the incident field
is detailed in subsection [6.4.2], then the configuration and parameters of the simulations
are presented in subsection Next the first step of the correction method is performed
in subsection leading to the estimation of h with the ForWaRD method. Finally, in
subsection the estimation of p is performed.
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6.4. Illustration of the deconvolution method on a simulation

6.4.2 Formulation of the incident field

This section focuses on the formulation of h the radiation of the probe in the environment
nearby the antenna, which expression has been expressed in . This is defined on the
circle C of radius r surrounding the antenna, where its equivalent currents are defined. We
are going to develop each term of , E™ and H®

The incident field on C is considered to be a sum of plane waves, which gives
. nil g A
E™ =" Epe 7T, (6.22)

with p = 0 corresponding to the direct path and p = {1,..,n — 1} the multipath, which
have an attenuated amplitude.

The multipath can come from all around C with an angle of arrival ¢, as represented in
Figure[6.3] On the circle C of radius r, the term of the exponential becomes
ky-r = (kcos¢p'® + ksin ¢)'g) - (2 + yg)
= (kcos ¢p'® + ksin ¢p"g) - (r cos & + 7sin ¢g) (6.23)
= kr cos (qzﬁga — qb).

¢oa — 4
| o
Eo(6§* = 0°)

(boa — 900)

Figure 6.3: Representation of the incident field

Then the incident magnetic field can be computed from (6.22)). In the TMz configuration,
this becomes

k x Einc

H™(9) = G

Co © (6.24)

_ pz—zl kE, sin( ga)@ - COS( ga)ge—ikr cos (¢35 —¢)
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6.4. Illustration of the deconvolution method on a simulation

Finally, the radiation of the probe in the environment nearby the antenna can be expressed
by a function h(¢) given by

h(¢) = (E™(¢) — Gor x H™(¢)) - 2. (6.25)

From (6.4), (6.22) and (6.24]), the incident field is given by

p—1

h(@) = 3" Ep(2 — k# x (sin(957) & — cos(g7)g))e (97 ~2) . 2
p=0
.
= Z E,(2+ kcos( o= ¢)£)e‘ikrcos(¢ga_¢) - Z (6.26)
p=0

p—1
= Z(k‘ COS( ga — ¢) + 1)Epe—ikr cos(qjga_qs)‘
p=0

6.4.3 Configuration of the simulations

This section presents the parameters of the simulations, which are run for a frequency

of f = 10 GHz. This incident field consists in two plane waves: the direct path, with
6% = 0° has an amplitude of 1 V/m. The multipath has an angle of arrival ¢ = 40.8°

and an amplitude attenuated of 20 dB compared to the amplitude of the direct field.

The fields in presence and in absence of the multipath are represented in Figure
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(b) Incident field, i.e. a plane wave with a multipath

Figure 6.4: h and its spectrum (dB), on C

The direct path yields a field that is maximal for ¢ = 0°, which corresponds to its direction
of arrival. The field decreases smoothly for other angles. There is a large number of strong

Fourier series coefficients. In presence of the multipath, more oscillations are visible, both
in the angular and Fourier domains.

6.4.4 First measurement: estimation of the incident field

The first step of the method is to estimate h, with the ForWaRD method.

6.4.4.1 Configuration

The chosen reference antenna is radiating a Gaussian beam. Its field on C and its spectrum
are shown in Figure|6.5
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6.4. Illustration of the deconvolution method on a simulation
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Figure 6.5: Amplitude of the field of the reference antenna and its spectrum (dB)

The measured signal is obtained by the convolution between h and p,..r, additioned with
white Gaussian noise, with an amplitude 20dB below the amplitude of the convolution
signal. Its field and spectrum are shown in Figure

by Measurement spectrum

— b —— FS(by)

—-10 4

—-10 4
—20 1
—20 1

amplitude(dB)
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—30 4
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-401 -401
I IIL l]h]].p.i. , I i ,|.l|l ,.ll.l
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6(°) Fourier series coefficients orders

Figure 6.6: Amplitude of the field of the measurement and its spectrum (dB)

To estimate h, the ForWaRD method is used. The wavelet regularisation is performed on
4 wavelet levels. The type of wavelet chosen are the ’symlet6’ from the Python package
pywt. The regularisation parameters are taken such that 7, = 0.0003 and o5, = 0.01.

6.4.4.2 Estimation of h

The estimation of the h field and spectrum are plotted in Figures [6.7] and [6.8] along with
the field reference value of h, the measured signal, and the ref antenna radiation.
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Figure 6.8: Spectrum of h, b1, pey and heg (dB)

The estimation of h looks really poor but its spectrum shows that in the bandwidth of the
reference antenna, its spectrum is well estimated. This was expectable as the reference
antenna spectrum has a much smaller bandlimit than the incident field. Consequently,
the measurement acts as a filter on h, eliminating harmonics situated out of the reference
antenna band-limit.

However, the estimation of h does not have to be perfect, as long as the estimation of
its spectrum is correct until the bandlimit of the [AUT] Consequently, the bandlimit of

the Gaussian beam antenna being Nayt = 55, the correction method can only work with
antenna with a lower bandlimit.

6.4.5 Second measurement: estimation of the [AUT] radiation pattern

This section is the second step of the antenna measurement correction.
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6.4. Illustration of the deconvolution method on a simulation

6.4.5.1 Configuration

The antenna under test is an aperture with a width of the opening of 4\, radiating a sinc
function. The radiation pattern on C and its spectrum are presented in Figure [6.9]

Aperture antenna radiation Aperture antenna spectrum
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Figure 6.9: Amplitude of the field and of its spectrum (dB)

The bandwidth of the[ATUT!is smaller than the one of the reference gaussian beam antenna
used to estimate h, thus we can expect the deconvolution to work.

Here, the measured signal b is the convolution between this field and h, additioned with
white Gaussian noise, with an amplitude 20dB under the amplitude of the convolution. It
is shown in Figure [6.10]

b, Measurement spectrum
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Figure 6.10: Amplitude of the field of the measurement and its spectrum (dB)

Then, we estimate the field of the antenna from the estimation of h. This time, the Fourier
and wavelet regularisation parameters are chosen as (7,,0,) = (0.02,0.7).
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6.4. Illustration of the deconvolution method on a simulation

6.4.5.2 Results

The results of the regularisation correction method are shown in Figure [6.11]
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Figure 6.11: Amplitude of the field and spectrum of b2, peu: and its estimation p¥,, (dB)

In Figure a notable reduction of the perturbations is obvious. The central and
secondary lobes are corrected and close to the antenna radiation pattern. The
between the theorical radiation pattern and the estimated one is of -36.6 dB, considereing
that the simulated measured signal is disturbed by a multipath 20 dB under the amplitude
of the incident field and a noise level of -20dB. This is interesting to observe that h do not
need to be fully estimated to notice a distinct improvement in the processed measurement
signal. The estimation of the harmonics in the bandwidth of the [AUT is sufficient. This
method could be improved by choosing better values for (73, oy, 7p, 0p).
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6.5. Conclusion

6.4.6 Conclusion

This section has derived the 2D formulation of the measurement and introduced a decon-
volution method combining Fourier and wavelets regularisation.

Firstly, the formulation of the incident field has been explicited assuming a simple case
for which it is a sum of plane waves. Then, the first measurement of the deconvolution
method has been simulated by computing the convolution of & with a reference antenna
and by adding noise. Next, the ForWaRD method has been performed to estimate h.
Finally, the estimation of the [ATT] signal is computed, from the estimation of h. This
method yields an estimation of the antenna radiation pattern from a disturbed and noisy
measurement. With a multipath 20 dB under the amplitude of the incident field and a
noise level of -20dB, the amplitude of the antenna is estimated with an RMSE of -36.6 dB.
However, the ForWaRD method has not been fully optimised, better results are probably
reachable by a study of the regularisation parameters.

6.5 Conclusion

This chapter has constituted an application case of antenna measurement correction, in a
2D configuration.

Firstly the formulation of the measurement on the circle has been derived in the TMz
case, yielding a convolution between two 27-periodic signals on the sphere.

Then, the deconvolution of this function has been detailed and it has been shown that
the deconvolution is an ill-conditioned problem. Thus, a regularisation method has been
used to obtain an estimation of the signal of interest. This method has been adapted to a
measurement correction case, in two steps. The first step constitutes an estimation of the
signal corresponding to the effect of the environment on the radiation of the probe. Then,
this estimation is used to deconvolve the measurement signal and obtain the radiation
pattern of the antenna.

Finally, this method has been applied to a simulation. From a measurement disturbed by
noise and multipath, an estimation of the antenna signal has been obtained with a [RMSE]
of -36.6 dB. This method has not been pushed to its limits and might give better results.

To conclude, this chapter has presented an antenna measurement correction using decon-
volution with wavelet regularisation, on a simplified 2D case.
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Conclusion

Summary

This PhD thesis aimed at developing analysis and correction tools for antenna measure-
ments based on spin spherical harmonics and wavelets.

In the first chapter, the background of the thesis and the experimental aspect of antenna
measurements have been outlined. Firstly, an examination of antenna measurement en-
vironments has been undertaken, encompassing various configurations and environments.
Then, typical antenna measurement equipments have been presented, along with their
function within the RF measurement chain. The discussion extends to absorbing mate-
rials and their properties, diverse types of probes, and mechanical systems responsible
for motion within the measurement range. Finally, the antenna range employed for the
antenna measurements in this thesis has been introduced. Its characteristics have been
detailed, along with an illustrative measurement example.

In the second chapter, the tools and techniques for post-processing antenna measure-
ments in spherical geometries have been introduced. To begin with, the establishment of
the coordinate system and operators has been addressed, as they play a crucial role in de-
scribing motions within the measurement range. A recapitulation of spherical coordinates
has been provided, followed by a presentation of the mathematical tools and operators for-
mulating rotations over the sphere. The subsequent sections has introduced the derivation
of standard vector spherical harmonics for antennas. This process comprises two stages:
first, the scalar spherical harmonics, followed by the vector spherical harmonics. The
transform of electromagnetic fields has then been discussed, in particular the truncation
of this expansion due to the properties of spherical harmonics. To illustrate, examples
of spherical harmonic transforms have been displayed. These illustrations involve vari-
ous radiation patterns. Concluding the chapter, brief insights into antenna measurement
post-processing methods have been presented. The covered topics include the concept of
near-field to far-field transformation, techniques for speeding up antenna measurements,
and the correction of the probe and perturbations originating from the environment.

In the third chapter, the concept of spin spherical harmonics for the analysis of antenna
radiation has been introduced. These expansions possess attractive features for represent-
ing tangent vectors on the sphere, and efficient algorithms are available. To begin with,
the theoretical foundation of spin spherical harmonics, covering the definition of spin func-
tions, spin spherical harmonics, and the expansion of spin functions using these harmonics
have been presented. Additionally, the spin expression for tangent vectors over the sphere
has been derived, introducing rotational properties associated with the spin parameter-
isation. Then, sampling theorems and associated fast algorithms to efficiently compute
exact spherical harmonic transforms have been reviewed. Notably, the McEwen & Wiaux
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approach, compatible with the spin representation, has demonstrated high performance in
terms of complexity and computation time. Furthermore, the relation and compatibility
between the spin spherical harmonics and the Hansen spherical harmonics have been de-
rived. Finally, spin spherical harmonics transforms have been applied to various radiation
patterns, ranging from canonical cases with very few coefficients (N = 1) to the of an
aircraft (N = 2048). These transforms have been executed in remarkably short computa-
tion times, with the longest computation taking 9 minutes and 24 seconds. The versatility
and efficiency of spin spherical harmonics in these diverse contexts have underscored their
potential as a valuable tool in antenna radiation analysis. However, the examination of
[DUT]radiating high-order spherical harmonics has shown a limitation of this transform. A
significant amount of power can be distributed across numerous weak coefficients, render-
ing this power barely visible in the spherical harmonic representation. Consequently, the
next chapter has focused on spin spherical wavelets, which exhibit interesting localisation
properties.

In the fourth chapter, spin spherical wavelets have been introduced as a promising tool
for the analysis of antenna radiation patterns. While wavelets are commonly employed
in signal processing and compression problems, their application in spherical geometry is
less frequent. To begin with, the construction of wavelet bases in 1D geometry has been
presented. Then, the derivation of spin spherical wavelets from spin spherical harmonics
has been explained, followed by the presentation of the algorithm performing the spin
spherical wavelet transform. Finally, the chapter has provided several examples of wavelet
transforms of simulated radiation patterns. In particular, the wavelet transform of the
Radar Cross Section (RCS) of an aircraft has emphasized the ability of wavelets to high-
light fast variations, in contrast to spherical harmonics. Furthermore, these examples have
shown the algorithm’s efficiency, as the computation of 39,134,480 wavelet coefficients has
taken only 5 minutes and 24 seconds. As a result, the spin spherical wavelet transform
has exhibited significant potential as a tool for analysing and potentially correcting fast
variating fields.

In the fifth chapter, a formulation of the measurement problem has been established.
The measurement signal on the port of an Antenna Under Test (AUT]) has been expressed
as the convolution between the radiation pattern of the antenna and the radiation of the
probe in the measurement environment. The demonstration has started with the appli-
cation of the equivalence principle. This has simplified the problem by expressing the
antenna radiation through its equivalent currents. Secondly, the reciprocity theorem has
facilitated the connection between the signal received on the antenna port (i.e., the mea-
surement signal) and the signal corresponding to the probe’s radiation in the measurement
environment, along with the radiation of the antenna. Then, the rotation of the antenna
in the measurement environment results in a convolution with the radiation of the probe
in that environment. This formulation has been decomposed on spin components, yield-
ing a simplified formulation of the measurement. Finally, the validity of the hypothesis
according to which the antenna can be replaced by its equivalent currents has been veri-
fied. With this formulation, deconvolution methods can be employed to extract the actual
antenna pattern from the measurements.

In the sixth chapter, an application case of an antenna measurement correction has been
performed, in a 2D configuration. Firstly, the formulation of measurement on the circle
has been derived in a Transverse Magnetic (TMz) configuration, resulting in a convolution
between two 27w-periodic signals on the sphere. Then, the deconvolution process for this
function has been presented, showing that deconvolution is a challenging problem due to
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its ill-conditioned nature. Consequently, a regularisation method has been presented to
obtain an estimation of the signal of interest. This method has then been adapted for a
measurement correction scenario in two steps. The first step involves estimating the signal
corresponding to the environmental impact on the probe’s radiation. In a second step, this
estimation is used to deconvolve the measurement signal, ultimately yielding the radiation
pattern of the antenna. This method implies to use 1D expansion bases such as the classic
Fourrier series. Moreover, as in the Fourier-Wavelet Regularisation (ForWard) [122], the
1D wavelet expansions have been introduced, in order to refine the regularisation on
Fourier series. Then, this method has been applied to an antenna measurement simulation,
including perturbations under the form of 20 dB attenuated multipath and a -20dB level of
noise. This has resulted in an estimation of the antenna signal with a Root Mean Square
Error (RMSE]) of -36.6 dB. This is worth noting that this method has not been pushed
to its limits and may yield better results under more optimised conditions. Besides, the
extension to actual 3D spherical measurements has been left to furture works. To sum
up, this chapter represents an initial attempt at correcting antenna measurements using
deconvolution with wavelet regularisation.

Perspectives

This PhD thesis is the first thesis dealing with antenna measurements in the ENAC lab,
marking a beginning in various projects, under various forms. For example, the two first
chapters will be used for pedagogical or bibliographical purposes as they introduce many
aspects of antenna measurements. Secondly, spin spherical harmonics and the conversion
into Hansen spherical harmonic may be used in other projects, due to the fast computation
time they provide. As an example, a PhD student at ENAC is already using the spin
harmonics to develop stochastic models of the radiation of antennas when installed on
aircraft.

Additionally, many aspects of this thesis can to be further explored. The order of the
paragraphs is an intent to prioritise further works, from short term to long term.

In terms of spin spherical harmonics, a study of very directive antennas could be added
to the studies already performed in this thesis. Moreover a simplication of the Hansen-
spin spherical harmonics relations in the far-field zone, would be of interest notably in
terms of computation times. This would consist in only considering outgoing waves and
in replacing the Hankel functions by their far-field asymptotic equivalents.

Then, in terms of spin spherical wavelets, a further study would be needed to better
understand how they can help analyzing the radiation of large systems (RCS, antennas
installed on a platform, ...). The aim would be to find a method to determine the exact
origins of the coeflicients on high wavelet levels, and correct them.

In further works, the deconvolution should be formulated in spherical geometry. Spherical
measurements being defined on L?(SO(3)), this means that a convenient spin parame-
terised basis will be needed, as Wigner functions according to [65]. Then, the correction
using the ForWard method could be adapted to spherical configurations and optimised.
Firstly, a method combining the spin spherical harmonics and the spin spherical wavelets
has to be developed.

Then the criteria the reference antenna has to fullfill to estimate in the best way the
incident field on the [AUT] have to been clearly characterised. Finally, the choice of the
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regularisation parameters has to be the subject of a study, either theoretical or numerical
studies. In particular, the wavelet regularisation could be applied in function of the wavelet
level, as the highest levels probably contain noise only, thus could be regulated more
harshly.

Besides, this is important to remember that every antenna measurement facilities do not
permit full measurement on L?(SO(3)), i.e. for each Euler angle combination possible, and
the time cost of such measurement. Thus correction methods will have to be optimised
by taking into account such limitations. The objective could be to minimise the number
of measurement points.

Finally, a perspective for antenna measurement correction is to combine frequency and
angular correction with wavelets. Post-processing methods should be able to correct mea-
surement on the sphere in the measurement environment, using all the information con-
tained in a given frequency band. This is expected to improve the measurement accuracy,
but post-processing might be challenging due to the huge amount of data involved.

A PhD student at ENAC is already working in the continuity of my work, in order to
develop efficient analysis and postprocessing methods for spherical electromagnetic mea-
surements.
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Appendix A

Demonstration of the rotation
properties of a vector spin signal

A.1 Rotation of spin

The goal of this appendix is to demonstrate the phase shift that appears in the expression
of the global rotation of a spin function (3.17). Only the cases s = £1 will be considered.
The principle of the calculation relies on applying a global rotation to a field of vectors
tangent to the sphere, and to look at the effect of the rotation on its spin components.

To do so, we consider a field V; of vectors tangent to the unit sphere S?. This field can
be expanded in terms of +1 spin components. At any position 7y, this can be written as

W(’IA‘()) = V+1(fo)’ﬁ;+1 (fo) + Vfl(ﬁ])ﬂfl(ﬁo). (Al)
A global rotation of Euler angles € of this field can be defined as
‘/I;,(fl) = (Re‘/t) (ﬁl) = RGW(’?U% <A2)

with
7o = R7'7y. (A.3)
We remind that 7y and 7 are the positions before and after the rotation, respectively.
The component of spin +1 in (A.2)) is given by
11(P1) = V(1) - 4%, (1)
= [Re (Vi (fo)ti41(Po) + Vor(Po) @1 (fo))] - @7 (1) (A.4)
(

To continue the calculation, we need to calculate
By = R.ty(7o) - 47 (1), for s = £1. (A.5)

To do so, we notice that the spherical-coordinates unit-vectors at ¥y can be obtained from
a rotation of Euler angles (¢, 6p,0) of &, § and 2. This can be written as

A A

0o = R40,00,0) b0 = R(49,00,0)9> 70 = Ryg0.,00,0)2- (A.6)
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Rotation of spin

Similarly, we have

0, = R(¢179170)£7 p1 = R(¢1,9170)'g7 71 = R(¢1,6’1,0)2- (A.7)
Therefore, the unit vectors associated with £1 spins can ve expressed as

A T —isy
ts(fy) = R (40,60,0) (\/§> )

T —isy

Us(P1) = Ry, ,0,.0) (\/5) : (A.8)

Consequently, we have

& —isy z—19\"
By = {RGR(%,QO,O) < V2 )] ’ |:R(¢1a'91:0) < V2 ) ] : (A.9)
From (A.3]) and the last equation in (A.7]), we also have
o = R;lR(m’gho)ﬁ. (A.10)

Comparing this result with the last equation in (A.6)), we obtain

}(3) : (A.11)

R (44,600 = [Re_ "Ry, 0,.0)

where the upperscrit (3) means that the third Euler angle of the rotation is set to zero.

Therefore, (A.9) becomes

_ (3) (& —isy & —ig\”
By = [Re [Rg 1R(¢1,91,0)} ( NG )} : |:R(¢1,91,0) (\/5> ] . (A.12)

Applying the rotation R_! on both terms of the dot product, we end up with

— (3) T — ZS’g _ p— ,L:g *
Bs = HR€ 1R(¢1,91,0)} ( N5 )] . “RE 1R(¢1,9170)} (ﬂ) } , (A.13)

or equivalently

. -1 -1 -1 B[z — ZS@ z— Z:Ij *
B, = HRE Rin0)|  |[BRigsio) )| (55) (A.14)
In the xy complex plane, a rotation amouts to a phase shift. This yields
_ T —isy AN e Xs fors=1
Bs =e Xg ( ) : ( ) = A.15
V2 V2 0 for s = —1 ( )

where the angle x, is the third Euler angle of the rotation R~ 1R(¢1’9170). Inserting this

result in (A.4]), we obtain ‘
T1(P1) = e" 9V (7). (A.16)

The demonstration is similar for the component of spin —1.
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Appendix B

Calculations of the relations
between Hansen and Spin
Spherical Harmonics

B.1 Calculations of spin coefficients from Hansen coeffi-
cients

We are going to develop here each term of the sum (3.31)), for p = {TE, TM} and ¢ = +
For p =TM and s = +1, operations similar to the ones developed in Section give

< tT;:LIT(L)7Y1m n/ ul // kamndZ kT’) ime,

dPTLm|(cos 0) n imDP" |(cos. 0)
dé sin 6

(B.1)

gfs] Yy s g @FdS.

This time, the dot product gives

plml . plml 5lm| e A A
dP, '(cos@) »  imPy (cosf) 4 dPy, '(cosf) »  imPy (cos@) »| [0+ i
0 S = 7]
l dé + sin 0 ¢ dé + sin 0 ¢ V2
b dP,Lm|(cos 0) B m]%'f”'(cos 0)
V2 dé sin 0
-1
S"m\/§I4mnezmq5 b
(B.2)
Thus the dot product becomes
<etT'rlr\LI:'r(LC)’ YVl,m’,n’ ﬁ1> —om k\/>d2 k"l“ m, m’(sn n' (B?))
This comes from of the orthogonality relation given by
// }/smn . Y:/(m/n/ sin 9d9d¢ = 55,3/6m,m’6n,n’- (B4)
82
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B.1. Calculations of spin coefficients from Hansen coefficients

By inserting (3.36)) and (3.37)) in (3.31)), the spin+1 coefficients finally are

Cr(f/),}f/l(r) = \/>k Z Q <etmn¢Y+1m n’ u+1>

p,c,m,n

= 77%]{:7“ 07;71 {ZQ (kr)ém,m’(sn,n’ - Q TM (©) dz, v (kr)dm’mlén’n/} (B.5)

= f}%kr; [ZQTE;En(,C)Z( ) (kr) — Q. n(, )dz(c)(k:r)} .

The term of (3.31]) corresponding to p = TE and s = —1, becomes

< tT,iEf),Y Lm/ i W 1 // k\[Amnz (c) (kr)e ime,

Im| Im]
imPy" (cosf) 5 APy (cosh) » .
— | Y, 4 dS
[ sin 6 0 do 1t 2y dS,

(B.6)

with the dot product that yield the spin—1 spherical harmonic

. plml Im| . plml plm| §_ i
imPy, (cos9)0 dP;, (0050)¢]a . [ZmPn (cos@)é dPy, (COSB)$] (9 zq’))

sin 0 dé sin 0 B dé V2
i (mp" (cos @) apm (cos9)
= . +
V2 sin 0 do
)
= Y_ m.,n
Sy Apn €Me Lm,
(B.7)
And finally, we have
< TE,(c) ~ ZSm
€t mmn 7Y*1,m',n' U_1> = k\/7Z ]W’ F Y 1m’ n’Y 1mndS
is (B.8)
=— k\/7Z m m’én,n’ .
Then, the term of (3.31)) corresponding to p = TM and s = —1 is given by
< tmﬁb)vy 1,m’ n' U_ 1 // kamn <k’I"Z7(ZC)(]€T)> ei'rmj).
S2 kr dkr
(B.9)

Im|
imPy" (cos 0)
dé o+ sin ¢

[dPJLM(COS 0) 4 Yy o 8 1dS
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with the dot product that gives

u

[dPyle(cos H)é n imPAm(cos 6) 4 ar, = [dPrlLM(cos H)é n imP" |(cos 0) qﬁ] (é - zq?))

dé sin 0 dé sin 0 V2
1 (apm (cos ) mP" (cosf)
_— _"_ -
V2 dé sin 0
1
=— Y 1mn,
\/§5mA’élmnelmq5 b
(B.10)
and
(edmi) Yt ) = —kf 2 (k) O (B.11)
Finally the spin -1 coefficients are given by
C,f)’;l(r) Ly an:Enc) (c )(kr) +Q, C)dz(f)(kr)
’ V2 Z | I (B.12)

B.2 Calculations of Hansen coefficients from spin coeffi-
cients

This calculation can be done by inverting the matrix [3.41}.

To do so a Gauss pivot is done, first the matrix is developed as follows

CEH(r) = kr 2 (1260 (kr) QT B 420 (k) Q,E5 )
’ V2 (B.13)
— d2{) (kr) QP ) — a2 (kr) Q)

Gy (r) = hr T2 iz () Qi + i (k) Q)
’ ’ (B.14)
+dz(P (k) Q) 4 dz () (k) Q)

Gt (r) = b (= =D () Q) — dafD (k) Qi)
’ ’ (B.15)
+ 1257 (kr) QP ) +i2(7) (k) Q15 (),

C;ggfl(r):kr%(dzﬁ)(kr) ) 4 dz () (k) Q,EE ()

+ 200 (k) Q) 5207 (her) Q2N (B.16)

The following operations are performed on these equations

e (B.13) and (B.14) are added, which gives

CEAL(r) 4+ CE (1) = V2ikrsy (257 (k) Q%) + 20 (kr)Q25)).  (B.17)
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and ( are substracted, yielding

Chi ™ (r) = CLi™ (1) = =V2krsyn (dz ) (kr) Q™) + dz 7 (kr) Q). (B.18)

m,n

o (B.15)) and (B.16|) are added, which gives
COF )+ Ci T (r) = V2ikrs, (257 (kr) Q% (+) + 25 (kr) Tl\fl( ). (B.19)

e (B.15)) and (B.16|) are substracted, which yields

CEA (1) = CO0TY () = —VZhrsy (d2§) (k) Q%) + d=(7) (k) Q%) (B.20)

m,n

Combining (B.17) and (B.20), we end up with

Qi (20 (kr)d= ) (k) — 27 (k)= (kr))

2 (kr)CE (r) + dab ) (kr)CE L (r) + 625 (kr) CE A (1) — iz (k) OO0, Y ()

V2ikrsy,
(B.21)

On the left-hand side, we can identify the wronksian as defined in (3.42)), which gives

Te, (1) _ Z5mET () (e O® L () 1 () (k) O
man Wi (dzy, (k) Crpp ™ (r) + dzy, ) (kr) O™ (1) (B.22)

+ iz(_)(kr)C(H);fl(r) —iz{7) (kr)CE =1 ().

Similarly, Qum ( ), Q,;Ef\fl( and an ) become

TE,() _ SmhT dz ) (kr O @, +1 dzF) (kYO @,—1
mn oz (B (Br)Con T () + dg P (k) G i (1) (B.23)

+ 125 (kr) CEF (1) — i2(D) (kr) O~ 1 (1)),

TM () Smkr —'Lz( ) kr C(E) +1 —i—iz(_) ErYOE—1(p
Qm. 2\@( (kr) (r) +izy, / (kr)Cr (r) (B.24)
= dzg 7 (kr) Gl (r) = dzD) (k) C ™ (),
and
QTM( — Smkr(iz(ﬂ(kr)c(E),H( ) — zz(+)(kr)C(E)’_1( )
2v2 " m’” (B.25)

+dz{P (kr)CE T (1) + dz(P (kr) CE0 7L (7)),
The inverse matrix of (3.43)) is deduced from (B.22)), (B.23), (B.24) and (B.25)).
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Appendix C

Construction of axysimmetric
spin scale-discretised wavelets

This appendix presents one way to obtain the wavelet and scaling functions of the
spin spherical wavelet transform presented in Chapter 4. The equations presented
here come from [111]. This has been demonstrated in [123|, that a spin function may
be reconstructed exactly from its wavelet and scaling coefficients. This is possible
if the spherical harmonic coefficients of the scaling and wavelet functions respect an
admissibiliy condition given by

A
2n + 1 ( |2+Z!CN o ) =1, vn (C.1)

As demonstrated in [123], a solution to build the scaling and wavelet functions is then
to start with the infinitely differentiable Schwartz function given by

s(t)z{ e tell } (C.2)

sa(t) = s <)\2>\(t _ %) _ 1) , (C.3)

which has compact support in [1/A, 1]. Then, the smoothly decreasing function k) is
defined as

fl i’

t l

ka(t) = IR dt, (C.4)
xS

which is unity for ¢ < %, zero for ¢t > 1, and is smoothly decreasing from unity to zero

for t € [%, 1]. Finally, the wavelet generating function is defined by

£) = \ka(t/X) = ka(t), (C:5)

and the scaling function generating function by

a(t) = \/ka(t). (C.6)
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From these generating functions, spherical harmonic coefficients of the scaling and
wavelet functions can be defined so that they respect the admissibility conditions.

They are given by
s = (-) S C.7
m,n An KX Y 05 ( )

5. ®* 2n+1 n
Crim = ) (W) Omo, (C.8)

and

with ¢ the Kronecker symbole.
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Appendix D

Summary in French (Résumé en
francais)

D.1 Introduction

La conception d’une nouvelle antenne commence généralement par plusieurs étapes de
simulation [1]. Néanmoins, cela ne suffit pas a vérifier les performances de 1’Antenne
Sous Test (AST), par conséquent une maquette est construite et est testée a travers
plusieurs étapes de mesure. Elles permettent de vérifier le bon fonctionnement de ’AST
selon différents critéres et applications comme les communications sans fils, les systémes
radar et les communications par satellite (satcom) [2}3].

Le processus de mesure a pour but d’évaluer le diagramme de rayonnement en po-
larisations principale et croisée, dans toutes les directions, que l'antenne soit seule ou
installée sur sa plateforme d’utilisation, le tout formant un Dispositif Sous Test (DST).
Idéalement, le signal de mesure est recueilli par une sonde, en général une autre antenne
placée suffisement loin de ’AST pour respecter les conditions de champ lointain [4},5].
Cette condition est remplie quand la distance d entre I’antenne et la sonde correspond
a la condition

2D?
N
avec D la taille de PAST et A la longueur d’onde.
Néanmoins, cette condition peut mener a des distances irréalistes entre la sonde et
I’antenne. Par conséquent, les mesures sont généralement faites dans des installations
spécifiques, adaptées a I’émulation de conditions de champ lointain, comme les bases
compactes de mesure d’antennes. Un post-traitement du signal est aussi possible,
comme ce qui est fait dans les bases de mesure champ proche [2].
Ces installations de mesures sont congues de manieére a éviter les perturbations, ce
qui permet de considérer que I’AST ou le DST sont en espace libre. En général ces
installations sont des chambres anéchoiques, dont les murs sont couverts de matériaux
absorbants.
Néanmoins, des réflexions parasites, du bruit et des multi-trajets sont toujours résidu-
ellement présents dans ces chambres, méme les plus précises. Ces perturbations peu-
vent venir de nombreuses sources comme des reflexions sur des appareils de mesure mé-
talliques, du couplage, du bruit électronique ou thermique, ou le rayonnement cosmique.
Par ailleurs, la donnée de mesure brute doit étre traitée pour extraire I'information utile.
Par conséquent, dans la littérature, on retrouve le développement de méthodes de cor-

d > (D.1)
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rection en post-traitement, en plus de la recherche sur 'amélioration du matériel de
mesure. Les objectifs sont d’améliorer la précision et d’accélérer les temps de mesure.
En premier, on retrouve les méthodes de transformation champ-proche champ-lointain
qui permettent de déterminer le diagramme champ lointain de ’antenne a partir de
mesures effectuées en champ proche [6,(7,8]. Des méthodes sont aussi développées
pour raccourcir les temps de mesure, par exemple en diminuant et en simplifiant les
points de mesure [9,/10]. Finalement, beaucoup de méthodes ont pour but de dimin-
uer l'effet de I’environnement comme les méthodes de fenétrage temporel qui isolent
le signal d’intérét des multi-trajets grace au retard existant entre eux |11]. Les méth-
odes actuelles de reconstruction et de filtrage spatial reposent sur la représentation
en courants équivalents de 'AST [12,/13]. Dans de nombreuses méthodes, la correc-
tion repose sur la décomposition du champ en harmoniques comme dans la correction
de sonde [6,/14], le filtrage spectral |[15] ou la méthode de compensation de champ de
zone de test [16,/17,/18]. Ces méthodes profitent des différentes propriétés du spectre
et ont pour but d’isoler le plus précisément possible le diagramme de rayonnement de
I’antenne de ’environnement électromagnétique.

Dans le cas de la mesure d’antennes, les données sont principalement de géométrie
sphérique, comme les diagrammes de rayonnements champ lointain sont définis sur la
sphére. Ainsi de nombreuses installations de mesure d’antennes sont congues pour la
mesure sphérique. C’est pourquoi des outils d’analyse sphériques ont été développés.
En particulier, les harmoniques sphériques sont les bases de décomposition les plus
connues pour 'analyse de mesure d’antennes [6]. Par ailleurs, le rayonnement d’une
antenne est un champ de vecteurs, d’ou I'intérét pour le concept de spin. Ce concept a
été développé et appliqué aux harmoniques sphériques par Penrose [19,20]. Il permet
d’exprimer des champs de vecteurs tangents a une spheére en terme de composantes
de spin qui ont d’intéressantes propriétés de rotations. De plus, McEwen & Wiaux
ont développé des algorithmes de transformation en harmoniques sphériques de spin
rapides et stables, en paralléle de théoremes d’échantillonnage sur la sphére [21].

Ces chercheurs ont aussi mené récemment des travaux sur les décompositions en on-
delettes sur la sphere. Les ondelettes sont généralement utilisées pour compresser des
données comme des images (JPEG), pour effectuer de la déconvolution et du débruitage
dans de nombreux domaines de la physique et de l'ingénieurie [22,23]. Des fonctions
d’ondelettes spécifiques ont récemment été développées pour analyser des données sur
la sphere [24] et I’analyse multirésolution en ondelettes a été utilisée pour décrire le fond
diffus cosmologique [25]. McEwen & Wiaux ont aussi développé des algorithmes rapides
de transformées en ondelettes sphériques dans [26]. Par conséquent, ce type de décom-
position pourrait apporter une autre dimension a ’analyse de mesures d’antennes sur
la spheére et au développement de nouvelles méthodes de correction. En particulier, la
transformée en ondelettes permet de localiser des composantes dans les domaines spatial
et spectral ce qui permettrait de reconnaitre les effets de perturbations indésirées dans
la mesure. C’est une maniere d’améliorer la correction basée sur les décompositions en
harmoniques sphériques.

Les objectifs principaux de cette these sont de développer des méthodes d’analyse et
de correction pour la mesure d’antennes sphérique, basées sur les harmoniques et les
ondelettes sphériques de spin. Ces méthodes doivent remplir des objectifs de perfor-
mance en terme de précision et de temps de mesure. Les objectifs détaillés de la these
sont:

e l'analyse des avantages des harmoniques sphériques de spin, dans le domaine des
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antennes et la formulation de leur relation avec les harmoniques sphériques définies
par Hansen [6],

o l'utilisation des ondelettes sphériques de spin en temps qu’outils d’analyse de dia-
grammes de rayonnement,

¢ la formulation rigoureuse du probléme de la mesure d’antenne, a partir de théoremes
basiques d’électromagnétisme,

e le test de méthodes de correction basées sur la déconvolution et le débruitage, a
partir de transformées de Fourier et en ondelettes. Ces tests ont été réalisés sur un
cas simple simulé.

D.2 Mesure d’antennes

D.2.1 Introduction

Les performances d’'une AST sont caractérisées par ses parametres en champ lointain,
tels que son diagramme de rayonnement, son gain, sa directivité et sa polarisation [5].
Elles sont généralement évaluées a travers la mesure d’une transmission, dans des es-
paces spécifiques a ’aide d’une instrumentation particuliere. L’objet de ce chapitre
a été de dresser un état de l'art de la mesure d’antennes. Dans une premiére par-
tie, les différents environnements et configurations de mesure sont présentés, puis les
équipements requis. Finalement, la chambre de mesure de 'ENAC est présentée.

D.2.2 Bases de mesure d’antennes

Le choix du banc d’essai pour une antenne dépend du type d’antenne, de la gamme de
fréquences et des exigences spécifiques de mesure. Le banc d’essai et les instruments
forment ’environnement physique de la mesure. Quant a 'environnement électromag-
nétique, il est défini comme tous les rayonnements présents dans le volume de mesure
qui ne font pas partie du diagramme de rayonnement de I'antenne. Ces deux envi-
ronnements ont une influence considérable sur la précision de la mesure. Les environ-
nements de mesure les plus communs sont présentés dans cette section, ainsi que les
différentes configurations de mesure permettant d’obtenir le diagramme champ lointain
de 'AST.

D.2.2.1 Environnements de mesure

Il existe de nombreux environnements de mesure, qui présentent chacun des intéréts et
des inconvénients:

¢ Les mesures en espace libre ne présentent aucun équipement permettant d’isoler
I’AST des perturbations extérieurs, venant des télécommunications mobiles ou des
radars par exemple. Elles peuvent étre effectuées en laboratoire ou a ’extérieur.
Elles présentent I'avantage de pouvoir effectuer des mesures lorsque les conditions
de champ lointain nécessitent que ’AST soit trés loin de la sonde. Néanmoins, elles
sont généralement peu précises.

e Les chambres faradisées arrétent ou atténuent les rayonnements électromagné-
tiques venant de 'extérieur.
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¢ Une chambre de réverbération est une chambre faradisée dans laquelle un champ

électromagnétique aléatoire est crée . Le diagramme de rayonnement de
I’AST en émission dans une telle chambre se distingue en ce qu’il est déterministe
et peut ainsi étre mesuré.

Les chambres anéchoiques sont des chambres faradisées dont les murs sont recou-
verts de matériaux anéchoiques qui atténuent les réflexions. Ce sont les chambres de
mesure les plus communes car elles constituent des environnements controlés. Elles
sont néanmoins tres coliteuses, notamment pour les plus grandes qui ne sont parfois
que partiellement recouvertes de matériaux anéchoiques. La chambre anéchoique du
CNES est montrée sur la Figure et la chambre semi-anéchoique de la Direction
Générale de ’Armement (Solange) sur la Figure

(a) Base compacte du CNES (b) Chambre semi-anéchoique Solange, Bruz,
DGA-MI

Figure D.1: Chambres de mesure anéchoiques

D.2.2.2 Les configurations de mesure

Afin d’obtenir le diagramme champ lointain d’un antenne, sa mesure peut étre effectuée
de différentes manieres :

¢ La mesure champ lointain permet d’obtenir directement le diagramme de rayon-

nement de ’antenne ,. La sonde est fixe et mesure le signal émis par I'antenne
fixée sur un positionneur qui lui permet de parcourir toute la sphere. Ainsi on
obtient le rayonnement de I’antenne en champ lointain, dans toute les directions.
Néanmoins, ce type de mesure nécessite que 'antenne et la sonde soient suffisam-
ment loin I'une de 'autre, selon ’équation , ce qui peut mener a des tailles de
chambre de mesure irréalistes. Par exemple, la condition de champ lointain d’une
antenne émettant & 30 GHz montée sur un satellite large est de 80 m.

Dans une base compacte de mesure d’antennes (BCMA), les conditions de
champ lointain sont émulées en éclairant ’AST par une onde plane, a ’aide d’'un
réflecteur. La chambre de mesure du CNES est une BCMA, comme on peut le voir
sur la Figure [D.1a)

Les mesures champ proche permettent de s’affranchir des conditions de champ
lointain en passant par un post-traitement du signal mesuré, la transformation
champ proche-champ lointain. Ainsi les chambres de mesure champ proche sont

160



REPUBLIQUE
FRANCAISE
Fai ENAC

Fraternité

D.2. Mesure d’antennes

souvent de plus petite dimension et moins cotliteuses, comme la chambre Starlab de
MVG, sur la Figure [D.2]

Figure D.2: Base champ proche Starlab

D.2.3 Les équipements d’une salle de mesure

Une salle de mesure présente des équipements spécifiques, dont le choix est crucial pour
atteindre les précisions de mesure attendu. Un schéma d’une configuration générale de
mesure d’antenne est présenté sur la Figure [D.3] La rotation de 'antenne est permise
par un positionneur contr6lé par logiciel. L’analyseur de réseaux vectoriel (VNA) ali-
mente la sonde et collecte le signal mesuré. La sonde peut étre a double polarisation ou
montée sur un positionneur pour mesurer les deux polarisations de I’antenne. Enfin des
calibrations et post-traitements peuvent étre effectuées, avec du matériel de calibration
et des logiciels spécifiques.
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Figure D.3: Base de mesure RF

D.2.4 Base de mesure de 'ENAC

La base de mesure de 'TENAC a constitué un atout pour les recherches effectuées durant
cette these. C’est une base qui est utilisée pour la recherche et ’enseignement. On peut

en voir une photo sur la Figure [D.4]

Figure D.4: Base de mesure de 'ENAC

D.2.5 Conclusion

Ce chapitre a permis d’établir le contexte de la these, en introduisant les différents

environments et configurations de mesures.
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D.3 Outils théoriques pour la mesure sphérique d’antenne

D.3.1 Introduction

Dans le chapitre précédent, il est expliqué que la mesure est souvent soumise a des
post-traitements et des analyses. Ce chapitre a pour but d’introduire les outils clas-
siques d’analyses de diagrammes d’antennes. Dans un premier temps, les systemes de
coordonnées et opérateurs de la mesure sphérique sont introduits, suivis par les har-
moniques sphériques qui sont des bases de décomposition. Finalement, les méthodes de
post-traitement habituellement appliquées aux diagrammes d’antennes sont présentées.

D.3.2 Systemes de coordonnées et opérateurs

La mesure consiste en la détermination du niveau de signal émis par l'antenne, en
fonction d’une position ou d’une direction dans ’espace. Celles-ci doivent donc étre
paramétrées sur la sphéere a travers plusieurs outils :

¢ les coordonnées sphériques qui permettent de positionner la donnée de mesure
sur la sphere,

¢ les angles d’Euler, pour paramétrer les rotations effectuées par 'antenne,

e l’opérateur de rotation, pour paramétrer les données apres la rotation.

D.3.3 Harmoniques sphériques standards

Les harmoniques sphériques sont des outils d’analyse classiques dans le domaine des
mesures d’antennes. Ce sont des solutions particulieres des équations de Maxwell, for-
mant une base orthonormale sur la sphere. Elles permettent ’analyse de champs élec-
tromagnétiques sur la sphére, comme décrit dans les livres de Stratton [27], Felsen and
Marcuvitz [66], et Van Bladel [67]. Cette section présente les harmoniques sphériques
standards, comme définies par Hansen [6].

Une fonction transverse d’harmonique sphérique vectorielle peut s’écrire

P(c) (r,0,¢) ou R (r,0,0) (D.2)

et m,n t m,n
selon qu’elle serve a décomposer un champ électrique ou magnétique. Ces fonctions
dépendent de la nature TE ou TM du champ, des fonctions de Hankel, et des fonctions
de Legendre, paramétrées respectivement par les indices p = {TE,TM}, ¢ = £, et les
indices m, n.
Ainsi, dans une région sans source, les composantes transverses E; et Hy du champ
électromagnétique peuvent s’écrire

E; = Z ZZ Z anetmn(re(b)

p=TE,TM c=+ n=1m=—n

(D.3)
H- Y Y5 Y Qw0
p=TE,TM c=+ n=1m=-n
avec Q les coefficients d’harmoniques sphériques, avec p = TE or p = TM, calculés

a partir de la relation orthogonalité |6].

La Figure [D.1] présentent une illustration des premiéres fonctions d’harmoniques. Les
premieres harmoniques, avec n = 1 présentent des variations lentes, alors que les
niveaux supérieurs présentent des variations plus rapides.
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n/|m| 0 1 2 3
@
S&
o

Table D.1: Amplitude du champ des harmoniques sphériques pour n € [1, 3] et m € [—3, 3]

Physiquement, il existe une limite NayT au nombre d’harmoniques qu’une antenne peut
rayonner. Celle-ci dépend de la taille de 'antenne et de la fréquence, et est donnée par

Naur = [k‘?”o] + nq, (D.4)

avec rg le rayon de la plus petite sphere entourant ’antenne et n; dépend du niveau de
précision attendu.

D.3.4 Exemples d’analyse en harmoniques sphériques

Cette section a pour but d’illustrer I'utilisation des harmoniques sphériques pour
I’analyse de diagrammes de rayonnement d’antennes. Le cas présenté ici est celui du
rayonnement d’une antenne cornet simulée avec Altair Feko a 5 GHz. Son diagramme
de rayonnement et sa décomposition en harmoniques sphériques sont présentés sur les

Figures et
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(a) Antenne cornet (b) Champ E rayonné par le cornet
(dB)

Figure D.5: Caractéristiques de I’antenne cornet

TE outgoing L
=2B
—30
—40
=20 =18 0 10 20
m .
TM outgoing o
-20
—30
—40

Figure D.6: Coefficients normalisés d’harmoniques sphériques TE et TM de l’antenne
cornet (dB)

D.3.5 Post-traitement pour la mesure d’antennes

Cette section présente les principaux post-traitements appliqués au signal de mesure.
Certains ont pour but d’émuler les conditions de champ lointain comme 'algorithme
de transformation champ proche-champ lointain [6,/7,|8], d’autres de compenser les
perturbations introduites par I’environnement de mesure. On peut par exemple citer
la correction de sonde [6,/14], le fenétrage temporel [11], le filtrage spatial et la re-
construction de courants [12,|13], le filtrage spectral et la compensation de zone de
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test [15,16,17,[18]. Enfin certaines visent a accélérer les temps de calcul, en minimisant
le nombre de points de mesure nécessaires sur la sphere, a partir de connaissances a
priori sur ’AST [9,10].

D.3.6 Conclusion

Ce chapitre a permis de présenter les outils classiques d’analyse et de corrections de
mesure de diagramme de rayonnement d’antennes.

D.4 Harmoniques sphériques de spin

D.4.1 Introduction

Les harmoniques sphériques de spin sont une alternative aux harmoniques sphériques
classiques. Le parameétre spin a été introduit par Penrose dans [19], il permet de dé-
composer un vecteur sur la sphere et présente des propriétés de rotation avantageuses.
Cette section présente la théorie des harmoniques sphériques de spin et 'algorithme
rapide qui permet de calculer rapidement la transformée en spin. Le lien avec les har-
moniques classiques de Hansen est calculé et des exemples de ce type de décomposition
sont présentés.

D.4.2 Théorie des harmoniques sphériques de spin
D.4.2.1 Fonction de spin

Les fonctions de spin sont des fonctions de carré intégrable sur la sphére, notées us €

L?(8?), paramétrées par le spin s € Z. Une fonction de spin est définie par son
comportement lors d’une rotation locale, notée ’; de x; € [0,27[. Celle-ci introduit un
déphasage x; donné par

uy(6,¢) = e Nug(6, ). (D.5)

D.4.2.2 Harmoniques sphériques de spin

Les harmoniques sphériques de spin sont proches des harmoniques sphériques de
Hansen. Elles sont notées Y, € L?(S?) avec s € Z, n > |s|, et |m| < n. Elles
forment une base orthogonale de L?(S?).

D.4.2.3 Expression d’un vecteur tangent sur la sphére en harmoniques
sphériques

Considérons la composante tangentielle V; d’un champ V. Ce vecteur peut étre exprimé
comme

00 n
‘/t(ev ¢) = Z Z V+1,m,nY1,m,nﬁ+1 + Vfl,m,nyfl,m,n'afl- (DG)

n=0m=—n

en terme d’harmoniques sphériques de spin.
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D.4.2.4 Propriété de rotation globale d’une fonction de spin sur la spheére

La rotation globale R4 d’une fonction de spin u, € L?(S?) sur la sphére est donnée
par ‘
(Rocts) (1) = e Xay (R 1), (D.7)

avec R, la matrice de rotation 3D. x4, € [0,27] est défini comme le troisieme angle
d’Euler de la rotation R = RQIR(Q,@O) ie. € = (.,.,xg). Ainsi, on constate qu'un
simple déphasage apparait lors de la rotation.

D.4.3 Transformée en harmoniques sphériques de spin : échantillon-
nage et algorithme rapide

La transformée en harmoniques sphériques de spin repose sur un théoréme
d’échantillonnage et un algorithme, développés par McEwen & Wiaux qui perme-
ttent des calculs rapides, comparé a d’autres algorithmes classiques.

Les points de la grille d’échantillonnage sont donnés par

2 1
Hé,\gAUT = w, for Po € {O, 1, -uyNAUT - 1},
2Naur — 1 (D.B)
gNavr — 2P0 for pg € {0,1, ..., 2Nayr — 2}
p¢ 2NAUT _ 17 » ) Y Y

avec Nayr le dernier niveau d’harmonique, 7.e.. Ainsi la grille est définie & partir de la
taille de 'antenne, dont dépend NayT. Néanmoins, il peut étre intéressant, notamment
dans le contexte de la correction de mesure d’antenne de calculer les harmoniques
de niveau supérieurs, jusqu’a un niveau qu’on notera N. En effet, les perturbations
introduites par ’environnement sont souvent rapides et excitent des harmoniques qui
ne peuvent pas faire partie du spectre de 'antenne, ce qui les rend détectables.
L’algorithme de calcul de la transformée en harmoniques sphériques de spin repose sur
I'utilisation des fonctions de Wigner et de transformées de Fourier rapides, effectuées
sur une extension périodique de la sphere, le tore. Sa complexité est en O(N?) et sa
précision est la précision-machine. Cet algorithme se distingue aussi par sa stabilité.

D.4.4 Relation entre les harmoniques de spin et les harmoniques de
Hansen

Cette thése relie deux formulations d’harmoniques sphériques, chacune présentant des
avantages et des inconvénients. L’approche Hansen est communément utilisée dans
le traitement d’antenne et prend en compte les effets de la propagation. La formu-
lation en spin permet de représenter simplement la donnée sous plusieurs formes, sur
la sphere, de calculer des rotations locales et globales simplement et de considérer de
hauts ordres d’harmoniques sphériques. Par ailleurs elles ont été développées en paral-
lele d’algorithmes rapides et stables. Par conséquent, il est avantageux de formuler le
lien entre ces type harmoniques.

Ainsi, les coefficients d’harmoniques sphériques de spin (C5:°(r), C55:°(r)) et les coef-

ficients d’harmoniques sphériques de Hansen Q%Z) sont liés par
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Cit () izﬁf)(kr) <kr> —dz (kr) dzn‘( N [Qmn”)
Chon )| _ S | iz (k) Tkr)  d2D (kr) dzn 'kr) | | Qumt™
Ol | T | S ) il ><kr> iz (k)i (r) || Q™)
o (r) (k) (k) 2P (k) il (k) M, (=)
(D.9)

Cette matrice est inversible, ce qui permet d’utiliser un type d’harmonique ou l'autre
en fonction du contexte.

D.4.5 Analyses de diagrammes d’antennes au moyen d’harmoniques
sphériques de spin

Dans la these, la décomposition en harmoniques sphériques de spin a été effectuée sur
plusieurs simulations et une mesure d’antenne. Ces décompositions ont notamment
permis de montrer leur capacité & visualiser la polarisation d’'une antenne. En effet
les coefficients de spin +1 correspondent aux coefficients de la composante de polari-
sation droite du rayonnement, tandis que les coefficients de spin -1 correspondent a la
polarisation gauche. Dans ce résumé, seuls deux exemples sont présentés.

Le cornet présenté dans la section a été décomposé en harmoniques sphériques de
spin, comme montré sur la Figure[D.7] Ce cornet est en polarisation linéaire, ce qui peut
étre décomposé en une polarisation droite et une polarisation gauche, correspondant
aux coeflicients de spin +1 et -1 respectivement.

E spin+1 H spin+1

m
H spin-1

Figure D.7: Décomposition en harmoniques sphériques de +1 and -1 du diagramme de
rayonnement d’un cornet en polarisation linéaire (dB)

La conversion de ces coefficients en coefficients de Hansen a également été effectuée,
grace a .

Afin de tester les performances de lalgorithme rapide de calcul d’harmoniques
sphériques de spin, la décomposition a été effectuée sur une simulation de Surface
Equivalente Radar (SER) d’un avion, la simulation est illustrée sur la Figure[D.8] Une
onde plane rayonne en direction de ’avion et sa réflexion est simulée. Ce cas est intéres-
sant car les différentes réflexions et diffractions sur les éléments de ’avion introduisent
des variations tres rapides et variées, qu’il est difficile de simuler avec une antenne seule.
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Ainsi, la décomposition en harmoniques sphériques de spin de cette SER a été calculée
jusqu’au niveau N = 2048, comme on peut le voir sur la Figure [D.9]

Figure D.8: Simulation de la SER de ’avion

E spin+1 H spin+1
-60 -60
500 500 -
- » - »
—80 —80
— 1000 — 1000
\ \
1500 4 >, =00 1500 4 / N, ~100
2000 4 ~120 2000 -120
-2000 -1000 0 1000 2000 -2000 -1000 0 1000 2000
m m
E spin-1 H spin-1

= 1000 | = 1000

1500 4 ae 1500 4 g

2000 -120 2000 - =120
—2000 -1000 0 1000 2000 —2000 -1000 0 1000 2000

Figure D.9: Décomposition en harmoniques sphériques jusqu’au niveau N = 2048

Au total, 16,793,600 coefficients ont été calculés en 4 minutes ce qui démontre les perfor-
mances remarquables de I'algorithme développé par McEwen & Wiaux. La conversion
en coefficients de Hansen prend 5 min 24 s.

D.4.6 Conclusion

Ce chapitre a présenté la théorie des harmoniques sphériques de spin et les algorithmes
de calculs associés. Une formulation permettant de les calculer a partir des harmoniques
sphériques de Hansen et vice-versa a été fournie. Des transformées en harmoniques
sphériques de spin ont été calculées, vérifiant les performances remarquables des algo-
rithmes de calcul. Néanmoins, dans le cadre de son utilisation pour la détection de
perturbations lors de mesure d’antennes, la décomposition en harmoniques sphériques
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ne fournit pas de visualisation claire. Les coefficients parasites sont peu visibles sur
les diagrammes. Ainsi I’étude des ondelettes sphériques de spin vise a obtenir une
meilleure visualisation.

D.5 Ondelettes sphériques de spin

D.5.1 Introduction

Les ondelettes constituent un concept largement répandu, ayant trouvé des applica-
tions dans divers domaines tels que le traitement de signal, la compression de données
et l'analyse d’images. Leur principal avantage réside dans leur capacité & représen-
ter et analyser les données a différentes échelles, couvrant des informations générales
jusqu’aux caractéristiques localisées de petite taille [23][104,[105,[106,[107]. Cette carac-
téristique assure de bonnes propriétés de localisation spatiales et spectrales, qui man-
quent aux outils d’analyse classiques comme Fourier.

D.5.2 Ondelettes multi-résolution pour les signaux 1D

Une base d’ondelette est définie par une fonction d’échelle et des fonctions d’ondelettes.
Elle permet de décomposer un signal en niveau de variations. Une illustration d’une
telle décomposition est proposée sur la Figure Le signal correspondant au rayon-
nement champ lointain bruité d’une ouverture rayonnante carrée d’une largeur 4\ est
décomposé en 4 niveaux d’ondelettes.
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—— Aperture antenna radiation pattern

amplitude (dB)
]

-150 -100 =50 0 50 100 150

—— Scaling function

amplitude (dB)
]

—150 —100 =50 0 50 100 150

—— Wavelet level W*
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amplitude (dB)
]
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&
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—— Wavelet level W
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Figure D.10: Décomposition en ondelette du signal bruité d’une ouverture rayonnante

On peut observer la fonction d’échelle et les niveaux d’ondelettes. Les niveaux
d’ondelettes élevés contiennent probablement l'information correspondant au bruit
introduit dans le signal. En effet les fonctions d’ondelettes sont de bons outils de
débruitage.

D.5.3 Ondelettes sphériques

Les ondelettes sphériques sont définies sur la sphere, elles sont formées a partir des
harmoniques sphériques de spin [111]. On peut en voir une illustration sur la Figure

D.11
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909

D(w) ¥ (w) P (w)
P (w) P (w)

Figure D.11: Fonctions d’ondelettes axisymétriques \|

Pour couvrir toute la sphére et former une base de L?(S?), ces fonctions sont soumises
a des rotations.

Pour réaliser une décomposition en ondelettes sphériques, le signal sur la sphere est
d’abord décomposé en harmoniques sphériques de spin. Les coefficients sont ensuite
regroupés dans des niveaux d’ondelettes distincts, grace a des filtres, ainsi qu’illustré

sur la Figure

oy 23}(1)
ket 54
- ‘ v
725
c 40 - N
60 -
80 - ; ; ;
—-80 —60 —40 80

Figure D.12: Découpage de la décomposition en harmoniques sphériques de spin, pour la
construction des niveaux d’ondelettes

Une transformée en harmoniques inverse est appliquée a chaque groupe de coefficients
ce qui donne les différents niveaux d’ondelettes sur la sphere.

D.5.4 Analyses de diagrammes d’antennes au moyen d’ondelettes
sphériques de spin

Dans cette these, plusieurs rayonnements de diagrammes d’antennes simulés ont été
décomposés en ondelettes sphériques de spin. Dans ce résumé, il n’est montré que la
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décomposition en niveaux d’ondelettes de la SER de 'avion présentée dans la Section
D.4.5

On peut voir la composante de spin +1 de ce diagramme de rayonnement sur la Figure
La Figures montre la décomposition en ondelettes de cette composante du
champ.

Superior half of the sphere Inferior half of the sphere

—=0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

—0.75-0.50-0.25 0.00 0.25 0.50 0.75

Figure D.13: Diagramme de rayonnement de la composante de spin +1 de la SER (polar-
isation droite) (dB)

j=3, np=496

j=4, np=2016 j=5, np=8128 j=6, np=32640

scal., np=120

=05 00 0.5 —05 0.0 0.5
j=7, np=130816 j=8, np=523776 j=11, np=8386560

-05 00 05 -05 00 05 -05 00 05

(a) Décomposition en ondelettes de la partie supérieure de la sphere
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(b) Décomposition en ondelettes de la partie inférieure de la sphére

Figure D.14: Décomposition en ondelettes de la composante de spin +1 de la SER (dB)

Il est remarquable que les niveaux d’ondelettes élevés présentent des formes partic-
ulieres correspondant probablement aux divers éléments réflecteurs de ’avion, comme
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Iempennage et les ailes. Ainsi, la décomposition en ondelettes permet la visualisa-
tion des variations rapides du champ, qui seraient invisibles sur une représentation en
coefficients d’harmoniques sphériques.

D.5.5 Conclusion

Ce chapitre a permis de présenter les principales caractéristiques des ondelettes et plus
particulierement des ondelettes sphériques de spin. Cette transformée a permis de
visualiser sur des simulations des éléments du diagramme de rayonnement qui ne sont
pas discernables sur un diagramme de coeflicients d’harmoniques sphériques classiques.

D.6 Formulation de la mesure d’antenne

D.6.1 Introduction

Il existe dans la littérature plusieurs manieres de formuler la mesure d’antenne
[6,(14}114,|115]. Néanmoins, peu la formulent comme une convolution, alors que
de nombreuses méthodes sont développées pour corriger la mesure par déconvolu-
tion [17,/116,/117]. L’objectif de ce chapitre est donc de formuler rigoureusement le
probleme de la mesure comme une convolution, en géométrie sphérique, a partir de
théorémes électromagnétiques classiques.

D.6.2 Enonce du probléme

L’objective est de montrer que la mesure peut s’exprimer comme une convolution entre
une quantité correspondant au champ rayonné par ’AST, p, et une quantité correspon-
dant au champ rayonné par la sonde, dans ’environnement de mesure h, en absence
de Pantenne. Ces signaux sont représentés sur la Figure [D.15 L’objectif est d’écrire le
signal de mesure b comme

b(e) = h(e) ® p(e) + no(e), (D.10)

avec ® 'opérateur de convolution, ng le bruit spatial, et e les angles d’Euler correspon-
dant a l'orientation de ’AST.

Figure D.15: L’AST (en réception) et la sonde dans une chambre anéchoique
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D.6.3 Principe d’équivalence

Le principe d’équivalence [118,119] permet d’établir que le rayonnement de ’AST dans
I'environnement de mesure peut étre remplacé par ses courants équivalents (Jed, Jok)

sur S2. S? est la spheére de rayon r entourant I’AST. Cette équivalence est représentée

sur la Figure

Jed,meas
es

Qmeas

1
(07 0) Jr%qs,meas

(E, H)

Figure D.16: Principe d’équivalence appliqué a une antenne rayonnant dans un environ-
nement de mesure

Néanmoins, cet énoncé n’est pas immédiatement correct, en effet on peut supposer que
I’antenne dans ’environnement de mesure perturbe son propre rayonnement, du point
de vue de la sonde. Ces perturbations ne sont pas prise en compte par la représentation
de PAST par ses courant équivalents. Par conséquent, il a été nécessaire de valider ce
résultat par des simulations, qui ont montré que la perturbation introduite par 'antenne
elle-méme était négligeable.

D.6.4 Réciprocité et mesure d’antennes

Le théoréme de réciprocité mene a une formulation liant le champ de la sonde dans
'environnement aux courants équivalents de ’AST sur la sphére S2. Cette relation est

1 . .
b= //82(E”‘C L J_ H" L ), (D.11)
avec B, H™® le champ de la sonde en absence de I’AST.

D.6.5 Convolution et formulation en spin

Lors de la mesure, on applique une rotation R, a ’AST, la mesure devient

1 : .
0 = =5 L (B 0.0)- (RIZN0.~0) = H"(0.0) - (RT3 (~0.~0)dS;,
' (D.12)
avec € les angles d’Euler. Ceci correspond a la formulation d’une convolution sur la
sphere. Ainsi, on peut écrire

b= (B™, H"™) ® (J, J), (D.13)

es

avec ® 'opérateur de convolution sur la sphere.
Enfin, cette formulation a été développée en terme de spin, ce qui donne
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MO = =5 [ e H 0V 0.0) = o H (0. ) 0,0

+e B (0, ¢ ) HIE(0,0) — ™0 E_y (0, ¢') HI (0, 9))dS;.

Cette formulation confirme 'avantage de l'utilisation du spin, il permet de simplifier
les opérateurs de rotation et d’obtenir une formulation aboutie.

(D.14)

D.6.6 Conclusion

Ce chapitre a permis de formuler de maniére rigoureuse le probléeme de la mesure,
révélant la convolution résultante de I'impact de I’environnement sur le rayonnement
de la sonde et de ’AST. Une formulation en spin a également permis de simplifier la
formulation.

D.7 Correction de mesure en 2D

D.7.1 Introduction

Des méthodes de déconvolution existent dans de nombreux domaines du traitement
de signal et de l'image, par exemple pour 'observation atmosphérique [120,/121]. Ce
chapitre introduit une méthode de correction par déconvolution intégrant les ondelettes.
Cette méthode est appliquée en 2D sur une simulation de mesure.

D.7.2 Formulation de la mesure en 2D

Dans ce chapitre, on considére la configuration de la Figure [D:I7, en configuration
Transverse Magnétique "TMz’.

Figure D.17: Configuration 2D pour la polarisation transverse magnétique

Dans ce cas, la formulation de la mesure sur le cercle devient une convolution entre
deux signaux 2m-périodiques

27
b() = /0 W) T — ¢ )rdg). (D.15)
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D.7.3 Déconvolution pour la correction de mesure d’antennes

Les méthodes de déconvolution pour la correction de mesure en 2D reposent générale-
ment sur les séries de Fourier. En passant dans le domaine spectral, une convolution
devient une multiplication, ce qui simplifie les calculs. Le désavantage de la déconvolu-
tion est qu’elle entraine une amplification du bruit, de par sa nature mal conditionnée.
Par conséquent des méthodes de régularisation ont été développées. La méthode For-
WaRD choisie dans cette thése ajoute a la régularisation en Fourier une régularisation
en ondelettes |[122]. Ainsi la méthode de correction de mesure d’antennes se fait en deux
mesures, comme schématisé sur la Figure La premiere mesure permet d’estimer
le rayonnement de la sonde dans ’environnement, grace & une antenne de référence.
La seconde mesure consiste a utiliser cette estimation pour déconvoluer le signal de
mesure, aboutissant finalement au rayonnement de I’antenne.

Fourier Fourier Wavelet transform .
Measurement | transform thresholding + thresholding h
+ x - - B
b inversion h g = hntl hy h=DWT-Y(DWT(hs)&®)
(a) Premiere étape
Fourier Fourier Wavelet transform -
Measurement | transform thresholding + thresholding Paut
—_— + X — ——
by inversion Daut Pautinf ; Daut; f Paut
= autn] = DW= (DWT (Buryf )€

(b) Deuxiéme étape

Figure D.18: Etapes de la méthode de correction

D.7.4 Illustration de la méthode de déconvolution dans une simula-
tion

Cette méthode a été simulée, comme on peut le voir sur la Figure Le signal de
mesure b est perturbé par ’ajout d’un multi-trajet atténué de 20 dB et d’un niveau de
bruit de -20 dB. pgyt correspond au diagramme théorique de I'antenne et p,, a son
diagramme apres la correction.
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(b) Spectre du chambre

Figure D.19: Amplitudes et spectres des champs bz, payu: et de son estimation p¥,, (dB)

On peut observer une forte ressemblance entre le diagramme théorique et le diagramme
corrigé de 'antenne. L’Erreur Quadratique Moyenne (EQM) est de -36,6 dB.

D.7.5 Conclusion

Ce chapitre a constitué un cas d’application d’une correction d’une mesure d’antenne
simulée, dans une configuration 2D. Il a permis de montrer qu’ajouter une régularisation
en ondelettes au processus de déconvolution est avantageux. Néanmoins il est important
de noter que ce processus peut étre amélioré par une étude plus approfondie de certains
parametres de régularisation.
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D.8 Conclusion

D.8.1 Résumé

Cette these avait pour but de développer les outils d’analyse et de correction pour la
mesure d’antenne, basées sur les harmoniques et les ondelettes sphériques.

Dans le premier chapitre, le contexte de la thése et les aspects expérimentaux de
la mesure d’antenne ont été présentés. Premierement, les différents environnements
et configurations de mesure d’antenne ont été décrits. Ensuite, une présentation des
équipements classiques de mesure d’antenne et leur role dans la chaine RF de mesure a
été faite. Finalement, le banc de mesure de 'ENAC, utilisé pour les mesures d’antenne
effectuées durant cette these a été présenté.

Dans le deuxiéme chapitre, les outils et techniques de post-traitement de mesure
d’antenne en géométrie sphérique ont été introduits. Le chapitre commence par un
résumé des coordonnées sphériques, des outils mathématiques et des opérateurs néces-
saires pour modéliser les rotations sur la sphere. Nous avons ensuite abordé la création
des harmoniques sphériques vectorielles standards, un élément clé dans le domaine des
antennes. Pour illustrer ce concepts, un exemple de transformations par harmoniques
sphériques a été présentés. Le chapitre se clot par un apergu concis des méthodes de
post-traitement utilisées dans les mesures d’antennes.

Dans le troisiéme chapitre, le concept des harmoniques sphériques de spin pour
I’analyse du rayonnement d’antennes a été introduit. Ces décompositions offrent des
caractéristiques avantageuses pour représenter des vecteurs tangents sur la sphére, et
des algorithmes efficaces sont disponibles. Pour commencer, les fondations théoriques
des harmoniques sphériques de spin ont été présentées, abordant la définition des fonc-
tions de spin, des harmoniques sphériques de spin, et la décomposition de ces fonctions
en harmoniques de spin. Par ailleurs, la formulation en spin des vecteurs tangents sur
la sphére a été introduite, ainsi que ses propriétés rotationnelles. Ensuite, les théoremes
d’échantillonnage et les algorithmes rapides associés pour calculer efficacement les trans-
formations exactes en harmoniques sphériques de spin ont été étudiés. Notamment,
I’approche de McEwen Wiaux, compatible avec la représentation en spin, a démontré
de hautes performances en termes de complexité et de temps de calcul. En outre, la
relation et la compatibilité entre les harmoniques sphériques de spin et les harmoniques
sphériques de Hansen ont été établies. Finalement, divers modeles de rayonnement
ont été décomposés en harmoniques de spin. Ces transformations ont été exécutées en
des temps de calcul remarquablement courts, la plus longue prenant 9 minutes et 24
secondes (N = 2048). La polyvalence et lefficacité des harmoniques sphériques de spin
dans ces contextes variés ont souligné leur potentiel en tant qu’outil pour 'analyse de
rayonnements d’antennes. Cependant, I’examen d’un[DUT] rayonnant des harmoniques
sphériques d’ordre élevé a révélé une limitation de cette transformation. Une quantité
significative de puissance peut étre répartie sur de nombreux coefficients faibles, ren-
dant cette puissance & peine visible dans la représentation par harmoniques sphériques.
Par conséquent, le chapitre suivant s’est concentré sur les ondelettes sphériques de spin,
qui présentent des propriétés de localisation intéressantes.

Dans le quatrieme chapitre, les ondelettes sphériques de spin ont été présentées
comme un outil prometteur pour l'analyse des modeles de rayonnement d’antennes.
Alors que les ondelettes sont couramment utilisées pour le traitement du signal et la
compression de données, leur application en géométrie sphérique est moins fréquente.
Le chapitre a débuté par la présentation des ondelettes en géométrie 1D. Ensuite, sont
successivement présentés la formulation des ondelettes sphériques de spin a partir des
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harmoniques sphériques de spin et l'algorithme effectuant la transformation par on-
delettes sphériques de spin. Le chapitre s’est conclut en fournissant un exemple de
transformation par ondelettes de modele de rayonnement simulé. La transformation
par ondelettes de la SER d’un avion a mis en lumiere la capacité des ondelettes a
souligner les variations rapides, contrairement aux harmoniques sphériques. De plus,
ces exemples ont démontré efficacité de I'algorithme : le calcul de 39 134 480 coef-
ficients d’ondelettes n’a pris que 5 minutes et 24 secondes. Ainsi, la transformation
par ondelettes sphériques de spin s’est révélée étre un outil significatif pour I'analyse
et potentiellement la correction de champs a variations rapides.

Dans le cinquiéme chapitre, une formulation du probléme de la mesure a été
établie. Le signal mesuré sur le port d’'une AST a été exprimé comme la convolu-
tion entre le modele de rayonnement de ’antenne et le rayonnement de la sonde dans
I’environnement de mesure. La démonstration a commencé par I’application du principe
d’équivalence, simplifiant le probléeme en exprimant le rayonnement de ’antenne a
travers ses courants équivalents. Ensuite, le théoreme de réciprocité a facilité la mise en
relation du signal regu sur le port de 'antenne (c’est-a-dire, le signal de mesure) avec le
signal correspondant au rayonnement de la sonde dans I’environnement de mesure, ainsi
qu’avec le rayonnement de 'antenne. La rotation de ’antenne dans ’environnement de
mesure entraine alors une convolution avec le rayonnement de la sonde dans cet envi-
ronnement. Cette formulation a été décomposée en composantes de spin, aboutissant a
une formulation simplifiée de la mesure. Enfin, la validité de I’hypothese selon laquelle
I’antenne peut étre remplacée par ses courants équivalents a été vérifiée. Gréace a cette
formulation, des méthodes de déconvolution peuvent étre employées pour extraire le
véritable modele de rayonnement de I’antenne a partir des mesures.

Dans le sixiéme chapitre, un cas d’application de la correction de mesure d’antenne a
été réalisé, pour une configuration 2D. Tout d’abord, la formulation de la mesure sur le
cercle a été dérivée dans une configuration Magnétique Transverse (TMz), résultant en
une convolution entre deux signaux 2w-périodiques sur la sphere. Ensuite, le processus
de déconvolution pour cette fonction a été présenté, montrant que la déconvolution
est un probléme délicat en raison de sa nature mal conditionnée. Par conséquent,
une méthode de régularisation a été présentée pour obtenir une estimation du signal
d’intérét. Cette méthode a ensuite été adaptée a un scénario de correction de mesure
en deux étapes. La premiere étape consiste a estimer le signal correspondant a 'impact
environnemental sur le rayonnement de la sonde. Dans une seconde étape, cette es-
timation est utilisée pour déconvoluer le signal de mesure, aboutissant finalement au
modele de rayonnement de l'antenne. Cette méthode implique 1'utilisation de bases
d’expansion 1D telles que les séries classiques de Fourier. De plus, comme dans la
Régularisation Fourier-Ondelette (ForWard) [122], les expansions en ondelettes 1D ont
été introduites pour affiner la régularisation sur les séries de Fourier. Cette méthode
a ensuite été appliquée a une simulation de mesure d’antenne, incluant des perturba-
tions sous la forme d’un multi-trajet atténué de 20 dB et un niveau de bruit de -20dB.
Cela a abouti & une estimation du signal de I’antenne avec une Erreur Quadratique
Moyenne (EQM) de -36,6 dB. Il est important de noter que cette méthode n’a pas
été poussée a ses limites et pourrait donner de meilleurs résultats dans des conditions
plus optimisées. Par ailleurs, ’extension a de véritables mesures sphériques 3D a été
laissée & des travaux futurs. En résumé, ce chapitre représente une premiere tentative
de correction des mesures d’antennes en utilisant la déconvolution avec régularisation
par ondelettes.
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D.8.2 Perspectives

Cette these de doctorat est la premiere a traiter des mesures d’antennes au laboratoire
ENAC, marquant le début de divers projets sous différentes formes. Par exemple, les
deux premiers chapitres seront utilisés a des fins pédagogiques ou bibliographiques, car
ils introduisent de nombreux aspects des mesures d’antennes. Ensuite, les harmoniques
sphériques de spin et leur conversion en harmoniques sphériques de Hansen pourraient
étre utilisées dans d’autres projets, grace au temps de calcul rapide qu’elles offrent.
A titre d’exemple, un doctorant de 'ENAC utilise déja les harmoniques de spin pour
développer des modeles stochastiques du rayonnement des antennes lorsqu’elles sont
installées sur des avions.

De plus, de nombreux aspects de cette thése peuvent étre explorés plus avant. L’ordre
des paragraphes vise & prioriser les travaux futurs, du court au long terme.

En termes d’harmoniques sphériques de spin, une étude sur des antennes treés directives
pourrait étre ajoutée aux études déja réalisées dans cette these. De plus, une simpli-
fication des relations entre les harmoniques sphériques de Hansen et de spin dans la
zone de champ lointain serait intéressante, notamment en termes de temps de calcul.
Cela consisterait a ne considérer que les ondes sortantes et a remplacer les fonctions de
Hankel par leurs équivalents asymptotiques en champ lointain.

Puis, en ce qui concerne les ondelettes sphériques de spin, une étude plus approfondie
serait nécessaire pour mieux comprendre comment elles peuvent aider a analyser le
rayonnement de grands systémes (section radar transversale, antennes installées sur une
plateforme, ...). L’objectif serait de trouver une méthode pour déterminer précisément
Porigine des coefficients aux niveaux élevés des ondelettes et les corriger.

Dans les travaux futurs, la déconvolution devrait étre formulée en géométrie sphérique.
Les mesures sphériques étant définies sur L2(SO(3)), cela signifie qu'une base
paramétrée par le spin sera nécessaire, comme les fonctions de Wigner selon [65]. En-
suite, la correction utilisant la méthode ForWard pourrait étre adaptée aux configura-
tions sphériques et optimisée. Premiérement, une méthode combinant les harmoniques
sphériques de spin et les ondelettes sphériques de spin doit étre développée.

Ensuite, les critéres que 'antenne de référence doit remplir pour estimer de la meilleure
facon le champ incident sur 'ACT doivent étre clairement caractérisés. Enfin, le choix
des parameétres de régularisation doit faire I'objet d’une étude, soit théorique, soit
numérique. En particulier, la régularisation par ondelettes pourrait étre appliquée
en fonction du niveau de l'ondelette, car les niveaux les plus élevés ne contiennent
probablement que du bruit et pourraient donc étre régulés plus séverement.

Par ailleurs, il est important de se rappeler que toutes les installations de mesure
d’antennes ne permettent pas une mesure compléte sur L2(SO(3)), c’est-a-dire pour
chaque combinaison possible d’angles d’Euler, et le colit temporel d’une telle mesure.
Ainsi, les méthodes de correction devront étre optimisées en tenant compte de telles
limitations. L’objectif pourrait étre de minimiser le nombre de points de mesure.
Enfin, une perspective pour la correction des mesures d’antennes est de combiner la cor-
rection fréquentielle et angulaire avec des ondelettes. Les méthodes de post-traitement
devraient étre capables de corriger les mesures sur la sphere dans I’environnement de
mesure, en utilisant toutes les informations contenues dans une bande de fréquences
donnée. Cela devrait améliorer la précision des mesures, mais le post-traitement pour-
rait étre difficile en raison de la quantité énorme de données impliquées.

Une doctorante de PTENAC travaille déja dans la continuité de ma theése, a développer
des méthodes efficaces d’analyse et de post-traitement pour les mesures électromagné-
tiques sphériques.
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ENAC

Acronyms

AUT
DUT
VNA
TE
™™
CATR
UAVs
NFFT
TZF
CNES
SOLT
DGA
RCS
FFT
IFFT
FWT

Antenna Under Test

Device Under Test

Vector Network Analyzer
Transverse Electric

Transverse Magnetic

Compact Antenna Test Range
Unmanned Aerial Vehicles
Near-field to Far-Field Transformation
Test Zone Field

Centre National d’Etudes Spatiales
Short Open Load Through
Direction Générale de I’Armement
Radar Cross Section

Fast Fourier Transform

Inverse Fast Fourier Transform

Fast Wavelet Transform

PANTERE Processing of ANtenna TEsts REsults

EMC
FoRD

Electromagnetic Compatibility

Fourier-Based Regularized Deconvolution

ForWaRD Fourier-Wavelet Regularized Deconvolution

GPS
RMSE
DWT

Global Positioning System
Root Mean Square Error

Discrete Wavelet Transform
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Glossary

Symbols

Dy, vy Wigner functions.

Jo Index of the lowest wavelet scale.

Jmax Index of the highest wavelet scale.

L?(8?) square integrable functions on the sphere.

L?(SO(3)) the group of finite power square integrable functions over the rotation
group.

L Number of sampling point on a grid.

N Truncation order to define the sampling grid.
Naut Bandlimit of the signal, or max(n).

S Surface of the port of the antenna.

Wl 4t spin wavelet scale.

Ys.mn Spin spherical harmonic.

)7 subdomain 1.

9 subdomain 2.

Q) domain.

®, scaling function for spin wavelet expansion.

UJ spin wavelet function of the j** scale.

dz(c)(k:r) simplified notation for %% (krzr(f/)(k:r)).

n
dzr(f)(k:r) simplified notation for k—lrﬁ (krzéc)(k:r)).

@°® angles of arrival of multipath on the sphere or the circle surrounding the AUT.
Xg Phase shift appearing under a global rotation.

x: Phase shift appearing under a local rotation.

e corresponds to the orientation of the AUT. Euler angles € = (¢, 0, x) € SO(3).
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b In the case of an analysis of the measurement harmonics, b correspond to the coeffi-
cients of the harmonic spectrum.

M, Fourier transform of the spatial noise.
R. Matrice de rotation.

Rse Opérateur de rotation de spin.

R Rotational operator.

S? Unit sphere.

1 1D wavelet function.

E obe Field radiated by the probe, considered to be the main component of the
incident field on the sphere/circle surrounding the AUT..

E Electric Field.
H Magnetic Field.

eq,free . . . .
oL Electric surface current in a free space situation.

fi . . . .
s °¢ Magnetic surface current in a free space situation.

e eas . . . .
Jmy ¢ Magnetic surface current in a measurement situation.

Jg;ll Equivalent electric current for the subproblem 1.

Jo Equivalent electric current for the subproblem 2.

Jol, Equivalent magnetic current for the subproblem 1.

Jol, Equivalent magnetic current for the subproblem 2.

Smeas plactric surface current in a measurement situation.

Je Electric current.

Jm Magnetic current.

¢ 1D scaling function.

¢ specific wave impedance.

b The measurement signal will be noted b, it’s a wave amplitude arriving on the port
of the receiving device, it can be the AUT or the probe depending on which config-
uration is considered..

h A field corresponding to the radiation of the probe in the environment nearby the
antenna, in absence of the antenna.

ng spatial noise.

p antenna pattern.

R

r Radius of the sphere/circle surrounding the AUT..
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Titre : Méthode de correction a-posteriori de mesures d'antennes par ondelettes
Mots clés : Antenne, Mesures, Ondelettes

Résumé : En antennes, les phases de conception et de prototypage sont suivies par une phase de mesures qui doit permettre d'évaluer avec fiabilité
les performances atteintes par rapport aux spécifications attendues. Ces mesures sont effectuées sur des bancs de mesure ou des salles de mesure
adaptées. La précision de la mesure est limitée par des perturbations d’origines diverses. En effet, des réflexions parasites proviennent des parois,
des supports et des équipements présents dans la chambre. Une autre source de perturbations provient de la précision du positionnement et de
I'orientation des différents éléments. Afin d’améliorer la précision de la mesure, une approche consiste a utiliser des algorithmes de correction en
post-traitement. Quant aux ondelettes, ce sont des fonctions utilisées de maniere générale pour la compression de données car elles permettent de
séparer |'information en niveaux de détails (pour une image par exemple) ou en niveaux de variations (lentes a rapides) pour un signal. La thése a
donc pour objectif de développer des méthodes de corrections de mesures d’antennes basées sur une représentation des ondes en décomposition
en ondelettes sphériques.

Un état de l'art est effectué sur les différentes méthodes de mesure d’antennes et bases de mesure existantes, sur les outils d’analyse de
diagramme telles que les harmoniques sphériques, les plus communes en antennes étant celles définies par Hansen. Enfin une étude de différentes
méthode de corrections a été établie.

Dans cette thése, un nouveau type d’harmoniques sphériques est utilisé : les harmoniques sphériques de spin sont des outils d’analyse de données
en géométrie sphérique développés a l'origine pour étudier le fond diffus cosmologique. Le spin est un paramétre qui permet de désigner un type de
donnée sur la sphére. Pour les données étudiées dans la thése, qui sont scalaires ou vectorielles, on ira jusqu’a I'ordre 1. En particulier, en champ
lointain, il existe un lien entre la polarisation du champ électromagnétique et le signe du spin. Cet outil d’analyse a été développé en paralléle d’'un
théoréme d’échantillonnage sur la sphére qui permet la reconstruction exacte du champ apres décomposition ainsi que la possibilité de monter haut
en ordre d’harmoniques. Par ailleurs des algorithmes de résolution permettent une analyse rapide des diagrammes étudiés. Finalement ces
harmoniques de spin sont a la base de la construction des ondelettes sphériques de spin.

Les ondelettes sphériques de spin sont des outils d’analyse basées sur la décomposition en harmoniques sphériques de spin. Elles ont de bonnes
propriétés de localisation spatiales/spectrales. Elles permettent donc d'extraire des informations localisées sur la sphére comme par exemple un
multi-trajet dans le cas de la mesure d’antenne. Durant cette thése, des analyses en harmoniques et en ondelettes sphériques de spin ont été
réalisées, avec des performances trés intéressantes.

Dans une seconde partie, une formulation de la mesure a été démontrée grace au principe d’équivalence, au théoréme de réciprocité et aux
propriétés de rotations d’un champ sur la sphére. La mesure peut ainsi s’écrire comme une convolution angulaire entre le signal mesuré au niveau du
port de I'antenne ou de la sonde et le champ de la sonde dans I'environnement de mesure, sur la sphére entourant I'antenne en champ lointain.
Cette formulation permet d’utiliser des méthodes de déconvolution/régularisation pour corriger les mesures. Dans I'idéal la déconvolution dans le
domaine spectrale demande de pouvoir effectuer des mesures sur trois axes de rotations. Toutefois, il existe dans la littérature des méthodes
prometteuses de correction sans la contrainte du troisieme axe de rotation car les mesures sont généralement faites selon deux axes de rotation.

Les résultats de la thése ont été testés sur des cas canoniques, des simulations et des mesures en chambre anéchoique.
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Abstract: In antennas manufacturing, the design and prototyping phases are followed by a measurement phase, which aims to reliably evaluate the
achieved performance compared to the expected specifications. These measurements are conducted using dedicated measurement ranges or
chambers. The accuracy of the measurement is limited by various sources of disturbances. Spurious reflections, for instance, arise from the walls,
supports, and equipment present in the chamber. Another source of disturbances is the precision of positioning and orientation of the different
elements. To enhance measurement accuracy, one approach involves the use of post-processing correction algorithms. As for wavelets, they are
functions commonly employed for data compression since they allow separating information into levels of details (e.g., for an image) or levels of
variation (from slow to fast) for a signal. Therefore, the objective of the thesis is to develop methods for correcting antenna measurements based on
arepresentation of waves decomposed using spherical wavelets.

A state of the art is conducted on different antenna measurement methods and existing measurement bases, as well as on analysis tools such as
spherical harmonics, with the most commonly used ones in antennas being those defined by Hansen. Finally, a study of various correction methods
has been established.

In this thesis, a new type of spherical harmonics is utilized: spin spherical harmonics, which are data analysis tools in spherical geometry originally
developed to study the cosmic microwave background. The spin parameter designates a type of data on the sphere. For the data studied in the
thesis, scalar and vector data, the analysis extends up to order 1. In particular, in the far-field, there is a connection between the polarization of the
electromagnetic field and the sign of the spin. This analysis tool was developed parallel to a sampling theorem on the sphere that allows exact
reconstruction of the field after decomposition and the ability to reach high orders of harmonics. Furthermore, resolution algorithms enable fast
analysis of the studied diagrams. Ultimately, these spin harmonics form the basis for constructing spin spherical wavelets.

Spin spherical wavelets are analysis tools based on the decomposition into spin spherical harmonics. They possess good spatial/spectral localization
properties, allowing the extraction of localized information on the sphere, such as multipath reflections in the case of antenna measurements.
During this thesis, analyses using spin spherical harmonics and spin spherical wavelets were conducted, yielding highly promising results.

In the second part, a measurement formulation was demonstrated using the principle of equivalence, the reciprocity theorem, and the rotation
properties of a field on the sphere. The measurement can thus be expressed as an angular convolution between the signal measured at the antenna
or probe port and the field of the probe in the measurement environment, on the sphere surrounding the antenna in the far-field. This formulation
enables the utilization of deconvolution/regularization methods to correct the measurements. Ideally, deconvolution in the spectral domain requires
the ability to perform measurements along three axes of rotation. However, promising methods for correction without the constraint of the third
axis of rotation exist in the literature because measurements are typically made along two axes of rotation.

The results of the thesis were tested on canonical cases, simulations, and measurements in an anechoic chamber.
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