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Résumé:

L’augmentation de la complexité des systèmes
agricoles nécessite des outils d’aide à la prise de
décision sophistiqués capables de gérer plusieurs
critères et d’accommoder des tâches complexes
d’analyse des compromis. Cette thèse développe
des visualisations qui facilitent les processus de
prise de décision en agronomie. Ce travail apporte
trois contributions principales : (i) comprendre
comment la provenance peut soutenir l’analyse des
compromis, (ii) articuler des besoins de conception
et de visualisation de haut niveau pour soutenir
la comparaison de groupes dans des scénarios de
compromis, et enfin (iii) comprendre comment dif-
férentes visualisations peuvent affecter les com-
paraisons et la prise de décision dans l’analyse des
compromis. Après un chapitre d’introduction et un
chapitre sur les travaux connexes, la thèse détaille
ces trois contributions principales.

Le 3ème chapitre de la thèse examine comment
les mécanismes de provenance analytique peuvent
aider les experts à se souvenir et à suivre des
analyses de compromis complexes. Nous avons
développé VisProm, un outil web intégrant des
vues de provenance dans les visualisations pour
aider les experts à suivre les compromis et leurs
objectifs lors de l’exploration de résultats de simu-
lation complexes. Des sessions d’observation avec
des groupes d’experts ont révélé huit tâches clés
soutenues par nos conceptions, mettant en lu-
mière de nouvelles opportunités pour l’analyse des
compromis guidée par la provenance, telles que le
suivi de la couverture de l’espace de compromis
et l’exploration de scénarios alternatifs. Un résul-
tat clé a été la nécessité de considérer les objectifs
conflictuels et de comparer comment différentes
solutions ou espaces de compromis se comportent
face à ces objectifs.

En s’appuyant sur cela, le 4ème chapitre ex-
plore les besoins et les défis auxquels sont con-
frontés les experts lorsqu’ils comparent des espaces
de compromis (souvent exprimés sous forme de
groupes de points de données, par exemple, des

groupes de résultats de simulation) qui optimisent
différents objectifs. À travers des ateliers avec des
experts du domaine et des concepteurs de visuali-
sations, nous avons identifié des besoins de con-
ception et de visualisation de haut niveau pour
soutenir la comparaison de groupes dans des scé-
narios de compromis. Ce chapitre met les bases
pour développer des techniques de visualisation ca-
pables de comparer des groupes représentant dif-
férents compromis en fonction des objectifs qu’ils
optimisent. Cela a mené à la mise en œuvre d’un
prototype de visualisation qui encode visuellement
diverses métriques de compromis, en communi-
quant les priorités des experts, la notion de so-
lutions idéales, et la distance des groupes de solu-
tions par rapport à ces idéaux.

Le 5ème chapitre se concentre sur l’évaluation
des techniques de visualisation pour comparer des
groupes de points (solutions) lorsqu’ils représen-
tent différents compromis. S’inspirant des besoins
et des exigences de conception identifiés dans le
chapitre précédent, nous avons sélectionné trois
techniques prometteuses de visualisation basées
sur des tableaux pour les étudier. Ces techniques
encodent visuellement les priorités des compromis
et les solutions idéales de différentes manières, soit
en couplant, soit en découplant les métriques de
compromis. Nous avons mené une étude utilisa-
teur pour comprendre comment ces visualisations
influencent les décisions de comparaison et la qual-
ité des explications de ces décisions. Les résultats
de cette étude montrent que les techniques qui
séparent visuellement l’encodage des priorités et
des solutions idéales entraînent une charge cog-
nitive plus élevée et une confiance auto-évaluée
plus faible, mais qu’elles soutiennent des stratégies
de décision plus variées par rapport aux visualisa-
tions intégrées. Cependant, elles étaient toujours
préférées par rapport à la visualisation de référence.

Nous concluons la thèse par une série de dis-
cussions et de perspectives sur les directions fu-
tures issues de ce travail.
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Summary:

The increasing complexity of agricultural sys-
tems necessitates sophisticated decision-making
tools that can handle multiple criteria and accom-
modate complex trade-off analysis tasks. This the-
sis develops visualizations that facilitate decision-
making processes in agronomy. This work has
three main contributions: (i) understanding how
provenance can support trade-off analysis, (ii) ar-
ticulating high-level design and visualization needs
to support group comparison in trade-off scenar-
ios, and finally, (iii) understanding how different
visualizations can affect comparisons and decision-
making in trade-off analysis. After an introductory
chapter and a chapter on related work, the thesis
details these three main contributions.

The 3rd chapter of the thesis investigates how
analytic provenance mechanisms can assist experts
in recalling and tracking complex trade-off anal-
yses. We developed VisProm, a web-based sys-
tem integrating in-visualization provenance views
to help experts track trade-offs and their objectives
when exploring complex simulation results. Ob-
servation sessions with groups of experts revealed
eight key tasks supported by our designs, highlight-
ing new opportunities for provenance-driven trade-
off analysis, such as monitoring trade-off space
coverage and tracking alternative scenarios. One
key outcome was the need to consider conflicting
objectives and compare how different solutions or
trade-off spaces fare under these objectives.

Building on this, the 4th chapter explores the
needs and challenges experts face when compar-
ing trade-off spaces (that are often expressed as
groups of data points, e.g., groups of simulation re-
sults) that optimize different objectives. Through
workshops with domain experts and visualization

designers, we identified high-level design and vi-
sualization needs to support group comparison in
trade-off scenarios. This chapter lays the ground-
work for developing effective visualization tech-
niques for comparing groups that represent differ-
ent trade-offs in terms of what objectives they op-
timize. They led to the implementation of a visual-
ization prototype that visually encodes a variety of
trade-off metrics. These encode and visually com-
municate experts’ priorities in terms of objectives,
the notion of ideal solutions, and how far current
groups of solutions are from those ideals.

The 5th chapter focuses on the evaluation of
visualization techniques for comparing groups of
points (solutions) when they represent different
trade-offs. Motivated by the visualization needs
and design requirements of the previous chapter,
we selected three promising tabular-based visual-
ization techniques to study. These techniques en-
code trade-off priorities and ideal solutions in dif-
ferent ways: coupling or decoupling the trade-off
metrics and presenting them visually. We con-
ducted a user study to understand how visualiza-
tions affected comparison decisions and the quality
of decision explanations. The findings from this
study highlight that techniques that visually sepa-
rate the encoding of priorities and ideal solutions
lead to higher mental load and lower self-reported
trust but may support more varied decision strate-
gies than integrated visualizations. But, they were
always preferred over a baseline visualization.

We conclude the thesis with a list of discus-
sions and perspectives for future directions stem-
ming from the results of this work.
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Abstract
The increasing complexity of agricultural systems necessitates sophisticated decision-
making tools that can handle multiple criteria and accommodate complex trade-off
analysis tasks. This thesis develops visualizations that facilitate decision-making pro-
cesses in agronomy. This work has three main contributions: (i) understanding how
provenance can support trade-off analysis, (ii) articulating high-level design and vi-
sualization needs to support group comparison in trade-off scenarios, and finally (iii)
understanding how different visualizations can affect comparisons and decision-making
in trade-off analysis. After an introductory chapter and a chapter on related work, the
thesis details these three main contributions.

The 3rd chapter of the thesis investigates how analytic provenance mechanisms
can assist experts in recalling and tracking complex trade-off analyses. We developed
VisProm, a web-based system integrating in-visualization provenance views to help
experts track trade-offs and their objectives when exploring complex simulation results.
Observation sessions with groups of experts revealed eight key tasks supported by our
designs, highlighting new opportunities for provenance-driven trade-off analysis, such
as monitoring trade-off space coverage and tracking alternative scenarios. One key
outcome was the need to consider conflicting objectives and compare how different
solutions or trade-off spaces fare under these objectives.

Building on this, the 4th chapter explores the needs and challenges experts face
when comparing trade-off spaces (that are often expressed as groups of data points,
e.g., groups of simulation results) that optimize different objectives. Through work-
shops with domain experts and visualization designers we identified high-level design
and visualization needs to support group comparison in trade-off scenarios. This chap-
ter lays the groundwork for developing effective visualization techniques for comparing
groups that represent different trade-offs in terms of what objectives they optimize.
They led to the implementation of a visualization prototype that visually encodes a
variety of trade-off metrics. These encode and visually communicate experts’ priorities
in terms of objectives, the notion of ideal solutions, and how far current groups of
solutions are from those ideals.

The 5th chapter focuses on the evaluation of visualization techniques for compar-
ing groups of points (solutions) when they represent different trade-offs. Motivated by
the visualization needs and design requirements of the previous chapter, we selected
three promising tabular-based visualization techniques to study. These techniques en-
code trade-off priorities and ideal solutions in different ways: coupling or decoupling
the trade-off metrics and presenting them visually. We conducted a user study to
understand how visualizations affected comparison decisions and quality of decision
explanations. The findings from this study highlight that techniques that visually sep-
arate the encoding of priorities and ideal solutions lead to higher mental load and lower

iii



iv

self-reported trust but may support more varied decision strategies than integrated vi-
sualizations. But they were always preferred over a baseline visualization.

We conclude the thesis with a list of discussions and perspectives for future direc-
tions stemming from the results of this work.



Synthèse
L’augmentation de la complexité des systèmes agricoles nécessite des outils d’aide à
la prise de décision sophistiqués capables de gérer plusieurs critères et d’accommoder
des tâches complexes d’analyse des compromis. Cette thèse développe des visualisa-
tions qui facilitent les processus de prise de décision en agronomie. Ce travail apporte
trois contributions principales : (i) comprendre comment la provenance peut soutenir
l’analyse des compromis, (ii) articuler des besoins de conception et de visualisation de
haut niveau pour soutenir la comparaison de groupes dans des scénarios de compro-
mis, et enfin (iii) comprendre comment différentes visualisations peuvent affecter les
comparaisons et la prise de décision dans l’analyse des compromis. Après un chapitre
d’introduction et un chapitre sur les travaux connexes, la thèse détaille ces trois con-
tributions principales.

Le 3ème chapitre de la thèse examine comment les mécanismes de provenance
analytique peuvent aider les experts à se souvenir et à suivre des analyses de com-
promis complexes. Nous avons développé VisProm, un outil web intégrant des vues
de provenance dans les visualisations pour aider les experts à suivre les compromis
et leurs objectifs lors de l’exploration de résultats de simulation complexes. Des ses-
sions d’observation avec des groupes d’experts ont révélé huit tâches clés soutenues
par nos conceptions, mettant en lumière de nouvelles opportunités pour l’analyse des
compromis guidée par la provenance, telles que le suivi de la couverture de l’espace de
compromis et l’exploration de scénarios alternatifs. Un résultat clé a été la nécessité
de considérer les objectifs conflictuels et de comparer comment différentes solutions
ou espaces de compromis se comportent face à ces objectifs.

En s’appuyant sur cela, le 4ème chapitre explore les besoins et les défis auxquels sont
confrontés les experts lorsqu’ils comparent des espaces de compromis (souvent exprimés
sous forme de groupes de points de données, par exemple, des groupes de résultats de
simulation) qui optimisent différents objectifs. À travers des ateliers avec des experts
du domaine et des concepteurs de visualisations, nous avons identifié des besoins de
conception et de visualisation de haut niveau pour soutenir la comparaison de groupes
dans des scénarios de compromis. Ce chapitre met les bases pour développer des
techniques de visualisation capables de comparer des groupes représentant différents
compromis en fonction des objectifs qu’ils optimisent. Cela a mené à la mise en
œuvre d’un prototype de visualisation qui encode visuellement diverses métriques de
compromis, en communiquant les priorités des experts, la notion de solutions idéales,
et la distance des groupes de solutions par rapport à ces idéaux.

Le 5ème chapitre se concentre sur l’évaluation des techniques de visualisation pour
comparer des groupes de points (solutions) lorsqu’ils représentent différents compro-
mis. S’inspirant des besoins et des exigences de conception identifiés dans le chapitre
précédent, nous avons sélectionné trois techniques prometteuses de visualisation basées
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sur des tableaux pour les étudier. Ces techniques encodent visuellement les priorités
des compromis et les solutions idéales de différentes manières, soit en couplant, soit
en découplant les métriques de compromis. Nous avons mené une étude utilisateur
pour comprendre comment ces visualisations influencent les décisions de comparaison
et la qualité des explications de ces décisions. Les résultats de cette étude montrent
que les techniques qui séparent visuellement l’encodage des priorités et des solutions
idéales entraînent une charge cognitive plus élevée et une confiance auto-évaluée plus
faible, mais qu’elles soutiennent des stratégies de décision plus variées par rapport aux
visualisations intégrées. Cependant, elles étaient toujours préférées par rapport à la
visualisation de référence.

Nous concluons la thèse par une série de discussions et de perspectives sur les
directions futures issues de ce travail.
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Introduction

Domains such as agronomy and manufacturing (Figure 1.1, Figure 1.2) often use sim-
ulation models that represent entities and parameters of complex biological or physical
processes and their relationships. Experts explore the results of these models, reach
insights, and make decisions about how to optimize these processes. For example, an
agronomic engineer who wants to propose sustainable but robust wheat fertilization
strategies to farmers needs to account for the wheat growth process and how it is af-
fected by soil and weather conditions, as well as the impact of the chosen fertilization
strategy on the environment [114]. Thus, experts must deal with trade-offs, attempting
to consider and reconcile multiple competing objectives in a single investigation[106].
For instance, the agronomic engineer needs to find fertilization strategies that, on
the one hand, maximize yield and, on the other hand, reduce the amount of supplied
fertilizers and nitrogen loss to the plant.

This type of trade-off analysis can be complex as it captures experts’ requirements
and preferences across several objectives and often involves multiple experts working
together to understand different aspects of the data [112]. Depending on the domain,
datasets can include tens of dimensions and hundreds or thousands of datapoints.
Using their domain knowledge, experts analyze these large multi-dimensional spaces,
prioritizing requirements and balancing subjective preferences across several competing
objectives. This complex analysis is conducted over long periods of time and several
exploration sessions [112], as multiple experts try to explore alternatives and reach
common ground, making this type of analysis hard to resume and revisit.

Research in the field of trade-off analysis has its roots in multi-criteria decision-
making (MCDM). MCDM is a discipline that studies procedures to aid decision-making
when dealing with a large number of alternatives. Often, MCDM problems involve the
ordering or classifying of alternatives [39] by imposing a procedure or strategy, like
explicitly ranking or weighting criteria [14]. Nevertheless, criteria may not always be
known a priori or may be hard to express. In such cases, visualization can play an
important role by offering visual and interactive tools that support open and iterative
exploration processes. This approach enables domain experts to bridge the knowledge

1
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Figure 1.1: Wheat field being fertilized
with ammonium nitrate fertilizer [108].

Figure 1.2: Wine fermentation in stain-
less steel tanks [53].

gap they may have regarding the data or the (simulation) models they are working
with [29, 112]. We, therefore, will use the term trade-off analysis to describe a process
that is less structured than the general MCDM process:

Trade-off analysis is an exploration process, aided by visualizations, of multiple
alternatives in order to understand the different criteria domain experts optimize
without any imposed procedures or strategies.

In this thesis, we investigate the use of visual analytics to help with such exploratory
trade-off analysis. In particular, we set out to study if and how interactive visualizations
can aid trade-off analysis in such contexts. Indeed, it has already been shown that
visualizations help with understanding complex data and making decisions [34, 78, 89]
We study how visualizations can help with trade-off analysis problems specifically,
drawing from various domains (including machine learning and ecosystem services) but
focusing on agronomy applications.

Provenance. As a first step, we consider how to explore the use of analytic prove-
nance visualizations [20, 31, 80, 84] to aid experts keep track, resume, and revisit
their trade-off analysis sessions. Provenance is "the history of the data and reasoning
involved during complex sensemaking tasks and the context within which sensemaking
was performed” [85]. In our work, we generally refer to analytical provenance related
to interaction logs.

How provenance can support trade-off analysis tasks is a question that has not
been considered before and poses unique challenges as analysts need to keep track of
the objectives they have already considered, their importance, and the trade-offs they
represent [59]. Inspired by past observations on trade-off analysis challenges [112], we
design and develop a web-based trade-off analysis tool (VisProm) that embeds prove-
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Figure 1.3: Agronomy experts using an interactive, SPLOM-based visual analytics tool
to explore wine fermentation strategies [112].

nance visualizations directly inside the analysis environment, i.e., uses in-visualization
provenance. The tool is designed specifically with trade-off analysis in mind and sim-
plicity when it comes to the proposed provenance views. Since no previous study
looked at the role of in-visualization provenance in supporting trade-off analysis, our
hypothesis here is that if such simple views are helpful for trade-off analysis, then richer
provenance views may be investigated in the future.

We use the VisProm system as a technology probe [48]: a prototype system de-
signed to be field-tested in order to inspire users and designers to think about the ben-
efits and limits of provenance support in trade-off analysis rather than a fully fledged
trade-off analysis system. Through observation sessions with three groups of experts
analyzing their own data, we bring new insights on analytical provenance usage in real-
world analysis scenarios, both during and after data exploration, and we identify new
opportunities for future trade-off provenance designs.

Our results of this initial investigation identify eight high-level tasks that experts
engaged in during trade-off analysis, such as locating and characterizing interest zones
in the trade-off space, and show how these tasks can be supported by provenance visu-
alization. Additionally, we refine findings from previous work on provenance purposes,
such as recall and reproduce [80], by identifying specific objects of these purposes
related to trade-off analysis, such as interest zones and exploration structure (e.g.,
exploration of alternatives and branches). We distill insights on how the identified
provenance objects and our designs support these trade-off analysis tasks, both when
revisiting past analyses and while actively exploring. And finally, we identify new op-
portunities for provenance-driven trade-off analysis, for example related to monitoring
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the coverage of the trade-off space and tracking and comparing alternative trade-off
scenarios.

Comparisons. The next step in this research is largely inspired by our own obser-
vations of domain experts using visualization tools to conduct trade-off comparisons
for real-world multi-criteria decisions in agronomy and other domains, as well as ob-
servations from prior work [5, 112]). Comparison is a fundamental task in information
visualization, often considered a higher-level meta-operation [95, 102, 125, 137]. Gle-
icher identifies two key elements in visual comparison: a set of related items and
an action that the user wants to perform on the relationship between these items,
such as quantifying the relationship or dissecting it in detail to enhance understanding
[101]. Comparisons are also essential for Multi-Criteria Decision-Making (MCDM),
where trade-off analysis is used to evaluate alternative options with multiple, often
conflicting goals [59, 112]. For example, in wheat fertilization, agronomists must bal-
ance competing criteria such as reducing fertilizer use and environmental impact while
increasing crop yield. They achieve this by comparing the pros and cons of differ-
ent strategies, such as one that minimizes environmental impact versus another that
maximizes crop yield [97]. This trade-off comparison process is an extension of the
information visualization comparison as described by Gleicher [101]. It involves eval-
uating a set of related items, such as the fertilization strategies mentioned earlier,
through user actions that assess the advantages (pros) and disadvantages (cons) of
these items within a specific trade-off context. This context includes the criteria to
be optimized, such as fertilizer use, crop yield, and environmental impact, as well as
user priorities related to these goals, such as prioritizing the reduction of environmental
impact over maximizing yield.

Trade-off comparisons can become complex, as they involve multiple, often con-
flicting optimization criteria and many items, either individual or grouped. Previous
research in trade-off analysis has shown that domain experts often work with groups
of points (or items) when exploring large trade-off spaces [97, 112]. This approach is
motivated by two primary factors. First, in many trade-off datasets, especially those
derived from biological processes, there is inherent variability in measurements. As
a result, experts tend to use ranges instead of exact thresholds when identifying and
comparing groups. For instance, during an interactive session involving one thousand
wine recipes, experts compared groups rather than individual recipes to determine the
optimal fermentation strategy [97]. They selected two groups with differing temper-
ature management strategies, using ranges instead of precise thresholds, allowing for
a variety of options within each group. Second, trade-off datasets often include cate-
gorical variables that experts use to explore groups of points. In the wheat example,
experts compared fertilization strategies aimed at achieving high-protein content with
those that resulted in lower protein levels.
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Designing effective visualizations for comparison, particularly for groups of items,
remains challenging. As Gleicher noted, the complexity of comparisons increases with
the number of items, the complexity of those items, and the complexity of their re-
lationships [102]. Existing visualization tools for MCDM, such as Lineup [132] and
Weightlifter [135], typically focus on ranking systems to compare and assess individual
items. However, there has been limited research focused on comparing groups of items,
especially in complex scenarios like trade-off analysis, where multiple criteria need to
be considered simultaneously.

Part of this thesis work is to explore how to support the visual comparison of
groups of data-points (or items) within the context of trade-off analysis. Our primary
research question focuses on understanding the impact of different types of visual-
ization on this group comparison task in terms of balanced consideration of multiple
criteria, user trust, and mental load. To achieve this, we follow a multi-phase approach.
First, we conduct a workshop with domain experts. to understand the specific needs
and challenges involved with comparing groups of data-points in trade-off analysis.
This provided us with valuable insights into the types of comparisons users frequently
make. Building on these insights, we organize two design workshops with visualization
and Human-Computer Interaction (HCI) experts to iterate on and refine visualization
designs that could effectively support the comparison of trade-off groups. We then
develop a prototype visualization system based on the outcomes of the design work-
shops. Finally, we evaluate the effectiveness of two promising visualization techniques
against a baseline in a user study involving 18 participants.

1.1 Thesis Statement and Approach

This dissertation makes a case for the following statement:

Visualizations can aid in trade-off analysis.

To support this statement, we study two situations where visualizations can impact
trade-off analysis, attempting to answer more specific research questions described
next.

1.1.1 In-Visualization Provenance for Trade-off Analysis

We first study the impact of using a specific type of visualization, in-visualization
provenance, on trade-off analysis. We posit that if simpler provenance views that are
integrated within the main visualization environment are helpful for trade-off analysis,
then richer provenance views may be investigated in the future. We study if and
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how in-visualization provenance can support trade-off analysis, aiming to answer the
following four research questions:

• [RQ1] What tasks do experts engage in during trade-off analysis? How do
provenance purposes manifest in trade-off analysis?

• [RQ2] Does in-visualization provenance support a-posteriori analysis, such as
by helping recall of past exploration?

• [RQ3] Is in-visualization provenance taken into account by experts during trade-
off analysis and how?

• [RQ4] What are untapped opportunities for using provenance to support trade-
off analysis?

The approach we take to answer these questions involves observing experts, ana-
lyzing their tasks, and designing visualizations that incorporate provenance information
to support their analysis. We revisit these questions in Chapter 3.

We show that domain experts engage in different high-level tasks that are key in
trade-off analysis, such as observing coverage, defining focus and priorities, branch-
ing and comparing alternatives, and looking for interest zones that maximize/minimize
specific objectives. These tasks are supported by our in-visualization provenance views,
which help our experts recall, replicate, recover, reflect upon, or present & commu-
nicate different aspects of their exploration that we identify as trade-off provenance
objects. From these, keeping track of coverage and priorities, and to a lesser extent,
exploration strategy, are the most important provenance aspects (or objects) for our
experts when revisiting past trade-off analysis, whereas interest zones and exploration
structure & steps are crucial when starting new trade-off explorations.

1.1.2 Trade-off Comparisons Between Groups

Our work in the previous chapter highlighted the need to analyze and compare interest
zones or branches in the exploration across different objectives and priorities. Motivated
by these results, our work next focuses on comparison trade-off tasks, in particular
of groups. We investigate how visualizations can aid group comparison in trade-off
analysis, aiming to answer the following three questions:

• [RQ5] What are the trade-off comparison needs of domain experts, and how
can we design to support them?

• [RQ6] Does the visualization of trade-off information (metrics) aid comparison
more effectively than a simple representation (e.g., tabular)?
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• [RQ7] Is a coupled or decoupled visualization of trade-off measures better at
supporting this comparison?

The approach we take to answer these questions involves understanding user needs
and designing and evaluating different visualization techniques to determine their ef-
fectiveness in aiding comparison during trade-off analysis.

We first revisit past videos of trade-off analysis conducted with experts and orga-
nize an additional three workshops with experts to understand their comparison needs.
Through a second set of workshops with visualization designers, we identify visualiza-
tion requirements to support such comparison tasks. Informed by these workshops,
we implement a prototype tool that visualizes in different ways a set of trade-off met-
rics, added on top of a tabular visualization. We explain this process and results in
Chapter 4.

Through a user study, we evaluate the two most promising visualizations we iden-
tified in the workshops and added to our prototype. One uses color, and the other
bars. We compare these against a text-based baseline. We hypothesize that visualizing
trade-off metrics, such as priority and distance from the idea, improves group com-
parison by reducing mental load and enhancing user understanding of the trade-off,
resulting in more user trust in their decisions; and that a decoupled visualization of
trade-off metrics enhances user understanding of the trade-offs and increases user trust
in decisions compared to a coupled visualization, but it leads to higher mental load.
Our findings show that visualizations that separate different trade-off metrics lead to
higher mental load and lower self-reported trust but may support more varied decision
strategies than integrated visualizations. But either way, all visualizations were better
received than no visualization at all (our baseline). We expand on this study and results
in Chapter 5.

1.1.3 Approach

To support our thesis statement and answer our specific research questions, we followed
a User-Centred Design (UCD) [68] approach. The two major investigations carried out
in this work, pertaining to in-visualization provenance and comparison of groups to
support trade-off analysis, involved: identifying end-user needs through observational
studies, interviews, and design workshops; design and implementation of a technology
probe [48] to test our hypotheses and designs; and validation in user studies that were
either more open-ended and observational with domain experts using in-visualization
provenance, or in the form of a controlled experiment approach on group comparison.
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1.2 Contributions

The contributions of this research are the following:

1. the delineation of eight trade-off analysis tasks extending previous work in oper-
ations research [59];

2. the specification of the general provenance purposes [31], through eight prove-
nance objects, that our participants appear to focus on during trade-off analysis;

3. a technology probe to support in-visualization provenance for trade-off analysis,
used by various experts in agronomy;

4. insights on how the identified provenance objects and our implemented designs
support these trade-off analysis tasks during a-posteriori exploration and active
analysis;

5. the identification of specific needs and opportunities for the use of provenance
during trade-off analysis, that refine or go beyond those identified in previous
provenance work [31, 84];

6. a characterization of comparison needs in trade-off analysis processes;

7. high-level design and visualization needs to support group comparison in trade-off
scenarios;

8. a prototype tool to study trade-off comparison of groups;

9. a user study comparing three visualization techniques for comparing groups and
insights on: what information is considered during the comparison and the impact
of visualization on decision-making strategy, quality of explanations, user trust
and mental load.

1.3 Thesis Overview

We provide here an overview of the rest of the thesis.
Chapter 2- Related work: first provides background on visual analytics and

sensemaking, and then trade-off analysis and decision-making, before focusing more
specifically on multidimensional data visualization and relevant decision-making support
visualization tools. It then provides more detailed related work on the specific topics
that we address in the thesis, namely work on provenance visualization as we use it to
support trade-off analysis, as well as work on comparison visualizations.
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Chapter 3- Understanding how in-visualization provenance can support
trade-off analysis presents a first user study (observational) with three groups of
domain experts who used a provenance-augmented probe to explore their own trade-
off datasets. Findings from this study are fourfold. First, we identify eight high-
level tasks that experts engaged in during trade-off analysis, such as locating and
characterizing interest zones in the trade-off space, and show how these tasks can be
supported by provenance visualization. Second, we refine findings from previous work
on provenance purposes such as recall and replicate by identifying specific objects of
these purposes related to trade-off analysis, such as interest zones and exploration
structure (e.g., exploration of alternatives and branches). Third, we discuss insights on
how the identified provenance objects and our designs support these trade-off analysis
tasks, both when revisiting past analyses and while actively exploring. Finally, we
identify new opportunities for provenance-driven trade-off analysis, for example, related
to monitoring the coverage of the trade-off space and tracking alternative trade-off
scenarios.

Chapter 4- Designing for comparisons: Experts requirements and gen-
erative workshops motivates the need for trade-off comparison of groups through
observations of domain experts conducting comparisons in real-world settings, and an
additional workshop with domain experts to clarify these requirements. The chapter
then describes potential visualization solutions to support these needs, based on find-
ings from design workshops. Findings from these workshops (with domain experts and
designers) showed that domain experts not only require access to aggregated informa-
tion and metrics, such as means and variance, as well as detailed information about
the individual points, but importantly they often engaged in trade-off comparisons of
groups of datapoints, which motivated our work on trade-off comparison, described in
the 5th chapter. We end the chapter by presenting the prototype system inspired by
these results.

Chapter 5- Visualizations to support trade-off comparisons between groups
presents a second user study (control experiment) to evaluate the two most promising
visualizations to show trade-off metrics, one using color and the other bars, together
with a text-based baseline, as identified from the workshops in chapter 4. The find-
ings of the study show that visualizations separating different trade-off metrics lead to
higher mental load and lower self-reported trust, but may support more varied decision
strategies than integrated visualizations.

Chapter 6- Discussion and conclusion summarizes the contributions of this
thesis and discusses possible directions for future work.
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Related Work

This thesis studies how to best support trade-off analysis using visualizations. Our aim
is to support domain experts, such as ones that come from the agronomy domain,
in their task to explore trade-offs in high-dimensional datasets, generated from simu-
lations and optimized by multi-objective algorithms. Their goal is to understand the
relationships between the different dimensions and to identify interesting patterns in
their data.

As such, we first review general research on visual analytics and sensemaking,
and then trade-off analysis and decision-making, before focusing more specifically on
multidimensional data visualization and relevant decision-making support visualization
tools. We then provide more detailed related work on the specific topics that we
address in the thesis, namely work on provenance visualization as we use it to support
trade-off analysis, as well as work on comparison visualizations1.

2.1 Visual Analytics and Sensemaking. A focus
on Agronomy.

We next introduce the basic notion of Visual Analytics as our own work is positioned
within it and its relation to Sensemaking. We additionally introduce visual analysis
work in the domain of agronomy, whose experts we want to support.

2.1.1 Visual Analytics

In their seminal work “Illuminating the Path,” Thomas and Cook [64] define Visual
Analytics (VA) as "the science of analytical reasoning facilitated by interactive visual

1For all images used in this chapter, we include references to the original publication the image
appeared in. Under French law, research documents may reproduce up to 10% of a work, provided it is
properly referenced, without requiring explicit authorization, see Protocole d’accord sur l’utilisation
et la reproduction des livres, des œuvres musicales éditées, des publications périodiques et des
œuvres des arts visuels à des fins d’illustration des activités d’enseignement et de recherche
From Bulletin officiel n35 du 29 septembre 2016 article Article 3.2.2.2 & 4.2.1 ([111])

11
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interfaces". Visual Analytics as a domain is vast, including topics that range from
understanding how to create and study visual tools that support reasoning and sense-
making, to what low-level interactions or data transformation best support the analysis
process. Later definitions by Keim et al. [28] are more specific, discussing how VA can
combine automated analysis with interactive visualizations in order to support under-
standing, reasoning, and decision-making on complex data sets. They go on to explain
that visual analysis is more than just visualization, but rather it is "an integral approach
to decision-making, combining visualization, human factors and data analysis".

Our own work falls under the visual analytics umbrella, focusing on how to support
a specific type of analysis and decision-making, that of trade-offs (discussed in more
detail in section 2.2 on prior work on trade-off analysis). In our work, we focus on the
choice of visual representations for trade-off analysis (rather than automated analysis)
and the impact these have on the analysis process. Nevertheless, as we will discuss
in the section on trade-off analysis, this type of analysis often assumes an automated
step to reduce the size of the trade-off simulation datasets used by domain experts,
specifically through the creation of Pareto front datasets (see section 2.4).

2.1.2 Sensemaking in Visual Analytics

Since the goal of Visual Analytics (VA) is to support analytical reasoning facilitated
by interactive visual interfaces [64], a lot of research in this domain has focused on
understanding and characterizing the sensemaking process, drawing on theories from
cognitive psychology and cognitive systems engineering. In this section, we will briefly
present two such theories that are widely used in visualization and VA research, each
focusing on different aspects of sensemaking: the information foraging model by Pirolli
and Card [121], and the data-frame model by Klein and Card, before discussing the
top-down perspective on sensemaking proposed by Liu and Stasko [156].

Very widely used in visualization and VA research, the sensemaking model proposed
by Piroli et al. [121] (see Figure 2.1) focuses on visual sensemaking and is derived from
the cognitive task analysis of intelligence analysts. This model organizes the sensemak-
ing process into two main loops: a foraging loop where analysts seek information, filter
it, and gather relevant data. Analysts search through vast amounts of raw data, filter
it for relevance, and collect pieces of information (called “nuggets”) for further use.
And a sensemaking loop: The goal of the analysts in this loop is to make sense of the
information they gathered by developing a conceptual schema, generating hypotheses,
and transforming raw data into actionable insights. Analysts iteratively build mental
models, or schemas, to represent the information in ways that aid decision-making.

Drawing on the iterative nature of sensemaking but with a greater emphasis on
the role of mental models, Klein et al. [45, 46, 47] propose the Data–Frame Theory
of Sensemaking, which outlines two key cycles involved in interpreting complex data:
the elaboration cycle and the reframing cycle. The elaboration cycle occurs when a
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Figure 2.1: Pirolli and Card’s model of sensemaking loop for intelligence analysis
(Reproduced from [121]) where we notice the iterative nature of the process and the
correlation of structure with effort.

frame is confirmed by the data, prompting individuals to seek additional information
that fits and enriches the existing frame. On the other hand, the reframing cycle
happens when new data challenges the current frame, leading individuals to question
and potentially discard it in favor of an alternative frame that better explains the
situation. This dynamic interaction between data and frames underpins the iterative
nature of sensemaking, where people continually adjust their mental models in response
to evolving information.

Liu and Stasko [156] further elaborate on the role of mental models in sensemaking,
and the dynamic interaction and interplay between mental models and external visu-
alizations in the context of information visualization. They argue that mental models
are internal representations that help users make sense of data and external visual-
izations. Mental models are functional analogs of external visual systems, preserving
structural, behavioral, and functional properties that allow individuals to simulate and
reason about data in their minds. The authors propose four key relationships between
mental models and external visualizations: internalization, processing, augmentation,
and creation, emphasizing the importance of interaction in model-based reasoning.
Interaction, according to the authors, serves purposes such as external anchoring, in-
formation foraging, and cognitive offloading, which help users reduce cognitive load
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Figure 2.2: The Jigsaw system for supporting investigative analysis (Reproduced from
[72]): In the list view (B) the yellow shading and the diagonal lines indicate the
selected elements. The darker the color is the more related the element highlighted to
the element selected. This list view is displayed along a (A) Control Panel, (C) Graph
view and (D) a Scatter Plot View.

while engaging in data analysis.
An example of a VA tool whose design was inspired by these sensemaking theories

and models is Jigsaw [72] (Figure 2.2), a visual analytics tool for investigative analysts
when exploring and connecting evidence across large collections of textual documents.
It is grounded in the cognitive task model of foraging and sensemaking, as its main
purpose is to help analysts make sense of large amounts of data by providing a visual
interface to support their cognitive processes.

We note that more generally when sensemaking is studied in VA, it is usually with
one of two goals in mind. First, to use sensemaking theories to gather insights on
user behavior, which can then inform the design of future VA and interactive tools
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that better support the sensemaking process. For example, Dumais et al. [136] study
how logs can be used to understand user behavior on a large scale without direct
interference; this even includes behaviors that users might not recall or report correctly.
Second, improve the performance of the data analysis processes by informing users
about their own behavior and decision-making processes. For example, Kadivar et
al. [116] introduce CzSaw, a visual analytics tool developed to support the analysis
process in situations where analysts need to make sense of large, complex document
collections. To do so, this tool enables analysts to review, edit, and replay their analysis
steps through a visual history. CzSaw is designed to capture and visualize the steps
analysts take during their investigations. Doing so provides a clearer understanding
of the logic and tracking of the progression and alternatives explored in the analysis,
helping analysts refine their conclusions and make better-informed decisions.

In our own work, we do not explore these sensemaking models in depth. However,
similar to previous studies, our goal, when trying to understand the sensemaking process
of domain experts during trade-off analysis, is to inform the future design of decision
support tools. Additionally, prior research on sensemaking in visual trade-off analysis
[112] demonstrated that experts seek to align external evidence (such as data and
visual representations) with their internal knowledge of the studied systems—in other
words, their expertise and mental models of those systems.

We will elaborate on how we studied expert sensemaking during trade-off analysis
in Chapter 3, through the thematic analysis of participants’ verbalizations from a
think-aloud protocol, and in chapter Chapter 5, where we analyze participants’ written
descriptions of their reasoning and decision-making processes. The analytical processes
and expert sensemaking we observed, particularly in the provenance project, confirm
the iterative nature of sensemaking during trade-off analysis.

2.1.3 Visual Analytics and Decision Support in Agronomy

Some work in the field of data visualization and decision-making has studied the biases
that influence decision-making processes. For example, in their work, Dimara et al.
[36] provide a taxonomy for cognitive biases based on different user tasks and explore
how these biases can influence decision-making even when the information is well-
visualized. They highlight that decisions can sometimes be irrational despite a proper
understanding of the data by the decision-maker due to the influence of irrelevant
information. Their work also examines ways to mitigate these biases through design-
based debiasing techniques in visualizations [35].

Although it is important to take into account such biases, our work is more related
to another large body of work in decision-making and visualization that surrounds
the creation of sensemaking and decision-support tools. Prior work [33] has
a detailed review on visual decision support tools. We focus in our related work on
visualizations and tools relevant to trade-off analysis (section 2.3 and section 2.4).
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As we aim to support the specific needs in the domains of agronomy, we will briefly
review decision-making support tools in agriculture and agronomy. Agronomy is a
subfield of agriculture. Agriculture is often referred to as the "art and science" of
cultivating land, rearing animals, and management of livestock in order to produce
plants and livestock for food, fiber, and other products. As such, the needs and share-
holders are varied. In a recent review, Gutierrez et al. discuss [43] how stakeholders
can be farmers, advisers, and policymakers who need to use software tools to facilitate
tasks as diverse as farm management of resources, monitoring environmental sensors
on vineyards, identifying and treating pests, etc. Thus, the decision support and vi-
sual analysis tools for that domain are equally broad. The survey explains that most
visualizations used in these systems are 2D maps (for agricultural areas), time series
(for sensor data in farms and vineyards), heatmaps (representing different types of in-
formation, such as affected areas, temperature, etc.), and bar charts (e.g., presenting
histograms of different metrics).

While our own work is in Agronomy (discussed next), we are inspired by a recom-
mendation from this literature review work in agriculture. Gutierrez et al.[43] explain
that tools are often poorly received by the end-users, as they lack input from them
during the design process. For example, only 11 of the 61 tools reviewed benefited
from participatory design. Thus, they advise for human-centered design approaches
to be used in the design of such tools. In our work, we took that into account and
used a user-centered design approach to design our visualizations based on multiple
interviews and workshops with domain experts and potential end-users.

Agronomy was originally defined as the study of crop production, with an emphasis
on the interaction between climate, soil, agricultural techniques, and the resulting crop
yield and quality [38]. This discipline draws from a variety of scientific fields, including
biology, chemistry, soil science, ecology, and genetics. Over time, agronomists shifted
their focus to the farmers responsible for implementing agricultural practices, as they
investigated how these practices affect crop outcomes. As Lichtfousse et al. explain,
this change brought new challenges in modeling farmer behavior and understanding
the consequences of their decisions [38].

In our work, we collaborated with researchers in agronomy, primarily from INRAe
(Institut national de recherche pour l’agriculture, l’alimentation et l’environnement)
and affiliated institutes. These agronomists often analyze results collected in a struc-
tured form from field studies and communicate their results using simple multi-dimensional
visualizations. For example, the results of agronomic field trials [8] can be expressed as
scatterplots, bar charts, histograms, etc. Or they are confronted with models that sim-
ulate biological processes. They may manipulate existing wheat growth models [114]
to explore how, for example, a late fertilization impacts wheat yield and quality, and
if the outcome is impacted by weather conditions. These simulation models can gen-
erate thousands or millions of datapoints that are often presented in the form of large
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multi-dimensional tables [112] and have been visualized in the past using scatterplot
matrices.

No matter where their data originate from, their work attempts to reconcile multiple
competing objectives [44] often in a single investigation. For instance, agronomists may
search for fertilization strategies that on the one hand maximize yield, and on the other
hand reduce the amount of supplied fertilizers and the nitrogen loss to the plants [155].
The approach they use to understand these trade-offs falls under the domain of Multi-
Criteria Decision-making (MCDM), discussed in the next section. Our domain experts
come from this field.

2.2 Trade-off Analysis

A specific type of analysis is that of trade-offs. In domains such as agronomy or en-
gineering design, experts often explore the results of large multi-dimensional search
spaces derived from model simulations. Their goal is to identify solutions (or sim-
ulations) that fit a set of criteria they have, that can be competing - representing
trade-offs. This goal is related to multi-attribute choice tasks that focus on finding
the best option out of a set of alternatives defined across multiple attributes [34, 54].
Nevertheless, trade-off analysis does not consist of finding one single best option, but
rather of identifying a set of “good” options that may differ greatly in what criteria they
optimize. In such cases, the decision-maker must balance conflicting choices, weighing
each by its strengths and weaknesses.

2.2.1 Trade-off Analysis and MCDM

Trade-off analysis is a process that falls under Multi-Criteria Decision-making (MCDM),
a discipline that studies procedures to aid decision-making when dealing with a large
number of alternatives. MCDM problems generally involve the ordering or classify-
ing of alternatives [39], by imposing a procedure or strategy, like explicitly ordering
or weighting criteria [14]. Typically, MCDM problems are addressed by ranking and
classifying alternatives using mathematical functions or heuristics [14, 39] to calculate
the best possible solutions, referred to as "metrics" in this thesis and discussed next.

Trinkaus et al. [50] distinguish between three types of multicriteria decision tasks:
black-box, white-box, and hybrid. They explain that white-box multicriteria problems
have well-defined descriptions and are completely specified. For example, multicriteria
optimization methods fall into this category as their goal is to find the best solutions
out of all possible options, according to known criteria (objectives) and constraints.
However, if nothing is known about the structure or dependencies within the multi-
criteria problem, it is classified as a black-box problem. In this case, solutions are
typically discovered through trial and error, or by employing heuristics. Trinkaus et al.
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conclude that most real-life decision-making falls between the extremes of black and
white, leading to what they call hybrid multicriteria problems.

As mentioned in the introduction, in our work, the term trade-off analysis describes
a process that is less structured than general MCDM, one that is more exploratory,
where analysts consider multiple alternatives in order to understand the different criteria
they optimize, without any imposed procedures or strategies. This less structured
process assumes that the description of the potential decision that the experts are
trying to make is not completely known or defined a priori: the criteria and priorities
experts have are not fixed and may shift over time as they explore their data. In this
thesis, our focus is thus on hybrid decision problems, which reflect the nature of the
real-life applications that inspired our research, namely from agronomy. As such, we
need interactive visualizations to allow experts to explore the trade-offs in their data.

2.2.2 Trade-off Analysis Tasks

We discuss next work that has identified tasks conducted during trade-off analysis, as
part of our own work in this thesis is to characterize these tasks so as to better support
them with visualization solutions (Chapter 3).

Trade-off tasks feature in many visualization and visual analytics systems, in par-
ticular where users, via an interactive interface, have to make decisions according to
multiple criteria. Some systems treat trade-off analysis as a single coarse task. For
example, Sedlmair et al. [106] analyze tasks that users engage in when conducting
visual parameter space analysis. They describe an optimization analysis task where the
goal is to find the best parameter combination given some objectives.

Booshehrian et al. [94] make use of visualization to understand trade-offs of a set
of precomputed simulations. They describe a task within the analysis workflow of
scientists working in fisheries management, where the goal is to quantify trade-offs
between selected options, avoiding sensitive regions of the parameter space and those
with high uncertainty. Their work distinguishes between trade-offs that are globally
distributed in the output space and those that are focused on a local neighborhood.

Matkovic et al. [81] describe typical tasks and propose an interactive analysis work-
flow for complex engineering systems. The identified tasks are grouped into three main
categories: exploration and analysis, regression model computation, and data genera-
tion. Many of these tasks relate to automatic workflows, rather than human analysis.
However, some are mirrored in human analysis. For example, in the category of explo-
ration and analysis, we find the task of comparing results across different regions of
the parameter space, a subtask we also identified with our domain experts.

We note that Matkovic et al. [81] in the identified tasks include several steps of
generating the data, one being automatic optimization. This is of relevance to our
work, as domain experts often explored optimized datasets. Some of their simulation
experiments need to sample a very large solution space; hence, very frequently, a multi-
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Figure 2.3: The Vismon interface [94] (Reproduced from [93]) consists of three key
components. The top-left Constraint pane, which organizes management options and
indicators into separate tabs. It also provides individual sliders, designated for adjusting
management options and indicator. The top-right Contours plot matrix pane, displays
contour plots of indicators as they relate to two management options, and allowing for
scenario selection. And the bottom Trade-offs pane, provides detailed information on
indicators for the selected scenarios.

objective optimization algorithm (e.g., NSGA-II [77]) is used to explore this solution
space, generating Pareto Front datasets, which are then analyzed by domain experts.

Pareto front datasets are a subset of an original dataset computed from multi-
objective optimization. The resulting, smaller dataset typically indicates that in the
remaining points no objective can be improved without sacrificing at least one other
objective [52]. Pareto front points (see Figure 2.4) are often called non-dominated
solutions, as no other solution is strictly better. All points from the original dataset
that are not part of the Pareto front are sometimes called dominated, as there is at
least one point in the Pareto front that dominates them (i.e., is better in one or more
criteria).

Other works break down trade-off analysis into smaller sub-tasks, often focusing on
particular exploration strategies such as ranking of alternatives or weights to express
preferences. For instance, in the LineUp system [132] (seen in Figure 2.5) users can
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Figure 2.4: Pareto Front across two dimensions (quantity of Item 1 and quantity of Item
2) (Reproduced from [149]). Each red point (A-H) represents optimal combinations of
two items, while gray points (K, N, etc.) represent less efficient choices. The frontier
shows the trade-offs between the quantities of Item 1 and Item 2, where moving along
the curve improves one dimension at the expense of the other.

rank solutions and evaluate their performance relative to each other. The tool also
provides means to combine dimensions (or attributes) and weights to convey priorities
for the different attributes. Similarly, Weightlifter [135] (seen in Figure 2.6) helps
analysts understand the effects of different weights for multi-criteria decision spaces
with up to ten criteria. We revisit these systems later in our thesis.

Work that breaks trade-off analysis tasks into finer components or sub-tasks can
also be found outside the visualization and visual analytics community. The work of
Hakanen et al. [59] from operations research is the closest to ours, as they assume
that the priorities of experts may shift. They propose an interactive visual analytics
system where a decision-maker explores Pareto front solutions that are computed iter-
atively, based on user preferences. As such, the authors also discuss trade-off analysis
in the context of interactive multi-objective optimization and identify seven high-level
tasks: compare Pareto optimal solutions, specify preferences, check feasibility of pref-
erences, determine the most preferred solution, learn about problem characteristics,
detect correlations, and post-process the most preferred solution.

In our work, we consider both general trade-off datasets and those generated by an
a-posteriori multi-objective optimization method, which tends to produce larger sets of
pre-computed solutions. We hypothesize that most of their tasks [59] are still relevant
for both general trade-off datasets (not just Pareto front solutions) and for a-posteriori
methods such as ours, with the exception of the tasks “specify preferences” and “check
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Figure 2.5: The Lineup system (Reproduced from [132]) for ranking Multi-Attribute
alternatives and comparing the rankings of these alternatives. Each line represents a
different alternative and colors indicate the weighted dimension. In this image, we see
multiple iterations of rankings (as different columns), created from different weight
configurations.

feasibility of preferences,” which are specific to interactive multi-objective optimization.
To the best of our knowledge, trade-off analysis tasks have not been described in visual
analytics context specifically. Our goal in this thesis is to shed light on what trade-off
analysis tasks domain experts are interested in, and how visualization can assist those
tasks. We revisit trade-off tasks in Chapter 3.

2.2.3 Summary for Trade-off Analysis

We were inspired by prior work on defining trade-off analysis needs and tasks, at-
tempting to study how visualizations can support trade-off analysis. To the best of
our knowledge, no prior work has looked at the effect of provenance visualization on
trade-off exploration (Chapter 3), nor of group comparison visualization during trade-
off analysis (Chapter 4 and Chapter 5). But before we expand on these two topics
that relate to our main contributions, we present general work on visual analytics that
relates to trade-off analysis.
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Figure 2.6: The Weightlifter (Reproduced from [135]) view (top left) is integrated with
other visualization tools to aid ranking. In this case, we see at the bottom a ranking
view with details on multiple data points, spread over multiple dimensions (columns
a, b, c), and a row (d) of the current weights. On the right (e) we see a parallel
coordinates plot (e) of the same datapoints. All views are linked. Excluded solutions
are shown as well for context (f).

2.3 Multidimensional Data Visualization

The type of data used in trade-off analysis in domains such as agronomy is often the
result of simulations in the form of high-dimensional (or multi-dimensional) datasets.
These are usually long tabular datasets of input and output parameter values. Given
this type of data, we focus next specifically on work in visual analysis for Multidimen-
sional Data.

In their literature review on visualizing high-dimensional data, Liu et al. [134]
present the pipeline for visual analytics that describes the process of going from raw
data to views. The pipeline consists of the following stages: Data transformation
(techniques to manipulate the underlying data), Visual mapping (encoding data de-
rived from the data transformation to visual representations on the screen), and View
Transformation (methods that focus on screen space and rendering) A crucial part of
the pipeline is human interaction that is integrated at each stage. Among others, they
discuss how it is challenging to visualize high-dimensional datasets that contain more
than three dimensions (in practice often tens or hundreds of dimensions) and hundreds
or thousands of data points. Past research has introduced different solutions within
this pipeline to address this and other challenges.

For example, during the Data transformation phase, one approach is to apply di-
mensionality reduction techniques [75, 99, 107] such as Principal Component Analysis
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(PCA) [83], Multidimensional Scaling (MDS) [133], and t-distributed Stochastic Neigh-
bor Embedding (t-SNE) that project high-dimensional data into lower-dimensional
spaces while preserving the structure of the data. In our own work, we preserve the data
in its original form, with the dimensions experts are familiar with, and we allow them
to create their own combined dimensions. Nevertheless, our experts also often conduct
other types of data transformations before engaging in the visual analysis of their data,
that of calculating Pareto front datasets (discussed in trade-offs, see section 2.4).

Work on View transformation focus on the rendering that generates images in the
screen space. For example, some approaches introduce visual representations that are
either illustrative, adopting specific rendering, e.g., to highlight specific structures in
the data (like the TableLens [127]). Others provide rendering abstractions to handle
clutter (like using contours instead of rendering dense regions in a scatterplot [10]).
Finally, some work under view transformation considers image space metrics to analyze
the visual structure and automatically identify interesting patterns. A classic example
is Scagnostics [90], a set of measures for identifying interesting plots in a scatterplot
matrix (discussed next). In our own work, we do not consider View manipulations,
although our visualizations could be combined with such techniques.

More relevant to our work is the Visual mapping stage, in other words, the choice
of how to visually encode data. We thus review it next in more detail, motivating the
visualizations we use as basis for our provenance technology probe (Chapter 3) and
comparison prototype tool (Chapter 4).

2.3.1 Visual Mapping in Multidimensional Data
Visualization

In the survey by Liu et al.[134], we see under the Visual mapping stage a set of visu-
alization techniques focusing on different visual representations of multi-dimensional
data. These include: Axis-based, Pixel-oriented, Glyph, Hierarchical, Animation, and
Evaluation techniques. An older organization of this work also appears in Keim and
Kriegel’s VisDB work [26]. Here we follow more closely the categorization by Liu et
al., and we additionally discuss past literature that has compared different visualization
approaches. We note that the most relevant category for us is Axis-Based techniques
which we expand on in more detail at the end of this section, but we briefly mention
the remaining categories.

Pixel-oriented techniques, like those used in their [26], represent data points as
pixels with color indicating relevance, allowing for the visualization of millions of items
simultaneously (see Figure 2.7).

As we work with domain experts, we decided to work with more commonly used
visual mappings.
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Figure 2.7: VisDB (Reproduced from [26]): uses pixel-based visual encodings to rep-
resent high-dimensional data (on left). Each small pixel corresponds to a data point,
with different views such as Curvature, Topology Index, and Solid Angle mapped onto
heatmaps.

Glyphs (that are also known as Icon-based methods [26]) include Star glyphs or
Chernoff faces [49]. Glyphs map dimensions to visual properties such as shape or facial
features, helping users intuitively identify patterns. For a review on glyphs and their
applications, see [126] and for their evaluations, see [58]. Similarly to pixel-oriented
techniques, these approaches are less familiar to domain experts.

Hierarchical techniques, including dimensional stacking and treemaps [27], organize
data into nested structures for better exploration of hierarchical datasets. As the
simulation data we are considering in our work is not inherently hierarchical, these are
less relevant to us.

The Animation category discusses work that uses animation to aid understand-
ing, such as Rolling the Dice work [115] that uses animation to transition between
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scatterplots in a scatterplot matrix (discussed next).
The most relevant category to us is the collection of Axis-Based techniques, as well

as relevant results from the Evaluation category of literature that explores a variety of
prior studies that have compared different visual mappings.

Axis-Based Visualization techniques

Axis-based methods are visual mappings where datapoint relationships are shown
through axes representing the data dimensions [134]. These can be considered as
being lossless geometric projection approaches according to Keim and Kriegel’s group-
ing [26]. Axis-based methods are the most numerous approaches of multi-dimensional
visualizations and the ones that are more ubiquitous in their use. This is why they
have inspired the designs used in our own work. We report next on the most common
and close this section with results from studies that have compared them.

Parallel coordinates and Radial graphs: Parallel coordinates plots visualize mul-
tidimensional data by mapping simultaneously multiple dimensions onto a 2D plane
(for a review, see [62, 65]). Each dimension is visualized as a parallel axis. Data points
are represented as polylines that intersect the axes at corresponding values, making
it easier to identify patterns, correlations, and clusters across multiple variables (for a
review of the topic see [62]). Parallel coordinates enable users to visualize relationships
between dimensions and the distribution of items on the different dimensions, but do
not scale well because of the visual clutter induced by a high number of data points
[65]. Radial graphs [37] are analogs of parallel coordinates where the axes are arranged
circularly, in a radial layout.

Scatterplot matrices (SPLOMs): A scatterplot encodes two dimensions as or-
thogonal axes, and datapoints are rendered as points on them. As a scatterplot can
only show 2 (or 3) dimensions, a common way to extend them to multi-dimensional
datasets is using a scatterplot matrix, or SPLOM. A SPLOM is a grid of scatterplots
where each plot represents two dimensions of the dataset [74]. SPLOMs allow users to
visualize pairwise interactions between different pairs of dimensions by plotting multiple
scatterplots side by side. The number of scatterplots in a SPLOM increases quadrati-
cally as the number of dimensions grows [134]. To address this, several solutions have
been proposed, such as methods for automatically or semi-automatically identifying
interesting plots within the SPLOM, such as incorporating Scagnostics [90] or with
a metric like the trade-off index [109] that we will discuss in the Trade-off analysis
section 2.4. Finally, some tools improve on SPLOM visualization with animations that
either provide visual transitions across the different scatterplots in the matrix [115], or
that combine them with parallel coordinates [25].
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Tabular visualization and stacked bars: A set of visualizations that is not dis-
cussed extensively in past surveys are tabular visualizations. They are used to represent
data in a table format, where rows represent items and columns represent attributes.
These tables can be enhanced with representations of data attributes in the cells us-
ing encodings such as color [104] to construct heatmaps, size [54], or shape [21] to
improve the readability and/or richness of the visualization. They can be considered
as axis visualizations, as each column of the table represents an axis (a dimension).
In systems that incorporate tabular visualizations, many [54, 104, 132, 135] display
the values with bars inside table cells. Bar lengths are easier to compare than color
or size [146]. In these systems, colors are used as a secondary encoding (e.g., for
categorical information). For more information on the perception of bar charts, please
see [73, 91, 130].

No matter the visual mapping, we note the visualization techniques, including the
axis-based ones we mentioned here, are accompanied by appropriate interaction
techniques. These include highlighting individual points and linking them across views
(e.g., [54, 112, 115, 132]); selections of multiple datapoints through visual querying
and sculpting or range selection across dimensions (e.g., [112, 122, 132]), filtering
(e.g., [112, 115]), and axis reorganization (e.g., [115, 132]). We provide such support
in our own visualizations in this thesis.

Evaluation We summarize here previous work that has compared these visualization
(visual mapping) techniques under different tasks, explaining why we integrated them
in our own work. In their work Kuang et al.[151], have compared parallel coordinates
with SPLOMs and found that SPLOMs are better at identifying correlations than
parallel coordinates and they were better suited for a higher number of dimensions (4
or over) and more than 30 datapoints (30). Later work on decision-making [34] has
also highlighted that SPLOMs performed better than parallel coordinates in high-level
tasks such as identifying correlations and relationships between dimensions, which is key
when attempting to understand trade-offs. Thus, in our work that focuses on trade-off
exploration, we use scatterplot matrices (SPLOMs) as the basis for our exploration
tool (Chapter 3). The work of Dimara et al. [34] additionally highlighted that tabular
visualizations are well suited for decision-making tasks, in their case for choosing one
among several multi-dimensional datapoints. Following their recommendation, in our
work studying comparison for trade-off analysis and decision-making, we adopt tabular
visualizations (Chapter 4).
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2.3.2 Summary on Multi-Dimensional Visualization

In our work, we focus on the use of visualizations to support trade-off analysis tasks,
a form of multi-criteria decision-making, i.e., decision-making that considers a large
number of dimensions (as discussed in the Trade-off section 2.2). The extensive body
of work on visual analytics and multi-dimensional visualization proposes several tools
and visual mapping approaches. Among them, we chose two for our own purposes. We
use SPLOMs to visualize and help explore the trade-off datasets as they allow experts
to see relationships between different dimensions and identify interesting patterns in
the data, such as correlations. And for our work on comparison and decision-making,
we use tabular visualizations enhanced with colors (similar to heatmaps) and bars,
as related work has suggested that tables are appropriate visual representations for
decision-making.

2.4 Visualization tools for Trade-off Analysis

Trade-off datasets are almost always multi-dimensional, covering objective dimensions
to be optimized, and whose values vary in relation to other dimensions (or parameters).
Thus, it is not surprising that many existing visualization techniques (visual mappings)
discussed before have been used in tools for trade-off analysis. These include tabular
visualizations [71], parallel coordinates [92], scatterplot matrices [9], and self-organizing
maps [129]. For an overview of visualization techniques for trade-off sets, see [82, 140].
We report next on the ones that use some of the most common multi-dimensional
visualizations (described before) and are thus relevant to our work.

We report first on three of these tools that have been used to either construct or
explore Pareto fronts (subsection 2.2.2).

In their work, Gratzl et al. [92] compare two techniques to visualize Pareto fronts
used during the process of designing the optimization procedure for generating the
Pareto front. They use parallel coordinates and the projection of the Pareto front over
a 2D space as a scatterplot. Their results show that parallel coordinates are better
than scatterplots, but only if the number of items in the Pareto front is small.

Chen et al. [129] use self-organizing 2D maps to represent the balance of objectives
in solutions in Pareto front datasets. To do so, they represent each solution with a
radial glyph. These glyphs are then organized on top of a 2D self-organizing map of
the different objectives, where the size of the objective maps to a weight defined by the
user. This visualization attempts to support both the adjacency of solutions, where
similar solutions are placed close to each other, but assumes a fairly small number of
solutions and dimensions.

EvoGraphDice [6, 113, 115, 145] is a SPLOM-based multidimensional visual ex-
ploration tool. It includes several interactive tools such as brushing and linking across
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Figure 2.8: EvoGraphDice (Reproduced from [145]): Users can select groups of points
using a lasso tool on the scatter plot (b). Selecting points assigns them a color so
that users can observe their positions within the SPLOM(a) visualization. This allows
for easy tracking of selected points across multiple dimensions. Other features include
a toolbar (e), a history (c), a favorites bookmarking location (f) and a visual query
panel (f). The tool includes an evolutionary algorithm configuration panel (h). We
notice the tabular view of the data (g), where users can also create new composite
dimensions.

views, zooming, and visual query sculpting across different dimensions (see Figure 2.8).
It provides views of the underlying data in the form of a table and ways to combine
multiple dimensions. In addition, it recommends interesting views (based on Scagnos-
tics), as well as possible dimension combinations to aid experts reach views that exhibit
a particular pattern. It has been successfully used by domain experts in agronomy to
explore large trade-off spaces that are Pareto fronts of simulation datasets [112].

We next report on more general-purpose tools that allow users to provide weights
on dimensions and rank datapoints accordingly.

LiteVis [71] is a visualization to represent simulation data for lighting design. Apart
from a 3D scene of the environment, their tool also provides a stacked barchart view.
Each simulated lighting alternative is a stacked bar, with stacks representing different
lighting parameterizations and abstracted result indicators. Users can provide weights
to these indicators that are used to calculate a score for each simulation. And can
rank simulation results (in the stacked bar view) based on these scores. According to
their results, their tool was efficient in helping users to navigate the solution space that
would have overwhelmed them otherwise. They also explain that the linking of both
representations led to a shorter feedback loop for the users.

Another example, also using tabular and stacked-bar visualizations, is the LineUp
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Figure 2.9: Different configurations of the LineUp tool bars (Reproduced from [132]).
Notice how some configurations (a,b,c) are stacked bars, while others are tabular views
(d). The full system can be seen in Figure 2.5.

[132] decision-making tool (see Figure 2.5 for system and Figure 2.9 for examples of
tabular and bars configurations). It is an example of a visual analytics system designed
to create, analyze, and explore rankings of items based on multiple heterogeneous
attributes. But it has functionalities that are relevant for trade-off analysis. It uses
weighted scores to compute an overall ranking by combining different attributes, which
are then visualized in a stacked-bar representation by default. LineUp provides several
views of the data. Some views are in tabular format, i.e., dimensions are aligned as
columns and rows are datapoints, and internally, cells include bars of different lengths.
And as the other views represent datapoints as stacked bars, i.e., each datapoint is a
bar divided into segments of different lengths (one segment per dimension). In LineUp,
color is used to differentiate dimensions in the stacked bars. They use these two views
for different purposes; the tabular visualization with bars simplifies the comparison of
cell-level values since the bars for each dimension have a shared baseline.

Conversely, the stacked bars allow for the comparison of the sum of the values for
each item while still having an indication of the composition of the whole by stacking
the bars on top of each other. LineUp [132] can be used in the context of simple
trade-off analysis, as it allows users to give weights to different dimensions and to
visualize a ranking between all points according to these weights.

Weightlifter [135] (Figure 2.6) assists analysts in understanding the impact of dif-
ferent weights for multi-criteria decision spaces with up to ten criteria. Weightlifter is
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based on the core concept of ranking solutions using weights. It provides an interac-
tive visualization that highlights the stability and change of rankings depending on how
weights are adjusted and combined. The tool visualizes the weight space, which is a
geometric representation of all possible combinations of criteria weights, with lines that
represent changes in ranking, enabling users to see how changes in these weights affect
the overall ranking of solutions. We note that each solution in their case, similarly to
LineUp, is a single point.

Finally, a tool specifically built for trade-off analysis is PAVED [86]. PAVED (Fig-
ure 2.10) uses parallel coordinates to depict a large number of design alternatives and
criteria simultaneously, allowing engineers to visually explore trade-offs and conflicts
between different criteria. The tool supports tasks such as filtering alternatives, iden-
tifying superior compromises, and confirming design choices. This tool works best for
contexts with a small number of criteria and alternatives, as it can become cluttered
with larger datasets.

Figure 2.10: PAVED (Reproduced from [86]): Visualizes Pareto fronts from engineer-
ing, using parallel coordinates visualizations. The users can select the lines (datapoints)
to highlight by brushing over the ranges on the axis.

Because trade-off exploration is a complex process [112], existing work looked at
how to better support decision-makers during the analysis, such as in terms of powerful
interactive visualizations as we discussed above, but also with robust ranking and
optimization algorithms [9, 71, 135, 140, 152]. We will discuss some of these ranking
metrics next. Tušar et al. [140], however, argue that trade-off sets (such as those
found by evolutionary multi-objective optimization algorithms) require further support
that traditional multidimensional visualizations do not necessarily cater for. Our work
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investigates these additional needs and identifies relevant metrics, and hypothesizes
that visualization of these can aid trade-off analysis.

2.4.1 Metrics to Quantify Trade-offs

Since the method for solving trade-off problems varies based on the context and criteria
defined by the decision-maker, the majority of the tools mentioned above integrate
some metrics to characterize trade-offs. These metrics often integrate user preferences,
such as weighted means or other scoring methods.

Some of these metrics come from research from MCDM on quantitative methods
for characterizing trade-offs, outside the visualization domain. For example, Daniels et
al. [57] propose a trade-off analysis method for systems engineering that simplifies eval-
uating and comparing different designs. The method uses weighted mean aggregation
to assign numerical scores, allowing easier comparison of options based on stakeholder
preferences and priorities. Another example is Shih et al. [51] who present a method for
ranking and evaluating MCDM alternatives based on the similarity of each alternative
to an ideal solution.

Visualization researchers have also argued for using these quantitative metrics and
mathematical functions when designing visual MCDM support tools. Amar et al. [125]
explain that problems that are marked by uncertain criteria, of which trade-off analysis
is a prime example, can be solved either through a black-box aggregation function or
by employing distribution or clustering methods.

We can see such metrics included in visualization decision support tools. LineUp
[132], uses weighted scores to compute an overall ranking by combining different at-
tributes, which are then visualized in a stacked-bar representation. This allows users
to view the rankings but also adjust the importance (weights) of individual attributes
and observe how these adjustments affect the overall ranking in real-time. LineUp also
supports the comparison of multiple rankings. For example, users can visualize how
rankings change over time or between different attribute configurations by displaying
multiple rankings side-by-side. This comparison is also supported by slope graphs that
show the change in the rank position of items between the two rankings.

Building on these works, we developed our own trade-off metrics, in particular when
considering comparisons (see Chapter 4).

2.4.2 Summary on Vis tools for Trade-off Analysis

Several of the tools presented in this section (with few exceptions) were not designed
to support trade-off analysis per se. In these tools, analysts can indicate preferences
and prioritization of the different dimensions in the form of weights and get a ranking
in relation to a score calculated from these weights. We are inspired by the tools
discussed in this section for creating our own exploration tool for trade-off analysis
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(Chapter 3), noting in particular the good performance of 2D projection solutions
(scatterplots) when Pareto front datasets are large. In addition, we consider the preva-
lence of tabular and barchart visualizations when the goal is ranking of alternatives
(Chapter 4, Chapter 5). We go beyond these ranking approaches by studying how to
visually incorporate more trade-off metrics and how to consider trade-off solutions that
may be made up of multiple datapoints, rather than a single datapoint.

2.5 Provenance and Trade-off Analysis

One of the characteristics of trade-off analysis as used in our work is that trade-off
analysis is conducted over long periods of time and several exploration sessions [112],
as multiple experts try to explore alternatives and reach common ground, making this
type of analysis hard to resume and revisit. Moreover, during this analysis, the criteria
and priorities experts have are not fixed and may shift over time. This motivated
the first part of our own work: how to best keep track of trade-off analysis, using
provenance (Chapter 3).

Xu et al. define provenance information as the “history of the data and
reasoning involved [during complex sensemaking tasks] and the context within

which sensemaking was performed” [85].

It is invaluable as a means to help analysts retrace their exploration and how it led
to insights. As Ragan et al. explain [31], the types of provenance information that
may be of interest to analysts can vary greatly. It can range from keeping track of low-
level information such as data transformations, view changes, and user interactions;
to high-level such as capturing insights reached during the analysis, or the rationale
behind decisions and hypotheses.

In this thesis, we consider provenance visualization for sensemaking more gener-
ally. Although trade-off analysis and provenance visualization are prominent areas of
research separately, little work exists that looked at exploiting provenance information
to specifically assist trade-off analysis. An exception is recent work by Cibulski et
al. [86], who developed an interactive Pareto front visualization tool to explore multi-
criteria alternatives in engineering design. Since their focus is on trade-off analysis,
they describe 13 design requirements for this domain, such as showing criteria ranges
for simulation steering, supporting selections, and highlighting conflicting criteria; but
they also describe one additional requirement for provenance pertaining to storing fa-
vorite alternatives for future comparison. Additionally, Trinkaus et al. [50] presented a
generic multi-criteria decision support system called knowCube. They use provenance
to support trade-off analysis by logging navigation paths, then clustering, storing, and
viewing “good” decision alternatives. As such, past navigation paths and good candi-
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Figure 2.11: HindSight (Reproduced from [100]) encodes interaction history directly
on visualizations, differentiating what has been visited from what remains.

date solutions are stored in a log file, and the user can later replay them in an animated
movie-like fashion. KnowCube provides a simple visualization in the form of a radar
chart to show the different decision alternatives and is demonstrated through real-life
applications, but no user study or formal evaluation were conducted.

2.5.1 Provenance Visualization for Sensemaking

Despite the few works on combining provenance and trade-off analysis, there is con-
siderable work conducted on provenance visualization more generally.

Visual analysis tools often capture basic view and interaction events that analysts
can access in the form of a history or action log. But several systems go beyond
this basic provenance capture and visualization. Past work has explored how to revisit,
operate on (search, filter, annotate) [61] and more generally how to visualize and curate
past history [118]. It also studied ways to help connect exploration steps [17] and aid
analysts summarize and hand-off their analysis to colleagues [76]. A recent survey on
the topic in interaction provenance provides further reading [84].

More relevant to our work are tools that provide in-situ provenance visualizations
(or in-visualization provenance), augmenting existing parts of the interface with simple
visual marks to encode provenance information. The first such instance is the idea of
“visit ware” [11] that applies a fish-eye lens on a graph to magnify the nodes that are
more visited. Later, BookVoyager [110] attempted, on the contrary, to de-emphasize
the most visited timeseries in a line chart by graying them out in order to encourage
users to visit new parts of the visualization (“road-less-traveled navigation”).
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Scented Widgets [147] introduce a framework for enhancing interface components
(such as buttons or sliders) with information that can aid navigation. While the concept
is general, the work suggests several examples of visualizing provenance information,
such as changing the color of a button based on the frequency of use or keeping track
of datasets visited in a drop-down list.

HindSight [100] encoded interaction history directly on visualizations (in-visualization
history), for example by changing the opacity of the most visited chart in a small mul-
tiples list, or the color and width of the most visited line in a line chart (Figure 2.11).
In an online study, they observed that adding such interaction history increased user
interaction with the interface and may have led users toward typically unexplored areas
of the visualization.

Most recently Lumos [40, 41] added to scatterplots (among other views) in-situ
visualizations of interaction traces: real-time ones, such as coloring individual data-
points or attributes to encode frequency of interaction; and summative ones to show the
distribution of data-points that users interacted with compared to a target distribution
on a dimension. Their goal was to enhance awareness of biases [40] and mitigate them
[41] during exploration and decision-making. In a series of laboratory and crowdsource
experiments, they found that these traces increased awareness of biases [40], and
somewhat mitigated unintentional bias but enabled intentional bias [41].

The provenance designs introduced in our technology probe (section 3.1) follow this
in-situ approach, augmenting existing components of the interface with simple visual
indicators of provenance information. Nevertheless, we contribute a study that uses
in-situ visualizations to observe real analysts: our experts revisit their own past analysis
and data, days or even months later; and also use our provenance visualizations during
active exploration. Moreover, we introduce in-situ visualizations in an environment
targeting a specific type of visual analysis: trade-off exploration.

2.5.2 Purposes of Provenance

While provenance support has not been studied in the context of trade-off analysis,
past work has highlighted what we should expect provenance to be used for. Beyond
provenance information types, Ragan et al. [31] have also identified the following
reasons why analysts use provenance (purposes):
Recall: maintaining and recovering awareness and memory of the current and past
states of the analysis;
Replication: reproducing aspects of a previous analysis (steps or workflow);
Action recovery: undoing/redoing past actions during the analysis;
Collaborative communication: sharing data, information, and ideas with col-
leagues;
Presentation: summarizing and sharing the results or processes of the analysis with
someone not involved in the analysis; and
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Meta-analysis: reviewing the analysis process itself.
These general provenance purposes serve as the starting point for our own work;

nevertheless, we contribute a refinement of these purposes based on specific trade-off
analysis needs (subsection 3.3.2).

2.5.3 Summary for Provenance in Trade-off Analysis

Provenance is important for visual exploration. Nevertheless, the few tools that are
developed for trade-off analysis as well as the studies attached to them do not use nor
study provenance or its impact on the analysis process. Thus, they are not tailored
to capture aspects specific to trade-off analysis, such as the balance of trade-offs, the
coverage of objectives and their respective importance, etc. Our work aims to cover
this gap, but we are inspired by the recommendations of past provenance studies to
design our own provenance-driven trade-off analysis probe and user study (Chapter 3).
Moreover, we use this probe as a means to study trade-off analysis more generally,
in particular in characterizing trade-off tasks for visual analysis. To the best of our
knowledge, no prior work has looked at the effect of provenance visualization on trade-
off exploration, nor at the characterization of trade-off tasks in the context of visual
analysis.

2.6 Comparisons and Trade-off Analysis

Comparisons are essential in trade-off analysis where experts evaluate alternative op-
tions with multiple, often conflicting goals [59, 112]. For example, in wine production,
experts must balance competing criteria such as low temperature profiles for wine
production vs. produced aromas. Or in wheat production, reducing fertilizer use and
environmental impact while increasing crop yield. They achieve this by comparing the
pros and cons of different strategies, such as different temperature management strate-
gies for wine production that either minimize energy or maximize aromas, or wheat
production strategies—one that minimizes environmental impact versus another that
maximizes crop yield [97].

Previous research in trade-off analysis has shown that domain experts often work
with groups of points (or items) when exploring large trade-off spaces [97, 112].
Datasets derived from biological processes have inherent variability in measurements,
so experts tend to use ranges instead of exact thresholds when identifying and com-
paring groups. In the wheat example, experts compared fertilization strategies aimed
at achieving high-protein content with those that resulted in lower protein levels. In
the wine example, they compared groups of wines that were produced under different
temperature ranges (high and low).
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Figure 2.12: The different comparison layouts introduced by Gleicher et al. (Repro-
duced from [102])

Our goal is to design visualizations that support comparisons of groups of points
in the context of trade-off analysis (topics covered in Chapter 4 and Chapter 5). We
thus review here existing methods for supporting comparison tasks both in visualization
and sensemaking and then more specifically in trade-off analysis. Finally, we review
methods for evaluating the quality of trade-off comparisons.

2.6.1 Comparison Visualization for Sensemaking

Comparison is important in sensemaking with data as analysts generate and compare
multiple schemas or alternatives [121]. Li et al. characterized these alternatives in data
analysis as multiples, options, and choices [67], identifying five high-level processes
around alternatives. Comparison was one of these processes, regarded as a high-level
reasoning task alongside inspect, interpret, and evaluate.

In terms of the presentation of these alternatives visually, Gleicher et al. [101] in-
troduced a taxonomy for comparisons which includes three approaches: juxtaposition,
superposition, and explicit encoding of relationships (see Figure 2.12). Juxtaposition
involves placing multiple datasets side by side to facilitate direct visual comparison.
Superposition overlays datasets within the same visual space, enabling immediate com-
parison through shared spatial coordinates. Explicit encoding directly represents the
relationships or differences between datasets using distinct visual elements, abstracting
the raw data into comparative metrics. This work notes that one of the main challenges
with comparisons is scalability, as comparison problems grow in complexity (e.g., large
number of criteria) and the number of objects being compared.

A similar approach to the juxtaposition and superposition method was proposed by
Tominski et al. [23] to compare data visually by placing them close together. They
introduce an interaction concept inspired by the tangible actions individuals take when
comparing physical documents, such as arranging papers side by side or overlapping
them to see through. This concept was validated by a qualitative user study in terms of
effectiveness, intuitiveness, and user satisfaction of their novel interaction techniques.

In their work [22], Schmid et al. suggest comparative visualization, essentially
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allowing analysts to interactively visualize the same data over multiple visualizations
at the same time. The goal of this work is more about understanding one set of data
and less about comparison between two (or more) groups of datapoints.

2.6.2 Comparisons in Trade-off Analysis

Hakanen et al. [59] discuss trade-off analysis in the context of interactive multi-
objective optimization and identify seven high-level tasks, including comparison. They
view comparison as a high-level process where the input is a set of alternative solutions,
and the output is insights about trade-offs. They further break down the comparison
task into five low-level tasks derived from taxonomies of information visualization tasks
[7, 60, 70]: filter, abstract/elaborate, encode, reconfigure, and connect.

In our own work on using provenance, we also identified comparison as a key task
in an observational study with domain experts, focusing on the use of provenance to
support trade-off analysis. We discuss these more in the next chapter of this thesis, but
our findings revealed that domain experts create alternative exploration paths leading
to different solution groups, which they then compare.

Although not related to trade-off analysis across datasets, in the field of aircraft
design that deals with trade-offs such as trade-offs between the geometry (space/aes-
thetics) and the aerodynamics (performance), Trapp et al. [56] talk about a new way
to look at aircraft design using data comparison. They move from comparing pictures
(like how airflow looks in experiments versus computer models) to comparing the ac-
tual data when the pictures are too difficult to compare. To do that, they rely on a
side-by-side visualization of the data from the two designs they are comparing, with
explicitly encoded metrics visualized on top of the designs.

Finally, although the trade-off metrics (see subsection 2.4.1) and visualizations to
support trade-off analysis have been proposed, especially for analyzing individual points
(e.g., [86, 132, 135]), their impact on comparison tasks in trade-off analysis and on
the decision-making process is still unclear. Next, we review the main methods for
evaluating the quality of trade-off comparisons.

2.6.3 Evaluating the Quality of Trade-off Comparisons

Evaluating the effectiveness of visualizations in complex decision-making scenarios,
such as those involving uncertainty or trade-off analysis, where ground truth is either
unavailable or hard to assess, presents significant challenges. Hullman et al. [63] devel-
oped a taxonomy for evaluating uncertainty visualizations and highlighted a common
bias towards measuring performance based on accuracy rather than decision quality.
In our research, we indirectly assess decision quality by examining the reasoning pro-
cesses of decision-makers during trade-off comparisons (Chapter 5). We hypothesize
that improved sensemaking and reasoning is likely to lead to better decision outcomes.
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Following methods used in other sensemaking studies [128], we employ think-aloud
protocols and self-reported decision justifications to assess the quality of reasoning in
trade-off comparison tasks.

To analyze these decision justifications, as a proxy for their decision quality, we were
inspired by existing literature in eXplainable Artificial Intelligence (XAI), a subdomain
of AI concerned with developing methods to interrogate black box AI systems and
extract insightful information about their inner workings [18]. Miller et al. describe
explanations of AI systems as transfers of knowledge about the behavior of AI systems
[139]. Specifically, we looked at work by Nauta et al. [105] who conducted a systematic
review of 300 papers on evaluating explainable AI systems. The reviewed papers were
published at major AI and ML conferences between 2014 and 2020. They identified
twelve conceptual properties, termed Co-12, to assess the quality of AI explanations.
These properties encompass dimensions such as correctness, completeness, contrastiv-
ity, compactness, and confidence, offering a multifaceted approach to evaluate the
interpretability of AI models (Table 5.1). We will elaborate on these properties in
section 5.1 and describe how we use them as transfers of knowledge about the human
decision-making process, to then characterize comparisons in trade-off analysis.

To the best of our knowledge, no previous user study has evaluated the impact
of visualization and trade-off metrics on comparison tasks involving groups of data
points. The most closely related work is by Dy et al. [16], who evaluated the im-
pact of visualization types (scatterplot matrices, parallel coordinates, heat maps, radar
charts) and data complexity (number of criteria dimensions and points) on decision
time and accuracy when selecting the ‘optimal’ option. In their work, accuracy refers
to the consistency of choices with self-reported preferences, following the suggestion
of Dimara et al. [34]. Their results show that accuracy remained similar across all
four visualizations but improved when users dealt with fewer options and dimensions.
This insight supports our design choice for the user study (section 5.1), where we
limit the number of dimensions and data points. In contrast to Dy et al., and besides
focusing on group comparison, we adopt a more nuanced approach, assessing decision-
making rationale and user strategies by considering a wider range of qualitative factors
including properties of explanations, user trust, and cognitive load.

2.6.4 Summary for Comparisons in Trade-off Analysis

Comparisons play a key role in both trade-off and visual analysis, with extensive work
both in identifying comparisons in trade-off tasks and in supporting visual comparisons
in contexts other than trade-off analysis. Nevertheless, the two have not been consid-
ered together. The existing approaches introduced in visual comparisons do not take
into account the need to compare groups of points, nor the context of trade-offs where
analysts need to balance objectives and priorities that may shift.
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2.7 Placement of this thesis

Trade-off analysis is a process that involves making decisions using criteria and priorities
that are often conflicting and evolving. Our work falls at the intersection of trade-off
analysis and visual sensemaking. More specifically, we consider how visualizing analytic
provenance and comparisons can aid the trade-off analysis process. While existing work
has considered separately visualization of provenance and visual support of comparisons,
none has studied them in the context of trade-off analysis.
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3
Understanding How

In-Visualization Provenance Can
Support Trade-off Analysis

To start our exploration of how visualization can aid trade-off analysis, we focus on
the challenge experts face to keep track, resume, and revisit their trade-off analysis
sessions and objectives [59]. To aid them in this task, we propose using analytic prove-
nance visualization [20, 31, 80, 84]. In particular, we consider embedding provenance
visualizations directly inside the analysis environment, i.e., in-visualization provenance,
explained more in this chapter.

Our first goal is to explore the impact of provenance visualization and how existing
purposes of provenance defined by Ragan et al. [31] manifest in the context of trade-
off analysis. Our second goal is to use this exploration as an opportunity to more
broadly understand trade-off analysis tasks, analyst needs when it comes to supporting
trade-off analysis (beyond provenance), and opportunities for further research.

This work was published in IEEE TVCG 2022 [97]. Supplementary material and
video are available at https://github.com/tradeoff-analysis/provenance.

3.1 VisProm: a Provenance Visualization tool
for Trade-off Analysis

We designed VisProm (Visualization Provenance master) to act as a technology probe [48].
Technology probes are systems traditionally used to field-test the usage of a technol-
ogy in real-world settings and inspire ideas for new technologies to support user needs.
As such, VisProm had to be robust, but also effective for field use. Our goal was
to see how provenance visualizations can aid trade-off analysis, focusing in particular
on in-visualization views that are embedded in the exploration environment (rather
than dedicated views). To this end, we needed as a starting point a tool that has
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Figure 3.1: The VisProm technology probe includes several in-visualization provenance
views to aid trade-off analysis.

been shown to be appropriate for trade-off analysis, that we could then augment with
in-visualization provenance views.

Choice of Scatterplot Matrix: The inspiration for the basic trade-off support
(before adding provenance) comes from EvoGraphDice [6, 113, 115]. This tool relies on
a scatterplot matrix (SPLOM) that is well suited to communicate relationships between
dimensions, such as correlations, and distributions of data points [34, 124, 151], it is
thus appropriate for visualizing relationships between objectives to show trade-offs. The
SPLOM includes multiple visual query selections, differentiated by color, to help experts
narrow their search space to important parameters [140]. Importantly, EvoGraphDice
has been used effectively in the past for trade-off analysis conducted by groups of
agronomy experts [112].

While we did not use EvoGraphDice, in our new VisProm probe we replicated the
following functionality from EvoGraphDice: (i) a scatterplot matrix of all dimensions
from the dataset; (ii) a main scatterplot that is seen in larger detail; (iii) a query panel
where users can choose colors in order to perform selections on the main scatterplot
(visual query sculpting); (iv) a datatable available on demand, with points colored de-
pending on the visual queries they belong to; and (v) a means to create new dimensions
by combining existing ones using arithmetic operators and weights. This basic version
also includes two components that can be considered as simple forms of provenance
support: a history of actions such as view changes and visual query selections, as well
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as a list of favorite views (or bookmarks) that is populated by the user.
We implemented the above functionality in VisProm, and also provided additional

support designed explicitly for provenance tracking. Thus, although the trade-off anal-
ysis part of VisProm is inspired by EvoGraphDice, they are distinct: EvoGraphDice
is a desktop application that uses an interactive evolutionary algorithm to guide user
exploration, and does not include in-visualization provenance aside from a basic history
and favorite views.

Choice of in-visualization Provenance: In the past, EvoGraphDice was used to
study the role of expertise in collaborative exploration of complex model simulations
(and how domain experts structure their exploration) [112]. Our current work goes
deeper into the analysis tasks domain experts engage in when they explore trade-off
datasets, whether they consult provenance views and how they use them while they
are engaged in the exploration.

An informal test of EvoGraphdice [5] which included a provenance view as a separate
window was not always consulted by users, who were often too absorbed by their
main task. Thus in our approach we provided instead simple in-visualization views
embedded in the analysis environment, in an attempt to make them always visible.
Past work has also introduced in-situ provenance visualizations (or in-visualization
provenance), augmenting existing parts of the interface with simple visual marks to
encode provenance information (see subsection 2.5.1), but none of them were designed
specifically with trade-off analysis in mind, nor were they studied under this context.
We chose simple designs to not clutter and not compete with the main analysis views,
but this begs the question of whether these simple designs are consulted and when,
and if they carry enough information to support provenance needs. A contribution of
our work is studying if the same, simple provenance designs can do both.

The basic trade-off support functionality and our provenance additions can be seen
in Figure 3.1. The additional provenance designs were motivated by workshops with
expert users, described next.

3.1.1 Design process

To inform the design of VisProm we are inspired by prior work, reporting on findings
from brainstorming and design workshops [5], and insights from related work in trade-
off analysis (section 2.2). Past work [5] reported on three workshops carried out with
nine participants in total, including experts in HCI, visualization, and agronomy. The
goal of these workshops was to gather user requirements for visualizing exploration
histories (analytic provenance). Participants were asked to brainstorm functionalities
to better support sensemaking of exploration history generated for a SPLOM-based
tool [113]. Inspired by these findings, we report next our recommendations (or user
requirements) for the design of VisProm :
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Figure 3.2: ViewCount: in this partial view of the SPLOM we see the ViewCounts as
red borders around the thumbnails, indicating how frequently they have been visited
(more saturated red for more visits).

[R1] History and Favorites (existing features) are important for reverting to past
steps when errors occur and for storing important views. Thus, they should be main-
tained.

[R2] Key objective dimensions that have been visited (or ones that have not) are
important to know. This is confirmed by past work that observed that when experts
have a priori hypothesis, they use objectives to prioritize their exploration [112].

[R3] Views already visited, i.e., what relationships between dimensions have been
considered, was a common suggestion as a type of information the experts would like
to track.

[R4] Combined dimensions they created and with what weights were identified by
some experts as important to track. Previous work has also discussed the importance
of weights for expressing preferences [135].

[R5] What objective dimensions were maximized or minimized in their decisions, or
more generally what range of the dimensions their decisions fell in, were also identified
as important to keep track of. Past work also highlights the need to identify and “lock”
part of decision ranges [50].

[R6] Alternative search spaces considered should be tracked. Experts mentioned
this in the workshop, and past work on trade-off analysis has identified that comparisons
of alternatives are important [59].

[R7] A way to summarize the entire exploration would be desirable. This is an
important topic in provenance visualization (section 2.5), not only for trade-offs.

3.1.2 Additional in-visualization Provenance Designs

We discuss next the different in-visualization components of VisProm that we added
to communicate provenance and how these support the requirements identified before.



3.1. VISPROM: A PROVENANCE VISUALIZATION TOOL FOR TRADE-OFF
ANALYSIS 45

3.1.2.1 ViewCount on Scatterplot matrix (Figure 3.2)

Our tool relies on a SPLOM matrix that displays thumbnails of scatterplots for all pairs
of dimensions, coupled with a main view of one selected scatterplot shown in large scale
that users can interact with. The SPLOM acts as a navigation tool, letting the user
choose which pairs of dimensions they want to interact with in the main scatterplot
view. Users can select points on the main scatterplot using colored queries and see the
impact of these selections in all thumbnail views. This ensures the user knows exactly
where the selected points fall under different dimensions that they may be trying to
optimize.

Each scatterplot in the SPLOM corresponds to a relationship between two dimen-
sions, for example, correlations or competing objectives that represent trade-offs -
when one increases, the other decreases. To help analysts keep track of what pairs
of trade-offs they have already considered [R3], we log how often they visited each
scatterplot. We augment the SPLOM thumbnails with a colored edge, whose opacity
changes in real time in proportion to the number of times the corresponding scatterplot
was visited, relative to the most accessed scatterplot.

3.1.2.2 DimensionCount table (Figure 3.3a)

Participants in the workshop expressed the need to track the important objective dimen-
sions they have already tackled in their analysis [R2]. To aid this task, we introduced
a table with one cell per dimension, where each cell contains a bar that represents the
number of times each dimension has been accessed (all bars are relative to the total
access counts in the SPLOM). The length of the bars indicates which dimensions have
been already considered through visits of scatterplots that include them, and which
dimensions may have been overlooked. This representation differs from the ViewCount
on the scatterplot matrix, as it focuses on the access history of individual dimensions
rather than pairs. This design resembles past work, like the Lumos attributes panel
[40] that shows frequency of interactions with different dimensions, to provide in their
case awareness of biases in the exploration.

We initially planned to only add the DimensionCount table on top of our collapsible
datatable (Figure 3.4). In the datatable, each column is a dimension and each row a
datapoint with corresponding numerical values, as well as the colored selections they
belong to (colored rectangles). Given the existing organization by dimension columns,
we added here the DimensionCount for each column (dimension). Feedback from
experts indicated that while the datatable is extremely useful to confirm surprising
findings and double-check values (also observed in previous work [112]), it nevertheless
remains collapsed and not visible during the majority of the exploration. We thus
decided to replicate the DimensionCount table on top of the visual query selection
panel as well, so as to ensure it is visible at all times (Figure 3.3a).
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Figure 3.3: The query selection panel includes: the dimension names and their Di-
mensionCounts (a) as a bar that is filled depending on frequency; the SelectionRange
tool (b) that indicates with text in what range (if any) the current selection falls under
for the particular dimension; and finally (c) all queries/selections. Selections can be
renamed (like the active selection Min tfm) and their colors changed. For selections
that were created by group operations between other selections, their SelectionOrigin
(original selections and operation) can be seen next to their name (d).

3.1.2.3 SelectionRange table (Figure 3.3b)

Experts commented that it is often challenging to keep track of what key objective
dimensions are optimized (maximized or minimized) in the choices they make [R5].
In VisProm, choices are generally expressed as colored queries/selections of interesting
points. To help analysts understand where their selections fall under the different
dimensions, we added the SectionRange table. Each cell of the table corresponds to
one data dimension and indicates with text (Min/Max/Mid or — ) two key pieces
of information: (i) if the points in the current selection are mostly clustered under
that dimension; and (ii) if this cluster tends to be in the max range of values of the
dimension, the min, the middle range, or if no pattern is detected. We consider as
clustered, datapoints that have a low value for the ratio variance/(value range of
dimension). Then we determine the approximate position of the cluster in the range
of values for the dimension (higher, middle, lower third). The SelectionRange table
is placed below the DimensionCount table, and thus added to both the datatable and
selection query panel.

Other work [40] visualizes where individual interactions with data-points take place
along a dimension, compared to an ideal distribution for that particular dimension. In
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Figure 3.4: Top of the Datatable, including colored indications of points belonging to
queries (right column). On the top just under the dimension names, are the Dimen-
sionCount and the SelectionRange tools.

our case, our experts are more interested in larger zones of data-points (expressed as
selections) and where these fall across all the different dimensions they are trying to
optimize.

3.1.2.4 Selection Origin (Figure 3.3d)

Analysts can interact with the main scatterplot view and perform visual query selec-
tions (Figure 3.3c). The visual query panel helps them choose a color for each of
their selections and provides additional information regarding the number of selected
data points. As in previous work [112, 115], we provide tools to sculpt the visual
selections (adding and subtracting datapoints in different views). Past work [112] and
our workshops indicated that experts express their search and trade-off criteria with
these colored selections. They often compare them when they represent different de-
cision alternatives [R6], observing where they fall within the multi-dimensional space.
One aspect that the experts requested was to also be able to perform grouping oper-
ations between multiple important selections (intersection, union, difference) in order
to combine their criteria more effectively. In an effort to help them keep track of the
provenance of such combinations, we added information about their origin in the form
of two icons next to the query name: one with the grouping operation that created it
and one with the colors of the original queries used in the grouping.

3.1.2.5 History and Favorites (Figure 3.1)

While not unique to VisProm, we mention History and Favorites as they represent
basic provenance visualizations that are important for our participants [R1]. The
basic history displays thumbnails of the last states of the tool—both selections and
navigation changes. The Favorites act as a bookmarking tool, where analysts can
explicitly store a view for easy access. Both History and Favorites are interactive;
clicking on a thumbnail restores the saved view.

Our goal is to create in-visualization provenance views rather than summaries that
can be considered outside the main exploration view. We thus do not provide elaborate
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Table 3.1: Datasets and participants (P1-5) for the three case studies. Each was
conducted in two sessions, with a time interval in between (Weeks).

CS Domain #Dimensions #Points P# Weeks
ml Benchmark meta-analysis 10 3000 P1,2 1
eco Sustainable farming 9 100 P2,3 17
w Wine fermentation 14 1000 P4,5 156

summarizations of past exploration history [R7]. Nevertheless, our History provides a
snapshot of the final workspace that is valuable for remembering past analysis [32].

3.1.3 Implementation

As our work took place during the COVID-19 pandemic, we opted for a web tool
that could be operated easily without any installation and intervention from our part.
We implemented VisProm using D3 and Node.js for the rendering aspects, and the
Google Firebase database service to log the user actions during the exploration. For
the individual thumbnails on the SPLOM matrix, we used Canvas drawing; as they
are quite small, we optimized their rendering using sampling [154] that reduced the
number of points drawn inside the thumbnails, but ensured the larger patterns are still
visible. The prototype has been used on the Chrome browser with datasets of up to
20 dimensions and 1000 datapoints without any performance issues. The provenance
visualizations on the SPLOM update every time a selection is made or a combined
dimension is created, but will only update for every three accesses to the SPLOM
thumbnails (this makes the exploration of the SPLOM smoother).

3.2 User Study Design

We conducted an observational study to understand how in-visualization provenance
is used during trade-off analysis. We focused on the following research questions on
task support and usefulness of provenance during and after the exploration:

[RQ1] What tasks do experts engage in during trade-off analysis? How do provenance
purposes manifest in trade-off analysis?
[RQ2] Does in-visualization provenance support a-posteriori analysis, such as by help-
ing recall of past exploration?
[RQ3] Is in-visualization provenance taken into account by experts during trade-off
analysis and how?
[RQ4] What are untapped opportunities for using provenance to support trade-off
analysis?
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3.2.1 Participants and Use Cases

Five domain experts (P1–5) from research institutions in France and the UK partici-
pated in this study (5 male, mean age 36.6). Participants were researchers (4 domain
experts) and one first-year PhD student. The recruitment procedure drew on previous
collaborations between the authors and participants, or between participants, but none
took part in the design brainstorming sessions described in section 3.1.1. At the time
of the study, all participants were involved in different research projects, we call Case
Studies (CS), where trade-off analysis is an important aspect of their work. Different
domain experts participated in each case study, with the exception of participant P2
who was involved in two case studies (CS-ml and CS-eco).

Case Study 1: ML Benchmark Meta-Analysis (CS-ml): The goal of this
exploration is to characterize possible trade-offs and relationships between different
features of a number of benchmark Machine Learning (ML) datasets. An example
trade-off concerns the number of features of a benchmark dataset, its intrinsic di-
mensionality (i.e., dimensions that exclude noise) and the average correlation between
features. As the number of features grows, the intrinsic dimensionality is likely to grow.
However, the feature average correlation is likely to decrease.

Case Study 2: Sustainable Framing (CS-eco): The goal of this exploration was
to assess the trade-offs between different aspects of sustainability in farming practices
in Europe. These sustainability aspects or indicators cover environmental, economic,
and social factors that are often in conflict, such as between fodder consumption,
animal production, and farmers’ perceived happiness. An example trade-off pertains
to animal production, which is likely to increase with fodder consumption, but in many
cases has a negative environmental impact.

Case Study 3: Wine Fermentation (CS-w): The goal of this exploration is to
compare different wine fermentation strategies and their characteristics. In terms of
trade-offs, experts are searching for fermentation strategies that maximize wine aroma
(three esters) and minimize undesired compounds (higher alcohols) and the energy
required to control fermentation.

All datasets were prepared by the domain experts themselves (see Table 3.1), who
also brought their own research questions. We note that all domain experts performed
basic statistical analysis of their data prior to this study, using software tools such as
MS Excel, R, or Matlab, but they have not used interactive visualization.

3.2.2 Study Procedure and Setup

Similar to Ragan et al.’s method [32] where participants conducted analysis in two
steps one week apart, we run our study in two sessions separated by a time interval of
one week for CS-ml, 17 weeks for CS-eco, and 156 weeks for CS-w. Since our focus
is on studying provenance through the history of user interactions, in the first session
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we only collected history data, and we only activated provenance and analyzed the
second session of each case study. We also note that for CS-w, whose first exploration
session took place three years earlier, we used a similar trade-off analysis tool (Evo-
GraphDice [113]), which had all the basic functions provided by VisProm but lacked
the new provenance visualization functionalities described in section 3.1.

In the first session, participants reached new insights in the form of: interesting
relationships between aspects of the data (e.g., between animal production system
typology and sustainability indicators, CS-eco); new findings about clusters of data
points and how they are situated with regard to a decision boundary (CS-ml); or alter-
native exploration paths to reach the same (aroma) objectives (CS-w). To reach these
insights, participants consulted multiple scatterplots, created numerous selections, and
in some cases composed new combined dimensions.

All second sessions of the three case studies were run online using a video conference
platform. Participants used their own machines with either a 13” or 15” monitor. For
each case study, one participant led the exploration by interacting with the online tool
and sharing their screen with the second participant (and the study facilitators) when
they were not co-located with them (CS-ml and CS-w). Both domain experts equally
participated in the trade-off exploration by proposing directions for the exploration,
advancing new hypotheses, and discussing findings.

Each session lasted ∼1.5 hours (mean 108 mins). The second session (analyzed)
was structured in the following Parts:

1- Introduction [≈10 mins]: Welcome and tool setup.
2- Reproduce Insight Without Log [≈15 mins]: Our experts first saw the stripped-down
version of VisProm, without log data from their previous session. In this part, experts
attempted to recreate the results they reached in their previous exploration, relying on
their memory. Our goal was to identify potential challenges in reproducing insights
when no provenance history data is visualized.
3- Reproduce Insight With Log [≈15 mins]: Our experts then saw the full version
of VisProm with log data from their previous session visualized. We explained the
additional provenance visualizations then participants were asked to reflect on their past
exploration, in particular, any aspects that they were unable to reproduce by memory.
The goal of this study part was to observe how experts used the new provenance tools
to revisit past findings.
4- Open Explore [≈30 mins]: Participants continued their exploration with the full
VisProm functionality, without any further instructions. The goal of this study part
was to see if and how experts used the in-visualization provenance during their active
exploration.
5- Discussion [≈20 mins]: Finally, we conducted an open discussion session to elicit
the experts’ feedback about their experience, in particular related to how they used
the provenance aspects of VisPromnd what more they would like added or improved.
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We chose to study provenance both when revisiting past analysis (days and even
months later) and during active exploration. We suspect that the provenance needs
differ: revisiting past analysis may require more support to acquire high-level under-
standing and reproduction of steps when memory may be faulty, whereas it may not be
needed for reproduction of steps during active exploration and may even not be used
in on-going analysis.

3.2.3 Data Collection and Video Coding

We collected video recordings of the three case studies (324 minutes), user interaction
log files, and observational notes. Two different coders independently coded each video
using discrete events, then met to discuss annotation codes and resolved conflicts. We
use the term ‘event’ to refer to a chunk of video for which we attach a code pertaining
to our research questions, mainly about trade-off tasks, provenance, and opportunities
for provenance supported trade-off analysis.

We followed standard thematic analysis [142] in coding the videos and analyzing
the collected data, using both inductive and deductive coding. We coded separately
trade-off tasks and provenance events. For trade-off tasks, we did not rely solely
on specific terms to find trade-off tasks (such as trade-off, objectives, criteria), we
also observed what participants did and what they said to enrich the descriptions of
those tasks. For example, one participant’s quote: “this is NitOut it would be nice to
combine with NiInput” (CS-ml) was coded as “Combine interest zones & dimensions”.
Another event was based on our observation that the participant was checking where
a selection fell with regards to the bisector (and later on confirmed in the Discussion).
This was coded as the trade-off task “Locate & characterize”. For provenance events
and associated opportunities, an initial annotation scheme was decided before coding,
based on the general provenance purposes proposed in Ragan et al. [31]. We coded
events in the study parts where experts engaged with their data (Parts 2-4, 84.26%)
as well as their comments in the discussion (Part 5, 15.73%).

In addition to coding for trade-off tasks and observed cases of provenance use, we
also coded opportunities for provenance. We identified these when observing domain
experts express hesitance in remembering important aspects of their exploration (cur-
rent or previous), or when we thought the challenges encountered by the exploration
may be overcome using provenance visualization. Our corpus contained 178 events in
total (CS-w: 39.32%, CS-ml: 34.83%, CS-eco: 25.84%), related to trade-off tasks
(25.84%), provenance tool use (23.03%), and opportunities (51.12%). A thematic
saturation analysis [12] found conceptual stability approximately halfway through the
data collection.

The results of the analysis are described in the following section. Participants’
comments are in italics and we indicate their case study, as well as whether they were
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translated using the † sign.

3.3 Results

We first discuss the trade-off tasks that our study participants engaged in [RQ1]. We
report next a summary of the provenance purposes we identified that refine ones from
previous work [31] by adding subcategories and concrete specifications from real-world
trade-off analysis. We then show how in-visualization provenance was used both to
revisit past analysis [RQ2] and during the actual exploration [RQ3]. We conclude
with the opportunities that our probe helped us collect that can inform the design of
future trade-off analysis systems that include provenance [RQ4].

Further details about our study, including the video codes, participants’ comments
and analysis notebook, can all be found in https://github.com/tradeoff-analysis/
provenance.

3.3.1 Trade-off analysis tasks [RQ1]

We coded key events related to the different tasks participants performed during trade-
off analysis. Our goal was not to code each one of those events. Rather, it was to
first showcase the variety of tasks decision-makers engage in during trade-off analysis.
And second, to investigate if there are new tasks not reported in past literature. We
qualify these tasks as high-level because we focus on user needs for trade-off support
rather than the usage of any implemented feature of our system. As such, some of the
trade-off tasks described below are not currently fully supported by VisProm.

Overall, there were 46 task events (CS-ml: 47.82%, CS-w: 32.60%, CS-eco:
19.56%), most of which were observed during the Reproduce Insight Without Log
part where participants tried to reproduce an old insight without log data loaded into
the tool (41.30%), and the Open Explore part where they conducted open exploration
using the additional provenance support tools (52.17%). We only observed one trade-
off task event in Reproduce Insight With Log as participants were mostly concerned
with interpreting the loaded history data, and reflecting on how the previous insight
was reached, rather than actively conducting trade-off analysis.

We coded these events and categorized them into the following eight high-level
trade-off tasks:

[T1] Minimize & maximize (6.52%): When aspects of the multi-criteria prob-
lem were clearly described, participants took a direct approach to explore trade-offs by
minimizing or maximizing known objective dimensions or criteria. For example, partic-
ipants of CS-w made various colored selections to maximize the amount of aroma and

https://github.com/tradeoff-analysis/provenance
https://github.com/tradeoff-analysis/provenance
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to minimize undesired wine compounds, and the energy and time required to control
the fermentation process.

[T2] Locate & characterize (28.26%): When little or no information is known
about the structure or dependencies within the multi-criteria problem, participants tried
first to locate interesting areas of the trade-off space using known thresholds, decision
boundaries, or ranges that are important for the problem domain. For example, experts
in CS-ml examined the trade-off between the number of features and the number of
samples in their dataset, focusing on a cluster of points having 2-16 features. They
then tried to characterize this cluster by checking its spread and distribution in other
views. As the number of selections grew, participants gave meaningful names to
their selections such as “grains high subs” (CS-eco) or “optimum” at the end of the
exploration (CS-w).

[T3] Cascade & refine (15.21%): Participants deepened their understanding of
the multi-criteria problem and its characteristics by cascading selections across multiple
views, using brushing and linking. Oftentimes, they refined and narrowed down the
initial selections in order to find the best possible solutions. For example, in CS-w,
starting from an initial large selection of fermentation recipes requiring a minimum level
of initial nitrogen (149 recipes), participants found a much reduced set of “optimal”
solutions (9 recipes), based on successive cascade and refine operations, using three
criteria: aromas, fermentation time, and energy.

[T4] Rank & prioritize (4.34%): A key decision participants often made when
exploring trade-offs was to decide the order in which to examine the different objective
dimensions. This order or ranking may have a different meaning depending on the use
case or participants’ research questions. For CS-w, the order determined the size of
selections (i.e., interest zones). Initial criteria were less strict, and participants tended
to make larger and more generous selections (e.g., on initial nitrogen amount), whereas
selections based on subsequent criteria were more strict, and thus their sizes were
smaller (e.g., aromas). For CS-ml, the rank did not determine the size of selections.
Instead, participants first visited features of their dataset that were most relevant to
their research questions.

[T5] Create branches & compare alternatives (13.04%): When resuming
previous analysis, participants wanted to branch out with a different but related goal,
or create an alternative exploration path, often with shared objective dimensions. New
branches and alternative exploration paths helped domain experts discuss possible ex-
planations and reasons behind certain trade-off choices.

[T6] Combine interest zones & dimensions (10.86%): Our participants often
used a divide and conquer strategy, looking at selected zones of the trade-off space
across different dimensions, and then combining them to explore more complex trade-
offs. For example, participants created multiple selections to express different interest
zones such as farms with high subsidies, and those who support organic practices (CS-
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eco). They then combined these selections to see farms that fell under both zones. Our
experts were also interested in combining objectives, and dimensions more generally.
In particular, they selected a subset of objective dimensions and assigned weights to
reflect their relative importance.

[T7] Observe coverage (4.34%): Participants wanted to keep track of values
explored within a specific data dimension or across many. They commented on whether
they visited most dimensions, but sometimes they had difficulty remembering the di-
mensions they visited and the part of the exploration where this happened.

[T8] Find clusters, correlations & outliers (17.39%): Like in multidimensional
data exploration, participants looked for clusters, correlations, and outliers in their
datasets, including between pairs or multiple conflicting objective dimensions. They
explored groups of data points forming a cluster in one of the views or meeting a
specific criterion, then looked at how these relate to other dimensions.

In section 3.4.1 we discuss the differences between our identified tasks and these
reported in past work on trade-off analysis in operations research [59], and reflect on
the generalizability of these tasks. In the next section we will see how the additional
provenance tools aided specific trade-off tasks, like keeping track of coverage, and
what provenance needs they met.

3.3.2 Refined provenance purposes and objects

We next looked at how provenance purposes manifest within trade-off analysis. We
report on aspects of provenance that we observed or were reported to us by our do-
main experts (74.15% of coded events). When analyzing these events, not only did
we observe all of the provenance purposes discussed in Ragan et al. [31] (see subsec-
tion 2.5.2), but we also identified aspects central to the trade-off analysis process or
the data records that participants were interested in. We call these aspects objects
of provenance purposes, and in our coding, they were identified by asking ourselves
this question: “What do our experts want to X here to support trade-off analysis?”
Where X is a provenance purpose [31], either recall, replicate, recover, meta-analyze,
or present. We categorize these provenance objects into the following eight types:

[O1] Interest zones (27.27%): Constraints that decision-makers are willing to
accept for one or multiple dimensions, such as a threshold, range, boundary, or distri-
bution.

[O2] Exploration structure & steps (25%): The analytics steps taken during
trade-off analysis, or the general phases and scenarios that constitute the exploration,
which can include refinement, branching, and alternative paths.

[O3] Focus & priority (15.90%): The dimensions that the experts focus on,
either as single, multiple, or combined dimensions.
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[O4] Coverage (11.36%): The extent to which the trade-off space has been
explored, such as in terms of data dimensions and views visited, or the data files
loaded into the tool.

[O5] Data semantics & origin (8.33%): The meaning conveyed by the data di-
mensions, specific values or interest zones, and the context and data collection methods
used to interpret them.

[O6] Exploration approach (7.57%): High-level reflections on the exploration
strategy, which often includes a motivation, a rationale, or an evaluation of the ap-
proach.

[O7] Verification & validation (3.03%): Confirmation of known insights or
findings, such as to verify or validate a dataset.

[O8] Annotation (1.51%): Notes and labels to document important aspects of
the exploration, such as key views, useful insights, or the rationale behind the explo-
ration.

Interest zones [O1] appears to be the most important provenance object in trade-off
analysis as experts were interested in their recall, replication, recovery, meta-analysis,
and presentation (subsection 2.5.2). This is followed by exploration structure & steps
[O2] (e.g., alternatives or branches), where experts were also interested in using this
information for all purposes except for presentation, presumably because the trade-offs
and insights expressed as interest zones were more valuable to share with others than
the exact steps to get there. Other objects were tied to specific purposes, such as
recall for both coverage [O4] and data semantics & origin [O5], meta-analysis for the
exploration approach [O6], and presentation for annotation objects [O8].

Our experts were interested in remembering all provenance objects apart from
the exploration approach. This could be because experts did not experiment with
different approaches to explore trade-offs given their brief exposure to our tool, and
so they did not feel the need to be reminded. However, they still reflected on their
choice of exploration approach, and sometimes also on their exploration structure &
steps, and interest zones. They were mostly interested in reproducing past exploration
structure & steps, and, to a lesser extent, past interest zones, the dimensions they
focused on [O3], and the results of any verification & validation they carried out
[O7]. Finally, they mostly wanted to recover interest zones and their past exploration
steps. Coincidentally, these are the two aspects they struggled with the most, either
by accidentally losing selections, or because the exploration had too many steps.

It is interesting to note that some objects have a direct mapping to the identified
tasks. We discuss the importance of these identified objects for trade-off analysis
design in section 3.4.2.
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Recall Replicate Recover Meta Present #Events

Interest zones % 78 3 11 3 6 36
Exploration structure & steps % 48 27 15 9 - 33

Focus & priority % 95 5 - - - 21
Coverage % 100 - - - - 15

Data semantics & origin % 100 - - - - 11
Exploration approach % - - - 100 - 10

Verification & validation % 75 25 - - - 4
Annotation % - - - - 100 2

Figure 3.5: Our identified objects and how they are distributed across Provenance
purposes [31] ("Present" purpose also includes Collaboration).

3.3.3 Provenance supports trade-off analysis [RQ2, RQ3]

We report next observed events of experts’ using provenance views in trade-off anal-
ysis. These events are either direct observations of the experts using the provided
tools based on pointing gestures or direct references, or cases where experts mention
explicitly having used the tools. We rely on deictic and verbal references, as most of
our provenance tools are non-interactive and thus we cannot log their use. The 41
events collected were distributed across case studies (CS-eco: 8, CS-ml: 13, CS-w:
20).

3.3.3.1 How provenance tools were utilized

We first report on how experts made use of the VisProm probe. Our goal in this
section is to identify when the provenance views met the experts’ provenance needs,
sometimes in unexpected ways.

We explain how each provenance tool supports the tasks identified in section 3.3.1
(in bold) and the provenance purposes (in italics). A contribution of our work is
introducing objects of provenance purposes, i.e., what the experts want to recall/repli-
cate/annotate ... (section 3.3.2), so we report these explicitly (in underlined). For
example, in the sentence “X helped experts Recall details of their dimension Coverage
[T7: ObserveCoverage]”, the word Recall refers to the original provenance purpose [31],
the notation [T7] is a trade-off task identified in section 3.3.1 related to dimension
coverage, and the word Coverage refers to a refined object for provenance (Recall
Coverage) related to trade-off analysis.

ViewCount that colors the SPLOM thumbnails based on use frequency, was the
most used provenance tool (16/41). It aided Recall (13/16) and Action Recovery
(3/16). In half the cases, ViewCount helped experts keep track of Coverage [T7] in
their exploration, i.e., objective dimensions they had already considered and ones they
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had not (7/16). They also used it as a reminder of the objective dimensions that
were a Priority ([T4:Rank&prioritize] - 4/16). As one participant mentioned “Because
for example this [unvisited SPLOM thumbnail], I ignored completely.”, to which their
colleague responds about priorities and unvisited regions “Yeah but it’s also a matter of
priorities right? Maybe after you get all you can from these visualizations you might in
the end go there [unvisited thumbnail] just to check.” (CS-eco). Although ViewCount
does not provide temporal information, it sometimes (4/16) triggered experts’ mem-
ory and helped retrace their Exploration Steps. When the red borders appeared, one
expert that was struggling to remember their past analysis looked at the SPLOM and
exclaimed “Uh, now I remember something, we probably started from here” (CS-ml).

History & Favorites followed in use (8/41). History was surprisingly used rarely
(3/41), but always for Action Recovery. Participants used History thumbnails to recre-
ate lost selections that represented Interest zones and trade-offs between objectives
they had considered (1/3), and to retrace Exploration Steps (2/3). Favorites (5/41)
were sometimes used for storing selections that corresponded to Interest zones (4/5)
[T2 & T3: Locate&characterize; Cascade&refine] that participants wanted to share and
discuss further, serving the broader purpose of Presentation/Collaboration (2/5); or
for Action Recovery instead of the History in a few cases (2/5) to recover important
lost selections. Experts also used them to reflect on the effectiveness of their past
exploration (1/5) (Meta-Analysis).

SelectionRange presents in text the range selected points fall under each dimen-
sion (Min/Mid/Max/-), and came next in terms of use (4/41). Participants used it
mainly to Recall (3/4) if the datapoints they were considering were in specific zones of
the objective dimensions (Interest zone [T1:Minimize&maximize]). For example, when
two experts were discussing a selection, one showed the SelectionRange bar to point
out the solutions considered: “Since we did not want to use a lot of energy, we have
Eco in the mid-range [points to the SelectionRange]” (CS-w†). In one event (1/4), our
experts used the range bar to Replicate a past action, such as when they remembered
their past strategy of giving Priority [T4:Rank&prioritize] to some criteria: “So we try
to find sub-groups of datasets that are like, small number of features [referring to
SelectionRange]” (CS-ml).

DimensionCount bars indicate how often a dimension was viewed. It was used
less (4/41), in all cases to Recall information. Participants used it to keep track of
Coverage [T7:ObserveCoverage] of the important objective dimensions they wanted to
optimize (3/4), and to Validate that they remembered correctly their past exploration
(1/4).

Queries allowed experts to make selections that express choices about datapoints
that fit specific Interest zones [T2:Locate&characterize]. It was used extensively during
exploration as experts explored alternatives [T5:CreateBranches&Compare Alternatives],
but we observed a few events where it was explicitly used to support provenance (4/41),
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in particular to retrace Data Semantics (3/4). The visuals in the SelectionOrigin
of whether they were created from group operations on other selections helped in
one event experts Recall the meaning of a selection (1/4). In another, changing the
name and color of their query (e.g., call a selection “optimum” , CS-w) helped them
at a later stage to Recall what selections represented a good subset and what they
were optimizing (2/4). In one event (1/4) seeing the number of datapoints in a
selection allowed them to reflect on their exploration (Meta Analysis) and comment
“yes, here instead of selecting 73 points for the green selection [...] as we did in the
past exploration we just selected 3 or 4 points, it’s the same idea in today’s exploration
we drew a line on which we aligned points [...]” (CS-w†).

Our participants also mentioned verbally (5/41) that loading and viewing their past
history with the different provenance tools helped their analysis. They did not single
out specific tools, but commented in the Discussion (Part 5 of the study) on how the
visualizations holistically helped them retrace their past Exploration Steps (1/5) for
Action Recovery ; allowed them to Recall what they Focused on in past explorations in
terms of dimension coverage [T7:ObserveCoverage] and also the combined dimensions
they created [T6:CombineInterestZones&dimensions] (2/5); helped them Recall selec-
tions that represented Interest zones [T1,T2: Minimize&maximize; Locate&characterize]
(1/5); and enabled them to reflect (Meta-Analysis) on the effectiveness of their
Exploration Approach (1/5).

Overall , we observed that our tools were used to help experts:
(i) recall important areas in the trade-off space in the form of selections (Interest zones
[T2:Locate&characterize]), and what these selections represented and optimized (Semantics
[T1:Minimize&maximize]). In total, 13/41 events (SelectionRange, History, Favorites,
Query);
(ii) keep track of the Coverage [T7:ObserveCoverage] of objective dimensions they had
already visited and what remained. In total, 10/41 events (ViewCount, Dimension-
Count); and
(iii) recall what objectives were of high Priority [T4:Rank&prioritize] (7/41 events -
ViewCount, SelectionRange);
(iv) retrace past Exploration Steps (7/41 - ViewCount, History);
(v) or to Validate and reflect on the effectiveness of their Exploration Approach (4/41
- DimensionCount, Query).

3.3.3.2 Provenance at different exploration parts [RQ2,RQ3]

To understand if the provenance tools were used to recall past exploration [RQ2]
or to aid the current analysis [RQ3], we focus respectively on events that happened
during the Reproduce Insight With Log Part and the Open Explore Part (28/41). The
remaining events come either from the Discussion or before the logs were loaded in
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the provenance tools (when only Favorites and History were available) and are not
discussed further in this section.

Interestingly, the provenance tools were used actively both during the Reproduce
Insight With Log when they were revisiting past explorations (17/41 events) and during
the active Open Explore (11/41 events). The longer Open Explore (30 min) had fewer
events than the Reproduce Insight With Log (15 min), but this can be expected, as
in the latter the participant’s goal was to reflect and reproduce their past analysis—so
provenance was at the forefront; whereas in Open Explore their primary goal was to
explore new aspects of the dataset. Thus, we are more interested in trends of use
between the two parts, rather than a direct comparison of numbers. To that end, we
provide percentages of events within each exploration Part.

[RQ2] In Reproduce Insight With Log where participants were trying to recon-
struct their past analysis, they mainly used the ViewCount tool (41.2%), followed by
DimensionCount (23.5%) and Favorites (11.8%). We also observed use of the Query
tool to reflect on the size of a past selection (5.9%). The remaining events are general
comments about how the tools helped them to revisit past findings, but without spec-
ifying which tools. We did not observe use of the SelectionRange, the SelectionOrigin,
nor of the History tool.

Unsurprisingly, most events relate to the general provenance purpose [31] of Re-
call -ing the past exploration (70.6%), with a few events where experts reflected on
the quality of past exploration (Meta Analysis) (17.6%), or attempted Action Re-
covery (11.8%). When looking at the more specific provenance objects, participants
mainly used the tools to track the Coverage of dimensions they had visited in the
past exploration (35.3%) and to remember which ones were their Focus & Priorities
(23.5%). The other provenance objects were less represented in this study part,
with only a few events where participants tried to Validate (5.9%) or reflect on
their Exploration approach (17.6%), retrace detailed Exploration Structure & Steps
(11.8%) or remember specific Interest zones (5.9%).

Overall , we confirmed that participants used the in-visualization provenance when
revisiting past findings. Based on the provenance objects they focused on, high-level
summaries of what was covered and what were the priorities in the past exploration,
are key.

[RQ3] The use patterns differ in Open Explore, with tool use being more dis-
tributed. ViewCount and SelectionRange were the most used (27.3% each), followed
by History (18.2%), SelectionOrigin and Favorites (9.1% each). The few remaining
events are general comments about their usefulness without specifying which tools.
We did not observe any use of the DimensionCount tool.

These events point out to a different distribution of Ragan et al. [31] provenance
purposes. While Recall remains important (45.5%), the main purpose is now Action
Recovery (54.5%). The reasons why participants used the tools also differed. More



60
CHAPTER 3. UNDERSTANDING HOW IN-VISUALIZATION PROVENANCE CAN

SUPPORT TRADE-OFF ANALYSIS

than half the time it was to keep track of Interest zones (54.5%), followed by retracing
their Exploration Structure & Steps (27.3%). Less frequently, they used it to verify
Coverage and Data semantics (9.1% each).

Overall , we confirmed that experts also used in-visualization provenance while
conducting a traditional exploration analysis. Based on the provenance objects they
focused on, here participants were mainly interested in tracking more detailed infor-
mation, such as keeping a trace of specific areas in the trade-off space that were of
interest to them and their characteristics, as well as their analysis steps. Nevertheless,
we did observe events where higher-level goals, such as keeping track of dimension
coverage, were met.

3.3.4 Opportunities for provenance visualization [RQ4]

Our goal in using VisProm as a technology probe was to identify situations where
new designs could aid users in their tasks. We coded several events across use cases
that presented opportunities for provenance (CS-w: 35, CS-eco: 29, CS-ml: 27). We
chose to report such events as they provide concrete and actionable opportunities for
provenance in trade-off analysis.

We found opportunities in Study Part 2 where experts were tasked to replicate past
events without the additional aids of log data and provenance visualization (31.86%),
but also in Reproduce Insight With Log (27.47%), Open Explore (24.17%), and the
Discussion (16.48%). These provenance opportunities are analytical in nature (93.4%),
although we also describe opportunities for data provenance related to data seman-
tics and origin (6.6%). Below, we report on these opportunities using the general
provenance purposes in [31]: recall (73.62%), replication (12.08%), meta-analysis
(12.08%), and presentation & collaboration (2.19%).

3.3.4.1 Recall Opportunities

We observed more opportunities for provenance Recall than any other type, as often-
times experts struggled to remember previous interest zones (35.82%), focus & priority
(20.89%), exploration structure & steps (20.89%), data semantics & origin (11.94%),
coverage (7.46%), and verification & validation (2.98%).

Recall Interest zones: When trying to recall previous interest zones, expressed in
VisProm as colored selections, experts discussed but often struggled to fully remember
what they saw as important trade-offs and their characteristics. We observed oppor-
tunities for tracking and visualizing provenance of: (i) the view/s in which the interest
zone (or selection) was defined; (ii) selection size, range and distribution; (iii) the
thresholds and cut-off points they used to constrain the selection; (iv) when relevant,
the decision boundary they used to interpret the selection, for instance, whether the
data points are above or below the bisector; (v) the nature of the trade-off selection,
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e.g., minimization versus maximization. In addition, experts also raised the need for
tracking contextual information (vi): for example, to differentiate between past se-
lections that express an insight from the intermediate ones that led to it; sometimes
even remembering the research questions or hypotheses that motivated them to create
selections can be hard. Interestingly, experts used unexpected cues to help them recall
the reasons behind selections, such as green color for preferable solutions and red for
undesirable or costly ones.

Opportunities. Creating and refining interest zones (e.g., via selections) is cru-
cial in trade-off analysis, as it helps analysts progressively learn the multi-criteria prob-
lem characteristics, determine most preferred solutions and compare alternative ones.
However, experts struggled to remember key aspects of those selections not only when
revisiting them after a period of time, but also during the same exploration session.
We need to enrich trade-off selections with summary information and visual cues to
help analysts quickly understand or recall the nature of the trade-off, and the rationale
that led to create those selections (e.g., to minimize or maximize certain objectives)
[T2:Locate&characterize]. Color is an interesting visual encoding for provenance as
it appears experts assign meaning to hue and are sometimes able to remember this
meaning without access to labels. While in some cases experts were able to reconstruct
what objectives were maximized, what selections were important and fell within specific
boundaries or had specific patterns, we believe there is an opportunity to help them
track this more explicitly. For example, we can allow them to set thresholds that the
system can keep track of (beyond min and max), and let them express what patterns
are of interest (data above bisector, or of a specific distribution) and why, and allow
them to differentiate between selections that are intermediate steps in their analysis and
ones that express important findings [T1,T2: Minimize&maximize, Locate&characterize].

Recall Focus & priority : Domain experts often mentioned some objectives are
more important than others, and this drove their exploration strategy. They sometimes
reported they could not remember all of the objectives that they tried to optimize, but
VisProm (DimensionCount, ViewCount) helped them with recall. We observed that
participants were likely to remember plots they found interesting, such as in terms of
their dimensions and shape, but not so accurately or easily the steps they took to get
there. Moreover, sometimes participants were also able to guess why they did not
focus on a particular dimension or view.

Opportunities. During trade-off exploration, analysts need to recall what objec-
tives drove the exploration and their priority [T4:Rank&prioritize]. Showing the indi-
vidual or combined criteria they created, and the interesting views they visited (even
highlighting those that are not interesting) can help them infer their overall trade-off
exploration approach. Besides communicating focus and priority, analysts can them-
selves express these, possibly visually to indicate objectives that have not been explored
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yet [T7:ObserveCoverage]. It is interesting to note that we observed participants at-
tempting to keep track of priorities both when revisiting past exploration, but also
during the time they were actively exploring to help strategize and plan their next
actions.

Recall Exploration structure & steps: Participants had difficulty remembering
the successive steps they took during the analytical process. Experts from CS-w also
struggled to recall the first step that triggered a particular exploration path, and this
was important as the order in which they visited the trade-offs mattered to them.
When reasoning in terms of stages of exploration [112] rather than individual steps,
participants were able to remember more, such as the part of the exploration where
they analyzed an important trade-off or when they found an important insight.

Opportunities. Overall participants were able to remember phases of the explo-
ration more than they did for steps, but not all stages were remembered indicating
that different parts of the exploration may require different support. Besides showing
phases of exploration as part of provenance, trade-off exploration might benefit from
explicitly showing alternative or branching paths taken during the analysis, and em-
phasizing similarities and differences, as analysts are interested in making comparisons
[T5:CreateBranches&CompareAlternatives].

Recall Data semantics & origin: We had several events where participants
failed to remember the semantics of the data they were exploring. This happened
at three different granularities: (i) Dataset: we had events where participants men-
tioned explicitly the origin of data and relations that were not captured in the dataset;
(ii) Dimension: In some cases experts struggled to remember what each dimen-
sion of their dataset captured. This is particularly important for trade-off analysis,
as often experts combine dimensions that express objectives that are related (e.g., in
CS-eco one expert had to reflect before confirming that a dimension in the dataset
combined two others, and in CS-w another expert mentioned how remembering this is
important); (iii) Value: We also observed events where experts were attempting to
optimize dimensions, but could not remember if the objective needed to be maximized
or minimized. There were also cases where they had trouble remembering the meaning
of specific values or ranges.

Opportunities. We need to provide data provenance at different levels - not only
to enable experts to keep track of the origin of data, but also to capture and be able
to retrieve the semantics of dimensions and values. This is particularly important for
trade-off analysis, where some dimensions may capture more than one objective, and
where the experts need to track the direction (range) that optimizes specific objectives
[T6:CombineInterestZones&dimensions].
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Recall Coverage: Participants had difficulties keeping track of data dimension
coverage when they had limited provenance support (Reproduce Insight Without Log).
However, when we provided them with provenance visualization tools, they commented
on how these aided them in their task. When recalling past exploration, they also
wanted to know whether the dimensions they visited came from single or multiple
sources (data files).

Opportunities. Given the high dimensional nature of trade-off spaces, there are
opportunities to improve the exploration by keeping track, as the analysis progresses,
of what data dimensions or sources have been explored, and highlighting areas that are
under-explored. This can potentially show an implicit exploration bias or an intended
prioritisation in analysing trade-offs [T7:ObserveCoverage].

Recall Verification & validation: Our experts were also interested in finding
out whether important known insights were confirmed in their previous (and current)
analysis, thus validating the approach that was used to generate the trade-off dataset.

Opportunities. Provenance visualization could make it clear whether the explored
dataset has gone through a validation procedure (whether manual or automatic). This
can give analysts confidence in the data and avoids them repeating the verification &
validation procedure in any future explorations.

3.3.4.2 Replication Opportunities

The provenance opportunities we observed to support Replication during trade-off anal-
ysis are mostly related to Exploration structure & steps (81.81%). Experts attempted
to reproduce sequences of events in order to replicate an insight or a lost selection.
The replication of previous analysis could be an important step when resuming work
carried out a long time ago. We found that experts might want to repeat previous
analyses from the beginning to refresh their memory, or to gain more confidence in
their findings, but often with variations, such as by examining additional dimensions
or a new dataset. This could occur in a branching or refining manner. Another sub-
goal of replication is to compare alternatives. For example, experts were interested in
comparing alternative solution sets in terms of differences and similarities.

Opportunities. There are opportunities to support replication during trade-
off analysis by assisting analysts in resuming major or key phases of their explo-
ration, including important selections and dimension groupings. Different types of
replications should be supported, whether to continue the same analysis, or to cre-
ate a new branch or a refinement from an old one [T3,T5:Cascade&refine, Create-
Branches&CompareAlternatives].
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3.3.4.3 Meta-Analysis Opportunities

Participants reviewed the analysis process, often to understand their Exploration approach
and structure (90.90%), or to reflect on their choice of Interest zones. The majority
of those opportunities relate to events that occurred during Parts 3 and 4 of the study
(72.72%), both with provenance visualization tools enabled. For example, participants
in CS-ml wondered whether the next step would be a fresh start or a new branching
session extending from the previous analysis. In CS-eco, when we asked participants
to reflect on why they wanted to keep the provenance history, even though they were
starting the open exploration (Part 4), they stated that previous analysis could provide
new inspiration or good starting points.

Opportunities. Automatic provenance tools can support meta-analysis, for in-
stance, by showing similarities and differences between exploration sessions. They may
provide useful information and metrics, to help analysts reflect more deeply on their
trade-off analysis choices. This in turn, may provide inspiration and valuable starting
points for the following steps of the exploration.

3.3.4.4 Presentation & Collaboration Opportunities

The views experts visit can become complex over time as they create combined di-
mensions and new selections (e.g., using intersection). They might want to Annotate
such views or take notes to facilitate revisiting and sharing. Whereas one domain
expert noted that it could be useful to directly annotate interesting views, another
expert found annotations a burden and add complexity to the tool. The question of
annotation was also raised in CS-w where domain experts came to our study prepared
with notes describing the research questions and hypotheses they wanted to test.

Opportunities. The role of annotations as a provenance tool for trade-off analysis
merits further investigation, as our observations show that annotation support could
help analysts address the growing complexity of views as the analysis progresses, but
with caution as to not distract from the main trade-off task.

In section 3.4.4, we will discuss further these opportunities and highlight those
that are generic and concur with existing findings, and those that are new and more
specific.

3.4 Discussion on Provenance for Trade-offs

The use of our provenance-augmented probe by three groups of domain experts allowed
us to study trade-off analysis and to distill new findings with regard to the tasks
people engage in during trade-off analysis and how provenance can support these tasks
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both when conducting a-posteriori and active analysis. Moreover, it helped us identify
opportunities on how to better support such analysis tasks.

3.4.1 Trade-off analysis tasks

In subsection 2.2.2 we theorized that five of the tasks presented in Hakanen et al. [59]
are relevant to our work, even though, unlike their approach, we do not integrate an
interactive multi-objective optimization procedure. While this is generally true, we
went beyond this past work. First, we found a case where our tasks are more refined
and detailed, and second, we identified additional trade-off analysis tasks not reported
in [59]. We contributed a set of refined tasks that fall under their determine most
preferred solution: minimize & maximize, rank & prioritize, and combine interest
zones & dimensions, which are all tasks our participants followed to narrow down
and converge to their preferred solutions. We also further contribute two new tasks:
cascade & refine and observe coverage, that our participants found to be important
for trade-off analysis.

Their other tasks have a direct correspondence to the ones we identified. Their task
compare Pareto optimal solutions corresponds to our more general task create branches
& compare alternatives. Their learn about problem characteristics and detect correla-
tions tasks directly map to our locate & characterize and find clusters, correlations &
outliers tasks respectively. Thus, together with the refinement of the determine most
preferred solution task, we independently identified several tasks reported in opera-
tions research work [59]. This replication indicates our technology probe was effective
in aiding us to identify high-level tasks that are generalizable across tools and research
domains. The post-processing task is beyond the scope of our study, as we did not do
a follow-up with our participants to investigate whether the insights gained from the
exploration session helped them conduct new experiments or generate new trade-off
datasets.

Our trade-off tasks of finding clusters, correlations & outliers, also correspond
directly to high-level tasks in traditional analytic task taxonomies, such as the tasks
identified by Amar et al. [125] on finding anomalies, clustering and correlating. Other
high-level trade-off tasks like observing coverage and defining focus & priorities (that
are key in trade-off analysis), do not have a direct correspondence. This is also the
case for trade-off tasks such as creating branches & comparing alternatives, looking for
interest zones that maximize/minimize objectives, and characterizing interest zones.
These different tasks remain fairly high-level and do not have a direct equivalent in
analytic tasks; nevertheless, in order to achieve these trade-off tasks, our experts engage
in a combination of low-level analytic activities [125], such as deriving threshold values,
filtering, sorting, characterizing distributions, finding extremum, etc.

While scatterplot matrix tools are popular in trade-off analysis visualization[82,
140], it is natural to consider if these refined and new tasks may be specific to the
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scatterplot matrix design of our probe that favors sculptured selections. We believe
the majority of our identified tasks are generalizable and not specific to our probe
design. A scatterplot matrix view favors the identification of relationships between
two dimensions at a time (e.g., correlation[34]). Nevertheless, our tasks relate either
to tracking progress and prioritizing (rank and prioritize dimensions, track coverage of
multiple dimensions) or to understanding possible solutions in the search space across
multiple dimensions (e.g., identifying possible solutions that minimize or maximize a
dimension of interest and characterize zones of interest across multiple dimensions).

It is possible that other tasks, such as cascading & refining of interest zones,
may indeed be influenced by how analysts select regions of interest in our tool, using
sculptured queries; or the combine multiple dimensions task may be due to the fact
that a single scatterplot can only show two dimensions at a time. For the latter, we
feel combining dimensions makes sense irrespective of visualization, our experts often
had dimensions (like aromas) that they semantically grouped together and wanted to
treat as a group.

3.4.2 Provenance objects in trade-off analysis

We identified eight provenance objects that characterize provenance purposes from
previous work [31]. These are objects that our experts wanted to recall, replicate,
recover, reflect upon, or present & communicate. Out of these objects, we found that
interest zones and exploration structure & steps are the most important, as our domain
experts frequently used or mentioned them during their exploration. They should thus
be supported by provenance visualizations in future trade-off analysis tools.

Our provenance objects do not all reside on the same analytical or abstraction
layer [30, 84]. Some are directly related to exploration actions [30] and thus can be
tracked using low-level user interactions such as view and query selections (interest
zones, exploration structure & steps, focus & priority, coverage). Other provenance
objects are situated at a higher level pertaining to insight actions (data semantics &
origin, annotation, verification & validation), or meta-actions (exploration approach).
Tracking and visualizing provenance data related to exploration actions is more straight-
forward and is easily supported in interactive systems, whereas provenance for higher
abstraction layers is more challenging to capture and visualize, although progress is be-
ing made, for example, in automated data insights [120]. This highlights the need for
further research in detecting and visually summarizing insight actions and exploration
structure to support trade-off analysis.

Provenance objects express ‘what’ aspects of the analysis experts need support with
(to recall/replicate/etc), and were observed either through the use of the provenance
tools and experts’ discussions (section 3.3.3.1), or observed opportunities (section
3.3.4). Some of these provenance objects directly map to, and support, identified
trade-off tasks (section 3.4.1). For example the direct mapping between the ‘Focus &
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priority’ object and ‘Rank & prioritize’ task, and between the ‘Coverage’ object and
the ‘Observe coverage’ trade-off task. We also observed analysts recall/replicate/re-
flect upon other objects, namely interest zones, especially for trade-off tasks such as
‘Minimize & maximize’ and ‘Create branches & compare alternatives’. Or the ’Explo-
ration structure & steps’ object that often appeared as an opportunity, expressing the
need to keep track of past branches and alternatives for the task ‘Create branches &
compare alternatives’. These tasks of ‘Minimize & maximize’ and ‘Create branches
& compare alternatives’ relate to trade-off tasks from previous work [59]: ‘determine
most preferred solution’ and ‘Compare Pareto optimal solutions’ respectively.

We thus feel the objects ’Focus & Priority’, ’Coverage’, ’Interest zones’ and ’Explo-
ration structure & steps’ (to create branches and compare alternatives) are central to
trade-off analysis and require further exploration in order to design provenance views
that are well-adapted to such analysis. The remaining objects we observed (Exploration
structure & steps for action recovery rather than branches and alternatives, Data se-
mantics & origin, Exploration approach, Verification & Validation, and Annotation)
could be relevant to any type of visual analysis exploration. Future work may also
identify more trade-off tasks and related objects.

The nature of our study (revisiting past findings and active exploration), naturally
relies on our participants remembering their past analysis, and thus focuses on repli-
cation or recovery of past results or choices. Thus our findings often link provenance
objects with the provenance goals of Recall or Replication (subsection 3.3.2). We
see these same objects (e.g., Interest zones) also appear with other purposes such as
‘Recover’ and ‘Present, so we expect these objects are applicable across provenance
goals. Nevertheless, further studies are needed to investigate whether different types
of analysis, focusing less on recall and replication, and more on reflection and meta-
analysis, could clarify which objects are important for which provenance purposes, or
even reveal other types of provenance objects associated with other purposes.

3.4.3 How in-visualization views support trade-off tasks
and provenance objects: during a-posteriori analysis
and ongoing exploration

Most work evaluating provenance considers provenance itself as the main user goal,
for example to understand and recall past exploration. Fewer consider the impact of
provenance views during the exploration itself (see section 2.5). We consider both
together, in a structured evaluation of experts conducting real-world analysis.

This poses a challenging question of design balance: as data exploration is the
focus of our experts, can we use provenance to support both a-posteriori analysis
and active exploration? Motivated by past informal observations that experts largely
ignored separate provenance views, we decided to integrate in the analysis environment
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simple designs that do not add visual complexity but are always accessible. We set out
to see if and how these designs were used, both a-posteriori and during the analysis,
and how they tied to trade-off needs. Our findings show that our domain experts
found in-visualization provenance views useful both when revisiting old analyses and
when starting new ones.

In a-posteriori exploration, when revisiting old analysis, domain experts were able
to first confirm past findings in the use of traditional views, such as History and
Favorites. The use of a stripped down History that only showed a final snapshot of
the last exploration, and Favorites were a great aid for recall. Our experts explained
that they preferred these few snapshots rather than detailed step-by-step recollection
of previous analyses. Other studies investigated what granularity or level of detail of
provenance information is appropriate for different tasks [32, 103, 157]. Most relevant
to our work is a user study by Ragan et al. [32] who found that even lightweight
provenance visualizations (such as ours) including simple in-visualization cues and low-
fidelity snapshots of final workspaces or important views that contain an insight can
be beneficial for recall and helping the process memory.

We were also able to extract patterns of use from our new in-visualization views
during this a-posteriori exploration. Our experts used provenance views that mainly
communicated high-level information, such as views with counts of dimensions explored
or scatterplots visited. In particular, we identified that these views aided experts mainly
to recall or reflect on: their coverage of the objective dimensions, their focus and
priorities in terms of objective dimensions in their past analysis, and to a lesser extend
their past exploration strategy. As mentioned, understanding coverage and focus &
priority were identified both by us, but also previous work [59], as critical for trade-off
analysis irrespective of the tool used. As such, this finding highlights the importance
of providing provenance support for them when a-posteriori analysis is expected.

Whereas in the ongoing analysis, experts used our in-visualization views focusing
on more detailed information. For example, they used them to keep a trace of specific
areas in the trade-off space that were of interest to them and their characteristics, as
well as their analysis steps. Our experts often consulted what range their selections fall
in in the trade-off space, or what selections were grouped to generate new ones. These
point to the need to support recall exploration steps, but most importantly the recall
of aspects related to interest zones (one of the trade-off provenance objects identified
in our work). Aspects that may be interesting to recall relate to several trade-off
tasks that are associated with characterizing preferred solutions or interest zones: for
example if the interest zones maximize or minimize objectives, if they fall under specific
thresholds, if and how they have been refined, if they represent an alternative branch,
etc.

As our observations of ongoing analysis stem from a scatterplot matrix probe, it is
possible that the importance of interest zones may be influenced by the existence of
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visual sculptured query selection. However, as discussed earlier, the task of ‘determine
preferred solution’ that optimizes some dimensions is very general in trade-off analysis.
And the characterization of these possible solutions or areas of interest (e.g., where
they fall across other important dimensions) includes simultaneously maintaining aware-
ness of multiple dimensions and thus is very likely applicable to any multi-dimensional
visualization tool.

Provenance is a secondary task supplementing data exploration, but we observed
many cases where our visually simple and in-visualization provenance tools were used
effectively, both when reconstructing past trade-off analyses and during an open-ended
analysis. More work is needed to investigate whether provenance support needs
to adapt to more specific and refined stages of these analysis. For example, during
an active exploration, we can expect that the start of the analysis will be similar to
a-posteriori analysis: verifying and validating past knowledge, checking coverage of
dimensions and setting priorities for the exploration, in order to ground the upcoming
exploration. Whereas the middle of a trade-off analysis exploration, it is possible
that the main considerations are keeping track of alternatives or of characterizing
the identified interest zones. And towards the end of an exploration, when experts
are close to converging and sharing of results, it is possible that tracking coverage
and reflecting on the exploration strategy may once again become important. More
studies are needed to compare different design choices for provenance as a secondary
task, including understanding better potential exploration phases [5], what provenance
objects are important in these more refined phases, and how to draw users’ attention
and awareness [153] to the visual cues when the information is needed.

3.4.4 Trade-off specific opportunities

The use of provenance tools by our study participants helped us identify different types
of opportunities for recall, replication, meta-analysis, representation and collaboration.
These opportunities are directly related to actual challenges our study participants
faced during trade-off analysis, for which we thought provenance could help overcome.
The general provenance opportunities that are discussed in the literature confirm some
of the provenance needs we identified for trade-off analysis, such as the recommen-
dation for capturing provenance information with varying levels of detail [31] and the
associated opportunities for multi-layer provenance [84]. The overlap between our rec-
ommendations and those in the provenance literature is expected, as trade-off analysis
is a subset of and a specific type of data exploration.

Moreover, we covered new ground with regards to the provenance objects asso-
ciated with the identified trade-off tasks. Our opportunities for helping analysis re-
call/replicate/reflect indicate these act upon objects that can inspire future designs,
focusing on: interest zones, exploration structure and steps (like refining and compar-
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ing alternatives), focus & priority, and coverage. In particular, our call for supporting
provenance capture, recall and replication of focus & priority argues for storing and
exploiting information highly relevant to trade-off analysis such as the objectives users
focus on, and how these are prioritized, which is intrinsic to trade-off analysis, but less
pertinent in general data exploration and provenance.

3.4.5 Limitations

While the use of the provenance probe helped us identify opportunities and challenges,
it may have also influenced our findings. Our participants had access to a specific
visual representation (SPLOM) and in-visualization provenance views, which may have
focused their feedback on tool-specific issues. We believe the high-level findings, such
as many of the identified trade-off tasks, provenance objects and opportunities hold
irrespective of the underlying analysis tool; nevertheless, it remains future work to
replicate them in different trade-off analysis environments. Our probe was also used by
experts from different domains, and we report our findings collectively. This we hope
provides a broad coverage of user needs when it comes to trade-off analysis, but it does
not help us understand if the nature of provenance requirements is common across
experts. Future work should consider if domain plays a role in both trade-off analysis
tasks and provenance needs. Finally, we looked at pairs of analysts exploring trade-
offs simultaneously. It is possible different provenance objects and even tasks emerge
when analysts work asynchronously, for example during hand-off or when establishing
common ground.

3.5 Conclusion

In this chapter, we reported on an observational study with three groups of domain ex-
perts who used a provenance-augmented probe to explore their own trade-off datasets.
Our aim was to investigate whether and how in-visualization provenance can support
real-world trade-off analysis. Our findings show that domain experts engage in different
high-level tasks that are key in trade-off analysis, such as observing coverage, defining
focus & priorities, branching alternatives to compare them, and looking for interest
zones that maximize/minimize specific objectives. These tasks were supported by our
in-visualization provenance views, which helped our experts recall, replicate, recover,
reflect upon, or present & communicate different aspects of their exploration, that
we identified as trade-off provenance objects. From these, keeping track of coverage
and priorities, and to a lesser extent exploration strategy, was the most important
provenance aspect (or object) for our experts when revisiting past trade-off analysis;
whereas interest zones and exploration structure & steps were crucial when starting
new trade-off explorations.
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These findings highlighted several needs that are specific to trade-off analysis that
we felt required further investigation, namely the need to understand interest zones
(i.e., data-point selections) that maximize/minimize specific objectives, and the ob-
servation that experts often branch alternatives to compare them, while their focus
and priorities may be shifting. This led us to our following investigation: how to aid
analysts understand the pros/cons of different interest zones, which may be branches
or independent solution spaces, with regard to their focus and priorities.





C
h

a
p

t
e

r

4
Designing for Trade-off

Comparison
The results of our previous chapter highlighted the need to identify and characterize
interest zones (groups of points, often in specific ranges), or alternative branches (i.e.,
alternative groups), with respect to what objectives or criteria they maximize/minimize
and how to do this characterization under potentially shifting focus and priorities.
To explore these concepts in more detail, we study a more explicit task - instead of
the task of characterizing different zones (groups of points, alternatives) we consider
how to explicitly compare them with respect to what they optimize and the expert’s
priorities. We make the assumption that if analysts can characterize the zones they
can also effectively compare them and vice versa. Importantly, in our observations of
our experts we have instances of explicit comparisons of zones of interest that we will
discuss in the next section.

We note that it is not surprising that our experts are analyzing and comparing
interest zones (groups of points). As we mentioned in the Introduction of this thesis,
experts often analyze simulation results from biological processes and models that
have inherent variability in measurements. So they are used to using ranges when
identifying zones of interest, like our example of the wine experts in the previous
chapter that considered the benefits of groups of wines with different temperature
management strategies - their temperatures were defined as ranges. It is also often
the case that trade-off datasets include categorical variables that are semantically
important; for example, our ecosystem experts compared sustainable farming practices
across different countries, defining their interest zones by country.

This chapter answers [RQ5], i.e., what are the trade-off comparison needs of
domain experts and how can we design to support them. To understand compari-
son needs during trade-off analysis, we first analyze how comparisons are currently
carried out in real-world settings by revisiting past trade-off exploration sessions and
conducting three new workshops with domain experts. This answers the first part of
our research question [RQ5a]. We then describe the results of two design workshops
with visualization and HCI researchers that explore design and visualization needs to

73
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support trade-off comparisons. This answers the second part of our research question
about what designs we can provide to support them [RQ5b]. These findings together
inspired the prototype system we developed to support trade-off comparisons. The
evaluation of the designs generated here is reported in Chapter 5.

This work was published in part in Journée Visu [98] and supplementary material
is available at [96] .

4.1 Expert Needs and Requirements [RQ5a]

In the previous chapter, we explained how we worked closely with eight domain ex-
perts to understand their comparison needs as they carried out trade-off analysis in
real-world settings (i.e. working with their own data and/or models, and domain-
specific questions). The experts came from different domains: two from agronomy,
two from ecosystem services, two from ML, and two from nutrition. To distill general
requirements for trade-off comparisons, we first revisited three past trade-off explo-
ration sessions that we carried out for the provenance research work in chapter 3.

To ensure we understood the subtleties of comparisons in trade-off analysis, we
further organized three trade-off exploration workshops with domain experts. For the
first workshop, we invited back the two Machine Learning (ML) experts whose videos
we analyzed in section 4.1.1.

Furthermore, in an attempt to cover as many types of possible comparisons during
trade-off analysis tasks, we considered two types of trade-off datasets characterized
by the cardinality of trade-off solutions they contain: discrete (non-additive) trade-
off solutions, or composite (additive) solutions. The former concerns cases where
valid trade-off solutions are discrete individual options, as was the case for the wine
fermentation case study where each individual data point represents an alternative wine
recipe (or more precisely, a valid fermentation trajectory). The latter refers to cases
where a group of points together constitutes a coherent trade-off solution, such as
when creating a diet plan out of a dataset of food items; or putting together a sports
team starting from individual athletes, each having different strengths and weaknesses.

4.1.1 Videos of Expert Exploration

We first reviewed ≈ 8 hours of video recordings and notes from three past trade-off
analysis sessions [97, 112], each involving a pair of domain experts from sustainable
farming, agronomy, and machine learning. One pair of experts focused on ecosystem
services (eco), explored a 9-D (dimensional) dataset with 100 data points; another with
expertise in wine fermentation analyzed a 14-D dataset with 1k data points (wine);
and a third pair, specializing in ML models, worked with a 10-D benchmark dataset
[13] of 3k data points.
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We identified six instances of explicit comparisons, with two in each group. It is
important to note that previous analysis sessions did not prompt participants to make
explicit comparisons between data groups, as this was not the main focus of that
research. Consequently, many comparisons likely occurred implicitly while participants
familiarized themselves with the data, without being verbally articulated. The six
instances we identified are those where participants explicitly mentioned comparisons,
usually in response to particularly surprising findings or insights that warranted direct
discussion.

Across all sessions, we observed that experts worked with groups of data points,
treating them as a coherent solution to their multi-criteria decision-making problem.
For instance, the ecosystem services experts identified farms from specific countries
that represent regional farming practices and traditions. For wine experts, a cluster
of wine recipes corresponds to a fermentation strategy characterized by a particular
temperature profile. The ML experts partitioned their dataset into three distinct groups
of points, each corresponding to a particular ML model, searching for qualities inherent
to each model. Within each group, data points represent various trade-offs between
the number of features in a model and the model’s accuracy. Overall, experts aimed
to rank alternative solutions in these comparisons to select the most promising option
to implement.

While the identified instances of explicit comparisons in the videos were few (2 per
group), they were crucial for the experts, as they often led to an important decision, like
choosing which costly biological experiments to run in a controlled laboratory study or
even in a real-world setting. These comparisons involved groups of points. The groups
were few in number (2-6 groups per comparison) and their size varied across sessions
but often tended to be small (4–5 for wine, 8–43 for eco), except for the ML case
(17-1090), likely because the dataset itself was large and the number of points in a
group was inherent to each benchmark dataset, with some having significantly more
data points than others.

These groups represented a selection or a set of points that shared similar values
over one or more data dimensions (e.g., a specific fertilization trajectory or a temper-
ature profile). They compared these groups in terms of their value ranges, the overlap
between these ranges, and their relative position in the data (e.g., if the centroid of
one group tended to be towards the max or min compared to another group). Experts
also looked at the number of points of each group and explored relationships within
the groups, such as trends or correlations.
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4.1.2 Workshops with Experts - Comparison of Discrete
Solutions

We invited back the two Machine Learning (ML) experts whose videos we analyzed
in section 4.1.1, and their actual exploration described in chapter 3. As a reminder,
these experts explored an ML benchmark suite called Openml-cc18 [13], focusing on
trade-offs such as those involving the number of features of a benchmark dataset, its
intrinsic dimensionality (i.e., dimensions that exclude noise) and the average correlation
between features. As the number of features grows, the intrinsic dimensionality is likely
to grow, while the feature average correlation is likely to decrease.

Workshop Procedure and Tasks: The workshop lasted 90 minutes. We first
welcomed participants and explained the goal of the workshop, which was to understand
their comparison needs. To ground the discussion, we presented the instances of
comparisons identified in their exploration video and asked them to expand on the
nature of these comparisons. We ended the workshop with a debrief.

Workshop Observations: The machine learning experts reported that they usu-
ally compare groups of points such as datasets and clusters, confirming our video
observations. As one explained, “What normally happens is that we try to compare
groups inside the same [benchmark] dataset. So maybe clusters, maybe classes, stuff
like that... In the last few works, we were mainly looking at specific trade-offs for the
models’ accuracy and complexity ”. When asked about their focus during these com-
parisons, they reported examining the relative positions of the groups: “You might be
interested in assessing whether the two groups overlap for one [ML] metric or another
for one dimension over another, or how much they overlap”.

This claim is further supported by our observation from the videos that all expert
groups worked with ranges and noted the overlap between them. When inquiring
further about the criteria they use to compare groups, such as ranges or specific
values (e.g., minimum/maximum), they indicated that the choice of metrics is problem-
dependent. They did, however, provide some examples: in some cases, they may need
to identify and remove outliers from the analysis or focus on the relative best points
in each group. This suggests a need for ranking the points within a group. In other
cases, they compared the group ranges or checked if they fell above or below specific
threshold values.

Additionally, they mentioned instances where they compared the means and vari-
ances of the groups. These observations are also reflected in the videos of other experts
conducting trade-off analysis.
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4.1.3 Workshops with Experts - Comparison of Composite
Solutions

In two separate workshops we call here Diet I and Diet II, we invited two participants
with extensive knowledge in nutrition and dietetics to explore a food trade-off dataset.
The participants themselves had specific dietary needs due to health constraints or tar-
gets, which they communicated to the author of this manuscript before the workshop.
We describe their trade-off needs below, before explaining the workshop procedure and
task, followed by key observations.

Diet I: This workshop session was conducted with a participant who, due to a
medical condition, needs an anti-inflammatory diet with a focus on weight loss. The
participant follows a flexitarian approach but aims to minimize or completely avoid red
meat. Their diet prioritizes key nutrients for minimizing the symptoms of their condi-
tion, like magnesium, zinc, iron, and omega-3 fatty acids. At the same time, they work
to limit their intake of omega-6, high glycemic index carbohydrates, glucose/fructose,
and gluten, all of which can interfere with their anti-inflammatory and weight loss ob-
jectives. All of these constraints are hard to balance, and trade-offs need to be made
to ensure a diet that is both nutritionally complete and aligned with their health goals.

Diet II: This participant followed a specific diet due to particular dietary needs. As
a vegetarian who is also lactose and soy intolerant, they faced challenges in maintaining
balanced nutrition, particularly when trying to meet an adequate protein intake. For
example, they compensated for their inability to consume dairy products and sufficient
amounts of soy for protein intake through legumes. Additionally, the absence of dairy
products in their diet made it more difficult to meet their calcium needs, which they
addressed by incorporating almonds and tahini. However, relying on these foods poses
its own set of challenges since they are high in fat and calories. Thus, the participant
was interested in finding a subtle balance between the different nutrients they needed
to consume to maximize the coverage of their nutritional needs while minimizing the
excessive intake of certain nutrients.

Workshop Procedure and Tasks: The first workshop (Diet I) lasted 1.5 hours,
while the second (Diet II) lasted 2 hours. We loaded the USDA Foundation foods
dataset 1 in the visual data exploration tool VisProm presented in chapter 3. This
dataset has 20 data dimensions and 209 data points. Each data point corresponds to
a food item, and the dimensions represent macro and micro nutrients. The dataset
was prepared to include as much as possible the objectives and diet requirements of
the two participants.

Inspired by the participants’ self-reported dietary constraints, we designed the fol-
lowing three trade-off tasks that we hypothesized would require making comparisons.

1Dataset publicly available from https://fdc.nal.usda.gov/download-datasets.html

https://fdc.nal.usda.gov/download-datasets.html
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Tasks 1 & 2 were performed by the two participants, and the more challenging Task 3
was only performed by the second participant:

T1 (For Diet I&II) Create two diets, with 40 items each, and having at least 50%
dissimilarity between them: One that maximizes energy (calories) while minimiz-
ing sugar and fat. This diet should not have more than 5 carbohydrate-heavy
foods (>5g); And another diet that Maximizes energy (calories) while minimiz-
ing sugar and carbohydrates. This diet should not have more than 5 fat-heavy
foods (>5g).

T2 (For Diet I&II) Compare these two diets in terms of nutrients (iron, magnesium,
fibers, vitamins,... ) and choose a diet that best fits your needs.

T3 (For Diet II) Adapt the diet chosen in T1&2 to the requirements for Diet II, i.e.
maintain a similar nutritional balance as Diet I, but include additional constraints
related to vegetarian and dairy-free products.

Participants were asked to articulate their thoughts as they progressed, using a
think-aloud protocol.

Workshop Observations:
Observations from Diet I workshop: The participant in that session worked with

acceptable ranges and thus compared the groups of points generated from the ranges.
As the participant commented “ I looked at the data [...] on the ranges. I’m thinking
that those who go up very high [shows points in a high range of values in a dimension],
could be interesting, negative or positive. But of those who were medium, there are
meh [so-and-so], there was a whole group that was more or less average”. Then they
refined their selections little by little: They removed groups of points strategically by
comparing subgroups of the same group and removing the ones deemed less desirable.
Then, they skimmed through the individual points and selected the ones to remove.
To do that, they compared points within the same group with one another. These
comparisons were conducted by looking at the differences between the nutritional values
on each dimension.

Observations from Diet II workshop: The participant worked mainly with percentile
ranges to identify foods that correspond to their criteria. For example, the participant
selected the top 5% elements rich in Omega-3. This meant that they were constantly
comparing the points in their selection to the points outside the selection. Once they
had a selection that was compliant with the requirements, they skimmed through the
individual points to select the ones they liked the most. “What I lost the most [with
changes to their selection] isn’t fat or protein, what I lost the most is "enjoyment"
[of diet]. So I tried to make up for it, [...] So I went for things that are quite fatty ”.
In other words, experts were comparing their original selection to a revised selection
that included more points. To do that, they examined points within a single group: “ I
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looked through that list, checking which ones interested me based on the diet, what I
like to eat, etc. I picked very few, because I saw it was mostly cheese and meat, which
I couldn’t eat”.

We noticed that comparisons of groups were conducted by looking at the difference
between the values on each dimension. Even when they reached a good trade-off
balance, they reported looking for diversity and complementary food items to constitute
a diet that is pleasant to eat: “A real problem is that my diet lost its variety when I
cut out chicken, and other stuff..., and it’s true that it’s missing something. Before,
there was chicken and beans on the plate, and now it’s just beans, and it’s true that
it’s less diverse. So, I had to find some "replacements," so to speak. That’s what I
went looking for ”.

4.1.4 Summary of Trade-off Comparisons by Experts

To summarize, our workshop and video analysis reveal that while the specifics of “what”
is being compared and “how” is problem-dependent, there are recurring elements in
the trade-off analysis problems we studied. Experts often compare groups of points,
examining aspects such as the number of points, the ranges of the groups, and the
best and worst points in relation to the trade-off criteria. While means and variances
of groups are considered in the comparison, experts also rank points within a group
and look at individual points, such as outliers or best/worst values in the group.

We distill a summary of these needs [RQ5a] into the following set of expert
requirements for trade-off comparisons between groups:

• Groups (eR0): compare groups of points;

• Metrics (eR1): see best and worst points, means, variance, differences and com-
plementarity across points;

• Detail (eR2): see number of points, access to individual points of groups;

• Ranges (eR3): see group value ranges;

• Rank (eR4): be able to rank items inside groups, and to potentially add or
remove them.

This preliminary work was the basis for the tasks used in the design workshops we
describe next, and the training we provide to participants for the controlled experiment
(chapter 5).
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4.2 Design Workshops [RQ5b]

After confirming the importance of comparing groups of points (eR0), and deriving ex-
pert requirements for such comparisons, we set out to design appropriate visualizations
to support them. We conducted two design workshops where participants generated
hand-drawn visualizations for comparing groups of data points, which we then ana-
lyzed for inspiration. We describe next our workshop considerations, procedures, and
the analysis of the created designs.

4.2.1 Participants

We conducted two 2-hour design workshops, with three and five participants each.
Of the eight participants, four self-identified as women and four as men. To ensure
a breadth and depth of designs, participants were practitioners or researchers in HCI
and visualization (4.8 mean years of experience, min:2-max:14). The author of this
manuscript and his supervisors also participated in the generation of designs.

4.2.2 Scenario and Data

To provide participants with a realistic design task that did not require domain ex-
pertise, we used a hypothetical scenario. Participants were asked to create designs to
compare multiple groups of second-hand vehicles from different manufacturers in order
to choose a group of cars for a new car-on-demand taxi service, as this is a dataset
that can act as both a comparison of discrete solutions (choosing one bundle from one
manufacturer) and as a comparison of composite solutions (creating a fleet by mixing
cars from multiple manufacturers).

The dataset we used in the workshop is composed of 60 used cars and was generated
as follows. We first merged two real-life car datasets [3, 4]. Next, we generated the
Pareto front [123] optimizing four objective dimensions: Miles per Gallon (MPG),
horsepower, price, and odometer readings. From the Pareto front, we randomly drew
60 used cars.

The cars were then grouped by manufacturer, resulting in ten groups: five from
the United States, one from Japan, and four from Europe. The number of cars
per manufacturer varied, ranging from a single car to fourteen cars. The choice of
the groups presented a real trade-off, i.e., no one group was strictly better than the
other. For example, if one group outperformed the other in terms of MPG or price, it
necessarily lagged behind in terms of horsepower or usage.
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4.2.3 Design Task and Procedure

Procedure: We began the workshops with an introduction to trade-off analysis to
ensure that participants understood the concepts, especially the need to balance com-
peting criteria. We then introduced the design tasks and described the criteria they
need to balance: minimize cost and odometer while maximizing mpg (fuel efficiency)
and horsepower. Informed by past work on multi-dimensional visualization [34], we
provided inspirational materials in the form of different visualizations for showing the
ten groups. To avoid biasing participants towards any particular design, we included
three different data representations: radar graphs, parallel coordinates, and tabular
visualizations.

We decided against using scatterplots as inspirational material. While effective for
visualizing relationships between two variables, scatterplots may not be ideal for rep-
resenting statically multi-dimensional data involving more than two or three variables,
especially when comparing multiple groups2.

Following the sketching sessions, we held a roundtable where participants explained
their designs and their views on which designs best addressed the needs of the hy-
pothetical scenario. We also discussed the high-level ideas that emerged across all
designs. Each design workshop lasted two hours including two ten-minute breaks and
the discussions.

Design Tasks: We asked participants to perform three sketching tasks. In the first,
they had to sketch a visualization to compare the ten groups; in the second, to consider
additional constraints (brands from a specific country), and in the last to consider how
they could combine cars from two groups to create an optimal fleet.

The first design task involved a general group comparison: comparing groups of
points representing manufacturers, similar to how wine experts compare groups of
recipes corresponding to different fermentation strategies (comparison of discrete so-
lutions).

The motivation behind the second task was to assess how participants would design
a visualization to support comparisons, considering that decision criteria might change
during the trade-off analysis process. This reflects a behavior observed in past work
[34, 97], where users occasionally adjust constraints and shift priorities in decision tasks
based on the characteristics of the data. For example, if two groups are satisfactory on
a given criterion, the expert may choose to exclude that dimension from subsequent
analysis.

The third design task focused on situations where groups can be refined by adding
or removing points (comparison of composite solutions), as opposed to adjusting di-

2We note that scatterplots have worked well in previous work in decision-making [34] and trade-
off analysis [97] because they consisted of interactive tools. The materials we provided however in
this workshop were static images.
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mensions as in the second task. This behavior of adding or removing points, observed
in our workshop (eR4) and previous work with experts, is a primary method they use to
explore data with certain visualization tools [97, 113]. This refinement process may in-
volve comparing groups of points against each other, as well as comparing the group’s
previous state with its new state after points have been added or removed.

4.2.4 Analysis and Results

Analysis Methodology

The three authors of the work involved in this chapter [97] conducted a thematic
analysis [144] of the sketches from the first workshop collectively. Each stand-alone
idea or system was isolated as an individual sketch, either from the designers indicating
the grouping of their drawings or by using a recording of the roundtable that we held
at the end of the workshop to understand the designers’ intentions.

From these sketches, we identified different aspects or themes related to comparison
(discussed next). After this, one of the authors then applied the coding to the sketches
from the second workshop. To analyze the sketches, we adopted a mixed coding
approach that combined both closed and open coding methods. For the comparison
layout, we applied a closed coding schema based on the taxonomy introduced by [101].
Similarly, we used a closed coding schema to categorize the types of graphs inspired by
[1] which was also used during the workshops as inspiration material for the designers.
In contrast, the level of granularity, displayed data, and visual encodings were analyzed
through open coding, which allowed us to identify emerging patterns and themes. This
open coding process was refined iteratively over three cycles.

Coding the sketches was carried out using Obsidian with the dataview add-on [2]
where we linked the sketches with the thematic analysis. This provided a framework
for faceted browsing, where codes could be tracked and reused, as well as for providing
quick overviews and summaries of all sketches with specific codes (see sup.material of
generated HTML structure).

Results

The workshops produced 51 sketches (35 were created by participants and the remain-
ing 16 by the authors). Figure 4.1 shows examples of the generated sketches (see
sup.material for a full list [96])

We identified six main themes across the generated sketches for group comparison
visualizations. Our coding scheme was thus organized into six themes and 64 unique
codes (a total of 498 instances). We present next these themes and list the most
common representative codes for each (the full list exists in sup.material [96]).
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Figure 4.1: Sketches examples from our design workshops exploring different visualiza-
tion techniques for comparing car bundles in trade-off analysis, such as Aggregated and
Non-Aggregated views, Ideal Value plots, Weighted Mean tables, Side-by-Side com-
parisons, use of Colors, Tabular formats, and Bar charts. These sketches come from
different participants (but not from the authors).

Level of granularity: (3 codes, 88 instances) This theme expresses at what level the
groups are presented: if the data displayed is at the level of individual points/vehicles
(26), at the level of group/manufacturer (31), or if the group is aggregated/abstracted
in a different way (31), for example, using the weighted mean of the group or a score.
Aggregated was the most common level of granularity view.

Type of graph: (9 codes, 49 instances) This theme encodes the visualization type
used for the comparison. The most common types were tabular visualizations (16), bar-
charts horizontal or vertical (6), radio-charts (10) and scatterplots (5). Surprisingly,
parallel coordinates, even though presented as inspiration material, appeared in only 4
sketches.
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Comparison layout: (3 codes, 54 instances) We were inspired by the layouts de-
scribed by Gleicher et al. for point (not group) comparisons [101, 102] when catego-
rizing how groups were positioned with respect to each other. Most commonly, the
two groups were placed side by side (32), followed by superimposed designs (18), and
very few explicit encoding of relationships (4).

Visual Encoding: (12 codes, 103 instances) This theme describes how the designer
encoded the displayed data visually. The most common encoding was color (37) with
red used often to indicate "bad values" - values that do not align with the optimization
criteria, and green to signify "good values" - values that do align with the criteria.
Color was also used as a gradient (often green and red) to represent how good or bad
a value is. Another common encoding was direction arrow (17), followed by shapes
(10) and lines (11).

Displayed Data: (26 codes, 144 instances) This theme is used to describe the data,
information, and metrics displayed in each design. Most designs included some visual
reference of the direction of optimization (23) and raw data values for individual data
points (19). Other common data presented were weighted means (9) and means (9),
as well as other forms of scoring (8). An interesting metric displayed in some sketches
was the notion of an "ideal solution," i.e., a fictional data point with ideal values to
aid in the comparison (10).

Interactions: (11 codes, 60 instances) This theme describes any possible interac-
tions indicated in the designs. Several interactions were suggested for changing the
display data (17): sorting, numerical transformations (e.g., to create averages), etc.
The next most common action was to rank objectives to signify priorities in an inter-
active manner (12). Several designs also allowed the ordering of the objectives (3)
also as a means to indicate priorities. The remaining interactions were more general
selection and navigation actions.

4.2.5 Summary of Design & Visualization Needs for
Comparison [RQ5]

We summarize next, high-level design and visualization needs for supporting group
comparison in trade-off scenarios ([RQ5]):

• R1-Metrics: Simplify the comparison task by providing aggregated views and
metrics (means and scores), or grouping of points by filtering. This aligns with
expert requirement eR1.
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• R2-Detail: Maintain flexibility in visualization granularity: although aggregations
are helpful, it is important to access the details of the individual points. This
aligns with eR2.

• R3-Context: Communicate the position of the groups within the bigger context
(all available data). For example their range of values within the population, their
place in the general population distribution, their own distribution, the number
of solutions they include, etc. This relates also to how experts consider value
ranges of groups and their overlap (eR3).

• R4-Rank: Allow ranking, for both individual points within a group (sorting),
but also for the criteria considered in the trade-off (and their priorities). Ensure
the direction of priority (to maximize or minimize) is clear. This relates to how
experts want to rank items in groups and identify their best / worst items (eR4).

• R5-Reference: Introduce a reference point for comparison of trade-offs. The
comparison of groups is aided by considering them with respect to a theoretical
ideal point, an equilibrium point, or a reference to the minimum and maximum
values in the data. This is a new outcome that we did not observe with experts,
likely because it is a visual way to indicate the users’ goal (ideal) and the distance
from it.

We additionally identified aspects that are more directly related to visual encoding
choices made by our participants.

• R6: Tabular visualizations are appropriate for group comparisons.

• R7: Side-by-side presentation of groups is most common.

• R8: Color is the most prevalent indicator of trade-off.

4.3 Visualizations for trade-off comparisons

Following the outcomes of the design workshop and expert needs, we implemented
a visualization system for the comparison of groups in trade-offs (Figure 4.2). The
prototype was built using HTML, JavaScript, CSS for representing the tables and all
interactive components. We only use the D3.js library for the histograms. This ensures
that the prototype can scale to very large tables. We describe next our design choices.
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Figure 4.2: Prototype for trade-off comparisons between groups of points, each repre-
sented as a table. (Bottom) In this example we see two groups of used-cars datasets
from different manufacturers, placed side-by-side. Rows represent used cars and
columns their properties (Price, odometer, MPG, horse power). To facilitate com-
parisons across multiple criteria, the tables feature histograms for each dimension,
sorting options, a column of weighted scores, and a row of means per dimension. In
addition, table cells are colored to encode trade-off metrics: transparency indicates the
priority of a dimension and color hue how good the value is (distance from an ideal
value). (Middle) A set of sliders is used to adjust the priority and ideal value of a
dimension. (Top) Finally, a control panel can be accessed to change how the trade-
off metrics are represented (coupled or decoupled) and how they are visually encoded
(using bars, colors or just text).

4.3.1 Visualizations and Comparison Layout

We opted for a tabular visualization as the basis of our system, as it was both the
most popular in our design workshop (R6-Tab) and has been shown to be an effective
visualization for decision-making [34]. Thus, columns represented dimensions and rows
data points. We note that our experts in the previous chapter often referred to their
data tables when they made point selections (i.e., identified interest zones to compare)
and some even downloaded the CSVs for their selections to compare them in a table
viewer, an observation that further supports this choice. Following the majority of
designs in the workshop, we adopted a side-by-side comparison (R7-Layout), with
one table per group that analysts can move around and align horizontally or vertically.

Based on inspiration from the design workshops, we implemented several different
visual encodings for cells of the tabular visualization:
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• Textual: This encoding is a basic data representation showing in each cell the
value of a data point for that dimension (e.g., the car’s price, MPG, etc). It is
familiar to domain experts who are accustomed to working with tabular data in
CSV files without specialized visualization tools.

• Colors: Cells can be additionally colored. This encoding was popular in the
design workshops (R8-Color), where participants adopted common codifications
like coloring "good" values with green and "bad" values with red. We explain
in the next section on "Trade-off Metrics" ways of defining "good" and "bad"
values. This encoding can be seen in Figure 4.2.

• Bars: Cells can be additionally filled with a bar - the less filled the cell the
"worst" the data value and the more filled the cell the "better" the value. While
bars are not as prominent as colors in the generated designs, this visualization
type is notably used in past decision-making tools, such as the LineUp ranking
tool [132]. This encoding can be seen in Figure 4.3.

4.3.2 Expressing Trade-off Metrics

Participants of our design workshops expressed information about the trade-offs present
in their comparison in several ways for the groups. We integrated two that were often
identified in the workshop: the notion of a weight or priority to help calculate a weighted
mean or score (R1-Metrics); and the distance from an ideal point (R5-Reference).
We describe next the intuition behind these metrics, as well as how they can be applied
at the level of data values, data points, and groups (R2-Detail).

• Priorities: Analysts can express the importance of the different dimensions by
assigning weights to them. This declaration of weights is common practice in
decision-making tools [132, 135]. Priority weights can help participants focus
on what matters most to them by emphasizing the dimensions that align with
their goals or preferences. This can also facilitate comparisons between different
options or scenarios, allowing users to see how changes in priorities impact the
overall assessment in various ‘what-if’ scenarios. In our case participants can
express weights between 1-100 (to evoke percentages of importance). Weighted
means have been used in visualization tools such as Lineup [132] and weightlifter
[135].

• Ideal Values: Analysts can also express an ideal value that they are searching
for each of the dimensions. In our tool we restrict the ideal value between the
minimum and maximum values that exist in a dataset. This restriction ensures
that the ideal value remains realistic and grounded within the range of observed
data. Ideal values can also express the direction of optimization, for example an
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ideal value at the minimum of a dimension such as Price indicates that analysts
want to minimize price in their selections. Ideal values help us define a numeric
distance that indicates how "good" a value is. For example, the smaller the
distance of the actual Price of a car from the ideal value, the better that car
is for the Price dimension. Ideal values distances are used to calculate several
metrics: distance per point from a particular dimension, average distance per
point across all dimensions, and average distance per group from the ideal value
per dimension. These distances can be assigned to visual encodings of a cell
(example a color scale or a bar length) to indicate how good or bad a point
is with regards to the ideal for that dimension. Ideal value driven analysis is a
practice that already exists in MCDM literature for ranking alternatives [51].

4.3.2.1 Displayed Data & Granularity

We noted that most of the generated designs provided aggregated views (R1-Metrics)
but for the experts, individual points and values are important. We thus used the two
trade-off metrics to provide scores for values, for individual data points, and for groups
(R2-Detail).

Metric per point: Score The score represents how close the values in a row (data-
point) are to their corresponding ideal values, considering the importance (priority) of
each column. A high weighted mean indicates that the corresponding data-point aligns
well with the analyst’s prioritized dimensions and ideal value. It is defined as follows:

Score =

∑
i Pi ×

(
1− |Vi−Ii|

|globalMaxi−globalMini|

)
∑

i Pi

Where:

• Vi is the value in the i-th column for the current row.

• Ii is the ideal value for the i-th column.

• Pi is the priority of the i-th column.

• globalMaxi and globalMini are the global maximum and minimum values for the
i-th column across the groups compared. This is used to normalize the distance
to the ideal.

Metric per group: Mean of Scores To represent each group in an aggregated
way, we calculate the mean of the Scores of all points in the group, effectively treating
the Score column as any other data column for this calculation.
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Metric per cell: Coupled vs Decoupled Metrics In examining the sketches from
our workshops, we observed that each metric is typically represented by a distinct visual
encoding (29 recorded instances from participant sketches), a method we refer to as
decoupled representation. For example, in some sketches, weights can be shown
as color transparency, and distance to ideal values is shown as color hue (red for far
and green close to the ideal). While this separation clearly shows each of the metrics,
it requires more visual information than the coupled metric discussed next.

Conversely, some weighted mean or score-based tools such as LineUp [132] encode
both the priority and distance from an ideal variable in the same visual representa-
tion (the length of the bars in the case of LineUp). In other words, what they are
representing visually is the explicit encoding of these metrics into a unique score or
weighted mean. Coupling multiple values into the same visual encoding simplifies
the visualization, reducing clutter but potentially obscuring the relationship between
weights and values.

decoupled metrics per cell: The decoupled metrics we use are the priorities that
the participants input for each dimension (1-100) and the distance from the ideal value
for each dimension normalized across the range of values in all groups compared.

distancei =
globalMaxd − globalMind − |Vdi − Id|

globalMaxd − globalMind

Where: globalMaxd and globalMind are the global maximum and minimum values for
the d-th column across the groups compared. Vdi is the value in the d-th column for
the i-th point of the group; Id is the ideal value for the d-th column.

coupled metrics per cell: The coupled metric we used is a weighted distance from
the ideal value:

coupledi =
priorityd × distancei

100

where the distance and the priority are the same as in the decoupled case. 100 is the
maximum possible priority value for each dimension by design.

In our system, we allow analysts to choose what metrics to map on the Colors
or Bar lengths of our cells. As this design choice is not obvious, in our study (next
section) we consider the impact of coupling/decoupling the priority and ideal value
distance metrics.

4.3.3 Bringing it all together: Tool & Interactions

To communicate the position of the groups within the bigger context of all available
data (R3-Context), we included at the very top of each table (group) histograms that
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Figure 4.3: Interaction using the comparison tool. The visualization in this example
is Coupled Bars. The user can change the priority or ideal values using the provided
sliders (left), which then updates the length of the bars in both group tables (right),
as well as the position of the ideal value on the histogram

visualize the distribution of all data for each dimension, where the points of the group
fall into that histogram, as well as the ideal values themselves (discussed in "Trade-off
Metrics," subsection 4.3.2). The last column and row provide aggregated information
(R2-Detail). The last column is the "Score" column, showing the weighted score for
the data point calculated based on priorities and ideal values. The last line of the table
(group) shows the mean of each dimension (column) including the score column (i.e.
the mean of all data-point scores), which gives an overall assessment of the group’s
alignment with the user preferences across all dimensions.

Analysts can sort data by clicking on the column headers (descending, ascending,
and back to initial order), as this was deemed important (R4-Rank). Users can
rearrange the column order (as it is possible in a spreadsheet) and this is reflected across
all tables/groups. Finally, tables can be moved to align horizontally (aligning points
across groups) and vertically (aligning dimensions). Beyond these basic interactions,
the tool includes an interaction drawer (opened on demand). Here, users can load
datasets to compare, but also customize the visualization for trade-off analysis.

• Priority Sliders: These sliders adjust the significance of each column in the
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overall analysis (a value between 1 and 100). For example, if one cares about
the price dimension above anything else, one could assign a high value to the
priority of the price dimension. Modifying a slider’s position alters the weight of
that dimension in the score or weighted mean calculations.

• Ideal Value Sliders: These sliders allow setting a target value for each dimen-
sion, which the tool uses to calculate the deviation of each data point from this
target. It helps in assessing which entries are closest to or farthest from the
desired value.

• Metric Mapping: Both the bars and colors can represent any of the following
metrics: the priority assigned to each dimension, the distance from the ideal
for each value, or a combination of these two factors (deviation multiplied by
priority).

While our tool does not support the movement of points across datasets (to con-
struct new composite datasets) this is an easy extension. We focused on the main
components needed for the visual comparison of two groups, irrespective of whether
they are composite or discrete.

4.4 Conclusion

Our observations from working with experts from agronomy and other domains have
shown that they work primarily with solution spaces (i.e. groups of items as discrete
or composite solutions). To better identify user needs for comparisons of groups, we
conducted workshops with three groups of participants. These provided us with valu-
able insights into how trade-off comparisons are conducted, confirming the importance
of comparing groups of points. We also derived other expert requirements for such
comparisons, such as the need for aggregate information, such as in the form of metrics
(e.g., mean, variance, etc.), access to individual point details and range information,
and finally the ability to rank items inside groups, with the possibility to add or remove
options.

Building on these insights, we organized two design workshops with visualization
and Human-Computer Interaction (HCI) experts to iterate on and refine visualization
designs that could effectively support the comparison of trade-off groups. Findings
from these workshops include concrete visual encodings that inspired the design and
implementation of a prototype system. In summary, we noticed how the majority of
designs presented groups in the form of data tables, with side-by-side views of the
different groups to compare.

The workshops additionally inspired us to create visualizations to express more tai-
lored, trade-off specific metrics related to the analyst’s objectives, such as weighted
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means and distance to ideal values. The prototype we built to support trade-off compar-
isons has several possible alternatives to express these trade-off metrics, both visually
(color, bars) and in terms of mapping (coupling both metrics on one visual encoding
or decoupling them). As these design choices have themselves well trade-offs(!), we
decided to compare them. This is the topic of the following chapter.
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5
Evaluating Visualizations for

trade-off comparisons between
groups

In this chapter, we explore how to support the visual comparison of groups of data-
points (or items) within the context of trade-off analysis. Our primary research question
focuses on understanding the impact of different types of visualization on this group
comparison task, in terms of balanced consideration of multiple criteria, user trust, and
mental load.

In the previous chapter, we followed a multi-phase approach to understand expert
needs and design choices. First, we conducted three workshops with domain experts
to understand the specific needs and challenges involved with comparing groups of
data-points in trade-off analysis. This provided valuable insights into the types of
comparisons users frequently make. Building on these insights, we organized two
design workshops with visualization and Human-Computer Interaction (HCI) experts to
iterate on and refine visualization designs that could effectively support the comparison
of trade-off groups. We then developed a prototype visualization system based on the
outcomes of the design workshops.

In what follows, we evaluate the effectiveness of two promising visualization tech-
niques against a baseline in a user study involving 18 participants.

This work was submitted to ACM CHI 2025. Supplementary material and video
are available at [96] and statistical results in Appendix A.

5.1 User Study Design

Our design workshops (section 4.2) and resulting comparison system (section 4.3) led us
to several design choices that we believe warrant further investigation. First, it remains
unclear if the additional trade-off metrics, such as weighted means and distance to ideal
values, do indeed aid in comparing groups during trade-off analysis. And if they do so,
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Figure 5.1: Our study setup with a split screen between the visualization and the tasks
and questions. Papers, with memory aids, as well as a blank paper for note-taking, are
seen on the side.

how do they contribute, by enhancing understanding or increasing trust in decisions?
Moreover, the choice to couple or decouple these metrics visually introduces both costs
and benefits, e.g., potential visual clutter versus improved access to detailed metric
information. We thus set out to understand the impact of these design choices, and
more generally the impact of using visualization support in the comparison of trade-offs
across groups. Our investigation centered around the following two research questions:

• RQ6: Does the visualization of trade-off metrics aid comparison more effectively
than a simple tabular representation?

• RQ7: Is a coupled or decoupled visualization of trade-off measures better at
supporting this comparison?

5.1.1 Visualization Conditions

Testing all possible combinations of visual encodings and visualization layouts, data
granularities, trade-off metrics, and how they are coupled—each possible and adjustable
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Figure 5.2: The three different tabular visualization setups used in our study: Baseline
with simple histograms and no additional visualizations in the tables, CoupledBars with
added bars, and DecoupledColors with a color gradient, all linked to a table of sliders
for adjusting priorities and ideal values.

within our tool—is beyond the scope of a single user study. Guided by our two re-
search questions (RQ6, RQ7), we selected three visualization conditions for evaluation
(Figure 5.2) that we further motivate in the remainder of this section:

1. Baseline (Textual Data): This condition involves the use of textual data as
the baseline for comparison, augmented with additional information to facilitate
comparison of trade-offs: the weighted scores per data point (last cell in each
row), the mean data values per dimension (bottom row), and the data distribu-
tion in the form of a histogram.

2. Colors (Decoupled): This condition adds color to the baseline (i.e., each tabu-
lar cell is assigned a fill color using a green/white/red color map). Hue represents
the distance from the ideal value, while opacity indicates the priority, thus visu-
ally de-coupling the two trade-off metrics (e.g., a dark green cell indicates high
priority and low distance to ideal, and a light red indicates low priority and high
distance).
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3. Bars (Coupled): This condition adds bars to the baseline (i.e., each tabular
cell includes a horizontal bar). The bar length represents the weighted distance
from the ideal value for that dimension, serving as a type of trade-off score,
similar to the approach used by LineUp [132].

The baseline condition (textual data) was chosen to study if the more complex
trade-off metric visualizations that add more information on trade-off analysis do indeed
aid in the comparison of groups. We note that even though we call this condition a
baseline, it does include more trade-off related information than a simple table in the
form of histograms and weighted scores.

When it comes to the more complex trade-off metric visualizations, we focused on
representing two main metrics, the priority of a dimension (weight) and distance from
an ideal point for that dimension (discussed in subsection 4.3.2). As we discussed
in that section, the two metrics can be represented coupled (merged and mapped
on a single visual encoding) or decoupled (each metric mapped on a different visual
encoding). It is unclear which approach works best: a decoupled representation clearly
shows each of the metrics, but is visually more dense, while a coupling of the two
metrics into the same visual encoding simplifies the visualization, reducing clutter but
potentially obscuring the relationship between weights and distance to ideal values.
We chose to test different methods in representing the trade-off metrics (coupled
vs. decoupled): a bar-based visualization (similar to LineUp) for the coupled metric
representation, and a color-based method inspired by the design workshops for the
decoupled metric representation.

For the decoupled condition (Colors), we decided against using a bar visualization
that assigns each variable to a different visual property of the bars, such as height and
width or the stroke weight when drawing the bars because we found that the visual
change of the bars was too subtle and easily overlooked. As color-based visualizations
were very prominent in our sketches, we used them to decouple the two metrics using
two different visual properties: color hue to denote the distance from ideal and opacity
to denote the priority.

For the coupled condition (Bars), we chose to map the single combined metric to
bar length, as it is perceptually easy to read and aligns with established practices in
similar tools, such as LineUp [132].

Other modifications to the tool for the user study: For the purposes of the
study, we also made small modifications to the tool presented in Chapter 4 to ensure a
consistent environment across participants and conditions. We deactivated the choice
of switching between visual encodings (bars / colors / just text) and metrics mapped to
these visual encodings, as these were compared conditions. We additionally deactivated
the option to choose a different aggregation metric; thus, all participants had consistent
visual encodings and metrics for each condition. Furthermore, the aggregation metric
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was chosen to be the mean for the dimensions and the weighted mean (score) for the
data-points in all the conditions, as this was the most common aggregation metric in
our sketches.

5.1.2 Hypotheses

To address our two main research questions pertaining to how different types of visual-
ization impact group comparison tasks in trade-off analysis [RQ6,RQ7], we formulated
the following two hypotheses :

• Hypothesis 1: Visualizing trade-off metrics, such as priority and distance from
the ideal, improves group comparison by reducing mental load and enhancing user
understanding of the trade-off, resulting in more user trust in their decisions.

• Hypothesis 2: A decoupled visualization of trade-off metrics enhances user
understanding of the trade-offs and increases user trust in decisions compared to
a coupled visualization, but it leads to a higher mental load.

5.1.3 Tasks

We designed three trade-off comparison tasks (T1–3) for each of the three visualization
techniques (Baseline, Color, Bars). Each task involved evaluating two different groups
of used cars and deciding which group would be most suitable for forming the initial
fleet of a hypothetical taxi company. Participants were required to balance four con-
flicting criteria—minimizing price and odometer readings while maximizing MPG and
horsepower—based on a set of priorities and ideal values provided by the company’s
boss. At the end of their analysis, participants indicated which group of cars they would
recommend for purchase, providing a written rationale for their choice, discussing how
each group aligned with the boss’s specified priorities and ideal values, and evaluating
each group’s strengths and weaknesses.

We designed a different dataset for each task, each having four dimensions (odome-
ter, price, MPG, horsepower) and seven points (section 5.1.4), but a different set of
priorities.

This comparison task emulates how our experts made comparisons of groups in
order to make a decision (e.g., choose a set of wine recipes). The fact that we
gave the specific set of priorities and initial weights for each dimension ensures that
participants do not need domain knowledge in order to decide which priorities are
more important or what values dimensions should have. But it emulates the a priori
knowledge experts have about what they want to optimize and how important they
feel it is, even if their criteria may shift as they explore the available data. Asking
participants to provide data-driven justifications to explain their choices with evidence
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from the datasets ensures we can capture the information they consider important in
their analysis. We note that the task datasets (section 5.1.4) are chosen in a way that
decisions are not trivial and there is no right answer, as is often the case in real-world
decision-making that requires human analysis. These choices allow us to explore how
participants engage in a challenging trade-off comparison of groups (as there is no
ground truth), what evidence they consider important for their decisions, and whether
visualizations used may affect the nature of this evidence and their understanding of
the trade-offs present in the datasets.

The setup of the visualization tool used for this task is described in section 4.3.The
tool presented the data for each group in separate tables, facilitating side-by-side
comparison. Although participants could adjust the provided sliders to explore different
scenarios, their final decision needed to align with the initial requirements (i.e., priorities
and ideal values) set by the boss.

5.1.4 Datasets

We started with the 4D-PF dataset created for the design workshops (section 4.2).To
ensure similar levels of difficulty across tasks, the datasets we generated shared the same
number of dimensions and data-points, the same weighted mean, and had a similar
“amount of trade-off”. To achieve this, we calculated the trade-off index introduced
by Unal et al. [109], which quantifies the degree of trade-off within any dataset. This
index measures how much a solution’s ranking shifts between each combination of two
criteria, indicating the ‘tension’ between competing objectives.

More precisely, the calculation of the Trade-off Index [109], – denoted as λikl, for
the ith solution between objectives k and l –, employs a binary factor βijkl that indicates
whether two solutions, i and j, intersect across these objectives. By aggregating these
intersections across all solutions, the Trade-off Index reflects the extent of trade-off
between two objectives. In other words, every time a solution changes ranking between
two dimensions, this index goes up by the difference of rankings. As a result, a high
trade-off index implies changes in ranking, highlighting strong trade-offs, while a low
index indicates consistent rankings and minimal trade-offs.

The groups’ participants had to compare in our experiment had the same trade-off
index, the same weighted mean for a specific set of dimension weights, and the same
number of points. Thus, the choice between them could not be done automatically
and requires human judgment and decision-making.

In total, we generated nine datasets, three for participant training, and six for the
different tasks (2 datasets per task). The training datasets had three points (cars) and
the task datasets had seven data points. All our generated datasets have an average
trade-off index of around 0.6.

We chose to limit our groups to seven data-points as in pilot tests we found that this
size allowed for groups that were not trivial to scan visually, but also not overwhelming,
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especially in the case of the Baseline condition. The number falls in the range of sizes
of groups our experts compared (section 4.1).

5.1.5 Study Measures

Measuring the quality of a decision or the effectiveness of the decision-making process
is challenging , especially in trade-off analysis where there is no ground truth or an
objective ’best’ solution. We therefore designed four types of study measures that
directly relate to our hypotheses:

• Explanation Quality (H1 & H2): We adapted the Co-12 Explanation Quality
Properties from the AI domain [105] to assess the quality of participants’ expla-
nations (explained in more detail in section 5.1.5.1). We consider the quality of
explanations as a proxy for measuring the quality of comparisons and reasoning
during the trade-off analysis process, based on the assumption that better expla-
nations indicate the extraction of more or more varied correct information from
the comparisons, leading to more informed decisions.

• Trust (H1 & H2): We evaluated participants’ trust in their conclusions by
including self-report questions that assessed their confidence in the decisions
they made. Since trust is a key element in both Hypotheses 1 and 2, gauging
participants’ confidence in their choices provides insights into how effectively the
visualization tools supported their decision-making process.

• Cognitive Load and Satisfaction (H1 & H2): We incorporated the NASA-
TLX Task Load Index [131] questionnaire after each task to capture participants’
cognitive load and satisfaction with the decision-making process. This measure
relates both to H1, which posits that additional visual encodings help compared
to the baseline; and to H2, which suggests that while decoupling visual represen-
tations may increase cognitive demand, it should lead to better understanding
and trust.

5.1.5.1 Quality of Explanation as a proxy for understanding

We drew inspiration from the Co-12 explanation quality properties [105], originally in-
troduced to evaluate the quality of AI-generated explanations. To apply these metrics
to our context, we adapted five of these properties for evaluating the explanations pro-
vided by our participants during trade-off comparisons. The remaining seven properties
we considered either more AI-specific, difficult to extract from our participants’ textual
explanations, or beyond the scope of our study (e.g., controllability, consistency, con-
tinuity, composition), and are thus excluded. The following table (Table 5.1) presents
the adapted metrics we will use to determine the quality of an explanation.
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Property Description for AI
context

Application in Trade-off Analysis

Correctness How faithful the expla-
nation is w.r.t. the
black box

Evaluate whether the justification accu-
rately reflects the reasoning process and the
decision-making criteria

Completeness How much of the black
box behavior is de-
scribed in the explana-
tion

Check if the justification is comprehensive
and includes all relevant aspects of the deci-
sion, incl. the contextual data, the trade-off
criteria & priorities

Contrastivity How discriminative the
explanation is w.r.t.
other events or targets

Determine if the justification effectively con-
trasts the chosen option with other alter-
natives, clearly explaining why one was pre-
ferred over others

Compactness Size of the explanation We use the inverse of compactness to
check if the justifications is detailed and
information-rich

Confidence Presence and accuracy
of probability informa-
tion in the explanation

Look for indications of confidence in the
decision, such as probabilities, risk assess-
ments, or certainty levels expressed in the
justification. We use self-reported confi-
dence

Table 5.1: Explanation Quality Properties from [105] and their Application in Trade-off
Analysis

We explain next how we used these explanation properties to code the quality of
explanations from our user study:

• Correctness: We checked for factual errors in our participants justifications,
whether related to the data or to the trade-off criteria and priorities. All but one
(P15) of our participants’ decisions were aligned with their explanations.

• Completeness: We represent this with the number of unique codes correspond-
ing to data-driven justifications in a response. As we assume that more variety in
codes indicates more variety in comparison approaches which in turn leads to a
more complete explanation that considers all aspects of the data, the trade-offs,
and task goals.

• Contrastivity: We count the number of pairs of arguments in favor of each
group the participant has expressed. The assumption here is that each pair of
arguments in favor of each group shows a consideration for arguments for each
group and thus a contrast between the two groups. Note that we also looked at
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arguments against groups, but to facilitate counting these were inverted: e.g.,
an argument against group B, counts as an argument for group A.

• Compactness: We count the number of assessments or pieces of information
expressed during the explanation. Since these explanations are generated by
humans, we count the number of observations and pieces of information and we
assume that the more there are in the explanation the ‘better’ it is in terms of
details.

• Confidence: We asked participants explicitly for their confidence level using a
7-point Likert scale.

5.1.6 Procedure

Before starting the tasks, we asked participants to self-assess their familiarity with
data analysis and histograms using a 7-point Likert scale. We also inquired about
color blindness to provide them with an alternative color palette if needed.

Task Execution: For each task, participants completed a 15-minute training
session to familiarize themselves with the tool’s functionalities. Following training, they
proceeded with the main task of evaluating the two car bundles using the visualization
tool (15 minutes). Throughout the experiment, participants had access to a reference
sheet that served as a memory aid, containing essential information about the task
(goals and priorities of their boss), as well as details about the tool’s functionality and
visualization features (see sup.material [96]). They then had to justify their choice in
a written statement, providing a detailed assessment of each group’s strengths and
weaknesses, explicitly referencing the data and visualizations.

To capture the reasoning behind participants’ decision-making, they were encour-
aged to verbalize their thought processes using a think-aloud protocol, with their com-
ments audio recorded. The recordings served as a backup for the experimenters in case
the written responses were unclear.

After each task, participants completed the NASA Task Load Questionnaire [131].
At the end of the experiment, we asked participants to rank the three visualizations
from most to least preferred and explain their choices. While explaining their rankings,
participants were given access to the development version of the tool with access to
all techniques and metrics to help them recall the conditions of the experiment.

5.1.7 Participants

We recruited 18 participants aged between 21 and 36 (mean 26.3). All participants
had normal or corrected-to-normal vision, and no participant reported being color blind.
Their mean familiarity with data analysis and histograms were 5.52 and 6.35 respec-
tively (both on a 7-point Likert scale). Our study lasted around 2 hours per participant.
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5.1.8 Apparatus

Participants conducted the experiment on a 27-inch screen with a resolution of 3840
x 2160. The screen was split into two windows; on the right was the comparison tool,
and on the left was a form with the instructions, questions, and answer fields. Sessions
were audio recorded and screen captured.

5.2 Results

We report next on (1) the qualitative analysis of participants’ open-ended responses
as a means to shed light on the data they considered for their comparisons, the quality
of their reasoning as reflected in their explanations, and their self-reported trust in the
decisions they made using the different visualizations; (2) the perceived load associated
with using each of the visualizations; and (3) the tool aspects they found useful for
their comparisons.

Analysis Methodology: We first conducted a qualitative analysis of the open-
ended responses, for example, to understand the types of information used, quality
of explanation properties, the participant strategies, etc. To systematically analyze
the open-ended qualitative data, we used a reflexive Thematic Analysis (TA) approach
[144] in three steps. In a first pass, one author assigned labels (codes) to text segments
(snippets), identifying statements, observations, insights, or subjective assessments
about the data related to the comparison of groups or points. In a second pass, all
coders determined which snippets referred to information used and which to decision
strategies. They also grouped codes to the higher-level semantic categories reported
in sections 5.2.1.1 and 5.2.1.2. Finally, in a third pass, all authors considered how our
codes relate to quality of explanation metrics (reported in section 5.2.1.3). All our
snippets and codes (and the iterative coding passes) can be found in sup.material [96].

We then conducted statistical analysis to compare the means of the different con-
ditions for some of these qualitative codes, as well as self-reporting ratings. Statistical
analysis for mean comparison was conducted using interval estimation [117]. Sam-
ple means of 95% confidence intervals (CIs) are constructed using BCa bootstrapping
(10,000 bootstrap iterations). When interpreting results, a CI of a mean difference that
does not overlap with 0 provides evidence of a difference, corresponding to statistically
significant results in traditional p-value tests. Here we only report on evidence of a
difference (but not the detailed CI values). Analysis scripts and detailed CIs can be
found in supp.material [96] and detailed CIs are additionally seen in Appendix A. For
the qualitative analysis, translated quotations are indicated with a †notation.
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5.2.1 Decision Justifications: Information Considered,
Decision Strategies & Quality of Explanations
[RQ6,7]

We analyzed the open-ended responses that participants provided to justify their deci-
sions in order to characterize their explanations across visualization techniques. Specif-
ically, we identified (i) what information from the visualizations participants refer to
(and thus use) to compare groups of points and justify their decision; and (ii) their
self-reported decision strategies for choosing one of the two data groups being com-
pared. These two aspects will shed light on how group comparisons are made and
what information is crucial that we provide as visualization designers. We then use
this information to (iii) determine explanation quality (see section 5.1.5.1) as a means
to understand how effective participants’ reasoning strategies were with the different
visualizations (H1).

5.2.1.1 Information considered in Comparisons

This first group of codes relates to the types of information participants reported about
the groups they compared and thus used to conduct or justify their comparisons. We
note here that user preferences, in the form of priorities they have and criteria they
try to optimize (max/min) are also part of the information considered, but we report
these separately in "Justification Quality" (section 5.1.5.1), as these are explicitly
given in our tasks as targets for participants. Rather, in this section we coded types of
data-related information participants reported analyzing during comparisons or using in
their justifications. These can inform design guidelines for future trade-off comparison
visualizations.

We coded in total 248 instances (Baseline: 65, DecoupledColors:82, Cou-
pledBars: 101) of data-related information mentioned by participants (see Fig-
ure 5.3), grouped in three major types. These include direct references to data points
or their values at different levels of aggregation, to elements in the visualization that
encode data, or to references to how closely the data aligns with the priorities and
preferences provided in the tasks as goals.

Data References. The most common references to information analyzed and con-
sidered in the comparisons were related to data points or their values at different
aggregation levels:
(C1) - Individual Point analysis: Specific cars/points, outliers, or numerical values
of individual points were commonly considered and/or influenced decisions, 88/248
instances coded (45 for CoupledBars - 27 from one participant, 27 for Decou-
pledColors, and 16 for Baseline).
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Figure 5.3: Types of data-related information considered (C1-C7).

When considering individual participants, in the DecoupledColors and Base-
line more than half of the participants referred at least once to individual points
(11/18 for both). But less than half in the CoupledBars (8/18 ).
(C2) - Data Distribution and Histograms analysis: Observations on the overall dis-
tribution of values for each group or explicit mentions of using the histogram charts
in their evaluation or of observations on the histograms were the second most com-
mon information mentioned, 71/248 instances coded (26 for CoupledBars, 21 for
DecoupledColors, and 24 for Baseline)).

Most participants stated at least once distributions in their decision justifications,
more frequently for DecoupledColors (14/18 ), followed byBaseline (13/18

) and CoupledBars (11/18 ).
(C3) - Average Value analysis: Explicit mentions of average values of the dimensions
being considered and/or influencing decisions were also used, but not as common,
49/248 instances coded (20 for CoupledBars, 15 for DecoupledColors, and
14 for Baseline).

In all visualizations, most participants stated at least once average values as in-
formation influencing their decisions: more frequently for Baseline (14/18 ),
followed by CoupledBars (12/18 ), and finally DecoupledColors (10/18

).

Trade-off Visualization Elements. Participants also often made reference to vi-
sualization components that encode data.
(C4) - Bars analysis: In the CoupledBars condition, several participants referred
to the size of the gray bars in the cell backgrounds (5/101 instances) to justify their
choices. We note that while the bar visual encoding is only available in this condition,
it was only mentioned by a small number of participants (5/18 participants ).
(C5) - Color and Opacity analysis: In the DecoupledColors condition, partici-
pants rarely referred to either the green/white/red color (distance from ideal) or the
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opacity/transparency (weight) to justify their choices (only 2/82 instances). Only two
participants mentioned explicitly comparison of colors (2/18 ).

Relation to task Goals. This category of codes is explicit mentions by participants
about why one group was better than another in terms of how well it aligns with the
preferences given in the task (i.e., the priorities and ideal values).
(C6) -Ideal Values matching: Reference to elements matching the ideal values for
one of the stated priority dimensions was not very common, 21/248 instances (11
for DecoupledColors, 7 for Baseline and more rare, 3 in CoupledBars ).
Even though these references were used only once or twice per participant, several
participants used this justification in DecoupledColors and in Baseline (7/18
participants on both, ), but very few in CoupledBars (2/18 participants, ).
(C7) - Bad value pinpointing: Explicit reference to an element being a bad value
for one of the stated priority dimensions was also used, but rarely as a justification
(12/248 instances). In DecoupledColors there were 6 instances, 4 in Baseline
and only 2 in CoupledBars. In DecoupledColors it was mentioned by 4/18
participants ( ), and only 2/18 participants used this justification in Baseline and
in CoupledBars( ).

Other considerations. We noted a few cases (7 instances, not added in the total)
where participants incorporated additional factors or interpretations beyond the stated
task priorities or the data alone. For example, one participant changed the task goal
as they reasoned that a vehicle with a high odometer might soon break down and
thus likely to be replaced, which would ultimately improve the average miles per gallon
(mpg) of its group.

Summary on Information considered: Participants considered a variety of types
of data in their analysis (Figure 5.3). For the Baseline the data type used in the
justification of most participants was average values and data distributions, but there
were also instances of individual point analysis (close to half of the participants) and
references to values that were close to or far from ideal values. For CoupledBars
the data types used by most participants were distribution analysis, followed by average
values, but less than half used individual point analysis and very few referenced ideal
values. Finally, for DecoupledColors most participants referred to data distribu-
tions, followed by individual points and average value analysis, as well as references
to values that were close to or far from ideal values. We note that references to
visualization-specific elements (bar length and color) were less frequent in the justi-
fications participants provided. Participants’ responses provide more information for



106
CHAPTER 5. EVALUATING VISUALIZATIONS FOR TRADE-OFF

COMPARISONS BETWEEN GROUPS

DecoupledColors and CoupledBars over the Baseline, which can be ex-
plained by the fact that in the latter, access to information was more challenging.
There is also surprisingly more access to information for CoupledBars than for De-
coupledColors, but this is due to one outlier participant - we discuss this more in
our quality of explanation measures.

5.2.1.2 Decision Strategy

This category includes justifications from participants related to the comparison strat-
egy they used, in other words how they made their decision with respect to goals and
priorities of the group comparison task (Figure 5.4). We note here that most par-
ticipants reported one such strategy. In rare cases where participants mentioned two
strategies in their justifications, it generally indicated that they considered two different
strategies but ultimately chose one. Here we provide numbers for the final decision
strategy, but report cases where participants mentioned more than one.

Figure 5.4: Decision Strategy across visualizations. A thick red star (*) indicates
strong statistical evidence that one strategy was more common for Baseline, a thin
red star indicates that this is possible trend also for the case of CoupledBars. All
analysis was done using CI estimation (see Appendix A for detailed CIs).

(S1) - Strong maximization of the priorities: Choosing a group based on its optimal
performance in one or two dimensions, particularly those with the highest priorities.
For example, P11 mentioned during the CoupledBars condition: “ I make my com-
parison taking into account only the mpg and horse power(main priorities)”. Many
participants explained that their strategy was to ignore objectives with lower priorities
and thus exclude them from the comparison. P7 further explains why this exclusion
strategy works well for Baseline: “Much more difficult to make a decision here
[Baseline], having to go through all the data in text”. Beyond excluding low-priority
objectives, participant P17 adds: “The choice in Baseline was made more on the
whole using averages”, highlighting a tendency to simplify the decision-making process
due to the limitations of the visualization.
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In Baseline, the maximization strategy was used by 13/18 participants ( )
and in CoupledBars by 11/18 participants ( ). But was less common in De-
coupledColors and used by 7/18 participants ( ). We note that one participant
in Baseline and two in CoupledBars considered a balanced approach (see next)
but ultimately made a decision that strongly maximized 1-2 top priorities. There is
statistical evidence that the maximization strategy is more frequent in Baseline (and
to a lesser degree in CoupledBars) than it is in DecoupledColors.
(S2) - Balanced approach: Deciding on a group that is not the best for the highest pri-
orities but a very good choice for several lower priority dimensions and not a bad choice
for the strongest priorities. In other words, this is a strategy that considers trade-offs
across many objectives. For example, P10 mentioned while in DecoupledColors:
“Even if group B has a slightly better mpg than group A (based on the histogram),
it doesn’t seem significant and we look at the other priorities. which are all three low
indeed, but the odometer comes first: it’s better in group A. then we look at the price,
better in group A. Then we look at the horsepower, bad in both. Group A seems
preferable”. The balanced approach was most common in DecoupledColors used
by 10/18 participants ( ), but less frequent in CoupledBars used by 6/18 partic-
ipants ( ) and Baseline by 4/18 participants ( ). As above, there is statistical
evidence that the balanced approach is less frequent in Baseline (and to a lesser
degree CoupledBars) than it is in DecoupledColors.
(S3) - Decision by Individual Points or Outliers: Justifying a decision based on the
specific details and anomalies within the data points rather than the overall trends or
averages as a main justification. This was a rare strategy, used by 3 participants in
total, 1/18 in each of the three visualizations ( ). For example, P17 declared in
DecoupledColors: “The taxi that penalizes the mpg in group A already has a
high odometer and may need to be replaced, which will improve the average mpg. In
group B, replacing taxis with a high odometer will penalize the average mpg making
it less attractive. In the long term, group A will, therefore, be better on all criteria”.

Summary on Decision Strategies: For decision strategies (Figure 5.4) there is
statistical evidence that most participants using Baseline tend to adopt strategies
that optimize one or two dimensions with the highest priority in the task. To a lesser
extent, this is true when they use CoupledBars (more than half of participants).
On the other hand, in DecoupledColors their strategies are more mixed, with
more than half adopting a balanced approach.

5.2.1.3 Justification Quality

We now report on the quality of participants’ reasoning as reflected in their explanations
using the five quality measures discussed in section 5.1.5.1.
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1. Correctness: alignment with task goals: We note that ‘Correctness’ [105]
is too strong a term for our comparison tasks, as they have no ground truth and thus
no basis to objectively judge them for correctness. Instead, we captured if participants
explicitly mentioned the task objectives in their justifications, and whether the final
choice they made is aligned with task objectives (similar to the accuracy measure in [16]
discussed in section 2.6.3). By objectives, we mean the priorities (weighted objectives)
and ideal values (min or max of an objective dimension) given as targets in the task.
The low-level codes of this category consider the individual priorities and ideal values
mentioned by participants, but here we report on two higher-level categories:

- Task Alignment: We encoded mentions of how closely decisions align with task
goals (priorities and/or ideal values given as goals) and tagged as aligned choices
that have a justification that follows these goals. Overall participants (18) and for
all visualizations (3), participants understood well the priorities and direction of maxi-
mization/minimization (53/54 codes), with a single exception, discussed next.

- Task Misalignment: We found only one case (1/54) of task misunderstanding,
in other words, statements that indicate that participants wrongly interpreted weights
of objectives (priorities) or ideal values (minimization/maximization). Participant P15
with visualization CoupledBars misunderstood the meaning of the size of the bars,
thus thinking that smaller bars mean better values when it is, in fact, the opposite.

2. Completeness: number of unique context codes in a response: The
higher the completeness, the more unique codes (i.e. codes related to the position
of a group within the bigger context, such as the range, position in a distribution,
distribution of the group, number of solutions they include). This reflects a richer
explanation as participants considered more types of information. In Baseline, the
completeness of participants’ explanations ranged from 0 to 4, with an average of 2.22.
In CoupledBars, the completeness ranged from 0 to 4 unique context codes, with
an average of 2.67. In DecoupledColors, the completeness ranged from 0 to 4
unique context codes, with an average of 2.61. We do not have strong evidence of a
difference across techniques.

3. Compactness: total number of context tags in a response: In our case,
high compactness is equivalent to a lower amount of data-driven information provided
as justifications. Baseline mean was the lowest / most compact; it measured a
total number of context tags that ranged from 0 to 9, with an average of 3.61. In
CoupledBars, the compactness ranged from 0 to 31 context tags (most between 1
and 5, with 3 outliers between 14 and 31), with an average of 5.61. In Decoupled-
Colors, compactness ranged from 0 to 12, with an average of 4.56. We do not have
evidence of a difference across techniques.

4. Contrastivity: number of pairs of arguments pro group A and pro
group B: In Baseline, the contrastivity, represented by the number of pairs of
arguments for Group A and Group B, ranged from 0 to 5 pairs, with an average of
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1.94. In CoupledBars, contrastivity ranged from 0 to 4 pairs, with an average
of 1.44. In DecoupledColors, contrastivity ranged from 0 to 5 pairs, with an
average of 1.33. There is strong evidence that Baseline had indeed the highest
average contrastivity compared to the other two, indicating that participants were
more likely to present arguments for both groups.

5. Confidence: In Baseline, participants’ confidence (or trust), in their de-
cisions ranged from 4 to 7, with an average of 5.6. In CoupledBars, confidence
ranged from 5 to 7, with an average of 5.94. In DecoupledColors, confidence
ranged from 2 to 7, with an average of 5.17.

We have strong evidence that participants were less confident with Decoupled-
Colors than CoupledBars.

We were surprised to see that the self-reported confidence scores are in favor of
CoupledBars (5.93/7 on average) against Baseline (5.6/7 on average). De-
coupledColors is the setting where participants reported the least confidence in
their choice (5.1/7).

Summary on Quality of Explanations: In terms of quality of explanation metrics,
there is statistical evidence of few differences across visualizations. The Baseline
had more contrastivity than the other two visualizations. In terms of confidence and
trust, contrary to H2 participants were less confident with DecoupledColors than
CoupledBars. This is contrary to our hypothesis H2, where we had hypothesized
that decoupling of priorities and ideal values would lead to a higher ‘understanding’ and
awareness of how each metric impacts the trade-off solutions and thus more confidence
in one’s decisions.

5.2.2 Perceived load - NASA TLX [RQ6,7]

We report next on the NASA TLX questionnaire results filled out by participants, as
a measure of how demanding they found the tasks using the three visualizations. All
questions are Likert scale items out of 21 (see Figure 5.5).

Mental Demand. We see that CoupledBars has the lowest mean (10.72), and
there is strong evidence that it was perceived as less mentally demanding compared to
both Baseline (13.5) and DecoupledColors (13.28).

Physical Demand. As expected, physical demand was low for all tasks as they do
not require any particular physical effort.
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Figure 5.5: Mean values for the different categories of the NASA TLX questionnaires.
Thick circled stars (*) indicate strong statistical evidence of a difference, and thin
circles a trend. All analysis was done using CI estimation (see Appendix A for detailed
CIs).

Temporal Demand. No evidence of a difference, with mean temporal demand being
slightly lower for CoupledBars (5.33), followed by Baseline (5.89) and Decou-
pledColors (6.33).

Performance. There is possibly a trend for mean performance in CoupledBars
(14.39) to be higher than Baseline (13.06) but no other evidence of a difference.
The mean for DecoupledColors (13.44) was between the two.

Effort. The CoupledBars has the lowest mean (9), and there is strong evidence
that participants felt it required less effort compared to both Baseline (11.72) and
DecoupledColors (11.83).

Frustration. Once again CoupledBars shows the lowest mean (4.17), and there
is strong evidence that it caused less frustration compared to both DecoupledCol-
ors (8.78) and Baseline (8.94).

Summary on Perceived Load: When considering the results on perceived load
(Figure 5.5), CoupledBars consistently exhibit lower mean values for mental de-
mand, as well as requiring less effort and causing less frustration. Baseline and
DecoupledColors exhibit similar means across all metrics. Our results partially
validate hypothesis H1: although indeed CoupledBars reduced mental load com-
pared to Baseline, DecoupledColors did not. The results also validate H2
that decoupling priorities and ideal values would lead to a higher mental load, as
DecoupledColors was perceived as more mentally demanding compared to Cou-
pledBars.
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5.2.3 Visualization Preferences and Qualitative Feedback

After the completion of the tasks, we asked the participants to rank the three visu-
alizations based on preference (see figure 5.6) and explain their ranking. The results
show that CoupledBars was the most preferred visualization, with 10 participants
ranking it as their most preferred choice. DecoupledColors was the second most
preferred visualization, with 8 participants ranking it as their most preferred choice.
Baseline was by far the least preferred visualization, with 0 participants ranking it
as their most preferred choice.

Figure 5.6: Participants’ ranking of the visualizations

These results show that participants clearly prefer the visualization of trade-off met-
rics compared to the Baseline that only includes textual data (and histograms). As
P7 mentioned Baseline: “Much more difficult to make a decision here [Baseline],
having to go through all the data in text”. And P17 adds that: “The choice in Base-
line was made more on the whole using averages”, highlighting a tendency to simplify
the decision-making process due to the limitations of the visualization.

Slightly more participants preferred the coupled CoupledBars over the decou-
pled DecoupledColors (10/18). The participants who preferred CoupledBars
generally found them easier to read. One such participant (P11) explained: “The color
representation greatly overloaded the reading of the data. The fact of having two dis-
tinct variables (color and opacity) to represent the priority and the ideal value did not
facilitate handling. The representation of the relationship between priority and ideal
value in the form of a single variable (the gray bar) was easy to use for me”.

Nevertheless, there were several participants who preferred DecoupledColors
(8/18). They felt it made outliers and discrepancies with their goal stand out. For
example, (P10) mentioned “The DecoupledColors is ideal for me with the colors
that greatly facilitate comparison and allow you to see the big differences directly...”.
Another (P1) commented on the intuitiveness of the representation: “ I found the color
and opacity combination very helpful in the analysis –the green to red scale is very
intuitive, as is the scale from very solid color to nearly transparent. That aligned
well with how I was already interpreting the decisions”. Some of these participants
commented on how (compared to colors) with CoupledBars they had “difficulty
assessing what the maximum of the bars corresponds to” (P9).



112
CHAPTER 5. EVALUATING VISUALIZATIONS FOR TRADE-OFF

COMPARISONS BETWEEN GROUPS

5.3 Discussion and Limitations

Gleicher’s et al. foundational work and our own interactions with domain experts
allowed us to reflect on how their definition can be extended for comparisons for trade-
off analysis. Our work underscores the relational and contextual facets highlighted in
[101], but requires the addition of the trade-off context, represented by the user’s goals
and expressed as criteria and priorities (and the direction of their optimization). It also
underlines the need to consider groups of points as the elements to assess, in terms
of their differences and similarities over a multidimensional space (relative assessment
between elements) and their position in the dataset (in a data-derived context).

Understanding what are the crucial elements that constitute the contextual facets
that support this comparison is one of the contributions of our work. In our video
analysis and workshop with expert users, we were able to identify, captured as key
requirements, high-level elements in the form of metrics, levels of data detail, data
ranges, and ranking. We explored how to visualize a set of these contextual factors
in two design workshops, and our subsequent user study allowed us to investigate how
concrete representations of these elements are used.

User study results and discussion. Next, we revisit our user study results with
respect to our hypotheses. We hypothesized (H1) that trade-off specific visualizations
would aid comparisons. This hypothesis was only partially confirmed. We chose as our
baseline a tabular visualization that already provides elements to help comparisons, such
as means, weighted scores, and dimension histograms. It was clear from participant
preferences that such a visualization is not preferred; it was never their top choice
for their task, and their comments highlighted how it made their comparison task
difficult. Nevertheless, when looking at other measures captured in our study, the
difference between the baseline and the trade-off visualization does not come across
so strongly. In quality of justifications, the baseline had more contrastivity than other
visualizations; in other words, participants tended to discuss pros/cons of their decisions
more. It is possible this is because participants had a hard time making a choice. And
when it comes to mental effort, it was only considered worse than only one of the
trade-off visualizations (bars). Finally, confidence and trust in participants’ decisions
were not lower than the trade-off specific visualizations. This indicates that while
dedicated trade-off visualizations are preferable, simpler tabular visualizations are still
an effective representation as long as they provide context (histograms) and metrics
(weighted scores and means).

We also expected H2 that decoupled visualizations (colors in our case) would
provide access to more information and lead to higher quality and trust, but also
higher mental load than coupled visualizations (bars in our case). One part of our
hypothesis was confirmed; decoupled colors were indeed more mentally demanding
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than bars. Nevertheless, other aspects of our hypothesis were disproved. We found
no evidence of higher quality of justifications, and most surprisingly confidence in the
decisions was, in fact, lower with colors. It is hard to explain this lower trust. Given our
original hypothesis, it is possible that some participants captured in colors the subtleties
of trade-offs better, thus understanding that there was no clear "best" choice in our
datasets and were thus less confident in their answers. Participant comments (from
the ones that preferred colors) often highlighted that they had difficulty interpreting
the coupled bar, and it was in this condition that we encountered the only case of a
participant that misunderstood the meaning of a visualization. As our tasks do not
have a ground truth, we rely on the quality of justification measures as a proxy to
capture understanding. Nevertheless, we do not have evidence for differences between
techniques for most metrics. This may be either because our introduced measures are
not sensitive enough to capture understanding, or because the effect does not exist or
is small.

Our initial results found that bar visualizations with a coupled metric (similar to that
proposed in prior systems [132]) are best in terms of mental load and not worse than
any of the other visualizations in other measures. Nevertheless, participant preferences
were almost divided between bars and colors (10 vs. 8) do not shed light on this
question. It was interesting to note mixed reactions to the color visualization; a big
chunk of participants who preferred it explicitly commented on how it was very intuitive
to understand the different metrics. Whereas participants who preferred the bars
explained how colors were hard to understand and occasionally overwhelming, and
bars were easy to use.

The justifications for our participants’ final decision also hint at differences in the
types of strategies the visualizations support. We see a statistical trend in the baseline
tabular visualization (and to a lesser extent, the coupled bars) for most participants to
adopt decision strategies that optimize one or two criteria only (what we refer to as
strong maximization of priorities). Whereas in the decoupled colors, we see more varied
strategies from the same participants, where balanced optimizations across all criteria
are more frequent. It is possible that colors may better support balanced decision
strategies, but this remains an open question. A more interesting question that emerges
is whether specific visualizations promote some decision strategies more than others
and can thus influence decision-makers. Our results suggest this is indeed the case
for the baseline, where most decisions were strong maximization of few priorities and
should thus be avoided if balanced decision strategies are important.

Limitations and future work. We acknowledge that our experts deal with complex
datasets often derived from models of biological processes. There are clearly every-
day trade-off comparison tasks that involve fewer criteria and data points, possibly
fewer needs in terms of contextual facets, or are simple choice tasks between elements
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(rather than groups). In our workshops, we were careful in our choice of datasets and
tasks to ensure they reflect what we observed from domain experts. More challenging
comparison tasks are possible, such as when comparing then merging groups of points
to create a new one, and when decision-makers need to observe the complementary of
individual points within a group (section 4.1.4). However, our user study focuses on
comparison tasks that are perhaps less challenging but more common as we saw from
our expert and design workshops. It is also possible the datasets, tasks and even
the inspirational material influenced the generated visualization designs that inspired
our prototype. Nonetheless, given how the design requirements align with those that
experts expressed, we feel confident in the identification of what our visualizations need
to provide.

Our visualization prototype supports several possible ways to combine trade-off
metrics and visual encodings. In an effort to keep our study duration reasonable
(trade-off analysis is complex; each session lasted ≈ 2h), we limited the number of
variations to test in practice to three: one driven by frequent designs appearing in our
workshop (decoupled colors), one from the state of the art (coupled bars), and one
that we consider a usable baseline. This resulted in a limitation of our user study:
we compared a mix of metric coupling and visualizations (bars with coupled metrics
and colors with decoupled). We are thus not able to study in isolation the effect of
coupling. It is thus possible some of our results, e.g., higher mental load in decoupled
colors, are more due to the visual encoding than the metric coupling. Clarifying this
question remains future work.

5.4 Conclusion

Comparison is an important task in multi-criteria decision-making. Although prior
work has considered the comparison of individual points, comparing groups of points
remains an open challenge. To better identify user needs for comparisons of groups, we
conducted a workshop with experts that provided valuable insights into how trade-off
comparisons are conducted and what support visualizations need to provide. As existing
visualization tools do not support comparisons of groups, in the previous chapter we
conducted two design workshops that in turn inspired the implementation of a prototype
to support group comparisons.

As we had to consider several design decisions about how to present trade-off met-
rics, we evaluated two trade-off metric visualizations against a baseline. One of the two
visualizations used color and decoupled the trade-off metrics, mapping one (weights)
onto opacity and another (distance to ideal) onto color hue. The other visualiza-
tion used bars to encode trade-off metrics and coupled both metrics, mapping them
onto one single visual encoding - bar length. Our findings show that the visualization
separating different trade-off metrics (colors) leads to higher mental load and lower
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self-reported trust but may support more varied decision strategies than more inte-
grated visualizations like bars. But both visualizations encoding trade-off metrics were
preferred over a baseline that provided simple distribution visualizations (histograms)
and weighted scores in textual format.

In our work, we focused on explicitly designing a prototype for conducting group
comparisons and tested variations of trade-off metric visualizations. It is clear that
such support needs to be integrated within a broader trade-off analysis workflow where
analysts do not only compare but also explore their data to understand what trade-
offs exist and set or refine their priorities. Our comparison prototype supports the
refinement of priorities and the adjustment of importance (weights) but it is not a
full exploration system. Rather, we see its use as an on-demand feature available
within a larger visual analysis system (e.g., our tool from Chapter 3 [97]) the moment
analysts need to compare specific solution spaces. Our analysis of expert needs suggests
these moments of explicit comparisons exist and are often involved in making crucial
decisions. Nevertheless, how to integrate these features without disrupting the analysis
flow, and understanding how they will be used by domain experts in longer analysis
sessions, remain future work.
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6
Discussion, Future Work and

Conclusion
We next summarize this thesis and thesis statement, discuss future work and conclude
with some closing remarks.

6.1 Summary

Trade-off analysis is a complex process, particularly in domains such as agronomy,
where decision-makers need to balance multiple, often conflicting objectives such as
environmental sustainability, crop yield, and resource efficiency. Experts need effective
tools to support them as they navigate these multi-criteria decision-making scenar-
ios. This thesis addresses that need, focusing on both provenance visualization and
comparison visualization techniques to enhance decision-making in these contexts.

This work has three main contributions: (i) understanding how provenance can
support visual trade-off analysis conducted by domain experts in agronomy, (ii) ar-
ticulating high-level design and visualization needs to support group comparison in
trade-off scenarios in this context, and finally (iii) understanding how different visu-
alizations can affect comparisons and decision-making in trade-off analysis. After an
introductory chapter and a chapter on related work, the thesis details these three main
contributions.

We first conducted a study on analytic provenance visualization to better support
trade-off analysis. Provenance gives analysts the ability to track and recall the steps
taken during an analysis which is crucial in trade-off tasks where experts need to re-
visit their decisions and the paths they followed over time. The 3rd chapter of the
thesis investigates how analytic provenance mechanisms can assist experts in recalling
and tracking complex trade-off analysis. We developed VisProm, a web-based system
integrating in-visualization provenance views to help experts track trade-offs and their
objectives when exploring complex simulation results. Through observation sessions
with three groups of experts analyzing their own data, we make the following contribu-
tions. We first, identify eight high-level tasks that experts engaged in during trade-off
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analysis, such as locating and characterizing interest zones in the trade-off space, and
show how these tasks can be supported by provenance visualization. Second, we refine
findings from previous work on provenance purposes such as recall and reproduce, by
identifying specific objects of these purposes related to trade-off analysis, such as in-
terest zones, and exploration structure (e.g., exploration of alternatives and branches).
These objects answer the question, "What does the analyst want to X?" (where X cor-
responds to one of the purposes for provenance as defined by Ragan et al. [31]).Thus
provenance objects give a deeper understanding of the analysts’ intent during explo-
ration and should be considered when designing provenance views for trade-off analysis.
By incorporating these objects, the design can move beyond just recalling steps and
help support more sophisticated decision-making tasks. Third, we discuss insights on
how the identified provenance objects and our designs support these trade-off analy-
sis tasks, both when revisiting past analysis and while actively exploring. Finally, we
identify new opportunities for provenance-driven trade-off analysis, for example related
to monitoring the coverage of the trade-off space, and tracking alternative trade-off
scenarios.

Building on the outcomes of our provenance work, we conducted a follow-up study
on comparison visualization to further support trade-off analysis. Comparison is a
fundamental element of trade-off decision-making, especially when experts are faced
with groups of solutions or simulation results representing different outcomes. To bet-
ter understand the needs for comparison visualization in this context, we organized
three workshops with domain experts and expert users. These workshops revealed
the critical role of visualizing relationships between solution sets and how comparisons
help prioritize different trade-offs. Then, using insights from these workshops, we held
two additional design workshops with HCI and visualization experts, where partici-
pants developed designs for comparison tools. From these explorations we contribute
high-level design and visualization needs to support group comparison in trade-off sce-
narios which lay the groundwork for developing effective visualization techniques for
comparing groups that represent different trade-offs in terms of what objectives they
optimize. These interactive visualizations encode and visually communicate experts’
priorities in terms of objectives, the notion of ideal solutions, and how far current
groups of solutions are from those ideals.

From these designs, we implemented comparison visualizations in a prototype tool.
We chose two to evaluate more closely: DecoupledColors and CoupledBars. Decou-
pledColors separates trade-off metrics visually, allowing users to see how solutions
perform across distinct objectives, while CoupledBars integrates these metrics into a
single, holistic view that simplifies comparisons. In a user study, we evaluated the
effectiveness of both visualization approaches in terms of several metrics, such as qual-
ity of explanations to justify decisions, trust, and mental load. We first characterized
the types of information participants used for making comparisons. In addition, our
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results showed that DecoupledColors, while it increases the cognitive load on users,
enables diverse decision-making strategies. In contrast, CoupledBars reduces mental
load and fosters greater trust by simplifying the comparison process, though it may
lead to decision strategies that favor fewer criteria. Both visualizations, however, were
preferred over scenarios without any visualization of trade-off metrics, emphasizing the
importance of providing visual representations of trade-offs to support decision-making.

Collectively, our work shows that visualizations can aid trade-off analysis, our thesis
statement. In particular, we show that additions to traditional visualizations (like
scatterplots or tables) in the form of in-visualization provenance or visual indicators of
trade-off metrics can support several trade-off tasks.

In the following section, we conclude this thesis by discussing the implications of
these previous findings for the use of provenance and comparison visualizations in the
context of trade-off analysis. We also highlight future opportunities for enhancing
trade-off analysis through visualization and the potential to further improve experts’
decision-making in trade-off analysis.

6.2 Future perspectives

In this thesis, we explored the design and implementation of visualizations to support
trade-off analysis, a specific type of data analysis characterized by complex solution
spaces, conflicting optimization objectives and changing user preferences. This section
reflects on the key challenges we encountered during this research, how some of these
challenges were addressed, and the potential avenues for future work.

6.2.1 Tracking Conflicting Objectives and Evolving User
Preferences in Extended Exploration Sessions

Trade-off analysis requires balancing user preferences across dimensions to minimize
or maximize, that may be conflicting. The priority of these preferences may evolve
throughout the exploration process as the analyst gains deeper insights into their data,
considers alternatives, and may re-calibrate their vision of ideal solutions, becoming
more realistic, conservative, or liberal with their constraints. In our experience and in
reports from past work with domain experts [5, 97, 112], trade-off exploration sessions
have varied in length from minutes to hours, and sometimes extended over multiple
consecutive days or spread out over time, leading to the generation of large, complex
log files.

These observations guided our decision on which aspects of the trade-off analysis to
track, referred to as provenance objects in Chapter 3. Provenance objects are defined
as key elements of the trade-off analysis process or the data records that participants
were primarily interested in during their analysis. Although we identified eight such
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objects at different abstraction levels, in our work we only implemented those at a
low analytical level, such as view and query selections (e.g., interest zones, exploration
structure and steps, focus and priority, coverage). While this approach sufficed for
shorter exploration sessions and aligned with our goal of creating simple in-visualization
provenance views rather than external rich summaries, there remains a need to define
and track higher-level provenance objects for longer, more extended sessions. These
could include provenance objects related to insight actions (e.g., data semantics and
origin, annotation, verification, and validation), preferences (e.g., shifting of priorities
over time), or meta-actions (e.g., exploration approach).

Tracking and visualizing provenance data related to low level exploration actions is
relatively straightforward and currently well-supported in interactive systems. However,
capturing provenance at higher abstraction layers presents more challenges, despite
advances like automated data insights [120]. This highlights the need for further
research into detecting insight actions, exploration structures, and higher-level tasks
such as group comparisons, and exploring how to visually summarize them, whether
in-situ, ex-situ, or through a combination of both.

6.2.2 In-situ, Ex-situ or Hybrid Visualizations of Trade-off
Analysis Provenance

In our work, we chose simple in-situ visualizations of provenance for two main reasons.
First, to ensure provenance information was not overlooked during exploration (and to
gather data on provenance usage in our observational study). And second, we assume
that if these simple views prove useful for trade-off analysis, more advanced provenance
views could be explored in the future. We confirmed the usefulness of simple in-situ
visualization in our observational study described in Chapter 3, as it helped our experts
recall, replicate, recover, reflect upon, and present different aspects of their exploration.

Furthermore, more user studies are needed to compare the effectiveness of different
provenance layout configurations. Not only as integrated in-situ views within the main
trade-off analysis visualization (that we have studied so far), but also as separate views
or a combination of both (hybrid).

In-visualization Provenance: Future work could investigate richer provenance views
that incorporate more aspects of provenance, particularly those related to higher ab-
straction levels, such as insight and meta-actions. The challenge that we are faced
is balancing what information is crucial to add, given that in-visualization views add
clutter and compete with the main visualization the experts are focusing on.

Research on visual saliency for data visualizations (e.g., [87]) can inform future
work on how to render in-situ provenance views. We may follow their recommendation
to enhance the visibility of provenance views when significant information emerges,
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such as major shifts in optimization priorities or indications of bias [41]. In contrast,
less salient visualizations can be used by default avoiding distraction from the main
analysis tasks and ensuring they do not break the workflow [19, 42].

Separate Provenance Views: A separate view layout can consist of a main trade-
off analysis view where primary trade-off analysis tasks occur, such as minimizing and
maximizing, ranking and prioritizing, and combining interest zones and dimensions.
And secondary provenance views to display provenance information at both low and
high levels, that are either seen at a side window or available on demand. Existing work
on visualizing branching and decision-making in sensemaking tasks, as shown by Heer
et al. [61], could be used to display provenance information in separate views dedicated
to, for example, assisting experts in tracking the evolution of their preferences, such
as in a tree structure [138] or a timeline visualization [116]. Insights from storytelling
[24] could make summary visualizations of long trade-off exploration session data more
engaging.

Hybrid Layout: A hybrid view layout can include both in-situ and separate views
of provenance. In-situ visualizations could be used to display coverage, as our work
revealed that coverage provenance information was frequently consulted during the
analysis for recall. In contrast, visualizations for branching could be moved or offloaded
to a separate view, as they are likely to be consulted less frequently. This separate view
would also be suitable for exploratory analysis with high-level provenance purposes in
mind, such as for meta-analysis or when reflecting on the exploration approach prior to
handover. Our findings suggest what information can be shown on what view (during
vs. a-posteriori). But it remains future work to empirically confirm the choice of what
provenance information needs to be provided in-situ and what should be available on-
demand. And to study how analysts integrate the different sources of provenance
views.

Existing work from various domains can guide the choice of provenance layout con-
figuration, whether in-situ, separate, or hybrid, as well as inform the design and evalua-
tion of provenance views: For example, the field of Multiple Coordinated Views (CMV)
[55, 150] can provide insights into how to effectively link the main trade-off analysis
view with the provenance views, possibly through a specialized form of brushing and
linking. It can also help evaluate the impact of multiple-view patterns, which Chen
et al. [150] define as composition (which quantifies the types and numbers of views),
and configuration (which characterizes the spatial arrangement of view layouts in the
display space). Applying though these approaches to provenance views needs to be
done with caution taking into account the context of user interactions: e.g., when a
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user makes a selection, should this be reflected to other views of the main visualization,
to provenance views, or both.

6.2.3 Evaluating the Effectiveness of Trade-off Analysis
Tools

Trade-off analysis is characterized by open-ended exploration, multiple paths and branches,
and the subjective nature of expert preferences. Ideal solutions or decision choices are
typically not known in advance. Even final choices (ex., in comparison) may only be
relevant or preferable to the specific analyst, reflecting their expertise along with their
subjective preferences and priorities. Evaluating the effectiveness of trade-off analysis
tools is therefore challenging, as there is no definitive “ground truth” to assess against.

Additionally, extra visualizations or metrics, such as those for provenance and trade-
off metrics (used in our work on group comparisons), can aid users in tracking con-
flicting objectives and shifting preferences or quickly comparing groups of solutions.
However, these additions may also increase display clutter and the associated mental
load for users.

In our work, we employed a combination of qualitative and quantitative methods
to assess the effectiveness of our visualization technology probes. Given that our re-
search questions were open-ended and exploratory for the first work investigating the
role of provenance in trade-off analysis, we adopted a qualitative study methodology.
We conducted thematic analysis [142, 143, 144] of video recordings from exploration
sessions with domain experts, and utilized qualitative feedback and quotes from par-
ticipants to characterize their use of provenance and support our findings. Coding
provenance events from video recordings, even with a think-aloud protocol, proved
challenging, as experts did not always articulate their use of provenance explicitly; they
were more focused on the primary task of trade-off analysis than on the secondary task
of provenance tracking.

Even though it was challenging to conduct and analyze, this type of user study
is extremely fruitful and informative. Alongside the rich findings on trade-off analysis
tasks and the provenance objects identified in our study (Chapter 3), we were also able
to highlight several trade-off specific opportunities for various provenance purposes,
including recall, replication, meta-analysis, representation, and collaboration (see Sec-
tion 3.3.4). Importantly, the results of this work informed our subsequent project on
visualizations designed to support trade-off comparisons within groups (Chapter 5).
We are certain these broad findings would not have been possible in a more controlled
user-study setting.

For our study of how to support trade-off group comparisons, our research questions
focused on evaluating three visualization methods. Thus, we employed a controlled
user study method, measuring the effectiveness of the compared visualization through
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user understanding, trust in decisions, and mental load. In the absence of ground
truth, we used the quality of explanations participants provided for their choices as
a proxy for their understanding of the data and trade-offs. To evaluate the quality
of explanations, we adapted metrics from the field of explainable AI [105], including
correctness, completeness, contrastivity, compactness, and confidence, while excluding
metrics relevant only to AI. We assessed trust and mental load using the NASA TLX
questionnaire [131].

Nevertheless, we were unable to identify differences across visualizations in terms
of quality of explanations (even though there were differences in strategy and mental
load). As we discussed in Chapter 5 it is likely these measures are not sensitive
enough to measure differences in quality between different trade-off visualizations.
We considered other effectiveness measures, such as response time, but ultimately
decided against it, as quick decisions do not necessarily correlate with sound choices.
For instance, a participant might randomly select a response, and since each solution
is a valid alternative in a trade-off dataset, we cannot distinguish this behavior from
that of someone who makes quick but informed decisions.

Another possible evaluation measure is the consistency of answers with respect
to original preferences [34]. However, this is harder to evaluate in our context, as
again, our trade-off datasets lack a ground truth. Consequently, any choice can be
valid as long as the participant can justify it and the justification aligns with their
interpretation of the indicated trade-off preferences. From our observations, when
given a set of trade-off preferences, participants tend to either strongly maximize the
few objectives with the highest priority or consider less prioritized dimensions, striving
for a balance among all objectives. Both strategies are valid as long as the participant
makes a purposeful choice and can justify it.

In our work, we consider that human expertise and judgment are crucial for decision-
making, and thus other evaluation metrics, such as user satisfaction with decision
outcomes, could also be used. Longitudinal studies could be conducted to investigate
the long-term outcomes of trade-off analysis, and the impact visualizations can have
on them. For example, our study in comparisons indicated that different visualizations
may favor different decision strategies: a simple table with histograms and scores (and
to a lesser degree bars) favors a min/maxing strategy. Future work could investigate if
analysts can chose visualizations according to the type of strategy they want to adopt.

6.2.4 Visualization of Gain and Loss

If we consider that comparison in general data exploration is a way to characterize the
relationships between datapoints [101], then in trade-off analysis it is also a way to
assign value to the datapoints according to the trade-off preferences of the analyst. In
other words, instead of just finding differences and similarities, we also find pros and
cons between datapoints. Pros and cons for the solution entail a gain or a loss when
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selecting one solution over another. In the context of the optimized (Pareto front)
dataset our experts explore, each solution represents a gain in at least some aspect
compared to all the other solutions and a loss in other aspects.

Gain and Loss: In fields such as behavioral economics, this idea of weighing gain
versus loss to make decisions has been discussed in terms of a mathematical metric for
decision-making in the context of mixed gambles. A mixed gamble is a decision or bet
that involves both potential gains and potential losses. It is often used in the context
of decision-making under uncertainty and prospect theory [15, 79].

Given that each trade-off solution represents a gain and a loss in some aspect
compared to all the other solutions, we could argue that mixed gambles are a good
way to represent trade-off analysis. The only difference is that in trade-off analysis,
the odds are not necessarily random. For example, there may be an inverse correlation
between say fertilization amount and crop yield, thus a set of decisions that lead to a
high gain in one dimension will necessarily lead to high loss in another.

In our work on the comparison of groups of trade-off solutions, we have touched
on the idea of gain and loss by visualizing how each solution relates to the ideal point
of the experts. But we could imagine a system where the comparison would not be in
relation to a theoretical ideal point, but between a selected point from the data and
all the other points, or between different alternative compositions of a solution group
that the analyst composes by adding or removing points.

Future work could investigate how such real-time interactive quantification and
visualization of gain and loss associated with each alternative affects the process of
trade-off analysis. In addition, such visualizations could be studied in tasks where
analysts are trying to compose a group of solutions, merging datapoints across different
groups (a comparison task we identified but did not study). When composing a solution
group, gain and loss indicators could be used to help experts make better groups,
showing them in real-time how the composition of the group affects the strengths and
weaknesses of the group as a whole.

Ranking Systems: Another avenue for future work is to test different ways to rank
the alternatives other than just the weighted means used typically. For example, the
Elo rating system, traditionally used in ranking players in competitive games [88], could
offer a novel way to model and quantify the relative strengths of different trade-off
solutions in multi-criteria decision analysis, similar to what has been done in other
applications [66, 69]. In the Elo system, each solution can be assigned an initial score,
which adjusts dynamically as solutions are compared to one another, based on their
strengths in different criteria. For instance, when two solutions are compared, the one
with a perceived advantage in a particular criterion (e.g., higher MPG) gains points,
while the other loses points, reflecting their relative performance on that criterion.
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This could even take into account the analyst’s priorities in the dimensions and assign
a different amount of gained or lost points depending on how important the dimension
is. Over time, this approach could provide a ranking of solutions based on how often
they “win” in specific comparisons across various criteria.

Applying the Elo system to trade-off analysis would allow decision-makers to iter-
atively compare solutions and see real-time adjustments in rankings, providing insight
into which solutions consistently perform better across multiple dimensions and trade-
off priorities. This could also help quantify the degree of gain or loss in each decision,
aligning with the concept of mixed gambles from behavioral economics.

6.2.5 Integrating Provenance and Comparison to Support
Trade-off Analysis

In this thesis we designed two prototypes in an attempt to study how visualizations for
provenance and group comparison can improve trade-off analysis. They were designed
and implemented as two separate tools. In this section we discuss possible future work
to integrate both tools in a single trade-off analysis workflow.

We can imagine such a workflow to be SPLOM based, like VisProm(described in
section 3.1). As such users can select groups of points from a scatterplot, and navigate
through the SPLOM for an overview of the data context. Then, when important
solution groups are identified (as we observed in our study with experts), users can
decide to view these selections in a dedicated comparison view, such as the prototype
described in section 4.3. Each selection will then be presented in a floating table
together with the control sliders to express the users’ preferences and priorities per
dimension. We note that our experts often revisited the tabular view of their data in
the SPLOM based exploration VisProm (some keeping it always visible on the side).
It thus seems natural to combine them. But it also raises the question if this switch
of visual representation between comparison and exploration breaks the analysis flow.

Conversely, the comparison of trade-off solutions could benefit from provenance
visualization, as analysts need to track the trade-off preferences they used in their
comparisons and how those preferences evolved over time. Tracking the solutions that
were compared is also important to assess data coverage (an important task as we
identified in Chapter 3) and ensure that experts have sufficiently explored potential so-
lutions that align with their trade-off preferences. Visualizing the trade-off preferences
behind each comparison could help inform experts of the goal of each selection and
provide insight into how their priorities have shifted throughout the process.

6.2.6 Collaboration in Trade-off Analysis

In agronomy, many trade-off tasks require collaboration between experts from different
fields [112], each contributing to the analysis with their own expertise and priorities. In



126 CHAPTER 6. DISCUSSION, FUTURE WORK AND CONCLUSION

our work, even though most of the exploration sessions we conducted were with pairs
of experts, we did not study how the experts collaborated in their exploration process,
nor how we could design tools to support this collaboration [119].

We have, however, identified a number of opportunities for future work in this area.
For example, we have noticed that when in pairs, experts would naturally fall into one
of two roles: one that leads the interaction directly manipulating the tool and the
other that takes notes and asks questions or makes suggestions. While this may be an
artifact of our study setup (single display and mouse), prior work using a shared larger
display identified similar behavior [112].

Literature on asynchronous collaboration based on note-taking and knowledge
graphs [76, 148] has commented on how colleagues report on their findings and ex-
plain during hand-off the sources they have already explored. Since this literature aims
to support hand-off situations, the reports made with the tools and techniques they
propose often contain the insights from the exploration and their provenance. This
could help even in synchronous collaboration for complex subjects and situations, like
trade-off analysis, where the exploration sessions are separated by long spans of time,
and analysts need to get back up to speed at the start of each session on what has
been done.

Future work could also take advantage of the advances in the field of generative
AI and research on Large Language Model (LLMs), and use such models to support
the exploration by summarizing for example. In their work, Zhang et al. [141] test
various models for the summarization of news against human freelance writers and find
that the performance of the models are comparable to the human writers and better
on some aspects like objectivity. It would be worthwhile to see if such summarization
could help analysts recover key information before resuming past explorations.

We could imagine, for example, a system that uses the auto transcription of the
discussions between the experts and LLM models to extract information about the
trade-off preferences of the experts and how they evolve over time, as well as the
different strategies they use to make comparisons, in a non-intrusive way. During the
exploration, this approach could provide experts with real-time notes and summaries of
their discussions and decisions, potentially helping them keep track of their exploration
steps. And after the exploration, it could provide a summary of the analysis process and
the decisions that were made, which the experts could revisit or present to collaborators
in a hand-off or reporting situation for example. While this is a promising avenue of
research it also poses the question of whether the summaries provided, especially if not
accurately reflecting the choices made, may themselves influence the outcome of the
analysis.
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6.3 General Conclusion

In this dissertation, we have presented a series of studies aimed at understanding the
visualization needs of experts engaged in trade-off analysis, a complex data analysis
process focused on balancing and prioritizing objectives. Our findings demonstrate
that provenance visualization aids experts in navigating complex and long trade-off
analysis sessions and in recalling past findings and exploration processes. We have
also identified key objects related to provenance purposes that we hope will help fu-
ture visualization designers make more informed designs. Experts also expressed their
appreciation of the additional support that our provenance visualization provided in
their trade-off analysis tasks. Additionally, our research shows that in the context of
group comparison, visualizations that highlight how each solution relates to trade-off
preferences, aids the comparison of groups and can reduce mental load. And are always
preferred over a visualization that does not provide such visual trade-off indicators. It
also indicated that the choice of group visualization could influence experts’ decision
strategies, favoring strategies that focus on optimizing fewer objectives, or conversely
supporting a variety of strategies. This underscores the importance of carefully consid-
ering design choices in comparison visualizations to effectively support trade-off analysis
and decision-making. These results enable us to confidently say that, in accordance
with our thesis statement, visualization can indeed support experts in their trade-off
analysis tasks. We hope our work inspires further research in trade-off analysis with
its unique challenges and proves valuable in designing tools that assist experts in their
decision-making, especially when the path to a good solution is unclear.
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Detailed Statistical Results - Chapter 5

Visualizations to support trade-off comparisons
between groups

This document presents detailed inference results (CI), organized in relation to the sections of 
the paper. We report CIs as mean [lowerBound : upperBound]

Statistical analysis for mean comparison was conducted using interval estimation. We report 
sample means and 95% confidence intervals (CIs), which means we are 95% confident that this 
interval includes the population mean. All CIs were constructed using BCa bootstrapping
(10,000 bootstrap iterations). We additionally report the CIs of mean differences to compare 
different conditions.

When interpreting results, a CI of a mean difference that does not overlap with 0 provides 
evidence of a difference, corresponding to statistically significant results in traditional p-value 
tests. Equivalent p-values can be obtained from CI results following [Krzywinski and Altma, 
2013]. Nonetheless, CIs allow for more subtle interpretations: the farther from 0 and the tighter 
the CI is, the stronger the evidence.

Analysis scripts in R can be found in supp.material for regenerating these graphs and results 
(see the link provided in Chapter 5).
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7.1.2 Decision Strategy

We compare the number of different decision strategies (MinMax, Balanced, Other) across
visualization conditions. All CIs are normalized between [0-1], showing the mean (and their
differences) of participants adopting a strategy normalized over all participants (18).
As these are not balanced samples, we used bootstrap CI calculations for independent
samples.

Differences for each technique (ie tendency for one strategy more than another)

Mean differences

Baseline[MinMax-Balanced] = 0.5 [0.16 : 0.72] strong evidence of favoring a MinMax strategy
BarsCoupled[MinMax-Balanced] = 0.2 [ 0 : 0.61] weak evidence to favor MinMax strategy
ColorsDecoupled[MinMax-Balanced] = -0.16 [-0.5 : 0.1] no evidence of favoring a strategy over another

Balanced Strategy Frequency per Visualization

Means

Baseline[Balanced] = 0.22 [0.05 : 0.38]
BarsCoupled[Balanced] = 0.33 [0.11 : 0.55]
ColorsDecoupled[Balanced] = 0.5 [0.27 : 0.72]

Mean differences

Colors-Bar [Balanced] = 0.2 [-0.05 : 0.5] possible trend of diff
Bars-Baseline [Balanced] = 0.1 [-0.2 : 0.3] no evidence of diff
Colors-Baseline [Balanced] = 0.3 [0 : 0.6] weak evidence of diff

MinMax Strategy Frequency per Visualization

Means

Baseline[MinMax] = 0.72 [0.38 : 0.83]
BarsCoupled [MinMax] = 0.6 [0.3 : 0.7]
ColorsDecoupled [MinMax] = 0.38 [0.11 : 0.55]

Mean differences

Colors-Bar [MinMax] = -0.2 [-0.6 : 0.05] trend of diff
Bars-Baseline [MinMax] = -0.1 [,-0.4 : 0.16] no evidence of diff
Colors-Baseline [MinMax] = -0.3 [-0.6 : -0.05] evidence of a diff
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7.1.3 Justification Quality

We compare here the different Justification Quality measures across techniques. As these are
balanced samples we use CI of mean-differences (within subjects).

1. Correctness / Alignment : no test conducted as only 1 misalignment in the study

2. Completeness: number of unique context codes in a response

Means

Baseline = 2.66 [1.94 : 3.16]
BarsCoupled = 2.22 [1.66 : 2.61]
ColorsDecoupled = 2.61 [1.94 : 3.05]

Mean differences

Colors-Bar = 0.44 [-0.5 : 1.22] no evidence of diff
Bars-Baseline = -0.38 [-1.05 : 0.16] no evidence of diff
Colors-Baseline = 0.05 [-0.83 : 0.7] no evidence of diff

3. Compactness: total number of context tags in a response

Means

Baseline = 3.6 [2.5 : 4.7]
BarsCoupled = 5.61 [3.22 :11.05]
ColorsDecoupled = 4.55 [3.22 : 6.16]

Mean differences

Colors-Bar = -1.05 [-6.63 : 1.83] no evidence of diff
Bars-Baseline = 2 [-0.27 : 6.27] no evidence of diff
Colors-Baseline = 0.94 [-1.11 : 2.55] no evidence of diff

4. Contrastivity: number of pairs of arguments pro group A and pro group B

Means

Baseline = 1.94 [1.38 : 2.5]
BarsCoupled = 1.44 [0.88 : 2.11]
ColorsDecoupled = 1.33 [0.83 : 1.83]

Mean differences

Colors-Bar = -0.11 [-0.94 : 0.44] no evidence of diff
Bars-Baseline = -0.5 [-1.05 : 0] weak evidence of diff
Colors-Baseline = 0.61 [-1.55 : -0.11] evidence of a diff
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5. Confidence / Trust in decision (out of 7)

Means

Baseline = 5.66 [5.22 : 6]
BarsCoupled = 5.93 [5.55 : 6.22]
ColorsDecoupled = 5.16 [4.33 : 5.72]

Mean differences

Colors-Bar = -0.77 [-1.61 : -0.166] evidence of a diff
Bars-Baseline = 0.27 [-0.27 : 0.77] no evidence of diff
Colors-Baseline = -0.5 [-1.27 : 0.16] no evidence of diff

7.2 Perceived load - NASA TLX

We compare here the different NASA TLX self-reported metrics techniques. As these are
balanced samples we use CI of mean-differences (within subjects). All values out of 21.

1. Mental Demand

Means

Baseline = 13.5 [11.16 : 15.16]
BarsCoupled = 10.72 [8.22 : 12.66]
ColorsDecoupled",13.28 [11.16 : 14.61]

Mean differences

Colors-Bar = 2.55 [0.77 : 5] evidence of a diff
Bars-Baseline = -2.77 [-4.72 : -1.12] evidence of a diff
Colors-Baseline = -0.22 [-2.5 : 1.77] no evidence of diff

2. Physical Demand

Means

Baseline = 2.5 [1.38 : 5.74]
BarsCoupled = 1.77 [1.27 : 2.55]
ColorsDecoupled = 2.72 [1.44 : 7]

Mean differences

Colors-Bar = 0.94 [-0.16 : 4.22] no evidence of diff
Bars-Baseline = -0.72 [-5 : 0.16] no evidence of diff
Colors-Baseline = 0.22 [-0.05 : 0.94] possible trend of diff
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3. Temporal Demand

Means

Baseline = 5.89 [4.33 : 7.66]
BarsCoupled = 5.33 [3.72 : 7.77]
ColorsDecoupled = 6.33 [4.66 : 8.61]

Mean differences

Colors-Bar = 1 [-0.44 : 3.16] no evidence of diff
Bars-Baseline = -0.55 [-2.22 : 1.18] no evidence of diff
Colors-Baseline = 0.44 [-0.94 : 2.11] no evidence of diff

4. Performance

Means

Baseline = 13.06 [10.44 : 15.11]
BarsCoupled = 14.39 [11.61 : 16.05]
ColorsDecoupled = 13.44 [11.61 : 14.94]

Mean differences

Colors-Bar = -0.94 [-4.02 : 1.77] no evidence of diff
Bars-Baseline = 1.33 [0 : 3.27] weak evidence of diff
Colors-Baseline = 0.38 [-2.5 : 2.88] no evidence of diff

5. Effort

Means

Baseline = 11.72 [9.66 : 13.55]
BarsCoupled = 9 [6.72 : 11]
ColorsDecoupled = 11.83 [9.77 : 13.66]

Mean differences

Colors-Bar = 2.83 [0.61 : 6.27] evidence of a diff
Bars-Baseline = -2.72 [-4.27 : -0.94] evidence of a diff
Colors-Baseline = 0.11 [-2.27 : 2.83] no evidence of diff

6. Frustration

Means

Baseline = 8.94 [6.44 : 11.61]
BarsCoupled = 4.17 [2.83 : 6.22]
ColorsDecoupled = 8.77 [6.16 : 11.27]

Mean differences

Colors-Bar = 4.61 [1.94 : 7.38] evidence of a diff
Bars-Baseline = -4.77 [-7.33 : -2.72] evidence of a diff
Colors-Baseline = -0.16 [-3.16 : 3.16] no evidence of diff
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