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École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
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Thèse présentée et soutenue à Palaiseau, le 22 Novembre 2024, par

ANNA KRUPKA

Composition du Jury :

Xavier Leoncini
Professeur, Aix-Marseille Université Président
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Optimisation de la vitesse du plasma pour l’amélioration du
confinement des tokamaks

Résumé : Pour rendre performants les réacteurs à fusion par confinement mag-
nétique, il est impératif de maximiser le confinement du plasma. Cela représente
un enjeu crucial dans le développement des futurs tokamaks, qui sont envisagés
comme une solution pour produire une énergie propre et quasi illimitée. En effet,
un bon confinement permet de maintenir les températures et densités élevées
nécessaires pour que les réactions de fusion se produisent de manière efficace.
L’un des aspects fondamentaux pour atteindre cet objectif est la maîtrise de la
dynamique du plasma, notamment la possibilité de jouer sur la vitesse du plasma.
Une rotation contrôlée du plasma peut non seulement stabiliser les instabilités mag-
nétohydrodynamiques (MHD), mais également réduire la turbulence, améliorant
ainsi le confinement et, par conséquent, les performances globales du réacteur.

Dans cette perspective, comprendre les mécanismes qui permettent de mettre
en rotation un plasma dans un tokamak est un défi de première importance. Cela
implique de considérer les interactions complexes entre les forces magnétiques,
électriques, visqueuses et inertielle. Pour répondre à cet enjeu, il est nécessaire de
modéliser le comportement du plasma dans des conditions réalistes. Les modèles
basés sur la magnétohydrodynamique visco-résistive offrent un cadre adapté pour
étudier ces phénomènes, notamment en intégrant le terme non-linéaire (v · ∇)v
dans l’équation de Navier-Stokes stationnaire. Ce terme, qui représente les effets
inertiels, joue un rôle crucial dans la description des états stationnaires du plasma
en rotation.

Une des particularités des tokamaks est leur géométrie toroïdale complexe, qui
nécessite une modélisation sophistiquée pour capturer les détails de la dynamique
du plasma. En utilisant le logiciel FreeFem++, qui est un outil open-source basé
sur la méthode des éléments finis, il a été possible de résoudre numériquement les
équations MHD dans des configurations réalistes de tokamaks comme celles du
JET (Joint European Torus). Ce type de simulation offre une plateforme puissante
pour explorer les états stationnaires axisymétriques du plasma et étudier leur
dépendance aux paramètres physiques tels que la viscosité ν, la résistivité η, et le
champ magnétique.

Dans ce travail, nous nous sommes concentrés sur un modèle MHD visco-
résistif avec des coefficients constants de résistivité et de viscosité, afin de mieux
comprendre les mécanismes fondamentaux influençant la rotation du plasma. Une
des découvertes principales de cette étude est que la vitesse moyenne quadratique
du plasma dépend de manière critique du nombre de Hartmann, défini comme
H ≡ (ην)−1/2. Lorsque le terme inertiel est négligeable, cette vitesse suit une
loi en ηf(H), où f(H) présente un comportement en loi de puissance. Plus
précisément, dans la limite des faibles nombres de Hartmann (H ≪ 1), f(H)
suit une dépendance proportionnelle à H, tandis que pour les grands nombres
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de Hartmann (H ≫ 1), une dépendance asymptotique en H1/4 est observée. Ces
résultats théoriques sont cohérents avec les simulations numériques, renforçant
ainsi la validité du modèle proposé.

Par ailleurs, le profil de pression dans le plasma est gouverné par une équation
de Poisson. Dans ce contexte, nous avons démontré que l’hypothèse simplificatrice
selon laquelle la densité de courant toroïdale découle uniquement de la loi d’Ohm
en réponse à un champ électrique toroïdal uniforme et constant dans le temps ne
permet pas de reproduire des profils de pression réalistes. Cette simplification
conduit à des écarts significatifs par rapport aux observations expérimentales.
Pour surmonter cette limitation, nous avons introduit des termes de courant
non inductifs supplémentaires, représentant des mécanismes tels que l’injection
de faisceaux neutres. Ces termes modifient le courant toroïdal et améliorent
considérablement les profils de pression obtenus par les simulations numériques.

Une autre découverte importante concerne l’impact de ces entraînements de
courant non inductifs sur les profils de vitesse du plasma. Dans la plupart des cas
étudiés, l’effet sur la rotation est modéré. Cependant, lorsque ces entraînements
induisent des inversions dans la densité de courant toroïdal totale, des phénomènes
plus complexes apparaissent. En particulier, des surfaces de flux non imbriquées
avec des séparatrices internes peuvent se former, modifiant la topologie magnétique
et influençant les propriétés du confinement du plasma.

Enfin, nous avons exploré l’effet de profils de densité de courant imposés sur
la dynamique du plasma. Cette étude a révélé l’existence d’un nouveau régime
asymptotique où les vitesses toroïdales et poloïdales croissent proportionnellement
à H2, soulignant ainsi la richesse des comportements dynamiques possibles dans
un plasma de tokamak. Ce second régime offre des perspectives intéressantes pour
le contrôle de la rotation et pourrait avoir des implications significatives pour le
design des futurs réacteurs à fusion.

Ce travail ouvre la voie à de nouvelles recherches pour optimiser les perfor-
mances des tokamaks en régime stationnaire. Les résultats obtenus soulignent
l’importance de considérer les effets inertiels et les contributions non inductives
au courant toroïdal dans les modèles de plasma. De plus, ils mettent en évidence
la nécessité d’approches numériques avancées pour explorer les comportements
complexes des plasmas confinés magnétiquement. Ces efforts contribueront à
établir les bases scientifiques et techniques pour la conception de réacteurs à fusion
opérationnels, capables de fournir une énergie sûre et durable à grande échelle.



Plasma speed optimization for improved tokamak plasma confinement

Abstract: Maximizing plasma confinement is essential to the performance
of future magnetic fusion reactors. Playing with plasma speed can be a way to
stabilize possible instabilities and control turbulence with a very beneficial impact
on fusion yield. It is essential to understand how a tokamak plasma can be rotated.

Ideally, the tokamak should work in a stationary state as a fusion reactor. It
is, therefore, reasonable to determine the steady states of a tokamak plasma in full
generality without imposing the nullity of the plasma velocity field. In the visco-
resistive magnetohydrodynamics (MHD) framework, this amounts in particular to
retaining the non-linear term (v · ∇)v in the stationary Navier-Stokes equation.
Using the FreeFem++ open-source software for solving partial differential equations
using the finite element method, we numerically determined the axisymmetric
stationary states of a tokamak plasma in realistic JET parameters.

This thesis shows that the plasma velocity root-mean-square behaves as ηf(H)
as long as the inertial term remains negligible, where H stands for the Hartmann
number H ≡ (ην)−1/2, and that f(H) exhibits power-law behaviours in the limits
H ≪ 1 and H ≫ 1. In the latter limit, we establish that f(H) scales as H1/4,
which is consistent with numerical results. Additionally, this work establishes
Poisson’s equation governing the pressure profile. It is shown that the simplifying
assumption of a toroidal current density component arising solely from Ohm’s law
in response to a time-independent, curl-free toroidal electric field fails to produce
realistic pressure levels. To overcome this, we introduce additional non-inductive
current drives, comparable to those from neutral beam injection, modeled as
modifications to the toroidal current. The new model is validated using numerical
simulations, showing significant pressure profile improvements. For the examples
considered, the effect of these current drives on the velocity profiles is moderate
except in the case where the drives induce some reversals in the total toroidal
current density, producing non-nested flux surfaces with internal separatrices.
Finally, the effect of fixed current density profiles is examined, revealing a new
second regime, where toroidal and poloidal velocities scale with Hartmann number
as H2, yielding higher plasma rotation.





I must not fear. Fear is the mind-killer. Fear is the little-death that brings total
obliteration. I will face my fear. I will permit it to pass over me and through me. And
when it has gone past I will turn the inner eye to see its path. Where the fear has gone
there will be nothing. Only I will remain.

Frank Herbert, Dune
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Chapter 1

General introduction

The power of the Sun, in the palm
of my hand.

Dr. Otto Octavius
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1.1 Fusion energy

Fusion energy is essential for addressing modern global energy challenges. The
growth of the population increases energy demands even further. Figure 1.1 shows
that by the year 2070, conventional energy sources will only be able to meet about
50 % of energy needs of humanity. Luckily, nuclear fusion offers a potential source
of safe, clean, and renewable energy by replicating the processes that power the
Sun [Conn et al., 1990]. This can address problems such as the exhaustion of fossil
fuels, environmental pollution, and greenhouse gas emissions that contribute to
climate change [Toschi, 1997]. There are two main methods to confine plasma for
fusion on Earth: inertial confinement and magnetic confinement.

Inertial confinement achieves nuclear fusion by rapidly compressing and heating
a small pellet of fuel, usually deuterium and tritium, to extremely high temperatures
and pressures. It can be achieved by focusing intense laser or ion beams on the
target, causing it to implode. This method has the potential for high energy yield
from a relatively small amount of fuel. However, it poses significant technical

1
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1. INTRODUCTION

for reactors on earth are the deuterium and the tritium, two isotopes of hydrogen. Deuterium

can be extracted from the ocean’s water. The reserve of deuterium on earth can supply energy

for billions of years. Tritium must be artificially created by bombarding lithium with neutrons.

It is unstable with a half life of twelve years. The energy produced by the fusion reactions

could be collected and converted into heat, transported by water which can drive a turbine to

generate electricity like in a conventional power plant. However, controlling fusion on earth is

very complex and the demonstration of a gain higher than unity has not been done yet.
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Figure 1.1: Energy supply and demand projection based on population growth, world energy
consumption and plausible political strategy assumption, adapted from Ref. [McLean, 2005]

1.1 Fusion as an energy source

1.1.1 Fusion reaction

E. Rutherford, in 1911, discovered that an atom is made of a dense positively charged core and

of negatively charged external electrons. The very dense region at the center of an atom, the

nucleus, contains the protons and the neutrons. The proton number Z, also called the atomic

number, is equal to the number of electrons surrounding the nucleus. The number of neutrons N

defines the isotope state of the element. The total number of the nucleus elements is A = N +Z.

All the isotopes of the same element have the same proton number Z and have the same chemical

behavior, however their mass and stability are di↵erent. The hydrogen 1, with a single proton,

2

Figure 1.1: Energy supply and demand projection based on population growth,
world energy consumption, and energy conservation. The violet-coloured regions
indicate the need for new energy sources, such as fusion. Image source: [Vallet,
2014], originally adapted from [McLean, 2002].

challenges, which require precise control over the compression process [Nuckolls,
1982].

Magnetic confinement achieves nuclear fusion by using powerful magnetic
fields to contain and control the plasma. There are several devices designed
for this purpose. The most common device is the tokamak, which combines a
strong doughnut-shaped magnetic field and a weaker poloidal magnetic field. This
configuration keeps the plasma stable and confined in a toroidal shape [Artsimovich,
1972]. Stellarators use a similar approach but employ complex, twisted magnetic
fields that do not require the plasma current needed in a tokamak [Spitzer, 1958].
Figure 1.2 shows examples of fusion devices based on the two described methods.

The magnetic field is vital in confining and keeping the plasma stable in a
tokamak. It consists of two components: the toroidal magnetic field generated by
a series of coils around the torus and the poloidal magnetic field induced by the
plasma current. The relatively simple toroidal shape of the device is advantageous
over intricately-shaped stellarators. It allows tokamaks to reach higher plasma
densities and temperatures essential for achieving the conditions required for
nuclear fusion. Figure 1.3 shows the structure of the device.
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Figure 1.2: Different fusion devices. The upper-left photo shows the tokamak
experiment Joint European Torus (JET) in 1991 (credit: EFDA JET). The upper-
right photo shows the stellarator experiment Wendelstein 7-X in 2011 (credit:
Max-Planck-Institut für Plasmaphysik). The bottom photo shows the National
Ignition Facility (NIF) Target Chamber in 2008 (credit: United States Department
of Energy). Upper images licensed under CC BY-SA 3.0.

The International Thermonuclear Experimental Reactor (ITER) represents
state-of-the-art international collaborations in fusion research [Rebut et al., 1993].
It is the world’s largest tokamak, aiming to achieve “net positive energy”. This
means producing more energy from fusion reactions than required to sustain
the plasma, marking a significant step towards practical fusion power. This
project highlights the significant focus on tokamaks within major fusion research
initiatives like ITER. This leads to considerable advancements in understanding
and improving the performance of tokamaks. Despite these advancements and the
cutting-edge technology of ITER, a commercial fusion reactor still needs to be
achieved. Although fusion research has been ongoing for over 60 years, developing
a functional thermonuclear power plant is still a future prospect [Ball, 2021].

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Toroidal magnetic field
Plasma current

Toroidal
magnetic coils

Outer poloidal
magnetic field coils

Helical magnetic field
Poloidal magnetic field

Vacuum vessel

Plasma

Inner poloidal
magnetic field coil

Figure 1.3: Tokamak structure and operation principle. Image source: Vector
Mine/stock.adobe.com.

Finally, the DEMOnstration power plant (DEMO) project embodies the next
generation of international fusion research initiatives [Federici et al., 2016]. Building
upon the foundation of ITER, DEMO aims to become the first demonstration
fusion power plant to produce between 300 MW to 500 MW net electricity for
the electrical grid. Despite decades of research and development, achieving a
commercial fusion reactor remains challenging, with the objective of electricity
production around 2050.

1.2 Plasma rotation
The challenge of the magnetic confinement method lies in maintaining a stable
magnetic field to control plasma. Its turbulence and instabilities, such as Edge-
Localized Modes (ELMs) [Wagner et al., 1990], ballooning modes [Connor et al.,
1978], and kink instabilities [von Goeler et al., 1974], are among the most significant
issues within a tokamak. Unpredictable plasma disruptions [Wesson et al., 1989]
lead to substantial heat losses and potential damage to the reactor walls [Boozer,
2012]. This makes the control and stabilization of plasma a critical aspect of fusion
research.

Plasma rotation is an essential factor that significantly impacts the heat and
particle confinement properties in tokamaks. It can stabilize the plasma by
mitigating or even quenching instabilities. High-velocity rotation, when the plasma
rotates at a fraction of the sound speed, can stabilize external modes [Bondeson
and Ward, 1994] — disturbances or instabilities driven by external influences or
boundary conditions. This rotation alters the stability thresholds of these modes,
potentially preventing disruptions that compromise plasma confinement.

https://stock.adobe.com
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Experimental studies confirm the importance of plasma rotation. In certain
experimental conditions, notably in large-scale tokamaks like the National Spher-
ical Torus Experiment (NSTX) and Japan Torus-60 (Upgrade) (JT-60U), the
stabilization threshold turns out to be lower than expected and achievable with
low-rotation plasmas [Sabbagh et al., 2006; Takechi et al., 2007]. This indicates
the relationship between plasma rotation and stability is more complex than
initially thought. The plasma’s magnetic configuration, temperature gradients,
and collisionality significantly contribute to this intricate interaction.

The study of high-confinement mode (H-mode) plasmas indicates that the
plasma rotation has an intrinsic nature [Rice et al., 2007]. This rotation, which
occurs even without external momentum input, is primarily associated with the
presence of E × B velocity induced by a radial electric field. Yet, this phenomenon
is not limited by H-mode plasmas and is also present in low-confinement mode
(L-mode) plasmas [Angioni et al., 2011]. These observations suggest that intrinsic
rotation might be a more universal phenomenon in tokamaks, potentially playing
a role in various confinement regimes.

Numerical simulations provide additional insights into the effects of toroidal and
poloidal flows on tokamak plasma equilibrium. These flows can significantly impact
the distribution of pressure and magnetic fields within the plasma [Guazzotto
et al., 2004; Guazzotto and Betti, 2005]. Moreover, the axisymmetric steady-
state plasma velocity may play a critical role in separating magnetic and current
density channels, as suggested by modifying the static Grad-Shafranov equilibrium
condition [Firpo, 2024]. This separation could have important implications for the
stability and control of the plasma, particularly in the context of advanced tokamak
scenarios where current profile control is essential for maintaining long-duration
plasma discharges.

Building upon these considerations, understanding and enhancing plasma
rotation velocity are vital goals in magnetic confinement fusion research. Achieving
this could lead to better control over plasma instabilities, improved confinement,
and a more reliable path toward achieving sustained nuclear fusion. The role of
rotation in the broader context of plasma turbulence, transport, and confinement
must be further explored, particularly as we move toward the next generation of
fusion devices like ITER and DEMO.

1.3 Thesis overview
Ideally, the tokamak should work stationary as a fusion reactor. It is, therefore,
reasonable to determine the steady states of a tokamak plasma in full generality
without imposing the nullity of the plasma velocity field. This work will address
the problem of plasma rotation in the tokamaks by considering the visco-resistive
magnetohydrodynamic (MHD) framework.
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The thesis consists of the following chapters:

• Chapter 2 introduces MHD framework with the derivation of the system
of axisymmetric steady-states of the visco-resistive MHD equations. It
then moves on to the numerical simulations conducted using the finite
element method via the open-source platform FreeFem++ for solving partial
differential equations (PDE). The chapter concludes with the preliminary
results obtained from this model and simulations.

• Chapter 3 focuses on the behaviour of the system for a constant toroidal
current drive and derives scaling laws for the velocity. These scaling laws
are expected to be valid if the magnitude of the inertial ω × v term is small
enough. This prediction is tested and validated using numerical simulations.
This scaling law is expressed as a function of the resistivity, η, and the
Hartmann number, H, where H is defined as H ≡ (ην)−1/2, with ν denoting
viscosity. The observed behaviour indicates that the velocity scales as ηf(H),
where f is a specific function. This scaling law remains valid under the
condition that the inertial term ω × v remains negligible, which happens to
be the case up to the largest numerically accessible values of the Hartmann
number. Within this general scaling law, this chapter numerically uncovers,
for a given, order-one, E0/η drive, two limiting regimes at low and high H
where the function f behaves as a power law.

• Chapter 4 discusses the limitations of the model proposed by [Kamp and
Montgomery, 2003, 2004; Kamp et al., 1998] for describing tokamak plasmas
within a MHD visco-resistive framework. It is predicted that this system
yields zero pressure in the ideal and motionless limit, which makes it necessary
to reconsider using Ê0/η as the sole drive in the system. I establish a Poisson’s
equation for the pressure of the system to verify the pressure profiles without
additional heating methods. Therefore, this chapter proposes the application
of an additional drive to model heating methods applied in real tokamaks,
verified through pressure profiles.

• Chapter 5 introduces an alternative model to address the dependence of the
toroidal current on the Hartmann number. Proposing a model with fixed
current profiles reveals a new scaling regime in toroidal velocity when the
toroidal current profiles are fixed. It also investigates the effect of non-nested
magnetic field lines on the scaling of the first and second regimes, as well as
non-linear effects on the system.

• Chaper 6 concludes the thesis with key findings and contributions in this
work and outlines perspectives for future research.
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Chapter 2

Methodology

The essence of science is its method:
to question, to experiment, and to
learn.

Richard Feynman
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2.1 Introduction
Understanding and controlling plasma rotation is an essential research objective
for achieving enhanced plasma performance and sustainable fusion reactions in
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tokamak devices. To address this matter, we reconsider the derivation of the
axisymmetric steady-states of the visco-resistive magnetohydrodynamic equations
without making a no-flow hypothesis. This means that we reintroduce in the tra-
ditional Grad-Shafranov equation the dissipative viscous term and the non-linear
(v · ∇)v term coming from the steady-state Navier-Stokes equation [Kamp and
Montgomery, 2003; Kamp et al., 1998; Morales et al., 2012; Holst et al., 2022;
Oueslati et al., 2019; Oueslati and Firpo, 2020; Roverc’h et al., 2021; Krupka and
Firpo, 2024]. In Section 2.2, we propose a step-by-step derivation of the dimen-
sionless closed system of partial differential equations, first introduced in [Kamp
and Montgomery, 2003] to model tokamak plasmas within a MHD visco-resistive
setting. Section 2.3 is dedicated to the performance of numerical simulations,
including discussion on the computational domain, boundary conditions used, weak
formulation of the equations and the Newton-Raphson method. These simulations
use the finite element method through the open-source platform FreeFem++ for
solving PDE [Hecht, 2012]. This chapter concludes with the first numerical results
and the discussion of the computational time.

2.2 Axisymmetric steady-states

2.2.1 Derivation of the dimensionless system of PDE

Let us first propose a step-by-step derivation of the single fluid MHD description
of steady-state tokamak plasmas without proceeding to a zero velocity assumption.
Denoting by ρm, the total mass density of plasma, by ni the number density of
ions, by ne the number density of electrons, by ρ the electric charge density, by p
the plasma pressure, by v the flow velocity of plasma and by j the current density,
one obtains the following identities

ρm = nimi

(
1 + me

miZ

)
,

ρ = −e (ne − Zni) ,
p = pi + pe,

v = vi + me

mi
Z (ve − vi) ,

j = −ene (ve − vi) .

The steady-state equation of motion (∂/∂t = 0) for the one-fluid model is

ρm (v · ∇) v = −∇p+ ρE + j × B+µ∇2v. (2.1)

with

(v · ∇) v = ∇
(
v2

2

)
+ ω × v (2.2)
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where ω is the vorticity vector that ω = ∇ × v.
Assuming electroneutrality (ρ = 0), this gives

ρmω × v = −∇p∗+j × B+µ∇2v (2.3)

with
p∗ = p+ ρm

v2

2 . (2.4)

Introducing the kinematic viscosity ν = µ/ρm, this amounts to

ω × v = −∇
(
p∗

ρm

)
+ρ−1

m j × B+ν∇2v (2.5)

with
∇ × B =µ0j. (2.6)

Ohm’s law reads
E + v × B = ηj. (2.7)

Let us assume that the plasma is incompressible, meaning its mass density is
constant ρ = ρm0. Let us introduce the dimensionless variables v̂ = v/vA0 = v/b0
and b̂ = b/b0, where b = vA = B/√µ0ρm0 with the Alfvén velocity vA0 = b0
defined by

b0 = B0√
µ0ρm0

(2.8)

and ∇̂ =r0∇, where r0 denotes the tokamak major radius. Let us then also define
the spatial variables rescaled by r0, so that the horizontal and vertical coordinates
are x = r/r0 and y = z/r0. As we focus on axisymmetric toroidal-invariant
steady-states, all spatial dependence can be expressed in the variables x and y.
The integration domain will be the tokamak plasma poloidal cross-section (see
Sect. 2.3.1). This gives(

∇̂ × v̂
)

×v̂ = −∇̂
(
p̂∗
)

+
(
∇̂ × b̂

)
×b̂+ν̂∇̂2v̂ (2.9)

with the dimensionless viscosity

ν̂ = ν

b0r0
, (2.10)

and dimensionless total pressure

p̂∗ = p∗

b2
0ρm

. (2.11)

As for the Ohm’s law, we have

E0
x

iφ − ∇Φ+b2
0
√
µ0ρm0v̂ × b̂ =

η
√
µ0ρm0
µ0

b0r0∇̂ × b̂ (2.12)
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with E = E0
x iφ − ∇Φ (so that ∇ × E = 0). Taking the curl of the Ohm’s law, we

get
b2

0
√
µ0ρm0∇̂ ×

(
v̂ × b̂

)
=
η
√
µ0ρm0
µ0

b0r
−1
0 ∇̂ ×

(
∇̂ × b̂

)
. (2.13)

Consequently, the rescaled resistivity η̂ should be such that

η̂ = η

µ0r0b0
. (2.14)

The full Ohm’s law reads, then(
b2

0
√
µ0ρm0

)−1
(
E0
x

iφ − ∇Φ
)

+v̂ × b̂ = η̂∇̂ × b̂ (2.15)

so that the rescaled, dimensionless electric field is such that

Ê0 = E0
b2

0
√
µ0ρm0

(2.16)

with
Ê0
x

iφ − ∇̂Φ̂+v̂ × b̂ = η̂∇̂ × b̂. (2.17)

Summarizing, we have with ω̂ = ∇̂ × v̂ and ĵ = ∇̂ × b̂,

ω̂ × v̂=−∇̂
(

p∗

b2
0ρm

)
+ĵ × b̂+ν̂∇̂2v̂ (2.18)

Ê0
x

iφ − ∇̂Φ̂+v̂ × b̂ = η̂̂j (2.19)

with

∇̂ · v̂ = 0,
∇̂ · b̂ = 0.

Writing
B = ∇̂ χ

r0
× 1
r0x

iφ +
(
B0
r0
r

+Bφ

)
iφ (2.20)

so that
b̂ = 1

x
∇̂χ̂× iφ +

(1
x

+ b̂φ

)
iφ, (2.21)

where the rescaled magnetic flux is

χ̂ = χ

B0r2
0
, (2.22)

ensures that Gauss’s equation is satisfied. Ampère’s law gives

ĵ = 1
x

∇̂
(
xb̂φ

)
× iφ − 1

x

(
△̂∗χ̂

)
iφ (2.23)
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where the operator △̂∗ is defined by

△̂∗A = ∇̂2A− 2
x

∂A

∂x
= ∂2A

∂x2 − 1
x

∂A

∂x
+ ∂2A

∂y2 . (2.24)

We have
v = ∇̂ ψ

r0
× 1
r0x

iφ + vφiφ (2.25)

so that
v̂ = 1

x
∇̂ψ̂ × iφ + v̂φiφ (2.26)

with
ψ̂ = ψ

b0r2
0
. (2.27)

And the dimensionless vorticity reads

ω̂ = 1
x

∇̂ (xv̂φ) × iφ − 1
x

(
△̂∗ψ̂

)
iφ. (2.28)

The toroidal part of Equation (2.28) gives

△̂∗ψ̂ = −xω̂φ. (2.29)

Taking the curl of the force balance, one obtains

∇̂ ×
(
ω̂ × v̂ − ĵ × b̂

)
=ν̂∇̂2ω̂. (2.30)

Defining ũ1 = ψ̂, u2 = xω̂φ, ũ3 = xb̂φ + 1, ũ4 = xv̂φ, ũ5 = χ̂, ũ6 = xĵφ, Equation
(2.29) reads

△̂∗ũ1 = −u2. (2.31)

Here we would like to introduce the Poisson bracket {u, v} for any space functions
u and v by

{u, v} ≡ ∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
. (2.32)

We get from the toroidal part of the curl of the force balance (2.30)

ν̂△̂∗u2 = 1
x2

∂

∂y
(ũ2

3 − ũ2
4) + 1

x
{ũ6, ũ5} + 1

x
{ũ1, u2} + 2u2

x2
∂ũ1
∂y

− 2ũ6
x2

∂ũ5
∂y

. (2.33)

The curl of Ohm’s law gives

∇̂×
(
v̂ × b̂

)
= η̂∇̂ × ĵ (2.34)

which yields along the toroidal direction

η̂△̂∗u3 = 1
x

{ũ1, ũ3} + 1
x

{ũ4, ũ5} + 2ũ3
x2

∂ũ1
∂y

− 2ũ4
x2

∂ũ5
∂y

. (2.35)
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The toroidal part of the force balance equation (2.18) under the axisymmetric
hypothesis yields (

ν̂∇̂2v̂
)

· iφ=
(
ω̂ × v̂−ĵ × b̂

)
· iφ (2.36)

giving
ν̂△̂∗ũ4 = 1

x
{ũ1, ũ4} + 1

x
{ũ3, ũ5} . (2.37)

And finally, we have the counterpart of Equation (2.31) for the magnetics, namely

△̂∗ũ5 = −ũ6. (2.38)

The toroidal part of Ohm’s law finally gives

Ê0
x

+
(
v̂ × b̂

)
· iφ = η̂̂j · iφ (2.39)

that is
η̂ũ6 = Ê0 + 1

x
{ũ5, ũ1} . (2.40)

2.2.2 Toroidal current drive

To be consistent with the notations of [Kamp and Montgomery, 2003], let us
introduce two current characteristic scales, namely the order of magnitude of the
current that would be needed in a vertical infinite wire to produce the toroidal
magnetic field at the center of the plasma column

Ib = r0B0
µ0

(2.41)

and the order of magnitude of the current involved in Joule heating of the plasma
under the loop voltage E0

Ie = r2
0E0
η

. (2.42)

Using the expressions of the dimensionless resistivity, η̂ from Equation (2.14), and
dimensionless toroidal electric field, Ê0 (2.16), one obtains the following relation

Ê0
η̂

= Ie

Ib
. (2.43)

The calculations of Section 2.2.1 have just shown that it is not necessary to
introduce explicitly these two current characteristic scales in the system of equations.
However, in the present study, we are interested in the behaviour of the system for
a given ratio of these currents in Equation (2.43), namely for a given Ê0/η̂. This
quantity may be viewed as the only explicit drive appearing in the dimensionless
system of equations as written in the following Section 2.2.3. Equation (2.43)
shows that this control parameter amounts to the ratio of the electric current
involved for plasma Ohmic heating over that needed for generating the external
toroidal magnetic field.
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2.2.3 Final set of equations

Summarizing the above calculations and dropping some tildes to improve read-
ability, one is left with the system of parabolic PDE of [Kamp and Montgomery,
2003]

△∗u1 = −u2, (2.44)

ν̂△∗u2 = 1
x2

∂

∂y
(u2

3 − u2
4) + 1

x
{u6, u5} + 1

x
{u1, u2} + 2u2

x2
∂u1
∂y

− 2u6
x2

∂u5
∂y

, (2.45)

η̂△∗u3 = 1
x

{u1, u3} + 1
x

{u4, u5} + 2u3
x2

∂u1
∂y

− 2u4
x2

∂u5
∂y

, (2.46)

ν̂△∗u4 = 1
x

{u1, u4} + 1
x

{u3, u5} , (2.47)

△∗u5 = −u6, (2.48)

with
η̂u6 = Ê0 + 1

x
{u5, u1} , (2.49)

where all the dimensionless variables have been defined in Section 2.2.1. From
now on, only dimensionless variables will be used, and to simplify notation, we
will denote them without the hat symbol.

2.3 Numerical Simulations

2.3.1 Domain and boundary conditions

We need to establish and define the computational cross-section plasma domain Ω
to solve the system of equations (2.44)-(2.49). In this work, all simulations are
carried out within a 2D JET geometry, meaning that the parametric equations
define the plasma border

x = 1 + r1
r0

cos (θ + arcsin δ0 sin θ)

y = k
r1
r0

sin(θ)
(2.50)

Here θ ∈ [0, 2π], r0 is the major radius, r1 is the semi-minor axis of the cross-
section, δ0 is the triangularity parameter, and k is the plasma elongation. For
our simulations, we use typical JET parameters: the major radius is r0 = 3 m,
the semi-minor axis radius is r1 = 1.25 m, the plasma elongation k = 1.55, and
finally arcsin δ0 = 0.5. With these parameters, we can visualize the cross-section
plasma domain Ω. Figure 2.1 illustrates the geometry of the problem. The external
toroidal magnetic field value, denoted as B0, is set at 2.8 Tesla (T), a setting
consistent with the conditions in the JET experiment [JET Team, 1992]. We chose
the toroidal loop voltage equal to 1 V. This is a reasonable assumption since the
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Figure 2.1: Three-fourth of the full plasma domain. Due to assumed axisymmetry,
the problem is invariant under rotation along the toroidal angle, allowing us to
focus on the 2D (x, y) cross-section Ω.

toroidal electric field is of the order of some V/m in the current devices. The
velocities are scaled using Alfvénic units, where the Alfvén velocity, represented as
b0, is estimated to be approximately 5.5 × 106 meters per second (m/s) according
to Equation (2.8). Similarly, based on Equation (2.16), the normalized electric
field, denoted by E0, is approximated to be of the order of 3.5 × 10−9.

We now introduce the boundary conditions on ∂Ω. The elliptic system (2.44)-
(2.48) requires five boundary conditions. The four associated with the divergence-
free properties of the magnetic field (b), current density (j), velocity (v), and
vorticity (ω) vector fields can be determined by ensuring the continuity of their
normal components along the plasma boundary. In the numerical simulations,
the following boundary conditions have been selected: u1 = u5 = 0 and u3 = 1.
Concerning u2 and u4, a toroidal "no-slip" condition is imposed, with u2 = u4 = 0.
Alternatively, three additional boundary conditions will be chosen apart from the
toroidal no-slip boundary condition. In the toroidal direction, a free-slip condition
known as shear-stress free is represented by the condition ∂n(u4/r

2) = 0, u2 = 0.
A normal component of toroidal velocity equal to 0 is represented by the condition
∂n(u4/x) = 0, u2 = 0. Finally, we shall enforce Neumann boundary conditions on
toroidal velocity and vorticity through ∂n(u4/x) = ∂n(u2/x) = 0. The enforcement
of the Neumann boundary conditions in this system is presented in Appendix A.
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2.3.2 Finite element method

To solve the system of equations (2.44)-(2.49) on the cross-section plasma domain
Ω together with boundary conditions, we use the finite element method (FEM).
The FEM is a numerical technique that finds an approximate solution to boundary
value problems for PDE. To solve a problem, the FEM breaks down a large system
into smaller, simpler components known as finite elements. This is done through a
specific discretization of the spatial dimensions. It can be achieved by constructing
a mesh over the object, creating a numerical domain with a finite set of points.
The FEM formulation of a boundary value problem ultimately leads to a system
of algebraic equations. Then, it approximates the unknown function across the
domain. The simple equations governing these finite elements combine to form a
larger system representing the entire problem. The FEM then finds an approximate
solution by minimizing an associated error function using the calculus of variations.
The example of how a finite element works on the problem is shown in Figure 2.2

Figure 2.2: Visualization of FEM. The image shows the transformation of a 3D
geometric model (on the left) into a finite element mesh (on the right), where the
structure is discretized into smaller, triangular elements.

2.3.3 Weak formulation

To use FEM, we need to have our system of equations in the weak form. The
weak formulation is a mathematical technique to solve PDE by transforming the
problem into an equivalent variational form. The system of equations (2.44)-(2.49)
needs to be derived by multiplying each equation by a test function and integrating
over the domain Ω. This method is beneficial for solving problems with complex
geometries and boundary conditions. Let us consider an example of Poisson’s
equation to illustrate the weak formulation. Let Poisson’s equation be defined over
a domain Ω ⊂ R2:

−∆u = f in Ω, (2.51)
with Dirichlet boundary conditions:

u = 0 on ∂Ω. (2.52)
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To derive the weak formulation, we need to multiply the Poisson’s equation on
a test function v and integrate over the computational domain Ω:∫

Ω
(−∆u)vdx =

∫
Ω
fvdx. (2.53)

Applying integration by parts and using the boundary condition u = 0 on ∂Ω,
we obtain: ∫

Ω
∇u · ∇vdx =

∫
Ω
fvdx. (2.54)

The weak formulation of the problem is to find u. With this form, we can now
discretize the domain and solve the problem using the FEM.

2.3.4 FreeFem++ and Mesh

The FEM is implemented in the open-source platform FreeFem++ for solving
PDE [Hecht, 2012]. FreeFem++ is written in C++ and developed and main-
tained by Université Pierre et Marie Curie and Laboratoire Jacques-Louis Lions.
I performed all the numerical simulations presented in this manuscript using
FreeFem++. The final step of this chapter will be to introduce the mesh of the
problem. I used a triangular mesh for the simulations, which is the most common
type typically employed in FEM. The mesh is generated using the built-in mesh
generator in FreeFem++. Figure 2.3 presents the mesh of the system.

The figure here presents the smallest mesh resolution with 40000 triangles. All
the results presented in the following chapters are obtained with a much higher
number of triangles, around 200000, except for cases comparing different mesh
resolutions. This choice of mesh balances computational time with the desired
accuracy. We also note that we produce the mesh with P1 elements, which are linear
elements. The selection of P1 elements is made to simplify the calculations and to
reduce the computational time, even though FreeFem++ supports higher-order
elements. We verified that the results obtained with P1 elements correspond to
those obtained with P2 elements, which are quadratic elements, and P1b elements,
which are linear elements with bubble functions. However, the computational time
is significantly reduced with P1 elements, so all the simulations in the thesis are
performed with P1 elements.

2.3.5 Newton–Raphson method

As we have defined the mesh, we need to establish the numerical method; in our
case, it is the Newton-Raphson method. For a non-linear equation f(x) = 0, we
can use an iterative formula to approximate the root:

xn+1 = xn − f(xn)
f ′(xn) , (2.55)
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Figure 2.3: Triangular mesh of the domain Ω generated with FreeFem++ with
40000 triangles. Mesh is adapted to have a higher density of triangles near the
boundary.

where xn is the current approximation and f ′(xn) is the derivative of the
function at xn.

This method assumes that the function f(x) can be approximated by a linear
function around the current estimate, and the following estimate is obtained by
finding the root of this linear function. Let us consider a simple example to
illustrate the Newton-Raphson method. Let us look at the non-linear equation
f(x) = x2 − 2 = 0. The derivative of the function is f ′(x) = 2x. Starting with an
initial guess x0 = 1, we can apply the Newton-Raphson iteration as follows:

x1 = x0 − f(x0)
f ′(x0) = 1 − 1 − 2

2 = 1.5,

x2 = x1 − f(x1)
f ′(x1) ≈ 1.4167,

x3 ≈ 1.4142.

After just a few iterations, the method converges to the approximate root of
the equation f(x) = 0, which is x ≈ 1.4142.



2.3. Numerical Simulations 21

In our system, this method requires calculating f ′(x) for each equation in the
system (2.44)-(2.49) and the initial guess is set as u = 1 for all variables.

In iterative methods like the Newton-Raphson method, it is essential to define
a stopping criterion to decide when the process has converged sufficiently close to
the actual root. This is typically done using a tolerance parameter ϵ. For all our
calculations, we use ϵ = 10−10, which means that the iterative process will stop
when the absolute difference between successive approximations |xn+1 − xn| is less
than 10−10.

2.3.6 First numerical results

We now present the first numerical results with the necessary elements in place. By
solving the system of equations (2.44)-(2.49) and by applying boundary conditions
from 2.3.1 with typical JET parameters, we can compute the steady-state toroidal
velocity fields. Figure 3.1 depicts the computed toroidal velocity for two different
Hartmann numbers: H = 10 and H = 105 at a given resistivity η.

2.829
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0.943
0.314

0.315
0.944
1.573
2.202
2.8301e 10

2.181
1.696
1.211
0.726
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0.729
1.214
1.699
2.1841e 7

Figure 2.4: Toroidal velocity field computed with the FEM using FreeFem++ with
P1 elements for H = 10 (on the left) and H = 105 (on the right) in JET geometry
with no-slip boundary condition for toroidal velocity.

In the simulations, we vary the Hartmann number, which with fixed resistivity
η means that we vary the viscosity ν value. We typically start with H = 1 and find
a solution for each H by iterating through the Newton-Raphson method. Figure
2.5 presents the root-mean-square of the toroidal velocity field in Alfvén velocity
units as a function of the Hartmann number. By root-mean-square here, we mean
spatial average on the cross-section plasma domain Ω of the velocity field, which
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is calculated as

< v >rms=
(∫

Ω v
2ds∫

Ω ds

)1/2

. (2.56)

The figure also illustrates the typical data points collected throughout the
simulation process.
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Figure 2.5: Root-mean-square of the toroidal velocity field in Alfvén velocity units
as a function of the Hartmann number in log-log scale with no-slip boundary
condition for toroidal velocity.

2.3.7 Computational time

The simulations were conducted on personal computers, using the central process-
ing unit (CPU) for calculations. The computer efficiency, mesh resolution, and
complexity of the problem influence the computational time. A typical run takes
about one day to complete for the simulations performed in this thesis. However,
simulations can take several days with the finest mesh (200000 triangles) and
complex problems. Simulations are stopped when the Newton-Raphson method
fails to converge within the maximum allowed iterations (around 200).
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2.4 Summary

In this chapter, we have derived the system of axisymmetric steady-state equations
that will be used to simulate the plasma. It introduced the computational domain
and boundary conditions, followed by a detailed discussion of the numerical
methods employed: the finite element method, weak formulation, mesh generation
using FreeFem++, the Newton-Raphson method, and the first results. With this
being said, we are now ready to present the results of the simulations in the
following chapters.

Bibliography

Hecht, F. (2012). New development in FreeFem++. Journal of Numerical Mathe-
matics, 20(3-4):251–265, DOI: 10.1515/jnum-2012-0013.

Holst, M., Kungurtsev, V., and Mukherjee, S. (2022). A note on op-
timal tokamak control for fusion power simulation. arXiv e-prints,
(arXiv:2211.08984):arXiv:2211.08984, DOI: 10.48550/arXiv.2211.08984.

JET Team (1992). Fusion energy production from a deuterium-
tritium plasma in the jet tokamak. Nuclear Fusion, 32(2):187, DOI:
10.1088/0029-5515/32/2/I01, https://dx.doi.org/10.1088/0029-5515/
32/2/I01.

Kamp, L. P. and Montgomery, D. C. (2003). Toroidal flows in resistive mag-
netohydrodynamic steady states. Physics of Plasmas, 10:157–167, DOI:
10.1063/1.1524629.

Kamp, L. P., Montgomery, D. C., and Bates, J. W. (1998). Toroidal flows in
resistive magnetohydrodynamic steady states. Physics of Fluids, 10(7):1757–
1766, ISSN: 1070-6631, DOI: 10.1063/1.869692.

Krupka, A. and Firpo, M.-C. (2024). Scaling laws of the plasma velocity in
visco-resistive magnetohydrodynamic systems. Fundamental Plasma Physics,
10:100044, ISSN: 2772-8285, DOI: 10.1016/j.fpp.2024.100044.

Morales, J. A., Bos, W. J. T., Schneider, K., and Montgomery, D. C. (2012).
Intrinsic rotation of toroidally confined magnetohydrodynamics. Physical Review
Letters, 109(17):175002, DOI: 10.1103/PhysRevLett.109.175002.

Oueslati, H., Bonnet, T., Minesi, N., Firpo, M.-C., and Salhi, A. (2019). Numerical
derivation of steady flows in visco-resistive magnetohydrodynamics for JET and
ITER-like geometries with no symmetry breaking. AIP Conference Proceedings,
2179:020009, DOI: 10.1063/1.5135482.

https://dx.doi.org/10.1515/jnum-2012-0013
https://dx.doi.org/10.48550/arXiv.2211.08984
https://dx.doi.org/10.1088/0029-5515/32/2/I01
https://dx.doi.org/10.1088/0029-5515/32/2/I01
https://dx.doi.org/10.1088/0029-5515/32/2/I01
https://dx.doi.org/10.1063/1.1524629
https://dx.doi.org/10.1063/1.869692
https://dx.doi.org/10.1016/j.fpp.2024.100044
https://dx.doi.org/10.1103/PhysRevLett.109.175002
https://dx.doi.org/10.1063/1.5135482


24 Bibliography

Oueslati, H. and Firpo, M.-C. (2020). Breaking up-down symmetry with mag-
netic perturbations in tokamak plasmas: Increase of axisymmetric steady-state
velocities. Physics of Plasmas, 27(10):102501, DOI: 10.1063/5.0016566.

Roverc’h, E., Oueslati, H., and Firpo, M.-C. (2021). Steady-state flows in
a visco-resistive magnetohydrodynamic model of tokamak plasmas with in-
homogeneous heating. Journal of Plasma Physics, 87(2):905870217, DOI:
10.1017/S0022377821000313.

https://dx.doi.org/10.1063/5.0016566
https://dx.doi.org/10.1017/S0022377821000313


Chapter 3

Scaling laws of the plasma
velocity

The best way to predict the future is
to invent it.

Alan Kay
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3.1 Introduction

Plasma rotation plays a vital role in the heat and particle confinement properties
of the tokamak. Understanding and controlling plasma rotation is a crucial
research objective towards magnetic confinement. This chapter will be devoted to
understanding the plasma rotation and its scaling laws in the context of a visco-
resistive magnetohydrodynamic system. In Chapter 2, we proposed a step-by-step
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derivation of the dimensionless closed system of PDE to model tokamak plasmas
within a MHD visco-resistive setting. Following the derivation of this system,
coupling the steady-state Maxwell equations to the steady-state Navier-Stokes
equation with Ohm’s law closure, we focus on the behaviour of the system for a
constant toroidal current drive. In Section 3.2, we derive a scaling law for the
velocity that is expected to be valid as long as the magnitude of the inertial ω × v
term is small enough. This prediction is tested on numerical simulations in Sections
3.3 and 3.4. A conclusive Section 3.5 summarizes the outcomes of this chapter.

3.2 Behaviour of the plasma velocity
Let us now focus on the behaviour of plasma velocity within a visco-resistive MHD
setting. In the present study, we consider the axisymmetric steady-states of the
(dimensionless) Navier-Stokes equation

ω × v = −∇p∗ + j × b + ν∇2v, (3.1)

self-consistently satisfying the steady-state Maxwell equations with Ohm’s law
coupling

E + v × b = ηj. (3.2)
In magnetic confinement fusion, resistivity η and viscosity ν are two small param-
eters. Combining the Equations (3.1) and (3.2) yields

ω × v = −∇p∗ +
(E
η

+ η−1v × b
)

× b + ν∇2v. (3.3)

Let us put velocity to be v = (η/ν)1/2 ṽ and, consistently, vorticity then ω =
(η/ν)1/2 ω̃. By making this change of variable, Equation (3.3) becomes

η

ν
ω̃ × ṽ = −∇p∗ +

(E
η

+ (ην)−1/2 ṽ × b
)

× b + (ην)1/2 ∇2ṽ. (3.4)

Using the Hartmann number, H, defined as H = (ην)−1/2, this reads

η2H2ω̃ × ṽ = −∇p∗ +
(E
η

+Hṽ × b
)

× b +H−1∇2ṽ. (3.5)

The pressure term can be eliminated by taking the curl of the equation. Let us
discuss this equation for a given drive E/η. If we can neglect the left-hand side
inertial term in Equation (3.5), then we are left with

∇×
[(E

η
+Hṽ × b

)
× b +H−1∇2ṽ

]
= 0 (3.6)

and, at given E/η, plasma velocity ṽ must be a function of H only, meaning that
v/η = Hṽ is a function of H only. This prevalence of the Hartmann number was
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already inferred in the Reverse Field Pinch [Cappello and Escande, 2000], where
visco-resistive MHD simulations showed that the Hartmann number controls the
transition from multiple to quasi-single helicity states. Section 3.3 will be devoted
to the numerical exploration of v/η dependence on H only and its validity domain.
Using different values of the resistivity η while keeping constant the drive E/η,
any change of behaviour in the form of the components of v/η, if non-numerical,
might be considered as a signal of the onset of non-linear effects.

Let us briefly consider the neutral fluid case to discuss the onset of inertial
effects in Equation (3.5). If we introduce the Reynolds number, Re, as the ratio
between the order of magnitude of the inertial over the viscous forces and assume
that the characteristic length of the variation of v is r0, then we have

Re = ηH2v. (3.7)

To fix ideas, let us remind you that, in a circular pipe, the usual (neutral) fluid
turbulence sets in for Re ≥ Rec ≃ 3.103. Consequently, if we take the fusion
relevant value η = 10−8, this (qualitative) threshold would be attained for a
velocity Mach number as large as vc = 0.3 at H = 106, or as low as vc = 0.3 × 10−4

if H = 108. This could be an incentive to estimate viscosity better, and thus the
Hartmann number, in magnetized plasma flows. However, in the case of a tokamak
plasma, the initiation of inertial effects is anticipated to be much different as it is
governed by its balance with the Laplace force rather than the dissipative force.

3.3 Preliminary results
Now, let us look at the numerical results for our system. The simulations shown in
Figures 3.1, 3.2 and 3.3 admit a toroidal no-slip boundary condition for the toroidal
velocity and a constant ratio E0/η of order 1. First, let us consider the toroidal
velocity distribution on the cross-section plasma domain: Figure 3.1 depicts the
computed steady-state toroidal velocity fields for two different Hartmann numbers:
H = 10 and H = 105 at a given resistivity η. It can be seen on the left that at
low Hartmann number H so that the viscosity of the system ν is very high, the
toroidal velocity develops structures that seem segmented into distinct zones. Here,
the dominant force is viscous, which homogenizes the velocity across the plasma.
However, at a high Hartmann number on the right, the plasma becomes more
sensitive to the magnetic force that causes the formation of the boundary layer.

In Figures 3.2 and 3.3, the root-mean-squares of the toroidal and poloidal
velocity fields are computed for different resistivity values. It seems that the
numerical results can be separated into three distinct "regimes". The first regime
is in the limit of small Hartmann numbers H ≪ 1; it finishes at around H ≈ 10.
The second regime starts around H ≈ 80 and remains across almost all Hartman
numbers until H ≈ 105. The third regime appears to begin at H ≈ 106; however,
it never starts at the upper curve with η=6.9e-5. The behaviour of the plasma
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Figure 3.1: Toroidal velocity field for H = 10 (on the left) and H = 105 (on the
right) in JET geometry with no-slip boundary condition for toroidal velocity with
η=6.9e-9 and E0/η = 0.43.

velocity in the third regime needs to be investigated thoroughly. This section will
discuss the third regime and its validity in detail.

The log-log plots of Figures 3.2 and 3.3 demonstrate that at a given E0/η ratio,
the velocity is proportional to the resistivity and some function depending solely
on the Hartmann number. If we normalize each velocity curve on each resistivity η
value, we would see a single curve at the first and the second regime. However, the
emergence of a third regime at H-values above 106, resulting in slight variations
of the velocity behaviour for different resistivity values, suggests that non-linear
effects may be increasingly significant. In all the figures, the plotted results are,
by default, those obtained with the highest resolution (the maximum number of
triangles). Let us now verify how the systems behave with variation on the mesh.
Figure 3.4 illustrates the evolution of numerical results as a function of the number
of triangles used, N . It appears that the results depend on the mesh for values
of the Hartmann number beyond 106. This is easily interpreted in light of the
large-H cross-section plots of the toroidal velocity field (see Figure 3.1).

To obtain robust results, it is necessary to finely resolve the boundary layer
appearing at the edge of the domain that characterizes this second regime. With
N = 163508 triangles, we are approaching the maximum accessible resolution. It
is probable, but not certain, based on the simulations in Figure 3.4, that the end
of the scaling law of the second regime is a numerical artifact due to a resolution
deficiency.
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Figure 3.2: Root-mean-square of the toroidal velocity field in Alfvén velocity units
as a function of the Hartmann number in log-log scale for different values of the
resistivity with no-slip boundary condition for toroidal velocity with E0/η = 0.43.
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Figure 3.3: Root-mean-square of the poloidal velocity field in Alfvén velocity units
as a function of the Hartmann number in log-log scale for different values of the
resistivity with no-slip boundary condition for toroidal velocity with E0/η = 0.43.
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Figure 3.4: Root-mean-square of toroidal and poloidal velocities as a function of
the Hartmann number in Alfvén velocity units with η=6.9e-9 for different numbers
of triangles with no-slip boundary condition for toroidal velocity.
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Figure 3.5: Contribution of (ω × v) · iφ term (on the left) and (j × b) · iφ term
(on the right) to the total toroidal velocity for H = 105.
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To verify if inertial effects could be involved in this regime shift at high
Hartmann numbers, let us quantify the impact of the non-linear term on the
overall velocity. In Figure 3.5, we depict the contributions of the (ω × v) · iφ and
(j × b) · iφ terms to the total toroidal velocity in Equation (2.36) for H = 105.
Here, two assumptions are made: firstly, we set the (j × b) · iφ term to zero.
Consequently, Equation (2.37) is modified to

ν̂△̂∗ũ4 = 1
x

{ũ1, ũ4} (3.8)

Similarly, for the distribution on the right in Figure 3.5, we make a similar
assumption, but this time for the non-linear term

ν̂△̂∗ũ4 = 1
x

{ũ3, ũ5} (3.9)

It is worth noting that, even for high Hartmann numbers, the non-linear term is
observed to be significantly smaller than the (j × b) · iφ term. The distribution on
the right in Figure 3.5 precisely corresponds to the toroidal velocity in Figure 3.1,
indicating that the non-linear term’s contribution to the total velocity is negligible.
Figure 3.6 shows a comparison of the toroidal and poloidal parts of ω × v and
j × b terms as a function of the Hartmann number. Expressing these terms in new
variables, the toroidal part of ω × v becomes {u1, u4}/x2, while the poloidal part
is given by u2∇u1/x

2 − u4∇u4/x
2. Similarly, for j × b, the toroidal component

is {u5, u3}/x2, and the poloidal one is −u3∇u3/x
2 + u6∇u5/x

2. It can be seen
that the non-linear term grows with the increase of the Hartmann number, yet it
remains sufficiently small not to impact the total toroidal and poloidal velocity.
We conclude that the third regime is numerical.
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Figure 3.6: Root-mean-square of toroidal and poloidal parts of ω × v and j × b
terms as a function of the Hartmann number in Alfvén velocity vA0 units with
η=6.9e-9.

3.4 Scaling laws

3.4.1 Prediction of the scaling laws with H ≪ 1 and H ≫ 1

Here, we would like to shift our focus to the first and second regimes and predict
their scaling laws. The scaling of velocity in the first regime where H ≪ 1 can
be deduced analytically and is already documented in the literature [Kamp et al.,
1998]. According to [Kamp et al., 1998; Kamp and Montgomery, 2003], the toroidal
velocity in this limit scales with H4 while the poloidal velocity scales with H2. A
detailed derivation of the velocities scaling laws is presented in Appendix C.

As depicted in Figure 3.1, the second regime exhibits a distinct boundary layer
that becomes thinner with the increase of the Hartmann number. It is necessary
to consider the boundary layer equations to predict the velocity behaviour in this
regime where H ≫ 1 while the effects of inertial terms remain negligible. We
aim to estimate the boundary layer thickness δ as a function of the Hartmann
number, denoted as δ = δ(H). We start from Equation (3.5), at a given E/η and
by neglecting the inertial term we have

−j × b = −∇p∗ +H−1∇2ṽ. (3.10)
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Using j × b = (b · ∇)b − ∇(b2/2), Equation (3.10) takes the form

−(b · ∇)b = −∇p̃∗ +H−1∇2ṽ (3.11)

where p̃∗ = p∗ + b2/2. To facilitate the writing of equations within the boundary
layer, we introduce a new coordinate system in which the plasma boundary ∂Ω
aligns with the y-axis while x denotes the transverse direction. We introduce the
characteristic length, L, in the y-direction and the boundary layer thickness δ in
the x-direction (δ ≪ L) (see Figure 3.7). Vc and Bc represent the characteristic

Figure 3.7: Sketch of the slab geometry used in the boundary layer equations.

plasma speed and magnetic field along y. Let ṽx and ṽy denote the velocity
components in the x and y directions respectively, and bx and by the magnetic
field components. From Equation (3.11) we derive

−bx
∂bx

∂x
− by

∂bx

∂y
= −∂p̃∗

∂x
+H−1

(
∂2ṽx

∂x2 + ∂2ṽx

∂y2

)
, (3.12)

−bx
∂by

∂x
− by

∂by

∂y
= −∂p̃∗

∂y
+H−1

(
∂2ṽy

∂x2 + ∂2ṽy

∂y2

)
, (3.13)

where, in Equation (3.13), we can anticipate that the pressure gradient along y is
negligible. By assuming ṽy ∼ Vc, y ∼ L, x ∼ δ, by ∼ Bc, we estimate ṽx from the
incompressibility condition

∂ṽx

∂x
+ ∂ṽy

∂y
= 0 (3.14)

and similarly bx from the zero-divergence of the magnetic field

∂bx

∂x
+ ∂by

∂y
= 0 (3.15)

as ṽx ∼ δVc/L and bx ∼ δBc/L. Now the Equation (3.13) yields
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B2
c

L
+ B2

c

L
∼ H−1Vc

δ2 +H−1 Vc

L2 . (3.16)

The largest viscous term should be comparable in magnitude to the left-hand
terms, that is

B2
c

L
∼ H−1Vc

δ2 (3.17)

which gives the boundary layer thickness scaling with Hartmann number as

δ ∼ 1√
H
. (3.18)

Let us note that this is in agreement with the numerical estimate of the
boundary layer thickness obtained in [Kamp and Montgomery, 2004] as a function
of the viscosity as δ ∼ ν1/4 (assuming there η constant). Let us now estimate the
behaviour of the velocity root-mean-square with the Hartmann number. Let us
focus on the velocity ṽ in the poloidal direction. By definition, its root-mean-square
is

< ṽpol >rms=
(∫

Ω ṽ
2
polds∫

Ω ds

)1/2

. (3.19)

In the boundary layer (BL), using the expression of the poloidal velocity in
terms of the stream function (2.26) yields ṽBL

pol ∼ H/(ηδ). At the same time, in
the rest of the plasma, the contribution of the transverse gradient should be of
order one yielding ṽcore

pol ∼ H/(ηδ). This yields

∫
Ω
ṽ2

polds =
∫

BL
ṽ2

polds+
∫

Ωcore
ṽ2

polds ∼ LδH2

η2δ2 + L2H2

η2 ∼ LH2

η2δ
. (3.20)

Consequently, < ṽpol >rms∼ H/ηδ−1/2, so that in the original velocity variable
and using (3.18), one obtains the scaling

< vpol >rms∼ ηH1/4. (3.21)

The root-mean-square of the toroidal velocity should follow the same scaling as
the poloidal velocity because poloidal and toroidal components are interchangeable
from the perspective of the boundary layer analysis and can both align with the
y-axis of Figure 3.7. By this argument, we can conclude that < vpol >rms and
< vϕ >rms scales with ηH1/4 forH ≫ 1. Finally, we have used the incompressibility
assumption in Equation (3.14) to derive this scaling law so that we do not expect
these results to be transferable to the case of compressible flow.
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3.4.2 Numerical estimation of the scaling laws

Let us estimate the scaling laws of the velocity in these two regimes by using a
power-law fitting. In Figure 3.8, it can be seen that in the limit, as the Hartmann
number H approaches zero for the first regime, the velocity follows the pattern
ηf(H), with f approximately equal to H4 for toroidal velocity and H2 for poloidal
velocity. The velocities scale as H1/4 in the second regime. It corresponds to the
analytical predictions made in Section 3.4.1.
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Figure 3.8: Root-mean-square of toroidal and poloidal velocities in Alfvén velocity
units as a function of the Hartmann number in log-log scale with power-law fitting
curves.

3.4.3 Effect of boundary conditions

It is necessary to investigate the impact of the boundary conditions on the scaling
laws. To do so, let us take a closer look at the behaviour of the toroidal velocity field
with different boundary conditions: Figure 3.9 presents the same as Figure 3.1 for
H = 10 and H = 104 but with the "free-slip" boundary conditions for the toroidal
velocity (∂n(u4/r

2) = 0, u2 = 0). Figure 3.10 presents the application of Neumann
∂n(u4/x) = 0, u2 = 0 boundary conditions and finally Figure 3.11 illustrates
the zero normal derivative of the toroidal velocity and vorticity (∂n(u4/x) =
∂n(u2/x) = 0) boundary conditions.
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Figure 3.9: Toroidal velocity field computed with the FEM using FreeFem++ with
P1 elements for H = 10 (on the left) and H = 104 (on the right) in JET geometry
with free-slip boundary condition for toroidal velocity with η=6.9e-9 and E0=3e-9.
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Figure 3.10: Toroidal velocity field computed with the FEM using FreeFem++
with P1 elements for H = 10 (on the left) and H = 104 (on the right) in JET
geometry with ∂n(u4/x) = 0, u2 = 0 boundary conditions with η=6.9e-9 and
E0=3e-9.
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At all this variation of the boundary conditions, velocity distribution also
slightly varies, especially at small Hartmann numbers. In the case of big Hartmanns,
velocities still develop a boundary layer, which seems almost the same as in the
case of no-slip boundary conditions. Let us now look at the root-mean-square to
verify the behaviour of the plasma velocity under the different boundary conditions.
In Figure 3.12, we compare the diverse boundary conditions described above
in Section 2.3.1, applied to the toroidal velocity and vorticity. To facilitate
interpretation, we have normalized the root-mean-square of the toroidal velocity
field for the corresponding resistivity values. Notably, this normalization leads to
the convergence of the curves across the resistivity values.

It can be seen that the scaling law for the toroidal velocity in the first regime
of small Hartmanns remains consistent; the scaling law in the second regime of big
Hartmanns slightly varies with the application of different boundary conditions.
Yet, this variation is slight enough to state that the scaling maintains the same
order. The characteristics of the first and second slopes now reveal that, at a fixed
E0/η ratio, the velocity is dependent on the Hartmann number only, and this
scaling remains even when considering different boundary conditions.

1.577
1.227
0.876
0.526
0.175

0.175
0.526
0.876
1.226
1.5771e 9

1.290
1.003
0.715
0.428
0.141

0.147
0.434
0.721
1.009
1.2961e 7

Figure 3.11: Toroidal velocity field computed with the FEM using FreeFem++
with P1 elements for H = 10 (on the left) and H = 104 (on the right) in JET
geometry with ∂n(u4/x) = ∂n(u2/x) = 0 boundary conditions with η=6.9e-9 and
E0=3e-9.
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Figure 3.12: Root-mean-square of the toroidal velocity field (in Alfvén velocity
units) over η as a function of the Hartmann number in log-log scale for different
boundary conditions for the toroidal velocity and vorticity, for different values of
the resistivity and a given E0/η = 0.43.
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3.4.4 Effect of the control parameter

In the present study, we are interested in the behaviour of the system for a given
ratio of E0/η. This quantity may be viewed as the only explicit drive appearing in
the dimensionless system of equations (2.44)-(2.49), being the dominant term of
u6 = xjφ, that is the toroidal current source term of the Grad-Shafranov equation
(2.49). The behaviour v/η ∝ H4 in the limit of small H was numerically derived in
Section 3.4 for E0/η of order 1. If E0/η is allowed to vary, then we have a problem
with two parameters, H and E0/η. Let us now consider different values of E0/η.
Figure 3.13 shows the root-mean-square of the toroidal velocity field divided by
η, divided by (E0/η)3. This normalization makes all the curves collapse in the
H → 0 limit.
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Figure 3.13: Root-mean-square of toroidal velocity field normalized on η(E0/η)3

as a function of the Hartmann number in Alfvén velocity vA0 units for the different
values of the ratio E0/η.

When E0/η is small but H is no longer small, we observe the emergence of a
new scaling law in H, coming between the previous small H scaling (that we called
the first regime) and the large H boundary-layer governed scaling (that we called
the second regime). This new intermediary regime is all the more extensive as
E0/η is small and does not involve a boundary layer. These results emphasize the
critical role of the E0/η ratio in influencing the toroidal velocity regimes, scaling
and boundary layer formation. That being said, the relevant order of magnitude
for E0/η in tokamaks is about one.
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3.5 Conclusions

In the chapter, we investigated the behavior of plasma velocity using a visco-
resistive MHD model. Within this framework applied to a tokamak plasma with a
prescribed toroidal current drive, we have successfully predicted and numerically
validated a scaling law for the velocity. This scaling law is expressed as a function
of the resistivity, η, and the Hartmann number, H, where H is defined as H ≡
(ην)−1/2, with ν denoting viscosity. The observed behaviour indicates that the
velocity scales as ηf(H), where f is a specific function. Notably, this scaling law
remains valid under the condition that the inertial term ω × v remains negligible,
which happens to be the case up to the largest numerically accessible values of
the Hartmann number. Within this general scaling law, we have numerically
uncovered, for a given, order-one, E0/η drive, two limiting regimes at low and high
H where the function f behaves as a power law.

Various boundary conditions applied to the toroidal velocity and vorticity did
not affect the scaling laws. The variation of the drive of the system E0/η revealed
the emergence of a new scaling law in H for small E0/η values. This new scaling
law is an intermediary between the low and high H regimes and does not involve
a boundary layer. The critical role of the E0/η ratio in influencing the toroidal
velocity regimes, scaling and boundary layer formation was emphasized.

Overall, the order of magnitude of the plasma velocity remains low compared
to experimental measurements and to the expected velocities necessary for taming
instabilities. It is possible to attribute this to the absence of turbulence in this
axisymmetric and thus 2D model, the lack of symmetry breaking, or the use
of a MHD, rather than kinetic modeling. An additional explanation may lie in
some insufficiency in the description of the plasma heating drive. This will be the
subject of the next chapter. Let us finally emphasize that we are here deliberately
exploring scenarios of plasma rotation within the axisymmetric framework since
this could ’nip in the bud’ 3D instabilities.
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Chapter 4

Non-inductive current drives

You put this kid behind the wheel,
there’s nothing he can’t do.

Drive (2011)
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4.1 Introduction
In tokamak plasmas, a critical parameter is the drive that initiates plasma rotation.
As demonstrated in the previous chapter, the drive significantly influences toroidal
velocity regimes, scaling, and boundary layer formation. Using non-inductive
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currents improves the feasibility of the tokamak fusion reactor concept in several
ways. They enable steady-state operation and enhance tokamak performance.
It has been shown that confinement properties and stability limits can also be
improved by controlling the current profile [Ferron et al., 1993; Kessel et al.,
1994; Turnbull et al., 1995]. Non-inductive maintenance of the tokamak current is
possible by applying unidirectional radio-frequency (RF) waves or Neutral Beam
Injection (NBI). [Forest et al., 1994] demonstrated that significant non-inductive
currents exist in certain plasma scenarios where neutral beam current drive and
pressure-induced bootstrap currents are expected. This study extends the visco-
resistive MHD model by incorporating additional non-inductive current drives.
By modifying the toroidal current to simulate the effects of NBI and RF heating,
we aim to overcome the limitations of traditional models. We employ numerical
simulations to analyze the pressure profiles and plasma behaviour.

In Section 4.2, we discuss the limitations of the model proposed by [Kamp
and Montgomery, 2003] for describing tokamak plasmas within a MHD visco-
resistive framework. It is predicted that this system yields zero pressure in the
ideal and motionless limit, which makes us reconsider using Ê0/η as the sole drive
in the system. Therefore, we propose the application of an additional drive in
Section 4.2.4 to model heating methods applied in real tokamaks, verified through
pressure profiles in Section 4.3. Section 4.4 discusses numerical simulations with
toroidal current drives. A conclusive Section 4.5 summarizes the study’s outcomes.

4.2 The necessity of non-inductive current drive

4.2.1 Self-consistent system of vector equations

The framework employed in this study is MHD. In more precise terms, building
on the research initiated by Montgomery and his collaborators, we assume that
the axisymmetric steady-states of the plasma are governed by the incompressible
visco-resistive MHD. This is consistent with the customary reconstruction of 2D
equilibria using the Grad-Shafranov equation, except that we do not assume the
velocity field to be zero and reintroduce self-consistency in the model as we do not
have free functions. Then, to describe a tokamak plasma, an essential aspect is
to model the external drives involved in the system. One inherent drive in this
magnetic confinement fusion device is the external magnetic field. Additionally, the
need to wind the magnetic field lines and create a macroscopic poloidal component
of the magnetic field requires a second forcing mechanism. Following previous
references [Kamp and Montgomery, 2003, 2004; Oueslati et al., 2019; Krupka and
Firpo, 2024], we assume that this magnetic poloidal component is enabled by a
toroidal electric field, which in turn generates a toroidal current density via Ohm’s
law. The computation of visco-resistive axisymmetric steady states involves then
solving the steady-state incompressible Navier–Stokes equation (4.1)-(4.2) along
with the solenoidal condition (4.3), Faraday’s law (4.4), Ampère law (4.5) and
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Ohm’s law (4.6) on a tokamak poloidal plasma cross-section Ω. The equations are
as follows:

(v · ∇)v = J × B − ∇p+ ν∇2v, (4.1)
∇ · v = 0, (4.2)
∇ · B = 0 (4.3)
∇ × E = 0 (4.4)
∇ × B = J (4.5)
E + v × B = ηJ . (4.6)

With respect to the drives, both the externally applied (vacuum) toroidal
magnetic field and the steady-state toroidal electric field required to drive the
toroidal current are curl-free. We have

Bext = 1
x

iφ, (4.7)

Eext = Ê0
x

iφ, (4.8)

with iφ a unit vector in the toroidal (azimuthal) direction. The magnetic and
electric fields in Equations (4.1)-(4.6) are the sum of these external contributions
and of the self-consistent plasma fields. This system of equations needs to be
solved on the plasma cross-section Ω with suitable boundary conditions. From a
computational perspective, we solve the system of PDE we are now presenting.

4.2.2 Scalar PDE formulation

One can eliminate the unknown pressure term by taking the curl of Equation (4.1).
This signifies that the pressure is a passive variable and not an actuator. Moreover,
the velocity v, vorticity ω ≡ ∇ × v, magnetic B and current density J vector
fields are divergence-free. They admit then the following representations defining
the scalar functions u1, ..., u6 of (x, y) ∈ Ω through the relationships

v = 1
x

∇u1 × iφ + u4
x

iφ, (4.9)

ω = 1
x

∇u4 × iφ + u2
x

iφ, (4.10)

B = 1
x

∇u5 × iφ + u3
x

iφ, (4.11)

J = 1
x

∇u3 × iφ + u6
x

iφ. (4.12)
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The above system of equations (4.1)-(4.6) with the external drives (4.7)-
(4.8) is amenable [Kamp and Montgomery, 2003; Kamp et al., 1998; Kamp and
Montgomery, 2004; Krupka and Firpo, 2024; Roverc’h et al., 2021] to the following
set of five scalar elliptic PDE

△∗u1 = −u2, (4.13)

ν△∗u2 = 1
x2

∂

∂y
(u2

3 − u2
4) + 1

x
{u6, u5} + 1

x
{u1, u2} + (4.14)

+ 2u2
x2

∂u1
∂y

− 2u6
x2

∂u5
∂y

, (4.15)

η△∗u3 = 1
x

{u1, u3} + 1
x

{u4, u5} + 2u3
x2

∂u1
∂y

− 2u4
x2

∂u5
∂y

, (4.16)

ν△∗u4 = 1
x

{u1, u4} + 1
x

{u3, u5} , (4.17)

△∗u5 = −u6 (4.18)

with the toroidal projection of Ohm’s law giving the constraint

ηu6 = Ê0 + 1
x

{u5, u1} . (4.19)

A relevant dimensionless control parameter has been shown [Montgomery, 1993;
Cappello and Escande, 2000; Krupka and Firpo, 2024] to be the Hartmann number,
H = (ην)−1/2. This is expected to be a large parameter in the range 106 to 108 in
fusion-relevant conditions. Available numerical results [Kamp and Montgomery,
2003; Kamp et al., 1998; Kamp and Montgomery, 2004] for realistic inputs in
the external drives (4.7) and (4.8) with constant Ê0 and up-down symmetric
boundary conditions have produced very low values of the typical, root-mean-
square, steady-state velocity components. Our next step is to investigate the cause
of this outcome.
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4.2.3 Examination of the pressure field

Let us now examine the pressure profile in the visco-resistive model (4.1)-(4.6) with
the external drives (4.7)-(4.8). Let us assume for now that the steady-state plasma
speed is negligible. Then, in the ideal limit, η → 0 and ν → 0, the steady-state
Navier-Stokes equation (4.1) takes the form of the usual Grad-Shafranov equation

∇p = J × B. (4.20)

Restricting to axisymmetric solutions, the projection of this equation on x and
y gives, respectively,

∂p

∂x
= x−2

(
−u3

∂u3
∂x

+ u6
∂u5
∂x

)
, (4.21)

∂p

∂y
= x−2

(
−u3

∂u3
∂y

+ u6
∂u5
∂y

)
. (4.22)

In the toroidal direction, we get

0 = x−2{u5, u3} (4.23)

This amounts to the well-known property of Grad-Shafranov’s theory that the
diamagnetic function u3 is a function of only the magnetic flux u5. Moreover,
writing that J × B is curl-free, which follows from the Grad-Shafranov equation
(4.20) and projecting this on the toroidal direction yields

−2u3
∂u3
∂y

+ x{u5, u6} + 2u6
∂u5
∂y

= 0. (4.24)

Then, combining Equations (4.22) and (4.24), the pressure gradient along the
y-axis with a zero-flow hypothesis is given by

∂p

∂y
= 1

2x {u6, u5} . (4.25)

Assuming no plasma flow, the toroidal projection of Ohm’s law in Equation
(4.19) states simply that u6 is a constant with u6 = Ê0/η. Equation (4.25) indicates
that the pressure field does not depend on y. Yet, from the set of equations (4.21)-
(4.22)-(4.23), one can simply obtain that the pressure is a function of the magnetic
flux u5 as {p, u5} = 0. Thus, we are left with ∂yp = p′(u5)∂yu5 = 0. This means
that the pressure profile is constant. As it must be equal to its value on the border
of Ω, this means that the pressure, and thus the temperature of the system, is
zero.
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4.2.4 Implementation of non-inductive current drives

Section 4.2.3 shows that the simplifying assumption of a toroidal current density
component arising solely from Ohm’s law in response to a time-independent, curl-
free toroidal electric field given by Equation (4.8) puts serious limitations to the
model. Indeed, the effective pressure in the model is solely due to the fact that
toroidal geometry and viscous dissipation force the steady-state velocity field to be
not identically zero. This allows the pressure profile to be not vanishingly small as
u6 is then not exactly constant. But, we are missing in the modeling a robust way to
ensure adequate heating for achieving fusion conditions. Therefore, modifications
incorporating alternative heating methods are essential to achieve higher pressure.
We shall see that this also tends to induce higher rotation velocities of the plasma.

In our previous analysis, we focused on the behaviour of the system for a specific
ratio of Ê0/η, which was considered the only explicit drive in the dimensionless
system of equations in Chapter 3. We aim to introduce an additional driving force
in the current field. This will appear as an extra term in the toroidal component
of Ohm’s law in Equation (4.6):

Ê0
x

+ (v × B) · iφ + jd = ηJ · iφ, (4.26)

where jd represents a current drive. Since u6 = xjφ, Equation (2.49) now becomes

ηu6 = Ê0 + 1
x

{u5, u1} + jdx. (4.27)

In order to investigate the impact of such a non-inductive current drive, we chose
two families of functions for the current drive. This is meant as a first approach
to modeling current distribution similar to that created by heating methods in
tokamaks, which can be seen as "adding a bump" to the current distribution.
Functions on the x-axis give the first family model as

jd(x, y) = −r2
0
r2

1
A(x− 1)2 +B, (4.28)

where r0 is the major radius, r1 is the semi-minor axis of the cross-section, A is a
magnitude of the bump and B is an offset in the current distribution. Considering
the case of Equation (4.28) with A = B = 1, Figure 4.1 compares at H = 10 the
toroidal current density fields computed using Equations (2.44)-(2.48) with the
toroidal projection of Ohm’s law (4.27) for jd = 0 (original reference case) and
jd = − r2

0
r2

1
(x− 1)2 + 1. The original system of equations with only the Ê0/η drive

(jd = 0) does not produce realistic toroidal current density profiles, despite giving
a realistic total current, since the Ê0/η ratio of about 1 corresponds to the realistic
total current.

To investigate this further, we considered a second family of current drive, jD,
defined as the solution to the Poisson’s equation ∇2jD = −A with the boundary
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Figure 4.1: Toroidal current field without the application of the drive jd = 0 (on
the top) and with the application of the drive jd = −r2

0/r
2
1(x− 1)2 + 1 for H = 10

in dimensionless units (on the bottom).
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condition jD = B on ∂Ω. As before, A represents the magnitude and B the offset
of the drive. Figure 4.2 shows the drive jD with magnitude A = 100 and offset
B = 0, along with the resulting toroidal current distribution when this drive is
applied. We intend to test two impacts of these drives, jd and jD, within our
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Figure 4.2: Drive on the toroidal current jD with A = 100, B = 0 (on the left) and
resulting toroidal current distribution jφ at H = 10 (on the right).

system. We shall first assess their impact on the pressure profile. To that end, we
must be able to evaluate the pressure field. The following section will be dedicated
to this establishment of the pressure field.

4.3 Pressure determination

4.3.1 Establishing Poisson’s equation for the pressure field

Let us go back to the steady-state Navier-Stokes equation (4.1) and rewrite it as

ω × v = J × B − ∇p∗ + ν∇2v (4.29)

with
p∗ = p+ v2

2 . (4.30)

Previously, we eliminated the pressure term by taking the curl and considering
the toroidal part of the force balance equation. Now, to obtain the pressure of the
system, we take the divergence of Equation (4.29)

∇ · ∇p∗ = ∇ ·
[
−ω × v + J × B + ν∇2v

]
. (4.31)
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This takes the form of Poisson’s equation for the pressure p∗ as the left-hand side
yields the Laplacian of the pressure, △p∗. Taking the divergence of the first term
on the right-hand side gives

−∇ · (ω × v) = v · ∇2v + ω2. (4.32)

We can treat the J × B term similarly

∇ · (J × B) = −B · ∇2B − J2. (4.33)

Finally, the term ∇ · (ν∇2v) equals zero due to the incompressibility condition
∇ · v = 0. Therefore, the complete Poisson’s equation for the pressure is

△p∗ = v · ∇2v + ω2 − B · ∇2B − J2 (4.34)

where △ is defined as

△A ≡ ∂2A

∂x2 + 1
x

∂A

∂x
+ ∂2A

∂y2 . (4.35)

Now, let us write this Poisson’s equation (4.34) in terms of the functions u1, ...,
u6 of (x, y) ∈ Ω. To achieve this, we examine each term individually. Using the
expression for the vorticity (4.10), the second term becomes

ω2 = −u2
x2 △∗u1 + 1

x2
∂u4
∂x

∂u4
∂x

+ 1
x2
∂u4
∂y

∂u4
∂y

. (4.36)

Similarly, for the square of the current density vector (4.12), we get

J2 = −u6
x2 △∗u5 + 1

x2
∂u3
∂x

∂u3
∂x

+ 1
x2
∂u3
∂y

∂u3
∂y

. (4.37)

Finally, let us examine the term B · ∇2B. We can use the identity B · ∇2B =
−B · (∇ × J) with

B · (∇ × J) = −u3
x2 △∗u3 + 1

x2
∂u5
∂x

∂u6
∂x

+ 1
x2
∂u5
∂y

∂u6
∂y

. (4.38)

Similarly, we have

v · (∇ × ω) = −u4
x2 △∗u4 + 1

x2
∂u2
∂x

∂u1
∂x

+ 1
x2
∂u2
∂y

∂u1
∂y

. (4.39)

Incorporating all of these contributions into the right-hand side of Poisson’s
equation yields

△p∗ = u4
x2 △∗u4 − 1

x2
∂u2
∂x

∂u1
∂x

− 1
x2
∂u2
∂y

∂u1
∂y

− u2
x2 △∗u1 + 1

x2
∂u4
∂x

∂u4
∂x

+ 1
x2
∂u4
∂y

∂u4
∂y

− u3
x2 △∗u3 + 1

x2
∂u5
∂x

∂u6
∂x

+ 1
x2
∂u5
∂y

∂u6
∂y

+ u6
x2 △∗u5 − 1

x2
∂u3
∂x

∂u3
∂x

− 1
x2
∂u3
∂y

∂u3
∂y

. (4.40)
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This elliptic differential equation needs to be solved with a boundary condition
and allow the pressure profiles for the different drives to be computed. In this
work, we calculate pressure profiles with the assumption that the pressure on the
border equals zero. Of course, it is necessary to enforce the Neumann boundary
condition in the pressure calculation. According to [Kress and Montgomery, 2000],
the normal component of ∇p is enough to determine p through the Neumann
boundary condition. Appendix B is dedicated to the detailed derivation of the
pressure together with boundary conditions. To the best of our knowledge, the
derivation of Equation (4.40) within the visco-resistive system is novel.

4.3.2 Numerical solutions to Poisson’s equation for the pressure

Let us now solve the above Poisson’s equation for the pressure assuming a zero
pressure condition at the boundary ∂Ω. It is important to note that, in the absence
of an additional toroidal current drive and assuming no plasma flow, we inferred
a zero pressure in the limits η → 0 and ν → 0, in Section 4.2.3. To verify the
pressure distribution in the absence of the drive with plasma flow, let us examine
Figure 4.3. This figure shows the pressure p = p∗ − v2/2 computed without the
application of the drive, that is, in the original system of equations, for H = 10
and H = 105. The pressure profiles are presented in Pascal units (Pa). Let us
remind you that the realistic pressure value is in the order of 105 ∼ 106 Pa in the
JET tokamak [JET Team, 1992].
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Figure 4.3: Pressure profiles computed without the application of the drive (jd = 0)
on the toroidal current field for H = 10 (on the left) and for H = 105 (on the
right).
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The order of magnitude of the pressure field in the absence of the current drive
turns out to be unrealistically small, as predicted in Section 4.2.3. Additionally, the
pressure distribution does not follow the magnetic flux profile, indicating that the
pressure is solely driven by the velocity terms. Now, let us examine the pressure
distributions shown in Figure 4.4 for two drives: jd with A = 1 and B = 1, and jD
with A = 100 and B = 0. The application of these additional drives not only avoids
unrealistically low-pressure levels but also achieves pressure levels comparable to
those observed in the JET tokamak.
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Figure 4.4: Pressure profiles computed with the application of the drive jd with
A = 1 and B = 1 (on the left) and jD with A = 100 and B = 0 (on the right) on
the toroidal current field for H = 105.

With the application of the drives, achieving a different configuration of
magnetic flux surfaces is possible, including non-nested magnetic field lines with
several n = 0 islands present. An example is given in Figure 4.5 that shows the
magnetic flux surfaces and the pressure profile when the drive jD with A = 100
and B = −5 is applied. Although the results from this drive will be discussed
in more detail later, it is worth noting that the magnetic field lines generated
by this drive represent an extreme case. Most drives, which will be discussed in
Section 4.4, typically produce nested magnetic field lines.
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Figure 4.5: Magnetic flux surfaces with internal separatrices (on the left) and
pressure profiles (on the right) computed with the application of the drive jD with
A = 100 and B = −5 on the toroidal current field for H = 105.

4.4 Numerical outcomes with toroidal current drives

4.4.1 A first test case

Let us consider the toroidal current drive jd here with A = 5 and B = 1. Figure 4.6
shows the toroidal current distribution with this drive at two different Hartmann
numbers H = 10 and H = 105. The total current generated by this drive is
approximately 0.37 MA for H = 10 and 0.35 MA for H = 105, which is lower than
the typical total current of 0.6 MA generated by the ratio Ê0/η.

Figure 4.7 shows the computed steady-state axisymmetric toroidal velocity
fields for the same two Hartmann numbers, H = 10 and H = 105. Significant
changes in the velocity distribution are observed compared to the case without
the drive in Chapter 3. The velocity profiles exhibit an irregular shape at low
Hartmann numbers. However, the up-down symmetry is preserved at both low
and high Hartmann numbers, as theoretically predicted [Oueslati and Firpo, 2020],
which indicates good numerical robustness.

Now, let us analyze the root-mean-square of the toroidal and poloidal velocities,
as shown in Figure 4.8, while considering different numbers of triangles in the
mesh N , with the application of the drive jd with A = 5 and B = 1. The figure
demonstrates that applying the drive jd results in a significant increase in the
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toroidal velocity. Furthermore, we observe much more stable results when varying
the number of triangles compared to those reported in the previous chapter.
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Figure 4.8: Root-mean-square of toroidal and poloidal velocities as a function of
the Hartmann number in Alfvén velocity units with the application of the drive
jd with A = 5 and B = 1 on the toroidal current field for different numbers of
triangles.

4.4.2 Parametric study of two current drive families

Now, let us consider different parameters of the drives, such as magnitude A and
offset B, to understand the behaviour of plasma velocity under the assumption of
the applied toroidal current drives. Figure 4.9 illustrates the root-mean-square of
the toroidal velocity while applying the drive jd with B = 1 to the toroidal current
field across various values of A. Here, we aim to explore the impact of varying
the magnitude of the bump. As depicted, the toroidal velocity gradually increases
with the augmentation of the magnitude. Additionally, we include the reference
case of the drive jd = 0, which represents the main result obtained in the chapter 3
to compare the results.

Figure 4.10 also presents the root-mean-square of the toroidal velocity as in
Figure 4.9, but with a fixed value of A = 5, while exploring different values of B.
In this scenario, the situation is reversed: as the offset of the drive increases, the
velocities diminish. Although all the curves appear to develop linear behaviour in
the H → ∞ limit, this is not actually the case. The curves for B = 1, 2, 3 begin
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Figure 4.9: Root-mean square of toroidal velocity in Alfvèn velocity units as a
function of the Hartmann number, with the application of the drive jd with B = 1
on the toroidal current field, for the different values of A.

to bend in this limit, making it impossible to scale velocities with the Hartmann
number. We must investigate another drive family jD to verify this behaviour.

Let us examine the velocity distribution by applying the drive jD. Figure 4.11
presents the toroidal velocity field computed with Hartmann numbers H = 10 and
H = 105 with the application of the drive jD with magnitude A = 100 and an
offset B = 0 on the toroidal current field. The results show that the drive does
not significantly impact the velocity distribution, as the behaviour remains nearly
identical to the no-drive case, with no noticeable increase in velocity.

To verify this, we vary now the magnitude of the drive. Figure 4.12 presents the
same as Figure 4.9 but for a different drive jD applied. It can be observed that while
varying the magnitude of the drive causes an increase in velocities in the first regime,
the second regime (the boundary layer regime) remains almost unchanged despite
the application of drives with different magnitudes. Increasing the magnitude
of the drive raises the total current, but the velocities seem unaffected by the
variation of the total current of the system.

Next, let us examine how the velocities change with the variation of the
parameter B, which represents the offset of the drive jD. Figure 4.13 presents the
same as Figure 4.12, but with a fixed value of A = 100 while exploring different
values of B. Shifting the drive results in the highest velocities at B = −5. It is
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Figure 4.10: Root-mean-square of toroidal velocity in Alfvèn velocity units as a
function of the Hartmann number, with the application of the drive jd with A = 5
on the toroidal current field, for the different values of B .

evident that the "normal" velocity behaviour changes at certain parameters of the
drive.

As described in Chapter 3, in the original visco-resistive MHD system with
jd = 0, two distinct regimes of scaling laws were observed. The velocities scaled
with the Hartmann number, as H4 for the toroidal velocity and H2 for the poloidal
velocity in the first regime corresponding to the H → 0 limit, and as H1/4 for
both velocity components in the second regime associated with the H → ∞
limit, in which a boundary layer exists. Additionally, we previously identified an
"inter-regime" responsible for the boundary layer formation process. We noted
that applying different Ê0/η ratios affected the inter-regime and delayed the onset
of the boundary layer formation in terms of the Hartmann number. With the
application of the drives in the first regime, the velocities have the same scaling:
H4 for the toroidal velocity and H2 for the poloidal velocity. However, in the
second regime, there are two scenarios: either the boundary layer forms, as shown
in Figure 4.11, maintaining the scaling law < vφ,pol >rms∼ ηH1/4 for jD with
B = 0, 3, or the velocities do not develop a linear behaviour in log-log scale for
B = −3,−5,−7. The curves are bent, making it impossible to scale velocities with
the Hartmann number. We can conclude that with the application of the drives
when the expected velocity behaviour is disrupted (or the boundary layer is not
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the toroidal current field.
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formed), velocities can no longer be scaled with the Hartmann number.

4.4.3 Non-nested magnetic flux surfaces

Let us examine the toroidal current with the drive applied in the positive region
and between the positive and negative regions. Figure 4.14 shows the toroidal
current field influenced by drives jD with A = 100 and B = 0 on the left and
B = −5 on the right for H = 105. The second drive applied here results in
non-nested magnetic flux surfaces.

Next, we examine the velocity distribution. Figure 4.15 shows the toroidal
velocity field for H = 10 on the left and H = 105 on the right with B = −5, with the
drive applied between the positive and negative regions. The velocity distribution
for a Hartmann number H = 105 mirrors the toroidal current distribution, with
the highest velocities occurring at the transition point between the positive and
negative regions. When the drive is entirely in the positive or negative region,
the boundary layer formation seems to be preserved, and the application of the
drive does not significantly affect the velocity magnitude, but when the drive is in
between positive and negative regions, we observe a completely different behaviour.
Here, the positive and negative regions refer to the direction of the current inside
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the tokamak along the toroidal direction. In these cases, part of the current flows
in one direction, while another flows in the opposite direction. Different heating
methods in tokamak plasma can result in scenarios where the current drive is
distributed between positive and negative regions. This distribution changes the
magnetic field since it is generated by the currents flowing through the plasma.
Changes in the current distribution can distort the magnetic field lines, influencing
plasma behaviour, including its velocity distribution. This leads to feedback effects
where altered plasma dynamics further modify the magnetic field structure and
current distribution, potentially amplifying the initial distribution introduced by
the current drive. When the current drive is entirely in the positive or negative
regions, the toroidal current drive distribution does not significantly change with
an increase in the Hartmann number. However, feedback effects may cause the
toroidal current to change with the Hartmann number when the drive is between
positive and negative regions.

This demonstrates that the toroidal current entirely dictates the shape of the
velocity. We observe no boundary layer formation with drives applied between the
positive and negative regions. This is beneficial as the code appears more stable
and produces robust results due to the absence of a boundary layer. However,
this behaviour is challenging to predict due to the feedback effect and the various
underlying processes affecting the current field, resulting in changes in the toroidal
velocity distribution. There is potential to achieve much higher velocities with
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such drives, but predicting precisely which drive would be optimal for maximum
velocities is challenging. The nature of this feedback effect requires further study.
This insight might lead to reconsidering our approach to using different heating
methods for tokamak plasma and how we introduce the current drive to the system.

4.5 Conclusions

We have examined the axisymmetric steady states of tokamak plasmas using an
incompressible visco-resistive MHD model. In addition to the intrinsic limitations
of a MHD rather than a kinetic approach, a crucial point in the search for a
relevant minimal model lies in modelling the drives at work in a tokamak device.
In some previous modelings [Kamp and Montgomery, 2003, 2004; Oueslati et al.,
2019; Krupka and Firpo, 2024], apart from the external, given, vacuum magnetic
field, the ratio Ê0/η was the only drive in the system. This original framework
has been shown to be insufficient for achieving realistic plasma pressure levels. To
address this, we have introduced additional non-inductive current drives through
modifications to the toroidal current and established Poisson’s equation governing
the pressure profile. Our numerical simulations demonstrate that incorporating
these drives enables achieving realistic orders of magnitude for the plasma pressure
profiles.

We examined two families of functions for modeling tokamak drives, yet further
research is needed to optimize the distribution of non-inductive current drives and
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maximize their effectiveness in enhancing plasma speed and yielding fusion-relevant
pressure profiles. This could involve reconsidering the application of the drive as a
modification to the toroidal current due to the observed feedback effect. Toroidal
current profiles were found to depend on the Hartmann number, suggesting that
future implementation of these drives should involve fixed toroidal current density
profiles without dependency on other system parameters. This will be addressed
in the next chapter.
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Chapter 5

Effect of the fixed current
profiles

We cannot solve our problems with
the same thinking we used when we
created them.

Albert Einstein
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5.1 Introduction

The current distribution in the toroidal direction is critical to maintaining the
stability and confinement of the plasma [Wesson, 2011]. Achieving a fixed toroidal
current profile is a challenging but important goal in the tokamak [Taylor, 1997].
Several approaches can be used to maintain a fixed or controlled toroidal current
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profile that is less dependent on plasma parameters. One of them is non-inductive
current drive, which includes NBI, Electron Cyclotron Current Drive (ECCD),
Lower Hybrid Current Drive (LHCD) and bootstrap current [Forest et al., 1994]. In
modern tokamaks, feedback control systems actively monitor and adjust the current
profile in real-time [Ravensbergen et al., 2021; Lister, 2003]. These systems rely
on diagnostics to measure the current distribution. Based on these measurements,
the control systems can adjust the power and localization of non-inductive current
drive systems to maintain the current profile. In advanced tokamak scenarios, the
goal is to achieve steady-state operation with a high fraction of the total current
driven non-inductively. In experiments like JET [Romero et al., 1998], DIII-D [Ou
et al., 2007], and The Experimental Advanced Superconducting Tokamak (EAST)
[Wu et al., 2023], significant progress has been made in controlling the toroidal
current profile using a combination of non-inductive current drive methods and
feedback control systems. These experiments have demonstrated that it is possible
to achieve fixed or slowly evolving current profiles, even in high-performance
plasmas.

In the previous chapter, we observed that the Hartmann number affects the
toroidal current profiles. To address this issue, we will introduce toroidal current
profiles independent of any system parameters. In this chapter, we will assume that
the toroidal current profiles are fixed, following the shape of the drive introduced
earlier and serving as a solution to a simplified Poisson’s equation. This can be
interpreted as a model of fully non-inductive operation. The current profiles will
exhibit a parabolic distribution across the plasma cross-section, independent of
the Hartmann number or other system parameters. With this assumption, we will
investigate a new toroidal velocity distribution that does not form a boundary
layer and will establish a new scaling law in the second regime.

The chapter is organized as follows: Section 5.2 presents a new system of
equations in 5.2.1 and the results obtained with the assumption of the fixed current
profiles in Section 5.2.2. Then, we proceed with the prediction of the scaling law
in Section 5.3.1 and its numerical estimation in Section 5.3.2. The chapter also
discusses the effect of the non-nested magnetic flux surfaces in Section 5.4 and
non-linear effects in Section 5.5. Finally, a conclusive Section 5.6 summarizes the
outcomes of this chapter.

5.2 Visco-resistive MHD framework

5.2.1 New system of equations

As observed in the previous Chapter 4, current profile distributions can vary
across different Hartmann numbers. At high Hartmanns with toroidal current
drive, current distribution remains inconsistent due to the feedback effects. In this
study, we ensure that the toroidal current profiles remain fixed and unaffected by
other system parameters. To achieve this, we assume the toroidal current has a
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parabolic distribution, derived from the solution of the simple Poisson’s equation
∇2jfixed = −A with the boundary condition jfixed = B on ∂Ω, where A represents
the magnitude of the parabolic function, and B is an offset. Thus, instead of
deriving the toroidal current density as the toroidal projection of Ohm’s law (as
was done in previous works), we assume it to be equal to jfixed.

The system of equations (4.1)-(4.6) in variables u1, ..., u6 with the new modifi-
cation will read as follows:

△∗u1 = −u2, (5.1)

ν△∗u2 = 1
x2

∂

∂y
(u2

3 − u2
4) + 1

x
{u6, u5} + 1

x
{u1, u2} + (5.2)

+ 2u2
x2

∂u1
∂y

− 2u6
x2

∂u5
∂y

, (5.3)

η△∗u3 = 1
x

{u1, u3} + 1
x

{u4, u5} + 2u3
x2

∂u1
∂y

− 2u4
x2

∂u5
∂y

, (5.4)

ν△∗u4 = 1
x

{u1, u4} + 1
x

{u3, u5} , (5.5)

△∗u5 = −u6 (5.6)

with
u6 = xjfixed. (5.7)

The following section will present the numerical results of the simulations under
the new assumption of the fixed toroidal current profiles.

5.2.2 Controlled current distribution

We will now investigate the application of jfixed as a toroidal current with different
magnitudes A and offsets B while keeping the total current constant. The realistic
current values are derived from the Kamp and Montgomery model [Kamp and
Montgomery, 2004] as the choice of the drive E0/η of order 1 produced a total
current relevant to real operating tokamaks. Let us examine the toroidal current
profiles with A = 32, B = 0 since this choice of magnitude and offset produces a
realistic total current with the boundary condition jφ = 0. Figure 5.1 presents the
toroidal current distribution with Hartmann numbers H = 10 and H = 105.

Let us investigate the velocity behaviour under this assumption: Figure 5.2
presents toroidal velocity distribution with a fixed toroidal current with A = 32
and B = 0. At H = 10, the velocity distribution behaves similarly to the previous
results with no fixed current profiles made in Chapter 3. However, at H = 105, a
different behaviour is observed: the boundary layer no longer forms.

To understand the velocity behaviour in this context, we examine the root-
mean-square of the toroidal velocities at various Hartmann numbers in Figure
5.3. In this analysis, we adjust the values of A and B to ensure the total current



5.2. Visco-resistive MHD framework 67

0.000

0.212

0.425

0.637

0.849

1.061

1.274

1.486

1.698

1.910

Figure 5.1: Toroidal current field for H = 10 (on the left) and H = 105 (on the
right) computed with fixed toroidal current profiles with A = 32 and B = 0.
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Figure 5.2: Toroidal velocity field for H = 10 (on the left) and H = 105 (on the
right) computed with fixed toroidal current profiles with A = 32 and B = 0.
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remains constant. It is evident that the velocities gradually increase with the
magnitude of A, developing into two distinct regimes with different scaling laws.
A comprehensive discussion of plasma velocity regimes, including the derivation of
scaling laws for velocities as a function of the Hartmann number, is provided in
[Krupka and Firpo, 2024; Kamp et al., 1998; Kamp and Montgomery, 2003] and
the Chapter 3. In the limit H ≪ 1, we observe that the first regime matches the
no-drive case, and the inter-regime is maintained. However, instead of transitioning
to the boundary layer regime in the limit H ≫ 1, the boundary layer does not
form, and a new regime emerges.

100 101 102 103 104 105 106

H

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

<
V

>
rm

s

Toroidal velocity

A=32, B=0
A=66, B=-1
A=100, B=-2
A=134, B=-3

Figure 5.3: Root-mean-square of toroidal velocity in Alfvèn velocity units as a
function of the Hartmann number, with fixed toroidal current profiles for different
values of positive magnitude A and B.

Let us also investigate the root-mean-square of the toroidal and poloidal
velocities with different numbers of mesh triangles to demonstrate the numerical
robustness of these results, as shown in Figure 5.4. It can be seen that the results
are highly stable, showing no discrepancy based on the number of triangles. This
stability is attributed to the absence of the boundary layer, which previously posed
significant challenges in resolving thin boundary layers in our earlier works.

We need to estimate the scaling law for the newly emerged second regime to
understand the velocity behaviour.



5.3. Scaling law in the limit H ≫ 1 without the boundary layer 69

100 101 102 103 104 105 106

H

10 14

10 12

10 10

10 8

10 6

10 4

10 2

<
V

>
rm

s,
<

V p
ol

>
rm

s 

V ,  N=88470
Vpol,  N=88470
V ,  N=110669
Vpol,  N=110669
V ,  N=127594
Vpol,  N=127594

Figure 5.4: Root-mean-square of toroidal and poloidal velocities as a function of
the Hartmann number in Alfvén velocity units with fixed toroidal current profiles
with A = 32, and B = 0 for different numbers of triangles.

5.3 Scaling law in the limit H ≫ 1 without the bound-
ary layer

5.3.1 Prediction of the scaling law

As the velocities in the second regime appear to scale with the Hartmann number,
we aim to estimate the scaling law by drawing an analogy with the works of Kamp
and Montgomery [Kamp and Montgomery, 2003; Montgomery et al., 1997]. We
can identify two regimes: the scaling of the first regime was already predicted
in [Kamp and Montgomery, 2003], where the toroidal velocities scale with the
Hartmann number as H4 and the poloidal velocities as H2. They considered the
"slow-flow" equations in the high-viscosity limit (H ≪ 1), leading to the following
system of equations derived from (2.44)-(2.49):

△∗u1 = −u2, (5.8)

ν△∗u2 = −E0
η

2
x2
∂u5
∂y

, (5.9)

△∗u5 = −u6. (5.10)
(5.11)



70 Chapter 5. Effect of the fixed current profiles

In this limit, the viscous term dominates over the non-linear term in the Navier-
Stokes equation, and the term E0/η is much larger than the v × B term in Ohm’s
law. We also direct the Reader to Appendix C for a full derivation of the velocities
in the first regime. The prediction and confirmation of the second regime scaling
with (H ≫ 1) was already made in Chapter 3, which showed that in the boundary
layer regime, the toroidal and poloidal velocities scale as H1/4.

Since, in the case of fixed toroidal current, the boundary layer regime does
not appear, a new scaling derivation is necessary to understand the behaviour
of the velocities. We make several assumptions: we do not consider the low-
viscosity limit, as it is impossible to scale velocity with viscosity or the Hartmann
number. However, the non-linear term remains small compared to the other terms
in the Navier-Stokes equation, so we will diminish it. Additionally, the v × B
term is no longer retained in the sixth equation since the shape of the toroidal
current is prescribed to be independent of the Hartmann number and other system
parameters. However, it is retained in the third equation, where we take the curl
of Ohm’s law. Consequently, the system of equations now takes the form:

△∗u1 = −u2, (5.12)

ν△∗u2 = 1
x2

∂

∂y
(u2

3) + 1
x

{u6, u5} − 2u6
x2

∂u5
∂y

, (5.13)

0 = 1
x

{u1, u3} + 1
x

{u4, u5} + 2u3
x2

∂u1
∂y

− 2u4
x2

∂u5
∂y

, (5.14)

ν△∗u4 = 1
x

{u3, u5} , (5.15)

△∗u5 = −u6, (5.16)
(5.17)

with
u6 = jfixed. (5.18)

Since u6 does not scale with the Hartmann number, according to Equa-
tion (5.16), neither does u5. From Equation (5.15), u3 scales as νu4. Substituting
this into Equation (5.14) reveals that u1 scales as 1/ν, meaning that the scaling
for the poloidal velocity is H2. From Equation (5.12), u1 scales as u2, and from
Equation (5.13), we find that u3 does not scale with the Hartmann number. Finally,
using Equation (5.15), we estimate that u4 scales as 1/ν. Therefore, we conclude
that the poloidal and toroidal velocity scaling in this approximation is H2.

5.3.2 Numerical estimation of the scaling laws

Let us estimate the scaling laws of the velocity in two regimes by using a power-law
fitting. In Figure 5.5, it can be seen that in the limit, as the Hartmann number H
approaches zero for the first regime, the velocity follows the pattern f(H), with
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f approximately equal to H4 for toroidal velocity and H2 for poloidal velocity.
The velocities scale as H2 in the second regime. It corresponds to the analytical
predictions made above.
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Figure 5.5: Root-mean-square of toroidal and poloidal velocities in Alfvén velocity
units as a function of the Hartmann number in log-log scale with power-law fitting
curves.

5.4 Non-nested magnetic field lines

Let us further explore how velocity distributes within the tokamak plasma domain
under various current profiles. We will consider slightly different magnitudes and
drives, ensuring the magnitude is negative while the offset remains positive. This
approach will allow us to maintain a constant total current. Figure 5.6 presents
results similar to Figure 5.3, but with different values of A and B. It can be seen
that as the negative magnitude increases, the transition between the first and
second regimes becomes smoother.

This transition between the first and second regimes can be explained by
examining the magnetic flux surfaces for three specific cases: a fixed toroidal
current with a) A = −2, B = 1; b) A = −36, B = 2; and c) A = −70, B = 3.
These configurations are illustrated in Figure 5.7. As we increase the negative
magnitude A and the positive offset B, the nested magnetic flux surfaces transform
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Figure 5.6: Root-mean-square of toroidal velocity in Alfvèn velocity units as a
function of the Hartmann number, with fixed toroidal current profiles for different
values of negative magnitude A and B.
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into non-nested surfaces. In the final case, this transformation leads to the gradual
appearance of magnetic islands.

Figure 5.7: Magnetic flux surfaces with internal separatrices computed with fixed
toroidal current profiles with a) A = −2, B = 1 (on the left), b)A = −36, B = 2
(in the middle) and c) A = −70, B = 3 (on the right) for H = 105.

Now, let us examine the toroidal velocity field with fixed current profiles for
the case of A = −104 and B = 4, as shown in Figure 5.8. It can be seen that
the non-nested magnetic field lines generated by these toroidal current profiles
begin to alter the toroidal velocity distribution even at small Hartmann numbers
of H = 10. As the Hartmann number increases to H = 105, the velocity profile
evolves further, developing three distinct vortices.

5.5 Non-linear effects
In Section 3.3, we confirmed that the non-linear term did not contribute to the
toroidal velocity, and the discrepancy observed in Figure 3.4 was not caused by
the dominance of the inertial effect. However, with the new system of equations
(5.12-5.18), where the boundary layer does not form, it is necessary to examine
the behaviour of the (j × b) · iφ term and the non-linear (ω × v) · iφ term.

Now we will depict the contribution of the (j × b) · iφ terms to the total toroidal
velocity for H = 10 and H = 105. Figure 5.9 presents this result.

Next, let us consider the non-linear term contribution: Figure 5.10 shows
the (ω × v) · iφ term contribution to the total toroidal velocity for H = 10 and
H = 105.

It can be seen that at the small Hartmann number H = 10, the velocities
are driven by the (j × b) · iφ term, which is consistent with the previous results
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Figure 5.8: Toroidal velocity field for H = 10 (on the left) and H = 105 (on the
right) computed with fixed toroidal current profiles with A = −104 and B = 4.
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Figure 5.9: Contribution of the (j × b) · iφ term to the total toroidal velocity for
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Figure 5.10: Contribution of the (ω × v) · iφ term to the total toroidal velocity for
H = 10 (on the left) and H = 105 (on the right).

obtained in Chapter 3. However, the non-linear term becomes significantly larger
at higher Hartmann numbers. To further understand the inertial and magnetic
components, we examine the root-mean-square of the toroidal and poloidal parts
of the ω × v and j × b terms as a function of the Hartmann number. These results
are shown in Figure 5.11.

We can see here that with fixed current profiles and the development of the new
scaling regime, the non-linear term grows faster than the magnetic term. The point
at which the non-linear term starts to dominate is a point when the simulations
crash. Let us finally look at the ω × v and j × b terms at the point where their
root-mean-square values intersect. Figure 5.12 presents this information. It can be
seen that velocities at Hartmann number H = 106 are driven by some non-linear
behaviour, making it difficult to distinguish between magnetic and inertial effects.
This suggests that the results presented here may be unstable and unreliable.

The absence of boundary layers and the dominance of the non-linear term
suggest that the simulation is entering a regime where inertial effects are significant,
potentially leading to turbulence. In such regimes, where the non-linear term
dominates, the simulation might require even finer spatial resolution to capture the
dynamics accurately. As this work does not aim to investigate the formation of the
instabilities or turbulence in the tokamak plasma, we will not go into detail about
the nature of this phenomenon. Further research is needed to investigate the effect
of the non-linear term and adapt the simulations and code to study this problem
in more detail. In summary, under the assumption of fixed current profiles, a new
regime emerges in the limit of large Hartmann numbers, where non-linear effects
grow much faster than in the boundary layer regime, even reaching the magnitude
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of the magnetic term.

5.6 Conclusions

This chapter investigates a new approach where the toroidal current profiles are
fixed and independent of other system parameters. This assumption was introduced
to eliminate the feedback effect presented in Chapter 4. With this assumption, a
new scaling regime emerges in the limit of large Hartmann numbers, H ≫ 1, which
cannot be scaled with the previous scaling derived in Chapter 3. As no boundary
layer forms in the toroidal velocity, we predict a new scaling law. This chapter
reveals that the new scaling law for the toroidal and poloidal velocities should
follow an H2 pattern in this new regime, confirmed through numerical simulations.
Additionally, we examined the effect of the magnitude and offset of the drive on
the toroidal velocity distribution while maintaining the same total current.

The transition to non-nested magnetic field lines was also investigated, re-
vealing that the appearance of magnetic islands does not affect the scaling of
the first and second regimes but does impact the transition between them. This
transition becomes smoother, potentially allowing for even higher plasma rotation.
Furthermore, the non-linear effect was investigated, concluding that our simulation
stopped calculating when the inertial terms began to dominate over the magnetic
term. The overall velocity reaches the desirable levels of 1 % of Alfvén Mach
number needed to stabilize external modes according to [Bondeson and Ward,
1994; Takechi et al., 2007; Sabbagh et al., 2006].
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Chapter 6

General conclusions and
perspectives

Science is not finished until it is
communictated.

Sir Mark Walport

Magnetic confinement is a complex problem due to plasma turbulence and
instabilities that can occur inside the tokamak device. Plasma rotation is crucial
in stabilizing the plasma and mitigating these instabilities. The main goal of this
work is to understand and enhance plasma rotation in a tokamak device to improve
confinement and overall performance. To achieve this, we develop a visco-resistive
magnetohydrodynamic model that allows us to study steady-state plasma behavior
without assuming zero plasma velocity.

6.1 Key findings
In this work, we have explored the scaling laws governing plasma velocity in a
tokamak device. Using a visco-resistive MHD model applied to a tokamak plasma
with a prescribed toroidal current drive, we successfully predicted and numerically
confirmed a scaling law for the plasma velocity. This scaling law depends on the
resistivity, η, and the Hartmann number, H, where H is defined as H ≡ (ην)−1/2,
with ν representing viscosity. Our results show that the velocity scales as ηf(H),
where f is a specific function. Notably, this scaling law holds as long as the inertial
term ω × v remains negligible, which is true for the highest numerically accessible
Hartmann number values.
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Within this general scaling law, two limiting regimes were identified for low and
high H, where the function f follows a power-law behaviour. Various boundary
conditions applied to the toroidal velocity and vorticity did not affect the scaling
laws. By varying the drive of the system, E0/η, a new scaling law in H emerged
for small E0/η values. This new scaling regime is an intermediate case between
the low and high H regimes and does not involve a boundary layer. The critical
influence of the E0/η ratio on the toroidal velocity regimes, scaling laws, and
boundary layer formation was highlighted.

However, the plasma velocity predicted by our model remains relatively low
compared to both experimental observations and the velocities required to suppress
instabilities. Several factors could explain this. First, our model may lack turbu-
lence due to its axisymmetric and 2D nature and the absence of symmetry-breaking
effects. Furthermore, a limiting factor may be using an MHD model instead of
a kinetic one. Additionally, there may be limitations in how we describe the
plasma heating drive. It is important to note that we focused intentionally on
axisymmetric scenarios to investigate plasma rotation and its potential to mitigate
3D instabilities.

A tokamak’s accurate representation of drives is essential in pursuing a minimal
model. Earlier models have only considered the ratio Ê0/η as the driving force and
the external vacuum magnetic field. However, this method has proven insufficient in
achieving realistic plasma pressure levels. We introduced additional non-inductive
current drives to overcome this limitation by adjusting the toroidal current and
incorporating Poisson’s equation for the pressure profile. Our numerical simulations
show that these added drives allow us to achieve more realistic plasma pressure
profiles.

We explored two families of functions to model the tokamak drives, but further
investigation is required to optimize the distribution of non-inductive current
drives and enhance their effectiveness in boosting plasma velocity and achieving
fusion-relevant pressure profiles. This may involve reconsidering the application of
the drive as a modification to the toroidal current, given the observed feedback
effects. We found that the toroidal current profiles vary with the Hartmann
number, indicating that future implementations should use fixed toroidal current
density profiles that do not depend on other system parameters.

We explored a novel approach where the toroidal current profiles are fixed
and independent of other system parameters. This assumption was introduced to
eliminate the feedback effect. Under this assumption, a new scaling regime emerges
for large Hartmann numbers, H ≫ 1, which the previous scaling laws cannot
describe. Since no boundary layer forms in the toroidal velocity, we predict a new
scaling law based on a few new assumptions. In this new regime, we demonstrated
that the scaling law for toroidal and poloidal velocities should follow an H2 pattern,
a result confirmed by numerical simulations. Additionally, we analyzed the impact
of the drive’s magnitude and offset on the toroidal velocity distribution while
keeping the total current constant.
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We also investigated the transition to non-nested magnetic field lines, finding
that while the formation of magnetic islands does not affect the scaling of the
first and second regimes, it does influence the transition between them. This
transition becomes smoother, potentially allowing for even higher plasma rotation.
Furthermore, we examined non-linear effects, concluding that our simulations
terminated when the inertial terms began to dominate over the magnetic ones.
The overall velocity reaches the desirable levels of about 1 % of Alfvén Mach
number, as required to stabilize external modes according to [Bondeson and Ward,
1994; Takechi et al., 2007; Sabbagh et al., 2006].

6.2 Comparison of assumptions
With these key findings of this thesis, I will now provide a final comparison of
the assumptions made. Figure 6.1 illustrates the root-mean-square of the toroidal
velocity as a function of the Hartmann number for these three different assumptions.
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Figure 6.1: Root-mean-square of toroidal velocity in Alfvén velocity units as a
function of the Hartmann number, plotted on a log-log scale, for three assumptions:
no toroidal current drive, with toroidal current drive, and fixed current profiles.

The "Original system" case represents the scenario where the toroidal cur-
rent field is derived purely from Ohm’s law. This classical assumption results in
forming a boundary layer but does not produce realistic plasma pressure levels.
The "Current drive" assumption incorporates an additional toroidal current drive,



6.3. Implications and impact 83

modifying the toroidal current and making the model more complex. This ap-
proach yields more realistic plasma pressure levels. Finally, the "Fixed current"
assumption involves setting fixed toroidal current profiles independent of other
system parameters. This approach results in the highest plasma rotation levels.

The findings suggest that the fixed toroidal current profiles assumption is
the most effective for enhancing plasma rotation and producing fusion-relevant
pressure profiles.

6.3 Implications and impact

This thesis can potentially impact the field of magnetic confinement fusion by
offering a fresh perspective on plasma rotation and its critical role in stabilizing
plasmas. Most theoretical magnetic plasma confinement communities use a ki-
netic approach to describe tokamak plasmas. This method has the drawback of
potentially overlooking intrinsic plasma rotation. In contrast, this work does not
assume that plasma rotation comes from turbulence, thus avoiding the assumption
of zero plasma velocity. Instead, it introduces an alternative description of the
plasma using the visco-resistive MHD framework.

The foundational model, initially developed by [Kamp and Montgomery, 2003,
2004; Kamp et al., 1998], has been extended in this work by addressing two
significant issues: the lack of a current drive and the unrealistically small pres-
sure profiles in the system. One of the key contributions of this thesis is the
analytical prediction and numerical validation of scaling laws for plasma velocity.
Understanding scaling laws is essential for optimizing tokamak performance and
enhancing plasma stability. These laws allow us to predict how changes in system
parameters will affect plasma behaviour, ensuring that reactors can achieve the
conditions for sustained nuclear fusion.

Additionally, this thesis derives Poisson’s equation for the pressure of the
system. This is a novel development within the visco-resistive framework. Knowing
pressure provides valuable insight into the system, enabling a more comprehensive
understanding of plasma behaviour beyond just plasma velocity.

Another significant contribution is the introduction of the fixed toroidal current
profiles assumption, which leads to higher plasma rotation levels. While controlling
feedback effects in toroidal current profiles is not entirely new, this work highlights
the significance of fixed current profiles from an MHD perspective. The fixed
current profiles assumption could be a game-changer in magnetic confinement
fusion, offering a new approach to enhancing plasma rotation and achieving fusion-
relevant pressure profiles.
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6.4 Future research directions

Given the rapid growth of non-linear effects observed with fixed current profiles, a
more detailed investigation into these effects is essential. Our simulations stopped
when the non-linear terms became dominant over the magnetic ones. Extending
simulations to higher values of the Hartmann number would help better understand
plasma behaviour in this regime. This could be achieved through more detailed
meshing or by conducting more precise calculations, particularly in the high
Hartmann number zone. This would involve smaller iteration steps or improved
accuracy in the Newton-Raphson method.

Another promising direction for research would be a deeper exploration of
the inter-regime between low and high Hartmann numbers. The new scaling law
identified in this region could be further studied to understand plasma dynamics
better. This transitional regime, discussed in Chapter 3, was found to be responsible
for the boundary layer formation in the toroidal velocity. The drive of the system
E0/η plays a crucial role in forming the boundary layer. By varying this parameter,
the inter-regime can be extended, and it may be possible to predict another scaling
law in this region. However, extensive numerical investigations will be required to
fully understand the underlying processes at work in this intermediate regime.

In Chapter 5, we also discovered that the magnetic configuration of the system
influences this inter-regime. The formation of magnetic islands smooths the
transition between low and high Hartmann number regimes, impacting plasma
rotation. Further research should focus on how these magnetic islands affect
plasma behaviour in the inter-regime. The scaling law may change based on the
configuration of the magnetic islands or the magnetic field distribution. Exploring
these aspects could offer valuable insights and lead to more precise predictions of
the scaling laws in this region.

There is also potential to make the system more realistic. It can be achieved by
incorporating more accurate heating techniques, current drives, and temperature
effects. Furthermore, expanding the model to a three-dimensional configuration
with temporal dependency would significantly enhance the accuracy of future
simulations.

From a computational perspective, there is room for improvement as well.
Since current simulations were performed on a CPU, transitioning to graphics pro-
cessing unit (GPU)-based simulations could lead to faster computations, enabling
simulations at higher Hartmann numbers. GPUs are also more efficient for paral-
lel computations, as parallelizing the code would further accelerate calculations
and allow for more complex simulations in the future. The transition to cluster
simulation is also an alternative to improve computational performance.
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6.5 Concluding remarks

Plasma rotation can stabilize the plasma and improve its confinement properties,
making it a key area of research in magnetic confinement fusion. Plasma rotation
can be an answer in trying to avoid or quench instabilities. Instabilities are one of
the most problematic issues that can disrupt the plasma and prevent the sustained
fusion reactions needed for a viable power plant. Magnetic confinement is still
a desirable and unachieved goal. The quest for nuclear fusion as a clean and
sustainable energy source has been ongoing for decades. The potential benefits
of fusion energy are immense, offering a virtually limitless supply of clean, safe,
and abundant energy. However, achieving controlled nuclear fusion remains a
significant scientific and engineering challenge. The complexity of the plasma
physics involved, the high temperatures and pressures required, and the need
to sustain fusion reactions over long periods are some obstacles that must be
overcome.

The results of this work can inform the design and operation of future fusion
devices, helping to bring us one step closer to achieving controlled nuclear fusion
as a clean and sustainable energy source.
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Appendix A

Neumann boundary conditions
in FreeFem++

To correctly enforce Neumann boundary conditions on the boundary of the domain
using FreeFem++, we consider the following methods and corresponding boundary
conditions:

A. In FreeFem++, a prebuilt option exists to impose Neumann boundary
conditions. If we consider the simple Neumann condition ∂nu4 = 0, it implies
removing the constraint of w4 being equal to zero (which is a derivative of u4):

+on(2, w1=0, w2=0, w3=0, w5=0);

B. However, if we have a more complex boundary condition, such as the
free-slip boundary condition ∂n(u4/r

2) = 0, we can include the following lines in
the numerical solver:

+ int1d(Th,2)(v4*((dx(w4)-2*(x-r0)*w4/x/r0)*N.x+dy(w4)*N.y));

+ int1d(Th,2)(v4*((dx(u4)-2*(x-r0)*u4/x/r0)*N.x+dy(u4)*N.y));

+ on(2, w1=0, w2=0, w3=0, w5=0);

In the above expressions, v4 is the test function, Nx and Ny represent the
components of the normal vector n.

C. For the final boundary condition, ∂n(u4/x) = ∂n(u2/x) = 0, we can follow
a similar approach as in B by including additional lines in the solver:
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+ int1d(Th,2)(v2*((dx(w2)-w2/x)*N.x+dy(w2)*N.y));

+ int1d(Th,2)(v2*((dx(u2)-u2/x)*N.x+dy(u2)*N.y));

+ int1d(Th,2)(v4*((dx(w4)-w4/x)*N.x+dy(w4)*N.y));

+ int1d(Th,2)(v4*((dx(u4)-u4/x)*N.x+dy(u4)*N.y));

+ on(2, w1=0, w3=0, w5=0);

This condition indicates that the normal derivative of the toroidal velocity
and vorticity must be zero at the boundary. The other option is quite direct,
but this approach may be more accurate. To apply this, we need to substitute
ũ4 = u4/x = vφ directly and ũ2 = u2/x = ωφ into the system of equations, which
now reads as follows:

△∗u1 = −xũ2, (A.1)

ν̂△∗ũ2 = 1
x3

∂

∂y
(u2

3) − 1
x

∂

∂y
(ũ2

4) + 1
x2 {u6, u5} + 1

x
{u1, ũ2} (A.2)

+ ũ2
x2
∂u1
∂y

− 2u6
x3

∂u5
∂y

+ ν̂
ũ2
x2 − ν̂

2
x

∂ũ2
∂x

, (A.3)

η̂△∗u3 = 1
x

{u1, u3} + {ũ4, u5} + 2u3
x2

∂u1
∂y

− ũ4
x

∂u5
∂y

, (A.4)

ν̂△∗ũ4 = 1
x

{u1, ũ4} + 1
x2 {u3, u5} − ũ4

x2
∂u1
∂y

+ ν̂
ũ4
x2 − ν̂

2
x

∂ũ4
∂x

, (A.5)

△∗u5 = −u6, (A.6)

with
η̂u6 = Ê0 + 1

x
{u5, u1} ,

and then apply the Neumann boundary condition ∂nũ4 = ∂nũ2 = 0, so that
we simply remove the constraint of ũ4 and ũ2 being equal to zero as in A.

Interestingly, imposing the boundary condition ∂n(u4/x) = ∂n(u2/x) = 0 using
method B and method C yields slightly different results. This discrepancy can be
observed in the comparison shown in the Figure below.

I believe that method C is more accurate, although it requires more derivation
beforehand. On the other hand, method B is more straightforward and easier
to implement, but it generally demands more computational time. The results
presented in the thesis are obtained using method C.



90 Appendix A. Neumann boundary conditions in FreeFem++
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Figure A.1: Toroidal velocity field computed for H = 10 with boundary condition
∂n(u4/x) = ∂n(u2/x) = 0 using method B (on the left) and method C (on the
right).
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Detailed derivation of pressure

To introduce the pressure of the system, we need to consider the Navier-Stokes
equation (the force balance equation):

ω̂ × v̂ = −∇̂
(

p∗

b2
0ρm

)
+ȷ̂× b̂+ν̂∇̂2v̂

with

p∗ = p+ ρm
v2

2
Previously, we dropped the pressure in deriving the system of equations by

taking the curl and the toroidal part of the force balance equation. Now, to get the
pressure of the system, we take the divergence ∇̂· of the Navier-Stokes equation.

∇̂ · ∇̂
(

p∗

b2
0ρm

)
=∇̂ ·

[
−ω̂ × v̂+ȷ̂× b̂+ν̂∇̂2v̂

]
Let us consider normalized pressure p̂ to be:

p̂ = p∗

b2
0ρm

So the left-hand-side (LHS) will be a Laplacian of pressure △p̂.
The first term of the right-hand-side (RHS) would be

∇̂ · (ω̂ × v̂) = v̂ · (∇̂ × ω̂) − ω̂ · (∇̂ × v̂) =
= v̂ · (∇̂ × (∇̂ × v̂)) − ω̂ · ω̂ =
= v̂ · (∇̂(∇̂ · v̂) − ∇̂2v̂) − ω̂2 = ≀∇̂ · v̂ = 0 ≀
= −v̂ · ∇̂2v̂ − ω̂2
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We can treat the ȷ̂× b̂ term on the same manner:

∇̂ · (ȷ̂× b̂) = −b̂ · ∇̂2b̂ − ȷ̂2

And finally, the last term is

ν̂∇̂2v̂ = −ν̂(∇̂ × (∇̂ × v̂)) ⇒ ∇̂·(ν̂∇̂2v̂) = 0

Therefore, the Poisson’s equation for pressure now reads:

△p̂ = v̂ · ∇̂2v̂ + ω̂2−b̂ · ∇̂2b̂ − ȷ̂2

Dimensionless vorticity reads

ω̂ = 1
x

∇̂ (xv̂φ) × iφ − 1
x

(
△̂∗ψ̂

)
iφ

So that

ω̂2 =
[1
x

∇̂ (xv̂φ) × iφ − 1
x

(
△̂∗ψ̂

)
iφ
]

·
[1
x

∇̂ (xv̂φ) × iφ − 1
x

(
△̂∗ψ̂

)
iφ
]

=

=
(

∇̂ (xv̂φ)
x

)2

+


(
△̂∗ψ̂

)
x

2

= −u2
x2 △∗u1 + 1

x2
∂u4
∂x

∂u4
∂x

+ 1
x2
∂u4
∂y

∂u4
∂y

Dimensionless current reads

ȷ̂ = 1
x

∇̂
(
xb̂φ

)
× iφ − 1

x

(
△̂∗χ̂

)
iφ

Similarly, the fourth term now

−ȷ̂2 = −
[1
x

∇̂
(
xb̂φ

)
× iφ − 1

x

(
△̂∗χ̂

)
iφ
]

·
[1
x

∇̂
(
xb̂φ

)
× iφ − 1

x

(
△̂∗χ̂

)
iφ
]

=

= −

∇̂
(
xb̂φ

)
x

2

−


(
△̂∗χ̂

)
x

2

= − 1
x2
∂u3
∂x

∂u3
∂x

− 1
x2
∂u3
∂y

∂u3
∂y

+ u6
x2 △∗u5

Finally, let us look at the term −b̂ · ∇̂2b̂:

−b̂ · ∇̂2b̂ = b̂ · (∇̂ × ȷ̂)

∇̂ × ȷ̂ = − 1
x

△̂∗
(
xb̂φ

)
iφ − 1

x
∇̂
(
△̂∗χ̂

)
× iφ

Therefore, with
b̂ = 1

x
∇̂χ̂× iφ +

(1
x

+ b̂φ

)
iφ,
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The third term of the RHS

b̂ · (∇̂ × ȷ̂) = −
(1
x

+ b̂φ

) 1
x

△̂∗
(
xb̂φ

)
− 1
x

∇̂χ̂ · 1
x

∇̂
(
△̂∗χ̂

)
=

= −u3
x2 △∗u3 + 1

x2
∂u5
∂x

∂u6
∂x

+ 1
x2
∂u5
∂y

∂u6
∂y

Similarly
v̂ · ∇̂2v̂ = −v̂ · (∇̂ × ω̂)

∇̂ × ω̂ = − 1
x

△̂∗ (xv̂φ) iφ − 1
x

∇̂
(
△̂∗ψ̂

)
× iφ

Therefore, with

v̂ = 1
x

∇̂ψ̂ × iφ + v̂φiφ,

And the last term of the RHS is

−v̂ · (∇̂ × ω̂) = v̂φ
1
x

△̂∗ (xv̂φ) + 1
x

∇̂ψ̂ · 1
x

∇̂
(
△̂∗ψ̂

)
=

= u4
x2 △∗u4 − 1

x2
∂u2
∂x

∂u1
∂x

− 1
x2
∂u2
∂y

∂u1
∂y

The full Poisson’s equation for pressure finally reads:

△p̂ = v̂φ
1
x

△̂∗ (xv̂φ) + 1
x

∇̂ψ̂ · 1
x

∇̂
(
△̂∗ψ̂

)
−
(1
x

+ b̂φ

) 1
x

△̂∗
(
xb̂φ

)
− 1
x

∇̂χ̂ · 1
x

∇̂
(
△̂∗χ̂

)

+
(

∇̂ (xv̂φ)
x

)2

+


(
△̂∗ψ̂

)
x

2

−

∇̂
(
xb̂φ

)
x

2

−


(
△̂∗χ̂

)
x

2

We now have all parts of Poisson’s equation written as magnetic flux function
χ and velocity stream function ψ. The final step is to go to the dimensionless
variables u1, u2...u6.

Let us introduce a new variable u0, which is

u0 = p̂ = p

b2
0ρm
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So the Poisson’s equation for the pressure of the system now reads:

△u0 = u4
x2 △∗u4 − 1

x2
∂u2
∂x

∂u1
∂x

− 1
x2
∂u2
∂y

∂u1
∂y

− u2
x2 △∗u1 + 1

x2
∂u4
∂x

∂u4
∂x

+ 1
x2
∂u4
∂y

∂u4
∂y

− u3
x2 △∗u3 + 1

x2
∂u5
∂x

∂u6
∂x

+ 1
x2
∂u5
∂y

∂u6
∂y

+ u6
x2 △∗u5 − 1

x2
∂u3
∂x

∂u3
∂x

− 1
x2
∂u3
∂y

∂u3
∂y

where
△ = ∂2

∂x2 + 1
x

∂

∂x
+ ∂2

∂y2 .

Boundary conditions

According to [Kress and Montgomery, 2000], the standard component of ∇p is
enough to determine p through the Neumann boundary condition. It means that
we need once again to get back to the Navier-Stokes equation:

ω̂ × v̂=−∇̂p̂+ȷ̂× b̂+ν̂∇̂2v̂

Now, to get ∇p, we are interested in the poloidal part of the equation:

∇̂p̂= − ω̂ × v̂+ȷ̂× b̂+ν̂∇̂2v̂

Let us start from ȷ̂× b̂ term:

ȷ̂× b̂ =
[1
x

∇̂
(
xb̂φ

)
× iφ − 1

x

(
△̂∗χ̂

)
iφ
]

·
[1
x

∇̂χ̂× iφ +
(1
x

+ b̂φ

)
iφ
]

=

= −
(1
x

+ b̂φ

) 1
x

∇̂
(
xb̂φ

)
− 1
x

∇̂χ̂1
x

(
△̂∗χ̂

)
Similarly

ω̂ × v̂ = −v̂φ
1
x

∇̂ (xv̂φ) − 1
x

∇̂ψ̂ 1
x

(
△̂∗ψ̂

)
Finally, we can combine all terms already in the new variables:

∇̂u0= −u3
x2 ∇̂u3 + u6

x2 ∇̂u5︸ ︷︷ ︸
ȷ̂ × b̂

+u4
x2 ∇̂u4 − u2

x2 ∇̂u1︸ ︷︷ ︸
ω̂ × v̂

Neumann boundary condition for the pressure of the system reads as:

∂p

∂n
= ∂p

∂x
N.x+ ∂p

∂y
N.y = h
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∂p

∂x
= −u3

x2
∂u3
∂x

+ u6
x2
∂u5
∂x

− u2
x2
∂u1
∂x

+ u4
x2
∂u4
∂x

∂p

∂y
= −u3

x2
∂u3
∂y

+ u6
x2
∂u5
∂y

− u2
x2
∂u1
∂y

+ u4
x2
∂u4
∂y

Weak formulation

Finally, we propose the weak formulations of Poisson’s equation for the system’s
pressure. Let’s put v0 as a regular test function, null on ∂Ω. Then the Poisson’s
equation reads:

∫
Ω

(
∂u0
∂x

∂v0
∂x

+ ∂u0
∂y

∂v0
∂y

)
dw −

∫
Ω

1
x

∂u0
∂x

v0 dw +
∫

Ω

u2
2
x2 v0 dw

+
∫

Ω

(
∂u4
∂x

∂u4
∂x

+ ∂u4
∂y

∂u4
∂y

)
v0
x2 dw +

∫
Ω

(
∂u3
∂x

∂v0
∂x

+ ∂u3
∂y

∂v0
∂y

)
u3
x2 dw

+
∫

Ω

u3
x3
∂u3
∂x

v0 dw +
∫

Ω

(
∂u5
∂x

∂u6
∂x

+ ∂u5
∂y

∂u6
∂y

)
v0
x2 dw

−
∫

Ω

(
∂u3
∂x

∂u3
∂x

+ ∂u3
∂y

∂u3
∂y

)
v0
x2 dw −

∫
Ω

u2
6
x2 v0 dw +

∫
Γ
hv0 dγ = 0

With this equation, we can compute the system’s pressure by correctly enforcing
the Neumann boundary conditions. In the thesis, we compute pressure profiles
by assuming the pressure to be zero at the border. This derivation presents more
realistic pressure calculations.



Appendix C

Velocity scaling law in the limit
H ≪ 1

The basic set of equations consists of the Navier-Stokes equation, the Ohm’s law,
and the Maxwell equations. The dimensionless form of these equations reads as
follows:

(v · ∇)v = J × B − ∇p+ ν∇2v

E + v × B = ηJ

∇ × B = J

∇ × E = 0

Here, p is the pressure, ν is the kinematic viscosity, and η is the reciprocal of
the electrical conductivity. In the dimensionless units used, ν is the reciprocal of
the viscous Lundquist number, M and η is the reciprocal of the resistive Lundquist
number S.

The first regime in the limit of small Hartmann numbers H ≪ 1 could be
derived analytically with the ν → ∞ approximation.

ν → ∞ => M → 0

Replacing the fluid velocity v by Mu gives:

J × B − ∇p+ ∇2u = M2(u · ∇)u ≈ 0
J − SE = H2(u × B) ≈ 0

We can neglect the smallest terms so that the set of equations in the first part
(approximation ν → ∞) takes the following form:
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J × B − ∇p+ ∇2u = 0
J − SE = 0
∇ × B = J

∇ × E = 0
In our system of equations in variables u1, u2...u6, this leads to the following

system:

△∗u1 = −u2, (C.1)

ν△∗u2 = −E0
η

2
x2
∂u5
∂y

, (C.2)

△∗u5 = −E0
η
. (C.3)

(C.4)

In this approximation, we neglect the toroidal flow, meaning the variable u4 is
dropped, as it is smaller than the poloidal flow variables u1 and u2 by a factor of
H2. Similarly, the toroidal magnetic field dropped since u3 − 1 is H2 smaller than
the poloidal magnetic field u5. The v × B term in Ohm’s law is also neglected,
implying that u6 is dropped as it is H2 smaller than the driving term E0/η.

From this approximation, we can derive the scaling laws for the plasma velocities
in the limit H ≪ 1. The poloidal velocity scales as H2, while the toroidal velocity,
being two orders smaller, scales as H4.
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Résumé : Il est essentiel pour rendre perfor-
mants les futurs réacteurs à fusion par confine-
ment magnétique de maximiser le confinement du
plasma. Jouer sur la vitesse du plasma peut être un
moyen de stabiliser d’éventuelles instabilités et de
contrôler la turbulence avec des effets très bénéfiques
sur les performances fusion. Il est donc crucial
de comprendre comment on peut mettre en rota-
tion un plasma de tokamak. Idéalement on sou-
haite que le tokamak, en tant que réacteur à fu-
sion, travaille en régime permanent. Il est donc rai-
sonnable de déterminer les états stationnaires d’un
plasma de tokamak en toute généralité, sans im-
poser la nullité du champ de vitesse du plasma.
Dans le cadre de la magnétohydrodynamique (MHD)
visco-résistive, cela revient à conserver notamment
le terme non-linéaire (v.grad)v dans l’équation sta-
tionnaire de Navier-Stokes. En utilisant FreeFem++,
nous avons déterminé numériquement les états sta-
tionnaires axisymmétriques d’un plasma de tokamak
dans des géométries réalistes de type JET, en ap-
pliquant un modèle magnétohydrodynamique (MHD)

visco-résistif avec une résistivité η et une viscosité
ν constantes. On montre que la vitesse moyenne
quadratique du plasma se comporte comme ηf(H)
tant que le terme inertiel reste négligeable, où H
représente le nombre de Hartmann H ≡ (ην)−1/2,
et que f(H) présente des comportements de loi
de puissance dans les limites H ≪ 1 et H ≫
1. Dans cette limite, nous établissons que f(H)
s’échelonne comme H1/4, ce qui est cohérent avec
les résultats numériques. De plus, nous avons établi
une équation de Poisson pour le profil de pres-
sion. Il a été démontré que l’hypothèse simplificatrice
d’une densité de courant toroı̈dale purement induc-
tive ne génère pas des niveaux de pression réalistes.
Pour remédier à cela, des entraı̂nements de courant
non inductifs supplémentaires, similaires à l’injection
de faisceaux neutres, ont été introduits. Les simula-
tions numériques validant ce modèle montrent des
améliorations du profil de pression. Enfin, l’étude des
profils de densité de courant fixes révèle un nou-
veau régime, où les vitesses toroı̈dales et poloı̈dales
s’échelonnent comme H2.
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Abstract : Maximizing plasma confinement is essen-
tial to the performance of future magnetic fusion reac-
tors. Playing with plasma speed can be a way to stabi-
lize possible instabilities and control turbulence with a
very beneficial impact on fusion yield. It is, therefore,
essential to understand how a tokamak plasma can
be rotated. Ideally, the tokamak should work in a sta-
tionary state as a fusion reactor. It is, therefore, rea-
sonable to determine the steady states of a tokamak
plasma in full generality without imposing the nullity
of the plasma velocity field. In the visco-resistive ma-
gnetohydrodynamics (MHD) framework, this amounts
in particular to retaining the non-linear term (v.grad)v
in the stationary Navier-Stokes equation. Using the
FreeFem++ open-source software for solving partial
differential equations using the finite element method,
we numerically determined the axisymmetric statio-
nary states of a tokamak plasma in realistic JET.
This thesis shows that the plasma velocity root-mean-
square behaves as ηf(H) as long as the inertial term
remains negligible, where H stands for the Hartmann
number H ≡ (ην)−1/2, and that f(H) exhibits power-

law behaviours in the limits H ≪ 1 and H ≫ 1.
In the latter limit, we establish that f(H) scales as
H1/4, which is consistent with numerical results. Addi-
tionally, this work establishes Poisson’s equation go-
verning the pressure profile. It is shown that the sim-
plifying assumption of a toroidal current density com-
ponent arising solely from Ohm’s law in response to a
time-independent, curl-free toroidal electric field fails
to produce realistic pressure levels. We introduce ad-
ditional non-inductive current drives, comparable to
those from neutral beam injection, modeled as modi-
fications to the toroidal current. The new model is va-
lidated using numerical simulations, showing signifi-
cant pressure profile improvements. For the examples
considered, the effect of these current drives on the
velocity profiles is moderate except in the case where
the drives induce some reversals in the total toroidal
current density, producing non-nested flux surfaces
with internal separatrices. Finally, the effect of fixed
current density profiles is examined, revealing a new
second regime, where toroidal and poloidal velocities
scale with Hartmann number as H2.
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