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CHAPTER 1

Introduction

Let’s be honest: at first sight, writing one’s Habilitation à diriger des recherches (HDR) ranks high in the long
list of useless bureaucratic tasks, somewhere between the rapport à vague of the CNRS and your typical
collaborative project deliverable.

For the HDR, you have to write a relatively long
document about things you’ve already published,
and try to convince reviewers that this somehow
makes you qualified for the job of grad student
supervision you’ve already been doing for the last
five to ten years, if not more. As much as I would
have liked to postpone this task indefinitely, I fell in
a trap and made a sort of academic promise that
forces me to surrender now, because a student I
have been supervising for over two years needs me
to become a qualified supervisor shortly before he
can graduate and no longer needs my services.
So here I am, about to perform the dreaded task,
taking time off from actual research, and wondering:
how can I make this as quick and painless as
possible, both for me and my reviewers? I could
ask around for advice, and, to be fair, I heard stories
about people finding pleasure in the exercice, but,
just like the Big Foot or the Loch Ness Monster,
these are the sort of creatures you don’t usually see
with your own eyes. So, right now, I find myself
a bit lonely in front of the bureaucratic monstrosity.
Asking a large language model to handle this for me
feels like a weak move. I intend to defend my human
dignity by doing in dozens of hours what the machine
would have done in seconds. At least, it will be done
with my own sweat and tears, and when in a couple
of years from now the HDR no longer exists, I will tell
younger folks how lucky they are and how different
things were back in my time.
Cutting to the chase, I will not pretend that I
managed to give a sense of unity to the different
research projects I’ve done in the past, which would
probably be the ideal scenario for an HDR. I admit
that I wandered in many directions and that there is
no point trying to connect the dots backward. What
I will do instead is dig up four ideas from my past
works, ideas that are vaguely connected, that I find
simple enough to explain briefly, that I am at least a
little bit proud of, and perhaps ideas that would be
worth working on again in the future.

Figure 1.1: Experiment from [Perrin et al. 2012a].
(1): HRP-2 starts to execute the sequence initially
found via footstep planning. (2): the bar is
suddenly moved, and the current sequence of
steps would lead to collisions. (3): while walking,
a new sequence of steps toward the goal is
computed in real-time. A concatenation of the
swept volume approximations is used to ensure the
avoidance of contacts with the bar. (4): the robot
steps over the bar while optimizing the rest of the
path toward the goal.
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I will try to expose these ideas concisely in separate chapters—mainly by copying large chunks of the
related papers, because why wouldn’t I?—, and discuss some directions I would consider if I were to revisit
them now. The ideas I selected are all related to an objective I’ve had for a long time: trying to boost
exploration in Reinforcement Learning (RL) with sampling-based motion planning.

The need for efficient exploration in robotic policy learning is well known and has been tackled in var-
ious ways [Ecoffet et al. 2021, Xie et al. 2016, Nair et al. 2018, Stulp 2012, OpenAI et al. 2021], but there
has been relatively few attempts to exploit sampling-based motion planning, which is arguably the most
successful approach to efficiently explore robot configuration spaces.

One such attempt, RL-RRT [Chiang et al. 2019], lays down a foundational framework for motion planning-
powered reinforcement learning. It suggests to train a control policy to move and avoid obstacles locally
together with a reachability estimator that predicts the time needed to go from a configuration A to a
configuration B in the presence of obstacles. A sampling-based motion planner is then used to grow a
global exploration tree. To extend a path of the tree, it relies on a simulator to forward propagate the
dynamics of the robot under its control policy and compute new states, i.e. new nodes in the exploration
tree. The reachability estimator is used as a distance to determine how to extend the exploration tree.

RL-RRT has been successfully aplied to wheeled robots, but in other contexts, adapting the framework
with new ingredients is required. In particular, the ability to simulate the effects of a controller in the state
space cannot be taken for granted. This is especially true for legged robots, which are my main interest
in terms of applications. Although some results presented in this manuscript are general, the primary
motivation is to develop useful ingredients for the planning and generation of legged robot motions, a
problem illustrated in Figure 1.1 showing a 2011 experiment with the HRP-2 robot.

Before moving on to the next chapter, I’d like to add a few words. It is common knowledge that nobody
reads HDR theses, so if you are reading these lines, you are probably a member of my jury. I have already
thanked you in the acknowledgements, but I would like to do it again. The one nice thing about the HDR is
that I will get to spend some time with you! You are all researchers I admire, and I’ll be looking forward to
talking with you during the defense.



CHAPTER 2

Planning discrete motions like continuous
ones

Contact-based locomotion, like humans or all legged animals do, is one of the most geometrically fascinating
types of motion. The motion is continuous and happens in the 3D space, but it entirely relies on contacts,
which are discrete events occuring on a 2D surface within this 3D space (equal to the union of object or
ground surfaces on which contacts are possible). So, it is hybrid in two ways: it combines both 3D and 2D
spaces, as well as continuous and discrete changes. To generate this type of motion, the usual approach
is to plan the discrete sequence of contacts first, and then the 3D motion that achieves this sequence in a
collision-free manner.

Unfortunately, planning contact sequences is a very particular and difficult problem. Contacts can
be cast as variables of an optimization problem, which can be turned into mixed integer optimization
[Ibanez et al. 2014] or sequential quadratic programming [Posa et al. 2014], but in both cases, the discrete
aspects of contact-based locomotion makes the optimization problems very non-convex, thus hard to solve
optimally, except in realtively simple situations. Using search trees to explore sequences of contacts is
another option, but since precise contact locations are determined by continuous parameters, the branching
factor of a search tree would by default be infinite, and heuristics are needed to make the number of potential
choices finite without losing too much precision. Such heuristics can be efficient [Chestnutt et al. 2003], but
they require expertise and heavily depend on the robot and type of motion task considered.

Sampling-based motion planning has also been
adapted to discrete planning problems, for example
by using optimal control to generate directed node
extensions [Sleiman et al. 2023] and grow the explo-
ration tree. These are interesting approaches, but
they can be slower or lose part of the efficiency of
original sampling-based motion planning algorithms.
Such algorithms, like Rapidly-exploring Random
Trees (RRT) [LaValle 1998], tend to maximize their
efficiency when planning purely continuous motions,
for instance to solve the famous piano mover’s prob-
lem [Schwartz & Sharir 1983]. In the illustration of
Figure 2.1, sampling-based methods would typically
easily plan the motion of the sofa, but not the motion
of the friendly neighbors carrying the sofa.

Figure 2.1: Ross, Chandler and Rachel getting
stuck while moving a sofa up the stairs.
Friends Season 5 Episode 16.

With the co-authors of [Perrin et al. 2017], I argued that, instead of planning the contacts and then the
continuous motion, following the opposite approach could be beneficial: first plan some continuous motion,
and then the sequence of contacts enabling this continuous motion. It may seem strange at first, because
the true continuous motion relies on the contacts, but when this kind of backward approach can be done, it
permits to rely on the efficiency of sampling-based motion planning for the initial continuous motion plan.

2.1 The flea motion planning problem

To explain what I mean by "planning a continuous motion first", let’s start with a simple example: the
flea motion planning problem introduced in [Perrin et al. 2012b]. Consider a 2D environment C = R2 (the
configuration space) divided between the free space F (an open set) and the obstacles O = C \ F . The
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flea is represented by a point. It can make jumps in any direction and of any length strictly less than
lmax > 0. The goal is to find a sequence of jumps from a configuration (xA, yA) ∈ F to a configuration
(xB, yB) ∈ F such that every intermediate configuration is in F . The discontinuous nature of the jumps
makes the flea motion planning problem comparable to the planning of contact sequences for legged robots.
Yet, by changing the notion of collision, it can be transformed into a purely continuous motion planning
problem.

First, we prove an equivalence between
discontinuous jumping motions of the flea
and continuous motions of an open disk,
using a new notion of collision-freeness.
Let’s assume that a sequence of jumps
has been found, corresponding to the
sequence of configurations p1 = (x1, y1),
p2, p3, . . ., pn = (xn, yn), with (x1, y1) =
(xA, yA) and (xn, yn) = (xB, yB). We
consider the continuous motion of an
open disk of diameter lmax such that the
trajectory (x(t), y(t))t∈[0,1] of its center
follows the sequence of line segments
between each (xi, yi) and (xi+1, yi+1), for
i = 1, 2, . . . , n − 1, as depicted in Figure
2.2 (on the left).

obstacle

"shortcut jump"

Figure 2.2: The "flea motion planning problem". On
the left: from a collision-free sequence of flea jumps to
a continuous "weakly collision-free" path of the disk. On
the right: converting a continuous weakly collision-free path
of the disk into a sequence of flea jumps, using a greedy
algorithm.

The following property is a direct consequence of the upper bound lmax on the length of jumps:

Property 2.1. For all t ∈ [0, 1], the open disk of center (x(t), y(t)) and diameter lmax contains at least one
of the flea configurations p1, p2, . . . , pn.

This property suggests the definition of a new notion of collision-freeness:

Definition 2.1. We denote by D(x,y) the open disk of center (x, y) and diameter lmax. We say that the
disk D(x,y) is collision-free if there exists at least one flea configuration (i.e. point) inside the disk which is
collision-free.

We call this new notion of collision-freeness the "weak
collision-freeness", and say that the disk is "weakly
collision-free".
Conversely, if all flea configurations inside the disk are in
collision (i.e. the disk does not intersect the free space),
we say that the disk is in "strong collision". We say that a
continuous path (D(x(t),y(t)))t∈[0,1] is weakly collision-free
if for every t ∈ [0, 1], D(x(t),y(t)) is weakly collision-free.
Figure 2.3 illustrates this definition.
A direct consequence of Property 2.1 is the following
theorem:

strong collision weakly collision-free

Figure 2.3: Weak collision-freeness.

Theorem 2.1. If there exists a finite sequence of collision-free jumps from (xA, yA) to (xB, yB), then there
also exists a weakly collision-free continuous path (D(x(t),y(t)))t∈[0,1] such that (x(0), y(0)) = (xA, yA) and
(x(1), y(1)) = (xB, yB).

Proof. Let (D(x(t),y(t)))t∈[0,1] be a path such that the center of the disk follows the line segments between
the consecutive collision-free points in a sequence of jumps from (xA, yA) to (xB, yB). As mentioned above,
such a path verifies Property 2.1, which means that for every t ∈ [0, 1], D(x(t),y(t)) contains at least one
collision-free configuration and is therefore weakly collision-free. As a consequence the entire path is by
definition weakly collision-free.
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We prove that the converse of Theorem 2.1 is also
true:

Theorem 2.2. If there exists a weakly collision-
free continuous path (D(x(t),y(t)))t∈[0,1] from (xA, yA)
to (xB, yB), with (x(0), y(0)) = (xA, yA) and
(x(1), y(1)) = (xB, yB), then there exists a finite
sequence of collision-free jumps from (xA, yA) to
(xB, yB).

Intuitively, the reason for this theorem to hold is that
since the path is weakly collision-free, the free space
intersects every disk along that path. And because
the flea can make jumps as large as the diameter of
these disks (lmax), it can always move forward while
staying inside the free space. Figure 2.4 illustrates
this property.

Proof. We denote by d2 the Euclidean distance in R2.
For a point p ∈ C, its distance to the obstacles is
dobs(p) = inf{d2(p, o)|o ∈ C \ F}. For a disk D(x,y)

we define:

δobs(D(x,y)) = sup{dobs(p)|p ∈ D(x,y)}.

A disk D(x,y) is weakly collision-free if and only if
δobs(D(x,y)) > 0. Let us consider a weakly collision-
free continuous path (Ds(t))t∈[0,1] from (xA, yA) to
(xB, yB), with s(t) = (x(t), y(t)).

obstacle

Figure 2.4: Progression inside a weakly collision-
free path. The current collision-free position of
the flea is p. A bit further along the path, we can
choose a disk D(x(t),y(t)) such that p is outside of
it but arbitrarily close to its boundary. This disk
is weakly collision-free, so its intersection with
the free space is non-empty. If the disk is close
enough to p, it is possible to find a position p′

in this intersection such that the flea can directly
jump from p to p′ ((d2(p, p′) < lmax)). This is
the reason why the flea can always move forward
along weakly collision-free paths.

We define dinf = 1
2 inf{δobs(Ds(t))|t ∈ [0, 1]}. By continuity of t 7→ δobs(Ds(t)), we have dinf > 0. By

uniform continuity of t 7→ s(t), there exists 0 < ε < 1 such that ∀t ∈ [0, 1−ε], ∀ε′ ∈ [0, ε], d2(s(t), s(t+ε
′)) <

min(dinf , lmax).

Let us now consider t ∈ [0, 1 − ε] and a collision-free configuration p of the flea in Ds(t). First, we
know that there exists p′ ∈ Ds(t) such that dobs(p′) > dinf . Besides, since Ds(t) is of diameter lmax, we
have d2(p, p′) < lmax, and thus the flea can jump from p to p′. Then, since we have d2(s(t), s(t + 1

M )) <
min(dinf , lmax) for some M ∈ N>0 such that 1

M < ε, there exists p′′ ∈ Ds(t+ 1
M

) such that d2(p′, p′′) <
min(dinf , lmax). It follows that the flea can jump from p to p′′, and, since dobs(p) > dinf , that p is collision-
free. So we have proved that if p is a collision-free configuration of the flea in Ds(t) with t ∈ [0, 1 − 1

M ], it
is always possible to reach a collision-free configuration in Ds(t+1/M) with at most 2 jumps. By induction,
we deduce that a collision-free configuration pα ∈ Ds(1) can be reached after no more than 2M jumps. We
have d2(pα, (xB, yB)) < lmax, thus the flea can jump directly from pα to (xB, yB). This concludes the proof,
and an example of sequence of jumps obtained from a weakly collision-free continuous path of the disk can
be seen on the right side of Figure 2.2.

The above demonstrations can be found in [Perrin et al. 2017]. Together, Theorem 2.1 and Theorem 2.2
form an equivalence between weakly collision-free paths of the disk and collision-free sequences of jumps
of the flea. This equivalence can be used to efficiently solve the flea motion planning problem. Indeed,
instead of looking for a discontinuous sequence of jumps, we can first look for a continuous path of the
disk, which can be done with any conventional motion planning algorithm, provided that we implement
new collision checks using Definition 2.1 (approximate weak collision checks can be performed with a finite
number of standard collision checks). To convert a continuous path into a finite sequence of jumps, we can
then apply a greedy approach that consists in repeatedly trying to jump from the current disk Ds(t) to a disk
Ds(t′) with t′ as large as possible and obtained by dichotomy. This can result in "shortcut jumps", as shown
in Figure 2.2 (on the right).
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2.2 Generalization: a research direction proposal

Surprisingly, the transformation from discrete
sequences of jumps to continuous paths and
weak collision checks can be adapted to con-
tact planning problems that are more complex
than the flea motion planning problem. In
[Perrin et al. 2012b] and in [Perrin et al. 2017],
this type of transformation is applied to footstep
planning for a biped robot or for a hexapod, as
illustrated in Figure 2.5. Figure 2.6 and Figure
2.7 show how it was used to perform reactive
vision-based footstep planning on the DLR-Biped
robot [Ott et al. 2010], and locomotion planning
on rough terrain with a hexapod in simulation.
In [Perrin 2012], an abstract result demonstrates
that a general class of discrete planning problems
can be converted into continuous motion plan-
ning problems with a similar approach. The main
issue is that the notion of weak collision-freeness
is robot-dependent, and for any complex robot,
defining it properly is difficult and requires expert
knowledge.
If I were to work on this type of approach again,
I would try to replace the weak collision-freeness
definition by learned models, and I would focus
on meaningful continuous trajectories for the first
phase, for example the trajectory of the head of
the robot. I will keep the head as an example of
reference (which can be motivated from human
neuroscience, see [Sreenivasa et al. 2009]), but
other reference frames could be used as well, for
instance the pelvis.
To build a general motion planning framework, I
would start by assuming the availability of a low-
frequency multi-contact controller π 1⃝ taking the
following information (E , σ,g,q) in input:

– A description E of the local environment rel-
ative to the position and orientation of the
robot head (e.g. a point cloud, or a higher-
level and more compact representation of
the robot surroundings, possibly a belief
state like in [Hoeller et al. 2024]).

– An attitude estimation σ, i.e. knowledge of
the gravity vector in the local environment.

– A local goal position and orientation g that
should be reached by the robot head in
limited time.

– Proprioception: the relative configuration q
of the robot.

STEP 0: Foundation of the method: a generic
equivalence between discrete and continuous
motion planning problems

STEP 1: The context is defined by the robot and
its stepping capabilities.

flea biped hexapod

STEP 2: A simple and appropriate geometrical
"shape" slightly restricts the steps the robot
can make and allows for an instanciation of the
equivalence.

STEP 3: Definition of a new notion of collision
and use of classical algorithms such as RRT to
find continuous "weakly collision-free" paths.

STEP 4: A greedy algorithm converts the
continuous paths into discrete sequences of steps.

Figure 2.5: The flea motion planning method can be
adapted to more complex contact planning problems.

Given knowledge of the global environment, we would like to use motion planning to define a trajectory
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of the robot head, and send commands based on this trajectory to the multi-contact controller that would
generate the full-body motion. We call "single motion" a motion generated by the multi-contact controller
reaching the goal position and orientation of the control command.

To avoid simulating the controller during the
planning phase, one could try to learn to predict,
given the input information, the success of a
control command. But this would not enable
motion planning, which requires sequencing
control commands, as the full configuration of
the robot (including proprioception) at the end
of a single motion cannot easily be known.
Adding a target configuration in the control
commands would theoretically enable motion
planning, but it would be a bad idea, for at least
three reasons.
First, it would complicate the work of the multi-
contact controller and would require a way
higher level of precison.

Figure 2.6: An experiment of vision-based footstep
planning with the DLR-Biped (boxes are thrown in front
of it while it walks, and the robot is able to reactively
replan a path to the goal).

Second, it would make the dimensionality of the motion planning problem much larger, and finally it
would also make the predictions of success much harder to learn.
A solution to the problem has been proposed in
[Ichter & Pavone 2019] with L-SBMP (Latent Sampling-
Based Motion Planning). The idea is to learn a plannable
latent space, i.e. a representation of the low-dimensional
manifold in which the system {robot + controller} remains.
The full state of the robot is encoded into z, a low-
dimensional vector in this latent space, and the forward
dynamics of the system in the latent space, given a control
input u, are learned. A collision checker in the latent space
can be learned as well.

Figure 2.7: The motion accross this
complex terrain was planned in 330 ms.

Learning the mapping from the full state to z and back can be done with a variational autoencoder
[Kingma & Welling 2019] trained on data gathered from sequences of random rollouts in various environ-
ments. Sampling-based motion planning can be performed in the latent space, and when trying to extend a
node z, the idea is simply to sample a control input u, apply u from state z for some amount of time, compute
the estimated z′, and add it to the exploration tree if the motion toward z′ is predicted to be collision-free.

The extreme usefulness of latent spaces has been proved extensively in the recent literature, but there
are still a couple of issues with L-SBMP. First, when performing the sampling-based motion planning, control
inputs are sampled, and the subsequent states are estimated from learned forward dynamics, which can
lead to the propagation and accumulation of errors. Second, by sampling the control input, the node
extension will not necessarily be in the desired direction, which can reduce the efficiency of RRT (the
underlying sampling-based motion planning algorithm). Instead, it would be nice to define a space in which
we can sample z′, and directly guess whether a transition of the form z → z + α(z′ − z) is going to be
feasible.

To do so, I propose to learn another type of latent space, which would be used as part of the control
commands.

Given the local environment E , the attitude estimation σ and the goal position and orientation g, the
idea would be to learn the manifold of feasible final configurations of the robot after a single motion. This
manifold would be learned in a first phase of data gathering during which the original controller would be
used randomly and extensively in various environments. This would produce a buffer of tuples (E , σ,g,q,q′)
where q and q′ are respectively the initial and final configurations of the robot during a successful single
motion. Again, an autoencoder would be used for the latent space learning. The encoder would compute
z = fenc(E , σ,g,q′), and the decoder would compute q′ = fdec(E , σ,g, z). Notice that the encoder and
decoder would never know anything about the initial configuration, but the final configurations are very
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constrained by the environment, goal and controller, so the hope is that the latent space can be very low-
dimensional and not too difficult to learn.

and

Phase 1: Random rollouts to fill a replay buffer with transitions 

                 Training of the encoder and decoder:

Phase 3: Random rollouts with           to fill a replay buffer

                 Training of the success predictor 

Phase 0: Training of 

Phase 2: Training of 

 and           are deduced from               and 

                                                   predicts whether 
the single motion will succeed

Motion Planning

Figure 2.8: The global {learning + motion planning} framework.
– π 1⃝: first control policy.
– π 2⃝: second control policy.
– E : local environment representation.
– σ: attitude estimation.
– g: local goal position and orientation for the robot head.
– gglobal: same as g but in a global frame.
– q: configuration of the robot (only proprioception: the robot joint values).
– single motion: the motion generated by π 1⃝ or π 2⃝ to reach a single goal g.
– z: latent space representation of the final configuration after a single motion.

In the second phase, a major modification is required: the controller would need to be modified to take
as additional input a latent space goal z (π 1⃝ is replaced by π 2⃝). Ideally, the controller π 1⃝ would be a
neural net with a structure that already allows z in its input, so its current state could be used as initial state
for the new training. In this new training, the controllerπ 2⃝ would attempt not only to reach the position and
orientation g in limited time, but also the latent target z. This means that a single motion would be successful
if, at the end of the motion, the position and orientation of the head is close to g and the configuration qfinal
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is such that its encoded latent state fenc(E , σ,g,qfinal) is close to z.
Finally, once the second version π 2⃝ of the controller is working well, a success predictor SP would

be trained, taking in input E , σ, g, the target latent state z and the previous latent state zprev (which gives
information about the initial configuration), and returning true if the single motion is likely to succeed.

Having done all this would enable sampling-based motion planning in the Cartesian product between
the head position and orientation goal space G (the g inputs), and the latent space Z (the z inputs). There
should be a very limited accumulation of errors, because the final configurations after single motions would
always be entirely constrained by the inputs g and z. Furthermore, there is no need to sample control
inputs, as the sampled states (g, z) are the inputs. This allows extending nodes exactly in the desired
direction, which is crucial for algorithms such as RRT to operate at their maximum efficiency. This would
also be obtained by learning inverse dynamics in L-SBMP, which would enable the use of latent states z as
actions. However, latent states in L-SBMP cover all the robot configurations the controller can lead to, so
randomly sampling commands in this large space would often lead to unfeasible motions. In the proposed
method, latent states are constrained by E , σ and g, so they represent a much smaller set and have a higher
chance of leading to successful single motions, which should significantly simplify the motion planning. The
two-phase learning also ensures that the target configuration (corresponding to the z input) are compatible
with the controller.

Remarks:

• In the control commands, g inputs are local (they are expressed relatively to the initial position and
orientation of the head), but in the sampling-based motion planning global values gglobal would be
considered. Similarly, knowledge of the global environment would be used to deduce the local values
E and σ for each node of the exploration tree.

• Defining the distance between two pairs (gglobal1 , z1) and (gglobal2 , z2) will be tricky. A combination
of distances seems like a decent option: αdG(g

global
1 ,gglobal2 ) + βdZ(z1, z2) (dZ will probably be the

Euclidean distance but the choice for dG is not obvious). However, the ratio between α and β will
likely need to be tuned carefully. α is expected to be much larger than β since our main interest is to
explore and generate trajectories of the head.

• Other details such as how to sample g and z would need to be considered with attention.

Figure 2.8 illustrates the proposed framework.





CHAPTER 3

Using diffeomorphic matching to
generalize motion plans

Motion planning can be performed online, in which case the planner should be queried at a relatively
low frequency to regularly produce motion plans followed at a higher frequency by the main controller.
This type of usage is very close to Model Predictive Control, which can be seen as a bridge between
reactive control and planning [Benallegue et al. 2017], and has also strong ties with reinforcement learning
[Bertsekas 2024].

If the global environment is mostly static, it may be better to perform motion planning offline. The idea
is to generate one or several paths from initial configurations to a single or multiple target configurations.
As in PRM [Kavraki et al. 1996], these paths are then used online as a roadmap to guide the robot motion
without having to frequently replan.

By default, the motion planner produces a finite set of paths, but the roadmap should guide the robot
even if its configuration does not precisely belong to one of these paths, so the problem of generalization
naturally comes into play.

In this chapter, which presents a
method and results published in
Systems & Control Letters in 2016
[Perrin & Schlehuber-Caissier 2016],
we consider a particular problem
of generalization and show how
diffeomorphic matching can solve it.
To simplify a bit, we start by assuming
that there is only one path leading
to a single target configuration.
The concrete objective is to turn
this path, the demonstration, into
a globally asymptotically stable
vector field. The constraint of global
asymptotic stability ensures that,
no matter the initial configuration,
the extrapolated path will always
converge to the target configuration.
The proposed method to solve the
problem, illustrated in Figure 3.1,
deforms a reference vector field to
make it match and generalize the
demonstration. It relies on several
tools introduced in the next section.

(a) initial path:
the demonstration

(b) reference
vector field

(c) a diffeomorphism
deforms the reference
vector field to match
and generalize the
demonstration

Figure 3.1: A diffeomorphism is computed that maps the straight
trajectory X onto the demonstration Y. Φ transforms the whole
reference vector field into a vector field with streamlines that
match and generalize the demonstration while remaining globally
asymptotically stable, i.e. ensuring convergence to the target
configuration from any initial configuration.

3.1 Diffeomorphic matching

3.1.1 Diffeomorphic locally weighted translations

Given a smooth function kρ(x,y) : Rd × Rd → R, possibly depending on some parameter ρ, such that
∀x, kρ(x,x) = 1 and kρ(x,y) → 0 when ∥y − x∥ → ∞, given a “direction” v ∈ Rd and a “center” c ∈ Rd,
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we consider the following locally weighted translation:

ψρ,c,v(x) = x+ kρ(x, c)v.

Theorem 3.1. If ∀(x,y) ∈ Rd × Rd, ∂kρ∂x (x,y) · v > −1, then ψρ,c,v is a smooth (C∞) diffeomorphism.

Proof. For a given x ∈ Rd, let us try to find y ∈ Rd such that ψρ,c,v(y) = x. This can be rewritten
y = x−kρ(y, c)v, so we know that y must be of the form x+rv. The equation becomes ψρ,c,v(x+rv) = x,
i.e.: rv + kρ(x + rv, c)v = 0. If v = 0, ψρ,c,v is the identity (and a smooth diffeomorphism), and y = x.
Otherwise, solving ψρ,c,v(y) = x amounts to solving r + kρ(x+ rv, c) = 0.

Let us define:
hx : r ∈ R 7→ r + kρ(x+ rv, c) ∈ R.

If ∂kρ∂x (x, c) · v > −1, we get: ∀r ∈ R, dhxdr (r) > 0. Because of the absolute monotonicity of hx, and since
hx(r) tends to −∞ when r tends to −∞, and to +∞ when r tends to +∞, we deduce that there exists a
unique sρ,c,v(x) ∈ R such that hx(sρ,c,v(x)) = 0. It follows that the equation ψρ,c,v(y) = x has a unique
solution: y = x+ sρ,c,v(x)v. We conclude that ψρ,c,v is invertible, and:

ψ−1
ρ,c,v(x) = x+ sρ,c,v(x)v.

The implicit function theorem can be applied to prove that sρ,c,v is smooth, and as a consequence ψρ,c,v is
a smooth diffeomorphism.

Remark: there are strong similarities between locally weighted translations and the planar flows used
in normalizing flows [Rezende & Mohamed 2015, Kobyzev et al. 2021] (although none of the two function
classes is a superset of the other). Normalizing flows can be considered to solve diffeomorphic matching
problems, but the method proposed in this chapter specifically exploits locally weighted translations with a
heuristic that removes the need for any gradient-based learning.

Gaussian Radial Basis Function (RBF) kernel:

We now set kρ as the following symmetric positive definite kernel function (with ρ ∈ R>0):

kρ(x,y) = exp
(
−ρ2∥x− y∥2

)
.

We have:
∂kρ
∂x

(x,y) · v = −2ρ2 exp
(
−ρ2∥x− y∥2

)
(x− y) · v,

with the lower bound:

∂kρ
∂x

(x,y) · v ≥ −2ρ2 exp
(
−ρ2∥x− y∥2

)
∥x− y∥.∥v∥.

The expression on the right takes its minimum for ∥x− y∥ = 1√
2ρ

, which yields:

∂kρ
∂x

(x,y) · v ≥ −
√
2∥v∥ρ exp

(
−1

2

)
.

We pose ρmax(v) =
1√
2∥v∥ exp

(
1
2

)
. Applying Theorem 3.1, v = 0 or ρ < ρmax(v) implies that ψρ,c,v is

a smooth diffeomorphism. In that case, sρ,c,v(x), and as a result ψ−1
ρ,c,v(x), can be very efficiently computed

with Newton’s method.

3.1.2 The Greedy Diffeomorphic Matching (GDM) algorithm

In this section we are interested in addressing the following problem: given two sequences of distinct points
X = (xi)i∈{0,...,N} and Y = (yi)i∈{0,...,N}, compute a diffeomorphism Φ that maps each xi onto yi, either
exactly or approximately. More formally, defining dist(A,B) = 1

N+1

∑
i
∥ai − bi∥2 for two sequences A

and B of N + 1 points, and denoting by Φ(X) the sequence of points (Φ(xi))i∈{0,...,N}, we want to find a
diffeomorphism Φ that minimizes dist(Φ(X),Y).
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State of the art

The sequences X and Y being potentially very different in shape, some of the state-of-the-art techniques to
solve this problem are based on the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework
introduced in the seminal article by Joshi and Miller [Joshi & Miller 2000]. Its core idea is to work with a time
dependent vector field v(x, t) ∈ Rd (t ∈ [0, 1]), and define a flow φ(x, t) via the transport equation:

dφ(x, t)

dt
= v(φ(x, t), t),

with φ(x, 0) = x. With a few regularity conditions on v (see [Dupuis & Grenander 1998] for specific
requirements), x 7→ φ(x, t) is a diffeomorphism. The resulting diffeomorphism Φ(x) = φ(x, 1) is given
by:

Φ(x) = x+

∫ 1

0
v(φ(x, t), t)dt.

Using an appropriate Hilbert space, the vector fields x 7→ v(x, t) can be associated to an infinitesimal cost
whose integration is interpreted as a deformation energy.

Various gradient descent algorithms have been proposed to optimize v with respect to a cost that de-
pends both on the deformation energy and on the accuracy of the mapping, whether the objective is to map
curves [Glaunès et al. 2008], surfaces [Vaillant & Glaunès 2005], or, as in our case, points [Guo et al. 2006].

A diffeomorphic matching heuritic based on locally weighted translations

The LDDMM framework has several advantages. For example, it tries to minimize the deformation, and
allows the computation of similarity measures between diffeomorphic geometrical objects. However, Φ is
not in closed-form, so once obtained, evaluating it requires an integration that can be slightly time-costly. In
our context, it can be necessary to use Φ inside a control law, so its evaluation (and that of Φ−1) must be
very fast.

The proposed approach is based on the diffeomorphic locally weighted translations presented in the
previous section, which are functions that can be evaluated extremely quickly.

We fix a number of iterations K, and two parameters 0 < µ < 1 and 0 < β ≤ 1. K is defined
empirically, as the number of iterations required for a good approximation depends on the intrinsic difficulty
of the problem. µ is a kind of "safety margin": strictly less than 1, it ensures that the results cannot be
arbitrarily close to non-invertible functions. β is similar to a learning rate: a small value allows only small
modifications at every iteration, resulting in a slower but usually more stable convergence. In the examples
of Figures 3.2, 3.4 and 3.5, we use K = 150, µ ≈ 0.9 and β ≈ 0.5.

Initially, we define Z := X. Every iteration updates Z. The j-th iteration can be briefly described by the
following steps:

1. We select the point pj in Z that is the furthest from its corresponding target q in Y (see lines 5 to 7
in the pseudo-code below);

2. We consider the locally weighted translation ψρj ,pj ,vj of direction vj = β(q − pj), center pj , and
Gaussian RBF kernel kρj , optimizing ρj ∈ [0, µρmax(vj)] to minimize the error between ψρj ,pj ,vj (Z)
and Y;

3. We perform the update: Z := ψρj ,pj ,vj (Z).

The resulting (smooth) diffeomorphism is the composition of all the locally weighted translations:

Φ = ψρK ,pK ,vK ◦ · · · ◦ ψρ2,p2,v2 ◦ ψρ1,p1,v1

Algorithm 1 describes the proposed algorithm, which we call GDM (for Greedy Diffeomorphic Matching), in
pseudo-code.
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Algorithm 1 GDM
1: Input:

X = (xi)i∈{0,...,N} and Y = (yi)i∈{0,...,N}
2: Parameters:
K ∈ N>0, 0 < µ < 1, 0 < β ≤ 1

3: Z(= (zi)i∈{0,...,N}) := X
4: for j = 1 to K do
5: m := argmax

i∈{0,...,N}

(
∥zi − yi∥

)
6: pj := zm
7: q := ym
8: vj := β(q− pj)
9: ρj := argmin

ρ∈[0,µρmax(vj)]

(
dist(ψρ,pj ,vj (Z),Y)

)
10: Z := ψρj ,pj ,vj (Z)
11: end for
12: Return:

(ρj)j∈{1,...,K}, (pj)j∈{1,...,K}, (vj)j∈{1,...,K}

Five remarks:

• Here the parameter β is constant, but
we can also make it vary iteration after
iteration, for example by increasing it
toward 1.

• The line 9 of the algorithm performs
a nonlinear optimization, but it depends
only on one bounded real variable, so a
minimum can be found very quickly and
precisely.

• We can add a fixed upper bound ρM >
0 for all ρj , and a regularization term
in the cost of the optimization problem
of line 9, to prevent the diffeomorphism
from overly deforming the space to get a
perfect matching. Simply using inputs with
a dense representation (large value of N )
has a similar effect, and it barely slows
the algorithm down if the implementation
relies on vectorization.

Figure 3.2: On the left, the dashed curve is a
trajectory represented by a sequence of points Y =
(yi)i∈{0,...,N}. The solid line is X =

(
y0 + i

N (yN −
y0)

)
i∈{0,...,N}. The right side shows the result of the

application of the diffeomorphism Φ constructed by the
GDM algorithm to map X onto Y.

• Again in line 9, dist can be replaced by any distance, e.g. the largest singular value norm of (X−Y)
(with X and Y written as (N + 1)-by-d matrices).

• The algorithm can get stuck in local minima, so a general proof of convergence cannot be found. How-
ever, as shown in the next sections, experimental results give empirical evidence that the algorithm is
efficient and converges quickly in practice, even on difficult matching problems.

Experimental evaluation

We compare GDM to an implementation of diffeomorphic matching in the LDDMM framework developed
by J. Glaunès (the "Matchine" software [Glaunès 2006]). Given a sequence of points Y = (yi)i∈{0,...,N}
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representing a trajectory, we set X = (xi)i∈{0,...,N} =
(
y0 +

i
N (yN − y0)

)
i∈{0,...,N} and apply our algorithm

or the LDDMM algorithm to construct a diffeomorphism Φ such that Φ(X) and Y match. Figure 3.2 displays
the result of GDM on four 2D trajectories, and Table 3.1 shows a comparison of the results obtained on
these trajectories with GDM and the LDDMM algorithm. For each trajectory, we apply the algorithms with
representations as sequences of 21, 51 and 101 points (i.e. N = 20, N = 50, N = 100). For both
algorithms, the same parameters are kept across all the trials. In all cases, GDM provides a substantial
speedup. For example, with N = 50, Φ is learned in average 58 times faster and evaluated 240 times
faster, while the error dist(Φ(X),Y) is 2.67 times smaller. The tests were made on an Intel(R) Core(TM)
i7-4700MQ @ 2.4 GHz with 4GB of RAM.

N GDM (the proposed algorithm) LDDMM
Average 20 0.25 s 2.78 s

duration of the 50 0.25 s 14.5 s
construction of Φ 100 0.26 s 53.3 s

Forward evaluation: 20 3.05 ms 157 ms
average duration of the 50 3.35 ms 804 ms
computation of Φ(X) 100 3.72 ms 3130 ms
Backward evaluation: 20 29.8 ms 145 ms

average duration of the 50 35 ms 798 ms
computation of Φ−1(Y) 100 38.5 ms 3110 ms

Accuracy of the 20 3.49×10−3 18.2×10−3

mapping: average 50 8.32×10−3 22.2×10−3

value of dist(Φ(X),Y) 100 9.51×10−3 22.0×10−3

Generalization: 20 19.8×10−3 20.3×10−3

average value of 50 9.51×10−3 21.6×10−3

dist(Φ(X1000),Y1000) 100 11.5×10−3 22.3×10−3

Table 3.1: Comparison of experimental results for the 4 examples of Figure 3.2. Remark: standard
deviations are negligible for our algorithm: it is deterministic, and the computation times depend almost
entirely on the input size N and on the fixed number of iterations K. Y is obtained by subsampling from
an initial recording of 1000 points: Y1000. X1000 is the linear progression from y0 to y999. To get a sense of
how precisely the mapping generalizes around the set of training points, we compute dist(Φ(X1000),Y1000).
We observe that for N = 50 and N = 100, our results are about twice as accurate as the ones obtained
with the algorithm based on LDDMM.

3.2 Computing globally asymptotically stable nonlinear dynamical systems

In this section, we show how GDM or any diffeomorphic matching algorithm can be used to compute globally
asymptotically stable dynamical systems (DS) that reproduce demonstration trajectories.

3.2.1 Definitions and theorems

Remark: we only consider dynamical systems ẋ = f(x) such that f(x) is locally Lipschitz.

Definition 3.1. A Lyapunov candidate L is a continuously differentiable function from Rd to R≥0 taking the
value 0 at a "target point" x∗ , with no other local extremum, and radially unbounded (∥x∥ → ∞⇒ L(x)→
∞).

Definition 3.2. A Lyapunov candidate L with target point x∗ is said to be compatible with the DS ẋ = f(x)
if:

∀x ∈ Rd, x ̸= x∗ ⇒ f(x) · ∇L(x) < 0.



16 Chapter 3. Using diffeomorphic matching to generalize motion plans

The following is a classical theorem in Lyapunov stability theory (see for example [Khalil 2015]):

Theorem 3.2. If a DS ẋ = f(x) is compatible with some Lyapunov candidate L, then it is globally
asymptotically stable.

Note that Definition 3.1 is stronger than the usual definition of Lyapunov candidates in that they must
have no other local extremum than x∗. This is very important when the objective is to construct globally
asymptotically stable DS, as the standard approach is to first compute a good Lyapunov candidate, and
then a DS that is compatible with it. But if the gradient of the Lyapunov candidate vanishes at several points
(which can be difficult to check), then no DS can be compatible with it. Therefore, it is crucial to ensure by
construction that the Lyapunov candidate has a single extremum.

Definition 3.3. We say that L is a Lyapunov function for the DS ẋ = f(x) if it is a Lyapunov candidate
compatible with ẋ = f(x).

Definition 3.4. Two DS ẋ = f(x) and ẋ = g(x) are said to be diffeomorphic, or smoothly equivalent, if
there exists a diffeomorphism Φ : Rd → Rd such that:

∀x ∈ Rd, g(Φ(x)) = JΦ(x)f(x),

where JΦ(x) is the Jacobian matrix: JΦ(x) = ∂Φ
∂x (x). If Φ is a Ck-diffeomorphism, then the DS are said to

be Ck-diffeomorphic.

Theorem 3.3. If two DS ẋ = f(x) and ẋ = g(x) are diffeomorphic, then if one is globally asymptotically
stable, both are.

Proof. Without ambiguity we can call these DS f and g. Let Φ be a diffeomorphism such that ∀x ∈
Rd, g(Φ(x)) = JΦ(x)f(x). For any forward orbit of f , i.e. any trajectory (x(t))t≥0 such that ẋ = f(x), let
us consider the trajectory

(
Φ(x(t))

)
t≥0

. We have:

d

dt

(
Φ(x(t))

)
= JΦ(x(t))ẋ(t) = JΦ(x(t))f(x(t)) = g

(
Φ(x(t))

)
.

This implies that
(
Φ(x(t))

)
t≥0

is a forward orbit of g. More generally, any orbit (y(t))t≥0 of g can be written(
Φ(x(t))

)
t≥0

, with x(0) = Φ−1
(
y(0)

)
, and (x(t))t≥0 orbit of f . If f is globally asymptotically stable, then all

orbits (x(t))t≥0 converge towards some target point x∗, and thus all orbits (y(t))t≥0 of g converge towards
Φ(x∗), which proves that g is globally asymptotically stable. A similar demonstration proves the converse
implication.

Theorem 3.4. Let ẋ = f(x) and ẋ = g(x) be two C1-diffeomorphic DS, and let Φ be a C1-diffeomorphism
such that ∀x ∈ Rd, g(Φ(x)) = JΦ(x)f(x). If L is a Lyapunov function for ẋ = f(x), then L ◦ Φ−1 is a
Lyapunov function for ẋ = g(x).

Proof. Again, we call these DS f and g. We also pose M = L◦Φ−1. Using Theorem 3.2, we know that f is
globally asymptotically stable, and by Theorem 3.3, g is globally asymptotically stable as well. Let x∗ be the
target point of f . Φ(x∗) is the target point of g. Let us consider a forward orbit (y(t))t≥0 of g. It can be written(
Φ(x(t))

)
t≥0

, with (x(t))t≥0 forward orbit of f (cf. proof of Theorem 3.3). It follows that M(y(t)) = L(x(t)),

and if y(t) ̸= Φ(x∗), i.e. x(t) ̸= x∗, then d
dt

(
M(y(t))

)
= g(y(t)) · ∇M(y(t)) = d

dt

(
L(x(t))

)
< 0. Besides,

it can be verified that M is a Lyapunov candidate (with target point Φ(x∗)), so M is a Lyapunov function for
g.

3.2.2 Overview of the method

The objective of the approach is to learn a smooth diffeomorphism Φ that maps a forward orbits of the DS
ẋ = −x (i.e. line segments) onto the target trajectory. The mapping obtained is at first purely geometrical,
but the initial DS can be transformed into ẋ = −γ(x)x, with γ : Rd → R>0, to adjust velocities without
modifying forward orbits. If the matching is accurate, Φ deforms the whole DS ẋ = −γ(x)x into the globally
asymptotically stable DS ẋ = −γ(Φ−1(x))JΦ(Φ

−1(x))Φ−1(x) that reproduces well the target trajectory
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(the demonstration). Additionally, since x 7→ ∥x∥ is a Lyapunov function for ẋ = −γ(x)x, x 7→ ∥Φ−1(x)∥
is a Lyapunov function for ẋ = −γ(Φ−1(x))JΦ(Φ

−1(x))Φ−1(x) (cf. Theorem 3.4). This transformation
of a globally asymptotically stable DS into another one via diffeomorphism has strong similarities with the
construction of navigation functions proposed in [Rimon & Koditschek 1991], which is based on the fact that
navigation properties are invariant under Ck-diffeomorphisms for k ≥ 1.

Trajectories being represented as sequences of points, the problem of forward orbits mapping can be
cast as diffeomorphic matching. In the case of a unique demonstration Y = (y(ti))i∈{0,...,N}, with ti = i∆t,
we want to find a diffeomorphism that maps X =

(
y(0) + i

N

(
0− y(0)

))
i∈{0,...,N} onto Y (the trajectory

is assumed to arrive at the target: y(tN ) = 0). To do so, we simply use the algorithm presented in
Section 3.1.2. The diffeomorphism ΦK obtained after K iterations can be such that ΦK(0) ̸= 0, so we
add an extra iteration that picks pK+1 = ΦK(0) and vK+1 = 0 − ΦK(0). This ensures that the final
diffeomorphism Φ verifies ΦK(0) = 0. Remark: the structure of Φ makes it easy to efficiently compute
JΦ(x) at any given point.

3.2.3 Results

The top row of Figure 3.3 shows
the result of mapping the straight
trajectory X (on the left) onto the
trajectory Y (on the right). The
diffeomorphism Φ that realizes this
matching also transforms the entire
dynamical system ẋ = −x into a
nonlinear globally asymptotically sta-
ble DS that reproduces the trajectory
Y (as the forward orbit of y(0)).
Modifying the initial DS without chang-
ing the forward orbit of x(0) leads, by
application of Φ, to another DS that
still reproduces Y. On the bottom row
of Figure 3.3, we use a linear system
that keeps x(0) as an eigenvector as-
sociated with eigenvalue −1 (ensuring
that its forward orbit is not modified),
but has a negative eigenvalue of
absolute value greater than 1 in the
orthogonal direction (unlike the DS
ẋ = −x). This results in a transformed
DS that “tracks” more agressively the
trajectory Y, bringing robustness in
the sense that, after a perturbation,
the systems goes back quickly to the
reference trajectory Y. The DS of
the top row corresponds to another
notion of robustness, in which the
reproduction of the pattern has more
importance.
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Figure 3.3: The diffeomorphism Φ, that maps the trajectory X
onto Y, transforms a globally asymptotically stable DS with X
as a forward orbit into a globally asymptotically stable DS with
Y as a forward orbit (top row). Using this property, we can
modulate the initial vector field while keeping X unchanged to
obtain systems with different behaviors that all reproduce the
demonstration Y.

We evaluate our approach on the LASA Handwriting Dataset [Khansari-Zadeh & Billard 2011], similarly
to [Khansari-Zadeh & Billard 2011, Khansari-Zadeh & Billard 2014, Neumann & Steil 2015]. On all cases
shown in Figure 3.4, seven trajectories ending at the same point demonstrate a single pattern of handwriting
motion. For each of these patterns, we create an average timed sequence of points Y = (y(i∆t))i∈{0,...,N}
based on the 7 trajectories, and apply our matching algorithm to construct a diffeomorphism Φ that maps
X =

(
N−i
N y(0)

)
i∈{0,...,N} onto Y. This gives a Lyapunov candidate x 7→ ∥Φ−1(x)∥.
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Figure 3.4: Demonstrations are in black, and reproduced trajectories in red. On the left: level sets of
the Lyapunov candidates obtained with WSAQF (1st column) and with our approach (2nd column). On
the right: streamlines of the DS produced by τ -SEDS (WSAQF) [Neumann & Steil 2015] (3rd column)
and with our approach (4th column).
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We compare our Lyapunov candidates to the WSAQF Lyapunov candidates obtained with the method
of Khansari-Zadeh and Billard [Khansari-Zadeh & Billard 2014] also used in [Neumann & Steil 2015]. On
the 1st column of Figure 3.4 are displayed level sets of the WSAQF Lyapunov candidates, and on the
2nd column level sets of our Lyapunov candidates. We can observe that the level sets of the Lyapunov
candidates produced by our method have a richer geometry and exhibit variations that are more suitably
adapted to the training data.

The CLF-DM method of Khansari-Zadeh and Billard [Khansari-Zadeh & Billard 2014] could be used
with these Lyapunov candidates to correct any learned DS and ensure global asymptotic stability. But as
mentioned above, the diffeomorphism also provides a way to directly get a globally asymptotically stable DS
that reproduces the motion pattern. We define a function γ : Rd → R>0 such that, starting at x(0) = y(0)
with t = 0, the DS ẋ = −γ(x)x produces a trajectory that passes by the points N−i

N y(0) at times i∆t, for
i ∈ {1, . . . , N − 1}, and converges asymptotically towards 0 for t > (N − 1)∆t. A simple choice for γ is
γ(x) = ∥y(0)∥

N∆t∥x∥ for ∥x∥ ≥ ∥y(0)∥
N and γ(x) = ∥y(0)∥

N otherwise (but it is easy to design a smoother function
with the same desired properties).

Φ transforms the DS ẋ = −γ(x)x into one that reproduces the demonstrations and their velocity profiles,
as shown in Figure 3.5. The eigenvalue in the direction orthogonal to y(0) can be adjusted according to the
variability of the 7 demonstrations, or to get a better rate of convergence towards the demonstrations (cf.
Figure 3.3).

The vector fields obtained with our method are shown on the 4th column of Figure 3.4, and the vector
fields obtained with the τ -SEDS method of Neumann and Steil [Neumann & Steil 2015] based on WSAQF
are shown on the 3rd column.
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Figure 3.5: On the left: a smooth autonomous systems, learned with our method, that reproduces a
motion pattern (demonstrations are in black, reproduced trajectories in red). The trajectories on the
right show that the velocity profiles are quite accurately reproduced as well (again, demonstrations in
black and reproductions in red).

3.2.4 Comparison with previous approaches

The existing approaches follow a two-step process:

1. Compute a Lyapunov candidate L, highly compatible with the demonstrations.

2. Compute a DS compatible with L that reproduces the demonstrations.

Neumann and Steil [Neumann & Steil 2015] add a diffeomorphic deformation between step 1 and step 2 to
simplify the construction of the DS, and Khansari-Zadeh and Billard [Khansari-Zadeh & Billard 2014] sepa-
rate step 1 and step 2 completely, noticing that any DS reproducing the demonstrations can be corrected
into a globally asymptotically stable DS once the Lyapunov candidate L is known. In both approaches,
step 1 is crucial because the Lyapunov candidate restricts the possibilities of the DS of step 2. But a major
difficulty is that the set of Lyapunov candidates (Definition 3.1) is rather ill-behaved in the sense that it is
non-convex and not closed under addition or multiplication: the sum or product of two Lyapunov candidates
is not necessarily a Lyapunov candidate, as local extrema might appear. To circumvent this difficulty, a
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solution is to restrict the search to a convex subset of the set of Lyapunov candidates, as in WSAQF
[Khansari-Zadeh & Billard 2014, Neumann & Steil 2015]. As mentioned by Neumann and Steil (Lemma 1
in [Neumann & Steil 2015]), any WSAQF Lyapunov candidate L (with target point 0) is compatible with the
DS ẋ = −x:

∀x ∈ Rd,x ̸= 0⇒ −x · ∇L(x) < 0.

Interestingly, the set of Lyapunov candidates that are compatible with a fixed globally asymptotically stable
DS (in this case ẋ = −x) is a convex cone. Thanks to this property, searching for a WSAQF Lyapunov
candidate can be done efficiently. But the compatibility to ẋ = −x is a serious restriction that our method
does not have. For example, in Figure 4, 2nd column, the Lyapunov candidates of the 1st, 2nd, 5th and 6th
rows are not compatible with ẋ = −x. Moreover, WSAQF Lyapunov candidates are constructed as sums of
convex functions, and as such their level sets define convex regions: for any WSAQF Lyapunov candidate
L, for any λ > 0, the set {x ∈ Rd | L(x) ≤ λ} is convex. This is an even stronger restriction. In Figure 4,
2nd column, all the Lyapunov candidates found with our method have level sets that define non-convex
regions.

The proposed method can potentially learn more complex Lyapunov candidates because it finds them
indirectly (via diffeomorphisms), and, instead of being based on good properties of a subset of the set of
Lyapunov candidates, it is based on the stability under composition of diffeomorphisms. It should be noted,
however, that we can only produce vector fields that are diffeomorphic to the DS ẋ = −x, which is not true
for all globally asymptotically stable smooth autonomous systems.

Another strength of the proposed algorithm is its simplicity and efficiency. It also scales well in dimen-
sionality, because the steps and parameters of the GDM are dimension-independent, which is not true
for the optimization problems used in previous approaches (e.g. in [Khansari-Zadeh & Billard 2014] and
[Neumann & Steil 2015]). It potentially leads to a speed-up that can be critical when the ability to compute
the vector field quickly is important.

The algorithm can also be adapted to extrapolate around limit cycles, if for the reference DS, instead of
ẋ = −x, we use a simple limit cycle oscillator.

3.3 Extension to multiple paths

So far, we have only considered single demonstrations. As shown in Figure 3.6, a problem with multiple
demonstrations is that they can be conflicting, and a naive extension of the method could lead to vector
fields that extrapolate poorly.

Instead of directly computing a single vector field for all the demonstrations, we can compute one vector
field (i.e. one diffeomorphism) per demonstration, and in a second phase combine the vector fields to
generate a new one.

To do so, we first define the concept of ε-absorption.
Although demonstrations are discrete sequences of states, we easily turn them into continuous paths

and denote the i-th demonstration by (xi(t))t≥0. All demonstrations should lead to the same target, so we
assume that xi(t) → 0 as t → ∞. Let us also assume that we have computed n globally asymptotically
stable vector fields ẋ = fi(x), one for each demonstration. For a state y, we denote by (xy,fi(t))t≥0

the trajectory generated from y with the i-th vector field. It can easily be approximated using Euler or
more advanced integration schemes. We say that a state xy,fi(t) along this trajectory is ε-absorbed if the
distance from xy,fi(t

′) to the target trajectory (xi(t))t≥0 is less than ε for any t′ ≥ t. The distance from a
point to a trajectory is usually defined as the minimum Euclidean distance betwen this point and any other
point of the trajectory, but the Euclidean distance can be replaced by any distance in Rd.

Definition 3.5. We define the time to ε-absorption αεi as follows: for any state y, αεi (y) is the infinimum of
the set of times t such that xy,fi(t) is ε-absorbed. In other words, αεi (y) can be understood as the time it
takes for the state to become and remain ε-close to the target trajectory.

Definition 3.6. For any state y, we also define the time to convergence κi as the time it takes for the state to
enter and remain in the vicinity of 0 (which should be defined a priori). More formally, κi(y) is the infinimum
of the set of times t such that all xy,fi(t

′) with t′ ≥ t are in the vicinity of 0.
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(a) 3 conflicting demonstrations 

demonstration 1

demonstration 2

(b)

(c) (d)

(e)

demonstration 3

Figure 3.6: Single vector fields combined into ẋ = f εcombined(x), with ε = 10.
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Both αεi (y) and κi(y) are straightforward to estimate once an approximation of (xy,fi(t))t≥0 is known.
Next, we define the combined vector field (or DS) ẋ = f εcombined(x).

For a state y, we compute the pairs (αεi (y), κi(y)) for i ∈ {1, . . . , n}. First, we find the vector fields
leading to the shortest times to ε-absorption, i.e. argmin

i∈{1,...,n}
αεi (y). The idea is that staying close to a

demonstration ensures reliability because it minimizes the need for extrapolation. Therefore, shorter times
to ε-absorption increase the likelihood of success for the generated trajectory.

• If there is no "tie", i.e. if argmin
i∈{1,...,n}

αεi (y) contains a unique element j, then we set f εcombined(x) = fj(x).

• If, on the contrary, there are several vector fields leading to the same minimum time to ε-absorption
(usually 0, when y is ε-absorbed by more than one DS), then among them we choose the one
(ẋ = fj′(x)) that leads to the shortest time to convergence, and we set f εcombined(x) = fj′(x). If
there is still a tie (usually because y is in the vicinity of 0), an arbitrary order on the vector fields is
used to make a choice.

We cannot formally prove that the combined DS ẋ = f εcombined(x) is globally asymptotically stable, as
with the above definition it is in general not continuous, which can pose challenges for the existence and
uniqueness of the solutions. However, when solutions exist, they all converge to 0.

Theorem 3.5. Any solution (xy,fεcombined
(t))t≥0 converges toward 0.

Proof. From any state y, each vector field ẋ = fi(x) leads to times to ε-absorption that are finite and
decreasing at a constant rate until reaching 0. In a trajectory of ẋ = f εcombined(x), we switch between vector
fields in a way that can only reduce the time to ε-absorption. Therefore, the trajectory eventually reaches
a state that is ε-absorbed for one of the ẋ = fi(x) DS. At this point, all future switches to other DS will
preserve the ε-absorption and the time to ε-absorption will remain equal to 0. Therefore, future switches
can only decrease the time to convergence, which is for every system finite and decreasing at a constant
rate until reaching 0. We conclude that the trajectory (xy,fεcombined

(t))t≥0 will also reach and remain in the
vicinity of 0, where there can only be zero or one final switch to one of the ẋ = fi(x) DS. Since these
systems are all globally asymptotically stable, the trajectory will converge to 0.

Figure 3.6 illustrates trajectories generated in practice with ẋ = f εcombined(x).

3.4 Limitations

An obvious weakness of the diffeomorphic matching-based approach is that it does not take dynamics
into account, so in some sense the extrapolated vector fields assume omnidirectional controlability of the
system. As a consequence, the set of applications in which the method can be applied is restricted.
When it is crucial to take dynamics into account, extrapolating away from demonstrations is difficult. In
the architecture proposed in Chapter 2, we learn to predict the success of a control command, so in order
to get closer to a target trajectory (e.g. of the robot head), one could randomly sample control inputs with
the objective of finding ones that are likely to be successful and would drive the robot closer to the known
trajectory. This solution might work well in practice for a wide class of systems, but the notion of distance
to the trajectory should ideally also take dynamics into account, and the efficiency of randomly sampling
control inputs steeply declines in complex spaces. If a model of the dynamics is known, transforming the
problem of getting closer to the known trajectory into an optimization problem is another possibility. If only
partial information about the dynamics of the system is known, such as some of its basic physical properties,
this knowledge can be used to learn a physics-informed dynamics model [Asri et al. 2024], which can then
be leveraged to attempt to converge smoothly toward known trajectories.



CHAPTER 4

Sequencing motions

At the end of Chapter 2, the proposed motion planner constructs paths made of sequences of intermediate
targets (for the robot head) and associated control commands that have a high likelihood of success. The
sequence of commands might not be optimal, so to execute one of these paths, it would not be ideal to
wait for the success of each command before executing the next one. The resulting motion is likely to be
smoother if we perform early switches, i.e. if we try to switch to the next control command before actually
completing the current one.

Definition 4.1. If there are two consecutive objectives or goals g1 and g2, we call it an early switch on g1
when we start to pursue g2 before actually achieving g1.

A similar principle can be applied if we just have the sequence of intermediate targets or goals and need
to train from scratch a policy that should make the robot achieve the last goal.

In this context, we want to train a goal-conditioned policy π, i.e. a policy that takes in input both the
state (or observation) s and a desired goal g. A sparse reward of 1 is obtained when the policy achieves
the desired goal. The environment is assumed to be a Markov Decision Process, and the training of the
policy is done by repeating episodes (also called rollouts) starting from the neighborhood of a single initial
configuration. Episodes are recorded as sequences of transitions of the form (s,g,a, r, s′), where s is
a state, g the current desired goal, a an action, r the reward obtained, and s′ the next state. These
transitions fill a replay buffer from which batches are randomly sampled to train the policy with an off-
policy reinforcement algorithm like SAC [Haarnoja et al. 2018] or TD3 [Fujimoto et al. 2018]. Furthermore,
to make the training more efficient, we rely on Hindsight Experience Replay [Andrychowicz et al. 2017]
which consists in relabelling sequences of consecutive transitions by assuming that the achieved goal of
the last transition was also the desired goal throughout the sequence, and by computing the virtual rewards
that would have been obtained in that case.

The sequence of goals is g1,g2, . . . ,gn. At the beginning of each episode, the first desired goal is
g1. Then, before the episode ends (we assume that episodes are truncated if they exceed a maximum
length), we can decide at any moment to change the current desired goal to any of the goals from the list.
Our objective is to manage switches in the best possible way so that the learning goes well and the policy
eventually manages to follow the whole sequence of goals one after the other until the last one. Achieving
the last goal is the true objective, while the intermediate goals are simply supposed to help guiding the robot
toward it.

The goal-conditioned policy is used in a local way as it does not have advanced exploration capabilities.
If during episodes we always quickly switch to gn, the problem might be too difficult and the policy will never
learn how to reach it. Conversely, never switching early would result in trying to precisely reach each of the
goals consecutively, which might be too difficult as well.

So, the question is: when to switch?

4.1 Dynamic Value Threshold

Off-policy actor-critic algorithms like SAC and TD3 train the policy but also a Q-value function that estimates
the expected sum of future discounted rewards after making an action a in state s. In the case of a sparse
reward obtained when the desired goal is achieved, theQ-value can be interpreted as the level of confidence
in the ability to quickly reach the desired goal.
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A high Q-value corresponds to a high probability of
reaching it soon, so we could put a threshold on the
Q-value to determine when it is time to switch to the
next goal. The idea is that, if I’m confident that I could
achieve the current goal quickly, I can forget about it
and already start aiming at the next one. But how
to set this threshold? In deterministic environments,
the theoretical value of being k steps away from the
goal can be calculated, but defining a fixed threshold
in advance is not the best idea.
In fact, value-based RL algorithms tend to solve
problems long before the convergence of the Q-value
function. The reason is that, to make correct action
decisions, a global bias in the Q-values is not harmful
(what is only needed is that better actions lead to
higher Q-values).
So, even when the trained policy quickly
becomes optimal, the convergence of the
Q-values can be slow. This is illustrated
in Figure 4.1 by applying SAC to the
InvertedDoublePendulum-v4 MuJoCo environment
[Todorov et al. 2012, Towers et al. 2023]. The policy
trained by SAC reaches a close-to-optimal behavior
in less than 7,000 gradient steps, but even after
30,000 gradient steps Q-values continue to slowly
increase. This means that, with a fixed value
threshold, either there will be no switches for a long
time, or the switches will end up occuring too much.

The idea of the Dynamic Value Threshold is to adjust
it continuously by observing what happens during
the training. Whenever a goal is achieved, the
corresponding value threshold is updated to a value
that was observed a few steps before reaching the
goal. More precisely, the proposed simple heuristic is
to choose in advance an integer k ≥ 0, and define the
updates of τgDV T , the Dynamic Value Threshold for a
goal g, as follows:

Figure 4.1: Training of Soft Actor-Critic (SAC)
on InvertedDoublePendulum-v4. Results show
the interquartile mean (see [Agarwal et al. 2021])
from experiments on 10 different random seeds.
The orange curve (bottom) displays the Q-value
of the first state and action of evaluation episodes.
In fewer than 7,000 steps, the trained policy is
near-optimal, yet after 30,000 steps, the Q-values
are still slowly increasing.

Definition 4.2. Dynamic Value Threshold: Assume that, during an episode, a new desired goal g is set
in a state sj , and after a sequence of transitions, g is reached (with the desired goal unchanged during
the sequence). Let (sj ,g,aj , rj , sj+1), (sj+1,g,aj+1, rj+1, sj+2), . . ., (si,g,ai, ri, si+1) be the sequence
of transitions (the goal is reached at the last transition).

The value of τgDV T is updated to Q(sq,g,aq), where Q is the Q-function trained along with the policy,
and q = max(j, i− k):

τgDV T := Q(sq,g,aq).

Remarks:

• We are using a goal-conditioned policy, so the Q-function also takes in input the desired goal, not only
the state and action (but the desired goal can be thought of as a part of the state).

• In stochastic environments, the Q-value does not only depend on the expected number of steps to
reach a goal, it also takes into account transition uncertainties. In this case, it might be preferable to
update τgDV T with a moving average of the previously encountered Q(sq,g,aq) values.
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• When there are good reasons to believe in a uniformity of Q(s,a), a unique τDV T (independent from
the goals) could potentially be used.

4.2 Budget-based Switching

Now, we know how to trigger early switches, but we still need to decide whether to trigger them or not.

One naive solution would be to
first learn how to reach a goal
gi by repeatedly reaching it, and
then, once we are confident in
our ability to achieve it, always
perform early switches toward
the next goal. This is prob-
lematic in two ways: first τDV T
would stop being adjusted, so
the Q-values drift might make
early switches inadequate, and
second, by lack of training we
might eventually lose the capa-
bility to reach gi, thus if reach-
ing it becomes required again,
for instance to readjust the
threshold, this could negatively
impact the learning. The best
idea is to find a good balance
between trying to actually reach
a goal and performing early
switches toward the next one.
A fixed ratio between reaching
and switching does not work,
because as the sequence of
goals gets longer, the probabil-
ity of performing early switches
on the whole sequence would
drop exponentially.

initial
configuration

goal 1 goal 2

goal 22

Figure 4.2: A Dubins car is trained to follow a sequence of 22 goals
with Budget-based Switching (Algorithm 2). The off-policy RL for the
goal-conditioned policy relies on a combination of Soft Actor-Critic
(SAC) and Hindsight Experience Replay (HER). After 109k gradient and
environment steps, the policy is able to reach the last goal.

Instead, we consider the following scenario: if currently the furthest goal reached during the training is
gm, ideally we would like to cycle through these phases repeatedly:

• Reach g1.
• Reach g2 (after an early switch on g1).
. . .
• Reach gi (after early switches on g1,g2, . . . ,gi−1).
. . .
• Reach gm (after early switches on g1,g2, . . . ,gm−1).
• Early switches throughout the episode.
. . .
• Early switches throughout the episode.

m times in total.


Repeat.

In this scenario, each goal is reached once, and there are 2m − 1 early switches on g1, 2m − 2 early
switches on g2, . . ., m early switches on gm. This motivates the constant updating of a "budget" Bgi for
each goal gi, which works as follows: when aiming at gi, if Bgi > 0, then an early switch is allowed, and if
it is indeed triggered then the budget is decreased by one. In parallel, every time gi is reached, the budget
Bgi is increased by 2m− i.
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Combining this budget-based switching with the Dynamic Value Threshold, we obtain the following
learning algorithm:

Algorithm 2 Budget-based Switching

Input:
A sequence of goals g1, . . . ,gn.
Parameters:
An integer k ≥ 0.

Initialize a goal-conditioned policy πθ, a Q-function Qψ, and an empty replay buffer Rb.
Initialize budgets Bgi = 0 and thresholds τgi

DV T = 0, i ∈ {1, . . . , n}.
Initialize mmax = 0.
for each episode do

Reset state s, set bblock := false, icurr := 1 and H := [ ] (H is the "history").
repeat

Sample action a ∼ πθ(·|s,gicurr).
Perform environment step: s′ = step(s,a), get reward r = 1 if the step achieves gicurr , 0 otherwise.
Insert (s,gicurr ,a, r, s

′) in Rb and append Qψ(s,gicurr ,a) to H.
If r = 1 and icurr > mmax:

Set mmax := icurr.
If r = 1 and Bgicurr

= 0:
Set bblock := true.

If r = 1:
Set Bgicurr

:= Bgicurr
+ 2mmax − icurr and τgicurr

DV T := H[max(0, len(H)− k)].
If bblock is false and Qψ(s,gicurr ,a) > τ

gicurr
DV T and Bgicurr

> 0:
Set icurr := min(n, icurr + 1), Bgicurr

:= Bgicurr
− 1 and H = [ ].

Draw a random batch of transitions from Rb.
Perform a gradient descent step of training for πθ and Qψ (using an off-policy RL algorithm).
Set s := s′

until episode termination or truncation.
end for

Remark: During an episode, once a goal is intentionally reached, no subsequent early switch is allowed.
The variable bblock is used to block these disallowed early switches. This helps the learning stay closer to
the "ideal scenario" discussed above.

Figure 4.2 shows a result obtained with this algorithm. The environment, generated with the python
library gym-gmazes [Perrin-Gilbert 2022], consists of a Dubins car (a simple kinematic car model with
constant speed and bounded turning rate [Dubins 1957]) in a 2D maze. At every reset, the car has the
same initial position and orientation. A sequence of 22 goals guides the car toward its final target. The
goals are only related to positions, not orientation (so the reward of 1 is given when the position x, y of the
car enters a small disk centered at the goal location, no matter what the orientation is). A goal-conditioned
policy is trained with SAC and HER. When aiming at a desired goal, the goal-conditioned policy does not
have information on the next one, so without early switches it may reach the desired goal with an orientation
that makes reaching the next goal difficult. This makes reaching distant targets very complex. On the other
hand, with early switches, the car is not constrained to achieve all goals, and it has more time to adapt its
motion properly when switching from a desired goal to the next.

As shown in Figure 4.2, after 109k steps (both 109k steps in the environment and 109k gradient steps
on the policy and value networks) with Algorithm 2, the car manages to follow the whole path and reach the
last goal.

4.3 Going further

The general problem we address in this chapter is learning skills more efficiently by breaking them down
into sequences of simpler skills.
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Although early switching can provide simple and effective solutions in some cases, in others it is is
not enough, and each skill needs to actively prepare the next motion in advance. Let’s consider a simple
example: you want to jump over a large hole in the ground, and you decompose the motion into two skills:
first getting close to the edge of the hole, and then jumping to the other side. Obviously, if you just walk
toward the edge of the hole, and at some point switch to the jumping objective, you have only made the
problem harder as you are closer to the edge but without momentum. The right way to break down the
complexity of the problem is to understand that momentum is needed for the jump, and update the first
objective to take that into account. The objective would incorporate a notion of compatibility with the next
skill: we don’t only solve the skill, we solve it in a way that is compatible with the next one. This goes further
than early switches, and Alexandre Chenu, Olivier Serris, Olivier Sigaud and I wrote articles suggesting
ways to do it properly [Chenu et al. 2022a, Chenu et al. 2022b, Chenu et al. 2024]. The DCIL-I algorithm
(DCIL stands for Divide and Conquer Imitation Learning) is introduced in [Chenu et al. 2022a], and DCIL-II
improves it in [Chenu et al. 2022b]. The key idea of DCIL-II is to define a Goal-Conditioned Markov Decision
Process (GC-MDP) with an extended state space that adds information about futures goals, and modify the
reward function to make it compatible with the HER relabelling mechanism. The information about future
states relies solely on an integer index that is automatically updated when a goal is reached. Thanks to
the relabelling that densifies the reward signal, the value is efficiently propagated backward during learning,
and the goal-conditioned policy quickly learns to reach any of the goals in a way that prepares for the next
one.

Given a sequence of low-dimensional goals extracted from a single demonstration, DCIL-II can train a
goal-conditioned policy to reproduce the demonstration with a sample-efficiency that significantly exceeds
previous state-of-the-art results such as PWIL [Dadashi et al. 2021].

Figure 4.3: Visualization of sequential goal reaching with the Cassie biped robot in simulation. In this
environment, a sequence of 19 goals corresponding to successive Cartesian positions of the pelvis is
used by DCIL-II to learn the behavior using only 707k training steps on average. Only five goals are
shown here. One can see that, though the straight pelvis trajectory is well reproduced, the obtained feet
trajectories differ widely from the demonstrated ones.

Figure 4.3 illustrates a result obtained with DCIL-II reproducing a walking trajectory with the biped robot
Cassie in simulation. 19 milestone configurations and goals are extracted from the unique demonstration.
One of the particularities of DCIL-II is that the goals are low-dimensional (in this example each goal is a
target position for the pelvis), so we can see that in the reproduced walking motion, the trajectory of the
pelvis matches that of thedemonstration, but the feet trajectories differ widely. This low-dimensionality of
the goals reduces the complexity and helps focusing on what truly matters in a demonstration.

In DCIL-II, the system can be reset at milestone configurations, which correspond to the configurations
in the demonstration for all the extracted goals. This prevents mechanisms like the Budget-based Switching
of Algorithm 2 to be needed, and enables the learning to be much more efficient, as individual skills can
be trained without having to first succeed in reaching them. Whenever these custom resets are possible, I



28 Chapter 4. Sequencing motions

highly recommend to exploit them (e.g. in simulation), but there are contexts in which a single reset is the
only option. For this reason, we modified DCIL-II and proposed Single Reset-DCIL (SR-DCIL), which uses
Dynamic Value Thresholds to govern early switches from one goal to the next.



CHAPTER 5

Off-policy RL in continuous action spaces

This is the chapter where I finally actually talk about reinforcement learning in detail.
It is somewhat orthogonal to the other chapters and is motivated by the fact that combining motion

planning with RL generates a lot of off-policy data, specifically transitions created for exploration purposes
that are not representative of standard rollouts with the current policy.

Yet, in continous state and action spaces, the most successful modern off-policy deep reinforcement
learning algorithms tend to fail in batch settings, when a large part of the training data is uncorrelated to the
distribution under the current policy [Fujimoto et al. 2019]. In this sense, they are not truly off-policy. On the
other end, truly off-policy algorithms adapted from Q-learning [Watkins 1989], such as Implicit Q-Learning
[Kostrikov et al. 2022], are adapted to offline RL but do not perform well in online RL. This motivates the
quest for a truly off-policy algorithm that is well suited for online RL, which could be advantageous in the
context of motion planning-powered RL.

The difficulty of adapting Q-learning to continuous and multi-dimensional action spaces arises from
the need to compute the maximum of the Q-function over the action space. To circumvent this "max-Q
problem", Q-learning can be combined with an actor-critic perspective [Silver et al. 2014], which involves
coupling policy gradient with Q-learning updates to estimate the action-value function. Although this type
of coupling primarily aims to evaluate the actor with a Q-learning critic, its byproduct is that the actor is
trained to generate actions that maximize the Q-function, thereby solving the max-Q problem indirectly. This
approach gave rise to DDPG [Lillicrap et al. 2015], a seminal actor-critic algorithm benefiting from the off-
policy nature of Q-learning and consequently from a high sample-efficiency. Yet, in DDPG and its derivatives
like TD3 [Fujimoto et al. 2018], the actor may become trapped in local optima [Matheron et al. 2020]. Other
approaches have attempted to face the max-Q problem head-on, like CAQL [Ryu et al. 2020] or Implicit Q-
Learning (IQL, [Kostrikov et al. 2022]), but the former does not scale well to high-dimensional action spaces,
and requires adaptations such as constraining the action range for complex problems, whereas in the latter,
the expectile loss becomes unbalanced when trying to produce estimates that are very close to the true
maxima, which has so far restricted the application of IQL and similar methods to offline RL.

In this Chapter, I propose a novel way to solve the max-Q problem, using regression and conditional
gradient scaling (see Section 5.3), resulting in a new algorithm that adapts Q-learning to continuous action
spaces. The algorithm still has an actor to select actions and produce episodes, but unlike state-of-the-
art model-free off-policy algorithms, most of which are derived from TD3 or SAC [Haarnoja et al. 2018], its
critic updates are entirely independent from the actor. The novel algorithm is called AFU for “Actor-Free
Updates”. In its first version, AFU-alpha (see Sections 5.4 and 5.5), a stochastic actor is trained like the
actor in SAC. A simple failure mode of SAC (and AFU-alpha) is studied in Section 5.6, and it is shown that
the value function trained by regression in AFU can help improve the actor update and make it less prone
to local optima, resulting in a new version of the algorithm, AFU-beta (see Section 5.7), which does not
fail in the same way. Experiments show that AFU-alpha and AFU-beta are competitive in sample-efficiency
with TD3 and SAC without being more computationally expensive. To the best of my knowledge, AFU is the
first model-free off-policy RL algorithm that is competitive with the state-of-the-art and truly departs from the
actor-critic perspective.

5.1 Related Work

As previously mentioned, in continuous action spaces, direct approaches to solve the max-Q problem of
Q-learning have faced limitations. Besides CAQL, which formulates the max-Q problem as a mixed-integer
program, and IQL, which treats Q-functions as state-dependent random variables and relies on expectile
regression to estimate their maxima, we can cite NAF [Gu et al. 2016] and ICNN [Amos et al. 2017], which
impose action-convex Q-functions making the max-Q problem tractable, QT-Opt [Kalashnikov et al. 2018],
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which uses a stochastic optimizer to tackle non-convex max-Q problems, or approaches based on a dis-
cretization of the action space, such as SMC-learning [Lazaric et al. 2007] and SDQN [Metz et al. 2017].
However, these methods often struggle with complex, high-dimensional continuous control tasks, either
due to a lack of expressiveness or prohibitive computational costs. Close to IQL, X -QL [Garg et al. 2023]
is an offline RL algorithm relying on an objective directly estimating the optimal soft-value function in the
maximum entropy RL setting without needing to sample from a policy. A variant of X -QL [Garg et al. 2023]
works in the online setting, but in this case critic updates depend on actions sampled by the actor for the
Bellman backup. A unique off-policy algorithm, AWR [Peng et al. 2019], employs regression to train a value
function and a policy but falls short of the sample efficiency achieved by state-of-the-art off-policy algorithms.
Presently, the most successful approaches in model-free off-policy RL for continuous control are actor-critic
algorithms with interwoven actor and critic updates. The first off-policy actor-critic algorithm was introduced
in [Degris et al. 2012], and the most recent ones are typically based on TD3, an improvement of DDPG,
or on SAC, which relies on an entropy maximization framework that led to various off-policy algorithms
by creating connections between policy gradients and Q-learning updates (see [O’Donoghue et al. 2016]).
Among the algorithms improving upon TD3 and SAC, we can mention TQC [Kuznetsov et al. 2020], a
distributional approach to control the overestimation bias, REDQ [Chen et al. 2021] or AQE [Wu et al. 2021]
which employ critic ensembles, DroQ [Hiraoka et al. 2021] which uses dropout and layer normalization in
the critic networks, and BAC [Ji et al. 2023] which merges Q-function updates from SAC and IQL. While
these ideas could be incorporated into the proposed algorithm AFU, this is left to future work, and the focus
is kept on comparing AFU to SAC and TD3. In contrast to methods building upon SAC and TD3, AFU is
structurally distinct because the critic updates remain unaffected by the actor. Notably, the critic is never
trained with out-of-distribution (OOD) actions, yet AFU achieves a level of sample efficiency competitive with
SAC and TD3. One might object that OOD actions can be beneficial in the online setting, because they favor
exploration. As pointed out in [Garg et al. 2023], OOD actions in Bellman backups introduce over-optimism,
but online learning allows agents to correct over-optimism by collecting additional data. Yet, achieving
results comparable in sample-efficiency to TD3 and SAC without OOD actions shows that the benefit of
Bellman backups with OOD actions in the online setting is in fact not so obvious. If OOD actions can
introduce an over-optimism that then needs to be corrected, it may be preferable to design online learning
methods that do not yield over-optimism in the first place, and use other strategies to favor exploration.
Furthermore, unlike other direct adaptations of Q-learning to continuous control, AFU does not fail on the
most complex tasks. On the contrary, the challenging MuJoCo task Humanoid is one of the environments
in which AFU performs the best comparatively to SAC and TD3.

5.2 Preliminaries

We consider a discounted infinite horizon Markov Decision Problem (MDP) < S,A, T,R, γ >, where S is
a state space, A a continuous action space, T a stochastic transition function, R : S × A → R a reward
function, and 0 ≤ γ < 1 a discount factor. We denote by s′ (resp. st+1) a state obtained after performing an
action a (resp. at) in state s (resp. st). Transitions are tuples (s,a, r, s′) with r = R(s,a). The optimal Q-
function Q∗ is defined by: Q∗(s,a) = E

[∑∞
t=0 γ

tR(st,at) | s0 = s,a0 = a, π∗
]
, where the policy used from

t = 1 onwards is π∗, which selects actions optimally in every state. The optimal value function V ∗ verifies
V ∗(s) = maxa∈A(Q

∗(s,a)). Let Vφ1 and Vφ2 denote two function approximators for the value function, and
Qψ a function approximator for the Q-function (the critic). We use feed forward neural networks for all the
function approximators. For the value function, we also consider target networks (see [Mnih et al. 2016]),
i.e. parameter vectors φtarget

1 and φtarget
2 updated with the rule φtarget

i ← τφi + (1− τ)φtarget
i for some target

smoothing coefficient 0 < τ < 1. We wish to train the critic on mini-batches B of transitions (s,a, r, s′)
taken from an experience replay buffer, with the following loss derived from the clipped Double Q-learning
loss of TD3 [Fujimoto et al. 2018]:

LQ(ψ) = Mean
(s,a,r,s′)∈B

[(
Qψ(s,a)− r − γ min

i∈{1,2}
V
φ

target
i

(s′)

)2
]

(5.1)

The use of two function approximators Vφ1 and Vφ2 aims at avoiding the overestimation bias that can
make Q-learning based approaches diverge (see [Hasselt 2010]). In practice, transitions can be terminal,
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which requires a simple modification of the loss ignored here for the sake of clarity (γ is set to 0 for
terminal transitions). Provided that Vφ1(s) and Vφ2(s) return good estimates of the maximum of Qψ(s, ·), a
maximization usually referred to as the max-Q problem (see [Ryu et al. 2020]), Equation (5.1) amounts to
the mean squared Bellman error that drives Qψ toward Q∗ [Baird 1999].

5.3 A new way to solve the max-Q problem

The main remaining problem is how to efficiently train Vφ1 and Vφ2 . For the learning to be successful, both
Vφ1 and Vφ2 should converge to precise solutions of the max-Q problem quickly. If changes in Qψ are not
tracked promptly, errors such as overestimation of Q-values could lead to failures.

5.3.1 Method

We introduce two new function approximators Aξ1 and Aξ2 , for the optimal advantage function defined by
A∗(s,a) = Q∗(s,a) − V ∗(s). For any state-action pair (s,a), A∗(s,a) ≤ 0. Preliminarily, we assume that
outputs of Aξi can only be non-positive. Assuming that Qψ is fixed, training Vφi and Aξi can be done by
minimizing the following regression loss on mini-batches B:

lV,A(φi, ξi) = Mean
(s,a,_,_)∈B

[(
Vφi(s) +Aξi(s,a)−Qψ(s,a)

)2
]
. (5.2)

This loss causes the values Vφi(s) to become upper bounds of Qψ(s, ·), but not tight ones. A natural next
step would be to add a regularization term penalizing large outputs of Vφi , which results in an approach
very similar to methods based on regression with asymmetric losses such as IQL, SQL, EQL and X -QL
[Garg et al. 2023]. The issue is that the resulting convergence is either slow (for very small regularization
coefficients) or significantly biased (for larger coefficients). For some problems, finding the right coefficient
is possible, but in general standard regularization does not lead to satisfactory results in the context of
online RL. We propose a different approach based on conditional gradient rescaling, noticing that when
Vφi(s) + Aξi(s,a) is greater than its target Qψ(s,a), by gradient descent both Vφi(s) and Aξi(s,a) would
decrease by the same amount, and conversely when Vφi(s) + Aξi(s,a) is smaller than the target, values
would both increase by the same amount. Without regularization, all upper bounds of Qψ(s, ·) are equally
good values for Vφi(s), but we can modulate the gradients to put a "downward pressure" on Vφi(s) and
make it progressively decrease as Aξi(s,a) progressively increases. To this end, we apply only a fraction of
the gradient descent update on φi when Vφi(s) would increase. It can be done by defining, for 0 < ϱ < 1:

Υa
i (s) =

(
1− ϱIs,ai

)
Vφi(s) + ϱIs,ai V

φ
no_grad
i

(s),

where φno_grad
i is a copy of the parameters φi, and Is,ai =

{
1, if Vφi(s) +Aξi(s,a) < Qψ(s,a).
0, otherwise.

Replac-

ing Vφi(s) by Υa
i (s) in (5.2) yields a new version of the loss:

ΛV,A(φi, ξi) = Mean
(s,a,_,_)∈B

[(
Υa
i (s) +Aξi(s,a)−Qψ(s,a)

)2
]
. (5.3)

In the next paragraph, we show that the proposed conditional gradient rescaling method is similar to an
adaptive regularization scheme in which the weight of the regularization is proportional to the absolute
value of the error.

Conditional gradient rescaling seen as adaptive regularization

Let us denote by e(s,a) the error:

e(s,a) = Vφi(s) +Aξi(s,a)−Qψ(s,a),
and let us assume that this error is negative (otherwise our method simply applies a standard gradient
descent step). We denote by e′(s,a) the following term:

e′(s,a) = (1− ϱ)Vφi(s) + ϱV
φ

no_grad
i

(s) +Aξi(s,a)−Qψ(s,a),
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which is equal to e(s,a) in value but has different gradients.
Our method applies a gradient descent step on e′(s,a)2 for both φi and ξi. For ξi, the gradient is the

same as for e(s,a)2 and e′(s,a)2. For φi, the gradients are:

∇φie(s,a)
2 = 2e(s,a)∇φiVφi(s),

∇φie
′(s,a)2 = (1− ϱ)2e(s,a)∇φiVφi(s).

Let us define eno_grad(s,a): a “frozen” version of e(s,a) leading to no gradients at all (i.e. relying on copies
of both φi and ξi). Our method is equivalent to the application of a gradient step (for both φi and ξi) to the
following term:

e(s,a)2 − 2ϱeno_gradVφi(s) = e(s,a)2 + 2ϱ|eno_grad(s,a)|Vφi(s),

where we see the squared error and a simple regularization term that penalizes large values of Vφi(s) (thus
putting a “downward pressure” on Vφi(s)). As a result, the proposed conditional gradient rescaling method
can be understood as an adaptive regularization scheme in which the regularization weight is proportional
to the absolute value of the error. It means that the convergence of Vφi(s) toward maxa∈A(Qψ(s,a)) is not
theoretically guaranteed: if the regression quickly converges to an exact solution, the gradients vanish and
Vφi(s) can remain strictly greater than the true maximum. However, if a non negligible error remains, the
adaptive regularization is effective and Vφi(s) progressively decreases toward an approximation of the true
maximum, which is what we observe in practice.

Dealing with the sign of Aξi(s,a)

Up to now, we have assumed that Aξi(s,a), which is going to be the output of a neural network, can only
be non-positive. But imposing a strict constraint on the sign of Aξi(s,a) could potentially lead to jittering
gradients, so we instead restrict its sign in a soft way.

We let Aξi possibly return positive outputs, but we modify the regression loss to have only non-positive
targets for Aξi(s,a). In Equation (5.3), we call Qψ(s,a) − Υa

i (s) the target of Aξi(s,a), as it is the value

of Aξi(s,a) minimizing
(
Υa
i (s) + Aξi(s,a) − Qψ(s,a)

)2
. If Qψ(s,a)−Υa

i (s) > 0, the best non-positive

target for Aξi(s,a) is 0, in which case the target for Υa
i (s)−Qψ(s,a) should also be 0. In this situation, we

replace
(
Υa
i (s) +Aξi(s,a)−Qψ(s,a)

)2
by

(
Υa
i (s)−Qψ(s,a)

)2
+
(
Aξi(s,a)

)2
. To do so, we introduce

Z:

Z(x, y) =

{
(x+ y)2, if x ≥ 0.
x2 + y2, otherwise.

(5.4)

The loss of Equation 5.3 is updated as follows:

Λ′
V,A(φi, ξi) = Mean

(s,a,_,_)∈B

[
Z
(
Υa
i (s)−Qψ(s,a), Aξi(s,a)

)]
. (5.5)

5.3.2 Experiments

We empirically compare our method to 3 baselines (IQL, SQL and EQL) on a toy problem. We define the
function Qtoy(s, a) = sin(4s) + 0.7 cos(4a) for s ∈ [−1, 1] and a ∈ [−1, 1]. We use a single feedforward
neural network for V (Vφ) and a single feedforward neural network for A (Aξ). Both networks have two
hidden layers of size 256 and ReLU activations in the hidden layers. Our method trains both Vφ and Aξ,
while the 3 baselines IQL, SQL and EQL directly train Vφ. All 3 baselines have been successfully applied to
offline reinforcement learning.

IQL is Implicit Q-Learning [Kostrikov et al. 2022]. For a fixed s, IQL treats Qtoy(s, a) as a random
variable (the randomness being determined by the action) and uses an expectile regression loss to train
Vφ(s) to estimate a state conditional upper expectile of this random variable. The expectile is determined
by the parameter 0 < τ < 1, and the closer τ is to 1, the closer Vφ(s) gets to maxa∈A(Qtoy(s, a)). However,
if τ is very close to 1 (e.g. τ = 0.99), the loss becomes unbalanced, with elements weighted hundreds of
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times more than others, which results in instabilities in the context of RL, so in practice the values used in
[Kostrikov et al. 2022] are not greater than 0.9.

(a) Vφ(s) is trained jointly withAξ(s, a) by iterating gra-
dient descent steps on the loss Λ′

V,A(φ, ξ) described
by Equation (5.5). ϱ ∈ [0.2, 0.7] results in precise
approximations of s 7→ maxa∈A(Qψ(s, a)).

(b) Results of the training with the loss from IQL
[Kostrikov et al. 2022] for 4 different values of the
hyperparameter τ . Values used in actual (offline) RL
experiments are not greater than 0.9.

(c) Results of the training with the loss from
SQL [Xu et al. 2023] for 4 different values of the
hyperparameter α. Values used in actual (offline) RL
experiments are not smaller than 0.1.

(d) Results of the training with the loss from
EQL [Xu et al. 2023] for 4 different values of the
hyperparameter α. Values used in actual (offline) RL
experiments are not smaller than 0.5..

Figure 5.1: Qtoy(s, a) = sin(4s) + 0.7 cos(4a) for s ∈ [−1, 1] and a ∈ [−1, 1]. We compare our method
to IQL, SQL and EQL which all train Vφ(s) to approximate the function s 7→ maxa∈A(Qtoy(s, a)), i.e.
solve the max-Q problem. All trainings are done with 3000 gradient descent steps. At each step, a loss
is computed on a batch composed of 256 uniformly randomly drawn values of s and a.

SQL and EQL are derived in [Xu et al. 2023] from a general method called Implicit Value Regularization.
It relies on a behavior-regularized MDP with a term that penalizes policies diverging from the underlying
behavior policy of the training dataset. Various f-divergences can be used to measure the difference
between the policy and the behavior policy, resulting in distinct algorithms, including SQL and EQL which
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are special cases. They have distinct losses for the training of Vφ(s), both depending on a parameter α,
and in both cases, for α→ 0, Vφ(s) is trained to approximate the maximum operator over in-support values,
i.e. maxa∈A(Qtoy(s, a)). However, similarly to IQL, very small values of α result in unbalanced losses, so
in practice the values leading to the best results on the benchmarks tested in [Xu et al. 2023] are α = 0.1,
α = 0.5, α = 1 and α = 3 for SQL, and α = 0.5, α = 2.0 and α = 5 for EQL.

Figure 5.1 compares our method to IQL, SQL and EQL. For IQL, SQL and EQL, since unbalanced
losses are not an issue on this simple toy problem, we include parameters leading to a better resolution
of the max-Q problem, but that are not representative of the parameters working well in actual offline RL
experiments. We observe that, with our method, although ϱ = 0.05 leads to overestimations, a wide range
of parameter values (from ϱ = 0.2 to ϱ = 0.7) yield precise results, while with other methods precise results
are only obtained with hyperparameter values that are inapplicable to RL (e.g. τ = 0.99 for IQL). Besides,
with our proposed approach, the different values of ϱ that perform well do not result in unbalanced losses.

5.4 Actor-free critic updates and actor training

Let us remove the dependency to Qψ in loss (5.5) by replacing Qψ(s,a) by the targets used to train it in
(5.1). We obtain the following loss (for i ∈ {1, 2}):

LV,A(φi, ξi) = Mean
(s,a,r,s′)∈B

[
Z
(
Υa
i (s)− r − γ min

i∈{1,2}
V
φ

target
i

(s′), Aξi(s,a)
)]
. (5.6)

With the losses LQ(ψ) (5.1) and LV,A(φi, ξi) (5.6), we can train Qψ, Vφi and Aξi without needing an actor.
Compared to methods derived from DDPG (like TD3), solving directly the max-Q problem has an advantage
over first using an actor to solve the argmax-Q problem, i.e. to approximate argmaxa∈A(Qψ(s,a)). The
reason is that continuous changes in Qψ result in continuous changes of its state conditioned maxima,
while it can result in discontinuous changes of its state conditioned argmax. So, in an off-policy setting, if
the exploration policy discovers better results with very different actions, the maximum of Qψ(s,a) can be
tracked smoothly, while the tracking of the argmax can be much more difficult, with the potential arising of
deceptive value landscapes in which the actor can get stuck (see [Matheron et al. 2020]). This theoretical
advantage, as well as the actor-free Qψ, Vφi and Aξi updates are all important aspects of our approach.
However, since we are interested in online reinforcement learning, we still need an actor to select actions
and produce episodes. To train this actor, if we would use the same gradient ascent over a 7→ Qψ(s,a)
as in DDPG, our global method would be prone to the same failure modes as DDPG, and most of the
advantages of the max-Q based training of Vφi would be lost. One thing we can notice is that, since we
do not need the actor to return argmaxa∈A(Qψ(s,a)), we also do not need the actor to be deterministic.
To benefit from a better exploration, we opt for a stochastic actor and follow the approach proposed in SAC
[Haarnoja et al. 2018] with automatic tuning of the temperature parameter α.

Let πθ denote the actor. We follow a common implementation in which its backbone is a feedforward
neural network returning action distributions as state-dependent Gaussians with diagonal covariance ma-
trices. Since actions are usually constrained between −1 and 1, we apply a tanh transformation to its
outputs. Given a state s, the resulting probability density function is πθ(·|s). The actor πθ can transform
input noise vectors sampled from a fixed distribution into action samples. Again, we train πθ on mini-batches
of transitions. We use the actor to resample an action as for each state s of a mini-batch B. The actor loss
Lπ(θ) is based on the average Kullback-Leibler divergence between the actor’s output distributions and
targeted Boltzmann policy distributions. It is defined as follows:

Lπ(θ) = Mean
(s,_,_,_)∈B
as∼πθ(·|s)

[
α log(πθ(as|s))−Qψ(s,as)

]
. (5.7)

where α is a temperature parameter. As in SAC, we adjust this temperature via gradient descent on a loss
aiming at keeping the average entropy of action distributions close to a target entropy H̄:

Ltemp(α) = Mean
(s,_,_,_)∈B
as∼πθ(·|s)

[
− α log(πθ(as|s))− αH̄

]
. (5.8)
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5.5 AFU-alpha

We combine the losses LQ (5.1), LV,A (5.6), Lπ (5.7), and Ltemp (5.8) to devise a new off-policy rein-
forcement learning algorithm. It has a critic (Qψ) and an actor (πθ), but the critic updates are derived
from our novel adaptation of Q-learning to continuous action spaces (obtained with our new method to
solve the max-Q problem), therefore they are independent from the actor. Hence the name AFU for the
algorithm, for “Actor-Free Updates”. We specifically call it AFU-alpha to contrast it with AFU-beta introduced
in Section 5.7. AFU-alpha, described in Algorithm 3, alternates between environments steps that gather
experience in a replay buffer and gradient steps that draw batches from the replay buffer to compute loss
gradients and update all parameters of the function approximators. In our implementation, an iteration
consists of a single environment step followed by a single gradient step.

Algorithm 3 AFU-alpha and AFU-beta

Set 0 < ϱ < 1, 0 < τ < 1, H̄, and learning rates ηQ, ηV,A, ηπ, ηtemp.
Initialize empty replay buffer Rb, and params ψ, φ1 = φtarget

1 , φ2 = φtarget
2 , ξ1, ξ2, α, θ.

for each iteration do
for each environment step do

Sample action a ∼ πθ(·|s).
Perform environment step s,a→ s′, compute r = R(s,a), and insert (s,a, r, s′) in Rb.

end for
for each gradient step do

Draw batch of transitions B from Rb and compute loss gradients on that batch.
ψ ← ψ − ηQ∇ψLQ(ψ)
φi∈{1,2} ← φi − ηV,A∇φiLV,A(φi, ξi)
ξi∈{1,2} ← ξi − ηV,A∇ξiLV,A(φi, ξi)
φtarget
i∈{1,2} ← τφi + (1− τ)φtarget

i

ζ ← ζ − ηπ∇ζLµ(ζ)
θ ← θ − ηπ∇θLπ(θ) θ ← θ − ηπ∇MODIF

θ Lπ(θ)
α← α− ηtemp∇αLtemp(α)

end for
end for

Experiments We test AFU-alpha on a classical benchmark of 7 MuJoCo [Todorov et al. 2012] tasks from
the Gymnasium library [Towers et al. 2023]. We compare it to SAC and TD3, and to variants of AFU-alpha in
which the loss LV,A aiming at solving the max-Q problem is replaced by the corresponding loss taken from
IQL, SQL or EQL. The results are shown in Figure 5.2. For both SAC and AFU-alpha, we use the same
heuristic for the definition of H̄: we set it to −d, where d is the dimension of the action space. Updates
in AFU-alpha, SAC and TD3 use the same value of τ and same learning rates. For each algorithm, for
each value of the hyperparameter (ϱ for AFU-alpha, τ for IQL, α for SQL and EQL), and for each of the 7
MuJoCo tasks, we perform 10 runs initialized with different random seeds, and evaluate the performance of
the policy every 10,000 steps on 10 rollouts. The first 10,000 steps of each run use uniformly drawn random
actions (and no gradient steps). Learning curves are smoothed with a moving average window of size 10.
The raw score of a run is the last average return, i.e. the average return over the last 10 evaluations. For
each task, we linearly rescale the scores based on two reference points: (1) the maximum evaluation seen
across all algorithms and all runs corresponds to a score of 100, and (2) the mean episode return across all
algorithms and runs corresponds to a score of 0. Following the recommendations of [Agarwal et al. 2021],
we compute with the rliable library the performance profiles for each algorithm across the 7 tasks: Ant-
v4, HalfCheetah-v4, Hopper-v4, Humanoid-v4, InvertedDoublePendulum-v4, Reacher-v4 and Walker2d-v4.
The length of the runs is 1 million steps for InvertedDoublePendulum and Reacher, 3 million steps for Ant,
Hopper, Humanoid and Walker2d, and 5 million steps for HalfCheetah.

In Figure 5.2 (a), we see that our proposed method for the max-Q problem yields significantly better re-
sults than the IQL, SQL and EQL baselines. The best results are obtained with ϱ ∈ {0.2, 0.3}. Figure 5.2 (b)
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shows that AFU-alpha is competitive with SAC and TD3.
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(a) AFU-alpha works best with ϱ ∈ {0.2, 0.3}. Using
the IQL, SQL and EQL baselines to solve the max-Q
problem results in a clear performance deterioration.

(b) AFU-alpha is competitive with SAC and
TD3 on a benchmark of 7 diverse tasks,
with action space dimensions ranging from 1
(InvertedDoublePendulum) to 17 (Humanoid), and
observation space dimensions ranging from 11 to
376 (Humanoid).

Figure 5.2: Experimental evaluation of AFU-alpha on a benchmark of 7 MuJoCo tasks.

5.6 A simple failure mode of SAC

With a deterministic actor trained by stochastic gradient ascent over the Q-function landscape, DDPG,
TD3 and similarly structured deterministic actor-critic algorithms can easily get stuck in local optima (see
[Matheron et al. 2020]). With a stochastic actor and updates based on the Kullback-Leibler (KL) divergence
between output distributions and target distributions of the form exp

(
1
αQ(s, ·)

)
/z(s), algorithms like SAC

are less prone to deadlocks. For instance, in areas where the gradient of the Q-function is close to zero,
exploiting the KL loss results in an increase of the variance of the action distribution, which eventually helps
find larger gradients and escape from the flat region. Yet, the policy networks used in practice mostly output
unimodal action distributions1, and with this restriction even the KL loss generates undesirable local optima.
We illustrate this with a trivial environment which we call SFM (for “SAC Failure Mode”). It consists of a
single state s0, and unidimensional actions in [−1, 1]. The reward of an action is given by the function:

RSFM (s0, a) =

{
5− 100(a− 0.1)2, if a ≥ −0.6,
0, otherwise.

(5.9)

All transitions are terminal, so all episodes stop after one step. The optimal policy selects a = 0.1 and
yields a return of 5. We train SAC on SMF with the same hyperparameters as in our other experiments.
We start by performing 1000 steps with random actions, which helps the critic QSAC quickly converge
toward the optimal Q-function, Q∗, which is simply equal to RSFM . Figure 5.3 shows QSAC after 20,000

1This is starting to change, thanks to the influence of recent methods such as diffusion policies (see [Chi et al. 2023,
Hansen-Estruch et al. 2023]), but such expressive and multimodal stochastic policies are still more cumbersome than unimodal
policies.
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steps. Although QSAC converges toward a very precise approximation of Q∗, the actor policy converges
toward a suboptimal solution, as shown in Figure 5.4 (a). If we just modify SAC by locking the mode of the
policy distribution at 0, we can see in Figure 5.4 (b) that the actor loss becomes much smaller, even after
convergence of the actor entropy, which indicates that the policy of the default SAC algorithm gets stuck in
a local optimum. There are two phases in the failure mode: at the beginning, when the entropy is relatively
large, the asymmetry of RSFM makes the actor shift toward −1. As seen in Figure 5.3, QSAC approximates
the discontinuity in RSFM with a steep slope, and when the policy distribution becomes concentrated on
the left of this slope, it acts as a barrier that traps the actor. Later in the training, when the entropy becomes
smaller and converges to the target entropy (−1), it would be much preferable for the mode of the policy to
converge back toward 0.1, but the steep slope results in a deceptive gradient in the KL loss that prevents it
from happening, and SAC remains stuck in the local optimum.
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Figure 5.3: In orange: the reward function RSFM of the SFM environment. Since all transitions are
terminal,RSFM coincides with the optimal Q-function. In blue: the critic (QSAC ) obtained after a training
of 20,000 steps with SAC [Haarnoja et al. 2018].
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Figure 5.4: Trainings of SAC and AFU-beta in the SFM environment. Plots show results averaged over
10 runs with different random seeds, and shaded areas range from the 25th to the 75th percentile.
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5.7 AFU-beta

With the same actor loss as SAC, AFU-alpha fails similarly on SFM. We propose to improve the actor loss
to make it less likely to get stuck in local optima. The first idea is to train by regression an estimate of where
the mode of the actor should be. If the learning progresses well, Qψ(s,a) > mini∈{1,2}

(
Vφi(s)

)
should only

be possibly true in the vicinity of the argmax (argmaxa∈A
(
Q(s,a)

)
), so we use actions a with a Q-value

greater than mini∈{1,2}
(
Vφi(s)

)
as targets. To find such actions we use both actions in the mini-batches

and actions resampled with the actor on those mini-batches. Let us consider a mini-batch B of transitions
(s,a, r, s′), and actions as resampled with the actor. We denote by M(B) the set of state-action pairs
(s,a•) such that a• = a or a• = as and Qψ(s,a•) > mini∈{1,2}

(
Vφi(s)

)
. We introduce a new deterministic

function approximator µζ : S → A with parameters ζ and train it with the following loss:

Lµ(ζ) = Mean
(s,a•)∈M(B)

[(
µζ(s)− a•

)2
]
. (5.10)

In our implementation, most of the parameters between ζ and θ are shared: we simply modify the output
dimension of πθ to make it also return µζ(s). It does not change the approach in any way, but when
computing the gradient of the loss (5.10), one must carefully ignore the influence of the parameters ζ on
resampled actions as.

Let us reconsider the actor loss from Equation (5.7). It balances two terms, the first one (α log(πθ(as|s)))
that maximizes the entropy, and the second one (−Qψ(s,as)) that encourages πθ to output actions max-
imizing Qψ(s, ·). In the gradient ∇θLπ(θ), which can be expressed by making explicit the relationship
between sampled actions as and the input noise (see [Haarnoja et al. 2018]), the second term results in
small modifications of θ that attempt to change the actions as in the direction of ∇aQψ(s,a), where a is
evaluated in as, and which we write by abuse of notation ∇asQψ(s,as). If ∇asQψ(s,as) points away from
the global optimum, it can contribute to the creation of a local minimum in the actor loss. We want to
edit ∇asQψ(s,as) in order to avoid deceptive gradients. To do so, we compute the dot product between
∇asQψ(s,as) and µζ(s) − as, which is an estimate of a direction toward argmaxa∈A

(
Q(s,a)

)
. If the dot

product is positive or zero, the gradient does not point away from µζ(s), so we can keep it unchanged.
However, if ∇asQψ(s,as) · (µζ(s) − as) < 0, then we project ∇asQψ(s,as) onto (µζ(s) − as)

⊥ to anneal
the dot product. We do it only if we estimate that as is not already in the vicinity of the argmax, i.e. if
Qψ(s,as) < mini∈{1,2}

(
Vφi(s)

)
. We introduce the following operator Gs,as : A→ A:

Gs,as(v) =

{
proj(µζ(s)−as)⊥

(
v
)
, if v · (µζ(s)− as) < 0 and Qψ(s,as) < mini∈{1,2}

(
Vφi(s)

)
.

v, otherwise.
(5.11)

When computing the gradient ∇θLπ(θ), we replace the terms ∇asQψ(s,as) (resulting from the chain rule)
by Gs,as

(
∇asQψ(s,as)

)
. It leads to a modified gradient which we denote by ∇MODIF

θ Lπ(θ).

Figure 5.5: The gradient v at as (on the left) points away from µζ(s), which determines the direction
toward the vicinity of the argmax of Qψ(s, ·), so we modify v to get Gs,as

(
v
)

by projecting it on the
hyperplane orthogonal to µζ(s) − as. The gradient v′ at a′s (on the right) points in the direction (half-
space) of µζ(s), so we do not modify it, and Gs,a′

s
(
v′) = v′.
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This process is illustrated in Figure 5.5. It can be understood as an artificial modification of the landscape
of Qψ(s, ·) so that, outside the region defined by Qψ(s, ·) ≥ mini∈{1,2}

(
Vφi(s)

)
, its gradient never points

away from µζ(s). µζ(s) has the advantage of being trained by regression, and its training includes actions
coming directly from the replay buffer, not only ones resampled by the actor. It means that, in a very
off-policy setting, if a new peak of Qψ(s,a) appears far from the actions currently likely to be sampled,
the update of µζ(s) can occur first and then guide the update of πθ by removing all deceptive gradients
that would need to be crossed to reach the new peak. More generally, the use of µζ prevents the actor
from being trapped in local optima, as long as the training of the critic is doing well. Since training the
critic is independent from the actor, we believe that our proposed approach goes one step further in the
development of sound foundations for a purely off-policy reinforcement learning algorithm performing well
in continuous action spaces.

0 0.5 1 1.5 2 2.5 3
million steps

1000

2000

3000

4000

5000

6000

7000

av
er

ag
e

re
tu

rn

Ant-v4

AFU-beta (% = 0.3)

SAC

TD3

0 1 2 3 4 5
million steps

2000

4000

6000

8000

10000

12000

14000

16000

av
er

ag
e

re
tu

rn
HalfCheetah-v4

AFU-beta (% = 0.3)

SAC

TD3

0 0.5 1 1.5 2 2.5 3
million steps

500

1000

1500

2000

2500

3000

3500

av
er

ag
e

re
tu

rn

Hopper-v4

AFU-beta (% = 0.3)

SAC

TD3

AFU-beta (% = 0.5)

0 0.5 1 1.5 2 2.5 3
million steps

0

1000

2000

3000

4000

5000

6000

7000

8000

av
er

ag
e

re
tu

rn

Humanoid-v4

AFU-beta (% = 0.3)

SAC

TD3

0.2 0.4 0.6 0.8 1
million steps

5500

6000

6500

7000

7500

8000

8500

9000

9500

av
er

ag
e

re
tu

rn

InvertedDoublePendulum-v4

AFU-beta (% = 0.3)

SAC

TD3

AFU-beta (% = 0.5)

0.2 0.4 0.6 0.8 1
million steps

−14

−12

−10

−8

−6

−4

av
er

ag
e

re
tu

rn

Reacher-v4

AFU-beta (% = 0.3)

SAC

TD3

AFU-beta (% = 0.1)

0 0.5 1 1.5 2 2.5 3
million steps

0

1000

2000

3000

4000

5000

6000

av
er

ag
e

re
tu

rn

Walker2d-v4

AFU-beta (% = 0.3)

SAC

TD3

0 20 40 60 80 100
Normalized Score (ν)

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

ru
ns

w
it

h
sc

or
e
>
ν

AFU-beta (% = 0.3) SAC TD3

Figure 5.6: Experimental evaluation of AFU-beta for ϱ = 0.3 on 7 MuJoCo tasks. We show results
with other values of ϱ (among {0.1, 0.2, 0.4, 0.5}) for tasks in which one of the other values performed
significantly better than 0.3. Results are averaged over 10 runs with different random seeds, and the
shaded areas range from the 25th to the 75th percentile. The performance profile plot at the bottom
right summarizes results and shows that AFU-beta is competitive with SAC and TD3.
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We call AFU-beta the updated algorithm. It works like AFU-alpha, with the additional training of µζ and
the replacement of∇θLπ(θ) by∇MODIF

θ Lπ(θ), as described in Algorithm 3. Figure 5.4 (a) shows that, in the
SFM environment, unlike SAC, AFU-beta quickly converges to the optimal solution.

We evaluate AFU-beta on the MuJoCo benchmark in the same way as AFU-alpha and show an overview
of the results in Figure 5.6. Again, AFU-beta is competitive with SAC and TD3. The differences between
AFU-beta and AFU-alpha are not very significant on the MuJoCo benchmark, possibly because issues
with local optima are rarely encountered in these environments. We leave for future work the search for
meaningful and complex environments in which AFU-beta has a notable advantage over AFU-alpha.

5.8 Hyper parameters and learning curves

The following hyperparameters were used in all the experiments, and no reward scaling was done:

AFU, SAC & TD3 Hyperparameters

optimizer Adam [Kingma & Ba 2014]
actor learning rate 3 · 10−4

critic learning rate 3 · 10−4

temperature learning rate (only AFU & SAC) 3 · 10−4

discount (γ) 0.99
replay buffer size 106

initial steps with random actions 104

number of hidden layers (all networks) 2
number of hidden units per layer 256
number of samples per mini-batch 256
nonlinearity ReLU
target smoothing coefficient (τ ) 0.01
target update interval 1
policy update interval (only TD3) 2
exploration noise standard deviation (only TD3) 0.2
noise clipping (only TD3) 0.5
target entropy (only AFU & SAC) −d (d = action space dimension)
initial temperature (only AFU & SAC) 1
max. actor log std (before tanh) (only AFU & SAC) 2
min. actor log std (before tanh) (only AFU & SAC) −10

The plots below show learning curves for AFU-alpha and AFU-beta on the 7 environments of the
benchmark for all the values of ϱ in {0.1, 0.2, 0.3, 0.4, 0.5}.

All learning curves are averaged over 10 runs with different random seeds, and the shaded areas range
from the 25th to the 75th percentile. For each run, evaluations are done over 10 rollouts every 10,000 steps,
and each run is smoothed with a moving average window of size 10. The first 10,000 steps are always done
without gradient steps and with uniformly randomly drawn actions.
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Figure 5.7: Ant-v4. Left: AFU-alpha. Right: AFU-beta.

0 1 2 3 4 5
million steps

0

2500

5000

7500

10000

12500

15000

17500

av
er

ag
e

re
tu

rn

HalfCheetah-v4

AFU-alpha (% = 0.1)

AFU-alpha (% = 0.2)

AFU-alpha (% = 0.3)

AFU-alpha (% = 0.4)

AFU-alpha (% = 0.5)

SAC

TD3

0 1 2 3 4 5
million steps

0

2500

5000

7500

10000

12500

15000

17500

av
er

ag
e

re
tu

rn

HalfCheetah-v4

AFU-beta (% = 0.1)

AFU-beta (% = 0.2)

AFU-beta (% = 0.3)

AFU-beta (% = 0.4)

AFU-beta (% = 0.5)

SAC

TD3

Figure 5.8: HalfCheetah-v4. Left: AFU-alpha. Right: AFU-beta.
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Figure 5.9: Hopper-v4. Left: AFU-alpha. Right: AFU-beta.
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Figure 5.10: Humanoid-v4. Left: AFU-alpha. Right: AFU-beta.
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Figure 5.11: InvertedDoublePendulum-v4. Left: AFU-alpha. Right: AFU-beta.
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Figure 5.12: Reacher-v4. Left: AFU-alpha. Right: AFU-beta.
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Figure 5.13: Walker2d-v4. Left: AFU-alpha. Right: AFU-beta.





CHAPTER 6

Conclusion

Hopefully, the different elements presented in this manuscript can be combined together and contribute to
the design of an ambitious motion planning-powered reinforcement learning process for robot control.

In Chapter 2, I proposed a general framework combining RL and sampling-based motion planning. The
obvious next step is to try to implement it. Things being usually easier written than done, will I actually do
it? I don’t know, but if I don’t, it might actually be a good sign: maybe it will mean that I found a better way
to address the problem, possibly thanks to the discussions during my HDR defense, who knows! Or maybe
I will finally become convinced that just scaling end-to-end RL is the best way to move forward, and that
ingenious motion planning techniques can be forgotten. In any case, I’m not too worried about my future
research endeavors, as they will in all likelihood benefit from the confidence boost that might—or might
not—come from beating the final boss of the French diploma game.

Let me now conclude with a drawing of my son, Evan, because Science should never ignore Art:

 
This is a robot.
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