
HAL Id: tel-04928952
https://theses.hal.science/tel-04928952v1

Submitted on 4 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraints on the action of effective theories in
quantum gravity

Adrien Loty

To cite this version:
Adrien Loty. Constraints on the action of effective theories in quantum gravity. High Energy Physics
- Theory [hep-th]. Institut Polytechnique de Paris, 2024. English. �NNT : 2024IPPAX089�. �tel-
04928952�

https://theses.hal.science/tel-04928952v1
https://hal.archives-ouvertes.fr


626

N
N

T
:2

02
4I

P
PA

X
08

9

Constraints on the action of effective
theories in quantum gravity
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utile puisque c’est joli”.

Louise Dupuis, M-theory is the solution (2024), from an original draft by Diego Ruiz.
This artwork was created as the thumbnail of a YouTube video titled “Le plan pour
finir la physique” hosted on the channel “Stream theory” and loosely inspired by the
work in this thesis.

6



7



8
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Abstract

String theory constitutes one of the most popular and studied framework to approach
quantum gravity. It is well known that the low energy limit of string theory gives a
wide range of effective field theories. One recent and promising way to extract infor-
mation about quantum gravity from this string landscape has been the swampland
program. The string lamppost principle postulates that the quantum gravity land-
scape and the string landscape coincide. In this thesis we propose to study this claim
for the case of higher order Wilson couplings in the very restricted case of maximal
supersymmetry.

We first study the low energy limit of genus 0, 1 and 2 string amplitudes for type
II string theory compactified on a torus and compare them to tree level, 1-loop and
2-loop maximal supergravity amplitudes respectively. This allows us to compute the
perturbative contributions to the leading Wilson coefficients of maximally supersym-
metric string theory. We also show that in dimension 8 logarithmic divergences of the
supergravity amplitudes can be linked to divergences of Wilson couplings. We give a
prescription to properly regularise the divergence by using the finite string amplitude.

We then use the differential equations entailed by the supersymmetric Ward iden-
tities as well as the constraints imposed by U-duality to derive the full non pertur-
bative Wilson coefficients for maximally supersymmetric string theory in dimensions
higher or equal to 6. These are given for the leading and next to leading Wilson
coefficients by Eisenstein and Epstein series for the relevant U-duality group. The
parabolic Fourier expansions of these series can then be used to check the different
degeneration limits of the Wilson coefficients.

Finally we study the minima of these functions on moduli space to give lower
bounds on Wilson coefficients coming from maximally supersymmetric string theory.
This implies finding the minima of Epstein series for special values of the s param-
eter. We first extend Grenier’s recursive construction of a fundamental domain to
almost any simple Lie group which allows us to properly define the domain of study
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of our functions. We then show that symmetric points are necessarily extrema of
automorphic forms and give precise criteria for them to be minima. We also identify
these symmetric points as corners of fundamental domains. We study relevant sym-
metric points for the case of SL(n) and SO(n, n) groups and give additional density
arguments regarding the global minima for large s parameter. We then checked our
conjecture numerically for the cases n = 5 relevant for dimensions 7 and 6.

These lower bounds should then be compared to lower bounds coming from uni-
tarity constraints using S-matrix bootstrap methods. As far as we know this analysis
still needs to be performed in dimensions lower or equal to 8. We have shown that in
dimension 6 factorisation properties of maximally supersymmetric amplitudes imply
that the unitarity properties of superamplitudes reduce to the unitarity properties of
scalar amplitudes. These kind of factorisations also exist in other dimensions but do
not always lead to such drastic simplifications. However one can always restrict to
elastic scattering to make the numerics bearable. This kind of analysis, if successful,
would be a strong argument for the validity of the string lamppost principle in the
case of maximal supersymmetry.
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Résumé en français

La théorie des cordes constitue l’un des cadres les plus populaires et étudiés pour
aborder la gravitation quantique. Il est bien connu que la limite basse énergie de la
théorie des cordes donne une large gamme de théories des champs effectives. Une
manière récente et prometteuse d’extraire des informations sur la gravitation quan-
tique à partir de ce paysage de cordes est le programme du “marais”. Le principe du
“lampadaire des cordes” postule que le paysage de la gravité quantique et le paysage
des cordes cöıncident. Dans cette thèse, nous proposons d’étudier cette affirmation
dans le cas des couplages de Wilson d’ordre supérieur dans le cadre très restreint de
la supersymétrie maximale.

Nous étudions d’abord la limite basse énergie des amplitudes de genre 0, 1 et 2
pour la théorie des cordes de type II compactifiée sur un tore et les comparons respec-
tivement aux amplitudes de supergravité maximale à l’ordre des arbres, à 1 boucle et
à 2 boucles. Cela nous permet de calculer les contributions perturbatives aux coeffi-
cients de Wilson dominants de la théorie des cordes maximalement supersymétrique.
Nous montrons également qu’en dimension 8, les divergences logarithmiques des am-
plitudes de supergravité peuvent être liées aux divergences des couplages de Wilson.
Nous donnons une prescription pour régulariser correctement la divergence en util-
isant l’amplitude de corde finie.

Nous utilisons ensuite les équations différentielles induites par les identités de
Ward supersymétriques ainsi que les contraintes imposées par la U-dualité pour
dériver les coefficients de Wilson non perturbatifs complets pour la théorie des cordes
maximalement supersymétrique en dimensions supérieures ou égales à 6. Ceux-ci
sont donnés pour les coefficients de Wilson dominant et subdominants par des séries
d’Eisenstein et d’Epstein pour le groupe de U-dualité pertinent. Les développements
de Fourier paraboliques de ces séries peuvent alors être utilisés pour vérifier les
différentes limites de dégénérescence des coefficients de Wilson.

Enfin, nous étudions les minima de ces fonctions sur l’espace des modules pour
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donner des bornes inférieures sur les coefficients de Wilson provenant de la théorie
des cordes maximalement supersymétrique. Cela implique de trouver les minima
des séries d’Epstein pour des valeurs spéciales du paramètre s. Nous étendons
d’abord la construction récursive de Grenier d’un domaine fondamental à presque
tous les groupes de Lie simples, ce qui nous permet de définir correctement le do-
maine d’étude de nos fonctions. Nous montrons ensuite que les points symétriques
sont nécessairement des extrêma des formes automorphes et donnons des critères
précis pour qu’ils soient des minima. Nous identifions aussi ces points symétriques
comme des coins de domaines fondamentaux. Nous étudions des points symétriques
pertinents pour le cas des groupes SL(n) et SO(n, n) et donnons des arguments
supplémentaires portant sur la densité concernant les minima globaux pour des valeurs
élevées du paramètre s. Nous avons ensuite vérifié notre conjecture numériquement
pour les cas n = 5 pertinents pour les dimensions 7 et 6.

Ces bornes inférieures devraient ensuite être comparées aux bornes inférieures
provenant des contraintes d’unitarité en utilisant des méthodes de bootstrap de la
matrice S. À notre connaissance, cette analyse reste encore à être effectuée en dimen-
sions inférieures ou égales à 8. Nous avons montré qu’en dimension 6, les propriétés de
factorisation des amplitudes maximalement supersymétriques impliquent que les pro-
priétés d’unitarité des super-amplitudes se réduisent aux propriétés d’unitarité des
amplitudes scalaires. Ces types de factorisations existent également dans d’autres
dimensions mais ne conduisent pas toujours à de telles simplifications drastiques.
Cependant, on peut toujours se restreindre à la diffusion élastique pour rendre les
calculs numériques plus abordables. Ce type d’analyse, s’il réussit, constituerait un
argument en faveur de la validité du principe du “lampadaire des cordes” dans le cas
de la supersymétrie maximale.
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Chapter 1

Introduction

Throughout this thesis we will use standard natural units where c = ℏ = 1. We will
also use the mostly plus metric signature (−,+, . . . ,+).1

1.1 Quantum gravity

Of the four known fundamental forces: gravity, electromagnetism, the strong inter-
action and the weak interaction, gravity is certainly the one that has been known for
the longest time. Owing to its strictly attractive nature and the absence of negative
masses, any screening effect that would result in neutral objects at the macroscopic
level, like in the case of electromagnetism, is absent for gravity.2 This is the reason
why ancient philosophers were always able to observe the mysterious effects of gravity
such as the fall of objects or the orbits of heavenly bodies. Some even tried to come
up with models and explanations for gravity such as Aristotle who tried to explain
gravitational attraction using his four elements theory. Of course it was Newton
who first linked the fall of objects on earth and orbits of celestial bodies to a single
phenomenon, gravity. It was also Newton who gave us our first universal theory of
gravity via his famous equation

g⃗ = −Gm
r2

e⃗r , (1.1.1)

where g⃗ is the gravitational field generated by a particle of mass m. G is the gravita-
tional constant, r is the radial distance from the particle and e⃗r is a radially oriented,

1In any case, it was made abundantly clear by my supervisor Guillaume that, had I used the
opposite convention, he could not have worked with me.

2the reasons for the other two fundamental forces to be invisible at the macroscopic level are a
bit more subtle, they are linked to the property of confinement in the case of the strong interaction
and the masses of the W and Z bosons in the case of the weak interaction.
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outward pointing unit vector. In analogy to the link between Coulomb’s law and
Gauss’s law in electromagnetism equation (1.1.1) can be made to look more like a
field equation using Poisson’s equation

∆ϕ = 4πGρ , (1.1.2)

where ϕ is the gravitational potential related to the gravitational field by g⃗ = −∇⃗ϕ, ∆
is the three dimensional Laplacian and ρ is the mass distribution acting as the source
of gravity. Equations (1.1.1) and (1.1.2) have a spectacular range of applicability
allowing such diverse computations as the orbital mechanics of the solar system to
the free fall of objects on earth. The precision of these laws is such that it allowed to
predict the existence the planet Neptune from perturbations in the orbit of Uranus
as well as the landing of the first man on the moon almost three hundred years after
their publication.

There was, however, a conceptual issue with this theory which was first raised by
Newton himself but was not resolved for two centuries. This is the fact that equation
(1.1.2) lacks a time derivative, therefore changes in the sources on the right hand side
of the equation result in instantaneous modification of the resulting gravitational field
on the left hand side of the equation throughout all space. This is in contrast to the
case of electromagnetism where the presence of time derivatives make it so that per-
turbations in the electromagnetic field travel at finite speed through space. These sort
of instantaneous actions at a distance became especially troubling in the beginning
of the twentieth century when it appeared that this was manifestly in contradiction
with the theory of special relativity developed by Einstein. Motivated by this, as well
as a mismatch in the theoretical calculation of Mercury’s perihelion shift, Einstein
set out to find proper field equations of gravity in analogy with Maxwell’s equations
for electromagnetism which were compatible with special relativity. Einstein came
up with the general theory of relativity whose field equations are given by

Rµν −
1

2
Rgµν = 8πGTµν , (1.1.3)

where gµν is the metric tensor describing the gravitational field, Rµν and R are the
Ricci and scalar curvatures respectively and Tµν is the stress energy tensor replacing
the mass density as the source of gravity.

Why should gravity be quantized? Obviously, since its inception in 1915 gen-
eral relativity has enjoyed great experimental success. In the years following imme-
diately after its publication several experimental tests validated the theory such as
the calculation of Mercury’s perihelion shift and the deviation of light from the sun’s
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gravitational field. Since then, further experimental confirmations have been abun-
dant such as gravitational time dilation, gravitational lensing, gravitational redshift
of light, the Shapiro time delay effect, the discovery of black holes, the detection of
gravitational waves [1] etc. On top of that, general relativity provides the right frame-
work to explain cosmological discoveries such as the expansion of the universe and
the cosmic microwave background. Enumerating all the successes of general relativity
would take up more space than this entire thesis, therefore we will not risk ourselves.

So far no experimental test of general relativity has revealed any discrepancy with
experimental data. One would therefore be entitled to ask why would anyone ever
need another theory of gravity, much less a quantum one. These doubts are further
justified by the fact that the gravitational interaction is orders of magnitude weaker
than the other three fundamental interactions. A simple computation shows us that
the ratio of the fine structure constant α = e2/4π to the gravitational structure
constant αG = Gm2

p is given by3

α

αG
∼ 1036 , (1.1.4)

where e and mp are the charge and the mass of the proton respectively. This shows
that there is absolutely no hope of measuring any gravitational effects in matter
interactions within colliders where quantum effects are usually observed.

Another insightful computation is the one loop quantum correction to the grav-
itational potential. For the scattering of two massive particles of mass m1 and m2

this is given by [2]

V (r) = −Gm1m2

r

(
1 + 3G

m1 +m2

r
+

41

10π

l2P
r2

+ . . .

)
, (1.1.5)

where lP =
√
G is the Planck length. The first term comes from the newtonian theory,

the second term is the general relativistic correction and the third term is the leading
quantum correction. If we take m1 = MS the mass of the sun and neglect m2 then
even for r = RS = 2GMS the Schwarzschild radius of the sun, when the relativistic
correction is of order GMS/RS ∼ 1 then the quantum correction is still of order

l2P
R2
S

∼ 10−76 . (1.1.6)

This shows that the effects of quantum gravity should be completely suppressed at any
scale available for experiments. Hence there is at the present no empirical imperative

3the ratio with the other fundamental forces is approximately the same, even bigger in the case
of the strong interaction
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to find a quantum theory of gravity as our current theories well exceed the existing
experimental bounds.

However there are limits to the applicability of general relativity even if those lim-
its are well outside the current experimental bounds. For example, it is well known
that many solutions of general relativity exhibit curvature singularities. This is even
the case for phenomenologically realistic solutions such as black hole solutions or
FLRW solutions. These solutions predict that matter density should be infinite at
these curvature singularities, however one should expect quantum effects of matter
to be relevant at some scale before this point is reached. In such a situation equation
(1.1.3) relates the stress energy tensor of quantized matter to the classical geometry of
spacetime which is conceptually incoherent. Hence we would need a quantum theory
of gravity in order to consistently couple gravity to quantum matter to describe these
situations. Equation (1.1.5) tells us that quantum effects of gravity are expected to
appear at energy scales 1/lP ∼ 1019 GeV.

Problems with quantum gravity The formalism of quantum field theory was
developed over the course of the twentieth century by such people as Feynman,
Schwinger, Dirac and many others with equal success to that of general relativity.
The initial confusions about UV divergences were solved by the introduction of renor-
malisation and the renormalisation group equations. This was even applied to non
abelian gauge theories such as Yang-Mills theory which was proved to be renormalis-
able by ’tHooft in 1971 [3]. The same techniques can be applied to general relativity
which can also be brought into a form compatible with the formalism of perturbative
quantum field theory by linearizing around a flat background

gµν = ηµν + κhµν , (1.1.7)

where ηµν is the Minkowski metric, hµν is the graviton field and κ2 = 32πG. This type
of linearized gravity was already studied in the 30s by Fierz, Pauli and Rosenfeld and
in the 60s Feynman and DeWitt used this formalism to extract the Feynman rules
for gravity. It was even shown by ‘tHooft and Veltman that pure general relativity
was finite at the one loop order [4]. However trouble knocked at the door when it was
realised in the 70s that this naive quantization of general relativity was perturbatively
non renormalisable at higher loop orders [5] as was already realised by ’tHooft and
Veltman at the one loop level in presence of matter [4]. This can be seen from the
negative mass dimension of the gravitational coupling constant G which suggests
that new divergent diagrams naively appear at every order of perturbation. Thus
regularisation of the effective action would require introducing an infinite number of
counter terms making the theory ill defined. An example of such a divergence was
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found by Goroff and Sagnotti who showed that UV divergences appeared at the two
loop level in pure general relativity [6]. This comes from three graviton diagrams
with ghost loops such as given in figure 1.1.

Figure 1.1: Example of diagrams contributing to the two loop divergence of pure gen-
eral relativity. Gravitons are represented by wiggly lines while ghosts are represented
by straight lines.

The divergence of the two loop effective action is then given by

Γ2-loop
∞ =

209

2880

κ2

(4π)4ϵ

∫
d4x
√−g R ρσ

µν R τλ
ρσ R µν

τλ , (1.1.8)

where R ρσ
µν is the Riemann curvature tensor and ϵ→ 0 is the dimensional regulari-

sation parameter. On top of restricting the predictive power of the theory, such UV
divergences are a sign that the theory doesn’t capture the right degrees of freedom at
high energies. Hence another theory is needed to understand the high energy behavior
of quantum gravity.

1.2 Effective field theories

Unfortunately modifying general relativity is not so simple as there are a lot of unique-
ness results that constrain our choices. For example Lovelock’s theorem states that,
in four dimensions, the only symmetric divergence-free tensor which depends at most
on the second derivative of the metric (and is linear in the second derivative of the
metric) is necessarily a linear combination of the Einstein tensor and the metric it-
self [7]. This means that the left hand side of the Einstein field equations (1.1.3) is
more or less unique up to the inclusion of a cosmological constant. In order to go
around that theorem one can either:

23



1. Add other fields on top of the metric tensor,

2. Work in more than four dimensions of spacetime,

3. Add terms which are more than second order in derivatives of the metric or non
linear in the second derivative of the metric.

The approach that we will follow in this thesis, string theory, follows all three
different directions. But for now we will focus on the last one. Higher derivative
terms or terms non linear in the curvature are called higher order in curvature. These
terms are especially desirable because their effects typically only become visible at
higher energy scales while they don’t modify the IR behavior of the theory. Such
terms are called irrelevant.4 This means that the inclusion of such terms is, at first
glance, compatible with current experimental observations.

As we have seen in the previous section the presence of UV divergences forces
one to introduce such higher curvature terms as counter terms anyways. In fact
perturbative non renormalisibility forces us to introduce an infinity of ever higher
order terms. A finite number of irrelevant terms cannot lead to a renormalisable
theory by definition. But the fact that a given field theory is not renormalisable is
not such a big problem if this theory is seen, in its domain of validity, as the low
energy expansion of some unknown UV complete theory. This is the idea behind the
effective field theory approach. In an effective field theory perspective one fixes the
field content and the symmetries of the theory and writes down all the allowed terms
with growing number of derivatives and arbitrary coefficients. These coefficients will
then be fixed by consistency or experimental constraints.

For example the Lagrangian of general relativity, including a cosmological con-
stant, is given by the Einstein-Hilbert Lagrangian

L =
√−g

[
2

κ2
(R− 2Λ)

]
, (1.2.1)

where Λ is the cosmological constant and g is the determinant of the metric. From
the effective theory point of view this is only the first terms in a series expansion
of higher order curvature terms. In some sense this is the minimal theory, i.e. the
universal, experimentally verified part of the theory which is leading at low ener-
gies. To get the full effective theory we would have to write all linearly independent
diffeomorphism invariant terms containing the metric and its derivatives in order of
increasing derivatives with some arbitrary coefficients. Schematically the first couple
of terms of an effective Lagrangian for pure general relativity would look like

4This terminology comes from statistical physics where terms whose effects become important in
the IR are called relevant and terms whose effects become important in the UV are called irrelevant.
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L =
√−g

[
−4Λ

κ2
+

2

κ2
R + c1R

2 + c2R
µνRµν + c3RµνρσR

µνρσ + c4κ
2R3 + . . .

]
,

(1.2.2)
where c1, c2, c3, c4, . . . are arbitrary coupling constants, called Wilson coefficients, to
be determined empirically. The higher order terms in the expansion are also some-
times called Wilson operators.5 For such an effective field theory UV divergences are
not a problem as they can always be reabsorbed by a suitable redefinition of some
higher order coupling constants. One can see that because the gravitational cou-
pling constant κ has a negative mass dimension then higher powers of the coupling
constant will have to appear in front of higher order curvature terms to keep them
dimensionless. Therefore divergent higher order loop diagrams which involve higher
powers of κ2 can only be reabsorbed in higher order curvature terms, this is the reason
why minimal pure general relativity is not perturbatively renormalisable and why all
terms in the infinite series expansion (1.2.2) are needed. Here the minimal theory only
appears as the leading terms in a low energy expansion of the full effective theory.
Since higher curvature terms are suppressed by powers of the Planck length we can
see that such a low energy expansion is only valid until energy scales 1/lP . Therefore
as mentioned in the previous section the Planck length acts as a natural cutoff where
quantum gravity effects are expected to appear. Seen as such an effective field theory,
quantum gravity still holds useful predictive power. This is the modern way to see
quantum gravity and in some ways it is also the modern way to see the standard
model of particle physics as well.

In many ways gravity is particularly well suited to the effective field theory point
of view. First of all, as seen in the previous section the Planck length is exceptionally
small compared to any length scale relevant to us. This implies that the first few
terms in the series expansion of the full effective field theory hold very accurately up
to a very high energy scale. Therefore, in some sense, quantum gravity is by far the
best effective field theory we have. Moreover there has been a variety of results by
Weinberg, Boulware, Deser and others [8–11] which have shown that the low energy
behavior of gravity is uniquely captured by the effective theory of a spin two field
of the form (1.2.2). This makes the effective field theory approach very promising.
However the effective field theory formalism is agnostic about the full UV complete
theory. This theory can be more exotic and in particular violate more of Lovelock’s

5Note that up to field redefinition one can always add to an effective Lagrangian higher order
terms that vanish modulo the equations of motion of the theory defined by the lowest order terms.
Here this allows us to fix c1 and c2 so that the first three Wilson operators are proportional to
the Gauss-Bonnet term R2 − 4RµνRµν + RµνρσR

µνρσ which is topological in four dimensions. In
the presence of a cosmological constant however this may come with a redefinition of the coupling
constant and one has to beware strong coupling effects.
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assumptions, this is the case with string theory which will be presented in the next
chapter. The nature of the relationship between the effective field theory approach
and the full UV complete theory, in particular string theory, is the essence of this
thesis.

Analytic and non analytic contribution When we will look at the amplitudes
associated with such gravitational effective field theories it will be useful to decom-
pose them into so-called analytic and non analytic parts. By (non-)analytic we usu-
ally mean in the sense of a complex function of the transferred momentum squared
p2 (which can be seen as a complex variable) or, equivalently, of the Mandelstam
variables. At low energies, i.e. for low transferred momentum p2 → 0, non-analytic
contributions come from the propagation of massless particles as can be seen from
the massless propagator for a spinless particle

G(p) =
1

p2
, (1.2.3)

which is indeed non analytic at p2 = 0.6 On the other hand the analytic contributions
come from the propagation of massive particles as can be seen from the massive
propagator for a spinless particle of mass m

G(p) =
1

p2 +m2
, (1.2.4)

which is analytic at p2 = 0. Therefore non analytic contributions dominate in the
low energy limit of the effective field theory. This interplay between analytic and
non analytic contributions to the amplitude will be crucial in the analysis carried out
in this thesis. It will notably be very relevant to the discussion of unitarity of the
S-matrix.

1.3 S-matrix bootstrap

In the 60s two rival approaches to quantum field theory coexisted. The first one was
the S-matrix approach defended by Wheeler while the second one was the perturba-
tive approach developed by Feynman. A brief look at quantum field theory books
today, which are usually covered with Feynman diagrams, will reveal that Feynman’s
approach won out. However even though it eventually fell out of favor the S-matrix
program did manage to achieve some relevant results and was even recently revived
in the form of the very promising S-matrix bootstrap program.

6This observation are essentially the same in the case of particles with spin
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The basic idea of the S-matrix approach is that instead of looking at the mi-
croscopic degrees of freedom of the theory one can instead focus on very general and
robust principles that the theory must obey such as unitarity and causality. Causality
typically implies other principles including relativistic invariance and the fact that at
the microscopic level the theory is described by local propagating degrees of freedom
(the precise nature of which is irrelevant), all of which are principles that must be
obeyed by any reasonable quantum field theory. One can then use these very general
principles to constrain amplitudes of scattering particles. At the time this looked like
a very robust alternative to the perturbative approach which was plagued with the
issues of UV divergences and the poorly understood problem of renormalisation. This
very formal, non perturbative approach was not as fertile as initially thought however
and though this program was (temporarily) abandoned it was very influential to the
historic development of string theory. Today however it is getting back the attention
it deserves [12–15].

S-matrix If we suppose that interactions in our theory are bounded in time then
we can assume that asymptotic states in the far past and in the far future are that of
the free theory, i.e. Fock states. Indeed we can define a different Fock space of states
in the asymptotic past and future. If we write |χ⟩in for some state in the far past then
|χ⟩out corresponds to the state in the far future obtained from time evolution of |χ⟩in.
The scattering matrix, or S-matrix, then relates these two different Fock spaces. It is
defined by its action on such asymptotic states by

S |χ⟩out = |χ⟩in , in ⟨χ|S = out ⟨χ| . (1.3.1)

Correspondingly the matrix elements of S are given by

out ⟨χ|ξ⟩in = in ⟨χ|S |ξ⟩in = out ⟨χ|S |ξ⟩out . (1.3.2)

In particular for the vacuum states we impose

S |0⟩out = |0⟩in , in ⟨0|S = out ⟨0| , (1.3.3)

which is just the statement that the vacuum state is unique and invariant under
time translation. (1.3.2) shows that the matrix elements of S are the probability
amplitudes of finding any given state in the far future for a given state in the far
past. For definite particle states |i⟩in, |j⟩in these are scattering amplitudes7

in ⟨j|S |i⟩in = iAi→j . (1.3.4)

7Here and in the rest of this thesis we omit delta factors related to momentum conservation and
assume that all exterior momenta are conserved.
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In any reasonable quantum theory conservation of probability implies that time evo-
lution should be unitary, this translates into unitarity of the S-matrix

S†S = I . (1.3.5)

In fact in most quantum theories the S-matrix is simply given in the interaction
picture by

S = T exp

(
−i
∫ +∞

−∞
dtHint

)
= T exp

(
i

∫
d4xLint

)
, (1.3.6)

where Hint is the interaction Hamiltonian, Lint is the interaction Lagrangian density
and T is the time ordering operator. Therefore unitarity of the S-matrix simply
translates into hermiticity of the Hamiltonian operator.

Axioms of S-matrix bootstrap Unitarity is one of the most important principle
that the S-matrix obeys and it is the one that will preoccupy us the most but there
are other properties that the S-matrix should obey, these are the so-called axioms of
S-matrix bootstrap. Although there isn’t a definitive list of axioms, most of them
include:

• Relativistic invariance: the S-matrix should be a representation of the Poincaré
group,

• Unitarity: defined by equation (1.3.5),

• Crossing symmetry: this implies that the amplitudes of incoming (resp. out-
going) particles are the same as the amplitudes of outgoing (resp. incoming)
antiparticles,

• Analyticity: roughly speaking the amplitudes should be analytic in the trans-
ferred momentum or, equivalently, in the Mandelstam variables (up to crossing
symmetry) everywhere except for cuts and poles wherever physical particles can
appear as intermediate states.8

There are other axioms that one can add in order to constrain further the form of
the S-matrix but they will not be explored here. The properties enumerated above
are expected of any reasonable quantum field theory which obeys both the principles
of quantum theory and relativity. Note that the last two axioms are not typically

8Actually this is typically referred to as maximal analyticity. Often the claim is much weaker
than that and only requires a bounded domain of analyticity below the first physical mass. In the
case of gapped theories this can be proved. In this thesis maximal analyticity will be more relevant.
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referred to as axioms in the literature as they can actually be proved in the case of
theories exhibiting a mass gap [16, 17]. However as gravity, our theory of interest, is
not a gapped theory and much less is proved in this case we will have to take these
properties as assumptions and thus we denote them as axioms.

Optical theorem and positivity bounds One can separate the trivial part of
the S-matrix from the interaction part as follows

S = I + iT , (1.3.7)

where the identity represents the non interacting part of the S-matrix while T repre-
sents the interacting part. Injecting this into (1.3.5) one gets

2 ImT = T †T . (1.3.8)

This is known as the optical theorem. For any non trivial interacting theory the
interacting part of the S-matrix must therefore have a non zero imaginary part. Since
amplitudes are often defined via real coefficient integrals that are analytically con-
tinued in the Mandelstam variables to the physical domain then imaginary parts can
only come from functions which are non analytic in the domain of convergence. In
the low energy limit these are precisely the non analytic contributions coming from
the propagations of massless particles. This explains the previous statement that
non analytic contributions are crucial to discussing the unitarity of the S-matrix. If
we look at matrix elements of (1.3.8) and insert a complete basis of definite particle
states we get

2 ImAi→j =
∑

n

∫ n∏

a=1

d3kaA∗
j→nAi→n , (1.3.9)

where ka are the momenta of the n outgoing particles on the right hand side. Impor-
tantly, since the right hand side of (1.3.8) is positive definite one gets the following
positivity bound on amplitudes

ImAi→j ≥ 0 . (1.3.10)

In the case where i = j = 2, if we only restrict the right hand side of (1.3.9) to elastic
scattering, i.e. n = 2, then since this side of the equation is positive definite the
optical theorem reduces to the following inequality

2 ImA2→2′ ≥
∫
d3k1d

3k2A∗
2′→2′′A2→2′′ . (1.3.11)
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These two inequalities can be used to give positivity bounds on Wilson coefficients of
effective field theories as we will see later.

Today the old S-matrix ideas have been revived with some slightly more realistic
goals. Instead of trying to fully understand a given theory from its S-matrix the
modern S-matrix bootstrap program uses the axioms above to put constraints on the
space of allowed S-matrices describing all consistent quantum field theories including
theories of quantum gravity [18]. This is also in the spirit of what this thesis aims
to do, which is constraining the S-matrices of effective field theories compatible with
string theory.

1.4 String theory

As we have seen above, one of the main advantage of the effective field theory approach
is that it is agnostic about the full UV complete theory. But over the 70 years of
interest over quantum gravity there have been several proposals for a UV complete
theory of quantum gravity, one of the most promising of which is string theory. As
mentioned in the previous section the S-matrix program had a large influence on the
early developments of string theory. Indeed string theory was initially born out of a
necessity to describe the strong interactions and particularly meson interactions in a
way consistent with the axioms of the S-matrix. In 1968 Veneziano wrote down an
amplitude satisfying precisely these criteria [19]

A2→2′ = −ig3sα′11
(
Γ(−α′s− 1)Γ(−α′t− 1)

Γ(−α′(s+ t)− 2)
+

Γ(−α′s− 1)Γ(−α′u− 1)

Γ(−α′(s+ u)− 2)

+
Γ(−α′u− 1)Γ(−α′t− 1)

Γ(−α′(u+ t)− 2)

)
, (1.4.1)

where gs is called the string coupling, α′ is called the Regge slope and s, t, u are
the usual Mandelstam variables defined by s = −(k1 + k2)

2, t = −(k1 + k4)
2 and

u = −(k1 + k3)
2 with ki being the exterior momenta (all taken as incoming).9 One

can clearly see that the above amplitude satisfies crossing symmetry as required by
the axioms of the S-matrix and is in fact totally symmetric in the Mandelstam vari-
ables. One can also see that it is analytic in the Mandelstam variables excepts for
some points s, t, u = n/α′ for n = −1, . . . ,∞ corresponding to the poles and ze-
ros of the Gamma function and which can be interpreted as coming from particles

9They are not independent as they are related by the relation s+ t+ u =
∑4

i=1m
2
i where mi is

the mass of the ith particle.
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of ever higher masses m2 = n/α′, we call these Regge trajectories. It was then by
looking for a model that would give rise to such an amplitude from first principles
that physicists stumbled upon string theory. Indeed the correct model was found by
quantizing a classical string of length ls =

√
α′ and tension T = 1/(2πα′). Quantum

constraints having to do with unitarity and Lorentz invariance impose that this string
propagates in 26 dimensional space-time. The infinite tower of massive particles was
then understood to come from the infinite modes of the string. However one of these
modes corresponded to a massless spin two particle which, as we have seen, can only
correspond to gravity, at least at low energy. This made string theory into the theory
of quantum gravity that we know it today.

As seen with the infinite spectrum of massive particles string theory is not an
ordinary quantum field theory. In some sense it corresponds to an infinite number of
quantum fields. However one can see that the tower of masses is controlled by the
Regge parameter α′ and when one takes the limit α′ → 0 the infinite tower decouples
leaving only the lowest lying levels for n = −1 and n = 0 therefore reducing to
a proper quantum field theory. Indeed all the stringy effects of string theory are
contained in this dimensionful parameter α′ the only free parameter of the theory.
Therefore, at low energy, one can expect string theory to reduce to an effective field
theory of quantum gravity where the series expansion has ever higher powers of α′

in front of ever more irrelevant Wilson operators. However it turns out that this
effective theory is far from unique. Indeed the Wilson coefficients, instead of being
constants, are actually functions of massless fields called moduli fields. Therefore
there are actually many low energy effective field theories which are compatible with
string theory as a UV completion. It is the purpose of this thesis to explore which
effective field theories are compatible with string theory. The methods of S-matrix
bootstrap can also serve as an independent method to reduce the space of allowed
S-matrices for consistent theories of quantum gravity.

Superstring theory In the 70s as bosonic string theory was developed [20–22]
there were many great features that made it a serious candidate for a theory of ev-
erything : as mentioned before it contained a graviton in its spectrum, its amplitudes
were free of the UV divergences that plagued quantum field theory and in particular
quantum gravity, it also had the potential to include other gauge interactions and
finally it was a very constrained theory with only one dimensionful parameter. The
finiteness of its amplitudes could be superficially understood as coming from the finite
length of the string which ”smears out” the interaction instead of being localised to
a point. This alone, having a non divergent quantum theory containing a massless
spin two particle is no small feat and cannot be understated. However three prob-
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lems loomed in the face of anyone wanting to take this theory seriously as a realistic
theory of nature. First of all, as the name would suggest, there were only bosons
in the spectrum of the theory, secondly as mentioned before the theory could only
exist in 26 dimensional spacetime, but perhaps worst of all is that the spectrum also
contained a tachyon as its lowest lying string mode. A tachyon usually indicates a
pathology regarding the causal structure and unitarity of the theory.

A straightforward fix to the problem of absence of fermions in the theory came
when Ramond, Neveu and Schwarz added fermionic fields to the worldsheet theory
of the string [23, 24]. The fields obeyed a very particular type of symmetry mixing
bosonic and fermionic fields called supersymmetry. In fact this two dimensional ver-
sion of supersymmetry was actually the first instance of supersymmetric theory to
be developed. It was then showed that a certain truncation of the spectrum of the
theory (now called GSO projection after Gliozzi, Scherk, and Olive) led to a consis-
tent, supersymmetric and tachyon-free theory [25]. As an added bonus the required
number of dimensions for the theory to live in is reduced from 26 to 10. The resulting
class of theories is called superstring theory. It is worth mentioning that the fact
that the final theory is supersymmetric is non trivial. Indeed the supersymmetry was
initially introduced on the two dimensional worldsheet whereas the supersymmetry of
the spectrum corresponds to ten dimensional space time supersymmetry. An equiv-
alent formulation of superstring theory with space-time supersymmetry introduced
from the beginning was developed by Green and Schwarz in 1981 [26–28].

Actually superstring theory is not one theory. In fact there are five different super-
string theories corresponding to different coherent ways to introduce supersymmetry
and get rid of the tachyon: there are two maximally supersymmetric theories dubbed
type IIA and type IIB superstring theory and three half maximally supersymmetric
theories called type I, heterotic SO(32) and heterotic E8 ×E8 superstring theory (in
the last two cases the name heterotic refers to the asymmetric roles played by right
and left moving modes on the closed string). A key result was the discovery in 1984
by Green and Schwarz of the miraculous anomaly cancellation in all five superstring
theories [29].10 This marked the point when a large number of the theoretical physics
community turned to string theory and was called the first superstring revolution.

The fact that the main candidate for the theory of everything was actually five
different theories remained unsatisfactory. However in the 90s, mainly under the im-
pulsion of Witten, it was discovered that all five superstring theories were actually

10Actually the Green-Schwarz mechanism only concerns the type I and heterotic string theories.
Anomaly cancellation in type IIA string theory is trivial as the theory is non-chiral whereas anomaly
cancellation in type IIB string theory is non-trivial but does not require the Green-Schwarz mecha-
nism.
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linked by dualities, thereby suggesting that none was more fundamental than the
others but instead that they were all different sides of the same coin. In addition,
strong evidence was found that all five superstring theories were different limits of
some unique 11 dimensional theory called M-theory [30]. This sparked the beginning
of the second superstring revolution when the field gained even more momentum.
At the same time Polchinski discovered the existence of dynamical extended objects
other than strings within string theory which were named D-branes [31]. These
D-branes were required by the web of duality and opened up a window into the non-
perturbative structure of string theory. Finally in 1997 Maldacena discovered another
duality between five dimensional D-branes in type IIB string theory and another type
of gauge theory called N = 4 super Yang-Mills theory in 4 dimensions [32]. This
type of duality between a d dimensional gravitational theory and a d− 1-dimensional
gauge theory sparked the beginning of the AdS/CFT correspondence and holography.

String compactifications and the vacuum problem Acute readers may have
noticed that we have brushed under the carpet one of the three initial problems pre-
sented by bosonic string theory: that of higher dimensions. Indeed the problems of
the tachyon and the absence of fermions were straightforwardly solved by introduc-
ing supersymmetry on the string worldsheet but the problem of higher dimensions
was only reduced by going from 26 dimensions to 10. It is clear that these are six
dimensions too many in order to be a viable description of our universe. It turns out
however that this is not as serious a problem as one might first think. Indeed sup-
pose that our universe is described by a spacetime which can be split into a cartesian
product R4 × K where K is a compact space. Then, in theory, if the hypervolume
of K is sufficiently small these extra dimensions would be unobservable and it would
be effectively as if we lived in R4. We call these extra dimensions wrapped up in K
compactified dimensions.

Hence there is a priori no way to know if our universe is really four dimensional or
if it contains extra compactified dimensions. This may seem like a very unscientific
assumption that should be disregarded in virtue of Occam’s razor but actually com-
pactified dimensions have a number of phenomenologically interesting consequences.
This goes back to the insight of Kaluza and Klein in the 1920s. Suppose that there
is only one extra dimension compactified on a circle R4 × S1. We can therefore split
the 5-dimensional coordinates x̂ into 4-dimensional coordinates x on R4 and compact
coordinate θ on S1. All 5 dimensional field ϕ̂ have to obey the boundary condition
ϕ̂(x, θ + 2πR) = ϕ̂(x, θ) where R is the radius of the circle S1. Therefore we can
Fourier-expand the fields on S1
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ϕ̂(x, θ) =
∑

n

ϕn(x)e
inθ
R . (1.4.2)

Let us suppose that ϕ̂ is a massless scalar field in 5 dimensions. Therefore it obeys
the massless Klein-Gordon equation (the wave equation)

2̂ϕ̂ = 0 , (1.4.3)

where 2̂ is the 5-dimensional d’Alembertian operator. When we insert (1.4.2) into
the massless Klein-Gordon equation we get the following equation of motion for each
Fourier mode

2ϕn =
( n
R

)2
ϕn , (1.4.4)

which is a massive Klein-Gordon equation. Therefore we obtain an infinite tower of
fields with mass m = | n

R
| propagating in R4. Taking the limit where the radius of the

circle goes to zero R → 0, these KK-modes become infinitely massive and decouple
from the theory except for the 0-mode which remains massless. These massive modes
can be neglected in an effective field theory limit. The process of compactification
combined with consistently truncating away the massive modes is called Kaluza-Klein
reduction.

Another interesting property of compactified dimensions comes specifically when
one considers the compactification of a higher dimensional theory containing gravity.
This is what Kaluza and Klein where initially interested about. The gravitational
part of the 5-dimensional theory is given by the Einstein Hilbert action

S5 =
2

κ25

∫
d5x̂
√
−ĝ R̂ . (1.4.5)

The 5 dimensional metric can be decomposed into

ds25 = e
2√
3
ϕ
(dθ + Aµdx

µ)2 + e
− ϕ√

3ds24 , (1.4.6)

where ds24 describes the 4 dimensional metric on R4, e
2√
3
ϕ
describes the metric of S1,

i.e. its radius, and Aµ describes the fibration of S1 over R4. We call ϕ a dilaton and
Aµ a Kaluza-Klein vector. We require that all fields are independent of θ which is
equivalent to only keeping the 0-modes of the Fourier expansion. After Kaluza-Klein
reduction the 5-dimensional action becomes

S4 =
2

κ24

∫
d4x
√−g

(
R− 1

2
|∇ϕ|2−1

2
e
√
3ϕ|F |2

)
, (1.4.7)
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where Fµν = ∂[µAν] and the 4-dimensional coupling constant is related to the 5-
dimensional one by the volume of S1 i.e. κ24 = κ25/2πR. We have also defined
|ω|2= 1

n!
ωµ1...µnω

µ1...µn for some n-form ωµ1...µn . We can show that the diffeomorphism
symmetry in 5 dimensions corresponds exactly to 4 dimensional diffeomorphism sym-
metry of the 4 dimensional metric plus U(1) gauge symmetry of the Kaluza-Klein
vector.

It is an incredible surprise that we find a U(1) gauge field behaving exactly like
electromagnetism simply by compactifying pure gravity on a circle. This was actually
called the Kaluza-Klein miracle. This is less surprising when we realise that we have
constructed an S1 fiber bundle which behaves exactly as a U(1) principal bundle.

The e
− ϕ√

3 factor in front of the 4 dimensional metric in the ansatz (1.4.6) corre-
sponds to a conformal rescaling which is necessary if we want the Einstein-Hilbert
term in the 4 dimensional action (1.4.7) to be canonically normalised. Without this
field redefinition we would have non minimal gravitational couplings with the dilaton.
Such non minimal couplings are however present between the dilaton and the Kaluza-
Klein vector, this is an example of so-called scalar-tensor gravity. This is historically
the reason why Kaluza-Klein theory was abandoned.

Even if compactification of pure gravity on a circle is ruled out, compactifications
of richer theories on more general manifolds can still be phenomenologically realistic.
With more compactified dimensions one can even get non abelian gauge theories
after Kaluza-Klein reduction. Let us consider some theory involving gravity in D
dimensions and suppose that the space-time manifold splits topologically into a 4-
dimensional non compact manifold times a (D − 4)-dimensional compact manifold
i.e. R4 ×K. The fields can again be decomposed on a basis of harmonic functions of
K and the masses of the KK tower are given by eigenvalues of the Laplacian on K.
The D dimensional metric can be decomposed into

ds2D = gij(dx̄
i +Ki

aA
a
µdx

µ)(dx̄j +Kj
bA

b
µdx

µ) + ds24 , (1.4.8)

where gij describes the metric of the compact space K, the Aaµ describe the fibration
of K over R4 and the Ki

a are Killing vectors of the compact metric on K. All
the components of the internal metric gij are dilatons. The Killing vectors Ka =
Ki
a∂i generate the Lie algebra of the isometry group G of K. One can show that

under D dimensional Killing isometry of K the vectors Aaµ transform as non abelian
connections of a G principal bundle. This shows that we can indeed interpret the Aaµ
as non abelian gauge fields associated to the gauge group G. We can furthermore
show that the Kaluza-Klein reduction of the D-dimensional Einstein-Hilbert action
will give rise to the 4-dimensional Yang-Mills action for the gauge group G (modulo
some non minimal couplings). This construction is due to Scherk and Schwarz [33,34]
and is thus sometimes called a Scherk–Schwarz reduction
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We can see that there are several ways to get the same gauge group G as there
are many manifolds that can share the same isometry group. Two of the most simple
ways are to compactify on the gauge group manifold itself i.e. K = G. This is pretty
much the standard construction of Yang-Mills theory for some generic gauge group
G. Another way would be to compactify on some coset space K = G/H where H
is a maximal compact subgroup of G, the most common examples are the sphere
compactifications K = Sn ≃ SO(n + 1)/SO(n). However contrary to the case of
S1 there are obstructions to reductions on general manifolds. The only exceptions
where a consistent reduction can always be performed are the circle, the torus and
the group-manifold reductions. Note that, when possible, coset reductions are pre-
ferred to group manifold reductions, since less extra dimensions are needed to obtain
the same gauge group. For example, in order to obtain the gauge group SO(8) one
could use the SO(8) group manifold which requires dim(K) = 28 extra dimensions
or the coset SO(8)/SO(7) corresponding to the seven-sphere S7 which only requires
dim(K) = 7 extra dimensions.

Hence Kaluza-Klein reduction is a very attractive mechanism for string theorists as
it can simultaneously get rid of extra unwanted dimensions and explain geometrically
where gauge symmetries come from. This is why KK reductions are used throughout
string theory. In particular they are used to get from the ten dimensional world de-
scribed by superstring theory to the four dimensional world we inhabit. Even though
the presence of extra dimensions is a common criticism of string theory the Kaluza
Klein mechanism actually makes it a strength as the complexity and arbitrariness of
the field content of the standard model is simply contained in the geometry of the
theory. We call the process of finding a 6 dimensional compact manifold over which
to perform a Kaluza-Klein reduction of string theory finding a “geometric vacuum of
the theory”. Indeed such a manifold can be thought of as a vacuum expectation value
for the 10 dimensional metric around which to expand the theory. It is interesting to
note that the minimum number of compact dimensions needed to recover the stan-
dard model gauge group from KK reduction of a purely gravitational theory is 7 [35],
therefore the minimum number of dimension for a realistic Kaluza-Klein theory of ev-
erything would be 11 putting 11-dimensional M-theory in a uniquely good position.
While there are many manifolds with the right isometry group11 Witten showed in
1981 [35] that none of them reproduces the rest of the field content of the standard
model (particularly the chiral fermions). However more exotic compactifications such
as G2-manifolds with orbifolds are not ruled out.

Other string theories which already possess large gauge groups like type I and

11The simplest 7-dimensional compact manifold with isometry group U(1) × SU(2) × SU(3) is
S1 × S2 × CP2
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heterotic string theories appear as more viable candidates to recover the standard
model of particle physics from Kaluza-Klein reduction. Until recently and the nega-
tive results at the LHC the minimal supersymmetric extension of the standard model
was considered a very phenomenologically viable extension of the standard model
and for other reasons minimal N = 1 supersymmetry was seen as very attractive.
Therefore physicists looked for compactification manifolds which would preserve ex-
actly this amount of supersymmetry. In 1985, Candelas, Horowitz, Strominger and
Witten showed that this imposed that the compactification manifold be a Calabi-Yau
manifold, i.e. a Ricci flat Kähler manifold [36]. While it was initially thought that
there would be a very small number of such manifolds obeying additional topological
constraints in order to be consistent with the particle content of the standard model,
it turns out that there is in fact a very large number. The high number of such
realistic vacua puts into question the ability of string theory to predict anything at
our energy scales as for any prediction given by some vacuum there may be another
vacuum that makes another prediction. This is called the vacuum problem.

We saw that Kaluza-Klein reduction usually gives some massless scalar fields in the
dimensionally reduced theory like for examples the dilatons coming from the reduction
of the metric. Dilatons typically control the geometry of the compact space. If in
addition one reduces a theory with p-forms this will also give massless scalar fields
called axions. Dilatons and axions are called moduli fields. Moduli fields are typically
problematic in any realistic theory because they are massless and there are no obvious
mechanisms to give them mass, at least in pure gravity Kaluza-Klein reduction. This
is called the moduli stabilisation problem. However in supergravity and string theory
there are mechanisms which give mass to the moduli fields, this is done by imposing
that the p-form fields acquire non trivial vacuum expectation values, which are called
fluxes. This also allows to compactify on non flat compact spaces which was also
impossible in pure gravity Kaluza-Klein reduction. More stringy constructions for
Kaluza-Klein reductions include non geometric constructions such as orbifolds and
orientifolds. These allowed to return to compactifications of type II string theory and
M-theory. We should mention that Kaluza-Klein reduction is also important for the
web of dualities underlying string theory as some theories are related to each other by
KK reduction. This is the case with type IIA string theory which is a KK reduction
of M-theory on a circle.

U-duality and Wilson coefficients String theory has a worldsheet formulation
as a two dimensional supersymmetric sigma model. However, as we have seen, in the
limit α′ → 0 we should recover a field theory in the low energy limit. The leading
terms of this expansion is a ten dimensional supergravity theory. This can be seen
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either from the expansion of the amplitudes themselves or from the vanishing of the
beta functionals of the worldsheet theory which guarantee conformal invariance on
the worldsheet and which, to first loop order, give the equations of motion for ten
dimensional supergravity. One can then integrate out the massive string modes to
get the higher order terms of the effective field theory. As explained before these
higher order terms will be suppressed by powers of α′ which is proportional to the
square of the Planck constant of the supergravity theory. One important difference
with effective field theories we have talked about so far is that string theory contains
a certain number of massless scalar fields, the axion-dilaton fields. These should not
be integrated out as they lie on the same level as the graviton. As scalar fields they
are by definition Lorentz invariant and so are any functions of these fields. Therefore
in general nothing stops non trivial functions of the moduli fields from appearing
in front of Wilson operators. They should not appear in front of the leading terms
however as this would correspond to non minimal couplings which can be removed by
conformal field redefinition. Hence, if we restrict ourselves to the gravitational sector
of our theory the effective field theory expansion looks like

L =
2

κ2
√−g

[
R + l2PE1R2 + l2PE2RµνRµν + l2PE3RµνρσR

µνρσ + l4PE4R3 + . . .
]
,

(1.4.9)
where the Wilson coefficients E1, E2, E3, . . . are functions of the axion dilaton fields.12

In a general dimensions D the Planck length is related to the D-dimensional gravita-

tional constant by lP = G
1

D−2 . When the theory is compactified to a lower dimensional
theory, other moduli fields will appear which make the Wilson coefficients even more
complicated.

The Wilson coefficients can in principle be very general functions of the moduli.
Luckily the structure of these moduli fields and hence of the Wilson coefficients is
severely restricted by supersymmetry. Indeed supersymmetry imposes that the mod-
uli fields parametrise some manifold with a large amount of structure, this is called
the moduli space. For example, in all dimensions, in theories with more than 1/4th
maximal supersymmetry the moduli fields parametrise a symmetric space [37]. Lower
amounts of supersymmetry also constrain the structure of the moduli space, for ex-
ample in four dimensions, in theories with 1/8th maximal supersymmetry the moduli
fields must parametrise a Kähler manifold while for 1/4th maximal supersymme-
try the moduli fields parametrise either special Kähler, hyperkähler or quaternionic
Kähler manifolds. In addition the effective field theory must respect the various du-

12In a general dimension using field redefinitions to bring the first three Wilson couplings to a
form proportional to the Gauss-Bonnet term is also useful as it avoids modifying the propagator.
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alities obeyed by the full string theory. These are for example T-duality which corre-
sponds to inverting some compactification radius and S-duality which is a strong-weak
duality corresponding to inverting some coupling constant. These dualities are not
always completely distinct as some coupling constants can correspond to non mini-
mal couplings with some moduli field coming from some compactification radius. In
fact one can often combine T and S-duality into a single unified duality group called
U-duality. This is a discrete group of symmetries of the full effective field theory. In
general the moduli fields transform non trivially under U-duality, mixing together.
The most famous example being the SL(2,Z) symmetry of type IIB string theory, in
this case the axion C0 and dilaton ϕ mix to give τ = C0+ ie

−ϕ which then transforms
non linearly under SL(2,Z) as

τ −→ aτ + b

cτ + d
, (1.4.10)

where a, b, c, d are integer such that ad − bc = 1. Therefore the Wilson coefficients
must respect this symmetry. This constrains very much the form of En. In fact,
along with other constrains coming from supersymmetry and internal consistency,
this allows us to calculate exactly, non perturbatively, the leading Wilson coefficients
for maximally supersymmetric string theory.

1.5 The swampland program

It is clear from (1.4.9) that, depending of the range of the Wilson coefficients as func-
tions, many low energy effective field theories may be compatible with string theory
as a UV completion. Indeed even though the structure of string theory is very con-
straining, the high number of fields and dimensions means there are a lot of degrees
of freedom which can play a role in the IR limit. For example we have seen that
the choice of vacuum around which to expand the theory and reduce the number of
dimensions is very large. Even after choosing a vacuum the extra degrees of freedom
coming from the internal dimensions come back in the form of a large number of mod-
uli fields. This means that the low energy limit of string theory spans a wide range of
effective field theories, we call this the “landscape” [38]. It was initially feared that
just about any effective field theory might sit inside this spectrum, this is called the
“landscape problem”. The realisation that this was not the case and that, in fact, it
was possible that many more theories sit outside this spectrum is the main idea be-
hind what is called the “swampland program” [39]. Indeed any effective field theory
that cannot be UV completed into string theory or any theory of quantum gravity,
is said to be in the ”swampland”. Hence the swampland program is a bottom-up
approach aiming to come up with precise criteria for an effective field theory to be
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compatible with string theory as a UV completion.

Since the inception of the program in 2005 by Vafa several conjectures have
emerged with diverse degrees of acceptance. Some of the most popular include the
weak gravity conjecture: this conjecture says that any theory in the landscape must
include at least one particle whose charge is larger than its mass (in the proper units).
In other words gravity must be the weakest of all gauge interactions in the theory.
This conjecture emerged from black hole physics and particularly Hawking decay of
extremal black holes. Indeed the argument is that if we consider a slightly subex-
tremal charged black hole, this black hole must decay since it is not protected by
supersymmetry. If it emits a particle then this particle must have a mass m and
charge q such that |q| > m in order for the black hole to remain above the BPS
bound.

Another popular conjecture is the no global symmetry conjecture. This states that
in any theory in the landscape all global symmetries must be either gauged or broken.
Once again this conjecture originates from black hole physics since it is believed that
black hole evaporation breaks any charge conservation that does not originate from a
gauge symmetry. This conjecture can also be checked in the context of the AdS/CFT
conjecture.

Finally the infinite distance conjecture states that when the vacuum expectation
value of a moduli field is taken to infinity there must exist an infinite tower of light
and weakly coupled states whose mass goes to 0. The name of the conjecture comes
from the fact that taking the value of a moduli field to infinity corresponds to an
infinite distance on the moduli space measured with the metric appearing in the ki-
netic term of the scalar fields. This conjecture builds on the intuition of Kaluza-Klein
theory where taking the compactification radius to infinity one recovers the limit of
the higher dimensional theory and the states of the KK tower become light.

These conjectures are meant to chart out the landscape of string theory and if
proven to be correct they help throw out a number of effective field theories from the
landscape to the swampland. See [40] for a review. In order for string theory to be
predictive one might hope for the swampland to be as large as possible and for the
landscape to be small but still large enough to contain the standard models of particle
physics and cosmology. This last requirement to include big bang and inflationary
cosmology has proved to be very restrictive.

The string lamppost principle/String unity For someone agnostic about the
UV completion of quantum gravity the swampland program can still be useful as
looking at the set of all effective field theories compatible with string theory as a UV
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completion might tell us interesting things about effective field theories of quantum
gravity in general. However, for this to be the case the string landscape must be
representative of the, in principle larger, set of theories that can be UV completed
into a consistent theory of quantum gravity.13 In fact if the string landscape is only
a very small and very special subset of quantum gravity effective theories then the
swampland program might even be misleading. The string lamppost principle or
string universality [41, 42] is the claim that the opposite is true and that actually
the landscape contains all theories consistent with any quantum gravity theory in
the UV. In other words effective field theories of string theory saturate the space of
effective field theories of quantum gravity. If this were proven to be true this would
be a strong indication that string theory is in fact the unique consistent theory of
quantum gravity or at least that it is general enough that all other ones can be re-
alised as special cases of string theories.

For a large number of dimensions and for a large number of supersymmetries
(which go hand in hand as one can cannot have a low number of supersymmetry in
large dimensions apart from 0 supersymmetry) there are good arguments to believe
that this string lamppost principle should hold. Indeed if one restricts to at most two
derivatives then in eleven dimensions there is a unique theory of gravity compatible
with supersymmetry and this theory is believed to be the low energy limit of M-
theory. Similarly in ten dimensions there are only two consistent theories of gravity
with maximal supersymmetry and at most two derivatives14 and they are realised as
UV complete quantum theories as type IIA and type IIB string theory respectively.
For half maximal supersymmetry in ten dimensions the Green-Schwarz anomaly can-
cellation mechanism [29] restricts the possible gauge groups of the theory to only four
options and two of them are realised in heterotic and type I string theory. It was
later shown that the two other gauge groups were in fact in the swampland [41, 43].
Note however that if one asks about higher derivatives operators, as is natural in the
context of effective field theories, things may not be so unique, we will be coming back
to this in more details. Other arguments like this have been applied to theories with
higher dimensions or higher supersymmetry in order to prove the string lamppost
conjecture [44].

13Sometimes in the literature the terms ”landscape” and ”swampland” are used to talk about
theories compatible/incompatible with any consistent theory of quantum gravity and not just string
theory. Other than the fact that this inclusive definition is of questionable interest as consistent
theories of quantum gravity outside of string theory are not well known we will not use these
definitions in this thesis because this would make discussion of the string lamppost principle, which
is at the center of this thesis, obscured.

14This is true if we only consider ungauged supergravity theories which we will do throughout this
thesis.
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Maximally supersymmetric string theory One can also study what happens if
we look at higher order terms in the effective field theory expansion. If one still focuses
on large numbers of dimensions and large amounts of supersymmetry then interesting
things can be said. In fact we will focus on maximally supersymmetric theories.
This set of theories can serve as a kind of playground where concrete computations
can be performed more easily. Indeed maximal supersymmetry entails considerable
simplifications that can be taken advantage of. For example it allows to discriminate
against certain terms in the effective field theory expansion which do not respect
maximal supersymmetry. Hence we can write schematically the first few terms of the
effective Lagrangian of maximally supersymmetric gravity as

L =
2

κ2
√−g

[
R + c(0,0)l

6
PR4 + c(1,0)l

10
P ∇4R4 + c(0,1)l

12
P ∇6R4 + . . .

]
, (1.5.1)

whereRk represents some contraction of the Riemann tensor of degree k. For example
by R4 (one of the terms we will be most interested in) we mean t8t8R

4 where t8 is a
well known contraction of the Riemann tensor defined in chapter 3. Terms in l2PR2,
l4PR3 and l8P∇2R4 are theoretically possible but maximal supersymmetry imposes
that their Wilson coefficients vanish identically.15

It is also known that in maximally supersymmetric gravity the 2 to 2 graviton
scattering amplitude can be related to the much simpler scattering amplitude of its
scalar superpartner. This has been used in [45] in order to extract unitarity bounds
on the amplitudes coming from the first allowed corrections to gravity (represented
as c(0,0)l

6
PR4 in (1.5.1)) using bootstrap methods. Indeed the full non perturbative

4-point graviton amplitude contains contributions from the Wilson operator which
are analytic in the Mandelstam variables because they come from integrating out
massive modes, as well as contributions from Einstein-Hilbert term which are non
analytic because they come from the propagation of the massless graviton

A2→2′ = −i
κ2

212
R4(ki, ϵi)

(
64

stu
+c(0,0)l

6
P + 16κ2

(
I
(1)
4 (s, t) + I

(1)
4 (t, u) + I

(1)
4 (u, s)

)

+c(1,0)
l10P
16

(s2 + t2 + u2) + . . .

)
, (1.5.2)

where I
(1)
4 is the one-loop supergravity integral and R4(ki, ϵi) is a linearised version

of the operator R4 containing the momenta and polarisations of the four gravitons.

15More specifically the Kretschmann invariant RµνρσR
µνρσ is forbidden by supersymmetry while

the Wilson coefficients of R2 and RµνR
µν can be set to zero by field redefinitions and the ∇2R4

term is technically allowed but is zero on shell due to the fact that there is no non trivial linear
invariant which is totally symmetric under the Mandelstam variables.
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The D dimensional gravitational coupling constant and Planck lengths are related by
κ2 = 32πlD−2

P . Therefore in dimensions 9 ≤ D ≤ 11 the first Wilson term is leading
in the IR with respect to the one loop supergravity amplitude while in dimensions
D ≤ 8 the one loop supergravity amplitude is leading. Actually in dimension D = 8
the two contribution are of the same order, we call this the critical dimension, we will
come back to this in chapter 3. One can use a partial wave expansion and the optical
theorem on the amplitude to extract unitarity bounds involving both the leading
Wilson coefficient and the one-loop supergravity amplitude. This has been done
in [45,46] for dimensions higher than 9 where the one-loop supergravity amplitude can
be neglected and bounds on the Wilson coefficient c(0,0) in (1.5.1) have been derived.
These bounds can then be compared with the IR limit of maximally supersymmetric
versions of string theory, which means type II string theory or M-theory and their
respective toroidal compactifications. This is because supersymmetry again offers a
high degree of control over the higher order corrections entailed in the low energy
limit as well as over the moduli space. As we saw the effective field theory expansion
of the gravitational sector of string theory should look like

L =
2

κ2
√−g

[
R + l6PE(0,0)R4 + l10P E(1,0)∇4R4 + l12P E(0,1)∇6R4 + . . .

]
, (1.5.3)

where the Wilson coefficients E(p,q) are functions of the moduli space. We also saw
that in the maximal supersymmetric case the moduli space is constrained to be a
symmetric space and that further constraints coming from supersymmetry and the
symmetry under U-duality allow to compute exactly the first Wilson coefficients in-
cluding all perturbative and non perturbative corrections in gs [47]. For example
E(0,0) and E(1,0), the coefficients that we will be most interested in, are specific types
of automorphic forms called Eisenstein series [48–51]. We can then look at the min-
ima of E(0,0) (something which is not that easy in lower dimensions as we will see in
this thesis) and compare it to the bound on c(0,0). If the minimum of E(0,0) does not
saturate the bound on c(0,0) this may go against the string lamppost principle and
may leave room for other UV completions of maximally supersymmetric theories. For
example it was found in [46] that in dimension 9, 10 and 11 the bounds coming from
superstring theory were close to but not saturating the unitarity bounds, although it
must be noted that their bounds are not sharp. In this thesis we will present works to
find the bounds on scattering amplitudes in maximally supersymmetric string theory
in dimensions 6, 7 and 8.
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1.6 Plan of this thesis

In chapter 2 we give a quick review of superstring theory. We show how to derive
the massless spectrum in covariant quantization with special emphasis on maximally
supersymmetric type II string theory. We give the field contents and bosonic actions
of the supergravity limits and we discuss the anomaly cancelations. Finally we review
the web of dualities underlying superstring theories.

In chapter 3 we review superstring amplitudes. After discussing the construction
of general string amplitudes we again take special interest in the maximally supersym-
metric type II case where we review the moduli space of Riemann surfaces for genus
zero, one and two. We then talk about factorisation properties of maximally super-
symmetric amplitudes. In particular we show using the formalism of spinor helicities
that unitarity properties of maximally R-symmetry violating superamplitudes in 6
dimensions reduce to the unitarity properties of scalar amplitudes. Finally we talk
about the low energy limit of type II string amplitudes in relation with supergravity
amplitudes using tropical limits and tropical geometry. We also discuss the ambiguity
coming from the logarithmic divergence of the one loop supergravity amplitude in 8
dimensions and show how to regularise it properly using the finite string amplitude.

In chapter 4 we talk about U-duality and automorphic forms. We give a short
reminder on automorphic forms with particular interest in Eisenstein series and their
parabolic decompositions. We review U duality and give the moduli spaces and U-
duality groups of maximally supersymmetric string theories. We then discuss the
leading Wilson coefficients, their automorphic properties and the interpretations of
the different decompactification limits.

Finally in chapter 5 we discuss our results regarding the minima of the leading
Wilson coefficients of string theory. We extend Grenier’s construction of a funda-
mental domain to more general Lie groups. We then show that symmetric points of
moduli space are natural candidates for minima of Eisenstein series, in some cases we
prove that they are local minima. We conjecture with the help of numerical checks
the global minima of leading and next to leading Wilson coefficients.
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Chapter 2

Superstring theory

String theory is generally accepted to be the only known consistent perturbative
theory of quantum gravity. It is UV complete and reduces to known theories of
supergravity at low energies. As such it allows us to gain insight into the structure
of perturbative, and sometimes non perturbative, quantum gravity. At present it
has proved a very difficult task to find which vacuum of string theory describes our
universe at low energies. However if the swampland program is successful then string
theory can still tell us interesting things about the coupling to quantum gravity at
energy scales relevant to us.

In this chapter we review basic constructions of string theory using covariant
quantization and we derive the massless superstring spectrum. We give a rundown of
the different superstring theories and their supergravity limits as well as the web of
dualities linking them together. The first parts of this chapter follows [52] and [53].
More details can be found in [54–57]. The reader already familiar with this material
should feel free to skip this chapter.

2.1 Relativistic particle

The classical theory of relativistic strings is completely analogous with the classi-
cal theory of relativistic particles. We therefore start with the simpler case of the
relativistic particle. The equation of motion of a massive particle in D-dimensional
space-time is given by extremising the proper length of its path through space-time.
Therefore the action is given by

S = −m
∫
ds . (2.1.1)

Let gµν be the spacetime metric and let xµ be the embedding coordinates of the
particle in spacetime. We can define the induced metric on the worldline as u =
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gµν ẋ
µẋν where ẋµ = dxµ

dσ
with σ being the coordinate on the worldline. Therefore we

can rewrite the action (2.1.1) as

S = −m
∫
dσ
√
−u . (2.1.2)

It is easy to check that this action is invariant under reparametrisation of the worldline
as well as under D-dimensional spacetime isometries of the metric gµν . However the
action (2.1.2) contains a square root which makes it very complicated to quantize.
Luckily there exists an equivalent classical action which is easier to work with. This
action given by

S = −m
2

∫
dσ
√
−h

(
1

h
ẋµẋνgµν + 1

)
, (2.1.3)

where h is the metric on the worldline. The equations of motion coming from this
action are

√
−h d

dσ

(
1√
−h

dxµ

dσ

)
+ Γµνρ

dxν

dσ

dxρ

dσ
= 0 , (2.1.4)

1

2
gµν ẋ

µẋν − 1

2
h = 0 , (2.1.5)

where Γµνρ are the Christoffel symbols for the metric gµν . The first equation comes from
the variation with respect to xµ and the second equation comes from the variation
with respect to h and can thus be interpreted as the vanishing of the worldline stress
energy tensor of the theory. This can be rewritten as h = u which says that the
metric on the worldline is equal to the induced metric. If we plug this equation back
into the action this yields

S = −m
2

∫
dσ
√
−u

(
1

u
u+ 1

)
= −m

∫
dσ
√
−u , (2.1.6)

proving that the two actions are classically equivalent and that the worldline metric
h is simply an auxiliary field.

Diffeomorphism invariance of the action (2.1.3) allows us to fix the worldline metric
h to any value we want (because all 1 dimensional manifolds are locally diffeomorphic),
a common choice is h = −1 which gives us the well known action for relativistic
particles

S =
m

2

∫
dσ (gµν ẋ

µẋν − 1) . (2.1.7)
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2.2 Relativistic string

Let us now look at the theory describing strings. The equation of motion of a ten-
sionful string in D-dimensional space-time is given by extremising the proper area of
its path through space-time. Therefore the action is given by

S = −T
∫
dA . (2.2.1)

Similarly we can define the induced metric on the worldsheet as γab = gµν∂ax
µ∂bx

ν

where gµν is the spacetime metric, xµ are the embedding coordinates of the string
and where ∂ax

µ = ∂xµ

∂σa with σa being the coordinates on the worldsheet. Therefore
we can rewrite (2.2.1) as

S = −T
∫
d2σ
√−γ . (2.2.2)

In the context of string theory this is known as the Nambu-Goto action. It is straight-
forward to check that this action is invariant under diffeomorphisms of the worldsheet
and under D-dimensional spacetime isometries. Again, to get rid of the square root
we introduce the equivalent action which is called the Polyakov action [58–60]

S = −T
2

∫
d2σ
√
−hhab∂axµ∂bxνgµν , (2.2.3)

where hab is the metric on the worldsheet. The equations of motion coming from this
action are

1√
−h

∂a

(√
−hhab∂bxµ

)
+ Γµνρh

ab∂ax
ν∂bx

ρ = 0 ,

gµν∂ax
µ∂bx

ν − 1

2
habh

cdgµν∂cx
µ∂dx

µ = 0 . (2.2.4)

The second equation comes from the variation with respect to hab and can thus
be interpreted as the vanishing of the worldsheet stress energy tensor of the theory
which is a constraint coming from diffeomorphism invariance. This can be rewritten
as γab =

1
2
habh

cdγcd. Taking the square root of the determinant of this equation gives

us
√−γ = 1

2

√
−hhcdγcd. Plugging this back into (2.2.3) yields

S = −T
2

∫
d2σ
√
−hhabγab = −T

∫
d2σ
√−γ , (2.2.5)

proving that the two actions are indeed classically equivalent.
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Notice that the equation of motion (2.2.4) for hab is solved for any metric confor-
mally equal to the induced metric hab = e2λγab. In fact this signals an extra gauge
symmetry of the string action that the particle action does not have: Weyl invariance

hab → h′ab = e2λhab , (2.2.6)

for some function λ(σ). This is unique to strings, it does not occur for particles,
membranes and higher-dimensional branes. We will see that requiring that the Weyl
symmetry remains unbroken at the quantum level recovers the Einstein equations for
the classical background. This shows that strings are somehow special and uniquely
adapted for a theory of quantum gravity.

We can use the diffeomorphism and Weyl invariance of the action to fix the world-
line metric hab to anything we want (because all 2 dimensional manifolds are confor-
mally equivalent), a common choice is the flat metric hab = ηab which gives us the
action

S = −T
2

∫
d2σ gµν∂ax

µ∂axν . (2.2.7)

We see that Weyl invariance is crucial to fixing the worldsheet metric and in fact
for branes in higher dimension than two the worldvolume metric cannot be gauged
away, this again points to something special about strings. Note that fixing the world
sheet metric doesn’t use up all our gauge freedom. Indeed the action (2.2.7) is still
invariant residual symmetries which correspond to diffeomorphisms of the worldsheet
that are also Weyl transformations of the flat metric i.e. conformal transformations.
Therefore we call this choice of gauge the conformal gauge.

The action (2.2.7) is sometimes called a non linear sigma model. It describes the
classical theory of the bosonic string in curved spacetime, so called because there
are no fermionic degrees of freedom and because if we were to quantize this string
we would find exclusively bosons in the spectrum. Actually quantization in curved
spacetime is extremely hard and not generally well understood therefore we will stick
to flat spacetime. We will not quantize the bosonic string but for the purpose of
completeness we rewrite the action (2.2.7) in flat space-time. We also bring back the
string Regge parameter α′ = 1/(2πT ). Therefore the Polyakov action takes the form

S = − 1

4πα′

∫
d2σ ∂ax

µ∂axµ , (2.2.8)

and the stress energy tensor reduces to

48



Tab = ∂ax
µ∂bxµ −

1

2
ηab∂cx

µ∂cxµ , (2.2.9)

with the constraint Tab = 0. Note that Weyl symmetry doesn’t lead to a constraint
but instead makes the stress energy tensor trace free.

2.3 Type II superstrings

Let us now show how to add supersymmetry to the picture and swiftly move on
to superstrings. In this section we present the covariant quantization of the type
II superstring in the RNS formalism. More detail about the bosonic string and its
quantization can be found in [52–54]

2.3.1 The classical action and equations of motion

The action. In order to move on to superstrings we need to implement local su-
persymmetry on the world sheet in a way that doesn’t break diffeomorphism or Weyl
invariance. The action for type II superstrings is given by [54,59]

S = − 1

4πα′

∫
d2σ e

(
hab∂ax

µ∂bxµ + ψ̄µρa∇aψµ − 2χ̄aρ
bρaψµ∂bxµ −

1

2
ψ̄µψµχ̄aρ

bρaχb

)
,

(2.3.1)
where the fields xµ are 2-dimensional scalars on the worldsheet but D-dimensional
vectors in space-time, the ψµ are 2-dimensional Majorana spinors on the worldsheet
but also D-dimensional vectors in space-time, χa is the Rarita-Schwinger field and ema
is the zweibein. The zweibein is related to the worldsheet metric by hab = ema e

n
b ηmn.

We have also defined ρa = eamρ
m where the ρm are the two dimensional Dirac matrices

which form a representation of the two dimensional Clifford algebra {ρm, ρn} = 2ηmn.
We can write these explicitly in a Majorana-Weyl representation as

ρ0 =

(
0 −1
1 0

)
, ρ1 =

(
0 1
1 0

)
. (2.3.2)

We also define the Dirac conjugate as λ̄ = iλ†ρ0 for any spinor λ. Since the worldsheet
is 2 dimensional the Majorana spinors can be decomposed into two 1-dimensional
Majorana-Weyl spinors

ψµ =

(
ψµ−
ψµ+

)
, (2.3.3)
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where the Majorana condition imposes that ψ∗
± = ψ±. Finally the covariant derivative

is defined as

∇aψ
µ = ∂aψ

µ +
1

4
ωmna ρmnψ

µ , (2.3.4)

with ρmn = 1
2
[ρm, ρn] and where ωmna is the spin connection but this term actually

drops out of the action so that ∇a can be replaced by ∂a.

The action (2.3.1) still has diffeomorphism invariance and Weyl invariance. It also
has local Lorentz invariance because of the zweibein and the spinors. But it has also
two additional local fermionic symmetries with respect to the bosonic action. The
first one is local supersymmetry under which xµ and ψµ form scalar multiplets and
ema and χa form a graviton multiplet. The local supersymmetry transformations are
given by

δϵx
µ = ϵ̄ψµ ,

δϵψ
µ = ρa(∂ax

µ − ψ̄µχa)ϵ ,
δϵe

m
a = 2ϵ̄ρmχa , (2.3.5)

δϵχa = ∇aϵ ,

and the second one is a supersymmetric extension of Weyl symmetry.

The Euler-Lagrange equations for the zweibein and the Rarita-Schwinger field
lead to the constraints

Ja ≡ −
πα′

e

δS

δχα
= 0 ,

Tma ≡ −
4πα′

e

δS

δeam
= 0 , (2.3.6)

where we have defined the fermionic supercurrent Ja and the stress energy tensor Tab.
This is a consequence of superdiffeomorphism invariance. Just like in the bosonic
case superWeyl invariance doesn’t lead to a constraint but instead makes the stress
energy tensor trace free and the supercurrent gamma trace free. In two dimensions the
superdiffeomorphism and superWeyl invariance have the required amount of degrees
of freedom to fix the zweibein and the Rarita-Schwinger field to ema = δma and χa = 0
respectively which again fixes the worldsheet metric to be the flat metric hab = ηab.
This is called the superconformal gauge and in this gauge the action for type II
superstrings becomes
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S = − 1

4πα′

∫
d2σ

(
∂ax

µ∂axµ + ψ̄µρa∂aψµ
)
, (2.3.7)

with constraints Tab = 0 and Ja = 0 where the expression for Tab and Ja are given by

Tab = ∂ax
µ∂bxµ −

1

2
ηab∂cx

µ∂cxµ +
1

2
ψ̄µρ{a∂b}ψµ −

1

4
ηabψ̄

µρc∂cψµ ,

Ja = −
1

2
ρbρaψ

µ∂bxµ . (2.3.8)

Just like the conformal gauge the superconformal gauge doesn’t use up all our gauge
freedom and the residual symmetries are global conformal invariance as well as global
supersymmetry

δϵx
µ = ϵ̄ψµ ,

δϵψ
µ = ρa∂ax

µϵ . (2.3.9)

Therefore the symmetries that preserve the conformal gauge condition form global
superconformal invariance. The action also has manifest global space-time Poincaré
invariance.

Equations of motion and mode expansion Applying the variational principle
to the action with respect to the fields xµ and ψµ we find the massless wave equations

∂a∂
axµ = 0 ,

ρa∂aψ
µ = 0 , (2.3.10)

as well as boundary terms. In order for the variation of the action to vanish we need
to cancel these boundary terms by implementing boundary conditions for our strings.
If we write our coordinates (σ0, σ1) = (τ, σ) then, up to conformal transformation,
we can choose without loss of generality σ ∈ [0, π[. Therefore the endpoints of the
string are σ = 0, π. We can either ask that the boundary terms vanish independently
at each endpoint or that they cancel each other out, this corresponds to open and
closed strings respectively.

For open strings, in order for the boundary terms to cancel independently we need
that ∂1x

µ = 0 and ψµ+ = ±ψµ− hold at each endpoint. But since the overall relative
sign between ψµ+ and ψµ− is a matter of convention, we may always redefine one of
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them so that ψµ+(τ, 0) = ψµ−(τ, 0) holds. Hence we only need to worry about the σ = π
endpoint. Therefore we only have two possibilities

Open strings: ∂1x
µ(τ, 0) = ∂1x

µ(τ, π) = 0 ,

Ramond: ψ+

(
τ, π) = ψ−(τ, π) , (R) (2.3.11)

Neveu-Schwarz: ψ+

(
τ, π) = −ψ−(τ, π) . (NS)

The condition on xµ is known as the Neumann boundary condition, it can be inter-
preted as saying the endpoints of the string are free. There is actually a different
condition we could impose called the Dirichlet boundary condition where the end-
points are fixed but we do not consider it in this section.

For closed strings we need that the xµ obey periodic boundary conditions and
that ψµ+ and ψµ− obey separately periodic or anti-periodic boundary conditions. This
leads to four possibilities.

Closed strings: xµ
(
τ, 0) = xµ(τ, π) ,

Ramond-Ramond: ψ+

(
τ, 0) = ψ+(τ, π) ,

ψ−
(
τ, 0) = ψ−(τ, π) , (R-R)

Ramond-Neveu-Schwarz: ψ+

(
τ, 0) = ψ+(τ, π) ,

ψ−
(
τ, 0) = −ψ−(τ, π) , (R-NS) (2.3.12)

Neveu-Schwarz-Ramond: ψ+

(
τ, 0) = −ψ+(τ, π) ,

ψ−
(
τ, 0) = ψ−(τ, π) , (NS-R)

Neveu-Schwarz-Neveu-Schwarz: ψ+

(
τ, 0) = −ψ+(τ, π) ,

ψ−
(
τ, 0) = −ψ−(τ, π) . (NS-NS)

Using these boundary conditions we can solve the equations of motion and express
the solutions in a mode expansion. We introduce lightcone coordinates σ± = τ ± σ

Closed string For the closed string the general solution can be decomposed into
independent left and right moving parts xµ(τ, σ) = xµL(σ

+)+xµR(σ
−). These are given

explicitly by
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xµL(σ
+) =

1

2
xµ0 + α′pµσ+ + i

√
α′

2

∑

n̸=0

ᾱµn
n
e−2inσ+

,

xµR(σ
−) =

1

2
xµ0 + α′pµσ− + i

√
α′

2

∑

n̸=0

αµn
n
e−2inσ−

, (2.3.13)

where reality requires that xµ0 and pµ be real and that (ᾱµn)
∗ = ᾱµ−n and (αµn)

∗ = αµ−n.
We can show that xµ0 and pµ represent the center of mass position and momentum of
the string respectively. For the spinors we have

ψµ+(τ, σ) =
∑

n∈Z
d̄µn e

−2inσ+

or ψµ+(τ, σ) =
∑

r∈Z+ 1
2

b̄µr e
−2inσ+

,

ψµ−(τ, σ) =
∑

n∈Z
dµn e

−2inσ−
or ψµ−(τ, σ) =

∑

r∈Z+ 1
2

bµr e
−2inσ−

, (2.3.14)

(R) (NS)

where the Majorana condition requires that (d̄µn)
∗ = d̄µ−n, (d

µ
n)

∗ = dµ−n, (b̄
µ
r )

∗ = b̄µ−r
and (bµr )

∗ = bµ−r. The ᾱ
µ
n, d̄

µ
n and b̄µr represent left moving oscillatory modes while the

αµn, d
µ
n and bµr represent the right moving oscillatory modes.

If we now express the stress energy tensor in light cone coordinates we find that
the T+− and T−+ components vanish identically. Therefore the only non trivial com-
ponents of the constraints are T±± = 0 and J± = 0. We can also expand the stress
energy tensor and the supercurrent into modes

T++ =
∑

n∈Z
L̄n e

−2inσ+

,

T−− =
∑

n∈Z
Ln e

−2inσ−
,

J+ =
∑

n∈Z
F̄n e

−2inσ+

or J+ =
∑

r∈Z+ 1
2

Ḡr e
−2irσ+

, (2.3.15)

J− =
∑

n∈Z
Fn e

−2inσ−
or J− =

∑

r∈Z+ 1
2

Gr e
−2irσ+

,

(R) (NS)
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where the stress energy tensor modes receive contributions from the bosonic sector
and from the fermionic sector L̄n = L̄

(b)
n + L̄

(f)
n and Ln = L

(b)
n + L

(f)
n . The bosonic

contributions are given by

L̄(b)
n =

1

2

∑

m∈Z
ᾱn−m · ᾱm ,

L(b)
n =

1

2

∑

m∈Z
αn−m · αm , (2.3.16)

while the fermionic contributions are given by

L̄(f)
n =

1

2

∑

m∈Z
(m− n

2
)d̄n−m · d̄m or L̄(f)

n =
1

2

∑

r∈Z+ 1
2

(r − n

2
)b̄n−r · b̄r ,

L(f)
n =

1

2

∑

m∈Z
(m− n

2
)dn−m · dm or L(f)

n =
1

2

∑

r∈Z+ 1
2

(r − n

2
)bn−r · br , (2.3.17)

(R) (NS)

and the supercurrent modes are given by

F̄n =
∑

m∈Z
ᾱm · d̄n−m or Ḡr =

∑

m∈Z
ᾱm · b̄r−m ,

Fn =
∑

m∈Z
αm · dn−m or Gr =

∑

m∈Z
αm · br−m , (2.3.18)

(R) (NS)

where we have set ᾱµ0 = αµ0 =
√

α′
2
pµ. We can check that L̄∗

n = L̄−n, F̄ ∗
n = F̄−n,

Ḡ∗
r = Ḡ−r and same for the unbarred modes. For the constraint to be satisfied

classically all theses modes must vanish. They correspond to an infinite number of
trivial conserved charges associated with the residual superconformal symmetry of
the worldsheet theory. Only in 2 dimension is the (super)conformal algebra infinite
dimensional.

Open string For the open string the boundary conditions impose that the right
and left movers must combine into one single standing wave solution which is given
explicitly by
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xµ(τ, σ) = xµ0 + 2α′pµτ + i
√
2α′
∑

n̸=0

αµn
n
e−inτ cos (nσ) , (2.3.19)

where reality requires again that xµ0 and pµ be real and that (αµn)
∗ = αµ−n. For the

spinors we distinguish between the two possible sectors

ψµ±(τ, σ) =
1√
2

∑

n∈Z
dµn e

−inσ±
or ψµ±(τ, σ) =

1√
2

∑

r∈Z+ 1
2

bµr e
−inσ±

, (2.3.20)

(R) (NS)

and the Majorana condition requires that (dµn)
∗ = dµ−n and (bµr )

∗ = bµ−r. Now since the
modes of the right and left moving components are the same then we have T++ = T−−
and J+ = J−. Therefore the modes of the stress energy tensor and the supercurrent
are simply given by the unbarred modes of the closed string case where the definition
of the 0 mode changes to αµ0 =

√
2α′pµ.

2.3.2 Quantization

As we can see from the action (2.3.7), from the worldsheet point of view, type II
string theory simply corresponds to a free theory of scalars xµ and spinors ψµ. As
such, canonical quantization of the theory should be relatively easy. In this section we
use the covariant quantization procedure as opposed to the light-cone quantization.
These are old quantization schemes but they provide a fast way to derive the physical
spectrum of the theory

Closed string Covariant quantization is a canonical quantization scheme which
therefore relies on the Hamiltonian. Starting from the type II superstring action in
conformal gauge one can show that the total classical worldsheet Hamiltonian is given
by H = L̄0 + L0. We also use the classical action to define the canonical conjugate
momenta. As usual with canonical quantization we then promote all functions to
operators on the Hilbert space of states and we impose the canonical commutation
relations

[xµ(τ, σ), πν1 (τ, σ
′)] = iηµνδ(σ − σ′), [ψµ(τ, σ′) , πν2 (τ, σ

′)] = iηµνδ(σ − σ′) . (2.3.21)

Using the mode expansions this gives us the following commutation relations on the
modes
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[xµ0 , p
ν
0] = iηµν ,

[αµm, α
ν
n] = [ᾱµm , ᾱ

ν
n] = mηµνδm+n,0 , (2.3.22)

{dµm, dνn} =
{
d̄µm, d̄

ν
n

}
= ηµνδm+n,0 or {bµs , bνr} =

{
b̄µs , b̄

ν
r

}
= ηµνδs+r,0 ,

(R) (NS)

all other (anti)commutators vanishing. We can see that for each component µ ̸= 0
and for each m, r > 0 these define standard bosonic and fermionic ladder operators
(āµm, ā

µ
m

†) ≡ ( 1√
m
ᾱµm,

1√
m
ᾱµ−m), (d̄

µ
m, d̄

µ
m

†) ≡ (d̄µm, d̄
µ
−m), (b̄

µ
r , b̄

µ
r
†) ≡ (b̄µr , b̄

µ
−r) and same

for the unbarred modes

[aµm, a
µ
m

†] = [āµm, ā
µ
m

†] = 1 ,

{dµm, dµm†} = {d̄µm, d̄µm†} = 1 or {bµr , bµr †} = {b̄µr , b̄µr †} = 1 , (2.3.23)

(R) (NS)

all of which are independent. Since all of them commute with αµ0 ∼ pµ we can define
a ground state |kµ; 0⟩ which is an eigenvector of pµ of eigenvalue kµ and which is
annihilated by all lowering operators aµm, ā

µ
m, d

µ
m, d̄

µ
m, b

µ
r and b̄µr , for all m, r > 0

and for all µ = 0, . . . , d − 1. Therefore the Hilbert space of states is a Fock space
generated by all the possible products of raising operators aµm

†, āµm
†, dµm

†, d̄µm
†, bµr

† and
b̄µr

† applied to the ground state form, r > 0. However our Hilbert space is not unitary,
indeed because of the Lorentzian signature of space-time the time components of the
oscillators give oscillators with the wrong sign

[a0m, a
0
m

†
] = [ā0m, ā

0
m

†] = −1 ,
{d0m, d0m

†} = {d̄0m, d̄0m†} = −1 or {b0r, b0r
†} = {b̄0r, b̄0r†} = −1 , (2.3.24)

(R) (NS)

We can use these to construct negative norm states, this indicates that our Hilbert
space is not positive definite. However we have not imposed the constraints on our
Hilbert space, we will show that this will help make our theory unitary.

First, let us remark that, contrary to the classical theory, not all our quantities
commute, therefore there can be an ambiguity in the definition of our operators. We
choose the usual normal ordering convention where all lowering operators are placed
to the right and all raising operators to the left. Almost all of the modes of the stress
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energy tensor and supercurrent only involve expressions of commuting operators and
hence all orderings are equal to the normal ordered expression. The only exceptions
are L0 and L̄0 which have expressions involving non commuting operators. Hence
their ordering is ambiguous as not all orders are equivalent. Since we cannot know
which ordering is the one appearing in the constraint we leave the possibility for an
ordering constant.

We now want impose the constraints in the quantum theory. It turns out that
imposing that all the stress energy tensor and supercurrent modes vanish on all phys-
ical states is too strong and doesn’t lead to a consistent theory. Therefore we define
instead the space of physical states as the subspace of states |ψ⟩ such that

⟨ψ|Ln |ψ⟩ = ⟨ψ| L̄n |ψ⟩ = 0 ,

⟨ψ|Fn |ψ⟩ = ⟨ψ| F̄n |ψ⟩ = 0 or ⟨ψ|Gr |ψ⟩ = ⟨ψ| Ḡr |ψ⟩ = 0 , (2.3.25)

(R) (NS)

for all n, r ̸= 0 and

⟨ψ| (L0 − a) |ψ⟩ = ⟨ψ| (L̄0 − ā) |ψ⟩ = 0 , (2.3.26)

where L0 and L̄0 are the normal ordered versions and where a and ā are normal
ordering constants. But since we have that L̄†

n = L̄−n, F̄ †
n = F̄−n, Ḡ†

r = Ḡ−r (and
same for the unbarred modes) this means we can restrict the physical state condition
to the positive indices n, r ≥ 0. Hence the physical state condition is

(L̄0 − āR) |ψ⟩ = 0 or (L̄0 − āNS) |ψ⟩ = 0 ,

(L0 − aR) |ψ⟩ = 0 or (L0 − aNS) |ψ⟩ = 0 ,

F̄n |ψ⟩ = 0 or Ḡr |ψ⟩ = 0 , (2.3.27)

Fn |ψ⟩ = 0 or Gr |ψ⟩ = 0 ,

(R) (NS)

for all n, r > 0 and for all physical state |ψ⟩. Actually one can show that F 2
0 = L0

and F̄ 2
0 = L̄0. This already implies that aR = āR = 0. We can also show that

the commutation relations imply that the modes follow the super-Virasoro algebra.
These are
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[L̄n, L̄m] = (n−m)L̄n+m +
D

8
n(n2 − 1)δn+m,0 ,

[Ln, Lm] = (n−m)Ln+m +
D

8
n(n2 − 1)δn+m,0 ,

[L̄n, F̄m] =
(n
2
−m

)
F̄n+m or [L̄n, Ḡr] =

(n
2
− r
)
Ḡn+r ,

[Ln, Fm] =
(n
2
−m

)
Fn+m or [Ln, Gr] =

(n
2
− r
)
Gn+r , (2.3.28)

{F̄n, F̄m} = 2L̄n+m +
D

2
n2δn+m,0 or {Ḡr, Ḡs} = 2L̄r+s +

D

2

(
r2 − 1

4

)
δr+s,0 ,

{Fn, Fm} = 2Ln+m +
D

2
n2δn+m,0 or {Gr, Gs} = 2Lr+s +

D

2

(
r2 − 1

4

)
δr+s,0 ,

(R) (NS)

where D is the space-time dimension. All other commutators vanish. The even part
of this superalgebra is called the Virasoro algebra. It is the unique central extension
of the Witt algebra, the algebra of the 2-dimensional conformal group. Therefore
the central charge in the Virasoro algebra represents a conformal anomaly. The odd
parts of this algebra represent the two minimal N = 1 supersymmetric extension of
the Virasoro algebra. We notice that the charges with −1 ≤ n, r ≤ 1 generate closed
subalgebras insensitive to the central charge, these represent global super-conformal
transformations which remain unbroken. We also note that the barred and unbarred
generators form two independent algebras.

We can come back to our initial concern that our theory wasn’t unitary. Does
imposing the physical state condition allow us to build unitary representations of
the Poincaré algebra? There is a theorem called the no-ghost theorem (because
negative norm states are called ghosts, not to confuse with ghost fields of the BRST
cohomology used to gauge fix path integrals which are fields obeying the wrong spin
statistics and which decouple from every amplitude) which states that the subspace
of physical states is unitary if and only if

D = 10 (2.3.29)

and




aR = āR = 0 ,

aNS = āNS =
1

2
,

(2.3.30)
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Therefore, if we restrict to the subspace of physical states our theory is indeed unitary
and we have unitary representations of the Poincaré algebra that we can interpret as
particles. The fact that the space time dimension of the theory is constrained is a
typical feature of supersymmetric theories but that it is uniquely fixed is pretty much
unique to string theory.

In the covariant quantization procedure we have manifest Poincaré covariance and
it is imposing unitarity which leads to fixing the space-time dimension and normal or-
dering constant. It is interesting to note that in the light cone quantization procedure
it is unitarity that is manifest and imposing Poincaré covariance fixes the dimension
and normal ordering constants to these same values. This means that it is the conflict
between unitarity and causality which uniquely fixes string theory, this is of course
reminiscent to anyone practicing S-matrix bootstrap.

Open string In the open string case the total classical worldsheet hamiltonian is
given by H = L0. Then everything else is given by just the unbarred sector of the
closed string. Indeed one can think of the right and left moving sectors of the closed
string as forming two independent copies of the open string.

2.3.3 Mass shell formula

Closed string If we add and subtract the first two constraints in (2.3.27) we get

(L0 + L̄0 − a− ā) |ψ⟩ = 0 , (2.3.31)

(L0 − L̄0 − a+ ā) |ψ⟩ = 0 . (2.3.32)

Since H = L0 + L̄0 − a− ā is the quantum worldsheet Hamiltonian which generates
time translations on the worldsheet the first constraint can therefore be interpreted as
an equivalent of the Wheeler-DeWitt equation on the worldsheet. It says that there is
no physical significance to the worldsheet time coordinate because the non gauge fixed
theory has worldsheet time diffeomorphism invariance. Similarly P = L0− L̄0−a+ ā
is the worldsheet momentum which generates space translations on the worldsheet.
Therefore the second constraint says that there is no physical significance to the
worldsheet space coordinate because the non gauge fixed theory has worldsheet space
diffeomorphism invariance. Let us unpack these constraints, we can write
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L̄(b)
n =

1

2
ᾱ0 · ᾱ0 +

∑

m≥1

ᾱ−m · ᾱm ,

L(b)
n =

1

2
α0 · α0 +

∑

m≥1

α−m · αm . (2.3.33)

Let us define

N̄ (b) ≡
∑

m≥1

ᾱ−m · ᾱm =
∑

m≥1

mā†m · ām ,

N (b) ≡
∑

m≥1

α−m · αm =
∑

m≥1

ma†m · am , (2.3.34)

where we have introduced the ladder operators. Similarly we can define

N̄ (f) ≡ L̄
(f)
0 =

∑

m≥1

m d̄†m · d̄m or N̄ (f) ≡ L̄
(f)
0 =

∑

r+ 1
2
≥1

r b̄†r · b̄r ,

N (f) ≡ L
(f)
0 =

∑

m≥1

md†m · dm or N (f) ≡ L
(f)
0 =

∑

r+ 1
2
≥1

r b†r · br , (2.3.35)

(R) (NS)

Therefore we see that N̄ ≡ N̄ (b) + N̄ (f) and N ≡ N (b) + N (f) correspond to the
number operators in the left and right moving sectors respectively. We can see that
in the NS sector the number operator can have half integer eigenvalues. Recalling

that ᾱµ0 = αµ0 =
√

α′
2
pµ the second constraint (2.3.32) is just the matching condition

(
N̄ − ā

)
|ψ⟩ = (N − a) |ψ⟩ , (2.3.36)

and if we define the mass operator M2 ≡ −pµpµ the first constraint (2.3.31) is the
mass-shell condition which gives the string spectrum

M2 |ψ⟩ = 4

α′
(
N̄ − ā

)
|ψ⟩ = 4

α′ (N − a) |ψ⟩ . (2.3.37)

We see that for all sectors except (NS-NS) the matching conditions prevent the mass
operator from being negative. For the (NS-NS) sector however the ground state has
negative mass M2 = −2/α′, it is a tachyon. This usually suggests some inconsistency
having to do with causality in our theory or at least that the vacuum vacuum is
unstable. We will see how we can resolve this by introducing a consistent projection
of the spectrum of our theory.
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Open string For the open string there are no independent left and right movers
therefore there is no matching condition. Furthermore the mass-shell condition is
slightly different because we have αµ0 =

√
2α′pµ therefore

M2 |ψ⟩ = 1

α′ (N − a) |ψ⟩ . (2.3.38)

Again in the (NS) sector nothing prevents the mass operator from having negative
eigenvalues and in fact the ground state is again tachyonic M2 = −1/2α′.

2.3.4 Spectrum

We will now find the particle spectrum of type II superstring theory, that is, find
irreducible unitary representations of the 10-dimensional Poincaré group that make
up the space of physical states. We will want to focus on the massless spectrum i.e.
the particles of eigenvalue M2 = 0 because in the field theory limit, when α′ → 0,
all other modes get infinitely high masses and decouple from the theory. Therefore
the effective field theory of type II superstring theory will only capture the massless
spectrum. Since we have seen that the closed string can be obtained from the tensor
product of two copies of the open string we start by deriving the spectrum of the
open string.

Open string Let us start by considering the spectrum of the (R) sector. We can
easily see that

[dµ0 , NR] = 0 , (2.3.39)

and therefore

[dµ0 ,M
2] = 0 , (2.3.40)

for µ = 0, . . . , 9. Therefore the dµ0 stabilize the eigenspaces of M2. Let |ψ, a⟩ be a
basis of some eigenspace of M2. This means that each dµ0 maps basis states to some
linear combination of themselves

dµ0 |ψ, a⟩ = (Aµ) b
a |ψ, b⟩ , (2.3.41)

for some matrix Aµ. However we can see from the commutation relations (2.3.22)
that the 0-modes dµ0 satisfy

{dµ0 , dν0} = ηµν . (2.3.42)
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Therefore we can see that the
√
2 dµ0 define a representation of the 10-dimensional

space-time Clifford algebra on the Hilbert space. Hence the
√
2Aµ must also form

a matrix representation of the 10-dimensional space-time Clifford algebra, we can
therefore see that Aµ = 1√

2
γµ where γµ are the ten dimensional gamma matrices and

dµ0 |ψ, a⟩ =
1√
2
(γµ) b

a |ψ, b⟩ . (2.3.43)

Hence the |ψ, a⟩ must form a representation on which the Clifford algebra acts, they
are 10-dimensional spacetime spinors. By the spin-statistics theorem this also means
that they are space-time fermions. We have therefore shown that ll states in the (R)
sector are spacetime fermions.

In particular the ground state extends into a Dirac spinor representation |a⟩R ≡
|kµ; 0, a⟩R. However we are looking for irreducible representations and we know that
Dirac spinors are not irreducible in 10 dimensions where we can impose both a Ma-
jorana and Weyl condition simultaneously. Therefore we can decompose the ground
state into two inequivalent irreducible representations |+, a⟩R and |−, a⟩R correspond-
ing to the right and left chirality representations. These finally form irreducible uni-
tary representations of the Poincaré group and can thus be interpreted as particles.
All other states of the (R) sector will be obtained by acting on the ground state with
the (R) raising operators aµm

† and dµn
† and since they are 10 dimensional space-time

vectors then all physical states in the (R) spectrum will be tensor products of vector
representations with a Majorana-Weyl spinor representation which can then be de-
composed into direct sums of irreducible representations.

In the (NS) sector the ground state |0⟩NS ≡ |kµ; 0⟩NS isn’t degenerate. This
means that it forms the trivial scalar representation of the Poincaré group. All other
states of the (NS) sector will be obtained by acting with the (NS) raising operators
aµ†m and bµ†r and since they are 10 dimensional space-time vectors then all physical
states in the (NS) spectrum will be tensor products of vector representations which
can then be decomposed into direct sums of irreducible representations. This means
that there will only be tensor representations and no spinor representations. By the
spin-statistics theorem this also means that they will all be space-time bosons. We
have therefore shown that all states in the (NS) sector are spacetime bosons.

However we have seen that the ground state of the (NS) sector is actually a
tachyon which indicates that the theory is still not fully consistent. We will now
see how we can remedy that by applying the so called GSO projection [25]. Indeed
superstring theories admit a consistent truncation of their spectrum which is necessary
for consistency of the interacting theory. Let us define a projector PGSO which is given
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in the (NS) sector by

PGSO ≡
1

2

(
1− (−1)N(f)

)
, (NS) (2.3.44)

where N (f) is the fermionic number operator. This means that we only keep states
with an odd number of bµr

† oscillator excitations and we remove those with an even
number. This automatically gets rid of the tachyonic ground state |0⟩NS. Now the
new ground state is the spacetime vector bµ1

2

† |0⟩NS which has mass M2 = 0. In fact

the GSO projection forces the number operator N to only take half integer values,
hence from the mass shell formula we can see that the spectrum of allowed physical
masses will be multiples of 1/α′, i.e.

M2 = 0,
1

α′ ,
2

α′ . . . (NS) (2.3.45)

In the (R) sector the GSO projector is defined as

P±
GSO ≡

1

2

(
1± γ∗(−1)N

(f)
)
, (R) (2.3.46)

where γ∗ is the 10 dimensional chirality operator such that

(γ∗)
b
a |±, b⟩R = ± |±, a⟩R . (2.3.47)

In particular, since N (f) |±, a⟩R = 0, this only keeps one of the chirality ground states.
Here this is merely a matter of conventions and hence we choose P+

GSO in order to
keep |+, a⟩R. From the mass shell formula we can see that the spectrum of allowed
physical masses will also be multiples of 1/α′, i.e.

M2 = 0,
1

α′ ,
2

α′ . . . (R) (2.3.48)

We can now give the massless spectrum of the type II open superstring. In the
(R) sector we have seen that the ground state |+, a⟩R has mass M2 = 0 and that it
is a Majorana-Weyl spinor which is already in an irreducible unitary representation
of the Poincaré group (actually it is a finite dimensional non-unitary representation
of the Lorentz group but one can show that it indeed leads to an irreducible unitary
representation of the Poincaré group on the Hilbert space with little group SO(8)
as for all massless 10 dimensional particles, the same is true for all other particles
that follow). Therefore it describes one particle and cannot be further decomposed.
Similarly in the (NS) sector the ground state bµ1

2

† |0⟩NS has mass M2 = 0 and it is

a vector which is also an irreducible unitary representation of the Poincaré group.
Therefore the whole massless spectrum of the open string is made up of two particles
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Sector State Boson/Fermion Field limit

(R) |+, a⟩R fermion λ+

(NS) bµ− 1
2

|0⟩NS boson Aµ

Table 2.1: Massless spectrum of the open type II superstring

One can see that there is an equal number of bosonic and fermionic degrees of free-
dom and hence that the massless spectrum forms a spacetime N = 1 massless gauge
supermultiplet. One can actually show that after GSO projection the entire spec-
trum, including the massive spectrum, of the open string theory is supersymmetric.
This is remarkable as the theory we started from only has worldsheet supersymmetry
but it turns out that it also has space-time supersymmetry as well.

Closed string We can now recover the closed string spectrum by taking the tensor
product of two copies of the open string, one for the right moving sector and one
for the left moving sector and then imposing the suitable matching condition. The
tensor products of two Poincaré representations in the open string sector then further
decomposes into irreducible representations in the closed string sector. One can also
show analogously to the case of the open string that all states in the (R-R) and (NS-
NS) sectors are spacetime bosons and all states in the (R-NS) and (NS-R) sectors are
spacetime fermions.

The GSO projection is also performed independently on the right and left movers
by applying PGSO ⊗ PGSO. However we can see that in the (R-R) sector we now
have two inequivalent choices. Indeed, depending on if we keep the same chirality
ground states or opposite chirality ground states for the left and right movers we get
physically inequivalent theories. In other words we can apply the P+

GSO ⊗ P−
GSO or

P+
GSO⊗P+

GSO projectors (the other two choices being equivalent to one of those two).
The two possible string theories one can construct this way are called type IIA and
type IIB. Let’s construct their spectrum. One can show that in both theories and
in every sector the mass shell formula states that the spectrum of allowed physical
masses will also be multiples of 4/α′, i.e.

M2 = 0,
4

α′ ,
8

α′ . . . (2.3.49)
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Type IIA superstring: This is the theory one gets by keeping ground states of
opposite chirality in the (R-R) sector, in other words, by applying P+

GSO ⊗ P−
GSO. In

the (NS-NS) sector the ground state bµ1
2

† |0⟩NS⊗ bν1
2

† |0⟩NS has massM2 = 0. However

it is not irreducible, it decomposes into a spin 2 (symmetric traceless) representation,
a 2-form (antisymmetric) representation and a scalar (trace) representation. In the
(R-NS) sector the massless ground state is |+, a⟩R ⊗ bµ1

2

† |0⟩NS it decomposes into a

spin 3/2 and a spin 1/2 Majorana-Weyl representation. In the (NS-R) sector the
ground state is bµ1

2

† |0⟩NS ⊗ |−, a⟩R it also decomposes into a spin 3/2 and a spin 1/2

Majorana-Weyl representation but of opposite chirality to the (R-NS) sector. Finally
in the (R-R) sector the ground state is |+, a⟩R ⊗ |−, b⟩R, it decomposes into a three
form and a vector representation.

Sector State Boson/Fermion Field limit

(NS-NS) bµ1
2

† |0⟩NS ⊗ bν1
2

† |0⟩NS boson gµν , Bµν , ϕ

(R-NS) |+, a⟩R ⊗ bµ1
2

† |0⟩NS fermion ψ+
µ , λ

−

(NS-R) bµ1
2

† |0⟩NS ⊗ |−, a⟩R fermion ψ−
µ , λ

+

(R-R) |+, a⟩R ⊗ |−, b⟩R boson Cµνρ, Cµ

Table 2.2: Massless spectrum of the closed type IIA superstring

Type IIB superstring: This is the theory one gets by keeping ground states of
same chirality in the (R-R) sector, in other words, by applying P+

GSO ⊗ P+
GSO. The

(NS-NS) sector is the same as for type IIA, the ground state bµ1
2

† |0⟩NS ⊗ bν1
2

† |0⟩NS
has mass M2 = 0 and it decomposes into a spin 2 representation, a 2-form represen-
tation and a scalar representation. In the (R-NS) sector the massless ground state
is |+, a⟩R ⊗ bµ1

2

† |0⟩NS, it decomposes into a spin 3/2 and a spin 1/2 Majorana-Weyl

representation. In the (NS-R) sector the ground state is bµ1
2

† |0⟩NS ⊗ |+, a⟩R, it also

decomposes into a spin 3/2 and a spin 1/2 Majorana-Weyl representation and of same
chirality as the (R-NS) sector so that those two sectors are actually the same. Finally
in the (R-R) sector the ground state is |+, a⟩R ⊗ |+, b⟩R, it decomposes into a self
dual four form, a two form and a scalar representation.

65



Sector State Boson/Fermion Field limit

(NS-NS) bµ1
2

† |0⟩NS ⊗ bν1
2

† |0⟩NS boson gµν , Bµν , ϕ

(R-NS) |+, a⟩R ⊗ bµ1
2

† |0⟩NS fermion ψ+
µ , λ

−

(NS-R) bµ1
2

† |0⟩NS ⊗ |+, a⟩R fermion ψ
′+
µ , λ

′−

(R-R) |+, a⟩R ⊗ |+, b⟩R boson Cµνρσ, Cµν , C0

Table 2.3: Massless spectrum of the closed type IIB superstring

In both cases one can show that the massless field content of the closed string
forms a spacetime N = 2 massless graviton supermultiplet. One can also show that
the massive spectrum is supersymmetric (even though their ground state differ the
massive states of type IIA and type IIB string theory are actually all the same).
Note that because type II string theory possesses N = 2 supersymmetry this actually
prevents the theory from containing open strings as these only have N = 1 super-
symmetry. Therefore type II superstring theory only contains closed strings. One
might think that there must also exist a theory containing only type II open strings
and no closed strings however this theory would be inconsistent because open strings
can always close to make closed strings. Actually if one includes D-branes in type
II string theory then there can be open strings whose endpoints are attached to the
D-branes, therefore these have Dirichlet boundary conditions instead of Neumann
boundary conditions. This is possible because BPS D-branes typically break half of
the supersymmetry of the theory. However D-branes are non perturbative objects
and therefore don’t appear in the perturbative spectrum of the theory.

Here we have used the RNS formalism to construct the superstring where we
impose supersymmetry on the worldsheet and we recover space-time supersymmetry
after GSO projection. There is another formalism that can be used which is called the
GS formalism where space-time supersymmetry is imposed from the beginning, one
can show that we recover the same theory without having to impose GSO projection,
the two formalisms are thus equivalent. However the GS formalism is much harder
to quantize and to use in practice.
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2.4 Other superstring theories

We have seen that type II superstrings leads to two consistent superstring theories.
These are the only two maximally supersymmetric string theories. However they are
not the only consistent string theories.

Type I superstring The type I superstring is derived by applying a so-called
orientifold projection on the type IIB superstring. This means quotienting the theory
by the Z2 symmetry that exchanges the orientation of the string. This breaks half
of the supersymmetry and therefore therefore allows open strings. One thus gets
a theory of unoriented closed and open strings which only has N = 1 spacetime
supersymmetry. In the open string sector, anomaly cancelation singles out SO(32)
as the only possible gauge symmetry group.

Heterotic superstring The heterotic superstring is constructed by exploiting the
independence between left and right movers in the closed string sector. Here the left
movers are given a bosonic string structure and the right movers are given a type II
superstring structure. The spacetime dimension is still 10 because we only add 10
xµ coordinate fields (µ = 0, . . . , 9). But since the left moving sector is bosonic the
central charge of the Virasoro algebra needs to be 26 and not 10. In order to remedy
this we add 32 fermionic left movers so that c = 10+32/2 = 26. This is known as the
fermionic construction of the heterotic superstring. Note that there is an equivalent
bosonic construction which uses 26 left moving coordinates where it appears that the
spacetime dimension is different in the right moving and left moving sector, however
this formalism leads to the same theory as the fermionic construction which clearly
has 10 spacetime dimensions. We can see that heterotic string theory only contains
closed strings because there are no independent right and left movers for open strings.
The action for the heterotic string in conformal gauge is given by

S = − 1

2πα′

∫
d2σ

(
2∂+x

µ∂−xµ + iψµ∂+ψµ + iλA∂−λ
A
)
, (2.4.1)

where λA are 1-dimensional worldsheet Majorana-Weyl spinors but are spacetime
scalars, A = 1, . . . , 32. The additional 16 coordinates in the left moving sector are
compactified on a torus defined by a 16-dimensional even self dual lattice. There are
only two such lattices which lead to two different theories

Heterotic SO(32) superstring The first choice is to use the root lattice of the
Lie group Spin(32)/Z2 which is often just abbreviated to SO(32) because Spin(32) is
the four-fold cover of SO(32). The resulting theory has N = 1 supersymmetry. The
compactification lattice give the theory an SO(32) gauge symmetry.
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Heterotic E8 × E8 superstring The second choice is to use the root lattice of
the Lie group E8 × E8. The resulting theory also has N = 1 supersymmetry. Its
compactification lattice give it an E8 × E8 gauge symmetry. Historically this was
phenomenologically very interesting because the gauge group of the standard model
fits inside E8 through a nice chain of embeddings

SU(3)× SU(2)× U(1) ⊂ SU(5) ⊂ SO(10) ⊂ E6 ⊂ E7 ⊂ E8 . (2.4.2)

The various Lie groups that appear in this sequence are precisely the ones that have
been the most studied as candidates for grand unification symmetry groups. This is
why initially many Calabi-Yau compactifications were aimed at reducing the heterotic
E8 × E8 superstring down to 4 dimensions. Today however this motivation is seen
as less important as grand unification theories have been mostly abandoned and we
have now understood how to get gauge groups from type II theories via singularities.

2.5 Supergravity limit

It is a fact that all string theories contain a massless spin 2 field. Therefore, as we have
seen, it can be shown from very general arguments that the low energy limit must be
that of general relativity [8–11] and therefore this field must be the graviton. One can
also compute that the low energy limit of the graviton amplitudes calculated within
string theory and check that they reproduce exactly scattering amplitudes calculated
with general relativity. There is a third way to see that string theory is indeed a theory
of quantum gravity that reproduces general relativity at low energies. Indeed, from
the beginning we have quantized our strings around flat space-time. Even though
this is much harder we can also choose to quantize them in a curved background,
at least formally. If we focus on the bosonic sector of the theory this is achieved by
using the form (2.2.7) of the Polyakov action where the flat metric is replaced by a
generic metric gµν . This is like a non-linear sigma model with the metric gµν acting
as a coupling function. And the condition that this new action is still invariant under
worldsheet conformal transformation at the quantum level is that the beta functional
for the metric vanishes. One can show that at the one loop level this condition is
exactly equivalent to the metric obeying the Einstein equation for general relativity

0 = βµν(g) = α′Rµν . (2.5.1)

One can even add other background field corresponding to the other massless
bosonic fields of the spectrum (these are the only fields which can form a coherent con-
densate and propagate at long distances and therefore have a classical background).
The particle content of the (NS-NS) sector is actually universal to all string theories,
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these are called the graviton, the Kalb-Ramond form and the dilaton. Therefore we
can couple the action to the dilaton and the Kalb-Ramond background fields to get

S = − 1

4πα′

∫
d2σ

(√
−hhab∂axµ∂bxνgµν + εabBµν∂ax

µ∂bx
ν +
√
−hα′ϕR

)
, (2.5.2)

where R is the worldsheet Ricci scalar. Therefore we can see that The Kalb-Ramond
form can be interpreted as some sort of generalised gauge field coupled to the strings.
Now the condition that the one loop beta functionals vanish is given by [61–64]

0 = βµν(g) = α′Rµν + 2α′∇µ∇νϕ−
α′

4
HµσρH

σρ
ν ,

0 = βµν(B) = −α
′

2
∇ρHρµν + α′∇ρϕHρµν , (2.5.3)

0 = β(ϕ) = −α
′

2
∇µ∇µϕ+ α′∇µϕ∇µϕ− α′

24
HµνρH

µνρ ,

where Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν is the field strength associated to the Kalb
Ramond field. These correspond to the simplest equations of motion one can write
involving a graviton, a two form and a scalar. If one repeats the same procedure
with the other massless bosonic fields of the (R-R) sectors one would find appearing
the equations of motion of the bosonic sector of various supergravity theories in ten
dimensions. These are the low energy field theory limit of string theory. Actually
these equations of motion give an action where the dilaton is non minimally coupled
to gravity, this is the so-called string frame. One can perform a conformal field redef-
inition to recover a canonically normalised Einstein-Hilbert term, this is the so-called
Einstein frame.

For the rest of this thesis and contrary to the previous chapter we define the
D-dimensional the gravitational coupling constant by κ2D = 8πG and we define the
D-dimensional Planck length by 2κ2D = (2π)D−3lD−2

P .

2.5.1 Classification of supergravity theories

Supergravity is, at its core, a supersymmetric version of Einstein’s theory of general
relativity. However it is more than that. If general relativity can be seen as the gauge
theory of local Poincaré symmetry, then supergravity can be seen as the gauge theory
of local superPoincaré symmetry. Therefore, just like the graviton is the gauge field
for Poincaré invariance the gravitino field, the graviton’s supersymmetric partner, can
be seen as the gauge field for supersymmetry invariance. See [65] for a comprehensive
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introduction to supergravity.

Supergravity theories are invariant under local supersymmetry. Therefore their
field content must form a supermultiplet. Since this is a theory of gravity we require
that the theory contains at least the graviton supermultiplet, that is, a supermultiplet
containing a massless spin 2 particle. And since no consistent theory containing a
massless particle with spin higher than 2 is known we require that the theory con-
tains no such particles in its supermultiplet. One can show that this implies that our
theory can have no more that 32 real supercharges components.

This result holds in any dimension but can easily be checked in 4 dimensions.
Indeed, in 4 dimensions, we know that for each supercharge we add a particle with
helicity higher by 1/2 to the massless supermultiplet. Therefore starting from a par-
ticle with helicity −2 it takes 8 supercharges to get to a particle with helicity 2. This
forms a massless supermultiplet that is automatically CPT invariant, contains the
graviton and no particle with higher spin. Anymore supercharges would necessarily
add particles of spin higher than 2 to the supermultiplet. Therefore 8 supercharges is
the maximum one can have in 4 dimensions. However, one is always required to use
minimal spinor representations for supercharges, in 4 dimensions we can use Majo-
rana or Weyl spinors, both of which have 4 real components. Therefore the maximum
number of real supercharges components is indeed 8× 4 = 32.

This also justifies why the result holds in other dimensions. Indeed if we could
find a consistent supergravity theory with more that 32 real supercharges components
in some dimension higher than 4 we could always dimensionally reduce the theory to
4 dimensions by compactifying on a torus. This doesn’t break any supersymmetry,
therefore our dimensionally reduced theory would define a consistent four dimensional
theory with more that 32 supercharge components, but this would necessarily include
some particle with spin higher than 2 and we know that is not possible. Hence, since
for any dimension greater than 11 the minimal spinor representation has more than
32 components then the maximal dimension in which supergravity can exist is 11.

Up to the non gravitational sector, it is possible to classify the supergravity the-
ories by the local supersymmetry algebra they are based on. For each number of
supercharge N we will get a different supergravity theory. When the only minimal
spinor representation is Weyl or Majorana-Weyl (in dimensions 6 and 10 for exam-
ple) we have to distinguish the possible chiralities of the supercharges, hence we write
N = (p, q) where we have p supercharges of one chirality and q supercharges of the
other chirality. Note however that the SUSY algebra N = (p, q) is equivalent to the
SUSY algebra N = (q, p). When both Majorana and Weyl represenations are avail-
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able then both descriptions are equivalent and hence we do not have to distinguish
by distribution of chiralities since this distinction doesn’t apply for Majorana spinors.

However not all supersymmetry algebras with less that 32 supercharge compo-
nents lead to independent supergravity theories. For example in 6 dimensions the
N = (3, 1), N = (4, 0) and N = (3, 0) theories don’t contain a graviton but instead a
more complicated tensor field, no non-linear action is known for them and thus they
are generally not considered to exist as supergravity theories. In 4 dimensions the
N = 7 is automatically equivalent to the N = 8 theory, thus it is not included as an
independent supergravity theory. The independent supergravity theories are given in
table 2.4 [65].

Dim 32 24 20 16 12 8 4

11
M
N = 1

10
IIA
(1, 1)

IIB
(2, 0)

I
(1, 0)

9 N = 2 N = 1

8 N = 2 N = 1

7 N = 2 N = 1

6 (2, 2) (2, 1) (1, 1) (2, 0) (1, 0)

5 N = 4 N = 3 N = 2 N = 1

4 N = 8 N = 6 N = 5 N = 4 N = 3 N = 2 N = 1

Table 2.4: Classification of supergravity theories in dimensions greater than 4. Each
entry represents the possibility to have supergravity theories in a specific dimension
with the number of real supersymmetries indicated in the top row.

Note that in 7 and 5 dimensions, where symplectic-Majorana spinors are used
the supergravity theories are often referred to as N = 2, 4, 6, 8 for 5 dimensions and
N = 2, 4 for 7 dimensions. Thus effectively counting twice as less components per
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supercharge. The supergravity theories in dimensions 10 and 11 have special names
because they are the low energy limits of string theories. Indeed D = 11 supergravity
is the low energy limit of M-theory, type IIA and type IIB supergravity are the
low energy limits of type IIA and type IIB string theory respectively while type I
supergravity is the low energy limit of the gravitational sector of type I and heterotic
string theories. Let us quickly review their field contents and the bosonic parts of
their actions.

2.5.2 D = 11 Supergravity

Eleven dimensional supergravity was discovered in 1978 by Cremmer, Julia and
Scherk [66]. The field content of 11 dimensional supergravity theory can be found by
matching bosonic and fermionic degrees of freedom, it is surprisingly simple, we have

gµν , ψµ , Aµνρ , (2.5.4)

where gµν is the graviton, ψµ is the gravitino and Aµνρ is a three form. This forms a
massless N = 1 graviton multiplet. The bosonic part of the action is given by

S =
1

2κ211

∫
d11x
√−g

(
R− 1

2
|F4|2

)
− 1

12κ211

∫
A3 ∧ F4 ∧ F4 , (2.5.5)

where F4 = dA3 is the field strength tensor associated with the three form. The
eleven dimensional coupling constant is given in terms of the eleven dimensional
Planck length by 2κ211 = (2π)8l9P .

Other than the fact that this is the maximal dimension in which we can have su-
pergravity eleven dimensional supergravity is also special because of its uniqueness.
Nothing can be added and it cannot be modified. The only tunable parameter of
the theory is the eleven dimensional gravitational constant. Since its discovery eleven
dimensional supergravity has sparked a lot of interest, indeed many interesting max-
imally supersymmetric supergravity theories can be obtained from it by dimensional
reduction such as N = 8 supergravity and SO(8) gauged supergravity in four dimen-
sions and type IIA supergravity in ten dimensions. Eleven dimensional supergravity
is also the low energy limit of the massless sector of M-theory which is also believed
to be unique and containing no free dimensionless parameters [30].
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2.5.3 Type IIA supergravity

The field content of type IIA supergravity is

gµν , ψ+
µ , Bµν , λ− , ϕ ,

ψ−
µ , Cµνρ , Cµ , λ+ , (2.5.6)

where ψ+
µ and ψ−

µ are gravitini of opposite chirality, Bµν is the Kalb-Ramond two form,
λ− and λ+ are spinors of opposite chirality called the dilatini, ϕ is a scalar called the
dilaton, Cµνρ is a three form and Cµ is a one form. This is exactly the massless field
content of type IIA string theory, it forms a massless N = (1, 1) graviton multiplet.
Type IIA supergravity can be found as the dimensional reduction of 11-dimensional
supergravity on a circle.

String frame The bosonic part of the action in string frame is given by

S =
1

2κ210

∫
d10x
√−g

(
e−2ϕ

(
R + 4|∇ϕ|2−1

2
|H3|2

)
− 1

2
|F2|2−

1

2
|F̃4|2

)

− 1

4κ210

∫
B2 ∧ F4 ∧ F4 , (2.5.7)

where H3 = dB2, F2 = dC1, F4 = dC3, F̃4 = F4 + C1 ∧H3. This is the action which
reproduces the vanishing of the one loop beta functionals (2.5.3) as its equations of
motion if one also includes the (R-R) fields of type IIA string theory, therefore it is
indeed the low energy limit of type IIA string theory. This allows us to relate the
gravitational coupling constant to the string length by 2κ210 = (2π)7l8sg

2
s where we

have assumed the we have absorbed the vacuum expectation value ϕ0 of the dilaton
into the coupling constant and defined the string coupling gs = eϕ0 . By definition
this means that the ten dimensional Planck length is related to the string length by
l8P = l8sg

2
s .

Einstein frame The action (2.5.7) reproduces the right low energy limit of type
IIA string amplitudes but we can see that it contains non minimal gravitational
couplings with the dilaton and the dilaton kinetic term has the wrong sign. We can
recover a canonically normalised action by the following conformal field redefinition

g
(E)
µν = e−

ϕ
2 g

(s)
µν . Therefore the bosonic part of the action in Einstein frame is given by
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S =
1

2κ210

∫
d10x
√−g

(
R− 1

2
|∇ϕ|2−1

2
e−ϕ|H3|2−

1

2
e

3
2
ϕ|F2|2−

1

2
e

ϕ
2 |F̃4|2

)

− 1

4κ210

∫
B2 ∧ F4 ∧ F4 . (2.5.8)

This action can be found by dimensional reduction of eleven dimensional super-
gravity with the ansatz

ds211 = e
4
3
ϕ(dθ + Cµdx

µ)2 + e−
ϕ
6 ds210 . (2.5.9)

Therefore the coupling constants of 11-dimensional supergravity and type IIA super-
gravity are related by κ211 = 2πRκ210 where R is the radius of the compactified circle.
This explains why the field content of type IIA supergravity is non chiral because
dimensional reduction always gives achiral theories.

2.5.4 Type IIB supergravity

The field content of type IIB supergravity is

gµν , ψ+
µ , Bµν , λ− , ϕ ,

ψ
′+
µ , Cµνρσ , Cµν , λ

′− , C0 , (2.5.10)

where ψ+
µ and ψ

′+
µ are gravitini of the same chirality, λ+ and λ

′+ are dilatini of the
same chirality, Cµνρσ is a self dual four form, Cµν is a two form and C0 is a scalar.
This is exactly the massless field content of type IIB string theory, it forms a massless
N = (2, 0) graviton multiplet.

String frame Because of the self duality of the four form an action for type IIB
supergravity is not strictly well defined as the kinetic term for the four form would
identically vanish. This would be a problem for a path integral formulation of type IIB
supergravity however if the purpose is only to find a classical action which reproduces
the vanishing of the one loop beta functionals (2.5.3) as its equations of motion (if
one also includes the (R-R) fields of type IIB string theory) then it is not a problem
to simply supplement the equations of motion with the self duality of the four form
as a constraint. Therefore the bosonic part of the action in string frame is given by

S =
1

2κ210

∫
d10x
√−g

(
e−2ϕ

(
R + 4|∇ϕ|2−1

2
|H3|2

)
− 1

2
|F1|2−

1

2
|F̃3|2−

1

4
|F̃5|2

)

− 1

4κ210

∫
C4 ∧H3 ∧ F3 , (2.5.11)
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where H3 = dB2, F1 = dC0, F3 = dC2, F5 = dC4, F̃3 = F3 − C0H3 and F̃5 =
F5 − 1

2
C2 ∧ H3 +

1
2
B2 ∧ F3. The self duality condition is imposed as a constraint

separately

F̃5 = ⋆F̃5 . (2.5.12)

Without this self duality constraint the number of bosonic and fermionic degrees of
freedom in the action do not match meaning that it is not properly supersymmetric.

One can check that type IIB supergravity dimensionally reduced on a circle and
type IIA supergravity dimensionally reduced on a circle give the same 9 dimensional
theory. This is because there is only one maximally supersymmetric theory in 9
dimensions. In the string theory limit this comes from T-duality.

Einstein frame The bosonic part of the action in Einstein frame is given by

S =
1

2κ210

∫
d10x
√−g

(
R− 1

2
|∇ϕ|2−1

2
e−ϕ|H3|2−

1

2
e2ϕ|F1|2−

1

2
eϕ|F̃3|2−

1

4
|F̃5|2

)

− 1

4κ210

∫
C4 ∧H3 ∧ F3 . (2.5.13)

If we define the axio-dilaton as τ = C0 + ie−ϕ then one can check that the transfor-
mation τ → −1/τ and Bµν ↔ −Cµν leaves the action invariant. In the string theory
limit this is called S-duality. If C0 = 0 then the dilaton transforms as ϕ → −ϕ and
therefore the string coupling transforms as gs → 1/gs which shows that S-duality is
a non perturbative strong-weak duality.

2.5.5 Type I supergravity

The field content of type I supergravity is

gµν , ψµ , Cµν , λ , ϕ . (2.5.14)

This forms a massless N = 1 graviton multiplet. However unlike the maximally
supersymmetric case there is another N = 1 multiplet that the theory can be consis-
tently coupled to. Indeed it turns out that ten dimensions is the maximal dimension
in which we can have super Yang Mills theory. Since it also hasN = 1 supersymmetry
it can be consistently coupled to type I supergravity. For reasons of anomaly cancel-
lations only certain gauge groups are allowed, we select SO(32). The field content of
SO(32) super Yang-Mills theory is

75



Aaµ , λa , (2.5.15)

where Aaµ gauge connection one form in the adjoint representation of SO(32) and λa

is a spinor also in the adjoint representation of SO(32) called the gaugino. This forms
a massless N = 1 gauge multiplet.

String frame The bosonic part of the action in string frame is given by

S =
1

2κ210

∫
d10x
√−g

(
e−2ϕ

(
R + 4|∇ϕ|2

)
− 1

2
|F̃3|2

)

− 1

2g210

∫
d10x
√−g e−ϕtr |F2|2 , (2.5.16)

where F3 = dC2, F2 = dA1 +A1 ∧A1 and F̃3 = F3− l2sgs
4
(ωYM

3 −ωL
3 ). ω

YM
3 and ωL

3 are
the non abelian Chern-Simons three forms

ωYM
3 = tr

(
A1 ∧ dA1 +

2

3
A1 ∧ A1 ∧ A1

)
,

ωL
3 = tr

(
ω1 ∧ dω1 +

2

3
ω1 ∧ ω1 ∧ ω1

)
, (2.5.17)

where ω1 is the spin connection. This is the low energy limit of type I string theory
provided the Yang-Mills coupling constant is given by 2g210 = 4(2π)7l6sgs.

Einstein frame The bosonic part of the action in Einstein frame is given by

S =
1

2κ210

∫
d10x
√−g

(
R− 1

2
|∇ϕ|2−1

2
eϕ|F̃3|2

)

− 1

2g210

∫
d10x
√−g eϕ

2 tr |F2|2 . (2.5.18)

2.5.6 Heterotic supergravity

The field content of heterotic supergravity is

gµν , ψµ , Bµν , λ , ϕ ,

Aaµ , λa , (2.5.19)

whereAaµ gauge connection one form in the adjoint representation of SO(32) or E8×E8

depending on the version of the theory and λa is the gaugino also in the adjoint
representation of SO(32) or E8 × E8.
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String frame The bosonic part of the action in string frame is given by

S =
1

2κ210

∫
d10x
√−g e−2ϕ

(
R + 4|∇ϕ|2−1

2
|H̃3|2

)

− 1

2g210

∫
d10x
√−g e−2ϕtr |F2|2 , (2.5.20)

where H3 = dB2, F2 = dA1 +A1 ∧A1 and H̃3 = H3− l2s
4
(ωYM

3 −ωL
3 ). ω

YM
3 and ωL

3 are
the non abelian Chern-Simons three forms associated to the non abelian Yang-Mills
connection and the spin connection respectively.

The SO(32) theory and the E8 × E8 theory give the same 9 dimensional theory
when dimensionally reduced on a circle provided one gives a vacuum expectation value
to the gauge field A1 along the compactified dimension which breaks down the gauge
group to SO(16)×SO(16).1 This is another example of T-duality in the string theory
limit. Also the E8 × E8 theory arises as 11-dimensional supergravity dimensionally
reduced on an interval I1 = S1/Z2.

Einstein frame The bosonic part of the action in Einstein frame is given by

S =
1

2κ210

∫
d10x
√−g

(
R− 1

2
|∇ϕ|2−1

2
e−ϕ|H3|2

)

− 1

2g210

∫
d10x
√−g e−ϕ

2 tr |F2|2 . (2.5.21)

One can see that if the gauge group is SO(32) the transformation ϕ → −ϕ and
Bµν ↔ Cµν maps heterotic supergravity to type I supergravity. This is another
example of S-duality in the string theory limit.

2.5.7 Anomalies

One can show that all five supergravity limits of string theory are anomaly free. This
is quite a miraculous result which led historically to the first superstring revolution.
Indeed the fields that can contribute to anomalies are chiral fermions inD = 0 mod 2
dimensions, i.e. spinors and gravitini, as well as (anti) self dual forms in d = 2 mod 4
dimensions. Gravitini and higher gauge forms can’t couple to gauge interactions,2

1This can be though of as giving a non trivial vacuum expectation value to a Wilson loop.
2This is only true because we are not considering gauged supergravities
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only to gravity, therefore they are only subject to pure gravitational anomalies which
only occur for dimensions D = 2 mod 4. In D = 10 dimensions all of these anoma-
lies are possible and they are indeed present in all supergravity limits of string theory.

Type II supergravity If we assume no gauge symmetry in our theory then the
cancellation of the gravitational anomaly polynomial constitutes a critically deter-
mined homogeneous linear system. In general such a system only has the trivial
solution which corresponds to the field content of type IIA supergravity which is
trivially anomaly free because it is achiral. Amazingly, however the system is degen-
erate and admits non-trivial solutions. The simplest and only solution with less that
two gravitini (which is necessary in order to have less than N = 2 supersymmetry
which is the maximum allowed in ten dimensions) corresponds to the field content of
type IIB supergravity. Therefore, not only is type IIB supergravity miraculously free
of gravitational anomalies, it is also the simplest chiral theory in ten dimensions in
which gravitational anomaly cancellation occurs. Hence the field contents of type IIA
and type IIB supergravity are the only two consistent field contents in 10 dimensions
without gauge symmetry.

Green-Schwarz mechanism If one allows for a gauge group one cannot have more
than N = 1 supersymmetry. Hence the theory will necessarily have the field content
of type I supergravity coupled to super Yang-Mills theory. One can show that if the
anomaly polynomial factorises as

I12 =
(
TrR2

2 − TrF 2
2

)
∧X8 , (2.5.22)

for some for some gauge invariant and local Lorentz invariant closed form X8, where
R2 = dω1 + ω1 ∧ ω1 is the Riemann curvature two form and F2 = dA1 + A1 ∧ A1 is
the Yang-Mills gauge field strength. Then the ensuing anomaly can be cancelled by
introducing the following non gauge invariant and non Lorentz invariant counter-term

Scounter-term =

∫
B2 ∧X8 , (2.5.23)

where Bµν is the two form in the massless N = 1 graviton multiplet of type I su-
pergravity (it is the Kalb-Ramond two form in heterotic supergravity and the (R-R)
two form Cµν in type I supergravity). One can check that such a factorisation of the
anomaly polynomial is highly non trivial and happens for only four groups : SO(32),
E8×E8, E8×U(1)248 and U(1)496 [29]. The fact that such groups even exist is nothing
short of a miracle. This anomaly cancellation mechanism is called the Green-Schwarz
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mechanism. It is only possible because the theory contains a 2-form which transforms
under both gauge and local Lorentz symmetry and from which we can build a non
invariant counterterm.

Therefore anomaly cancellation severely constrains the possible supergravity the-
ories in ten dimensions. What is more incredible is that these consistent supergravity
theories turned out to be exactly the low energy limits of the various superstring
theories. For type I superstring theory, the gauge group SO(32) is singled out by
the fact that open strings can only carry charges associated with orthogonal or sym-
plectic groups while for the heterotic superstring we have seen that the gauge groups
SO(32) and E8 × E8 are singled out by the fact that their weight lattices are the
only 16 dimensional even self dual lattices. On the other hand, the somewhat more
trivial solutions to the anomaly cancellation conditions, E8 × U(1)248 and U(1)496

do not seem to correspond to any consistent superstring theory [41, 43]. Since only
the massless spectrum can contribute to anomalies this means that the full string
theories, including the massive spectrum, are also anomaly free.3

2.6 Dualities and M-theory

We therefore have five consistent superstring theories : type IIA, type IIB, type I,
heterotic SO(32) and heterotic E8×E8. These have as low energy field theory limit:
type IIA, type IIB and type I supergravity along with SO(32) and E8 × E8 super
Yang Mills.

However it was realised in the 90s that all superstring theories were related by
dualities [30,67,68]. First of which is called T-duality which relates a theory compact-
ified on a circle S1 of radius R to another theory compactified on a circle S1 of radius
α′/R. One can show that type IIA and type IIB string theory are related to each
other by T-duality. This is not surprising as type IIA and type IIB supergravity give
the same unique 9 dimensional supergravity theory when dimensionally reduced on a
circle S1. Similarly one can show that heterotic SO(32) and heterotic E8×E8 string
theory are also related by T-duality. For a review of T-duality in string theory see [69].

The second type of duality is called S-duality which relates a theory with cou-
pling constant gs to another theory with coupling constant 1/gs. It is the analog of
electric-magnetic duality (or strong weak coupling duality) in gauge theories. One

3Actually this only applies to the perturbative spectrum, in the non perturbative sector string
theory can have D-branes whose coupling to supergravity can induce anomalies on their worldvolume,
one also needs to check that these anomalies cancel.
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can show that type I and heterotic SO(32) string theories are related by S-duality
and that type IIB string theory is related to itself by S-duality [67,68].

Since we already know that type I string theory is related to type IIB string theory
by orientifold projection this shows that all superstring theories are related to each
other by some sort of duality. But this is not all, one can also show that type IIA and
heterotic E8 × E8 grow an eleventh dimension in the strong coupling limit : a circle
S1 of radius R = gsls for type IIA and an interval I1 of length L = gsls for heterotic
E8 × E8. This leads us to see that there exists an 11 dimensional theory which is
the strong coupling limit of either type IIA or heterotic E8 × E8 string theory, this
is M-theory [30]. Since type IIA supergravity results from the dimensional reduction
of eleven dimensional supergravity on a circle S1 it is natural to expect that the low
energy field theory limit of M-theory is eleven dimensional supergravity.

Theory Low energy limit

M-theory Eleven dimensional supergravity

Type IIA string theory Type IIA supergravity

Type IIB string theory Type IIB supergravity

Type I string theory
SO(32) super Yang-Mills

Heterotic SO(32) string theory Type I supergravity

Heterotic E8 × E8 string theory E8 × E8 super Yang-Mills

Table 2.5: Low energy field theory limit of M-theory and the five superstring theories.

The full formulation of M-theory is still not very well understood because it is
fundamentally a non perturbative theory. However all five superstring theories can
be thought of as originating from M-theory: first by dimensional reduction to either
type IIA or heterotic E8 ×E8 string theory and then by the application of S-duality,
T-duality or orientifold projection to any other type of string theory. This is summa-
rized in figure 2.1.

The fact that all of these theories are related by dualities seems to indicate that
they are all description of some single underlying theory. In fact it was conjectured
that all five superstring theories and M-theory are just different solutions of some
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Figure 2.1: The various dualities connecting the superstring theories and M-theory
in 11, 10 and 9 dimensions.

unique underlying theory U around different consistent quantum vacua.4 Thus this
would suggest a completely unique theory of nature, whose equation of motion admits
many vacua. This is the realisation that sparked the second superstring revolution.

Figure 2.2: The space U of consistent quantum vacua. M-theory, type IIA, type IIB,
type I, heterotic SO(32) (HO) and heterotic E8×E8 (HE) string theories all arise as
solutions of the same underlying theory U .

4Most authors in the literature do not make the distinction between U and M-theory as very
little is known about the full formulation of this unifying theory anyways. This nomenclature is due
to [53].
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Chapter 3

String amplitudes

Contrary to other attempts at quantum gravity, string theory is a perturbative ap-
proach. This may only give us a partially obstructed insight into the phenomenology
of quantum gravity (although there are many non perturbative results which have
come out of string theory, some of which we will see) but on the other hand this al-
lows us to make actual calculations of interactions. Indeed, after more than 80 years
of quantum field theory it seems like the best understood way to handle non trivial
interactions is still through perturbation theory. In fact we will see that the pertur-
bative structure of string theory can even be compared to the perturbative structure
of quantum field theory, in particular for graviton interactions.

In this section we begin by reviewing the subject of string amplitudes and string
interactions. We then specialise to the maximally supersymmetric case where we give
a review of the moduli space of Riemann surfaces. We then discuss the factorisation
properties of maximally supersymmetric amplitudes. Using the formalism of spinor
helicities we show that the unitarity properties of superamplitudes in 6 dimensions
reduce to unitarity properties of scalar amplitudes. Finally we review the field theory
limit of string amplitudes through the lens of tropical geometry. We apply these
tools to the one loop string amplitudes in 8 dimensions to address the logarithmic
divergences in the corresponding supergravity amplitudes.

3.1 Vertex operators

We have seen that from the worldsheet perspective string theory simply corresponds
to a free theory. Before gauge fixing it can be argued to contain gravity but two
dimensional gravity is locally trivial. Furthermore the fields of the theory, the bosonic
coordinates xµ and the fermionic ψµ do not directly correspond to the states we want
to study. One might then wonder how one goes from an almost trivial free theory
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of scalars and spinors to an interacting theory of gravitons and other fields. This
comes from the fact that string theory can be seen as a first quantized theory where
spacetime corresponds to the target space and not the base space. In fact it is precisely
because the geometry of the base space, the worldsheet, can be non trivial which is
responsible for much of the non triviality of string theory.

Indeed, in the quantum theory, before gauge fixing, one will have to sum over all
worldsheet geometries. We have seen that locally they are all conformally equivalent,
however globally they may differ by their topology. This sum over worldsheet topolo-
gies can be interpreted as a sum over histories of the strings. One can see that strings
merging and splitting will correspond to worldsheets with different numbers of holes,
see figure 3.1. Even the number of initial and final strings will change the topology
of the worldsheet. Furthermore the initial and final strings can have different states
corresponding to their vibration modes. Therefore there must be quantum numbers
associated with asymptotic legs of the worldsheet. Since by conformal rescaling these
external legs can be reduced to points or punctures on the worldsheet, see figure 3.2,
this means that these quantum numbers have to be realised by local operators in the
quantum theory. For open strings these operators must act on the boundary of the
worldsheet while for closed strings they act on the interior of the worldsheet. We call
these vertex operators.

Figure 3.1: Worldsheets of closed strings merging and splitting. Different closed string
interactions lead to different worldsheet topologies.

In order to find these vertex operators we first perform a Wick rotation of the
worldsheet time coordinate τ → −iτ so that the metric becomes positive definite.
This allows us to go from Lorentzian geometry to the much simpler Riemannian ge-
ometry. We then define holomorphic and anti-holomorphic coordinates ζ̄ , ζ = τ ± iσ
which turns the worldsheet into a Riemann surface. Finally we make the coordinate
transformation z̄ = e2ζ̄ , z = e2ζ for closed string and z̄ = eζ̄ , z = eζ for open strings.
This maps the closed string worldsheet, which is a cylinder, to the plane and it maps
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Figure 3.2: Conformally rescaled closed string worldsheets. The external legs have
been rescaled to punctures represented by crosses on the Riemann surfaces.

the open string world sheet, which is a strip, to the upper half plane. In both cases
the infinite past τ = −∞ is mapped to the origin z = 0 while the infinite future
τ = +∞ is mapped to infinity z = +∞.

Under this coordinate change the gauge fixed Polyakov action (2.3.7) becomes

S =
1

2πα′

∫
d2z
(
∂xµ∂̄xµ − ψµ∂̄ψµ − ψ̃µ∂ψ̃µ

)
, (3.1.1)

where ψµ and ψ̃µ are holomorphic and antiholomorphic fields corresponding to ψµ+
and ψµ− respectively in the Lorentzian description. Any local and unitary quantum
field theory such as the one we have built in the previous chapter should have an
appropriate state-operator correspondence, i.e. a way to associate to each state |ψ⟩
a field Vψ(z) such that

|ψ⟩ = lim
z→0

Vψ(z) |0; 0⟩ , (3.1.2)

where |0; 0⟩ is the ground state of zero momentum pµ |0; 0⟩ = 0. This state operator
correspondence is especially important in conformal field theory of which the world
sheet theory of string theory is an example1. We can see that these local operators
are natural candidates for vertex operators as they generate states from the vacuum,
much like quantum fields do. If we require that they obey certain mathematical
conditions related to the fact that they generate physical and on shell states we can

1Actually it is even an example of a superconformal field theory
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find their explicit expressions. For the universal (NS-NS) massless spectrum of the
type II string this is given by [57]2

V (kµ, ϵµν) = gse
−φ−φ̃ϵµνψ

µψ̃νeikρx
ρ

, (3.1.3)

where kµ is the momentum of the state, ϵµν is its polarisation and φ, φ̃ are holo-
morphic and antiholomorphic fields belonging to the bosonised representation of the
superghosts. For a graviton we have ϵµν = ϵνµ, ϵµµ = 0 and kµϵ

µν = 0 while for the
Kalb-Ramond field we have ϵµν = −ϵνµ and kµϵ

µν = 0 and finally for the dilaton
we have ϵµν = ηµν − kµk̄ν − kν k̄µ with k̄µ an arbitrary vector satisfying k̄µk̄

µ = 0
and kµk̄

µ = 1 so that kµϵ
µν = 0 [54]. Since we are looking at the massless spectrum

we also have kµk
µ = 0. Vertex operators are the quantum fields associated to the

physical states in the worldsheet theory.

Note that vertex operators always contain a piece exp(ik · x). This is because
when we expand xρ into modes this in turn contains a factor exp(ik · x0) which, by
the commutation relations (2.3.22), generates the ground state of momentum kµ from
the ground state of zero momentum

|kµ; 0⟩ = exp(ik · x0) |0; 0⟩ . (3.1.4)

3.2 String perturbation theory

Until now we have used an operator based formulation of the quantum theory. We
have done that because the canonical quantization scheme was the simplest way to
quantize the free theory and build the space of physical states as well as the spectrum
of the theory. However we have now seen that our theory does in fact contain inter-
actions, string interactions. Let us therefore move on to a path integral formulation
which is better suited to handle interactions.

We start again with the non gauge fixed action (2.3.1). As we have seen, ampli-
tudes in the quantum theory must include a sum over all possible worldsheets in order
to account for string interactions. Furthermore we have seen that the quantum fields

2This is not unique and in general depends on the superghost picture. We have given here the
vertex operator in the canonical (−1,−1) superghost picture where the state operator correspondence
(3.1.2) is most easily checked. For loop calculations the non canonical (0, 0) superghost picture may
be more appropriate [57]

V (kµ, ϵµν) = gsϵµν(∂x
µ + ikρψ

ρψµ)(∂̄xν + ikρψ̃
ρψ̃ν)eikρx

ρ

.

86



that carry the boundary data representing the ingoing and outgoing states on the
worldsheet are the vertex operators. They must therefore be inserted in the world-
sheet path integral in order to specify the scattering process. Therefore, schematically,
the string theory path integral will look like

A =
∑

Σ

∫
DhDχDxDψ V1 . . . Vn e−S , (3.2.1)

where Σ are all the allowed worldsheets and V1 . . . Vn are vertex operators. Let us
specify this sum.

We can extend our action by coupling it to background fields fields as was done in
(2.5.2) for the (NS-NS) fields. Let us specifically look at the coupling to the dilaton

Sdil =
1

4π

∫
d2z
√
−hϕR . (3.2.2)

Let us suppose that the dilaton is constant, or at least that it has a vacuum expec-
tation value ϕ0 that can be separated from the rest of ϕ. Then the Gauss Bonnet
theorem tells us that

Sdil = ϕ0 χ(Σ) , (3.2.3)

where χ(Σ) is the Euler characteristic of the manifold Σ. It is a topological invariant
which is given explicitly for two dimensional surfaces by χ(Σ) = 2 − 2nh − nb − nc

with nh the number of handles, nb the number of boundaries and nc the number of
cross caps of Σ. Therefore the path integral will include a factor

e−Sdil = e−ϕ0 χ(Σ) = g−χ(Σ)
s , (3.2.4)

where we have defined the string coupling gs = eϕ0 . Hence the we can classify the
allowed worldsheets Σ by their Euler characteristics and we can see that the path
integral (3.2.1) will have the structure of a perturbative series in the string coupling
where worldsheets of lowest Euler characteristic will contribute more.

A =
−∞∑

χ=2

g−χs
∑

Σχ

∫
DhDχDxDψ V1 . . . Vn e−S , (3.2.5)

where Σχ are worldsheets of Euler characteristic χ.

We saw that the action (2.3.1) has superdiffeomorphism and superWeyl invari-
ance, it is a gauge theory. Therefore the path integral (3.2.5) formally diverges as
we are summing over an uncountable infinity of equivalent configurations. We must
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therefore gauge fix our theory. In the covariant quantization scheme this was done
at the classical level at the cost of introducing constraints and then restricting the
subspace of physical states to the states satisfying these constraints. In the path in-
tegral formulation this is done by introducing Faddeev-Popov ghost fields bab, c

a and
superghost fields βa and γ which take care of the Jacobian factor in the path integral.
For further information one may see [54], we will not develop this further in this thesis.
One may then locally fix the gauge to the superconformal gauge. However for topo-
logically non trivial Riemann surfaces this can only be done locally and not globally.
A given choice of local patches and superdiffeomorphism and superWeyl transforma-
tions which gauge away the zweibein and the Rarita Schwinger field corresponds to
choosing a complex structure on the super-Riemann surface. Therefore superconfor-
mal equivalence classes of super-Riemann surfaces are in one to one correspondence
with complex structures on these super-Riemann surfaces. We call the space of com-
plex structures on a super-Riemann surface its super-moduli space3. Topologically
inequivalent Riemann surfaces are certainly not in the same superconformal class,
therefore this classification can be done at each order in Euler characteristic. This is
very good news because contrary to the set of all super-Riemann surfaces (Σ, hab, χa)
the super moduli space of super Riemann surfaces of a given topology is generally a
finite dimensional integral

A =
−∞∑

χ=2

g−χs
∑

Σχ

∫

sM(Σχ)

dµ

∫
DbDcDβDγDxDψ V1 . . . Vn e−S , (3.2.6)

where sM(Σχ) is the super moduli space of the worldsheet Σχ of Euler characteristic
χ and dµ is a suitable measure on that space which is discussed in the next section.
S is now the gauge fixed action including the Faddeev-Popov ghosts.

Let us now specify the allowed worldsheets. For closed strings the periodicity
condition implies that the worldsheet is a Riemann surface without boundary, on the
other hand for open strings the endpoints of the string create a boundary therefore
the worldsheet will be a Riemann surfaces with boundaries. Oriented strings create
worldsheets which are oriented Riemann surfaces, this implies that there can be no
cross-caps. On the other hand unoriented strings create worldsheets which are un-
oriented Riemann surfaces. Finally we saw that the in and out states were given by
operator insertions on the worldsheet. Therefore the number of in and out states is

3One should not confuse the (super-)moduli space of (super-)Riemann surfaces discussed here,
which is supposed to be integrated over in the path integral, with the moduli space parametrised by
axion and dilaton fields in a supersymmetric theory as was presented in chapter 1 and will later be
expanded upon in chapter 4.
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represented by the number of punctures on that Riemann surface. For closed strings
the punctures will be in the interior of the Riemann surface while for open strings
they will be on the boundary. Note that in general the super moduli space will depend
on the punctures.

Since we have spinors on the worldsheet one might think that we can also specify
a spin structure on the worldsheet. This is equivalent to specifying the boundary
conditions of the spinors. We saw that in the open string case, when the worldsheet
was a strip, there were only two options for the spin structure while in the closed string
case, when the worldsheet was a cylinder, there were four. But in the case where the
worldsheet admits more boundaries or more cycles there can be more choices of spin
structures which are always either odd or even. However we are not free to choose a
spin structure for our worldsheet, indeed in the path integral formulation the GSO
projection is implemented by requiring we sum over the different spin structure with
a weighted prefactor. Actually the GSO projection ensures that the integrand is
invariant under so called large diffeomorphisms, i.e. diffeomorphisms which are not
connected to the identity. Indeed large diffeomorphisms do not preserve the spin
structure on the worldsheet, therefore the GSO projection is a summation on the
different spin structures which is invariant under large diffeomorphisms. Hence the
GSO projection is actually necessary for the theory to be invariant under the full
group of diffeomorphisms.

Ai→i′ =
−∞∑

χ=2

g−χs
∑

Σ
(n)
χ

∫

sM(Σ
(n)
χ )

dµ
∑

ν

w(ν)

∫
DbDcDβDγDxDψ V1 . . . Vn e−S ,

(3.2.7)

where ν are spin structures on the worldsheet Σ
(n)
χ , w(ν) is a weight factor and the

superscript on Σ
(n)
χ indicates that the worldsheet has been punctured n times with

n = i+ i′ where i and i′ are the numbers of in and out states respectively.

A nice feature of these amplitudes is that at fixed Euler characteristic, i.e. at each
order in string coupling, the string amplitudes have no UV divergences. It is in this
sense that string theory is a UV finite theory of quantum gravity. This is a key point
which will be further elaborated in sections 3.5.2 and 3.5.3. In particular we will see
an explicit example of how UV divergences cancel each other out in order to give a
finite string amplitude in 8 dimensions.

Let us now specialise to the case of the type II superstring which consists of
closed oriented strings and no open strings. Therefore the allowed worldsheets are
oriented Riemann surfaces without boundaries such as depicted in figure 3.2. Hence
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the Euler characteristic of such surfaces is only determined by the number of handles
χ(Σ) = 2−2nh, this is also called the genus g. This is also good news because it turns
out that topologically inequivalent oriented Riemann surfaces without boundaries
are uniquely determined by their genus. This means that there is only one string
worldsheet per order of string coupling. Hence the type II string amplitude can be
written as

Atype II
i→i′ =

∞∑

g=0

g2g−2
s

∫

sMg,n

dµ
∑

ν

w(ν)

∫
DbDcDβDγDxDψ V1 . . . Vn e−S , (3.2.8)

where the difference between type IIA and type IIB string amplitudes coming from the
GSO projection is encoded in the different weight factors w(ν) for the spin structures.
We can rewrite this more concisely as

Atype II
i→i′ =

∞∑

g=0

g2g−2
s

∫

sMg,n

dµ
∑

ν

w(ν) ⟨V1 . . . Vn⟩ , (3.2.9)

where the angle brackets denote a functional integration over the worldsheet fields.

Therefore we have seen that type II string amplitudes are given by a perturbative
expansion in worldsheet genus. This can be seen in analogy with the perturbative
expansion in loop number of quantum field theory. We will see later in this chapter
that this is more than an analogy and that there is a deep connection between the
genus expansion of string theory and the loop expansion of quantum field theory. For
now let us notice that a profound consequence of the smoothness of string worldsheets
is that the structure of the interactions are completely determined by the free theory.
Indeed the interactions are the result of worldsheet topology rather than worldline
junctions. There are no arbitrary interactions to be chosen.

Finally let us massage a little more the term ⟨V1 . . . Vn⟩. The integrand V1 . . . Vn e−S
of the functional integral will contain a factor

n∏

i=1

exp(iki · x(zi)) exp(−S) = exp

(
n∑

i=1

iki · x(zi)− S
)
. (3.2.10)

Hence the argument of the exponential will contain a term
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1

2πα′

∫
d2z

(
−∂xµ∂̄xµ + 2πiα′

n∑

i=1

kiρx
ρδ2(z − zi)

)

=
1

2πα′

∫
d2z

(
xµ∆xµ + 2πiα′

n∑

i=1

kiρx
ρδ2(z − zi)

)
, (3.2.11)

where we have integrated by parts the first term and introduced the Laplacian ∆ = ∂∂̄
on the Riemann surface. We can perform the usual trick of completing the square by
performing the change of variable x̃µ(z) = xµ(z) + iα′

2

∑n
i=1G(z, zi)k

µ
i where G(z, z′)

is the Green function for the Riemann surface Laplacian

∆G(z, z′) = 2πδ2(z − z′) (3.2.12)

(the Laplacian acts on the variable z). It can be seen as the inverse of the Laplacian.
We therefore get

1

2πα′

∫
d2z

(
x̃µ∆x̃µ +

πα′2

2

n∑

i=1

kiρG(z, zi)k
ρ
i δ

2(z − zi)

−πα
′2

2

n∑

i,j=1
i ̸=j

kiρG(z, zi)k
ρ
j δ

2(z − zj)


 . (3.2.13)

Furthermore this does not change the functional integration measure Dx = Dx̃ so we
can come back to usual Polyakov action by a simple relabeling. We can see that the
terms with i = j are pathological, they can be seen as tadpole divergences which can
be disregarded through renormalisation. In the operator formalism one can explain
their disappearance by normal ordering. Note that for massless particles they do not
contribute anyways because ki · ki = 0.

Actually, since the Laplacian annihilates the zero modes xµ0 this makes its inverse,
the Green function, ill defined. But because the Laplacian doesn’t see the zero modes
this can be taken care of by treating the zero modes separately. Indeed from the
expression of the vertex operators and the string action we can see that the only
place the fields xµ appear without a derivative is in the factors exp(iki · x). Therefore
we can perform the integration over the zero modes in the path integral to get

∫
d10x0

n∏

i=1

eiki·x0 = (2π)10δ10

(
n∑

i=1

ki

)
. (3.2.14)
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This is the momentum conservation factor. Throughout this thesis we shall omit
these terms and assume that the momenta are indeed conserved. Hence we have
shown that the amplitude will always contain a term

exp

(
−α

′

2

∑

1≤i<j≤n
ki · kj G(zi, zj)

)
. (3.2.15)

This is called a Koba-Nielsen factor [70] and it is part of the universal structure of
string amplitudes. Hence we see that we can decompose

∑

ν

w(ν) ⟨V1 . . . Vn⟩ = gnsWg,n exp

(
−α

′

2

∑

1≤i<j≤n
ki · kj G(zi, zj)

)
, (3.2.16)

where Wg,n contains all the information about the scattering process such as the
particle types and their polarization vectors. We have also explicitly factorized the
factors of gs appearing in the vertex operator (3.1.3). Therefore the final form of the
type II string amplitudes is

Atype II
i→i′ =

∞∑

g=0

g2g−2+n
s

∫

sMg,n

dµWg,n exp

(
−α

′

2

∑

1≤i<j≤n
ki · kj G(zi, zj)

)
. (3.2.17)

3.3 Moduli space of Riemann surfaces

In order to further specify the path integral (3.2.17) we will have to talk about the
super moduli space of super Riemann surfaces. We have seen that for type II strings
these only depend on the genus and the number of punctures, we will therefore focus
on a type II genus-g, n-point amplitude

Ag,n = g2g−2+n
s

∫

sMg,n

dµWg,n exp

(
−α

′

2

∑

i<j

ki · kj G(zi, zj)
)
. (3.3.1)

Let us now specify the super moduli spaces sMg,n.

3.3.1 Genus 0

In analogy with quantum field theory we call the case g = 0 the tree level. It was
shown that at genus 0 there exists a so called global holomorphic section of the su-
per moduli space sM0,n. This allows us to integrate out the fermionic moduli and
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project the super moduli space sM0,n onto its bosonic base M0,n the moduli space
of Riemann surfaces. Therefore we can consider that W0,n contains the integrated
fermionic moduli and the integral (3.3.1) is performed onM0,n.

The only oriented Riemann surface without boundary of genus 0 is the two sphere
S2. Therefore the moduli space M0,n is the space of conformal classes of the n-
punctured two sphere. The sphere can be conformally mapped to the complex plane
plus a point at infinity (the so called Riemann sphere). The globally defined confor-
mal isometries of this space are given by the conformal group PSL(2,C) which has
complex dimension 3. These can be used to fix the positions of three of the punctures
while the position of the remaining n − 3 punctures define inequivalent conformal
classes of the n-punctured two sphere. Therefore the moduli spaceM0,n is the space
of positions of n− 3 of the punctures, it has complex dimension n− 3. The measure
on that space is

dµ =
n∏

i=1

d2zi δ
2(zA−z0A)δ2(zB−z0B)δ2(zC−z0C)|(zA−zB)(zB−zC)(zC−zA)|2 , (3.3.2)

where the last term in a conformally covariant function of weight 2 that ensures that
the measure is invariant under conformal mappings of the points z0A, z

0
B and z0B for

1 ≤ A,B,C ≤ n. (it can be seen as a mini Faddeev-Popov determinant).

On the Riemann sphere the propagator is given by

G(z, z′) = − ln|z − z′|2 . (3.3.3)

Therefore the full tree level n-point type II string amplitude is given by

A0,n = gn−2
s

n∏

i=4

∫

Σ

d2zi W̃g,n

n∏

j=4

|zj|α
′k1·kj |1− zj|α

′k2·kj
∏

4≤k<l≤n
|zk − zl|α

′kk·kl , (3.3.4)

where for convenience we have fixed z01 = 0, z02 = 1 and z03 = ∞ and we have also
defined W̃g,n = limz3→∞Wg,n|z3|α′M2

3+4 where M2
3 is the mass of the state inserted at

z3, one can show that this limit is finite.

As an example we give the tree level type II graviton four point amplitude [28,71],
it was shown that the four-graviton amplitudes in type IIA and type IIB theories are
equal up to genus 2 [72]4 therefore we need not distinguish between them

4This is expected not to be true beyond genus 2. For five external gravitons this is not true at
genus 2 and for more external gravitons this is not true at genus 1 or 2 [72].
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Agraviton
0,4 = i

(2π)7α′7g2s
211

R4(ki, ϵi)
Γ(−α′s/4)Γ(−α′t/4)Γ(−α′u/4)

Γ(1 + α′s/4)Γ(1 + α′t/4)Γ(1 + α′u/4)
, (3.3.5)

where R4(ki, ϵi) is a particular tensorial combination of four powers of the linearized

Riemann tensor R(ki, ϵi)
ρσ

µν = −4ki[µk[σi ϵ ρ]iν] written in term the contraction tensor

t8 as R4 = t8t8R
4 where kµi and ϵµνi are the momentum and polarisation of the ith

graviton. The t8 contraction tensor is defined by its action on four antisymmetric
tensors F µν

i as

t8F
4 =4F µ

1 νF
ν
2 ρF

ρ
3 σF

σ
4 µ + 4F µ

3 νF
ν
2 ρF

ρ
1 σF

σ
4 µ + 4F µ

2 νF
ν
3 ρF

ρ
1 σF

σ
4 µ

+ 4F µ
1 νF

ν
3 ρF

ρ
2 σF

σ
4 µ + 4F µ

3 νF
ν
1 ρF

ρ
2 σF

σ
4 µ + 4F µ

2 νF
ν
1 ρF

ρ
3 σF

σ
4 µ

− 2(F µ
1 νF

ν
2 µ)(F

ρ
3 σF

σ
4 ρ)− 2(F µ

2 νF
ν
3 µ)(F

ρ
1 σF

σ
4 ρ)− 2(F µ

3 νF
ν
1 µ)(F

ρ
2 σF

σ
4 ρ) .

(3.3.6)

3.3.2 Genus 1

Again in analogy with quantum field theory we call the case g = 1 the one loop level
(and the genus g case the g-loop level). At genus 1 the super moduli space sM1,n is
also holomorphically projected which allows us to integrate out the fermionic moduli
and focus on the moduli spaceM1,n.

The only oriented Riemann surface without boundary of genus 1 is the two torus
T 2. Therefore the moduli space M1,n is the space of conformal classes of the n-
punctured two torus. Using Weyl transformations and diffeomorphisms connected to
the identity the torus can be conformally mapped to the complex plane identified
up to two periods z ∼ z + 1 and z ∼ z + τ for τ in the upper complex half plane
H1 = {τ ∈ C | Im τ > 0} which is also called the Poincaré plane. τ is called
the modulus of the torus. Note that the upper complex half plane is isomorphic to
the symmetric space SO(2)\SL(2,R). However we still have large diffeomorphisms
which are diffeomorphisms modulo diffeomorphisms connected to the identity. This
is a discrete group which acts on τ by

τ → aτ + b

cτ + d
, (3.3.7)

with a, b, c, d ∈ Z such that ad−bc = 1. This is the so called modular group PSL(2,Z)
which is generated by the transformations τ → τ + 1 and τ → −1/τ . Therefore we
actually have that τ ∈ SO(2)\SL(2,R)/PSL(2,Z). One natural parametrisation for
this space is
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F1 = {τ ∈ C | |Re τ |≤ 1/2, Im τ > 0, |τ |≥ 1} . (3.3.8)

The globally defined conformal isometries of the complex plane identified up to two
periods are the translations C which have complex dimension 1. These can be used
to fix the positions of one of the puncture while the position of the remaining n− 1
punctures define inequivalent conformal classes of the n-punctured two torus. There-
fore the moduli spaceM1,n is the space of positions of n− 1 of the punctures times
SO(2)\SL(2,R)/PSL(2,Z), it has complex dimension n. The measure on that space
is

dµ =
d2τ

(Im τ)2

n∏

i=1

d2zi
Im τ

Im τ δ2(zA − z0A) , (3.3.9)

where the denominator in the first term ensures that the measure is invariant under
modular transformations of the representative F1 of SO(2)\SL(2,R)/PSL(2,Z) and
the denominator in the second term is just the dimensionless volume of the torus
Im τ so that the integral is normalised to 1. The measure is also invariant under
translations of z0A for 1 ≤ A ≤ n.

On the torus the propagator is given by

G(z, z′) = − ln

∣∣∣∣
ϑ1(τ, z − z′)

ϑ′
1(τ)

∣∣∣∣
2

+
2π

Im τ
(Im(z − z′))2 , (3.3.10)

where ϑ1 is the first modular theta series in Jacobi’s notation, i.e. ϑ1 = ϑ [ 11 ] with

ϑ [ ab ] (τ, z) =
∑

n∈Z
eiπτ(n+

a
2
)2+2πi(n+a

2
)(z+ b

2
) , (3.3.11)

where a, b ∈ {0, 1} and ϑ1(τ) = ϑ1(τ, 0). Therefore the full one loop n-point type II
string amplitude is given by

A1,n = gns

∫

F1

d2τ

(Im τ)2

n∏

i=1

∫

Σ

d2zi
Im τ

Im τ δ2(z1)Wg,n exp

(
−α

′

2

∑

i<j

ki · kj G(zi, zj)
)
,

(3.3.12)
where for convenience we have fixed z01 = 0.

As an example we give the one loop type II graviton four point amplitude [73]
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Agraviton
1,4 = −i(2π)

8α′7g4s
211

R4(ki, ϵi)

∫

F1

d2τ

(Im τ)2

4∏

i=1

∫

Σ

d2zi
Im τ

Im τ δ2(z1)

exp

(
−α

′

2

∑

i<j

ki · kj G(zi, zj)
)
.

(3.3.13)

3.3.3 Higher genus

For higher genus the super moduli space sMg,n is much harder so specify. Indeed it
was shown in [74] that for genus g ≥ 5 the super moduli space is not holomorphi-
cally projected. Therefore in general we cannot integrate out the fermionic moduli.
At genus g and n punctures the super moduli space has complex bosonic dimension
3g− 3− n and complex fermionic dimension 2g− 2− n. In the absence of punctures
the super moduli space is holomorphically projected for genus 2 the while for genus
3 and 4 the question remains open. Here we will assume that the super moduli space
is holomorphically projected and focus on the moduli spaceMg,n.

It is also difficult to describe explicitly the moduli space of higher genus Riemann
surfaces. For genus g ≥ 2 there are no globally defined conformal isometries for ori-
ented Riemann surfaces without boundaries. Therefore the position of no puncture
can be fixed and they all define inequivalent conformal classes of the n-punctured
Riemann surface.

The first homology group of a genus g oriented Riemann surface without bound-
aries has 2g generators. It is convenient to introduce a canonical basis of g a-cycles
{Ai} and g b-cycles {Bi} such that Ai ∩ Aj = Bi ∩ Bj = ø and Ai ∩ Bj = δji as
depicted in figure 3.3.

According to de Rham’s theorem the first cohomology group also has 2g gen-
erators. We can use the complex structure of the Riemann surface to divide these
into g holomorphic and g anti-holomorphic one forms. One can choose a basis ωi of
holomorphic one forms such that

∮

Ai

ωj = δji . (3.3.14)

The integral along the b-cycles gives a complex matrix
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Figure 3.3: Canonical homology basis on a genus 1 surface. The a-cycle is depicted
in red while the b-cycle is depicted in blue.

∮

Bi

ωj = Ωij , (3.3.15)

called the period matrix. Ω is symmetric and its imaginary part is positive definite, we
say that Ω is in the Siegel upper half planeHg = {Ω ∈ Mat(g,C) | ΩT = Ω, ImΩ > 0}.
For the genus 1 case we have ω = dz and Ω = τ . Note that the Siegel upper half
plane is isomorphic to the symmetric space U(g)\Sp(2g,R). The period matrices are
equivalent up to a transformation of the form

Ω→ (AΩ +B)(CΩ +D)−1 , (3.3.16)

with A,B,C,D ∈ Mat(g,Z) such that ABT = BAT , CDT = DCT and ADT−BCT =
I with I the identity matrix. These conditions can be rewritten as

(
D B
C A

)(
0 I
−I 0

)(
D B
C A

)T
=

(
0 I
−I 0

)
. (3.3.17)

This defines the action of the so called symplectic modular group PSp(2g,Z). There-
fore we actually have that Ω ∈ U(g)\Sp(2g,R)/PSp(2g,Z). The space of posi-
tions of the n punctures times U(g)\Sp(2g,R)/PSp(2g,Z) has complex dimension
1
2
g(g+1)+n whereas the moduli space has complex dimension 3g− 3+n. Therefore

in general there are too many dimensions for this to be the moduli space, it will be
a subspace. Finding this subspace is in general a very difficult problem called the
Riemann-Schottky problem. However we see that for genus 2 and 3 the dimensions
match. Indeed this is the moduli space up to excision of some critical locus. Let us
focus on the genus 2 case. If we parametrise Ω as
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Ω =

(
ρ v
v σ

)
, (3.3.18)

with ρ, v, σ ∈ C then one natural parametrisation for U(2)\Sp(4,R)/PSp(4,Z) is
given by [75]

F2 = {ρ, v, σ ∈ C | |Re ρ|, |Re v|, |Reσ|≤ 1/2, 0 < Im v ≤ Im ρ ≤ Imσ,

|det(CΩ +D)|2≥ 1} ,
(3.3.19)

for all C,D ∈ Mat(2,Z) such that

(
D B
C A

)
∈ Sp(4,Z) . (3.3.20)

This last condition only needs to be checked for a finite number of matrices C, D.
v = 0 is actually a regular point in U(2)\Sp(4,R)/PSp(4,Z) however it corresponds
to a singular genus two Riemann surface made of two regular genus one surfaces con-
nected by an infinitely thin cylinder, this is called the separating degeneration locus.
Therefore it must be removed from the moduli space, this is why we have not included
it in F2. Note that in the limit v → 0 ρ and σ can be interpreted as the moduli of
each of the tori.

If we also focus on 4 punctures the string amplitude gives a measure onM2,4 [76]

dµ =
d6Ω

(det ImΩ)5
YS ∧ YS , (3.3.21)

which is invariant under symplectic modular transformations of the representative
F2 of U(2)\Sp(4,R)/PSp(4,Z). YS is the holomorphic 4-form on four copies of the
Riemann surface defined as

YS =
1

3
((t− u)εijεkl+ (s− t)εikεlj +(u− s)εilεjk)ωi(z1)ωj(z2)ωk(z3)ωl(z4) . (3.3.22)

On an oriented Riemann surfaces without boundaries the propagator is given by

G(z, z′) = − ln |E(z, z′)|2 + 2π(ImΩ)−1
ij

(
Im

∫ z′

z

ωi

)(
Im

∫ z′

z

ωj

)
, (3.3.23)
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where E is the prime form defined by

E(z, z′) =
ϑ[ν](Ω,

∫ z′
z
ω)√

∂iϑ[ν](Ω, 0)ωi(z)∂jϑ[ν](Ω, 0)ωj(z′)
, (3.3.24)

where the symplectic modular theta series ϑ is defined as

ϑ [ ab ] (Ω, Z) =
∑

n∈Z2

eiπΩ
ij(ni+

ai
2
)(nj+

aj
2
)+2πi(ni+

ai
2
)(Zi+ bi

2
) , (3.3.25)

where a, b ∈ (Z/2Z)2 and we have defined ∂i =
∂
∂Zi . ν = [ ab ] parametrises the spin

structures on the worldsheet Σ. We call ν = [ ab ] an odd (resp. even) spin structure
if it satisfies aib

i = 1 mod 2 (resp. aib
i = 0 mod 2). The prime form (3.3.24) is

defined for any odd spin structure and one can even show that it is independent of
the particular choice of odd spin structure. It is however multivalued, indeed it is
invariant up to sign when the path of integration is changed by a cycle Ai but it
picks up a multiplicative factor when changing the path of integration by a cycle Bi.
However this is compensated by the second term in (3.3.23) so that the propagator
is single valued and well defined. Therefore the full one loop 4-point type II string
amplitude is given by

A2,4 = gn+2
s

∫

F2

d6Ω

(det ImΩ)5

∫

Σ4

YS ∧ YSWg,n exp

(
−α

′

2

∑

i<j

ki · kj G(zi, zj)
)
.

(3.3.26)
As an example we give the two loop type II graviton four point amplitude [76,77]

Agraviton
2,4 = −i(2π)

8α′7g6s
219

R4(ki, ϵi)

∫

F2

d6Ω

(det ImΩ)5

∫

Σ4

YS ∧ YS

exp

(
−α

′

2

∑

i<j

ki · kj G(zi, zj)
)
.

(3.3.27)

For more details on the two loop calculation see [76–83].

3.4 Factorisation of maximally supersymmetric am-

plitudes

Notice that the tree level, one loop and two loop four point amplitudes (3.3.5), (3.3.13)
and (3.3.27) are all of the form
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Agraviton
g,4 = −i(2π)

7α′4g2s
211

R4(ki, ϵi)fg(s, t, u) , (3.4.1)

for some function fg(s, t, u) which is different for each genus but is invariant under
permutation of the Mandelstam variables. This is actually a common feature of any
maximally supersymmetric theory in any dimension. In fact maximal supersymmetry
implies that the four point amplitude for any field ϕ is of the form [84]

Aϕ4 = tϕ(ki, ϵi)f(s, t, u;φ) , (3.4.2)

where tϕ(ki, ϵi) is a kinematic factor containing the field polarisations which only de-
pends on the field type ϕ and f(s, t, u;φ) is a function invariant under permutation of
the Mandelstam variables and is a function of the moduli fields φ parametrising some
symmetric space but is independent of the field type. For example, if we reabsorb the
relevant constants into f(s, t, u;φ) we have for the graviton tgraviton(ki, ϵi) = R4(ki, ϵi)
while for a scalar field tscalar(ki) = s4. f(s, t, u;φ) can then be expanded into a
perturbative series

f(s, t, u;φ) =
+∞∑

n=0

fn-loop(s, t, u;φ) + non perturbative terms . (3.4.3)

The fact that the kinematic prefactor tϕ only depends on the field type means that
for any field ϕ the full amplitude is related to the tree amplitude by

Aϕ4 =

(
f

f tree

)
Aϕ, tree4 . (3.4.4)

These factorisation properties of maximally supersymmetric amplitudes can be used
to reduce the unitarity properties of superamplitudes down to the unitarity properties
of the amplitudes of the lowest lying field in the chiral superfield containing the
supermultiplet. The case that we will be interested in is that of dimension 6 where the
spinor helicity formalism is available and the lowest lying field in the chiral superfield
is a scalar field thus considerably simplifying calculations.

3.4.1 Maximally R-symmetry violating amplitudes

Let us first present the spinor helicity formalism in 6 dimensions. For an extensive
review of the spinor helicity formalism and on shell amplitudes see [85]. For more
details on the spinor helicity formalism in 6 dimensions see [86, 87]. For a discussion
of spinor helicity formalism in general even dimensions see [88].
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Spinor helicity variables The Lorentz group in 6 dimensional Minkowski space is
SO(1, 5) whose universal covering group is SU∗(4) while the massless little group is
SO(4) whose universal covering group is SU(2)× SU(2). The vector representation
Vµ of SO(1, 5) corresponds to the antisymmetric representation V[ab] of SU

∗(4) and
the invariant scalar product ηµν corresponds to the invariant tensor 1

2
εabcd. Therefore

the null vector condition obeyed by the momentum pµ of an on shell massless particle
is written as

1

2
εabcd pabpcd = 0 . (3.4.5)

This is easily solved by introducing so-called spinor helicity variables λαa and writing

pab = εαβλ
α
aλ

β
b , (3.4.6)

where a, b are SU∗(4) spinor indices and α, β are SU(2) fundamental spinor indices
which can be raised and lowered using the invariant tensor εαβ. The SU(2) invariance
of (3.4.6) simply corresponds to the action of the little group which by definition
leaves the momentum invariant. For the momentum pab to be real the spinor helicity
variables need to be pseudo-majorana. One can also introduce spinor helicity variables
λ̃aα̂ such that

pab =
1

2
εabcd pcd = εα̂β̂λ̃aα̂λ̃

b
β̂
, (3.4.7)

where α̂, β̂ are SU(2) antifundamental spinor indices which can be raised and lowered

using the invariant tensor εα̂β̂. The null vector condition then imposes that λαa λ̃
a
β̂
= 0.

We can see that we have another SU(2) group that leaves the momentum invariant,
this indeed corresponds to the 6 dimensional massless little group. We can convince
ourselves that the bispinor form of the momentum solves the on-shell constraint by
counting the degrees of freedom: a null vector in 6 dimensions has 5 independent
components while λαa has 4× 2 = 8 components and the SU(2) invariance removes 3
of them. This matching between massless degrees of freedom and the spinor helicity
components moded by the little group only exists in 3,4 and 6 dimensions.

6 dimensions N = (2, 2) superspace According to table 2.4 the maximal amount
of supersymmetry in 6 dimensions containing a graviton multiplet is N = (2, 2).
The R-symmetry group in this case is Sp(2)× Sp(2)5 which each carry an invariant

symplectic form ΩIJ and ΩÎĴ where I, J, Î, Ĵ are Sp(2) indices. The supercharges QI
a,

QaÎ are symplectic Majorana SU∗(4) spinors

5Here Sp(2) is the compact symplectic group, sometimes written as USp(4), which is not to be
confused with the symplectic group Sp(4,R) introduced earlier
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{QI
a, Q

J
b } = ΩIJPab, {QaÎ , QbĴ} = ΩÎĴP ab . (3.4.8)

The graviton multiplet can be found by starting with the lowest lying field in the
multiplet and successively applying the supercharges QI

a and QaÎ as follows

ϕIJ,K̂L̂

χaJ,K̂L̂

χa
IJ,L̂

H(ab)K̂L̂

H
(ab)
IJ

F b
a J,L̂

ρ c
[ab] L̂

ρ
[ab]

cJ

C
(cd)

(ab)

QI
a

QaK̂

, (3.4.9)

where ϕ represents scalar fields, χa represents spinor fields, H(ab) represents the self
dual field strengths of two forms, H(ab) represents the anti self dual field strengths
of two forms, F b

a represents the field strengths of one forms, ρ c
[ab] represents the

field strength of a gravitino and C
(cd)

(ab) represent the Weyl tensor which is the field

strength of the graviton. All pairs of Sp(2) indices IJ and Î Ĵ represent antisymmet-
ric symplectic traceless indices. The usual superspace construction would then imply
introducing Grassmann variables θIa, θ

aÎ and fitting the whole multiplet into a su-
perfield. However the spinor helicity variables permit the construction of an on shell
superspace by writing the fields of the multiplet in terms of spinor helicity variables
and some polarization constants

C
(cd)

(ab) = λαaλ
β
b λ̃

c
γ̂λ̃

d
δ̂
h

(γ̂δ̂)
(αβ) ,

ρ
[ab]

cJ = λγc λ̃
a
α̂λ̃

b
β̂
ψ

[α̂β̂]
γJ ,

... (3.4.10)

χaJ,K̂L̂ = λαa θαJ,K̂L̂ ,

ϕIJ,K̂L̂ = ϕIJ,K̂L̂ .

The on shell superspace is then constructed by introducing Grassmann variables ηIα,

ηα̂Î and fitting the polarisation constants h
(γ̂δ̂)

(αβ) , ψ
[α̂β̂]

γJ , . . . , θαJ,K̂L̂, ϕIJ,K̂L̂ into a
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superfield. Due to the self-CPT conjugate nature of the physical spectrum one can
contain the full multiplet using either chiral or anti-chiral superspace, i.e. only half
of the full superspace is required to contain all physical degrees of freedom.

In order to split the on shell superspace we break each of the R-symmetry group
into U(1) × SU(2) ≃ U(2) ⊂ Sp(2). Therefore the Sp(2) indices I, Î break into ±i,
±̂ı̂ where ±, ±̂ refers to the U(1) chirality and i, ı̂ are SU(2) indices. Hence the on

shell superspace coordinates ηIα, η
α̂Î split into η+iα , ηα̂+̂ı̂, η̄−iα , η̄α̂−̂ı̂. Antisymmetric

symplectic traceless indices IJ and Î Ĵ break into (±±, ij) and (±̂±̂, ı̂ȷ̂) where pairs
of SU(2) indices ij and ı̂ȷ̂ are symmetric. Therefore polarisation constants of the
fields of the graviton multiplet split into

ϕ±±,±̂±̂ , ϕ±±,∓̂∓̂ , ϕij,±̂±̂ , ϕ±±,̂ıȷ̂ , ϕij,k̂l̂ , θα±i,±̂±̂ ,

θα±i,̂ıȷ̂ , . . . , h
(γ̂δ̂)

(αβ) . (3.4.11)

We can now use the U(1) factors in the R-symmetry group to split the on shell
superspace into chiral and antichiral parts. We choose the chiral part of the superspace
to be the subspace generated only by the η+iα , ηα̂+̂ı̂ coordinates which corresponds to
the positive U(1) chiralities. In 4 dimensions this splitting is done similarly except
that the U(1) used is that of the little group instead of the R-symmetry group. We
can therefore fit the polarisation constants inside a chiral superfield

W++,+̂+̂(η
+i
α , η

α̂+̂ı̂) =ϕ++,+̂+̂ + ηα+iθα+i,+̂+̂ + · · ·+ ηα+iηβ+iη
+̂ı̂
γ̂ ηδ̂+̂ı̂h

(γ̂δ̂)
(αβ)

+ · · ·+ η4+η
4
+̂ϕ−−,−̂−̂ . (3.4.12)

Therefore we can see that the lowest lying field in the chiral superfield is indeed the
scalar. In 4 dimensions this would have been the graviton. The supercharges QI

a, Q
aÎ

also split into Q±i
a , Qa±̂ı̂ whereas the susy algebra relation (3.4.8) splits into

{Q+i
a , Q

−j
b } = δijPab , {Q+i

a , Q
+j
b } = 0 , {Q−i

a , Q
−j
b } = 0 ,

{Qa+̂ı̂ , Qb−̂ȷ̂} = δ ı̂ȷ̂P ab , {Qa+̂ı̂ , Qb+̂ȷ̂} = 0 , {Qa−̂ı̂ , Qb−̂ȷ̂} = 0 . (3.4.13)

Therefore the on shell superspace representation of our supercharges is given by

Q+i
a = λαaη

+i
α , Q−i

a = λαa
∂

∂ηα+i
,

Qa+̂ı̂ = λ̃aα̂η
α̂+̂ı̂ , Qa−̂ı̂ = λ̃aα̂

∂

∂ηα̂+̂ı̂
. (3.4.14)
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N point superamplitudes In the case we want to write scattering superampli-
tudes for N incoming and outgoing particles we have N momenta pn[ab] and therefore

we have N spinor helicity variables λαna, λ̃
a
nβ̂
. The on shell superspace is also the carte-

sian product of all the on shell superspaces for each particle, hence we have N copies
of the superspace coordinates η+inα, η

α̂+̂ı̂
n . Therefore the positive chirality supercharges

are given by

Q+i
na = λαnaη

+i
nα , Qa+̂ı̂

n = λ̃anα̂η
α̂+̂ı̂
n . (3.4.15)

Translation and susy invariance imply conservation of the total momentum
∑N

n=1 pnab
and of the total supercharge

∑N
n=1Q

+i
na and

∑N
n=1Q

a+̂ı̂
n , the conservation of the neg-

ative chirality supercharges
∑N

n=1Q
−i
na,
∑N

n=1Q
a−̂ı̂
n is redundant. Therefore superam-

plitudes will always contain factors δ6
(∑N

n=1 pn

)
and δ16

(∑N
n=1Q

+
n

)
. As always

we do not write the momentum conservation factors. In superspace the supercharge
conservation factors are written as

δ16

(
N∑

n=1

Q+
n

)
=

2∏

i=1

4∏

a=1

(
N∑

n=1

λαnaη
+i
nα

)
2∏

ı̂=1

4∏

b=1

(
N∑

n=1

λ̃bnα̂η
α̂+̂ı̂
n

)
. (3.4.16)

One can show that all amplitudes involving the scattering of N ≥ 4 graviton multi-
plets with N − 2 scalars of polarisation ϕ++,+̂+̂ and 2 scalars of polarisation ϕ−−,−̂−̂
(all the particles are counted as incoming) are contained in a superamplitude of the
form [87]

AMRV
N≥4 =

δ16
(∑N

n=1Q
+
n

)

16(pNabpabN−1)
4
AϕN≥4(ϕ++,+̂+̂

N−2, ϕ−−,−̂−̂
2) , (3.4.17)

where AϕN≥4 is the regular N point amplitude for the scalar field. Note that this con-
tains the amplitudes for the whole graviton multiplet. Indeed if this amplitude is ex-
panded in superspace coordinates then the term proportional to

∏N
n=1 η

α+i
n ηβn+iη

+̂ı̂
nγ̂ηnδ̂+̂ı̂

will be the graviton amplitude.

In 4 dimensions the amplitude appearing on the right hand side of (3.4.17) would
have been the graviton because it is the lowest lying field in the chiral superfield.
We can see that this is the equivalent of the maximally helicity violating (MHV)
amplitudes in 4 dimensions but since here the role of the helicity is played by the
U(1) factors in the R-symmetry group we call these maximally R-symmetry violating
amplitudes (MRV). For N = 4 all on shell amplitudes are MRV amplitudes, therefore
the four point superamplitude
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A4 =
δ16
(∑4

n=1Q
+
n

)

16(pNabpabN−1)
4
Aϕ4 , (3.4.18)

contains all four point amplitudes for fields of the graviton multiplet.

3.4.2 Sewing relations and unitarity

Let us now show that the positivity bounds on the superamplitude (3.4.18) reduce to
positivity bounds on the regular four point scalar amplitude which is much simpler.
Let us write the optical theorem (1.3.11) for the four point superamplitude

2 ImA2→2′ >

∫
d5k1′′d

5k2′′

∫
d8η1′′d

8η2′′ A
∗
2′→2′′A2→2′′ , (3.4.19)

where k1′′ , k2′′ are the momenta associated to the two outgoing particles in the am-
plitudes on the right hand side of the equation (denoted by 2′′) while η+i1′′α, η

α̂+̂ı̂
1′′ and

η+i2′′α, η
α̂+̂ı̂
2′′ are the superspace coordinates associated to these particles. The d8η1′′d

8η2′′
integrals are required to sum over all intermediate particle states in the graviton mul-
tiplet. We also define s = −(k1+k2)2 = −(k1′ +k2′)2 = −(k1′′ +k2′′)2. Using (3.4.18)
and (3.4.2) (along with the fact that tϕ = s4) we get

δ16
(
Q+

1 +Q+
2 +Q+

1′ +Q+
2′
)
2 Im f(1, 2, 1′, 2′)

>

∫
d5k1′′d

5k2′′

∫
d8η1′′d

8η2′′
δ16
(
Q+

1′ +Q+
2′ +Q+

1′′ +Q+
2′′
)

s4
A∗ϕ

2′→2′′

× δ16
(
Q+

1 +Q+
2 +Q+

1′′ +Q+
2′′
)

s4
Aϕ2→2′′ ,

(3.4.20)

where the different indices n, n′ and n′′ are to indicate the different incoming and
outgoing particles. We can then use (3.4.4) to make the tree level amplitudes appear

δ16
(
Q+

1 +Q+
2 +Q+

1′ +Q+
2′
)
2 Im f(1, 2, 1′, 2′)

>

∫
d5k1′′d

5k2′′

(
f ∗(1′, 2′, 1′′, 2′′)f(1, 2, 1′′, 2′′)

f ∗tree(1′, 2′, 1′′, 2′′)f tree(1, 2, 1′′, 2′′)

)

×
∫
d8η1′′d

8η2′′
δ16
(
Q+

1′ +Q+
2′ +Q+

1′′ +Q+
2′′
)

s4
A∗ϕtree

2′→2′′
δ16
(
Q+

1 +Q+
2 +Q+

1′′ +Q+
2′′
)

s4
Aϕtree2→2′′

=

∫
d5k1′′d

5k2′′

(
f ∗(1′, 2′, 1′′, 2′′)f(1, 2, 1′′, 2′′)

f ∗tree(1′, 2′, 1′′, 2′′)f tree(1, 2, 1′′, 2′′)

)∫
d8η1′′d

8η2′′ A
∗tree
2′→2′′A

tree
2→2′′ .

(3.4.21)
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Sewing relations The point of making the tree level amplitudes appear is that
we can use so called sewing relations which allow us to glue two tree amplitudes
by summing over intermediate states of the graviton multiplet to get another tree
amplitude. Indeed using (3.4.2) and (3.4.3) we have

∫
d8η1′′d

8η2′′ A
tree
2′→2′′A

tree
2→2′′

=

∫
d8η1′′d

8η2′′
δ16
(
Q+

1′ +Q+
2′ +Q+

1′′ +Q+
2′′
)

s4
A∗ϕtree

2′→2′′
δ16
(
Q+

1 +Q+
2 +Q+

1′′ +Q+
2′′
)

s4
Aϕtree2→2′′

= f tree(1′, 2′, 1′′, 2′′)f tree(1, 2, 1′′, 2′′)∫
d8η1′′d

8η2′′ δ
16
(
Q+

1′ +Q+
2′ +Q+

1′′ +Q+
2′′
)
δ16
(
Q+

1 +Q+
2 +Q+

1′′ +Q+
2′′
)
.

(3.4.22)

If we notice that

∫
d8η1′′d

8η2′′ δ
16
(
Q+

1′ +Q+
2′ +Q+

1′′ +Q+
2′′
)
δ16
(
Q+

1 +Q+
2 +Q+

1′′ +Q+
2′′
)

= s4δ16
(
Q+

1 +Q+
2 +Q+

1′ +Q+
2′
)
, (3.4.23)

then we get the following sewing relation

∫
d8η1′′d

8η2′′ A
tree
2′→2′′A

tree
2→2′′

= s4f tree(1′, 2′, 1′′, 2′′)f tree(1, 2, 1′′, 2′′)δ16
(
Q+

1 +Q+
2 +Q+

1′ +Q+
2′
)

=

(
f tree(1′, 2′, 1′′, 2′′)f tree(1, 2, 1′′, 2′′)

f tree(1, 2, 1′, 2′)

)
Atree

2→2′ . (3.4.24)

As is evident from the derivation this relation can be generalised to any loop order.
This was originally proven in all dimensions using the double copy relation between
Yang-Mills amplitudes and gravity amplitudes via the KLT relations [89–91]. A su-
perspace derivation for type IIB supergravity can be found in the appendix A of [88].

Using the fact that tree level amplitudes are real we can insert this into (3.4.21)
to get

δ16
(
Q+

1 +Q+
2 +Q+

1′ +Q+
2′
)
2 Im f(1, 2, 1′, 2′)

> δ16
(
Q+

1 +Q+
2 +Q+

1′ +Q+
2′
) ∫

d5k1′′d
5k2′′ s

4f ∗(1′, 2′, 1′′, 2′′)f(1, 2, 1′′, 2′′) . (3.4.25)
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If we divide by the delta functions and multiply by s4 on both sides we get

2 ImAϕ2→2′ >

∫
d5k1′′d

5k2′′ A∗ϕ
2′→2′′Aϕ2→2′′ , (3.4.26)

which is the optical theorem for the scalar field. Notice that now we only sum over
intermediate scalar states instead of all particle of the multiplet. This not trivial
because in a supersymmetric theory all field of the supermultiplet can appear as
intermediate states. What this shows is that their contributions cancel out so that
one can look at the theory containing only the scalar part of the multiplet.

3.5 Low energy limits and tropical amplitudes

This section closely follows section 2 of [92]. Let us now generalise the results of
section 3.3 to lower dimensions by compactifying type II superstring theory on a
d-dimensional torus T d. The spacetime metric is given by

ds2 = ηµνdx
µdxν +GIJdx

IdxJ , (3.5.1)

where the indices IJ indicate compactified dimensions and GIJ is the metric on T d.
When we also include a background field for the Kalb-Ramond form on the torus the
relevant part of the Euclidean action will decompose as

S + Scomp =
1

2πα′

∫
d2z ∂xµ∂̄xµ +

1

2πα′

∫
d2z
(
GIJ∂x

I ∂̄xJ − iBIJ∂x
I ∂̄xJ

)

+ other terms . (3.5.2)

Where the non compact string coordinates still obey the closed string boundary con-
dition xµ

(
τ, σ + π) = xµ(τ, σ) but the compact string coordinates can now obey

generalised versions of this boundary condition xI
(
τ, σ+ π) = xI(τ, σ) + 2πlsn

I . The
fact that xI is now a multivalued function represents the fact that strings can now
wrap around the compact dimensions (which we assume to be of radius ls), there-
fore we call nI ∈ Z a winding number. This can be generalised to other cycles of
the worldsheet. If we assume the a-cycles to be the space-like cycles then in form
notation we get

∮

Ai

dxI = 2πlsn
I
i , (3.5.3)

where d = dz ∂ + dz̄ ∂̄ is the exterior derivative on the worldsheet. In fact this can
also be extended to timelike cycles which we assume to be the b-cycles
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∮

Bi

dxI = 2πlsm
Ii , (3.5.4)

where this time themI ∈ Z are interpreted as quantized internal momenta, or Kaluza-
Klein modes.6. If we now rewrite the compactified part of the action in form notation

Scomp =
1

4πα′

∫

Σ

(
GIJ dx

I ∧ ⋆dxJ − iBIJdx
I ∧ dxJ

)
+ other terms , (3.5.5)

we can decompose the one forms dxI on the basis of holomorphic forms ωi defined
in section 3.3.3 and use Riemann’s bilinear relations to see that the expression above
becomes

Scomp = πGIJ(ImΩ)−1
ij

(
mIi + ΩiknIk

) (
mJj + Ω̄jlnJl

)
− 2πiBIJm

IinJi + other terms ,
(3.5.6)

where Ω is the period matrix defined in (3.3.15). At every order in genus, one must
sum over all the possible topological sectors of the worldsheet in the path integral.
Therefore we must sum over all the possible winding and Kaluza-Klein modes. If we
write qI = (mI , nI)T ∈ Z2g we can define

HΩ[q
I , qJ ] = (ImΩ)−1[mI + (ReΩ)nI ,mJ + (ReΩ)nJ ] + (ImΩ)[nI , nJ ] , (3.5.7)

where we have taken the convention M [x, y] = xTMy for M a symmetric matrix.
This is the standard bilinear form on Z2g induced by elements in U(g)\Sp(2g,R). In
matrix notation we have

HΩ =

(
(ImΩ)−1 0

0 ImΩ

)[
I ReΩ
0 I

]
. (3.5.8)

where we take the convention M [x] = M [x, x] = xTMx for M a symmetric matrix.
Let us also define

⟨qI , qJ⟩ = mI · nJ −mJ · nI , (3.5.9)

where we have taken the convention x · y = xTy. This is the standard Sp(2g,Z)
invariant scalar product on Z2g in a Darboux basis. Then the path integral will
include a sum

6Since we are in euclidean space there are no spacelike and timelike cycles on the worldsheet.
Nevertheless this gives us a physical interpretation for the modes nI and mI .
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(detG)
g
2

∑

qI∈Z2g

e−πGIJHΩ[q
I ,qJ ]+iπBIJ ⟨qI ,qJ ⟩ , (3.5.10)

where at every order in genus we also divide and multiply by (detG)
g
2 . We can use

the Poisson resumation formula

∑

q∈Zn

e−πM
−1[q+x] = (detM)

1
2

∑

p∈Zn

e−πM [p]+2πip·x , (3.5.11)

to put this in a more familiar form

(detG)
g
2

∑

mIi,nI
i∈Z

e−πGIJ((ImΩ)−1
ij (mIi+(ReΩ)iknI

k)(mJj+(ReΩ)jlnJ
l )+(ImΩ)ijnI

i n
J
j )+2πiBIJm

IinJ
i

= (det ImΩ)
d
2

∑

mIi,n
I
i∈Z

e−π(ImΩ)ij(GIJ(mIi+BIKn
K
i )(mJj+BJLn

L
j )+GIJn

I
i n

J
j )+2πi(ReΩ)ijmIin

I
j .

(3.5.12)

If we write qi = (mi, ni)
T ∈ Zd,d we can define

HG,B[qi, qj] = G−1[mi +Bni,mj +Bnj] +G[ni, nj] . (3.5.13)

This is the standard bilinear form on Zd,d induced by elements in (O(d)×O(d))\O(d, d,R).
In matrix notation we have

HG,B =

(
G−1 0
0 G

)[
I B
0 I

]
. (3.5.14)

Let us also define

(qi, qj) = mi · nj +mj · nj . (3.5.15)

This is the standard O(d, d,Z) invariant scalar product on Zd,d in a null basis. Then
the path integral will include the sum

Γ
(g)
IId,d

(Ω) = (det ImΩ)
d
2

∑

qi∈Zd,d

e−π(ImΩ)ijHG,B [qi,qj ]+iπ(ReΩ)ij(qi,qj) , (3.5.16)

where IId,d = Zd,d stands for the even self-dual lattice of split signature. This is
called the Narain partition function or the Siegel theta series. Note that while the
form (3.5.10) had manifest symplectic modular invariance under Sp(2g,Z) this form
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has manifest O(d, d,Z) invariance. In particular this proves that this function has
both. Whereas the first form was found directly from the action and can therefore be
thought of as a Lagrangian partition function the second form (3.5.16) can be thought
of as its Hamiltonian counterpart. Indeed the Poisson resummation is equivalent to
a Legendre transform of the exponent. The O(d, d,Z) symmetry corresponds to the
invariance under exchanges and shifts of the winding and Kaluza-Klein modes, it is
the generalisation of T duality for toroidal compactifications.

Since the torus T d has no curvature the compactification only modifies the 0 modes
of the worldsheet fields by changing their boundary conditions. Therefore the rest of
the path integral goes pretty much unchanged.

Toroidal compactification also preserves maximal supersymmetry which allows us
to keep the nice factorisation properties we have discussed in the previous section.
Indeed if we write Vd = (2πls)

d
√
detG the volume of T d we have that the type II

superstring graviton four point amplitude in D = 10− d dimensions is of the form

Astring
4,D = −i(2π)

7α′4g2s
211Vd

R4(ki, ϵi)f
string
D (s, t, u;φ) , (3.5.17)

where f string
D (s, t, u;φ) is a function dependent on the dimension which is invariant

under permutation of the Mandelstam variables and is a function of the moduli fields φ
parametrising some symmetric space.7 If we define the D dimensional string coupling
constant as g2D = g2s/

√
detG then we get

Astring
4,D = −i(2π)

7−dα′ 8−d
2 g2D

211
R4(ki, ϵi)f

string
D (s, t, u;φ) . (3.5.18)

f string
D (s, t, u;φ) can then be expanded into a perturbative series

f string
D (s, t, u;φ) = α′3

+∞∑

g=0

g2gD f
string
D,g (s, t, u;φ) +O

(
e
− 2π

gD

)
, (3.5.19)

where we have used the fact that we have divided by (detG)
g
2 at every order in

genus to replace gs by gD in our expansion. Our aim will be to look at the low
energy limit of such amplitudes to see the corrections type II string theory entails to
gravity in the field theory limit. To this end we will compare the low energy limit
to type II supergravity which means the Kaluza-Klein reduction of type IIA or type
IIB supergravity on a torus. Both theories have the same four point amplitudes up
to two loops in 10 dimensions and lead to the same theory in lower dimensions hence

7Note that we have put the back the constants as in (3.4.1) instead of absorbing them in f such
as in the previous section.
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we will not distinguish between them. The gravitational sector of this theory is given
by the following action in string frame

Ssugra =
1

2κ2D

∫
dDx
√−g e−2ϕR , (3.5.20)

where we have assumed the we have absorbed the vacuum expectation value ϕ0 of the
dilaton into the coupling constant κD. One can show that the type II supergravity
graviton four point amplitude in D dimensions is of the form

Asugra
4,D = −iκ

2
D

210
R4(ki, ϵi)f

sugra
D (s, t, u;φ) , (3.5.21)

where f sugra
D (s, t, u;φ) is a function dependent on the dimension which is invariant

under permutation of the Mandelstam variables and is a function of the moduli fields
φ parametrising some symmetric space. f sugra

D (s, t, u;φ) can then be expanded into a
perturbative series

f sugra
D (s, t, u;φ) = 64

+∞∑

n=0

κ2nD f
sugra
D,n−loops(s, t, u;φ) + non perturbative terms . (3.5.22)

3.5.1 Genus zero amplitude low energy limit

Let us first look at the tree level where on the supergravity side we have

f sugra
D,tree(s, t, u) =

1

stu
. (3.5.23)

Whereas at genus 0 on the string side we have [28,71]

f string
D,0 (s, t, u) = − Γ(−α′s/4)Γ(−α′t/4)Γ(−α′u/4)

Γ(1 + α′s/4)Γ(1 + α′t/4)Γ(1 + α′u/4)

=
64

α′3stu
exp

( ∞∑

n=1

2ζ(2n+ 1)

2n+ 1

(
α′

4

)2n+1

(s2n+1 + t2n+1 + u2n+1)

)

=
64

α′3stu
+
∑

p,q≥0

(
α′

4

)2p+3q

c(p,q)(s
2 + t2 + u2)p(s3 + t3 + u3)q ,

(3.5.24)

where c(p,q) are constants that are polynomials in the odd zeta values ζ(2n+ 1). The
first ones are given by
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c(0,0) = 2ζ(3) , c(1,0) = ζ(5) , c(0,1) =
2ζ(3)2

3
. (3.5.25)

At the genus 0 order the low energy limit is simply obtained by taking α′s, α′t, α′u→
0. Therefore we can see from (3.5.23) and (3.5.24) that the low energy limit of the
genus 0 string amplitude and the tree level supergravity amplitude coincide if we

make the identification 2κ2D = (2π)7−dα′ 8−d
2 g2D. This means that the D dimensional

Planck length and string length are related by lP = g
2

8−d

D ls. As we have seen we can
decompose the amplitude into analytic and non analytic parts where the non analytic
part is associated with the propagation of the massless graviton while the analytic
parts are to be interpreted as coming from the propagation of the massive string states.

This result justifies the claim we have made in chapter 2 that string theory re-
produces gravity at low energy and it also justifies the claim we have made earlier in
chapter 3 that the genus expansion of string theory corresponds to the loop expansion
of supergravity in the quantum field theory limit. However we can see that string
amplitudes add corrections to the supergravity amplitudes. These corrections can be
seen directly from the effective field theory point of view as higher order corrections
to the supergravity Lagrangian. In fact, this is the usual method used to find the
Wilsonian effective action of string theory [93–95]. Schematically the gravitational
sector of the effective action giving rise to such corrections has the form in string
frame

Sstring =
1

2κ2D

∫
dDx
√−g e−2ϕ

(
R +

l6s
48

(∑

p,q≥0

l4p+6q
s c(p,q)∇4p+6qR4

)
+ . . .

)
,

(3.5.26)
where again we have assumed the we have absorbed the vacuum expectation value
ϕ0 of the dilaton into the coupling constant. These corrections can be thought of
as arising from integrating out the massive string states in the effective path inte-
gral. Of course this action is not supersymmetric, in principle one must add similar
corrections for other fields of the multiplet (which can be found by expanding the
corresponding string tree amplitudes for these fields) as well as higher order terms in
the Riemann tensor (which can be found by expanding higher point graviton string
amplitudes). The Wilson couplings also receive further contributions from the genus
1 and 2 amplitudes. In addition we will see in the next chapter that supersymmetry
and U-duality requires one to add terms to the Wilson couplings which are seen as
non perturbative contributions coming from instanton corrections.
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3.5.2 Genus one amplitude low energy limit

At the one loop level on the supergravity side the only contributing diagram is given
by figure 3.4 [72,84]8.

Figure 3.4: Four graviton one loop diagram in maximal supergravity. Gravitons are
represented by straight lines.

This gives the integral

f sugra
D,1 (s, t, u) = I

(1)
4 (s, t) + I

(1)
4 (t, u) + I

(1)
4 (u, s) , (3.5.27)

with

I
(1)
4 (s, t) =

∫
dDp

(2π)D
1

p2(p− k1)2(p− k1 − k2)2(p+ k4)2
, (3.5.28)

where by convention the loop momenta are assumed to be euclidean. In D ≤ 4
this suffers from IR divergences while in D ≥ 8 it suffers from UV divergences.
Therefore the integral must be dimensionally regularised, i.e. we perform an analytic
continuation in D such that D is replaced by D− 2ϵ and the function is analytically
continued around ϵ = 0. However D = 4 and D = 8 are the critical dimensions where
the IR and UV divergences respectively are logarithmic, hence one must define a
prescription to remove the pole in ϵ = 0. Also note that in any dimension the integral
only converges on the so called domain of convergence where s, t, u > 0, therefore the
integral is actually defined by analytic continuation of the Mandelstam variable to
the upper complex half plane containing the physical domain where s + t + u = 0.
This amplitude can be put into Schwinger parameter space

8In particular there are no diagrams with vertices corresponding to gravitational contact inter-
actions. The fact that the only contributing diagram corresponds to the box diagram of ϕ3 scalar
field theory is a very special feature of the maximally supersymmetric four-graviton amplitude [84].
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I
(1)
4 (s, t) =

1

16(2π)D−4

∫ ∞

0

dLL3−D
2

∫ 1

0

dx3

∫ x3

0

dx2

∫ x2

0

dx1 e
πL[(x2−x1)(1−x3)s+x1(x3−x2)t] .

(3.5.29)
At genus 1 on the string side we have

f string
D,1 (s, t, u;φ) = 2π

∫

F1

d2τ

(Im τ)2
Γ
(1)
IId,d

4∏

i=1

∫

Σ

d2zi
Im τ

Im τ δ2(z1)

× exp

(
−α

′

2

∑

i<j

ki · kj G(zi, zj)
)
,

(3.5.30)

where

Γ
(1)
IId,d

(τ) = (Im τ)
d
2

∑

q∈IId,d
e−π Im τ HG,B [q]+iπRe τ (q,q) , (3.5.31)

with the convention that Γ
(g)
II0,0

= 1. The moduli fields φ in (3.5.30) are the torus
metric GIJ and Kalb-Ramond two form on the torus BIJ parametrising the Narain
partition function. Following [96] it is convenient to introduce a cutoff parameter
Λ > 1 to split the moduli space into two pieces

F1 = F1,Λ ∪ {|Re τ |≤ 1/2, Im τ ≥ Λ} , (3.5.32)

where we have defined the truncated fundamental domain

F1,Λ = {|Re τ |≤ 1/2, 0 < Im τ < Λ, |τ |≥ 1} . (3.5.33)

This also splits the moduli space integral in (3.5.30) into f string
D,1,<Λ and f string

D,1,>Λ. Let us
first focus on the first part

f string
D,1,<Λ(s, t, u;φ) = 2π

∫

F1,Λ

d2τ

(Im τ)2
Γ
(1)
IId,d

4∏

i=1

∫

Σ

d2zi
Im τ

Im τ δ2(z1)

×
∞∑

n=1

1

n!

(
−α

′

2

∑

i<j

ki · kj G(zi, zj)
)n

.

(3.5.34)

We can expand the Koba–Nielsen factor to get
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f string
D,1,<Λ(s, t, u;φ) =

∑

p,q≥0

(
α′

4

)2p+3q

E (1)(p,q)Λ(s
2 + t2 + u2)p(s3 + t3 + u3)q , (3.5.35)

with

E (1)(p,q)Λ = 2π

∫

F1,Λ

d2τ

(Im τ)2
Γ
(1)
IId,d
B(1)
(p,q) , (3.5.36)

where B(1)
(p,q) are so called graph functions introduced in [97]. It was shown in [96] that

the first graph functions are Eisenstein series

B(1)
(0,0) = 1 , B(1)

(1,0)(τ) =
π2

45
E
SL(2)
2Λ1

(τ) , B(1)
(0,1)(τ) =

2π3

567
E
SL(2)
3Λ1

(τ) +
ζ(3)

3
, (3.5.37)

where Λ1 refers to the fundamental weight of SL(2,R). The notations and precise
normalisations for Eisenstein series are defined in chapter 4. For now just notice that
they are well defined functions on SO(2)\SL(2,R)/PSL(2,Z), the moduli space of
the torus. These graph functions are studied further in [98–103]. It was shown in [97]
that for Im τ ≫ 1 they behave as

B(1)
(p,q)(τ) =

2p+3q−1∑

n=0

b(p,q),n(π Im τ)2p+3q−n +O
(
e−2π Im τ

)
, (3.5.38)

for constants b(p,q),n which are linear combinations over Q of single-valued multi-zeta
values of weight n. Therefore if we choose Λ≫ 1 we have that

E (1)(p,q)Λ = E (1)(p,q)ϵ + 2π

2p+3q−1∑

n=0

π2p+3q−nb(p,q),n
Λ

d−2
2

+2p+3q−n

d−2
2

+ 2p+ 3q − n +O
(
e−Λ
)
, (3.5.39)

where to avoid having to replace the power of Λ by a lnΛ whenever d−2
2
+2p+3q−n = 0

(which happens for d = 2 and p = q = 0 and for d = 0 for p, q ≥ 1) we assume that
the second term is defined by analytic continuation in d such that d is replaced by
d+ 2ϵ and the function is analytically continued around ϵ = 0. We have also defined

E (1)(p,q)ϵ = 2π

∫

F1

d2τ

(Im τ)2
(Im τ)ϵΓ

(1)
IId,d
B(1)
(p,q) , (3.5.40)
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which converges for d+ 2ϵ < 2− 4p− 6q and is also defined by analytic continuation
in ϵ near ϵ = 0.9 Note that the invariance of B(1)

(p,q) under PSL(2,Z) ensures that the
amplitude does not depend on the representative F1 of SO(2)\SL(2,R)/PSL(2,Z).
In the limit ϵ→ 0 we have that the first couplings are given by [51,104]

E (1)(0,0)ϵ = 4πξ(d− 2)E
SO(d,d)
d−2
2

Λ1
, (d ̸= 2)

E (1)(1,0)ϵ =
4π3

45
ξ(d+ 2)E

SO(d,d)
d+2
2

Λ1
, (d ̸= 4) (3.5.41)

E (1)(0,1)ϵ =
ζ(3)

3
E (1)(0,0)ϵ +

8π4

567
ξ(d+ 4)E

SO(d,d)
d+4
2

Λ1
, (d ̸= 6)

where we have used (4.1.60). It is understood that if the limit is regular, as is
the case above, ϵ is taken to be 0. We have also defined the Riemann xi function
ξ(s) = π− s

2Γ
(
s
2

)
ζ(s), also called the completed Riemann function. Again Eisenstein

series are defined later in chapter 4 but for now one can notice that they are invariant
under O(d, d,Z), which reflects the invariance under T-duality of the amplitude. For

d = 0 the Eisenstein series are not defined but we can see that E (1)(0,0)ϵ = 2πµ(F1) =
2π2

3

where µ(F1) =
π
3
is the volume of the fundamental domain F1. Furthermore, in the

limit ϵ→ 0, one can show that E (1)(1,0)ϵ = 0 and E (1)(0,1)ϵ =
2π2

9
ζ(3) because the regularised

integral of the Eisenstein series E
SL(2)
sΛ1

on the fundamental domain F1 vanishes for all
s. We have written on the right of (3.5.41) the dimension where the limit ϵ → 0 di-

verges, for E (1)(0,0)ϵ at d = 2 this is simply due to the logarithmic divergence in (3.5.39).

We will show at the end of the section how to regularise this and calculate E (1)(0,0)ϵ.

We can see from (3.5.35) that f string
D,1,<Λ is analytic in the Mandelstam variables,

therefore it is associated with the propagation of massive string states.

Let us now turn on the second part of the amplitude

f string
D,1,>Λ(s, t, u;φ) = 2π

∫
Im τ≥Λ
|Re τ |≤ 1

2

d2τ

(Im τ)2
Γ
(1)
IId,d

4∏

i=1

∫

Σ

d2zi
Im τ

Im τ δ2(z1)

× exp

(
−α

′

2

∑

i<j

ki · kj G(zi, zj)
)
.

(3.5.42)

9By abuse of notation we keep the same notation for two different types of regularisations. It is

nevertheless understood that E(1)(p,q)Λ and E(1)(p,q)ϵ are not equal for Λ = ϵ.
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Since we have Λ ≫ 1 then this part of the moduli space integral is restricted to the
tori with large dimensionless volume Im τ ≫ 1. The natural setting for studying
such worldsheets is that of tropical geometry and tropical limits. The tropical limit
is a singular limit which takes algebraic varieties to piecewise linear objects. Thus
one can understand intuitively how it can take string worldsheets to Feynman dia-
grams eventually with some lower genus string worldsheet insertions, see figure 3.5. A
comprehensive review of the tropical limit of string amplitudes can be found in [105].

Figure 3.5: Tropical limit of a genus 1 surface where the degenerate surface looks like
a one loop supergravity Feynman diagram.

If we define zi = xi + τyi for xi, yi ∈ R then the tropical limit of the propagator
in the Koba-Nielsen factor is given by [106]

G(z, z′) =2π Im τ(−|y − y′|+(y − y′)2)− ln
∣∣∣1− e−2π Im τ |y−y′|+2πi(x−x′+Re τ(y−y′))

∣∣∣
2

+O
(
e−π Im τ

)
, (3.5.43)

for |y − y′|< 1/2. Since we have Λ ≫ 1 then the terms in O
(
e−π Im τ

)
can be

neglected. We can also focus on a generic point in moduli space where all worldsheet
punctures are far from each other and the distances |yi − yj| are far from 0, we call
the moduli space integral over such points f string

D,1,⃝>Λ. In this case the logarithmic term
can also be neglected. Finally from (3.5.31) we can see that for Im τ ≫ 1 we have

Γ
(1)
IId,d

(τ) ∼ (Im τ)
d
2 therefore one gets
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f string
D,1,⃝>Λ(s, t, u) = 2π

∫
Im τ≥Λ
|Re τ |≤ 1

2

d2τ

(Im τ)2
(Im τ)

d
2

4∏

i=1

∫ 1

0

d2yi δ(y1)

× exp

(
−α′π Im τ

∑

i<j

ki · kj
(
−|yi − yj|+(yi − yj)2

)
)

= 4πα′ 2−d
2

∫ ∞

α′Λ
dLL

d
2
−2

∫ 1

0

dx3

∫ x3

0

dx2

∫ x2

0

dx1
(
eπL[(x2−x1)(1−x3)s+x1(x3−x2)t]

+eπL[(x2−x1)(1−x3)t+x1(x3−x2)u] + eπL[(x2−x1)(1−x3)s+x1(x3−x2)u]
)
,

(3.5.44)

where we have decomposed the integral over y2, y3 and y4 into three integrals with
orderings 0 ≤ y2 ≤ y3 ≤ y4 ≤ 1, 0 ≤ y4 ≤ y2 ≤ y3 ≤ 1 and 0 ≤ y3 ≤ y4 ≤ y2 ≤ 1 and
performed the respective change of variables

y2 = 1− x3 , y3 = 1− x2 , y4 = 1− x1 ;
y2 = 1− x2 , y3 = 1− x1 , y4 = 1− x3 ;

y2 = x3 , y3 = x1 , y4 = x2 , (3.5.45)

so as to end up with a unique integral with ordering 0 ≤ x1 ≤ x2 ≤ x3 ≤ 1. We
have also performed the change of variable Im τ = L/α′. Notice that (3.5.44) is ba-
sically the supergravity integral in Schwinger parameter space with a UV cutoff α′Λ,
therefore this integral is well defined for all space-time dimensions where there are
no IR divergences, which means for D ≥ 5 which corresponds to d ≤ 5. For D = 4
corresponding to d = 6 one must introduce some IR regularisation which we will not
do here.

Since in the low energy limit we have α′s, α′t, α′u → 0 then we can also choose
Λ≪ 1/α′s, 1/α′t, 1/, α′u in which case one can show that

4πα′ 2−d
2

∫ ∞

α′Λ
dLL

d
2
−2

∫ 1

0

dx3

∫ x3

0

dx2

∫ x2

0

dx1 e
πL[(x2−x1)(1−x3)s+x1(x3−x2)t]

=32(2π)7−dα′ 2−d
2 I

(1)
4,ϵ (s, t)

−
∞∑

n=0

(4π)n+1(n+ 1)!

(2n+ 3)!

Λ
d
2
−1+n

d
2
− 1 + n

∫ 1

0

dx

(
(1− x)α′s

4

)n+1 −
(
xα

′t
4

)n+1

(1− x)α′s
4
− xα′t

4

, (3.5.46)
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where again to avoid having to replace the power of Λ by a lnΛ whenever d
2
−1+n = 0

(which happen for d = 0 and d = 2) we assume that the second term is defined by
analytic continuation in d such that d is replaced by d + 2ϵ and the function is
analytically continued around ϵ = 0. We have also defined

I
(1)
4,ϵ (s, t) =

∫
d10−dp

(2π)10−d
1

p2(p− k1)2(p− k1 − k2)2(p+ k4)2
, (3.5.47)

which is also defined by analytic continuation in ϵ near ϵ = 0. The Λ dependent terms
can be expanded as

f string
D,1,⃝>Λ(s, t, u) =32(2π)7−dα′ 2−d

2 (I
(1)
4,ϵ (s, t) + I

(1)
4,ϵ (t, u) + I

(1)
4,ϵ (u, s))

−
∑

p,q≥0

(
α′

4

)2p+3q

b(p,q)⃝
Λ

d−2
2

+2p+3q

d−2
2

+ 2p+ 3q
(s2 + t2 + u2)p(s3 + t3 + u3)q ,

(3.5.48)

where the b(p,q)⃝ are also linear combinations over Q of single-valued multi-zeta values.

Other contributions to f string
D,1,>Λ come from points in moduli space where two or

more punctures are close to each other. Therefore there are four more contributions
corresponding to integrals over points in moduli space where one, two, three or four
distances |yi − yj| are close to 0. We will not calculate them here but when all of
these are included it turns out that all Λ dependent terms cancel each other out
between f string

D,1,<Λ and f string
D,1,>Λ. This was checked explicitly up to (p, q) = (2, 0) in [92]

using [107]. Therefore we can forget about the cutoff parameter Λ and the complete
integral can be written for D ≥ 5 as the limit ϵ→ 0

f string
D,1 (s, t, u;φ) =32(2π)7−dα′ 2−d

2 (I
(1)
4,ϵ (s, t) + I

(1)
4,ϵ (t, u) + I

(1)
4,ϵ (u, s))

+
∑

p,q≥0

(
α′

4

)2p+3q

E (1)(p,q)ϵ(s
2 + t2 + u2)p(s3 + t3 + u3)q + other terms ,

(3.5.49)

where the limit is well defined for each term individually for all dimensions except
d = 2 corresponding to spacetime dimensions D = 8 (for d = 0 each integral I

(1)
4,ϵ

is not well defined individually but the sum over permutations of the Mandelstam
variables is, so that the D = 10 supergravity dimensionally regularised amplitude is
well defined on its own). This result also holds in D = 4 provided one introduces an
IR regulator.
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We can see from (3.5.27) and (3.5.49) that, again, the low energy limit of the
genus 1 string amplitude reproduces the dimensionally regularised one loop super-

gravity amplitude if we make the identification 2κ2D = (2π)7−dα′ 8−d
2 g2D. Intuitively

this corresponds to the tropical limit of the string worldsheet that looks like a one
loop Feynman diagram as depicted in figure 3.5. The other terms coming from the
contributions to f string

D,1,>Λ with coincident points include massive string mode propa-
gators. They correspond schematically to the tropical limit of the worldsheet that
looks like a Feynman diagram with the insertion of a genus 0 string world sheet.
They are suppressed by powers of α′ with respect to the one loop supergravity in-
tegral, the leading E (1)(0,0)ϵ term for D ≥ 3 and the next to leading E (1)(1,0)ϵ term for D ≥ 7.

Again these corrections can be seen as arising from the effective field theory action
in string frame

Sstring =
1

2κ2D

∫
dDx
√−g e−2ϕ

×
(
R +

l6s
48

∑

p,q≥0

l4p+6q
s

(
c(p,q) + g2De

2ϕE (1)(p,q)ϵ

)
∇4p+6qR4 + . . .

)
,

(3.5.50)

where again we have assumed the we have absorbed the vacuum expectation value
ϕ0 of the dilaton into the string coupling constant.

Logarithmic ambiguity in 8 dimensions We saw that in dimension D = 8 the
two terms in (3.5.49) are not individually well defined but their sum is analytic in 0.
From the supergravity point of view this is because D = 8 is the critical dimension
and thus the dimensionally regularised one loop amplitude contains a pole in ϵ = 0
corresponding to the logarithmic divergence. The only term in the analytic part of
the amplitude which has the same power in α′ and thus can cancel this pole is E (1)(0,0)ϵ.
Indeed this term also diverges. Let us write d = 2 + 2ϵ. We have on one side
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32(2π)7−dα′ 2−d
2 I

(1)
4,ϵ (s, t) = 32(2π)5−2ϵα′−ϵ

∫
d8−2ϵp

(2π)8−2ϵ

1

p2(p− k1)2(p− k1 − k2)2(p+ k4)2

= 4πα′−ϵ
∫ ∞

0

dLLϵ−1

∫ 1

0

dx3

∫ x3

0

dx2

∫ x2

0

dx1 e
πL[(x2−x1)(1−x3)s+x1(x3−x2)t]

= 4π

∫ ∞

0

dτ2
τ2
τ ϵ2

∫ 1

0

dx3

∫ x3

0

dx2

∫ x2

0

dx1 e
πτ2α′[(x2−x1)(1−x3)s+x1(x3−x2)t]

= −8π1−ϵΓ(ϵ− 2)Γ(3− ϵ)2
Γ(5− 2ϵ)

∫ 1

0

dx

(
(−α′s)−ϵ

(1− x)1−ϵ
(1 + t

s
)− 1

+ (−α′t)−ϵ
(1− x)1−ϵ
(1 + s

t
)− 1

)

=
2π

3

(
1

ϵ
+

11

3
− γE − lnπ − s

s+ t
ln(−α′s)

− t

s+ t
ln(−α′t)− 1

2

st

(s+ t)2

(
ln

(
t

s

)2

+ π2

))
+O(ϵ) .

(3.5.51)

We therefore define the renormalised function

Î
(1)
4,µ(s, t) = −

1

6(4π)4

(
s

s+ t
ln
(
−s/µ2

)
+

t

s+ t
ln
(
−t/µ2

)

+
1

2

st

(s+ t)2

(
ln

(
t

s

)2

+ π2

))
,

(3.5.52)

where we have introduced the renormalisation scale µ. Notice that Î
(1)
4,µ(s, t) =

Î
(1)
4,1 (s/µ

2, t/µ2).
On the other side we write explicitly the SO(2, 2) invariant bilinear formHG,B[q, q]

appearing in the Narain partition function as

HG,B[q, q] =
1

y21
(m+ x1q2 + x2q1 + x1x2n)

2 +
1

y22
(q1 + x1n)

2 + y22(q2 + x2n)
2 + y21n

2 ,

(3.5.53)
where y1, y2, x2 parametrise the torus metric GIJ and x1 parametrises the torus Kalb-
Ramond two form BIJ and q = (m, q1, q2, n)

T . We also have (q, q) = 2mn+2q1q2. We
can then replace the (Im τ)ϵ factor in (3.5.40) by the real analytic Eisenstein series

E
SL(2)
ϵΛ1

(τ) without changing the limit. Therefore we compute as in [48]
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E (1)(0,0)ϵ = 2π

∫

F1

d2τ

(Im τ)2
E
SL(2)
ϵΛ1

Γ
(1)
IId,d

= 4πξ(2ϵ)E
SL(2)
ϵΛ1

(T )E
SL(2)
ϵΛ1

(U)

= −2π

ϵ
+ 2π(γE − ln 4π)− 2π ln

(
ImU |η(U)|4

)
− 2π ln

(
ImT |η(T )|4

)
+O(ϵ) ,
(3.5.54)

where we have used (4.1.60) along with the isomorphism SO(2, 2) = SL(2)×SL(2).10
We have also defined U = x2 + iy1/y2 ∈ H1 and T = x1 + iy1y2 ∈ H1 and η(τ) is the
Dedekind eta function defined by

η(τ) = e
πiτ
12

∞∏

n=1

(
1− e2nπiτ

)
=
∑

n∈Z
e3πiτ(n+

1
6
)2+iπn , (3.5.55)

for any τ ∈ H1 in the upper complex half plane. If we consider that we have obtained
the 8 dimensional theory by compactifying type IIA string theory on a torus T 2 then
U can be interpreted as the modulus of T 2. y1 = R2/ls and y2 = R1/ls are then the
radii of both circles of the type IIA torus in string length units. Therefore we can see
that the poles in ϵ = 0 indeed cancel out in the total amplitude. In total we have

f string
8,1 (s, t, u;φ) =(4π)5(Î

(1)
4,1 (α

′s, α′t) + Î
(1)
4,1 (α

′t, α′u) + Î
(1)
4,1 (α

′u, α′s))

− 2π ln
(
ImU |η(U)|4

)
− 2π ln

(
ImT |η(T )|4

)
+

22π

3
− 4π ln 2π

+ other terms

=(4π)5(Î
(1)
4,1/ls

(s, t) + Î
(1)
4,1/ls

(t, u) + Î
(1)
4,1/ls

(u, s))

− 2π ln
(
ImU |η(U)|4

)
− 2π ln

(
ImT |η(T )|4

)

+
4π

3
ln g8 +

22π

3
− 4π ln

(
2π
lP
ls

)
+ other terms , (3.5.56)

where in the last step we have used that lP = g
1
3
8 ls. Hence we define the renormalised

function

E (1)(0,0)µ = −2π ln
(
ImU |η(U)|4

)
− 2π ln

(
ImT |η(T )|4

)
+

4π

3
ln g8 +

22π

3
− 4π ln(2πlPµ) .

(3.5.57)

10This is not strictly correct but in this thesis we will mostly neglect factors of Z2 and topological
issues relative to universal covers and connected components unless stated otherwise.
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Note that this has modular invariance under SL(2,Z) on both arguments U and T .
The isomorphism SO(2, 2) = SL(2) × SL(2) tells us that the function actually has
SO(2, 2,Z) invariance. If we further add the invariance under the exchange of T and
U , which corresponds to R1 ←→ l2s/R1, we get the full O(2, 2,Z) invariance which
again corresponds to the invariance under T-duality of the amplitude. Therefore we
can interpret T as the modulus of the type IIB torus. Finally the full renormalised
function is

f string
8,1 (s, t, u;φ) =(4π)5(Î

(1)
4,µ(s, t) + Î

(1)
4,µ(t, u) + Î

(1)
4,µ(u, s)) + E (1)(0,0)µ

+ other terms . (3.5.58)

Hence we have seen that even though supergravity amplitudes suffer from diver-
gences, string amplitudes offer a completion of these amplitudes which are finite at all
orders. Indeed the analytic contributions coming from the infinite tower of massive
string states cancel the non renormalisable loop divergences. Since the divergent su-
pergravity amplitude come from the singular tropical limit of the worldsheet, we can
interpret the finiteness of the total string amplitudes as resulting from the smoothness
of the string worldsheet. Furthermore we have seen that the finite string amplitudes
offer a non ambiguous way to define renormalised quantities in the low energy limit.

3.5.3 Genus two amplitude low energy limit

This subsection closely follows subsection 2.3 of [92]. At the two loop level on
the supergravity side we actually have two Feynman graphs contributing, see fig-
ure 3.6 [72,89].11

There is the planar diagram (depicted on the left in figure 3.6) which gives the
integral

f sugra
D,2,P (s, t, u) = s2(I

(2)
4,P (s, t) + I

(2)
4,P (s, u)) + t2(I

(2)
4,P (t, u) + I

(2)
4,P (t, s))

+ u2(I
(2)
4,P (u, s) + I

(2)
4,P (u, t)) ,

(3.5.59)

with

11Again the two-loop four-graviton amplitude in maximally supersymmetric supergravity contin-
ues to have the feature that it can be written in terms of ϕ3 scalar field theory diagrams [89].
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Figure 3.6: Four graviton two loop planar diagram (left) and non planar diagram
(right) in maximal supergravity. Gravitons are represented by straight lines.

I
(2)
4,P (s, t) =

∫
dDpdDq

(2π)2D
1

p2(p− k1)2(p− k1 − k2)2(p+ q)2q2(q − k4)2(q − k3 − k4)2
,

(3.5.60)
where again, by convention, the loop momenta are assumed to be euclidean. In
Schwinger parameter space this is

I
(2)
4,P (s, t) =

1

128(2π)2D−7

∫ ∞

0

dL1dL2dL3
L2
1L

2
2

∆
D
2

∫ 1

0

dx2dx4

∫ x2

0

dx1

∫ x4

0

dx3

eπ
L1L2L3

∆
[(1−x1−x4)(1−x2−x3)s+(x2−x1)(x4−x3)t]+πL1x1(1−x2)s+πL2x3(1−x4)s ,

(3.5.61)

where ∆ = L1L2 + L1L3 + L2L3. And there is the non planar diagram (depicted on
the right in figure 3.6) which gives the integral

f sugra
D,2,NP (s, t, u) = s2(I

(2)
4,NP (s, t) + I

(2)
4,NP (s, u)) + t2(I

(2)
4,NP (t, u) + I

(2)
4,NP (t, s))

+ u2(I
(2)
4,NP (u, s) + I

(2)
4,NP (u, t)) ,

(3.5.62)

with

I
(2)
4,NP (s, t) =

∫
dDpdDq

(2π)2D
1

p2(p− k1)2(p− k1 − k2)2(p+ q)2(p+ q + k3)2q2(q − k4)2
.

(3.5.63)
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In Schwinger parameter space this is

I
(2)
4,NP (s, t) =

1

128(2π)2D−7

∫ ∞

0

dL1dL2dL3
L2
1L2L3

∆
D
2

∫ 1

0

dx2dx3dx4

∫ x2

0

dx1

eπ
L1L2L3

∆
[(1−x1−x4)(1−x2−x3)s+(x2−x1)(x4−x3)t]+πL1x1(1−x2)s . (3.5.64)

The full one loop function is given by

f sugra
D,2 (s, t, u) = f sugra

D,2,P (s, t, u) + f sugra
D,2,NP (s, t, u) . (3.5.65)

The integrals suffer from IR divergences inD ≤ 4 and from UV divergences forD ≥ 7,
therefore they must be dimensionally regularised. D = 4 and D = 7 are the critical
dimensions where the logarithmic divergences introduce poles in ϵ = 0.

At genus 2 on the string side we have

f string
D,2 (s, t, u;φ) =

π

128

∫

F2

d6Ω

(det ImΩ)5
Γ
(2)
IId,d

∫

Σ4

YS∧YS exp
(
−α

′

2

∑

i<j

ki · kj G(zi, zj)
)
,

(3.5.66)
where

Γ
(2)
IId,d

(Ω) = (det ImΩ)
d
2

∑

qi∈IId,d
e−π(ImΩ)ijHG,B [qi,qj ]+iπ(ReΩ)ij(qi,qj) . (3.5.67)

Let us parametrise Ω as

Ω =

(
ρ u1 + ρu2

u1 + ρu2 ς + ρu22

)
, (3.5.68)

with ρ, ς ∈ C and u1, u2 ∈ R. The dimensionless volume of the genus 2 worldsheet
is then given by det ImΩ = (Im ρ)(Im ς). It is convenient to introduce the cutoff
parameters Λ1 ≤ Λ to split the moduli space into three pieces: the truncated funda-
mental domain F2,Λ where Im ς < Λ, the non separating degeneration intermediate
region where Im ς ≥ Λ and Im ρ < Λ1 and the tropical region where Im ς ≥ Λ and
Im ρ ≥ Λ1 [108]. This also splits the moduli space integral in (3.5.66) into f string

D,2,<Λ,

f string
D,2,<Λ1>Λ and f string

D,2,>Λ1
. Let us first focus on the first part
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f string
D,2,<Λ(s, t, u;φ) =

π

128

∫

F2,Λ

d6Ω

(det ImΩ)5
Γ
(2)
IId,d

∫

Σ4

YS ∧ YS

×
∞∑

n=1

1

n!

(
−α

′

2

∑

i<j

ki · kj G(zi, zj)
)n

.

(3.5.69)

We can expand the Koba–Nielsen factor to get

f string
D,2,<Λ(s, t, u;φ) =

∑

p,q≥0

(
α′

4

)2p+3q

E (2)(p,q)Λ(s
2 + t2 + u2)p(s3 + t3 + u3)q , (3.5.70)

with

E (2)(p,q)Λ = 2π

∫

F2,Λ

d6Ω

(det ImΩ)3
Γ
(2)
IId,d
B(2)
(p,q) , (3.5.71)

where the first graph functions are [72,76,77]

B(2)
(0,0) = 0 , B(2)

(1,0) = 2 . (3.5.72)

The next graph functions are studied in [72,104,109,110]. As in the genus 1 case we
take Λ≫ 1 and by introducing an analytic continuation d→ d+2ϵ we can write the
divergent part of the integral (3.5.71) as a sum of powers of Λ whereas the cut-off
independent part is given by

E (2)(p,q)ϵ = 2π

∫

F2

d6Ω

(det ImΩ)3
(det ImΩ)ϵΓ

(2)
IId,d
B(2)
(p,q) , (3.5.73)

which is also defined by analytic continuation in ϵ around ϵ = 0. The two parts are
individually well defined for finite Λ in every dimension except d = 3. Note that the
graph functions are invariant under PSp(4,Z) which ensures that the amplitude does
not depend on the representative F2 of U(2)\Sp(4,R)/PSp(4,Z). In the limit ϵ→ 0
we have that the first couplings are given by

E (2)(0,0)ϵ = 0 ,

E (2)(1,0)ϵ =
2π4

135

(
E
SO(d,d)
2Λdϵ

+ E
SO(d,d)
2Λd−1ϵ

)
. (d ≤ 4 and d ̸= 3) (3.5.74)

126



Again Eisenstein series are defined later in chapter 4 but for now one can notice that
they are invariant under O(d, d,Z), which reflects the invariance under T-duality of
the amplitude. For d ≤ 4 the Eisenstein series have poles but in the limit ϵ→ 0 the
poles in ϵ cancel between the two functions (for d ̸= 3). For d = 0 the Eisenstein

series are not defined but we can see that E (2)(1,0)ϵ = 4πµ(F2) =
2π4

135
where µ(F2) =

π3

270

is the volume of the fundamental domain F2. For d = 3 the limit ϵ→ 0 diverges for
E (2)(1,0)ϵ, this is simply due to the logarithmic divergence in (3.5.73). We will show at

the end of the section how to regularise this and calculate E (1)(1,0)ϵ.

Let us now turn on the integral on the tropical region.

f string
D,2,>Λ1

(s, t, u;φ) =
π

128

∫
F2

Im ς≥Λ
Im ρ≥Λ1

d6Ω

(det ImΩ)5
Γ
(2)
IId,d

∫

Σ4

YS ∧ YS

× exp

(
−α

′

2

∑

i<j

ki · kj G(zi, zj)
)
.

(3.5.75)

We have det ImΩ ≥ ΛΛ1 ≫ 1 therefore this part of the moduli space integral is
restricted to the Riemann surfaces with large dimensionless volume. This justifies
using the tropical limit and tropical geometry. Let us parametrise ImΩ as

ImΩ =
1

α′

(
L1 + L3 L3

L3 L2 + L3

)
. (3.5.76)

Then in the tropical limit L1, L2 and L3 can be interpreted as the lengths of the three
lines in the degenerate Riemann surface representing the two loop vacuum Feynman
diagram given in figure 3.7. We choose the ordering 0 ≤ L3 ≤ L1 ≤ L2.

If we focus on the generic case where the punctures are far away from the branching
points we also have that the one forms ωi are locally constant and have support on the
b-cycle Bi. For a path γ from z to z′ one can define the dimensionless geometric length
d(γ). For example, for the closed path B1 one has by definition d(B1) = α′L1 + α′L3

and for B2 one has d(B2) = α′L2 + α′L3. This distance depends on the chosen path,
however in the tropical limit this choice is limited, up to closed loops, to a finite
number. The choice basically amounts to choosing around which line to go at the
branching points. Therefore, for a given path that does not include closed loops there
always exists αi ∈ {−1, 0, 1} such that

αi Im

∫

γ

ωi = d(γ) . (3.5.77)
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L1 L2L3

Figure 3.7: Tropical limit of the genus 2 Riemann surface representing the two loop
vacuum diagram of maximal supergravity. L1, L2 and L3 represent the lengths of
each line.

If γ is a shortest path from z to z′, it is convenient to use an odd spin structure
ν = [ ab ] such that ai = |αi| and aibi = 1 to compute the prime form (3.3.24). Up to
exponentially suppressed contributions, the tropical limit of the prime form is given
by

E(z, z′) =
2i sin

(
παi

∫
γ
ωi
)

2π
√
αiωi(z)αjωj(z′)

+ . . . (3.5.78)

Then the tropical limit of the propagator in the Koba-Nielsen factor is given by [106]

G(z, z′) =2π

(
−d(γ) + (ImΩ)−1

ij

(
Im

∫

γ

ωi
)(

Im

∫

γ

ωi
))

+ 2 ln 2π − ln
∣∣1− e−2πd(γ)+2πixγ

∣∣2 + . . . (3.5.79)

up to exponentially suppressed terms, where xγ ∈ [0, 1] represents a phase which is
irrelevant here. Indeed we can also focus on a generic point in moduli space where all
worldsheet punctures are far from each other and the distances d(γ) for paths γ from
zi to zj are far from 0, we call the moduli space integral over such points f string

D,2, ⊖>Λ1
.

In this case the logarithmic term can also be neglected.

The properties of the holomorphic 4-form (3.3.22) imply that the only contribu-
tions in the tropical limit are when at least two punctures are on each b-cycle and
at most two on B1 ∩ B2. This implies that there must be two punctures on one of
the three lines and the two others can be either on one or two other lines. This gives
us permutations of the planar and non planar diagrams of supergravity. there are
18 choices of planar diagrams and for each we may choose four different orderings
of punctures on two lines, so 72 ordered choices in total. There are 36 choices of
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non-planar diagrams and for each one may choose two different orderings of punc-
tures on one line, so 72 ordered choices in total. It is convenient to absorb the six
permutations of the lines in an unfolding of F2 to the Siegel upper half plane LI > 0
corresponding to the Schwinger parameter space of the vacuum diagram. Therefore
L1, L2 and L3 are not ordered anymore.

The tropical region is now determined by α′2 det ImΩ = L1L2 + L1L3 + L2L3 =
∆ ≥ α′2ΛΛ1 and LI + LJ ≥ α′Λ1 for all pairs I, J . There is now a single integral for
the planar and the non-planar diagrams that we must sum over the six permutations
of the Mandelstam variables.

f string
D,2, ⊖>Λ1

(s, t, u;φ) =
π

4
α′5−d

∫
LI>0

∆≥α′2ΛΛ1
LI+LJ≥α′Λ1

dL1dL2dL3
L2
1

∆5− d
2

∫ 1

0

dx2

∫ x2

0

dx1

s2eπL1x1(1−x2)s
(∫ 1

0

dx4

∫ x4

0

dx3 L
2
2e
π

L1L2L3
∆

[(1−x1−x4)(1−x2−x3)s+(x2−x1)(x4−x3)t]+πL2x3(1−x4)s

+

∫ 1

0

dx4dx3 L2L3e
π

L1L2L3
∆

[(1−x1−x4)(1−x2−x3)s+(x2−x1)(x4−x3)t]
)

+ perm.

(3.5.80)

This is simply the supergravity integral in Schwinger parameter space with a UV
cutoffs α′Λ and α′Λ1. Therefore this integral is well defined for all space-time dimen-
sions D ≥ 5 which corresponds to d ≤ 5 whereas for D = 4 corresponding to d = 6
one must introduce some IR regularisation. Again as in the genus 1 case we take
Λ,Λ1 ≪ 1/α′s, 1/α′t, 1/, α′u and by introducing an analytic continuation d→ d+ 2ϵ
we can write the divergent part of the integral as a sum of powers of Λ and Λ1 whereas
the cut-off independent part is given by

16(2π)14−2dα′5−d
(
s2(I

(2)
4,P,ϵ(s, t) + I

(2)
4,P,ϵ(s, u) + I

(2)
4,NP,ϵ(s, t) + I

(2)
4,NP,ϵ(s, u))

+ t2(I
(2)
4,P,ϵ(t, u) + I

(2)
4,P,ϵ(t, s) + I

(2)
4,NP,ϵ(t, u) + I

(2)
4,NP,ϵ(t, s))

+ u2(I
(2)
4,P,ϵ(u, s) + I

(2)
4,P,ϵ(u, t) + I

(2)
4,NP,ϵ(u, s) + I

(2)
4,NP,ϵ(u, t))

)
,

(3.5.81)

where we have defined
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I
(2)
4,P,ϵ(s, t) =

∫
d10−dpd10−dq

(2π)20−2d

1

p2(p− k1)2(p− k1 − k2)2(p+ q)2q2(q − k4)2(q − k3 − k4)2

I
(2)
4,NP,ϵ(s, t) =

∫
d10−dpd10−dq

(2π)20−2d

1

p2(p− k1)2(p− k1 − k2)2(p+ q)2(p+ q + k3)2q2(q − k4)2
,

(3.5.82)

by analytic continuation in ϵ around ϵ = 0.

When all contributions from f string
D,2,<Λ, f

string
D,2,<Λ>Λ1

and f string
D,2,>Λ1

are included on can
show that all Λ and Λ1 dependent terms cancel out. Therefore we can forget about
the cutoff parameters and the complete integral can be written for D ≥ 5 as the limit
ϵ→ 0

f string
D,2 (s, t, u;φ) = 16(2π)14−2dα′5−d

×
(
s2(I

(2)
4,P,ϵ(s, t) + I

(2)
4,P,ϵ(s, u) + I

(2)
4,NP,ϵ(s, t) + I

(2)
4,NP,ϵ(s, u))

+ t2(I
(2)
4,P,ϵ(t, u) + I

(2)
4,P,ϵ(t, s) + I

(2)
4,NP,ϵ(t, u) + I

(2)
4,NP,ϵ(t, s))

+ u2(I
(2)
4,P,ϵ(u, s) + I

(2)
4,P,ϵ(u, t) + I

(2)
4,NP,ϵ(u, s) + I

(2)
4,NP,ϵ(u, t))

)

+
∑

p,q≥0

(
α′

4

)2p+3q

E (2)(p,q)ϵ(s
2 + t2 + u2)p(s3 + t3 + u3)q + other terms ,

(3.5.83)

where the limit is well defined for each term individually for all dimensions except
d = 3 corresponding to spacetime dimensions D = 7. This result also holds in D = 4
provided one introduces an IR regulator.

We can see from (3.5.59), (3.5.62), (3.5.65) and (3.5.83) that, again, the low en-
ergy limit of the genus 2 string amplitude reproduces the dimensionally regularised

two loop supergravity amplitude if we make the identification 2κ2D = (2π)7−dα′ 8−d
2 g2D.

This corresponds to the tropical limit of the string worldsheet that looks like the two
loop supergravity Feynman diagrams. The other terms coming from f string

D,2,>Λ1
with co-

incident points include massive string mode propagators and correspond to tropical
limits of the worldsheet looking like a two loop Feynman diagram with the insertion
of a genus 0 string world sheet. Finally the terms coming from the integral on the non
separating degeneration intermediate region f string

D,2,<Λ>Λ1
correspond to tropical limits
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of the worldsheet looking like a one loop Feynman diagram with the insertion of a
genus 1 string world sheet. They are suppressed by powers of α′ with respect to the
two loop supergravity integral, the leading E (2)(0,0)ϵ term for D ≥ 3 and the next to

leading E (2)(1,0)ϵ term for D ≥ 7.

Again these corrections can be seen as arising from the effective field theory action
in string frame

Sstring =
1

2κ2D

∫
dDx
√−g e−2ϕ

×
(
R +

l6s
48

∑

p,q≥0

l4p+6q
s

(
c(p,q) + g2De

2ϕE (1)(p,q)ϵ + g4De
4ϕE (2)(p,q)ϵ

)
∇4p+6qR4 + . . .

)
,

(3.5.84)

where again we have assumed that we have absorbed the vacuum expectation value
ϕ0 of the dilaton into the string coupling constant.
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Chapter 4

U-duality and automorphic forms

Even though perturbation theory is very useful and allows us to deal with non trivial
interactions it can only give us an incomplete picture. Indeed by definition one can
only compute observables by truncating the perturbation series to a finite order. An
example includes the Wilson coefficients of (3.5.84) which could potentially receive
contributions from all orders of perturbation. One tool which may help us to go be-
yond perturbation theory is symmetry. Indeed when the symmetry group of a theory
is large enough1 it may allow us to bootstrap observables, sometimes to all orders in
perturbation theory and even non perturbatively. This idea has enjoyed great success
in the conformal bootstrap program for example where the symmetry used is confor-
mal invariance [111]. Supersymmetry is another type of symmetry that entails strong
constraints. For example it can protect some quantities from renormalisation, as we
will see this is actually the case for the first few Wilson couplings in the effective
action type II string theory [47,76].

This justifies why we have been mainly interested in maximal supersymmetry. In-
deed with such a large amount of symmetry at our disposal one can hope to constrain
the effective field theory expansion perhaps even uniquely. On the string theory side
maximal supersymmetry also comes with added structure: U-duality.2 U-duality is a
non perturbative discrete symmetry of string theory which acts on the moduli fields.
In particular it is a very strong tool to constraint and study the Wilson coefficient of
the effective field theory.

We begin this chapter with a quick reminder of automorphic forms. We take
special interest in Eisenstein series, especially minimal and next to minimal Eisenstein
series for SL(n) and SO(n, n) groups. We give their Fourier expansions on parabolic

1Usually Poincaré symmetry is insufficient
2U-duality is not restricted to maximal or even extended supersymmetry but it is the case where

the U-duality group is the most extended. We will focus exclusively on the maximally supersym-
metric case in this thesis.
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subgroups. We then review U-duality for maximally supersymmetric string theory
with the specific example of type IIB string theory. Finally we show how U-duality
and supersymmetry allows us compute the exact leading Wilson coefficients in the
effective field theory limit.

4.1 Automorphic forms

Automorphic forms and automorphic representations are a whole subject of study in
the mathematical community [112–125] most of which is much beyond the scope of
this thesis. In this thesis we will only need a few basic notions and therefore we will
not develop the subject in full generality. Note that our conventions, notations and
terminology do not always necessarily match that of the literature in the mathemat-
ical community, nevertheless we will try to be coherent and self contained with our
exposition. See [126] for a short mathematical review.

Roughly speaking an automorphic form is a well behaved function on a coset
space G/Γ where G is some Lie group manifold and Γ is typically an infinite discrete
subgroup of G. More specifically it is a smooth function f from G to some finite
dimensional complex vector space V which is invariant under the action of Γ, i.e.

f(gγ) = f(g) , (4.1.1)

for all γ ∈ Γ. Automorphic forms can also transform covariantly under the action of
some compact subgroup K of G. Indeed let ρ : K → GL(V ) be a representation of
K acting on V then we say that f transforms in the representation ρ of K if

f(kg) = ρ(k)f(g) , (4.1.2)

for all k ∈ K. We will be particularly interested in the case where K is a maximal
compact subgroup of G.

Symmetric spaces Let G be a semi-simple connected Lie group and K be a max-
imal compact subgroup of G such that K\G is a Riemannian symmetric space of
noncompact type. This means that the Lie algebra g of G can be decomposed into
the direct sum g = k ⊕ p where k is the Lie algebra of K and p is its orthogonal
complement and that

[k, k] ⊆ k , [k, p] ⊆ p , [p, p] ⊆ k . (4.1.3)

This is called a Cartan decomposition. The first condition simply says that K is a Lie
subgroup of G and is automatic for any homogeneous space. The second condition
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makes K\G into a reductive homogeneous space. The third condition however really
characterises symmetric spaces.

The Maurer-Cartan form on G defines a principal connection on G seen as prin-
cipal bundle over a trivial base manifold, it also defines a Cartan connection on the
symmetric space K\G. Indeed as a g-valued one form it can also be decomposed into

dg g−1 = Q+ P , (4.1.4)

where Q is a k-valued one form and P is a p-valued one form. SeeingK\G as a smooth
manifold of dimension dimG−dimK one can interpret p = g⊖k as the tangent space
of K\G at the identity e and also at any other point by left-right translation invari-
ance. Therefore P can be seen as a vector valued one form. Actually, one can show
that P defines a vielbein E = P on K\G.

Taking the exterior derivative of the Maurer-Cartan form we get

d(dg g−1) = −dg ∧ dg−1 = dg g−1 ∧ dg g−1 . (4.1.5)

This is known as the Maurer-Cartan equation. Therefore we have

d(P +Q) = (P +Q) ∧ (P +Q) . (4.1.6)

Decomposing this last equation on k and p this gives us the two equations

dQ = Q ∧Q+ P ∧ P ,
dP = Q ∧ P + P ∧Q . (4.1.7)

The second equation can be interpreted as a Cartan structure equation for torsion

dE + [−Q,E] = 0 . (4.1.8)

Therefore −Q can be interpreted as a spin connection ω = −Q on K\G. Hence the
first equation can be interpreted as a Cartan structure equation for curvature

dω +
1

2
[ω, ω] = −P ∧ P . (4.1.9)

Therefore −P ∧ P can be interpreted as a curvature form R = −P ∧ P on K\G.
Hence, in the basis of the vielbeins the curvature form R = −E ∧ E is constant.
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For some automorphic form f we can define the action of the Lie algebra g on
f through the left-action of the universal enveloping algebra U(g) generated by g
through

(X · f)(g) =
(
d

dt
f(etXg)

)∣∣∣∣
t=0

, (4.1.10)

for all X ∈ g. For X ∈ p this coincides with the covariant derivative on K\G

(X · f)(g) = DXf(g) , (4.1.11)

whereas for X ∈ k this is simply the action of k on f induced by the representation ρ
of K

(X · f)(g) = Dρ(X)f(g) . (4.1.12)

Let {tα} and {ta} be a basis of k and p respectively. We can decompose P and
Q as P = P a

µ tadx
µ and Q = Qα

µtαdx
µ so that the vielbein and the spin connection

are written in components as Ea
µ = P a

µ and ωaµ b = Qγ
µf

a
bγ respectively where fabγ are

structure constants of g. We can therefore write the metric on K\G as

Gµν = κabP
a
µP

b
ν , (4.1.13)

where κab are coordinates of the Killing form on g. The curvature tensor on K\G is
written in the vielbein basis as

R a
cd b = fγcdf

a
bγ . (4.1.14)

Therefore the curvature tensor is indeed constant in the vielbein basis. By the viel-
bein postulate which states that the vielbein are covariantly constant this implies
that the curvature tensor in coordinate basis is covariantly constant as well. This
also characterises symmetric spaces.

We can also give explicitly the action of the covariant derivative on some auto-
morphic form f in components

Daf(g) = κabG
µνP b

µ (∂ν + ρ(ων)) f(g) . (4.1.15)

For any element in the centre Z(g) of the universal enveloping algebra U(g) generated
by g one can define a left-right invariant differential operator. The canonical example
is the quadratic Casimir, which defines the Laplace–Beltrami operator

∆ = κabDaDb . (4.1.16)
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More generally, one can define the centre Z(g) as the set of K-invariant polynomials
in the covariant derivative Da generated by the Casimir operators of g.

Parabolic subgroups Let G be a semi-simple Lie group of rank r with Lie algebra
g and Cartan subalgebra h. Let α ∈ h∗ be some element in the dual of the Cartan
subalgebra, we define gα as the subspace of g given by

gα = {X ∈ g | ∀H ∈ h, adH X = α(H)X} . (4.1.17)

The α ∈ h∗ such that gα is non trivial are called roots of the Lie algebra g and gα is
called the root space associated to α. Root spaces are all of dimension 1. Let R be
the set of all roots which, one can show, forms a lattice and let ∆ be the set of all
simple roots, i.e. generators of the root lattice. We define R+ the subset of positive
roots spanned by ∆, i.e. positive integer combinations of the simple roots (the set of
negative roots is then −R+). We then define the Borel subalgebra b by

b = h⊕
⊕

α∈R+

gα . (4.1.18)

The Borel subgroup B of G is the subgroup generated by the Borel subalgebra b.
Consider a partition of the set of simple roots ∆ into disjoint sets ∆1 and ∆2 such
that ∆ = ∆1⊔∆2. Let R

+
1 be the set of positive roots spanned by ∆1 and R

+
2 the set

of positive roots spanned by ∆2. We define the parabolic subalgebra p∆2 associated
with the set of positive roots R+

1 as

p∆2 = h⊕
⊕

α∈R+∪(−R+
1 )

gα . (4.1.19)

Clearly if ∆2 ⊂ ∆̃2 then p∆̃2
⊂ p∆2 . A parabolic subgroup P∆2 of G is a subgroup

generated by the parabolic subalgebra p∆2 .

Any parabolic subgroup P∆2 admits a Levi decomposition P∆2 = L∆2U∆2 into
a reductive subgroup L∆2 called a Levi subgroup and a unipotent radical U∆2 .

3 In
Lie algebra terms we have p∆2 = l∆2 ⊕ n∆2 where l∆2 is Lie algebra of the Levi
factor and n∆2 is the Lie algebra of the unipotent radical (which is nilpotent as a Lie
subalgebra). Their expressions are given explicitly by

l∆2 = h⊕
⊕

α∈R+
1 ∪(−R+

1 )

gα , and n∆2 =
⊕

α∈R+
2

gα . (4.1.20)

3Strictly speaking this is known as a Langlands decomposition. Here we will still use the term
Levi subrgoup even though it is not necessarily semi-simple.
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When ∆2 = ∆ and ∆1 = ø then R+
1 = ø and we have p∆ = b. Hence the Borel

subalgebra is the minimal parabolic subalgebra. Therefore the Levi factor of the
Borel subalgebra is l∆ = h and its nilpotent radical is the sum of all the positive root
spaces. When ∆2 = ø and ∆1 = ∆ then R+

1 = R+ and we have pø = g. Therefore
all parabolic subalgebras are contained between b ⊂ p∆2 ⊂ g. We define maximal
parabolic subalgebras different from g by singling out one simple root αi and taking
∆2 = {αi}. We denote this maximal parabolic subalgebra by pi ≡ p{αi} and the
associated maximal parabolic subgroup as Pi ≡ P{αi}. It has rank r − 1.

We can also define parabolic subgroups through weights. We define fundamental
weights {Λi} as a basis of h∗ such that ⟨Λi, α∨

j ⟩ = δij for all simple roots αj ∈ ∆
where α∨ = 2α/⟨α, α⟩ is the coroot associated to α and ⟨ . , . ⟩ is the bilinear form
on h∗ induced from the restriction of the Killing form on h. All dominant weights
are of the form Λ =

∑
i λiΛi for λi ∈ N and all combinations of this form define a

dominant weight. Therefore the fundamental weights generate the whole fundamen-
tal Weyl chamber. In particular we define the Weyl vector as ρ =

∑
i Λi. For any

root α ∈ R, one can show that it is a positive root, i.e. α ∈ R+ if and only if ⟨ρ, α⟩ ≥ 0.

Let Λ be a dominant weight we define the set RΛ by

RΛ = {α ∈ R | ⟨Λ, α⟩ ≥ 0} . (4.1.21)

We can see that Rρ = R+ and if αi is a simple root we can easily see that if ∆2 =
{αi}, ∆1 = ∆ \ {αi} then RΛi

= R+ ∪ (−R+
1 ). Then we can also define parabolic

subalgebras as

pΛ = h⊕
⊕

α∈RΛ

gα . (4.1.22)

We write the parabolic subgroup of G generated by the parabolic subalgebra pΛ as
PΛ. We can see that pΛi

= pi and pρ = b.

Finally, if we define

R0
Λ = {α ∈ R | ⟨Λ, α⟩ = 0} and R+

Λ = {α ∈ R | ⟨Λ, α⟩ > 0} , (4.1.23)

then the Lie algebras of the Levi factor LΛ and the unipotent radical UΛ are given
explicitly by

lΛ = h⊕
⊕

α∈R0
Λ

gα , and nΛ =
⊕

α∈R+
Λ

gα . (4.1.24)
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Iwasawa decomposition Let G be a semi-simple connected Lie group, let K be a
maximal compact subgroup of G and let B be the Borel subgroup of G. The Iwasawa
decomposition states that G can be decomposed into G = KB. This means that any
element g ∈ G can be uniquely written as g = kb with k ∈ K and b ∈ B.

The Borel subgroup can be seen as the minimal parabolic subgroup but we can ac-
tually extend this decomposition, although non uniquely, to any parabolic subgroup
PΛ as G = KPΛ. By the Levi decomposition any parabolic subgroup PΛ can also
be decomposed into its unipotent radical UΛ and its Levi factor LΛ so that we have
G = KLΛUΛ. This means that any element g ∈ G can be non uniquely written as
g = klu with k ∈ K, l ∈ LΛ and u ∈ UΛ.

The Langlands decomposition also states that the Levi factor LΛ of any parabolic
subgroup PΛ can be decomposed into a semi-simple part MΛ and an abelian part AΛ.
Therefore any element g ∈ G can be written as g = kamu with k ∈ K, a ∈ AΛ,
m ∈MΛ and u ∈ UΛ.

We say that a function f : G→ C has moderate growth if for some norm ∥ . ∥ on
G there exists coefficients C > 0 and s ≥ 0 such that

|f(g)|≤ C∥g∥s , (4.1.25)

for all g ∈ G. We also say that the function f is polynomially bounded. We say that
a function f : G→ C has uniform moderate growth if all its covariant derivatives are
polynomially bounded with the same exponent s (although the coefficient C can be
different).

One can show that if G, or equivalently G/Γ for some discrete arithmetic sub-
group Γ, is not compact then the cusps of G/Γ correspond to taking some abelian
factor of AΛ associated to some parabolic subgroup PΛ of G to infinity. Therefore
moderate growth implies that for each parabolic PΛ one can find a coefficient C and
exponents s = {s1, . . . , sl} such that |f(g)|≥ C|a|s for large a ∈ AΛ where l = dimAΛ.

We finally have all the tools necessary to properly define automorphic forms. Let
G be a connected semi-simple Lie group with Lie algebra g, let Γ be some discrete
subgroup of G and let K be a maximal compact subgroup of G. We say that a
smooth function f from G to some finite dimensional complex vector space V is an
automorphic form for Γ if it satisfies the following four conditions:

1. f is invariant under the action of Γ as in (4.1.1),

139



2. f transforms covariantly under the action of K according to (4.1.2),

3. f defines a finite dimensional representation of the centre Z(g),

4. Each component of f is of moderate growth as in (4.1.25).

Condition 1. makes f into an automorphic representation of G, condition 2. is why
we call f a ”form”, condition 3. gives f good analytic properties while condition 4.
ensures f is well behaved in the case G/Γ is non compact. When G = SL(2,R),
K = SO(2) and Γ = PSL(2,Z) we call f a modular form.

If f transforms in the trivial representation of K we call f an automorphic func-
tion. By definition we have V = C and since f is invariant under the action of K
we can see f as a function f : K\G/Γ → C. In the simplest case f is a one dimen-
sional representation of the center Z(g), which means that it is an eigenfunction of
all Casimir operators. Finally one can show that the components of all automorphic
forms automatically have uniform moderate growth [126].

In the rest of this thesis we will focus on automorphic functions seen as smooth
complex functions on K\G/Γ which are eigenfunctions of all Casimirs and have uni-
form moderate growth.

4.1.1 Eisenstein series

A prototypical example of a modular form is given by Eisenstein series. This is also
the object we will be most interested in throughout the rest of this thesis. Again
Eisenstein series constitute a very large subject of mathematical study [127–140]
which goes much beyond the scope of this thesis and we will not develop the topic in
full generality. For a more extensive review see [141,142].

Let G be a simple connected group of rank r with Lie algebra g. Let us denote
α ∈ R the roots and αi ∈ ∆ the simple roots of the Lie algebra g. Let {Hαi

, Eα} be
a Chevalley basis of g where {Hαi

} is a basis of the Cartan subalgebra h of g such
that Hα ∈ h is the dual of the coroot α∨ ∈ h∗ by the restriction of the Killing form
( . , . ) on h defined by (Hα, H) = α∨(H) for all H ∈ h and {Eα} are root generators
associated to roots α ∈ R such that
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[Hαi
, Hαj

] = 0 ,

[Hαi
, E±αj

] = ±CjiEαj
,

[Eαi
, E−αj

] = −δijHαi
(4.1.26)

[Eα, Eβ] =





NαβEα+β if α + β ∈ R ,
−Hα if α + β = 0 ,

0 otherwise ,

where Cij = ⟨αi, α∨
j ⟩ are the components of the Cartan matrix. The root space gα

associated to some root α is given by Span(Eα).

Let K be a maximal compact subgroup of G. According to the Iwasawa decompo-
sition, for any element v ∈ K\G we can find a unique coset representative v ∼ b with
b ∈ B. Therefore, by definition of the Borel subalgebra (4.1.18) we can decompose v
as

v =
r∏

i=1

e−
1
2
ln yiHαi

∏

α∈R+

exαEα , (4.1.27)

with xα ∈ R and yi ∈ R∗
+. Let us define λ =

∑r
i=1 siΛi for si ∈ C where {Λi} are

the fundamental weights of g. According to the commutation relations (4.1.26) the
following function

χλ(v) =
r∏

i=1

ysii (4.1.28)

is invariant under the action of the Borel subgroup B. χλ is called a multiplicative
parabolic character of weight λ. We define the Eisenstein series of G as the Poincaré
sum [141]

EG
λ (v) =

∑

γ∈B(Z)\G(Z)

χλ(vγ) , (4.1.29)

where the arithmetic subgroup G(Z) is defined as the Chevalley group associated to
the weight lattice of G. This automatically defines a smooth complex function on
K\G/G(Z) which is absolutely convergent if Re(⟨Λi, λ⟩) > ⟨Λi, ρ⟩ for all fundamental
weights Λi and admits an analytic continuation in s = {s1, . . . , sr} to a meromorphic
function on Cr [141]. However it is not well defined for all values of λ. Indeed if for
some λ the symmetry group of χλ is larger than B then the sum becomes divergent.
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One can see using the commutation relations (4.1.26) and the definition of a parabolic
subalgebra (4.1.19) that when si = 0 the symmetry group of χλ is enlarged to the
parabolic subgroup P∆2 with ∆2 = ∆ \ {αi}. In fact if λ =

∑l≤r
i=1 sijΛij where

si1 , . . . , sil ̸= 0 are the non zero coefficients then χλ is invariant under the parabolic
subgroup P∆2 with ∆2 = {αi1 , . . . , αil}. Therefore the limit of the Eisenstein series
to those singular points by analytic continuation is given by

EG
λ (v) =

∑

γ∈P∆2
(Z)\G(Z)

χλ(vγ) . (4.1.30)

The resulting sum is absolutely convergent if Re(⟨Λij , λ⟩) > ⟨Λij , ρ⟩ for all funda-
mental weights Λi1 , . . . ,Λil and also admits an meromorphic continuation in s =
{si1 , . . . , sil} to Cl. The meromorphic continuation is independent of the choice of
parabolic subgroup. In particular we can see that we have

EG
0 (v) =

∑

γ∈G(Z)\G(Z)

χ0(vγ) =
∑

γ∈{Id}
1 = 1 . (4.1.31)

One can show that in the domain of absolute convergence, away from the poles in Cr,
Eisenstein series are eigenfunctions of all K-invariant operators and in particular of
the Laplace operator on K\G (4.1.16)

∆EG
λ (v) = 2⟨λ, λ− ρ⟩EG

λ (v) , (4.1.32)

where ρ is the Weyl vector. Finally one can also show that Eisenstein series have
moderate growth. Therefore they are indeed automorphic forms. It is easy to see
that both EG

λ and ∆EG
λ are real and strictly positive for s = {s1, . . . , sr} real, posi-

tive and in the domain of absolute convergence.

Let w ∈ W be an element in the group of Weyl reflections on the weight lattice of
g. We define Rw ⊂ R+ to be the set of positive roots which are reflected to negative
ones by w, i.e. the α ∈ R+ such that wα ∈ −R+. It has been proved that Eisenstein
series satisfy the Langlands functional relation [141]

EG
λ (v) =

∏

α∈Rw

ξ(⟨2λ− ρ, α⟩)
ξ(⟨2λ− ρ, α⟩+ 1)

EG
wλ+ 1

2
(1−w)ρ(v) . (4.1.33)

Note that ξ(s) is a meromorphic function of C which has poles at s = 0 and s = 1
and obeys the relation ξ(s) = ξ(1− s).
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Maximal parabolic Eisenstein series Let us now specialise to the case where
λ = sΛi which will be the case we will focus on for the rest of this thesis. We have

χsΛi
(v) = ysi . (4.1.34)

Let eΛi
∈ R(Λi) be the highest weight vector of the representation of g associated to

the fundamental weight Λi which we assume to be normalised to one. By definition
of the Chevalley basis (4.1.26) and of a highest weight vector if we assume that the
generators Hαj

and Eαj
are in the representation R(Λi) we have Hαj

eΛi
= δijeΛi

and
EαeΛi

= 0 for all α ∈ R+. Therefore if we assume that v is in the representation
R(Λi), by (4.1.27) we have

veΛi
=

1√
yi
eΛi

. (4.1.35)

Hence

χsΛi
(v) =

1

∥veΛi
∥2s , (4.1.36)

where ∥ . ∥ is the K-invariant norm of the representation R(Λi). Therefore we can
rewrite the expression of the Eisenstein series as

EG
sΛi

(v) =
∑

γ∈Pi(Z)\G(Z)

1

∥vγeΛi
∥2s , (4.1.37)

where Pi is the maximal parabolic subgroup associated to the fundamental weight Λi.

Let q ∈ R(Λi,Z) be a vector in the representation of g associated with the weight
Λi over Z.4 The tensor product q ⊗ q belongs to the representation R(2Λi,Z) of g
associated with the weight 2Λi over Z if and only if it satisfies the Casimir eigenvalue
equation

κABtAq ⊗ tBq = ⟨Λi,Λi⟩ q ⊗ q , (4.1.38)

where tA are generators of g and κAB is the Killing form on g. One can show that
this property is satisfied for any vector q ∈ R(Λi,Z) of the form q = nγeΛi

for all
γ ∈ G(Z)/Pi(Z) and for all n ∈ Z and any vector that satisfies this constraint must
be of this form. In fact we have an isomorphism

G(Z)/Pi(Z) = {q ∈ R(Λi,Z) | q ⊗ q ∈ R(2Λi,Z), gcd q = 1} , (4.1.39)

4More precisely R(Λi,Z) ⊂ R(Λi) is a Chevalley lattice which is preserved by the action of G(Z).
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where here the gcd includes a notion of sign. Therefore we can rewrite the expression
for the Eisenstein series as

EG
sΛi

(v) =
1

2ζ(2s)

′∑

q∈R(Λi,Z)
q⊗q∈R(2Λi,Z)

1

∥vq∥2s , (4.1.40)

where the factor of 1/2ζ(2s) compensates the sum over signed gcds and the prime
over the sum indicates that we don’t include q = 0. These series are called maxi-
mal parabolic Eisenstein series because they associated to some maximal parabolic
subgroup. Their domain of absolute convergence is Re s > ⟨Λi,ρ⟩

⟨Λi,Λi⟩ and we have both

EG
sΛi

> 0 and ∆EG
sΛi

> 0 for s > ⟨Λi,ρ⟩
⟨Λi,Λi⟩ . We define the critical strip as 0 < s < ⟨Λi,ρ⟩

⟨Λi,Λi⟩ .
One can show that in the critical strip the Eisenstein series is integrable. In particular
we have

0 =

∫

K\G/G(Z)
dµ∆EG

sΛi
= 2s (s⟨Λi,Λi⟩ − ⟨Λi, ρ⟩)

∫

K\G/G(Z)
dµEG

sΛi
. (4.1.41)

Therefore if the eigenvalue of the Laplacian isn’t zero then the sign of EG
sΛi

cannot be
constant. We end by stating without proof that for any group G and any fundamental
weight Λi we have EG

1
2
Λi
(v) = 0.

SL(n) maximal parabolic Eisenstein series Let us now look at the particular
case when G = SL(n) which will be relevant to us. In this case K = SO(n). Let
q be a vector in the representation R(Λi), the standard SO(n)-invariant norm of
the representation R(Λi) is given by ∥q∥2= qT q. Therefore the maximal parabolic
Eisenstein series for SL(n) is given by

E
SL(n)
sΛi

(v) =
1

2ζ(2s)

′∑

q∈R(Λi,Z)
q⊗q∈R(2Λi,Z)

1

(qTvTvq)s
. (4.1.42)

The domain of absolute convergence is Re s > n
2
and the function admits a mero-

morphic continuation to s ∈ C with a single pole at s = n
2
. Since for SL(n) the

representations R(Λi) and R(Λn−i) are dual to each other we can relate their Eisen-
stein series.5 Indeed let v be in the representation R(Λi), its dual element in R(Λn−i)

will be given by v−1T . Since the two representations are dual, we have

5In this thesis we use the Bourbaki labelling of Dynkin diagrams such that the exceptional node
of the en family is Λ2 and the Weyl spinor nodes of the dn family are Λn−1 and Λn.
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E
SL(n)
sΛn−i

(v) =
1

2ζ(2s)

′∑

q∈R(Λn−i,Z)
q⊗q∈R(2Λn−i,Z)

1

(qTv−1v−1T q)s

=
1

2ζ(2s)

′∑

q∈R(Λi,Z)
q⊗q∈R(2Λi,Z)

1

(qTv−1v−1T q)s
= E

SL(n)
sΛi

(v−1T ) . (4.1.43)

The fundamental and antifundamental series associated to the weights Λ1 and Λn−1

respectively are also related by the Langlands functional relation (4.1.33) such that

E
SL(n)
sΛ1

(v) =
ξ(n− 2s)

ξ(2s)
E
SL(n)
(n
2
−s)Λn−1

(v) . (4.1.44)

They follow the Laplace equation

∆E
SL(n)
sΛ1

(v) =
2(n− 1)

n
s
(
s− n

2

)
E
SL(n)
sΛ1

(v) ,

∆E
SL(n)
sΛn−1

(v) =
2(n− 1)

n
s
(
s− n

2

)
E
SL(n)
sΛn−1

(v) . (4.1.45)

Using the functional relation (4.1.44) one can see that the functions ∆E
SL(n)
sΛ1

and

∆E
SL(n)
sΛn−1

are regular at s = n
2
and the limit gives the differential equations

∆E
SL(n)
n
2
Λ1

(v) =
1

2

n− 1

ξ(n)
,

∆E
SL(n)
n
2
Λn−1

(v) =
1

2

n− 1

ξ(n)
. (4.1.46)

The Eisenstein series associated to the weights Λ2 and Λn−2 are also related by
the Langlands functional relation (4.1.33) as

E
SL(n)
sΛ2

(v) =
ξ(n− 2s)ξ(n− 2s− 1)

ξ(2s)ξ(2s− 1)
E
SL(n)
(n
2
−s)Λn−2

(v) . (4.1.47)

They follow the Laplace equation

∆E
SL(n)
sΛ2

(v) =
4(n− 2)

n
s
(
s− n

2

)
E
SL(n)
sΛ2

(v) ,

∆E
SL(n)
sΛn−2

(v) =
4(n− 2)

n
s
(
s− n

2

)
E
SL(n)
sΛn−2

(v) . (4.1.48)
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Using the functional relation (4.1.47) one can see that the functions ∆E
SL(n)
sΛ2

and

∆E
SL(n)
sΛn−2

are regular at s = n
2
and the limit gives the differential equation

∆E
SL(n)
n
2
Λ2

(v) =
π

6

n− 2

ξ(n− 1)ξ(n)
,

∆E
SL(n)
n
2
Λn−2

(v) =
π

6

n− 2

ξ(n− 1)ξ(n)
. (4.1.49)

In general the Eisenstein series associated to the weights Λk and Λn−k are also related
by the Langlands functional relation (4.1.33) as

E
SL(n)
sΛk

(v) =

(
k−1∏

i=0

ξ(n− 2s− i)
ξ(2s− i)

)
E
SL(n)
(n
2
−s)Λn−k

(v) . (4.1.50)

Epstein series Let us now look at a few maximal parabolic Eisenstein series for the
fundamental representation Λ1, we will call these minimal Eisenstein series. For G =
SL(n) notice that the symmetric space SO(n)\SL(n,R) is isomorphic to the space of
symmetric positive definite unimodular real matrices HS = {H ∈ Mat(n,R) |HT =
H, detH = 1, H > 0} where the isomorphism is given by H = vTv with v is in the
fundamental representation R(Λ1) of SL(n). We can use this to write the fundamental
maximal parabolic Eisenstein series as

E
SL(n)
sΛ1

(H) =
1

2ζ(2s)

′∑

q∈Zn

1

H[q]s
, (4.1.51)

where H[q] = qTHq is the standard SO(n) invariant bilinear form. We have also
used the fact that for q ∈ R(Λ1,Z) = Zn the condition q ⊗ q ∈ R(2Λ1,Z) is trivially
satisfied.

In the case where G = O(n, n) we have K = O(n) × O(n). We can use the fact
that the symmetric space O(n) × O(n)\O(n, n,R) is isomorphic to the space of real
matrices whose symmetric part is positive definite H = {G + B ∈ Mat(n,R) |GT =
G, BT = −B, G > 0}. Also notice that for q ∈ R(Λ1,Z) = IIn,n the condition
q⊗ q ∈ R(2Λ1,Z) is equivalent to q being light-like. We can use this to write the first
maximal parabolic Eisenstein as

E
SO(n,n)
sΛ1

(G,B) =
1

2ζ(2s)

′∑

q∈IIn,n

(q,q)=0

1

HG,B[q]s
, (4.1.52)
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where HG,B[q] is defined as in (3.5.13) and (q, q) is defined as in (3.5.15). The domain
of absolute convergence is Re s > n − 1 and the function admits a meromorphic
continuation of to s ∈ C. It satisfies the Laplace equation

∆E
SO(n,n)
sΛ1

(v) = 2s (s− n+ 1)E
SO(n,n)
sΛ1

(v) . (4.1.53)

In the case where G = Sp(2n) we have K = U(n). We know that U(n)\Sp(2n,R)
is isomorphic to the Siegel upper half plane Hn and the first maximal parabolic
Eisenstein series is given by

E
Sp(2n)
sΛ1

(Ω) =
1

2ζ(2s)

′∑

q∈Z2n

1

HΩ[q]s
, (4.1.54)

whereHΩ[q] is defined as in (3.5.7). The domain of absolute convergence is Re s > n+1
2

and the function admits a meromorphic continuation of to s ∈ C. It satisfies the
Laplace equation

∆E
Sp(2n)
sΛ1

(v) = ns

(
s− n+ 1

2

)
E
Sp(2n)
sΛ1

(v) . (4.1.55)

For n = 1 we have Sp(2,R) = SL(2) and we can give the SL(2) Eisenstein series in
the more familiar form

E
SL(2)
sΛ1

(τ) =
1

2ζ(2s)

′∑

m,n∈Z

(Im τ)s

|m+ τn|2s . (4.1.56)

This is sometimes called the real analytic Eisenstein series or non holomorphic Eisen-
stein series and it is a modular form. We can think of these functions as a generali-
sation of the Riemann zeta function, we define the Epstein zeta function or Epstein
series as EpGs = 2ζ(2s)EG

sΛ1
[143]. We can see that EpSL(1)s (H) = 2ζ(2s).

We end this section by showing an interesting relation. We can easily see that for
Re s > 0 and a ̸= 0 we have

∫ ∞

0

dt

ts+1
e−

a
t =

1

as

∫ ∞

0

dx xs−1e−x =
Γ(s)

as
, (4.1.57)

where we have performed the change of variable t = a/x and recognised the expression
for the Euler Gamma function. We can us this to express the sum (4.1.52) in the
domain of absolute convergence as an integral
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E
SO(n,n)
sΛ1

(G,B) =
1

2ζ(2s)

πs

Γ(s)

′∑

q∈IIn,n

(q,q)=0

∫ ∞

0

dt

ts+1
e−

π
t
HG,B [q]

=
1

2ξ(2s)

∫ 1
2

− 1
2

dl

∫ ∞

0

dt

ts+1

′∑

q∈IIn,n

e−
π
t
HG,B [q]+iπl (q,q)

=
1

2ξ(2s)

∫
Im τ>0
|Re τ |≤ 1

2

d2τ

(Im τ)2
(Im τ)s−

n−2
2 (Im τ)

n
2

′∑

q∈IIn,n

e−π Im τ HG,B [q]+iπRe τ (q,q) ,

(4.1.58)

where we performed the change of variable l = Re τ and t = 1/ Im τ . We can then
notice that the domain of integration is made up of several copies of F1 by the action
elements of SL(2,Z) where F1 is defined as in (3.3.8). Specifically we have

{τ ∈ C | Im τ > 0, |Re τ |≤ 1/2} =
⋃

γ∈Γ\SL(2,Z)
γF1 , (4.1.59)

where Γ is the subgroup of SL(2,Z) made up of upper diagonal elements. We can
therefore fold the domain of integration to F1 at the cost of introducing a sum over
Γ\SL(2,Z)

E
SO(n,n)
sΛ1

(G,B) =
1

2ξ(2s)

∫

F1

d2τ

(Im τ)2

∑

γ∈Γ\SL(2,Z)
(Im τ |γ)s−

n−2
2 Γ

(1)
IIn,n

=
1

2ξ(2s)

∫

F1

d2τ

(Im τ)2
Γ
(1)
IIn,n

E
SL(2)

(s−n−2
2 )Λ1

, (4.1.60)

where in the first line we have introduced the Narain partition function (3.5.16) and
used the fact that it and the measure are invariant under the action of SL(2,Z).
The resulting formally diverging integral is understood to be regularised with the
regularisation prescription amounting to exclude the term q = 0 from the sum in the
Narain partition function. In the next line we have used the fact that upper diagonal
elements form the Borel subgroup of SL(2,Z) and we have therefore recognised the
expression for the SL(2) Eisenstein series in Sp(2,R) form (4.1.56). This is called a
theta lift and the operation on the right had side of (4.1.60) is called the Rankin-
Selberg transform of the Narain partition function. One can find a generalisation
of this relation to SO(n, n) Eisenstein series of fundamental weights associated with
antisymmetric powers of the fundamental representation in appendix B of [144]. In
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this case the E
SL(2)

(s−n−2
2 )Λ1

Eisenstein series appearing in the theta lift generalises to

E
Sp(2n)

(s−n−k−1
2 )Λn

.

We have a similar relation for the symplectic series. Indeed we can rewrite (4.1.54)
in the domain of absolute convergence as an integral

E
Sp(2n)
sΛ1

(Ω) =
1

2ζ(2s)

πs

Γ(s)

′∑

q∈Z2n

∫ ∞

0

dt

ts+1
e−

π
t
HΩ[q] =

1

2ξ(2s)

∫ ∞

0

dt

ts+1

′∑

q∈Z2n

e−
π
t
HΩ[q]

=
1

2ξ(2s)

∫

G>0

dG

G
Gs−n

2G
n
2

′∑

q∈Z2n

e−πGHΩ[q] , (4.1.61)

where we have made the change of variable t = 1/G. We can then notice that the
domain of integration is made up of two copies of the domain {G > 1} related by the
action G′ = 1/G. Specifically we have

{G > 0} = {G > 1} ∪ {1/G′ > 1} . (4.1.62)

Therefore we can write

E
Sp(2n)
sΛ1

(Ω) =
1

2ξ(2s)

∫

G>1

dG

G

(
Gs−n

2 +G
n
2
−s)Γ(n)

II1,1

=
1

2ξ(2s)

∫

G>1

dG

G
Γ
(n)
II1,1

E
SO(1,1)

(s−n
2 )Λ1

, (4.1.63)

where in the first line we have recognised the Lagrangian form of the Narain par-
tition function (3.5.10) and used the fact that it and the measure are invariant un-
der the action G′ = 1/G of SO(1, 1,Z). As previously we understand the formally
diverging integral to be regularised with the regularisation prescription amounting
to exclude the term q = 0 from the sum in the Narain partition function. In
the next line we have recognised the expression for the SO(1, 1) Eisenstein series
(4.1.82) (where there are no non constant Fourier terms for n = 1). If we notice
that the domain of integration {G > 1} can be thought of as a representative of
(SO(1) × SO(1))\SO(1, 1)/SO(1, 1,Z) we can see that this is a somewhat trivial
example of theta lift but which can also be generalised to more general Eisenstein
series [145].
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4.1.2 Parabolic Fourier expansion

Let G be a connected semi-simple Lie group and let K be a maximal compact sub-
group. Let f : K\G → C be some smooth function over the symmetric space K\G
that is invariant under the right action of G(Z). Let PΛ be a parabolic subgroup
of G, by the Iwasawa decomposition for any element v ∈ K\G we can find a coset
representative v ∼ p with p ∈ PΛ, therefore we can see f as a function on PΛ. Let
LΛ and UΛ be the Levi factor and unipotent radical of PΛ, by the Levi decomposi-
tion we can write p = lea with l ∈ LΛ and a ∈ nΛ the Lie algebra of UΛ. Let us
now suppose that the unipotent radical is abelian. Since our function is invariant
under the right action of G(Z) then it is also invariant under the right action of its
subgroup UΛ(Z). Hence our function is invariant under the generalised translation
f(leaen) = f(lea+n) = f(lea) for all n ∈ nΛ(Z). Therefore f can be expanded into a
convergent Fourier series in this variable

f(lea) =
∑

q∈n∗Λ(Z)
fq(l)e

2πiq(a) , (4.1.64)

with

fq(l) =

∫

nΛ/nΛ(Z)
da e−2πiq̄(ā)f(lea) . (4.1.65)

This generalised Fourier expansion allows us to restrict the analysis from a function
on K\G to functions on LΛ. This procedure can also be extended to the case where
the unipotent radical UΛ is non abelian but it is more complicated. Let us compute
these Fourier expansions for some Eisenstein series.

Minimal Eisenstein series Let G = SL(n), we consider the maximal parabolic
subgroup Pk associated to the fundamental weight Λk, it is given by

Pk = (GL(1)× SL(k)× SL(n− k))⋉ (Rk ⊗ Rn−k) . (4.1.66)

Therefore we have the Levi subgroup Lk = GL(1)× SL(k)× SL(n− k) with abelian
factor Ak = GL(1) and semi-simple factorMk = SL(k)×SL(n−k) and the unipotent
radical is given by Uk = Rk ⊗Rn−k, it is indeed abelian therefore we can perform the
Fourier expansion. We can decompose

Hn[qn] = rk−nHk[qk + xk,n−kqn−k] + rkHn−k[qn−k] , (4.1.67)

where r, Hk, Hn−k and xk,n−k parametrise Hn and qn = (qk, qn−k)T . We have r ∈ R∗
+,

6

Hk ∈ SO(k)\SL(k,R), Hn−k ∈ SO(n−k)\SL(n−k,R), xk,n−k ∈ Rk⊗Rn−k, qk ∈ Zk

6Note that we can see R∗
+ as the symmetric space O(1)\GL(1) = Z2\GL(1) = GL+(1)

150



and qn−k ∈ Zn−k. In matrix notation this corresponds to a decomposition

Hn =

(
rk−nHk 0

0 rkHn−k

)[
Ik xk,n−k
0 In−k

]
. (4.1.68)

Therefore using (4.1.57) we can rewrite (4.1.51) as

E
SL(n)
sΛ1

(Hn) =
1

2ξ(2s)

∫ ∞

0

dt

ts+1

′∑

qk∈Zk

′∑

qn−k∈Zn−k

e−
π
t (rk−nHk[qk+xk,n−kqn−k]+r

kHn−k[qn−k]) .

(4.1.69)

We can evaluate the Fourier decomposition by performing a Poisson resummation

E
SL(n)
sΛ1

(Hn) = r(n−k)sESL(k)
sΛ1

(Hk) +
ξ(2s− k)
ξ(2s)

rk(
n
2
−s)ESL(n−k)

(s− k
2
)Λ1

(Hn−k)

+
2

ξ(2s)

′∑

Γn−k,k

∈Zn−k⊗Zk

rank(Γn−k,k)=1

∑

dk∈Zk

dk|Γ

(
H−1
k [dk]

s− k
2

) r(n2−k)s+ kn
4

|Z(Γ)|s− k
2

Ks− k
2
(2πr

n
2 |Z(Γ)|)e2πiΓ(x) ,

(4.1.70)

where Ks are modified Bessel functions of the second kind. We have defined |Z(Γ)|2=
Tr
(
Hn−kΓn−k,kH

−1
k ΓTn−k,k

)
, Γ(x) = Tr(Γn−k,kxk,n−k) and the condition that dk|Γ is

that there exists pn−k ∈ Zn−k such that Γn−k,k = pn−kdTk . Note that for k = 1 we
have

∑

d∈Z
d|Γ

d2s−1 = σ2s−1(Γ) . (4.1.71)

Hence in this case the parabolic decomposition is given by

E
SL(n)
sΛ1

(Hn) =r
(n−1)s +

ξ(2s− 1)

ξ(2s)
r

n
2
−sESL(n−1)

(s− 1
2
)Λ1

(Hn−1)

+
2

ξ(2s)

′∑

Γn−1∈Zn−1

σ2s−1(Γ)
r(

n
2
−1)s+n

4

|Z(Γ)|s− 1
2

Ks− 1
2
(2πr

n
2 |Z(Γ)|)e2πiΓ(x) .

(4.1.72)
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For the special case of SL(2) the identification between the upper complex half plane
H1 = {τ ∈ C | Im τ > 0} and the space of symmetric positive definite unimodular
2× 2 matrices HS = {H2 ∈ Mat(2,R) |HT

2 = H2, detH2 = 1, H2 > 0} is given by

τ → H2 =
1

Im τ

(
1 Re τ

Re τ |τ |2
)

=

(
(Im τ)−1 0

0 Im τ

)[
1 Re τ
0 1

]
= Hτ . (4.1.73)

Therefore we can use (4.1.72) to give the parabolic decomposition of the real analytic
Eisenstein series in the Sp(2,R) form (4.1.56)

E
SL(2)
sΛ1

(τ) = (Im τ)s +
ξ(2s− 1)

ξ(2s)
(Im τ)1−s

+
2

ξ(2s)

′∑

Γ∈Z
σ2s−1(Γ)

(Im τ)
1
2

|Γ|s− 1
2

Ks− 1
2
(2π Im τ |Γ|)e2πiΓRe τ . (4.1.74)

We can also give the parabolic decomposition of the antifundamental series associated
to the fundamental weight Λn−1 on some maximal parabolic subgroup Pk associated
to some fundamental weight Λk

E
SL(n)
sΛn−1

(Hn) = rksE
SL(n−k)
sΛn−k−1

(Hn−k) +
ξ(2s− n+ k)

ξ(2s)
r(n−k)(

n
2
−s)ESL(k)

(s−n−k
2

)Λk−1
(Hk)

+
2

ξ(2s)

′∑

Γn−k,k

∈Zn−k⊗Zk

rank(Γn−k,k)=1

∑

dn−k∈Zn−k

dn−k|Γ

(
Hn−k[dk]

s−n−k
2

) r(k−n
2
)s+

n(n−k)
4

|Z(Γ)|s−n−k
2

Ks−n−k
2
(2πr

n
2 |Z(Γ)|)e2πiΓ(x) .

(4.1.75)

For k = 1 we have

E
SL(n)
sΛn−1

(Hn) =r
sE

SL(n−1)
sΛn−2

(Hn−1) +
ξ(2s− n+ 1)

ξ(2s)
r(n−1)(n

2
−s)

+
2

ξ(2s)

′∑

Γn−1∈Zn−1

σn−1−2s(Γ)
r(1−

n
2
)s+

n(n−1)
4

|Z(Γ)|n−1
2

−s Ks−n−1
2
(2πr

n
2 |Z(Γ)|)e2πiΓ(x) .

(4.1.76)

Let us now look at the case G = SO(n, n), we consider the maximal parabolic
subgroup Pn associated to the fundamental weight Λn, it is given by
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Pn = (GL(1)× SL(n))⋉∧2Rn . (4.1.77)

Therefore we have the Levi subgroup Ln = GL(1)× SL(n) with abelian factor An =
GL(1) and semi-simple factor Mn = SL(n) and the unipotent radical is given by
Un =

∧
2Rn which is indeed abelian therefore we can perform the Fourier expansion.

We can decompose

HGnBn [q2n] = r−1H−1
n [qn +Bnpn] + rHn[pn] (4.1.78)

and

(q2n, q2n) = 2qn · pn , (4.1.79)

where rHn = Gn and q2n = (qn, pn)
T . We have r ∈ R∗

+, Hn ∈ SO(n)\SL(n,R),
Bn ∈

∧
2Rn and qn, pn ∈ Zn. In matrix notation this corresponds to a decomposition

HGnBn =

(
r−1H−1

n 0
0 rHn

)[
In Bn

0 In

]
. (4.1.80)

Therefore we can rewrite (4.1.58) as

E
SO(n,n)
sΛ1

(Gn, Bn) =
1

2ξ(2s)

∫ 1
2

− 1
2

dl

∫ ∞

0

dt

ts+1

′∑

qn,pn∈Zn

e−
π
t (r−1H−1

n [qn+Bnpn]+rHn[pn])+2πi l qn·pn .

(4.1.81)

We can evaluate the Fourier decomposition by performing a Poisson resummation
and a theta lift unfolding

E
SO(n,n)
sΛ1

(Gn, Bn) = rsE
SL(n)
sΛn−1

(Hn) +
ξ(2s− n+ 1)

ξ(2s)
rn−1−sESL(n)

(s−n−2
2

)Λ1
(Hn)

+
2

ξ(2s)

′∑

Γn∈∧2Zn

Γ∧Γ=0

σn−1−2s(Γ)

gcd(Γ)
n−2
2

−sE
SL(2)

(s−n−2
2

)Λ1
(UΓ)

r
n−1
2

|Z(Γ)| 12
Ks−n−1

2
(2πr|Z(Γ)|)e2πiΓ(B) ,

(4.1.82)

where we have defined |Z(Γ)|2= 1
2
Tr
(
HnΓnHnΓ

T
n

)
and Γ(B) = 1

2
Tr(ΓnBn). The

condition Γ ∧ Γ = 0 means that Γn is of rank 1 and UΓ is the SL(2) subgroup of the
stabiliser of Γ. For the value s = n−2

2
this expression simplifies drastically to
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E
SO(n,n)
n−2
2

Λ1
(Gn, Bn) = r

n−2
2 E

SL(n)
n−2
2

Λn−1
(Hn) +

π

6ξ(n− 2)
r

n
2

+
1

ξ(n− 2)

′∑

Γn∈∧2Zn

Γ∧Γ=0

σ1(Γ)
r

n−2
2

|Z(Γ)|e
−2πr|Z(Γ)|e2πiΓ(B) .

(4.1.83)

This can be understood from the Langlands functional identity

E
SO(n,n)
n−2
2

Λ1
(v) =

ξ(2)

ξ(n− 2)
E
SO(n,n)
Λn

(v) =
ξ(2)

ξ(n− 2)
E
SO(n,n)
Λn−1

(v) , (4.1.84)

for n ≥ 3. Which shows that this function can be realised in the vector representation
or in the Weyl spinor representations.

Next to minimal Eisenstein series We call next to minimal Eisenstein series
maximal parabolic Eisenstein series for the fundamental weight Λ2. For G = SL(n)
note that we have R(Λ2) ⊗S R(Λ2) = R(2Λ2) ⊕ R(Λ4) where R(Λ4) represents the
wedge product. Therefore the condition q⊗q ∈ R(2Λi,Z) can be rewritten as q∧q = 0.
Hence we have in the domain of absolute convergence

E
SL(n)
sΛ2

(v) =
1

2ζ(2s)

′∑

q∈R(Λ2,Z)
q∧q=0

1

(qTvTvq)s
, (4.1.85)

where v ∈ R(Λ2) is in the representation associated to Λ2. We want to decompose
this series on the maximal parabolic P1. He have can decompose

qTvTvq = r2−nHn−1[qn−1 + xTn−1pn−1] + r2Hn−1 ∧Hn−1[pn−1] , (4.1.86)

where r ∈ R∗
+, Hn−1 ∈ SO(n − 1)\SL(n − 1,R), xn−1 ∈ Rn−1, qn−1 ∈ Zn−1, pn−1 ∈∧

2Zn−1 and we have (v ∧ v) q1 ∧ q1 = vq1 ∧ vq2. Therefore using (4.1.57) we can
rewrite (4.1.85) as

E
SL(n)
sΛ2

(v) =
1

2ξ(2s)

∫ ∞

0

dt

ts+1

′∑

qn−1∈Zn−1

′∑

pn−1∈∧2Zn−1

pn−1∧qn−1=0
pn−1∧pn−1=0

e−
π
t (r2−nHn−1[qn−1+xTn−1pn−1]+r2Hn−1∧Hn−1[pn−1]) . (4.1.87)

154



We can evaluate the Fourier decomposition by performing a Poisson resummation
and an auxiliary theta lift unfolding

E
SL(n)
sΛ2

(vn) = r(n−2)sE
SL(n−1)
sΛ1

(Hn−1) +
ξ(2s− 2)

ξ(2s)
rn−2sE

SL(n−1)

(s− 1
2
)Λ2
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+
2

ξ(2s)

′∑

Γn−1∈Zn−1

σ2−2s(Γ)

gcd(Γ)
n−3
n−2

(1−2s)
E
SL(n−2)

(s− 1
2
)Λ1

(UΓ)
r

(n−4)s+n
2

|Z(Γ)|
(n−4)s+1

n−2

Ks−1(2πr
n
2 |Z(Γ)|)e2πiΓ(x) ,

(4.1.88)

where UΓ is the representative of SL(n − 2) in the Levi stabilizer of Γ. We can also
give the parabolic decomposition of the anti next to minimal series associated to the
fundamental weight Λn−2 on the maximal parabolic subgroup P1

E
SL(n)
sΛn−2

(vn) = r2sE
SL(n−1)
sΛn−3

(vn−1) +
ξ(2s− n+ 2)

ξ(2s)
r(n−2)(n

2
−s)ESL(n−1)
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2
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(vn−1)

+
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ξ(2s)

′∑

Γn−1∈Zn−1

σn−2−2s(Γ)

gcd(Γ)
1−2s
n−2

E
SL(n−2)

(s− 1
2
)Λn−3

(UΓ)
r

(n−4)(n2 −s)+n

2

|Z(Γ)|
(n−4)(n2 −s)+1

n−2

Ks−n−2
2
(2πr

n
2 |Z(Γ)|)e2πiΓ(x) .

(4.1.89)

All of the Fourier expansions above are absolutely convergent and in fact they are the
basis on which to obtain the meromorphic continuations of the respective Eisenstein
series.

4.2 U duality

As we have seen before U duality is an infinite discrete non perturbative symmetry
obeyed by string theory. It is an extension of the strong-weak S-duality which includes
T-duality. S-duality itself has its origins in the famous electromagnetic duality. We
find enlightening to first review the electromagnetic duality.

Electromagnetic duality S-duality first arose in abelian gauge theory. In this
case the duality isn’t necessarily visible at the action level, it is a duality of the
equations of motion. We will see that at the quantum level the duality swaps electri-
cally charged objects with magnetically charged objects. The action for pure p-form
electromagnetism is given by

S = − 1

2e2

∫
Fp+1 ∧ ⋆Fp+1 , (4.2.1)
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where Fp+1 = dAp. This theory is dual to d − p − 2-form electromagnetism whose
action is given by

S = −(−1)s
2m2

∫
F̃d−p−1 ∧ ⋆F̃d−p−1 , (4.2.2)

where F̃d−p−1 = dÃd−p−2 and where s is the parity of the signature of the metric.
The two theories seem to be related by the transformation F̃d−p−1 ←→ −2π

e2
⋆ Fp+1,

m ←→ 2π
e

(we will explain later why we chose these specific factors), however this

does not relate the two gauge fields Ap and Ãd−p−2 directly and so it is not clear
that extremising the action will give the same theory. Let us therefore look at the
equations of motion.

The equations of motion and Bianchi identity for p-form electromagnetism are
respectively

d ⋆ Fp+1 = 0 , dFp+1 = 0 . (4.2.3)

While the equations of motion and Bianchi identity for d−p−2-form electromagnetism
are respectively

(−1)sd ⋆ F̃d−p−1 = 0 , dF̃d−p−1 = 0 . (4.2.4)

Therefore the two theories are indeed related by the transformation

F̃d−p−1 ←→ −
2π

e2
⋆ Fp+1 ,

m←→ 2π

e
. (4.2.5)

This a Z2 duality. We see that the coupling constant is mapped to its inverse therefore
this is indeed an example of a strong-weak duality. This is called the electromagnetic
duality because it exchanges electric and magnetic charges. Indeed in d− p− 2-form
electromagnetism electric and magnetic charges are defined respectively as

q =
1

e2

∫

Sd−p−1

⋆Fp+1 , g =

∫

Sp+1

Fp+1 . (4.2.6)

While in d− p− 2-form electromagnetism electric and magnetic charges are defined
respectively as

q̃ =
1

m2

∫

Sp+1

⋆F̃d−p−1 , g̃ =

∫

Sd−p−1

F̃d−p−1 . (4.2.7)
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Therefore we find that the duality maps

q̃ ←→ −(−1)(p+1)(d−p−1)+s g

2π
,

g̃ ←→ −2πq . (4.2.8)

As we have seen, in string theory it is postulated that there are quantum objects called
p−1-branes which couple electrically to p-form gauge potentials and d−p−3-branes
which couple magnetically to the same p-form gauge potentials. Quantum consistency
conditions related to the existence of Wilson lines imply that their electric and mag-
netic charges have to obey the Dirac quantization relation qg ∈ 2πZ, this is preserved
by the duality. More precisely their electric charges are given by weights of the U(1)
algebra Λweight(u(1)) ≃ Z while their magnetic charges are given by co-roots of the
U(1) algebra 2πΛco-root(u(1)) ≃ 2πZ. We have chosen the specific coefficients in the
duality transformation to preserve this charge lattice even though it is irrelevant at
the classical level. Therefore electromagnetic duality maps electrically charged fun-
damental p−1-branes to magnetically charged solitonic d−p−3-branes and vice versa.

Notice that for even dimensions d = 2k we have that (k−1)-form electromagnetism
is dual to the same theory with a different coupling. In such a theory (k − 2)-branes
can have both electric and magnetic charge, they are called dyons. It is easy to see
that duality maps dyonic charges as

(
q
g

)
←→

(
−(−1)k2+s g

2π

−2πq

)
. (4.2.9)

For m = e =
√
2π the theory is actually dual to itself. This is a Z2 symmetry (in

d = 4 dimensions this can be enhanced to an SO(2) symmetry for the classical theory).

Four dimensional theta electromagnetism Let us work in Lorentzian signature.
We have seen that in d = 4 dimensions 1-form electromagnetism is dual to itself. We
can actually enhance this Z2 duality to a full SL(2,R) group of dualities. We start
by adding the so-called theta term to the action

S = −
∫ (

1

2e2
F2 ∧ ⋆F2 +

θ

8π2
F2 ∧ F2

)
, (4.2.10)

where θ is sometimes called an axion, we suppose that it is non constant otherwise
the term would be a topological invariant and would not contribute to the equations
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of motion. The new equations of motion and Bianchi identity are given respectively
by

d ⋆ F2 = −
e2

4π2
dθ ∧ F2 , dF2 = 0 . (4.2.11)

We can see that if θ is constant then the equations of motion are indeed unchanged
by the theta term. Let us define G2 = 2π

e2
⋆ F2 +

θ
2π
F2, the equations of motion can

be rewritten as dG2 = 0 and dF2 = 0. Let us also define τ = θ
2π

+ 2πi
e2
. We can show

that the following transformation leaves the equations of motion invariant

τ ←→ aτ + b

cτ + d
,

(
F2

G2

)
←→

(
d b
c a

)T (
F2

G2

)
, (4.2.12)

for ad−bc = 1. Hence F2 and G2 transform in the transpose doublet representation of
SL(2,R) and τ transforms under non linear Möbius transformation. It is important
to perform these two transformations simultaneously because G2 is not independent
of τ and only the combined transformation leaves the equations of motion invariant.
Notice that for θ = 0 the transformation with a = d = 0, b = −c = 1 reproduces
exactly the usual electromagnetic duality. Let us show the duality more explicitly
by rewriting the equations of motion in a manifestly SL(2,R) invariant way. Let us
write

H =
e2

2π

(
1 θ

2π
θ
2π

θ2

4π2 +
4π2

e4

)
, F2 =

(
F2

G2

)
. (4.2.13)

We can check that we have HΩF2 = ⋆F2 where Ω is the standard symplectic matrix

Ω =

(
0 1
−1 0

)
. (4.2.14)

Notice that since SL(2,R) = Sp(2,R) we have ΛΩΛT = Ω for all Λ ∈ SL(2,R). The
equations of motion can be written as dF2 = 0 which is manifestly invariant under
the transformation

F2 ←→ ΛTF2 ,

H ←→ ΛTHΛ , (4.2.15)
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for all Λ ∈ SL(2,R). Note that this is only a symmetry of the equations of motion
and not of the action. In the presence of the theta term the electric and magnetic
charges are defined respectively as

q =

∫

S2

(
1

e2
⋆ F2 +

θ

4π2
F2

)
=

1

2π

∫

S2

G2, g =

∫

S2

F2 . (4.2.16)

Therefore we see that that 2πq and g transform as a doublet of SL(2,R)
(
g

2πq

)
←→

(
d b
c a

)T (
g

2πq

)
. (4.2.17)

In the quantum theory it is postulated that there are particles which couple to
the gauge potential. Since we are in a self dual theory we have dyons, in this case
they are 0-branes, i.e. particles. They are mixed together by the SL(2,R) duality.
The electric and magnetic charges for any two dyons have to obey the Schwinger-
Zwanzinger quantization relation p1g2−p2g1 ∈ 2πZ, this is preserved by the SL(2,R)
duality. Furthermore one can show that their electric charges are given by weights of
the U(1) algebra Λweight(u(1)) ≃ Z while their magnetic charges are given by co-roots
of the U(1) algebra 2πΛco-root(u(1)) ≃ 2πZ. This shows that in the quantum theory
the duality group is actually broken down to SL(2,Z). For the complexified field τ
the generators of the SL(2,Z) duality are τ ←→ τ + 1 and τ ←→ − 1

τ
. This last

transformation at θ = 0 is precisely the usual electromagnetic duality transformation
of electromagnetism. In general any non trivial transformation (4.2.12) with c ̸= 0
represents a strong weak duality and should be considered non perturbative.

For any theory of the form

S = −1

4

∫
d4x
√−g

(
(Im τ)FµνF

µν + (Re τ)
1

2
εµνρσFµνFρσ

)
, (4.2.18)

one can check that the symmetric gauge invariant stress energy tensor of the theory
is given by

T µν = (Im τ)

(
F µσF ν

ρ −
1

4
gµνFσρF

σρ

)
. (4.2.19)

In the presence of gravity this is the source of the gravitational field. Therefore it
is important that the energy density T 00 be positive which requires that (Im τ) > 0.
This is preserved by the SL(2,R) transformation (4.2.12). Hence τ must be in the
upper complex half plane H1 = SO(2)\SL(2,R).

159



Type IIB supergravity Let us now go back to string theory. S-duality also plays
an important role here. We illustrate this with the prototypical example of type IIB
string theory. Actually this duality can also be seen at the level of the supergravity
limit. Therefore we focus on the case of type IIB supergravity where the duality is
actually visible at the level of the action. We will see that at the quantum level the
duality swaps objects which are charged under different gauge potentials. However
unlike electromagnetic duality it doesn’t swap electrically and magnetically charged
objects. The gauge sector of type IIB supergravity is given in Einstein frame by

S =
1

2κ2

∫ (
−1

2
dϕ ∧ ⋆dϕ− 1

2
e−ϕH3 ∧ ⋆H3 −

1

2
e2ϕF1 ∧ ⋆F1 −

1

2
eϕF̃3 ∧ ⋆F̃3 −

1

4
F̃5 ∧ F̃5

)

− 1

4κ2

∫
C4 ∧H3 ∧ F3 , (4.2.20)

where H3 = dB2, F1 = dC0, F3 = dC2, F5 = dC4, F̃3 = F3 − C0H3 and F̃5 =
F5 − 1

2
C2 ∧ H3 +

1
2
B2 ∧ F3. One also has to impose as a constraint the self duality

condition

F̃5 = ⋆F̃5 . (4.2.21)

The moduli fields of type IIB supergravity/string theory are the dilaton ϕ and the
axion C0. One can see that if C0 = 0 then type IIB supergravity is dual to itself
under the transformation7

ϕ←→ −ϕ ,
B2 ←→ −C2 , (4.2.22)

C4 ←→ C4 .

Since eϕ is interpreted again as the coupling constant of the theory this is also a strong
weak duality. In type IIB string theory, it is postulated that there exists a 1-brane
called the D-string that couples electrically to the gauge potential C2 and a 5-brane
called the D5-brane that couples magnetically to C2. It is also postulated that there
exists a 1-brane called the fundamental string that couples electrically to the gauge
potential B2 and a 5-brane called the NS5-brane that couples magnetically. This
duality maps the perturbative fundamental string to the non perturbative D-string
and the NS5-branes to the D5-brane [67]. Actually there even exist 1-branes that are

7Note that these transformations are only valid in Einstein frame. Indeed, since the string frame
and Einstein frame metrics are related by a Weyl rescaling involving the dilaton, at most only one
of them can be invariant under S-duality, this is the Einstein frame metric.
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charged electrically under both under C2 and B2, they are called (p, q)-strings and
they generalise D-strings and fundamental strings. Similarly there are 5-branes that
are charged magnetically under both under C2 and B2, they are called (p, q)-5-branes
and they generalise D5-branes and NS5-branes. S-duality maps (p, q)-strings to (q, p)-
strings and (p, q)-5-branes to (q, p)-5-branes. This a Z2 symmetry. If we define the
axio-dilaton τ = C0 + ie−ϕ one can show that the duality extends to a full SL(2,R)
symmetry where B2 and C2 transform as a doublet, C4 transforms as a singlet and
the axio-dilaton transforms under non linear Möbius transformation

τ ←→ aτ + b

cτ + d
,

(
B2

C2

)
←→

(
d b
c a

)T (
B2

C2

)
, (4.2.23)

C4 ←→ C4 .

Let us show the duality more explicitly by rewriting the action in a manifestly
SL(2,R) invariant way. Let us write

H = eϕ
(

1 C0

C0 C2
0 + e−2ϕ

)
, B2 =

(
B2

C2

)
, (4.2.24)

then the action can be written as

S =
1

2κ2

∫ (
1

4
Tr
(
dH−1 ∧ ⋆dH

)
− 1

2
HT

3 ∧ ⋆H−1H3 −
1

4
F̃5 ∧ F̃5

)

− 1

8κ2

∫
C4 ∧HT

3 ∧ ΩH3 , (4.2.25)

where H3 = dB2, F̃5 = F5 +
1
2
BT2 ∧ ΩH3 and Ω is the standard symplectic matrix.

This is manifestly invariant under the transformation

B2 ←→ ΛTB2 ,
H ←→ ΛTHΛ , (4.2.26)

C4 ←→ C4 ,

for all Λ ∈ SL(2,R). The self duality condition is also SL(2,R) invariant.
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This duality mixes (p, q)-strings together and it mixes (p, q)-5-branes together
such that (

p
q

)
←→

(
d b
c a

)T (
p
q

)
. (4.2.27)

Again electrically charged branes are mixed together while magnetically charged
branes are mixed together, unlike the electromagnetic duality. In string theory the
charges p and q have to be integers, this breaks down the duality to SL(2,Z) which
is the U-duality group of type IIB string theory. For the axio-dilaton the generators
of U-duality are τ ←→ τ + 1 and τ ←→ − 1

τ
. This last transformation at C0 = 0 is

precisely the S-duality transformation.

U-duality actually generalises to all maximally supersymmetric string theories.
As we have seen before the moduli fields of string and supergravity theories with
more than 1/4th maximal supersymmetry parametrise a symmetric space K\G. Fur-
thermore, if the only massless supermultiplet is a gravitational multiplet K is the
R-symmetry group (if there are other massless matter multiplets the R-symmetry
group will be a factor of K). This is the case for maximal supersymmetry. For a
D = 11− d dimensional maximally supersymmetric theory, which we can see as type
IIA or type IIB string theory/supergravity compactified on a torus T d−1 or alterna-
tively as M-theory/eleven dimensional supergravity compactified on a torus T d we
have G = Ed(d) [146] where Ed(d) is the Lie group associated to the split real form of
the exceptional Lie algebra ed of rank d (for d ≤ 8) where we have assumed that we
have continued the exceptional series for d < 6 by starting from the Dynkin diagram
of e8 and defining successively the Lie algebra en from en+1 by deleting the node Λn+1,
see figure 4.1.

n n n n n n
n

Λ1

Λ2

Λ3 Λ4 Λ5 Λd−1 Λd
Figure 4.1: Dynkin diagram of ed.

The D = 11− d dimensional maximal supergravity theory then has a global Ed(d)
symmetry which acts on the gauge and moduli fields such that the moduli fields
don’t appear in the gravitational amplitudes. But just like for the type IIB case the
symmetry is broken down in the string theory to the discrete group Ed(d)(Z) which
can be defined as the set of matrices in the representation R(Λd) that are integer
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valued in the Chevalley basis (for d ≤ 7). This is the U duality group. U duality was
anticipated in [147] and is still conjectural but there is now overwhelming evidence
of its validity, see [148] for a review. The relevant groups are given explicitly in the
following table 4.1.

Dimension G K G(Z)

10A GL(1,R) 1 1

10B SL(2,R) SO(2) SL(2,Z)
9 GL(2,R) SO(2) SL(2,Z)
8 SL(3,R)× SL(2,R) SO(3)× SO(2) SL(3,Z)× SL(2,Z)
7 SL(5,R) SO(5) SL(5,Z)
6 SO(5, 5,R) SO(5)× SO(5) SO(5, 5,Z)
5 E6(6)(R) Sp(4) E6(6)(Z)
4 E7(7)(R) SU(8) E7(7)(Z)
3 E8(8)(R) Spin(16) E8(8)(Z)

Table 4.1: Duality group G and R-symmetry group K of maximal supergravity in
D = 11 − d dimensions. The moduli space parametrised by the axion dilaton fields
is given by K\G. In string theory the U duality group is broken down to G(Z).

U-duality can be interpreted in several ways according to different degeneration
limits. The maximal parabolic subgroups P1, P2 and Pd of the group Ed(d) are all of
the form

Pi = (GL(1)×Mi)⋉ Ui , (4.2.28)

with Levi subgroup Li = GL(1)×Mi, abelian factor Ai = GL(1), semi-simple factor
Mi and unipotent radical Ui. Mi is a semi-simple group of rank d− 1 corresponding
to the non compact form of the Lie algebra ed where the node Λi is deleted, see figure
4.2. If we use the Iwasawa decomposition to identify K\G ∼ Pi then when we take
the moduli field associated to the abelian factor Ai = GL(1) to some cusp of the
moduli space one can show that the moduli space locally looks like Ki\Mi where Ki

is the maximal compact subgroup of Mi and the U-duality group reduces to Mi(Z).
We distinguish three cases:
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1. For the maximal parabolic subgroup Pd associated to the fundamental weight Λd
the semi-simple factor is Md = Ed−1(d−1). This corresponds to taking the limit
of large value R → ∞ for the dilaton corresponding to the radius of the circle
S1 associated with the compactification from 11− d + 1 dimensions to 11− d.
Therefore this degeneration limit corresponds to the limit of decompactification
from D to D+1 dimensions. Kd\Ed−1(d−1) and Ed−1(d−1)(Z) simply correspond
to the moduli space and U-duality group of string theory in D = 11 − d + 1
dimensions.

2. For the maximal parabolic subgroup P1 associated to the fundamental weight
Λ1 the semi-simple factor is M1 = SO(d− 1, d− 1). This corresponds to taking
the limit of large value 1/gs → ∞ for the inverse of the dilaton corresponding
to the string coupling. Therefore this degeneration limit corresponds to the
limit of perturbative string theory. SO(d − 1) × SO(d − 1)\SO(d − 1, d − 1)
and SO(d− 1, d− 1,Z) simply correspond to the Narain moduli space and the
T-duality group of perturbative string theory compactified on a torus T d−1.8

3. For the maximal parabolic subgroup P2 associated to the fundamental weight
Λ2 the semi-simple factor is M2 = SL(d). This corresponds to taking the limit
of large value V →∞ for the dilaton corresponding to the volume of the torus
T d associated with the compactification from D = 11 dimensions to D = 11−d.
Therefore this degeneration limit corresponds to the limit of decompactification
from D to 11 dimensions. SO(d)\SL(d) and SL(d,Z) simply correspond to the
moduli space and the group of large diffeomorphisms of the torus T d.

Therefore we can interpret the U-duality group as being generated from the global
diffeomorphisms of the torus in eleven dimensions and the T-duality group.

The unipotent factor Ui(Z) corresponds to symmetries of solitonic objects which
cannot be seen as internal symmetries in the degeneration limit either because they
are unwrapped or because they cannot be seen in the perturbative limit. These
are: black holes and Taub-Nuts for the decompactification limit from D to D + 1
dimensions, Dp-branes and NS5-branes for the perturbative string theory limit and
M2 and M5 branes for the decompactification limit to 11 dimensions.

8The full T-duality group of perturbative string theory compactified on a torus is O(d−1, d−1,Z)
but this includes a factor O(1, 1,Z) = Z2 × Z2 which maps type IIA to type IIB string theory.
This is not a symmetry of the theory although it is a symmetry of the four-graviton scattering
amplitude up to two loops because they are identical in both theories. Nevertheless only the subgroup
SO(d− 1, d− 1,Z) is a symmetry of the effective action.
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(iii)

Figure 4.2: Dynkin diagrams corresponding to the three relevant degeneration limits.
(i) is obtained by deleting the Λd node from 4.1 and corresponds to the limit of
decompactification from D to D + 1 dimensions, (ii) is obtained by deleting the
Λ1 node from 4.1 and corresponds to the limit of perturbative string theory, finally
(iii) is obtained by deleting the Λ2 node from 4.1 and corresponds to the limit of
decompactification from D to 11 dimensions. Note that the labelling of nodes is
inherited from the labelling of the ed Dynkin diagram and is not standard for the
algebra the resulting diagram represents.

4.3 Wilson couplings of maximally supersymmet-

ric string theory

As we have seen in section 3.5 the analytic contributions to the low energy limit
of maximally supersymmetric string amplitudes can be reproduced by higher order
terms in the effective field theory action. In Einstein frame these are given by

Sstring =
1

2κ2D

∫
dDx
√−g

(
R +

l6P
48

(∑

p,q≥0

l4p+6q
P E(p,q)∇4p+6qR4

)
+ . . .

)
, (4.3.1)

where we have performed the Weyl rescaling g
(E)
µν = e−

4
D−2

ϕg
(s)
µν to get to Einstein

frame and we have then restored the vacuum expectation value ϕ0 into the dilaton.
Therefore the Wilson coefficients E(p,q) are given by

E(p,q)(φ) = e−
12+8p+12q

D−2
ϕ
(
c(p,q) + e2ϕE (1)(p,q)ϵ(φ) + e4ϕE (2)(p,q)ϵ(φ) + . . .

)
, (4.3.2)

where ϕ is the full dilaton including vacuum expectation value, φ designates the mod-
uli fields parametrising the symmetric space K\E11−D(11−D) and where the ” . . . ” in-
dicate further perturbative and non perturbative contributions.
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We know that the full effective action (4.3.1) must be invariant under the action
of the U-duality group E11−D(11−D)(Z). Since the Einstein frame metric is U-duality
invariant then the∇4p+6qR4 factors are separately invariant, therefore the Wilson cou-
plings E(p,q) must also be invariant under the action of E11−D(11−D)(Z). Hence they
can be seen as well defined functions of K\E11−D(11−D)/E11−D(11−D)(Z). Furthermore
the effective action (4.3.1) must also be supersymmetric. One can show that invari-
ance under maximal supersymmetry imposes that the Wilson couplings E(p,q) satisfy
certain differential equations. Already we can see why automorphic forms are natural
candidates for Wilson couplings.

Calculating the full Wilson couplings from first principle would require knowing
the full perturbative expansion of the maximally supersymmetric string theory as
well as the non perturbative theory. This is clearly impossible. However the combi-
nation of maximal supersymmetry and U-duality is very constraining and in certain
cases it allows us to compute the Wilson coefficients exactly [47,73,96,149–164]. For
example the first three Wilson couplings E(0,0), E(1,0) and E(0,1) are protected by su-
persymmetry which implies that they only receive contributions from perturbative
string amplitudes up to finite order in string coupling [47, 76]. E(0,0) only receives

perturbative contributions up to genus 1, i.e. E (g)(0,0)ϵ = 0 for g > 1. E(1,0) only receives

perturbative contributions up to genus 2, i.e. E (g)(1,0)ϵ = 0 for g > 2. And E(0,1) only re-

ceives perturbative contributions up to genus 3, i.e. E (g)(0,1)ϵ = 0 for g > 3. In addition

supersymmetry implies that they satisfy the differential equations [48,51,165]

∆E(0,0) =
3(11−D)(D − 8)

D − 2
E(0,0) + 6πδD,8 ,

∆E(1,0) =
5(12−D)(D − 7)

D − 2
E(1,0) +

20π2

3
δD,7 + 7E(0,0)δD,6 , (4.3.3)

∆E(0,1) =
6(14−D)(D − 6)

D − 2
E(0,1) −

(
E(0,0)

)2

+ 40ζ(3)δD,6 +
55

3
E(0,0)δD,5 +

85

2π
E(1,0)δD,4 .

We can see that these equations indicate that the Wilson couplings are automorphic
forms, perhaps evaluated at some pole as indicated by the inhomogeneous Kronecker
delta terms. The non linear inhomogeneous term on the right hand side of ∆E(0,1)
may indicate that the corresponding Wilson coupling contains some term which is
not an automorphic form. We will only focus on the first two Wilson couplings E(0,0)
and E(1,0) which we will now find.

166



4.3.1 10 dimensions: type IIB string theory

Let us find the first two Wilson couplings in D = 10 dimensions for type IIB string
theory. The moduli space is SO(2)\SL(2,R) and the U-duality group is SL(2,Z).
The moduli fields of type IIB string theory are the axion dilaton field τ = C0+ ie

−ϕ ∈
H1 such that Hτ defined as in (4.1.73) is in the moduli space.

Minimal Wilson coupling In D = 10 dimensions the minimal Wilson coupling
satisfies the Laplace equation

∆E(0,0) =
3

4
E(0,0) . (4.3.4)

The only perturbative contribution to E(0,0) come from the genus 0 and genus 1 string
amplitudes

Epert(0,0) = e−
3
2
ϕc(0,0) + e

ϕ
2 E (1)(0,0)ϵ . (4.3.5)

Recall that for D = 10 dimensions we have c(0,0) = 2ζ(3) and E (1)(0,0)ϵ =
2π2

3
, therefore

the perturbative part of the Wilson coupling is given by

Epert(0,0) = 2ζ(3)e−
3
2
ϕ +

2π2

3
e

ϕ
2 . (4.3.6)

Note that, because the amplitudes are the same up to two loops, this is also the
perturbative part of the Wilson coupling for type IIA string theory. Actually it turns
out that it is even the full non perturbative coupling for type IIA string theory.

Let us now consider the large Im τ limit of the real analytic Eisenstein series
E
SL(2)
sΛ1

in the Sp(2,R) form (4.1.56). This is most easily computed using the Fourier
decomposition on the maximal parabolic subgroup P1 (4.1.74) and using the fact that

the Bessel K function behaves asymptotically as 2(Im τ)
1
2Ks− 1

2
(2π Im τ) ∼ e−2π Im τ ,

we have

E
SL(2)
sΛ1

(τ) ∼ (Im τ)s +
ξ(2s− 1)

ξ(2s)
(Im τ)1−s . (4.3.7)

Therefore we can see that

E(0,0) = 2ζ(3)E
SL(2)
3
2
Λ1

= Ep
SL(2)
3
2

(4.3.8)

has the right degeneration limit for 1/gs = e−ϕ = Im τ → ∞ and obeys the right
Laplace equation, see (4.1.45). This is the full non perturbative Wilson coupling [47].

167



Therefore the constant terms in the Fourier expansion on the maximal parabolic sub-
group P1, which is associated with the perturbative string theory limit, correspond
to the perturbative contributions.

We can also give an interpretation to the non constant terms in the Fourier expan-
sion of the Wilson couplings in the perturbative string theory parabolic decomposi-
tion. Indeed type IIB string theory has D(−1)-branes which can be charged under the
R-R field C0. These are non perturbative objects called D-instantons. One can show
using T-duality with type IIA string theory [47] that the action for a multiply-charged
D-instanton of charge Γ is S = −2πi(ΓC0 + i|Γ|e−ϕ) which is equal to −2πi|Γ|τ for
positive charge Γ and 2πi|Γ|τ̄ for negative charge Γ (which is also called an anti-
instanton). Note that |Γ| can be interpreted as the mass of the (anti)-instanton as it
is a BPS state. The degeneracy number of such D-instantons is given by the number
of partitions of Γ into two integers, or in other words the number of divisors of Γ.
Using the asymptotic expansion for the Bessel K function we can rewrite the Fourier
expansion of the Wilson coupling E(0,0) in the perturbative string theory parabolic
decomposition as

E(0,0)(C0, ϕ) ∼ 2ζ(3)e−
3
2
ϕ +

2π2

3
e

ϕ
2 (4.3.9)

+ 4π
′∑

Γ∈Z
|Γ| 12σ−2(Γ)e

2πi(ΓC0+i|Γ|e−ϕ)

(
1 +

∞∑

k=1

(
eϕ

4π|Γ|

)k Γ
(
k + 3

2

)

k! Γ
(
−k + 3

2

)
)
.

Hence the non constant Fourier terms have the form of a sum over multiply-charged
D-instanton contributions [47]. The terms in parenthesis on the right hand side
represent the infinite sum of perturbative corrections around the instantons of charge
Γ. The fact that there are no D-instantons in type IIA string theory explains the
fact that the perturbative coupling (4.3.6) does not receive any non perturbative
corrections.

Next to minimal Wilson coupling In D = 10 dimensions the next to minimal
Wilson coupling satisfies the Laplace equation

∆E(1,0) =
15

4
E(1,0) . (4.3.10)

The only perturbative contribution to E(1,0) come from the genus 0, genus 1 and genus
2 string amplitudes

Epert(1,0) = e−
5
2
ϕc(1,0) + e−

ϕ
2 E (1)(1,0)ϵ + e

3ϕ
2 E (2)(1,0)ϵ . (4.3.11)
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Recall that for D = 10 dimensions we have c(1,0) = ζ(5), E (1)(1,0)ϵ = 0 and E (2)(1,0)ϵ =
2π4

135
,

therefore the perturbative part of the Wilson coupling is given by

Epert(1,0) = ζ(5)e−
5
2
ϕ +

2π4

135
e

3ϕ
2 . (4.3.12)

Just like for the leading Wilson coupling it turns out that this is the full non pertur-
bative coupling for type IIA string theory. Therefore from (4.3.7) we can see that

E(1,0) = ζ(5)E
SL(2)
5
2
Λ1

=
1

2
Ep

SL(2)
5
2

(4.3.13)

has the right degeneration limit for 1/gs = e−ϕ = Im τ → ∞ and obeys the right
Laplace equation. This is the full non perturbative Wilson coupling [72].

4.3.2 9 dimensions

In D = 9 dimensions the moduli space is GL+(1)×SO(2)\SL(2,R) and the U-duality
group is SL(2,Z). The moduli fields in this dimension are r ∈ R+ and τ ∈ H1 such
that rHτ is in the moduli space where Hτ is defined as in (4.1.73).

Minimal Wilson coupling In D = 9 dimensions the minimal Wilson coupling
satisfies the Laplace equation

∆E(0,0) =
6

7
E(0,0) . (4.3.14)

The only perturbative contribution to E(0,0) come from the genus 0 and genus 1 string
amplitudes

Epert(0,0) = e−
12
7
ϕc(0,0) + e

2
7
ϕE (1)(0,0)ϵ . (4.3.15)

For D = 9 dimensions we still have c(0,0) = 2ζ(3) and the moduli field parametrising

the Narain partition function is the metric G =
(
ls
R

)2
on the torus T 1 of compact-

ification from 10 to 9 dimensions where R is the radius of the circle. Therefore we
have

E (1)(0,0)ϵ =
2π2

3
E
SO(1,1)

− 1
2
Λ1

=
2π2

3

(
R

ls
+
ls
R

)
, (4.3.16)

where we have used the parabolic Fourier expansion (4.1.83) and the fact that
∧

2Z =

0 so that there are no non constant Fourier coefficients in E
SO(1,1)

− 1
2
Λ1

. Hence the pertur-

bative part of the Wilson coupling is given by
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Epert(0,0) = 2ζ(3)e−
12
7
ϕ +

2π2

3

(
R

ls
+
ls
R

)
e

2
7
ϕ . (4.3.17)

This is indeed invariant under T-duality R ←→ l2s/R. If we consider that we have
obtained the 9 dimensional theory by compactifying from type IIB string theory then

we have r = e
ϕ
2

(
ls
R

) 7
4 and Im τ = e−ϕ

(
ls
R

) 1
2 where R is the radius of compactification

from type IIB string theory. Then from (4.3.7) we can see that

E(0,0) = 2ζ(3)r−
3
7E

SL(2)
3
2
Λ1

+
2π2

3
r

4
7 = r−

3
7Ep

SL(2)
3
2

+
2π2

3
r

4
7 (4.3.18)

has the right degeneration limit for 1/gs = e−ϕ →∞. One can also check that it obeys
the right Laplace equation. This is the full non perturbative Wilson coupling [72].
Therefore again the constant terms in the Fourier expansion on the maximal parabolic
subgroup P1, which is associated with the perturbative string theory limit, correspond
to the perturbative contributions. The non constant terms correspond to instanton
contributions.

Also note that if we take the limit R→∞ we get

E(0,0) ∼ 2ζ(3)E
SL(2)
3
2
Λ1

r−
3
7 . (4.3.19)

Which corresponds to the minimal Wilson coupling for type IIB string theory where
τ is the type IIB axion dilaton field. Similarly, if we take the limit R′ = l2s/R →∞,
where R′ is the radius of compactification from type IIA string theory, we get

E(0,0) ∼
(
2ζ(3)(Im τ)

3
2 +

2π2

3
r

)
r−

3
7 , (4.3.20)

which corresponds to the minimal Wilson coupling for type IIA string theory. There-
fore E(0,0) also has the right degeneration limit for the decompactification from 9 to
10 dimensions.

Next to minimal Wilson coupling In D = 9 dimensions the next to minimal
Wilson coupling satisfies the Laplace equation

∆E(1,0) =
30

7
E(1,0) . (4.3.21)

The only perturbative contribution to E(1,0) come from the genus 0, genus 1 and genus
2 string amplitudes

Epert(1,0) = e−
20
7
ϕc(1,0) + e−

6
7
ϕE (1)(1,0)ϵ + e

8
7
ϕE (2)(1,0)ϵ . (4.3.22)
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For D = 9 dimensions we still have c(1,0) = ζ(5) and we have

E (1)(1,0)ϵ =
2π2

45
ζ(3)E

SO(1,1)
3
2
Λ1

=
2π2

45
ζ(3)

(
R3

l3s
+

l3s
R3

)
,

E (2)(1,0)ϵ =
2π4

135
E
SO(1,1)
2Λ1

=
2π4

135

(
R2

l2s
+

l2s
R2

)
, (4.3.23)

where we have used the parabolic Fourier expansion (4.1.82) and the fact that
∧

2Z =

0 so that there are no non constant Fourier coefficients in E
SO(1,1)
3
2
Λ1

and E
SO(1,1)
2Λ1

. Hence

the perturbative part of the Wilson coupling is given by

Epert(1,0) = ζ(5)e−
20
7
ϕ +

2π2

45
ζ(3)

(
R3

l3s
+

l3s
R3

)
e−

6
7
ϕ +

2π4

135

(
R2

l2s
+

l2s
R2

)
e

8
7
ϕ . (4.3.24)

This is also manifestly invariant under T-duality. Therefore from (4.3.7) we can see
that

E(1,0) = ζ(5)r−
5
7E

SL(2)
5
2
Λ1

+
2π2

45
ζ(3)r

9
7E

SL(2)
3
2
Λ1

+
2π2

45
ζ(3)r−

12
7

=
1

2
r−

5
7Ep

SL(2)
5
2

+
π2

45
r

9
7Ep

SL(2)
3
2

+
2π2

45
ζ(3)r−

12
7 , (4.3.25)

has the right degeneration limit for 1/gs = e−ϕ →∞. One can also check that it obeys
the right Laplace equation. This is the full non perturbative Wilson coupling [72].

Also note that if we take the limit R→∞ we get

E(1,0) ∼ ζ(5)E
SL(2)
5
2
Λ1

r−
5
7 +

2π2

45
ζ(3)r−

12
7 . (4.3.26)

The first term corresponds to the next to minimal Wilson coupling for type IIB string
theory. Therefore E(1,0) also has the right degeneration limit for the decompactification
from 9 to 10 dimensions. The second term is known to be necessary in order to account
for the ten-dimensional normal threshold [54,94,95,147].

4.3.3 8 dimensions

In D = 8 dimensions the moduli space is SO(3)\SL(3,R) × SO(2)\SL(2,R) and
the U-duality group is SL(3,Z)× SL(2,Z). The moduli fields in this dimension are
H3 ∈ HS and U ∈ H1 such that H3 ×HU is in the moduli space where HU is defined
as in (4.1.73).
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Minimal Wilson coupling In D = 8 dimensions the minimal Wilson coupling
satisfies the differential equation

∆E(0,0) = 6π . (4.3.27)

This indicates that we may need to consider Eisenstein series evaluated at some pole.
The only perturbative contribution to E(0,0) come from the genus 0 and genus 1 string
amplitudes

Epert(0,0) = e−2ϕc(0,0) + E (1)(0,0)ϵ . (4.3.28)

For D = 8 dimensions we still have c(0,0) = 2ζ(3) and we saw in section 3.5.2 that

E (1)(0,0)ϵ was divergent. This also indicates that we need to consider Eisenstein series
evaluated at some pole. We showed how to regularise and calculate the renormalised
genus 1 contribution in (3.5.57). Hence the perturbative part of the Wilson coupling
is given by

Epert(0,0)µ = 2ζ(3)e−2ϕ−2π ln
(
ImU |η(U)|4

)
−2π ln

(
ImT |η(T )|4

)
+
4π

3
ϕ+

22π

3
−4π ln(2πlPµ) .

(4.3.29)
This is indeed invariant under T-duality. The 4π

3
ϕ term can be thought of as arising

from the Weyl rescaling in passing from the string frame to the Einstein frame in the
presence of infrared thresholds.

Let us consider the following regularisation of the real analytic Eisenstein series
E
SL(2)
sΛ1

in the Sp(2,R) form (4.1.56) at the pole s = 1

Ê
SL(2)
Λ1

(U) = lim
ϵ→0

(
E
SL(2)
(1+ϵ)Λ1

(U)− 3

πϵ
− 1

π
(72 lnA− 6 ln 4π)

)

= − 3

π
ln
(
ImU |η(U)|4

)
, (4.3.30)

where A is the Glaisher–Kinkelin constant. We can also decompose H3 into r, H2 and
x2 as in (4.1.68) for the maximal parabolic subgroup P1 of SL(3). We have HT = H2

where HT is defined as in (4.1.73) and r = e−
2
3
ϕ. Let us now consider the following

regularisation of the Eisenstein series E
SL(3)
sΛ1

at the pole s = 3
2
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Ê
SL(3)
3
2
Λ1

(H3) = lim
ϵ→0

(
E
SL(3)

( 3
2
+ϵ)Λ1

(H3)−
π

ζ(3)ϵ
− 2π

ζ(3)
(γE − 1) + 2π

ζ ′(3)

ζ(3)2

)

= r3 − π

ζ(3)
ln
(
ImT |η(T )|4

)
− π

ζ(3)
ln r

+
4π

ζ(3)

′∑

Γ2∈Z2

σ2(Γ)
r

3
2

|Z(Γ)|K1(2πr
3
2 |Z(Γ)|)e2πiΓ(x) , (4.3.31)

where we have used the Fourier decomposition on the maximal parabolic subgroup
P1 (4.1.72). Therefore using the asymptotic behavior of the Bessel K function we can
see that

E(0,0)µ = 2ζ(3)Ê
SL(3)
3
2
Λ1

+
2π2

3
Ê
SL(2)
Λ1

+
22π

3
− 4π ln(2πlPµ)

= Êp
SL(3)
3
2

+ 2Êp
SL(2)

1 +
22π

3
− 4π ln(2πlPµ) (4.3.32)

has the right degeneration limit for 1/gs = e−ϕ → ∞ and obeys the right Laplace
equation, see (4.1.46). This is the full non perturbative Wilson coupling [166]. There-
fore the constant terms in the Fourier expansion on the maximal parabolic subgroup
P1, which is associated with the perturbative string theory limit, correspond again to
the perturbative contributions.

If we consider that we have obtained the 8 dimensional theory by compactifying
from type IIB string theory then we have ImU = R2/R1 and ImT = R1R2/l

2
s where

R1 is the radius of compactification from type IIB string theory to 9 dimensions and
R2 is the radius of compactification from 9 to 8 dimensions. We can now decompose
H3 into r

′, H ′
2 and x

′
2 as in (4.1.68) for the maximal parabolic subgroup P2 of SL(3).

Then if we take the limit R2 → ∞, which corresponds to only keeping the constant
terms in the Fourier decomposition (4.1.70) for the maximal parabolic subgroup P2,
we get

E(0,0)µ ∼ 2ζ(3)r
3
2E

SL(2)
3
2
Λ1

+
2π2

3
ImU +

22π

3
− 4π ln

(
2πr(ImU)

1
2 lPµ

)
. (4.3.33)

The first two terms correspond to the minimal Wilson coupling in dimension 9. There-
fore E(0,0)µ also has the right degeneration limit for the decompactification from 8 to 9
dimensions. The last term is an important contribution which resums into the nine-
dimensional massless threshold [94] while the lnµ term is a scale contribution.
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From (4.3.30) and (4.3.31) we can deduce a general way to regularise minimal
SL(n) Eisenstein series at the pole n

2

Ê
SL(n)
n
2
Λ1

= lim
ϵ→0

(
E
SL(n)
(n
2
+ϵ)Λ1

− ξ(1 + 2ϵ)

ξ(n+ 2ϵ)

)
. (4.3.34)

Similarly for antifundamental SL(n) series

Ê
SL(n)
n
2
Λn−1

= lim
ϵ→0

(
E
SL(n)
(n
2
+ϵ)Λn−1

− ξ(1 + 2ϵ)

ξ(n+ 2ϵ)

)
. (4.3.35)

The link between divergences in supergravity and Wilson couplings was further stud-
ied in [165,167].

Next to minimal Wilson coupling In D = 8 dimensions the next to minimal
Wilson coupling satisfies the Laplace equation

∆E(1,0) =
10

3
E(1,0) . (4.3.36)

The only perturbative contribution to E(1,0) come from the genus 0, genus 1 and genus
2 string amplitudes

Epert(1,0) = e−
10
3
ϕc(1,0) + e−

4
3
ϕE (1)(1,0)ϵ + e

2
3
ϕE (2)(1,0)ϵ . (4.3.37)

For D = 8 dimensions we still have c(1,0) = ζ(5) and we have

E (1)(1,0)ϵ =
2π5

2025
E
SO(2,2)
2Λ1

=
2π5

2025
E
SL(2)
2Λ1

E
SL(2)
2Λ1

,

E (2)(1,0)ϵ =
2π4

135

(
E
SO(2,2)
2Λ2

+ E
SO(2,2)
2Λ1

)
=

2π4

135

(
E
SL(2)
2Λ1

+ E
SL(2)
2Λ1

)
, (4.3.38)

where we have used the isomorphism SO(2, 2) = SL(2) × SL(2). Hence the pertur-
bative part of the Wilson coupling is given by

Epert(1,0) = ζ(5)e−
10
3
ϕ +

2π5

2025
E
SL(2)
2Λ1

E
SL(2)
2Λ1

e−
4
3
ϕ +

2π4

135

(
E
SL(2)
2Λ1

+ E
SL(2)
2Λ1

)
e

2
3
ϕ . (4.3.39)

This is also manifestly invariant under T-duality. Therefore by looking at the constant
terms in the Fourier decomposition (4.1.72) on the maximal parabolic subgroup P1

we can see that
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E(1,0) = ζ(5)E
SL(3)
5
2
Λ1

+
2π4

135
E
SL(3)

− 1
2
Λ1
E
SL(2)
2Λ1

=
1

2
Ep

SL(3)
5
2

− 4Ep
SL(3)

− 1
2

Ep
SL(2)
2 , (4.3.40)

has the right degeneration limit for 1/gs = e−ϕ →∞. One can also check that it obeys
the right Laplace equation. This is the full non perturbative Wilson coupling [48].

Also note that if we take the limit R2 → ∞, which corresponds to only keeping
the constant terms in the Fourier decomposition (4.1.70) for the maximal parabolic
subgroup P2 × P1 of SL(3)× SL(2), we get

E(1,0) ∼ ζ(5)r′
5
2E

SL(2)
5
2
Λ1

+
2π2

45
ζ(3)(Im τ)2r′−

1
2E

SL(2)
3
2
Λ1

+
2π2

45
ζ(3)(Im τ)−1r′4

+
ζ(3)

π

(
2ζ(3)(Im τ)−1r′−

1
2E

SL(2)
3
2
Λ1

+
2π2

3
r′−2

)
+

2π5

2025
(Im τ)2r′4 . (4.3.41)

The first line corresponds to the next to minimal Wilson coupling in dimension 9.
Therefore E(1,0) also has the right degeneration limit for the decompactification from 8
to 9 dimensions. The first term of the second line corresponds to the minimal Wilson
coupling in dimension 9. The last term comes from a threshold term.

4.3.4 7 dimensions

In D = 7 dimensions the moduli space is SO(5)\SL(5,R) and the U-duality group is
SL(5,Z). The moduli fields in this dimension are H5 ∈ HS.

Minimal Wilson coupling In D = 7 dimensions the minimal Wilson coupling
satisfies the Laplace equation

∆E(0,0) = −
12

5
E(0,0) . (4.3.42)

The only perturbative contribution to E(0,0) come from the genus 0 and genus 1 string
amplitudes

Epert(0,0) = e−
12
5
ϕc(0,0) + e−

2
5
ϕE (1)(0,0)ϵ . (4.3.43)

For D = 7 dimensions we still have c(0,0) = 2ζ(3) and we have
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E (1)(0,0)ϵ = 4πξ(1)E
SO(3,3)
1
2
Λ1

=
2π2

3
E
SL(4)
Λ1

. (4.3.44)

Where we have used the isomorphism SO(3, 3) = SL(4). Hence the perturbative part
of the Wilson coupling is given by

Epert(0,0) = 2ζ(3)e−
12
5
ϕ +

2π2

3
E
SL(4)
Λ1

e−
2
5
ϕ . (4.3.45)

We can decompose H5 into r, H4 and x4 as in (4.1.68) for the maximal parabolic

subgroup P1 of SL(5). We have r = e−
2
5
ϕ. Therefore using the Fourier decomposition

on the maximal parabolic subgroup P1 (4.1.72) and the asymptotic behavior of the
Bessel K function we can see that

E(0,0) = 2ζ(3)E
SL(5)
3
2
Λ1

= Ep
SL(5)
3
2

(4.3.46)

has the right degeneration limit for 1/gs = e−ϕ → ∞ and obeys the right Laplace
equation. This is the full non perturbative Wilson coupling [48]. Therefore the con-
stant terms in the Fourier expansion on the maximal parabolic subgroup P1, which
is associated with the perturbative string theory limit, correspond again to the per-
turbative contributions.

We can now decompose H5 into r
′, H ′

3, H
′
2 and x

′
3x

′T
2 as in (4.1.68) for the maximal

parabolic subgroup P3 of SL(5) which corresponds to the maximal parabolic subgroup
P4 of E4(4). Let R be the radius of compactification from 8 to 7 dimensions. Then if
we take the limit R → ∞, which corresponds to only keeping the constant terms in
the Fourier decomposition (4.1.70) for the maximal parabolic subgroup P3 of SL(5),
we get

E(0,0) ∼
(
2ζ(3)Ê

SL(3)
3
2
Λ1

+
2π2

3
Ê
SL(2)
Λ1

+
22π

3
− 4π ln

(
2π
lP
ls

)

+2π

(
2γE −

11

3

)
+ 4π ln

(
lP
2ls
r′

5
2

))
r′3 , (4.3.47)

where we have used the functional relation (4.1.44). The first line corresponds to
the minimal Wilson coupling in dimension 8. Therefore E(0,0) also has the right
degeneration limit for the decompactification from 7 to 8 dimensions. The second
line results from a threshold in 8 dimensions.
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Next to minimal Wilson coupling In D = 7 dimensions the next to minimal
Wilson coupling satisfies the differential equation

∆E(1,0) =
20π2

3
. (4.3.48)

This indicates again that we may need to consider Eisenstein series evaluated at some
pole. The only perturbative contribution to E(1,0) come from the genus 0, genus 1 and
genus 2 string amplitudes

Epert(1,0) = e−4ϕc(1,0) + e−2ϕE (1)(1,0)ϵ + E
(2)
(1,0)ϵ . (4.3.49)

For D = 7 dimensions we still have c(1,0) = ζ(5) and we have

E (1)(1,0)ϵ =
π

15
ζ(5)E

SO(3,3)
5
2
Λ1

=
π

15
ζ(5)E

SL(4)
5
2
Λ2

,

E (2)(1,0)ϵ =
2π4

135

(
E
SO(3,3)
2Λ3ϵ

+ E
SO(3,3)
2Λ2ϵ

)
=

2π4

135

(
Ê
SL(4)
2Λ1

+ Ê
SL(4)
2Λ3

)
+

16π2

15
ϕ , (4.3.50)

where we have used the isomorphism SO(3, 3) = SL(4) and we have used the reg-
ularisations (4.3.34) and (4.3.35). The genus 2 contribution is divergent which also
indicates that we need to consider Eisenstein series evaluated at some pole. Hence
the perturbative part of the Wilson coupling is given by

Epert(1,0) = ζ(5)e−4ϕ +
π

15
ζ(5)E

SL(4)
5
2
Λ2

e−2ϕ +
2π4

135

(
Ê
SL(4)
2Λ1

+ Ê
SL(4)
2Λ3

)
+

16π2

15
ϕ . (4.3.51)

Note that with the regularisation (4.3.34) the Fourier decomposition (4.1.72) on the

maximal parabolic subgroup P1 of the Eisenstein series E
SL(5)
5
2
Λ1

is given by

Ê
SL(5)
5
2
Λ1

= r10 +
2π4

135ζ(5)
Ê
SL(4)
2Λ1

− 2π2

3ζ(5)
ln r

+
8π2

3ζ(5)

′∑

Γ4∈Z4

σ4(Γ)
r5

|Z(Γ)|2K2(2πr
5
2 |Z(Γ)|)e2πiΓ(x) . (4.3.52)

Let us now consider the following regularisation of the Eisenstein series E
SL(5)
sΛ3

at the
pole s = 5

2
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Ê
SL(5)
5
2
Λ3

(H5) = lim
ϵ→0

(
E
SL(5)

( 5
2
+ϵ)Λ3

(H5)−
10π

ζ(5)ϵ
− 10π

3ζ(5)
(12γE + 6 lnπ + ln 64− 11− 72 lnA)

+20π
ζ ′(5)

ζ(5)2
+

1800
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ζ(5)

)

= r5E
SL(4)
5
2
Λ2

+
2π3

9ζ(5)
Ê
SL(4)
2Λ3

− 30π

ζ(5)
ln r

+
8π2

3ζ(5)

′∑

Γ4∈Z4

σ−2(Γ)

gcd(Γ)−
4
3

E
SL(3)
2Λ2

(UΓ)
r

5
2

|Z(Γ)| 13
K2(2πr

5
2 |Z(Γ)|)e2πiΓ(x) ,

(4.3.53)

where we have used the Fourier decomposition on the maximal parabolic subgroup
P1 (4.1.89). Therefore we can see that

E(1,0) = ζ(5)Ê
SL(5)
5
2
Λ1

+
π

15
ζ(5)Ê

SL(5)
5
2
Λ3

=
1

2
Êp

SL(5)
5
2

+
π

15
ζ(5)Ê

SL(5)
5
2
Λ3

(4.3.54)

has the right degeneration limit for 1/gs = e−ϕ → ∞. One can also check that it
obeys the right Laplace equation, see (4.1.46) and (4.1.49). This is the full non per-
turbative Wilson coupling [48].

One can also check by looking at the constant terms in the Fourier decomposition
for the maximal parabolic subgroup P3 of SL(5) that we get the right degeneration
limit for the decompactification from 7 to 8 dimensions.

From (4.3.53) we can deduce a general way to regularise next to minimal Eisenstein
series at the pole s = n

2

Ê
SL(n)
n
2
Λ2

= lim
ϵ→0

(
E
SL(n)
(n
2
+ϵ)Λ2

− ξ(1 + 2ϵ)ξ(2 + 2ϵ)

ξ(n− 1 + 2ϵ)ξ(n+ 2ϵ)

)
,

Ê
SL(n)
n
2
Λn−2

= lim
ϵ→0

(
E
SL(n)
(n
2
+ϵ)Λn−2

− ξ(1 + 2ϵ)ξ(2 + 2ϵ)

ξ(n− 1 + 2ϵ)ξ(n+ 2ϵ)

)
. (4.3.55)

4.3.5 6 dimensions

In D = 6 dimensions the moduli space is (SO(5) × SO(5))\SO(5, 5,R) and the U-
duality group is SO(5, 5,Z). The moduli fields in this dimension are G5 + B5 ∈ H
such that HG5,B5 as defined in (3.5.14) is in the moduli space.
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Minimal Wilson coupling In D = 6 dimensions the minimal Wilson coupling
satisfies the Laplace equation

∆E(0,0) = −
15

2
E(0,0) . (4.3.56)

The only perturbative contribution to E(0,0) come from the genus 0 and genus 1 string
amplitudes

Epert(0,0) = e−3ϕc(0,0) + e−ϕE (1)(0,0)ϵ . (4.3.57)

For D = 8 dimensions we still have c(0,0) = 2ζ(3) and we have

E (1)(0,0)ϵ =
2π2

3
E
SO(4,4)
Λ1

. (4.3.58)

Hence the perturbative part of the Wilson coupling is given by

Epert(0,0) = 2ζ(3)e−3ϕ +
2π2

3
E
SO(4,4)
Λ1

e−ϕ . (4.3.59)

One can check by looking at the constant terms in the Fourier decomposition for the
maximal parabolic subgroup P1 of SO(5, 5) that

E(0,0) = 2ζ(3)E
SO(5,5)
3
2
Λ1

= Ep
SO(5,5)
3
2

(4.3.60)

has the right degeneration limit for perturbative string theory and obeys the right
Laplace equation, see (4.1.53). This is the full non perturbative Wilson coupling [48].

We can also decompose HG5,B5 into r, H5 and B5 as in (4.1.80) for the maximal
parabolic subgroup P5 of SO(5, 5). Then if we look at the constant terms in the
Fourier decomposition (4.1.83) for the maximal parabolic subgroup P5 of SO(5, 5),
we get

E(0,0) ∼ 2ζ(3)Ê
SL(5)
3
2
Λ4

r
3
2 +

2π2

3
r

5
2 , (4.3.61)

The first term corresponds to the minimal Wilson coupling in dimension 7 where H−1
5

are the moduli fields in 7 dimension. Therefore E(0,0) also has the right degeneration
limit for the decompactification from 6 to 7 dimensions. The second term comes from
a threshold in 7 dimensions.

We can see a pattern emerge for low dimensions that the full non perturbative
minimal Wilson coupling E(0,0) is given by an Epstein series for the U-duality group
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evaluated at s = 3
2
. Similarly one can show that for low dimensions the full non

perturbative next to minimal Wilson coupling E(1,0) is given by half of an Epstein
series for the U-duality group evaluated at s = 5

2
. Indeed in general we have in

dimension D = 11− d [47, 48,153,157,158,166]

E(0,0) = 2ζ(3)E
Ed(d)
3
2
Λ1

= Ep
Ed(d)
3
2

, (D ≤ 7)

E(1,0) = ζ(5)E
Ed(d)
5
2
Λ1

=
1

2
Ep

Ed(d)
5
2

. (D ≤ 5) (4.3.62)

These two relations also hold in ten dimensions for type IIB string theory.

Therefore we have seen that the general strategy to find the full non perturbative
Wilson couplings in any dimension D = 11 − d is to start from the perturbative
string theory expansion and then find a function invariant under the U-duality group
that satisfies the differential equation imposed by supersymmetry and whose constant
terms in the Fourier expansion on the maximal parabolic subgroup P1 of Ed(d) agrees
with the perturbative expansion. The non constant terms in the Fourier expansion
on P1 then correspond to non perturbative instanton contributions. Important san-
ity checks involve checking that the constant terms in the Fourier expansion on the
maximal parabolic subgroup Pd of Ed(d) agree with the full non perturbative Wilson
coupling in dimension D + 1 and the constant terms in the Fourier expansion on
the maximal parabolic subgroup P2 of Ed(d) reproduce the results of eleven dimen-
sional supergravity compactified on a torus T d.9 This strategy works best for the
first three Wilson couplings which are protected by supersymmetry and hence whose
perturbative expansion is finite, see [48, 49, 51]. A natural guess for a non perturba-
tive completion of Wilson coefficients is an automorphic form for the U-duality group
because they already satisfy the conditions of invariance under the U-duality group
as well as interesting differential equations. However it is not always the case that
the non pertrubative Wilson coefficient is constructed from automorphic forms, for
example the next to next to leading Wilson coupling in dimension D ≥ 8 belongs to
a class of functions on K\Ed(d)/Ed(d)(Z) that generalises the notion of automorphic
forms. Indeed in general Wilson couplings fail to satisfy condition 3. of the definition
of automorphic forms in that they do not define a finite dimensional representation
of the centre Z(ed(d)), i.e. they are not eigenfunctions of all differential operators.

We can end this section by extending this exposition to 11 dimensions and giving
the non perturbative M-theory leading Wilson coupling. As we have seen, there are
no massless scalar fields in M-theory/eleven dimensional supergravity and hence no

9We have not looked at this limit in our exposition.
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moduli fields. Therefore there is no U-duality group in eleven dimensions and the
Wilson coupling is a constant which can be found by anomaly cancellation required
for consistent coupling with the M5 brane [168,169]. This is given by

E(0,0) =
2π2

3
, (D = 11) (4.3.63)

for the leading Wilson coefficient and by

E(1,0) = 0 , (D = 11) (4.3.64)

for the next to leading Wilson coefficient. If one recalls that the type IIA dilaton is
related to the radius of compactification R from 11 to 10 dimensions by eϕ = R

ls
one

can check that in the limit R→∞ the type IIA Wilson coefficients given by (4.3.6)
and (4.3.12) reproduce the M-theory Wilson couplings.10

10Although there is a term in (4.3.12) that survives the limit it does not have the right power of
the dilaton to come from the D = 11 next to minimal Wilson coupling. In fact this term comes from
Kaluza-Klein modes contributions.
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Chapter 5

Minima of leading Wilson
couplings

As we saw in the introduction, maximally supersymmetric gravitational theories pro-
vide a natural setting where one might say precise things about the string lamppost
principle. We already saw that if we look at the leading two derivatives operators
in the effective action then the string lamppost principle is pretty much verified in
all dimensions as maximal supergravity is unique1 and coincides with the low energy
limit of maximally supersymmetric string theory compactified on a torus. In this
section we will look at the leading higher order operators in the effective field theory
expansion which constitutes the core of this thesis. For a general maximally super-
symmetric gravitational theory we can write the first few Wilson coefficients of the
gravitational sector of the effective action in Einstein frame as

S =
1

2κ2D

∫
dDx
√−g

(
R +

l6P
48
c(0,0)R4 +

l10P
48
c(1,0)∇4R4 +

l12P
48
c(0,1)∇6R4 + . . .

)
,

(5.0.1)
where here cp,q are generic Wilson coefficients which have a priori nothing to do with
string theory. We saw in chapter 1 that S-matrix bootstrap methods can be used
to constrain the amplitudes of such a theory and therefore the Wilson coefficients as
well. Indeed the low energy limit of the amplitude is given by

A2→2′ = −i
κ2D
210
R4(ki, ϵi)

(
64

stu
+c(0,0)l

6
P + 32(2π)D−3lD−2

P

(
I
(1)
4 (s, t) + I

(1)
4 (t, u) + I

(1)
4 (u, s)

)

+c(1,0)
l10P
16

(s2 + t2 + u2) + . . .

)
, (5.0.2)

1Except in ten dimensions of course.
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where I
(1)
4 is the one loop supergravity integral given in (3.5.28). One can then use

techniques similar to section 3.4 to relate the unitarity bounds on this amplitude to
unitarity bounds on the scalar amplitude using maximal supersymmetry and factori-
sation properties of amplitudes. We can see that for dimensions D > 8 the contri-
bution from the leading Wilson coefficient c(0,0) in the amplitude (5.0.2) is leading at
low energy with respect to the one loop supergravity amplitude. In these dimensions
one can therefore translate the bounds on the amplitudes to bounds on the leading
Wilson coefficient c(0,0). For example it is easy enough using the positivity bound
(1.3.10) on the scalar amplitude and usual contour integration arguments [170–174]
to show that the leading Wilson coefficients in these dimensions must be positive [45].

c(0,0) ≥ 0 . (D > 8) (5.0.3)

Of course this bound can be refined using the elastic positivity bound (1.3.11) as was
done in [45,46] although the bounds are not sharp because they are missing inelastic
effects in the optical theorem.

In dimensions D ≤ 8 it is the one loop supergravity amplitude that is leading
at low energy with respect to leading Wilson coefficient c(0,0). In this dimensions
it is much more complicated to extract bounds on c(0,0) and in particular no such
positivity bound can be derived. For dimensions D ≤ 5 the two loop supergravity
amplitudes also becomes leading with respect to the leading Wilson coefficient which
further complicates matters.

An interesting question with respect to the string lamppost principle is whether
the range of the exact leading Wilson coefficients E(0,0) of string theory as found
in chapter 4 saturate the range allowed by S-matrix unitarity bounds. The Wilson
coefficients of string theory can take arbitrary large values which is coherent with
the unitarity range which is not bounded from above. Therefore the key question is
whether the lower bounds of the Wilson coefficients coincide with the lower bounds
imposed by unitarity. It was found in [45, 46] that the leading Wilson coefficients
in dimensions D > 8 nearly saturate unitarity bounds. Due to non sharpness of
these unitarity bounds and the fact that taking into account particle production is
expected to raise the unitarity bounds [175] one can conclude that string theory does
indeed seem to saturate the sharp unitarity bounds in dimensions D > 8. One of
the main efforts of this PhD thesis was to derive lower bounds for the leading and
next to leading Wilson coefficients in dimensions 6 ≤ D ≤ 8. As shown in section 4.3
this involves finding the global minima of Epstein series and Eisenstein series for the
groups SL(n) and SO(n, n) for small n at special values of the parameter s.

In this section we begin by finding suitable fundamental domains for the mod-
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uli spaces relevant to us. We then give the main results leading to the conjectured
minima of Epstein series at symmetric points and in particular prove they are local
minima. Finally we give our results regarding the lower bounds on exact leading Wil-
son coefficients of maximally supersymmetric string theory. More details regarding
this section can be found in [176] as well as in an upcoming article.

5.1 Fundamental domain of K\G/G(Z)
LetM = K\G be some symmetric space and let f :M→ R be some real automor-
phic function for some discrete subgroup Γ of G. Instead of studying the minima of
f on the whole symmetric spaceM one may restrict to consideringM up to trans-
formations by Γ, this leads us to the concept of fundamental domain for K\G/Γ. A
fundamental domain F forM/Γ is a subset F ⊂M from which the whole spaceM
can be recovered by the action of Γ and which is in some sense the smallest possible.
More precisely one defines a free regular set F̊ ⊂ M for Γ as an open set inM such

that any point inM can be mapped to its closure F = F̊ inM by the action of Γ,
and for any element γ ∈ Γ acting non-trivially onM one has γF ∩ F̊ = ø. It is also
required that ∂F = F \ F̊ is of measure zero inM. We then call F a fundamental
domain of Γ inM. Equivalently one can define F to satisfy

⋃

γ∈Γ
γF =M , γF ∩ F ⊂ ∂F , (5.1.1)

for all γ ∈ Γ acting non trivially.

Our biggest motivation for studying fundamental domains comes from this second
condition. Indeed, as explained in the next section, we have good reasons to believe
that potential minima of automorphic forms will lie at self dual points, i.e. points
which are mapped to themselves by some subgroup of Γ. By definition these have
to lie on the boundary of any fundamental domain. In fact the more symmetries
these points have, i.e. the bigger the subgroup of Γ stabilizing the point, the likelier
they are to be minima. And the points with the biggest amount of symmetries are
typically point which lie on boundaries of low dimension of F , the best candidates
being dimension 0 boundary points (sometimes called corners).

It is important to realise however that the study of boundaries of fundamental
domains depends on the choice of the latter so this analysis can only take us so far.
Indeed there is no canonical fundamental domain. A first fundamental domain was
introduced by Minkowski for GL(n,Z) acting on SO(n)\SL(n) [177]. Grenier then
defined a different fundamental domain for GL(n,Z) that is easier to generalise to
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arbitrary simple groups [178]. Let us first review Grenier’s construction in the case
of SL(n,Z).

5.1.1 Fundamental domain of SL(n,Z)
Let us first review the case of the standard fundamental domain for SO(2)\SL(2)/SL(2,Z).
As we saw in section 3.3 the symmetric space SO(2)\SL(2) is isomorphic to the upper
complex half planeH1 and a standard fundamental domain for SO(2)\SL(2)/SL(2,Z)
was given by (3.3.8). We can give another equivalent formulation for this fundamental
domain which makes it look even more analogous to the fundamental domain for the
Siegel upper half plane (3.3.19).

F1 = {τ ∈ C | |Re τ |≤ 1/2, Im τ > 0, |n+mτ |2≥ 1} , (5.1.2)

for all n,m ∈ Z such that

(
n r
m s

)
∈ SL(2,Z) . (5.1.3)

Just like for the Siegel fundamental domain the last condition only needs to be checked
for a finite number of n,m. In fact the only doublet for which this condition is non-
trivial is n = 0, m = 1 for which one gets back the usual fundamental domain (3.3.8).
If we define Hτ ∈ HS as in (4.1.73) it is easy to see that τ ∈ H1 is in the fundamental
domain F1 if and only if

1. Hτ [q] ≥ 1/ Im τ for all q ∈ Z2 such that gcd q = 1 ,

2. |Re τ |≤ 1
2
.

This form of the fundamental domain is useful to us because this can be generalised
by recursion.

Indeed the idea behind Grenier’s fundamental domain is to extend this recusively
to SO(n)\SL(n) which we identify with the space of symmetric positive definite
unimodular matrices HS. We can decompose Hn ∈ Mn = SO(n)\SL(n) into r,
Hn−1 and xn−1 as in (4.1.68) for the parabolic subgroup P1 of SL(n). Grenier’s
fundamental domain F (n) ofMn under the action of SL(n,Z) is then given in terms
of the fundamental domain F (n−1) ofMn−1 under the action of GL(n− 1,Z)2 by the
conditions

2This is a slight subtlety but it is not a complication because the fundamental domain forGL(n,Z)
is the same as that of SL(n,Z) except 0 ≤ (xn−1)1 ≤ 1

2 for all n and the condition gcd q = 1 is
replaced by q ̸= 0 for n = 2.
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1. Hn−1 ∈ F (n−1) ,

2. Hn[q] ≥ 1/rn−1 for all q ∈ Zn such that gcd q = 1 ,

3. |(xn−1)i|≤ 1
2
for 2 ≤ i ≤ n − 1 and |(xn−1)1|≤ 1

2
for n even or 0 ≤ (xn−1)1 ≤ 1

2

for n odd .

Again one can actually show that condition 2. only implies a finite number of in-
equalities. The proof that this is the case and that this indeed defines a fundamental
domain was given by Grenier in [178]. The resulting Grenier fundamental domain for
the case n = 3 is given in [176].

5.1.2 Generalisation to G(Z)
It appears that Grenier’s construction of a fundamental domain is based on a sequence
of maximal abelian parabolic subgroups, i.e. maximal parabolic subgroups for which
the unipotent radical is abelian. In this section we therefore consider G to be the split
real form of a simple Lie group of rank r admitting an abelian parabolic subgroup.
This last condition excludes only E8(8), F4(4) and G2(2). It includes in particular all
the relevant moduli spaces and U-duality groups for maximally supersymmetric string
theory in dimensions greater or equal to four, see table 4.1.

Let P
(1)
i be a maximal abelian parabolic subgroup associated to the fundamental

weight Λi. We assume it is of the form

P
(1)
i = (GL(1)×G(1)

i )⋉ U
(1)
i , (5.1.4)

where the semi-simple part of the Levi subgroup G
(1)
i is itself the split real form of a

semi-simple group and the unipotent radical U
(1)
i is abelian. According to the Iwasawa

decomposition, for any element v ∈ M = K\G we can find a coset representative

v ∼ p with p ∈ P (1)
i . Therefore, by the Levi decomposition we can decompose v as

v = e−
1
2
ln y

(1)
i Hαiv(1)ea

(1)

, (5.1.5)

with y
(1)
i ∈ R∗

+, a
(1) ∈ n

(1)
i the Lie algebra of the unipotent radical U

(1)
i and v(1) ∈

M(1) = K
(1)
i \G(1)

i where K
(1)
i is the maximal compact subgroup of G

(1)
i . Also note

that Hαi
is the generator of the Chevalley basis (4.1.26) associated to the root αi

such that ⟨Λi, α∨
i ⟩ = 1. Therefore if eΛi

∈ R(Λi) is the highest weight vector of the
representation R(Λi) then if we assume that v is in the representation R(Λi) we have

veΛi
=

1√
y
(1)
i

eΛi
. (5.1.6)
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For each v ∈ M we define the symmetric bilinear form H[q] with H = vTv where v
and q are in the representation R(Λi). In the following we shall identify a point v ∈M
with the symmetric matrix H, we will also use the fact that according to the Iwasawa
decomposition v can be parametrised by the coordinates y

(1)
i , H(1) = (v(1))Tv(1) and

a(1). Before generalising Grenier’s construction, let us give some definitions. We
define

G
(1)
i (Z) = G(Z) ∩ (GL(1)×G(1)

i ) ,

U
(1)
i (Z) = G(Z) ∩ U (1)

i , (5.1.7)

P
(1)
i (Z) = G(Z) ∩ P (1)

i = G
(1)
i (Z)⋉ U

(1)
i (Z) .

Note that with this definition G
(1)
i (Z) may not be a subgroup of G

(1)
i but includes the

entire discrete Levi subgroup.3

The construction of the fundamental domain is defined recursively. We first con-
sider the fundamental domain ofM for the action of the parabolic subgroup P

(1)
i (Z).

Let p be an element of P
(1)
i (Z), we can decompose it as p = len with l ∈ G(1)

i (Z) and
en ∈ U (1)

i (Z). P (1)
i (Z) acts onM by

pTHp = (y
(1)
i , lTH(1)l, l−1a(1) + n) . (5.1.8)

Therefore we can see that the action of the adjoint Levi subgroup G
(1)
i (Z)/Z(G(1)

i (Z)),
with Z(G(1)

i (Z)) the centre of G
(1)
i (Z), onM(1) determines the fundamental domain

F (1) =M(1)/(G
(1)
i (Z)/Z(G(1)

i (Z))) . (5.1.9)

To find a fundamental domain of P
(1)
i (Z) inM, it remains to act with Z(G(1)

i (Z))⋉
U

(1)
i (Z) on n

(1)
i . By construction U

(1)
i (Z) acts by translation and Z(G(1)

i (Z)) acts
either trivially or by multiplying a(1) by −1. One gets therefore

F (1)
P =M/P

(1)
i (Z) = R+ ×F1 ×

[
−1

2
, 1
2

]d(1)
/Zµ , (5.1.10)

where d(1) is the dimension of U
(1)
i and µ = 2 if Z(G

(1)
i (Z)) acts as Z2 on n

(1)
i and

µ = 1 if it acts trivially.

To find a fundamental domain ofM for G(Z), it remains to consider the action

of G(Z)/P (1)
i (Z). Let us again consider the isomorphism (4.1.39)

3As an example, for SL(n,Z) we would have G
(1)
1 (Z) = GL(n−1,Z) which explains the previous

footnote.
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G(Z)/P (1)
i (Z) = S(1) = {q ∈ R(Λi,Z) | q ⊗ q ∈ R(2Λi,Z), gcd q = 1} , (5.1.11)

where the condition q ⊗ q ∈ R(2Λi,Z) is again characterised by (4.1.38) and the gcd
may include a notion of sign when the only elements in G(Z) that change the sign of

q are trivial in G(Z)/G(1)
i (Z). If we define the positive set S

(1)
> ⊂M as

S
(1)
> = {H ∈M|H[q] ≥ 1/y

(1)
i , ∀q ∈ S(1)} , (5.1.12)

then we can show that a fundamental domain F =M/G(Z) can be defined as the
intersection

F = F (1)
P ∩ S

(1)
> . (5.1.13)

The proof that this indeed defines a fundamental domain is given in [176].

This can then be extended recursively by applying the same reasoning to G
(1)
i and

all G
(k)

i(k)
semi-simple subgroups successively with maximal parabolic subgroups

P
(k+1)

i(k+1) = (GL(1)×G(k+1)

i(k+1))⋉ U
(k+1)

i(k+1) , (5.1.14)

such that U
(k)

i(k)
is an abelian unipotent group for all k = 1 to r. By construction the

recursion ends with P
(r)

i(r)
= GL(1)⋉U

(r)

i(r)
. Also by construction the Borel subgroup is

given by

B = GL(1)r ⋉ U
(r)

i(r)
⋉ · · ·⋉ U

(1)

i(1)
, (5.1.15)

and the Iwasawa decomposition of G is compatible with this succession of abelian
parabolic subgroups

B ⊂ GL(1)r−2 × P (r−1)

i(r−1) ⋉ U
(r−2)

i(r−2) · · ·⋉ U
(1)

i(1)
⊂ · · · ⊂ GL(1)× P (2)

i(2)
⋉ U

(1)

i(1)
⊂ P

(1)

i(1)
⊂ G .

(5.1.16)

5.1.3 Fundamental domain of SO(n, n,Z)
Let us now see how this construction applies to the symmetric spaceMn = (SO(n)×
SO(n))\SO(n, n) under the action of SO(n, n,Z) preserving the even self-dual lattice
of split signature IIn,n. As we have seen, in string theory the group of T-duality on the
torus T d is O(d, d,Z) whereas the group of U-duality in dimension 6 is SO0(5, 5,Z).
The difference with respect to the different groups SO0(n, n,Z), SO(n, n,Z) and
O(n, n,Z) only appear in the first step because SO0(1, 1,Z) = {1}, SO(1, 1,Z) = Z2
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and O(1, 1,Z) = Z2 × Z2.

We will use the convention that the split signature metric is

η =

(
0 In
In 0

)
. (5.1.17)

Notice that the symmetric space (SO(n) × SO(n))\SO(n, n) is isomorphic to the
space of invariant symmetric positive definite unimodular real matrices H = {H ∈
Mat(2n,R) |HT = H, detH = 1, H > 0, ηTHη = H} where the isomorphism is
given by H = vTv with v is in the fundamental representation R(Λ1) of SO(n, n). In
the following we shall identify points inMn with symmetric matrices Hn ∈ H.

We consider the maximal parabolic subgroup P1 associated to the fundamental
weight Λ1, it is given by

P1 = (GL(1)× SO(n− 1, n− 1))⋉Rn−1,n−1 . (5.1.18)

Therefore the semi-simple part of the Levi subgroup is SO(n − 1, n − 1) which is
indeed the split real form of a simple group and the unipotent radical is given by
Rn−1,n−1 which is indeed abelian. We can decompose

Hn[qn] = r−1

(
q + (xn−1, qn−1) +

1

2
(xn−1, xn−1)p

)2

+Hn−1[qn−1 + xn−1p] + rp2

(5.1.19)
and

(qn, qn) = (qn−1, qn−1) + 2qp , (5.1.20)

where qn = (q, qn−1, p)
T . We have r ∈ R∗

+, Hn−1 ∈ Mn−1 = (SO(n − 1) × SO(n −
1))\SO(n − 1, n − 1), xn−1 ∈ Rn−1,n−1, qn−1 ∈ IIn−1,n−1 and q, p ∈ Z. In matrix
notation this corresponds to a decomposition

Hn =



r−1 0 0
0 Hn−1 0
0 0 r





1 xTn−1η

1
2
(xn−1, xn−1)

0 I2n−2 xn−1

0 0 1


 . (5.1.21)

With the definitions of the previous paragraph we would have G
(1)
1 (Z) = O(n −

1, n−1,Z). Also recall that for q ∈ R(Λ1,Z) = IIn,n the condition q⊗q ∈ R(2Λ1,Z) is
equivalent to q being light-like. Therefore Grenier’s fundamental domain F (n) ofMn
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under the action of SO(n, n,Z) is given in terms of the fundamental domain F (n−1)

ofMn−1 under the action of O(n− 1, n− 1,Z)4 by the conditions

1. Hn−1 ∈ F (n−1) ,

2. Hn[q] ≥ 1/r for all q ∈ IIn,n such that gcd q = 1 and (q, q) = 0 ,

3. |(xn−1)i|≤ 1
2
for 2 ≤ i ≤ 2n− 2 and 0 ≤ (xn−1)1 ≤ 1

2
.

Conditions 1. and 3. ensure that Hn ∈ F (1)
P while condition 3. implies that Hn ∈

S
(1)
> . The proof that this is a fundamental domain as well as the resulting Grenier

fundamental domain for the case n = 2 is given in [176].

5.2 Minima at symmetric points

Automorphic forms are in general complicated functions on complicated spaces. Ana-
lysing these functions even restricted to some fundamental domain is at best difficult
and at worst impossible. However we will see that symmetric points, i.e. points
which are mapped to themselves by a subgroup of the discrete symmetry group,
define special points which are natural candidates for minima. This allows us to
restrict the analysis of automorphic forms to a few points lying on the boundaries of
the fundamental domain.

5.2.1 Taylor expansion at symmetric points

LetK\G be some symmetric space and let F be some fundamental domain ofK\G for
the action of G(Z). The hypersurfaces defining the boundary ∂F of the fundamental
domain are mapped to each other under the action of G(Z) and their intersections
are invariant under non-trivial finite subgroups of G(Z). The maximal intersections
define isolated points v0 ∈ K\G that are invariant under maximal finite subgroups
Gv0(Z) ⊂ G(Z) given by

Gv0(Z) = {γ ∈ G(Z) | v0γ ∼ v0} . (5.2.1)

We call isolated Gv0(Z)-fixed points in K\G symmetric points. All the symmetric
points are maximal intersections but some maximal intersections may not be sym-
metric points. By construction for all γ ∈ Gv0(Z) there exists a kγ = v0γv

−1
0 ∈ K

such that
v0γ = kγv0 ∼ v0 . (5.2.2)

4The fundamental domain for O(n, n,Z) is the same as that of SO(n, n,Z) except that the
condition gcd q = 1 is replaced by q ̸= 0 for n = 2. Similarly the fundamental domain for SO0(n, n,Z)
is the same as that of SO(n, n,Z) except condition 0 ≤ (x1)1 ≤ 1

2 is replaced by |(x1)1|≤ 1
2 for n = 2.
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Therefore we can rewrite Gv0(Z) as

Gv0(Z) = {γ ∈ G(Z) | v0γv−1
0 ∈ K} . (5.2.3)

Let f be an automorphic function on K\G/G(Z). We define the Taylor expansion of
f at v = v0 from the left-action of X ∈ p = g⊖ k as

f(exp(X)v0) ≡ fv0(X) = f(v0) +XaDaf(v0) +
1

2
XaXbDaDbf(v0) +O(X3) , (5.2.4)

where a labels the components of X in p. Note that this can be thought of as a
equivalent definition to (4.1.11) for the covariant derivative Da.

If Gv0(Z) is non-trivial then for any kγ = v0γv
−1
0 ∈ K such that γ ∈ Gv0(Z) we

have

fv0(k
−1
γ Xkγ) = f(k−1

γ exp(X)kγv0) = f(exp(X)v0γ) = fv0(X) . (5.2.5)

Therefore the Taylor expansion of an automorphic function at a symmetric point
v = v0 is highly constrained by the symmetry group Gv0(Z). At order n in the Taylor
expansion, one can classify the order n polynomials in X that are invariant under
all such elements kγ = v0γv

−1
0 ∈ K. If v0 is a symmetric point, there is no invari-

ant linear polynomial and v0 is necessarily an extremum of any automorphic function.

For any symmetric point v0 one must then check if the extremum is a minimum by
looking at the Hessian matrix of the function at v = v0. In practice we shall find that
symmetric points admit a small number of Gv0(Z)-invariant quadratic polynomials,
and that it is sufficient to evaluate the automorphic function on a small dimension
hypersurface to determine if it is a minimum.

If there is a single invariant quadratic polynomial, by construction it must be
proportional to the quadratic Casimir such that

fv0(X) = f(v0) +
1

2 dim p
κabX

aXb∆f(v0) +O(X3) . (5.2.6)

The Hessian of the function at v = v0 is then completely determined, and the sym-
metric point is a local minimum provided ∆f(v0) > 0. Recall that by definition
f is an eigenfunction of the Laplacian, therefore in particular the function must be
negative at a local minimum if the eigenvalue of the Laplace operator is negative.
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Maximal parabolic Eisenstein series We will be interested in maximal parabolic
Eisenstein series EG

sΛi
associated to a fundamental weight Λi which are defined in sec-

tion 4.1.1. They satisfy the Laplace equation (4.1.32). We saw that we had ∆EG
sΛi

> 0

in the domain of absolute convergence s > ⟨Λi,ρ⟩
⟨Λi,Λi⟩ . Therefore we find that when the

symmetric space K\G admits a symmetric point v0 with a unique invariant quadratic
polynomial in X, the symmetric point v0 is a local minimum of any absolutely con-
vergent Eisenstein series. On the other hand on the critical strip 0 < s < ⟨Λi,ρ⟩

⟨Λi,Λi⟩ ,
where the Eisenstein series is integrable, the eigenvalue of the Laplacian is negative.
Therefore v0 is a local minimum of any integrable automorphic function that is neg-
ative at v0. This is consistent with the fact that because of (4.1.41) EG

sΛi
must be

negative at its global minimum in the domain of integrability.

When there are two Gv0(Z)-invariant quadratic polynomials we need to compute
the two independent eigenvalues of the Hessian matrix at v = v0. This can be done
by defining a two-dimensional subspace of K\G that includes the two independent
eigenvectors of the Hessian matrix at v = v0. There also exists symmetric points with
more invariant polynomials, but in our case we shall find that they never correspond
to global minima. We will now discuss the cases of SL(n) and SO(n, n).

5.2.2 SL(n) symmetric points

The SL(2) real analytic Eisenstein series E
SL(2)
sΛ1

is known to have a global minimum

at the symmetric point τ = 1
2
+ i

√
3
2
, [179, 180] for any value of the parameter s > 0,

with the regularisation (4.3.34) at s = 1. There is no general result for the global

minimum of the Epstein series E
SL(n)
sΛ1

for n ≥ 4 and generic s > 0. It would be very
difficult to carry out a complete numerical analysis of the Epstein series for n ≥ 4.
Based on the results above we shall therefore concentrate on symmetric points in
moduli space for which the bilinear form Hn is invariant under a finite subgroup of
SL(n,Z).

The symmetric points in SO(n)\SL(n) are invariant under maximal finite irre-
ducible subgroups of SL(n,Z). The maximal finite irreducible subgroups of GL(n,Z)
have been classified for all n ≤ 10 [181–183]. For n ≤ 4 all the maximal finite
subgroups of SL(n,Z) are stabilisers of an even bilinear form CL of Cartan type, i.e.

SLCL(n,Z) = {γ ∈ SL(n,Z) | γTCLγ = CL} , (5.2.7)

where CL is proportional to the Grammatrix of an even lattice L. The stabilisers of CL
can then be thought of as the group of automorphisms of L preserving its orientation,
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i.e. SLCL(n,Z) = Aut+(L). The irreducible maximal subgroups of SL(n,Z) are
associated with the following lattices

n = 1 : A1 ,

n = 2 : A2 , 2A1 ,

n = 3 : A3 , A∗
3 , 3A1 , (5.2.8)

n = 4 : D4 , A4 , A∗
4 , 4A1 , 2A2 , A2 × A2 ,

where An and Dn are the root lattices of the Lie algebras an and dn respectively and
CAn and CDn can be though of as the associated Cartan matrices.5 By L∗ we mean
the dual lattice of L. A∗

n and D∗
n can be thought of as the weight lattices of the

Lie algebras an and dn respectively. The reducible maximal subgroups are associated
with the reducible lattices A1+A2, A1+A3 and A1+A

∗
3. For Cartan type lattices An,

Dn and En, the automorphism group is the product of the outer automorphisms of
the Dynkin diagram and the Weyl group of the corresponding Lie algebra

Aut(L) = Out(L)⋉W (L) . (5.2.9)

The automorphisms of the dual lattices A∗
n, D

∗
n and E∗

n are the same as for An,
Dn and En respectively. In fact by definition we have CL∗ = C−1

L and therefore
SLCL∗ (n,Z) = SLCL(n,Z).

We can easily define symmetric points in SO(n)\SL(n) which we identify with the

space of symmetric positive definite unimodular matricesHS by HCL
= (detCL)

− 1
nCL

which has as stabiliser group SLHCL (n,Z) = SLCL(n,Z) = Aut+(L). We also have
HCL∗ = H−1

CL
. Note that since points H ∈ SO(n)\SL(n)/SL(n,Z) are identified by

γTHγ ∼ H for all γ ∈ SL(n,Z) we will also consider points up to conjugation by
γ ∈ SL(n,Z). In fact we shall identify points with their representatives in the Grenier
fundamental domain defined in section (5.1.1).

One easily checks that points HCL
associated with reducible lattices L that are

extrema are always saddle points of SL(n) minimal Eisenstein series. Indeed let
L = L1 + L2 be a reducible lattice. HCL

will be of the form

HCL
=

(
HCL1

0

0 HCL2

)
. (5.2.10)

5Note that only the root systems of simply laced Lie algebras define even lattices, these are given
by the an, dn and en families, the so called ADE root systems. In any case the Cartan matrices of
non simply laced Lie algebras are not even symmetric and thus can’t even be thought of as Gram
matrices.
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If we assume that L1 is a k dimensional lattice and L2 is an n− k dimensional lattice
we can see that this corresponds to a parabolic decomposition (4.1.68) on the maximal
parabolic subgroup Pk (4.1.66) with r = 1 and xk,n−k = 0. However if we compute

the second derivative with respect to xk,n−k at xk,n−k = 0 of E
SL(n)
sΛ1

in the Fourier
expansion (4.1.70) on Pk we get

D2E
SL(n)
sΛ1

(Hn)|xk,n−k=0

= − 2

ξ(2s)

′∑

Γn−k,k

∈Zn−k⊗Zk

rank(Γn−k,k)=1

∑

dk∈Zk

dk|Γ

(
H−1
k [dk]

s− k
2

) r(n2−k)s+ kn
4

|Z(Γ)|s− k
2

Ks− k
2
(2πr

n
2 |Z(Γ)|)(2πΓ(dx))2 ,

(5.2.11)

where Γ(dx) = Tr(Γn−k,kdxk,n−k). As minus the absolutely convergent sum of positive
terms we can see that this is negative definite. Therefore any extremum at xk,n−k = 0
in a maximal parabolic decomposition Pk is necessarily a saddle point. This is the
case with all points HCL

associated with reducible lattices L. We will therefore only
analyse symmetric points HCL

associated with irreducible lattices L.

For n = 5 the irreducible lattices leading to a maximal finite irreducible subgroup
of SL(5,Z) are [182]

n = 5 : D5 , D∗
5 , A5 , A∗

5 , A+2
5 , (A+2

5 )∗ = A+3
5 , (5.2.12)

where A+2
5 is the S6

6-invariant lattice A5 ⊕ (A5+Λ2) ⊕ (A5+Λ4) that includes the
second fundamental weight Λ2, and A+3

5 = A5 ⊕ (A5+Λ3). As expected, we have
checked in Appendix A of [176] that all these points lie on dimension zero boundaries
of Grenier’s fundamental domain as defined in section (5.1.1).

There is another argument for studying points corresponding to bilinear forms of
Cartan type. In some ways it is even more compelling because of three reasons: first,
it relies on specific properties of the Epstein series rather than simply automorphic
invariance. Second, it applies to global minima rather that simply local minima.
Finally, one can also show that this argument holds at large n where lattices of A,
D and E types are no longer global minima of the Epstein series [184]. Indeed, it
was proven for s ≫ 1 that the global minimum of the SL(n) Epstein series is given
by the solution to the densest lattice sphere packing in n dimensions [185]. The
argument is the following: any point H ∈ HS can be thought of as the Gram matrix
of some unimodular lattice and H[q] can be interpreted as the distance of the point

6Sn meaning here the group of permutations of order n.
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of coordinate q ∈ Zn on the lattice defined by H. The SL(n) Epstein series is given
by

EpSL(n)s (H) =
′∑

q∈Zn

1

H[q]s
. (5.2.13)

For large s this reduces to

EpSL(n)s (H) ∼
′∑

nearest
neighbors

1

H[q]s
. (5.2.14)

Therefore we can see that the global minimum of the Epstein series will be given by
the lattice that maximises the distance between nearest neighbors. This corresponds
to the densest sphere packing on the lattice. For 2 ≤ n ≤ 8, the densest lattice sphere
packings are known to be the following rank n root lattices [186]

A2 , A3 , D4 , D5 , E6 , E7 , E8 . (5.2.15)

However, for the Wilson coefficients appearing in string theory we are interested
in small values of s, in particular s ≤ n

2
. It was observed in [184] that the densest

lattice packing Hdlp cannot be the global minimum of the Epstein series for all s > 0
when the lattice and its dual do not define the same point in SO(n)\SL(n)/SL(n,Z),
i.e. when H−1

dlp ̸∼ Hdlp modulo the action of SL(n,Z). This is a direct consequence of
the functional relations (4.1.44) and (4.1.43) which we give for Epstein series as

EpSL(n)s (H) = π2s−n
2
Γ(n

2
− s)

Γ(s)
Ep

SL(n)
n
2
−s (H−1) . (5.2.16)

One may therefore argue at most that the densest lattice packing Hdlp is the global
minimum for s ≥ n

4
. This is not an issue for us as the values of s appearing in the

Wilson coefficients of string theory are always bigger than n
4
.

As was suggested in the previous section, it was proved in [184] that the global
minimum of EpSL(n)s must be strictly negative in the critical strip 0 < s < n

2
. How-

ever it was proved in [187] that if the density of the lattice defined by H as well as
the density of the dual lattice defined by H−1 are below a certain critical value then
Ep

SL(n)
n
4

(H) > 0. As stated earlier, this excludes the possibility that the minimum

at s = n
4
be at HCL

for L an ADE lattice for n > 24 and suggests instead that the
densest lattice sphere packing will be the minimum [184]. The densest lattice sphere
packing has been proved to be the global minimum for n = 8 and 24 and all values
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of s > n
2
[188].7

The density ρ(L) of some lattice L is defined as the ratio of the volume covered
by non overlapping spheres at each point of the lattice over the total volume. If we
apply the densest lattice sphere packing criterion to the points (5.2.8) and (5.2.12)
we get

ρ(An) <
n≥4

ρ(Dn) <
n=6,7,8

ρ(En) , (5.2.17)

in agreement with the list (5.2.15). The dual lattices D∗
n and A∗

n are always less dense
than the lattices Dn and An, but E

∗
n is denser than Dn and An for n = 6, 7, 8. For

n = 5 one finds

ρ(A∗
5) < ρ(D∗

5) < ρ(A+3
5 ) < ρ(A5) < ρ(A+2

5 ) < ρ(D5) , (5.2.18)

so the densest sphere lattice packing is indeed the lattice D5, and A
+2
5 is denser than

A5. The fact that the Dn series is a better candidate for Epstein minimum than the
An series for n = 4, 5 is also supported by the fact that the Weyl group for Dn is
larger that that of An therefore it is a more symmetric point.8

In the following it will be useful to introduce the following parametrisation of
Hn ∈ SO(n)\SL(n)

Hn = y−
2
n

(
n

1
n−1Hn−1 0

0 y2

n

)[
In−1 xn−1

0 1

]
, (5.2.19)

which basically amounts to the parabolic decomposition (4.1.68) on the maximal

parabolic subgroup Pn−1 where we have rescaled r = y
2
n/n

1
n−1 . When we take xn−1 =

(x, . . . , x)T and Hn−1 = HCAn−1
with CAn given in the fundamental domain by

CAn =




2 1 . . . 1

1 2
. . .

...
...

. . . . . . 1
1 . . . 1 2


 , (5.2.20)

then Hn(y, x) defines a two dimensional hypersurface in SO(n)\SL(n) with coordi-
nates (y, x). This hypersurface includes all the relevant symmetric points. In fact one

7These correspond to the root lattice E8 and the Leech lattice Λ24 respectively.
8In principle one should also take into account the outer automorphisms but we can show that

they do not affect any of our results so we leave them aside.
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gets representatives for the An, Dn and En points by

HCAn
for x =

1

n
, y =

√
n+ 1 ,

HCDn
for x =

2

n
, y = 2 , (5.2.21)

HCEn
for x =

3

n
, y =

√
9− n .

Moreover for n = 5 one checks that representatives of the A+2
5 and A+3

5 points are
given by

HC
A+2
5

for x =
2

5
, y =

√
2

3
,

HC
A+3
5

for x =
2

5
, y =

√
3

2
. (5.2.22)

The dual lattice points can be studied in the same way with the inverse matrix or
using the functional relation (5.2.16).

We define the pull-back of an automorphic function on SO(n)\SL(n) to the two-
dimensional hypersurface parametrised by y and x by f∗(y, x) = f(Hn(y, x)). The
second differential of the pull-back function is given by

D2f∗(y, x) = fyy dy
2 + fxx dx

2 + 2fyx dydx , (5.2.23)

where fyy, fxx and fxy are the second derivatives of the automorphic function at the
point (y, x).

An symmetric points In the appendix A of [176] we have classified the quadratic
polynomials on p = sl(n)⊖so(n) which are invariant under the Weyl groupW (An) =
Sn+1 and we have found two independent invariant polynomials. The two independent
eigenvalues of the Hessian matrix at HCAn

can be computed on the two-dimensional

hypersurface Hn(y, x) at y =
√
n+ 1 and x = 1

n
.

The second differential of the pull-back function (5.2.23) can be decomposed on
the two independent Sn+1 invariant polynomials to give

D2f∗(y, x)|y=√
n+1,x= 1

n
= a+

2

n+ 1

(
n− 1

n
dy2 + n dx2

)
+ a−

(n2(n− 1)− 2n)

n+ 1
dx2 ,

(5.2.24)
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for two coefficients a+ and a− determined by the second derivatives of the automorphic
function at the symmetric point. In particular

fyy = 2
n− 1

n(n+ 1)
a+, fxx =

2n

n+ 1
a+ +

(n2(n− 1)− 2n)

n+ 1
a−, fyx = 0 . (5.2.25)

Hence the condition for the symmetric point An to be a local minimum of the auto-
morphic function f is that a+ > 0 and a− > 0, which is equivalent to the condition
that

fxx >
n2

n− 1
fyy > 0 , (5.2.26)

for n ≥ 3. It is therefore sufficient to study the pull-back function f∗(y, x) to de-
termine if the symmetric point An is a local minimum of the automorphic function
f(Hn) on SO(n)\SL(n). The complete proof can be found in [176].

We have carried out this computation numerically for the Epstein series and found
that the An symmetric point is always a local minimum for s large enough, but the
eigenvalue a− becomes negative for small s for n ≥ 4, giving a saddle unstable along
the corresponding (n+1)(n−2)

2
-dimensional hypersurface.9 It is always a local minimum

for n = 2, 3. For n = 2 the point A2 is equal to HCA2
= Hτ (see (4.1.73)) with

τ = 1
2
+ i

√
3
2

the global minimum for all s > 0. For n = 3 the point A3 is also the

global minimum for s > 3
4
[184], including for the regularised series Êp

SL(3)
3
2

defined in

(4.3.34). We find that it is a local minimum for s > 1 for SL(4), and for s ≳ 3.16603
for SL(5). For SL(6) and SL(7) one finds similarly that it is not a local minimum
for s < sAn with sAn slightly above the critical value n

2
. Most importantly for us, it is

not a local minimum of the Epstein function Ep
SL(5)
3
2

that defines the leading Wilson

coefficient in 7 dimensions.

Dn symmetric points In section 4.2.2 of [176] we have classified the quadratic
polynomials on p = sl(n)⊖so(n) which are invariant under the Weyl groupW (Dn) =
Sn ⋉ Zn−1

2 and we have found two independent invariant polynomials.10 The two in-
dependent eigenvalues of the Hessian matrix at HCDn

can again be computed on the

9For n = 2 this hypersurface does not exists as we can see from (5.2.24) where the coefficient of
a− vanishes. In this case (5.2.26) reduces to fxx = 4fyy > 0.

10Except for D4 where the triality symmetry implies that there is a unique invariant quadratic
polynomial.
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two-dimensional hypersurface Hn(y, x) this time at y = 2 and x = 2
n
.

The second differential of the pull-back function (5.2.23) can be decomposed on
the two independent Sn ⋉ Zn−1

2 invariant polynomials to give

D2f∗(y, x)|y=2,x= 2
n
= a+

n− 1

n
dy2 + a−

n2(n− 1)

2
dx2 , (5.2.27)

for a+ and a− the two eigenvalues of the Hessian of f at the symmetric point. In
particular

fyy =
n− 1

n
a+, fxx =

n2(n− 1)

2
a−, fyx = 0 . (5.2.28)

Hence the condition for the symmetric point Dn to be a local minimum of the auto-
morphic function f is that a+ > 0 and a− > 0, which is equivalent to the condition
that

fxx > 0, fyy > 0 . (5.2.29)

It is therefore also sufficient to study the pull-back function f∗(y, x) to determine if
the symmetric point Dn is a local minimum of the automorphic function f(Hn) on
SO(n)\SL(n). The complete proof can be found in [176].

One finds by numerical evaluation that the Dn symmetric point is indeed a local
minimum of the Epstein series EpSL(n)s for all s and n ≤ 7. We do not expect this to
be true for arbitrary large n, but this is not relevant for the study of Wilson coeffi-
cients of string theory. We find in particular that among all symmetric points, the Dn

symmetric point gives the minimum value of the Epstein series EpSL(n)s for n = 4, 5
and s ≥ n

4
,11 leading to the conjecture that Dn is the global minimum.

A∗
n and D

∗
n symmetric points The analysis of the polynomials in p invariant under

the automorphisms of the lattices A∗
n and D∗

n gives by construction the same number
of invariant polynomials as An and Dn respectively. In fact one easily extends all the
results of the previous two paragraphs to A∗

n and D∗
n using the functional relation

(5.2.16).
For large values of s, the Epstein series evaluated at the dual symmetric points

D∗
n and A∗

n is larger, as expected from the sphere packing density argument. By

11Note that the root latticeD4 is self dual so thatHCD∗
4
andHCD4

define the same point. Therefore

the D4 symmetric point is the lowest value for all s > 0.
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the functional relation (5.2.16) this must be the opposite for s < n
4
, and in par-

ticular a symmetric point and its dual give the same value at s = n
4
. Accord-

ingly, there is always a value of sc >
n
4
where EpSL(n)sc (HCD∗

n
) = EpSL(n)sc (HCAn

) and

EpSL(n)s (HCD∗
n
) < EpSL(n)s (HCAn

) for s < sc. The numerical evaluation for n ≤ 5 shows

that there is only one such transition, and that EpSL(n)s (HCD∗
n
)− EpSL(n)s (HCAn

) and

EpSL(n)s (HCDn
)−EpSL(n)s (HCD∗

n
) have only one zero at s = sc and s =

n
4
, respectively.

A+2
5 symmetric point The symmetric point A+2

5 admits the same symmetry S6 as
the point A5 and its dual A∗

5. One obtains that the condition for the Hessian of the
function f to be positive definite is (5.2.26) for n = 5, as for the A5 symmetric point.
We have checked these conditions numerically and found that the symmetric point
A+2

5 is a local minimum of the Epstein series EpSL(5)s for s ≳ 2.8849. Below this value
the second derivative with respect to y is negative and the saddle is unstable along 5
directions.

In the critical strip 5
4
< s < 5

2
we find that

EpSL(5)s (HCD5
) < EpSL(5)s (HCD∗

5
) < EpSL(5)s (HC

A+2
5

)

< EpSL(5)s (HC
A+3
5

) < EpSL(5)s (HCA5
) < EpSL(5)s (HCA∗

5
) , (5.2.30)

and only D5 and D∗
5 are local minima.

E6, E7 and E8 symmetric points We shall be very brief about these cases since
they are not relevant to the analysis of the Wilson coefficients of string theory in the
dimensions D ≥ 6. One finds in these three cases that the Weyl groups W (En) is
large enough to impose that there is a unique invariant quadratic polynomial on p. It
is therefore sufficient to check that the Epstein series is negative in the critical strip
to ensure that the En symmetric point is a local minimum for all values of s. One
finds indeed by numerical evaluation that the En symmetric points are local minima
for all values of s, and among all symmetric points we have checked they give the
smallest value of the Epstein series EpSL(n)s for all values of s ≥ n

4
.12

In the critical strip n
4
< s < n

2
we find that

EpSL(n)s (HCEn
) <
n=6,7

EpSL(n)s (HCE∗
n
) < EpSL(n)s (HCDn

)

<
n=6,7

EpSL(n)s (HCD∗
n
) < EpSL(n)s (HCAn

) < EpSL(n)s (HCA∗
n
) . (5.2.31)

12We have only checked symmetric points of Cartan type An, Dn, En and their dual. This exhausts
all maximal irreducible symmetry groups for n = 7, but not for n = 6, 8 [182].

201



Ad×An
d
symmetric points for d|n For n not prime one can also have symmetric

points associated to irreducible bilinear form that are tensor products of lower di-
mensional bilinear forms. For example for n = 4 one has A2 × A2. More generally
one can have Ad ×An

d
for d dividing n. For n ≤ 8 the possible lattices are less dense

than En, Dn and An, but one checks that in the critical strip

EpSL(4)s (HCD4
) < EpSL(4)s (HCA2×A2

) < EpSL(4)s (HCA4
) . (5.2.32)

So the ordering is reversed with the A4 lattice at low values of s. Nevertheless, the
symmetric point D4 remain the global minimum of EpSL(4)s for all value of s > 0.

5.2.3 SO(n, n) symmetric points

We identify (SO(n)× SO(n))\SO(n, n) with the space of matrices whose symmetric
part is positive definite H. To define symmetric points in (SO(n)×SO(n))\SO(n, n)
we start with the assumption that the symmetric part G is itself a symmetric point
of SO(n)\GL(n). From the previous section we find that G is then proportional to
the Gram matrix CL of an even lattice L, and the relevant solution will turn out to
be

G =
1

2
CL , G+B = 0modZ . (5.2.33)

One finds in this case that the vectors q±

q± =
1

2
G−1 (m+ (B ±G)n) , (5.2.34)

for m,n ∈ Zn satisfy

q+ − q− ∈ Zn . (5.2.35)

On the other hand the q± belong to the dual lattice L∗ = C−1
L Zn. By construction

we can decompose any element r ∈ L∗ of the dual lattice as r = l+ µ with l ∈ L and
µ ∈ L∗/L. It follows that G,B describes the isomorphism

IIn,n =
⊕

µ∈L∗/L

((L+ µ)⊕ (L+ µ)[−1]) . (5.2.36)

If L is the root lattice of some simply laced lie algebra g then L∗/L is the weight
lattice of g modulo roots of g. This is therefore a subset of the set of dominant
weights. For An we have A∗

n/An = {0,Λ1, . . . ,Λn} and for Dn we have D∗
n/Dn =

{0,Λ1,Λ2,Λn−1,Λn}.
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We can identify the space of matrices whose symmetric part is positive definite
with the space of invariant symmetric positive definite unimodular matrices where the
isomorphism is given by (3.5.14). We now consider a point (5.2.33) for L of Cartan
type, that we write

HCL,B =

(
CL 0
0 CL

)[
C−1
L C−1

L (G+B)
C−1
L C−1

L (−G+B)

]
. (5.2.37)

Therefore we have

HCL,B[q] =

(
CL 0
0 CL

)[
q+
q−

]
, (5.2.38)

with q = (m,n)T for m,n ∈ Zn and with q± defined in (5.2.34). Hence for any pair
of elements γ± ∈ Aut(L) such that

γ+µ = γ−µmodL , (5.2.39)

for all µ ∈ L∗/L, one has an automorphism γ ∈ O(n, n,Z) of the split signature
lattice IIn,n that preserves the symmetric matrix HCL,B

γTHCL,Bγ =

(
γT+CLγ+ 0

0 γT−CLγ−

)[
C−1
L C−1

L (G+B)
C−1
L C−1

L (−G+B)

]
= HCL,B . (5.2.40)

For Cartan type lattices An, Dn and En the Weyl group preserves all weights µ ∈
L∗/L, so one has the automorphism group

Aut(IILn,n) = Out(L)⋉W (L)×W (L) . (5.2.41)

In particular, the γ± can be two independent elements of the Weyl group of the
Cartan type lattice L. Therefore HCL,B defines a symmetric point of (SO(n) ×
SO(n))\SO(n, n) with stabiliser group SOHCL,B(n, n,Z) = Aut+(II

L
n,n). The dif-

ferent representatives of B simply correspond to different representatives in different
fundamental domains, as before we consider HCL,B to be in the Grenier fundamental
domain defined in section (5.1.3).

The density argument also has its analogue here. Let us write HG,B[q] and (q, q)
as defined in (3.5.13) and (3.5.15) as

HG,B[q] = pL(q)
2 + pR(q)

2 (5.2.42)

and
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(q, q) = pL(q)
2 − pR(q)2 , (5.2.43)

where pL(q)
2 (resp. pR(q)

2) is the euclidean scalar product of pL(q) (resp. pR(q)) with
itself. We can think of pL and pR as projectors onto the n dimensional hyperspaces
of positive and negative definite signature respectively in Rn,n. Indeed, by definition
the group SO(n, n) preserves this splitting of the signature. In particular it rotates
maximal (i.e. n-dimensional) definite signature hyperspaces into each other and one
can get all maximal definite signature hyperspaces from the action of SO(n, n) on
any maximal definite signature hyperspace. In other words the group SO(n, n) acts
transitively on the space of maximal definite signature hyperspaces. On the other
hand the group of transformations preserving any single maximal definite signature
hyperspace is SO(n) × SO(n) which corresponds to rotations inside the hyperspace
plus rotations orthogonal to the hyperspace, both of which preserve the hyperspace.
Therefore (SO(n)×SO(n))\SO(n, n) can be identified with the space of all maximal
definite signature hyperspaces. Therefore a point in SO(n) × SO(n)\SO(n, n) is
equivalent to a choice of projectors pL and pR onto the two n dimensional definite
signature hyperspaces. We can use (3.5.13) and (3.5.15) to solve explicitly for pL and
pR as

pL(q)
2 =

1

2
G−1[m+ (B +G)n] = 2G[q+] ,

pR(q)
2 =

1

2
G−1[m+ (B −G)n] = 2G[q−] , (5.2.44)

with q = (m,n)T for m,n ∈ Zn and with q± defined in (5.2.34). Therefore we can
write the Narain theta series (3.5.16) as

∑

q∈IIn,n

e−π Im τ HG,B [q]+iπRe τ(q,q) =
∑

q∈IIn,n

eiπτ pL(q)
2−iπτ̄ pR(q)2 . (5.2.45)

If we choose G,B of the form (5.2.33) we can decompose q± = l± +µ with l± ∈ L
and µ ∈ L∗/L. Therefore we have

∑

q∈IIn,n

eiπτ pL(q)
2−iπτ̄ pR(q)2 =

∑

µ∈L∗/L

∑

l±∈L
eiπτ CL[l++µ]−iπτ̄ CL[l−+µ] . (5.2.46)

Hence the isomorphism (5.2.36) is expressed for the Narain theta series as

∑

q∈IIn,n

e−π Im τ HCL,B [q]+iπRe τ (q,q) =
∑

µ∈L∗/L

∣∣∣∣∣
∑

l∈L
eiπτCL[l+µ]

∣∣∣∣∣

2

. (5.2.47)
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Therefore using (4.1.58) we can write

EpSO(n,n)
s (HCL,B) =

πs

Γ(s)

∫
Im τ>0
|Re τ |≤ 1

2

d2τ

Im τ
(Im τ)s

′∑

q∈IIn,n

e−π Im τ HCL,B [q]+iπRe τ (q,q)

=
∑

µ∈L∗/L

′∑

l±∈L
CL[l++µ]=CL[l−+µ]

1

(2CL[l+ + µ])s
, (5.2.48)

where the prime removes the point l± = 0 for µ = 0 only. At large s, the leading term
in EpSO(n,n)

s (HCL,B) is proportional to the smallest length of a vector in L∗ to the
power −2s, and one obtains a minimum for the even lattice with the largest possible
minimal length of a vector in L∗. Although this is not exactly the same criterion as
for the densest lattice sphere packing, it gives the same ADE classification (5.2.15)
for n ≤ 8.

One then finds for all irreducible Cartan type lattices L, that the unique invariant
quadratic polynomial is the quadratic Casimir. The proof for An and Dn is given
in [176]. According to the discussion of section 5.2.1, we conclude that the HCAn ,B

and HCDn ,B
symmetric points are local minima of any SO(n, n) Eisenstein series in

the domain of absolute convergence. We have checked numerically that EpSO(5,5)
s is

negative for both HCA5
,B and HCD5

,B at the critical value s = 3
2
relevant in the string

theory Wilson coefficient. Therefore the symmetric points HCA5
,B and HCD5

,B are
local minima. The point HCD5

,B is a lower value than the HCA5
,B symmetric point

and we conjecture that it is the global minimum of the Epstein series.

SO(3, 3) and SL(4) Because of the isomorphism SO(3, 3) = SL(4) it is relevant
to compare the results we have obtained for SO(n, n) and SL(n) in this case. The

Epstein series of SO(3, 3) and SL(4) are related at the special s value by πEp
SO(3,3)
1
2

=

Ep
SL(4)
1 with the identification of the SL(4) matrix

H4 = y−
1
2

(
4

1
3H3 0

0 y2

4

)[
I3 x3
0 1

]
=

1

detG

(
G 0
0 (detG)2

)[
I3 ⋆B
0 1

]
. (5.2.49)

Therefore we have H3 = (detG)−
1
3G, r = y

1
2/4

1
3 = (detG)

2
3 and x3 = ⋆B. The two

dimensional hypersurface H4(y, x) in SO(4)\SL(4) is given by G(y), B(x) such that
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G =
y

4



2 1 1
1 2 1
1 1 2


 , B = x




0 1 −1
−1 0 1
1 −1 0


 , (5.2.50)

so that the SL(4) D4 symmetric point of coordinates y = 2, x = 1/2 corresponds to
the SO(3, 3) A3 symmetric point,

G =
1

2
CA3 , B +G =



1 1 0
0 1 1
1 0 1


 , (5.2.51)

while the SL(4) A4 symmetric point of coordinates y =
√
5, x = 1/4 gives

G =

√
5

4



2 1 1
1 2 1
1 1 2


 , B =

1

4




0 1 −1
−1 0 1
1 −1 0


 . (5.2.52)

We find consistently that the conjectured global minimum of the SL(4) Epstein se-
ries at the D4 symmetric point agrees with the conjectured global minimum of the
SO(3, 3) Epstein series at the A3 symmetric point. One finds that they have the same
automorphism groups

Aut(IIA3
n,n) = Z2 ⋉ (S4 × S4) = S3 ⋉ (S4 ⋉ Z3

2) = Aut(D4) , (5.2.53)

because of the triality automorphism of D4. This also explains that there is a unique
invariant quadratic polynomial in the case of D4 for SL(4) as described in the previ-
ous section.

We believe this is evidence that the Epstein series EpSO(n,n)
s admits its global

minimum for all s > 0 at the symmetric point HCL,B for the Cartan type best packing
lattices (5.2.15).

5.3 Results

Let us now give our result for the minima of the leading and next to leading Wilson
coefficients of maximally supersymmetric string theory as given in section 4.3.

11 dimensions In D = 11 dimensions there are no moduli and the Wilson coeffi-
cients (4.3.63) and (4.3.64) are constants. They are given by

E(0,0) =
2π2

3
≈ 6.57974 , (5.3.1)
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for the leading Wilson coefficient and by

E(1,0) = 0 , (5.3.2)

for the next to leading Wilson coefficient.

10A dimensions The type IIA minimal Wilson coefficient (4.3.6) reaches its min-

imum value at eϕmin = 3
π
ζ(3)

1
2 ≈ 1.04697. At this point the minimum value is given

by

E(0,0)(ϕmin) =
8π

3
2

3
√
3
ζ(3)

1
4 ≈ 8.97665 . (5.3.3)

The next to minimal Wilson coefficient (4.3.12) reaches its minimum value at a very

similar point eϕmin =
√
15

2
1
4 π
ζ(5)

1
4 ≈ 1.04611. At this point the minimum value is given

by

E(1,0)(ϕmin) =
8× 2

5
8π

5
2

45× 15
1
4

ζ(5)
3
8 ≈ 2.47047 . (5.3.4)

10B dimensions The type IIB Wilson coefficients (4.3.8) and (4.3.13) both reach

their minimum value at the same point HCA2
= Hτ for τ = 1

2
+ i

√
3
2
. At this point

the Epstein series Ep
SL(2)
s can be written as the zeta function over Q(

√
−3) [179]

EpSL(2)s (HCA2
) =

′∑

z∈Z(e iπ
3 )

(√
3
2

)s

|z|2s =
6

12
s
2

ζ(s)

(
ζ

(
s,
1

3

)
− ζ

(
s,
2

3

))
, (5.3.5)

where ζ(s, a) is the Hurwitz zeta function. Therefore the minimum value of the
Wilson couplings is given by

E(0,0)(φmin) =
3

1
4√
2
ζ

(
3

2

)(
ζ

(
3

2
,
1

3

)
− ζ

(
3

2
,
2

3

))
≈ 8.89275 , (5.3.6)

for the minimal Wilson coupling and

E(1,0)(φmin) =
1

4× 3
1
4

√
2
ζ

(
5

2

)(
ζ

(
5

2
,
1

3

)
− ζ

(
5

2
,
2

3

))
≈ 2.35975 , (5.3.7)

for the next to minimal Wilson coupling.
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9 dimensions In D = 9 dimensions the minimal Wilson coefficient (4.3.18) reaches

its minimum value at rmin = 9×3
1
4

8
√
2π2 ζ

(
3
2

) (
ζ
(
3
2
, 1
3

)
− ζ

(
3
2
, 2
3

))
≈ 1.01365 and HCA2

=

Hτ for τ = 1
2
+ i

√
3
2
. At this point the minimum value is given by

E(0,0)(φmin) =
7π

6
7

2× 3
5
7

(
ζ

(
3

2

)(
ζ

(
3

2
,
1

3

)
− ζ

(
3

2
,
2

3

))) 4
7

≈ 15.4721 . (5.3.8)

The next to minimal Wilson coefficient (4.3.25) reaches its minimum value at a very

similar point rmin ≈ 1.0137713 and HCA2
= Hτ for τ = 1

2
+ i

√
3
2
. At this point the

minimum value is given by

E(1,0)(φmin) ≈ 4.83687 . (5.3.9)

We can see that the leading Wilson coefficients are indeed always positive for D ≥ 9
because the Eisenstein series are in the domain of absolute convergence. This is
consistent with the positivity bound imposed by unitarity (5.0.3).

8 dimensions D = 8 is the critical dimension where the one loop supergravity am-
plitude and the leading Wilson coefficient are of the same order therefore no positivity
bound can be imposed by unitarity. Actually we saw in section 3.5.2 that in this di-
mension both are separately diverging and they can only be made sense of together.
We also saw in sections 3.5.2 and 4.3.3 how to properly define the regularised Wilson
coupling whose specific value depends on some renormalisation scale µ which cancels
in the complete amplitude.

In D = 8 dimensions the Wilson coefficients (4.3.32) and (4.3.40) both reach their
minimum value at the same point HCA3

×HCA2
. If we choose µ = 1/lP the minimum

value of the Wilson couplings is given by

E(0,0)1/lP (φmin) = Êp
SL(3)
3
2

(HCA3
) + 2Êp

SL(2)

1 (HCA2
) +

22π

3
− 4π ln(2π) ≈ 15.2363 ,

(5.3.10)
for the minimal Wilson coupling [176]14 and

E(1,0)(φmin) =
1

2
Ep

SL(3)
5
2

(HCA3
)− 4Ep

SL(3)

− 1
2

(HCA3
)Ep

SL(2)
2 (HCA2

) ≈ 10.7196 , (5.3.11)

13The exact values are too cumbersome to give here but are not hard to find by extremising
(4.3.25) with respect to r.

14There is an error in our article [176] and the correct value is indeed the one given above.
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for the next to minimal Wilson coupling [176].15

7 dimensions In D = 7 dimensions the Wilson coefficients (4.3.46) and (4.3.54)
both reach their minimum value at the same point HCD5

. At this point the minimum
value of the Wilson couplings is given by

E(0,0)(φmin) = Ep
SL(5)
3
2

(HCD5
) ≈ −9.50663 , (5.3.12)

for the minimal Wilson coupling [176] and

E(1,0)(φmin) =
1

2
Êp

SL(5)
5
2

(HCD5
) +

π

15
ζ(5)Ê

SL(5)
5
2
Λ3

(HCD5
) ≈ 26.2315 , (5.3.13)

for the next to minimal Wilson coupling.16

6 dimensions In D = 6 dimensions the leading Wilson coefficient (4.3.60) reaches
its minimum value at the point HCD5

,B. At this point the minimum value of the
leading Wilson coupling is given by [176]

E(0,0)(φmin) = Ep
SO(5,5)
3
2

(HCD5
,B) ≈ −3.445 . (5.3.14)

We can see that the global minima of the leading Wilson coefficients are indeed always
negative D ≤ 7 because the Eisenstein series are in the critical strip. This is also
consistent with unitarity as the contribution of the leading Wilson coefficient to the
amplitude is subleading with respect to the one loop supergravity amplitude, see [189]
for example.

15The fact that the minimum for the next to minimal coupling is also reached at HCA3
×HCA2

instead of HCA∗
3
×HCA2

is non trivial and was checked numerically.
16The fact that the minimum for the next to minimal coupling is also reached at HCD5

instead of
HCD∗

5
is non trivial and was checked numerically. This will be the subject of an upcoming article.
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Chapter 6

Conclusion and outlook

In this thesis we have tried to present in a coherent and mostly self contained way the
context and results of this PhD. We have first presented in the introduction the wider
context in which this PhD fits in: that of quantum gravity. We have introduced the
concept of effective field theory which is the modern way to view quantum field theory
from the high energy standpoint and in our opinion is the also the ideal framework
to talk about quantum gravity. We have then talked about the S-matrix bootstrap
program as a way to put constraints on effective field theories via bounds on the
scattering amplitudes using only very general and widely accepted physical principles
such as causality and unitarity. Finally we have presented the string theory approach
to quantum gravity and its effective field theory formulation: the swampland program.
We argued that symmetry may in fact uniquely constrain the effective field theory of
maximally supersymmetric quantum gravity leading to a potential verification of the
string lamppost principle.

In the second chapter we gave a brief review of superstring theory. We derived
the massless spectrum of type II string theory in the canonical covariant quantization
procedure. We then talked about the various supergravity limits of string theory and
M-theory and their anomaly cancellations. Finally we reviewed the web of dualities
linking the different critical superstring theories and M-theory together.

In chapter 3 we talked about string amplitudes. We reviewed the structure of
string perturbation theory and constructed the moduli space of genus 0, 1 and 2 string
amplitudes. We then talked about factorisation properties specific to maximally su-
persymmetric amplitudes. Using the formalism of spinor helicities and superspace we
proved the sewing relations in 6 dimensions and showed that the unitarity properties
of the full superamplitude reduce to the unitarity properties of the scalar amplitude.
We then derived the low energy limit of genus 0, 1 and 2 string amplitudes of type
II superstring theory compactified on a torus and compared the result to maximal
supergravity amplitudes. We showed using tropical geometry and tropical limits that
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the low energy limit of maximally supersymmetric string theory reproduces the super-
gravity amplitudes with the addition of some higher order Wilson operators. We also
saw that UV divergences in dimension 8 supergravity can be linked to divergences in
Wilson couplings of the same order and we showed how to properly regularise each
term in the finite string amplitude.

In the fourth chapter we gave a mostly self contained review of automorphic
forms and Eisenstein series. We also talked about parabolic subgroups and gave
the parabolic Fourier decompositions of relevant Eisenstein series. We then reviewed
the notion of U-duality for the case of maximally supersymmetric string theory. We
showed that maximal supersymmetry along with U-duality entail a certain set of
constraints for Wilson coupling that is uniquely solved by Eisenstein series in some
case. We gave these couplings in the leading and next to leading case for dimensions
11, 10, 9, 8, 7 and 6 and showed that they obeyed the right degeneration limits.

Finally in chapter 5 we talked about our main result for the minima of these
Wilson couplings in dimension 8, 7 and 6. We first reviewed the notion of a funda-
mental domain and Grenier’s construction for an SL(n) fundamental domain which
we extended to a more general setting. We then gave arguments to consider so-called
symmetric points located at corners of fundamental domains as potential candidates
for minima of automorphic forms. We analysed special symmetric points for the rel-
evant cases of SL(n) and SO(n, n) and gave additional density arguments specific to
Epstein series to conjecture the global minima. Finally we gave our results for the
minima and minimum values of leading and next to leading Wilson coefficients in
dimension 11, 10, 9, 8, 7 and 6.

The natural continuation of this work is to compute the lower bounds on the
Wilson coefficients coming from the S-matrix bootstrap side and compare the result
to see if the string lamppost principle appears to be verified or not. This remains
to be done for the leading Wilson coefficients in dimension less or equal to 8 and for
the next to leading coefficient in any dimension as far as we know. In both cases the
complication is that the Wilson coefficient is subleading with respect to some other
term but it is a priori doable by modifying the ansatz for the amplitude [190].1

Another natural extension of this work is to dimensions lower or equal to 5 with
dimension 4 being of natural phenomenological interest. Apart from the obvious com-
plication that the moduli space is larger and thus the numerical analysis is harder to
perform there is also the theoretical complication that the groups involved are actual
exceptional groups rather than the much simpler special linear or special orthogo-

1The next to leading Wilson coupling is obviously subleading with respect to the leading Wilson
coupling and the one loop supergravity amplitude in all dimensions but also with respect to the two
loop supergravity amplitude in dimension less or equal to 7 which makes unitarity bounds for this
coefficient very hard to extract in general.

212



nal groups. On the S-matrix bootstrap side the ansatz would also need to take into
account that the two-loop amplitude also becomes leading with respect even to the
leading Wilson coupling and one also has to take care of IR divergences in 4 dimen-
sions.

Finally on the subject of supersymmetry and string unity we would like to mention
a final project which we have worked on during the course of this PhD but which we
have decided not to include in this thesis for the sake of brevity and coherence. This
project involves looking at causality constraints coming from massive gravitons in
supersymmetric theories. Indeed there have been some results suggesting that mas-
sive gravitons generically have large polynomial growth in their amplitudes which are
incompatible with unitarity and therefore put very restrictive bounds on theories con-
taining them [18]. However it seems that those large growths can cancel each other
out in very specific configurations involving an infinite tower of massive gravitons
with specific selection rules. For example this is the case with Kaluza Klein com-
pactification where the growths are not more severe than in the higher dimensional
massless theory [191–193]. We therefore looked at N = 1 supersymmetric theories in
four dimensions involving massive gravitons for which we derived the susy multiplet
and linearised susy transformation rules by Kaluza-Klein reduction. We then com-
puted the stress energy tensor multiplet truncated at the quadratic order and found
that there is a unique theory with consistent couplings to gravity. It then remains to
study the growths appearing in the amplitudes defined by such couplings and see if
the cancellation of those growths implies an infinite tower of massive gravitons.
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It has recently been shown that the leading Wilson coefficient in type II string

theory can take (almost) all values allowed by unitarity, crossing symmetry and

maximal supersymmetry in D = 10 and D = 9 dimensions. This suggests that

string theory might define the unique consistent quantum theory of gravity with

maximal supersymmetry. We study the minima of the leading Wilson coefficient in

D = 6, 7 and 8 dimensions and find the global minimum at the point in moduli

space with maximal symmetry. The minimum value turns out to always be negative

for D ≤ 7.

1email: guillaume.bossard@polytechnique.edu, adrien.loty@polytechnique.edu



Contents

1 Introduction 1

2 Notations and summary of the results 4

3 Fundamental domain of K\G/G(Z) 5

3.1 Fundamental domain of SL(N,Z) . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Generalisation to G(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Fundamental domain of SO(N,N,Z) . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Minima at symmetric points 16

4.1 Taylor expansion at symmetric points . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 SL(N) symmetric points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 SO(N,N) symmetric points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Fixing the logarithmic ambiguity in eight dimensions 36

6 Numerical approximations 38

6.1 The SL(5) Epstein series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 The SO(5, 5) vector representation Epstein series . . . . . . . . . . . . . . . . . . 40

A Grenier domain boundaries 41

B Invariant polynomials at the AN symmetric point 44

1 Introduction

Superstring theory on asymptotically flat spacetimes defines a large number of scattering theories

including gravitons. In the low energy limit, the scattering amplitudes behave as quantum field

theory amplitudes. In spacetime dimensions larger than four, the corresponding S-matrices are

well defined and must therefore satisfy the usual quantum field theory conditions of analyticity,

crossing symmetry and unitarity. A string theorist may wish that all consistent quantum gravity

S-matrices could be obtained in superstring theory. Assuming this is the case, one can in principle

derive constraints on consistent effective field theories that would not be visible in perturbative

quantum field theory. This is often used in the swampland conjectures, see [1] for a review.

A more humble conjecture, and maybe more realistic, is that all consistent quantum gravity

theories with extended supersymmetry could be formulated as superstring theories. In this

paper, we wish to study this question for maximally supersymmetric theories.

Type II superstring theory on the Cartesian product of D-dimensional Minkowski spacetime

and a compact torus admits the maximal number of supersymmetries. The low energy effective

theory is then maximal supergravity in D spacetime dimensions and the scattering amplitudes of

massless states can in principle be described in supergravity using the Wilsonian effective action

obtained by integrating out massive string states. In practice one first computes the perturbative
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string amplitudes and compare them with the supergravity amplitudes with operator insertions

to deduce the Wilsonian effective action [2–4]. The effective action is highly constrained from

supersymmetry and U-duality [5–22]. The leading Wilson coefficient is completely determined

by supersymmetry, U-duality and anomaly cancelations, provided one requires consistency in

the decompactification limits.

It is commonly believed that type II superstring theory on a torus is the unique consistent

quantum theory with maximal supersymmetry. One may therefore expect that the superstring

S-matrix of massless states in a maximally supersymmetric vacuum covers all possible S-matrices

satisfying analyticity, crossing symmetry, unitarity and maximal supersymmetry, as well as all

the required anomaly cancelations. These consistency conditions can be analysed within the

S-matrix bootstrap initiated in [23–25]. A lower bound on the leading Wilson coefficient was

computed in [26,27] in maximal supergravity in D = 9, 10, 11 dimensions, using the constraints

from the two-to-two S-matrix. The unitarity bound was found to be close below the minimal

value these Wilson coefficients can take in string theory and eleven-dimensional supergravity.

The unitary bounds derived in [26,27] are not sharp since they neglect non-elastic contributions

to the optical theorem. Only integrability in two dimensions provides non-trivial examples of

purely elastic S-matrices [28,29], and taking particle production into account is expected to raise

the bound on the leading Wilson coefficient [30]. So one may conclude from [26,27] that string

theory does indeed seem to saturate the sharp unitarity bound.

The case of D = 11 is particular because there is no moduli and the leading Wilson coefficient

is a fixed number in M-theory. It is determined by the cancelation of the M5-brane anomaly

[31,32]. One may argue that this anomaly inflow argument is independent of string theory [33],

so that there should not be any consistent theory in eleven dimensions with a different value of

the leading Wilson coefficient. Supersymmetry also fixes the next-to-leading Wilson coefficient

and the first Wilson coefficient to be determined by unitarity and crossing symmetry multiplies

∇8R4.

In D ≤ 10 the leading Wilson coefficient is a function of the moduli and can take arbitrary

large values, such that all the values consistent with the S-matrix unitarity bound seem to be

covered by the string theory amplitude in D = 9 and D = 10 dimensions.

The analysis of [27] can in principle be generalised to all spacetime dimensions 5 ≤ D ≤ 11.

However, one must modify the amplitude ansatz in dimension D ≤ 8 to include the contribution

from the supergravity one-loop amplitude in the low energy limit. In D = 5 one would further-

more need to include the contribution from the two-loop amplitude. Although it is technically

challenging to include the one-loop correction in the S-matrix bootstrap method, it is a priori

doable, see for example [34].

On the string theory side one needs to find the minimum value of the leading Wilson

coefficient. It is a maximal parabolic Eisenstein series of the U-duality group in D dimen-

sions [6, 11, 17, 35, 36]. In particular for the type IIB superstring amplitude in ten dimensions

it is a real analytic Eisenstein series 2ζ(3)E3/2(S) on the upper complex half-plane [6]. The

minimum is known to be at the Z3-symmetric point S = 1+i
√
3

2 [37]. In dimension D ≤ 8 the
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leading Wilson coefficient is again a specific Eisenstein series of higher rank groups associated

to their minimal automorphic representation [16,17]. The SL(3) Epstein series relevant for the

leading Wilson coefficient in D = 8 dimensions has been studied numerically in [38]. The global

minimum was found to be at the point in moduli space defined by the unimodular symmetric

matrix proportional to the Gram matrix of the lattice A3. Finding minima of Eisenstein series

is generally an open problem, and is the subject of this paper.

We provide strong evidence that the global minimum of the SL(N) Epstein series EpNs (H)

is obtained at the unimodular symmetric matrix H = Hdlp proportional to the Gram matrix of

the densest lattice sphere packing in N dimensions for all s > N
4 . It is proved for asymptotically

large s in [39]. We prove that the densest lattice sphere packing Gram matrix Hdlp is a local

minimum of the Epstein series for all s and N ≤ 8. We identify candidates for local minima as

symmetric points and we checked that the lowest minimum is at Hdlp numerically. For N = 5

we study the leading Wilson coefficient in D = 7 dimensions on several surfaces containing Hdlp

in moduli space and find each time that it is a global minimum on these surfaces.

We generalise this analysis to the Spin(5, 5) Eisenstein series appearing as the leading Wilson

coefficient in D = 6 dimensions and find strong evidence that the global minimum is at the

W (D5)×W (D5) symmetric point. This point is the analogue of the point of enhanced Spin(10)

symmetry in perturbative heterotic string theory on T 5.

One striking feature is that the leading Wilson coefficient can always be negative in dimension

D < 8. This is not in contradiction with unitarity because the leading Wilson coefficient is

subleading with respect to the supergravity one-loop correction for D ≤ 8. One therefore

expects the Wilson coefficient to possibly be negative, and comparable to the one-loop correction

at Planck scale [40].

The Eisenstein series appearing in the Wilson coefficients are absolutely convergent when

they are dominant compare to the loop corrections, and defined by analytic continuation when

they are subleading [41, 42]. It follows that the Wilson coefficient are necessary positive when

they are dominant, and can always be possibly negative when they are subleading, consistently

with unitarity. We will show indeed that the global minimum of an Eisenstein series is always

negative in the critical strip, where it cannot be defined as an absolutely convergent sum.

The paper is organised as follows. In the second section we give some notations and sum-

marise our results. We define a fundamental domain for the various moduli spaces of interest

in Section 3. In Section 4 we give the main results leading to the conjectured minimum of

Epstein series at symmetric points and in particular prove they are local minima. We discuss

the specific case of dimension 8 in Section 5, where the splitting of the string amplitude into

analytic and non-analytic pieces is ambiguous due to a logarithmic divergence. In Section 6 we

expose numerical checks of our conjecture.
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2 Notations and summary of the results

The four-graviton superstring amplitude on R1,9−d × T d factorises in the form

M4 = −i
κ2D
210

t8t8

4∏

a=1

R(ka, ϵa)A(s, t, u, φ) (2.1)

where A(s, t, u, φ) is invariant under permutations of the three Mandelstam variables and is a

function of the moduli φ in K(Ed+1)\Ed+1(d+1)/Ed+1(Z) [43]. We define the Planck length in

D = 10− d spacetime dimensions as

κ2D =
1

2
(2π)7−dℓ8−d

P , (2.2)

and the D-dimensional effective string coupling gD = eϕ/
√
υd in terms of the ten-dimensional

dilaton ϕ and the volume Vd = (2π
√
α′)dυd of T d, such that

α′ = g
− 4

8−d
D ℓ2P . (2.3)

In the low energy limit, one can write

A(s, t, u, φ) =
64

stu
+ 32(2π)7−dℓ8−d

P

(
I4(s, t) + I4(t, u) + I4(u, s)

)
+ ℓ6PE(0,0)(φ)

+
ℓ10P
16

E(1,0)(φ)(s
2 + t2 + u2) + o(ℓ15−2d

P ) (2.4)

so that the leading Wilson coefficient ℓ6PE(0,0)(φ) is between the one-loop and the two-loop su-

pergravity corrections for D = 6, 7, 8. It is equal to the maximal parabolic Eisenstein series

E(0,0)(φ) = 4πξ(d− 2)E
Ed+1
d−2
2

Λd+1
(2.5)

where Λd+1 is the fundamental weight associated to the electric charges representation in D

dimensions and ξ(s) = π−s/2Γ(s/2)ζ(s) is the completed zeta function. In D ≥ 7 it can be

written in terms of SL(N) Epstein series defined by analytic continuation of the sum 2

EpNs (H) =
∑

n∈ZN∖{0}

1

H[n]s
= 2ζ(2s)E

SL(N)

sΛ1
(H) . (2.6)

With this definition one has

E(0,0)(φ) = Ep
5
3
2
(H) , (2.7)

in seven dimensions [11]. We conjecture that the global minimum is at the densest sphere lattice

packing point D5

Ep
5
3
2
(Hdlp) ≈ −9.50663 . (2.8)

2In this paper we use EpN
s to distinguish the Epstein series normalisation used in the original papers [6,11,35]

from the Langlands Eisenstein series normalisation E
SL(N)
sΛ1

more commonly used since [17,36].
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In eight dimensions one must take into account that the one-loop supergravity amplitude

is logarithmically divergent, and so are the Epstein series appearing in E(0,0)(φ). One must

therefore introduce an appropriate renormalisation

E(0,0),µ(φ) = Êp
3
3
2
(H) + 2Êp

2

1(U) +
22π

3
− 4π ln(2πℓPµ) , (2.9)

where the renormalised Epstein series Êp
3
3
2
and Êp

2

1 are defined as in [36]. The renormalisation

scale µ cancels in the complete amplitude, and the specific finite number is determined by our

definition of the 1-loop box integral, as we explain in Section 5. Choosing µ = 1/ℓP, we find the

minimum value

E
(0,0), 1

ℓP

(φdlp) ≈ 15.2363 . (2.10)

In eight dimensions it also makes sense to include the next-to-leading Wilson coefficient

E(1,0)(φ) =
1

2
Ep

3
5
2
(H)− 4Ep

3
− 1

2
(H)Ep

2
2(U) , (2.11)

while neglecting the two-loop supergravity integral. One computes the value at the minimum

E(1,0)(φdlp) ≈ 10.7196 . (2.12)

In six dimensions the leading Wilson coefficient is written similarly as the vector representation

Eisenstein series of SO(5, 5) [11]

E(0,0)(φ) = Ep
5,5
3
2
(H) . (2.13)

We conjecture the global minimum to be at the point of enhancement Spin(10) symmetry

Ep
5,5
3
2
(HD5) ≈ −3.445 . (2.14)

3 Fundamental domain of K\G/G(Z)

In order to determine the minium of an automorphic function on K\G/G(Z), it is useful to

find an appropriate fundamental domain F for the action of the arithmetic subgroup G(Z) on

the symmetric space M = K\G. Here we assume that G is a simple group of real split form

different from E8, F4 or G2, and G(Z) is its Chevalley subgroup associated to the weight lattice.

This includes in particular the locally symmetric spaces relevant for the type II string theory

effective action in dimensions greater than four.

Let us first recall the definition of a fundamental domain. One defines a free regular set

F̊ ⊂ M as an open set in M such that any point in M can be mapped under the action of

G(Z) to its closure F in M
F = F̊ ⊂ M , (3.1)

and for any element γ ∈ G(Z) acting non-trivially on M one has

γF ∩ F̊ = ∅ . (3.2)
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It is required that ∂F = F ∖ F̊ is of measure zero in M. We then call F a fundamental domain

of G(Z) in M. Equivalently one can define F to satisfy
⋃

γ∈G(Z)

γF = M , γF ∩ F ⊂ ∂F . (3.3)

There is generally no canonical fundamental domain. A first fundamental domain was intro-

duced by Minkowski for G(Z) = GL(N,Z) acting on SO(N)\SL(N) [44]. Grenier then defined

a different fundamental domain for GL(N,Z) that is easier to generalise to arbitrary simple

groups [45]. In this section we shall first review Grenier’s construction in the case of SL(N,Z).

Then we will show that there is a natural generalisation of Grenier’s fundamental domain for all

simple groups of split real form but E8, F4 or G2. We will finally discuss SO(N,N,Z) in more

detail as an example.

3.1 Fundamental domain of SL(N,Z)

Following Grenier, we parametrise the symmetric space M = SO(N)\SL(N) in the Iwasawa

decomposition with N − 1 variables yi ∈ R+ with 1 ≤ i ≤ N − 1 and N(N−1)
2 variables xij ∈ R

with 1 ≤ i < j ≤ N . The group representative in SL(N) can then be written as the upper

triangular matrix

V =
1

y




1

y1
y1y2

. . .

y1y2 . . . yN−1






1 xij
. . .

1


 , (3.4)

with

y =

(
N−1∏

i=1

yN−i
i

) 1
N

. (3.5)

For short we do not distinguish the group representative from the corresponding point in M.

To any element V ∈ M we can associate a positive definite symmetric bilinear form over ZN

H[n] = n⊺V⊺Vn . (3.6)

The Grenier fundamental domain is defined by induction by writing first V in the maximal

parabolic subgroup (GL(1)× SL(N − 1))⋉RN−1 ⊂ SL(N) as

V =
1

y

(
1 0

0 y
N

N−1V1

)(
1 x⊺

0 1

)
(3.7)

where x⊺ = (x12, . . . , x1N ) and V1 ∈ SL(N−1), and then recursively for each Vi ∈ SL(N−i). To

avoid taking care of the factors of y, Grenier introduces the non-unimodular symmetric matrix

Y = y2V⊺V

Y [n] ≡ n⊺Y n =

(
n1 +

N∑

k=2

x1knk

)2

+ y21Y1[n] (3.8)
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where Y1 = y−2
1 y

2N
N−1V⊺

1V1 is a symmetric bilinear form over ZN−1, so its argument n is implicitly

(n2, . . . , nN ). One defines recursively the bilinear forms Yi[n] ≡ (ni+1, . . . nn)
⊺Yi(ni+1, . . . nn) for

1 ≤ k ≤ N as

Yi[n] =

(
ni+1 +

N∑

k=i+2

xi+1,knk

)2

+ y2i+1Yi+1[n] , (3.9)

with

YN−1[n] = n2
N , (3.10)

and by convention Y0[n] = Y [n]. The condition for V to be in the Grenier fundamental domain

F of M is defined recursively by the two conditions:

1. Yi[n] ≥ 1, for all non-vanishing n ∈ ZN−i of greatest common divisor gcd(n) = 1.

2. xi,i+j ∈
[
−1

2 ,
1
2

]
for all i ∈ {1, . . . , N − 1} and j ∈ {2, . . . , N − i}, xi,i+1 ∈

[
0, 12
]
for all

i ∈ {2, . . . , N − 1}, whereas x1,2 ∈
[
0, 12
]
if N is odd and x1,2 ∈

[
−1

2 ,
1
2

]
if N is even.

Grenier proved that one can always restrict the first condition to a finite set of vectors such that

this gives a finite number of inequalities. This follows from the property that Yi[n] is positive

definite and there is a finite number of lattice points in the ball Yi[n] ≤ 1.

Fundamental domain of SL(2,Z)

For the case N = 2 the Grenier fundamental domain agrees with the standard SL(2,Z) funda-

mental domain. The only vector for which the first condition is non-trivial is n = (0, 1)⊺ and

together with the second condition one gets

i) x212 + y21 ≥ 1 , ii) −1
2 ≤ x12 ≤ 1

2 .

Fundamental domain of SL(3,Z)

Another case of interest for us is N = 3. The fundamental domain of SO(3)\SL(3) is given by

i) x223 + y22 ≥ 1

ii) x212 + y21 ≥ 1

iii) x213 + y21(x
2
23 + y22) ≥ 1

iv) (x12 − x13)
2 + y21((1− x23)

2 + y22) ≥ 1

v) (1− x12 + x13)
2 + y21((1− x23)

2 + y22) ≥ 1

vi) 0 ≤ x12 ≤ 1
2
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vii) 0 ≤ x23 ≤ 1
2

viii) −1
2 ≤ x13 ≤ 1

2

The condition i) comes from the condition 1) for Y1[n] applied to n = (0, 1)⊺ while the

conditions ii)-v) come from the condition 1) for Y0[n] applied to n = (0, 1, 0)⊺, n = (0, 0, 1)⊺, n =

(0,−1, 1)⊺, n = (1,−1, 1)⊺ respectively. Again vi)-viii) are a direct consequence of condition 2).

3.2 Generalisation to G(Z)

It appears that Grenier’s construction of a fundamental domain is based on a sequence of

maximal abelian parabolic subgroups. In this section we therefore consider G to be the split

real form of a simple group of rank r admitting an abelian parabolic subgroup, which excludes

E8, F4 and G2. We shall discuss the explicit example of SO(N,N) in the next section. One

can probably generalise this construction to Heisenberg parabolic subgroups to encompass all

exceptional groups, but this requires further analysis and will not be relevant for us. In what

follows the group G is defined from its fundamental representations and G(Z) ⊂ G is the

Chevalley subgroup associated to the weight lattice.

Let us first describe an appropriate coordinate system on M = K\G. Let P1 be a maximal

abelian parabolic subgroup

P1 = (GL(1)×G1)⋉ U1 ⊂ G , (3.11)

where G1 is itself the split real form of a semi-simple group and U1 is an abelian unipotent

subgroup. One calls respectively GL(1) × G1 the Levi subgroup and U1 the unipotent radical

of the parabolic subgroup P1. In the last section, for G = SL(N), we had G1 = SL(N − 1) and

U1 = R
N−1 the additive group for example.

We can then apply the same decomposition to G1 and all Gi semi-simple subgroups succes-

sively

Gi ⊃ Pi+1 = (GL(1)×Gi+1)⋉ Ui+1 , (3.12)

with Ui an abelian unipotent group for all i = 1 to r. By construction Pr = GL(1)⋉Ur and the

Borel subgroup can be defined as

B = GL(1)r ⋉ Ur ⋉ Ur−1 · · ·⋉ U1 , (3.13)

and the Iwasawa decomposition of G is compatible with this succession of abelian parabolic

subgroups

B ⊂ GL(1)r−2 × Pr−1 ⋉ Ur−2 · · ·⋉ U1 ⊂ · · · ⊂ GL(1)× P2 ⋉ U1 ⊂ P1 ⊂ G . (3.14)

The Iwasawa decompositions provides coordinates onM, with yi ∈ R+ for i = 1 to r, parametris-

ing each GL(1) factors of the Cartan torus and a vector xi ∈ ui the Lie algebra of Ui for i = 1
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to r parametrising each Ui unipotent group. By construction the Borel subgroup Bi ⊂ Gi can

be decomposed accordingly into

Bi = GL(1)r−i ⋉ Ur ⋉ Ur−1 · · ·⋉ Ui+1 . (3.15)

Therefore {yj ,xj} for i + 1 ≤ j ≤ r provide coordinates on the symmetric space Mi = Ki\Gi,

where Ki is the maximal compact subgroup of Gi.

By definition each maximal parabolic subgroup Pi ⊂ Gi−1 is determined by a fundamen-

tal weight Λ(i) of the subgroup Gi−1. The associated set of roots of G is called an abelian

enumeration in [22]. We write R(i) = R(Λ(i),R) the associated highest weight representation,

which highest weight vector e(i) ∈ R(i) admits as stabiliser the subgroup Gi ⋉ Ui ⊂ Gi−1. The

Gi−1-orbit of e
(i) is therefore the coset space

Gi−1 · e(i) = Gi−1/(Gi ⋉ Ui) . (3.16)

For example in the case of SL(N), the maximal parabolic subgroup (GL(1)×SL(N−1))⋉RN−1

is associated to the fundamental weight Λ1 of SL(N) and the corresponding highest weight

representation is the fundamental representation RN . The orbit of the highest weight vector is

then dense in the module

RN ∖ {0} = SL(N)/(SL(N − 1)⋉RN−1) . (3.17)

By convention we will call R(i) the fundamental representation. In general the orbit of the

highest weight vector is not necessarily dense in the module R(i), but is defined instead as the

set of non-zero elements v(i) satisfying the quadratic constraint [46]

v(i) × v(i) ≡ καβT
αv(i) ⊗ T βv(i) −

(
Λ(i),Λ(i)

)
v(i) ⊗ v(i) = 0 , (3.18)

where καβ denotes the Killing–Cartan form of gi−1 and Tα its representation matrices in R(i).

One can then write (3.16) as

Gi−1/(Gi ⋉ Ui) =
{
v(i) ∈ R(i) |v(i) × v(i) = 0 , L(v(i)) > 0

}
, (3.19)

where some further positivity condition L(v(i)) > 0 may be necessary for specific groupsGi−1 and

representations R(i). For example for SO(N,N) one can take the fundamental representation as

the vector representation, and v(i) × v(i) = (v(i),v(i)) = 0 is the condition that v(i) is light-like.

For the connected component SO0(1, 1) one would moreover demand that the non-zero lightcone

coordinate is positive.

For each point in Mi we define the associated matrix Vi ∈ Pi+1 in the representation R(i+1)

of Gi. For short we will write Vi = ρΛ(i+1)[Vi] for both the point Vi ∈ Mi and the matrix ρΛ(i+1)[Vi]

in the representation R(i+1). We can then define the symmetric bilinear form Hi = V⊺
i Vi in the

representation R(i+1)

Hi[v
(i+1)] ≡ v(i+1)⊺Hiv

(i+1) . (3.20)

The matrix Vi can be written as

Vi = ρΛ(i+1)

[
e− ln yi+1h

(i+1)Vi+1(yj>i+1,xj>i+1)e
xi+1

]
, (3.21)
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where ρΛ(i+1) is the representation homomorphism and h(i+1) the Cartan generator of Gi associ-

ated to the weight Λ(i+1) with the normalisation3

ρΛ(i+1)[h(i+1)]e(i+1) = e(i+1) , (3.22)

such that

Vie
(i+1) =

1

yi+1
e(i+1) . (3.23)

Note that the coordinates yi defined above are not the same as the coordinates introduced in

(3.4).4

In the following we shall use that a point in Mi can be parametrised equivalently by all

{yj ,xj} for j ≥ i + 1 or by the symmetric matrix Hi. One can also equivalently use the

coordinates {yi+1,xi+1} and the symmetric matrix Hi+1, etc...

The idea behind Grenier’s construction of a fundamental domain is that one can construct

recursively the fundamental domains Fi for Mi under the action of Gi(Z) from i = r − 1 to 0.

At each step, one can use the bilinear form (3.20) to define a set of inequalities that determines

Fi.

Before generalising Grenier’s construction, let us give some definitions. We define for 1 ≤
i ≤ r − 1

Pi(Z) = G(Z) ∩ Pi = Gi(Z)⋉ Ui(Z) , Gi(Z) = G(Z) ∩GL(1)×Gi , Ui(Z) = G(Z) ∩ Ui .

(3.24)

Note that with this definition Gi(Z) may not be a subgroup of Gi but includes the entire discrete

Levi subgroup. For SL(N,Z) we would then define Gi(Z) = GL(N − i,Z) for example.

The construction of the fundamental domain is defined by induction. In order to show that

Fi is a fundamental domain of Mi under the action of Gi(Z) we have to show that for any

element Hi ∈ Mi there exists an element γ ∈ Gi(Z) such that γ⊺Hiγ ∈ Fi and conversely that

for any non-trivial element γ ∈ Gi(Z) and any element Hi ∈ Fi, either γ
⊺Hiγ /∈ Fi or both Hi

and γ⊺Hiγ are on the boundary of Fi.

We first consider the fundamental domain in Mi for the action of the parabolic subgroup

Pi+1(Z). Let p be an element of Pi+1(Z) = Gi+1(Z)⋉ Ui+1(Z), we can decompose it as

p = l exp(b) (3.25)

with l ∈ Gi+1(Z) and exp(b) ∈ Ui+1(Z). Pi+1(Z) acts on Mi by

p⊺Hip = (yi+1, l
⊺Hi+1l, l

−1xi+1 + b) . (3.26)

3h(i) are related to the Cartan–Weyl basis generators of Gi−1 by h(i) = 1

(Λ(i),Λ(i))
hΛ(i) and xi decomposes in

the basis of root generators eα satisfying (Λ(i), α) = 1.
4Writing ỹi the Grenier coordinates in (3.4), the coordinates yi used in this section are yi =(∏N−1
j=i ỹN−j

j

) 1
N+1−i

.
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The adjoint Levi subgroup Gi+1(Z)/Z(Gi+1(Z)), with Z(Gi+1(Z)) the centre of Gi+1(Z), acts

freely on a dense open set in Mi+1, and determines the fundamental domain

Fi+1 = Mi+1/(Gi+1(Z)/Z(Gi+1(Z))) . (3.27)

To find a fundamental domain of Pi+1(Z) in Mi, it remains to act with Z(Gi+1(Z))⋉ Ui+1(Z)

on ui+1. By construction Ui+1(Z) acts by translation and Z(Gi+1(Z)) acts either trivially or by

multiplying x(i+1) ∈ ui+1 by −1. One gets therefore

FP
i = Mi/Pi+1(Z) = R+ ×Fi+1 ×

[
−1

2 ,
1
2

]di+1/Zµ , (3.28)

where di+1 is the dimension of Ui+1 and µ = 2 if Z(Gi+1(Z)) acts as Z2 on ui+1 and µ = 1 if it

acts trivially.

To define the fundamental domain of Gi(Z), we introduce the Chevalley lattice R(i+1)(Z) ⊂
R(i+1), which is preserved by the action of Gi(Z).

The equivalent of (3.19) for the discrete subgroup Gi(Z) gives

Gi(Z)/Pi+1(Z) = Si = {n ∈ R(i)(Z) | n× n = 0, L(n) > 0, gcdn = 1} (3.29)

where n× n is defined as in (3.18) and an additional positivity condition L(n) may be required

when the only elements in Gi(Z) that change the sign of n are trivial in Gi(Z)/Gi+1(Z).

One defines the positive set Si> ⊂ Mi as

Si> =
{
Hi ∈ Mi | Hi[n] ≥

1

y2i+1

, ∀n ∈ Si

}
(3.30)

Where Hi[n] is the positive definite bilinear form (3.20). This domain is non-empty. For fixed

(Hi+1,xi+1) in FP
i , one finds that Hi ∈ Si> for yi+1 > Li+1(Hi+1,xi+1) sufficiently large.

We will show that a fundamental domain Fi = Mi/Gi(Z) can be defined as the intersection

Fi = FP
i ∩ Si> . (3.31)

By construction, any element γ ∈ Gi(Z) can be decomposed as

γ = h(n)p = h(n) l exp(b) , (3.32)

with p ∈ Pi+1(Z), l ∈ Gi+1(Z) and exp(b) ∈ Ui+1(Z). For each point in Gi(Z)/Pi+1(Z) one

can find a representative h ∈ Gi(Z) that preserves FP
i . Using the isomorphism (3.29), one has

therefore for each n ∈ Si a unique h(n) ∈ Gi(Z) such that

h(n)e(i) = n , h(n)FP
i = FP

i . (3.33)

We have already checked that for any point Hi ∈ Mi, there is an element p ∈ Pi+1(Z) such that

p⊺Hip ∈ FP
i . For any such H ′

i ∈ FP
i there is a smallest norm element n0 ∈ Si such that

H ′
i[n] ≥ H ′

i[n0], ∀n ∈ Si . (3.34)
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It may not be unique, but because R(i)(Z) is discrete in R(i), there is a finite number of discrete

points in any ball H ′
i[x] ≤ H ′

i[n] and therefore a finite number of n0 satisfying (3.34). Choosing

h(n0) one obtains
1

y2i+1(γ)
= h⊺(n0)H

′
ih(n0)[e

(i)] = H ′
i[n0] , (3.35)

and γ⊺Hiγ ∈ FP
i ∩ Si> for γ = ph(n0). We have therefore proved that for all Hi ∈ Mi, there

exists γ ∈ Gi(Z) such that γ⊺Hiγ ∈ Fi so that Fi includes a fundamental domain.

Now we need to prove that for any point in the interior of Fi

F̊i = F̊P
i ∩ S̊i> , (3.36)

and any non-trivial element γ ∈ G(Z)/Z(G(Z)) we have γF̊i ∩Fi = {0}. First of all let us show
that one can always determine Si> with a finite number of vectors n ∈ Si. For (yi+1, Hi+1,xi+1)

in FP
i , the set Si> includes the condition Hi[e−αi+1e

(i+1)] ≥ 1
y 2
i+1

for the simple root αi+1 of Gi

satisfying (Λ(i+1), αi+1) = 1. In the appropriate coordinate system this reads

1

y 2
i+1

x(αi+1)
2 +

1

y
2− 2

(Λ(i+ 1),Λ(i+ 1))

i+1

1

y(αi+1)2
≥ 1

y 2
i+1

⇒ y
2

(Λ(i+ 1),Λ(i+ 1))

i+1 ≥ 3

4
y(αi+1)

2 , (3.37)

for y(αi+1) the associated Cartan torus coordinate in the Levi subgroup Gi+1. In particular

one can always choose the succession of parabolic subgroups (3.14) such that y(αi+1) = yi+2. It

follows by induction that there exists li+1 > 0 independent of (Hi+1,xi+1) such that any point

(yi+1, Hi+1,xi+1) ∈ F̊P
i ∩ S̊i> satisfies yi+1 ≥ li+1. One can therefore restrict the conditions

defining Si> to the vectors n ∈ Si in the ball Hi[n] ≤ 1
li+1

2 and there is only a finite number of

those.

As a consequence Si> is defined by a finite intersection of closed sets and its interior S̊i> is

defined by the finite intersection of open sets

S̊i> =
{
Hi ∈ Mi | Hi[n] >

1

y2i+1

, ∀n ∈ Si, n ̸= e(i+1)

}
. (3.38)

It follows directly that for any point Hi ∈ F̊i, the action of a non-trivial γ = h(n)p ∈
Gi(Z)/Z(G(Z)) gives γ⊺Hiγ /∈ Fi. To see this, note that any non-trivial p ∈ Pi+1(Z) moves

γ⊺Hiγ /∈ FP
i ⊃ Fi. If p = 1 and h(n) is non-trivial, we have by definition h(n)e(i+1) = n and

therefore

γ⊺Hi[n]γ <
1

yi+1(γ)2
(3.39)

for this specific n, which shows that γ⊺Hiγ /∈ Fi. Note that if Hi ∈ ∂Fi, either it is in the

boundary of FP
i or in the boundary of Si>. In the second case it means that there is a finite

set of vectors n ∈ Si not equal to e(i+1) such that Hi[n] =
1

y2i+1
, and the corresponding h(n) map

∂Si> ∩ FP
i to itself.

This concludes the proof that Fi is a fundamental domain of Mi/Gi(Z), and by induction

that F is a fundamental domain of M/G(Z).
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3.3 Fundamental domain of SO(N,N,Z)

In this section we shall illustrate how this construction applies to the symmetric space M =(
SO(N) × SO(N)

)
\SO(N,N) and the arithmetic subgroup SO(N,N,Z) preserving the even

self-dual lattice of split signature IIN,N . In string theory, the group of T-duality on the torus

T d is O(d, d,Z) and the relevant moduli space is M/O(d, d,Z). The group of U-duality of type

II on T 4 is Spin(5, 5,Z) instead and the moduli space is M/SO0(5, 5,Z). The difference with

respect to the different possible duality groups SO0(N,N,Z), SO(N,N,Z) and O(N,N,Z) only

appear in the first step because SO0(1, 1,Z) = {1}, SO(1, 1,Z) = Z2 and O(1, 1,Z) = Z2 ×Z2.

We will use the convention that the split signature metric is

η =

(
0 1

1 0

)
(3.40)

and we parametrise points in M by a symmetric matrix H in the vector representation of

SO(N,N), which satisfies

η⊺Hη = H . (3.41)

For short we will use the symbol H for the point in moduli space and for the symmetric matrix

in SO(N,N) that represents it. In this case it is convenient to choose the succession of parabolic

subgroups (3.14) such that

Pi = GL(1)× SO(N − i,N − i)⋉RN−i,N−i . (3.42)

We decompose accordingly H = H0 into each Hi for 1 ≤ i ≤ N as

Hi−1 =




1 0 0

ηxi 1 0
1
2(xi, xi) x

⊺
i 1







1
y2i

0 0

0 Hi 0

0 0 y2i






1 x⊺i η

1
2(xi, xi)

0 1 xi
0 0 1


 (3.43)

where yi ∈ R+, xi ∈ RN−i,N−i is a vector of SO(N − i,N − i), 1 is the identity matrix in

SO(N − i,N − i) and Hi is a symmetric element in SO(N − i,N − i).

For the quotient by O(N,N,Z), one derives that

Pi(Z) = O(N − i,N − i,Z)⋉ IIN−i,N−i . (3.44)

For SO0(N,N,Z), one simply gets SO0(N − i,N − i,Z). The sets Si in (3.29) can be defined as

Si = O(N − i,N − i,Z)/Pi+1(Z) = {Q ∈ IIN−i,N−i | (Q,Q) = 0 , gcdQ = 1} (3.45)

for 0 ≤ i ≤ N − 1. For SO0(N,N,Z) one must simply replace SN−1 = {(±1, 0), (0,±1)} by the

trivial set to take into account that SO0(1, 1,Z) is trivial.

At each step we decompose Q ∈ IIN+1−i,N+1−i as Q = (m, q, n) with m,n ∈ Z and q ∈
IIN−i,N−i, such that

η[Q] = (q, q) + 2mn , (3.46)
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and the bilinear form Hi−1[Q] decomposes as

Hi−1[Q] =
1

y2i

(
m+ (xi, q) +

1
2(xi, xi)n

)2
+Hi[q + xin] + y2i n

2 . (3.47)

The fundamental domain M/O(N,N,Z) is defined iteratively such that Fi−1 is defined as

1. Hi ∈ Fi.

2. (xi)1 ∈
[
0, 12
]
and (xi)k ∈

[
−1

2 ,
1
2

]
for all 2 ≤ k ≤ 2N − 2i.

3. For any m,n ∈ Z, q ∈ IIN−i,N−i such that gcd(m, q, n) = 1 and (q, q)+ 2mn = 0 we have:

(
m+ (xi, q) +

1
2(xi, xi)n

)2
+ y2iHi[q + xin] + y4i n

2 ≥ 1 (3.48)

The first two conditions ensure that Hi−1 ∈ FP
i−1 while the third imposes Hi−1 ∈ Si−1>. For

the fundamental domain M/SO0(N,N,Z) one must further take into account that SO0(1, 1) is

trivial and (xN−1)1 ∈
[
−1

2 ,
1
2

]
instead of

[
0, 12
]
and the last condition yN > 1 is not imposed.

3.3.1 Inductive proof

For simplicity we consider the fundamental domain M/O(N,N,Z) in this section. Let us

first show that for any Hi ∈ Mi there exists γ ∈ O(N − i,N − i,Z) such that γ⊺Hiγ ∈
Mi/O(N − i,N − i,Z) assuming it is true for i + 1. We can write an element of the discrete

parabolic subgroup Pi+1(Z) = O(N − 1− i,N − 1− i,Z)×Z2N−2−2i as

p =



1 0 0

0 l 0

0 0 1






1 b⊺η 1

2(b, b)

0 1 b

0 0 1


 (3.49)

with l ∈ O(N − 1− i,N − 1− i,Z) and b ∈ Z2N−2−2i. Using the decomposition of Hi in (3.43),

one obtains that such transformation gives

Hi+1 → l⊺Hi+1l , xi+1 → l−1xi+1 + b . (3.50)

By assumption, there exists l ∈ O(N − 1− i,N − 1− i,Z) such that l⊺Hi+1l ∈ Fi+1. This only

fixes l up to sign, and there is therefore enough symmetry together with the shift in b to fix

0 ≤ (xi+1)1 ≤ 1/2 and −1/2 ≤ (xi+1)k ≤ 1/2 for all k between 2 and 2N − 2− 2i. This shows

that there exists p such that p⊺Hip ∈ FP
i .

One can write an element h of O(N − i,N − i,Z) as

h =



m ∗ ∗
q ∗ ∗
n ∗ ∗


 (3.51)

for any m,n ∈ Z, q ∈ IIN−1−i,N−1−i with gcd(m,n, q) = 1 and 2mn + (q, q) = 0. These

components are determined by the action on a vector Q = (1, 0, 0) up to right multiplication by
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an arbitrary element in Pi+1(Z). Using the result above, one can always determine h such that

h⊺p⊺Hiph ∈ FP
i . Writing p⊺Hip in terms of yi+1, Hi+1, xi+1 satisfying 1 and 2 in the definition

of Fi, one obtains that yi+1(h) of h
⊺p⊺Hiph as

yi+1(h) =
( 1

y2i+1

(
m+ (xi+1, q) +

1
2(xi+1, xi+1)n

)2
+Hi+1[q + xi+1n] + y2i+1n

2
)− 1

2
. (3.52)

We then simply choose Q = (m, q, n) such that yi+1(h) is maximal. By construction γ = ph is

now such that γ⊺Hiγ ∈ Fi.

Let us now show that any non trivial γ = ph ∈ O(N − i,N − i,Z) up to the centre −1 ∈
O(N − i,N − i,Z) moves an element Hi ∈ F̊i outside of the fundamental domain. By induction

we assume that γ = ph = lbh and any non-trivial l ∈ O(N −1− i,N −1− i,Z) up to sign moves

Hi+1 ∈ F̊i+1 out of F̊i+1, and it is clear that any non-trivial element b or ℓ = −1 moves xi+1

outside of the domain 0 ≤ (xi+1)1 ≤ 1/2 and −1/2 ≤ (xi+1)k ≤ 1/2.

Choosing yi+1 sufficiently large compared to all eigenvalues of Hi+1,, it is clear that

(
m+ (xi, q) +

1
2(xi, xi)n

)2
+ y2iHi[q + xin] + y4i n

2 > 1 , ∀(m, q, n) ̸= (±1, 0, 0) . (3.53)

The open set F̊i is therefore defined by the strict inequality and it follows that any non-trivial

h moves Hi ∈ F̊i outside the fundamental domain.

Because the action is continuous it follows that any non-trivial element γ ∈ O(N−i,N−i,Z)

acts on a point in the boundary of the fundamental domain Fi to give another point in the

boundary. It follows by induction if Hi+1 is in the boundary of Fi+1, and it is rather obvious

if one of the (xi+1)k = ±1
2 . If there exists a non-trivial vector Q ̸= (±1, 0, 0) such that the

inequality (3.48) is saturated, the corresponding element h also preserves the boundary.

This establishes the definition of the fundamental domain described in this section for

O(N,N,Z). To prove the result for SO0(N,N,Z) only require to study the case of SO(2, 2),

which we describe now.

3.3.2 The example of SO(2, 2)

In this case we write explicitly the bilinear form as

H[Q] =
1

y21

(
m+ x1q2 + x2q1 + x1x2n

)2
+

1

y22
(q1 + x1n)

2 + y22(q2 + x2n)
2 + y21n

2 , (3.54)

with

η[Q] = 2mn+ 2q1q2 . (3.55)

The induction starts with the condition that q21 + y42q2 ≥ 1 for any (q1, q2) in the orbit of (1, 0).

For O(1, 1,Z) one gets the four vectors (q1, q2) = (±1,±1) and so one obtains the condition

y2 ≥ 1. For SO(1, 1,Z) or SO0(1, 1,Z) one does not get q2 = ±1 and there is no further

condition on y2 > 0.

At the next step the action of the unipotent subgroup allows to fix both xi ∈ [−1
2 ,

1
2 ]. For

O(1, 1,Z) and SO(1, 1,Z) one can use the element −1 to constrain x1 ≥ 0. For SO0(1, 1,Z) the

trivial group, we do not get this further restriction.
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Using now the third condition, one obtains for m = n = 0 the two conditions

x21 + y21y
2
2 ≥ 1 , x22 +

y21
y22

≥ 1 , (3.56)

and all the other conditions one obtains are consequences of these two.

We conclude that a fundamental domain of O(2, 2,Z) is defined by the conditions

i) x21 + y21y
2
2 ≥ 1 , ii) x22 +

y21
y22

≥ 1 , iii) y2 ≥ 1 , iv) 0 ≤ x1 ≤
1

2
, v) − 1/2 ≤ x2 ≤ 1/2 ,

(3.57)

a fundamental domain of SO(2, 2,Z) by

i) x21 + y21y
2
2 ≥ 1 , ii) x22 +

y21
y22

≥ 1 , iii) 0 ≤ x1 ≤
1

2
, iv) − 1/2 ≤ x2 ≤ 1/2 , (3.58)

and a fundamental domain of SO0(2, 2,Z) by

i) x21 + y21y
2
2 ≥ 1 , ii) x22 +

y21
y22

≥ 1 , iii) − 1

2
≤ x1 ≤

1

2
, iv) − 1/2 ≤ x2 ≤ 1/2 . (3.59)

This is consistent with the isomorphism

(
SO(2)× SO(2)

)
\SO(2, 2)/SO0(2, 2,Z) ∼= SO(2)\SL(2)/SL(2,Z)× SO(2)\SL(2)/SL(2,Z) ,

(3.60)

and T = x1 + iy1y2 and U = x2 + iy1y2 in the standard fundamental domain of SL(2,Z). The

further condition x1 ≥ 0 appears for the fundamental domain of SO(2, 2,Z) which includes the

further generator SO(2, 2,Z) = S(GL(2,Z)×Z2 GL(2,Z)) that changes the signs of x1 and x2.

The additional condition y1 ≥ 1 appears for the fundamental domain of O(2, 2,Z) which further

includes the generator that exchanges T and U .

4 Minima at symmetric points

The main purpose of this paper is to find the global minimum of Eisenstein series. The SL(2) real

analytic Eisenstein series 2ζ(2s)Es is known to have a global minimum at the symmetric point

τ = 1
2 + i

√
3
2 , [37,47] for any value of the parameter s > 0, with the appropriate regularisation at

s = 1. There is no general result for the global minimum of the Epstein series EpNs (H) for N ≥ 4

and generic s > 0. The sum (2.6) is absolutely convergent for s > N
2 , but admits an analytic

continuation to a meromorphic function of s ∈ C with a single pole at s = N
2 [48]. One can

define the regularised value of the Epstein function at the simple pole by minimal subtraction.

For s → ∞, the global minimum is the solution to the densest lattice sphere packing in N

dimensions [39]. One can understand this result intuitively using an expansion of EpNs in the

length of the lattice vectors. Writing nH
min a vector of minimal length for the associated quadratic

form H and dHmin the number of vectors of minimal length in the lattice, one gets for s → ∞

EpNs ≳
s→∞

dHmin

H[nH
min]

s
. (4.1)
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Therefore the minimum of EpNs is obtained when H[nH
min] is maximal for large Re[s]. The density

of spheres of radius
√
H[nH

min]/2 in the lattice is

ρ(H) =

(
πH[nH

min]
4

)N
2

Γ(N2 + 1)
, (4.2)

and so H[nH
min] maximal also gives the densest sphere packing in the lattice. For 2 ≤ N ≤ 8, the

densest lattice sphere packings are known to be the following rank N root lattices [49]

A2 , A3 , D4 , D5 , E6 , E7 , E8 , (4.3)

such that the minimum of the Epstein series at large s is at HL = detC
− 1

N
L CL for CL the even

bilinear form associated to the lattice L (with L = AN , DN , EN ).

However, we are interested in small values of s for the string theory couplings, in particular

s ≤ N
2 . It was observed in [38] that the densest lattice sphere packing bilinear form Hdlp cannot

be the global minimum of the Epstein series for all s > 0 when the lattice and its dual do not

define the same point in SO(N)\SL(N)/SL(N,Z), i.e. when H−1
dlp ̸≈ Hdlp modulo the action of

SL(N,Z). This is a direct consequence of the functional relation

EpNs (H) = π2s−N
2
Γ(N2 − s)

Γ(s)
EpNN

2
−s

(H−1) . (4.4)

In particular the Epstein series is the same for the two dual points at s = N
4

EpNN
4

(H−1
dlp ) = EpNN

4

(Hdlp) . (4.5)

One may therefore argue at most that the densest lattice packing Hdlp is the global minimum

for s ≥ N
4 , which implies by the functional relation above that its dual lattice H−1

dlp is the global

minimum for 0 < s < N
4 .

The case of N = 3 was analysed numerically in [38]. It was shown that the densest lattice

sphere packing point HA3 is a global minimum for s > 3
4 , and in particular for the regularised

series

Êp
3
3
2
= lim

s→ 3
2

(
Ep

3
s −

2π

s− 3
2

)
. (4.6)

They also demonstrate that the minimum of Êp
N

s must be strictly negative in the critical strip

0 < s < N
2 . However, it was proved in [50] that Êp

N
N
4
> 0 if the minimal length vector nH

min of

the associated quadratic form H has length bounded from above as

√
H[nH

min] <
N

2πe
or

√
H−1[nH−1

min ] <
N

2πe
. (4.7)

This excludes the possibility that the minimum be at Hg for an ADE lattice for N > 24 and

suggests instead that the densest lattice sphere packing will be the minimum [38]. The densest

lattice sphere packing has been proved to be the global minimum for N = 8 and 24 and all

values of s > N
2 [51].
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It would be very difficult to carry out a complete numerical analysis of the Epstein series

for N ≥ 4. Based on the results above we shall therefore concentrate on symmetric points in

moduli space for which the bilinear form H is invariant under a finite subgroup of SL(N,Z).

In this section we define these symmetric points and determine a criterion for them to be local

minima of Eisenstein series.

We then generalise the same analysis to SO(N,N,Z) and prove that symmetric points are

local minima of Eisenstein series provided they are negative in the critical strip.

4.1 Taylor expansion at symmetric points

The hyperplanes defining the boundary of the fundamental domain are mapped to themselves

under elements of G(Z), and their intersections are invariant under non-trivial finite subgroups

of G(Z). The maximal intersections define isolated points V0 ∈ M that are invariant under

maximal finite subgroups GV0(Z) ⊂ G(Z)

GV0(Z) =
{
γ ∈ G(Z) | γ⊺V⊺

0V0γ = V⊺
0V0

}
=
{
γ ∈ G(Z) | V0γV−1

0 ∈ K
}
. (4.8)

When the GV0(Z)-fixed points in M are isolated, we call them symmetric points. All the sym-

metric points are maximal intersections but some maximal intersections may not be symmetric

points.

By construction for all γ ∈ GV0(Z) there exists a kγ = V0γV−1
0 ∈ K such that

V0γ = kγV0 . (4.9)

An automorphic form Φ on M in a representation ρ of K transforms as

Φ(kVγ) = ρΦ(k)Φ(V) . (4.10)

Here ρ generalises the weight for SL(2). By definition, the automorphic form is invariant under

the linear action of ρΦ(kγ) at V = V0 for any γ ∈ GV0(Z) and kγ satisfying (4.9). Indeed, one

checks that

ρΦ(kγ)Φ(V0) = Φ(kγV0) = Φ(V0γ) = Φ(V0) . (4.11)

We can use this property to constrain the covariant derivatives of an automorphic function at a

symmetric point. We define the covariant derivative from the left-action of p ∈ p = g⊖ k as

f(exp(p)V0) ≡ fV0(p) = f(V0) + paDaf(V0) +
1

2
papbDaDbf(V0) +O(p3) , (4.12)

where a labels the components of p in p. Note that the differential operators Da can equivalently

be defined as the covariant derivative in tangent frame on the symmetric space

Da = ea
µ
(
∂µ + ρ(ωµ)

)
. (4.13)

If GV0(Z) is non-trivial, we have

fV0(p) = fV0(k
−1
γ pkγ) (4.14)
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for any kγ = V0γV−1
0 ∈ K such that γ ∈ GV0(Z), because

fV0(k
−1
γ pkγ) = f(k−1

γ exp(p)kγV0) = f(exp(p)V0γ) = fV0(p) . (4.15)

The Taylor expansion of an automorphic function is therefore highly constrained by the symme-

try groupGV0(Z). At order n in the Taylor expansion, one can classify the order n polynomials in

p that are invariant under all such elements kγ = V0γV−1
0 ∈ K. If V0 is a symmetric point as we

define above, there is no invariant linear polynomial and V0 is an extremum of any automorphic

function.

For any symmetric point V0 we must check if the extremum is a minimum. In practice

we shall find that the symmetric points admit a small number of GV0(Z)-invariant quadratic

polynomials, and that it is sufficient to evaluate the automorphic function on a small dimension

hypersurface to determine if it is a minimum.

If there is a single invariant quadratic polynomial, by construction it must be proportional

to the quadratic Casimir such that

fV0(p) = f(V0) +
1

2 dim p
κabp

apb∆f(V0) +O(p3) (4.16)

where κab is the restriction to p of the Killing–Cartan form on g. The Hessian of the function

at V0 is then completely determined, and the symmetric point is a local minimum provided

∆f(V0) > 0. In particular the function must be negative at a local minimum if the eigenvalue

of the Laplace operator is negative.

We will be interested in maximal parabolic Eisenstein series EG
sΛi

associated to a fundamental

weight Λi,

EG
sΛi

=
∑

γ∈G(Z)/Pi(Z)

χ(2sΛi − ϱ,Vγ) , (4.17)

which satisfy the Laplace equation

∆EG
sΛi

= 2(sΛi − ϱ, sΛi)E
G
sΛi

, (4.18)

with ϱ =
∑

i Λi the Weyl vector and χ(λ) the multiplicative parabolic character of weight λ.

Physically, maximal parabolic Eisenstein series are the sum over the U-duality images of a fixed

dilaton to the power s. For maximal parabolics, the dilaton is either the string coupling constant

or the volume of a torus T r inside the M-theory torus or the type IIB torus.

Maximal parabolic Eisenstein series are absolutely convergent for Re[s] > (Λi,ϱ)
(Λi,Λi)

, and both

EG
sΛi

> 0 and ∆EG
sΛi

> 0 for s > (Λi,ϱ)
(Λi,Λi)

. On the critical strip 0 < s < (Λi,ϱ)
(Λi,Λi)

, the Eisenstein

series is integrable and therefore

0 =

∫

M
dµ∆EG

sΛi
(V) = 2(sΛi − ϱ, sΛi)

∫

M
dµEG

sΛi
(V) , (4.19)

such that EG
sΛi

(V) must be negative at its global minimum.

We find therefore that when the moduli space K\G admits a symmetric point V0 with a

unique invariant quadratic polynomial in p, the symmetric point V0 is a local minimum of any
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absolutely convergent Eisenstein series. Moreover, V0 is a local minimum of any integrable

automorphic function that is negative at V0.

When there are two GV0(Z)-invariant quadratic polynomials we need to compute the two

independent eigenvalues of the Hessian matrix at V0. For this purpose we shall define a two-

dimensional subspace of SO(N)\SL(N) that includes the relevant symmetric points. There also

exist symmetric points with more invariant polynomials, but we find that they never correspond

to global mimima and shall disregard them.

We will now discuss the cases of SL(N) and SO(N,N).

4.2 SL(N) symmetric points

The symmetric points in SO(N)\SL(N) are invariant under maximal finite irreducible sub-

groups of PSL(N,Z). The maximal finite irreducible subgroups of GL(N,Z) have been clas-

sified for all N ≤ 10 [52–54]. For N ≤ 4 all the maximal finite subgroups of PSL(N,Z) are

stabilisers of an even-bilinear form CL of Cartan type. One gets for irreducible groups

N = 1 : A1 , (4.20)

N = 2 : A2 , 2A1 , (4.21)

N = 3 : A3 , A∗
3 , 3A1 , (4.22)

N = 4 : D4 , A4 , A∗
4 , 4A1 , 2A2 , A2 ×A2 . (4.23)

The reducible maximal subgroups stabilise the reducible bilinear forms A1+A2, A1+A3, A1+A∗
3.

One easily checks that reducible bilinear forms that are extrema are always saddle points. To

prove this, one considers coordinates associated to the maximal parabolic subgroup Pk = R+ ×
SL(k)× SL(N − k)⋉Rk×(N−k) ⊂ SL(N) in which

H[n,m] = y2
k−N
N Hk[n+Xm] + y2

k
N HN−k[m] (4.24)

with n ∈ Zk, m ∈ ZN−k and X ∈ Rk×(N−k). The Fourier expansion of the Epstein series in the

maximal parabolic Pk can be obtained by Poisson summation and reads

EpNs (H) = y2
N−k
N

sEpks(Hk) + π
k
2
Γ(s− k

2 )

Γ(s)
y2

k
N
(N
2
−s)EpN−k

s− k
2

(HN−k) (4.25)

+
2πs

Γ(s)

′∑

n∈Zk

′∑

m∈ZN−k

y
N−2k

N
s+ k

2
H−1

k [n]
s
2
− k

4

HN−k[m]
s
2
− k

4

Ks− k
2

(
2πy

√
H−1

k [n]HN−k[m]
)
cos(2πn⊺Xm) .

The second derivative with respect to X at X = 0 is negative definite

d2EpNs (H)|X=0 (4.26)

=− 2πs

Γ(s)

′∑

n∈Zk

′∑

m∈ZN−k

y
N−2k

N
s+ k

2
H−1

k [n]
s
2
− k

4

HN−k[m]
s
2
− k

4

Ks− k
2

(
2πy

√
H−1

k [n]HN−k[m]
)
(2πn⊺dXm)2 ,

as the absolutely convergent sum of positive terms. Therefore any extremum at X = 0 is a

saddle point. We will therefore only analyse symmetric points for which the bilinear form H is

irreducible.
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For N = 5 the irreducible bilinear forms invariant under a maximal finite subgroup of

PSL(5,Z) are [53]

N = 5 : D5 , D∗
5 , A5 , A∗

5 , A+2
5 , (A+2

5 )∗ = A+3
5 , (4.27)

where A+2
5 is the S6-invariant lattice A5 ⊕ (A5+Λ2)⊕ (A5+Λ4) that includes the second funda-

mental weight Λ2, and A+3
5 = A5 ⊕ (A5+Λ3). All these points lie on dimension zero boundaries

of Grenier’s fundamental domain, as we show in Appendix A.

It will be convenient to introduce the following parametrisation of V ∈ SO(N)\SL(N) in

the maximal parabolic subgroup PN−1

V = y−
1
N

(
N

1
2(N−1)V1 N

1
2(N−1)V1x

0 y√
N

)
, (4.28)

where V1 ∈ SO(N − 1)\SL(N − 1), x ∈ RN−1, and y ∈ R+ has been rescaled. When V1 is at

the AN−1 symmetric point

N
1

N−1V⊺
1V1 = CAN−1

. (4.29)

In this paper we define the AN point in the fundamental domain as the symmetric matrix

CAN
=




2 1 . . . 1

1 2
. . .

...
...
. . .

. . . 1

1 . . . 1 2




, (4.30)

or equivalently

CAN
[n] = 2

N∑

i=1

n2
i +

∑

i ̸=j

ninj . (4.31)

In this way the symmetry under the subgroup SN ⊂ SN+1 is manifest. One gets the AN , DN ,

EN representatives by fixing V1 at the AN−1 lattice point, and all xi components equal such

that

y
2
N H = CAN

for xi =
1

N
, y =

√
N + 1 , (4.32)

y
2
N H = CDN

for xi =
2

N
, y = 2 , (4.33)

y
2
N H = CEN

for xi =
3

N
, y =

√
9−N . (4.34)

One moreover checks that the Gram matrix CA+2
5

and CA+3
5

of A+2
5 and A+3

5 are given by 5

y
2
5H = CA+2

5
for xi =

2

5
, y =

√
2

3
, (4.35)

y
2
5H = CA+3

5
for xi =

2

5
, y =

√
3

2
. (4.36)

5This is not the bilinear form given in [53], the latter is equivalent to 3C
A+2

5
up to SL(5,Z).
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This ansatz for y > 0 and a single x ∈ [0, 12 ] therefore describes many symmetric points. In

particular it covers all the symmetric points (up to inversion) for SL(3,Z) and SL(5,Z), the

groups relevant in string theory. The dual lattice points can be studied in the same way with the

inverse matrix or using the functional relation (4.4). This representative of the AN symmetric

point is in the Grenier domain, but not the others, see Appendix A.

The densest sphere packing criterion can be checked using the density (4.2)

ρ(CAN
) =

(
π
2

)N
2

√
N + 1Γ(N2 + 1)

<
N≥4

ρ(CDN
) =

(
π
2

)N
2

2Γ(N2 + 1)
<

N=6,7,8
ρ(CEN

) =

(
π
2

)N
2

√
9−NΓ(N2 + 1)

(4.37)

in agreement with the list (4.3). The dual lattices D∗
N and A∗

N are always less dense than the

lattices DN and AN , but E∗
N is denser than DN and AN for N = 6, 7, 8. For N = 5 one finds

ρ(CA5) =
π2

15
√
3
< ρ(CA+2

5
) =

4
√
2π2

135
< ρ(CD5) =

π2

15
√
2
, (4.38)

so the densest sphere lattice packing is indeed the lattice D5, and A+2
5 is denser than A5. The

dual lattices are less dense, with

ρ(CA∗
5
) =

5
√
5π2

432
< ρ(CD∗

5
) =

π2

30
< ρ(CA+3

5
) =

3π2

80
. (4.39)

On the surface where H(y, x, CAN−1
) is parametrised by y > 0 and −1

2 ≤ x ≤ 1
2 as in (4.28),

one writes the explicit formula for the SL(N) Epstein series as

EpNs (y, x, CAN−1
) =

y
2s
N

N
s

N−1

EpN−1
s (CAN−1

) +
2π

N−1
2 Γ(s− N−1

2 )ζ(2s−N + 1)

Γ(s)

y(N−1)(1− 2s
N

)

N
N
2
−s

+
4πs

Γ(s)

y
N−1

2
−N−2

N
s

√
N

′∑

n∈ZN−1

σN−1−2s(n)
Ks−N−1

2

(
2πy

√
C−1
AN−1

[n]/N
)

(
NC−1

AN−1
[n]
)N−1

4
− s

2

cos
(
2πx

N−1∑

i=1

ni

)
. (4.40)

It is defined by induction in N . For N = 2 the Epstein series evaluated at τ = 1
2 + i

√
3
2 can be

written as the zeta function over Q(
√
−3) [37]6

Ep
2
s(CA2) =

′∑

z∈Z(e 2πi
3 )

(
√
3
2 )s

|z|2s =
6

12
s
2

ζ(s)
(
ζ(s, 13)− ζ(s, 23)

)
. (4.41)

For SL(N) the elements p ∈ p = g ⊖ k are symmetric-traceless N × N matrices, and the

Killing–Cartan form is normalised such that

κabp
apb = 2 tr p2 = 2

N∑

i,j=1

p2ij . (4.42)

6The expression using Hurwitz zeta function is obtained as the Euler product

′∑

z∈Z(e
2πi
3 )

1

|z|2s = 6
1

1− 3−s

∏

p=1mod 3

(
1

1− p−s

)2 ∏

p=2mod 3

1

1− p−2s
.
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We will now study the different symmetric points.

4.2.1 The AN symmetric point

The automorphism group of the AN lattice is Z2⋉SN+1, but only the alternating group AltN+1

embeds inside PSL(N,Z) for N even and SN+1 ⊂ PSL(N,Z) for N odd. The Eisenstein series

are nonetheless invariant under the action of PGL(N,Z), so their symmetry group is always

SN+1. The automorphism group Z2 ⋉ SN+1 is realised on the lattice vectors such that Z2 acts

as

ni 7→ −ni , (4.43)

and SN+1 acts as the permutation of the N elements ni and a fictitious N+1th element

−∑N
j=1 nj , i.e. σ ∈ SN acts as

σ : ni 7→ nσ(i) , (4.44)

and

σi,N+1 : ni 7→ −
N∑

j=1

nj , nj ̸=1 7→ nj . (4.45)

It is useful to split this group into SN and

SN+1/SN = ZN+1 (4.46)

where ZN+1 is the cyclic group generated by the transformation

σf : ni ̸=N 7→ ni+1 , nN 7→ −
N∑

i=1

ni . (4.47)

To determine the SN+1-invariant quadratic polynomials, it is convenient to define

p̃ = (N + 1)
1
N V⊺

0pV0 , (4.48)

for which the traceless condition reads

trC−1
AN

p̃ =
1

N + 1

(
N

N∑

i=1

p̃ii −
∑

i ̸=j

p̃ij

)
= 0 . (4.49)

For any invariant polynomial fV0(p), one defines the polynomial

f̃V0(p̃) = fV0

(
(N + 1)−

1
N V−1 ⊺

0 p̃V−1
0

)
, (4.50)

which is invariant under

f̃V0(p̃) = f̃V0(γ
⊺p̃γ) , (4.51)

for any γ ∈ GAN (Z) representing SN+1. The symmetric matrix p̃ simply transforms under SN+1

as a traceless bilinear form in the ni’s, i.e. under σ ∈ SN as

σ : p̃ij 7→ p̃σ−1(i)σ−1(j) , (4.52)
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and under σf as

σf : p̃11 7→ p̃NN ,

σf : p̃1j 7→ p̃NN − p̃j−1N ,

p̃i ̸=1i ̸=1 7→ p̃NN + p̃i−1i−1 − 2p̃i−1N ,

p̃i ̸=1j ̸=1 7→ p̃NN + p̃i−1j−1 − p̃i−1N − p̃j−1N .
(4.53)

The vector n transforms in the standard representation of SN+1 associated to the partition

(N, 1). The symmetric tensor product decomposes into irreducible representations as 7

(N, 1)⊗S (N, 1) = (N)⊕ (N, 1)⊕ (N − 1, 2) , (4.54)

such that p̃ splits into the irreducible components q ∈ (N, 1) and p̃⊥ ∈ (N − 1, 2). The vector q

in the standard representation is defined as

qi ≡ p̃ii −
2

N − 1

N∑

j=1
j ̸=i

p̃ij , (4.55)

and transforms by permutation under SN and as

σf : q1 7→ −qN , qi ̸=1 7→ qi−1 − qN , (4.56)

under σf . The (N − 1, 2) tensor p̃⊥ is defined as

p̃⊥ii = p̃ij − qi +
2

N + 1

N∑

j=1

qj , p̃⊥i ̸=j = p̃ij +
1

N + 1

N∑

k=1

qk , (4.57)

and transforms under SN+1 as p̃ in (4.53). It follows that there are two independent invariant

quadratic polynomials in p̃, one quadratic in q and one quadratic in p̃⊥, such that the Killing–

Cartan form splits into

1

2
κabp

apb = trC−1
AN

p̃ C−1
AN

p̃ =
N − 1

N + 1
C−1
AN

[q] + trC−1
AN

p̃⊥C−1
AN

p̃⊥ . (4.58)

For completeness, we give the explicit proof that there are only two invariant quadratic polyno-

mials in Appendix B.

To study the Taylor expansion of Epstein series at the symmetric point AN , we use the coset

representative (4.28) and its vielbeins

P =
1

2
dVV−1 +

1

2
(dVV−1)⊺ =




P1 − 1
N

dy
y

N
N

2(N−1)

2y V1 dx

N
N

2(N−1)

2y V1 dx
N−1
N

dy
y


 . (4.59)

At the symmetric point we take V1 constant and such that N
1

N−1V⊺
1V1 = CAN−1

and we define

the pull-back momentum such that P1∗ = 0. One computes then

P̃∗ ≡ (N + 1)
1
N V⊺

0P∗V0 (4.60)

=

(
− 1

NCAN−1

dy
y

√
N+1
2y CAN−1

dx− 1
NCAN−1

x∗
dy
y√

N+1
2y dx⊺CAN−1

− 1
N x⊺∗CAN−1

dy
y

N−1
N

dy
y +

√
N+1
y x⊺∗CAN−1

dx

)
,

7Recall that (N) is the trivial representation, (N, 1) is the basic representation of dimension N , and (N − 1, 2)

is the symmetric tensor irreducible representation of dimension (N+1)(N−2)
2

.
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where x∗i = 1
N . This gives the standard representation components of P̃∗ that are defined from

P̃ as in (4.55) and take the explicit form

Qi ̸=N∗ = −
√
N + 1

N − 1

(
CAN−1

dx

y

)
i
, QN∗ =

(N + 1

N

dy

y
−

√
N + 1

N − 1
x⊺∗CAN−1

dx

y

)
, (4.61)

and one checks that the (N − 1, 2) components P̃⊥
∗ only depend on dx

y√
N + 1

P̃⊥ =

(
− 1

N−1diag[CAN−1
dx] 1

2CAN−1
dx

1
2dx

⊺CAN−1
− N

N−1x
⊺
∗CAN−1

dx

)
− 1

N − 1
CAN

(x⊺∗CAN−1
dx) . (4.62)

A direct computation gives

C−1
AN

[Q∗] =
N + 1

N − 1

(N − 1

N

dy2

y2
+

1

N − 1

CAN−1
[dx]

y2

)
,

2 trC−1
AN

P̃⊥
∗ C−1

AN
P̃⊥
∗ =

(
N − 2

N − 1

)CAN−1
[dx]

y2
. (4.63)

We define the pull-back of an automorphic function

f∗(y, x) = f(y,V1 = V1∗, xi = x) , (4.64)

to the two-dimensional subspace parametrised by y and x. The second differential of the pull-

back function must be consistent with the SN+1 symmetry, and therefore

d2f∗(y, x)
∣∣∣
y=

√
N+1,x= 1

N

= fyydy
2 + fxxdx

2 + 2fyxdydx

= a+
2

N + 1

(
N − 1

N
dy2 +Ndx2

)
+ a−

(N2(N − 1)− 2N)

N + 1
dx2 , (4.65)

for two coefficients a+ and a− determined by the second derivatives of the automorphic function

at the symmetric point. In particular

fyy = 2
N − 1

(N + 1)N
a+, fxx =

2N

N + 1
a+ +

(N2(N − 1)− 2N)

N + 1
a−, fyx = 0 (4.66)

Hence the condition for the symmetric point AN to be a local minimum of the automorphic

function f is that a+ > 0 and a− > 0, which is equivalent to the condition that

fxx >
N2

N − 1
fyy > 0 . (4.67)

It is therefore sufficient to study the pull-back function f∗(y, x) to determine if the symmetric

point AN is a local minimum of the automorphic function f(y,V1, xi) in M.

We have carried out this computation numerically for the Epstein series and found that

the AN symmetric point is always a local minimum for s large enough, but the eigenvalue

a− becomes negative for small s for N ≥ 4, giving a saddle unstable along the corresponding
(N+1)(N−2)

2 -dimensional hypersurface. It is always a local minimum for N = 3, and is in fact the

global minimum for s > 3
4 [38]. We find that it is a local minimum for s > 1 for SL(4), and for

s ≳ 3.16603 for SL(5). For SL(6) and SL(7) one finds similarly that it is not a local minimum

for s < sAN
with sAN

slightly above the critical value N
2 . Most importantly for us, it is not a

local minimum of the Epstein function Ep
5
3
2
that defines the leading Wilson coefficient in type

II string theory on T 3.
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4.2.2 The DN symmetric point

The DN symmetric point is realised with the ansatz (4.34) as the bilinear form

CDN
[n] = 2

N−1∑

i=1

n2
i + 4n2

N + 2
∑

i<j<N

ninj + 4nN

N−1∑

i=1

ni . (4.68)

It is easy to show that it is related to the identity matrix by a GL(N,Q) transformation that

determines

ni ̸=N = mi , nN = −1

2

N∑

i=1

mi , (4.69)

for N integers mi such that
∑

imi = 0 mod 2. One then gets

CDN
[m] =

N∑

i=1

m2
i , (4.70)

which reproduces the standard construction of the DN root lattice in Euclidean space. In

this basis the automorphisms SN ⋉ ZN
2 of the lattice DN are simply realised as the SL(N,Z)

transformations

σ : mi 7→ mσ(i) ,

ϖi : mi 7→ −mi , mj ̸=i 7→ mj , (4.71)

that preserve the condition that
∑

imi = 0 mod 2. For N = 4, one has moreover the triality

automorphisms. This determines the action of the automorphism group on the momentum p ∈ p

for generic N as

σ : pij 7→ pσ(i)σ(j) ,

ϖi : pij 7→ −pij , pii 7→ pii , pjk 7→ pjk , ∀j, k ̸= i . (4.72)

Note that the transformation
∏N

i=1ϖi flips the sign of the whole vector m⃗ and therefore acts

trivially on p, so that only SN ⋉ZN−1
2 ⊂ PGL(N,Z) acts on the moduli space.

The components pij split into the N − 1 independent pii that transform in the standard

representation of SN and are invariant under ZN−1
2 , and the pij for i ̸= j that transform under

the reducible representation N ⊕ (N − 1, 1)⊕ (N − 2, 2) of SN , but mix together under ZN−1
2 .

One straightforwardly checks that the only invariant quadratic polynomials are

N∑

i=1

p2ii ,
∑

i ̸=j

p2ij . (4.73)
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For N = 4 the triality symmetry implies that there is a unique invariant quadratic polynomial,

while for generic N one straightforwardly computes that

N∑

i=1

P2
ii∗ = tr

(
− 1

N
dy
y∗

0

0 N−1
N

dy
∗y

)2

=
N − 1

N

dy2

y2∗
,

∑

i ̸=j

P2
ij = tr




0 N
N

2(N−1)

2y∗
V1∗ dx

N
N

2(N−1)

2y∗
V1∗ dx 0




2

=
N

2y2∗
CAN−1

[dx] =
N2(N − 1)

2y2∗
dx2 . (4.74)

Hence one has a local minimum of an automorphic function f at the DN symmetric point if and

only if

fxx > 0 , fyy > 0 , (4.75)

with

d2f∗(y, x)
∣∣∣
y=2,x= 2

N

= fyydy
2 + fxxdx

2 + 2fyxdydx

= a+
N − 1

N
dy2 + a−

N2(N − 1)

2
dx2 , (4.76)

and a+ and a− the two eigenvalues of the Hessian of f at the symmetric point. One finds by

numerical evaluation that the DN symmetric point is indeed a local minimum of the Epstein

series EpNs for all s and N ≤ 7. We do not expect this to be true for arbitrary large N , but this is

not relevant for the study of the type II string theory effective action. We find in particular that

among all symmetric points, the DN symmetric point gives the minimum value of the Epstein

series EpNs for N = 4, 5 and s ≥ N
4 ,

8 leading to the conjecture that DN is the global minimum.

4.2.3 Other symmetric points

In this subsection we shall briefly describe the other symmetric points.

• The dual symmetric points

Let us first observe that we do not need to describe the dual symmetric point for the lattices A∗
N

and D∗
N separately. By construction CL∗ = C−1

L , and the inverse of H = V⊺V with the ansatz

(4.28) allows to describe all dual lattices. One easily extends all the results using the functional

relation (4.4). As a consistency check we have evaluated numerically the function for both the

lattice and its dual. The analysis of the polynomials in p ∈ p invariant under the automorphisms

of the lattice proceeds in the same way for the dual lattices, and gives by construction the same

number of invariant polynomials.

For example for A∗
N one defines

p̃ = (N + 1)−
1
N V⊺

0pV0 , (4.77)

8Note that D∗
4 and D4 define the same unimodular matrix H, so the D4 symmetric point is the lowest value

for all s > 0.
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for which the traceless condition reads

trCAN
p̃ = 0 . (4.78)

The action of the Weyl group is then such that SN acts by permutation of the indices and σf
acts on p̃ as

σf : p̃i ̸=Nj ̸=N 7→ p̃i+1 j+1 , σf : p̃Nj ̸=N 7→ −
N∑

k=1

p̃Nk , σf : p̃NN 7→ −
N∑

k=1

p̃kk . (4.79)

It decomposes into the vector q in the irreducible representation (N, 1)

qi = p̃ii , (4.80)

and the orthogonal component p̃⊥ in (N − 1, 2) that has zero diagonal entries p̃⊥ii = 0 and

p̃⊥ij = p̃ij +
1

N − 1

(
p̃ii + p̃jj

)
, (4.81)

for i ̸= j. One obtains then two independent quadratic polynomials in q and p̃⊥ respectively,

such that
1

2
κabp

apb = trCAN
p̃ CAN

p̃ =
N − 1

N + 1
CAN

[q] + trCAN
p̃⊥CAN

p̃⊥ . (4.82)

For large values of s, the Epstein series evaluated at the dual symmetric points D∗
N and A∗

N is

larger, as expected from the sphere packing density. By the functional relation (4.4) this must

be the opposite for s < N
4 , and in particular a symmetric point and its dual give the same value

at s = N
4 . Accordingly, there is always a value of sc > N

4 where EpNsc(D
∗
N ) = EpNsc(AN ) and

EpNs (D∗
N ) < EpNs (AN ) for s < sc. The numerical evaluation for N ≤ 5 shows that there is only

one such transition, and that EpNs (D∗
N ) − EpNs (AN ) and EpNs (DN ) − EpNs (D∗

N ) have only one

zero at s = sc and s = N
4 , respectively.

• The symmetric point A+2
5

The symmetric point A+2
5 admits the same symmetry S6 ⊂ SL(5,Z) as the point A5 and its

dual A∗
5. This is easy to prove using the relation

CA+2
5

= γ⊺C−1
A5

γ (4.83)

where γ the GL(5,Q) matrix defined such that

m⃗ = γ n⃗ (4.84)

is the change of basis (4.69). In particular CD5 = γ⊺γ. One checks that for any g ∈ S6 ⊂ SL(5,Z),

γgγ−1 ∈ SL(5,Z), such that the automorphism group of A+2
5 is conjugate to the one of A∗

5 in

SL(5,Q) [53]. It follows that the coset p ∈ p decomposes into the two irreducible representations

(5, 1) and (4, 2) of S6. To finds the explicit polynomial it is convenient to introduce

P̃∗ =
(
2
3

) 1
5 γ−1V⊺

∗P∗V∗γ−1⊺ , (4.85)
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which transforms under S6 as p̃ in (4.79). Repeating the computations of Section 4.2.1 for the

ansatz (4.28),(4.35) one obtains the following invariants polynomials

4

3
CA5 [Q∗] =

12

5

dy2

y2
+ 15dx2 , 2 trCA5P̃⊥

∗ CA5P̃⊥
∗ = 135dx2 . (4.86)

One obtains that the condition for the Hessian of the function f to be positive definite is (4.67)

for N = 5, as for the A5 symmetric point. We have checked these conditions numerically and

found that the symmetric point A+2
5 is a local minimum of the Epstein series Ep

5
s for s ≳ 2.8849.

Below this value the second derivative with respect to y is negative and the saddle is unstable

along 5 directions.

In the critical strip 5
4 < s < 5

2 we find that

Ep
5
s(D5) < Ep

5
s(D

∗
5) < Ep

5
s(A

+2
5 ) < Ep

5
s(A

+3
5 ) < Ep

5
s(A5) < Ep

5
s(A

∗
5) , (4.87)

and only D5 and D∗
5 are local minima.

• The E6, E7, E8 symmetric points

We shall be very brief about these cases since they are not relevant to the analysis of the type

II string theory low energy effective action. One finds in these three cases that the Weyl group

of EN is large enough to impose that there is a unique invariant quadratic polynomial in p. It is

therefore sufficient to check that the Epstein series is negative in the critical strip to ensure that

the EN symmetric point is a local minimum for all values of s. One finds indeed by numerical

evaluation that the EN symmetric points are local minima for all values of s, and among all

symmetric points we have checked they give the smallest value of the Epstein series EpNs for all

values of s ≥ N
4 .

9 In the critical strip N
4 < s < N

2 we find that

EpNs (EN ) <
N=6,7

EpNs (E∗
N ) < EpNs (DN ) <

N=6,7
EpNs (D∗

N ) < EpNs (AN ) < EpNs (A∗
N ) . (4.88)

• The Ad ×AN
d

symmetric points for d|N
For N not prime one can also have symmetric points associated to irreducible bilinear form that

are tensor products of lower dimensional bilinear forms. For example for N = 4 one has

CA2×A2 =




4 2 2 1

2 4 1 2

2 1 4 2

1 2 2 4


 . (4.89)

More generally the density of the sphere packing of Ad ×AN
d
for d dividing N is

ρ(CAd×AN
d

) =
π

N
2

(1 + d)
N
2d (1 + N

d )
d
2Γ(N2 + 1)

. (4.90)

9We have only checked symmetric points of Cartan type AN , DN , EN and their dual. This exhausts all

maximal irreducible symmetry groups for N = 7, but not for N = 6, 8 [53].
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For N ≤ 8 the possible lattices are less dense than EN , DN and AN , but one checks that in the

critical strip

Ep
4
s(D4) < Ep

4
s(A2 ×A2) < Ep

4
s(A4) . (4.91)

So the ordering is reversed with the A4 lattice at low values of s. Nevertheless, the symmetric

point D4 remain the global minimum of Ep
4
s for all value of s > 0.

4.3 SO(N,N) symmetric points

We now consider the symmetric space (SO(N) × SO(N))\SO(N,N) with the discrete group

SO(N,N,Z) preserving the split signature even lattice IIN,N . We introduce the vector repre-

sentation Epstein series

EpN,N
s (H) =

′∑

q∈IIN,N

(q,q)=0

1

H[q]s
= 2ζ(2s)ESO(N,N)

sΛ1
, (4.92)

which is proportional to the maximal parabolic Eisenstein series of infinitesimal character λ =

2sΛ1 − ρ. It is absolutely convergent for Re[s] > N − 1, and admits an analytic continuation to

a meromorphic function of s ∈ C. We will be interested in particular in the value s = N−2
2 , for

which the Epstein series is in the minimal representation.10 It will be convenient to consider the

representation of the symmetric SO(N,N) matrix H in the PN = GL(N,R)⋉ ∧2RN parabolic

subgroup such that for any vector q = (m,n) with m,n ∈ ZN ,

H[q] = G−1[m+Bn] +G[n] , (4.93)

and the split signature bilinear form is

(q, q) = 2m · n . (4.94)

In type II string theory on T d the SO(d, d) symmetric matrix H is parametrised by the Narain

moduli, with the torus metric G and the Kalb–Ramond two-form B in string length. Then m

is the vector of Kaluza–Klein modes and n the vector of winding numbers. For the U-duality

group Spin(5, 5,Z) one can view G as the M-theory metric on T 5 and B as the Hodge dual of

the three-form potential on T 5.

To define symmetric points in SO(N,N) we start with the assumption that G is itself a sym-

metric point of SO(N)\GL(N). From the previous section we find that G is then proportional

to the Gram matrix CL of an even lattice L, and the relevant solution will turn out to be

G =
1

2
CL , G+B = 0 mod Z . (4.95)

One finds in this case that the charges q±

q± =
1

2
G−1

(
m+ (B ±G)n

)
, (4.96)

10This can be understood from the Langlands functional identity ξ(N−2)ESO(N,N)
N−2

2
Λ1

= ξ(2)ESO(N,N)

ΛN
= ξ(2)ESO(N,N)

ΛN−1

for N ≥ 3 which shows that this function can be realised either as a vector representation Epstein series or a

spinor representation Epstein series.
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satisfy

q+ − q− ∈ ZN , (4.97)

while q± are by construction in the dual lattice L∗ = C−1
L ZN . It follows that this bilinear form

describes the isomorphism

IIN,N
∼=

⊕

µ∈L∗/L

(
(L+ µ)⊕ (L+ µ)[−1]

)
, (4.98)

or equivalently for the Narain theta series

∑

q∈IIN,N

e−πτ2H[q]+iπτ1(q,q) =
∑

µ∈L∗/L

∣∣∣∣
∑

n∈ZN

eiπτCL[n+µ]

∣∣∣∣
2

. (4.99)

For any pair of elements γ± ∈ Aut(L) such that

γ+µ = γ−µ mod L , (4.100)

one has an automorphism O(N,N,Z) of the split signature lattice IIN,N that preserves the

symmetric matrix H. For Cartan type lattices AN , DN , EN , the automorphism group is the

product of the outer automorphisms of the Dynkin diagram and the Weyl group

Aut(L) = Out(L)⋉W (L) , (4.101)

and the Weyl group W (L) preserves all weights µ ∈ L∗/L, so one has the automorphism group

Aut(H) = Out(L)⋉W (L)×W (L) . (4.102)

The simplest example of a symmetric point is for N = 1, in which case G = y2 and

Ep1,1s (H) = 2ζ(2s)
(
y2s + y−2s

)
. (4.103)

Its global minimum at y = 1 can be interpreted as the SU(2) self-dual radius in string theory

on S1. The A,D,E points described above correspond more generally to the points of enhanced

gauge symmetry in string theory. For N = 2 one recovers the minimum of the product of two

SL(2) Epstein series at T = U = 1
2 + i

√
3
2 for the symmetric matrix H associated to the lattice

L = A2. We will see below that for N = 3 the symmetric matrix associated to L = A3 also

reproduces the minimum of the SL(4) Epstein series at the symmetric point D4.

Assuming H to be determined by a lattice Gram matrix as in (4.95), one can compute the

limit at large s from the theta series

EpN,N
s (H) =

πs

Γ(s)

∫ ∞

0

dτ2
τ2

τ s2

∫ 1
2

− 1
2

dτ1

′∑

q∈IIN,N

e−πτ2H[q]+iπτ1(q,q)

=
∑

µ∈L∗/L

′∑

m,n∈ZN

CL[n+µ]=CL[m+µ]

1

(2CL[n+ µ])s
, (4.104)
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where the prime removes the point m = n = 0 for µ = 0 only. At large s, the leading term in

EpN,N
s (H) is proportional to the smallest length of a vector in L∗ to the power −2s, and one

obtains a minimum for the even lattice with the largest possible minimal length of a vector in

L∗. Although this is not exactly the same criterion as for the densest lattice sphere packing, it

gives the same ADE classification (4.3) for N ≤ 8.

For small values of s we need instead to use the Fourier expansion of the Epstein series 11

EpN,N
s (H) = detG

s
N EpNs (G−1) +

π
N−1

2 Γ(s− N−1
2 )

Γ(s)

ζ(2s−N + 1)

ζ(2s−N + 2)
detG

N−1−s
N EpN

s−N−2
2

(G)

+
4πs

Γ(s)

√
detG

′∑

Q∈∧2ZN

Q∧Q=0

σN−1−2s(Q)

gcd(Q)
N−2

2
−s

ESL(2)

s−N−2
2

(UQ)
Ks−N−1

2
(2π
√
G[Q])

4
√
G[Q]

eπi trBQ (4.105)

where the sum is over all non-zero rank one antisymmetric integer matrices Q, the bilinear form

is defined as

G[Q] = −1

2
trGQGQ , (4.106)

and ESL(2)
s (UQ) is the SL(2) real analytic Eisenstein series evaluated on the SL(2) subgroup of

the stabiliser of Q.12 Note that the stabiliser of Q in SL(N) is SL(2)× SL(N − 2)⋉R2×(N−2).

For the value s = N−2
2 , this expression simplifies drastically to

EpN,N
N−2

2

(H) = detG
N−2
2N EpNN−2

2

(G−1) +
π

N
2

√
detG

Γ(N−2
2 )

(
1

3
+ 2

′∑

Q∈∧2ZN

Q∧Q=0

σ1(Q)
e−2π

√
G[Q]

π
√

G[Q]
eπi trBQ

)
.

(4.107)

We will use this expression to evaluate numerically the Epstein series for N = 5.

We find evidence that the Epstein series in the vector representation (4.92) admits its global

minimum for all s > 0 at the symmetric point where G = 1
2CL and G + B = 0 mod Z for the

Cartan type best packing lattices (4.3).

4.3.1 Symmetric points as minima

In order to describe the symmetries of the polynomials in the coset derivatives we need to define

a coset representative V ∈ SO(N,N). We introduce two vielbeins basis V± for the same metric

G = V ⊺
±V± such that V reads

V =

(
1√
2
V −1⊺
+

1√
2
V −1⊺
+ (G+B)

1√
2
V −1⊺
−

1√
2
V −1⊺
− (−G+B)

)
. (4.108)

It transforms under left action of k± ∈ SO(N) and right action of γ ∈ O(N,N,Z) as

V →
(
k+ 0

0 k−

)
Vγ . (4.109)

11In our convention the SL(N) Epstein series only depend on the unimodular bilinear form so that EpN
s (G) =

EpN
s (detG− 1

N G)), and in particular detG
s
N EpN

s (G−1) =
∑′

n∈ZN
1

G−1[n]s
.

12Normalised such that Ep
2

s(U) = 2ζ(2s)ESL(2)
s (U).
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One can of course set V+ = V− = V , but it is convenient to keep them different to make manifest

the covariance under SO(N)× SO(N). The coset differential is then

1

2
dVV−1 +

1

2
V−1⊺dV⊺ =

(
0 P⊺

P 0

)
(4.110)

with

P = −1

2
V −1⊺
−

(
dG+ dB

)
V −1
+ . (4.111)

We now consider a point (4.95) for L of Cartan type, that we write

V0 =

(√
2V0+ 0

0
√
2V0−

)(
C−1
L C−1

L (G+B)0
C−1
L C−1

L (−G+B)0

)
. (4.112)

Using the charges q± that transform under the two copies of the Weyl group at a symmetric

point (4.96), one obtains that

V0Q =

(√
2V0+q+√
2V0−q−

)
. (4.113)

It follows that under an automorphism in (4.102) realised as a γ ∈ O(N,N,Z) one has

V0γ =

(
k+(γ) 0

0 k−(γ)

)
V0 =

(√
2V0+γ+ 0

0
√
2V0−γ−

)(
C−1
L C−1

L (G+B)0
C−1
L C−1

L (−G+B)0

)
(4.114)

where the γ± satisfy (4.100). In particular, the γ± can be two independent elements of the Weyl

group of the Cartan type lattice L.

It appears therefore convenient to expand the automorphic function of interest with respect

to the pull-back momentum

P∗ = −
(
dG+ dB

)
∗ . (4.115)

Similarly as in section 4.2.1, we introduce the variable

p̃ = 2V ⊺
0−pV0+ . (4.116)

For any invariant polynomial fH0(p) of p ∈ so(N,N) ⊖ (so(N) ⊕ so(N)), one defines the poly-

nomial

f̃V0(p̃) = fV0

(
2V ⊺

0−pV0+

)
, (4.117)

that is invariant under

f̃V0(γ−p̃γ+) = f̃V0(p̃) . (4.118)

One then finds for all irreducible Cartan type lattices L, that the unique invariant quadratic

polynomial is the Killing–Cartan form

2 tr pp⊺ = 2 trC−1
L p̃ C−1

L p̃⊺ . (4.119)

Let us prove this for AN and DN .
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• AN symmetric point

For AN , the momentum p̃ transforms in the tensor product of two standard representations

(N, 1) associated to the two copies of SN+1. It is therefore in an irreducible representation of

SN+1× SN+1 and there is obviously no linear invariant. Introducing the indices i = 1 to N for

one side and ı̂ = 1 to N for the other, one obtains the action of SN× SN

σ × σ̂ : p̃iȷ̂ 7→ p̃σ−1(i)σ̂−1(ȷ̂) , (4.120)

while the left σf acts as

σf × 1 : p̃1ȷ̂ 7→ p̃Nȷ̂ , σf × 1 : p̃i ̸=1ȷ̂ 7→ p̃Nȷ̂ − p̃i−1ȷ̂ , (4.121)

and identically for the right σ̂f . For the quadratic polynomial one can use the decomposition

into irreducible representations of the tensor product of two standard representations

(N, 1)⊗ (N, 1) = (N)⊕ (N, 1)⊕ (N − 1, 2)⊕ (N − 1, 1, 1) , (4.122)

to conclude that the quadratic polynomials in p̃ decompose into the irreducible representations

of SN+1× SN+1

[
(N+1)⊕(N, 1)⊕(N−1, 2)

]
⊗
[
(N+1)⊕(N, 1)⊕(N−1, 2)

]
⊕(N−1, 1, 1)⊗(N−1, 1, 1) . (4.123)

It follows that there is single quadratic invariant polynomial (4.119). According to the discussion

of section 4.1, we conclude that the AN symmetric point is a local minimum of any SO(N,N)

Eisenstein series in the domain of absolute convergence. We have checked numerically that

Ep5,5s (H) is negative at the critical value s = 3
2 relevant in the string theory effective action, and

the symmetric point A5 is therefore a local minimum.

• DN symmetric point

For DN , the momentum p transforms in the tensor product of two vector representations of

SN ⋉ZN−1
2 . It is convenient to define the action of the two copies of SN ⋉ZN

2

σ × σ̂ : piȷ̂ 7→ pσ(i)σ̂(ȷ̂) ,

ϖi × 1 : piȷ̂ 7→ −piȷ̂ , pjȷ̂ 7→ pjȷ̂ , ∀j ̸= i , (4.124)

and identically for the right ϖ̂ȷ̂, and then take the subgroup of elements with an even number

of ϖi and ϖ̂ȷ̂. It follows directly that the only invariant quadratic polynomial is

N∑

i=1

N∑

ȷ̂=1

piȷ̂piȷ̂ = tr pp⊺ , (4.125)

which is the Killing–Cartan form (4.119). One finds therefore that the DN symmetric point is

a local minimum of any SO(N,N) Eisenstein series in the domain of absolute convergence. We

have checked numerically that Ep5,5s (H) is negative at the critical value s = 3
2 relevant in the

string theory effective action, and the symmetric point D5 is therefore a local minimum. It is

a lower value than the A5 symmetric point and we conjecture that it is the global minimum of

the minimal Epstein series.

34



4.3.2 SO(3, 3) and SL(4)

Because of the homomorphism Spin0(3, 3) = SL(4) it is relevant to compare the results we

have obtained for SO(N,N) and SL(N) in this case. It appears that the vector representation

Epstein series of SO(3, 3) and the Epstein series of SL(4) are related at the special s value

πEp3,31
2

(H) = Ep
4
1(H) , (4.126)

with the identification of the SL(4) matrix

V = y−
1
4

(
2

1
3V1 2

1
3V1x

0 y
2

)
=

1√
detV

(
V V x

0 detV

)
, (4.127)

and V+ = V− = V and Bij = εijkxk in (4.108). In particular for (4.34) one has G = y
4CA3 , and

one can check the functional relation (4.126) using (4.107) and (4.40)

πEp3,31
2

(H) = π detG
1
6 Ep

3
1
2
(G−1) + π2

√
detG

(
1

3
+ 2

′∑

Q∈∧2Z3

σ1(Q)
e−2π

√
G[Q]

π
√
G[Q]

eπi trBQ

)

=
y

1
2

4
1
3

Ep
3
1(CA3) +

π2

3

y
3
2

4
+ π

√
y

′∑

n∈Z3

σ1(n)
e
−πy

√
C−1

A3
[n]

√
C−1
A3

[n]
cos
(
2πx · n

)
. (4.128)

For the special points (4.34) of the SL(4) Epstein series we have

G =
y

4



2 1 1

1 2 1

1 1 2


 , B = x




0 1 −1

−1 0 1

1 −1 0


 , (4.129)

so that the SL(4) D4 symmetric point corresponds to the SO(3, 3) A3 symmetric point,

G =
1

2
CA3 , B +G =



1 1 0

0 1 1

1 0 1


 , (4.130)

while the SL(4) A4 symmetric point gives

G =

√
5

4



2 1 1

1 2 1

1 1 2


 , B =

1

4




0 1 −1

−1 0 1

1 −1 0


 . (4.131)

We find consistently that the conjectured global minimum of the SL(4) Epstein series at the D4

symmetric point agrees with the conjectured global minimum of the SO(3, 3) Epstein series at

the A3 symmetric point. One finds that they have the same automorphism groups

Aut(IIA3
3,3) = Z2 ⋉ (S4 × S4) ∼= Aut(D4) = S3 ⋉ (S4 ⋉Z3

2) , (4.132)

because of the triality automorphism of D4, explaining that there is a unique invariant quadratic

polynomial in this case.
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5 Fixing the logarithmic ambiguity in eight dimensions

The different terms in the low energy expansion of the two-graviton amplitude (2.4) are not well

defined individually in eight dimensions because the 1-loop box integral

I4(s, t) =

∫
dDp

(2π)D
1

p2(p− k1)2(p− k1 − k2)2(p+ k4)2
(5.1)

diverges logarithmically and so do the Epstein series defining E(0,0)(φ). To determine unam-

biguously the amplitude we must analyse the low energy limit of the one-loop string theory

amplitude [5]

A1-loop = 2πα′ 3g 2
8

∫

F

d2τ

τ 2
2

ΓII2,2

4∏

a=1

∫

Σ

d2za
τ2

τ2δ
(2)(z4)e

−α′
2

∑
a>bG(za−zb)ka·kb , (5.2)

where

ΓIId,d(τ) = τ
d
2
2

∑

q∈IId, d
e−πτ2H[q]+iπτ1(q,q) , (5.3)

and G(x) is the torus Green function. Following [12], we split the SL(2) fundamental domain

into the truncated fundamental domain

FL =
{
τ2 < L, −1

2 ≤ τ1 ≤ 1
2 , |τ | > 1

}
(5.4)

and the complementary region for which τ2 > L and −1
2 ≤ τ1 ≤ 1

2 . At leading order one obtains

A1-loop

ℓ 6
P

= 2π

∫

FL

d2τ

τ 2
2

ΓII2,2 + 4π

∫ ∞

L

dτ2
τ2

∫ 1

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1e

πτ2α′[(x2−x1)(1−x3)s+x1(x3−x2)t]+ ⟲

+O(s2) , (5.5)

where ⟲ represents the two cyclic permutations of the Mandelstam variables. To compute the

two terms separately it is more convenient to introduce a dimensional regularisation d = 2+2ϵ.

This can be achieved with the insertion of τ ϵ2 in both terms. One can then remove the L-

dependent terms that cancel out and use instead

lim
ϵ→0+

(
2π

∫

F

d2τ

τ 2
2

τ ϵ2ΓII2,2 + 4π

∫ ∞

0

dτ2
τ2

τ ϵ2

∫ 1

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1e

πτ2α′[(x2−x1)(1−x3)s+x1(x3−x2)t]+ ⟲
)

(5.6)

For the one-loop supergravity amplitude one gets the dimensional regularisation

(4π)5(4π2α′)−ϵ

∫
d8−2ϵp

(2π)8−2ϵ

1

p2(p− k1)2(p− k1 − k2)2(p+ k4)2

=4π

∫ ∞

0

dτ2
τ2

τ ϵ2

∫ 1

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1e

πτ2α′[(x2−x1)(1−x3)s+x1(x3−x2)t]

=−8π1−ϵΓ(ϵ− 2)Γ(3− ϵ)2

Γ(5− 2ϵ)

∫ 1

0
dx

(
(−α′s)−ϵ (1− x)1−ϵ

(
1 + t

s

)
− 1

+ (−α′t)−ϵ (1− x)1−ϵ

(
1 + s

t

)
− 1

)

=
2π

3

(
1

ϵ
+

11

3
− γE − lnπ − s

s+ t
ln
(
−α′s

)
− t

s+ t
ln
(
−α′t

)
− 1

2

st

(s+ t)2

(
ln
( t
s

)2
+ π2

))

+O(ϵ) . (5.7)
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We define accordingly the renormalised 1-loop box integral in D = 8 dimensions

Î4,µ(s, t) = − 1

6(4π)4

(
s

s+ t
ln
(
−s/µ2

)
+

t

s+ t
ln
(
−t/µ2

)
+

1

2

st

(s+ t)2

(
ln
( t
s

)2
+ π2

))
,

(5.8)

where we introduced a renomalisation scale µ. Note that Î4,µ(s, t) = Î4,1(s/µ
2, t/µ2).

For the perturbative Wilson coefficient one can replace τ ϵ2 by the real analytic Eisenstein

series Eϵ(τ) without modifying the limit. One computes as in [36] that

2π

∫

F

d2τ

τ 2
2

Eϵ(τ)ΓII2,2

=4πξ(2ϵ)Eϵ(T )Eϵ(U)

=−2π

ϵ
+ 2π

(
γE − ln(4π)

)
− 2π ln(U2|η(U)|4)− 2π ln(T2|η(T )|4) +O(ϵ) , (5.9)

where η is the Dedekind eta function. One obtains in total

A1-loop

ℓ 6
P

=−2π ln(U2|η(U)|4)− 2π ln(T2|η(T )|4) +
22π

3
− 4π ln(2π)

+(4π)5(Î4,1(α
′s, α′t) + Î4,1(α

′t, α′u) + Î4,1(α
′u, α′s)) +O(s2)

=−2π ln(U2|η(U)|4)− 2π ln(T2|η(T )|4) +
4π

3
ln g8 +

22π

3
− 4π ln(2πℓPµ)

+(4π)5
(
Î4,µ(s, t) + Î4,µ(t, u) + Î4,µ(u, s)

)
+O(s2) (5.10)

where we used α′ 3g 2
8 = ℓ 6

P in the last step.

We use the same convention as in [36] for the renormalised Eisenstein series, such that we

define the SL(2) Epstein series

Êp
2

1(U) = lim
ϵ→0

(
Ep

2
1+ϵ(U)− π

ϵ
− 2π(γE − ln 2)

)
= −π ln (U2|η(U)|4) , (5.11)

and the SL(3) Epstein series

Êp
3
3
2
(H) = lim

ϵ→0

(
Ep

3
3
2
+ϵ(H)− 2π

ϵ
− 4π(γE − 1)

)

=
2ζ(3)

g 2
8

− 2π ln (T2|η(T )|4) +
4π

3
ln g8

+
8π

g8

′∑

m,n∈Z

√
T2 σ2(m,n)

|m+ Tn| K1

(
2π

g8
√
T2
|m+ Tn|

)
e2πi(c0m+c2n) . (5.12)

With these definitions we have

A(s, t, u, φ) =
64

stu
+ (4π)5ℓ 6

P

(
Î4,µ(s, t) + Î4,µ(t, u) + Î4,µ(u, s)

)
+ ℓ 6

P E(0,0),µ(φ) +O(s2) (5.13)

and

E(0,0),µ(φ) = Êp
3
3
2
(H) + 2Êp

2

1(U) +
22π

3
− 4π ln(2πℓPµ) . (5.14)

Note that the logarithm 4π ln(2πℓP) can be absorbed in the logarithm of the type IIB torus

volume V2 = (2πℓP)
2T2g

−2/3
8 , equivalently V2 = (2πℓP)

2U2g
−2/3
8 in type IIA.
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6 Numerical approximations

In this section we explain the numerical checks we have carried out to establish the conjectured

global minima of the Epstein series. We concentrate on the two cases of SL(5) and SO(5, 5) that

constitute the main new results. The global minimum of the SL(3) Epstein series was obtained

as the symmetric point A3 for all s > 3
4 , including the renormalised value at s = 3

2 by minimal

subtraction, in [38].

The moduli space SO(5)\SL(5) has 14 dimensions and
(
SO(5) × SO(5)

)
\SO(5, 5) 25 di-

mensions, and it is rather difficult to study the value of the Epstein series systematically over

the whole moduli space in these two cases. Nonetheless, the Epstein series are very regular

functions, that decrease somewhat monotonically from the cusps at infinity to the symmetric

points in the interior.

6.1 The SL(5) Epstein series

We consider several SL(5,Z) equivalent realisations of the D5 symmetric point H = 2−
2
5CD5

with

CD5 =




2 1 1 1 2

1 2 1 1 2

1 1 2 1 2

1 1 1 2 2

2 2 2 2 4




, C ′
D5

=




2 1 1 2 1

1 2 1 2 1

1 1 2 2 1

2 2 2 4 2

1 1 1 2 2




, C ′′
D5

=




2 1 0 0 0

1 2 0 0 1

0 0 2 0 1

0 0 0 2 1

0 1 1 1 2




. (6.1)

They are determined by iterated inclusions of lattices

A2 ⊂ A3 ⊂ A4 ⊂ D5 ,

A2 ⊂ A3 ⊂ D4 ⊂ D5 ,

A2 ⊂ A2 +A1 ⊂ A2 + 2A1 ⊂ D5 . (6.2)

The first case is described with the ansatz (4.28) and the expansion of the Epstein series (4.40)

with N = 5 as a function of y and x. We use (4.40) iteratively and truncate the sum over ni ∈ Z
for N = 3 between −50 and 50, the sum over ni ∈ Z for N = 4 between −20 and 20 and the

sum over ni ∈ Z for N = 5 between −10 and 10. We checked that increasing the ranges of the

Fourier modes ni does not change the result within the approximation. We analyse the values

of s between 5
4 and 5. For large values of s the Fourier expansion converges more slowly because

the Bessel function does not decrease fast enough for the truncated expansion (4.40) to give a

good approximation.

The obtained function of y and x admits only three local minima, corresponding to the

symmetric points A5, A
+2
5 and D5, with D5 being the global minimum. Only D5 is a local

minimum of the function of H ∈ SO(5)\SL(5) for low values of s.

One also checks the pull-back of the function on different surfaces associated to the parametri-

sation (4.40) for N = 4 as Ep5s(2,
2
5 , H) = 2

2s
5

5
s
4
Ep4s(y, x,A3) + . . . and similarly for N = 3 and

find again that the D5 point is the global minimum on each surface.
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(a) (b)

Figure 1: Pullback of the SL(5) Epstein series along the two dimensional (x, y) surface defined

by (4.28) for s = 3
2 . (a) Slice x = 2

5 containing A+2
5 , A+3

5 and D5, only D5 is a local minimum.

(b) Slice y = −5(
√
6 − 2)x + 2(

√
6 − 1) containing A5 and D5, along this slice A5 looks like

a local minimum but it is a saddle point in SO(5)\SL(5). D5 is the global minimum on the

surface.

In the second case we consider the SL(N) coset representative

V = y−
1
N

(
2

1
N−1V1 2

1
N−1V1x

0 y/2

)
, (6.3)

with V1 at the DN−1 symmetric point and x restricted to the last component xN−1. One then

obtains the Fourier expansion of the Epstein series

EpNs (y, x, CDN−1
) =

y
2s
N

4
s

N−1

EpN−1
s (CDN−1

) +
2π

N−1
2 Γ(s− N−1

2 )ζ(2s−N + 1)

Γ(s)

y(N−1)(1− 2s
N

)

4
N
2
−s

+
2πs

Γ(s)
y

N−1
2

−N−2
N

s
′∑

n∈ZN−1

σN−1−2s(n)
Ks−N−1

2

(
πy
√
C−1
DN−1

[n]
)

(
4C−1

DN−1
[n]
)N−1

4
− s

2

cos
(
2πxnN−1

)
(6.4)

which defines another surface parametrised by (x, y) in the moduli space. In this case one

obtains for N = 5 that the only local minimum is at y = 2 and x = 1
2 corresponding to the D5

symmetric point.

In the third case we consider the SL(N) coset representative

V = y−
1
N

(
(4N−8)

1
2(N−1)V1 (4N−8)

1
2(N−1)V1x

0 y
2
√
N−2

)
, (6.5)

with V1 at the AN−3+2A1 symmetric point and x = (− 2
N−2 , . . . , 2

N−3
N−2 , 1, 1)x. One obtains

again for N = 5 that the only local minimum is at y = 2 and x = 1
2 corresponding to the D5

symmetric point.
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We obtain numerically the value of the Epstein series

Ep
5
3
2
(D5) ≈ −9.50663 . (6.6)

The numerical value is stable under modification of the truncation up to fifteen digits.

6.2 The SO(5, 5) vector representation Epstein series

The vector representation Epstein series at generic s is much harder to approximate because of

the Eisenstein series appearing in the Fourier coefficients in (4.105). Therefore we shall only

analyse the minimal Epstein series (4.107) at s = 3
2

Ep5,53
2

(H) = detG
3
10 Ep

5
3
2
(G−1) + π

√
detG

(
π

6
+

′∑

Q∈∧2Z5

Q∧Q=0

σ1(Q)
e−2π

√
G[Q]

√
G[Q]

eπi trBQ

)
, (6.7)

that defines the leading Wilson coefficient in the string theory effective action.

One difficulty is to generate an appropriate large set of rank two antisymmetric integer

matrices Q ∈ ∧2Z5. To obtain a good approximation, we must include all the M2-instanton

charges Q with a Euclidean action below some threshold

S[Q] = 2π
√
−1

2 trGQGQ ≤ Λ , (6.8)

without including two many charges Q with a strictly greater Euclidean action. The incomplete

sets of charges for a given action greater than Λ do not a priori spoil the approximation, but their

inclusion increases the evaluation time of the function without providing a better approximation.

To compute a sample of charges we generate the set of rank two matrices with entries

|Qij | ≤ 6 and only keep the charges with a Euclidean action evaluated at the D5 symmetric

point bounded by Λ = 2π
√
6. The values of the action is S = π

√
1 + 4n or S = 2π

√
n for all

integers n ≥ 1. We have checked up to S = 2π
√
5 that the set of charges we have obtained define

complete orbits of the Weyl group action W (D5). They all satisfy |Qij | ≤ 4, so we believe they

are the complete set of charges for Λ = 2π
√
5. One also checks that this set of charges gives

all charges of action bounded by Λ = 2π
√
6 at the A5 symmetric point with entries |Qij | ≤ 5.

The values of the action is then S = 2π
√
n or S = π

√
3 + 4n for all integers n ≥ 1. We

expect therefore this set of charges to provide a good approximation of the Epstein series on the

fundamental domain.

We consider two surfaces, the first parametrised by

G =
y

2




2 1 1 1 2

1 2 1 1 2

1 1 2 1 2

1 1 1 2 2

2 2 2 2 4




, B = x




0 1 1 1 2

−1 0 1 1 2

−1 −1 0 1 2

−1 −1 −1 0 2

−2 −2 −2 −2 0




, (6.9)

only includes a global minimum at the D5 symmetric point at y = 1 and x = 1
2 .
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The second is parametrised by

G =
1

2




2 1 1 1 5x

1 2 1 1 5x

1 1 2 1 5x

1 1 1 2 5x

5x 5x 5x 5x y2

5 +20x2




, B =
1

2




0 1 1 1 5x

−1 0 1 1 5x

−1 −1 0 1 5x

−1 −1 −1 0 5x

−5x −5x −5x −5x 0




. (6.10)

On this surface we find that the D5 symmetric point is a global minimum at y = 2 and x = 2
5 .

One also finds the local minimum at the A5 symmetric point at y =
√
6 and x = 1

5 .

The numerical approximation gives the minimum of the Epstein series

Ep5,53
2

(D5) ≈ −3.4447± 0.0002 . (6.11)

A Grenier domain boundaries

Consider the AN symmetric point in SO(N)\SL(N) where H = (N+1)−
1
N CAN

is proportional

to the AN Cartan matrix. Its representative (4.31) in SO(N)\SL(N)/SL(N,Z) is in the Grenier

domain. To exhibit that this is the case, one writes CAN
as

CAN
[n] =

N−1∑

k=0

k + 2

k + 1

(
nk+1 +

1

k + 1

N∑

i=k+2

ni

)2

(A.1)

and identifies the bilinear forms

Yk[n] =

N∑

i=k+1

n2
i +

2

k + 2

∑

k+1≤i<j≤N

ninj (A.2)

in the notation of Section 3.1. One finds from this formula that xk+1,i =
1

k+1 ∈ [0, 12 ] and for

each Yk[n], the minimal length vectors are length one, consistently with the definition of the

Grenier domain. This point is on the boundary of the Grenier domain since the inequality

Y0[n] ≥ 1 (A.3)

is saturated for all AN root, i.e.

ni = ±δij , ni = δij − δik , (A.4)

for any j and k. For Yk[n] with k ≥ 1, the only vectors of minimal length 1 are ni = δij for all

j ≥ k + 1. In fact it is a boundary of dimension zero. To prove this one can write a generic

point in SO(N)\SL(N) using the matrix 13

Y0[n] = n2
1 +

N∑

i=2

y2i n
2
i +

∑

i<j

xijninj . (A.5)

13Take care that the coordinates yi and xij are not the same as in (3.4).
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Now, solving the condition that Y0[n] = 1 for all roots of AN , one obtains

y2i = 1 , y2i + y2j − xij = 1 , (A.6)

which determines yi = xij = 1 and fixes the AN point H = (N + 1)−
1
N CAN

.

One can consider similarly the symmetric point DN+1 in SO(N)\SL(N). Starting form

(4.33) and shifting n2 → n2 − nN+1 one obtain the equivalent representative of the DN+1

Cartan matrix

C ′
DN+1

= 2
N+1∑

i=1

n2
i + 2

∑

i<j
(i,j)̸=(2,N+1)

ninj , (A.7)

where the second sum is over all pairs except n2nN+1. One checks that H = 2−
2

N+1C ′
DN+1

is in

the Grenier domain with the triangular form

Y0 =
(
n1 +

1

2

N+1∑

i=2

ni

)2
+

3

4

(
n2 +

1

3

N∑

i=3

ni −
1

3
nN+1

)2

+
1

2

N−1∑

k=2

k + 2

k + 1

(
nk+1 +

1

k + 1

N∑

i=k+2

ni +
2

k + 2
nN+1

)2

+
4

N + 1
n2
N+1 , (A.8)

and the sub-components

Y0 =

N+1∑

i=1

n2
i +

∑

i<j
(i,j)̸=(2,N+1)

ninj

Y1 =
N+1∑

i=2

n2
i +

2

3

∑

2≤i<j
(i,j) ̸=(2,N+1)

ninj −
2

3
n2nN+1 ,

Yk≥2 =

N+1∑

i=k+1

n2
i +

2

k + 2

∑

k+1≤i<j≤N

ninj +
4

k + 2
nN+1

N∑

i=k+1

ni . (A.9)

The triangular form of Y0 exhibits that all xij ∈ [0, 12 ] but x2,N+1 = −1
3 ∈ [−1

2 ,
1
2 ]. The sub-

components all have minimum length vectors of length one, and H is therefore in the Grenier

domain. This point sits on the boundary because the inequalities Y0[n] ≥ 1 are saturated for all

DN+1 roots, i.e.

ni =±δi,j , ni = δi,j − δi,k for (j, k) ̸= (2, N + 1) or (N + 1, 2) ,

ni =±(δi,j − δi,2 − δi,N+1) for j ̸= 2, N + 1 ,

ni =±(δi,j + δi,k − δi,2 − δi,N+1) for j, k ̸= 2, N + 1 . (A.10)

For Yk with k = 1 and k ≥ 3, the only vectors of length 1 are ni = δi,j for all j ≥ k + 1. For

k = 2 one gets all vectors ni = δi,j with j ≥ 3 and the vectors ni = ±δi,j ∓ δi,N+1 for 3 ≤ i ≤ N .
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Writing the equalities Y0[n] = 1 for all DN+1 roots for the generic matrix

Y0[n] = n2
1 +

N∑

i=2

y2i n
2
i +

∑

i<j

xijninj (A.11)

one obtains

y2i = 1 , y2i + y2j − xij = 1 for (i, j) ̸= (2, N + 1) , (A.12)

y2i + y22 + y2N+1 − xi2 − xiN+1 + x2N+1 = 1 for i ̸= 2, N + 1 ,

y2i + y2j + y22 + y2N+1 + xij − xi2 − xiN+1 − xj2 − xj N+1 + x2N+1 = 1 for i, j ̸= 2, N + 1 .

This implies that yi = 1 and xij = 1 except for x2N+1 = 0 and therefore H = 2−
2

N+1C ′
DN+1

.

In general one does not expect reducible matrices to correspond to a zero dimensional bound-

ary of the Grenier domain. Take as an example H = (2N + 2)−
1

N+1CAN+A1 with

CAN+A1 [n] = 2
N+1∑

i=1

ni + 2
∑

i<j≤N

ninj . (A.13)

One checks similarly that H is in the Grenier domain, but the saturated inequalities still allow

for a dimension N boundary parametrised by

Y0[n] =
N+1∑

i=1

ni +
∑

i<j≤N

ninj +
N∑

i=1

xinN+1ni , (A.14)

provided they satisfy
k∑

i=1

x2i −
2

k + 1

∑

i<j≤k

xixj ≤ 1 , (A.15)

for all k between 1 and N .

For the lattice A+2
5 , the matrix (4.35)

CA+2
5

=




2 1 1 1 2

1 2 1 1 2

1 1 2 1 2

1 1 1 2 2

2 2 2 2 10
3




(A.16)

is not in the Grenier domain. But using the SL(5,Z) matrix

γ =




0 0 0 1 1

1 1 0 0 1

0 1 1 0 1

0 1 0 0 0

−1 −2 −1 −1 −2




, (A.17)
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one obtains that

C ′
A+2

5
= γ⊺CA+2

5
γ (A.18)

is. This is manifest in the upper triangular form

C ′
A+2

5
[n] =

4

3

(
(
n1 +

1
2n2 +

1
4n3 +

1
4n4 +

1
2n5

)2

+
3

4

((
n2 +

1
2n3 − 1

2n4

)2
+
(
n3 +

1
2n4 +

1
2n5

)2
+

3

4

((
n4 +

1
3n5

)2
+ 8

9n
2
5

)))
. (A.19)

This bilinear form admits 30 vectors of norm square 4
3 in Z5, the 15 weights in the Weyl orbit

of the highest weights Λ2 and the 15 in the Weyl orbit of Λ4. The corresponding conditions

Y0[n] = 1 determine C ′
A+2

5

, and the lattice A+2
5 is therefore at a dimension-zero boundary of the

Grenier domain.

B Invariant polynomials at the AN symmetric point

We prove here that there are indeed only two quadratic invariant polynomials at the AN sym-

metric point by constructing them explicitly. We can easily see that for any polynomial F (p̃),

its average on SN+1 defined by

⟨F (p̃)⟩SN+1
=

1

|SN+1|
∑

γ∈SN+1

F (γ⊺p̃γ) , (B.1)

is an SN+1-invariant polynomial. Therefore by calculating the ⟨p̃ij⟩SN+1
and ⟨p̃ij p̃rs⟩SN+1

we can

generate all independent SN+1-invariant linear and quadratic polynomials. We start with the

linear polynomials where the calculations are less tedious but are completely analogous to the

quadratic case. We can see that14

⟨p̃ij⟩SN+1
= ⟨⟨p̃ij⟩SN ⟩ZN+1

(B.2)

It is easy to see that the average on SN doesnâ€™t depend on i, j explicitly however the result

will differ if i = j or i ̸= j. Therefore there are naively only two possible linear invariant

polynomials. We can easily compute the two independent averages on SN .

⟨p̃ii⟩SN =
1

N !

∑

σ∈SN
p̃σ−1(i)σ−1(i) =

1

N

N∑

i=1

p̃ii (B.3)

⟨p̃ij⟩SN =
1

N !

∑

σ∈SN
p̃σ−1(i)σ−1(j) =

2

N(N − 1)

∑

i<j

p̃ij (B.4)

14Actually it is not obvious that we don’t need to take another average on SN in the end but it turns out that

this is indeed not the case
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where i ̸= j in the second line. Hence all that remains is to calculate ⟨p̃ij⟩ZN+1
. If we use the

convention that the indices i, j of p̃ij are taken modulo N +1 we can write an arbitrary number

of iterations of the transformation σf in the simplified form

σk
f .p̃ij = p̃N−k+1N−k+1 + p̃i−kj−k − p̃i−kN−k+1 − p̃j−kN−k+1 (B.5)

for all k ≥ 0. We find that

⟨p̃ij⟩ZN+1
=

1

N + 1

(
N∑

k=1

p̃kk +
N+1∑

k=1

p̃k+ik+j −
N∑

k=1

p̃k+ik −
N∑

k=1

p̃k+jk

)
(B.6)

for any i, j. Hence we find that

⟨p̃ii⟩SN+1
=

1

N

N∑

i=1

⟨p̃ii⟩ZN+1
=

2

N(N + 1)


N

N∑

i=1

p̃ii − 2
∑

i<j

p̃ij


 = 0 (B.7)

⟨p̃ij⟩SN+1
=

2

N(N − 1)

∑

i<j

⟨p̃ij⟩ZN+1
=

1

N(N + 1)


N

N∑

i=1

p̃ii − 2
∑

i<j

p̃ij


 = 0 (B.8)

where we have used the traceless condition and where i ̸= j in the second line. Therefore there

are no linear SN+1-invariant polynomials of p̃. This means that CAN
as defined in (4.30) is an

extremum of any automorphic function on SO(N)\SL(N).

We will now apply the same reasoning to show that there are only two independent quadratic

SN+1-invariant polynomials of p̃. We can show that

σk
f .p̃ij p̃rs =σk

f .p̃ij σ
k
f .p̃rs

=(p̃N−k+1N−k+1)
2

− p̃N−k+1N−k+1(p̃i−kN−k+1 + p̃j−kN−k+1 + p̃r−kN−k+1 + p̃s−kN−k+1)

+ p̃N−k+1N−k+1(p̃i−kj−k + p̃r−ks−k) + (p̃i−kN−k+1 + p̃j−kN−k+1)(p̃r−kN−k+1 + p̃s−kN−k+1)

− p̃i−kj−k(p̃r−kN−k+1 + p̃s−kN−k+1)− p̃r−ks−k(p̃i−kN−k+1 + p̃j−kN−k+1)

+ p̃i−kj−kp̃r−ks−k (B.9)

For all i, j, r, s. Let us now calculate ⟨p̃ij p̃rs⟩ZN+1
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⟨p̃ij p̃rs⟩ZN+1
=

1

N + 1

(
N∑

k=1

(p̃kk)
2 −

N∑

k=1

p̃kk(p̃ik+ik + p̃k+jk + p̃k+rk + p̃k+sk)

+

N∑

k=1

p̃kk(p̃k+ik+j + p̃k+rk+s) +

N∑

k=1

(p̃k+ik + p̃k+jk)(p̃k+rk + p̃k+sk)

−
N∑

k=1

p̃k+ik+j(p̃k+rk + p̃k+sk)−
N∑

k=1

p̃k+rk+s(p̃k+ik + p̃k+jk)

+

N+1∑

k=1

p̃k+ik+j p̃k+rk+s

)
(B.10)

for all i, j, r, s. We can now calculate the average on SN+1 in an analogous way to the linear

case. Just like the linear case we can see that the average on SN will not depend on i, j, r, s

explicitly, however the result will differ depending on if some indices are equal to each other. One

can see that there are 7 different averages to compute: ⟨(p̃ii)2⟩SN+1
, ⟨p̃iip̃ij⟩SN+1

, ⟨p̃iip̃jj⟩SN+1
,

⟨(p̃ij)2⟩SN+1
, ⟨p̃iip̃jr⟩SN+1

, ⟨p̃ij p̃ir⟩SN+1
and ⟨p̃ij p̃rs⟩SN+1

where all indices are assumed to be

different. We can decompose each of them on a basis of SN invariant polynomials as

a1

N∑

i=1

(p̃ii)
2 + a2

∑

i<j

p̃iip̃jj + a3
∑

i ̸=j

p̃iip̃ij + a4
∑

i<j

(p̃ij)
2

+ a5

N∑

i=1

∑

j<l
j ̸=i
l ̸=i

p̃iip̃jl + a6

N∑

i=1

∑

j<l
j ̸=i
l ̸=i

p̃ij p̃il + a7
∑

i ̸=j ̸=m̸=l
i<j
m<l
i<m

p̃ij p̃ml (B.11)

For N > 2 we can check that only three out of the seven averages are actually independent and

they are linearly dependent with the Killing-Cartan form

trC−1
AN

p̃ C−1
AN

p̃ =
4

(N + 1)2

(
N2

N∑

i=1

(p̃ii)
2 + 2

∑

i<j

piip̃jj

− 4N
∑

i ̸=j

p̃iip̃ij + 2(N2 + 1)
∑

i<j

(p̃ij)
2

+4

N∑

i=1

∑

j<l
j ̸=i
l ̸=i

p̃iip̃jl − 4(N − 1)

N∑

i=1

∑

j<l
j ̸=i
l ̸=i

p̃ij p̃il + 8
∑

i ̸=j ̸=m̸=l
i<j
m<l
i<m

p̃ij p̃ml

)
(B.12)

as well as
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tr(C−1
AN

p̃)2 =
4

(N + 1)2

(
N2

N∑

i=1

(p̃ii)
2 + 2N2

∑

i<j

p̃iip̃jj − 4N
∑

i ̸=j

p̃iip̃ij

+4
∑

i<j

(p̃ij)
2 − 4N

N∑

i=1

∑

j<l
j ̸=i
l ̸=i

p̃iip̃jl + 8
N∑

i=1

∑

j<l
j ̸=i
l ̸=i

p̃ij p̃il + 8
∑

i ̸=j ̸=m ̸=l
i<j
m<l
i<m

p̃ij p̃ml

)
= 0 (B.13)

which vanishes once the traceless condition is imposed. This proves that there are two indepen-

dent non trivial quadratic SN+1-invariant polynomials of p̃. The other non trivial independent

polynomial is given by one of the averages, we give the simplest one

⟨(p̃ii)2⟩SN+1
=

2

(N + 1)N


N

N∑

i=1

(p̃ii)
2 − 4

∑

i ̸=j

p̃iip̃ij + 2
∑

i<j

p̃iip̃jj + 4
∑

i<j

(p̃ij)
2


 (B.14)

In the case N = 2 only the first four averages exist and they are all proportional to the Killing-

Cartan form once the traceless condition is imposed. Therefore we can recover the well known

result that A2 is a local minimum (and indeed the global minimum) for the SL(2) Eisenstein

series.
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Titre : Contraintes sur l’action des théories effectives en gravitation quantique

Mots clés : Gravitation quantique, Théorie des cordes, Supergravité

Résumé : La théorie des cordes constitue l’un des cadres les plus
populaires et étudiés pour aborder la gravitation quantique. Il est bien
connu que la limite basse énergie de la théorie des cordes donne une
large gamme de théories des champs effectives. Une manière récente
et prometteuse d’extraire des informations sur la gravitation quantique à
partir de ce paysage de cordes est le programme du “marais”. Le prin-
cipe du “lampadaire des cordes” postule que le paysage de la gravité
quantique et le paysage des cordes coı̈ncident. Dans cette thèse, nous
proposons d’étudier cette affirmation dans le cas des couplages de Wil-
son d’ordre supérieur dans le cadre très restreint de la supersymétrie
maximale.
Nous étudions d’abord la limite basse énergie des amplitudes de genre
0, 1 et 2 pour la théorie des cordes de type II compactifiée sur un tore
et les comparons respectivement aux amplitudes de supergravité maxi-
male à l’ordre des arbres, à 1 boucle et à 2 boucles. Cela nous permet
de calculer les contributions perturbatives aux coefficients de Wilson do-
minants de la théorie des cordes maximalement supersymétrique. Nous
montrons également qu’en dimension 8, les divergences logarithmiques
des amplitudes de supergravité peuvent être liées aux divergences des
couplages de Wilson. Nous donnons une prescription pour régulariser
correctement la divergence en utilisant l’amplitude de corde finie.
Nous utilisons ensuite les équations différentielles induites par les iden-
tités de Ward supersymétriques ainsi que les contraintes imposées par
la U-dualité pour dériver les coefficients de Wilson non perturbatifs com-
plets pour la théorie des cordes maximalement supersymétrique en di-
mensions supérieures ou égales à 6. Ceux-ci sont donnés pour les coef-
ficients de Wilson dominant et subdominants par des séries d’Eisenstein
et d’Epstein pour le groupe de U-dualité pertinent. Les développements
de Fourier paraboliques de ces séries peuvent alors être utilisés pour
vérifier les différentes limites de dégénérescence des coefficients de
Wilson.

Enfin, nous étudions les minima de ces fonctions sur l’espace des mo-
dules pour donner des bornes inférieures sur les coefficients de Wil-
son provenant de la théorie des cordes maximalement supersymétrique.
Cela implique de trouver les minima des séries d’Epstein pour des va-
leurs spéciales du paramètre s. Nous étendons d’abord la construc-
tion récursive de Grenier d’un domaine fondamental à presque tous
les groupes de Lie simples, ce qui nous permet de définir correcte-
ment le domaine d’étude de nos fonctions. Nous montrons ensuite que
les points symétriques sont nécessairement des extrêma des formes
automorphes et donnons des critères précis pour qu’ils soient des mi-
nima. Nous identifions aussi ces points symétriques comme des coins
de domaines fondamentaux. Nous étudions des points symétriques per-
tinents pour le cas des groupes SL(n) et SO(n, n) et donnons des ar-
guments supplémentaires portant sur la densité concernant les minima
globaux pour des valeurs élevées du paramètre s. Nous avons ensuite
vérifié notre conjecture numériquement pour les cas n = 5 pertinents
pour les dimensions 7 et 6.
Ces bornes inférieures devraient ensuite être comparées aux bornes
inférieures provenant des contraintes d’unitarité en utilisant des
méthodes de bootstrap de la matrice S. À notre connaissance, cette
analyse reste encore à être effectuée en dimensions inférieures ou
égales à 8. Nous avons montré qu’en dimension 6, les propriétés de fac-
torisation des amplitudes maximalement supersymétriques impliquent
que les propriétés d’unitarité des super-amplitudes se réduisent aux
propriétés d’unitarité des amplitudes scalaires. Ces types de factorisa-
tions existent également dans d’autres dimensions mais ne conduisent
pas toujours à de telles simplifications drastiques. Cependant, on peut
toujours se restreindre à la diffusion élastique pour rendre les calculs
numériques plus abordables. Ce type d’analyse, s’il réussit, constitue-
rait un argument en faveur de la validité du principe du “lampadaire des
cordes” dans le cas de la supersymétrie maximale.

Title : Constraints on the action of effective theories in quantum gravity

Keywords : Quantum gravity, String theory, Supergravity

Abstract : String theory constitutes one of the most popular and stu-
died framework to approach quantum gravity. It is well known that the low
energy limit of string theory gives a wide range of effective field theories.
One recent and promising way to extract information about quantum gra-
vity from this string landscape has been the swampland program. The
string lamppost principle postulates that the quantum gravity landscape
and the string landscape coincide. In this thesis we propose to study this
claim for the case of higher order Wilson couplings in the very restricted
case of maximal supersymmetry.
We first study the low energy limit of genus 0, 1 and 2 string amplitudes
for type II string theory compactified on a torus and compare them to
tree level, 1-loop and 2-loop maximal supergravity amplitudes respec-
tively. This allows us to compute the perturbative contributions to the
leading Wilson coefficients of maximally supersymmetric string theory.
We also show that in dimension 8 logarithmic divergences of the super-
gravity amplitudes can be linked to divergences of Wilson couplings. We
give a prescription to properly regularise the divergence by using the fi-
nite string amplitude.
We then use the differential equations entailed by the supersymmetric
Ward identities as well as the constraints imposed by U-duality to derive
the full non perturbative Wilson coefficients for maximally supersymme-
tric string theory in dimensions higher or equal to 6. These are given
for the leading and next to leading Wilson coefficients by Eisenstein and
Epstein series for the relevant U-duality group. The parabolic Fourier
expansions of these series can then be used to check the different de-

generation limits of the Wilson coefficients.
Finally we study the minima of these functions on moduli space to give
lower bounds on Wilson coefficients coming from maximally supersym-
metric string theory. This implies finding the minima of Epstein series
for special values of the s parameter. We first extend Grenier’s recursive
construction of a fundamental domain to almost any simple Lie group
which allows us to properly define the domain of study of our functions.
We then show that symmetric points are necessarily extrema of auto-
morphic forms and give precise criteria for them to be minima. We also
identify these symmetric points as corners of fundamental domains. We
study relevant symmetric points for the case of SL(n) and SO(n, n)
groups and give additional density arguments regarding the global mi-
nima for large s parameter. We then checked our conjecture numerically
for the cases n = 5 relevant for dimensions 7 and 6.
These lower bounds should then be compared to lower bounds coming
from unitarity constraints using S-matrix bootstrap methods. As far as
we know this analysis still needs to be performed in dimensions lower or
equal to 8. We have shown that in dimension 6 factorisation properties of
maximally supersymmetric amplitudes imply that the unitarity properties
of superamplitudes reduce to the unitarity properties of scalar ampli-
tudes. These kind of factorisations also exist in other dimensions but do
not always lead to such drastic simplifications. However one can always
restrict to elastic scattering to make the numerics bearable. This kind of
analysis, if successful, would be a strong argument for the validity of the
string lamppost principle in the case of maximal supersymmetry.
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