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Introduction

Since the introduction of this terminology in the late 1950s, Artificial Intelligence (AI) has
undergone a significant evolution, giving rise to a multitude of technological applications
in recent times, whether originating from laboratories or industrial warehouses, deployed
or prototypical: Embedded systems for automated transportation;1 humanoid robots for
nursing,2 playing football,3 or just for impressive stunts performing;4 manufacturing ma-
chines; conversational agents;5 face recognition on smartphones; recommendation systems
on online social networks; and so forth. While this list is far from being complete, these
recent advances in AI demonstrate its growing importance in our everyday lives, by first
automatizing and accelerating a variety of complex tasks that were originally performed
by humans themselves, then by creating novel tools favoring the emergence of new uses,

1Some of them have already been integrated in public rail transportation vehicles, and more recently,
into prototypes of automated cars, such as those proposed by the Google and Tesla companies.

2In order to address the shortage of nursing staff to care for its growing elderly population, Japan has
designed several prototypes of nursing robots able to transport patients and to assist with their bedding,
through its national laboratories RIKEN. The most famous one is Robear, which was first conceived in
2015.

3In order to boost global research in robotics, an annual soccer competition between humanoid
robot teams, called RoboCup, has been created to test the advancements in this domain. The research
underpinning this competition notably aims to integrate into such robots diverse cognitive operations
that are required to move and play soccer, such as appropriating the space of the soccer pitch, keeping
the ball and interacting with other robots in order to pass the ball or not. The objective is to surpass
the capabilities of a human team (one day). The well-know NAO, which was first conceived in 2007 by
the French company Aldebaran, figures among the models presented at this competition figures.

4Commissioned by the Defense Advanced Research Projects Agency (DARPA) of the United States
of America, the company Boston Dynamics has designed a humanoid robot called Atlas that is able to
run and to jump over numerous obstacles. A 2021 demonstration of Atlas in motion is available at the
following link: https://www.youtube.com/watch?v=tF4DML7FIWk.

5The first conversational agent Chat-GPT (for Chat Generative Pre-trained Transformer), launched
by OpenAI in November 2022, has encountered such a large success that rival Big Tech companies have
rapidly released their own ones, including Gemini by Google DeepMind, first released as Bard in April
2023. These major events have contributed to launch a “race” for the most competitive, powerful Large
Language Model (LLM) worldwide. In line with this trend, the French start-up Mistral AI has also
provided its own eponymous LLM in September 2023, one of the most powerful one in France, available
in numerous versions.

https://www.youtube.com/watch?v=tF4DML7FIWk
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production, and consumption modes, as evidenced by recent prowesses in the digital and
web worlds.

Despite a sporadic development punctuated by winters and springs, from the previously
successful expert systems to the current deep neural networks (Cardon et al., 2018), artifi-
cial intelligence, especially its digital forms, has constantly aroused the curiosity of social
sciences. From the physical construction of high-performance computing infrastructures
to the symbolic representations of knowledge produced by intelligent algorithms manipu-
lating data, which then return information or actions at the request of users through their
personal computers, AI is a complex chain of many interdependent subsystems (Crawford
and Joler, 2018), whose multiple issues can be the subject of separate studies. In partic-
ular, as it has become a central component of the socioeconomic development of multiple
nations6 in recent days, almost concomitantly with the rise of deep learning techniques
(Klinger et al., 2018; LeCun et al., 2015) and its applications in diverse fields since the
early 2010s, notably in the processing of large-scale image and audio databases for pattern
or speech recognition and classification, the contemporary forms of AI have raised tricky
questions regarding its societal impact. The latter concern ethical and transparency chal-
lenges (Burrell, 2016; Jobin et al., 2019; Kerr et al., 2020), the transformation of labor and
employment (Boyd and Holton, 2018; Frank, Autor, et al., 2019; Graetz and Michaels,
2018), especially in the context of the recent platformization of economy and work (Le
Ludec et al., 2020; Miceli et al., 2024), and the perpetuation and reinforcement of existing
inequalities of various kinds, as well as the emergence of new ones (Beer, 2017; Joyce et
al., 2021; Polcumpally, 2021), among many others. Meanwhile, these last dimensions are
giving rise to special sociotechnical imaginaries in society (Sartori and Bocca, 2023), for
instance the augmentation of humans in various daily tasks, which are often viewed pos-
itively, but also the replacement of workers and the inability to distinguish a humanoid
robot from a human, which is especially related to the fear of a future “technological
singularity”7 achieved by AI. Finally, these challenges tend to deconstruct the notion of
AI as a purely technological phenomenon in favor of a sociotechnical perspective, at the
interface of multiple “technical and social practices, institutions and infrastructures, pol-

6As AI is now a worldwide challenge, its wide impact across many societal sectors (including education,
research, digital services, manufacturing, etc.) has led many national organizations to produce reports in
order to evaluate the current state of research on the subject and the production of associated technological
tools, and to delineate the contours of future research and applicative enterprise, as well as the future of
work. This is notably the case in Australia (Hajkowicz et al., 2022), France (Aghion and Bouverot, 2024;
Villani et al., 2018), China (CISTP, 2018), which is establishing itself as a world leader in AI research
and applications (Baruffaldi et al., 2020), and the United States of America (The White House, 2019).
Some international organizations and companies have also provided reports at the global scale, such as
the Organisation for Economic Co-operation and Development (OECD), where Baruffaldi et al. (2020)
have conducted a bibliometric study of the state of the art of recent AI research.

7A scenario in which AI would be more intelligent and powerful than humans, and potentially able
to annihilate them. This specific imaginary is largely shaped and maintained by multiple cultural pro-
ductions (books, movies, video games, and so forth), although it is not yet sufficiently developed in its
current form to reach this technical stage.



Introduction 3

itics and culture” (Crawford, 2021, p.8), and which attracts significant interest from the
broad field of science and technology studies (STS).

Scientific activity is no exception to this increasing AI hype, as testified by an abundant
literature that demonstrates its wide diffusion at various scales into the science system.
Supported by research programmes and strong public-private partnerships in recent years,
AI has indeed become an essential part of basic research, in almost all scientific disciplines
(Gao and Wang, 2023) and in the research and development sector within specialized com-
panies (Ahmed et al., 2023; Frank, Wang, et al., 2019), with proven technical applications
in several areas (Xu et al., 2021).

Furthermore, by being part of the recent rise of a data-driven research mode, especially
its facets related to machine learning and neural network algorithms that allow its effi-
cient processing, AI has itself raised a debate about its ability to foster innovation, even to
shape a new paradigm of knowledge production, as Kitchin (2014) has stipulated. Some
authors have suggested that AI is effectively competing with well-established methods
and technical tools within various scientific disciplines that choose to adopt it for some of
their research branches (Bianchini et al., 2022; Cockburn et al., 2018). Without claiming
that AI will completely replace the traditional analytical frameworks used in these disci-
plines in the near future, crucial questions have nevertheless arisen about how precisely
AI might transform these traditional, disciplinary-specific ways of doing research. For
instance, following the categorization of scientific creative processes proposed by Boden
(1998), does AI act as an intermediary, facilitating combinations8 of pre-existing knowl-
edge from distinct disciplines, thus contributing to the reshaping of traditional disciplinary
boundaries at the cognitive level? Or, by introducing novel analytical frameworks into a
given discipline, is it able to open up new fields of knowledge to be explored, either within
its original conceptual basis (exploration) or in new ones corresponding to novel research
paths (transformation)?9

These broad challenges are the subject of an ongoing investigation of the diffusion and
epistemic impact of AI in science, of which this thesis is a part. Combining two projects,
named ScientIA10 and EpiAI,11 this study is conducted in the GEMASS lab, where the
present author of this manuscript has pursued his doctoral journey, with the support of

8Jones, Mukherjee, Stringer and Uzzi (2015; 2013) have examined this aspect by quantifying the im-
pact of conventional or atypical, innovative combinations of prior knowledge, especially with a large-scale
citation network analysis considering individual scientific publications, while ignoring their respective
disciplinary affiliations.

9Kauffman (2000) has analogously conceptualized such phenomenon as the expansion of the adjacent
possibles of the discipline.

10Project funded by the French Agence Nationale de la Recherche (ANR) and dedicated to the study
of applications and impact of AI in science. More details are available at the following address: https:
//anr.fr/Projet-ANR-21-CE38-0020.

11Official name of the doctoral fellowship funded by the Mission pour les Initiatives Transverses et
Interdisciplinaires (MITI) of CNRS.

https://anr.fr/Projet-ANR-21-CE38-0020
https://anr.fr/Projet-ANR-21-CE38-0020
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other partners. In line with a major sociological research on the subject (Z. Liu, 2021;
Woolgar, 1985), it intends first to offer recent, updated perspectives on AI within the
scientific sphere. But what interests us more is twofold. On the one hand, these projects
aim to examine the extent to which AI is disseminated in science, especially by identifying
the research domains in which it is most prevalent today and the dynamics of its insertion
within them. On the other hand, referring to the aforementioned questions, they seek
to investigate whether AI has contributed (or not) to transforming the methodological
and knowledge frameworks of such domains as they develop, as well as their respective
organisations of scientific work and institutions, notably through the launch of dedicated
scientific teams and laboratories within these domains, academic journals and conferences
for communicating results, funding, university teaching programmes, perhaps learned
societies, etc.

The first of the last two axes of this enterprise, namely the large-scale diffusion of AI in
science, has already been addressed in a recent scientometric study that drew a dynamic
cartography of the AI-related literature published since the 1970s, resulting in a publi-
cation that has been co-authored by the author of this thesis (Gargiulo, Fontaine, et al.,
2023). In this paper, AI is viewed as a set of concepts, mainly algorithms and computa-
tional methods, that we can recover in scientific publications accessible through standard
bibliometric databases. It especially advances two main results that have informed the
main research lines of this thesis. First, AI has originated within an interdisciplinary
research environment before experiencing a disciplinary narrowing around three main do-
mains from the early 1980s, namely mathematics, statistics, and computer science. This
narrowing has come to an end in the 2010s in favour of a new diffusion to a growing num-
ber of external domains. This long, albeit transient, transformation of the disciplinary
environment surrounding AI research, which was necessary for its recent theoretical foun-
dations in connectionist approaches, underlines that AI has become a set of specialized
knowledge and tools designed by groups of scientists populating the aforementioned do-
mains, alongside engineering ones, and then applied by specialists outside these domains
for their own research purposes.

Although not conceived as such in our paper, this finding supports an instrumental con-
ception of AI, which is typical of a research-technology regime, as defined by Shinn and
Joerges (2002). Alternatively called transverse science, this analytical reading grid en-
ables the comprehension of AI as a research instrument, here defined as a set of knowledge
and technological devices capable of enhancing research and created in a moving socio-
epistemic environment situated at the interface of diverse disciplinary (sub-)communities,
which draw upon multiple knowledge universes and support institutions. As it is able to
navigate throughout these communities, the AI research environment may prefer some of
them at different stages of its development for many reasons, including the alignment of AI
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with external disciplinary research objectives or the fulfillment of specific technical needs
for diverse research. More importantly, according to these authors, the results produced
within such a socio-epistemic environment are devoted to be disseminated beyond this
environment throughout science, and to be adapted to the research objectives of different
disciplines, at which stage the instrument achieves a generic character (Hentschel, 2015).
This conceptual framework, especially the notion of genericity, is particularly suited to
describing AI as spreading ideas and technologies in science. For example, the aforemen-
tioned stage of diffusion of AI since 2010 suggests that the latter tends to become generic
after an extensive development within computer science, mathematics, and statistics.

However, a further analysis conducted in this paper has revealed that the distribution
of AI-related publications across bounded disciplines remains rather uneven. It thus
appears that some of the latter are more inclined to use AI for their own goals than
others, such as astrophysics, engineering, medical imaging, and geography, as opposed
to those in the arts, humanities, and social sciences. This finding thus challenges the
supposed genericity character mentioned above, and leads to question the reasons that
would foster the insertion of AI within a given scientific discipline, such as its cognitive
proximity with the latter, a prior vernacular IT-based12 culture that allows to easily
master AI, fruitful collaborations within specific research arenas due to the permeability
of existing disciplinary boundaries, or something else.

Conceptualization and research questions

Following the aforementioned questioning that has emerged in the course of the inves-
tigation outlined above, this thesis seeks to gain insight into the partial integration of
AI in science, which concerns only some disciplines, as described in our previous paper
(Gargiulo, Fontaine, et al., 2023). In line with an extensive literature on the diffusion of
innovation in science and beyond (see, for example, Acemoglu et al., 2016; Cheng et al.,
2023; Katz et al., 1963; Uzzi et al., 2013; Zhai et al., 2017), we need to propose an ap-
propriate analytical framework for measuring AI diffusion in terms of various disciplinary
subtleties, in order to explain the aforementioned pattern.

As previously stated, this thesis conceptualizes AI as a research-technology enterprise
(Hentschel, 2015; Marcovich and Shinn, 2012; Shinn and Joerges, 2002), with a partic-
ular focus on the final phase of its development, namely genericity, here understood as
a marker of both the integration of related knowledge, technologies, and practices into

12Information Technology, which encompasses all the knowledge related to computer science and all
the possible technological infrastructures used to perform various digital work at different scales, from
small ones with individual computers to heavy ones with supercomputers.
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several different disciplines,13 and their subsequent diffusion throughout these disciplines.
More precisely, we propose to define genericity with three criteria, namely 1) the capac-
ity of the instrument to adapt and be used in various disciplinary research orientations
(termed disciplinary adaptation), 2) the disciplinary mobility of the practitioners of this
instrument in different research environments, involving their ability to initiate collab-
orations with non-specialists in order to make them adopt AI in their regular research
practices (social adoption), and 3) its capacity to incorporate the conceptual ensemble of
the discipline within which it is used, thereby becoming a significant part of the creation
of new knowledge in it (epistemic integration) (Cheng et al., 2023). We thus assume that
AI is generic in a given discipline if it fulfills these criteria.

Initially motivated by applying this model to examine the spreading dynamics of AI
within a range of disciplines that were presumed to be distant in terms of knowledge and
research methods, and not particularly aligned with mathematics, statistics, computer
science and engineering a priori, this thesis instead focuses on a broad research domain
actually gathering multiple disciplines (or some parts of them) around common topics,
neuroscience. Although recognized as a unified entity in science, with dedicated labora-
tories and research facilities, an international Society for Neuroscience14 (a French one15

also exists), and benefiting from a dedicated terminology in standard academic journals’
classifications available on major bibliometric databases, neuroscience is actually divided
into several sub-domains16 involving many disciplines. For example, computational neuro-
science, which aims to model the neural activity and information transmission throughout
the central nervous system, brings together computer scientists, mathematicians, physi-
cists and biologists, while neuropsychology, which explores the correlations between hu-
man behavior and diverse physiological brain and body signals, gathers several fields of
psychology and clinical specialties, notably neurology and psychiatry. Therefore, for the

13As Sugimoto and Weingart (2015) have highlighted, the notion of discipline is subject to a wide range
of definitions, which have led to numerous alternative names in a substantial literature. These multiple
definitions indeed depend on the dimensions along which their creators observe the scientific activity
and how they describe its structure. Commonly, a discipline may designate a unified group of scientists
working on separating from others by sharing a cognitive basis, practices, and traditions, by developing a
common communication language and media, such as journals and conferences, and by institutionalizing
and making recognized and legitimized within the science system under a common identity. However,
despite the accuracy of the attempt of definition, it encompasses many aspects that are rather difficult
to combine and measure together in practice, even in sociological or scientometric research. Although
the name “discipline” has already been mentioned earlier in the present introduction, also alternatively
named as “research domains” or “research areas” to designate distant communities of knowledge, here
we restrict our definition to a group of scientists who claim a common identity and are gathered around
coherent, bounded sets of knowledge and academic journals. Although not universal, this last definition
selects only some of the aforementioned dimensions we deem useful to address the research questions
outlined in this thesis, as well as meeting scientometric requirements, as detailed later in this manuscript.

14Further details on its governance and actions can be found on the following website: https://www.
sfn.org/.

15See also: https://www.neurosciences.asso.fr/.
16The Wikipedia webpage gives an exhaustive list of existing research branches: https://en.wikipedia.

org/wiki/Neuroscience (consulted in September 13, 2024, last modified in August 16, 2024).

https://www.sfn.org/
https://www.sfn.org/
https://www.neurosciences.asso.fr/
https://en.wikipedia.org/wiki/Neuroscience
https://en.wikipedia.org/wiki/Neuroscience
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sake of clarity, we designate neuroscience as a multidisciplinary research domain, or al-
ternatively as a field of research,17 which covers all studies of human brain cognition and
the central nervous system, of their physiological mechanisms in the human body, their
psychological and behavioral translations, and the potential damage of this important
body system.

Moreover, neuroscience and AI share some parts of their respective history since the
emergence of the latter during the 1940s and 1950s, with the support of cybernetics and
distributed cognition on neural networks at that time (Hassabis et al., 2017; Macpherson
et al., 2021). Without delving too far into the past, and despite the apparent proximity of
neuroscience to AI’s foundations as outlined in the precited literature, we aim to trace the
development of AI within contemporary neuroscience since the early 1970s, by considering
the latter as an exogeneous field of application of AI. We assume this (big) approximation,
given that AI-related publications within the neuroscience literature account for only 3%
of it between 1970 and 2020, as we will show further in this manuscript, especially in
Chapter 2. Despite this relatively modest proportion of such publications, neuroscience
remains one of the research fields with the highest concentration of AI-related publications
in science, according to Gargiulo et al. (2023). This hence renders neuroscience a suitable
case study for investigating the diffusion of this instrument within a given host research
domain.

As the main research orientations and paradigms of both AI and neuroscience may
have changed from these times up to recent days, it seems plausible to hypothesize that
the former has received varying degrees of attention from the latter in the course of
their respective development – and vice versa –, which may have accelerated or slowed
down the genericity dynamics of AI into neuroscience. An underlying goal of this study
is therefore to identify the periods in which successful diffusion of AI has occurred (if
they exist), suggesting momentary compatibilities of the main research orientations of
neuroscience and AI, high momentary mobilities of AI research-technologists18 towards
neuroscience and the launch of new collaborations that would foster the appropriation of
AI by neuroscientists, and potential reconfigurations of various neuroscientific conceptual
ensembles and the creation of new knowledge spaces to be explored due to the epistemic
integration of AI within this field at specific times. This thesis thus intends to assess the
extent to which AI is generic in all the neuroscience, or whether it is beneficial only to
some of its parts that would correspond to distinct disciplinary areas or smaller specialties.
In this case, the first genericity criterion of disciplinary adaptation can thus be relaxed in

17This designation is in line with the classification standards of the scientometric databases used
throughout this thesis. As it will be discussed in the following lines, neuroscience is either a field of study
for the Microsoft Academic Knowledge Graph (MAG), or simply a field for the recent OpenAlex topic
categorization (OurResearch, 2024).

18Designated as such by Marcovich, Joerges and Shinn (2002, 2012).
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favor of a more holistic one, termed domain adaptation in what follows, in order to study
the impact of AI in neuroscience as a whole.

With this case study, this thesis will answer the two following major research questions,
which will be developed further into sub-questions:

• Is AI being adopted by the whole neuroscientific community, or is it solely aimed to
specialists in related knowledge and technologies?

• Is AI really becoming generic as it has developed in this domain since the 1970s?

Methodological positioning

How might the three genericity criteria presented above be measured in a field as large as
neuroscience over a period of 50 years? As these criteria correspond to multiple observa-
tion scales, different methodologies are therefore required to approach them.

A first, mainly derived from the field of quantitative science studies (Fortunato et al.,
2018), consists of an extensive scientometric analysis of a vast corpus of scientific publi-
cations (articles, conference proceedings, patents, preprints, and other materials) repre-
senting neuroscience since the 1970s, in order to construct a preliminary overview of the
diffusion of AI within the field. Accessible through numerous bibliometric databases, such
as the Web of Science (WOS), Scopus, Semantic Scholar, Dimensions, and the recently
launched OpenAlex, these publications are wealthy collections of various metadata from
which we can build aggregated structures modeling some knowledge encoded in our cor-
pus. In particular, the sets of authors who have co-signed publications reveal together
a large dynamic collaboration network, which is commonly used as a proxy for studying
the scientific community associated with the field under study; the sets of bibliographical
references and citations both allow the linking of publications in order to study knowledge
transfer from one to another and the disciplinary structure of the field; the textual ele-
ments of the papers (titles and abstracts) can be probed by natural language processing
algorithms in order to provide keywords and expressions that represent concepts, whose
co-occurrences within the publications originate a semantic network, which provides in-
sights into the knowledge structure of the field and its evolution over time. Thus, in order
to situate AI within these structures, it is first necessary to delineate a specific subset
of AI-related neuroscientific publications, which is characterized by its own disciplinary
environment (recall that neuroscience is multidisciplinary), its own scientists involved,
and its conceptual basis within the field. Then, with the two obtained corpora of AI-
related and non-AI publications, we propose to explore the insertion dynamics of AI in
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neuroscience through the interactions between the respective networked structures built
from these corpora (citation, collaboration, and semantic networks). For instance, one
of our objectives is to determine whether the aforementioned features extracted from AI-
publications tend to be incorporated into, or even merged with, those of neuroscience, or
whether they remain distinct from the domain or behind the field despite its insertion
(e.g., within a dedicated research subarea). This can be achieved with the help of various
numerical indicators that allow to describe and model some knowledge diffusion dynamics
on these data structures.

To tackle these technical challenges, a comprehensive corpus of neuroscientific articles
published between 1970 and 2020 has been extracted from a bibliometric database that is
no longer available, the Microsoft Academic Knowledge Graph (MAG). The construction
of this corpus, as well as the numerous data structures used throughout the following
lines, including the citation and co-authorship networks, are developed in Chapter 2. In
order to validate or test the robustness of some results introduced throughout this thesis,
we have also used the more recent database OpenAlex, which reinvests the original MAG
database, curates it, updates it, and adds new metadata of interest since 2022 (Priem
et al., 2022).

With such a corpus, the macro-scale approach exposed above enables us to evaluate
the degree of genericity of AI within neuroscience, according to the three criteria defined
in the previous conceptualization part. First, using a large-scale, temporal citation net-
work, we will study the adaptation of AI to the disciplinary ecosystem of neuroscience,
asking in particular whether AI has attracted some related disciplines situated outside
the disciplinary context of the host field since the 1970s, and whether it has contributed
to the potential reorganization of all these disciplines, established or newly introduced,
around new research subjects that respond to some epistemic objectives of neuroscience.
Second, using a co-authorship network, we will observe the social adoption of AI through
the dissemination of related techniques throughout the neuroscientific community, and we
will specifically identify spreader scientists driving such a dynamics – should it emerge –
in order to examine their respective profiles, with a particular focus on their disciplinary
backgrounds and trajectories, as well as the occurrence of a “methodological shift” towards
AI in their papers published over the course of their careers. Finally, using a semantic
network, we will study the manner in which AI-related knowledge interlinks with the
neuroscience conceptual network over time, which provides some hints to evaluate the
epistemic integration criterion. The latter study will be completed through the appli-
cation of natural language processing techniques applied to corpus’ titles and abstracts,
using, in particular a recent BERT-inspired large language model (LLM) trained with
scientific databases (Cohan et al., 2020; Devlin et al., 2019), in order to model the knowl-
edge structure of neuroscience through a dynamic cartography (resembling a geographic
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map). Such a knowledge representation would be beneficial to confirm the analyses of
the first and third exposed genericity criteria, by exploring the epistemic subspaces of
neuroscience where AI is mostly implanted.

However, such a quantitative, data-driven approach that only focuses on the knowledge
embedded in a big scientific corpus neglects several important dimensions of the construc-
tion of AI at the micro-scale. In particular, with regard to the criterion of social adoption,
mentions of AI concepts in articles do not necessarily reflect its complete penetration in
daily research practices of all the neuroscientists who have co-signed AI-related works.
Indeed, accurately assessing this criterion requires identifying the precise use of digital
tools by researchers in teams or laboratories, how these researchers perceive these new re-
search instruments, what the tasks concretely operationalized by these scientists are and
how they are distributed within the scientific team under study, and finally how these
elements could together contribute to forge a dedicated professional identity, or a com-
munity of experts around a common technological culture (Forsythe, 1993a). Although
recent advances in scientometrics, social network analysis, natural language processing,
and sentiment analysis are now able to capture these dimensions in some metadata of
scientific publications, albeit with limited scope, we can approach them more precisely
through laboratory ethnographies and interviews with scientists themselves in various
fields of research that are welcoming AI (Laudel and Gläser, 2007).

To this end, we have conducted interviews in spring 2021 with scientists affiliated with
a multidisciplinary team, Aramis, which is a member of the Institut du Cerveau (ICM, or
Paris Brain Institute in English) based at the Pitié-Salpêtrière Hospital in Paris. Com-
bining academic and clinical research, the team specializes in the field of computational
neuroscience, notably in the precise prediction of the onset of neurodegenerative diseases
(mainly Alzheimer’s, Parkinson’s, Huntington’s) with the help of in-depth analyses of
large, heterogeneous medical data acquired by worldwide clinical trials. Consequently,
these research purposes motivate the design of technical applications, often in the form of
software enabling the earlier detection of patients as soon as first warning signals occur,
and to better monitor their evolution and care them. Gathering specialists from computer
scientists to neurologists combining both medical and research activities, such a team al-
lows us to enter the realm of AI research practiced within the neuroscience universe.
Although this investigation remains somewhat limited to evaluate the large-scale disci-
plinary adaptation and epistemic integration of AI in neuroscience, as it reflects only the
state of AI research in a single laboratory at a given time, it offers valuable insights into
the social adoption of AI in terms of daily research practices and interdisciplinary work
(Marcovich and Shinn, 2011; Sedooka et al., 2015; Stokols et al., 2008), notably through
personal narratives that depict interactions between AI experts and non-specialists.
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Falling within the domain of STS (Hackett, Parker, et al., 2017) and drawing upon
effective methods from computational social science (Conte et al., 2012; Lazer et al.,
2009) and big data (Bastin and Tubaro, 2018; Do et al., 2022), this thesis thus adopts
a top-down, mixed-methodological, multi-data approach to study the genericity of AI in
neuroscience.

Outline of the thesis

The manuscript is divided into five chapters, completed at its very end with appendices
that mainly expose additional confirmation results and methodological details.

In Chapter 1, we introduce a concise history of the concept of AI, an overview of
the literature on the diffusion of AI, and a detailed section on the research-technology
regime that has been mentioned earlier in this introduction and adopted to represent
AI as a research instrument in science. The following Chapter 2 echoes the preceding
section on methodological positioning and exposes the successive steps of collection and
preprocessing of scientometric data and qualitative interviews required to address the
main research questions that have been established above.

The following three chapters examine the data and offer responses to these questions.
Chapter 3 focuses on the first two genericity criteria described above, namely disciplinary
integration and social adoption, and is partly related to a work published (and revised
here) by the author of this thesis (Fontaine et al., 2024a). Drawing upon the evolution
of the citation and collaborative organization of neuroscience, it introduces, on the one
hand, the degree of embedding of AI into the multidisciplinary context of neuroscience
and, on the other hand, its diffusion throughout the neuroscience community. This chap-
ter will also observe the evolution of the internal disciplinary configuration that shapes
neuroscience over time, and whether the gradual implantation of AI modifies it. More
precisely, these goals translate into the two following sets of questions:

1. What is the disciplinary landscape around neuroscience research which is using AI?
How does such research fit into the disciplinary objectives of neuroscience?

2. Who are the actors leading AI research in this field? Is AI-related knowledge
widespread throughout the whole scientific community?

Chapter 4 presents a knowledge cartography of neuroscience, generated with advanced
lexical embedding techniques, in order to identify the knowledge areas where AI is mainly
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used and to assess whether the results of AI research within these areas are disseminated
to the rest of neuroscience. We especially ask the following research questions:

3. Which neuroscience areas are attracting AI knowledge and devices the most? Does
AI fit into the conceptual universe of these areas?

4. How are the AIs produced in these subfields promoted into the whole discipline?

Through these questions, we will test the hypothesis that AI-related knowledge and tech-
nologies are better suited to address some neuroscience subjects than others over time, as
well as their ability to be transferred to different subfields of neuroscience.

Chapter 5 introduces some perspectives derived from the aforementioned short-term
investigation conducted in spring 2021 within the Aramis team. Through interviews’
excerpts reflecting some pieces of research activities led by the scientists within this team,
we aim to answer the following research questions:

5. What kinds of scientists use AI? Do some of them have a prior scientific background
that facilitates its handling?

6. Has AI transformed the practices of involved researchers?

7. How do they perceive AI, especially in terms of the future of scientific and medical
work?

We finally conclude this thesis in a final dedicated part that summarizes the main
findings according to the main questions that were posed above. We also suggest some
perspectives and future work to complement this research.



1
Artificial Intelligence: a sociotechnical, multifaceted

object

Même si cela peut paraître extravagant [...], il n’est
pas si sûr que résoudre la moitié des Principia Math-
ematica [A. N. Whitehead et B. Russell] nécessite une
plus grande intelligence qu’aller chercher son cour-
rier dans sa boîte aux lettres.

Borrowed from (Vayre, 2021)

Artificial Intelligence (AI) proves to be multiple in the scientific field (Z. Liu, 2021).
Originally conceived as a whole field of research with a dedicated research programme, as
proposed by its pioneers at its very beginning (McCarthy et al., 2006 [1955]), AI has sub-
sequently evolved into a set of digital technologies that are mainly used by multi-skilled,
proficient individuals who share a common set of technical practices and a common met-
alanguage to solve various typical problems in the scope of computer science and mathe-
matics (often related to optimization, control theory or decision making) and who are able
to work in a variety of disciplines, and even various professional environments (Forsythe,
1993a; Kirtchik, 2019). Being not only a set of conceptual and technical expressions
anchored in today’s daily research practices in academic laboratories, AI is also, at the
macro-scale, a broad technoscience whose development effectively takes place not only in
the academic sphere, but also within data-producing companies, mainly the Big Five tech
companies1 (Ahmed et al., 2023; Crawford and Joler, 2018) and with the support of public
policies to deploy AI-related technologies in various societal sectors, such as education,
healthcare, agriculture, transportation, and national defense, as listed in the French par-
liamentary report by Villani et al. (2018). Even since its inception (Cardon et al., 2018;
Vayre, 2021), AI has been shaped by a multitude of actors, academic and non-academic,
who lead and work in corresponding research and technological deployment, and who

1Alphabet (including Google), Amazon, Apple, Meta (including Facebook) and Microsoft.
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contribute to develop interaction arenas2 between diverse professional worlds, whether
in the design or promotion of AI in society. Driven by strong technological, economic
promises3 formulated by industries and public policies, such technoscientific arenas influ-
ence particularly the ways of conducting and organizing research within dedicated teams
or laboratories, the allocation of funding, the implementation of technological infrastruc-
tures, and also the establishment of dedicated university courses to meet the staffing needs
of academic research and industrial engineering.

In light of these assertions, it can be seen that AI has undergone an expansion in scope
since its creation, accompanied by a notable semantic shift, thus offering various inter-
pretations of it. Consequently, before delving into the methods and results constituting
the core of the manuscript, this chapter provides a state of the art of social studies of
AI in order to situate our discussion in this field. After a brief summary on the history
of AI-related ideas and its main advancements since the 1950s, as presented in Sect. 1.1,
we expose some studies on the social construction of AI in Sect. 1.2 since its first major
applications in the 1970s and 80s – although they did not encounter long-term success.
Then, in Sect. 1.3, we review the different frameworks to apprehend the diffusion of AI
in science at various scales, including the whole science field and individual disciplines.
Finally, we detail in Sect. 1.4 the notion of research-technology that has been presented
in the Introduction. This concept enables the analysis of the social, institutional, and
epistemic organization of a type of research that is committed to the conception of an
instrument for various disciplinary purposes outside the socio-epistemic context in which
it has been developed, and also outside academia – such as laser beams, X-rays, or com-
puters (Hentschel, 2015; Marcovich and Shinn, 2017). This conceptualization of AI inside
a research-technology enterprise allows various interpretations of the phenomena we can
observe in both the bibliometric data representing the neuroscience literature and the
interviews conducted with neuroscientists in contact with AI.

2As an example, Rosental (2002) has studied the arena of demonstrations of software and machines
at dedicated conferences, in order to stimulate the interest of industrial investors.

3In the context of the recent rise of technoscientific fields, Cointet, Joly and Raimbault (2021, 2016)
have studied the construction of a specialty, namely synthetic biology, which gathers heterogeneous
profiles, from biologists to engineers, in order to design prototypical devices of DNA assembling. Given
the numerous potential applications, not only in genomic and sequencing but also beyond, an approach
encompassing AI as such is valuable for a wide range of future works on the subject, which would focus
on the production arena outside standard academic research, and whose potential applications are not
limited to natural fields of applications of AI, mainly related to engineering and computer science. In
this sense, the notion of technoscience is similar to the research-technology regime advanced by Shinn
and Joerges (2002).
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Figure 1.1: State of the art of the scientific literature on AI published between 1970 and 2017,
aggregated4 into 15 specialties. A link between two classes is the number of terms they share,
based on a co-occurrence network of AI-related terms in this literature. Source: Gargiulo et al.
(2023).

1.1 A brief history of AI

Known today as a combination of robotics, software and algorithms, as shown in Fig. 1.1,
AI is first and foremost the result of a rapid, multidisciplinary scientific advancement on a
human scale. A plethora of books and reviews on the subject report that its development
trajectory can be divided into three main movements that dominated the scientific arena
at different times, namely cybernetics, symbolic and connectionist, in the wake of numerous
controversies and tensions that have opposed them – especially the last two (Andler, 1990;
Buchanan, 2005; Cardon et al., 2018; Ganascia, 1993; Olazaran, 1996; Smith, 2019; Vayre,
2021).

4Alternatively, by analogy with the studies of knowledge flows between scientific specialties (Di Bona
et al., 2023; Sun and Latora, 2020), Liu et al. (2020) have proposed a “citation involved Hierarchical
Dirichlet Process” model to construct the evolution path of some AI-related fields of study, which are
subject to several reconfigurations of their scope over time as new concepts are added or removed, thus
implying a potential semantic turn of these fields. For instance, the field of machine learning, which has
first emerged between 1996 and 1999 according to their model, has broadened its scope by successively
attracting the field of bayesian networks and some parts of pattern recognition [for] image analysis during
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The construction of AI first owes much to cybernetics, a multidisciplinary research move-
ment at the crossroads of biology and information science, whose aim was to understand
the mechanisms of information transmission between the components of a system, such as
living organisms or robots. Norbert Wiener was one of the prominent figures of this inno-
vative movement, who established the principle of feedback loop,5 namely the capability of
a system to adapt its future behavior and actions according to the information circulating
between its sub-systems, thus inducing interactions between micro and macroscales of the
system, or coming from the outside. Cybernetics encountered great interest in the 1940s
and early 1950s, thanks to the Macy Conferences that laid its formation, whose members
represented the “first [wave of] cybernetics” (Léon, 1996). After an attempt to legitimize
itself in the international scientific community as a new metalanguage capable of unify-
ing all the sciences (Bowker, 1993; Gerovitch, 2001), the movement gradually faded in
the face of the simultaneous advent of neuroscience and, in particular, cognitive science.
Nevertheless, cybernetics preceded the emergence of a “general systems science”, which
could also be compared to the field of complexity science (Simon, 1962), and also helped
to establish the field of robotics. Many achievements marked this stage, notably the
derivation by Warren S. McCulloch and Walter H. Pitts (1943) of the first mathematical
models of signal transmission on different neural circuit architectures, and the conception
by Frank Rosenblatt (1958) and his team at the Cornell Aeronautical Laboratory of the
perceptron, which is a machine based on the former neural network models applied to
the formulation of responses after excitation of a retina that sends electronic signals to
the neural circuit, with a learning process based on a back-propagation of information
between the two intermediate layers constituting the circuit (see Fig. 1.2). Cybernetics is
thus a precursor of the connectionist movement of AI, the field of information processing
in the brain and machines under a paradigm centered on learning.

In the same vein as cybernetics, which was promoted by the aforementioned Macy
conferences, the notion of “artificial intelligence” per se has entered the scientific field
with another conference, the 1956 Dartmouth conference (McCarthy et al., 2006 [1955]).
Officially known as the Dartmouth Summer Research Project on Artificial Intelligence, this
multidisciplinary assembly laid the foundations for the first programmatic milestones of
AI research, focusing on the dual challenge of devising ways to simulate “our intelligence”
(first goal) in order to better understand it (second goal). The following decade saw a
general enthusiasm despite some dissonant voices (Schwartz, 1989), with the emergence

this period, then others from natural language systems and machine translation between 1999 and 2002.
This dynamic framework could enrich the static one introduced by Gargiulo et al. (2023), in particular
by observing the dynamic entanglement relationships between their 15 AI specialties over time. The
framework of Lobbé et al. (2021) would also be interesting in this respect.

5This notion is often derived from a well-known story. Having contributed to the American arms
race during the Cold War and to the design of automatic guidance systems for airborne missiles, Wiener
wondered how the trajectory of such a missile, the angle and the direction of the gun that would propel
it, should be adjusted according to the trajectories of enemy aircraft detected by radar.
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Figure 1.2: A: Representation of the functioning of a single neuron, the elementary unit of
a neural network (blue box). The neuron performs a calculation given a set of inputs. B:
Schematic of Rosenblatt’s perceptron (1958), composed of neurons aligned in a single layer and
receiving information from the retina. C: Representation of a more complex architecture, with
9 neurons distributed in 3 layers (input, hidden, output) interacting forward – toward the output
– and backward – back to the first layers. This last feature is mainly at the foundations of the
back-propagation of errors that could make the model when learning to correctly predict the
classification of the items of a given input dataset (Rumelhart et al., 1986). Rosenblatt’s original
perceptron is simply based on the hidden and output layers, with the same mechanisms of for-
ward and backward propagation of information between them. Current advanced deep learning
methods, albeit often more complex, are grounded on a multilayer perceptron architecture, with
a multiplication of hidden layers (D) – here they are numbered to 3, but it could be more – each
having its own representation of the input data at given moments of the learning process (LeCun
et al., 2015). Sources: (A,B) Olazaran (1996), (C) Cardon et al. (2018) and (D) Terry-Jack
(2019).

of speculative discourses about the possible future of AI and the possible power of an
intelligent programme, as exemplified by the two pioneers Herbert A. Simon and Allen
Newell, who firmly believed that by the 1960s and 1970s AI would be able to prove
mathematical theorems on its own and even create new ones, thus replacing humans in
many tasks (Ganascia, 1993; Vayre, 2021), and also Pamela McCorduck and Edward A.
Feigenbaum, for whom AI would become an integral part of our lives, living alongside
humans (Schwartz, 1989).

Despite its relative youth, an AI-related “promise-based economy” has gradually taken
hold, with vast funding programmes from private companies and governments (Vayre,
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2021). For example, the emerging field of Natural Language Processing (NLP) has at-
tracted the interest of the United States during the Cold War, which have funded a major
research programme to translate secret, encrypted Soviet documents – a kind of legacy of
Turing’s work on Enigma machines for the Germans during the Second World War. Al-
though the geopolitical and industrial context of wartime has often proved favourable to
the development of numerous computational AI techniques or precursors of AI, American
attempts at NLP and many potential military applications have ended up in numerous
dead ends, never leaving the laboratories, largely due to the lack of sufficient technologies
to perform heavy computations and to store large databases in the working memory of
available computers (Cardon et al., 2018). This failure led the US government to stop
funding all research into machine translation in the mid-1960s. The 1973 Lighthill Report
also pointed out the unfulfilled promises of the AI research programme that had started
earlier in the United Kingdom. Because of these failures, the period between the mid-
1960s and mid-1970s is commonly referred to as the first AI winter. Nonetheless, this was
only a temporary setback, as other research was also being launched at the same time,
albeit much less tremendous, but it did give rise to expert systems.

In contrast to the competing connectionist approach of AI, the architecture of expert
systems is based on a set of logically interconnected rules (e.g., if A is equivalent to B and
B is equivalent to C, then A is equivalent to C), so that the reasoning consists of navigating
through a decision tree that starts and ends with predefined features. These knowledge
and reasoning structures are then used to interpret the data in a given collection, thereby
mimicking an ideal intelligent reasoning process of an expert solving a complex problem.
First developed in the 1950s and 1960s during the rise of knowledge engineering, these
systems have thus proved to be very useful in assisting decision-makers and have rapidly
attracted the attention of industrial investors and research actors. The Logic Theorist and
the General Problem Solver (GPS), developed respectively in 1955 and 1959 respectively
by Herbert A. Simon, Cliff Shaw and Allen Newell for proving mathematical theorems, the
Dendral project (Lindsay et al., 1993) for automatic detection of molecular structures in
materials based on mass spectrometry and Nuclear Magnetic Resonance (NMR), and the
MYCIN software, which was designed to administer an antibiotic based on the symptoms
of visiting patients (Shortliffe and Buchanan, 1975), are four of the best-known expert
systems that have brought the so-called symbolic AI or GOFAI (Good Old-Fashion AI )
to the fore (Haugeland, 1985; Smith, 2019). These systems, and symbolic AI in general,
were successful until the 1990s, promoted in particular by a deligitimization operation by
Marvin Minsky and Samuel Papert through their book entitled Perceptrons, published in
1969 (Cardon et al., 2018; Olazaran, 1996; Vayre, 2021). However, most of these GOFAI
have encountered various obstacles in their pursuit of achieving intelligence reproduction.
These include the encoding of a single mode of reasoning (often hypothetico-deductive,
sometimes inductive), the limited and non-adaptive knowledge bases implanted by their
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designers, which reflect reductive representations of the world – Cardon et al. (2018)
called such knowledge universes as “toy worlds” – and the inability of the researchers of
the time to implement tacit, common sense knowledge in a computer, considered proof of
a “real” intelligence at the time (Bloomfield, 1988).

Despite the promising outcomes of research on expert systems, which resulted in patents,
and despite their major limitations in terms of the types of problems they can solve, AI
received a “second cybernetic breath” in the 1980s due to the contribution of cognitive
sciences, which brought together biologists, physicists and electronic engineers. The gra-
dient backpropagation algorithm of Rumelhart et al. (1986) is the most famous example
of the advent of this connectionist era, as they have reinvested the pioneering work of
Rosenblatt (1958) on the perceptron by generalizing the learning process to any number
of neuronal layers (see Fig. 1.2). The following decades have also seen the emergence
of increasingly sophisticated neural network architectures for data classification, which
learn to perform their assigned task with a training phase requiring either annotated data
(supervised learning, the classes within the training dataset are known and the algorithm
is trained to predict them, and to generalize the prediction process to other datasets it
has not yet “seen”), or unannotated ones (unsupervised learning, the classes within the
training dataset are unknown). Convolutional neural networks6 (CNN), recurrent neural
networks7 (RNN), generative adversarial network8 (GAN) and the newer transformers9

appears among the most prominent classes of artificial neural networks, which are now
commonly grouped under the term deep learning (LeCun et al., 2015; see also the hand-
book of Zhang er al. (2021), pp.251-348, pp.349-439, pp.949-963, pp.440-503 for the
respective detailed introduction of these algorithms’ classes).

Although not yet hegemonic in the 1990s and 2000s, as it faced to a second AI winter at

6A convolutional neural network (CNN) is a complex architecture especially designed for two- or
three-dimensional image classification and segmentation. It comprises a succession of layers that learn
specific features within the training images to accurately identify a target object, such as details confined
to a small area of an image and involving only a few pixels.

7A recurrent neural network (RNN) is a standard multilayer neural network with a memory compo-
nent. In such a network, a neuron in a given layer has two outputs, one that is passed on to the neurons
in the next layer, and others that are stored and reused in combination with other inputs in subsequent
time steps, thus directly influencing the outputs given by one neuron to the next. RNNs are therefore
pretty useful for analyzing time series and highly correlated datasets, the most commonly used type being
the Long Short-Term Memory (LSTM).

8Generative Adversarial Networks (GAN) are used to generate content with two competing neural
networks: a first one is dedicated to generating new data per se and a second one is trained to evaluate
whether the new content “exists” in the real world, according to its knowledge stored in its training
database. More precisely, the first network would adapt its new generations according to the successive
evaluations of the second one, in order to generate a content as close to reality as possible. The most
famous model is StyleGAN, on which the website This person does not exist is based. Each time the
page is refreshed, the website returns a different facial image of people who (supposedly) do not exist,
but which looks remarkably like a photo of someone who does. The aforementioned website: https:
//www.thispersondoesnotexist.com.

9One of them is used and explained later in Chapter 4 .

https://www.thispersondoesnotexist.com
https://www.thispersondoesnotexist.com
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this time (Cardon et al., 2018), connectionist AI will gain visibility from the 2010s with the
advent of technologies capable of processing10 voluminous databases, especially massively
parallel computing – while expert systems were only sequential programmes. The recent
rise of a big data era which is characterized by the accumulation of so much data that it
can no longer be analysed by hand or with standard statistical techniques, has especially
contributed to a profound transformation of AI-related research, which is now guided
by a “data-driven scientific discovery” paradigm to analyze and reveal the structures of
large databases (Bianchini et al., 2022; Kitchin, 2014; see also Frégnac, 2017 for a similar
situation in the brain sciences). In particular, such a mode of knowledge production
is organized along standard pipelines, with successive crucial steps that are necessary
to process these data, from their construction (Jaton and Vinck, 2016) to the design
of specific AI algorithms to analyze them, often for classification purposes (Crawford
and Trevor, 2019). All of these tasks are carried out by different professionals who are
confined in delineated sets of institutions, technical norms, values, and worldviews that
are ultimately inscribed in the final data processing pipeline.

Finally, the goals of AI research seem to have moved away from the initial research
programme and ambitions first set out by the protagonists of the 1956 Dartmouth confer-
ence, from the desire to create a strong AI, autonomous and interacting with us in society,
to the development of a regulated weak AI that assists (Kerr et al., 2020) or augments us
in our tasks (De Vignemont, 2020; Jordan, 2019) and that offers a revision of the general
organization of labor in all sectors (Ganascia, 1993). Jordan (2019) ironically summa-
rizes this situation as follows (p.9): “In an interesting reversal, it is Wiener’s intellectual
agenda that has come to dominate in the current era, under the banner of McCarthy’s
terminology.”

1.2 The academic work of AI captured by sociology

As outlined in the very first lines above, AI is an object that is grasped by social sciences at
the intersection of many specialties, including science and technology studies (STS), but
also innovation studies, research policy, sociology of work and organization, and political
science. In their recent review and call for a new sociology of AI, Joyce et al. (2021)
have identified two main themes addressed by the social sciences towards AI, namely 1)
the underlying process of conception of AIs prior to their release and introduction in
society, particularly through the data management and coding practices that underpin

10We note in particular the prowess of AlexNet (Krizhevsky et al., 2012), coded into the computer’s
graphics processing units (GPU), which brought CNN to the forefront of computer vision with its impres-
sive performance in the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), which is a
competition for image classification based on the ImageNet database. Indeed, AlexNet beat the previous
winner in this competition by reducing its prediction error by approximately 10 points.
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the social construction of algorithms, and 2) the influence of current uses of AI on the
evolution of all components of the social world, e.g., norms, values, modes of consumption,
institutions, policies, among others (what the authors have called the “social shaping of AI
in practice”). In another review, Liu (2021) has preferred a categorization of social studies
of AI into three perspectives related to the “type” it can endow, namely 1) “scientific AI”,
which we could associate with the first thematic set mentioned above, 2) “technical AI”,
focusing on its applications in many other contexts – not only scientific – and 3) “cultural
AI”, which we could associate with the second theme of the aforementioned review.

Without going into the details of this vast literature, here we select some works that
emphasize the social construction of AI, from the laboratories to its experimental dis-
semination in some fields that are classic case studies in social studies of AI – speech
recognition, knowledge engineering, medical decision-making, radiology, etc. Some of
these works constitute relevant premises for a general sociology of AI, which initially led
to a sociology of expert machines. The works presented below complement others already
mentioned in the previous section of this chapter, which have focused more on the his-
tory of AI ideas through the controversies about cognition and the underlying processes
that originate the human mind in the brain, which have induced a polarization of the AI
community throughout its history, which has now almost disappeared.

As soon as the first “intelligent” systems were developed, Woolgar (1985), in a kind of
manifesto, has first suggested some relevant ways to study AI in scientific research from
a perspective related to the sociology of science. After first proposing three manners of
investigating the social fabric of AI according to the standard purposes of constructivist
sociology of science, namely 1) building a sociology of AI researchers and their motives, 2)
studying the outputs of AI research, and 3) studying human-machine interactions, whose
human actions of requesting and physically tinkering with the machine are at the center
of such analysis, Woolgar has swept these aside in order to introduce a fourth way of
doing a sociology of AI, which considers the latter as a being placed on the same stage as
humans and endowed with a social sense, or agency (Alač et al., 2011), without saying so
in his text. Summarized by Woolgar as the study of “the community composed of ‘expert
machines and machine experts’ ”, this rupture (which seems like a refusal) of the human-
machine opposition in terms of social trait, is inherent to the era of expertise surrounding
AI in his time, when the discourses and imaginaries, often consensual, together indicated
a “rhetoric of progress” towards the creation of an expert machine that would be equal
to humans.

Nevertheless, the first perspective of Woolgar’s programme, i.e., a sociology of AI prac-
titioners, has been the subject of a more prominent literature, even at the time of expert
systems. In particular, the construction of the knowledge given to reasoning machines,
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the process of judging what is a good knowledge, the tensions between different actors,
and the issues this may imply, since the machine may merely reproduce most of the bi-
ases that the designers would bring to it (Bechmann and Bowker, 2019), have been at
the heart of many investigations within the community of knowledge engineers, involving
either a review of their internal discourses (Bloomfield, 1988; Schwartz, 1989) or ethno-
graphic fieldwork in their laboratories (Forsythe, 1993a; Forsythe, 1993b). The latter in
particular have shown that the practice of AI within dedicated teams leads to the building
of a dedicated technological culture. They have also inspired more recent studies that are
not centered on the production of AI itself, but on semantically gravitating objects such
as algorithms and big data that have escaped the lab and are now diffusing into society
(boyd danah and Crawford, 2012; Burrell and Fourcade, 2021; Kirtchik, 2019).

So far, the constructivist programme of AI in laboratories has understood this notion
solely as an engineering enterprise, a set of computational techniques to enhance the
production of new knowledge. However, this focus tends to see AI as disconnected from
potential applications in disciplinary contexts other than itself, here expert systems or
knowledge engineering. Other work, on the other hand, proposes leaving the laboratory
to observe AI in action within other areas. As already outlined in the previous section,
one of these areas, which has produced a lot of work at the time of expert systems and
continues to do so today, is medical support.

During the experimental deployment of the INTERNIST-I software, which specializes
in inferring diagnoses from patients’ symptoms, Weaver (1986) has described the implica-
tions of introducing an assistive expert system into the medical routine, from enhancing
the practice of physicians to the risk of the latter’s gradual disappearance in favour of an
intelligent computer, which could jeopardize the human factor at the heart of the med-
ical practice and thus reduce the quality of patient care. In the same vein, radiologists
have recently been subjected to the deployment of experimental AI software for image
segmentation and the detection of anomalous bodies on radiographs, and have therefore
been widely scrutinized as they express a cautious attitude towards the software when
used within the framework of standard practices – AI may indeed return misinterpreta-
tions of an identified pathology, thus distorting a diagnosis – and a great concern about
the replacement of their work by a machine. In particular, the entry of such intelligent
computers into medical imaging strains the tacit knowledge at the heart of radiologists’
medical training (Anichini and Geffroy, 2021; Gaglio and Loute, 2023; Matuchansky, 2019;
Mignot and Schultz, 2022; Pesapane et al., 2018), and raises transparency issues when
the software involved produces dubious conclusions. The latter are often expressed in a
“black box” rhetoric to denote the lack of knowledge of the algorithm and the inability
to follow its reasoning process, especially in the case of artificial neural networks working
with parallel computing and both deductive and inductive reasoning (Topol, 2019; Winter



Artificial Intelligence: a sociotechnical, multifaceted object 23

and Carusi, 2022).

These limitations, especially transparency, are also highlighted in a recent survey con-
ducted by Fecher et al. (2023) with researchers using the LLM Chat-GPT in various
research areas. They have advanced three further concerns about the use of such LLMs
in research (p.6), namely their “lack of creativity”, the rapid “outdatedness” of the algo-
rithm, as a single version is trained with a specific knowledge base at a given time, and
the “unspecificity”, as they return too generic, sometimes disorganized responses. More
generally, the perception of AI by academic researchers or other actors welcoming AI is
mainly oriented towards its ethical use in diverse contexts and “opening the black box”,
which has given rise to the field of explainable AI, also abbreviated XAI (Burrell, 2016;
Cupe, 2018; Gilpin et al., 2019; Savage, 2022).

1.3 How to study the diffusion of AI in science? An
overview

The research programme for a sociology of AI, as presented above, has thus far sought to
examine some microscopic aspects of the spreading of AI in science, mainly in the lens of
the underlying scientific work behind AI and the reconfiguration of scientific practices in
the light of the arrival of new technologies in specific disciplines. However, by focusing
exclusively on special machines and algorithms applied, often experimentally, in a given
scientific and technological context, the aforementioned works do not trace the long-term
impact of these tools on the newly produced knowledge in these contexts, nor the extent
of the real adoption in their methodological and conceptual frameworks.

In the framework of the science of science (Fortunato et al., 2018), an abundant lit-
erature has been produced for parts of the aforementioned purposes, mainly providing
large-scale numerical analyses of the scientific textual production we can find in various
bibliometric databases accessible on the Web, including peer-reviewed articles, conference
proceedings, patents, grant proposals, university courses, among others. Drawing on some
methods from scientometrics, research policy, and social network analysis, this literature
depicts the historical and current situation of the diffusion of AI in science, in particular
its extent in the research fields that choose to use it for some of their tasks, the nature of
the impact of AI in the latter – e.g., does it transform their methodologies and knowledge
over time – and the factors that explain such an adoption of AI by the actors of a given
research area.

Here we detail some analytical approaches from this literature that have kept our at-
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tention to how to conceive the mechanisms of diffusion of AI in science, and how it might
interact with other research domains. Moreover, these approaches have the advantage of
being applicable not only to AI but also to any knowledge, technology, or innovation that
spreads in science. To this end, we distinguish two scales of analysis, which we illustrate
with some case studies.

1.3.1 At the macro- and meso-scale: AI in the scientific system

A first kind of analysis relies on the macroscopic study of the overall science system,
asking how AI fits into the latter and how the former might change the state of the latter
(and vice versa). As an exemplary case, Gao et al. (2023) have conducted an extensive
lexicometric analysis on a huge dataset from 19 disciplines, including not only standard
papers but also patents and course syllabi from various American universities. Through a
measure of the cooccurrence of some AI concepts with other terms that characterize these
disciplines over time, defined in the paper as impact, this paper illustrates the ability of
AI to be embedded in the conceptual universes of several disciplines.

Alternatively, other authors have focused specifically on the AI literature, interrogating
the historical reshaping of AI research, whose contours, influences, and impact on science
may change over time. From a bibliometric corpus of AI literature published between 1970
and 2017, we and Gargiulo et al. (2023) have established a comprehensive categorization
of AI tools and concepts embedded in the textual elements of this literature (see Fig. 1.1),
and have mapped the disciplinary ecosystem of AI research and the preference of some
fields for only a few types of AI methods. We have also shown a retreat of research
fields that have been at the heart of the creation of AI-related knowledge since its very
beginning, such as medicine, psychology, philosophy, and logic, which have been replaced
by fields related to computer science, mathematics, and statistics. Frank et al. (2019)
have come to the same conclusions with a similar AI corpus, exhibiting a reconfiguration
of the citation network within the adjacent field of computer science, in which AI becomes
increasingly central in all its subfields through a growing intensity of citation feedback from
them to AI. They have also shown that such a reconfiguration is part of the engineering
and industrial turn of AI (Ahmed et al., 2023), where Big Tech companies have recently
emerged at the forefront of AI and transformed the pattern of citation from diverse fields
of research toward STEM-oriented11 works and for broad industrial applications.

Thus, in all these papers, AI-related knowledge seems to directly reshape science, not
only at the level of its inscribed knowledge in articles, but also at the level of the organiza-
tion of research, with the rise of the private sector. These papers also bring supplementary

11Science, Technology, Engineering and Mathematics.
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insights to explain the shift in the programmatic orientations of AI (Cardon et al., 2018),
already described in Sect. 1.1, with the stronger influence of STEM-related disciplines
and short-term technological applications on an industrial scale than of basic research
emanating from computer science, cognitive science, and neuroscience, mainly conducted
in academia (Klinger et al., 2022; “The new NeuroAI” 2024).

1.3.2 At the micro-scale: the social and epistemic diffusion of
AI

However, the aforementioned approaches suffer from ignoring important factors that could
help or hinder the diffusion of AI-related ideas across science. One of the most impor-
tant (and perhaps naive) factors is the cognitive proximity of AI-related knowledge to
other knowledge associated with certain fields of research (F. Liu et al., 2024). For exam-
ple, as Gargiulo et al. (2023) have shown, since the 1980s, contemporary AI knowledge
and methodologies have tended to fall more within computer science, mathematics, and
statistics, while failing to attract the social sciences and humanities, which seem to be
progressively missing the contemporary connectionist turn,12 despite being at the heart
of the very first AI research programmes in the late 1950s (Frank, Wang, et al., 2019).

In a recent paper, Bianchini et al. (2023) have provided a partial explanation for
the above observation, by proposing a unified framework based on several factors that
characterize scientists in order to predict their ability to adopt AI. They have highlighted
four complementary effects, namely the promotion of AI within the scientists’ institutions,
especially through the easy accessibility of High Performance Computing (HPC) facilities,
their collaboration with AI practitioners (if they are not one of them), their academic
status (age, position and reputation) and their “taste for exploration” (March, 1991;
Singh et al., 2024; Zeng et al., 2019), which is linked to their respective “disciplinary
diversity” (sic.) encoded in their publications. This last factor is particularly interesting,
as it is seen as the ability to bridge the traditional disciplinary or conceptual boundaries
that are imposed by the institutions or the collaborations, as opposed to the resistance
to adoption, also called intellectual inertia, which is often expressed by scientists who

12This conclusion about the social sciences and humanities must be put into perspective. Indeed,
it reflects a statistical bias, because the number of publications in the disciplines associated with these
domains, according to these bibliometric databases, is much lower than that of the in natural and formal
sciences combined, and because the former have different publication standards from those prevailing
in the latter, which favor a multiplication of scientific publications within these domains. Faced with
this conclusion, we can retort that sociology has been interested in AI-related tools since the late 1980s,
especially in the domain of simulation of artificial societies, also called agent-based modelling (Bainbridge
et al., 1994; Carley, 1996). More recently, powerful LLMs for translation and speech recognition have
incomparably accelerated the transcription of interviews or the textual analysis of large corpus of inter-
views or documents (Cointet and Parasie, 2018; Do et al., 2022). Finally, AI has also contributed to the
augmentation of the humanities, giving rise in particular to the field of digital humanities.
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occupy the highest positions in the hierarchy of science and who continue to support the
traditional paradigms of knowledge creation within their field13 (Barber, 1961; Foster et
al., 2015; Shinn, 1980).

However, although these factors, especially the last one, seem convincing in explaining
the diffusion of AI, this narrative, which mainly emphasizes institutional, infrastructural
and collaborative dimensions, still omits the crucial detail mentioned above that interests
us, namely the fact that scientists are often agents constrained within disciplinary or
epistemic boundaries,14 rather than versatile ones capable of adapting to different research
contexts in which AI would be prominent. In this view, we suggest that the adoption of
AI by some scientists may be subject to the initial epistemic condition of the welcoming
domain to which they belong, which would be intrinsically favorable to the application of
AI – such as computer science and engineering. This is precisely one of the aims of this
thesis, which we will explore more specifically in neuroscience and its variety of subfields
(especially in Chapter 4), which are characterized by different knowledge frameworks that
may be more or less suitable to apply AI.

1.4 An analytical framework: Conceiving AI as a
research-technology in science

In a socio-historical perspective of science, Shinn and Joerges (2002) have proposed the
notion of research-technology, also called transverse science, to describe the dynamics of
science since the end of the 19th century, now largely based on instrumentation for ex-
perimental or empirical investigation, especially in the physical and life sciences. Within
such a research regime, the production of knowledge is conditioned by an instrument that
is developed in a specific research organization before being disseminated outside it (Mar-
covich and Shinn, 2012; Shinn and Joerges, 2002), for instance, X-rays, now widely used
for medical radiography, and NMR, now used for Magnetic Resonance Imaging15 (MRI)
and spectroscopy for material studies. According to these authors, a research-technology
is defined by three criteria, namely 1) an interstitial socio-institutional arena, 2) metrol-
ogy, here referred to as a common language and vocabulary to grasp the instrument and
its actions, as well as the means by which its performances must be measured and con-

13This view, which stipulates a competition between the attempt to adopt a novel technology and the
resistance to adoption, comes from a long lineage of innovation diffusion studies within econometrics. For
more details, the reader is invited to refer to (Arthur, 1989; Brancheau and Wetherbe, 1990; Robertson,
1967; Rogers, 1983).

14This aspect could, nonetheless, be encoded in the variables of collaboration established by Bianchini
et al. (2023) in their paper.

15This process allows observations of the activation of different areas of the brain and types of neurons
during a cognitive task, such as speaking, writing, remembering or logical reasoning.
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trolled (such as the notions of benchmark, time complexity, representation, training data,
in the case of machine learning, among others), and 3) genericity.

Such an instrument requires the contribution of a dedicated socio-cognitive workforce
composed of a variety of actors (scientists, technicians, promoters, administrators, etc.)
in order to develop a dedicated technological culture of it, delineated by a set of associated
knowledge and practices shared by everyone in the community. These shape a social group
that could also be defined as an epistemic community (Haas, 1992; Roth, 2008), although
the research-technology framework relaxes the socio-cognitive boundaries that are specific
to such communities. According to Shinn and Joerges (2002), the actors mentioned above
are indeed able to move between different research environments and across established
disciplinary boundaries in order to provide their expertise to the resolution of diverse
scientific problems. As a “referent” affiliation of its practitioners, the instrument gives
rise to an interstitial arena at the frontier of traditional disciplinary boundaries, and thus
to a common professional identity and related expertise, even when its practitioners are
working to implant such an instrument in a given research context outside of this arena.
Through this mobility of its specialists, the research arena created by the instrument can
be seen as a moving entity, able to navigate towards various disciplinary, institutional,
epistemic or organizational (i.e., how the scientific work is organized) contexts that would
suit its development at different times.

The research-technology regime thus extends various notions that emphasize the cen-
tral role of a component (a given research object, a method, a technical instrument as
above, etc.) that brings together many different disciplines for a common goal, such as the
trading zone (Galison, 1997; Grauwin et al., 2012), a scientific platform (Li Vigni, 2021b),
or an interdiscipline (Frickel, 2004). In particular, the first two concepts presuppose that
the actors involved in an interdisciplinary enterprise do not renounce their original disci-
plinary affiliation, the former being a kind of transitory path in their research career before
returning to the latter, which does not favor the construction of an autonomous specialty
destined to be institutionalized in the scientific field – according to the criteria given in
(Chubin, 1976; Wray, 2005). In contrast, as mentioned above, the research-technologists
(sic.) refer rather to the instrument itself, as a kind of scientific specialty that promotes
both the creation of knowledge and a technological culture. Moreover, both the interdis-
cipline and the scientific platform suggest that such an interdisciplinary arena crystallizes
disciplinary tensions, through the more or less assertive domination of a particular field
over the research orientations of the enterprise. Even if the research-technology frame-
work does not mention the possible emergence of internal tensions between the different
communities gathered around the instrument, such an interstitial arena can be preferen-
tially compared to an interdiscipline in this sense, so that its research scope may migrate
from one preferred context to another over time, as mentioned above – and which, fur-
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thermore, may be the consequence of a growing monopoly of one of the aforementioned
communities, or a group of them, over all the others.

We also note that the central arena of the research-technology is not confined to a
purely academic context, as its development could be constrained by other challenges
coming from industry or policy makers showing particular interest in further use outside
science. In this sense, it could also be related to the notion of technoscience given by
Hackett et al. (2004), although we will not explore the openness of an instrument like AI
to non-scientific arenas in this thesis.

Based on Shinn and Joerges (2002), Hentschel (2015) has suggested four stages to
describe the life of a given research-technology in a historical perspective, i.e., throughout
a long time period: prehistory, exploration, optimization and diffusion. The first two
stages are often associated together in the design and testing phases of a given instrument.
According to these three authors, the underlying process needs temporarily a closure of
the community working on it, thus fostering the creation of a dedicated interdisciplinary
field wherein the instrument, initially dedicated to further applications, also becomes a
research object. In this context, a specific paradigm emerges to apprehend the functioning
of the instrument, corresponding to the aforementioned metrology criterion.

At later stages in its development, the tool could be adapted to disciplinary research
contexts outside the environment in which it has been originally designed, or to a variety
of applications outside scientific research – Shinn and Joerges have evoked the duality
dis-embedding/re-embedding to describe this process. The two last development steps
of Hentschel thus represent such dynamics toward this final step, called the genericity
criterion. This notion designates the diffusion of not only the instrument, but also of
all its knowledge, vocabulary, imaginaries and practices around it, thus “building and
promoting a sort of social, technical, and cognitive universality”16 (Shinn and Joerges,
2002, p.209). In particular, the diffusion phase requires a relaxation of its boundaries
within which the instrument was designed during the prehistoric and exploratory phase,
thus implying an openness of the actors of the community, who promote17 it in different
fields of research throughout academia or industry.

According to the analysis of the AI research ecosystem provided by Gargiulo et al.
16Within this rhetoric of universality, here understood as the large diffusion of recent AI-related

knowledge and technologies in various applicative domains, especially deep learning, Cockburn et al.
(2018) have proposed the notion of general-purpose method of invention to define AI in this sense. We can
also refer to (Bowker, 1993), which exposes the desire for universality expressed by the first cybernetic
paradigm, notably through the establishment of a discursive arena where a new meta-language has
emerged that was intended to unify all domains of science – as mathematics was and still is in the natural
and formal sciences.

17In the context of synchrotron development, Söderström et al. (2022) have explored such a pro-
moting stage in the lens of the creation of multidisciplinary journals dedicated to disseminating related
instruments, such as beamlines, to a wide audience.
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(2023), AI seems to embrace the previously mentioned characteristics of an instrument
embedded in a global research-technology programme within science, especially when
it has entered into its contemporary connectionist phase since the late 1980s and was
confined, at least in their basic branch, into computer science, mathematics and statistics
(see previous Sect. 1.3), before spreading throughout science and providing methodological
support to various fields of research, thus suggesting a certain genericity. This thesis also
considers AI as such, focusing on the last aforementioned stage of its development, which
seems to occur recently. It especially intends to discuss the insertion of AI into a single field
of research, here neuroscience, and to what extent and by what mechanisms it penetrates
the social practices and epistemic frameworks of this domain. Along these lines, this
thesis will also discuss the limitations of such a framework to describe AI.

————————–
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2
A journey in neuroscience: collection and

preprocessing of quantitative and qualitative data

“The Data—It Is Me!” (“Les données—c’est Moi!”)

Ronald E. Day, in Cronin and Sugimoto (2014)

As detailed in Introduction, we have selected neuroscience as a case study to apply
our genericity model for describing the integration of AI-related knowledge and technical
tools into a field of research. Although we are not experts in this field and have very
little knowledge of it, this thesis also sets out to describe our discovery of this field of
research and the gradual construction of a specific culture around it in the course of our
investigation. Following a traditional approach in the sociology of science (and in science
studies in general), this manuscript also attempts to convey to the reader, as faithfully
as possible, many aspects of neuroscience through several types of data, which constitute
broad observation windows on this moving field, in which AI may have influence. As
part of this endeavour, this particular chapter focuses on the production of these research
materials, in particular how they have been collected and processed before being analyzed.

After a brief introduction to neuroscience and their interaction with AI, in Sect. 2.1,
the second main Sect. 2.2 describes the step-by-step construction of a consistent corpus
of neuroscience publications, which will be subjected to a scientometric analysis in the
following two chapters. Sect. 2.2.1 presents the bibliometric database from which we ex-
tract the corpus, namely the Microsoft Academic Knowledge Graph (MAG), the method
of extraction of the elements of the corpus and, finally, the collected metadata of inter-
est. In particular, we use the titles and abstracts of the articles to immediately identify
those that mention AI-related expressions, with a keyword matching process detailed in
Sect. 2.2.2. Then, from this corpus, we manually build two relational structures and addi-
tional databases that encode various types of knowledge about the field under study, such
as the underlying co-authorship network, which approaches the social organization of the
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scientific community working on the advancement of the field, and the citation network
between the extracted articles and beyond, which allows to study the patterns of knowl-
edge transmission across this community. Their respective constructions are depicted in
Sect. 2.2.3, followed by a presentation in Sect. 2.2.4 of various filtering and cleaning steps
that could affect these networks, in particular the distribution of the citations and collab-
orations inherited from AI-related works. The final dataset is summarized and discussed
in Sect. 2.2.5.

In a final Sect. 2.3, in order to qualitatively analyze AI work in an academic laboratory,
which intends to provide supplementary insights into the genericity criteria established
in the Introduction (especially domain adaptation and social adoption) and whose main
results are exposed in Chapter 5, we introduce the fieldwork we have chosen, namely the
Aramis team (in Sect. 2.3.1), and the methodology we have adopted to interview some of
its members and to access the information needed for our analysis (in Sect. 2.3.2). We have
specifically relied on a questionnaire that explored, among other aspects, the professional
careers of these scientists, their daily use of AI, and their definition and perception of this
research instrument at work (see App. D.1 for more details).

2.1 A multidisciplinary domain interacting with AI

Neuroscience encompasses all the scientific work carried out to understand the human
nervous system and its various types of dysfunctions and pathologies, which today, un-
fortunately, are often incurable these days. The nervous system comprises two regions,
the central, which includes the brain and spinal cord, and the peripheral, composed of the
nerves and ganglia inside the last two organs, allowing information and stimuli to circu-
late between them and the other organs of the human body. The first region remains the
most studied within the field, mainly because it is where most of the triggers for numerous
disabling pathologies are observed, including neurodegenerative diseases such as Parkin-
son’s, Alzheimer’s and Huntington’s,1 multiple sclerosis, depression, attention deficit or
obsessive-compulsive disorders and other traumas.2 Because of its intrinsic proximity to
the world of healthcare, neuroscience brings together basic and clinical research whose
results are then deployed (with precise protocols) in the regular medical practice with the
help of an intermediate phase, the translational research (Stokols et al., 2008; see also the
case of AI and neuroimaging in Allen et al., 2019).

In recent days, neuroscience claims to be multidisciplinary. Previously a domain solely
1Huntington’s disease differs from Parkinson’s and Alzheimer’s in that its initiating factors are mainly

of genetic kind.
2The following website provides a classification of all existing referenced neurological disorders: https:

//www.merckmanuals.com/home/brain,-spinal-cord,-and-nerve-disorders (visited on July, 14 2024).

https://www.merckmanuals.com/home/brain,-spinal-cord,-and-nerve-disorders
https://www.merckmanuals.com/home/brain,-spinal-cord,-and-nerve-disorders
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concerned with biology and anatomical medicine, neuroscience has broadened its field of
investigation thanks to scientific and technological advances in other disciplines, notably
chemistry, physics, mathematics, and computer science, which have led to the discovery of
fine mechanisms at various scales within the central nervous system – molecular, cellular,
neuronal, neural networks, brain areas, the organ itself, to the entire body. Magnetic
Resonance Imaging (MRI), Positron Emission Tomography3 (PET), electroencephalog-
raphy4 (EEG), or recent optogenetics,5 are notable examples. And let us not forget the
increasing prevalence of AI, which aims to simulate and even reproduce the brain’s mental
processes.

Although its foundations are mainly associated with STEM disciplines, mainly math-
ematics, statistics, and computer science (Gargiulo, Fontaine, et al., 2023), AI is con-
stantly evolving alongside neuroscience, both maintaining a continuous cycle of mutual
improvement (Hassabis et al., 2017). Indeed, neuroscience brings in a first place empir-
ical confirmation to some theoretical models that reproduce parts of mental processes,
and that were first imagined, analytically derived, and computationally simulated by
(neuro)psychologists within the field of cognitive science (Cooper and Shallice, 2010; Lake
et al., 2017). Most of these models serve as the foundation for some AI-related algorithms,
especially in the case of bio-inspired AIs such as artificial neural networks and their nu-
merous versions, which have become biologically plausible thanks to neuroscience. In
particular, the deployment of the first body scanners based on PET and functional MRI
(fMRI) in the 1980s and early 1990s led to important discoveries about the functional
biological mechanisms in the human brain that are induced by complex cognitive tasks
(Cooper and Shallice, 2010). This contributed to the rise of the connectionist paradigm
that is now dominant in the brain sciences, although some debates still persist within
cognitive science about the representations of knowledge and the logical operations mo-
bilized to process them in interaction with the real world (Andler, 1990; McCarthy, 1981;
Perconti and Plebe, 2020).

More than an assistive technology, AI is thus a powerful tool for understanding and re-
producing our intelligence, from its physical and biological workings in the central nervous
system to the production of specific motions and behaviours in a given situation, through
complex information transmission mechanisms activated by stimuli inside or outside the
body. In the recent era of big data, a panel of AI tools now allows efficient processing of

3Similar to MRI, PET is a technique that draws upon another nuclear process to observe the metabolic
activity of an organ, particularly its glucose production. It is widely used in neuroimaging to observe
metabolic failures in the brain, which are partly responsible for the onset of neurodegenerative diseases.

4Like the electrocardiogram, the electroencephalogram measures the electrical activity of the brain.
It is an alternative way of observing, through a signal, the different areas of activation in the brain during
a task or in response to an electrical stimulus in order to test movement reflexes.

5Optogenetics is a technique of light stimulation of neurons to study their activity and functioning
in the brain.
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large datasets composed of various kinds of biomedical data (electroencephalogram, MRI,
biomarker tracking, movement recordings, psychological surveys, etc.) acquired from ma-
jor clinical trials and cohorts for studies of brain damage (Gopinath, 2023; Macpherson
et al., 2021). These tools are particularly part of the improvement of the diagnosis of var-
ious neurodegenerative diseases and of the attribution of potential dedicated treatments,
if they exist.

This virtual feedback loop, which is well documented in the neuroscience literature, is
thus inducing a reinforcement dynamics of both AI and the neuroscience that receives
it. From this assertion, AI and neuroscience are expanding each other’s adjacent possible
(Kauffman, 2000; Monechi et al., 2017), i.e., one domain expands the field of possibilities
that have yet to be explored in the other by blending with the pre-existing knowledge and
practices that characterize the latter. According to this model, one domain thus reshapes
the knowledge space of the other.

2.2 Extraction of a neuroscientific corpus and con-
struction of data structures

2.2.1 Building of a first exhaustive database of neuroscience ar-
ticles from the MAG

2.2.1.1 The Microsoft Academic Knowledge Graph

The MAG is a bibliometric database that was provided freely by Microsoft and available
through an API until the end of 2021, and that covers various kinds of scientific pub-
lications, namely journal articles, conference proceedings, patents, datasets and books.
In 2020, this database has referenced approximately 240 million scientific publications of
these types, in all disciplines, grabbed throughout the entire Semantic Web, thus making
it much larger and more comprehensive than the traditional databases used for biblio-
metric purposes and research evaluation, notably the Web of Science (WOS) and Scopus
(Visser et al., 2021).

Thanks to the openness of these data, some scientists and engineers have downloaded
and cleaned the entire MAG database at different periods, in order to share it freely as
complete data dumps in dedicated repositories. The most popular snapshots are dis-
tributed by Färber (2019) on the Zenodo6 platform with four versions between 2018 and

6The deposit is located at the following address: https://zenodo.org/records/4617285.

https://zenodo.org/records/4617285
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Figure 2.1: Organization of the metadata associated with one single paper referenced in the
MAG. Source: Färber (2019).

2021. In what follows, we use the version called 2020-05-29 on this website, completed
with some supplementary files provided in the next version 2020-06-19, which were miss-
ing in the former. This database is the underlying basis of the recent OpenAlex platform,7

an API8 launched in the very beginning of 2022 and maintained by the non-profit asso-
ciation OurResearch (Priem et al., 2022). As this platform has undergone multiple and
simultaneous modifications since its launch – such as the addition of publications, large
disambiguation operations on authors, progressive replacement of the Fields of Study tax-
onomy of articles by a new one around Concepts or Topics, etc. – we will use this API
occasionally, depending on the needs identified during the thesis, in particular to verify
the consistency of some metadata provided by the MAG database.

As illustrated in Fig. 2.1, the MAG is organized as a network of objects, represented with
yellow rectangles, that are associated with a large set of various scientific contributions.
Here we detail only those that are mobilized throughout this thesis.

The basic unit of this knowledge graph is the Paper, representing a scientific textual out-
put described by 24 variables (identified with outgoing green and blue arrows from the con-
sidered rectangle), including title, abstract, citationCount and publicationDate.
One element described by such a unit is published either in a Journal or in a conference

7More details are available at the following address: https://help.openalex.org/.
8Application Programming Interface. Often provided by the database maintainer (an organization

or a single person), this service allows any user, through a dedicated website or direct programming on
their personal computer, to query some features of that database stored on another computer or on a
shared remote server. These features are then sent by the latter to the user users on their own machines.

https://help.openalex.org/
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Figure 2.2: Schematic representation of the MAG’s Fields of Study network, here truncated
at the first three levels and with two origins, namely the concepts a1 and b1, which then include
the concepts at level 2, including the following at level 3, and so on.

proceeding, the latter being referenced by two objects, namely the ConferenceSeries
(the editor or collection that publishes the contribution as a paper) and the Conference-
Instance (summarizing mainly the name, date, and place of the physical conference where
the contribution was presented).

All the papers referenced in the MAG are labeled with one or several FieldsOfStudy
– analogously called concepts throughout this thesis. These fields of study, derived with
Natural Language Processing (NLP) and Machine Learning (ML) techniques, are orga-
nized in the MAG as a hierarchical directed acyclic graph (DAG), as shown in Fig. 2.2.
More specifically, as indicated in this figure, this hierarchy relies on the level parameter.
This last discrete variable, comprised between 0 and 5, indicates the degree of speci-
ficity of a given field of study within science, from the most general, such as discipline or
sub-discipline levels – values 0 and 1 respectively – to the most precise, such as research
subjects or keywords extracted from abstracts – values 4 and 5 respectively. Such fields
of study are thus proxies to circumscribe vast or small knowledge domains.

For the special needs of interpreting the neuroscientific knowledge map shown in Chap-
ter 4, whose construction is more broadly detailed in App. C.1, we complete this thematic
classification with another one launched in early 2024 by OpenAlex, according to which
each paper in the database is labeled with a primary topic and two others (sorted by a
matching score), which are embedded into Topic objects. These topics are leaves of a
four-level hierarchical classification that is actually a tree:9 Level 0 is composed of do-
mains, each of which is divided into fields at level 1, which are subdivided into subfields at
level 2, which contain a given set of topics at level 3. More robust than the MAG’s fields of
study, this topical taxonomy will be used to confirm some of the results initially obtained
with the former. In particular, on 30 June 2024, we have performed an extraction from

9See also: https://docs.openalex.org/api-entities/topics.

https://docs.openalex.org/api-entities/topics
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OpenAlex of such topics associated with the papers in our corpus, and we conserve only
the primary one for each of them – with their own respective subfield, field, and domain.

Finally, each paper in the MAG has a list of authors whose characteristics are embedded
in the Author object, such as their respective Affiliation(s), which constitute another
distinct object of the database.

Each of these entities is described by its own set of metadata in separate files written
in RDF10 format to avoid the accumulation of complex metadata in a single main file.
These files are represented in Fig. 2.1 by a yellow rectangle from which the names of the
attached variables emanate with outgoing green arrows. The Zenodo data dump used
also provides some correspondence files to link the identifiers associated with two distinct
objects when the combination of the latter into a single file could occupy an important
memory space – represented with directed outgoing blue arrows between the main objects
in the aforementioned figure. For example, to reach the fields of study labelling a given
paper, we have to navigate through a link file called PaperFieldsOfStudy.nt in order
to obtain the identifiers of these fields and retrieve their characteristics encoded in the
variables stored in the file of the object FieldsOfStudy. This organization is suitable
for analyzing different objects separately and for reconstructing datasets by mixing only
some of them, according to the user’s appreciation.

2.2.1.2 Extraction of neuroscience articles

In order to extract a coherent set of neuroscience publications from the MAG, we choose
to start from a list of peer-reviewed journals that are representative of the field under
study. As essential vectors for communicating new discoveries, journals also constitute
an arena for establishing and consolidating the existence of a community within the
entire scientific landscape (Chubin, 1976), which is organized around shared knowledge,
methods, practices and values (what Cole and Zuckerman (1975) called the cognitive
consensus). Among a variety of approaches,11 such as keyword matching within titles and

10Resource Description Format, which is useful for representing knowledge networks from the web.
11In addition to journal-oriented extraction, several alternative methods exist for building a bibliomet-

ric corpus representing a delimited research domain. A first type would be keyword-oriented. With the
help of a comprehensive list of keywords that summarize the main concepts around a specific field, we can
access an exhaustive corpus of papers that match some keywords or expressions in their respective title,
abstract or main text (Ying Huang et al., 2015; N. Liu et al., 2021). Such an uncontrolled procedure has
been used by us and Gargiulo et al. (2023) to map AI research since the 1980’s. However, this technique
alone is not sufficient to get the structure of the field we want to study. Indeed some keywords would
be too generic and would therefore appear in many other research fields with different scientific commu-
nities and epistemic frameworks. This approach thus requires supplementary filters to select the papers
of interest, as in the method introduced by Rimbault et al. (2016), who combined both the keyword
queries and the delimitation of the topics they studied with the concept taxonomy of the MAG. These
approaches are thus suitable for bounding very precise subfields with few publications, but they could not
be applied to describe large fields with blurred boundaries or with a multidisciplinary character – such as
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abstracts, and the selection of the field of study of interest within the MAG (with some
limitations), this extraction technique remains rather common among bibliometricians
and sociologists to delimit well-established scientific fields. More precisely, we use the
disciplinary taxonomies12 provided by the traditional WOS database and the SCImago
Journal Rank (SJR), which both categorize only the journals and conference venues they
reference. Each source is labeled with one or two Journal Subject Categories (JSC), which
are broad, well-recognized disciplines in science – the combination of two of them for a
given journal indicates its interdisciplinary positioning. In the following, we therefore
assume that the papers published in these referenced journals directly inherit the JSC(s)
of the latter.

More practically, we use the SJR in addition to the WOS for many reasons. First,
they are both freely available on the Web (a crucial technical criterion!). Second, the
former provides another measure of impact, also called SJR, which enhances the visibility
of some journals that may have a lower impact factor within the WOS. Third, because
of the different disciplinary classifications provided by the two databases, the SJR covers
more neuroscience journals than the WOS. Indeed, in 2021, the WOS referenced only 281
journals labeled as “neuroscience” while the SJR referenced 608 journals labeled as such.
We consider here the neuroscience journals referenced by the WOS and other neuroscience
journals referenced as such by the SJR but labeled differently by the WOS. For example,
the well-recognized journal Neurocomputing, while affiliated with both “neuroscience”
and “computer science” in the SJR, is labeled only as “computer science” by the WOS.
Using the SJR thus contributes to increasing the diversity of neuroscience-related subjects
treated by the articles in the final dataset under study. For the sake of consistency, we
lie only on the WOS disciplinary classification afterwards.

Then, we extract the desired publications from the MAG with an ISSN identifier match-

neuroscience. A second type of approach would be based on established disciplinary or research subjects
classifications, such as those provided by the main bibliometric databases. Although in this thesis we
use the journal classification of the WOS and SJR, we recall that the MAG has its own classification of
fields of study, which only to individual papers (as mentioned in the previous subsection), thus allowing
a direct extraction of the articles labeled with the field “Neuroscience”, situated at level 1 in the MAG
field hierarchy. However, within the MAG, an article can be labeled with an undefined number of fields of
study (from 0 to 10), so that its label “Neuroscience” could be surrounded by others unrelated to it, thus
challenging its affiliation to this precise field. To be sure, we have to manually check the content of its
title, abstract or journal, whose scope might be far away from neuroscience. This field-oriented approach
thus risks compromising the coherence of the domain we wish to circumscribe. Moreover, such a query
of the MAG would disproportionately increase the number of publications, possibly including irrelevant
ones, and thus the size (and noise) of the citation and collaboration networks described in the main text.

12We remind that these bibliometric classifications are often criticized, notably the WOS for its lim-
ited regional and linguistic coverage, the low visibility it confers to the social sciences and humanities
(Mongeon and Paul-Hus, 2016; Visser et al., 2021), and the occurrence of some discrepancies between the
actual scope of journals and the fields or disciplines attributed to them, based on some of the knowledge
structures built on it, such as its journal-to-journal citation network (Leydesdorff, 2006; Leydesdorff and
Rafols, 2009), hence the production of diverse alternative classifications, mostly at the level of articles
instead of journals (Glänzel and Schubert, 2003; Milojević, 2020).
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ing procedure based on this list of journals. In the following, we only keep the papers pub-
lished in the period running from 1970 until 2020, which results in a dataset of 2,052,292
publications disseminated in 479 journals, recalled in App. A.2. We denote this set by
Poriginal.

2.2.2 Detecting mentions of AI in selected publications

In a recent paper, we and Gargiulo et al. (2023) have used a list of 594 keywords to iden-
tify AI-related papers within the MAG, in order to draw a cartography of the nature of
contemporary AI since the 1980s and to examine the mechanisms of its diffusion at various
scales across a broad disciplinary landscape. This list, provided in their supplementary
material and appended in App. A.1, is based on the compilation of multiple glossaries
available on the Web,13,14,15,16 which were compared with other similar lists provided in
expert reports edited by various organizations (Baruffaldi et al., 2020, pp.66-67; Hajkow-
icz et al., 2022, p.57; WIPO, 2019, pp.146-149). It also represents a particularly rich
semantic landscape on AI, which considers most of its forms, knowledge, and technologi-
cal applications throughout its contemporary history since the early 1950s, when the AI
research programme was initiated.

We use this list of AI-related keywords to distinguish AI-related works from others
within Poriginal. In particular, we apply a selection criterion such that the neuroscience
works dealing with AI must include at least one AI-related keyword in their respective title
or abstract (or both at the same time). We count 52,056 AI-related papers in Poriginal,
which represent 2.5% of the dataset.

We notice, however, that this method faces many limitations. First, it misses the
context of the use of AI expressed in the neuroscience articles, which could concern the
application of a software, the design of a piece of code or a robot, the discussion of a
method or its critics, a methodological review, among others. Nevertheless, we believe
that the mere mention of AI in the title and/or abstract of these articles is a good proxy
of the presence of AI within the domain under study, regardless of the context of its
mention. Indeed, as long as an AI-related term figures explicitly in an article, its authors
are thus demonstrating their interest in AI.

Second, some keywords in this list could be too generic or not semantically related to AI.
By using the recent topic classification of scientific publications provided by OpenAlex,

13https://en.wikipedia.org/wiki/Glossary_of_artificial_intelligence
14https://developers.google.com/machine-learning/glossary
15https://machinelearning.wtf/
16https://link.springer.com/content/pdf/bbm:978-3-319-94878-2/1.pdf

https://en.wikipedia.org/wiki/Glossary_of_artificial_intelligence
https://developers.google.com/machine-learning/glossary
https://machinelearning.wtf/
https://link.springer.com/content/pdf/bbm:978-3-319-94878-2/1.pdf
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which has been produced with a deep learning classifier lying on a multilingual BERT
(OurResearch, 2024), we find that 82% of the AI-related papers of our dataset are not
categorized with a topic inherited to the subfield of AI, although they actually mention
keywords that are intimately linked to famous accomplishments of AI research such as, in
primary positions, the expert system Mycin, neural networks and the first convolutional
neural network Lenet. However, this proportion decreases to 50% when using MAG’s
classification of field of study at levels 1, 2 and 3 only, with AI-related fields defined as
concepts closely related to Artificial Intelligence or Machine Learning in MAG’s concept
network, both located at level 1. This large gap, we believe, could be due both to the large
number of AI-related concepts in MAG (4902) compared with the number of AI-related
topics in OpenAlex (77), and to the number of possible concepts allowed by MAG to label
articles, which is unlimited at first glance, whereas OpenAlex labels publications with a
maximum of 3 topics. These reasons would therefore allow a greater number of articles
to be labeled as AI with the MAG’s classification than with OpenAlex’s, which let us
suggest that the former offers a broader delimitation of the AI domain than the latter.

And third, such a method may exclude some publications that actually deal with an AI-
related research topic or use an AI-related method without explicitly mentioning a single
keyword from the aforementioned list in their title or abstract. Still using OpenAlex’s
classification, we find that 0.6% of non-AI-related articles in our dataset are categorized
with a topic inherited from the AI subfield, whereas this proportion rises to 5% when we
use the MAG one. This partly confirms the reasons mentioned above for the discrepancies
between MAG and OpenAlex.

Although we have chosen the keyword matching method, while not unique, the list still
needs to be validated effectively, notably through the intervention of human expertise in
order to check the actual semantic proximity of each keyword to AI, which often requires
meticulous manual annotation (which would be very time-consuming for a very large
corpus such as ours).

2.2.3 Selected data structures

2.2.3.1 Capturing the disciplinary landscape through an egocentric citation
ecosystem

One of the main goals of this thesis is to reconstruct the disciplinary environment of
the whole neuroscience, and another – included in the previous one – that surrounds the
particular contributions involving AI within this field of research. To do this, we need,
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on the one hand, the bibliographic references of the papers, as they constitute a proxy17

for the influence mobilized by the field under study – they also testify to the cognitive
structure of the latter (Cole and Zuckerman, 1975; Griffith, H. Small, et al., 1974; H.
Small and Griffith, 1974; Sugimoto and Weingart, 2015) – and, on the other hand, the
citations accumulated by them, since they indicate the direct use of their related outputs
by other research, within or outside the neurosciences.

After gathering the neuroscience dataset Poriginal described in the previous section, we
build an exhaustive citation ecosystem around the neuroscience publications within it, as
illustrated in Fig. 2.3 for a single paper (represented by a gray circle). We use the general
reference link file of the MAG, a giant temporal, directed, unweighted citation network in
order to retrieve the direct references and citations related to our identified papers. The
latter are represented by the red and blue circles, respectively, in Fig. 2.3. The latter are
represented in Fig. 2.1 by the object cito:Citation and the three blue directed relations
cito:hasCitedEntity, cito:hasCitingEntity and cito:cites. Since some of these
references and citations are outside the set Poriginal, we extract the metadata of these
missing papers, which join a set called P in the citation scheme in Fig. 2.3.

We then enrich this other extracted ensemble of papers by assigning to them a set of
JSCs from the WOS disciplinary journal classification, which are associated with their
journals if they are referenced in this database. The papers without an associated JSC
are thus automatically discarded, on the one hand for the sake of consistency by using at
most the WOS disciplinary taxonomy, and on the other hand to discard papers considered
as noise with little or no information about their publisher or their disciplinary affiliation.

Our final citation network therefore contains 120,018,653 directed edges, with 44,555,248
of them being circumscribed within Poriginal – representing 37% of all these edges.

17We recall here that the signification of a citation given by one scholarly paper to another remains
a major case study throughout the histories of the sociology of science (Bornmann and Daniel, 2008)
and scientometrics (Leydesdorff, 1998). Indeed, citations are not only a reference to a discovery that
the authors find interesting for their own research purposes (H. G. Small, 1978), but also a tool to
increase the symbolic credit of the scientists associated with the cited works, whose main translations
are their recognition in the field in which they work, the capacity to obtain research grants and other
sources of funding, among other various rewards (Bourdieu, 1975; Merton, 1968). More recently, in the
context of research evaluation, the citations received by scientists have become central in measuring their
individual performance and ranking laboratories, universities, and other research organizations in order
to target and prioritize financing to the most “promising” ones (Cronin and Sugimoto, 2014; Gingras,
2016). In this thesis, we take the citation as a direct intellectual influence for an article or a direct
impact on another. Considering a citation as such thus enables us to assess how AI-related knowledge is
transmitted throughout the neuroscience literature.
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Figure 2.3: Schematic representation of the citation network, centered on the set of neurosci-
entific papers, here called P in the blue area. The subset P in the green area is the subset of
additional extracted papers that cite or are cited by P but do not belong to the latter. The
small circles represent papers, where the gray one is a focal one belonging to P, which cites the
red ones (references) and is cited by the blue ones (citations). These references and citations
belong to either P or P.

2.2.3.2 Building of the collaboration network and a dataset of neuroscientists

In Chapter 3, we will explore the social composition of neuroscience through the pro-
files of its scientists and the underlying collaborative structure captured by co-signatures
within the papers (Newman, 2001). These elements will allow us to identify the potential
specificities of the actors involved in some neuroscience subfields where AI is involved, as
well as how these actors drive (or not) the diffusion of the technology within this social
space. In this section, we detail the construction of these data structures that will be
used later in this thesis, which is illustrated in Fig. 2.4.

First, we build a temporal co-authorship network T from the papers in Poriginal. Two
authors i and j publishing together in year t are connected by an edge weighted by the
number of joint publications in that year, denoted wij(t). All co-signatures in all papers
published in year t form a weighted snapshot called T (t). To study the structure of the col-
laborations at the macroscale over the entire period 1970-2019, we also build the weighted
time-aggregated co-signature network Aoriginal, which includes the set V of all authors ap-
pearing in the dataset, and a set of weighted edges obtained by summing all the weights
of the edges appearing in each snapshot of T , E = {w̃ij, ∀(i, j) ∈ V 2|w̃ij = ∑

t wij(t)}.
Aoriginal thus includes 2,611,456 authors, of whom 68,759 (2.7%) have published alone and
without any collaboration during the period studied. We discard these outsiders in the
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Figure 2.4: Schematic representation of the construction of the temporal collaboration network
T and its time-aggregated version A, based on 4 articles published in years y0 or y1. The weights
of the edges in T and A are indicated by red numbers alongside these edges.

following, as their isolation renders them irrelevant to a potential social diffusion process
of AI-related knowledge and technologies across the neuroscience community.

Second, we carry out a further extraction from the MAG to gather all the publications
of the aforementioned authors, in order to establish several indicators allowing to assess
their respective profiles. We especially retain, for a given author:

1. The year of his/her very first publication(s), as a proxy for the beginning of his/her
academic career, denoted as y0,

2. The JSCs associated with the journals in which the articles in y0 were published,
which represent the disciplinary fields in which the author was trained. We call
these JSCs the disciplinary background,

3. The year of his/her last publication(s) before 2020, as a proxy for the end of his/her
academic career – or his/her continuation if it is 2020 – denoted as yf ,

4. The JSCs associated with the journals in which the articles have been published
throughout his/her whole career (until 2020), which represent his/her global disci-
plinary profile,

5. The total number of publications published between y0 and yf , representing his/her
productivity,
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6. His/her share of AI publications between y0 and yf , which represents his/her level
of affinity with AI.

In particular, indicators 2 and 4 will be used in Chapter 3 to build the disciplinary
trajectories of the authors in our dataset, which will be compared with their respective
levels of affinity with AI in neuroscience (indicator 6).

2.2.4 Selection of a subset of the extracted neuroscience database

A main issue encountered in our study is the huge size of our datasets – especially the
citation network – which limits the memory usage of our computers when performing
some heavy numerical operations on them. In the following chapters of this thesis, we
will base all our analysis on a particular core of publications in the neuroscience corpus
Poriginal that meet the criterion below, denoted C1 :

Criterion selection C1
The selected articles must have at least 10 bibliographic references and at

least 10 generated citations since their publication year (until 2020).

These papers join a subset called PC1 in the following lines. When selecting this subset,
we thus discard many papers and all their associated features that are part of the citation
network and the collaboration network presented in the previous sections, such as the
authors who are not present in the papers belonging to PC1 , some papers that are only
cited by the discarded ones, and the papers that only cite the latter. These discarded
features could therefore impact the shape of these networks.

In this section, we introduce a comparison of the time-aggregated citation network and
the time-aggregated collaboration network inherited from Poriginal and PC1 , respectively,
for two purposes. First, we evaluate how similar the topologies of these networks are
before (Poriginal) and after (PC1 ) the application of the selection criterion C1. Second,
since the number of AI-related papers within Poriginal is quite small, as already mentioned
in Sect. 2.2.2, we evaluate how much the main regions of these networks containing AI-
related publications are affected by this selection.

Our analysis is based on the comparison of simple global indicators describing the differ-
ent networks (original and filtered), although we are conscious that more advanced meth-
ods exist to control the multiscale similarity of the topologies of the compared networks
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under study (Tantardini et al., 2019).18 As the types of our citation and collaboration
networks are different – directed and unweighted for the former, undirected and weighted
for the latter – we detail in the next two sections the specific indicators we use to compare
the topologies of these two networks during filtering. Based on the new dataset PC1 , we
also introduce a special filter to select the profiles of the authors involved in the papers
within this set, thus affecting the structure of the collaboration network a second time.

2.2.4.1 Impact on the citation network

Here, we report whether some global properties of the time-aggregated citation network
are preserved before and after the selection of papers with at least 10 bibliographic ref-
erences and 10 citations. Tab. 2.1 summarizes some descriptive metrics associated with
the networks built, respectively, from Poriginal (before selection) and PC1 (after selection).
In addition to the share of AI-related papers and citation links related to them, we in-
clude the transitivity of the networks, here the average of the clustering coefficients of
all articles within the undirected versions of the citation networks. More precisely, the
clustering coefficient of a paper is defined as the proportion of triangles (a set of three
fully connected nodes) actually observed among all possible triads in which the node is
involved, thus including neighbors that are not connected to each other (Menczer et al.,
2020, pp.55-58). With this metric indicating the structure of the local neighborhood of
a paper, transitivity therefore indicates the probability for one paper to be connected to
another one knowing that both have a common neighbor.

We also plot in Fig. 2.5 the total degree distribution of all papers within each of the two
citation networks. We define the total degree k as the sum of the number of references of
an individual paper, indicated as the out-degree kout, and the number of citations received,
indicated as the in-degree kin – as indicated by the directions of the citation arrows in
Fig. 2.3. Notice that the criterion C1 established earlier, that is to say kin ≥ 10 and
kout ≥ 10 for a given paper within Poriginal is not equivalent to a k-core decomposition,
i.e., the incremental removal of all nodes with degree k in order to conserve only the
subgraph with nodes exhibiting a minimal degree k + 1. Indeed, as removing papers not
satisfying C1, we also remove some edges related to the papers satisfying effectively C1
within the original citation network, so that the final total degree of the latter within the
filtered network may be less than 20. Hence the left bound of the distribution of Fig. 2.5
situated at 0.

18The methods introduced by Tantardini et al. (2019), if they are freely available and easy to imple-
ment with Python, exhibit some difficulties in scaling up very large networks like ours, in particular for
NetLSD (Tsitsulin et al., 2018) and the computation of the Network Portrait Divergence (Bagrow and
Bollt, 2019), among those tested. In addition, some of these methods are not generalizable to all types
of networks – directed, weighted or a combination of the two. Thus, we limit our topological analysis to
common metrics that are easily computable on the huge networks we possess.
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N0 N0,AI N1 E0 E0,AI

Poriginal 2,052,292 52,056 11,236,818 97,286,873 3,805,467
PC1 855,691 26,374 10,157,654 77,899,796 2,852,268
Loss -58% -49% -9.6% -20% -25%

N0,AI/N0 E0,AI/E0 Transitivity
Poriginal 0,025 0,039 0,075
PC1 0,031 0,037 0,089

Table 2.1: Comparison of the egocentric citation networks around the original database Poriginal

and the filtered one PC1 . The Loss row is the fraction of items removed from the set X, ie.
Loss = (Xfiltered − Xoriginal)/Xoriginal. Papers without citation between 1970 and 2020 are
discarded. Transitivity refers to the global clustering coefficient of undirected versions of the
citation networks. Notations: N0: Number of neuroscience papers in either Poriginal or in
PC1 , which are the nodes of the citation networks constructed from these sets; N0,AI : Number
of papers mentioning AI in their title and/or abstract; N1: Number of additional papers citing
or being cited by the papers in either Poriginal or PC1 , but not belonging to them; E0: Number
of directed citation edges in the networks; E0,AI : Number of directed citation edges related only
to the AI-related papers in the networks (references and citations together).

According to the top table in Tab. 2.1, 42% of all neuroscience publications extracted
in Sect. 2.2.1.2 concentrates 80% of the edges. For AI-related publications within neu-
roscience, 51% of them concentrate 75% of the edges. Thus, after a significant loss of
papers caused by the application of C1, a still significant part of the citation edges re-
mains conserved. The preservation of a still important number of links is also testified
by the number N1 of supplementary papers collected to enrich the egocentric citation
network, whose only 9.6% are lost after the selection. In addition, the share of AI pub-
lications among all neuroscience publications referenced in the bottom table in Tab. 2.1,
as well as the share of citation links associated with AI publications and the transitiv-
ity, remain rather similar before and after the selection. The total degree distribution of
the global citation network shown in Fig. 2.5, is also preserved, which is also a signal of
the concentration of links around the selected core. Only some papers before the elbow
around k ∼ 102 and in the long tail of the distribution at very high k (higher than 103)
are discarded.

More precisely, we discard the papers exhibiting either a total degree k lower than 10 or
higher than 10. Among the latter, they could have either more than 10 references and less
than 10 citations (first category), or less than 10 bibliographic references and more than
10 citations (second category). We assume that the papers in the first category do not
contribute to the diffusion of important knowledge in our corpus because of their limited
citation impact. On the contrary, the papers in the second category, although they have
a very small bibliography, which complicates the identification of their disciplinary or
knowledge affiliation, could produce a large citation impact19 in neuroscience and beyond

19Although it does not figure in the extracted corpus Poriginal, the pioneering work extending the
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Figure 2.5: Log-binned total degree distributions of the citation network before and after ap-
plying of the selection criterion C1.

that we miss with our selection process. Animated by computational issues due to the
size of the mobilized datasets, and with the aim of sharing and making reproducible the
research presented in this work, we reject some crucial works that could be at the heart
of the dissemination of important knowledge in our corpus, especially those within our
small AI-related subcorpus.

In short, even if we have previously characterized the networks without the use of more
sophisticated metrics that more accurately summarizes their respective true topology and
their possible similarities, such as those exposed by Tantardini et al. (Tantardini et
al., 2019), the basic metrics we used above indicate a conservation of some fundamental
properties of the citation network after application of the C1 filter, which is a rather good
sign for further analyses. For all these reasons, we decide to focus the latter only on the
core of neuroscience publications within the subset PC1 .

2.2.4.2 Impact on the collaboration network

Here we analyze whether some global properties of the time-aggregated collaboration
network Aoriginal are preserved before and after the selection criterion discussed above.
In what follows, we especially define AI practitioners as neuroscientists with at least one
AI-related publication during their academic career.

Applying the selection criterion C1 based on the citation characteristics of the pa-
pers, we obtain a sub-collaboration network called AC1 , whose main global properties are
summarized in Tab. 2.2. However, a quick look at the author properties within AC1 –

backpropagation model for learning automata by Rumelhart et al. (1986), published as a letter for
Nature, is a particularly edifying example with its only 4 references for its almost 38,000 citations in
2024, according to the platform Google Scholar.
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as assigned in Sect. 2.2.3.2 – reveals a poor disambiguation20 of the authors referenced
within the MAG database: some distinct researchers with exactly the same first names
and last names may have been “merged” by the database into a single fictitious author
who owns an extended set of publications corresponding to the sum of all their scien-
tific productions. In such a case, it becomes arduous to distinguish between the different
physical researchers who are involved separately in some of these publications and not in
others. This therefore implies that some authors, who are aggregations of two or more
different persons, present implausible features of a standard academic career, such as a
career length ∆y of about a century and an excessively high number of publications.
Conversely, many other authors have very few publications (one or two at most), which
causes some issues for the subsequent reconstruction of authors’ disciplinary trajectories.
Indeed, on the one hand, a small number of publications is certainly not sufficient to build
an individual scientific trajectory, and on the other hand, it is not representative of a solid
advancement of an academic career.

We therefore overcome these problems by proposing a second selection criterion C2,
applied only to the authors of the collaboration network AC1 . Although not based on a
second disambiguation process of the authors, this new criterion relies on several numerical
parameters, namely a maximum length of their academic career, a minimum year at the
beginning of their career, and a minimum number of publications to have. More precisely:

Criterion selection C2
The scientists selected must have had their first publication(s) at least in
1940, with a career no exceeding 50 years and a minimum number of

publications of 3.

We have chosen the above parameter thresholds for several reasons. First, the authors
who started their scientific careers in 1940 may have had a significant impact on the
field at least by the 1970s, the beginning of the period under study, especially during
the rise of expert systems. Second, we set the maximal duration of an academic career
at 50 years because it represents a reasonable period of time from the Ph.D. graduation
of a researcher to his/her retirement or accession to an emeritus status, although we

20Authors disambiguation designates various computational operations to distinguish two or more au-
thors who could have exactly the same name and first name in a given database. Since these operations
are not done by the traditional bibliometric database (WOS, Scopus, APS, etc.), bibliometricians often
handle this process after the extraction of their database, which is based on various factors that could
distinguish homonymic authors, such as their affiliations during his/her career, their recurring collab-
orations, or their individual citation network (Schulz et al., 2014; Sinatra et al., 2016, pp.4-6 of their
supplementary material). The originality of the MAG lies in the fact that the disambiguation process is
already executed, based on an unsupervised classifier compiling various features related to the authors
(Färber and Ao, 2022), but with some imperfections that need to be corrected afterwards. Nonetheless,
we use the dataset available in the version 2020-06-19 of the MAG Zenodo repository at the address
https://zenodo.org/records/4617285.

https://zenodo.org/records/4617285
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Na Na,AI E EAI

Aoriginal 2,611,456 – 37,354,666 –
AC1 1,278,468 202,101 13,786,616 3,136,119
Loss(Aoriginal → AC1 ) -51% – -63% –
AC2 871,282 186,406 10,785,916 2,839,313
Loss(AC1 → AC2 ) -31% -7.8% -22% -9.5%

Na,AI/Na EAI/E Transitivity
Aoriginal – – 0,001
AC1 0,16 0,23 0,003
AC2 0,21 0,26 0,003

Table 2.2: Comparison of the collaboration network at different steps of filtration, following the
successive applications of the selection criteria C1 and C2. The authors publishing alone and
with no collaboration between 1970 and 2020 are discarded. The Loss rows are the fractions of
items removed from the set X before and after one step of selection, i.e. Loss = (Xfiltered −
Xoriginal)/Xoriginal. Due to the too high number of publications to download for authors within
the set of papers Poriginal, which are necessary to know their respective number of AI-related
publications, the quantities related to AI are not mentioned for the original collaboration network
Aoriginal. Notations: Na: total number of authors in each collaboration network Ai; Na,AI :
number of authors in each network, who have at least one AI-related publication throughout
their career; E: total number of co-signature edges, i.e. E =

∑
i,j∈authorswij ; EAI : total number

of co-signature edges involving only AI practitioners.

lose the contribution of such emeriti who, due to their age and career progression, may
be opinion leaders in science (Zuckerman and Merton, 1972) and continue to produce
fruitful, influential work even after their 50-year academic careers. And third, we set
the minimum number of publications at 3 because it is representative of the scholarly
production of a fresh Ph.D.-graduate researcher, even an early career one.

These authors meeting this criterion C2 belong to a subset of the collaboration network
AC1 , called AC2 in the following lines. Tab. 2.2 also indicates the potential loss of authors
and links after the application of this last criterion C2.

This table shows that, although the application of the two successive selection processes
removes a lot of authors and collaborations, a significant proportion of those who have
published at least one AI-related article still remain in the co-authorship network, with
also a remarkably stable number EAI of collaborations involving at least one AI prac-
titioner. In particular, the application of the C2 filter increases the presence of these
AI contributors as well as their collaborations, as shown in the lower table. We notice
that the number of collaborations EAI between authors who have published at least one
AI-related article reaches about a quarter of all edges of the two filtered networks AC1

and AC2 . The following chapters will explore how these scientists who have been touched
by AI at some point are organized, as well as the dynamics of such social diffusion over
time, in particular by considering different types of AI practitioners according to their
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Figure 2.6: Log-binned weighted degree distributions of the authors in the datasets Aoriginal

and its two different filtered versions AC1 and AC2 .

level of expertise in the subject. Furthermore, the transitivity of the network, although
very small, remains unchanged after the entire filtration process.

We also plot in Fig. 2.6 the degree distribution of collaboration after the two filtering
steps C1 and C2. The C1 criterion helps to homogenize the collaboration network by
removing the (often poorly disambiguated) authors located in the long tail of the degree
distribution. We notice that the second selection C2 does not change the shape of the
distribution, thus demonstrating global conservation of the collaboration structure within
our dataset PC1 .

Finally, notice that the collaboration network is built only from the most impactful
scientists in our dataset. Indeed, on the one hand, we have drawn the collaboration
network directly from the set of neuroscience papers that are the most influential in
terms of citations, i.e. PC1 , and on the other hand, we have focused on the authors who
have published at least 3 articles by 2019 and who join the collaboration network AC2 .
Therefore, we did not consider short-term collaborations with early-career, small-career,
or non-academic researchers who are involved in one or two publications with too low an
impact but who can potentially drive forward innovation.

2.2.5 Final dataset and discussion

In this section, we have followed the pipeline illustrated in Fig. 2.7 to build a database
representing the neuroscience literature between 1970 and 2020, including 855,691 articles
with several metadata of interest for the studies introduced in the next chapters, and
completed with an egocentric citation network and a collaboration network. This set of
papers, finally called P in the rest of the manuscript, is distributed over 421 journals
listed in App. A.2. Some parts of the dataset – all except titles, abstracts, fields of study
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Figure 2.7: Building steps of the dataset of neuroscience articles used throughout the thesis,
especially the two following chapters.

and topics – have been shared on Zenodo in the repository referenced by (Fontaine et al.,
2024b) and have been used in an article co-written by the author of this thesis, which is
the subject of Chapter 3 (Fontaine et al., 2024a).21

More precisely, the two subsets of AI-related papers (P∩AI) and non-AI ones (P∩AI)
contain 829,317 and 26,374 papers, respectively, spread over the above period according
to Fig. 2.8. Of all these high-impact research papers in neuroscience, only 3% contain AI-
related keywords. The inset of this figure exhibits in particular a slow growth of the share
of AI-related publications in neuroscience at the very end of the 1980s, which stabilizes
around 1995 and is followed by a very rapid growth from 2007 to 2019. This plateau
around 1995 suggests a second, prolonged AI winter period in neuroscience, characterized
here by a stable interest in AI research, but not a decline, unlike in other disciplines
or research fields (Cardon et al., 2018; Schuchmann, 2019). The subsequent period of
important growth in this share, starting in 2007, also suggests the main influence of the
rise of deep learning techniques, a well-known trend shared by almost all sciences (Cardon

21We have used the Python programming language to perform the analysis outlined in Chapter 3.
The code and results are presented in the form of Jupyter notebooks, which are freely available at: https:
//github.com/sysyMC/AI_in_Neuroscience_EpistemicIntegration_SocialSegregation. As the results of
Chapter 4 are currently provisional, codes and associated notebooks are still under construction and
revision at the time of writing this thesis.

https://github.com/sysyMC/AI_in_Neuroscience_EpistemicIntegration_SocialSegregation
https://github.com/sysyMC/AI_in_Neuroscience_EpistemicIntegration_SocialSegregation


52 Chapter 2

1970 1980 1990 2000 2010 2020

t

10−5

10−2

101

104

N
c

P ∩ AI
P ∩ AI

1970 1995 2020
0.00

0.05

0.10

N
A
I
(t

)/
N

(t
)

Figure 2.8: Cumulative number Nc of papers in the two main subsets considered in this paper.
The inset shows the instantaneous fraction of AI-related publications in the whole neuroscience
corpus.

et al., 2018; Gargiulo, Fontaine, et al., 2023). The share of AI publications in neuroscience
reaches only 10% of the number of publications at its highest level situated at the end of
the period studied, which means that the use of the AI-related keywords (from our list)
in neuroscience remains rather limited even today.

Thanks to the two selection criteria described above, we will also consider a set of
886,074 scientists, of which 188,325 (only 16% of the scientists) have published at least
one AI-related paper in neuroscience. In Sect. 2.2.3.2 we have built a special indicator to
capture the activity of each author in AI research in general, that is, not only in neuro-
science but also in other fields of research. We have especially defined this indicator as
the proportion of AI-related papers published before 2019, fAI(a) = nP∩AI

a /ntot
a . Accord-

ing to the fAI distribution shown in Fig. 2.9, we divide this set of authors in four parts,
namely Q (fAI = 0; Na = 697, 749), Q0 (fAI ∈ (0, 0.5); Na = 182, 925), Q1 (fAI ∈ [0.5, 1);
Na = 4, 977) and Q2 (fAI = 1; Na = 423). Thus, by constructing these quartiles, neu-
roscientists in Q are assumed never to have collaborated with those in Q2 between 1970
and 2020, but each member of these two groups may have collaborated with scientists
belonging to the other two quartiles Q0 and Q1. Moreover, only scientists in the latter two
quartiles may have collaborated with scientists belonging to either Q or Q2. We adopt
this classification of authors in the next chapter.

Nevertheless, we warn the reader that this dataset is not as exhaustive as we would
have liked and does not perfectly reflect the state of the field during the 50-year period
retained, due to many biases expressed throughout this section. These biases could affect
the way AI spreading within neuroscience is studied further. While some of these have
already been addressed above, some implications of others are detailed below.

Firstly, recall that we focus only on neuroscience articles published in peer-reviewed
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Figure 2.9: Distribution of the AI score fAI of the authors.

journals. Indeed, we have discarded important types of publications that could be at the
heart of the dissemination of AI in neuroscience, such as conference proceedings, which
account for a significant part of publications in the field of computer science (Meyer et al.,
2009; Wainer et al., 2013), which is adjacent to AI, the preprints available in dedicated
repositories, e.g. arXiv, and also patents. Nonetheless, a simple query to the OpenAlex
API22 unveils that neuroscience results are largely communicated in this format, so we can
reasonably assume that we are capturing, in a bibliometric sense, the most important part
of AI-related research output published according to neuroscience publication standards.
The method advanced in this section is therefore a consistent, though not unique, way of
measuring the degree of appropriation of AI by the field of neuroscience.

Another important point is that, although we are focusing on the most widely used for-
mat for communicating neuroscientific results, the analysis introduced in the next chapters
will rely on a particular subset of journals classified in the WOS, which is rather selective
about the sources it chooses to reference. Although the latter now shows an expansion of
its international and disciplinary coverage (Birkle et al., 2020), we lose some contributions
that are not published in journals referenced by this database, because of their languages,
their recent launch, or their too low impact factor. Here, we thus have chosen to draw
our analysis upon a neuroscience literature that is supposed to drive the most circulation
of ideas across academia, i.e. published in journals with a significant impact factor and
mostly written in English, according to the WOS.

In summary, the P dataset and its ecosystem represent a particular scientific production

22We call the OpenAlex API on May 24, 2024 to get the distribution of output types (according to
the classification given by CrossRef) related to the field Neuroscience between 1970 and 2020. Among
the 4,943,457 fund publications, 84% of them are journal articles, about 7% are book chapters, 3% are
proceedings articles and 1% are posted-contents, including preprints – which are removed from OpenAlex
once they have been published in a peer-reviewed journal or conference proceedings. The remaining 5%
are of various other types that are not significant.
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within neuroscience, namely that which is published as articles in journals referenced by
traditional bibliographic databases and has achieved a certain citation success.

2.3 Qualitative data collection from a laboratory field-
work

2.3.1 The Aramis team: a window on AI research for neuro-
science

According to its 2019 activity report,23 Aramis has been founded in 201224 and is based
at the Institut du Cerveau (ICM) since 2014 as a “project team”25 of the Institut Na-
tional de Recherche en Informatique et en Automatique (INRIA), under joint supervision
of the Centre National de la Recherche Scientifique (CNRS), the Institut National de la
Santé Et de la Recherche Médicale (INSERM) and Sorbonne University. This team is also
part of the Centre d’Acquisition et de Traitement d’Images pour la maladie d’Alzheimer
(CATI).26 Its members, mainly computer scientists, statisticians, and clinicians who are
also engaged in regular medical practice, are in charge of designing numerical and sta-
tistical models to predict the evolution of brain diseases, particularly neurodegenerative
pathologies. Using AI algorithms based on machine learning (ML) and deep learning
(DL), researchers need large clinical databases to train, verify, and validate their models.
These models are then implemented in specialized, often open-source27 software designed
to help not only researchers but also medical practitioners to more easily identify patholo-
gies from acquired images. As part of translational research (Allen et al., 2019; Stokols
et al., 2008) conducted in ICM, allowing the deployment of academic outputs into regular
medical practice directly in the hospital, Aramis works closely with other clinical research
teams at the institute, sharing knowledge and predominant IT-based skills.

23This report is available at the following address for the year 2019: https://raweb.inria.fr/
rapportsactivite/RA2019/aramis/uid3.html.

24The first Aramis activity report, written in 2013 and available on INRIA’s Explora-Web portal,
confirms its foundation during 2012.

25Translated from the french expression “équipe projet”, used especially at INRIA.
26National and international network for sharing neuroimaging techniques, created in 2011 as part of

the French Alzheimer’s Plan. See at: https://cati-neuroimaging.com.
27A software is open-source when its original code is freely and publicly shared on a collaborative

platform. In this way, any user or developer can freely modify, customize, and even improve the software
to enhance its performance, and then redistribute it on the same platform afterwards.

https://raweb.inria.fr/rapportsactivite/RA2019/aramis/uid3.html
https://raweb.inria.fr/rapportsactivite/RA2019/aramis/uid3.html
https://cati-neuroimaging.com
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2.3.2 Choosing a semi-structured interview format

A qualitative survey, based on semi-structured interviews using the questionnaire in
App. D.1 (initially in French), has been conducted between March and April 2021 with
eight scientists in ICM. Seven are members of the Aramis team and exhibit together
diverse scientific profiles, from computer scientists and mathematicians conceiving sta-
tistical or AI-based models and programming them, to clinicians using them for clinical
research. An eighth person, with a status of statistician and not member of Aramis, has
also been interviewed for his/her close relationships with the various ICM’s teams. All
of them are referred to hereafter by an interviewee code. Table 2.3 below indicates their
gender, academic status, and institutional affiliations, alongside the date and duration of
their corresponding interview.

Due to the lock-down restrictions imposed by the French health emergency policy,
effective from March 17, 2020 and still active during the fieldwork in the next year,
ethnographic observations in a hospital were not feasible, and the interviews have all
been conducted on a virtual face-to-face mode using Zoom software. A significant number
of technical hitches have disturbed interviews, mainly due to poor internet connections.
From simple image cuts to time lags between the two speakers, these events have led to
some confusion or repetition of what one speaker had just said to the other. These virtual
sessions thus differ from a conversation that two individuals could have physically in
another space – e.g., in the street or at work – despite the effort made by the interviewer
(here the author of the present thesis) to ensure that these interviews are “real-like”
conversations in which the interviewees can feel at ease without necessarily having the
impression of being subjected to a simple questionnaire.

This interview format adopted by the interviewer (in fact, the author of this thesis)
allows to capture wealthy personal information revealed by the interviewees on their
respective perception of AI in their neuroscientific research work, but has some conse-
quences in terms of interpretations given in Chapter 5. In fact, the interviewer can follow
his questionnaire according to precise themes while allowing himself to be carried along
by interviewee’s discourse, which he may find interesting for his own fieldwork, with the
risk, however, of getting caught up by his/her personal opinions and perhaps sharing
them. This may obviously influence the way the interviewer asks the questions and,
consequently, the interviewee’s answer, which may hinder any (idealistic) semblance of
objectivity. Digressions are then observed as well as answers to questions – within the
questionnaire or not – that the interviewer did not explicitly ask, thus raising new ques-
tions and hypotheses that can be explored in future interviews. Two exchanges thus are
completely different. Moreover, unlike a multiple-choice grid or a structured interview,28

28The structured interview format tends to be adopted for large national statistical survey based on
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Interviewee Gender Status Affiliations Date of the interview Duration

I1 Male
Post-doctoral researcher

ICM, QIMB March 8, 2021 1h28in neuroimaging &
genetic data analysis

I2 Male R&D engineer & ICM, INRIA March 19, 2021 1hdata scientist
I3 Male Neurologist & researcher AP-HP, ICM, IM2A March 23, 2021 42min

I4 Male
Post-doctoral researcher

ICM, INRIA March 26, 2021 57minin machine learning
applied to neuroscience

I5 Female Neuropsychologist AP-HP, ICM March 30, 2021 58min& PhD candidate

I6 Female Statistician
AP-HP (Biostatistic team

April 6, 2021 1h57of La Pitié-Salpêtrière
Hospital), IM2A

I7 Male Neurologist & PhD candidate AP-HP, ICM April 7, 2021 1h23

I8 Female Full-time researcher CNRS, ICM April 13, 2021 1h06in computational neuroimaging
Table 2.3: Interviewees’ summary. All interviews have been conducted in French and remotly, due to the COVID-19 pandemic, with the Zoom
video-conference software. Abbreviations: AP-HP: Assistance Publique-Hôpitaux de Paris; CNRS: Centre National de la Recherche Scientifique;
ICM: Institut du Cerveau; IM2A: Institut de la Mémoire et de la Maladie d’Alzheimer; INRIA: Institut National de Recherche en Informatique et
en Automatique; QIMB: Queensland Institute for Molecular Bioscience (Brisbane, Australia).
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the order of the questions is rarely respected, making it difficult to observe any potential
regularities. Respondents’ discourse and the way they implicitly answered a question in
the original interview grid are also crucial for a detailed understanding of their opinions.
Full or partial transcriptions, duly annotated29 in French, have therefore been essential
to the success of this work.

Finally, in addition to being a discovery of a scientific world whose (precise) research
topics, the nature of the work effectively done in laboratories, in what institutional con-
text(s) – at the crossroads of academic and clinical research, often conducted within
international consortia and in dialog with regular medical practice and health policy –
were unknown to us, these interviews have also enabled us to appropriate, even build
for ourselves a scientific culture (Laudel and Gläser, 2007) of neuroscientific research,
especially in the domain of computational neuroscience, as is done at Aramis.

a representative sample. Individuals are then asked one by one, usually by phone or email, following a
questionnaire whose answers are often yes or no (or neutral).

29We have manually transcribed these interviews following the method suggested by Rioufreyt (2016).
Although not added to this thesis, we can provide the transcriptions on request.
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3
Domain adaptation and social segregation of AI

research in neuroscience

In this chapter, using the database built in Chapter 2 and the additional metrics exposed
in the following Sect. 3.1, we analyze two AI genericity criteria, namely domain adaptation
and social adoption, through two dynamic mechanisms underlying the appropriation of
AI by neuroscience and then the possible knowledge transfer between the instrument and
the field.

The first one concerns the level of embedding of AI into the multidisciplinary con-
text of neuroscience, which we study through a special representation of the disciplinary
landscape of the host field, based on its bibliographic references and citations. Such an
enterprise aims to situate the AI-focused research subarea within this disciplinary land-
scape. This is the object of Sect. 3.2, in which we first build two citation ecosystems
surrounding, respectively, the whole neuroscience and the particular AI research within
it, in order to evaluate at macro- and micro-scales the common traits of these two ecosys-
tems afterwards.

The second mechanism, object of Sect. 3.3, concerns the social diffusion of AI through-
out the neuroscience community, which we study not only with the collaboration network
of the field but also with the disciplinary trajectories of the neuroscientists involved in
AI research. These trajectories will enable, in particular, identifying the scientific profiles
who are more inclined to use AI than others. With their location within the whole neu-
roscience collaboration network, we will also assess the ability of these authors to spread
AI across the field.

Finally, in Sect. 3.5, we discuss these two mechanisms, in particular whether the con-
figurations of the citations and the collaborations around AI research within neuroscience
foster or hinder its diffusion throughout the field.
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Some elements of this chapter are borrowed from the article by Fontaine et al. (2024a),
partly written by the author of this thesis.

3.1 Presentation of the mobilized framework

3.1.1 Method for comparing the disciplinary influence and im-
pact of the AI-related and non-AI research over time

In this section, we propose a method to describe the articulation of AI research with
neuroscience, based on the aggregation of bibliographic references and citations according
to their respective WOS-related JSCs. With the following exposed framework, we can
identify the most influential disciplines of neuroscience – as it is a multidisciplinary domain
– and also those that are at the source of AI-related research within the field. This
framework also allows us to identify the disciplines that cite this research the most.

3.1.1.1 Building temporal disciplinary rankings representing preferred bibli-
ographic references and preferred citations

We start with the egocentric citation networks of the two neuroscience corpora P∩AI and
P ∩ AI built in Sect. 2.2.5 of the previous chapter, i.e., the corpus containing AI-related
papers and that without AI-related ones, respectively. As drawn in Sect. 2.2.3.1, these
citation ecosystems consider both the bibliographic references and the citations of the
focal papers within one of the two corpora. We consider such a citation ecosystem as a
proxy for the disciplinary environment surrounding the two corpora we want to compare.
In particular, we build these ecosystems with the WOS JSCs associated with the papers
constituting the global set of bibliographic references of the corpora (or their citations).
Here, we consider only the first level1 of the disciplinary taxonomy of journals given by
WOS in 2021, which are broad disciplines in science (recalled in App. A.3).

First, for each corpus, we count the annual number of citations received by each of these
JSCs within its own set of bibliographic references. Doing this year-by-year over the period
1970-2019, we therefore build a temporal ranking of the disciplines that are most cited

1This taxonomy actually comprises two levels, which apply only to some broad disciplines. For
example, within the JSC Computer Science (at level 1) we can distinguish some main areas of the field,
such as Artificial Intelligence, Theory and Methods, Information Systems and Cybernetics (at level 2).
This is also the case for many other JSCs at level 1. Aggregating all these subareas into a single discipline
introduces a bias at the microscale, as they could be related to different research practices and manners
of adopting (or not) AI-related knowledge and technologies. Here, for the sake of clarity, we choose to
rely on the first level of JSCs of the presented results.
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Figure 3.1: Citation ecosystem centered here around three papers (gray) published in year y0
and included in either P ∩ AI or P ∩ AI. A dashed arrow represents the citation of a target
paper by a source one. Thus, the red circles are the papers that are cited by the papers in our
corpus (reference), while the blue ones are the papers that cite them (impact). The rankings
are shown in descending order with the corresponding number of citations of each JSC di.

by each corpus. For example, in Fig. 3.1, the papers cited by a corpus in year y0 (gray
points) are mainly published in journals labeled by JSC d1 with 8 citations, followed by
JSC d2 with 5 citations, and d3 with only one citation (red points and the corresponding
red-contoured ranking). Hence, the disciplinary reference ranking r(y0) = {d1, d2, d3}
with each JSC sorted according to their respective ranks mentioned above. However, this
ranking could be different before this year y0 and also in the next ones, depending on the
citations received by each JSC in those years.

We specify that we use such JSC rankings for the two corpora instead of the absolute
number of citations to allow comparison of their respective citation ecosystems, because
AI research occupies a small place in the field of neuroscience (3%), with a much smaller
number of references and citations than those associated with neuroscience research away
from AI.

We do the same for the JSCs that most cite our papers of interest up to one year after
their official publication year. We have chosen this time period to avoid the high temporal
dispersion of the generated citations over the whole time period under study, where the
citation impact of the papers published in 1970 may eventually be greater than those
published in 2019. In this way, we assess from which JSCs the generated citations first
originate, before eventually spreading to a broader disciplinary landscape.

Finally, by looking at both the reference and the impact sides, we represent two disci-
plinary landscapes associated with the corpora P ∩ AI and P ∩ AI, respectively. More
precisely, the reference ranking associated with a given corpus summarizes its main in-
fluential fields of study, and thus the disciplinary structure on which it draws over time,
while the citation ranking indicates the fields that are at first impacted by the corpus.
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3.1.1.2 Building of a comparative disciplinary cartography between AI-related
and non-AI research

Following the procedure described above, and according to all the pairs of references’ and
citations’ numbers associated with all the JSCs represented in P∩AI and P∩AI, we asso-
ciate with each JSC d two pairs of ranks indicating its weight either in references or in cita-
tions of the two corpora in year t, denoted respectively as rd

R(t) =
(
rd

R,P∩AI
(t), rd

R,P∩AI(t)
)

and rd
I (t) =

(
rd

I,P∩AI
(t), rd

I,P∩AI(t)
)
. In case of a missing JSC in one of the two corpora in

a given year t, we fill the missing rank with a maximum value set to 100.

With such a pair of ranks (either for references or citations), we can locate a discipline
d in a 2D space of rankings, as shown in Fig. 3.2. In this coordinate system, the lower the
value of an axis, the better the associated rank, and the higher the number of citations
collected along that axis. The angle θ indicates the deviation of d from the diagonal in
this space, where the ranks are exactly the same in each corpus.

From this map we define the common interest area between P∩AI and P∩AI (in gray)
as the region close to the diagonal where the two rankings of the fields of study within
it are almost the same and do not vary significantly over time. This zone is comprised
between the two lines of respective equations rP∩AI = rP∩AI + τ (above the diagonal) and
rP∩AI = rP∩AI − τ (below the diagonal), where τ is a parameter set to 10.

The blue zone above the common interest area corresponds to the space where dis-
ciplines have a better rank in P ∩ AI than in P ∩ AI. In the case of references, such
disciplines in this zone are cited more by the corpus P ∩ AI than by P ∩ AI, and in the
case of citations received by each of the two corpora, such disciplines in this zone cite
more the papers in P ∩ AI than those in P ∩ AI. The purple zone under the common
interest area is therefore the opposite case, i.e., in the case of references (for example),
the disciplines in this zone are more cited by the corpus P ∩ AI than by P ∩ AI.

In Sect. 3.2.2 we apply this geometric construction per decade periods instead of single
years, i.e., we build a decade ranking space from the total number of citations given or
received by the represented JSCs in P ∩ AI and P ∩ AI within the period under study.

3.1.2 Computation of the intensity of collaborations in the ag-
gregated co-authorship network

In this section, we detail the general computation of an indicator that will be used in
Section 3.3.2 to indicate the propensity to collaboration between neuroscientists in our
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Figure 3.2: Coordinate system used to characterize the distribution of disciplines in the references
and citations of the corpora P ∩AI and P ∩AI.

database.

We first consider the static collaboration network A = (S,E), whose construction is
summarized in Sect. 2.2.5 of Chapter 2, where S is the set of scientists and E the set of
edges between them. Each scientist in S is identified by their respective AI score fAI .
According to Section 2.2.5, the distribution is divided into four parts {Q,Q0, Q1, Q2},
from the least AI expert to the most expert. Therefore, an author belongs to a given
group Q, given his or her own AI score. By aggregating the scientists into such Q groups,
we compute the 4×4 matrix τobs of effective edges between these groups, where an element
is written as τobs(Qi, Qj) = |{(u, v)|u ∈ Qi, v ∈ Qj}|.

Then we create a set of N alternative collaboration networks {Ãk} = {(S, Ẽk)}, with
k = {1, ..., N}, all of which are based on the same set of scientists but have different sets of
edges obtained by perturbing the network with a uniform shuffling that conserves the de-
gree distribution of scientists. By applying the same clustering of scientists into Q groups
for each network as for the real network A, we draw a set of matrices {τk} corresponding
to the fraction of edges between the Q groups within the randomized networks {Ãk}.
From this set, we extract, on the one hand, the average matrix τsim, where an element is
defined as τsim(Qi, Qj) = 1

N

∑
k τk(Qi, Qj), and on the other hand the standard deviation

matrix σ, where an element is defined as σ(Qi, Qj) = 1
N−1

∑
k(τk(Qi, Qj)− τsim(Qi, Qj))2.

We finally compare the empirical matrix τobs of the real network with the simulated one
τsim through a z-score matrix where an element is defined as follows:

z(Qi, Qj) = τobs(Qi, Qj)− τsim(Qi, Qj)
σ(Qi, Qj)

. (3.1)

Here, this standardization is used to test the over- or under-representation of a given
number of edges between two groups with respect to the corresponding average simulated
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value, which represents an ideal situation produced by randomization. Applying the
whole procedure above to the network A, with N = 100, gives Fig. 3.11B. Fig. 3.11A is
also drawn by applying the same method with the same N to each temporal snapshot of
the temporal collaboration network T (see also Section 2.2.3.2 for its building), and by
aggregating the groups Q0, Q1 and Q2 into a single one called Qi (see Fig. 3.11A), which
includes all scientists with at least one AI-related publication. Since T is undirected, the
4× 4 matrices τobs, τsim, σ and z are therefore reduced to scalars defined only by the two
groups Q and Qi.

3.1.3 The AI-activity of the journals

For each of the 421 journals listed in our database drawn in Chapter 2 and recalled in
App. A.2, we retrieve its entire publication history from the MAG to compute its temporal
share aAI(t) of AI-related publications, also called temporal AI activity in the following
lines, and its global share aAI of such publications since its founding year, more simply
called AI activity.

3.2 The situation of AI within the neuroscience dis-
ciplinary landscape

3.2.1 Citation homogenization of the AI-related publications
with general neuroscience

First of all, we explore the integration of AI technologies and knowledge within neuro-
science through the dynamical interaction between the respective disciplinary environment
of the two fields – AI and neuroscience. We especially compare year by year the basis of
reference and citations that are shaping these fields, here represented as the AI-related
publications and the non-AI ones within our neuroscience dataset.

For the two subcorpora P ∩ AI and P ∩ AI, and following the method exposed in
Sect. 3.1.1.1, we build two disciplinary rankings that may vary over time, one for the dis-
ciplines appearing in their respective references (rR(t)), hereafter called reference ranking,
and another for those appearing in the respective citations they have received (rI(t)),
called citation ranking in the following. We then use a common similarity metric J pro-
vided by Gargiulo et al. (2016, see their supplementary materials), comprised between 0
and 1, to evaluate how similar two given rankings rA and rB are: if J(rA, rB) = 1, the two
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rankings are exactly the same, i.e., containing the same elements with the same respective
ranks; conversely, if J(rA, rB) = 0, the elements included in rA are not in rB, regardless
of their respective ranks. In particular, we compute three time-varying measures:

1. the temporal self-similarity of a given ranking r, namely the similarity between this
ranking at time t and the same one at the previous time t−1, denoted as J(rt−1, rt);
by applying it to the reference and citation rankings in each corpus, we evaluate the
dispersion or the reinforcement of the set of disciplines constituting these rankings
independently,

2. the temporal disciplinary concentration of a corpus, namely the similarity between
its reference ranking rR and its citation ranking rI at a given time t, denoted by
J(rR(t), rI(t)),

3. the temporal similarity of the rankings of the references (or citations) of the two
corpora, denoted as J(rR

P∩AI(t), rR
P∩AI

(and J(rI
P∩AI(t), rI

P∩AI
for the citations); this

measure compares how much similar the respective citation ecosystems of the two
corpora are over time.

The evolution of the first two indices is represented in Figs. 3.3A and 3.3B respectively.
According to the former, the references on which the AI corpus and the non-AI one
respectively rely (solid lines) both consolidate over time towards their respective highest
values in 2017, but not at the same speed. Indeed, the non-AI corpus lies on almost
the same set of disciplines from year to year, while the AI-related one grows from a
low similarity in 1970 (around 50%) to a stable set with a high similarity (around 90%)
between 2015 and 2017. The observed decrease after 2017 is mainly due to the lack of data
grabbed by the MAG. In addition, while the self-similarity of citations in the corpus P∩AI
(blue dashed line) follows the same trend as the corresponding self-similarity of references,
the self-similarity of citations in the corpus P ∩AI (purple dashed line) is rather chaotic,
fluctuating around 50% between 1970 and the late 1990s, and then increasing to around
80% by 2019. This means that the respective sets of short-term impacted fields in the
two corpora are consolidating around the same disciplines in recent days. More precisely,
Fig. 3.3B shows a growing concentration of reference and impact rankings within each
corpus over the time period under study, i.e., the impacted disciplines and those appearing
in the references are becoming more and more similar, hence a research inspired by itself
towards itself. This also shows the progressive disciplinary homogenization of the two
corpora P ∩AI and P ∩AI independently, and thus a consolidation of the entire field of
neuroscience.

Whereas Fig. 3.3 shows some measures characterizing the independent evolution of
the citation ecosystems of AI-related and non-AI research in neuroscience, respectively,
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Figure 3.3: A: Temporal self-similarity of disciplinary rankings associated with either the ref-
erences of one specific corpus (R) or the citations it has received (I), either in the AI-related
corpus (P ∩AI) or in the non-AI one (P ∩AI). More precisely, a point at time t is the similar-
ity between the ranking at time t and the preceding one at t − 1. B: Instantaneous similarity
between the references used by a corpus and the citation impact of that corpus.
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Figure 3.4: Instantaneous similarity between the reference or citation rankings of the two corpora
P ∩AI and P ∩AI at year t.

Fig. 3.4 offers a view of the evolution of temporal similarity measures of the third kind,
which confront the rankings associated with the two corpora. A first one compares the
rankings of the disciplines cited by the corpora P ∩ AI and P ∩ AI (blue curve), and a
second one compares the rankings of the disciplines that are citing them over time (red
curve).

This figure shows that the disciplines cited by P ∩AI remain quite different from those
cited by P ∩ AI. However, the almost linear growth of the similarity of references over
time is a signal of bibliographic homogenization. In this figure, we also observe a similar
behavior for the second similarity measure related to the disciplines citing the two corpora,
which at first glance could be divided into two stages. First, the similarity was stabilized
at a very low value between 1970 and 1987, i.e., the two corpora were cited by two very
different sets of disciplines, then it steadily increases since 1988, i.e., the sets of disciplines
showing interest in the AI-related and the non-AI literature, respectively, have become
more intertwined over time.

In summary, as the two corpora grow around reinforced sets of disciplines (see Fig. 3.3),
the last two rankings shown in Fig. 3.4 together exhibit a progressive entanglement of the



Domain adaptation and social segregation of AI research in neuroscience 67

two disciplinary ecosystems that characterize the two corpora P ∩ AI and P ∩ AI.

3.2.2 Beyond the citation homogenization: AI and non-AI pub-
lications lie on different disciplinary bases

We complete the previous ranking analysis by focusing on the difference between the
microscopic disciplinary composition of the AI-related corpus (P ∩ AI) and the non-AI
one (P ∩ AI) in our neuroscience dataset. In particular, by considering the individual
disciplines that are simultaneously cited by (or cite) both of the two corpora, we compare
the extent to which these disciplines are actually cited by (or cite) each of them. The
goal of such an analysis is to identify the disciplines from which each corpus prefers to
find information, i.e., its references, and those to which it spreads its knowledge, i.e., its
citations.

By applying the framework described in Section 3.1.1.1, we associate with each repre-
sented discipline d within the references or citations of the corpora P ∩ AI and P ∩ AI,
their time-aggregated ranks over decades,

(
r̃d
P∩AI

(T ), r̃d
P∩AI(T )

)
, with T = [t0, t0 + 10) a

given time period where t0 ∈ {1970, 1980, 1990, 2000, 2010}. These ranks are built using
the total number of references to the discipline d made by the corpora, or with the total
number of citations given by d to the corpora (the impact) during the time period T .

We then locate the cited or citing disciplines in the 2D ranking space shown in Fig. 3.5.
In one of the maps drawn in this figure, a colored disk represents a specific discipline d
that appears in each corpus with its respective ranks during the considered time period,
either in references (Fig. 3.5A) or in citations (Fig. 3.5B). The lower the value along one
axis, the better the associated rank, and then the higher the number of citations collected
along that axis. From these maps, we define the common interest area between P ∩ AI
and P ∩ AI as the region near the diagonal where these fields are colored in gray. The
disciplines that are more dispersed around the diagonal are represented in two different
colors, the blue having a better rank in P ∩ AI than in P ∩ AI and the purple having a
better rank in P ∩ AI than in P ∩ AI.

The position of a point on a ranking map in Fig. 3.5 is set with respect to both ranks
in the subsets P ∩ AI and P ∩ AI. We calculate the size sd(T ) of the point associated
with d as the square root of the weighted average of the number of citations it receives in
each set:

sd(T ) =

√√√√ c̃d
P∩AI

(T )wd
P∩AI

(T ) + c̃d
P∩AI(T )wd

P∩AI(T )
wd
P∩AI

(T ) + wd
P∩AI(T ) , (3.2)

where c̃d
k(T ) is the total number of citations appearing for the JSC d in the given time
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period T , and wd
k(T ) is the proportion of citations obtained by d in the subset k for the

considered time period T . This weighted average combines the level of occurrence of each
JSC in P∩AI and P∩AI, as it could have collected the same number of citations in each
corpus while being ranked differently within them. The square root especially flattens out
the high dispersion of the values of s for the sake of visibility and comparison between
the two corpora.

To characterize each of these three areas around the diagonal in the references (or cita-
tions) of each corpus, we use the annual couples of ranks rd

R(t) (rd
I (t)) of each represented

discipline d in P ∩AI and P ∩AI, and we compute the temporal angle θ(t) that indicates
its temporal deviation from the diagonal, here corresponding to the null angle θ = 0.
Then, within each zone for each year, we compute the average angle 〈θ〉 and the standard
deviation from the latter, both represented in Fig. 3.6.

The disciplinary composition of the common interest area, concentrated around the di-
agonals of all the maps, includes rather the same fields at each decade, both on reference
and impact sides. According to the common ones that are more persistent over decades in-
side the references and received citations (see upper left boxes in Figs. 3.5A and 3.5B), the
core of the observed citation dynamics lies in neuroscience and is composed by disciplines
that are mainly associated with medicine and biomedical research, such that Biochemistry
& Molecular Biology, Behavioral Sciences, Clinical Neurology, Physiology, Cell Biology,
Psychology, Psychiatry and Ophthalmology. This zone is thus coinciding with the defini-
tion of neuroscience given by neuroscientists themselves, namely it “include[s] all fields
that are involved with the study of the brain, the behaviors that it generates, and the
mechanisms by which it does so, including cognitive neuroscience, systems neuroscience
and psychology” (Hassabis et al., 2017, p.245).

This zone is also accompanied by disciplines whose ranks are more variable and that
are associated with more technological aspects of neuroscience, such as Computer Sci-
ence, Engineering, Radiology, Neuroimaging and Audiology & Speech-Language pathology.
Fig. 3.7 represents the annual disciplinary evolution of this zone with the distance ρ of
the disciplines d inside this zone from the origin of the 2D ranking maps (i.e., the point
with ranks (0,0)), according to its location with the coordinates (rd

P∩AI , r
d
P∩AI

) associated
with its respective ranks in the AI and non-AI corpora: ρ =

√
(rd
P∩AI)2 + (rd

P∩AI
)2. In

particular, Fig. 3.7 shows a spectacular rise since around 1995 of the reference rankings
associated with Radiology and Neuroimaging in both AI and non-AI corpora, as well as a
growing impact of neuroscience articles published in this period on these disciplines. This
trend thus testifies to the diffusion of these technologies in scientific and medical practices
associated with neuroscience.

The special disciplinary ecosystem of the non-AI corpus P ∩AI, in blue on the ranking
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Figure 3.5: Time-aggregated ranking maps of the fields of study involved in publications that
are cited by both of the studied corpora P ∩ AI and P ∩ AI (A), and in publications that
cite them (B). The dashed lines show the diagonal where the rankings are exactly the same
in the two corpora. Only the most significant disciplines are shown, with the condition that
they must appear simultaneously in both corpora. As mentioned in the main text, the sizes
of the disks are normalized based on their empirical number of citations in the two different
corpora in order to compare their respective citation weights within each corpus. The gray
points correspond to disciplines that are situated in the area between the two lines of respective
equations rP∩AI = rP∩AI + τ (above the diagonal) and rP∩AI = rP∩AI − τ (below the diagonal),
with τ = 10, and that shows no important variations of their respective positions from one
period to one another. The most persistent disciplines over the 5 decades represented, with a
rank lower than 20, are mentioned in the upper left box of each figure A and B. Finally, blue
points are the most preferred disciplines of the P ∩ AI corpus, while purple ones are those of
the P ∩AI corpus. Abbreviations of the apparent disciplines are provided in App. A.3.
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Figure 3.6: Temporal average angles produced by the disciplines in each area of the reference
(left) and impact (right) diagrams of Fig. 3.5, with respect to the diagonals represented here
by a dashed line at 〈θ〉 = 0. The colored area covering the curves represents their respective
standard deviation from the mean angle. Angles are expressed in radians.
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Figure 3.7: Time evolution of the distance ρ of the disciplines included in the common interest
area, as defined and shown in Fig. 3.5. Only the curves with the most significant evolutions are
highlighted with colors.

maps of Fig. 3.5, is also centered around biomedical fields of study that tend to be close to
the disciplines that characterize the whole neuroscience as mentioned above. In particular,
as shown in Fig. 3.6, the mean angles and standard deviations of the disciplines in the
associated zone both assert a global concentration of them toward the common interest
area, which includes, on the one hand, the most influential fields of research (reference),
and on the other hand, the core of those that show the same interest for the two studied
corpora (impact). We also notice in the reference angle plot of Fig. 3.6 a deviation from
the diagonal of the disciplines in this zone of references since 2010, which is also shared
by the disciplines in the common interest area of references. This suggests a recent shift
of references shared by the two corpora toward fields of study preferred by the non-AI
corpus.
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Conversely, the special disciplinary ecosystem of P∩AI evolves differently by represent-
ing the mathematical, computational, and technological part of neuroscience since 1970.
The regular references to Computer Science, Physics, Statistics & Probability, Mathemat-
ical & Computational Biology and Engineering show a large influence of technological-
oriented research in this particular AI research in neuroscience. Progressively concentrated
toward the common interest area between 1970 and the late 1980s (see Fig. 3.6), these
references preferred by P ∩ AI become further away from the common interest area and
more dispersed after this period, thus indicating a cognitive differentiation of references
on which the AI-related corpus P ∩AI is drawing upon from the non-AI corpus P ∩AI.
In addition, while neuroscience and associated medical fields – as Clinical Neurology and
Neuroimaging – remain the primary stakeholders in the AI research conducted within it,
the latter appears to be of varied interest, since the 1980s, to a subset of disciplines which
do not place as much emphasis on works in the non-AI corpus and which are common
to those cited preferentially by the AI-corpus over time, such as Computer Science, En-
gineering and Mathematics for Computational Biology, the last one exhibiting especially
a spectacular increase of its own rank between 1990 and 2019 (see Figs. 3.5A and B2).
Moreover, these special disciplines that cite most the corpus P ∩ AI in Fig. 3.5B are as
dispersed as the most cited ones by this corpus in Fig. 3.5A, and remain over time less
close to the common interest area than the disciplines preferring the other corpus P ∩AI
(see the corresponding annual evolution of the average angle 〈θ〉, colored purple on the
impact side of Fig. 3.6). All these results thus show that AI research in neuroscience is
situated in a particular disciplinary environment that is not shared by the core of the
neuroscience field.

By regarding the disciplines with the most significant rank evolution within the AI
ecosystem P ∩ AI, Fig. 3.8 shows the rise of Neuroimaging and Radiology both on ref-
erence and impact sides, as already observed in the common interest area, and also the
progressive domination of Computer Science. This figure also shows the decrease in the
influence of fields of research linked to the disciplinary orientations of neuroscience and
especially of the corpus P ∩ AI. This is also a sign of a progressive differentiation of
the research supported through AI from the rest of neuroscience. The case of Physiol-
ogy, which contributed to the foundations of neuroscience (Cooper and Shallice, 2010), is
particularly eloquent in its distancing in time from the highest positions in the reference
ranking of the corpus P∩AI since the 2000s. This observed retreat of master neuroscience
disciplines, which had a strong influence in the building of AI in this field since the 1970s,
suggests that a social transformation occurred in this special research during the studied
temporal period. Perconti and Plebe (2020) mention such a transformation, in which

2Fig. 3.5B shows also a particular proximity of the AI-related corpus with the field of chemistry, here
represented with the JSCs Chemistry and Biochemical Research Methods, the latter giving more citations
than the former since 1990.
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Figure 3.8: Time evolution of the ranking rP∩AI of the disciplines that are mostly represented by
the corpus P ∩AI in the references (top) and citations (bottom), ie. situated in the lower zone
of the maps shown in Fig. 3.5. Only the curves with most significant evolution are highlighted
with colors.

AI in neuroscience was a matter for biomedical specialists before becoming an object of
study and technological developments for engineers. This will be shown empirically in
the following sections.

3.3 Who are the scientists making AI in neuroscience?

In this part, we focus on the profiles of the scientists doing AI in neuroscience and how
they are inserted into the global authorship landscape of neuroscience. In particular, we
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compare these AI practitioners with the other neuroscience researchers who have never
published AI-related papers under three aspects, namely (1) their disciplinary background,
(2) their disciplinary trajectory in academia, and (3) their surrounding collaborations
within neuroscience. Here, we lie on the quartile classification of authors according to
their respective share of AI-related publications (see Fig. 2.9 in Chapter 2), such as the
authors gathered in the quartile Q have a null AI-score fAI = 0, those in Q0 having
fAI ∈ (0, 0.5), those in Q1 having fAI ∈ [0.5, 1) and those in Q2 having fAI = 1.

3.3.1 Disciplinary profiles in each quartile of the fAI distribution

Inspired by (Sugimoto and Cronin, 2012) (but with much less available data on the status
of the authors), we define the disciplinary background of one author as the set of unique
disciplines corresponding to the journals in which he/she has published in his/her first
year of academic life, namely the year of his/her very first publication(s). For example, a
fictitious author publishing his/her first three papers in the same year y0 in two different
journals labeled with disciplines {d1}, {d1, d2} and {d3} respectively, would have a dis-
ciplinary background composed of disciplines {d1, d2, d3}. In this way, another fictitious
author who has published only one paper in his/her first year of academic life (actually the
most frequent situation, occurring 64% of times in the dataset) would have a disciplinary
background composed only of the discipline(s) labeling the corresponding journal.

Then we compute for each quartile the temporal cumulative number of new scientists
trained in each represented disciplinary background in this quartile, as shown in Fig. 3.9.
In this way, we assess for each quartile the main native specialties in which authors have
first published.

Fig. 3.9 shows that the profiles included in Q0 and Q overall the period 1940-2019 are
very similar. They are mainly confined in biomedical research around neuroscience, as
well as in Multidisciplinary Sciences which is represented by 91 international journals
with a broad topical diversity, such as Scientific Report, the Journal of the Royal Society
Interface and Plos One. We recognize also the main fields of research that are shaping
the common interest area of the disciplinary ecosystems of the two separated AI and non-
AI corpora (see the most persistent disciplines in references and citations in Fig. 3.5).
These two profiles best represent the disciplinary spectrum of neuroscience itself. We
also notice the spectacular increase of the Neurosciences curve in the two plots until the
1970s (after having emerged in 1957 for Q and in 1962 for Q0), followed by a quasi-linear
progression until 2015. This boom in neuroscience profiles in these quartiles suggests that
modern neuroscience is progressively being institutionalized as a well-structured discipline
in science.
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The profiles of Q1 and Q2 shown in Fig. 3.9 are at the opposite of the previous ones,
coming at most from fields of research related to Computer Science. The specialty Com-
puter Science, Neuroscience, which emerged in 1988 for Q1 and in 1991 for Q2, indicates
the rise of a group of scientists that are specialized in computation in neuroscience. No-
tice that the behavior of the Neurosciences curve within Q1 in Fig. 3.9 appears later than
computational and engineering profiles, suggesting also that AI-related knowledge and
technological tools penetrate progressively the global neuroscience field.

From the subset of authors belonging to the most frequent disciplinary background
in each quartile, we consider their respective disciplinary profile as the disciplines corre-
sponding to the journals in which they publish throughout their scientific life – that would
not be ended for the youngest still publishing in 2019. We therefore draw from these two
parameters – disciplinary background and career-related disciplines – the typical disci-
plinary trajectories in each quartile, which are shown in Fig. 3.10. Since the backgrounds
are built from the publications in a given year, the authors who began their career in 2019
would have a disciplinary profile corresponding to it. To avoid an over-representation of
some confined disciplinary trajectories due to these newcomers, we therefore consider only
the authors who began at the latest in 2018. For the sake of clarity, we select only the
most significant trajectories.

As a confirmation of the disciplinary background shown in Fig. 3.9, Fig. 3.10 shows that
the studied authors in Q and Q0 are involved in a similar disciplinary landscape centered
around Ophthalmology, Clinical Neurology and general Neurosciences, while Q1 and Q2

are more confined into Computer Science and Engineering. In particular, by considering
neuroscience as the subset of disciplines composed of the WOS disciplines Neurosciences,
Clinical Neurology and Neuroimaging, we observe that Q and Q0 are more involved in
that field of research, with respectively 77% of the authors in the first and 78% of those
in the second with a disciplinary profile that includes one or more of the fields of research
associated with neuroscience. On the contrary, 45% of the authors in Q1 and 42% of the
authors in Q2 have a disciplinary profile that includes such JSCs. These two last quartiles
are therefore mainly detached of the neuroscience goals given the disciplinary backgrounds
and profiles of their main respective authors. These results thus show that neuroscience
is a field that brings together heterogeneous profiles who seem to serve different epistemic
objectives inside and outside neuroscience (Sedooka et al., 2015).

Nonetheless we notice two special things about these last quartiles, which can be inter-
preted in the light of the classification of interdisciplinary profiles of Sedooka et al. (2015)
First the authors who began into the specialties including one or more neuroscience-related
disciplines tends to continue in the same field of research, which is sometimes interdisci-
plinary, such as the combinations Computer Science, Neurosciences and Neuroimaging,
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Figure 3.9: Cumulative number of new authors per disciplinary background for each quartile.
For one plot, the point of the curve of the specialty d at year t is the number of authors who
have published their first articles inside d during their very first year of academic career, since
the year of first appearance of d. Only the top 10 native specialties in 2019 are shown in Q, Q0
and Q1, and the top 6 for Q2 because of the insignificance of the following ones.
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Figure 3.10: Significant disciplinary trajectories of the authors belonging in each quartile. On
each plot lie on the left the most significant disciplinary backgrounds, and on the right lie the
career-related disciplines up to 2019.
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Figure 3.11: A: Temporal z-score applied to the edges in T between the scientists in Q and
those in the other Qi, here aggregated together under the notation Qi. B: Z-score matrix of
the edges between each quartile in the time-aggregated collaboration network A. The values are
normalized with the absolute maximum one in the matrix.

Neurosciences, Radiology. This means that these scientists are trained in a disciplinary
context centered around neuroscience, with a rather technical component – whom Sedooka
et al. call “interdisciplinary natives”. Second, some authors who began into Computer
Science, Engineering or mathematics-related disciplines – who seem to be more distant
from neuroscience in their disciplinary backgrounds – continue into neuroscience, as shown
by the combination of their originating field(s) of research with neuroscience ones in their
disciplinary profiles in Fig. 3.10, for instance Computer Science, Engineering leading to
Computer Science, Engineering, Neurosciences – the “interdisciplinary migrant”. The
late emergence of interdisciplinary profiles in computer science and neuroscience, who are
more involved in neuroscience in general, such as those in Q2, also testify that the AI
community under study is taking root in the global neuroscience landscape, the more
recent profiles in neuroscience becoming insiders in this new technological specialty. All
these scientists thus represent a special labor force for neuroscience whose main expertise
lies in AI, and more generally in mathematical, computational, and technological tools
(Perconti and Plebe, 2020).

3.3.2 Segregation between AI practitioners and non-AI ones

We investigate in the following how AI practitioners are distributed within the neuro-
science community and how the collaborations between them are shaped, especially be-
tween the different kinds of scientific profile described before.

We first consider the temporal collaboration network T built in Section 2.2.3.2, and we
evaluate the temporal standardized share of edges between scientists belonging, respec-
tively, to Q and to all other quartiles Qi (see Section 3.1.2 for the calculation of such
score). This score is showed in Fig. 3.11A, from which we deduce two facts.

First, all its values are lower than 0 over time, meaning that the number of edges
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between the two ensembles Q and {Q0, Q1, Q2}, is lower than the average computed
from several random distributions of all edges between the authors in T . This fact thus
shows that AI practitioners within neuroscience and other neuroscientists maintain few
collaborations as T grows over time. Second, this situation worsens over time, with
a steady decline until the 1990s followed by a steeper one toward 2015. Although this
tendency has reversed since 2015, these results indicate that the neuroscientists making AI,
ie, in Qi and not in Q, are shaping an almost independent community within neuroscience
by progressively widening the gap with other neuroscientists belonging to the set Q.
Furthermore, concerning especially the authors in Q0, who have disciplinary backgrounds
and trajectories similar to the authors in Q (see Figs. 3.9 and 3.10), the results advanced
above also suggest that the scientists in Q0 became progressively outsiders from the subset
Q in the history of neuroscience by moving closer to AI – even if the scientists in Q0

have few AI-related publications. This social separation around AI research does not
produce, however, a strict knowledge divide in neuroscience, as demonstrated before with
the temporal similarity index of disciplines directly impacted by neuroscience in Fig. 3.4,
as well as with the temporal evolution of the disciplinary landscapes in Fig. 3.5, both
indicating that the quartiles Qi export their knowledge to the whole neuroscience as
much as the quartile Q.

This social divide is confirmed with Fig. 3.11B, which represents the panorama of the
links shared between the different quartiles in the time-aggregated collaboration network
A (see also Section 3.1.2). This diagram represents a stabilized situation observed since
the end of the 1990s (see Fig. B.3 in App. B.2), where the scientists in Qi cosign more
with one another than with Q while the scientists in the second ensemble prefer to col-
laborate with one another as well. More precisely, it exhibits a polarization within the
ensemble {Q0, Q1, Q2} of AI practitioners in neuroscience. Indeed, the authors belonging
to Q1 and Q2 are more strongly connected together than with those in Q0. This can be
explained by the disciplinary proximity of the authors in Q1 and Q2 observed in Fig. 3.9,
especially the prominence between the late 1980s and the early 2000s of full computer
scientists and hybrid profile publishing in journals labeled as Computer Science, Neuro-
sciences. Furthermore, the links between Q1 and Q0 are much more important than those
between Q2 and Q0. The scientists in Q1 thus appear to be the most interdisciplinary in
ensuring the bridge between these differentiated profiles within the AI community. These
other outsiders in neuroscience are especially good candidates to drive the diffusion of
AI in neuroscience from computation to medical and clinical applications, given their
disciplinary trajectories shown in Fig. 3.10.

As they are gradually sidelining from the neuroscience community, which is mostly
composed of scientists who are not familiar with AI, we test in the following whether the
AI practitioners described above remain in the core of the collaboration network – which
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Figure 3.12: Distribution by group Qi of the core number c of the AI practitioners in the time-
aggregated collaboration network A. The red lines inside each box represent the medians, which
amounts to 10 for Q0, 4 for Q1, and 3 for Q2.

could foster the social diffusion of AI – or move to the periphery of the collaboration
network – which, on the contrary, could hinder this process. To this end, we perform
a k-core decomposition of A to derive the core number c of each AI practitioner within
neuroscience, i.e., their membership in a subgraph of degree at most c (the c-shell) but
not in the next core of minimal degree c + 1 (Batagelj and Zaversnik, 2003). The lower
the metric c, the farther away from the core the individual author is. The distribution of
this measure by the Qi groups is shown in Fig. 3.12. We note here that the maximum
core number at the end of the k-core decomposition of A is 770, which is reached by 302
individuals in quartile Q0 (0.02% of its own population).

Knowing this last information, Fig. 3.12 shows that the scientists in Q0 are closer to the
core of the collaboration network – as they show a disciplinary proximity with the profiles
of the non-AI specialists within Q – than the scientists in the other two quartiles Q1

and Q2, both of which exhibit a concentration of their core number distribution around
their respective medians, far from the median of Q0. Furthermore, we notice that 93%
of the population of Q0 lies within the giant component of A, while 74% of the scientists
in Q1 and 72% of those in Q2 do, the rest of the last two quartiles remaining isolated
from the core of the collaboration network (perhaps fragmented in smaller groups), which
is concentrated within the giant component. The great majority of the collaborations
between these AI practitioners thus take place mainly in the periphery of the network.
Since these two quartiles show strong connections together, as already shown in Fig. 3.11B,
we can conclude that the most AI experts in neuroscience are situated in a (rather) distant
periphery of the whole collaboration network.

In summary, in addition to the strong segregation phenomenon already shown in
Fig. 3.11 and the important disciplinary disparities between scientists with the high-
est AI expertise and those with the lowest or no such expertise (see the results of the
previous Sect. 3.3.1), the above findings show that AI practitioners are distancing from
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the neuroscience collaborative core over time, as observed in Fig. 3.12. This phenomenon
thus appears to hinder the diffusion of AI-related ideas throughout the community under
study.

3.4 An AI literature confined in a small set of spe-
cialized journals

Another factor of differentiation of AI research from the core of neuroscience lies in the
set of journals in which the former are mainly published. Here, we analyze how AI is
promoted within the 421 journals included in the whole neuroscience dataset and who are
the authors heading to the neuroscience journals publishing most AI research.

Fig. 3.13 offers an answer to the first aspect, by summarizing the evolution of the AI
activities of all the neuroscience journals listed in our dataset. It shows especially that
the AI-related research in this field is concentrated around a small subset of journals
providing development in computational techniques mainly linked to neural networks and
cognition. These journals are quite representative of the connectionist wave of AI that
has been active in neuroscience since the late 1980s (Cardon et al., 2018). They represent
32.7% of the scientific production of AI in neuroscience during the whole period 1970-
2019, according to our dataset, the rest being distributed among the 398 other journals
with a much smaller AI-activity (less than 10%).

The spectrum of aAI (top yellow curve in Fig. 3.13) shows that the launches of the most
AI-active journals in the neuroscience field are concentrated around three periods. The
first one spans the period 1987-1994 with especially 7 journals (no. 3 to 9 in the table of
Fig. 3.13) whose aAI is higher than 28% and whose scopes are oriented toward compu-
tational neuroscience and the use of neural network formalism for complex calculations,
especially the simulation of cognition on neural systems. These journals, except no. 7
and 9 (respectively Network: Computation in Neural Systems and Neural Network World)
are showing well-sustained activity on AI research. This period commonly falls into the
second “AI winter”, when AI-research funding and the production of scientific results and
associated technological solutions were at their lowest for a second time (Cardon et al.,
2018; Schuchmann, 2019). Paradoxically, neuroscience is especially active in such research
in this period, as shown by the strong, long-lasting AI-activity of these journals created
in this period.

The second period includes the journals 10, 11 and 12, which were launched between
1999 and 2001. The journal IEEE Transactions on Neural Systems and Rehabilitation
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1 Cognitive Science 1976 0.12
2 Journal of Sensory Studies 1986 0.10
3 Neural Networks 1987 0.53
4 Neural Processing Letters 1988 0.70
5 Neurocomputing 1989 0.56
6 Neural Computation 1989 0.37
7 Network: Computation in Neural Systems 1990 0.28
8 Adaptive Behavior 1992 0.31
9 Neural Network World 1994 0.39
10 Cognitive Systems Research 1999 0.30
11 IEEE Transactions on Neural Systems and

Rehabilitation Engineering
2001 0.22

12 Neuroinformatics 2001 0.19
13 Plos Computational Biology 2005 0.12
14 Frontiers in Neuroinformatics 2007 0.19
15 Computational Intelligence and Neuro-

science
2007 0.55

16 Cognitive Neurodynamics 2007 0.24
17 Frontiers in Computational Neuroscience 2007 0.23
18 Evolutionary Intelligence 2008 0.70
19 Cognitive Computation 2009 0.51
20 Topics in Cognitive Science 2009 0.10
21 Journal of Mathematical Neuroscience 2011 0.13
22 NeuroImage: Clinical 2012 0.11
23 Biological Psychiatry: Cognitive Neuro-

science and Neuroimaging
2016 0.11

Figure 3.13: Top diagrams: A: Temporal AI activity of the journals. A square at position (j, t)
in the diagram is the share of AI publications in the journal j at time t. One column of the plot
is the AI activity of a single journal. B: Distribution of the global AI activity of the journals
over all their publications until 2019. The horizontal axis corresponds to the journal axis of
the lower plot A, as shown by the red dashed zone. C: Zoomed activities of the 23 most active
journals in AI research, with a global AI activity higher than 10%. They are indicated in the
lower table.
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Figure 3.14: Correlation plot between the global AI activity aAI of the journals appearing in
P and the average AI scores fAI of the authors who are published in them between 1970 and
2019. Each point represents one journal in the horizontal aAI space, colored by the standard
deviation of the fAI scores of their associated authors. The maximum average value of fAI is
situated around 0.4.

Engineering is especially oriented toward the development of computational methods and
technological tools to capture the neural activity of the brain. This period is followed by
another until 2007 which did not lead to the launch of AI-active journals.

Finally, the third period following the latter, between 2007 and 2009, saw the launch of
numerous journals (no. 14 to 20) in a particularly short time, that are fostering research
at the crossroads of neuroscience and cognitive science. It includes especially the most AI
active journal of our dataset, Evolutionary Intelligence, whose scope is oriented toward
evolutionary computation, a subset of the field of optimization. Its temporal activity is
also strongly sustained over the whole time period covered in our datasets.

Aggregating over time, Fig. 3.14 shows a linear correlation between the mean AI-activity
in the journals and the average of the AI scores fAI of the authors who have published at
least one paper in these journals. The tail at highest aAI (higher than 0,1) corresponds
to the top 15 of the most AI-active journals referenced in Fig. 3.13. This particular result
thus unveils the attraction of the authors publishing the most AI-related works of our
dataset in the journals with high AI-activity over time. With all the results introduced
in the previous sections, it shows as well that AI research in neuroscience is done by a
specialized scientific community inside this field with its own journals for communicating
results.

3.5 Discussion

As previously assumed, the success of the diffusion of an instrument (in the form of
technical knowledge and devices) in science, which is the last stage of its development
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within a research-technology enterprise (Shinn and Joerges, 2002), depends greatly on its
ability to achieve genericity in a variety of fields of research. Considering AI as such an
instrument, this chapter has been devoted to examining two particular dimensions of the
penetration of AI into neuroscience – here supposedly exogenous to the socio-epistemic
environment in which it has been created – namely domain adaptation and social adoption.

First, let us examine what we have found about the first aforementioned genericity crite-
rion at the heart of this chapter. The Jaccard similarities exposed in Sect. 3.2.1 show that
the citation environment of AI embeds in this neuroscience at macroscale over time, by
reproducing the main citation patterns that are characterizing this domain – i.e., toward
the disciplines structuring it – and by increasingly impacting the disciplines that show the
most interest in it – including neuroscience itself. Therefore, the global disciplinary envi-
ronment of AI research seems to be inscribed at first glance into the neuroscience arena.
However, a second look at the level of the individual disciplines constituting this arena
reveals a demarcation process of such an AI-related subdomain within neuroscience, with
a differentiated disciplinary ecosystem composed not only of the latter and other related
disciplines, which remain the first influence and recipients of the outputs produced by the
studied AI research, but also around STEM-related disciplines such as computer science,
mathematics, statistics, physics, engineering, and instrumentation, which are in the pe-
riphery of the rest of the neuroscience citation ecosystem. This disciplinary demarcation
is also operationalized by the constitution of a small set of journals, albeit labeled “neu-
roscience” by the WOS and SJR bibliometric classifications, which promotes the results
of such research to an expert audience.

These first findings thus demonstrate that these AI-related publications within neu-
roscience seem to serve different disciplinary interests: a pronounced technological ori-
entation and the production of formal knowledge from various fields within the natural
sciences, while still serving the purposes of the host discipline, with citations firstly ori-
ented towards the top disciplines constituting the neuroscience ecosystem, from chemistry
and molecular biology to health-oriented disciplines, such as ophthalmology, pharmacol-
ogy, physiology, psychiatry, and psychology. AI as produced in neuroscience can be seen
in this case as a trading zone, an intermediate place at the crossroads of these multiple
disciplines divided into these two main epistemic orientations (Galison, 1997; Grauwin et
al., 2012), thus suggesting the existence of transfers of knowledge and technical tools be-
tween them. Although not addressed in this thesis, this last point could be investigated
in further research through the construction of chronological knowledge flows between
publications, as done in various ways in (Di Bona et al., 2023; Franceschet and Colavizza,
2020; Schäfermeier et al., 2022).

These two main disciplinary orientations are crystallized in the profiles of the scientists
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involved in the specific workforce producing the instrument. Indeed, we have distin-
guished two classes in this group of scientists, namely a first wave of outsiders, including
authors who are trained in the main disciplines that have shaped neuroscience since
the 1940s and who have a low number of AI-related publications, and a smaller second
wave, which emerged around the 1980s and includes authors who are trained in other
disciplines that are not represented in the former group, such as computer science and
engineering, and who exhibit the highest activities in AI research in general (inside and
outside neuroscience). Furthermore, this second group is not the most involved in the
field of neuroscience, as its members continue to publish within their original disciplines,
which are mainly STEM.

This social polarization within AI practitioners in neuroscience suggests that, over the
years, AI is becoming a set of research technologies that needs to be shaped not only by
neuroscientists themselves but also with the help of scientists who come either from out-
side neuroscience, or within it but with an interdisciplinary background and presenting a
specific expertise in AI itself. These observations reflect the specialization and engineering
turn of AI in science since the 1980s and 1990s, which have already been widely docu-
mented in the literature (Ahmed et al., 2023; Frank, Wang, et al., 2019; Kirtchik, 2019;
Klinger et al., 2022; “The new NeuroAI” 2024). Besides, the second wave of AI researchers
described before represents the mobility of such experts to other fields of research, in or-
der to propose and integrate the associated knowledge and technologies to achieve some
of the disciplinary objectives of these receiving fields or, less ambitiously, to solve some
technical problems that could not be solved with more conventional tools. According to
Joerges, Marcovich, and Shinn (Marcovich and Shinn, 2012; Shinn and Joerges, 2002),
these characteristics thus confer to these scientists a research-technologist status, engaged
in the diffusion of AI outside their originating STEM disciplines and throughout the sci-
ence system. However, most of them remain oriented by their individual disciplinary
framework, with their own epistemic objectives that would not necessarily be compatible
with those of neuroscience. This suggests that, for these scientists gathered under the
combined banner of engineering, computer science, and AI, neuroscience seems to be only
one area of application of AI among others, thus making it an episodic, transitory step
in their entire careers – this will be detailed later with the fieldwork introduced in Chap-
ter 5. This interpretation, however, faces a main limitation directly given by the WOS
journal classification used to establish the disciplinary profiles of these AI practitioners
(see Fig. 3.10 in Sect. 3.3.1). Further work mobilizing the textual content of the articles in
our database and another topical classification, such as the OpenAlex’s, would be much
appropriate for this purpose.

In addition, this AI workforce within neuroscience, especially the most expert in Q1 and
Q2, is situated on the boundary of the collaboration network and is increasingly separated
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from the rest of the neuroscience community between 1970 and 2015, with a few links still
maintained. According to the citation ecosystem of the specific AI research in neuroscience
depicted above, this social distancing process reflects an epistemic closure around AI,
around which the involved scientists show sustained collaborations, while continuing to
publish mainly in their respective disciplines of origin. Although not explored here (and,
more broadly, not in this thesis), this epistemic closure could be a sign of the creation
of an organized, coherent social group specializing in AI inside a neuroscience, gathered
not only around the same journals, knowledge basis and repeated collaborations (Chubin,
1976; Griffith and Mullins, 1972; Wray, 2005), but also around common bibliographical
references (Griffith, H. Small, et al., 1974; H. Small and Griffith, 1974), individual figures
consolidating an emerging scientific specialty (Cole and Zuckerman, 1975), and reinforced
citations between collaborating authors (Espinosa-Rada et al., 2024; Wallace et al., 2012).
In this respect, and inspired by the latter two references, a future research direction would
be to combine the collaboration structure and the citation network between authors in
order to interpret our preliminary results as a development of such an AI specialty within
neuroscience. However, such an endeavor, especially the building of the inter-scientist
citation network, would require all the authors of our original, unfiltered database, thus
directly challenging the filtering criteria established in Chapter 2. Nevertheless, this
specific data structure would constitute a valuable tool to study the social diffusion of
AI in neuroscience without focusing solely on the effect of diffusion on the co-authorship
network, as done in this present chapter.

Futhermore, it would also be worth testing this diffusion across the neuroscience com-
munity by comparing the results of our data-driven analysis since 1970 with a model
describing the dynamics of adoption of AI within this community, in order to possibly
predict when the complete adoption of the tools by the whole community would happen,
or at least an evolution trend for the next few years (if its hype is not disrupted by the
arrival of another, even more powerful technology). In this line of thought, Carley (1989,
1991) has proposed to model such a social transfer of knowledge by considering a network
of agents, each possessing a knowledge base that would be adapted as they share knowl-
edge with their neighbors. In the same vein, Roth and Cointet (2010) have suggested a
kind of extension of this mechanism, which would be effective as long as the knowledge
bases of the collaborating agents are similar.3 This previous contribution may be com-
pared to a complex contagion model (Cencetti et al., 2023; Centola, 2015). This type of
model generalizes epidemiological models on complex networks, where the transmission
of information or innovation is effective with only creation of links between scientists, by
considering the transmission mechanism as resulting from the combination of many other

3A combination of the frameworks suggested by Carley (1989, 1991) and Roth and Cointet (2010)
would lead to a model comparable to various opinion models with bounded confidences, such as the
heterogeneous Hegselmann-Krause model recently examined by Hernández, Perrier, and Schawe (2020,
2024).
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factors that could foster the adoption of the innovation under study by scientists and re-
inforce research collaborations around this innovation – what Centola (2015) has called a
consolidation4 mechanism. Actually, such a model could provide evidence to support the
aforementioned epistemic closure hypothesis. However, regardless of the model chosen,
we believe that AI would be socially adopted within neuroscience through a knowledge
transfer dynamic of the tools starting from the highest experts in AI, i.e., the last two
quartiles of outsiders Q1 and Q2 described in Sect. 3.3, to the lowest ones in Q0, who are
the most inserted in the community and would therefore play a pivotal role in promoting
(or hindering) the diffusion across the whole domain, mainly represented by members in
the last quartile Q who have never used or mentioned AI at all.

We also notice that, although the development of AI in science is statistically charac-
terized by a disciplinary closure around STEM-related disciplines between 1980 and 2010,
according to Gargiulo et al. (2023), AI still has continued its interactions with neuro-
science for its own epistemic purposes during this period, as evidenced by a large number
of journals created during this period that are very active in AI research (see Section 3.4),
and by its global citation impact in the discipline (see Sections 3.2.2 and 3.2.1).

3.6 Summary

In this chapter, we have shown the dynamics of the disciplinary and social structures
related to AI research within the field of neuroscience since 1970. In particular, while this
specific research area is integrated into the disciplinary environment of neuroscience and
is situated at the nexus of multiple disciplines (not only related to the latter) that also
benefit from the knowledge and technologies it produces, it is nonetheless progressively
differentiating itself from the host domain, as evidenced by both: 1) the constitution of
a second epistemic orientation towards a STEM-related disciplinary environment, which
shapes contemporary AI research in the whole science since the late 1980s (Gargiulo,
Fontaine, et al., 2023), and 2) a social segregation of AI practitioners within the neuro-
science community, especially those with a computer science or technological background,
gathered at the periphery of neuroscience around a few journals that publish most of the

4This mechanism, strongly depending on the topology of the social network under study, comes di-
rectly in opposition to the well-known Granovetter’s hypothesis (1973) according to which the diffusion is
facilitated by the presence of few bridges (called weak ties by this author) between social groups where in-
dividuals share similar traits and are densely and strongly linked, i.e., strong homophily and consolidation
within each social group. Instead, Centola (2015) has proposed that the diffusion is successful for several
combinations of the two last parameters’ intensities. Notably, one of them, in contrast to Granovetter’s
model, exhibits strong homophily (i.e., formation of densely linked social groups) and moderate consol-
idation, thus allowing the creation of numerous interactions between the different formed social groups.
Nevertheless, this consolidation is not always observed empirically, as demonstrated by the work of Manzo
et al. (2018) on the diffusion of some pottery’s practices among different rural communities.
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AI-related work in the field.

This pattern of development of AI within neuroscience thus confirms its adaptation to
the field under study (as defined in the Introduction), but does not testify to a widespread
social adoption of the associated instruments by neuroscientists, which does not support
the idea of a generic AI in the domain under study. Moreover, the current configuration of
this AI-related research subarea seems to hinder the circulation of its results throughout
the whole field. But is this really the case when focusing on the encoded knowledge within
the articles under study?

The next Chapter 4 proposes to go beyond the discipline-aggregated representations of
the citation and social organization of neuroscience depicted in this chapter by represent-
ing the field of neuroscience as an evolving body of knowledge embedded in the textual
elements of its publications, i.e., their titles and abstracts. With such a representation,
we will be able to identify, in particular, which research subfields, addressing various top-
ics covered by neuroscience, AI has entered over time and whether it has incorporated
the core of their respective conceptual frameworks, which is a translation of our third
genericity criterion.

————————–
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4
Exploring the epistemic integration of AI in the

neuroscience knowledge landscape

In the previous chapter, we have demonstrated that neuroscience remains the primary
stakeholder of the AIs produced within its own disciplinary environment. However, this
analysis did not identify which epistemic components of neuroscience actually mobilize AI.
Indeed, the disciplinary aggregated citation network used in the previous chapter signifi-
cantly obscures the knowledge organization of neuroscience. In addition to its inherently
multidisciplinary nature, this field of research may also be structured around subfields,
research topics, and encoded knowledge within the published articles – which may involve
interactions between multiple disciplines. This leads us, therefore, to identify the knowl-
edge areas in which AI is most developed, which means that the latter might be more
suited to address some neuroscience topics than others, and to evaluate the scope of the
outputs of the AI research across the entire field, in other words, whether the associated
AI knowledge is then disseminated in all the neuroscientific research subfields with their
own respective conceptual frameworks. Such an ability of AI to transfer into different
neuroscience subfields and thus to be a multipurpose tool in any epistemic framework
would also be a signal of a genericity fully achieved within the knowledge base of the host
field (Hentschel, 2015; Shinn and Joerges, 2002).

In this chapter, we tackle the aforementioned questions by drawing a temporal cartog-
raphy of the neuroscientific knowledge space embedded in our corpus built in Chapter 2.
Such a dynamic map is valuable for locating AI research contributions (corpus P ∩ AI)
in the different epistemic regions of the neuroscientific landscape (explored in Sect. 4.2).
In Sect. 4.1, we detail the numerical construction of this map and introduce other data
structures used throughout this chapter to assess the third genericity criterion of AI, epis-
temic integration. By mobilizing semantic networks representing the conceptual universes
of the inferred subfields of the map, we will study the conceptual articulation of AI-related
knowledge with others associated with general neuroscience purposes (in Sect 4.3). And
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with an internal citation network between the articles used to draw the map, we will
analyze the diffusion of AI through the knowledge space of neuroscience (in Sect. 4.4).
We finally discuss all the results in Sect. 4.5.

4.1 Methodology

4.1.1 Representing the knowledge space of neuroscience

Inspired by recent efforts to map scientific knowledge as faithfully as possible (González-
Márquez et al., 2024; F. Liu et al., 2024; Singh et al., 2024), we need a large language
model (LLM) capable of transforming the textual metadata of the articles in our corpus,
here their titles and abstracts, into vectors that are easier to manipulate numerically,
representing their knowledge and the contextual features in which it is stated (through
specific sentence constructions or recurrent word associations), in order to evaluate the
degree of lexical similarity between two given papers. The well-known Bidirectional En-
coder Representations from Transformers, also known simply as BERT (Devlin et al.,
2019), successfully achieves such a task. This model, now available in different versions
for different usages, relies on various intricate attention-based mechanisms that shape a
transformer (Vaswani et al., 2017), an architecture that is mainly used to predict word
associations between sets of tokens lying in different layers of a large neural network. They
require a huge pre-training step that consists of generating consistent sentences given the
previous ones in a text (next sentence prediction), and of inferring a word of the right type
(with also the right gender and number) given the surrounding others in a sentence, a
paragraph or a longer piece of text (masked language modeling) – the latter process partly
generalizes the also famous lexical embedding models word2vec (Mikolov et al., 2013) and
Glove (Pennington et al., 2014). With such architecture and training, the BERT trans-
formers are able to learn from scratch the morphosyntactic properties of the language(s)
employed in the entire training corpus and to build their own vocabulary basis (Martin
et al., 2020). The learning process of such an algorithm is, therefore, commonly said
self-supervised. They are also able to encode these features into (often) high-dimensional
context-aware vectors that represent a piece of text within a given corpus.

Here, we especially use the SPECTER model (Cohan et al., 2020), a BERT-based sen-
tence transformer inherited from the SciBERT model (Beltagy et al., 2019), which has
been trained on a scientific corpus mixing computer science, biology, and medical science.
In particular, SPECTER shows a better disciplinary comprehension of the scientific doc-
uments than SciBERT, since the former has been trained on a corpus where two given
elements can be linked by a citation relation. Instead of generating an embedding of a
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Figure 4.1: Schematic representation of the pipeline used to generate the neuroscience knowledge
map below. First, SPECTER converts the textual elements of the articles within our corpus
(called pi) into 768-dimensional vectors each (vi), then UMAP transforms the latter into 2-
dimensional vectors (v′i) given the data structure provided by SPECTER. The final list of 2D
points are used to draw the map.

document based only on its own semantic context (intra-document context), SPECTER
also considers the semantic context of other documents related to the former by citations
(inter-document context).

In order to produce a synthetic cartography of neuroscience knowledge, we first apply
SPECTER to the textual elements of our corpus P , here the titles and abstracts of its
papers, in order to obtain their respective contextual embedding, which result as vectors of
768 floating elements each. We then reduce these vectors to a two-dimensional Euclidean
space with a Uniform Manifold Approximation and Projection (UMAP),1 which aims to
preserve the proximity (or similarity) between the initial vectors expressed in the higher-
dimensional space, here of dimension 768 (McInnes, Healy, and Melville, 2020). This
lower-dimensional space is thus an approximation of the original semantic space that
characterizes all of our neuroscience work. This procedure is illustrated in Fig. 4.1. As
UMAP projects our high-dimensional data into an Euclidean space, this step finally allows
us to plot the two-dimensional points in such a space, as shown in Fig. 4.3 – and compute
standard measures on the map produced without adapting them to a particular metric
that would describe a more complex differential manifold. A paper is represented by a
single point. An aggregate of such points very close to each other in a specific region of this
map thus forms a vocabulary subspace where the knowledge inscribed in the associated
articles is similar. If such a subspace is isolated in the maps, the papers belonging to it
thus compose a single research topic.

Since the initialization of the UMAP projection is random, and because of the stochas-
tic property of the algorithm,2 we remind the reader that the reduction obtained is not
unique. Nevertheless, since UMAP preserves the local proximity of the projected points,
the reductions obtained after several realizations of the algorithm would have the same
shape in a two-dimensional plane but oriented or organized differently, thus not affecting

1We use the eponymous Python package umap, whose operation is detailed on the following webpage:
https://umap-learn.readthedocs.io/en/latest/how_umap_works.html.

2We refer the reader to: https://umap-learn.readthedocs.io/en/latest/reproducibility.html.

https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
https://umap-learn.readthedocs.io/en/latest/reproducibility.html
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a further clustering process on these reduced data. Therefore, we propose here an inves-
tigation of one realization of this projection. App. C.1.1 details further analyses of the
robustness of the UMAP embedding according to various features, such as the location
of the nearest neighbors of each paper and their topical proximity – based on the recent
Topic classification of scientific papers given by OpenAlex.

Then, we apply a Hierarchical Density-Based Spatial Clustering of Applications with
Noise, or HDBSCAN (McInnes, Healy, and Astels, 2017), to this set of “reduced” points.
This method first returns a condensed dendrogram whose sticks are clusters of points,
which could be merged or divided by varying a density threshold λ. The partitioning of
the dataset is detailed in App. C.1.2. We retain nine clusters, whose names are estab-
lished with the distributions of the MAG Fields of study, and OpenAlex Topics and
Keywords related to the papers within them, as detailed in App. C.1.3.

Finally, we represent the reduced dataset as a density plot in Fig. 4.3, with clusters
delineated by solid colored lines. We draw on the same dataset and partition to examine
a series of temporal snapshots of this map, shown in Fig. 4.4.

4.1.2 Measuring the epistemic articulation of AI-related and
general neuroscience concepts

4.1.2.1 Conceptual similarity between AI-related publications and others in
a knowledge cluster

Here, we build a measure of the integration of AI-related knowledge into the clusters of the
built-up neuroscientific knowledge maps, based on the fields of study (analogously called
concepts) labeling the articles within these clusters. This indicator is the same as that
used in Chapter 3 to study the homogenization of citations from the AI subarea into the
neuroscience disciplinary landscape. In this case, it aims to indicate the concordance of
AI-specific research programmes and topics (embodied here by the fields of study labeling
the papers) with those held by the considered neuroscience cluster over the course of its
evolution.

For a given cluster C of the map, we first compute the annual frequency of occurrence
of each field of study labeling the papers within that cluster, resulting in an evolving
set Ft = {nf}t of frequencies n per field of study f in a given year t. For example,
given four papers p1, p2, p3 and p4 in such a group of clusters, labeled respectively with
the sets of fields of study {f1}, {f1, f2}, {f3} and {f1, f3}, we get the frequencies {nf1 :
3, nf2 : 1, nf3 : 2}. We then sort the fields with such frequencies to get a concept ranking
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highlighting the most important fields that characterize the papers within C, from the
most frequent concepts at the top to the least frequent ones at the bottom in year t. With
the previous example, we thus get the ranking {1 : f1, 2 : f3, 3 : f2}. We then derive the
temporal concept ranking of C by computing such rankings for all years between 1970
and 2019, denoted as rC(t).

We also compute the temporal concept ranking of the subset of AI-related publications
within C – which are also members of the subset P ∩ AI, called rAI

C (t).

Finally, we apply the method provided by Gargiulo et al. (2016, see their supple-
mentary material) to obtain a temporal Jaccard similarity Jc(rC(t), rAI

C (t)) := Jc(C, t),
which compares these two rankings rC(t) and rAI

C (t) with a value comprised between 0
and 1. If Jc(C, t) = 1, the rankings are exactly the same in year t, i.e. they include the
same elements with the same ranks in year t; conversely, if Jc(C, t) = 0, the rankings are
completely different, i.e., they do not contain the same elements at all.

4.1.2.2 Assessing the centrality of AI-related concepts in each cluster’s con-
cept network

Unlike the previous metric, the following one designed in this section is intended to assess
the degree of entanglement of AI-related fields of study within the concept network of a
given cluster, in particular by determining their location within such a network – in the
core or in the periphery. To this end, we consider only the fields of study situated at
levels 2 or 3 of the MAG field network labeling the articles, so that we cover 93% of the
papers having at least two concepts at these levels. With such a selection, we conserve
96.5% of the AI-related papers in the subset P ∩ AI.

The concept network describing the knowledge universe of a given cluster is framed
under the cumulative process as follows and shown in Fig. 4.2. Starting from the co-
occurrence network of level-2 and/or level-3 fields of study present in the cluster’s papers
published in 1970, denoted as G0 = (V0, E0) – where V0 the set of fields of study and E0 the
set of co-occurrence edges between the latter – and the next one embodied in the papers
published in 1971, denoted as G1, we construct the cumulative concept network for the
year 1971 as the network G̃1 = G0∪G1 = (Ṽ1, Ẽ1), where Ṽ1 = V0∪V1 and Ẽ1 = E0∪E1.
We generalize this recursive relation to any year t as G̃t = Gt−1∪Gt = (Vt−1∪Vt, Et−1∪Et),
so that the final graph G̃2020 is the entire concept network of the cluster spanning the
period 1970-2020. This temporal dynamic of concept cooccurrence thus gives rise to an
evolving semantic network revealing the topical evolution of the cluster under study, where
the meaning of any concept depends on its neighboring ones, with which its links may
be modified (added, strengthened, or removed) over time (Cheng et al., 2023; Rule et al.,
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Figure 4.2: Schematic representation of the building of the temporal concept network, denoted
as G̃t as in the main text, based on four articles published in years y0 or y1. The weights of the
edges are indicated by the numbers next to them.

2015).

This cumulative representation of associated fields of study within the clusters allows
us to track the location of AI-related ones as new concepts and links are added to the
network describing the cluster over time, i.e., as the cluster’s knowledge universe expands.
For example, for an AI-related concept situated in the core of the network in a given year
– which is a signal of close conceptual ties with its neighbors, and therefore of a semantic
proximity to them – do we observe a perpetuation of its position through the reinforcement
of existing links in subsequent years, or its retreat toward the periphery? We could also
ask the opposite in the case of a peripheral AI concept advancing toward the core as the
network grows, which would be a signal not only of its increasing use but also of its ability
to be grafted onto concepts of different kinds.

We define this location of concepts within the studied network by their core number
obtained by a k-core decomposition of the network, i.e., their membership to a subgraph
with a degree that is at most c (the c-shell) but not in the next core with minimal degree
c + 1 (Batagelj and Zaversnik, 2003). We normalize this metric by the maximum core
number of the network, i.e., c̃ = c/cmax, such that the closer to 0 the indicator c̃, the
farther away from the core the concept is – and vice versa when moving closer to 1. We
will refer to this indicator as coreness in the following, and we will focus especially on the
values exhibited by the AI-related fields of study within each cluster of the neuroscience
knowledge map.



Exploring the epistemic integration of AI in the neuroscience knowledge landscape 95

4.1.3 Measuring the diffusion of AI-related work in the knowl-
edge map

4.1.3.1 Building of the citation network

We propose to analyze the diffusion of AI-related knowledge on the neuroscience cartogra-
phy drawn above through the underlying citation network between the mapped articles.
We first define G = (V,E) the citation network between all these papers, such that
V = {pi}i=1,...,N is the set of papers, which are identified by their respective cluster Ck

(k = 0, ..., 8), and E = {(pi, pj)}i,j∈[1,...,N ]2 the set of unique directed links between the
papers in V , e.g., a link (pi, pj) denoting that pi cites pj.

4.1.3.2 Individual citation radius of gyration of the papers

Here, we propose a measure of the ability of a paper to influence a wide range of the
neuroscience knowledge space, based on its individual radius of gyration (RoG) generated
by other articles citing it – observed in 2020. This quantity is expressed as the square
root of the moment of inertia associated with the publications citing a focal paper i:

ri
g =

√√√√ 1
Ni

∑
j∈pi

d2
ij , (4.1)

where pi is the set of papers citing i (with cardinality Ni) and dij is the spatial distance
between papers i and j in the knowledge map, i.e., the paper i is considered as the citation
center of mass. This RoG is also useful for assessing the diffusion or concentration of
citations in a local vocabulary space or beyond, and with what intensity.

However, an article located at one of the edges of the map – top, bottom, left, or right
extremities – may have a larger RoG than another article situated rather at the center of
that map. Indeed, as a result of the construction of the map, the articles near the center
are situated in a middle mass of knowledge that is almost equidistant from all others,
which makes their citation diffusion of knowledge across the entire map less difficult than
that of articles living in highly specific knowledge and vocabulary clusters, such as C0, C1,
C2, C3, and C4 in Fig. 4.3. For example, a paper in the cluster C4 that cites another in
C1 must have spanned a larger lexical gap than another paper also citing C1 but located
in C7.

To compare the RoG between the clusters, we normalize the observed individual RoG
of a given article by another hypothetical one, its maximum RoG, which is a function of
the maximal distance between this article and the one farthest away from it on the map,



96 Chapter 4

indicated by dmax
i below. By considering the same number of papers citing the article i,

but all hypothetically located at a distance dmax
i , the application of Eq. 4.1 gives:

ri
g,max =

√√√√ 1
Ni

∑
j∈pi

(dmax
i )2 =

√
1
Ni

×Ni (dmax
i )2 = dmax

i . (4.2)

This maximum RoG is thus analogous to the maximum knowledge area that an article
could cover if cited by these very distant papers on the map.

Then, we derive this alternative RoG used throughout this chapter, which is actually
the intensity of the observed citation spread compared to its own possible maximal one
in the neuroscience map:

r̃i
g =

ri
g

ri
g,max

. (4.3)

Since its values are comprised between 0 and 1, the closer the new RoG is to 1, the wider
the diffusion, and conversely, the closer it is to 0, the narrower the diffusion.

In what follows, we will refer to this metric to compare the respective spreading ability
of AI-related (P ∩ AI) and non-AI (P ∩ AI) papers across the knowledge landscape of
neuroscience. Here, we only consider publications that have received at least 3 citations
until 2020.

4.2 Where is AI situated in the knowledge landscape
of neuroscience?

Fig. 4.3 shows the cartography of all the knowledge encoded in the textual metadata
of articles in our neuroscience database spanning the period 1970-2020, built with the
method exposed in Sect. 4.1.1. More precisely, this map represents the spatial distribution
of these articles according to their own vocabulary, represented here as points in a broad
lexical space. For example, the vocabulary employed in the cluster Eyes & Vision is
quite distinct from that used in the cluster Mathematics for Connectionist AI, both of
which are also different from the vocabulary employed in Parkinson’s disease area. The
names of the different subspaces delimited by colored lines – the clusters – are derived
from the most frequent concepts associated with the papers in them, which are provided
by three topical classifications, namely the MAG fields of study, and OpenAlex’s topics
and keywords (see App. C.1.3 for their definitions). They are also listed in Tab. 4.1. We
used grayscale density level lines to highlight the heterogeneous density of papers in this
knowledge space. Only AI-related publications are plotted as red dots on this map.
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Figure 4.3: Neuroscience knowledge map. In the center is the time-aggregated knowledge map
of neuroscience between 1970 and 2020. The grayscale represents the density of articles in this
space: the lighter the zone, the denser the local concentration of papers, and vice versa when
moving towards through darker shades of gray. The clusters delimited by colored lines, whose
names are given in the legend on the left of this figure, have been drawn with the largest level line
obtained with the HDBSCAN algorithm. The red dots are the AI-related papers distributed in
this knowledge space. On the right are plotted the temporal evolution of the size of the clusters,
normalized by their own size in the time-aggregated map on the left. The vertical axes of all
plots are standardized and do not exceed 0.15. The colored area under these curves represents
the temporal evolution of the share of AI-related publications within these clusters.

The spatial distribution of AI papers in this map shows at first glance that AI is able
to integrate itself into different knowledge subspaces of neuroscience and also to link to a
variety of knowledge across the discipline, thus again demonstrating the adaptation of AI
to neuroscience epistemic objectives and a certain genericity that could also be denoted
as epistemic.

However, the temporal evolution of the number of AI publications in each cluster, shown
in the right-hand plots of Fig. 4.3, along with the distributions of AI publications among
the clusters summarized in Tab. 4.1, both testify to the uneven distribution of AI papers
among the clusters. For example, cluster C1 condenses 22.5% of all AI publications into a
much smaller knowledge space than that covered by cluster C8, which nonetheless exhibits
an equivalent share of such publications (24.1%). The first cluster thus shows a very high
density of AI articles with very similar vocabularies, while such publications belonging to
the second cluster are more spread out in its broad lexical space - with some small redder
subspaces of high local density, however. Moreover, according to Tab. 4.1, the leftmost
clusters on the map, grouping C1, C2, C3 and C7, aggregate 59% of all the AI-related
papers, thus demonstrating that the core of such publications is situated in a particular
knowledge subspace of neuroscience, focused on the study of neurodegenerative diseases
and the formal foundations of contemporary AI-related models. The cluster C1, although
separated from the continuum of papers ranging from neurological disorders studies (rep-
resented by C7) to neurobiological studies of the central nervous system (represented by
C8), remains quite close to the former, with some bridges between them through other AI
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publications. This suggests that the subfield gathering the studies of the mathematical
and computational foundations of connectionist AI, which could be related to computa-
tional neuroscience, preferentially maintains some links with the subfield of neurological
damage studies represented by cluster C7.

Cluster Name Share of
AI papers (%)

C0 Eyes and vision studies 3,7

C1
Mathematical and computational 22,5foundations of connectionist AI

C2 Attention-Deficit/Hyperactivity Disorders 0,33

C3
Obsessive-Compulsive Disorders and 0,14Tourette syndrome studies

C4 Parkinson’s disease 0,02
C5 Gliomas and skeletal muscle atrophy studies 5,76
C6 Studies of sensorial pathologies 3,02

C7
Brain neural networks and neurological 36,1disorders studies (epilepsy and schizophrenia)

C8
Studies of neurobiological mechanisms 24,1in the central nervous system

Table 4.1: Distribution of AI-related articles across the clusters of the knowledge map. For
example, C0 owns 3.7% of all the AI publications in our dataset.

We complete the map of Fig. 4.3 by plotting its temporal decomposition in Fig. 4.4, in
order to approximate the evolution of the neuroscience subfields and the location of AI
in the different configurations shaped by them between 1970 and 2020. With these maps,
we identify three phases in the development of the main field of neuroscience.

The first, spanning the period 1970-1984, marks the consolidation of the rightmost
clusters of the time-aggregated map, namely the research around the central nervous
system (C8), the skeletal muscle diseases (C5), sensorial pathologies (C6) and eyes and
vision (C0) – with a growing number of publications inside them, as already shown in
Fig. 4.3. The second phase, running from 1985 to 2009, shows the lexical expansion of
these clusters, the substantial growth of the subfield related to the studies of brain neural
networks and neurological disorders (C7), and the birth of the knowledge universe around
connectionist AI (C1), especially during the subperiod 1985-1989. We also observe the
unification of the knowledge subspace of all clusters except C0 and C1 during this second
period 1985-2009.

The third and last stage, running from 2010 to 2020, shows a division of the afore-
mentioned continuum of clusters into two parts whose boundaries no longer meet, a first
one including the clusters C2, C3, C7 (neurological disorders studies) and some subsets
of the cluster related to the studies of the central nervous system (C8), and a second one
including the remaining clusters C4, C5, C6, and C8. This period also signs the decline of
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Figure 4.4: Evolution of the neuroscience knowledge space and its clusters, plotted every 5 years between 1970 and 2020. N is the number of publications
in the corresponding period. The red dots are those related to AI. The clusters delineated by colored lines, whose names are given in the legend on
the left of this figure, are the same as those delimited in the time-aggregated map in Fig. 4.3.
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Figure 4.5: Cumulative number of AI publications per cluster, normalized by their respective
maximum value reached in the year 2019 in order to compare their respective growth trend.
The stepped shape of the C4 curve is due to the very limited number of AI-related publications
within it.

the subfields of eyes and vision studies and sensory pathologies.

These temporal snapshots of the knowledge space in Fig. 4.4 also suggest an acceleration
in the growth of AI research since this period 1985-1989. This trend is confirmed by the
cumulative number of AI publications per cluster shown in Fig. 4.5. While C0, C6 and
C8 exhibit a sustained growth of AI publications within them, all others show a faster
growth of such scientific production in them during the 2000s, the most spectacular one
having happened in C2 (ADHD studies), which has particularly been fast after the 2010s.
The pre-existing knowledge and the dominant vocabulary in these last clusters seem to
favor the development of AI within their own research context, for example, by attracting
and pairing external AI-related concepts with their own conceptual basis, or by allowing
the emergence of other AI-related ones – which is more difficult to establish. The next
section is dedicated to examine such microscopic aspects related to the organization of
knowledge in all clusters of the map.

4.3 The limited integration of AI into the various
concept networks of neuroscience

Through the MAG fields of study assigned to each article in our neuroscience dataset
P , which are also identified by their respective knowledge cluster memberships, we delve
below into the first dimension evoked in the very last lines of the previous section, namely
the entanglement of AI concepts within the conceptual universe of these clusters. Here,
we report this articulation with two findings.

The first focuses on the macroscopic comparison between the set of concepts promoted
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Figure 4.6: Jaccard ranking similarity between the main fields of study associated with the pa-
pers that are members of a given cluster Ci (or in a set of clusters, indicated between brackets)
and those associated with the AI-related publications within the same cluster. The small pe-
ripheral clusters C2, C3 and C4, whose weak presence of AI papers over the years causes noisy,
sometimes non-continuous similarity trends, are merged into large closer clusters, here C7 for
the first two and C8 for the third.

by the articles in a given cluster and another set composed only of concepts promoted
by the AI-related articles in that cluster. To this end, we quantitatively evaluate the
similarity of these sets by computing the Jaccard ranking similarity Jc between these two
sets (for the computation of this indicator, see Sect. 4.1.2.1), whose results are shown in
Fig. 4.6. We test the robustness of the plotted trends by applying the same methodology
to the network composed of OpenAlex topics, whose results are shown in App. C.2 – they
also confirm the first results, and thus (again) the proximity between the two conceptual
classifications of MAG and OpenAlex. Since the MAG fields of study at levels 2 and 3
are analogous to research topics, we can thus compare the set of concepts in a cluster
as a kind of research programme supported by the subfield represented by the cluster.
According to Fig. 4.6, the conceptual similarities between AI-related research and all
others represented in each cluster clearly distinguish cluster C1 – with an average similarity
of 47% since 1987 – from all the others, whose values have been rising steadily since the
1990s, while remaining very low – less than the 3% reached in C0. We thus can conclude
that AI, through its associated publications, is embedded in conceptual universes that
significantly differ from the main ones represented by the clusters at first glance, except
for C1, whose case is quite obvious according to the considerations outlined above.

The second analysis uses the cumulative concept network of the clusters in order to track
the location of AI-related concepts within it over time – in the core or in the periphery
–, which is summarized by the mean temporal corenesses of AI-related concepts plotted
in Fig. 4.7 for each cluster (see Sect. 4.1.2.2 for the computation of this metric). More
interestingly, it shows a general retreat of AI from the core to the periphery of the concept
networks in all clusters over the years, even for the cluster C1. In particular, while AI
becomes less central in the respective conceptual framework of the largest knowledge
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clusters C0, C5, C6, C7 and C8 over the period 1970-2020 and seems to migrate to a more
distant periphery, it suffers a considerable decline in clusters C1, C2 and C3, where it was
rather central at the time of their respective emergence in the field of neuroscience. This is
especially the case for the last two aforementioned clusters, where AI’s coreness decreases
sharply over a short period of time since the early 2000s, 20 and 22 years, respectively.
Although AI participated in the creation of these clusters and thus contributed to lay
the first milestones of the conceptual universes of these clusters, the progressive addition
of new fields of study and connections between them seems to have transformed these
conceptual universes and pulled AI away during the last 20 years. Nevertheless, only AI’s
coreness is increasing in C4 between 2015 and 2016, showing a progressive interest of the
subfield studying Parkinson’s disease for AI-related knowledge.

The behavior of the coreness of AI within the cluster C1 is particularly intriguing.
Indeed, while the majority of its publications are based on AI and are limited to a very
small vocabulary subspace, as previously shown by the cartography in Figs. 4.3 and 4.4,
the very numerous AI-related concepts attached to its publications compose only 15% of
the population of unique concepts within this cluster in 2020. This suggests that this
cluster also faces a conceptual reconfiguration, so that the AI concepts that contributed
to shape this cluster open up to other external ones that are not related to AI but close
to knowledge domains centered around the studies of neurological pathologies (especially
within C7). The case of C1, as well as those of C2 and C3 depicted above, thus illustrate
the adaptation of AI-centered clusters to larger conceptual universes.

4.4 The limited citation spreading of AI-related pub-
lications in neuroscience

4.4.1 AI-related articles diffuse less than non-AI ones across the
domain

In this part, we investigate the ability of AI-related articles (P ∩ AI) to spread their
knowledge across neuroscience by comparing their citation impact in different knowledge
subspaces of this field with that of non-AI articles (P ∩ AI).

Starting from the citation network between the papers in the dataset, and by selecting
only those with at least 3 citations, we compute for each of them the spatial radius
of gyration (RoG) produced by the positions of their respective citing papers in the
knowledge space, following the method introduced in Sect. 4.1.3.2. We average these
measures per year, distinguishing the AI-related papers from the non-AI ones, as shown
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C0 0.43 (1970) 0.14 209 0.02
C1 1 (1983) 0.34 1062 0.16
C2 0.83 (1977) 0.27 55 0.03
C3 0.43 (1993) 0.28 37 0.03
C4 0.17 (2013) 0.27 4 0.01
C5 0.37 (1974) 0.12 376 0.02
C6 0.57 (1971) 0.2 283 0.02
C7 0.57 (1970) 0.2 1245 0.04
C8 0.33 (1970) 0.1 590 0.02

Figure 4.7: Temporal average coreness 〈c̃〉 of the AI-related concepts in the cumulative temporal
concept network of each cluster – normalized by the highest coreness returned by the k-core
decomposition of the network at a given year t. The higher the coreness 〈c̃〉, the closer the
AI-related concepts are to the core of the network, and vice versa. We only consider AI-related
concepts included in the giant component of each cluster’s concept network. The error bars
are the standard errors produced by the distribution of corenesses of all AI-related concepts
within each cluster at each year, i.e., the ratio of the standard deviation to the square root of
the number of entities present in the distribution. In the table below the plots are indicated, for
each cluster, the value of the coreness of AI in the cluster’s inception year, the final coreness of
AI in 2020, the number of unique AI-related concepts in 2020, and the share of such concepts
among all the others in 2020.

in Fig. 4.8.

The average RoG of the citations received by the non-AI papers, which first decreases
slightly until the 1980s, increases almost linearly since this period, while the evolution of
the measure applied to the AI-related papers fluctuates with high amplitudes3, especially
before the early 1990s. Overall, the latter remains rather below the former after the 1990s,
thus meaning that AI-related articles diffuse less than the non-AI ones within neuroscience
over the time period studied.

3This behavior could be explained by the very heterogeneous distribution of these papers during the
studied temporal period – 87% of the papers are published after 1990 – and their high dispersion in the
conceptual space – as shown by a standard error that is significantly higher before the 1990s than after.
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Figure 4.8: Mean temporal citation radius of gyration of the neuroscience papers, AI-related
(orange) and non-AI (blue). The colored areas around the curves are their respective standard
errors, expressed here as the ratio of the standard deviation of a sample in a given year to the
size of that sample. We only consider the papers with at least 3 citations.

Following the average citation RoG of the AI-related articles, the lexical coverage of
the publications citing the AI-related work between the 1970s and the 1990s alternates
between phases of low (pits) and high (peaks) citation diffusion. In particular, the curve
shows two peaks higher than the curve of the non-AI papers in 1976 and 1989. These
peaks correspond to two well-known stages in the history of AI, as shown by the evolution
of the use of AI-related concepts in Fig. 4.9, namely the symbolic and the connection-
ist ones. In particular, we notice the rise of Backpropagation and stochastic gradient
descent techniques on artificial neural networks in the late 1980s, especially popularized
by Rumelhart et al. (1986), and that is directly inherited from the reinvestment of the
concept of Perceptron – single or multilayer (Rosenblatt, 1958). This will lead to the rise
of neural network techniques and later to deep learning ones (Cardon et al., 2018). This
connectionist phase fosters the development of neuroscience through the formalization of
cognitive processes under (artificial) neural networks, which are useful to study the de-
velopment of neurological disorders in recent days (see Section 4.2). Some further results,
detailed in App. C.3, also show that the related findings during the two studied periods
have achieved a kind of success, as testified by the rapid citation spread of AI-related
ideas across the neuroscience knowledge space.

However, we notice in Fig. 4.8 a strong decrease in the RoG between 2014 and 2016,
meaning that the AI-related knowledge and tools embedded in these papers are beneficial
only to their close lexical neighborhood. In fact, among the 3,739 papers published
between 2015 and 2016 during the decrease in the mean RoG, 37% emanates from studies
on neurological disorders and brain neural networks (C7) and 35% from the subfield
developing connectionist AI knowledge and tools (C1), while the rest is distributed among
the other clusters and noise from the knowledge map. This distribution supports one of
the phenomena already evoked in the previous chapter, namely the specialization of AI
research around the subfield designing AI itself in neuroscience (cluster C1), accompanied
by other applicative subfields mainly confined to cluster C7.
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Figure 4.9: Share of AI-related fields of study provided by MAG among the AI-related articles
in neuroscience over the years. The top 10 are highlighted in colors, others are in gray. The
concept Marketing and artificial intelligence is inherited from another one called Intelligent De-
cision Support System, namely a subfield of symbolic AI that was in vogue between the 1970s
and the 1990s. The algorithms populating this class of AI are based on complex knowledge
representations in order to provide some assistance to decision makers. One of the most impor-
tant algorithms in the medical and clinical domains during the aforementioned period, including
neuroscience, was the so-called Mycin, which is also widely mentioned in the AI-related papers
of our database during the late 1970s.

The late decrease in the mean RoG associated with AI-related concepts is particularly
intriguing because it falls within a period of well-documented, high diffusion of AI in
science, associated with the rise of deep learning techniques (Cardon et al., 2018; Gargiulo,
Fontaine, et al., 2023), which reasonably suggests that any paper using or mentioning
such concepts would find a wide audience throughout the whole knowledge landscape of
neuroscience. We will see in the next subsection that this decrease and, more generally,
the low RoG of AI-related articles are parts of a larger phenomenon of concentration of
AI-related neuroscientific knowledge within the clusters from which they originate, which
does not guarantee the epistemic genericity of AI within the domain under study.

4.4.2 AI remains confined to local knowledge subspaces of neu-
roscience

As suggested in the previous subsection, the spreading of the AI instrument across the
entire neuroscience knowledge space remains quite limited over the years. In this section,
we explore at microscale the clustered distribution of the citation RoGs of all articles in
our dataset, as well as the time-aggregated citation network centered on the AI-related
works and aggregated into clusters. Both are represented in Fig. 4.10.

According to Fig. 4.10A, which complements the previous Fig. 4.8, the publications
dealing with AI within all the clusters of the neuroscience knowledge map diffuse as much
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Figure 4.10: A: Time-aggregated distribution of the citation RoGs of the neuroscience papers
within each cluster, AI-related (orange) and non-AI (blue). The red lines in the boxes indicate
the medians of the distributions. Here, we only consider the papers with at least 3 citations.
B: AI-centered citation matrix between the clusters of the neuroscience knowledge map shown
in Fig. 4.3 (between 1970 and 2019). A cell (Ci, Cj) is the number of papers in Ci that cite the
AI-related articles in Cj . The results are normalized by row, so the sum of the score for a row
is 1.

or less than the non-AI ones, except for the small peripheral clusters C4 (Parkinson’s
disease) and C5 (Skeletal Muscle Disease), which both show the highest citation RoGs
for the AI knowledge produced in them. This low diffusion is especially observed in the
clusters where AI has been mainly developed in recent years (see Section 4.2), namely
Foundations for connectionist AI (C1), ADHD studies (C2), OCD and Tourette syndrome
studies (C3) and Studies of neurological disorders (C7).

The AI-centered citation matrix in Fig. 4.10B also shows a strong phenomenon of self-
citation within each cluster, except for the small peripheral clusters C2, C3, and C4,
which are also influenced by the largest clusters C7 and C8 that constitute the core of the
knowledge map. The AI-related knowledge produced in a given cluster thus preferentially
impacts that cluster – and/or its neighbors – and not the others.

4.5 Discussion

How does AI-related knowledge develop and spread in neuroscience? Through the analysis
of a dynamic knowledge map of neuroscience generated with advanced document embed-
ding techniques applied to the textual elements (titles and abstracts) within our corpus
built in Chapter 2, which are also connected by citations, we have shown that AI is found
in every lexical regions of the map, but it meets a greater success within subfields that
have begun to grow significantly since the 1990s, and that are related to the mathematical
and computational foundations of contemporary connectionist AI, and to the studies of
the human brain neural network and various neurological disorders that lead to physio-
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logical and/or cognitive impairments. In particular, the presence of the majority (59%)
of the total number of AI-related publications in these regions tends to confirm the im-
plantation of artificial neural network architecture as an underlying paradigm in the most
recent research domains of neuroscience. These first findings provide some empirical evi-
dence to support the considerations of neuroscientists themselves about the potentialities
of applying AI to their own research goals, and especially about the reinforcing feedback
between the host research field and the AI instrument towards their mutual development
(Gopinath, 2023; Hassabis et al., 2017; Macpherson et al., 2021; “The new NeuroAI”
2024).

In an analysis of the set of fields of study labeling the papers within each knowledge
cluster of the map, which constitute the delimited conceptual framework of the latter, we
have found that AI is not integrated in the various conceptual arcs of the domain, except
for the small, dense, constantly isolated knowledge subspace related to the formal con-
ception of connectionist AI and computational neuroscience, which includes 22.5% of the
AI-related production in our corpus – and which also exhibits a strongly confined citation
network, as shown in Fig. 4.10B, similar to an echo chamber. Finally, this cartography
supports the argument of the dual epistemic orientation of AI research in the discipline
that was mentioned previously in Chapter 3: The aforementioned island of knowledge
would represent the epistemic environment in which AI serves the purposes of the so-
called STEM disciplines, while the rest of the AI-related publications spread across the
entire map represent its epistemic orientation towards neuroscience itself, thus demon-
strating a certain epistemic genericity of AI throughout the entire domain (Marcovich
and Shinn, 2012; Shinn and Joerges, 2002).

However, although AI is one of the cornerstones of the conceptual edification of all the
neuroscience subfields, it progressively moves away from the core of all the concept net-
works representing these subfields as they expand over time. This result thus challenges
the seemingly widespread distribution of AI exhibited by the knowledge mapping. Indeed,
the lexical proximity of AI-related articles to other works within each cluster, confronted
with the organization of the concepts attached to them, does not allow us to firmly estab-
lish the genericity of AI produced in neuroscience. This finding leads instead to support
the fact that AI is a general method that could be applied everywhere in neuroscience
(Cockburn et al., 2018), without being a source of new concepts that could enrich the
pre-existing conceptual frameworks of all its subfields.

Besides, this progressive disembedding of AI from the core of all conceptual frameworks
of neuroscience suggests that a social component involved in this AI-related research is
progressively pushed to the periphery of the collaboration network, as shown in the pre-
vious chapter, thus testifying the rise of a high specialization of AI towards a more formal
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and technology-oriented epistemic orientation, as also depicted in (Klinger et al., 2022)
for the global science system. Although we have not addressed here the location of the
neuroscientists on this map, a further work would consist of projecting the co-authorship
network studied in the previous chapter onto this map – by locating the authors with
an aggregated position derived from their respective publications – such that we could
identify the knowledge subspaces in which the AI practitioners are located, and clearly
validate or not the aforementioned hypothesis of a specialization of AI practitioners to-
wards a dedicated conceptual framework distinct from the rest of neuroscience. Such a
mapping would also allow us to delineate specific socio-epistemic environments in neuro-
science, i.e., sub-networks of collaborations organized around a common knowledge base,
so that we could trace the potential social bridges between them that would promote the
diffusion of particular knowledge from one epistemic community to another, in particular
AI, and also identify the actors involved in such bridges. As in (Roth and Cointet, 2010),
we could also build a socio-conceptual network linking neuroscientists to the fields of study
related to their articles, in order to delineate the conceptual universe that is preferred by
the AI practitioners, given their level of expertise on the notion and their membership
cluster.

Furthermore, with the citation network between the articles, we have constructed a
measure of the citation scope of an individual paper, the citation radius of gyration
(RoG), which enables us to dynamically identify some time periods when its encoded
knowledge has or has not spread beyond its local lexical neighborhood. In particular, we
have unveiled alternating phases of increase and decrease in the average citation scope
depicted over time that coincide with well-known events that structure the evolution of
AI and its impact on science, such as the development of expert systems in the late
1970s and the rise of artificial neural networks in the late 1980s. Although AI is present
in all of the neuroscience research subfields revealed by our data, we have shown that
these subfields locally disseminate their own AI publications, with very little circulation of
knowledge between the subfields. Thus, AI is only beneficial for the neuroscience subfields
in which it has been produced. This assumption also indicates that the applications
of AI remain localized in specific topics and do not seem to be transferable to other
knowledge subspaces of neuroscience, thus suggesting the multiplication of distinct AI
research dedicated to different purposes. Similarly, we could compare this situation with
the embedding algorithm SPECTER (Cohan et al., 2020) that we have used to draw
the knowledge map of neuroscience: although it is based on a BERT-based sentence
transformer, a very common architecture to perform natural language processing tasks
or document classification, it has been specifically designed to enrich the classifications
of scientific texts only, through the training data used on the one hand, and the inter-
document similarity provided by citations on the other hand. Therefore, such a new AI
inherited from BERT should not be applied to corpora other than scientometric ones.
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Although the clustering provided by HDBSCAN (see Fig. 4.3) remains relevant for
studying the confinement of AI-oriented citations within large lexical areas, as shown in
Fig. 4.10B, the RoG distributions in Fig. 4.10A, on the contrary, suggest that very different
lexical subareas, with their own and probably disjoint citation networks (composed of
papers with very low RoG), also coexist within these clusters, like small specialties (Wray,
2005). It would then be worth refining the clustering in order to better observe the bridges
between smaller lexical areas represented by few articles, such as the small clusters C2,
C3, and C4 in Fig. 4.3, whose AI-related publications find interest in nearby lexical areas
within the larger clusters C7 and C8. Moreover, we have focused on direct citations
of AI-related publications, but we could imagine a more complex dynamics of impact
involving citation chains towards the different clusters in time, from which we could
compute the number of citations needed to reach a particular cluster from another, and
evaluate potential bifurcations through fields outside neuroscience before reintegrating
the latter – following the exemplary frameworks depicted in (Brahim et al., 2021; Yong
Huang et al., 2018).

4.6 Summary

Using a dynamic knowledge cartography of neuroscience drawn with advanced document
embedding techniques, we have traced the shaping of the field from 1970 to 2020 through
the emergence and the development of lexically consistent subfields, and we have located
the AI-related publications within the latter. The vast distribution of scientific articles
involving AI on the drawn map indicates an apparent epistemic genericity of the related
knowledge and technologies across neuroscience, while being less and less aligned with
the conceptual universes the of neuroscience subfields as they develop, as we have shown
with conceptual structures based on the co-occurrence network of fields of study provided
by MAG and that label the papers of our dataset. AI thus demonstrates its ability to
be applied in all the subfields delimited in our study, which include various knowledge
areas for the largest one, but it does not intend to create new knowledge and conceptual
universes within them, except for a small lexical region that is dedicated to it.

These contrasting findings complete the perspectives evoked in the previous Chapter 3,
according to which AI is well inserted in the multidisciplinary context of neuroscience,
while its practitioners, regardless of their level of expertise, experience together a segrega-
tion within the whole field. Here, AI seems to be generic in application, as demonstrated
by its spread in various lexical areas covering the knowledge space of neuroscience, which
is a signal of its adaptation in almost all epistemic frameworks of the domain, but not
generic in conceptualization, as it withdraws from their conceptual arcs that could give rise
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to new theories and research paradigms (Lemaine, 1980; Kuhn, 2018 [1978]). Paradoxi-
cally, AI seems to lose this second genericity over time in neuroscience and consequently
does not seem to replace all the methodological frameworks present in the field.

Besides, the last study depicted in this chapter, which focused on the citation net-
work centered around AI-related publications, has shown that AI-related publications are
mainly beneficial for the knowledge domains close to the one in which they have been
produced. AI thus remains highly specialized when used or produced within a specific
knowledge region and is not transferable from one region to another. This is especially
the case for machine learning or deep learning models and algorithms, which are highly
dependent on the data used to train them before performing predictions for very pre-
cise purposes. A complex AI architecture shaped and trained to predict the course of
Alzheimer’s disease in a patient of a certain age would also not be able to predict the
progression of Parkinson’s or Huntington’s disease.

————————–



5
Complementing quantitative findings: The

interdisciplinary work of AI in the Aramis team

So far, Chapters 3 and 4 have focused on the scientometric aspects of the genericity
of AI in neuroscience on a macroscopic scale. In particular, they have yielded notable
elements linked to the three criteria we have set to describe it for this thesis: a confirmed
insertion of AI in the majority of the knowledge subfields of neuroscience, while neither
meeting a great success within the scientific community (through notably a segregation
of AI practitioners, in few numbers), nor articulating with the conceptual arcs of these
subfields. However, these major trends, which have been drawn dynamically since 1970,
miss important elements that often emerge at micro-scale during the scientific work, and
that could drive the diffusion of the instrument across the field and subsequently increase
its genericity.

For example, the disciplinary trajectories of most AI experts unveiled in Chapter 3 sug-
gest that such research-technologists, primarily trained outside neuroscience, must engage
in an interdisciplinary arena situated at the frontier of STEM disciplines and neuroscience
to disseminate AI within the latter. In such an enterprise, more nuanced interactional
elements than simple collaborations between research-technologists and neuroscience “na-
tives” may occur during scientific work, including conversation and negotiation in the
laboratory itself regarding the use of the novel instrument in place of more traditional,
established ones. This would, in turn, condition the social adoption of the new tools, as
well as the production of future scientific facts (Latour and Woolgar, 1996, p.155).

Complementing the previous chapters, this chapter explores this kind of trading zone,
here portrayed by a particular research team we have chosen for our sociological fieldwork,
Aramis (part of the Institut du Cerveau, indicated also by ICM). In order to describe
the internal organization of work within this team and the social construction of AI in
an interdisciplinary context, we have conducted eight interviews, following the methods
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exposed in Chapter 2 and the questionnaire provided in App. D.1. The interviewees
are designated with their respective numbers as given in Tab. 2.3 of the aforementioned
chapter.

This chapter is structured as follows. The first section presents an overview of the
research conducted within Aramis, as reported by all interviewees. The second section
examines the organization of tasks and interactions of scientific staff, with a particular
focus on the distinction between computer scientists and engineers, who are specialists
in data analysis, programming, and other various IT tasks, and medical professionals
involved in parallel research activities. This analysis aims to elucidate the practices of
interdisciplinary collaboration in the context of AI in neuroscience. The third and final
section turns to the disparate perceptions of AI held by the two latter groups and the
factors that might explain them.

5.1 An “immersion” in the core of Aramis research

In addition to the few elements gleaned from the Internet and briefly described in the
Chapter 2, the interviews conducted are a valuable and comprehensive resource that en-
riches our knowledge of the research carried out within the team under study. Aramis
indeed differs from the other ICM teams in terms of the research topics it proposes and
contributes to the development of free and open-source software that can be used by other
researchers and medical staff, whether or not they are involved in clinical research. Con-
sequently, the team is somewhat charged to create or enhance various digital techniques
for processing images of the human brain, predicting the evolution of neurodegenerative
diseases with the objective of providing personalized patient monitoring, and modeling
information transmission mechanisms in the brain.

In this regard, the team assumes a dual role, with missions that are inextricably linked
and subject to constant feedback. On the one hand, it contributes to a vast field of knowl-
edge related to neuroimaging by employing complex mathematical formalisms, including
graph theory to build a model of a biological network of neurons and differential man-
ifolds to mathematically describe the shapes present in three-dimensional brain images
– or even more if we consider other quantities added to the Cartesian reference frame.
In particular, differential manifolds can be used to segment areas of interest in an image
(in other words, to outline shapes) or to recalibrate multiple images from the same pa-
tient sample. This may entail cleaning them up and aligning them (for example, putting
them back in the correct position or orienting them in a specific direction) in order to
facilitate comparison. On the other hand, Aramis furnishes clinicians with state-of-the-
art digital tools that implement these mathematical and computational theories, thereby
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facilitating the execution of laborious analyzes of voluminous medical databases within
the context of research based on extensive international clinical cohorts. In the distant
future, the software developed will also be used to assist practitioners in making diagnoses
and determining the appropriate treatment to administer. Aramis’ research is therefore
firmly situated within a translational research framework, whereby findings from basic
research in mathematics, computer science, and even physics are translated into appli-
cations in clinical research and, potentially, into everyday medical practice (Allen et al.,
2019; Stokols et al., 2008).

The codes and software designed by Aramis may contain certain forms of AI that are
more or less similar to simple machine learning methods based on large databases. For
example, a programme may autonomously learn to calibrate images or identify specific
regions of the brain according to certain criteria. The first subsection below provides an
inventory of the main data sources available and used by Aramis members to train such
algorithms. The second subsection presents an overview of the collaborative efforts be-
tween Aramis and prominent industrial groups or start-ups engaged in the advancement
of research and development (R&D) initiatives, especially the production of treatments
or therapeutic innovation that can effectively address the challenges posed by neurode-
generative diseases.

5.1.1 An international research in the context of the big data
era

As observed in most scientific disciplines at this time, neuroscience is experiencing a
significant increase in the volume of medical data that must be processed. The majority
of this data are typically obtained from large-scale clinical trials designed to study the
potential onset and progression of neurodegenerative diseases in various individuals of
varying ages, physical, psychological and socio-demographic conditions. These subjects
are monitored over several years with precise medical examinations conducted at regular
time intervals, since the effects of most neurodegenerative diseases are rarely instantaneous
and are assessed over (very) long time periods.

The patient cohorts are supervised by international research consortia or local groups,
depending on whether the subjects originate from the same region or hospital environ-
ment. Particularly involved in the study of Alzheimer’s disease, Aramis researchers mainly
use data from such cohorts to statistically study the emergence of early symptoms of
this disease and their progression in patients. The clinical data processed by the team
are mainly sourced from the internationally renowned Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) cohort, in addition to several French ones, the largest of which is
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MEMENTO,1 which was launched as part of the French government’s Alzheimer’s Plan
between 2008 and 2012 and comprises approximately 2,300 subjects. Several clinicians
practicing in La Pitié-Salpêtrière Hospital have also studied a subsample of MEMENTO
subjects as part of the INveStIGation of AlzHeimer’s PredicTors in subjective memory
complainers-Pre Alzheimer’s Disease study (INSIGHT-preAD),2 which was initiated by
the Institut National de la Santé et de la Recherche Médicale (INSERM) and Assistance
Publique-Hôpitaux de Paris (AP-HP) in 2014. The subjects in this subsample underwent
further examinations to those initially submitted by MEMENTO’s medical investigation
protocol.

5.1.1.1 The nature of used data

The data stored in the large clinical research databases, which often have the name of the
study cohort, encompass various forms. In particular, they include imaging data acquired
using techniques already mentioned at the beginning of Chapter 2, in particular scans
acquired with Magnetic Resonance Imaging (MRI) and Positron Emission Tomography
(PET) techniques, which are the most well-known and whose working is often very costly
in terms of time and money. Moreover, only a limited number of medical centers around
the world are equipped with the appropriate machines and scanners to perform such
medical examinations. The corresponding data thus are initially acquired at some of
these centers that are part of the cohort study in question – these data are therefore
said multicentric – and then pooled internationally with other centers that do not have
the necessary equipment. As the machines may differ from one center to another – for
example, in terms of brand or component obsolescence –, data are acquired according to
thorough protocols for setting up the machines, under the same examination conditions
as possible for each subject selected, in order to guarantee a semblance of consistency and
minimize experimental discrepancies when pooling the data in other centers. Biomarkers
that describe certain biological properties of the brain, such as its volume, that of the
hippocampus and frontal lobe, and other indicators of its metabolic activity, are then
extracted from the raw data, which are often colored images of the brain including various
attached metadata. The latter images enable the observation of not only brain regions
activated by a specific task performed by the subject at the clinician’s request but also
lesions in the organ caused by the onset of a neurodegenerative disease, such as amyloid
residues around neuronal cells in patients suffering from Alzheimer’s disease.

1Further information can be found at the following address: https://www.fondation-alzheimer.org/la-
recherche/cohorte-memento/.

2Further information on this subject can be found at the following address: https:
//presse.inserm.fr/lancement-dune-etude-visant-a-mieux-comprendre-les-facteurs-de-declenchement-
de-la-maladie-dalzheimer/15483/. A report was published in 2018: https://aphp.fr/contenu/letude-
insight-montre-lexistence-de-mecanismes-de-compensation-chez-les-sujets-porteurs-de.

https://www.fondation-alzheimer.org/la-recherche/cohorte-memento/
https://www.fondation-alzheimer.org/la-recherche/cohorte-memento/
https://presse.inserm.fr/lancement-dune-etude-visant-a-mieux-comprendre-les-facteurs-de-declenchement-de-la-maladie-dalzheimer/15483/
https://presse.inserm.fr/lancement-dune-etude-visant-a-mieux-comprendre-les-facteurs-de-declenchement-de-la-maladie-dalzheimer/15483/
https://presse.inserm.fr/lancement-dune-etude-visant-a-mieux-comprendre-les-facteurs-de-declenchement-de-la-maladie-dalzheimer/15483/
https://aphp.fr/contenu/letude-insight-montre-lexistence-de-mecanismes-de-compensation-chez-les-sujets-porteurs-de
https://aphp.fr/contenu/letude-insight-montre-lexistence-de-mecanismes-de-compensation-chez-les-sujets-porteurs-de
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Other data that are not derived from neuroimaging are also acquired. Several ques-
tionnaires3 are mobilized to evaluate cognitive abilities in subjects with or without neu-
rodegenerative diseases, with a particular focus on memory, language, and concentration
disorders. These questionnaires are administered to patients during neuropsychological
tests in the presence of a duly qualified clinician. Lastly, medical databases contain socio-
demographic data, including age, sex, socio-professional category for subjects who are still
working, and in some cases, race, and genetic data, the latter allowing for the investigation
of the influence of the genome on the onset of certain degenerations.

All of the aforementioned data can be compiled and explored together, as exemplified
by the subfield of brain mapping, which provides cerebral activity maps under some pa-
rameters – of physiological and cognitive kinds – and the recent disease course mapping,
which aims to monitor the progression of triggered mechanisms responsible for the initia-
tion and installation of a neurodegenerative disease. Figure. 5.1 shows an example of the
latter, which is a study produced by Aramis on the progression of Alzheimer’s disease in
some patients of the ADNI cohort.

5.1.1.2 How are medical data shared?

Aramis’ research programme, which aims to use high-performance processing software to
format large-scale health data, is helping to make these data accessible to researchers
around the globe.

In France specifically, the use of health data in research and clinical practice is subject
to a strict legal framework. Such data are collected, anonymized, and shared on dedicated
hosting platforms with the consent of the patients monitored by a healthcare organization,
in accordance with French law and bioethics regulations. On these platforms, specialist
computer scientists and clinicians, who are often involved in the design of the cohort under
study or in a related clinical trial, clean and homogenize the deposited data, with the
aim of minimizing acquisition-related bias and rendering the data comparable for future
statistical use in clinical research or in specific medical situations. The main platforms
mentioned by the interviewees are the Health Data Hub4 (Plateforme de Données de
Santé), the UK Biobank, the central neuroimaging platform CATI5 (in french, Centre

3From the interviews of some Aramis members and some of their scientific publications, we identified
three commonly used tests: the Mini-Mental State (MMSE) or Folstein test (Derouesné et al., 1999), the
16-item Free Recall-Indicated Recall (RL-RI) test (Dartinet and Martinaud, 2005), the Rapid Frontal
Efficiency Battery (BREF) (Van der Linden et al., 2004) and the Alzheimer’s Disease Assessment Scale-
Cognitive Subscale (ADAS-Cog) (Rosen et al., 1984), which is dedicated to detect the symptoms of
Alzheimer’s disease in patients.

4See at the following address: https://www.health-data-hub.fr.
5See at the following address: https://cati-neuroimaging.com/.

https://www.health-data-hub.fr
https://cati-neuroimaging.com/
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Figure 5.1: Illustration of the functionalities of the AD Course Map software, which combines
various data to forecast the onset of Alzheimer’s disease. At four disease stages, representative
of the average ages of the affected patients in the cohorts, are indicated the results of two
neuropsychological tests designed to assess their cognitive decline, MMSE and ADAS-Cog, the
latter being decomposed into four sub-scores – memory, concentration, praxis, language – (first
row), the progression of multiple atrophies in delineated regions of the brain (second raw), the
deformation of the hippocampus (third row), and the intensity of hypometabolism (an abnormal,
inferior metabolic activity compared to healthy patients at these ages) in different regions of the
brain. Source: Koval et al. (2021).

d’Acquisition et de Traitement d’Images), CleanWEB,6 the Research Electronic Data
Capture (REDCap),7 and the AP-HP Health Data Warehouse. In the context of clinical
research, the data available on these platforms must be first controlled by moderators
who certify their quality and validity before authorizing (or rejecting) their uses and
investigations in various research, such as the Commission Nationale de l’Informatique
et des Libertés (CNIL) and the Comité Éthique et Scientifique pour les Recherches, les
Études et les Évaluations dans le domaine de la Santé (CESREES).

Other health data sharing solutions currently exist, particularly within the economic
data market. However, these solutions are weakly regulated and face serious privacy con-
cerns (Chen et al., 2019; Loukides and Lorica, 2019), which have been (in part) addressed
by the General Data Protection Regulation (GDPR, or RGPD in French) that is effec-
tive at the European level since 2018. Nevertheless, much remains to be done in the
construction of a universal legal framework for the transaction of these very particular
data.

6French server created by the Télémédecine Technologie company, which is used to store and share
data entry files or electronic metadata in the context of multicentric clinical trials.

7This internal AP-HP server is comparable to CleanWeb.
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5.1.2 Collaborations outside academia

A logical continuation of the academic research led by ICM is R&D, here mainly oriented
towards the development of innovative therapeutic solutions. This kind of research is
primarily conducted by research departments of major industrial groups, which aims to
improve the targeting of patients suffering from cognitive disorders at varying stages of
progression and thereby to administer them an appropriate treatment. Interviewee I3
(neurologist and researcher, AP-HP, ICM, IM2A) is familiar with these collaborations, as
evidenced in the dialogue below:

I3: [We, Aramis, entertain] partnerships with local industrial groups and start-ups
that are incubated at the Institut du Cerveau where I work. There are two main
partners with whom I work, a company called Genious Healthcare8 and another one
... Carthera.9 [The latter] is a company that develops innovative treatment tools
for neuro-oncology, which we are trying to deploy in the field of neurodegenerative
diseases, based on the use of ultrasound. ... Those are the on-site partners, I
would say, and I also have ongoing partnerships with what could be called ‘Big
Pharma’, namely industrial pharmaceutical partners that develop molecules against
Alzheimer’s disease or related disorders, and from which [some of their members]
come to test these molecules at our center.
SF: Are you working with them on the development of artificial intelligence algo-
rithms?
I3: Not really. ... I mean, I know they are developing them, but in-house. I know
that the director of our team has initiated a collaboration with Sanofi specifically for
that, namely using artificial intelligence to identify patients for this or that molecule,
for this or that drug, in [the context of a research on] Parkinson’s disease.
SF: Are any other pharmaceutical companies involved in your projects?
I3: No. In any case, [for] artificial intelligence ... it is Sanofi and that’s it. ... In
terms of, I would say, medical care, there are more industrial groups working with
us. There’s also Roche, Biogen...
SF: Do they promote funding for your research? If you don’t mind my asking...
I3: Yes, Roche is actually supporting us in establishing a cohort of patients from
whom we are collecting a lot of data that will help us validate the artificial intelli-
gence tools [developed in Aramis].

From this conversation, we learn that the main industrial partners of Aramis, except
Sanofi, are not collaborating with the latter in the development of AI-related algorithms
and software, as they are able to do so independently (in addition of easily patenting
them) with their own knowledge and technological resources. As interviewees I4 (post-doc,
ICM, INRIA) and I7 (neurologist and PhD candidate, AP-HP, IM2A) have highlighted
in other discussions, pharmaceutical companies are especially seeking knowledge about

8Genious Healthcare is a company which creates therapeutic video games and health-specialized
serious games. Further information are available at the following address: www.genious-healthcare.com.

9See at the following address: carthera.eu.

www.genious-healthcare.com
carthera.eu
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cohort data that have been collected mainly within university hospitals and public research
laboratories. Although they can produce their own data, they still call on academic
research to find subjects and set up test samples for therapeutic trials:

No company has any interest in promoting this kind of study because it is really,
extremely expensive, running into millions [of euros], and they don’t get any return
on it just by looking at people. So [these studies are often conducted] within public
research. However, that is not always true; sometimes there are private-public
partnerships. On the other hand, pharma companies [and a lot] of industrial actors
perform such trials, and when they do, they have patients and they submit them
some medical tests, and in the end they have patient data. But if we [the public
research sector] are not mentioned in the data use clauses, we don’t have access to
the data and we have to go back to the customers, get them sign papers again, in
order to get their agreement. (I4, post-doc, ICM, INRIA)

Furthermore, according to I3, Aramis also works with start-ups at the ICM, which
serve as privileged intermediaries between public and private research and are incubated
in the iPEPS structure. However, most of the researchers interviewed have told us that
they did not at all. Indeed, despite ICM’s desire to bring together scientific research
and entrepreneurship, these researchers admit that they are not interested in start-ups
because they do not understand neither their approach towards innovation nor the way
they reuse – and therefore transform – the knowledge produced by the ICM’s scientific
teams into concrete applications. The interviewee I8 (full-time researcher, CNRS, ICM)
firmly affirms this trend: “For me, it is not clear what start-ups want, so I don’t want
to spend too much time on it.” While reinforcing this trend, the interviewee I1 (post-
doc, ICM, QIMB) raises a completely different aspect, mainly of discursive kind, which
adds to this lack of understanding. By highlighting the “business-like” character of the
iPeps manager, he has indeed demonstrated a discrepancy between ICM researchers and
entrepreneurs that is crystallized here by a specific vocabulary used by the latter but that
is not always readily comprehensible to the former – the reverse may also be true. This
aspect reflects an interactional barrier between two professional worlds cohabiting within
the same institution.

These aspects thus challenge the translational nature of research at ICM, specifically in
the context of applications of AI research related by our interviews, in particular through
the inability of actors of both sides, i.e., academic research, and start-ups and industry,
to move from one environment to another. Although I3 seems to be in the best position
to do this, the rest of the researchers interviewed in the team do not participate in these
collaborations on their own (including I1 and I8). Thus, at the time of this present
investigation, such intermediary arenas seem to be only at a nascent stage, established
by senior actors in the institution (clinicians and computer scientists), who have a broad
vision of the scientific problem led by both the academic and clinical research and other
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industrial partners, and who are able to bridge the gap between these two worlds with
their different approaches to innovation, and who can attract different actors from these
two environments towards such an arena.

5.2 A dichotomy of scientific profiles

As highlighted in Chapter 1, one of the main assets of the research-technologists, that is to
say, the researchers engaged in the conception and the diffusion of AI in various scientific
fields, is their ability to move between different research fronts. This presupposes an
underlying ability to adapt to the needs of these research, or a prior interdisciplinary
training that articulates different knowledge, research practices and epistemic cultures
(Knorr-Cetina, 1999) – for example, in both neuroscience and AI.

As briefly mentioned in Sect. 2.3 of Chapter 2, and according to the composition of the
team on its website and the interviewee’s narratives, Aramis’ members can be divided
into two distinct groups: computer scientists and clinicians. In order to enrich the similar
categorization provided by the data analysis of the large-scale neuroscience collaboration
network presented in the previous Chapter 3, this section therefore proposes to recall and
describe more precisely the typical profile representing each group, as well as the main
social interactions between the two groups in the context of specific research projects
mentioned by the interviewees. Since the two categories implicitly refer to different dis-
ciplinary representation,10 not only in terms of research culture and scientific knowledge,
but also in terms of epistemic affinity (or proximity) to the instrument AI (its digital
tools, programming, etc.), this part also aims to elucidate the nature of the interdisci-
plinary work produced by the aggregated actions of each of these researchers, given their
respective intellectual trajectories and their insights into a common scientific challenge.

5.2.1 Computer scientists looking for concrete applications

The first group of scientists within the team includes individuals who propose modeling,
simulations, algorithms, and software for the effective analysis and processing of medical
data. Combined under the generic banner computer scientists, they are in fact mainly
graduates of general mathematics and statistics courses at leading engineering schools.
For instance, the interviewees I1 and I8 have both completed a PhD track on the digital
processing of neuroimaging data and have followed subsidiary training in biomedical re-
search, in epidemiology and biomedical engineering, respectively. Interviewee I4, who is

10For the author of this present thesis, but it may not be the same for the reader.
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currently a post-doctoral student, only turned to medical applications during his doctoral
studies, thanks to data science, which he discovered “by chance” during an internship
and another dedicated training programme. As the team also needs non-researchers for
other purposes, some computer scientists arrive in Aramis with a career that is often far
removed from research and biomedical sciences, like the interviewee I2 (R&D engineer,
ICM, INRIA), who has been employed as a R&D engineer within Aramis after a brief
stint within the Institut National de l’Information Géographique et Forestière (IGN).11

The interviewees I2 and I4 are also singular cases in that they have met biomedical re-
search and neuroscience at a relatively advanced stage in their studies and/or professional
careers, as they have not been trained in these domains. Regardless of an underlying, in-
herent vocation, they have decided to join these domains after a substantial reflection
on their respective subjects of interest, while simultaneously wanting to work exclusively
with computational tools and data. This versatile, “multi-applicative” nature of these
profiles clearly shows that biomedical research, as well as neuroscience, were not initially
a priority for them:

Following [my stint at IGN], I decided to reorient myself a little bit, well to change
sector a little bit because ... I was getting a bit farther away from the technical side
and I wanted to stay close to it. So I joined the Aramis team [to this end]. (I2,
R&D engineer, ICM, INRIA)

[W]hen I entered [engineering] school I said to myself, “I really don’t want to do
maths and physics and continue [on this path], I want to have a closer grip on the
real world.” So I started to do a degree in economics in a university at the same
time [and] I thought about doing a double degree with a business school. Nothing
predestined me [to do this] and nothing made me want to do it. But in retrospect,
I think I wanted to do all that because I wanted to apply what I knew and not let it
remain a bit esoteric. Then I arrived a little bit by chance in a US computer science
research lab for an internship ..., and I just realized: “in fact, I can use everything
I have learned since [the beginning of my studies], via data science and machine
learning.” And particularly at this time, I wasn’t into computer science, so it was
not my thing and I didn’t know that it could be a way of applying ... equations,
models, algorithms or whatever. And I think that’s what I liked about it. ... That’s
the story as I tell it right now, at the time I’m not sure I was that conscious; I liked
it for a while, I thought it was cool and it was nice. (I4, post-doc, ICM, INRIA)

5.2.2 The medical profession in need of effective computing meth-
ods

The second group of scientists at Aramis comprises hospital or independent practitioners
with additional research activities. In a significantly lower number than the computer sci-
entists – with only four out of a total team of forty members in 2021 –, these neurologists

11French geographic information institute.
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or neuropsychologists by training and profession, who will be named as clinicians in the
following, are interested in the numerical methods developed by Aramis for in-depth stud-
ies on a few clinical aspects of some neurodegenerative diseases, including Alzheimer’s.
However, they do not participate in work involving conceptual frameworks in mathemat-
ics and computer science, as they lack the requisite expertise. Consequently, clinicians
often remain detached from the modeling of observed phenomena, the actual writing
and optimization of algorithms, and software development. This is particularly true for
interviewee I3:

Honestly, as far as I’m concerned, I wouldn’t call myself an artificial intelligence
researcher, [I mean that] I know the principles of this research, I understand the
ins and outs in broad terms, but I’m personally incapable of developing a decision
algorithm and optimizing it. On the other hand, I can talk to artificial intelligence
researchers without too much difficulty... Well, even if I don’t have the knowledge
to understand the math behind it, I do understand what the algorithms do, and the
data they work with. (I3, neurologist and researcher, AP-HP, IM2A)

However, this apparent lack of technical AI-related knowledge expressed by clinicians
does not prevent them from bringing their expertise in medical knowledge (neurology,
neuropsychology, physiopathology, etc.) to assist computer scientists and mathematicians
with their more formal approach, in particular in the data used to train the algorithms,
which computer scientists do not fully assimilate, as the interviewee I2 aptly highlights:

There’s really a big time to understand the data, [of] understanding the subtleties
around these data. It’s a phase where you really have to read a lot... well, [of]
clinical things, ask clinicians for questions to understand the subtleties of these
data. (I2, R&D engineer, ICM, INRIA)

Interiewee I5, a neuropsychologist working on her thesis on anosognosia12 and memory
complaints13 in the early stages of Alzheimer’s disease, affirms the need for computer
scientists and clinicians to share knowledge in the context of clinical research:

SF: Do you participate directly with these teams in the creation of models, codes
if necessary, or in the improvement of the software?

I5: For code creation, never. ... Maybe I will use the code, but I don’t write it
at all, because I’m completely incapable! But before... if they [computer scientists]
want to implement something, for example, then maybe they call me and tell me:

12Anosognosia is a neuropsychological disorder, a cognitive pre-degeneracy characterized by an absence
of awareness of one’s own illness.

13Memory complaints are one of the earliest symptoms of Alzheimer’s disease, which, however, not
always manifests in patients who develop the disease at a later time. These complaints consist of memory
loss that the patient himself or herself recalls during neuropsychological interviews or tests in the presence
of a healthcare professional.
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“Is it better to use this score or the other one? Which is the most sensitive, the one
that varies the most, that isn’t very reliable, etc.?” And that is when I give them
my idea, which would help them to create the algorithm.

This clinician also uses the Leaspy14 software developed by Aramis as part of her re-
search, which demonstrates the reciprocity between clinicians and computer scientists in
terms of exchanged expertise. Aramis’ clinicians thus contribute indirectly to the devel-
opment of medical AI designed by computer scientists for subsequent uses in research
or clinical routine. However, as pointed out by the interviewee I7, who is a neurologist
working on the genetic origins of rare neurodegenerative diseases such as amyotrophic
lateral sclerosis15 and fronto-temporal dementia16 in the framework of his doctoral the-
sis, “they [clinicians] are not so accustomed to using algorithms”, and for a good reason:
most clinicians do not have advanced quantitative training – including those interviewed.
Nonetheless, some of them do have necessary coding skills to analyze their own clini-
cal data, often relying on pre-designed libraries and sets of robust routines coded with
various programming languages. In other words, the only computer-related work that
clinicians perform seems to be restricted to the mere use of digital tools that are already
developed by computer scientists, without necessarily delving into the details of these
computational programmes, or even modifying them to their convenience. For example,
to calculate genetic risk scores associated with the emergence of some neurodegenerative
diseases, interviewee I7 extensively programs with ready-to-use “toolbox” coded with R
or Matlab language. However, he concedes in the following passage that his programmer’s
skills are rapidly becoming limited:

I don’t have the information and expertise to carry out this research on my own,
that is also why I’m part of the Aramis team, and I work with other PhD students
and researchers. ... [A]ctually, working ... on machine learning algorithms isn’t
always easy for me, as I haven’t had any advanced training in that. (I7, neurologist
and PhD candidate, AP-HP, ICM)

Our interviewees have also shared another solution to compensate for this lack of tech-
nical skills. In the context of clinical studies involving large cohorts of subjects with
or without neurodegenerative diseases, the clinical staff often rely on statisticians with
expertise in medical data, who are working directly on-site at the hospital and able to

14Acronym of LEArning Spatiotemporal Patterns in Python, which is a Python package for longitudinal
health data analysis developed by Aramis, and which is mainly based on advanced statistical and machine
learning techniques. The library can be downloaded from the shared directory of computer programs
proposed by Aramis on the GitLab platform: https://gitlab.com/icm-institute/aramislab/leaspy.

15Also known as Charcot’s and Lou Gehrig’s disease in French and English, respectively, this neurode-
generative disease slowly affects muscle tissue until complete paralysis is reached.

16Affecting regions of the brain around the frontal lobe, this disease results in a range of symptoms
including language, behavior and personality disorders. Memory disorders are also observed, though to
a lesser extent than in Alzheimer’s disease.

https://gitlab.com/icm-institute/aramislab/leaspy
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produce in-depth quantitative studies that clinicians would be unable to conduct them-
selves alone. The aim of these statisticians is often to statistically determine risk factors
responsible for the onset of these diseases. The interviewee I6, one of such professionals,
briefly explains this approach in the following passage:

My regular job is to help researchers, physicians, nurses, or whatever, who have a
problem [for their research] and therefore need a statistician to answer their question.
So, either they have already collected the data and are well advanced in their study,
or they come to see me at the very beginning to write the research protocols ...
or, when they want to do retrospective studies and go back to the archives, they
come to see me to learn a bit how to build the database, to think about how we are
going to do the stats17 and whether or not it is worth doing the stats analysis. (I6,
statistician, AP-HP, IM2A)

Although they are not affiliated with any particular team and are spread throughout
the hospital site on short-term contracts, and in very few numbers in rather isolated
departments, these statisticians are of crucial importance for rigorous research:

[I]t’s always a pain to find a statistician; in fact researchers have trouble finding a
statistician... and most of the time they don’t find one so they do their own stats and
they do anything, and that’s normal because they haven’t necessarily been trained
for it. Once again, it is a job, so if you are just doing comparisons of averages, [or
just calculating] p-tests or Wilcoxon [tests], that is a basic thing to do and OK, why
not, but when it comes to models that are a little more complicated, [it] is better
to come visit a stat[istician]. And when they find one, they don’t let him/her go!
(I6, statistician, AP-HP, IM2A)

In conclusion, like the statisticians at La Pitié-Salpêtrière Hospital, the computer sci-
entists at Aramis serve (among many other functions) as a “support computing team”
whose goals are to assist clinicians in their regular research (and maybe medical) prac-
tices. This need for simple, effective computational methods is a clear manifestation of
the demand expressed by clinicians for the expertise that they do not all possess.

5.2.3 Computer scientists at the service of clinicians

The clinician-researchers in the Aramis team are the key contacts between the computer
scientists and the medical staff who are qualified to deliver diagnoses. Due to their
professional experience in the hospital environment, they are aware of the potential of AI
technologies in their routine medical practice, which motivates them to closely guide the
corresponding research in order to obtain tools that align with their needs. Interviewee

17Diminutive of “statistics”.
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I3 does not hesitate to express the technological expectations of the medical community
when responding to a question asked by the interviewer about the software he would likely
use in his medical practice:

SF: How does the programme you’re using work? Is it just a computer programme
with an interface, you enter data in it and something comes out?
I3: That’s it. That’s it, exactly. It produces a prediction of diagnosis and evolution.
[...] The software would also fetch the data from a system that we use for our
computerized patient records. That’s what we would like to do: we would like
the process to be more fluid, to consume as little effort as possible for the medical
community, to be a truly integrated approach to current clinical practice and not
add extra steps to integrate the data, enter it into a system, and so on. Because they
are pretty time-consuming, the ergonomic nature of these tools is really important
to consider, I think.

The few interviews conducted thus reveal an implicit subordination relationship be-
tween clinicians and computer scientists, which is accentuated by the simple fact that the
Aramis team is based directly on a hospital site. In this way, the latter work first for
a medical cause, rather than the other way around – whereby the medical cause is used
to enrich AI-related knowledge. The comments of interviewee I8 below corroborate these
apparent unilateral relations for knowledge creation, namely the translation of clinicians’
expectations into formal languages that can lead to a software application in radiology:

SF: Do these radiologists, for example, help you create codes or algorithms?
I8: When I developed the method, yeah I got in touch with a neuroradiologist.
... [W]hen I proposed my research programme to CNRS, I basically had something
in mind, I discussed it with her and she said, “Oh well, no, but in fact I would
prefer that”. So, it is true that, by talking things over, you realize what everyone
wants and you adapt, for sure. But then when it comes to algorithms, [...] we have
to translate what [the radiologists] can tell us, because they won’t necessarily have
the... they won’t know what it can correspond in concrete terms [for mathematicians
and statisticians]. But yes, interaction with them is very important for me because,
in any case, the tools we develop are intended for them, so if they don’t meet their
expectations, there is no point.

IT and digital neuroimaging specialists then become the clinicians’ little hands and must
adapt to the demands of the medical profession. To use the expression of interviewee I2,
a “culture shock”18 can occur for a computer scientist immersed in the world of clinical
research if he or she has not been trained in the domain beforehand. New doctoral
students or computer engineers who are new to the field must familiarize themselves with
the main principles of biology, physiopathology, and the issues surrounding the clinical
data they use, in order not to fall into the trap of misunderstanding and risk producing

18Translation of the French expression “choc culturel”.



The interdisciplinary work of AI in the Aramis team 125

scientific aberrations. In this respect, I2 mentions a clinical research’s way of thinking
that is significantly different from what he experienced during his engineering career, in
regards to his own representation of the scientific investigation process:

Even when I worked with the neuropsychologist [interviewee I5], she often started
from... she really had her hypotheses, she had her ideas and the result had to be
[the latter]. [It’s] a bit the inverse, in a way, of the scientific approach. (I2, R&D
engineer, ICM, INRIA)

Conversely, not all clinicians adapt to IT and do not make coding their primary ac-
tivity. As mentioned above by the interviewees I2, I5 and I7, the clinicians remain quite
distant from computer programming, despite their affiliation to a team that places it at
the core of its research activities. A long discussion with the interviewee I4 concerning
a tool he developed during his Ph.D. studies to forecast the progression trajectories of
a neurodegenerative disease based on various medical data exemplifies the distinction in
the roles played by computer scientists and clinicians in typical Aramis research. His re-
search is divided into two main stages. The first consists of developing models capable of
learning such predictions from a voluminous set of medical data (see Sect. 5.1.1.1). This
stage essentially concerns computer scientists, and clinicians help them understand the
training data. For example, I4 first modeled the phenomenon under study by constructing
a customized data structure, then determined a cost function, and finally coded an algo-
rithm to optimize this cost function in order to best represent the data and subsequently
generate an accurate statistical prediction. It is precisely at this stage that computer
scientists are best positioned to offer proposals. The second stage of I4’s research consists
of validating the learning algorithm that has been devised, usually with the help of both
R&D engineers – including I2 – who are supervised by researchers, and clinicians at the
end of the process, whose job is to promote the software to external organizations outside
the domain of medical research. In this approach, which could be described as a demo (a
demonstration) in the sense of Rosental (2002), the researchers aim to patent the software
and implement it in current clinical practice:

[W]e have a R&D approach ... [Recently, our process] looks a bit more like a research
... [and] development within a company. We try to promote [the software] to the
various institutions, academic partners, and laboratories with which we work. I’m
doing much less research in fact. I’m more in charge of a team of four-five engineers
with whom we work collectively to deploy this kind of tool. So, always with a
scientific objective in mind, we try to validate what it is made for. One of our
projects, for example, is to deploy a tool for understanding the evolution of patients
suspected of having Alzheimer’s disease, and in fact these tools are not at all for
patients, they’re for neurologists. We are [also] working with an anthropologist
who is trying to understand what changes [these tools] may bring about in the way
neurologists deal with their patients... . (I4, post-doc, ICM, INRIA)
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At the end of this process, the interviewee I3 endows a mediating role in order to
promote AI to the major French public health and personal data protection authorities:

In fact, I have two roles: I have a role in recovering data of interest to develop
and validate these algorithms [and] to ensure that they are robust, then a role of
implementing them in everyday practice. More recently, for example, we had a
discussion with INSERM to promote a research protocol we would like to set up at
the hospital. It’s a project to implement these tools in everyday practice, a tool we
would call Predictema. From a regulatory point of view, this tool is called a medical
device,19 because it is a software that processes data and provides information
that we didn’t have before. So now we need to validate it [the medical device]
in clinical research and get the necessary agreement from various agencies, that is
to say the CNIL,20 the ANSM,21 which also deals with medical devices, personal
protection committees... So ... I have a direct impact on submitting [the device]
to the regulatory authorities and then ensuring that the protocol runs smoothly in
the clinic, because we are in contact with patients and we have to explain them the
protocol properly, explain what it’s all about, what we are going to do, obtain their
[informed] consent... So all this is a biomedical research approach in which I think
I bring expertise compared to researchers who are very... IT specialists, but who
are not in contact with patients, and there is a real need for both aspects. Because
you can have the best tool in the world, but if it’s not applicable in real life at all,
then we won’t do anything from it. (I3, neurologist and researcher, AP-HP, IM2A)

This privileged status as a spokesperson for these organizations at the national level is
indicative of his detailed understanding of the medical field and the issues surrounding
the use of algorithms in medical practice, which computer scientists seem to lack. With
his status, he therefore reinforces his position as a team leader, thereby accentuating this
subordination of clinicians to computer scientists. The latter is even more apparent when
it comes to the publication of scientific results. During a conversation on his transition
from pure computer science to clinical research, interviewee I4 talks about the different
ways computer scientists and clinicians publish and communicate their findings, which
are crucial elements during his gradual adaptation stage into biomedical research:

We have just published something on Huntington’s disease, so it’s really for clinical
neurologists, and we spent a lot of time [writing it]. In fact, we realized that our
writing and our way of explaining what we do were not suited at all. And it took
a lot of work to get it published, but we finally did it! ... [For another] article in
review ... it was a huge relief for us, because it means that we have made progress
at least on that part, which is giving our knowledge to another community. But we
were helped! In this case, the doctors really took from us the pen and we dictated
to them, well [they] translated it. In fact, thanks to this pooling ... we were able
to do this more easily. ... There’s another thing that’s quite funny, open science,
which comes from open data, I mean the codes that are freely available [and] the
aim is to do something for everyone. Sometimes I went to conferences on biology or

19Translation of the French, juridical expression “dispositif médical”.
20Commission Nationale d’Informatique et Liberté, in French.
21Agence Nationale de Sécurité du Médicament, in French.
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neuroscience stuff, where you can find whole workshops on open science, you know,
and people are still talking about: “Are we going to make papers freely available?”
And I was like: “What do you mean? Yes, of course!” In fact, I’m trying to
understand, well I understood that a year ago, but I didn’t know that there were
still communities which didn’t make their papers open-access when they submitted
them, whereas it is evident for us. ... I think [this way] is very “hard science”.22
(I4, post-doc, ICM, INRIA)

As scientific results are primarily destined for clinicians, the entire process of writing a
scientific article is carried out by neurologists and neuropsychologists in order to ensure
that the resulting publication is accessible to their professional community. A priori,
it is impossible for computer scientists to bring doctors outside their strict disciplinary
constraints, by overturning the codes for writing and transmitting knowledge in clinical
neurology. Furthermore, the aforementioned excerpt illustrates that he omits to address
the regulatory and personal data concerns that impede the unrestricted accessibility of
research materials and findings, as previously highlighted by interviewee I3. All of this
reflects a disciplinary gap in the way science is done and knowledge is disseminated.

5.2.4 Testing interdisciplinarity

Promoted and facilitated by institutional arrangements promoting dialogue between com-
puter scientists and customers, in particular the partnership between INRIA, INSERM,
CNRS, and AP-HP, Aramis is a place that encourages dialogue within a heterogeneous
scientific population engaged in producing original interdisciplinary knowledge that falls
within common research goals. As defined by Stokols et al. (2008), interdisciplinarity
can be understood as the interaction of several disciplines resulting in the creation of
knowledge that incorporates different conceptual and methodological frameworks. Such
an enterprise contributes to softening traditional disciplinary boundaries for a common
scientific purpose, which allows the mobility of researchers at different career stages and
trained in various environments.

As witnessed by Aramis, in particular through the interviews collected and the results
mentioned above, we recover the main characteristics of this interdisciplinary model in
the organization of scientific activities within the team. Indeed, each member brings his
or her own knowledge and skills within a well-defined disciplinary paradigm. A neurol-
ogist does not improvise himself/herself as a computer scientist, as shown by their lack
of programming and software development skills. Similarly, a computer scientist is not a

22Translated from the french expression “sciences dures”, which refers generically to basic, natural
sciences around mathematics, physics, engineering and computer science, at the difference of biomedical
sciences – even humanities and social sciences.
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recognized clinician who is also a member of a medical order or council,23 although the
latter is more involved in this interdisciplinary approach than clinicians without research
activities. However, this research model is challenged by the fact that no one in the team
seems to really master simultaneously the two disciplinary expertise enabling them to
think differently about the same scientific problem. In particular, this leads to misunder-
standings between the two typological groups, as I2 (computer scientist) suggests when
relating a working session with I3 (clinician):

At a presentation ... I think he [interviewee I3] had misunderstood what we had
presented. We had tried to present the biases in the predictions of our model.
... [M]aybe it was the way we presented it, it was a bit confusing at some times.
But I have the impression that the fact that he didn’t understand [what we have
presented] made him... yeah, it made him a bit nervous, ... he had misunderstood
things and that made him a bit nervous. ... We were ready to use the method but
we [finally] weren’t, well our results tried to validate our method, and he had the
impression that we wanted to go a bit faster, which wasn’t the case. ... After that,
... sometimes I feel that, if you’re not careful, it can quickly get bad to you, because
if you don’t take the time to ask questions about the data you have, you can quickly
find yourself saying something stupid, in which case the neurologist will correct you.
Because there are always subtleties in the data we have, it’s not pure data. There’s
always some interpretative work to be done before you can use it, and if you use it
out of the blue, like some people do in the spirit of pure machine learning, ... you’re
going to be talking nonsense. (I2, R&D engineer, ICM, INRIA)

This disciplinary dialogue between computer scientists and clinicians therefore appears
at first sight to be difficult when researchers are directly questioned about the results
produced by computer science. Furthermore, a gap still remains between the computa-
tional reality of the accuracy of the results that models and algorithms can produce, and
clinicians’ desire to obtain certain, error-free results. The story of the interviewee I4’s
below illustrates this last point, focusing in particular on the perception of manipulated
data by the two groups:

[W]e [the computer scientists and IT engineers] have a very different conception
of data than doctors do, and I really enjoy titillate24 doctors’ views on what data
is. So here’s an example, that’s a bit silly but really important... Imagine that
you have a patient in front of you, you give him a test and you want to predict
what he’s going to be in the next five years [whether or not he/she is subject to
Alzheimer’s disease]. Obviously ... you want a null error. So there’s a [onset] score
of ... 10 right now and he’s actually going to be 20 in five years, so you want to
predict that he will [get a score of] 20. But when you look at people’s scores, if you
give the same person the test on two different days, they [might] have a five-point
difference, because they were angry in the morning, they drank a coffee, ... they
were ill, whatever, but there’s a different variability. In fact, the ambition to find a
perfect prediction means predicting things that are independent of the disease [the

23In France, this is called the “Ordre des Médecins”.
24Translated from the French expression said by the interviewee I4, “challenger la vision des médecins”.
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interviewee waves his hand to illustrate a noisy curve with high variability]. But
that’s not what we want! It’s funny because it is typically the kind of thing we try
to [change in the mind of] doctors who see the data as something pure and perfect.
... So when you say to them, “I made a two-point error on the prediction, ... and
in fact I’ll never do better and I don’t want to do better”, well, the first thing they
will answer to you is: “Yeah, but we want a perfect prediction”. (I4, post-doc, ICM,
INRIA)

In this passage, in which he seems to be taunting the doctors, I4 supports this real
disciplinary separation between the computer scientists and clinicians, which also implies
various stereotypes of each towards the other in terms of their conception of AI, computer
science, how the problem is posed and, in this particular case, what a model is. The
clinicians’ quest for purity in the data and models they use is undoubtedly an inherent part
of the medical discipline to which they belong. Indeed, if these clinician-researchers, who
are first and foremost medical professionals, are supposed to use the (AI-related) software
developed by Aramis to provide reliable diagnoses for their patients, then these computer
programmes must operate with as few errors as possible. Therefore, a compromise must
be found between what computer scientists can achieve within the limits of IT and the
ambitious expectations of clinicians.

To conclude this section, this apparent interdisciplinarity in terms of the organization
of work and day-to-day interactions within the team underlies a unilateral relationship
between the expertise brought by the disciplinary frameworks specific to each of the two
groups: computer science expertise is advanced for clinical and biomedical research, but
the reverse is not necessarily true, as there is no return or feedback to the former, except
for the nature of the data manipulated.

5.3 The diffusion of AI in neuroscience research: be-
tween promise and reality

AI has become an essential tool in neuroscience research. However, it is subject to a num-
ber of biases specific to the disciplines that use it, resulting in divergent representations
across the disciplinary spectrum of scientific research. The accounts gathered during the
interview campaign illustrate, albeit on a small scale, this dissonance in neuroscience,
which tends to accentuate the disciplinary divide between computer scientists and clini-
cians, and which in fact hinders interdisciplinarity on the subject. The lack of training
in the main AI algorithms during their university studies may help to explain the various
points of view later expressed by the respondents.
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5.3.1 A still recent bubble

Although AI is currently central in various research, both in terms of its development
and improvement and in terms of its everyday use, the Aramis researchers interviewed,
whether computer scientists or clinicians, stated that they had not been exposed to AI in
their training prior to joining the team, apart from the main machine learning tools that
are most successful today. The late democratization of AI in French higher education and
research may explain this lack of training among both clinicians and computer scientists.
For example, a large number of intelligent algorithms have already been known for sev-
eral decades, developed, mastered, and even passed on to younger generations of students
through training in data science or statistics in a Big Data approach, often using super-
vised or unsupervised automatic learning. However, the term “AI” has only belatedly
established itself as a unifying research front in the French scientific landscape and higher
education, as evidenced by the government’s announcement of a vast funding programme
for AI research throughout the country, launched only in 2018 (Villani et al., 2018). This
was well after the interviewee I2 had left his engineering school in 2015, which explains
why he had little or no contact with AI during his studies:

Before [entering in engineering school] honestly I didn’t have ... any particular
training [in AI]. It wasn’t the generation where... well, we didn’t talk too much
about it, we did the maths, ... operational research, stuff like that, but [no AI]. Then
at the [school], not very much either, I would say ... it wasn’t yet so fashionable. ...
I know that they added a lot of lectures at the school [I frequented] ... on big data,
artificial intelligence, machine learning, and so on. ... It’s recent, but it wasn’t really
the boom (sic.) yet. There’s quite a lot of progress that has been made recently, ...
actually in the world of work. (I2, R&D engineer, ICM, INRIA)

AI research therefore developed very rapidly from 2015 onwards, not only in response to
the sharp increase in the volume of data to be processed, regardless of the scientific disci-
pline under consideration, but also because of the new performance records set by neural
networks in processing these data. For example, the annual ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) organized by the ImageNet project in 2012 demon-
strated the unrivaled robustness and efficiency of a neural network for image recognition
and segmentation. The development of the U-Net convolutional neural network architec-
ture (Ronneberger et al., 2015) also helped to establish the future dominant position of
deep learning in biomedical image processing research just before 2015. Interviewee I8,
who was also not exposed to AI during her training, nevertheless mentions a craze for
this research in the inner circle of image processing specialists:

I think things are improving a little bit, because at the beginning, everyone focused
on topics that required the least amount of time for the maximum amount of results.
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So that phase has now ended, and all the results that could be obtained very easily
have been obtained, but now we have to think a little bit! ... Now things are
becoming more interesting, I just see it in the major conference in our field, called
MICCAI.25 ... I used to go there since 2013, so 2013, 2014, 2015 were fine. 2015
saw the first [deep learning] methods, but it was still very new, it was all fun! Well,
2016 really started to explode, and 2017, well, I was... In fact, half of the presented
papers treated segmentation problems whose [authors said]: “We took this network,
we got this result, wow, great!” So in 2017 ... I got bored. 2018 was a bit the same,
and then 2019 started to tackle more interesting subjects, such as whether we could
model the uncertainty that exists in the network, whether we could predict when
the network is going to do well or not, and so on. ... I haven’t really followed the
2020 [session], ... but it has evolved a bit now, so I think the field is starting to
produce more interesting things. But a few years ago, 2016 to 2019, pfff... (I8,
full-time researcher, CNRS, ICM)

In the end, I8’s intervention portrays a fad in scientific research, which she does not
necessarily consider to be a guarantee for the creation of solid knowledge:

Another criticism [that I have of deep learning] is the “cooking”26 aspect. ... I
mean, the typical story is that a PhD student has spent six months cooking with
his little network, removing layers, adding layers, changing hyperparameters, one
day it works, he will publish it and what have we learned? Well, nothing, because
all you have to do is add a layer and the whole enterprise falls apart... (I8, full-time
researcher, CNRS, ICM)

So in her view, neural networks are toys that no one really knows how to use, as
mentioned in this brief comment:

On the one hand, people who aren’t familiar with medical images get into [deep
learning] because it’s fun, but they don’t understand the data, and on the other
[hand] I think there are also people coming from medical image processing but
who don’t know much about deep learning, and it’s a disaster too. (I8, full-time
researcher, CNRS, ICM)

All of the aforementioned I8’s comments show how easy it is to integrate deep learning
into neuroscience research, mainly because the techniques are easy to learn with imple-
mented, concise, ready-to-use packages on standard programming languages.

25Medical Imaging Computing and Computer Assisted Intervention, which designate both a scientific
society and one of the best known conferences for disseminating advances in the domain of medical
imaging. For further details: https://miccai.org/

26Translated from the French expression “côté/aspect cuisine”, here used by I8 to draw an analogy
with the work she observes, where in this context, researchers just have a common basic recipe (the
neural network) and modify it by mixing some ingredients (the hyperparameters, the number of layers,
of neurons, etc.) whose quantities change, and thus producing a completely new dish (the result).

https://miccai.org/
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5.3.2 An unclear but promising concept

As developed in Chapter 1, AI covers a wide range of concepts and definitions that are
very well documented in the scientific literature, but which are still the subject of debate
in the scientific community. As E. W. Shortliffe rightly pointed out in (Patel et al., 2009),
doctors often use machine learning techniques without really knowing that they fall under
the umbrella term of “artificial intelligence”. Thus, the various computational methods
of automatic or statistical learning do not at first appear to be cognitively related to
this concept, which then becomes open to multiple interpretations. The Aramis members
interviewed, especially the computer scientists, emphasized this lack of a clear and precise
delimitation in the definition of AI, which could be partly attributed to the lack of prior
training in the main algorithms and associated methods during their higher education
studies, as previously described above. The testimonies of the interviewees I2 and I4
illustrate this last point well, the former accentuating the vagueness of the concept of AI
by describing it as a “big word”, the latter in the passage below:

SF: Had you ever heard of artificial intelligence or data science before you went on
this Master’s course or internship you told me about?
I4: Um, I don’t know, I would distinguish between AI as it appears in the papers,
yeah I’ve heard of it, on the other hand... Well, actually I don’t even know what
that means. ... I was interested in the mathematical concepts that were behind it
to find out whether I was interested in it or not, whether the way of thinking this
science was a bit linked to what I liked to do or not, and I think yes. But only from
a technical point of view!

For clinicians, on the other hand, the situation seems quite different. Indeed, intervie-
wees I3, I5 and I7 seem to talk about this concept confidently and concisely without too
much difficulty, and do not hesitate to equate AI with machine learning. We might then
naively ask why there is such a gap in the attitudes of computer scientists and clinicians
to the definition of AI. Interviewee I6, who regularly interacts with clinicians who are
not affiliated with Aramis and who are probably less expert in AI than the three above,
brings an answer:

What I’ve seen since I arrived in 2017, researchers and doctors often visit me and
say: “I want to do AI, machine learning, etc.”, because it’s hype and it’s really sexy
(sic.) in the articles. But when I calm them down and see what they really want,
machine learning is definitively not what they want to do, actually. They tend to
think that now it’s the new thing in statistics, it’s the sexy thing, you really have
to do it all the time, whereas in practice ... classical statistics will answer [their]
questions. (I6, statistician, AP-HP, IM2A)

I6’s comment, which echoes I8’s earlier comments about a generalized, global craze for
AI, shows that clinicians who are unfamiliar with statistical and computational methods
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often hold misperceptions about machine learning and, more broadly, about AI itself.
Despite this discrepancy between this perception and the reality of computational work
(as previously shown in the preceding section), which is often performed by specialists
other than clinicians themselves, AI is brandished as a kind of label or brand, especially
by the latter. This is exemplified by the aforementioned expression from I6, “AI is sexy
... in the articles”. This results in various dimensions linked to the academic visibility
of researchers’ works, in which AI has become a pivotal vector. The following sections
provide further details on this point.

5.3.3 The need to be up-to-date to maintain visibility

During an exchange on the growing tendency of students to absolutely want to engage in
research that monopolizes deep learning methods, regardless of the concrete application,
interviewee I8 shows the extent to which these methods have pervaded minds even in
higher education:

Now those who come out of schools have had training [in AI]. It’s perfect, but
between the fact that there is very little theoretical support for deep learning and
the fact that people like me who got into it because... well, because! If you add
all that together, it’s clear that it’s complicated to make meaningful progress. But
then, not doing it is also... In a very trivial way, all the people who come out of
schools and universities now [and] who want to do a Ph.D. want to do deep learning.
... If I propose a subject with classic registration optimization, I don’t think I will
hire anyone. (I8, full-time researcher, CNRS, ICM)

The unfinished sentence “but then, not doing it is also...” is indicative of a widespread
phenomenon, namely that researchers are unwillingly thrown into deep learning without
any prior training, at the risk of being sidelined from ongoing research. This sidelining
can be both financial, as a research topic that does not include deep learning is no longer
considered promising enough, and social. A researcher who is reluctant to use deep learn-
ing may suffer a loss of recognition and credit from the international scientific community
because of his conservative tendency to use old knowledge and methods, which can also
be seen as a sign of resistance to novelty and to new progress. To avoid these pitfalls,
computer scientists who have not been trained in AI have no choice but to learn some
techniques themselves. Interviewee I8, for example, has learned deep learning on the fly
“like many” of her colleagues, although she regrets being caught up in this trend:

SF: You’re in a team where researchers are quite into machine learning and deep
learning, but you have never practiced any, so how do you manage to fit into that
team, that topic?
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I8: Actually, even though I had never really practiced it before, ... it’s a topic you
just can’t escape, so you have to get into it. Well, I did, and that was also the idea
when I joined the team, where I was going to learn new things, which I did. ... The
work I did in my PhD thesis was actually one of the first to do image synthesis. So
when all the articles on image synthesis based on deep learning came out, well, I
got a lot of them to review, so we are learning little by little!

SF: But then, perhaps your work have also been overshadowed by machine learning
in a way, hasn’t it?

I8: Yeah... A pretty good example is the work I started on anomaly detection
during my thesis, which resulted in a conference paper, and I had always the aim of
converting it into a journal article. Except that it took me years to do that, because
I always had millions of things to do in parallel, and when deep learning has come
along, it has become complicated to make people accept work that doesn’t contain
deep learning.

This exchange with I8 also reveals the high capacity of AI to obscure (almost) entire
areas of research with competing methods in neuroscience – at least in neuroimaging
– which in practice, as I8 confides later in the interview, prove to be just as effective.
Deep learning thus becomes an inevitable feature within the field of neuroimaging, to the
detriment of techniques that had turned marginal at the time of its spread, such as those
developed by I8 before she was recruited to Aramis.

5.3.4 A practical tool to help you stand out in clinical research

Perceived as a constraint by some computer scientists who, like interviewee I8, are used to
mobilizing their “traditional” methods, AI is being treated quite differently by researchers
outside this group. Some clinicians, aware of the potential of AI-integrated algorithms and
software, do not hesitate to praise its practicality in their own research. This is particularly
true for interviewee I5, who makes extensive use of the Leaspy software developed by
Aramis. In particular, this software has enabled her to validate a clinical intuition born
of her experience with patients, which actually contrasts with the results she could find
in the scientific literature on the subject, which was rather poor at the beginning of her
doctorate:

When you have a lot of subjects who have had several [medical] visits, who are
healthy subjects with mild or severe disorders, hence in different phases of the
disease, you make longitudinal models. We can see that the disease is so variable,
so one subject may have an early-onset disease and another a later-onset disease,
... one subject may manifest the disease through an initial symptom, and another
subject through another symptom. ... So this model, with the software called
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Leaspy, allows to homogenize perhaps all these subjects and their differences and
variability, and to create a progression of the disease based on the longitudinal visits
of each subject. It will place each subject on a timeline (sic.) that has been created
on the basis of the subjects we are studying. ... In this way, we were able to trace
the progression of the disease. For example, I was able to trace the progression
of memory complaints and lack of awareness of disorders’ symptoms. In fact, I
was able to find this although it’s not so obvious if I have used classic statistical
models... [Leaspy] removes an error and a bias which both still exist when we study
sick subjects who present a disease that is so heterogeneous, so different [from one
subject to another], whereas we can really discard all these individual differences to
really describe the disease in this way. (I5, neuropsychologist and PhD candidate,
AP-HP, ICM)

The analysis tools developed by the computer scientists at Aramis are even a fruitful
alternative to the “classical” (and sometimes complex) statistics that some statisticians
and clinicians are accustomed to using for clinical studies in large observational cohorts:

SF: But could you have implemented your idea without these tools or algorithms?
Would it have been more difficult?
I5: Yes, but no! In fact, as I really wanted to go against this idea advanced in the
literature, which is very much followed – it’s a very active literature now and I’m
saying the complete opposite –, I really needed clear and striking results. ... If I
used methods [like] ANOVA,27 and other stuff like that, I can’t see anything with
averaged [values]. ... [A]nother thing I used was a latent class analysis to really
find latent classes which were otherwise mixed together, [but] then by [calculating]
average we find nothing. That’s why we never find anything in pre-clinical [patients],
because we mix up too many things. As a result [with Leaspy], I’ve been able to get
clear results that really relate a story and address different aspects of the question.
It’s not necessary, but if you want to do a qualitative work in my field of pre-clinical
research, it’s worth having methods that are [a little more advanced than what I
already had].

Here, interviewee I5 already set herself apart from her research community by work-
ing on symptoms that have received very little attention in the scientific literature on
Alzheimer’s disease, but really did so by using “new and innovative” AI-inspired compu-
tational techniques that will ensure her future recognition by the scientific and medical
communities if she continues her research after her Ph.D. graduation.

5.3.5 A future medical assistance tool?

The use of AI in medicine and its influence on the evolution of practices within the biomed-
ical research community are still being debated by many renowned AI experts (Patel et al.,
2009). The main conclusion that emerges from these rich discussions is that the algorithms

27Analysis of Variance.
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provided by computer scientists are designed to aid doctors in their decision-making or
medical acts, but not to replace them, since the results or diagnoses produced must be
checked and criticized by an expert medical authority before any practical steps are taken
(Pesapane et al., 2018). AI must therefore not challenge the clinical intuition of health
practitioners (Matuchansky, 2019), as interviewee I7 argues in the following excerpt:

In my opinion, the diagnosis cannot be based on these algorithms. ... In fact,
the diagnosis is a mixture of probabilities, of a priori28 (sic.), obviousness but also
clinical intuition. There’s something that goes beyond all that. To make a diagnosis,
all [these algorithms and software are] very useful, but it must be interpreted by
clinicians and transmitted to the patient, because ... the communication aspect [is]
absolutely important. Sometimes, a diagnosis can be revised, refined, changed over
time, ... it’s only clinical observation that allows us to end at the most appropriate
diagnosis. ... So I think these instruments ... will improve clinical practice for
clinicians, but they can’t replace it. On the other hand, clinicians need to be
properly trained in how to use, read and interpret these algorithms, it’s crucial. ...
Now, I would like to insist that I believe that, at the current stage, algorithms for
combining multimodal data, etc., are more likely to be applied to research, to the
identification of endpoints (sic.) in therapeutic trials, really in research outcomes
(sic.), therefore they are mainly destined to the research community. In my opinion,
there is still some validation work to be done before algorithms and scores can really
be translated from research to clinical practice. (I7, neurologist and PhD candidate,
AP-HP, ICM)

Although AI is already a powerful tool in clinical research (see, for example, Anichini
and Geffroy, 2021; Ansart et al., 2021; Pesapane et al., 2018; Valliani et al., 2019; Vieira
et al., 2017), it encounters negative receptions from some clinicians who are hostile to
its use in their day-to-day practice, thus hindering the translational process from basic
research to experimental deployment in hospitals. This results from two reasons. On the
one hand, they do not necessarily see the point of using software that simply produces
predictions for them, as interviewee I5 pointed out in another exchange:

There are some very good doctors, even really well-known ones, but they are not
used to the idea of using a computer to do certain things. ... For example, if
we wanted to do a study that would enable us to predict a patient’s condition in
the next three or five years, these doctors would tell us, “I don’t see the point of
taking my computer, entering the data, his or her current scores, and having an
estimate of the scores in five years because I already know, otherwise there may be
variations, changes, events that we hadn’t foreseen and that have changed my own
intuition, but in fact they will also change the computer’s estimate.” So they were
a bit reticent. (I5, neuropsuchologist and PhD candidate, AP-HP, ICM)

On the other hand, clinicians may not always trust the results given by the machine,
because they do not all know how the machine arrives at the result it produces. Deep

28Said as such during the interviews, which can be translated as biases in English.
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learning is a typical example, where even computer scientists who are used to manipulate
are also unsure on the way to interpret the results returned by such a neural network:

It’s very difficult to know the performance of deep learning approaches because the
validations are often not sufficiently advanced and it’s actually a bit painful. For
example, going back to what I was doing in my thesis, which was to correct the
attenuation of PET images taken from a PET-MRI scanner, all the research groups
that had scanners at that time started to develop [numerical] methods, because
[those] supplied by the manufacturer [were] useless. So we got together a dozen
centers and conducted a very thorough evaluation of the different methods that
each center had developed. ... There was a deep learning method ... that came out
at the time, dating from 2017 I think. ... And in fact, the result was that the deep
learning method worked as well as the others, it didn’t work ten times better, and it
had outliers (sic.) that were very difficult to predict, so we didn’t really understand
why it didn’t work. Whereas, with the other methods, we could see why they didn’t
work, and we were able to give an explanation like: “Well, this patient’s anatomy
is very different, or the density of his or her bones is really very different, so it’s
normal that the method doesn’t work.” With the deep learning method, we didn’t
really know how to explain it. (I8, full-time researcher, CNRS, ICM)

Deep learning and machine learning algorithms are often viewed by both computer
scientists and clinicians as “black boxes”, subject to the inherent randomness of the prob-
abilistic methods implemented in them - two successive executions of an algorithm do not
yield substantially the same result. In response to clinicians’ demands for transparency in
algorithms and an understanding of their functioning, the Aramis team is committed to
improving the interpretability of the tools it develops (Burrell, 2016; Gilpin et al., 2019).
The objective is to determine, through a series of validation stages, the precise manner
in which the algorithm returns a given result. The outcome of this research could, in
particular, build clinicians’ confidence in the algorithm, which they would use later in
clinical research or in their medical practice. As indicated above by the interviewee I7,
this deployment must be accompanied by appropriate training in the use and explanation
of the approach of the algorithms provided, which would also help to allay clinicians’
reservations.

In short, the testimonies of the three clinicians interviewed during this fieldwork con-
verge to the same conclusion: even though AI is already well established in the research
process – formal, biomedical, clinical, etc. –, there is currently no clear indication that it
will lead to a global consensus among practitioners engaged in intensive clinical use.
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5.4 Discussion and conclusion

The Aramis team severs as an interdisciplinary breeding ground for the dissemination of
AI in clinical neuroscience research and its future integration into the medical community
specializing in neurology. Based on eight interviews and the scientometric analysis pro-
vided in the two previous chapters, we have established a typology of scientific profiles,
divided into two groups, in order to describe the organization of work within the team
and the interactions between them. The team is primarily composed for the most part of
researchers in computer science and mathematics, who are not only committed to improv-
ing software but also involved in the development of existing software. They demonstrate
their creativity by imagining and designing new high-performance methods capable of
processing large masses of medical data, with the objective of assisting clinicians in their
clinical research and also in their daily medical practice. The latter, who constitute the
second group of our typology and who are not necessarily trained in computational meth-
ods, thus set the tone for interdisciplinary collaboration with these computer scientists,
guiding research in line with the requirements of the medical profession. In this regard,
they serve as ambassadors of the medical professions within a computer science team (Li
Vigni, 2021a), mediating and promoting the research output to the supra-academic and
supra-medical instances.

However, this collaboration between the two aforementioned scientific profiles is proving
difficult because of difficulties in understanding and even communicating between them,
whose research paradigms and visions of AI and the computational work differ. Never-
theless, each requires the insights of the others to make progress in this interdisciplinary
endeavor. For example, computer scientists still need the advice and knowledge of clini-
cians to develop software tailored to their needs. Thus, in light of the conclusions of our
scientometric model of genericity drawn in the previous Chapters 3 and 4 with large-scale
data analysis over the whole neuroscience, the results introduced in the present chapter
corroborate that AI is a research instrument brought by specialists who develop and im-
prove it for the welcoming research environment (genericity in conceptualization). These
AI experts also adapt to this host research context (that is not their own for some of
them) by appropriating its disciplinary culture (interdisciplinary migrants, as proposed
by Sedooka et al. (2015)). Conversely, clinicians simply appropriate the instrument just
for applicative ends (genericity in application).

We remain cautious about this last conclusion as they reflect only one research con-
text of this team, which topics are not directly focused on the conceptualization of AI’s
computational architectures but rather on clinical applications. Due to the limited num-
ber of interviews used and the narrow scope of our investigation, we inevitably miss the
precise knowledge produced by Aramis, which would require both a micro-scale analy-
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sis of the content of the team’s publication, along with a much longer on-site fieldwork
(a few years) to provide a comprehensive retrospective of the true impact of AI in the
team’s daily research practice. Such a fieldwork would entail not only the realization of
supplementary individual interviews but also observations of the research activity within
Aramis and other ICM teams, in order to precisely delineate the different stages in the
development of algorithms across basic and translational research, and to bring other
insights into the relationships between clinicians and computer scientists within the in-
stitute. Drawing upon the reflections of Forsythe (1993a; 1993b), Rosental (2003) and
Voskuhl (2004) on the sociology of the development of AI in computer science, who have
adopted such an ethnomethodological approach, these observations would also enable an
analysis of conversations between members in contact with AI, both formal and informal,
which are at the core of the construction of the scientific knowledge in neuroscience and
the enhancement of the AI technological instruments.

In the framework of such an extended fieldwork within Aramis, it would also be worth
to examine the governance structure of this team, with a specific focus on the status of its
members (principal investigator, research scientist, engineer, etc.) given their affinity with
AI. The aim of such an inquiry is to ascertain whether this organization has an incidence
on the main orientations of the produced research and, if so, whether it contributes to
shaping an affirmed professional identity around the research subject and/or the methods
used, such as AI, or to reinforce well-established disciplinary boundaries (Louvel, 2015;
Sedooka et al., 2015). Indeed, we could suppose that a team (co-)directed by an AI
specialist would favor the importation of related knowledge, methods, and practices within
the neuroscientific field, thereby engendering a complete epistemic culture. A detailed
investigation of the historical construction of the team would then be required.

Thus far, the interviews analyzed in the present chapter support a common narrative,
especially at work, which suggests that AI is juxtaposing in a pre-existing well-furnished
set of technical tools used in neuroimaging and neuropsychology, and enabling some tasks
that would not be possible to carry out without traditional statistical tools (although not
necessarily outperforming them). This is notably the case for disease course mapping that
has been widely developed throughout these interviews, which aims to forecast the onset
of neurodegenerative diseases. Moreover, the growing use of such AI tools is accompanied
by a hype around it, as well summarized by one of our interviewees who has stated: “AI
is sexy”. The corresponding excerpt especially reflects that AI has become a kind of label,
engaging multiple intertwined realms beyond the mere academic work, which together
build a specific rhetoric of promises of applications in the near future (Raimbault and Joly,
2021). In such realms, AI appears to become an essential keyword, a discursive element
employed to attract various audiences for different purposes. For instance, AI targets
not only scientists (both computer scientists and clinicians) to maintain or gain visibility
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in academia, but also health professionals and industrial companies for concrete clinical
applications, and last but not least, funding organizations and journals to guarantee
the sustainability of such research they deem promising. All of these actors, situated
within diverse arenas of interest for AI, play a pivotal role in strengthening the academic
credibility cycle of researchers, as first conceptualized by Latour and Woolgar (1996).
The successful additional work of persuasion of researchers to these actors thus tends
to reinforce the credit of the former within the scientific community in a novel context
of a technoscientific model of knowledge production (Li Vigni et al., 2023), which also
concerns the AI instrument. Consequently, AI has become an essential to survive in
the competitive academic or industrial worlds, due to the mounting pressure to use it in
the context of promises of applications. The latter thus reveals itself to be a driver of
genericity of AI in science, although it has not yet fully achieved this character, according
to the depicted reality of work in laboratories and the scientometric elements previously
drawn at the scale of the field.

————————–



Conclusion

Summary of the results

As AI develops since the late 1950s, voices have raised (Ganascia, 1993; Schwartz, 1989;
Vayre, 2021), and are still resonating today (Cockburn et al., 2018; Köstler and Osse-
waarde, 2022; Sartori and Bocca, 2023), about its possible capacity to become pervasive
in all sectors of society. Science is no exception to this trend, especially because AI
can propose new ways of doing research by reframing current methodological frameworks
across all disciplines in order to become data-driven (Kitchin, 2014) and by assisting cre-
ation of new knowledge that would not have been possible to produce without it. While
being progressively disseminated in science, almost all research domains are nowadays
showing interest in AI-related knowledge and technologies for their own epistemic goals.

However, do we observe this alleged generalization of the use of AI in all scientific
domains? In this thesis, we have adopted a framework proposed by Shinn and Joerges
(2002), from which we conceive AI as an instrument embedded in a research-technology
regime since the 1950s and destined to be disseminated at all levels of scientific produc-
tion. Such a final step is called genericity, that we have defined, in Introduction, with
three criteria, namely domain adaptation, social adoption and epistemic integration, which
refer, respectively, to the capacity of AI to be applied in various topics covered by the
domain, the growth of the number of AI users within the scientific community represent-
ing the domain, and the articulation of AI with the conceptual frameworks structuring
the domain. So the aforementioned question could be translated as: according to these
criteria, is AI becoming generic in science?

This thesis has attempted to bring an answer to this overarching research question by
focusing on the development and diffusion of AI within a single multidisciplinary field of
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research, that is, neuroscience. To this end, we have drawn upon a dual methodology
in order to capture at various scales the three aforementioned criteria describing our
genericity model applied to AI. First, we have traced the long-term impact of AI in
neuroscience at the macro-scale over 50 years with a scientometric, quantitative approach
(Chapters 3 and 4). Second, we have examined the social construction of AI at the micro-
scale within a laboratory through semi-structured interviews with researchers, conducted
as part of a fieldwork run in 2021 (Chapter 5).

With the first quantitative approach, we have represented neuroscience with its sci-
entific literature published since the 1970s, available and extracted from a large biblio-
metric database, the Microsoft Academic Knowledge Graph (MAG). In Chapter 2 of this
manuscript, we have especially introduced and discussed an extensive cleaning step of
this extracted neuroscience corpus, from which we have retained only articles published
in peer-reviewed journals and delineated an AI-related subcorpus with a keyword filter
applied on titles and abstracts within this corpus. Then, we have detailed the construc-
tion of two temporal networked structures from some of the metadata attached to the
articles of the corpus, namely an ego-centered citation network including references and
citations related to all of the latter, and the co-signature network from their authors. The
first network, capturing the evolution of the disciplinary environment of neuroscience over
time, allows to assess the disciplinary embedding of AI-related publications into the neu-
roscientific ecosystem, while the second one enables us to evaluate the degree of adoption
of AI among the neuroscientists and to locate AI practitioners within the whole social
network of the community – in its core or its periphery.

These two networks, accompanied with numerical indicators describing them, have
been mobilized for the purposes exposed in Chapter 3, centered around the two first
aforementioned criteria of genericity of AI spreading across neuroscience. We have shown
that AI fits in with the epistemic objectives of neuroscience by sharing its multidisciplinary
citation environment. AI thus demonstrates a successful disciplinary adaptation at first
glance, but it encounters a limited social adoption, AI practitioners even being gradually
segregated in the collaboration structure of the neuroscience community, and publishing
in a small set of dedicated scientific journals. In addition, most of these AI experts,
especially those entering neuroscience since the late 1990s, have a common disciplinary
profile (according to their published papers), that remains anchored into STEM-related
fields, including computer science. According to Shinn and Joerges (2002), they are the
AI research-technologists attracted by neuroscience.

In Chapter 4, we have then introduced other data structures based on different meta-
data, in order to study more precisely the ensemble of neuroscience knowledge and the
capability of AI to articulate within its conceptual base. To this end, we have first



Conclusion 143

mapped the textual elements (titles and abstracts) of the articles of our corpus on a
two-dimensional space representing the state of knowledge of the field under study, based
on the combination of document lexical embedding and dimension reduction techniques,
respectively, SPECTER (Cohan et al., 2020) and UMAP (McInnes, Healy, and Melville,
2020). We especially have partitioned this knowledge space with a density-based hierar-
chical clustering, HDBSCAN (McInnes, Healy, and Astels, 2017). Then we have built a
conceptual network linking fields of study attached to the papers, which represent broad
topics in which they can be inserted – according to the topical classification of the MAG
database. Such a network allows to assess whether AI-specific concepts are linked, or
achieve to link, to major neuroscientific concepts over time, and whether they are central
within this conceptual network. We have studied such a network per knowledge area of
the neuroscience map given by the aforementioned clustering algorithm.

Still in Chapter 4, we have shown that, although AI is present in almost all the spe-
cialties of neuroscience, testifying again a large adaptation of AI to various purposes of
the domain, it faces a limited incorporation into their respective conceptual network –
even withdrawing from them over time –, except for a neuroscientific subfield dedicated
to the mathematical and computational foundations of contemporary connectionist AIs.
This suggests that AI is generic in application, as it is able to be operationalized in var-
ious research contexts exhibiting their own knowledge base and vocabulary, but not in
conceptualization, as it moves away from the most prominent concepts mobilized in these
research contexts over time. This finding, which corroborates the argument of the gradual
distancing of AI research topics and big data from fundamental research, supported by
many authors (Ahmed et al., 2023; Frank, Wang, et al., 2019; Frégnac, 2017; Klinger
et al., 2022; “The new NeuroAI” 2024), also demonstrates that the epistemic integration
of AI does not seem fully achieved. It also illustrates the conclusions of Cheng et al.
(2023) who studied the spread of diverse novelties in different domains at different times,
such that the failure of an idea to link with a preexisting set of prominent concepts in a
given domain hinders its wider diffusion (of social and epistemic kinds) across the latter.
This is precisely the case of AI within neuroscience. Moreover, the discoveries made with
AI, as well as the discussions it may arouse, are only relevant in the knowledge areas of
neuroscience in which they were produced, thus testifying a limited transferability of the
AI-related tools and knowledge across the domain.

According to all of these first results, the AI instrument does not appear to be totally
generic in neuroscience, which is rather surprising since the latter constitutes one of the
main bases of the recent connectionist “paradigm” of AI. Overall, it does not yet seem
to supplant all the methodological frameworks within the domain under study. While
AI seems to be spreading within science at large scale (Gao and Wang, 2023; Gargiulo,
Fontaine, et al., 2023), which would be a signal of successful diffusion, this quantitative
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analysis has shown that it does not become a must when observing the spread of its use
in all the components of a given field of research at a lower scale, according to the criteria
set in our genericity model.

Finally, in the last Chapter 5, we have complemented these aforementioned quantitative
results by reducing our scale of analysis to the micro level, using a more qualitative
approach. Specifically, the second research material mentioned above was mobilized,
namely interviews with researchers from a research team called Aramis, based at the
Paris Brain Institute (ICM) and specializing in the study of neurodegenerative diseases at
the intersection of computational neuroscience, neuroimaging, and neuropsychology. This
fieldwork has mainly focused on the interdisciplinary aspect of AI work in the context of
neuroscience research, particularly through a categorization of scientists into two groups
directly inspired by the two profiles widely depicted in the previous scientometric analysis:
computer scientists and clinicians. With this fieldwork, this chapter has tried to provide a
more nuanced understanding of the genericity criteria, especially domain adaptation and
social adoption.

First of all, it should be emphasized that the research conducted in Aramis is at the
interface between basic and clinical contexts, with a particular focus on further clinical
applications in regular medical practice. Computer scientists thus are a workforce re-
sponsible for tasks that clinicians are unable to perform independently, in particular the
processing of large amounts of clinical data, where AI appears to be a valuable aid. As
the output of the research is primarily intended for an audience that is more composed
of clinicians rather than computer scientists, engineers, or technicians, the latter must
therefore comply with the requirements not only of medical disciplines but also of health
practitioners. In this context, our interviews have suggested that the practice of interdis-
ciplinary collaboration within Aramis is facing challenges, with interactional difficulties
between members of the two groups due to their respective different paradigms and ap-
proaches to analyzing medical data. Furthermore, they revealed that the term “AI” is
more a catch-all designation rather than a well-defined one, which contributes to accentu-
ate the aforementioned point about clinicians’ limited understanding of the work done by
computer scientists. During the course of the investigation, AI has also emerged as a kind
of brand image, serving as a central mechanism for maintaining academic recognition for
both computer scientists and clinicians (Li Vigni et al., 2023).

In summary, this brief investigation has shown that AI is capable of adapting to the
main challenges addressed by the team under study, and even reaching early-career clin-
icians who are engaged in a doctoral programme and have chosen to use it for their
respective research. However, our fieldwork still needs to be extended to laboratories
with different subjects and approaches (not necessarily data-driven), and where the sci-
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entific work differs significantly from this ideal, biased case of Aramis in which AI plays
a central role.

Limitations, perspectives of improvement and future
work

Discussion of the chosen analytical framework to study the dif-
fusion of AI within neuroscience

As discussed in Chapter 1, AI is defined in multiple ways in the scientific literature, es-
pecially in social studies of science. In particular, we have noticed that AI, although not
often mentioned clearly, could be associated with either a research instrument, composed
of various technical tools semantically related to this notion, or a scientific domain as a
whole. Therefore, the research-technology framework and the specific concept of generic-
ity (Shinn and Joerges, 2002) have been chosen to overcome this distinction in order to
conceptualize the diffusion of knowledge, research instruments, and practices related to
AI, which have been designed and developed in a dedicated research domain. In addition,
drawing upon the findings presented in our article characterizing the evolution of AI re-
search in science (Gargiulo, Fontaine, et al., 2023), we have assumed that AI is mainly
produced within a research environment dominated by STEM-related domains, especially
computer science, mathematics and statistics, before being disseminated throughout oth-
ers exogenous from the former. This conceptualization thus supposes that the domain
under study receiving AI, here neuroscience, is situated outside its development since its
inception. Although the literature on the shared history of AI and neuroscience demon-
strates the contrary (Cardon et al., 2018; Hassabis et al., 2017; Macpherson et al., 2021),
we have maintained this hypothesis with regard to the limited production of AI-related
knowledge (see Chapter 2, Fig. 2.8), which suggests that AI has been and continues to
be peripheral to the epistemic preoccupations of the neuroscience domain, at least since
1970.

Nevertheless, some concepts that have contributed to many recent achievements in
the field of AI have been directly borrowed from pure neuroscientific ones, such as the
well-known neural networks. Consequently, we could question the direction of knowledge
transfer between AI and neuroscience when the former emerged: Do we attend the diffu-
sion of neuroscience concepts to STEM ones, which have appropriated them afterwards
under the calling of AI, or do we attend something else? Therefore, coming back to our
main research questions exposed in this thesis, does AI effectively adapt to neuroscience,
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or is neuroscience adapting to AI? This finally challenges the validity of the established
domain adaptation and epistemic integration criteria established for this thesis, which
both regard AI as integrating neuroscience but not the other way around. A more refined
definition of the genericity criteria would thus be valuable in better characterizing the
diffusion phenomenon under study.

In the context of the hypothesis (adopted here) that AI represents a technological in-
novation intended for dissemination in neuroscience, which is here supposed to be not
implicated in its development, a future work should invest alternative analytical per-
spectives to address this diffusion, such as a complex contagion model (Cencetti et al.,
2023; Centola, 2015; Manzo et al., 2018), as previously emphasized in the discussion of
Chapter 3. Indeed, based on the preliminary identification of some adoption factors of
interest to combine, such as the correlation of close collaborations and citation patterns
(Espinosa-Rada et al., 2024; Wallace et al., 2012) or the potential methodological, epis-
temic, cultural proximity of the neuroscientists who adopt AI (see, for example, the work
of Roth and Cointet (2010)), such a model would provide precise explanations – in the
sense of analytical sociology (Manzo, 2010) – for some microscopic mechanisms of the
diffusion phenomenon that has been interpreted according to the theoretical framework
of research-technology throughout this thesis. This approach would have supported the
social diffusion criterion of our genericity model. Moreover, such a contagion mechanism
would facilitate the isolation of the profiles of innovators, spreaders, and early or late
adopters at different stages of the social diffusion of AI (for some classic examples, see
Brancheau and Wetherbe, 1990; Coleman et al., 1957; Robertson, 1967; Rogers, 1983). In
this line of inquiry, we could use our data to calibrate the aforementioned model in order
to ascertain at which threshold we consider genericity to be achieved.

Refining the neuroscience corpus

As already exposed and discussed in the previous chapters, the results exhibited in this
thesis face diverse limitations, that are mainly due to the bibliometric data used through-
out this thesis to evaluate the aforementioned genericity criteria of AI inside neuroscience.

An important one, and the most difficult to apprehend in scientometric analysis in our
opinion, lies on the plurality of disciplinary or topical classifications of scientific publica-
tions available on the web, whose constructions and usage are quite different. In particular,
in Chapter 3 we have mobilized the Web of Science (WOS) taxonomy built from a set of
referenced journals, which we used to set the disciplinary membership of the papers that
cite or are cited by our neuroscientific corpus, without much concern about the finer re-
search subjects attached to the articles. Conversely, in Chapter 4 we have partly relied on
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an old, not continued fields of study classification provided by MAG, organized in a net-
work that is difficult to understand. Furthermore, the publications in MAG were labeled
with a variable number of such fields situated in different hierarchical levels of granularity
within the network (a discipline, a specialty, a very small research area, etc.), sometimes
with inconsistent associations of very distant fields producing very different knowledge.
This thesis has thus articulated different coexisting bibliometric classifications of papers,
which deserve to be subsequently unified.

In this work, we have begun to use the MAG bibliometric database before its successor
service, OpenAlex, has been launched, which provides improved metadata describing
scientific publications. Consequently, the aforementioned classification of fields of study
has now been completely replaced by topics in OpenAlex, that are organized in a more
consistent way on a hierarchical tree from small research topics to large domains, through
two intermediary classes,1 namely subfields and fields. In this database, the publications
are only labeled with three topics at most according to a textual-based classifier, one of
them being set as a primary one, thus limiting inconsistencies on the identification of
the research area related to these publications. Although we have exploited this topical
taxonomy in App. C.1.1 in order to verify some results provided with the ancient MAG’s
one and introduced in Chapter 4, we should reconsider some analysis exposed throughout
this thesis with this novel classification, especially in Chapters 3 and 4, wherein it can
supplant the used WOS one. On the one hand, such a classification would indeed be worth
to build more precise intellectual trajectories of the authors, out of the major disciplinary
boundaries set by WOS, as done in (F. Liu et al., 2024; Singh et al., 2024; Zeng et al.,
2019). On the other hand, it would help to refine the disciplinary ecosystem drawn in
this chapter and thus revise the disciplinary adaptation criterion mentioned above.

Moreover, moving back to the methodology used to build the neuroscientific corpus
exposed in Chapter 2, we could replace the journal classification of WOS, which reflects a
specific disciplinary structure of the research domain we want to study, by the OpenAlex’s
one in order to define a completely new dataset. As this taxonomy includes a whole field
Neuroscience divided in several subfields and topics, it would also be useful to refine the
cartography of Chapter 4 and its clustering. We could also pursue this rationale by identi-
fying the AI-related papers in the corpus as those exhibiting at least one AI-related topic
included in the subfield Artificial Intelligence of this classification – combined with topics
included in other fields or subfields such as Computer Vision and Pattern Recognition
and Natural Language Processing, that might not be included in the AI subfield. Overall,
such a refinement work would be valuable for the sake of consistency, using a single, stable
topical classification, especially with that provided by OpenAlex.

1Notice that these three classes are inherited from the database Scopus.
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In order to complete our corpus, we should also consider the diversity of publication
types, which could differ from one discipline to another, and the manner these different
publications impact specific disciplinary communities as well. Indeed, we have shown
that most of AI research published in peer-reviewed journals in neuroscience is impacting
mainly neuroscience itself, but we could test whether this pattern still remains in other
media for communicating research results, such as conference proceedings, preprints pub-
lished on online platforms such as arXiv, commonly used by mathematicians, physicists
and computer scientists (Wainer et al., 2013), without forgetting the sharing of various
codes and open-source software in dedicated online repositories, such as GitHub, that are
crucial to the transmission and the development of an AI-centered technological, coding
culture within the domain under study. Future research may clarify whether our results
hold if we consider the impact of AI produced within neuroscience through these other
publication outlets.

Finally, since our analysis lies on the state of AI before mid-2020, and thus before the
rise of generative AI since 2022, through notably the launch of Large Language Models
(LLM) such as Chat-GPT and Gemini, this thesis deserves to be extended to a more up-
to-date dataset, as the recent prowesses in AI can reconfigure the relationships between
AI and the scientists, and therefore the citation, collaboration, conceptual networks used
to study the genericity of AI within neuroscience. In addition, as deep neural networks
are reaching their peak since the early 2010s, we can suppose that the small number of
AI-related works observed in neuroscience over time is due to a (very) long lag time before
adoption, which could be happening nowadays, but is still invisible in recent bibliometric
data. We thus need to wait a bit before tackling again this broad question of diffusion of
AI in science.

Studying the capability of AI to create knowledge

Our genericity criterion of epistemic integration, understood as a conceptual articula-
tion of AI knowledge with neuroscientific ones throughout this thesis, can be extended
to its capability to generate novelties inside the knowledge foundations of neuroscience.
As suggested by Cheng et al. (2023), a novel scientific discovery that is able to link
with a preexisting set of knowledge of a research domain is able to spread more in the
latter. This mechanism would therefore allow for the reinforcement of a virtuous circle
consisting of attracting subsequent novelties within this domain, which is analogous to
the phenomenon known as the expansion of adjacent possibles (Kauffman, 2000; Monechi
et al., 2017). Although AI is not central within the conceptual field of neuroscience, it
remains interesting to know whether AI is part of the creation of some knowledge used
for neuroscientific purposes.



Conclusion 149

Many methods can capture such a generation of novelties from a set of concepts, notably
knowledge flows through citations between successively published papers in the domain
under study (Di Bona et al., 2023; Sun and Latora, 2020) and phylomemetic trees2 (Lobbé
et al., 2021), a framework enabling a simplified visualization of vocabulary inheritance
relationships between sets of papers across variable temporal periods. Besides, these
evolutionary representations of knowledge flows, which offer a comprehensive view of the
whole scientific literature of a given domain, through the merging of some knowledge
areas into a single one, the birth of others, and the semantic change of pre-existing ones,
would lead us to study the potential competition between AI and other methods and
technologies (Arthur, 1989) inside this domain at many moments of its development –
for instance, the rise of deep learning techniques in brain imaging, that is nowadays able
to outperform standard classifiers like the standard Support Vector Machine (SVM), as
shown by Abrol et al. (2021). A comparison of these methods would then be required to
choose the most appropriate one.

For other future projects, such methods would be valuable in analyzing the degree
of AI usage within individual research teams or laboratories (as Aramis) through their
respective set of academic publications since their launch.

Applying our framework to other fields of research

In conclusion, returning to the overarching research question animating this manuscript,
we did not address whether AI is generic in other research domains, which are char-
acterized with other knowledge bases and methodological frameworks related to diverse
scientific practices and cultures that are not the same as neuroscience’s ones, but could
favor (or not) the insertion of AI inside them. This thesis thus intends to be a roadmap
for further studies of the diffusion of AI in a broad range of disciplines or fields of research
that are receptive to it, but probably with different patterns, such as astrophysics, which
also deals with heavy, complex images and signals that need to be efficiently processed.
We should also consider some domains that are, a priori, far away from AI (according to
Gargiulo et al. (2023)), such as social science and humanities. Sociology seems to be a
good additional fieldwork for this purpose. A comparative work would then be worthful,
on the basis of the genericity criteria established for this work.

2Such knowledge structure can be drawn with the GarganText software, designed at Paris’ Complex
Systems Institute (France) by the authors of the aforementioned article.
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A Chapter 2 appendices

A.1 AI-related keywords table

evolutionary algorithm simulated annealing
hierarchical clustering principal component analysis
unsupervised learning neural networks
backpropagation classifier
search algorithm genetic algorithm
training data association rule mining
data mining speech recognition
hidden markov models adaptive algorithm
reinforcement learning feature extraction
gaussian mixture model expectation maximization algorithm
linear discriminant analysis cluster analysis
swarm intelligence general game playing
artificial intelligence knowledge representation
adaptive learning rate information retrieval
random forest robotics
decision support system inference engine
genetic operator singular value decomposition
kernel method expert system
boltzmann machine deep learning
representation learning incremental learning
catastrophic forgetting machine vision
natural language processing predictive model
adaboost face recognition
feature selection latent semantic analysis
image classification pattern recognition
particle swarm optimization face detection
backward chaining forward chaining
affinity propagation clustering perceptrons
computational intelligence cobweb
dimensionality reduction combinatorial optimization
prolog latent semantic indexing
intelligent agent autonomous robot

Continued on next page
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computer vision markov decision process
echo state network agent architecture
tf-idf answer set programming
ambient intelligence gram matrix
binary tree machine intelligence
generalized additive model naive bayes
temporal difference learning radial basis function network
supervised learning decision theory
artificial immune system statistical classification
semantic network overfitting
hidden layer partially observable markov decision process
markov chain monte carlo dialogue system
hopfield network beam search
gibbs sampling dirichlet process
hierarchical dirichlet process stochastic gradient descent
topic modeling co-clustering
multinomial mixture model indian buffet process
declarative programming knowledge engineering
logic programming conditional random fields
naive bayes classifier turing test
evolutionary computation constraint logic programming
distributed representation codebook
optical character recognition graphic processing unit
augmented reality policy gradient
data augmentation convex hull
autonomic computing object detection
adaptive neuro fuzzy inference system maximum a posteriori estimation
decision tree learning maximum likelihood estimation
stochastic optimization distance metric learning
minimax imagenet
distributed artificial intelligence automated reasoning
thompson sampling spiking neural network
independent and identically distributed abstract data type
turing machine automata theory
object detection algorithm affective computing
sequential pattern mining backpropagation through time
bidirectional recurrent neural network feature learning
alphago triplet loss function
triplet loss connectionist temporal classification
word2vec chatbot
autoencoder denoising autoencoder
clustering stability adversarial autoencoder
expectation-maximization algorithm deep reinforcement learning
monte carlo tree search halting problem
recurrent neural network language model superintelligence
maxout artificial creativity
sparse autoencoder lenet
cognitive computing rete algorithm
vq-vae variational autoencoder
weak supervision resnet
alexnet personally identifiable information
capsnet anchor box
blackboard system rectified linear unit
bees algorithm fuzzy control system
no free lunch theorem similarity learning
artificial general intelligence machine perception
abductive reasoning ontology generation

Continued on next page
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global average pooling polysemy
hyperparameter tuning conditional gan
convolutional filter natural language generation
textual entailment neural style transfer
frame language graph neural network
1x1 convolution reservoir computing
pooling layer datalog
leaky relu exponential linear unit
ontology learning batch normalization
sobel filter googlenet
face verification stochastic convex hull
stacked autoencoder elman networks
mycin yolo
coreference resolution siamese neural network
tensorflow transhumanism
automated speech recognition knowledge reasoning
market basket analysis autonomous car
mechatronics bidirectional lstm
seq2seq negative log likelihood
cybernetics entity extraction
dying relu fasttext
active learning strategy sparql
covariate shift convolutional kernel
textrank artificial intelligence markup language
abductive logic programming automated planning
recursive neural network semantic query
statistical relational learning ai planning
approximate string matching hierarchical learning
dynamic epistemic logic embodied agent
embodied cognitive science ontology acquisition
neural turing machine contextual bandit
belief-desire-intention model lazy learning
deep structured learning meta learning
cloud robotics hierarchical softmax
mode collapse admissible heuristic
openai minimum description length principle
mean reciprocal rank junction tree algorithm
automated scheduling neuromorphic engineering
computational learning theory bilingual evaluation understudy
deep convolutional generative adversarial network learning rate decay
doc2vec fast r-cnn
committee machine gap statistic
forward reasoning entity identification
weak ai developmental robotics
contractive autoencoder semantic hashing
paragraph vector zero padding
vggnet computational creativity
action language probabilistic latent semantic indexing
bag-of-n-grams collaborative topic regression
symbolic artificial intelligence glowworm swarm optimization
creative computation adam optimizer
bootstrap aggregating federated learning
chatterbot tree-lstm
vanishing gradients yolov2
entity chunking affinity analysis
peephole connection multi-modal learning
intelligence amplification ontology extraction

Continued on next page
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rmsprop capsule neural network
behavior tree eager learning
logic tree ensemble averaging
open mind common sense meteor
hadamard product machine listening
trust region policy optimization constructed language
opencog qualification problem
nouvelle ai region connection calculus
sequence to sequence learning artificial emotional intelligence
logit function synset
propositional satisfiability problem natural language programming
multilayer lstm action selection problem
knowledge interchange format creative computing
attributional calculus antonym
constituency tree-lstm internal covariate shift
boolean satisfiability problem minibatch gradient descent
adadelta stochastic gradient variational bayes
stochastic hopfield network name binding
information processing language mini-batching
garbage in, garbage out theory of choice
bayesian probabilistic matrix factorization document classification model
additive clustering vision processing unit
convolutional stride language segmentation
tree lstm cognitive augmentation
action model learning decentralized artificial intelligence
emotion ai max-margin loss
artificial conversational entity ai accelerator
naive semantics semantic reasoner
computational humor bayesian programming
yolo9000 wasserstein loss
issue tree conditional markov model
stanford research institute problem solver computational cybernetics
driveless car true quantified boolean formula
multidimensional recurrent neural network learning rate annealing
nchw conlang
computer audition smartbot
magnet loss behavior informatics
meronym pca color augmentation
tensor network theory constrained conditional model
darkforest convolutional padding
synthetic intelligence deepmind technologies
he initialization error-correcting tournaments
child-sum tree-lstm ebert test
friendly artificial intelligence syntaxnet
glove embeddings fuzzy string searching
ldade deductive classifier
adversarial variational bayes dynamic k-max pooling
categorical mixture model inceptionism
differential topic modeling reinforce policy gradient algorithm
evolving classification function word2phrase
alternating conditional expectation algorithm dartmouth workshop
accams support vector machine
artificial neural network machine learning
case-based reasoning neuro fuzzy
recurrent neural network restricted boltzmann machine
latent dirichlet allocation machine translation
derivative-free optimization knowledge based system

Continued on next page
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bag of words feed-forward networks
k-means clustering zero-shot learning
rule-based system human in the loop
type i error multi-armed bandit
learning to rank finite-state transducer
f score r cnn
multi-task learning skip gram
cross-entropy loss generative adversarial network
cold start self-driving car
vector-quantized variational autoencoders multi-agent system
learning to learn bag-of-words model
part-of-speech tagging out of core
mixed membership model max pooling
sequential model-based optimization long short-term memory networks
black box optimization named entity recognition
chinese restaurant process one-dimensional convolution
spatial temporal reasoning parametric clustering
search-based software engineering ai complete
continuous bag of words error-driven learning
pseudo labeling extractive sentence summarization
time-delayed neural network moore-penrose pseudoinverse
top-5 error rate k-fold cross-validation
hessian-free optimization passive-aggressive algorithm
kl one dirichlet-multinomial distribution
non-max suppression multi-swarm optimization
fast-and-frugal trees chess-playing computer
bias-variance tradeoff convolutional neural network
support vector machines support-vector machines
smooth support vector machine artificial neural networks
online machine learning convolutional neural networks
case based reasoning neuro-fuzzy
recurrent neural networks restricted boltzmann machines
hierarchical latent dirichlet allocation neural machine translation
derivative free optimization knowledge-based system
bag-of-words feed forward networks
k means clustering zero shot learning
rule based system human-in-the-loop
type ii error multi armed bandit
learning-to-rank finite state transducer
weighted finite-state transducer weighted finite state transducer
f-score r-cnn
multi task learning skip-gram
cross entropy loss generative adversarial networks
cold-start self driving car
vector quantized variational autoencoders multi agent system
learning-to-learn bag of words model
part of speech tagging out-of-core
mixed-membership model k-max pooling
sequential model based optimization long short term memory networks
black-box optimization named-entity recognition
named entity recognition in query nested chinese restaurant process
one dimensional convolution spatial-temporal reasoning
nonparametric clustering search based software engineering
ai-complete continuous-bag-of-words
error driven learning pseudo-labeling
abstractive sentence summarization time delayed neural network
moore penrose pseudoinverse top 5 error rate

Continued on next page
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top-1 error rate k fold cross validation
hessian free optimization passive aggressive algorithm
kl-one dirichlet multinomial distribution
non max suppression multi swarm optimization
fast and frugal trees chess playing computer
bias variance tradeoff convolutional neural network (cnn)

A.2 List of journals retained to build the neuroscience corpus

Acs Chemical Neuroscience Acta Neurobiologiae Experimentalis
Acta Neurologica Scandinavica Acta Neuropathologica
Acta Neuropathologica Communications Acta Neuropsychiatrica
Adaptive Behavior Advances In Child Development And Behavior
Advances In Cognitive Psychology Advances In The Study Of Behavior
Ageing Research Reviews Alcohol
Alzheimer’s & Dementia Alzheimer’s Research & Therapy
American Journal Of Alzheimer’s Disease And Other
Dementias

American Journal Of Medical Genetics Part B-
Neuropsychiatric Genetics

Anatomy & Cell Biology Annals Of Clinical And Translational Neurology
Annals Of Neurology Annals Of Neurosciences
Annals Of The New York Academy Of Sciences Annual Review Of Neuroscience
Aphasiology Archives Of Neuroscience
Arquivos De Neuro-Psiquiatria Asn Neuro
Audiology And Neuro-Otology Autism Research
Autonomic Neuroscience-Basic & Clinical Basic And Clinical Neuroscience
Behavioral And Brain Functions Behavioral And Brain Sciences
Behavioral Neuroscience Behavioral Sleep Medicine
Behaviour Behavioural Brain Research
Behavioural Neurology Behavioural Processes
Biological Psychiatry Biological Psychiatry-Cognitive Neuroscience And Neu-

roimaging
Biological Psychology Biomedical Reports
Biopsychosocial Medicine Bipolar Disorders
Bmc Neuroscience Brain & Development
Brain And Behavior Brain And Cognition
Brain And Language Brain Behavior And Evolution
Brain Behavior And Immunity Brain Connectivity
Brain Imaging And Behavior Brain Impairment
Brain Injury Brain Pathology
Brain Research Brain Research Bulletin
Brain Sciences Brain Stimulation
Brain Structure & Function Brain Topography
Brazilian Journal Of Medical And Biological Research British Journal Of Developmental Psychology
British Journal Of Ophthalmology Bulletin Of Mathematical Biology
Canadian Journal Of Neurological Sciences Cell Adhesion & Migration
Cell Death & Disease Cell Death Discovery
Cellular And Molecular Life Sciences Cellular And Molecular Neurobiology
Cerebellum Cerebral Cortex
Cerebrovascular Diseases Cerebrovascular Diseases Extra
Chemical Senses Chemosensory Perception
Clinical Autonomic Research Clinical Eeg And Neuroscience
Clinical Neuropathology Clinical Neurophysiology
Clinical Neurophysiology Practice Clinical Psychopharmacology And Neuroscience
Cns & Neurological Disorders-Drug Targets Cognition
Cognitive Affective & Behavioral Neuroscience Cognitive And Behavioral Neurology
Cognitive Computation Cognitive Neurodynamics
Cognitive Neuropsychiatry Cognitive Neuropsychology
Cognitive Neuroscience Cognitive Processing
Cognitive Science Cognitive Systems Research
Computational Intelligence And Neuroscience Constructivist Foundations
Cortex Cts-Clinical And Translational Science
Current Alzheimer Research Current Biology
Current Developmental Disorders Reports Current Eye Research
Current Neurology And Neuroscience Reports Current Neuropharmacology
Current Neurovascular Research Current Opinion In Behavioral Sciences
Current Opinion In Neurobiology Current Opinion In Neurology
Dementia And Geriatric Cognitive Disorders Dementia And Geriatric Cognitive Disorders Extra
Developmental Cognitive Neuroscience Developmental Medicine And Child Neurology

Continued on next page
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Developmental Neurobiology Developmental Neurorehabilitation
Developmental Neuroscience Developmental Psychobiology
Developmental Science Discover Oncology
Disease Models & Mechanisms Documenta Ophthalmologica
Early Intervention In Psychiatry Elife
Embo Journal Epilepsia
Epilepsy & Behavior Epilepsy Research
Epileptic Disorders European Archives Of Psychiatry And Clinical Neuro-

science
European Journal Of Neurology European Journal Of Neuroscience
European Neurology European Neuropsychopharmacology
Evolutionary Intelligence Evolutionary Psychology
Experimental Brain Research Experimental Eye Research
Experimental Neurology Expert Review Of Neurotherapeutics
Eye Fluids And Barriers Of The Cns
Focus On Autism And Other Developmental Disabilities Fortschritte Der Neurologie Psychiatrie
Frontiers In Aging Neuroscience Frontiers In Behavioral Neuroscience
Frontiers In Cellular Neuroscience Frontiers In Computational Neuroscience
Frontiers In Human Neuroscience Frontiers In Integrative Neuroscience
Frontiers In Molecular Neuroscience Frontiers In Neural Circuits
Frontiers In Neuroanatomy Frontiers In Neuroendocrinology
Frontiers In Neuroinformatics Frontiers In Neurology
Frontiers In Neuroscience Frontiers In Synaptic Neuroscience
Frontiers In Systems Neuroscience Functional Neurology
Future Neurology Genes Brain And Behavior
Glia Graefes Archive For Clinical And Experimental Oph-

thalmology
Headache Health Psychology And Behavioral Medicine
Hearing Research Hippocampus
Hormones And Behavior Human Brain Mapping
Human Factors Human Psychopharmacology-Clinical And Experimen-

tal
I-Perception Ideggyogyaszati Szemle-Clinical Neuroscience
Ieee Transactions On Neural Systems And Rehabilita-
tion Engineering

Integrative Psychological And Behavioral Science

International Journal Of Behavioral Development International Journal Of Bipolar Disorders
International Journal Of Developmental Neuroscience International Journal Of Endocrinology
International Journal Of Neuroscience International Journal Of Psychophysiology
International Journal Of Stroke International Neurourology Journal
International Review Of Neurobiology Investigative Ophthalmology & Visual Science
Iranian Journal Of Child Neurology Iranian Journal Of Psychiatry And Behavioral Sciences
Jaro-Journal Of The Association For Research In Oto-
laryngology

Journal Of Alzheimer’s Disease

Journal Of Applied Biomedicine Journal Of Brachial Plexus And Peripheral Nerve Injury
Journal Of Cataract And Refractive Surgery Journal Of Cerebral Blood Flow And Metabolism
Journal Of Chemical Neuroanatomy Journal Of Clinical And Experimental Neuropsychology
Journal Of Clinical Neurophysiology Journal Of Clinical Neuroscience
Journal Of Clinical Sleep Medicine Journal Of Cognitive Neuroscience
Journal Of Communication Disorders Journal Of Comparative Physiology A-Neuroethology

Sensory Neural And Behavioral Physiology
Journal Of Computational Neuroscience Journal Of Contextual Behavioral Science
Journal Of Ect Journal Of Electromyography And Kinesiology
Journal Of Experimental Psychology-Human Percep-
tion And Performance

Journal Of Eye Movement Research

Journal Of Fluency Disorders Journal Of Huntingtons Disease
Journal Of Individual Differences Journal Of Integrative Neuroscience
Journal Of Intellectual Disability Research Journal Of Intelligence
Journal Of Korean Neurosurgical Society Journal Of Mathematical Neuroscience
Journal Of Molecular Neuroscience Journal Of Motor Behavior
Journal Of Motor Learning And Development Journal Of Neural Transmission
Journal Of Neuro-Oncology Journal Of Neurochemistry
Journal Of Neurodevelopmental Disorders Journal Of Neuroendocrinology
Journal Of Neurogenetics Journal Of Neuroimmune Pharmacology
Journal Of Neuroimmunology Journal Of Neuroinflammation
Journal Of Neurolinguistics Journal Of Neurology
Journal Of Neuromuscular Diseases Journal Of Neuropathology And Experimental Neurol-

ogy
Journal Of Neurophysiology Journal Of Neuropsychology
Journal Of Neuroscience Journal Of Neuroscience Methods
Journal Of Neuroscience Nursing Journal Of Neuroscience Psychology And Economics
Journal Of Neuroscience Research Journal Of Neurosciences In Rural Practice
Journal Of Neurovirology Journal Of Pain
Journal Of Parkinsons Disease Journal Of Pediatric Neurosciences

Continued on next page
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Journal Of Psychiatric Research Journal Of Psychiatry & Neuroscience
Journal Of Psychophysiology Journal Of Research On Adolescence
Journal Of Sensory Studies Journal Of Sexual Aggression
Journal Of Sleep Research Journal Of The Experimental Analysis Of Behavior
Journal Of The History Of The Neurosciences Journal Of The International Neuropsychological Soci-

ety
Journal Of The Neurological Sciences Journal Of The Peripheral Nervous System
Journal Of Vision Jove-Journal Of Visualized Experiments
Language Cognition And Neuroscience Learning & Behavior
Learning & Memory Learning Disability Quarterly
Luts-Lower Urinary Tract Symptoms Medical Gas Research
Mental Lexicon Metabolic Brain Disease
Mind Brain And Education Mind Culture And Activity
Molecular And Cellular Neuroscience Molecular Autism
Molecular Brain Molecular Neurobiology
Molecular Neurodegeneration Molecular Pain
Molecular Psychiatry Movement Disorders
Movement Disorders Clinical Practice Multiple Sclerosis And Related Disorders
Multiple Sclerosis Journal Multisensory Research
Muscle & Nerve Nature And Science Of Sleep
Nature Human Behaviour Nature Neuroscience
Nature Reviews Neurology Nature Reviews Neuroscience
Nervenarzt Network-Computation In Neural Systems
Neural Computation Neural Development
Neural Network World Neural Networks
Neural Plasticity Neural Processing Letters
Neural Regeneration Research Neuro-Oncology Practice
Neurobiology Of Aging Neurobiology Of Disease
Neurobiology Of Learning And Memory Neurobiology Of Stress
Neurochemical Research Neurochemistry International
Neurocomputing Neurodegenerative Diseases
Neuroendocrinology Neuroendocrinology Letters
Neuroethics Neurogastroenterology And Motility
Neurogenetics Neuroimage
Neuroimage-Clinical Neuroimmunomodulation
Neuroinformatics Neurological Research
Neurology And Clinical Neuroscience Neurology And Therapy
Neurology Asia Neurology India
Neurology Research International Neurology-Neuroimmunology & Neuroinflammation
Neuromodulation Neuromolecular Medicine
Neuromuscular Disorders Neuron
Neuropathology And Applied Neurobiology Neuropeptides
Neuropharmacology Neurophotonics
Neurophysiologie Clinique-Clinical Neurophysiology Neurophysiology
Neuropsychiatric Disease And Treatment Neuropsychobiology
Neuropsychologia Neurorehabilitation And Neural Repair
Neuroreport Neuroscience
Neuroscience And Biobehavioral Reviews Neuroscience Letters
Neuroscience Of Consciousness Neuroscience Research
Neuroscientist Neurotoxicity Research
Neurotoxicology Neurotoxicology And Teratology
Nutritional Neuroscience Open Biology
Open Life Sciences Ophthalmic And Physiological Optics
Ophthalmic Research Ophthalmologica
Otology & Neurotology Pain
Pain Research & Management Parkinsonism & Related Disorders
Parkinsons Disease Pediatric Neurology
Peerj Peptides
Perception Perceptual And Motor Skills
Pharmacology Biochemistry And Behavior Pharmacology Research & Perspectives
Phenomenology And The Cognitive Sciences Physiology & Behavior
Plos Biology Plos Computational Biology
Pm&R Pragmatics & Cognition
Prion Progress In Brain Research
Progress In Neuro-Psychopharmacology & Biological
Psychiatry

Progress In Neurobiology

Progress In Neurology And Psychiatry Progress In Retinal And Eye Research
Psychiatric Genetics Psychiatry And Clinical Neurosciences
Psychiatry Investigation Psychiatry Research-Neuroimaging
Psychoneuroendocrinology Psychophysiology
Purinergic Signalling Respiratory Physiology & Neurobiology
Restorative Neurology And Neuroscience Review Journal Of Autism And Developmental Disor-

ders
Continued on next page
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Reviews In The Neurosciences Revista Argentina De Ciencias Del Comportamiento
Revue Neurologique Schizophrenia Research
Schizophrenia Research-Cognition Seizure-European Journal Of Epilepsy
Seminars In Neurology Sexual Medicine
Sleep And Biological Rhythms Sleep Health
Sleep Medicine Reviews Sleep Science
Social Cognitive And Affective Neuroscience Social Neuroscience
South African Journal Of Communication Disorders Spinal Cord
Spinal Cord Series And Cases Stress-The International Journal On The Biology Of

Stress
Stroke Synapse
Therapeutic Advances In Neurological Disorders Thyroid Research
Topics In Cognitive Science Transactions Of The Indian Institute Of Metals
Translational Behavioral Medicine Translational Neurodegeneration
Translational Neuroscience Translational Psychiatry
Translational Stroke Research Trends In Cognitive Sciences
Trends In Neuroscience And Education Trends In Neurosciences
Vision Research Visual Cognition
Visual Neuroscience Wiley Interdisciplinary Reviews-Cognitive Science
World Journal Of Biological Psychiatry Zeitschrift Fur Neuropsychologie

A.3 Web of Science categories’ abbreviations table

WOS Categories Abbreviations

Acoustics Acoustics
Anatomy & Morphology A&M
Anesthesiology Anesth
Anthropology Anthropo
Automation & Control Systems A&CS
Behavioral Science BS
Biophysics BioPhys
Biochemical Research Method BRM
Biochemistry & Molecular Biology B&MB
Biotechnology & Applied Microbiology Biotech
Cardiac & Cardiovascular System Cardio
Cell Biology CB
Chemistry Chem
Clinical Neurology CN
Computer Science CS
Critical Care Medicine CCM
Dentistry Dentistry
Developmental Biology DB
Ecology Ecology
Education Educ
Endocrinology & Metabolism E&M
Engineering Engineering
Entomology Entomo
Ergonomics Ergo
Gastroenterology & Hepatology G&H
Genetics & Heredity Genetics
Geriatrics & Gerontology G&G
Hematology Hemato
Imaging Science & Photographic Technology IS&PT
Immunology Immuno
Instruments & Instrumentation Instrum
Language & Linguistics L&L
Mathematical & Computational Biology M&CB
Mathematics Maths

Continued on next page
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WOS Categories Abbreviations

Mechanics Mech
Medical Informatics MI
Medical Laboratory Technology MLT
Medicine Med
Microbiology Microbio
Microscopy Microscopy
Multidisciplinary Science Multi
Neuroimaging NI
Neuroscience Neuro
Nutrition & Dietetics N&D
Operations Research & Management Science OR&MS
Optics Optics
Ophthalmology Ophthalmo
Otorhinolaryngology Otorhino
Pathology Patho
Pediatrics Ped
Peripheral Vascular Diseases PVD
Pharmacology & Pharmacy Pharma
Philosophy Philo
Physics Phys
Physiology Physio
Plant Sciences Plant
Psychology Psy
Public, Environmental & Occupational Health Public Health
Radiology Radio
Rehabilitation Rehab
Social Sciences SocSci
Sport Sciences Sport
Statistics & Probability S&P
Substance Abuse SA
Telecommunications Telecom
Toxicology Toxico
Virology Viro
Zoology Zoology
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B Chapter 3 appendices

B.1 Citation patterns of the AI research in neuroscience

In Chapter 3, we have analyzed the disciplinary embedding of an ensemble of AI-related
articles within neuroscience (corpus P), specifically through the citation history of this
last discipline between 1970 and 2020. The results discussed in this chapter have led us to
consider this AI-related subcorpus, denoted here as P ∩AI, as a transverse arena subject
to an intermediate stage of disciplinary confinement in the course of its development
(Hentschel, 2015; Marcovich and Shinn, 2012; Shinn and Joerges, 2002). In particular, this
implies the emergence of an epistemic orientation that slightly differs from the disciplinary
core of neuroscience, thus suggesting the development of a research subfield within the
latter, comparable to a scientific specialty, in the sense of (Chubin, 1976; Wray, 2005).
In this appendix, we test this last hypothesis in a different way than that in the core of
the manuscript by observing whether or not the citations surrounding this AI subcorpus
(bibliographic references and citations of its articles) are concentrated around it over time.

To achieve this, we opt for a macroscopic representation of the citation network sur-
rounding P ∩AI by aggregating the papers that cite or are cited by this corpus into four
groups, as illustrated in Fig. B.1:

• P ∩ AI: the corpus under study,

• P ∩ AI: the neuroscience corpus without AI-related papers,

• P ∩ AI: AI-related papers outside the neuroscience corpus,

• P ∩ AI: other papers outside the neuroscience corpus and without AI-related key-
words in their textual metadata.

Inspired by the method of Mukherjee et al. (2015), we compute the propensity of the
corpus P∩AI to cite and be cited by each of the four groups in a given year by comparing
the real number of citations to/from them and a simulated one resulting from random
shufflings of the global citation network in that year – which leads to compute temporal
citation z-scores for each group, for both references and citations. Such a measure allows
to evaluate the most preferred group(s) cited by P ∩ AI and those that cite the latter
preferentially in a given year, with respect to the random shufflings of the citation network
that tend to reproduce an ideal situation of uniform mixing of groups among the citations,
regardless of the number of papers within each of these groups.
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Figure B.1: Egocentric citation network around the AI subcorpus within neuroscience, at the
intersection of the neuroscience corpus P (blue zone) and the subset of AI-related articles (red
zone). A focal article of interest is represented by a gray disk. The other colored disks represent
the different groups of papers mentioned in the main text, citing the subcorpus (right disks with
arrows pointing to the gray one) or being cited by it (left disks with arrows originating from the
gray one).

A paper pi in P ∩ AI is described by a publication year ti ∈ [1970, 2019] and a vector
of reference (citation) scores xi = {nk

i }reference (yi = {nk
i }impact), where nk

i = ck
i /ci is the

share of citations received (given) by the papers belonging to the group k in the entire set
of references (generated citations) of pi. Given N (t) the set of papers in the set P ∩ AI
published in year t, the average observed number of references (citations) to the group k
at that time is given by:

Ck
obs(t) = 1

|N (t)|
∑

i∈N (t)
nk

i . (B.1)

To obtain the corresponding score Ck
simu(t) over multiple simulated citation networks

built from the subset of papers N (t), we exploit the temporal distribution of references
of the original citation network, i.e., the number of citations received by the references
published before t over the individual papers published at t within N (t). To this end, we
randomly shuffle the citations according to this temporal distribution, so that we conserve
the temporal structure of the whole aggregated network and also the distribution of the
number of citations per year. Here we consider N = 100 constrained shuffles of the edges
of the original citation network built from N (t), avoiding self-citations and duplicates
ones. The new score, averaged over N simulations, is thus:

Ck
simu(t) = 1

N

∑
i=1,...,N

nk(t) . (B.2)
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Figure B.2: Temporal z-scores for references (left) and citations (right) associated with the
subset P ∩AI.

By also computing the standard deviation σ(t) from these simulations, we then compute
the z-score z of the citations collected by the group k in year t as:

zk(t) = Ck
obs(t)− Ck

simu(t)
σ(t) . (B.3)

This metrics thus assesses the under- (zk(t) < 0) or over-representation (zk(t) > 0)
of the citations related to the group k in a year t compared to a situation obtained by
chance. This method is independent of the different scientific citation practices over the
whole time period between 1970 and 2019, considered here as the number of references.

Repeating afterwards all this procedure for the citations of the four groups to/from the
corpus P ∩ AI, we obtain all the corresponding trends plotted in Fig. B.2.

The latter shows that both references and citations follow the same pattern. The over-
presence of references from the corpus P∩AI, as well as its huge expansion in this period,
confirms that the AI-related articles published in neuroscience journals cite more papers
also dealing with AI within these journals. Symmetrically, the three other groups are much
less favored by the corpus, this situation worsening from year to year. The specific subset
of neuroscience publications involving AI is thus autonomous in terms of the references
used, sensibly confined within this AI subfield and with its own disciplinary composition
(see Chapter 3). We also observe the same behavior for the citations, except that the
internal trend of the group P ∩ AI reverses after 2000, while the the trends of the other
groups reverse after 2010, which is a signal of a new diffusion stage outside the AI-related
subcorpus, where all the disciplines represented in the citation sub-network of the corpus,
and not only neuroscience, together show an increasing interest in the applications of AI-
related tools in their own research programs. Beyond the step of optimization (Hentschel,
2015), these last periods thus show a small but progressive deconfinement of the AI
produced in neuroscience.
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B.2 Temporal evolution of the inter-quartile collaboration net-
work

Figure B.3: Evolution of the z-score matrix of the fraction of edges between fAI quartiles.

In Chapter 3 is introduced the propensity to collaborate between four different classes
of neuroscientists, according to their respective AI expertise fAI from the lowest to the
highest, which is summarized as a z-score matrix in Fig. 3.11B of this chapter. In partic-
ular, we have mentioned in the main text of Sect. 3.3.2 that this matrix is drawn on the
time-aggregated collaboration network A of neuroscience between 1970 and 2019. As it
might miss the particular structures of the temporal collaboration network T , we decom-
pose this matrix into 5 periods, as shown in Fig. B.3. In particular, the first line of this
figure, corresponding to the period 1970-1987, refers to the situation where the quartile
Q2 has not yet emerged in our dataset. The separation of Q from the other quartiles
Qi occurs qualitatively in the period 1988-1997, when Q2 was emerging and beginning
to publish in neuroscience. The final period spanning from 1998 to 2019 (represented by
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the last two heatmaps), which concentrates 93% of the 10,785,916 weighted edges in the
temporal collaboration network T , is very similar to the configuration shown in Fig. 3.11
in the main text.
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C Chapter 4 appendices

C.1 Technical elements for the construction of the neuroscience
knowledge map

C.1.1 Robustness of the UMAP projection

In Chapter 4, with the SPECTER model (Cohan et al., 2020), we have converted the
titles and abstracts of the articles in our neuroscience corpus into 768-dimensional vectors
summarizing their respective lexical features and scientific knowledge. Then, we have
projected these high-dimensional vectors into a latent two-dimensional Euclidean space
using the UMAP method (McInnes, Healy, and Melville, 2020). More specifically, we have
used the default configuration of the UMAP function of the eponymous Python package
umap,1 which operates the projection into a space of the same nature as that described
above. As mentioned in Sect. 4.1.1 of this chapter, the projection made by UMAP is
not unique. In this appendix, we test the robustness of this projection with two kinds of
nearest neighbors research, both of which allow to verify whether the points preserve their
respective neighbors from the high-dimensional space to the low-dimensional one under
study in this manuscript.

The first one merely consists in running such a nearest-neighbors search for each pa-
per of the dataset and comparing its two respective ensembles of neighbors in the two
embedding spaces, hereafter simply called SPECTER and UMAP. More precisely, we
perform this comparison by computing for each paper its share of common neighbors
exhibited in these two spaces. With the module NearestNeighbors from the Python
package scikit-learn, with a neighborhood population to query set to k = 100 (which
is not too large to avoid covering entire regions of the map) and a calculation mode set
to pairwise Euclidean distances, we find an average conservation of 10.8%. This very
huge loss after projection, however, does not imply that the papers are not surrounded
by other neighbors in the same area of vocabulary and encoded knowledge (or nearby).
That is why, in a second time, we verify whether the articles remain in a similar thematic
environment after the UMAP projection.

Inspired by the approach given by Singh et al. (2024) and González-Márquez et al.
(2024) in their respective technical materials used to scientometrically reconstruct broad
research landscapes, we implement a k-nearest neighbors (kNN) procedure to decipher
the thematic structure of the SPECTER-embedded corpus and the UMAP-embedded one.

1This package is available on Pypi and, when using pip, must be installed with the command pip
install umap-learn.
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Figure C.1: Accuracy of subfield prediction given by a k-NN algorithm at several number of
neighbors k for each embedding space – 768 dimensions for SPECTER and two dimensions for
UMAP. The accuracy at a given k is computed as the share of points in the test set whose
labeling subfield prediction is correct, i.e., the predicted subfield matches the actually observed
one. For SPECTER, 99% of the dataset was used to train the algorithm at each k, and the
remaining 1% served to compute the accuracy. For UMAP, we choose 80% of the dataset to
train the algorithm, and 20% to test it.

For a given set of points, such a kNN classifier predicts their unique class given the classes
labeling their respective neighbors, i.e., it assigns the majority class appearing in the
neighborhood of the point under study. To achieve this, we choose to label the papers with
their respective subfield associated with their primary topic extracted from OpenAlex (see
their definitions in Sect. 2.2.1.1 of Chapter 2), specifically for two reasons: 1) the topics
are too numerous in the dataset (2881), and 2) the disciplinary or thematic classifications
used throughout the main text of the manuscript label the articles with neither a unique
discipline (from WOS JSCs) nor a unique field of study (from MAG), thus compromising
the execution of a kNN search. With such a subfield classification, the application of kNN
to the SPECTER and UMAP datasets allows to build two confusion matrices summarizing
the proportion of true predictions per subfield, which will be compared afterwards.

In what follows, we restrict our analysis to a subset of papers covering 68 subfields,
each labeling at least 1000 publications – which accounts for 96% of the original dataset.
We thus keep their associated vectors within the two embedded datasets. Before plotting
their respective confusion matrices, we choose for each of them the number of neighbors k∗

maximizing the accuracy of the predictions returned by the search algorithm. As shown
in Fig. C.1, the accuracy for UMAP is limited to about 51% from approximately k∗ = 20,
while SPECTER’s one reaches its maximum of about 70% at k∗ = 12. We choose these
values to run optimized kNN searches within each dataset – with the help of the module
KNeighborsClassifier of the Python package scikit-learn.

The results of the predictions per subfield are shown in Fig. C.2. They indicate that
the predictions given by the kNN run over the papers embedded with SPECTER are
concentrated around the diagonal of the corresponding confusion matrix, thus testifying
that the papers lying in a given subfield are statistically surrounded by neighbors also
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labeled with that subfield. The papers labeled with a common subfield are thus statis-
tically included in a common area of knowledge represented by a common vocabulary,
which confirms the rather good embedding performance of SPECTER. We recover this
trend in the projected UMAP space, but with an accentuation of incorrect predictions
in some zones of the confusion matrix, corresponding to those already observed in the
SPECTER one, but with a lower intensity. This lack of precision concerns almost all sub-
fields, which show an important part of the predictions towards the subfields Molecular
Biology (light blue rectangular zone on the two heatmaps), Cellular and Molecular Neu-
roscience and Cognitive Neuroscience (grouped in a light green zone on the heatmaps).
The neighborhoods of articles belonging to the subfields with high prediction rates to
the three aforementioned ones are therefore predominantly populated by at least one of
these three subfields, especially in the UMAP space. This suggests, first, that these major
subfields cover a large vocabulary basis and therefore a broad part of the neuroscience
knowledge landscape, and, second, that they are lexically close to articles labeled with
subfields showing them as main predictions in the confusion matrices, such as Biochem-
istry (row 4), Physiology (row 12), Developmental and Educational Psychology (row 62)
and Experimental and Cognitive Psychology (row 63). Moreover, because they are the
most populated subfields – 15% labeled as Cognitive Neuroscience, 14% as Cellular and
Molecular Neuroscience, and 10% as Molecular Biology, with the remaining 71% almost
equally distributed among the 65 others – they are more likely to be predicted than any
of the other subfields.

In summary, with a kNN algorithm applied to the prediction of the subfields labeling
the articles in our neuroscience dataset, we confirm the robustness of the SPECTER
embedding of the textual metadata of these articles and also of the UMAP dimension
reduction algorithm used to transform the 768-dimensional vectors representing them into
two-dimensional ones. Albeit a loss of prediction accuracy before and after projection,
we have demonstrated a global conservation of the thematic structure of our corpus, thus
enabling us to use the reduced vectors to study the cartography of neuroscience shown in
Chapter 4, and also the location of AI-related knowledge in this reduced space.

C.1.2 HDBSCAN dendrogram

In this section, we detail the method retained to partition the knowledge map shown in
Fig. 4.3 of Chapter 4 into 9 clusters.

We have drawn upon the main method provided by the Python package hdbscan
(McInnes, Healy, and Astels, 2017), which returns a dendrogram indicating the differ-
ent clusters we could get by varying a density parameter, here denoted as λ. Fig. C.3
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Figure C.2: Confusion matrix of kNN predictions per subfield for the SPECTER-embedded
dataset (left) and the UMAP-embedded one (right). The indices of the matrices represent the
68 subfields considered to run the kNN models. The rows are the actual observed subfields and
the columns are the predicted ones, sorted as in the rows. Given a subset of papers labeled
with an observed subfield i (indexed in rows) within the test set, the cell mij in each matrix is
the share of predictions falling within the subfield j (indexed in columns). For example, among
the test papers labeled with the observed subfield Computer Networks and Communications
(pink-colored row 14 in the heatmaps) in the SPECTER space, 87.5% of them have a correctly
predicted subfield, i.e., the observed one, but the remaining 12.5% have a predicted subfield
other than their common observed one, here Cognitive Neuroscience. In the UMAP space, this
is 81% of them that are correctly predicted into the observed aforementioned subfield, against
19% exhibiting other subfields – 14 in total. Therefore, the sum of the prediction shares equals 1
for each observed subfield indexed in rows. For SPECTER, 99% of the dataset was used to train
the kNN algorithm with k∗ = 12, and the remaining 1% served to compute the predictions (with
an accuracy of about 70%). For UMAP, we choose 80% of the dataset to train it with k∗ = 20,
and 20% to compute the predictions (with an accuracy of about 51%). The light blue rectangle
corresponds to the columns associated with the subfields predicted as Molecular Biology, and the
light green one to the subfields predicted as Cellular and Molecular Neuroscience and Cognitive
Neuroscience.

illustrates a simple use case of this method, here applied to a set of numerical values
picked from a heterogeneous distribution. According to such a dendrogram, choosing a
high λ is equivalent to selecting small, local, and dense ensembles of points, such as those
located at the very ends of the branches of the clusters C1 and C3, which correspond
to the purple and ocher peaks, respectively, in the lower left plot of the distribution for
λ = λ2. On the contrary, choosing a small λ is equivalent to selecting the largest clusters
obtained by merging all the smallest clusters at the bottom of this hierarchy, such as the
green cluster in the middle left plot at λ = λ1, which is the sum of the clusters C1 and
C2, and also the yellow one at λ = λ0 in the top left plot, which is the sum of all the three
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Figure C.3: Schematic illustration of the application of HDBSCAN to a set of 30,000 continuous
numbers v on a horizontal axis generated from a non-trivial distribution, represented on the left
plots. This distribution is composed of density peaks corresponding to high amounts of points
in a small interval of the horizontal axis v, e.g. the leftmost peak (cluster C1) corresponds
to a high frequency of values v picked around −15. On the contrary, the pits are regions
with less selected values v. On the right is plotted the clustering dendrogram returned by the
Python module hdbscan, where the density threshold parameter is denoted by λ. The clustering
has been executed with a minimum neighborhood size of 1000 values for each number and a
minimal cluster size of 1000 numbers. A branch is a cluster whose color is the number of values
it contains at a given λ – represented also by the varying width when moving down the tree –
and whose length is the persistence of the cluster as λ increases. For example, the cluster C2
is less persistent than the other two clusters C1 and C3, i.e., the former is merged with the sea
of noisy points at λ ∼ 4, while the latter continue to exist after that value, but with smaller
respective sizes. As λ still increases, C3 is also considered as noise by the algorithm before C1.
At a value of λ = λ0 = 0 of the density parameter, we consider all the points of the distribution,
which together shape one unique cluster, colored yellow in the upper left plot. At a value of
λ = λ1, the set of points is split into two clusters, namely the cluster C3 and another one colored
in green in the middle plot. The latter is finally divided into two subparts at λ = λ2, namely
the clusters C1 (in purple in the bottom plot) and C2 (in wine red).

clusters. In such a case, the algorithm covers a large amount of points and thus reduces
the amount of noise.

We apply this clustering method to our embedded 2D representation of neuroscience
papers, i.e., after applying UMAP. Fig. C.4A shows the dendrogram returned by its execu-
tion. We manually choose the most separated and persistent clusters on this dendrogram,
regardless of their respective size, shape, or intrinsic density, by progressively increasing
λ. When setting λ around 5, we divide the dataset into 3 clusters, namely C0, C1, and
a very large one whose partition is shown below in Fig. C.4B. In this way, we obtain
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Figure C.4: A: Clustering dendrogram returned by HDBSCAN on our reduced dataset. The
program has been executed with a minimum neighborhood size of 100 points for each paper and
a minimal size of a cluster of 1000 papers. The density threshold is denoted as λ. A vertical bar
is a cluster, whose color represents the number of points within the corresponding cluster, scaled
with the logarithmic color bar on the left side, and whose length represents the persistence of
the corresponding cluster according to λ, i.e., the height of the associated amount of points
in the density map. B: Clustering dendrogram of the large cluster from dendrogram A above,
replotted after a second run of HDBSCAN on the subset of data included in this cluster. The
density threshold is denoted here as λ∗ because it is a translated value of the λ parameter from
plot A – the lowest value λ∗ = 0 actually corresponds to λ ∼ 1. The clusters C2, C3 and C4 are
simple bars, colored red for clarity. Population of each cluster: NC0 = 56, 644; NC1 = 8, 755;
NC2 = 2, 222; NC2 = 1, 407; NC4 = 1, 179; NC5 = 66, 465; NC6 = 28, 382; NC7 = 266, 593;
NC8 = 370, 814. We also count 55,230 papers that are unclassified by HDBSCAN, i.e., that are
considered as noise by the clustering algorithm.

the other clusters appearing in Fig. 4.3. The populations of all the clusters are indicated
in the caption of Fig. C.4. With such a partition, we allow a total noise rate of about
6.5%. We considered these time-aggregated clusters for the analysis of all the neuroscience
knowledge maps shown throughout the main text, in particular the 5-year temporal maps
in Fig. 4.4.

Furthermore, choosing a high number of neighbors to perform HDBSCAN leads to
very aggregated clusters with inhomogeneous density within them, while choosing a low
number of neighbors favors the formation of smaller and more homogeneously distributed
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clusters of points – hence the very high number of branches Fig. C.4. We have opted for
this second strategy to plot this dendrogram for two reasons: 1) to avoid the identification
of large and thematically inconsistent clusters, which could gather too distant knowledge,
and 2) to allow a more precise partitioning of the dataset in the future, especially the
large clusters C7 and C8.

C.1.3 Definition of the obtained clusters

Since the clusters delimited before are of different sizes, they could either cover a small and
consistent lexical region corresponding to a given research specialty in neuroscience (such
as C1, C2, C3 and C4), or many different ones and therefore many research areas with
strong vocabulary distance at the same time (such as C7 and C8). Furthermore, depending
on the topical or conceptual taxonomy provided by bibliometric databases and used to
label the articles in our dataset, we could misapprehend the contents of these clusters,
notably the largest ones. Therefore, in what follows, we compare three such taxonomies
in order to approach as best as possible the contents of these clusters, here MAG’s fields
of study, and OpenAlex’s topics and keywords, which label the articles. In particular, we
indicate in Tab. C.1, for each classification, the five most important elements shared by
the articles in each cluster.

For the MAG classification, we complete the list of the most frequent fields of study
situated at level 2 of the field network by indicating the most frequent ones at level 3, since
the fields located at the former level are too general and do not provide a clear meaning
of the cluster on their own. Moreover, we provide this supplementary list because 92.3%
of the papers in our neuroscience dataset are tagged with at least one concept situated
at this level. We discard the fields situated at the first level of the field networks because
they are merely disciplines or broad research domain, and also the fourth and fifth ones
because they are more sparsely tagged in our dataset.

Despite the excessive generality of the MAG taxonomy of fields of study – even at the
third level – we observe that the three classifications match quite well for the smallest clus-
ters: C0

2 focuses on the eye and vision studies, C1 on the design of artificial neural network
models and classifiers for various applications, C2 on the Attention-Deficit/Hyperactivity
Disorders (ADHD) – the first termMethylphenidate within the list of level-3 fields of study
for this cluster is also a molecule found in psychostimulant treatments for such disorders –,
C3 on the neurological studies of the Obsessive-Compulsive Disorder (OCD) and Tourette
syndrome, C4 on the studies of the genetic factors responsible for the onset of Parkinson’s
disease, and C6 on the studies of sensory pathologies related to hearing and smell. The

2A closer look at the following level-2 fields of study within the C0 ranking reveals the terms Visual
field, Lens (optics) and Astigmatism, thus confirming the name of the cluster mentioned in the main text.
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Fields of Study (level 2) Fields of Study (level 3) Topics Keywords

C0

Diabetes mellitus Retinal
Molecular Mechanisms of

Retinal Degeneration
and Regeneration

Intraocular Pressure

Population Retinal Global Prevalence and
Treatment of Glaucoma Photoreceptor Degeneration

In vivo Eye Disease Age-Related Macular
Degeneration Research Intraocular Lens Implantation

Cell culture Visual acuity Biomechanical Properties of
the Cornea and Related Diseases

Sutureless Intraocular
Lens Fixation

Erg Cornea Cataract Surgery Techniques
and Complications Ocular Hypertension

C1

Artificial neural network Exponential stability Neural Network Fundamentals
and Applications Backpropagation Learning

Nonlinear system Recurrent Neural Network Network Synchronization in
Complex Systems Time Delays

Support vector machine Lyapunov function Face Recognition and
Dimensionality Reduction Techniques Support Vector Machines

Cluster Analysis Deep learning Theory and Applications
of Extreme Learning Machines Feedforward Neural Networks

Convergence (routing) Backpropagation Blind Source Separation and
Independent Component Analysis Recurrent Neural Networks

C2

Attention deficit
hyperactivity disorder Methylphenidate Attention-Deficit/

Hyperactivity Disorder
Attention-Deficit/

Hyperactivity Disorder

Cognition Comorbidity Analysis of Brain
Functional Connectivity Networks ADHD

Electroencephalography Neuropsychology Autism Spectrum Disorders Adolescent Brain Development

Impulsivity El Niño Obsessive-Compulsive Disorder and
Related Conditions Brain Imaging

Population Working memory Epidemiology and Management
of Bipolar Disorder Attentional Networks

C3

Obsessive compulsive Tourette syndrome Obsessive-Compulsive Disorder
and Related Conditions Obsessive-Compulsive Disorder

Tics Anxiety Deep Brain Stimulation
for Neurological Disorders Tourette Syndrome

Cognition Comorbidity Analysis of Brain Functional
Connectivity Networks Deep Brain Stimulation

Neuroimaging Schizophrenia Effects of Brain Stimulation
on Motor Cortex Hoarding Behavior

Obsessive-compulsive disorder (OCD) Neuropsychology Diffusion Magnetic Resonance Imaging Treatment

C4

Gene Disease Pathophysiology of Parkinson’s Disease Parkinson’s Disease

Population Mutation Lysosomal Storage Disorders
in Human Health and Disease Parkinsonism

Diabetes Mellitus Genotype Epigenetic Modifications and
Their Functional Implications Neurodegeneration

Continued on next page
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Fields of Study (level 2) Fields of Study (level 3) Topics Keywords
Meta-analysis Allele Nurr1/CoREST Pathway in

Neuroprotection and Inflammation Dopaminergic Neurons

Cognition Polymorphism (computer science) Deep Brain Stimulation
for Neurological Disorders Genetic Risk Factors

C5

Gene Cancer Gliomas Skeletal Muscle Atrophy

Signal transduction Apoptosis Molecular Mechanisms of
Muscle Regeneration and Atrophy Glioblastoma

Diabetes mellitus Transcription factor Regulation and Function of
Microtubules in Cell Division mRNA modification

Population Receptor Mitochondrial Dynamics and
Reactive Oxygen Species Regulation Muscle Regeneration

Cell Mutation Myasthenia Gravis and
Thymic Tumors Research Brain Tumor Epidemiology

C6

Stimulus (physiology) Electrophysiology Cochlear Neuropathy and
Hearing Loss Mechanisms Olfactory Receptors

Cochlea Hair cell Olfactory Dysfunction in
Health and Disease Olfactory System

Olfaction Auditory cortex Neuroscience and Genetics of
Drosophila Melanogaster Auditory Processing

Inner ear Stimulation Avian Vocal Communication
and Evolutionary Implications Inner Ear Development

Sensory system Receptor Impact of Hearing Loss
on Cognitive Function Avian Vocal Communication

C7

Cognition Schizophrenia Neural Mechanisms of
Visual Perception and Processing Visual Perception

Stimulus (physiology) Epilepsy Neural Mechanisms of Cognitive
Control and Decision Making Neuroimaging Data Analysis

Perception Visual perception Epilepsy and Seizures Perceptual Learning

Electroencephalography Prefrontal cortex Analysis of Brain Functional
Connectivity Networks Working Memory

Population Disease Neuronal Oscillations in Cortical Networks Sensory Processing

C8

Hippocampus Central nervous system
Molecular Mechanisms of

Synaptic Plasticity and
Neurological Disorders

Neuroinflammation

Diabetes mellitus Receptor Neurobiological Mechanisms of
Drug Addiction and Depression Glutamate Receptors

Glutamate receptor Hippocampal formation Role of Neuropeptides in
Physiology and Disease Dopamine

Spinal cord Dopamine Mechanisms of Alzheimer’s Disease Neurodegeneration

Neuron Stimulation Mechanisms and Management
of Neuropathic Pain Cell Signaling

Table C.1: Table summarizing the five most important fields of study (retrieved from MAG classification, at levels 2 and 3), topics and keywords (both
retrieved from OpenAlex) per cluster. To fill the second column, we retain only OpenAlex’s primary topics of the papers within each cluster. In the
third column, we consider the ensemble of all OpenAlex’s keywords associated with the articles within each cluster.
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Cluster Name Np

C0 Eyes and vision studies 56,644

C1
Mathematical and computational 8,755foundations of connectionist AI

C2 Attention-Deficit/Hyperactivity Disorders 2,222

C3
Obsessive-Compulsive Disorders and 1,407Tourette syndrome studies

C4 Parkinson’s disease 1,179
C5 Gliomas and skeletal muscle atrophy studies 66,465
C6 Studies of sensorial pathologies 28,382

C7
Brain neural networks and neurological 266,593disorders studies (epilepsy and schizophrenia)

C8
Studies of neurobiological mechanisms 370,814in the central nervous system

Noise – 55,230
Table C.2: Final description of the clusters used throughout the Chapter 4. We also recall the
number of papers Np within the clusters obtained with HDBSCAN.

other three clusters are more thematically diversified: C5 gathers studies on glioma, an
aggressive brain tumor responsible for severe neurological degeneration, and on skeletal
muscle atrophy and regeneration, C7 focuses on the studies of various functions of brain
neural networks – vision, hearing, memory, cognition, etc. – and also on schizophrenia
and epilepsy disorders, and C8

3 on various neurobiological mechanisms that could occur
in the central nervous system and that could explain some pathologies – drug addiction,
depression, neuropathic pain, among others – and other neurological disorders,4 such as
Alzheimer’s disease and multiple sclerosis.

By compiling such elements associated with their papers, we attribute a unique name
to the clusters obtained above, as summarized in Tab. C.2.

3The following terms within the ranking of level-2 fields of study describing cluster C8 are Cerebral
cortex and Synapse, thus confirming the chosen name of the cluster centered on various studies of the
central nervous system.

4The following website offers a classification of all the neurological disorders referenced: https://www.
merckmanuals.com/home/brain,-spinal-cord,-and-nerve-disorders (visited on July, 14 2024).

https://www.merckmanuals.com/home/brain,-spinal-cord,-and-nerve-disorders
https://www.merckmanuals.com/home/brain,-spinal-cord,-and-nerve-disorders
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C.2 Temporal Jaccard similarity between the topical universe
of the knowledge clusters and that presented by the AI-
related papers within them
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Figure C.5: Jaccard ranking similarity between the main topics (according to the OpenAlex
taxonomy) presented by the papers that are members of a given cluster Ci (or in a set of clusters,
indicated between brackets) and those associated with the AI-related publications within the
same cluster. The small peripheral clusters C2, C3, and C4, whose weak presence of AI papers
over the years causes noisy, sometimes non-continuous similarity trends, are joined within their
large closer clusters, here C7 for the first two and C8 for the third.

C.3 Dynamic citation radius of gyration of the papers published
in 1976 and 1989

The temporal average citation radius of gyration (RoG) produced by the location of the
citations of a single paper within the neuroscience knowledge map, as computed with
the method in Chapter 4 and shown in Fig. 4.8 in the main text (under its normalized
definition), is a measure that covers all the citations accumulated by that paper over the
years. Thus, a paper published at the very beginning of the time period under study
(1970-2019) could have more citations and therefore a better lexical coverage than a
paper published more recently. In order to prospect the dynamic citation diffusion of
the AI-related papers published in the two specific years when the average RoG exhibits
a maximum, namely 1976 and 1989, we explore the evolution of the citation gyration
radii of these papers, expressed here as the logarithmic return log(1 + Rt), where Rt =
(rg(t) − rg(t − 1))/rg(t − 1) is the percentage of gain (Rt > 0) or loss (Rt < 0) in RoG
between two consecutive years. This measure, shown in Fig. C.6 below, indicates for a
single paper, respectively, the expansion of the lexical coverage exhibited by the papers
citing it, or the concentration of these citing papers around the local lexical subspace
surrounding the paper under study.

Fig. C.6 shows that most of the papers published in the two years studied (1976 and
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Figure C.6: Temporal log return Rt of the citation RoG of the papers published in 1976 (A)
and in 1989 (B). The time series are aggregated into clusters Ki in each year with a k-means
algorithm, based on an optimal number of clusters identified with a standard elbow method.
Np is the number of articles within the studied cluster Ki and therefore the number of different
log-returned RoGs plotted for this cluster. The red curves represent the centroid of the cluster
time series.

1989) cover their final lexical subspace very quickly after the publication, as shown by
the high peaks situated one, two, or at most three years after publication. This trend is
represented by the papers included in the clusters K1976

1 , K1976
2 , K1989

0 , K1989
1 and K1989

3 .
The papers included in the clusters K1976

0 and K1989
2 follow the same trend, but with some

peculiarities, such as a variation that is not as important as those in the other clusters in
the two or three years following the publication, and also a later impact after publication
– four years or more.
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D Chapter 5 appendices

D.1 Interview grid

D.1.1 Original questionnaire in french

1. Trajectoires professionnelles

1.1. Formation et parcours professionnel avant entrée dans l’équipe ou
l’institut

• Quelle type de formation avez-vous suivi (universitaire, ingénierie...) ?

• À quelle(s) spécialité(s)/disciplines(s) avez-vous été formé (santé, informa-
tique, mathématique...) ?

• Dans quel(s) établissement(s) avez-vous été formé ? (lieu, ville, pays)

• Si vous êtes détenteur d’une thèse, sur quoi portait-elle ? Avec qui l’avez-vous
réalisée ? Dans quel(s) laboratoire(s) de tutelle ?

• Avez-vous réalisé des post-docs ? Si oui, dans quel(s) laboratoire(s) ? Sinon,
quelle profession intermédiaire avez-vous exercée ?

1.2. Sensibilisation à l’IA

• Durant votre cursus, connaissiez-vous déjà l’IA ?

• Avez-vous été initié à l’utilisation de certains outils d’IA, via des cours
théoriques ou des stages pratiques ?

• Ou bien vous-êtes vous formé à ces outils en autodidacte ?

1.3. Recherche actuelle

• Quel est votre sujet de recherche actuel ?

• Votre recherche est-elle confidentielle ?

• Quel(s) article(s) de référence conseilleriez-vous pour illustrer vos recherches
? Quel(s) sont ceux que vous banniriez ? Pourquoi ?

2. Utilisation de l’IA

2.1. Focus sur l’IA dans les recherches

• Quel(s) type(s) d’IA manipulez-vous au quotidien ? Plutôt numérique (ma-
chine learning) ou symbolique (systèmes experts) ?
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• Travaillez-vous sur la conception ou l’amélioration d’une IA (recherche fonda-
mentale) ou plutôt sur son application médicale ?

• Quelles sont les outils médicaux potentiellement candidats à l’implémentation
d’un programme d’IA ? (imagerie médicale, aide à la prise de décision, élab-
oration de diagnostics...)

• Collaborez-vous avec les équipes de recherche clinique ?

• Y a-t-il une validation des programmes conçus auprès de patients sélectionnés,
au sein ou hors du site hospitalier ?

2.2. Données d’entraînement utilisées

• Si vous utilisez des données anonymisées (santé publique, génétique...) pour
entraîner les algorithmes, quelles sont-elles ?

• D’où proviennent-elles ?

• Comment vous les procurez-vous ? (autorisation auprès d’une instance
supérieure, vérification du bien-fondé de la recherche en cours...)

3. Perception de l’IA

3.1. Lors de la professionnalisation

• Lors de votre formation ou de votre parcours professionnel, l’IA vous semblait-
elle balbutiante ? Ou bien vous semblait-elle déjà répandue dans certaines
disciplines scientifiques ?

• Cela dépendait-il des laboratoires ? Par exemple, avez-vous fréquenté des
laboratoires dans lesquels l’IA était absente malgré son essor dans la recherche
scientifique ces vingt dernières années ?

3.2. Actuellement au travail

• L’IA a-t-elle changé votre quotidien de recherche en général ?

• Plus précisément, a-t-elle changé vos pratiques, créé ou métamorphosé certains
savoir-faire ?

• A-t-elle accéléré certains processus automatisés ? A-t-elle remplacé certaines
tâches contraignantes que vous deviez faire manuellement ?

• Si tel est le cas, par quoi remplacez-vous ce temps « gagné » ?

• Les outils d’IA que vous utilisez ou inventez créent-t-ils des connaissances ?
Auriez-vous fait les mêmes découvertes sans l’intervention de l’IA ?

3.3. Considérations générales sur l’IA en santé

• Selon vous, l’IA au service de la santé publique pourra-t-elle totalement rem-
placer les médecins ?
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• Selon vous, quels sont les principaux enjeux derrière l’IA (santé publique,
développement scientifique...)

• Que pense la communauté médicale autour de vous à propos de l’IA ? Se
montre-t-elle méfiante envers l’IA ? Cette dernière serait-elle néfaste à la pro-
fession et à l’éthique médicale ? (l’IA source de discrédit de la profession
?)

• Que pensez-vous de la course à l’homme augmenté aujourd’hui en cours ?
(normes de représentations corporelles ?)

• Pensez-vous que l’IA dépassera l’homme ?

4. Cadre institutionnel

• Travailler dans le cadre dans un institut largement financé par quelques par-
ticuliers vous procure-t-il un confort de recherche (financier et matériel) ? Si
oui, cela vous permet-il d’avancer sereinement ?

• Travaillez-vous avec des chercheurs du monde industriel et de la R&D ? Si
oui, de quels laboratoire, bureau d’études, ou entreprise proviennent-ils ?

• Travaillez-vous avec des start-ups innovant et brevetant des technologies d’IA
? Si oui, lesquelles ? Font-elles parties de l’institut ?

D.1.2 Translated in english

1. Professional career

1.1. Training and career path before joining the team or the institute

• What type of training did you follow (university, engineering...)?

• In which speciality(ies)/discipline(s) have you been trained (health, medical
track, neuroscience, computer science, mathematics...)?

• In which organisms(s) have you been trained (name, town, country)?

• If you are PhD graduate, what was your study object? With whom did you
complete it? In which laboratory(ies)?

• Have you completed any post-docs? If so, in which laboratory(ies) ? If not,
what intermediate profession have you held?

1.2 Meeting with AI

• During your studies, did you already know about AI?

• Have you been initiated to the use of certain AI tools, via theoretical courses
or practical training?
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• Or did you learn about these tools on your own?

1.3. Current search

• What is your current research topic?

• Is your research confidential?

• What reference article(s) would you recommend to illustrate your research?
Which ones would you ban? Why?

2. Use of AI

2.1. Focus on AI in research

• What type(s) of AI do you handle on a daily basis? More data-fed algorithms
(machine learning) or symbolic ones (expert systems)?

• Are you working on the design or improvement of an AI (fundamental re-
search), or rather on its medical application?

• What are the medical tools that are potential candidates for the implemen-
tation of an AI programme (medical imaging, decision support, diagnosis,
etc.)?

• Do you collaborate with clinical research teams?

• How are programmes designed with selected patients validated, within or out-
side the hospital site?

2.2. Used training data

• If you use any anonymized data (public health, genetics...) to train your
algorithms, what are they?

• How are they produced?

• How do you obtain them (authorization from a higher authority, verification
of the validity of the research in progress, etc.)?

3. AI perception by users

3.1. During professionalization

• During your training or your professional career, did AI seems still fledgling
to you? Or did it already seem widespread in some scientific disciplines?

• Did it depend on the laboratories? For example, have you been in laboratories
where AI was absent despite its growth in scientific research over the last
twenty years?

3.2. Currently at work
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• Has AI changed your daily research routine in general?

• More specifically, has it changed your practices, created or transformed certain
skills?

• Has it sped up some automated processes? Has it replaced certain burdensome
tasks that you used to have to do manually?

• If so, what are you replacing this newly available time with?

• Do AI tools you use or invent create knowledge? Would you have made the
same discoveries without AI?

3.3. General considerations on AI in healthcare

• In your opinion, will AI in public health be able to completely replace practi-
tioners?

• In your opinion, what are the main issues behind AI (public health, scientific
development, etc.)?

• What does the medical community around you think about AI? Are they wary
of AI? Would AI be a threat to the medical profession and ethics?

• What do you think of the race to “augmented human” that is currently un-
derway?

• Do you think AI will overtake the human kind?

4. Institutional context

• Does working within an institute largely funded by a few private individuals
provide you a kind of research comfort (of financial and material kinds)? If
so, does it allow you to move forward serenely?

• Do you work with researchers from industry and R&D? If so, which laborato-
ries, engineering design offices or companies do they come from?

• Do you work with start-ups innovating and patenting AI technologies? If so,
which ones? Are they part of the institute?
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Abstract

English abstract

Over the past decade, Artificial Intelligence (AI) has been increasingly used by a wide
range of scientific disciplines to advance their respective research agendas. This phe-
nomenon is the subject of ongoing discussions and criticism, particularly with regard to
its potential to supplant other tools traditionally used in these disciplines, and to create
new knowledge capable of revolutionizing already well-established theoretical paradigms.
In this context, this thesis examines the epistemic impact of AI in scientific research,
and specifically in a multidisciplinary field, neuroscience. By identifying and explaining
the mechanisms of integration and diffusion of AI within the latter, this thesis aims to
determine the extent to which AI is becoming pervasive (or not) in the production of
knowledge specific to this research domain. Using a multiscale approach, this thesis is
divided into two parts.

Firstly, a numerical analysis of bibliometric data representing the neuroscience literature
between 1970 and 2020 demonstrates that AI is applicable to a vast array of topics covered
by neuroscience in these years, but fails to merge with the fundamental knowledge that
structures the core of their respective conceptual frameworks, and therefore to become a
central part of knowledge creation or entire paradigms upheaval. Thus, we argue that AI
is generic in neuroscience in terms of applications, but not conceptualization. The study
of this corpus also reveals that only a small number of scientists, mostly mathematicians,
computer scientists, or engineers segregated at the periphery of the entire neuroscience
collaboration network, employ AI in their publications. In particular, they tend to publish
mostly together and little alongside neuroscientists engaged primarily in medical research,
who nevertheless represent the core of the professionals listed in our database.
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Secondly, by mobilizing data from semi-structured interviews conducted in 2021 with
members of a clinical research team specializing in neuroimaging and computational neu-
roscience, we demonstrate the interdisciplinary nature of AI development, which involves
various collaborators from computer science and medical research. We distinguish two
elements. First, AI specialists, as the initial broadcasters of this research tool, are re-
quired to align their practices with the expectations of healthcare professionals, and thus
transform the research practices they may have acquired in the past before joining the
team. Second, although its performance remains limited or comparable to tools that are
already used for the scientific tasks carried out in the team, AI is rapidly adopted by
all the members of the team, whether they are computer scientists or clinicians, as it
contributes to enhance the visibility of the output of their research to other scientists and
institutions within academic and industrial realms.

The combination of these two qualitative and quantitative approaches finally demon-
strates that AI is far from replacing all the research tools used by neuroscientists, due to
its current limited genericity.

Keywords: Artificial Intelligence, Neuroscience, Research-technology, Genericity, Sci-
ence and Technology Studies, Computational Social Sciences, Complex Systems

French abstract

Depuis la dernière décennie, l’intelligence artificielle (IA) se révèle être un outil de choix
dans la recherche scientifique, comme en témoigne son utilisation toujours plus accrue
dans presque toutes les disciplines. Cette dernière suscite de nombreuses réflexions et
critiques, notamment sur sa capacité à supplanter d’autres outils traditionnellement mo-
bilisés dans ces disciplines et à créer de nouvelles connaissances capables de révolutionner
des paradigmes théoriques déjà bien établis. Dans ce contexte, cette thèse s’intéresse à
l’impact épistémique de l’IA dans la recherche scientifique, et plus particulièrement dans
un domaine multi-disciplinaire, les neurosciences. À travers l’identification et l’explication
des mécanismes d’intégration et de diffusion de l’IA au sein de ces dernières, cette thèse
vise notamment à établir dans quelle mesure elle devient omniprésente (ou non) dans la
production des savoirs propres à ce domaine de recherche. S’appuyant sur une méthode
multi-échelle, cette thèse se divise en deux temps.

Premièrement, au moyen d’une analyse numérique de données bibliométriques représen-
tant la littérature neuroscientifique entre 1970 et 2020, nous montrons que l’IA s’applique
bel et bien à un vaste ensemble de thématiques portées par les neurosciences entre 1970
et 2020 (généricité en application), mais peine à s’articuler avec les cadres théoriques
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majeurs de ces dernières (généricité en conceptualisation), ne lui permettant donc pas
de bousculer des paradigmes entiers. L’étude de ce corpus révèle également que quelques
scientifiques bien particuliers recourent à l’IA dans leurs écrits : formés et évoluant au sein
des mathématiques, de l’informatique ou de divers pans de l’ingénierie, ces derniers pub-
lient majoritairement ensemble et peu aux côtés de neuroscientifiques plutôt impliqués
dans la recherche médicale et constituant pourtant le cœur des professionnels recensés
dans notre base de données.

Deuxièmement, en mobilisant des données d’entretiens semi-directifs réalisés en 2021
auprès de membres d’une équipe de recherche clinique spécialisée dans la neuro-imagerie et
les neurosciences computationnelles, nous montrons une réalité du travail interdisciplinaire
de construction de l’IA par divers acteurs des recherches informatique et médicale, et ce
à travers deux éléments. D’abord, les spécialistes de l’IA, premiers diffuseurs de cet
instrument de recherche, doivent se conformer aux attendus des professionnels de santé et
ainsi transformer leurs pratiques de recherche qu’ils ont pu acquérir dans le passé avant de
rentrer dans l’équipe. Ensuite, l’IA se retrouve progressivement adoptée par l’ensemble des
informaticiens et cliniciens affiliés à cette dernière, car elle participe à l’accroissement de la
visibilité des recherches produites auprès d’autres scientifiques et institutions représentant
les mondes académique et industriel, et ce malgré des performances encore limitées ou
similaires à des outils déjà utilisés pour les tâches scientifiques à accomplir dans l’équipe.

Ces deux approches qualitatives et quantitatives montrent finalement que l’IA est loin
de remplacer l’ensemble des outils de recherche utilisés par les neurosciences, en raison de
sa généricité encore limitée.

Mots-clefs : Intelligence Artificielle, Neurosciences, Recherche technologique, Généric-
ité, Étude des sciences et technologies, Sciences sociales computationnelles, Systèmes com-
plexes
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La diffusion de l’intelligence artificielle dans les neurosciences. Une approche
multi-échelle de la généricité d’une recherche technologique

Depuis la dernière décennie, l’intelligence artificielle (IA) se révèle être un outil de choix dans
la recherche scientifique, comme en témoigne son utilisation toujours plus accrue dans presque
toutes les disciplines. Considérant cette dernière comme une recherche technologique partic-
ulière dans les sciences, cette thèse s’intéresse à l’impact épistémique de l’IA dans un domaine
multi-disciplinaire, les neurosciences. S’appuyant sur une méthode multi-échelle, recourant à
une analyse de données bibliométriques représentant la littérature neuroscientifique entre 1970
et 2020, ainsi qu’à des données d’entretiens semi-directifs réalisés en 2021 auprès de mem-
bres d’une équipe de recherche clinique spécialisée dans la neuro-imagerie et les neurosciences
computationnelles, cette thèse vise à établir dans quelle mesure l’IA devient omniprésente (ou
non), voire générique, dans la production des savoirs propres aux neurosciences, et ce à travers
l’identification et l’explication de quelques mécanismes d’intégration et de diffusion de l’IA au
sein de ces dernières. Ces deux approches qualitatives et quantitatives montrent finalement que
l’IA est loin de remplacer l’ensemble des outils de recherche utilisés par les neurosciences, en
raison de sa généricité encore limitée.

Mots-clefs : Intelligence Artificielle, Neurosciences, Recherche technologique, Généricité, Étude
des sciences et technologies, Sciences sociales computationnelles, Systèmes complexes

The diffusion of Artificial Intelligence into Neuroscience. A multiscale
approach of the genericity of a research-technology

Over the past decade, Artificial Intelligence (AI) has been increasingly used by a wide range
of scientific disciplines to advance their respective research agendas. Conceptualizing AI as a
particular research-technology in science, this thesis examines its epistemic impact in a multi-
disciplinary field, neuroscience. Using a multiscale approach that mobilizes bibliometric data
representing the neuroscience literature between 1970 and 2020 and data from semi-structured
interviews conducted in 2021 with members of a clinical research team specializing in neu-
roimaging and computational neuroscience, this thesis aims to determine the extent to which
AI is becoming pervasive (or not), even generic, in the production of knowledge specific to neu-
roscience. To this end, this thesis identify and explain some mechanisms of integration and
diffusion of AI within this research domain. The combination of these two qualitative and quan-
titative approaches finally demonstrates that AI is far from replacing all the research tools used
by neuroscientists, due to its current limited genericity.

Keywords: Artificial Intelligence, Neuroscience, Research-technology, Genericity, Science and
Technology Studies, Computational Social Sciences, Complex Systems
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